
HAL Id: tel-03588308
https://theses.hal.science/tel-03588308v2
Submitted on 18 Feb 2022 (v2), last revised 24 Feb 2022 (v3)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Proofs as games and games as proofs: dialogical
semantics for logic and natural language.

Davide Catta

To cite this version:
Davide Catta. Proofs as games and games as proofs: dialogical semantics for logic and natural
language.. Logic in Computer Science [cs.LO]. Université de Montpellier, 2021. English. �NNT : �.
�tel-03588308v2�

https://theses.hal.science/tel-03588308v2
https://hal.archives-ouvertes.fr

THÈSE POUR OBTENIR LE GRADE DE DOCTEURTHÈSE POUR OBTENIR LE GRADE DE DOCTEUR

DE L’UNIVERSITE DE MONTPELLIERDE L’UNIVERSITE DE MONTPELLIER

En informatique

École doctorale : Information, Structures, Systèmes

Unité de recherche UMR5506

Les preuves vues comme des jeux et réciproquement :
sémantique dialogique de langages naturels ou logiques

Les preuves vues comme des jeux et réciproquement :
sémantique dialogique de langages naturels ou logiques

Présentée par Davide Catta
Le 23 Novembre 2021

Sous la direction de Christian Retoré, Richard Moot
et Myriam Quatrini

Devant le jury composé de

Vito Michele Abrusci, Professeur émérite, dipartimento di matematica e fisica Rapporteur

Andreas Herzig, Directeur de Recherches, CNRS, IRIT, Université Paul Sabatier Rapporteur

David Delahaye, Professeur, LIRMM, Université de Montpellier Examinateur

Valeria de Paiva, Chargé de recherce, Topos institute, Berkeley Examinatrice

Jean-Yves Marion, Professeur, ENSMN, LORIA Examinateur

Alexis Saurin, Chargé de recherche, CNRS, IRIF Invité

REMERCIEMENTS

Je tiens d’abord à remercier mon directeur de thèse Christian Retoré et mes deux
encadrants Richard Moot et Myriam Quatrini. Leurs suggestions et encouragements
ont été très précieux pendant tout mon travail de conception et rédaction.
Je voudrais en suite remercier les deux rapporteurs de mon travail de thèse, Michele
Abrusci et Andreas Herzig, qui ont lu mon manuscrit en profondeur et qui m’ont don-
nées des conseils très ponctuels pour l’améliorer. Je remercie également les examina-
teurs et l’examinatrice de mon travail qui m’ont posé des questions très stimulantes
et pertinentes lors de ma défense de thèse : David Delahaye, Jean-Yves Marion, Alexis
Saurin et Valeria de Paiva.
Je remercie les membres de l’équipe TEXTE du LIRMM qui m’ont accueilli pendant les
dernièrs trois ans.
Je remercie les collègues qui ont travaillé avec moi pendant ce trois ans et qui m’ont
appris beaucoup : Matteo Acclavio, Lutz Straßburger, Mehdi Mirzapour et Symon Jory
Stevens-Guille.
Je remercie chaleureusement toutes les personnes que, pendant ce trois ans, m’ont aidé
à garder un contact avec la réalité : les membres du politburo, les membres de LCM,
Antonio, Pino, Peppe, Marco S., Marco C., Lorenza, Lucia, Gaetan, Dylan et ma famille
qui m’a toujours soutenu (matérialement et moralement) dans mes études. Enfin, je
tiens à remercier du fond du cœur ma compagne Nadège qui m’a supporté tout au
long de la préparation de la thèse et de la rédaction du manuscrit. La tâche n’était pas
facile et je lui en suis infiniment reconnaissant.

Woof-woof pour Hobey.

Mors clés

Théorie de la preuve, sémantique dialogique, sémantique des jeux, traitement au-
tomatique du langage naturel, logique mathématique

Keywords

Proof theory, Dialogical Semantics, Game Semantics, Natural Language Processing,
Mathematical Logic

RÉSUMÉ DE LA THÈSE

Notre travail de thèse se situe au carrefour de plusieurs disciplines : d’une part, la
logique mathématique et l’informatique théorique, d’autre part le traitement automa-
tique du langage naturel et plus particulièrement la sémantique formelle du langage
naturel. Le fil conducteur est la présence constante des méthodes logiques issues de la
théorie de la preuve et par le problème philosophique qui a motivé notre thèse : quels
sont les liens entre la notion de preuve et celle de signification linguistique ou logique
? Plus concrètement, nous étudions des systèmes formels dont les preuves sont vues
comme des stratégies gagnantes pour des jeux à deux joueurs. Dans ces jeux, un jouer,
appelé Proposant, essaye de construire une justification pour un certain énoncé tandis
que l’autre, l’Opposant, essaye de construire une réfutation de cet énoncé. La thèse est
composée de trois parties, chaque partie contenant deux ou trois chapitres.

La première partie est propédeutique. Dans les deux chapitres qui la composent
nous présentons les outils mathématiques utilisés dans notre thèse ainsi que les prin-
cipes logiques et philosophiques qui ont guidés nos travaux, notamment la sémantique
inférentialiste.

La deuxième partie de notre thèse contient deux longs chapitres, lesquels présentent
les résultats de théorie de la démonstration qui constituent le cœur de notre thèse. En
particulier, dans le premier chapitre de cette partie, nous définissons précisément un
système de logique dialogique pour la logique classique du premier ordre avec termes.
Nous montrons que, pour une formule A, l’existence d’une stratégie gagnante pour A
équivaut au fait que A est un théorème logique. Bien que des systèmes de logique dia-
logique pour la logique classique du premier ordre existent depuis les années 1960 il
n’existait pas à ce jour de preuve convaincante publiée de ce résultat, notamment en
présence de termes. Dans le deuxième chapitre de cette deuxième partie, nous pré-
sentons une sémantique dénotationnelle pour la variante constructive de la logique
modale K. En particulier notre sémantique dénotationnelle est une sémantique des
jeux dans laquelle les preuves de la logique modale sont interprétées par des stratégies
gagnantes pour des jeux à deux jouer. Nous montrons que notre sémantique possède
une propriété remarquable : elle est ‘pleinement adéquate’ (fully complete) c’est-à-dire
que toute stratégie gagnante est l’interprétation d’au moins une preuve de la logique
modale.

La troisième et dernière partie se compose de trois chapitres, chacun étant consacré
à une application de nos travaux en théorie de la démonstration à la sémantique du lan-
gage naturel. Dans le premier chapitre, nous étudions le rapport entre les analyses syn-
taxiques catégorielles d’une même phrase et les représentations sémantiques logiques
de la phrase analysée. Nous montrons que, lorsque certaines conditions sont respec-

II

tées, la fonction qui transforme analyses syntaxiques d’une phrase en représentations
sémantique logiques est injective. Dans le deuxième chapitre de cette troisième partie,
nous appliquons notre système de logique dialogique à la résolution au problème de la
reconnaissance d’inférences en langage naturel en utilisant un analyseur syntaxique et
sémantique catégoriel. Dans le dernier chapitre de cette partie, nous présentons un sys-
tème formel pour la résolution d’anaphore et ellipses, problème généralement abordé
par des méthodes de théorie des modèles. Nous, au contraire, présentons une solu-
tion basée sur la théorie de la démonstration, en développant un système de logique
dialogique qui permet de résoudre simplement les anaphores et les ellipses.

Dans la conclusion, nous faisons le bilan de notre travail de thèse et essayons de
décrire les développements futurs possibles de notre recherche, tant du point de vue
mathématique et logique que du point de vue des applications au langage naturel.

SUMMARY

This thesis is situated at the intersection of several disciplines: on the one hand,
mathematical logic and theoretical computer science, on the other hand, natural lan-
guage processing and formal semantics of natural language. The thread tying these
topics together is the constant use of tools and methodologies of proof theory and the
philosophical problem that motivated our thesis: what are the links between the no-
tion of proof and that of linguistic meaning? More concretely, we study formal proofs
systems. in these systems proofs are seen as winning strategies for two-player games.
In the games one player, called the Proponent, tries to construct a justification for a cer-
tain statement while the other, the Opponent, tries to refute this statement. Our thesis
is composed of three parts, each part containing a maximum of three chapters.

The first part is preparatory. In the two chapters that compose it we present the ma-
thematical tools used in our thesis as well as the philosophical question that underlie
our research.

The second part consists of two long chapters and presents the central proof-theoretical
results of our thesis. In the first chapter of this part we present a dialogical logic system
for classical first order logic. We show that, given a formula A, A is a logical theorem
if and only if there is a proponent winning strategy for A. Dialogical logic systems for
classical first-order logic have existed since the 1960’s. However there is no convin-
cing proof of this result in the literature. In the second chapter of this second part we
present a denotational semantics for the constructive variant of the modal logic K. Our
denotational semantics is a game semantics: the proofs of modal logic are interpreted
by winning strategies for two-player games. We show that our game semantics has a
remarkable property; it is ’fully complete’: every winning strategy is the interpretation
of a proof of modal logic.

The third and last part of our thesis consists of three chapters. Each chapter is de-
voted to an application of proof theory to the semantics of natural language. In the
first chapter, we study the relationship between the categorical syntactic analyses of
a sentence and the logical representations of the sentence. We show that, when cer-
tain conditions are met, the function that transforms syntactic analyses of a sentence
into logical representations is injective. In the second chapter of this third part, we use
our dialogical logic system, together with type logical grammars, to solve textual en-
tailment problems. In the last chapter of this section we present a formal system for
the resolution of anaphora and ellipsis. This problem is usually addressed by model
theoretic methods. We, on the contrary, present a solution based on proof theory. We
develop a dialogical logic system in which anaphora and ellipsis can be solved in a
simple way.

II

In the conclusion, we sketch possible future developments of our research. Both
from a mathematical and logical point of view and from the point of view of natural
language applications

Contents

Introduction en français 7
Théories référentialistes de la signification . 8
Théories inférentialistes de la signification . 11
Inférentialisme et dialogues argumentatifs . 12
Résultats du travail de thèse . 13

Théorie de la preuve . 14
Modélisation de la syntaxe et de la sémantique du langage naturel 18

Organisation du manuscrit . 24
Mathematical and Philosophical foundations 24
Logic and DiaLogical Games . 25
Natural Language Applications of Proof Theory 26

Introduction 28
Referentialist theories of meaning . 29
Inferentialist theories of meaning . 31
Inferentialism and argumentative dialogues . 32
Thesis’s results . 34

Proof theory . 34
Natural language syntax and semantics modelisation 38

Thesis’s organization . 43
Mathematical and Philosophical foundations 43
Logic and DiaLogical Games . 44
Natural Language Applications of Proof Theory 45

1

I Mathematical and Philosophical foundations 47

1 Mathematical preliminaries 48
1.1 First Order Language . 48

1.1.1 First Order Terms . 49
1.1.2 First Order Formulas . 50

1.2 Trees . 52
1.3 Sequences . 53
1.4 Semantic . 54
1.5 Proofs . 56
1.6 Sequent Calculus . 56
1.7 Variations on the sequent calculus . 60

1.7.1 Intuitionistic Logic . 60
1.7.2 Atomic identity rule . 60
1.7.3 Negation . 61
1.7.4 Additive vs Multiplicative . 62
1.7.5 Absorbing the Exchange rules . 63
1.7.6 Absorbing the Weakening rules 63
1.7.7 Absorbing the Contractions rules 63

1.8 Natural Deduction . 64
1.8.1 Detours and normal proofs . 67
1.8.2 Intuitionistic multiplicative linear logic 67

1.9 The Simply Typed Lambda Calculus . 68
1.10 The Curry-Howard Correspondence . 71

2 Philosophical Foundations 73
2.1 Meaning and natural deduction . 73
2.2 Meaning and the Sequent Calculus . 76

2.2.1 The role of the structural rules . 77
2.2.2 Formulas vs sequents . 77

2.3 Meaning and argumentation . 79
2.4 A DiaLogical interpretation of the sequent calculus 80
2.5 Proof Semantics vs Semantics of Proofs 82

2.5.1 Sequent calculus proofs as dialogic games: other approaches. . . . 83

2

II Logic and DiaLogical Games 84

3 DiaLogical Games 85
3.1 Introduction . 85

3.1.1 Previous works . 87
3.2 Dialogical Logic . 89

3.2.1 Argumentative dialogues: informal overview 89
3.2.2 Argumentation forms . 90
3.2.3 Augmented sequence . 91
3.2.4 Games . 92
3.2.5 Some examples . 94
3.2.6 Properties of games . 97
3.2.7 Strategies . 98
3.2.8 Some examples of strategies . 100

3.3 The sequent calculus SLK . 101
3.3.1 Properties of SLK . 105
3.3.2 SLK: soundness and completeness 109

3.4 From strategies to derivations . 111
3.5 From derivations to strategies . 115
3.6 Intuitionistic dialogical games . 118

3.6.1 Some examples of intuitionistic games 118
3.6.2 Intuitionistic Strategies . 119

3.7 Conclusion . 123

4 Game Semantics for Constructive Modal Logic 128
4.1 Introduction . 128

4.1.1 Generalities about denotational semantics 128
4.1.2 Generalities about constructive modal logics 130
4.1.3 Generalities about game semantics 131
4.1.4 Game semantics for CK . 132

4.2 Background . 135
4.2.1 The constructive modal logic CK 135
4.2.2 The sequent calculus LCK . 135
4.2.3 Cut elimination for LCK . 138

4.3 Modal Arenas . 148

3

4.4 Winning Strategies for CK . 152
4.4.1 Views . 152
4.4.2 Winning innocent strategies . 154
4.4.3 CK Winning Innocent Strategies 156

4.5 Compositionality of Winning Strategies 158
4.6 Some remarkable strategies . 165
4.7 Game semantics interpretation of CK . 168

4.7.1 Denotational Model . 171
4.8 Full Completeness . 173
4.9 Bonus: game semantics for CD . 176
4.10 Conclusion and Future Work . 177

III Natural Language Applications of Proof Theory 179

5 Type Logical Grammars: a result about the syntactic-semantic interface. 180
5.1 Introduction . 180
5.2 The Lambek Syntactic calculus . 183

5.2.1 Lambek Calculus and Grammar 185
5.2.2 Multisorted logic and lambda calculus 187

5.3 From Lambek to logic . 189
5.3.1 From Lambek to imll . 190
5.3.2 From imll to logical formulas . 191

5.4 Syntactic terms and logical readings . 192
5.4.1 The problem . 193
5.4.2 Some counterexamples . 193

5.5 Dominance . 196
5.6 Conclusion . 201

6 Textual Entailement Recognition and DiaLogical Games 203
6.1 Introduction . 203
6.2 Textual Entailment Recognition . 204

6.2.1 First Example . 205
6.2.2 Second Example . 206
6.2.3 Third Example . 208

4

6.2.4 Fourth Example . 209
6.3 Word Knowledge . 211

6.3.1 Unfolding . 212
6.3.2 Some Examples of U-games . 213
6.3.3 Properties of U-games . 215

6.4 Textual entailment and U-strategies . 217
6.5 Conclusion . 222

7 DiaLogical Games for anaphora and ellipsis resolution 223
7.1 Introduction . 223
7.2 Pronouns . 224
7.3 Dialogical games for Anaphora and Ellipsis resolution: A-games 225

7.3.1 Properties ofA-Games . 228
7.4 Textual Entailment Recognition and Anaphora Resolution 228

7.4.1 First Example Involving Anaphoras 229
7.4.2 Second Example Involving anaphoras 231
7.4.3 Third Example Involving anaphoras 232
7.4.4 Fourth Example Involving Anaphoras: Donkey Anaphora 235

7.5 Ellipsis . 237
7.5.1 Events . 238

7.6 Textual Entailment Recognition and Ellipsis Resolution 240
7.6.1 First Example involving Ellipsis: VP-ellipsis 240
7.6.2 Second Example Involving Ellipsis 242

7.7 Discussion . 243
7.7.1 Other Works . 243
7.7.2 Sorting . 245

7.8 Conclusion . 246

IV Conclusion 248

8 Conclusion 249
8.1 Proof theory . 249

8.1.1 Dialogical Logic . 249
8.1.2 Game Semantic . 252

5

8.2 Applications of proof theory to natural language. 253
8.2.1 Syntactic terms and semantic readings 253
8.2.2 Textual Entailment Recognition, anaphora, ellipsis and Dialogical

Logic . 254

6

Introduction en français

Pour qu’une chose soit intéressante, il
suffit de la regarder longtemps

Gustave Flaubert, Lettre à Alfred Le
Poitevin

Notre travail de thèse se situe au carrefour d’au moins deux disciplines : d’une part, la
logique mathématique et l’informatique théorique, d’autre part le traitement automatique
du langage naturel, la sémantique formelle du langage naturel et la philosophie du langage.
Le fil conducteur de ce travail est la théorie de la démonstration, qui nous a offert outils et
méthodologies, et permis d’avancer sur une question fondamentale de logique : quels sont
les liens entre la notion de preuve et celle de signification linguistique ? Plus précisément
: comprendre le sens d’un énoncé A est-ce être capable de fournir une justification de cet
énoncé A ?

Notre intérêt pour la philosophie du langage en tant que logicien et informaticien est
naturel : l’une des taches centrales de la philosophie du langage n’est-elle pas d’éclairer
ou d’expliquer le concept de signification et de l’appliquer au langage ? Pour parvenir à
donner une explication du concept de sens les philosophes ont introduit la notion de théorie
de la signification. Pour expliquer cela, reprenons les mots de Michael Dummett:

according to one well known view, the best method of formulating the philo-
sophical problems surrounding the concept of meaning and related notions
is by asking what form that should be taken by what is called ‘a theory of
meaning’ for any one entire language; that is a detailed specification of the
meanings of all the words and sentence forming operations of the language,
yielding a specification of the meaning of every expression and sentence of the

7

language. [41]

Une théorie de la signification n’est donc rien d’autre qu’une spécification de la manière
dont nous attribuons du sens et comprenons les expressions d’un langage. Le langage peut
être bien sûr artificiel, comme le serait C++, Scheme ou un langage logique, mais il peut
aussi être naturel comme le sont le français ou l’anglais. Bien qu’ils existent différentes
théories de la signification, nous pouvons distinguer deux grandes familles :

• D’un côté, nous trouvons les théories de la signification qui ont comme concepts
centraux les concepts de vérité et de référence.

• De l’autre côté, nous trouvons les théories de la signification qui ont comme concept
central le concept d’inférence.

Théories référentialistes de la signification
Dans la grande famille des théories de la signification basées sur les concepts de vérité et de
référence, la signification d’une expression linguistique est spécifiée par les phrases dans
lesquels elle apparaı̂t. Plus précisément la signification d’une expression est la contribution
que l’expression apporte à la détermination du valeur de vérité d’une phrase dans laquelle
elle apparaı̂t. Si, par exemple, nous considérons les deux phrases

(1) Emmanuel Macron est le président de la République Française.

(2) Mario Draghi est le président de la République Française.

nous remarquons que la première phrase est vraie tandis que la seconde est fausse. Selon
une théorie de la signification référentialiste ceci est du au fait que les deux références des
deux noms propres ‘Emmanuel Macron’ et ‘Mario Draghi’ sont différentes : l’un désigne
l’individu qui est président de la république Française en ce moment alors que le l’autre ne
réfère pas à un tel individu. Considérons la sémantique, au sens de la théorie des modèles,
des formules logiques. Cette analyse de la signification des phrases (formules) logiques
nous offre l’un des exemples paradigmatiques de théorie de la signification référentialiste.
Soit L un langage logique du premier ordre1. L’interprétation des termes du langage est

1Une définition précise de langage logique, termes et structure d’interprétation sera donnée dans le
chapitre 1

8

spécifiée au moyen d’une fonction associant aux constantes et aux variables d’individus
des éléments de la structure. Supposons qu’à chaque terme t du langage corresponde un
élément tI de la structure d’interprétation. Un prédicat du langage est interprété par un sous-
ensemble du produit cartésien de la structure. Ainsi une formule atomique P(t1, . . . tn) est-
elle vraie dans la structure d’interprétation si et seulement si le tuple (tI

1, . . . t
I
n) appartient au

sous-ensemble de la structure qui interprète le prédicat P. Ensuite, lors de l’interprétation
des formules complexes, écrites avec les connecteurs logiques et les quantificateurs, on
spécifie au moyen de clauses inductives la sémantique : une conjonction A ∧ B est vraie
dans l’interprétation si et seulement si la formule A et la formule B sont vraies dans celle
interprétation, etc.

La sémantique formelle est une branche de la linguistique formelle qui construit des
modèles mathématiques du sens des expressions linguistiques. L’approche dominante en
sémantique formelle est référentialiste : la signification d’un énoncé E est définie via le
concept auxiliaire de forme logique de l’énoncé. La forme logique d’un énoncé est une
formule F appartenant à un certain langage logique L, et elle est censée capturer l’une des
lectures possibles de l’énoncé, éliminant ainsi les ambiguı̈tés. Par exemple, l’énoncé

(3) Chaque enfant mange une pizza

Peut signifier

(4) Étant donné un enfant x on peut toujours trouver une pizza y telle que x mange y.

Ou bien

(5) Il y a une pizza y telle que tout enfant la mange.

La paraphrase 4 est capturée par la formule

∀x [enfant (x) ⊃ (∃y pizza (y) ∧mange (x, y))]

Alors que la paraphrase 5 se formalise ainsi :

∃y [pizza (y) ∧ (∀x enfant (x) ⊃ mange (x, y))]

en utilisant le concept de forme logique, on peut définir la signification d’un énoncé E,
ou mieux d’une lecture possible de E, comme étant la classe des modèles qui satisfont la

9

forme logique correspondante à la lecture considérée. Pour reprendre l’exemple 3 supra, la
signification de l’énoncé par rapport à la lecture 5 est donnée par l’ensemble

{M |M |= ∃y [pizza(y) ∧ (∀x enfant(x) ⊃ mange (x, y))]

Comme nous l’avons déjà anticipé, ce type de sémantique pour les phrases du langage
naturel s’appuie sur le concept de vérité. La signification d’une phrase est l’ensemble
des situations qui rendant la phrase vraie, ces conditions de vérité, d’où la terminologie
“sémantique vériconditionnelle”.

Ce type d’approche de la sémantique formelle est tout à la fois simple et fructueux:
on arrive ainsi à donner un sens précis à de substantiels fragments du langage naturel.
Cependant, ce type d’approche souffre d’une certains nombre de défauts, lesquels remettent
en cause sa pertinence en tant qu’analyse de la signification des phrases du langage naturel.

Une première critique est la pauvreté de cette analyse sémantique, tout au moins d’un
certain point de vue. Considérons par exemple, deux phrases qui sont équivalentes en
termes des valeurs de vérité :

(6) Cécile est grande et riche

(7) Ce n’est pas le cas que Cécile n’est pas grande ou n’est pas riche.

Les deux phrases peuvent être ‘traduites’ dans les deux formules logiques qui suivent

(8) grande (Cécile) ∧ riche (Cécile)

(9) ¬(¬grande (Cécile) ∨ ¬riche (Cécile))

les deux ensembles de modèles des deux formules ci-dessus sont les mêmes. Malgré cela,
les deux formules présentent de notables différences de signification, surtout si nous nous
concentrons sur les aspects inférentiels. On peut considérer que l’inférence qui va de la
phrase Cécile est grande et riche à la phrase Cécile est riche est une inférence élémentaire.
Il est plus difficile de considérer l’inférence qui va de C’est n’est pas le cas que Cécile n’est
pas grande ou n’est pas riche à la phrase Cécile est riche comme une inférence élémentaire.

Mais il y a pire : considérons deux théorèmes logiques quelconques e.g., (A ⊃ B) ⊃
(¬B ⊃ ¬A) et A ∨ ¬A. Puisqu’un théorème logique est, par définition, une formule qui est
vraie dans toute structure d’interprétation, les deux théorèmes ont la même signification.
C’est pour le moins étonnant.

10

Théories inférentialiste de la signification
De l’autre côté, on trouve les théories inférentialistes de la signification : une théorie
inférentialiste de la signification nie que les conditions de vérité jouent le rôle principal
en sémantique. Au contraire le concept fondamental pour la signification des expressions
est celui d’inférence ou de justification. Selon les mots de Robert Brandom :

The standard way [of classical semantics] is to assume that one has a prior
grip on the notion of truth, and use it to explain what good inference consists
in [...] [I]nferentialist pragmatism reverses this order of explanation [...] It
starts with a practical distinction between good and bad inferences, understood
as a distinction between appropriate and inappropriate doings, and goes on
to understand talk about truth as talk about what is preserved by the good
moves. [15]

Une théorie inférentialiste de la signification met l’accent sur les propriétés sémantiques
des énoncés. Les relations inférentielles existent entre les phrases et non entre expres-
sions sub-sententielles. (On ne peut pas, par exemple, inférer un nom à partir d’un autre).
Ainsi, l’inférentialiste n’expliquera pas les propriétés sémantiques des termes singuliers,
par exemple, en termes de relations représentationnelles entre ces termes singuliers et les
éléments du monde ; il expliquera plutôt ce qui est distinctif des termes singuliers en termes
de leur rôle dans certains types d’inférences.
Bien qu’existent des désaccords, parfois majeurs, entre les auteurs défendant la sémantique
inférentialiste 2, on peut affirmer que les deux points qui suivent sont acceptés, à notre
connaissance, par tout défenseur du point de vue inférentialiste.

1. La signification d’un énoncé est la connaissance qu’il faut posséder (implicitement
ou explicitement) afin de pouvoir comprendre l’énoncé ;

2. cette connaissance doit en principe être observable dans les interactions entre l’orateur,
l’auditeur et l’environnement.

Remarquons que, pour le point 1, la signification d’un énoncé d’un langage (naturel ou
artificiel) ne peut pas coı̈ncider avec l’objet capturé par la définition référentialiste de la

2Le lecteur intéresse peut consulter les premiers chapitres du livre de C. Cozzo Meaning and Argu-
ment [30] où un comparaisons détaillé entre différents versions de l’inférentialisme en philosophie du langage
est présentée

11

signification : les locuteurs ne sont capables de stocker qu’une quantité limitée de données.
Ceci veut dire que les connaissances nécessaires pour comprendre le sens de la langue elle-
même devraient également être limitées ou, au moins, pouvoir être énumérées et décrites
de manière récursive à partir d’un ensemble limité de données et de règles. Du moment
que, en général, il n’existe pas de moyens finis d’énumérer l’infinité de modèles d’une
formule, ni d’énumérer de façon finie l’infinité des individus et des relations dans un seul
de ces modèles, un inférentialiste refuse la définition de signification d’une phrase S comme
l’ensemble des modèles qui satisfont l’une des lectures de S.

Inférentialisme et dialogues argumentatifs
Les approches référentialistes de la théorie de la signification utilisent les méthodes de la
théorie de modèles, une branche de la logique mathématique, ou s’en s’inspirent forte-
ment. Dans notre thèse, nous utiliserons des méthodes et des concepts de la théorie de la
démonstration. La théorie de la démonstration, ou théorie de la preuve, est une branche de
la logique mathématique qui s’occupe d’étudier les propriétés formelles des preuves, on dit
aussi déductions ou dérivations. Comme cela semble naturel, une théorie sémantique basée
sur le concept de preuve est étroitement liée à l’étude des propriétés mathématiques des
preuves, et les développements formels de la théorie inférentialiste du sens, basés sur les
outils de la théorie de la démonstration, ne manquent pas [53]. Les développements formels
du paradigme inférentialiste de la signification sont basés sur un système de preuve formelle
inventé par Gentzen et étudié en profondeur par Prawitz: la déduction naturelle [115]. Nous
choisirons une approche différente, pour mettre en œuvre la théorie inférentialiste de la sig-
nification : à savoir la logique dialogique [96, 97]. Notre choix est motivé par deux facteurs
distincts.

Premièrement, la déduction naturelle se “comporte mal” par rapport à la logique clas-
sique, et des propriétés essentielles de la déduction naturelle ne sont plus vraies. Par ex-
emple, dans un système de déduction naturelle classique, il n’y a pas de propriété de la
sous-formule. La logique classique est un outil essentiel pour l’étude du raisonnement et
de l’inférence en langage naturel et notre thèse comprend une étude, bien que limitée, de
ces sujets.

Ensuite, à notre avis, le lien avec une sémantique basée sur la notion d’argument est
plus clair dans le paradigme inférentialiste: un argument en faveur d’une proposition est
souvent développé lorsqu’un public critique, réel ou imaginaire, doute de la vérité ou de la

12

plausibilité de la proposition. Dans ce cas, afin de faire valoir avec succès la déclaration,
l’orateur ou le promoteur de celle-ci doit être capable de fournir toutes les justifications que
le public pourra exiger. En prenant cette idée au sérieux, une approximation du sens d’une
phrase dans une situation donnée peut être obtenue en étudiant les dialogues argumentat-
ifs qui surviennent une fois que la phrase est affirmée devant un public critique. Ce type
de situation est fidèlement capturé —avec un degré raisonnable d’approximation— par la
logique dialogique. La logique dialogique analyse le concept de validité d’une formule
à travers le concept de stratégie gagnante dans un type particulier de jeu à deux joueurs.
Ce type de jeu n’est rien d’autre qu’un dialogue argumentatif entre un joueur, appelé Pro-
posant, qui affirme la validité d’une certaine formule et un autre joueur, appelé Opposant,
qui en conteste la validité. Le Proposant entame le dialogue argumentatif en affirmant une
certaine formule. L’opposant attaque à tour de rôle l’affirmation du Proposant en fonction
de la forme logique de la formule affirmé. Le Proposant peut, en fonction de la forme de
l’attaque faite par l’Opposant, soit défendre son affirmation, soit contre-attaquer. Le débat
évolue selon ce schéma. Le Proposant gagne le débat s’il a le dernier mot, c’est-à-dire :
la défense contre l’une des attaques de l’Opposant consiste dans l’assertion d’une formule
que l’Opposant ne peux pas attaquer. On peut donc énoncer l’idée fondamentale de la
sémantique dialogique comme il suit :

la signification d’un énonce E est donnée par la forme du dialogue dans lequel
le locuteur énonçant l’assertion E fournit à un interlocuteur critique toutes les
justifications nécessaires à la justification de son assertion E.

Dans notre travail de thèse, nous nous concentrerons sur une représentation dialogique
des preuves formelles, et nous étudierons en détail deux systèmes logiques dont les preuves
formelles peuvent interpréter comme des stratégies gagnantes pour des jeux: la logique
dialogique et la sémantique des jeux.

Résultats du travail de thèse
Dans cette section nous décrivons brièvement les résultats principaux de notre travail de
thèse, lesquels sont de deux styles. Il y a d’une part des résultats de théorie de la preuve
et d’autre part des résultats sur la modélisation de la syntaxe ou la sémantique du langage
naturel.

13

Théorie de la preuve
Dans notre thèse, nous explorons deux théories assez similaires : la logique dialogique et
la sémantique des jeux. Nous exposons brièvement les deux théories et présentons nos
propres contributions.

Logique Dialogique

Le premier article sur la logique dialogique est paru en 1958 [96]. Les idées présentées par
Lorenzen ont été développées en utilisant les outils de la théorie de jeux par son étudiant
Lorenz dans sa thèse de doctorat [97]. Les objets de base de la logique dialogique sont
des jeux à deux joueurs et sont une idéalisation d’un dialogue argumentatif. Les deux
joueurs sont appelées Proposant (ou P) et Opposant (ou O). Les deux joueurs prennent la
parole à tour de rôle et ont des rôles différents dans le débat : P essaye de construire une
justification pour une certaine formule F, alors que O essaye de construire une réfutation
de cette formule F. Chaque connecteur ou quantificateur de la formule peut être attaqué
par un joueur et défendu par l’autre. Par conséquent, à chaque formule complexe sont
associé des questions en fonction de son connecteur principal tandis que des réponses à ces
questions sont attendues.

Un jeu est donc une suite (fini ou infinie) d’interventions de P et de O à tour de rôle.
La première intervention est faite par P et c’est l’assertion de la formule F. Toute autre
intervention dans le débat doit être “justifiée” au sens suivant : une intervention consiste à
poser une question sur une formule affirmée par l’autre joueur, ou à répondre à l’une des
questions posées par l’autre joueur. Les jeux sont réglementés par une série de restrictions,
par exemple P ne peut affirmer une formule atomique que si O a déjà affirmé la même
formule atomique. Chaque intervention de O est une réaction à l’intervention de P qui la
précède immédiatement. Une stratégie est une fonction qui déterminé quel est la prochaine
intervention d’un joueur en fonction des interventions précédentes, c’est-à-dire en fonction
l’historique du jeu. Une stratégie est dite gagnante lorsque le joueur qui la suit gagne la
partie quels que soient les coups de l’autre jouer et l’historique. Nous nous intéressons aux
stratégies qui sont gagnantes pour P. Notre principale contribution à l’étude de la logique
dialogique est la preuve de l’énoncé suivante

Soit L un langage du premier ordre avec termes et A une formule de L. La
formule A est valide (au sens de la logique classique) si et seulement s’il existe
une stratégie P-gagnante pour A.

14

Notre preuve de cet énoncé est constructive : nous transformons toute stratégie P-gagnante
en une preuve du calcul des séquents de ` A et vice-versa, nous transformons toute preuve
de ` A en une stratégie gagnante pour P. Bien que le système de logique dialogique clas-
sique que nous avons esquissé soit présenté par Lorenzen dans l’article du 1958, à ce jour
il n’y avait pas de preuve de cet énoncé. Il existaient des preuves pour le calcul proposi-
tionnel comme celle proposée par Herbelin dans sa thèse [68] que notre preuve étend, ou
pour des langages du premier ordre restreints dont les seuls termes sont des constantes [25].
Nous appelons SLK le calcul que nous utilisons pour montrer l’équivalence entre validité
classique et existence d’une stratégie P-gagnante. Ce système SLK est un calcul polarisé.
Si D est une preuve qui se terminé par une application d’une règle d’introduction droite du
quantificateur existentiel ou de la disjonction

D′

... R
Γ ` A[t/x],∃xA,∆

∃R
Γ ` ∃xA,∆

D′

... R
Γ ` Ai, A1 ∨ A2,∆

∨R
i i ∈ {1, 2}

Γ ` A1 ∨ A2,∆

alors la formule soulignée dans la prémisse de la règle est la formule ‘introduite’ par la
règle R. En effet les stratégies gagnantes pour P que nous étudiions dans notre thèse ont été
introduites —dans le cas de la logique dialogique intuitionniste— par Felscher [46]. Ces
stratégies —que Felscher appelle formelles— ont une particularité : le proposant est forcé
de répondre à toute attaque dirigée contre une disjonction ou une formule existentielle
immédiatement. Ce type de restriction sur les stratégies correspond naturellement à la
propriété de polarisation esquissée ci haut.

Sémantiques de jeux

La sémantique des jeux est une forme de sémantique dénotationnelle inspirée par la logique
dialogique. Une sémantique dénotationnelle est une manière d’interpréter les preuves d’un
système logique par des objets mathématique. Une sémantique dénotationnelle possède
une particularité : les preuves que sont égales modulo une notion de réduction (usuelle-
ment l’élimination de la coupure ou la β-réduction) sont interprété par le même objet. Les
premiers travaux en sémantique des jeux sont apparus au début des années 1990 pour la
logique linéaire [1, 76, 89, 13].

15

Dans notre thèse, nous nous développons une sémantique des jeux pour la variante
constructive de la logique modale K (appelée CK). Les formules de CK sont écrites en
utilisant les connecteurs ⊃ et ∧ et les modalités � et ^. La logique CK peut être définie
comme le plus petit ensemble de formules contenant :

• toute tautologie de la logique minimale ;

• chaque instance de l’axiome �(A ⊃ B) ⊃ �A ⊃ �B;

• chaque instance de l’axiome �(A ⊃ B) ⊃ ^A ⊃ ^B;

et clos par :

• nécessitation : si A appartient à CK alors �A appartient aussi ;

• modus ponens : si A et A ⊃ B appartiennent a CK alors B appartient aussi ;

Un calcul des sequents complet pour cette logique —LCK— s’obtient en rajoutant les deux
règles suivantes à un calcul des sequents ‘standard’ pour la logique minimale

Γ ` C K��Γ ` �C
Γ, B ` C

K^�Γ,^B ` ^C

où �Γ = �A1, . . .�An si Γ = A1, . . . An. Cette logique est bien comprise tant du point de vue
de la théorie des modèles que du point de vue de la théorie de la démonstration. Malgré
cela des sémantiques dénotationnelles pour CK n’ont pas été étudié, hormis dans [11] où
les auteurs étudient la structure catégorielle des modèles dénotationnels de CK. Dans notre
travail de thèse nous construisons un modèle dénotationnel concret pour CK.

Dans la sémantique des jeux, une preuve s’interprète par une stratégie gagnante dans un
jeu à deux joueurs dans une arène, laquelle est un graphe orienté représentant la structure
d’une certaine formule A. L’arène d’une formule complexe se définit récursivement à partir
des arènes des formules atomiques. Soit A une formule modale écrite avec les connecteurs
⊃,∧ et les modalités �,^. L’arène d’une formule A, notée ~A�, est un graphe orienté dont
les sommets sont les formules atomiques contenues dans A et les occurrences de modalités
dans A, et dont les arêtes sont de deux sortes. Une sorte d’arête (dénotée par →) permet
de retrouver les connecteurs binaires de A, tandis que l’autre sorte d’arêtes (dénoté par)
permet de retrouver la portée des modalités à l’intérieur de la formule A.

16

Chaque sommet v d’une arène ~A� a une polarité. Cette polarité, positive ou négative,
est la même de l’occurrence de la formule atomique, ou modalité, de A qui décore le som-
met v3. Un sommet positif v est appelé racine s’il n’existe pas un sommet w tel que v→w.
Un coup est un sommet et il est un coup de O s’il est positive, il est un coup de P sinon.
Les jeux sont des suites finies alternées de coups de O et de P.

• O-commence toujours un jeu : le premier coup d’un jeu est une racine de l’arène.

• Chaque coup w du jeu, sauf le premier, est justifié par un coup précèdent v de l’autre
jouer : w→v dans l’arène ;

• chaque coup dans un jeu est soit une variable propositionnelle soit un sommet ^;

• chaque coup de O est justifié par le coup de P qui le précède dans le jeu ;

• chaque coup w de P porte le même label que le coup v de O immédiatement précèdent
: si v est une variable propositionnelle a (resp. une modalité ^) alors w est une
occurrence de la même variable propositionnelle a (resp. une occurrence de ^).

Un jeux est gagné par un des deux joueurs lorsque l’autre joueur ne peut plus répondre.
Une stratégie gagnante est une arbre dont chaque branche est un jeu gagné par P. Les bifur-
cation de cet arbre résultent des coups de O. Pour caractériser le stratégies correspondant
à des preuves modales, nous considérerons deux contraintes supplémentaires sur les coups
de P acceptés. Dans l’arène chaque sommet w possède une hauteur, le nombre de modalités
qui portent sur w.

La première contrainte exige que chaque coup de P aie la même hauteur le coup
précédent de O. La deuxième contrainte nous permet de définir une notion de sous-jeu:
chaque fois qu’un coup de O w est dans la portée d’une nouvelle modalité m de polarité
positive (une modalité positive de hauteur k qui ne porte pas sur un coup précédent) un
nouveau sous-jeu de hauteur k est ouvert. Le sous-jeu se termine lorsque O joue un coup
v qui n’est pas dans la portée d’une modalité ou bien lorsque O joue un coup v qui est
dans la portée d’une modalité positive d’auteur k et différent de m. Dans une stratégie gag-
nante modale tout sous-jeu possède la caractéristique suivante : si w est le premier coup du
sous-jeu et m sa modalité positive de hauteur k, les propriétés suivantes sont satisfaites :

3une définition précise de la notion de polarité d’une formule est donnée dans le chapitre 1 de notre travail
de thèse

17

• tout x appartenant au sous-jeu est sous la portée d’une modalité de hauteur k;

• Si x appartient au sous-jeu et x est sous la portée d’une modalité positive n de hauteur
k, alors n = m;

• Si x appartient au sous jeu et x est sous la portée d’une modalité négative n de hauteur
k, alors pour tout coup y appartenant à un autre sous-jeu, y n’est pas sous la portée de
n;

• si m = ^ alors il existe une modalité négative n de hauteur k telle que n = ^ et un
coup x sous la portée de n et qu’appartient au sous-jeu.

Cette caractérisation des stratégies gagnantes modales permet d’interpréter toute preuve D
de LCK par une stratégie gagnante modale {{D}} et nous montrons alors que si D se réduit
D′ en appliquant l’algorithme d’élimination de la coupure alors {{D}} = {{D′}}. En outre,
nous montrons que notre sémantique est totalement adéquate, c’est-à-dire

Soit {{−}} la fonction qui associe à une preuve D du calcul des sequents LCK
une stratégie gagnante modale {{D}}; la fonction {{−}} est surjective : pour toute
stratégie gagnante S il existe une preuve D telle que S = {{D}}.

La preuve de l’énoncé en haut et obtenu en utilisant un algorithme de ‘sequentializa-
tion’ : nous montrons comment transformer une stratégie gagnante pour A en une preuve
D de A.

Modélisation de la syntaxe et de la sémantique du langage naturel
Grammaires Catégorielles

Les grammaires catégorielles permettent d’analyser la syntaxe et la sémantique du langage
naturel grâce à la théorie de la démonstration. Étant donné une phrase en langage naturel
w1, . . .wn une fonction calculable associe à chaque mot wi une formule l(wi) de la logique
linéaire intuitionniste multiplicative non commutative (du calcul de Lambek [90] ou d’une
variante de celui-ci). La grammaticalité de la phrase correspond à la prouvabilité, dans
la logique en question, du jugement l(w1), . . . l(wn) ` s (s représente la catégorie gram-
maticale des phrases). Le même jugement peut avoir plusieurs preuves, et chacune de ces
preuves correspond à une analyse syntaxique distincte de la phrase. Par l’isomorphisme de

18

Curry-Howard, chaque analyse syntaxique peut être vue comme un lambda-terme linéaire,
lequel fournit des instructions sur la façon de composer le sens des mots individuels, eux
aussi décrits par un lambda termes appelés lambda-termes sémantiques. Dans l’analyse
syntaxique nous substituons ensuite aux variables libres — correspondant aux entrées lex-
icales wi — les lambda termes sémantiques associées pour obtenir, par β-réduction, une
représentation du sens logique de la phrase. Une question naturelle est alors la suivante :
si une phrase w1, . . .wn possède au moins deux analyses syntaxiques différentes donnent-
elles lieu à deux représentations logiques différentes ? Nous montrons que si la question est
naı̈vement formulée, ces analyses sémantiques peuvent être les mêmes. Cependant, en con-
sidérant une classe restreinte de λ-termes sémantiques et une notion forte des différences
entre λ-terme syntaxiques, les analyses sémantiques restent différentes. Pour cela, il faut
se restreindre à des λ-termes sémantiques qui soient λI-termes de la forme

λx1, . . . , λxnkM1 · · ·Mm

où k est une constante. Pour établir la différence entre représentations logiques d’une phrase
, nous définissons une relation de dominance entre symboles atomiques d’un λ-terme. Intu-
itivement la dominance nous permet de reconstruire l’arbre applicatif d’un λ-terme. Nous
montrons que la dominance entre constantes est préserve par β-réduction c’est à dire

Soit M λI terme typé qui contient deux occurrences de constantes k et k′ telles
que k domine k′ dans M. Supposons que M β-réduit à M′. Alors chaque trace
ki de k est associée à un ensemble d’occurrences k′i

j de k′ dans M′ et ki domine
k′i

j en M′.

Par conséquent, si deux analyses syntaxiques P1 et P2 de la même phrase définissent
deux relations de dominance différentes entre leurs variables libres, (deux analyses de
la même phrase ont les mêmes variables libres) alors leur forme logique respective est
différente. En effet, la forme logique est obtenue en substituant les variables libres de P1 et
P2 par les mêmes lambda-termes sémantiques. Le symbole de tête d’un terme sémantique
est une constante. Si la variable w1 domine la variable w2 en P1 mais pas en P2 (ou vice-
versa) nous pouvons conclure que dans la forme logique de P1 il y aura une constante k1 qui
domine une constante k2 et que le couple formé par k1 et k2 n’apparaı̂t pas dans la relation
de dominance de la forme logique de P2.

19

Reconnaissance de l’implication textuelle

On dit qu’un texte A en entraı̂ne un autre B lorsque B est conséquence de A. Une tâche
assez standard du traitement automatique du langage naturel, nommée RTE (Recognizing
Textual Entailment), consiste à détecter qu’un texte est conséquence logique d’un autre.
Par exemple “Chaque canard est un oiseau” a pour conséquence logique “Chaque patte de
canard est une patte d’oiseau” alors que, “Chaque Italien aime la pizza et Charles n’est pas
italien” n’a pas comme conséquence “Charles n’aime pas la pizza”.

Le data-set FraCaS [28]4 à été crée dans les années 1990. L’objectif était de développer
un framework général pour la sémantique computationelle. Le data-set consiste en des
problèmes des reconnaissance de l’inférence textuelle. Chaque problème consiste en une
ou plusieurs assertions et une question qui à comme réponse ‘oui’ ou ‘non’.

(10) A Swede won a Nobel prize.

(11) Every Swede is a Scandinavian.

(12) Did a Scandinavian won a Nobel prize? [Yes]

Nous avons appliqué la logique dialogique et les grammaires catégorielles à la recon-
naissance de l’implication textuelle dans le corpus FraCas. Les grammaires catégorielles
produisent une représentation logique des phrases. Puis on traduit les couples question-
réponse du data-set en des affirmations. Dans le cas précédent la couple formé par “Did a
Scandinavian won a Nobel Prize” et “no” a été traduit dans la phrase “Some Scandinavian
won a Nobel Prize”. En traduisant les phrases en formules logiques de l’exemple ci-dessus
on obtient

(13) A Swede won a Nobel prize
∃ x1 [Swede (x1) ∧ (∃ x2 Nobel-prize (x2) ∧ won (x1, x2))]

(14) Every Swede is a Scandinavian
∀ x3, [Swede (x3) ⊃ Scandinavian (x3)]

(15) Some Scandinavian won a Nobel prize
∃ x4 [Scandinavian (x4) ∧ (∃ x5 Nobel-prize (x5) ∧ won (x4, x5))]

4il existe aussi une version en français du data-set FraCas [7]

20

enfin nous montrons l’existence (ou la non-existence en fonction de cas) d’une stratégie
gagnante pour la formule H1 ∧ . . . ∧ Hn ⊃ C dont les Hi sont les formules correspon-
dantes aux phrases présentes dans le data-set et C est la formule correspondante à la phrase
obtenue en utilisant le couple question réponse présent dans le data set. Nous traitons dans
les détails certains exemples simples : e.g, monotonicité des quantificateurs.

Ensuite nous nous attaquons à un problème légèrement plus complexe. Nous con-
sidérons des fragments de texte qui sont dans la relation d’implication textuelle en vertu
de la signification des mots non-logiques e.g., par exemple tout locuteur français reconnaı̂t
que la phrase ‘Jean mange une pomme’ est dans la relation d’implication textuelle avec la
phrase ‘Jean mange un fruit rouge ou bien Jean mange un fruit jaune ou bien Jean mange
un fruit vert” ceci car nous pouvons définir le mot pomme par “Fruit du pommier, charnu,
de forme plus ou moins arrondie, de couleur verte, jaune ou rouge selon la variété” (dic-
tionnaire Larousse). Afin de reconnaı̂tre ce type de relations, nous considérons des jeux
dialogiques dans lesquels les joueurs jouent modulo un certains ensembles de définitions
i.e., formule logique de la forme

∀x1, . . .∀xn(Q ⇐⇒ A)

où Q est une formule atomique (appelons cette formule le definiendum) et A une formule
quelconque (appelons cette formule le definiens). Dans les jeux que nous considérons
lorsque un jouer affirme une formule atomique Q qui est definiendum, l’autre joueur peut
demander d’expliciter le définiens de la formule. Ces jeux module définitions sont appelé
jeux de dépliage. La notion de dépliage d’une formule atomique à été étudié en premier par
Prawitz [115] dans le contexte de la déduction naturel et développé par Dowek [40] dans
le cadre de la Déduction modulo.

Résolution d’anaphores et ellipses

Définir exactement qu’est-ce que c’est est une anaphore et qu’est-ce que c’est est une el-
lipse est une tache difficile [83]. Nous pouvons sommairement définir l’anaphore comme
un phénomène linguistique par lequel l’interprétation d’une occurrence d’une expression
dépend de l’interprétation d’une occurrence d’une autre expression. Cette caractérisation
permet de reconnaı̂tre que dans les deux phrases ‘Gertrude mange une pomme. Elle est
exquise’ le pronom ‘elle’ est anaphorique. L’interprétation du pronom ‘elle’ est soit ‘une
pomme’ soit ’Gertrude’ (Gertrude pourrait être particulièrement gracieuse lorsqu’elle mange
une pomme). Appelons l’expression linguistique dont l’interprétation d’une anaphore dépend

21

l’antécédent. Les humains arrivent souvent à résoudre les anaphores, c’est-à-dire trouver
un antécédent approprié pour une expression anaphorique. La résolution d’anaphore est
une tache difficile dans le traitement automatique du langage naturel. Dans un contexte
logique, la résolution des anaphores est souvent traitée par des méthodes de la théorie des
modèles [80]. Dans notre travail de thèse, nous introduisons une approche différente au
problème de la résolution d’anaphores. En particulier nous l’approchons avec les outils de
la théorie de la preuve. Nous introduisons un nouveau quantificateur du premier ordre (que
nous écrivons A) dont la signification est donnée par les règles qui concernent son ‘utili-
sation’ dans un dialogue argumentatif. Plus concrètement nous allons définir un système
de logique dialogique du premier ordre (pour un langage multisorte) dont les formules sont
écrites avec occurrence du quantificateur A. Dans un jeu dialogique les formules qui sont
affirmées par le joueur O ont un statut différent des formules qui sont affirmées par P. Les
formules affirmées par O forment les hypothèses du dialogue i.e., les formules qui peuvent
être considérées comme acceptées dans le dialogue. En effet, O peut affirmer n’importe
quelle formule atomique et ainsi se défendre contre n’importe quel coup d’attaque de P.
Nous pouvons pousser cette intuition : si dans le jeu O affirme qu’un certain individu k
possède une certaine propriété A alors dans le contexte du jeu l’existence de cet individu
est attestée. Appelons l’ensemble des formules affirmées par O dans le dialogue le ter-
rain d’entente du dialogue. Ce terrain d’entente s’agrandit au fur et à mesure que le jeu
progresse. Nous disons qu’une constante k apparaı̂t dans le terrain d’entente si celui-ci con-
tient une formule B(k). Les règles d’attaque et de défense du quantificateur A sont ainsi
définies: si une formule AxA est affirmée dans le jeu alors cette affirmation peut être at-
taquée seulement si au moins une constante apparaı̂t dans le terrain d’entente. Si la formule
est attaquée par un joueur l’autre joueur peut se défendre en affirmant A(k) pour un certain
k qui apparaı̂t dans le terrain d’entente. Intuitivement les variables qui sont liées par une
occurrence deA représentent les expressions anaphoriques. Nous appelons ce type de jeux
dialogique jeux anaphoriques. Nous montrons que l’ensemble des formules pour lesquelles
il existe une stratégie anaphorique est un ensemble consistant : il ne contient pas toutes les
formules du langage. Ensuite nous appliquons les stratégies pour les jeux anaphoriques au
problème de la reconnaissance de l’inférence textuelle en présence d’anaphores. On traite
certains problèmes du data-set FraCas par exemple,

(16) Smith attended a meeting.

(17) She chaired it.

22

(18) Did Smith chaired a meeting? [Yes]

Afin de réduire l’espace des antécédents possibles pour une expression anaphorique on
utilise un langage logique multisorte. Il est naturel, au moins en anglais, de considérer que
certaines expressions anaphoriques véhiculent de l’information sur le statut ontologique
de leur antécédent5. De plus il est naturel que certains verbes, adjectifs, etc. peuvent être
appliqués uniquement à certaines sortes d’entité. Si par exemple nous considérons la phrase
‘Smith took a train to Baltimora. It whistled at 12 o’clock’ il est clair que ‘it’ fait référence
au train. le pronom ‘It’ désigne une entité inanimée et les villes comme Baltimore ne
sifflent pas. On peut donc représenter les phrases de l’exemple ci-dessous par les formules
qui suivent :

(19) Smith attended a meeting.
F1 = ∃ x1

o (meeting (x1) ∧ attended (smith, x1))

(20) She chaired it.
F2 = A x2

hA x3
o (chaired (x2, x3))

(21) Smith chaired a meeting.
C = ∃ x4

o (chaired (smith, x4))

nous pouvons ainsi construire une stratégie gagnante pour la formule F1 ∧ F2 ⊃ C. Nous
considérons aussi le problème de la résolution d’ellipse en le réduisant au problème de
la résolution d’anaphore. En suivant l’analyse des Davidson [35] nous considérons que
chaque verbe dans une phrase introduit un évènement. Ainsi la forme ‘logique’ de la
phrase ’Gertrude a coupé une pomme dans la baignoire à minuit’ est ‘il y a un évènement,
de découpage de pomme, qui s’est passé dans la baignoire à minuit et dont l’agent est
Gertrude’. Cette stratégie de formalisation des phrases nous permet de considérer certaines
ellipses comme des anaphores : ainsi dans la phrase ‘Gertrude a rencontré Marie, Antoine
aussi’ ‘aussi’ fais référence à l’évènement de rencontrer Marie.

5En français comme en italien un pronom personnel comme ‘elle’ réfère à la personne grammaticale et ne
véhicule donc pas forcément de l’information sur le statut ontologique de l’entité (être humain, objet inanimé
ou événement, etc.). Pour cette raison, on peut considérer que la phrase ‘Gertrude mange une pomme. Elle
est exquise’ est ambiguë entre la lecture dont ‘elle’ réfère à ‘une pomme’ ou ‘elle’ réfère à ‘Gertrude’.
Évidemment la lecture dont le pronom réfère à ‘une pomme’ est plus naturelle. Ceci puisqu’on considère
l’utilisation littérale de l’adjectif ‘exquise’

23

Organisation du manuscrit
Notre travail de thèse est divisé en trois parties. Chaque partie se compose d’un maximum
de trois chapitres. Le travail est organisé selon un schema conceptuel qui va d’abstrait con-
sidérations philosophiques à des applications plus concrètes aux domains du traitement au-
tomatique du traitement du langage naturel en passant par une partie logico-mathématique.
Nous allons maintenant présenter au lecteur le contenu des trois parties de notre thèse.

Mathematical and Philosophical foundations
Cette partie de la thèse contient deux chapitres et poses les fondements logique et philosophique
de notre travail.

Mathematical preliminaries Le premier chapitre de notre thèse est dédié à poser les
fondements mathématiques de notre travail de thèse. Nous rappelons les définitions des
outils logiques et mathématiques que nous utiliserons au cours de notre thèse ; par exemple
la notion de langage logique du premier ordre, d’arbre de séquence, etc. Nous donnons
aussi une brève introduction à deux de trois systèmes de preuve que nous utiliserons dans
notre travail de thèse : la déduction naturelle et le calcul des sequents. Le troisième système
de preuve que nous étudierons dans notre thèse, la logique dialogique, est présente en détail
dans le troisième chapitre. Dans ce premier chapitre introductif nous ne présentons aucun
nouveau résultat.

Philosophical foundations Le deuxième chapitre expose plus en détail les thèses et les
théories philosophiques que nous avons esquissé dans cette introduction. Nous montrons
comment les philosophes et logicien inférentialistes se sont confronté aux problèmes de
la signification des constantes et énonce logiques. En particulier nous détaillons la rela-
tion entre la théorie inférentialiste de la signification et les deux systèmes de preuve in-
troduits dans le premier chapitre : la déduction naturelle et le calcul des séquents. En
particulier nous exposons la théorie philosophique qui veut que les règle d’introduction
des constantes logiques en déduction naturelle définissent la signification des constantes
logiques. Bien que cette théorie soit pertinente dans le cas de la logique intuitionniste
nous montrons qu’elle rencontre des problèmes lorsqu’on s’intéresse à la signification de
constantes logique de la logique classique. Nous essayons alors de montrer que le calcul

24

des séquents —ou mieux une lecture dialogique du calcul des séquents— permets de don-
ner une interprétation inférentialiste cohérente de la signification des constantes logique
classique.

Logic and DiaLogical Games
Cette partie de notre manuscrit regroupe les résultats théoriques obtenue au cours de notre
travail de thèse. Elle est composée de deux longs chapitres.

DiaLogical Games Le premier chapitre de cette partie offre une exposition détaille de la
logique dialogique de Lorenzen et Lorenz [96, 97, 46]. D’abord nous définissons les objets
centraux de la logique dialogique : les jeux et les stratégies. Ensuite nous présentons un
système de calculs de séquents —que nous appelons SLK— et nous étudions ses propriétés.
En particulier nous montrons que SLK est complet pour la logique classique du premier or-
dre : toute formula A qui est prouvable en SLK est valide et, vice-versa, toute formula valide
A est prouvable en SLK. Ensuite nous montrons l’équivalence entre la notion classique de
validité logique et la notion Dialogique de validité logique, c’est-à-dire, ‘une formule A est
valide en logique classique lorsqu’il existe une stratégie gagnante classique pour le Pro-
posant’. Une stratégie gagnante étant une fonction qui spécifié, en fonction de l’historique
du jeu, les coups que le Proposant doit jouer s’il veut être sûr de gagner le jeu.

Game Semantics for Constructive Modal Logic Dans le quatrième chapitre de notre
thèse nous nous concentrerons sur sémantique dénotationnelle qui trouve son inspiration
dans la logique dialogique : la sémantique des jeux. En particulier nous définissons une
sémantique de jeux pour la variante constructive de la logique modale K (que nous appelons
CK). Après avoir présenté un système de calcul des sequents qui est complète pour CK
(LCK) nous définissons d’abord les jeux modaux, ensuite les stratégies gagnantes modales,
que nous appelons CK-WISs, (CK winning innocent strategies) et nous prouvons qu’elles
peuvent être composées. Étant donné deux CK-WISs pour les formules A ⊃ B et B ⊃ C
nous pouvons construire une CK-WIS pour A ⊃ C. En suite, nous montrons comment
interpréter les preuves de LCK par des CK-WIS. Finalement nous prouvons que notre
sémantique des jeux pour CK est ‘pleinement adéquat’ (fully complete). Tout CK-WIS
pour une formule A est l’interprétation d’une preuve de ` A dans le calcul de sequents
LCK.

25

Natural Language Applications of Proof Theory
Dans la troisième partie de notre thèse, nous nous concentrons sur certaines applications
de la théorie de la preuve à l’analyse automatique du langage naturel et à la sémantique
formelle.

Type Logical Grammars: a result about the syntax-semantic interface Dans le cin-
quième chapitre de notre thèse, nous nous intéressons à un problème naturel concernant le
rapport entre analyse syntaxique d’une phrase et analyse sémantique d’une phrase dans
les grammaires catégorielle. Nous présentons d’abord les grammaires catégorielles en
détaillant comment on peut calculer la forme logique d’une phrase en langage naturel en
utilisant la théorie de la preuve. Ensuite nous présentons le problème que nous traitons :
la forme logique d’une phrase est une formule logique écrite dans le lambda calcul sim-
plement typée. Pour produire la forme logique une grammaire catégorielle passe par une
étape intermédiaire : l’analyse syntaxique de la phrase. L’analyse syntaxique de la phrase
représente l’arbre grammatical de la phrase. Elle est exprimée par des lambda termes
linéaires. Une même phrase peut avoir plusieurs analyses syntaxiques et forme logique
différentes. On étudie alors une condition, que nous appelons dominance, que nous garanti
que si une grammaire catégorielle attribue a une mémé phrase deux analyses syntaxiques
différentes alors elle attribuera à cette phrase deux formes logiques différentes.

Textual Entailement Recognition and DiaLogical Games Dans le sixième chapitre
nous nous concentrons sur le problème de la reconnaissance de l’inférence textuelle : étant
donné une phrase ou un morceau de texte T et une phrase P nous essayons de juger si nous
pouvons inférer à partir de la vérité de T la vérité de P. Nous traiterons ce problème en
utilisant la Logique Dialogique ; en utilisant les grammaires catégorielles nous traduisons
les phrases en formule logique ; ensuite pour vérifier qu’à partir de T nous pouvons déduire
P nous construirons une stratégie gagnante pour la formule FT ⊃ FP (FT étant la forme
logique de T et FP celle de P). Nous utiliserons d’abord notre méthodologie pour résoudre
certain exemple simple d’inférence textuelle issue du date-set FraCas. Ce dernier est ex-
pressément conçu pour un traitement logique de l’inférence textuelle. Ensuite nous mod-
ifierons légèrement le système de logique dialogique présenté dans le troisième chapitre :
nous introduisons la possibilité pour les jouer de ‘définir’ la signification de certaines for-
mules atomique pendant le jeu. Cette modification nous permet de traiter des inférences

26

qui nécessitent une connaissance de la signification des mots par exemple, la phrase ‘Jean
consulte un psychiatre’ implique ‘Jean consulte un docteur’.

Dialogical Games for Anaphora and Ellipsis Resolution Dans le septième et dernier
chapitre de notre thèse, on s’occupera d’un problème qui lie la reconnaissance d’inférence
textuelle et un problème typique issue de la sémantique formelle : la résolution d’anaphores.
En sémantique formelle le problème de la résolution d’anaphore est usuellement traité en
utilisant des outils de la théorie des modèles. Dans ce chapitre, nous proposons une ap-
proche basée sur la théorie de la preuve. Nous présentons un quantificateur A. La signifi-
cation d’une formule AxF est donnée par ses règles d’attaque et défense dans un système
Dialogique. Intuitivement la variable x pourra être instancié uniquement par un terme qui
apparaı̂t dans le contexte du jeu. Ce dernier est l’ensemble des formules qui sont affirmé
par l’opposant O pendant le jeu. En utilisant ce système de logique dialogique on résoudra
certains problèmes de reconnaissance d’inférence textuelle dont la résolution d’anaphore
et ellipse est essentielle.

27

Introduction

Our thesis work lies at the crossroads of at least two disciplinary fields: on the one hand,
mathematical logic and theoretical computer science, on the other hand, natural language
processing, formal semantics of natural language and the philosophy of language. The
main thread of this work is proof theory, which has offered us tools and methodologies to
advance on a fundamental question of logic: what are the links between the notion of proof
and that of linguistic meaning? More precisely: to understand the meaning of a statement
A is to be able to provide a justification for the assertion of A?

Our interest in the philosophy of language as a logician and computer scientist is nat-
ural: isn’t one of the central tasks of the philosophy of language to clarify or explain the
concept of meaning and apply it to language? To achieve an explanation of the concept of
meaning, philosophers have introduced the notion of ‘theory of meaning’. Let us take up
the words of Michael Dummett:

according to one well known view, the best method of formulating the philo-
sophical problems surrounding the concept of meaning and related notions is
by asking what form should be taken by what is called ‘a theory of meaning’
for any one entire language; that is a detailed specification of the meanings of
all the words and sentence forming operations of the language, yielding a spec-
ification of the meaning of every expression and sentence of the language. [41]

A theory of meaning is therefore nothing more than a specification of how we attribute
meaning to the expressions of a language and how we understand those expressions. The
language can of course be artificial, as would be C++, Scheme or a logical language, but
it can also be natural, as are French or English. Although there are different theories of
meaning, we can distinguish two main families:

28

• On the one hand we find the theories of meaning which have as their central concepts
the concepts of truth and reference.

• On the other hand we find the theories of meaning which have as their central concept
the concept of inference.

Referentialist theories of meaning
In a referentialist meaning theory, the concept of meaning is understood as follows: the
meaning of an expression is the contribution that the expression makes to determining the
truth value of a sentence in which it appears. Consider the two sentences:

(22) Boris Johnson is the prime minister of the United Kingdom.

(23) Mario Draghi is the prime minister of the United Kingdom.

we note that the first sentence is true while the second is false. According to a referential-
ist theory of meaning, this is because the two proper names ’Boris Johnson’ and ’Mario
Draghi’ have different references: one name refers to the individual who is prime minister
of the United Kingdom, while the other name does not refer to such an individual.

Let us consider the semantics, in the sense of model theory, of logical formulas. This
analysis of the meaning of logical sentences (formulas) offers us one of the paradigmatic
examples of a referentialist theory of meaning. Let L be a first order logical language.6

The interpretation of the language terms is specified by means of a function associating to
constants and variables elements of a structure. Suppose that each term t of the language
corresponds to an element tI of the interpretation structure. A predicate of the language is
interpreted by a subset of the Cartesian product of the structure. Thus an atomic formula
P(t1, . . . tn) is true in the interpreting structure if and only if the tuple (tI

1, . . . t
I
n) belongs

to the subset of the Cartesian product of the structure interpreting the predicate P. Then,
when interpreting complex formulas, written with logical connectives and quantifiers, we
specify the semantics by means of inductive clauses: a conjunction A ∧ B is true in the
interpretation if and only if the formula A and the formula B are true in this interpretation,
etc.

6A precise definition of logical language, terms and interpretation structure will be given in chapter 1

29

Formal semantics is a branch of formal linguistics that constructs mathematical models
of the meaning of linguistic expressions. The dominant approach in formal semantics is
referentialist: the meaning of a sentence E is defined via the auxiliary concept of logical
form of the sentence. The logical form of a sentence is a formula F belonging to some
logical language L. The logical form is supposed to capture one of the possible readings
of the sentence, thus eliminating ambiguities. For example the sentence

(24) Every child eats a pizza.

May mean

(25) Given a child x, we can always find a pizza y such that x eats y.

Or

(26) There is a pizza y such that any child eats it.

The paraphrase 25 is captured by the formula

∀x [child (x) ⊃ (∃y pizza (y) ∧ eat (x, y))]

While the paraphrase 26 is formalized by the following:

∃y [pizza (y) ∧ (∀x child (x) ⊃ eat (x, y))]

Using the concept of logical form, we can define the meaning of a statement E, or better
still of a possible reading of E, as being the class of models which satisfy the logical form
corresponding to the reading considered. To take the example of 24 above, the meaning of
the statement in relation to the reading 26 is given by the set

{M |M |= ∃y [pizza(y) ∧ (∀x child(x) ⊃ eat (x, y))]}

As we have already anticipated, this type of semantics for natural language sentences is
based on the concept of truth. The meaning of a sentence is the set of situations that make
the sentence true. This type of approach to formal semantics is both simple and fruitful: it
allows us to give a precise meaning to substantial fragments of natural language. However,
this type of approach suffers from a number of shortcomings, which call into question its
relevance as an analysis of the meaning of natural language sentences.

A first criticism is the poverty of this semantic analysis, at least from a certain point of
view. Consider, for example, two sentences that are equivalent in terms of truth values:

30

(27) Cecile is tall and rich

(28) It is not the case that Cecile is not tall or not rich.

The two sentences can be ’translated’ into the following two logical formulas

(29) tall (Cecile) ∧ rich (Cecile)

(30) ¬(¬tall (Cecile) ∨ ¬rich (Cecile))

both formulas have the same set of models. In spite of this, the two formulas have signif-
icant differences in meaning, especially if we focus on inferential aspects. The inference
that goes from the sentence “Cecile is tall and rich” to the sentence “Cecile is rich” can be
considered an elementary inference. It is more difficult to consider the inference that goes
from “It is not the case that Cecile is not tall or not rich” to the sentence “Cecile is rich” as
an elementary inference.

But the worst is yet to come: let us consider any two logical theorems e.g., (A ⊃ B) ⊃
(¬B ⊃ ¬A) and A ∨ ¬A. Since a logical theorem is by definition a formula which is true in
any interpretation structure, both theorems have the same meaning. This is surprising, to
say the least.

Inferentialist theories of meaning
On the other hand, we find inferentialist theories of meaning: an inferentialist theory of
meaning denies that truth conditions play the main role in semantics. Instead, the funda-
mental concept which determines the meaning of expressions is that of inference or justifi-
cation. In Robert Brandom’s words:

The standard way [of classical semantics] is to assume that one has a prior
grip on the notion of truth, and use it to explain what good inference consists
in [...] [I]nferentialist pragmatism reverses this order of explanation [...] It
starts with a practical distinction between good and bad inferences, understood
as a distinction between appropriate and inappropriate doings, and goes on
to understand talk about truth as talk about what is preserved by the good
moves. [15]

31

An inferentialist theory of meaning focuses on the semantic properties of statements. In-
ferential relations exist between sentences, not between sub-sentential expressions. (One
cannot, for example, infer one noun from another). Thus, the inferentialist will not explain
the semantic properties of singular terms, for example, in terms of the representational re-
lations between those singular terms and the elements of the world; rather, he or she will
explain what is distinctive about singular terms in terms of their role in certain types of
inference.
Although there are disagreements, sometimes major, between the authors defending infer-
entialist semantics7, the following two points are accepted, to the best of our knowledge,
by any defender of the inferentialist viewpoint.

1. The meaning of an utterance is the knowledge that must be possessed (implicitly or
explicitly) in order to understand the utterance;

2. This knowledge must in principle be observable in the interactions between the
speaker, the listener, and the environment

Note that, for the point 1, the meaning of an utterance in a language (natural or artifi-
cial) cannot coincide with the object captured by the referentialist definition of meaning:
speakers are only able to store a limited amount of data. By consequence, the knowledge
needed to understand the meaning of the language itself should also be limited or, at least,
could be enumerated and described recursively from a limited set of data and rules. In gen-
eral, there is no finite way to enumerate the infinite number of models of a formula, nor to
finitely enumerate the infinite number of individuals and relations in a single model. Thus,
an inferentialist rejects the definition of the meaning of a sentence S as the set of models
that satisfy one of the readings of S.

Inferentialism and argumentative dialogues
Referentialist approaches to meaning theory use —or are strongly inspired by—- methods
of model theory, a branch of mathematical logic. In our thesis, we will use methods and
concepts from proof theory. Proof theory is a branch of mathematical logic that deals

7The interested reader can consult the first chapters of Cozzo’s book ‘Meaning and Argument’ [30] where
a detailed comparison between different versions of inferentialism in the philosophy of language is presented

32

with the study of the formal properties of proofs, also called deductions or derivations.
As seems natural, a semantic theory based on the concept of proof (or justification) is
closely related to the study of the mathematical properties of proofs. There are in fact
several approaches to the inferentialist meaning theory based on proof theory [53]. More
specifically, they are based on a formal proof system invented by Gentzen and studied
in depth by Prawitz: natural deduction [115]. We will choose a different approach, to
implement the inferentialist theory of meaning: namely dialogical logic [96, 97]. Our
choice is motivated by two distinct factors.

First, natural deduction “misbehaves” with respect to classical logic. For example, in
a classical natural deduction system, there is no subformula property. Classical logic is an
essential tool for the study of reasoning and inference in natural language and our thesis
includes a study, albeit limited, of these topics.

Secondly, in our view, the link to a semantics based on the notion of argument is clearer
in the paradigm of dialogical logic: an argument in favor of a statement is often developed
when a critical audience, real or imagined, doubts the truth or plausibility of the propo-
sition. In this case, in order to successfully assert the statement, a speaker, or proponent
of it, must be capable of providing all the justifications that the audience is entitled to
demand. Taking this idea seriously, an approximation of the meaning of a sentence in a
given situation can be obtained by studying the argumentative dialogues that arise once the
sentence is asserted in front of such a critical audience. This type of situation is captured
—with a reasonable degree of approximation— by dialogical logic. In the dialogical logic
framework, knowing the meaning of a sentence means being able to provide a justifica-
tion of the sentence to a critical audience. Dialogical logic analyze the concept of validity
of a formula F through the concept of winning strategy in a particular type of two-player
game. This type of game is nothing more than an argumentative dialogue between a player,
called Proponent, who affirms the validity of a certain formula F and another player, called
Opponent, who contests its validity. The Proponent starts the argumentative dialogue by
affirming a certain formula. The Opponent takes turns and attacks the claim made by the
proponent according to its logical form. The Proponent can, depending on his previous
assertion and on the form of the attack made by the Opponent, either defend his previous
claim or counter-attack. The debate evolves following this pattern. The proponent wins
the debate if he has the last word, i.e., the defense against one of the attacks made by the
Opponent is a proposition that the opponent can not attack without violating the debate
rules.

The basic idea of dialogical semantics can therefore be stated as follows:

33

the meaning of a statement E is given by the form of the dialogue in which the
speaker asserting E provides a critical interlocutor with all the justifications
necessary to justify his assertion of E.

In the thesis, we will focus on a dialogical representation of formal proofs, and we will
study in detail two logical systems whose formal proofs can be interpreted in terms of
winning strategies for games: dialogical logic and game semantics.

Thesis’s results
In this section we briefly describe the main results of our thesis work, which are of two
styles. On the one hand, there are results on proof theory and on the other hand, results
about the syntax or semantics of natural language.

Proof theory
In our thesis we explore two rather similar theories: dialogical logic and game semantics.
We briefly outline both theories and present our own contributions.

Dialogical logic

The first article on dialogical logic was published in 1958 [96]. The ideas presented by
Lorenzen were developed using the tools of game theory by his student Lorenz in his PhD
thesis [97]. The base objects of dialogical logic are two-player games and are an ideal-
ization of an argumentative dialogue. The two players are called Proponent (or P) and
Opponent (or O). The two players take turns and have different roles in the debate: P tries
to construct a justification for a certain formula F, while O tries to construct a refutation of
that formula F. Each connective and quantifier in the formula can be attacked by one player
and defended by the other. Therefore, each complex formula is associated with questions
according to its main connective and answers to these questions are expected.

A game is an alternated sequence (finite or infinite) of interventions made by P and O.
The Player P makes the first intervention of the game. This first intervention is the assertion
of the formula F. Any other intervention in the debate must be “justified” in the following
sense: each intervention consists in asking a question about a formula asserted by the other

34

player, or in answering one of the questions asked by the other player. Games are regulated
by a series of restrictions, for example P can assert an atomic formula only if O has already
asserted the same atomic formula. Each intervention of O is a reaction to the intervention
of P which immediately precedes it. A strategy is a function that determines the next move
of a player according to the previous moves, i.e. according to the history of the game. A
strategy is said to be winning when the player who follows it wins the game whatever the
history of the game is. We are interested in strategies that are winning for P. Our main
contribution to the study of dialogic logic is the proof of the following statement

Let L be a first-order language with terms and A a formula of L. The formula
A is valid (in the sense of classical logic) if and only if there exists a P-win
strategy for A.

Our proof of this statement is constructive: given a winning strategy S for A we transform
it into a proof of ` A in the sequent calculus and, vice versa, we transform any proof of
` A into a winning strategy. Although the system of classical dialogical logic we have
outlined is presented by Lorenzen in the 1958 paper, to date there was no proof of this
statement. There were proofs for propositional calculus, like the one proposed by Herbelin
in his thesis [68] which our proof extends, or for restricted first-order languages whose only
terms are constants [25]. We call SLK the sequent calculus we use to show the equivalence
between classical validity and the existence of a P-winning strategy. SLK is a polarized
sequent calculus system. IfD is a proof that ends with an application of a right introduction
rule of the existential quantifier or the disjunction

D′

... R
Γ ` A[t/x],∃xA,∆

∃R
Γ ` ∃xA,∆

D′

... R
Γ ` Ai, A1 ∨ A2,∆

∨R
i i ∈ {1, 2}

Γ ` A1 ∨ A2,∆

then the underlined formula in the premise of the rule is the formula ‘introduced’ by rule
R. The P winning strategies that we study in our thesis were introduced — in the case
of intuitionistic dialogical logic — by Felscher [46]. These strategies — called formal
by Felscher — have a peculiarity: the Proponent is forced to immediately respond to any
attack directed against a disjunction or an existential formula. This type of restriction on
strategies naturally corresponds to the polarization property sketched above.

35

Game Semantics

Game semantics is a form of denotational semantics inspired by dialogical logic. In a
denotational semantic we interpret proofs of a logical system by mathematical objects. A
denotational semantics has a peculiarity: proofs that are equal modulo a notion of reduction
(usually cut-elimination or β-reduction) are interpreted by the same object. The first works
in game semantics appeared in the early 1990s for linear logic [1, 76, 89, 13].

In our thesis, we develop a game semantics for the constructive variant of the modal
logic K (called CK). The formulas of CK are written using the connectives ⊃ and ∧ and the
modalities � and^. The logic CK can be defined as the smallest set of formulas containing:

• any tautology of minimal logic [79];

• each instance of the axiom �(A ⊃ B) ⊃ �A ⊃ �B;

• each instance of the axiom �(A ⊃ B) ⊃ ^A ⊃ ^B;

and closed by:

• necessitation: if A belongs to CK then �A also belongs;

• modus ponens : if A and A ⊃ B belong to CK then B belongs too.

A complete sequent calculus system for this logic —that we call LCK—- is obtained by
adding the following two rules to a ‘standard’ sequent calculus system for minimal logic.

Γ ` C K��Γ ` �C
Γ, B ` C

K^�Γ,^B ` ^C

where �Γ = �A1, . . . ,�An whenever Γ = A1, . . . An. The logic CK is well understood both
from the model theoretic point of view and from the proof-theoretic point of view. Despite
this, we count just one article in which the denotational semantics of CK is studied [11].
In this article the authors study the categorical structure of denotational models of CK. In
our thesis, we construct a concrete denotational model for CK. In game semantics proofs
are interpreted as winning strategies for two player games. The games are played over
arenas: graphs representing the structure of formulas. The arena of a complex formula
is recursively defined from those of atomic formulas. The arena of a formula A, denoted
by ~A�, is a directed graph whose vertices are the atomic formulas contained in A and

36

the occurrences of modalities in A, and whose edges are of two kinds. One kind of edge
(denoted by →) allows recovering the binary connectives of the formula A, while the other
kind of edge (denoted by) allows recovering the range of the modalities inside the
formula A. Each vertex v of an arena ~A� has a polarity. This polarity, positive or negative,
is the same as that of the occurrence of the atomic formula, or modality, of A that decorates
v. A positive vertex v is called root if there is no vertex w such that v→w. A move is
a vertex and it is a O-move if it is positive, it is a P move otherwise. Games are finite,
alternated sequences of O and P moves.

• O always starts a game: the first move of a game is a root of the arena.

• Each move w of the game, except the first, is justified by a preceding move v of the
other player: w→v in the arena;

• Each move in a game is either a propositional variable or a vertex ^;

• Each O-move is justified by the P-move that precedes it in the game;

• each move w of P carries the same label of the move v that immediately precedes it:
if v is a propositional variable a (resp. a modality ^) then w is an occurrence of the
same propositional variable a (resp. an occurrence of ^).

A game is won by one of the two players when the other player can no longer answer.
A winning strategy is a tree where each branch is a game won by P. Bifurcations in this
tree result from O-moves. To characterize the strategies corresponding to modal proofs,
we will consider two additional constraints on the accepted moves of P. In the arena,
each vertex w has a height: the number of modalities that have w in their scope. The first
constraint requires that each P-move has the same height as the previous O-move. The
second constraint permits us to define a notion of sub-game. Let w be a move in a game
that is in the scope of some modality m of height k. We say that the modality m is new
iff no move that precedes w is in the scope of m. Whenever O plays a move that is under
the scope of a new modality, a sub-game starts. The sub-game ends whenever O plays a
move w′ that is the scope of no modality or when O plays a move that is under the scope
of a positive modality n , m of height k. In a modal winning strategy any sub-game has
the following characteristics: let w be the first move of the sub-game and m its positive
modality of height k, then

37

• each move v of the sub-game is in the scope of a modality of height k;

• if v is the sub-game and v is in the scope of a positive modality n of height k then
n = m;

• If x belongs to the sub-game and x is within the scope of a negative modality n of
height k, then for any move y belonging to another sub-game, y is not within the
scope of n;

• if m = ^ then there exists a negative modality n of height k such that n = ^ and a
move x under the scope of n and that belongs to the sub-game.

Using the above characterization, it is possible to interpret any proof D of LCK by a modal
winning strategy {{D}}. We then show that ifD reduces toD′ by applying the cut elimination
algorithm then {{D}} = {{D′}}. Furthermore, we show that our semantics is fully complete,
i.e.,

Let {{−}} be the function which associates to any LCK proofD a modal winning
strategy {{D}}; the function {{−}} is surjective: for any winning strategy S there
exists a proof D such that S = {{D}}.

We obtain the proof of the above statement using a sequentialization algorithm: we
show how to transform a winning strategy for A into a proof of A.

Natural language syntax and semantics modelisation
Type-logical grammars

Type-logical grammars are a family of frameworks for the analysis of natural language
based on proof theory. Given a natural language sentence w1, . . .wn a computable function
associates to each word wi a formula l(wi) of linear, non-commutative, mutipliplicative in-
tuitionistic logic (e.g., the Lambek calculus [91] or one of its variants). The grammaticality
of the sentence corresponds to the provability, in the logic in question, of the judgment
l(w1), . . . l(wn) ` s (s represents the grammatical category of sentences). The same judg-
ment can have several proofs, and each of these proofs corresponds to a distinct syntactic
analysis of the sentence. By the Curry-Howard isomorphism, each syntactic analysis can

38

be seen as a linear lambda-term, which provides instructions on how to compose the mean-
ing of individual words. The individual words are also described by lambda terms called
semantic lambda-terms. In the syntactic analysis, we substitute the free variables — corre-
sponding to the lexical entries wi — with the associated semantic lambda terms. We then
obtain, by β-reduction, a representation of the logical meaning of the sentence. A natu-
ral question is then: if a sentence w1, . . .wn has at least two different syntactic analyses,
do they give rise to two different logical representations? We show that if the question
is naively formulated, these logical representation can be the same. However, consider-
ing a restricted class of semantic lambda-terms and a strong notion of difference between
syntactic lambda-terms, the logical representation remain different. In particular, semantic
lambda terms will λI-terms8 of the shape

λx1, . . . λxnkM1 · · ·Mm

where k is a constant. To establish the difference between logical representations of a sen-
tence, we define a dominance relation between atomic symbols of a λ-term. Intuitively,
dominance allows us to reconstruct the ‘application tree’ of a λ-term. We show that domi-
nance between constants is preserved by β-reduction, i.e.

Let M be a λI typed term that contains two occurrences of constants k and
k′, such that k dominates k′ in M. Suppose that M β-reduces to M′. Then
each trace ki of k is associated with a set of occurrences k′i

j of k′ in M′ and ki

dominates k′i
j in M′.

Therefore, if two syntactic analyses P1 and P2 of the same sentence define two different
dominance relations between their free variables, (two syntactic analysis of the same sen-
tence have the same free variables) then their respective logical form is different. Indeed,
the logical form is obtained by substituting the free variables of P1 and P2 by the same
semantic lambda-terms. The head symbol of a semantic term is a constant. If the variable
w1 dominates the variable w2 in P1 but not in P2 (or vice versa) we can conclude that in the
logical form of P1 there will be a constant k1 which dominates a constant k2 and that the
couple formed by k1 and k2 does not appear in the dominance relation of the logical form
of P2.

8the class of λI-terms is defined in chapter 1 section 1.9

39

Textual entailment recognition

One text A is said to entail another B when B is a consequence of A. A fairly standard
task in automatic language processing, called textual entailment recognition, is to detect
that one text is a logical consequence of another. For example, “Every duck’s leg is a bird’s
leg” is logical consequence of “Every duck is a bird” whereas “Charles does not like pizza”
is not logical consequence of “Every Italian likes pizza and Charles is not Italian”.

The FraCaS [28] data set was created in the 1990s. The objective was to develop a
general framework for computational semantics. The data-set consists of textual inference
recognition problems. Each problem consists of one or more assertions and a question with
a ‘yes’ or ‘no’ answer.

(31) A Swede won a Nobel prize.

(32) Every Swede is a Scandinavian.

(33) Did a Scandinavian won a Nobel prize? [Yes]

We have applied dialogical logic and type-logical grammars to textual entailment recog-
nition problems in the FraCas corpus. Type-Logical grammars produce a logical represen-
tation of sentences. Then the question-answer pairs of the data-set are translated into state-
ments. In the previous case the pair formed by “Did a Scandinavian win a Nobel Prize”
and “no” is translated into the sentence “Some Scandinavian won a Nobel Prize”. Consider
again the above example. By translating sentences into logical formulas we obtain:

(34) A Swede won a Nobel prize
∃ x1 [Swede (x1) ∧ (∃ x2 Nobel-prize (x2) ∧ won (x1, x2))]

(35) Every Swede is a Scandinavian
∀ x3, [Swede (x3) ⊃ Scandinavian (x3)]

(36) Some Scandinavian won a Nobel prize
∃ x4 [Scandinavian (x4) ∧ (∃ x5 Nobel-prize (x5) ∧ won (x4, x5))]

Finally, we show the existence (or non-existence, depending on the case) of a winning
strategy for the formula H1 ∧ . . . ∧ Hn ⊃ C where the Hi are the formulas corresponding
to the sentences present in the data-set and C is the formula corresponding to the sentence

40

obtained by using the question-answer pair present in the data set. We treat in detail some
simple examples: e.g., quantifiers monotonicity.

Next we tackle a slightly more complex problem. We consider natural language texts
that are in the textual entailment relation by virtue of the meaning of non-logical words e.g.,
any English speaker recognizes that the sentence ‘Paul eats an apple’ implies the sentence
‘Paul eats a red fruit or Paul eats a green fruit’. This is because we can define the word apple
as “the round fruit of a tree of the rose family, which typically has thin green or red skin
and crisp flesh”. To recognize this type of entailment relationship, we consider dialogical
games in which players play modulo a certain set of definitions i.e., logical formulas of the
form

∀x1, . . .∀xn(Q ⇐⇒ A)

where Q is an atomic formula (let us call this formula the definiendum) and A is any formula
(let us call this formula the definiens). In such games when one player asserts an atomic
formula Q which is definiendum, the other player can ask to assert the definiens B of Q.
Such games modulo definitions are called unfolding games. The notion of unfolding an
atomic formula was first studied by Prawitz [115] in the context of natural deduction and
developed by Dowek [40] in the context of deduction modulo.

Anaphora and ellipsis resolution

Defining exactly what is an anaphora and what is an ellipsis is a difficult task [83].
We can briefly define anaphora as a linguistic phenomenon whereby the interpretation

of one occurrence of an expression depends on the interpretation of an occurrence of an-
other expression. This characterization allows us to recognize that in the two sentences
‘Gertrude eats an apple, it is delicious’ the pronoun ‘it’ is anaphoric. The interpreta-
tion of the pronoun ’it’ is the same as the interpretation of the noun ‘an apple’. Let us
call the linguistic expression on which the interpretation of an anaphora depends the an-
tecedent. Humans are often able to resolve anaphora, i.e., find an appropriate antecedent
for an anaphoric expression. Anaphora resolution is a difficult task in natural language
processing. In a logical context, anaphora resolution is often handled by model-theoretic
methods [80]. In our thesis we introduce a different approach to the problem of anaphora
resolution. In particular, we approach it with the tools of proof theory. We introduce a new
first-order quantifier (which we writeA) whose meaning is given by the rules that concern

41

its ’use’ in an argumentative dialogue. More concretely, we will define a first-order dialog-
ical logic system (for a multisorted language) whose formulas are written with occurrences
of the quantifier A. In a dialogical game the formulas which are asserted by the player O
have a different status from the formulas which are asserted by P. The formulas asserted by
O form the hypotheses of the dialogue i.e., the formulas which can be regarded as accepted
in the dialogue. Indeed, O can assert any atomic formula and thus defend himself against
any attack blow from P. We can push this intuition: if the player O asserts that a certain
individual k possesses a certain property A, then the existence of this individual is attested.
Let us call the set of formulas affirmed by O in the game the common ground of the game.
This common ground grows as the game progresses. We say that a constant k appears in the
common ground iff the common ground contains a formula B(k). The rules for attacking
and defending the quantifier A are defined as follows: if a formula AxA is asserted in the
game, then this assertion can be attacked only if at least one constant appears in the com-
mon ground. If one player attacks the formula, then the other player can defend himself
by asserting A(k) for some k that appears in the common ground. Intuitively the variables
that are bound by an occurrence ofA represent anaphoric expressions. We call this type of
dialogical game “anaphoric games”. We show that the set of formulas for which there is an
anaphoric strategy is a consistent set: it does not contain all the formulas of the language.
We then apply strategies for anaphoric games to the problem of textual entailment recog-
nition that depends upon anaphoric resolution. We deal with some problems of the FraCas
data-set e.g.,

(37) Smith attended a meeting.

(38) She chaired it.

(39) Did Smith chaired a meeting? [Yes]

In order to reduce the space of possible antecedents for an anaphoric expression, we
use a multisorted logical language. It is natural, at least in English, to consider that some
anaphoric expressions convey information about the ontological status of their antecedent.
Moreover, it is natural that certain verbs, adjectives etc. can be applied only to certain
kinds of entity. If, for example, we consider the sentence ‘Smith took a train to Baltimore.
It whistled at 12 o’clock’ it is clear that ‘it’ refers to the train. The pronoun ‘It’ refers to
an inanimate entity, and cities like Baltimore do not whistle. The sentences in the example
below can therefore be represented by the following formulas:

42

(40) Smith attended a meeting.
F1 = ∃ x1

o (meeting (x1) ∧ attended (smith, x1))

(41) She chaired it.
F2 = A x2

hA x3
o (chaired (x2, x3))

(42) Smith chaired a meeting.
C = ∃ x4

o (chaired (smith, x4))

we can thus build a winning strategy for the formula F1∧F2 ⊃ C. We also consider the
ellipsis resolution problem by reducing it to the anaphora resolution problem. Following
the analysis of Davidson [35] we consider that each verb in a sentence introduces an event.
Thus, the ’logical’ form of the sentence ’Gertrude cut an apple in the bathtub at midnight’
is ’there is an event, of cutting an apple, which happened in the bathtub at midnight and
whose agent is Gertrude’. This sentence formalization strategy allows us to consider certain
ellipses as anaphora: for example, in the sentence ‘Gertrude met Maria, Bill too’ ‘too’
refers to the event of meeting Maria;

Thesis’s organization
Our thesis is divided into three parts. Each part consists of a maximum of three chapters.
The work is organized according to a conceptual scheme that goes from abstract philosoph-
ical considerations through a logical-mathematical part to more concrete applications to the
domains of automatic natural language processing. We will now present to the reader the
contents of the three parts of our thesis.

Mathematical and Philosophical foundations
This part of the thesis contains two chapters and lays the logical and philosophical founda-
tions of our work.

Mathematical preliminaries The first chapter of our thesis is dedicated to lay the math-
ematical foundations of our thesis work. We recall the definition of the logical and mathe-
matical tools that we will use during our thesis; for example the notion of first order logic
language, sequence tree etc. We also give a brief introduction to two of the three proof

43

systems we will use in our thesis: natural deduction and the sequence calculus. The third
proof system we will study in our thesis, dialogical logic, is presented in detail in the third
chapter. In this first introductory chapter we do not present any new results.

Philosophical foundations The second chapter sets out in more detail the philosophical
theses and theories that we have outlined in this introduction. We show how inferentialist
philosophers and logicians have confronted the problems of the meaning of logical con-
stants. In particular we detail the relationship between the inferentialist meaning theory
and the two systems proof system introduced in the first chapter: natural deduction and the
sequent calculus. We expose the philosophical theory according to which the meaning of
the logical constant is given by their introduction rules in natural deduction. Although this
theory is relevant in the case of intuitionistic logic, we show that it encounters problems
when we are interested in the meaning of the classical logical constants. We then try to
show that the sequent calculus — or better a dialogical lecture of the sequent calculus —
allows us to give a coherent inferentialist interpretation of the meaning of classical logic
constants.

Logic and DiaLogical Games
This part of our manuscript gathers the theoretical results obtained during our thesis work.
It is composed of two long chapters.

DiaLogical Games The first chapter of this part offers a detailed exposition of Lorenzen
and Lorenz dialogical logic [96, 97, 46]. First, we define the central objects of dialogical
logic: games and strategies. Then we present a sequent calculus system — which we
call SLK — and we study its properties. In particular, we show that SLK is complete for
classical first-order logic: any formula A that is provable in SLK is valid and, vice versa, any
valid formula A is provable in SLK. Then we show the equivalence between the classical
notion of logical validity and the Dialogical notion of logical validity i.e., ‘a formula A
is valid in classical logic iff there exists a classical proponent winning strategy for A’. A
winning strategy being a function that specifies, according to the history of the game, the
moves that the Proponent must make if she wants to be sure to win the game.

44

Game Semantic for Constructive Modal Logic In the fourth chapter of our thesis we
will focus on denotational semantics, which finds its inspiration in dialogical logic: game
semantics. In particular, we define a game semantics for the constructive variant of the
modal logic K (which we call CK). After presenting a complete sequent calculus for the
logic CK (LCK), we first define modal games, then modal winning strategies — which we
call CK-WISs— and we prove that they can be composed. Given two CK-WISs for A ⊃ B
and B ⊃ C we can construct a CK-WIS for A ⊃ C. Then we show how to interpret the
proofs of LCK by a CK-WIS. Finally, we prove that our game semantics for CK is ‘fully
complete’. Any CK-WIS for a formula A is the interpretation of a proof of ` A in the
sequent calculus LCK.

Natural Language Applications of Proof Theory
In the third part of our thesis we focus on some applications of proof theory to the automatic
analysis of natural language and to formal semantics.

Type Logical Grammars: a result about the syntax-semantic interface In the fifth
chapter of our thesis we focus on a natural problem concerning the relationship between
the syntactic and semantic parsing of a sentence produced by a Type-logical grammar.
We first introduce Type-logical grammars: we detail how one can compute the logical
form of a sentence in natural language using proof theory. Then we present the problem
we are dealing with: the logical form of a sentence is a logical formula written in the
simply typed lambda calculus. To produce the logical form a categorial grammar goes
through an intermediate step: the syntactic analysis of the sentence. The syntactic analysis
represents the grammatical tree of the sentence. It is expressed by linear lambda terms. The
same sentence can have several syntactic analysis and logical forms. We study a condition,
which we call dominance, that guarantees that if a Type-logical grammar assigns to a same
sentence two different syntactic analysis then it will assign to this sentence two different
logical forms.

Textual Entailment Recognition and DiaLogical Games In the sixth chapter we focus
on the problem of textual entailment recognition: given a sentence, or piece of text, T and
a sentence P we try to judge whether we can infer from the truth of T the truth of P. We
will deal with this problem using Dialogical Logic; by using Type-logical grammars we

45

translate sentences into logical formulas; to check that we can infer P from T we construct
a winning strategy for the formula FT ⊃ FP (FT being the logical form of T and FP that
of P). We will first use our methodology to solve some textual inference problem we took
from FraCas. In the second part of this chapter, we slightly modify the dialogical logic
system presented in the third chapter: we introduce the possibility for players to ‘define’
the meaning of certain atomic formulas during the game. This modification allows us to
deal with inferences that require knowledge of the meaning of words to be solved e.g., the
sentence ‘John is consulting a psychiatrist’ implies ‘John is consulting a doctor’.

Dialogical Games for Anaphora and Ellipsis Resolution In the seventh and last chap-
ter of our thesis, we will deal with a problem that links textual entailment recognition and
a typical problem from formal semantics: anaphora resolution. In formal semantics the
problem of anaphora resolution is usually treated using model-theoretic tools. In this chap-
ter we propose an approach based on proof theory. We present a new first order quantifier
A. The meaning of a formula AxF is given by its attack and defense rules in a Dialogic
system. Intuitively the variable x can only be instantiated by a term which appears in the
context of the game. This context is the set of formulas that are asserted by the opponent
O during the game. By using this dialogical logic system we will solve some problems of
textual entailment recognition in which anaphora and ellipsis resolution occupy a central
part.

46

Part I

Mathematical and Philosophical
foundations

47

Chapter 1

Mathematical preliminaries

In this first chapter we introduce the formal object that we will be using throughout the
dissertation. We first define the notions of first-order languages, sequences, and trees. We
then define the model theoretic notion of (classical) interpretation of a first order formula.
All this definitions are standard and can be found in any good introductory logic book
such as [3, 132, 136]. We then introduce the two proof systems that will be used in our
dissertation: the sequent calculus and natural deduction for the implicational fragment of
intuitionist logic. We finally give an outline of the simply typed lambda calculus and we
conclude by a very brief presentation of the Curry-Howard isomorphism.

1.1 First Order Language
Definition 1.1. A first order language L is given by a signature Σ = (C,F,R) where the
three sets C,F and R are at most countable and pairwise disjoint.

• The set C is a set of constant symbols;

• the set F is the set of function symbols. To each function symbol we associate a
strictly positive natural number called the arity of the function symbol. The arity of
a function symbol specifies the number of argument of the function symbol;

• The set R is the set of relation symbols. We associate a natural number, its arity, to
each relation symbol. The arity of a relation symbol is not necessarily positive. In
this case we will speak of a propositional constant.

48

Unless it is explicitly stated otherwise we consider that each set of relation symbols con-
tains a proposition constant ⊥ representing an arbitrary false proposition.

1.1.1 First Order Terms
Let V be a countable set of individual variable symbols. Individual variable symbols (or
variables for short) will be denoted by x, y, z . . . (eventually indexed x1, x2 . . .)

Definition 1.2. The set T of (first order) terms is the smallest set which includes the set
V of variables and the set C of constants. This set is stable for the application of function
symbols to terms: if t1, . . . tn are n ≥ 1 terms and f is a function symbol with arity n then
f (t1, . . . tn) is a term.

Definition 1.3. The depth |t| of a term t is inductively defined as follows:

1. if t ∈ V ∪ C then |t| = 0;

2. | f (t1, . . . tn)| = max(|t1|, . . . |tn|) + 1.

.

Definition 1.4. The set FV(t) of free variables of a term t is inductively defined as follows:

• if t ∈ V then FV(t) = {t};

• if t ∈ C then FV(t) = ∅;

• FV(f (t1, . . . tn)) =
⋃

i≤n FV(ti).

The set of occurrences of free variables of a term t is obtained by using the disjoint
union] instead of the union ∪ in the inductive clause. A term t such that FV(t) = ∅ is said
to be closed.

Definition 1.5. Let x be an individual variable and t, u be terms. We define the term t[u/x]
resulting from the substitution of the term u for all the free occurrences of the variable x in
t by induction on the depth of t.

1. if t has depth 0

49

• if t ∈ C then t[u/x] = t;

• if t ∈ V

(a) if t = x then t[u/x] = u;
(b) if t = y and y , x; then t[u/x] = t;

2. if t has depth n then t = f (t1, . . . tk) and t[u/x] = f (t1[u/x], . . . tk[u/x]).

1.1.2 First Order Formulas
Unless otherwise stated, we consider the following logical constants: the binary logical
constants ∧ (conjunction),∨ (disjunction), ⊃ (implication) and the two quantifiers ∀ (uni-
versal quantifier), ∃ (existential quantifier). We will also use the parenthesis symbols ‘(’
and ‘)’ as well as the brackets ‘[’ and ‘]’.

The set At of atomic formulas is the smallest set containing all expressions of the form
R(t1, . . . tn) where R ∈ R is a relational symbol with arity n ≥ 0 , and for all i ∈ {1, . . . n}
ti ∈ T .

Definition 1.6 (First order formulas). The set F of first order formulas is the smallest set
containing the set At of atomic formulas and closed under the following operations:

• if A, B ∈ F then A ? B ∈ F for ? ∈ {∧,∨,⊃};

• if A ∈ F and x ∈ V then QxA ∈ F for Q ∈ {∀,∃}.

The negation ¬A of a formula A is defined as ¬A = A ⊃ ⊥

Remark 1.1. We can give another equivalent definition of the set of formulas. The set F
of formulas is defined by the following grammar:

F = At | F ∧ F | F ∨ F | F ⊃ F | ∀xF | ∃xF

where x runs through the setV of variables. The above expression can be read as follows:
the elements of the set F are either atomic formulas, an expression A ? B where A, B are
elements of F and ? ∈ {∧,∨,⊃} or an expression QxB where Q ∈ {∀,∃} x ∈ V and B is an
element of F .

Definition 1.7. The depth |A| of a formula A is inductively defined as follows

50

• A ∈ At then |A| = 0;

• if A is of the form B ?C for ? ∈ {∧,∨,⊃} then |A| = max(|B|, |C|) + 1;

• if A is of the form QxB with Q ∈ {∀,∃} then |A| = |B| + 1;

Definition 1.8. The set FV(A) of free variables of a formula A is inductively defined as
follows

• if A ∈ At and A = ⊥ then FV(A) = ∅

• if A ∈ At and A is of the form P(t1, . . . tn) then FV(A) =
⋃

i≤n FV(ti)

• if A is of the form B ?C with ? ∈ {∧,∨,⊃} then FV(A) = FV(B) ∪ FV(C)

• if A is of the form QxB with Q ∈ {∀,∃} then FV(A) = FV(B)/{x}

The set of occurrences of free variables of a formula A is obtained by using the disjoint
union] instead of the union ∪ in the preceding definition. A formula in which the set of
free variables is empty is called closed.

Definition 1.9. Let x be a variable, u a term and A a formula. The formula A[u/x] resulting
from the capture avoiding substitution of the term u for all the free-occurrences of the
variable x in A is defined as follows:

• if A ∈ At and A = ⊥ then A[u/x] = A;

• if A ∈ At and A is of the form P(t1, . . . tn) then A[t/x] = P(t1[u/x], . . . tn[u/x])

• if A is of the form B ?C with ?{∧,∨,⊃} then A[u/x] = B[u/x] ?C[u/x]

• if A is of the form QyB with Q ∈ {∀,∃} then

1. if y < FV(u) and y , x then A[u/x] = Qy(B[u/x]);

2. if y ∈ FV(u) and y , x then A[u/y] = Qz((B[z/y])[u/x]) where z is a variable
that does not appear in B nor in u;

3. A[u/x] = QyB otherwise.

51

Definition 1.10. Let A be a formula. The set sub(A)+ of positive gentzen subformulas of A
and the set sub(A)− of negative gentzen subformulas of A are defined as follows:

• if A ∈ At then S ub(A)+ = {A} and S ub(A)− = ∅;

• if A is of the form B ? C with ? ∈ {∧,∨} then sub(A)+ = sub(B)+ ∪ sub(C)+ ∪ {A}.
sub(A)− = sub(B)− ∪ sub(C)−;

• if A is of the form B ⊃ C then sub(A)+ = sub(C)+ ∪ {A}. sub(A)− = sub(B)−;

• if A is of the form QxB with Q ∈ {∀,∃} then sub(A)+ =
⋃

t∈T sub(B[t/x])+ ∪ sub(A)+.
sub(A)− =

⋃
t∈T sub(B[t/x])−.

The set of (gentzen) subformulas of a formula A is equal to the union of the set of
positive and negatives subformulas of A

1.2 Trees
All the content of this section can be found in [3]. In terms of graph theory, a tree can be
defined as an acyclic and connected graph. If we choose a node of this graph and “pull
it up”, we obtain a “rooted” tree, i.e. an acyclic and connected graph in which one of
the nodes has a particular status and is called a root. This structure can then naturally be
presented as a particular ordered set, of which the root is the maximum. We recall that an
order relation over a set A is a subset ≤ of the Cartesian product A × A (we will also say
that (A,≤) is an ordered set) such that:

• for each a ∈ A a ≤ a;

• for each a, b and c in A if a ≤ b and b ≤ c then a ≤ c;

• for each a and b in A if a ≤ b and b ≤ a then a = b.

The relation ≤ induces a strict order relation < on A defined by a < b iff a ≤ b and a , b. If
for all a, b ∈ A we have that either a ≤ b or b ≤ a then ≤ is total. Given B ⊆ A an element
a ∈ A is an upper bound (resp. lower bound) of B if b ≤ a (resp. a ≤ b) for all b ∈ B.
An upper bound (resp. lower bound) a0 of B ⊂ A is a supremum (resp. infimum) if a ≤ a0

(resp. a0 ≤ a) for each lower bound (resp. upper bound) a of B. An order relation ≤ on a

52

set A is well-founded when there is no infinite descending chain of elements of A i.e., there
is no subset {ai | i ∈ N} of A such that ai+1 < ai for each i ∈ N.

Definition 1.11. A tree T is an ordered set (T,≤) where T is non-empty and such that:

1. for each x and y in T the set {x, y} has a supremum;

2. for each x ∈ T the set {z ∈ T | z ≥ x} is finite;

3. for each x ∈ T the set {z ∈ T | z ≥ x} is totally ordered.

By definition each tree T = (T,≤) has a maximal element. This maximal element
will be called the root of the tree. Indeed fix an element a0 ∈ T , and consider the set
{b ∈ T | b ≥ a0}. By condition 2 and 3 this set is finite and has a bigger element c. Consider
another arbitrary element d ∈ T . By condition 1 the set {d, c} has a supremum s that must
coincide with c. Elements of T will be called nodes or vertex. An element (a, b) ∈≤ will be
called and edge whenever a , b and there is no c such that a < c < b. A tree T = (T,≤) is
well-founded iff ≤ is well-founded. Let a, b be element of T , b is a daughter of a iff b < a
and there is no c such that b < c < a. An element a ∈ T that has no daughters is called leaf
of T. A tree T is finitely branching iff each element a of T has a finite number of daughters.
A path in a tree is a totally ordered subset of the tree. A branch B of T is a maximal (for
the ⊂ relation) path of T. Remark that in virtue of condition 3 there is a branch, necessarily
unique, from each element a ∈ T to the root of T. The height of a node a is the largest
number of edges in a path from a leaf node to a. The height of a tree is the height of the
root of the tree.

1.3 Sequences
Informally, a sequence is an enumerated collection of objects in which repetitions are al-
lowed and order matters. We formally define a sequence in the following way

Definition 1.12. A sequence is a function from a subset A of the set N of natural numbers
to a set S .

Every element of a sequence is thus a pair (n, x) where n is a natural number and x an
element of some set. We will denote an element (n, x) as xn and call n an index. We will

53

consider that if A is a subset of natural numbers that index a set S and that n ∈ A then m ∈ A
for every m < n. Thus, the first element of a sequence will be indexed by 0 the second by
1 the third by 2 and so on. Sequences will be denoted by small case letters of the Greek
alphabet σ, ρ, τ etc. If σ is a sequence we write σi to denote the element of σ indexed by
i. The parity of σi is the parity of i, e.g., if σ = M O T H E R then σ0 = M and has parity
0, σ3 = H and has parity 1. We will denote the empty sequence by ε. If σ = x0x1 . . . xn

is a sequence and ρ = y0y1 · · · ym is another sequence, the expression σρ will denote the
sequence x0x1 · · · xnyn+1 · · · yn+m. Given a sequence τ and a sequence ρ, τ is a prefix of ρ
(written τ v ρ) iff there is a sequence σ such that ρ = τσ. If σ , ε then τ is a proper prefix
of ρ. Given a sequence τ and a sequence ρ, τ is a suffix of ρ (written ρ � τ) if there is a
sequence σ such that ρ = στ. If τ , ε then τ is a proper suffix of ρ.

Let X be a set of sequences. The set X is said to be prefix closed whenever if ρ ∈ X then
σ ∈ X for every σ v ρ. Let X be a set of sequences, define the relation �⊆ X × X by

ρ � τ ≡ τ v ρ

The relation � is an order relation because v is also an order relation. Thus, if X is a prefix
closed set of sequences the pair (X,�) is a tree in the sense of definition 1.11: the set X
it contains at least the empty sequence ε. Each sequence ρ has a finite number of prefixes
thus the set {τ ∈ X | τ � ρ} is finite for any ρ ∈ X. Moreover, the set {τ ∈ X | τ � ρ} is
totally ordered. Finally, since X is prefix closed, given ρ and τ ∈ X we can always find
some σ ∈ ρ such that σ v ρ and σ v τ (in the worst case σ = ε) thus the set {ρ, τ} has
always a supremum.

1.4 Semantic
In this section we briefly recall the standard definition of first order classical structure.

Definition 1.13. Let L be a first order language over a signature (C,F,R). A first order
structureM = (M,−M) is a pair where M is an arbitrary non-empty set called the base of
the structure and −M is a function such that

• kM ∈ M for all k ∈ C;

• fM is a (total) function from Mn to M for all f ∈ F;

54

• PM ⊆ Mn for all P ∈ R.

In order to define the notion of truth of a formula in a first order structure, we need to
define what is the value in the structure of the free variables of the formula. We thus define
the notion of evaluation.

Definition 1.14. LetM = (M, (−)M) be a first order structure for a first order language L.
An evaluation e is a function from the set V of variables of L to the base set M of M. If
e is a valuation and a an element of M, we denote by e[a := x] the valuation e′ such that
e′(x) = a and e′(y) = e(y) for any variable y different from x.

Definition 1.15. LetM be a first order structure for a first order language L and let T be
the set of terms of L. The value of the term t in L with respect to the evaluation e, denoted
~t�e, is defined as follows

• ~x�e = e(x) for any variable x;

• ~k�e = kM for any constant k;

• ~ f (t1, . . . tn)�e = fM(~t1�e, . . . ~tn�e)

We can now define the notion of value of a formula in a structure. The value (or refer-
ence) of the formula will be a truth value: either true or false.

Definition 1.16. LetM = (M, (−)M) be a first order structure for a language L. Let F be a
formula of L. The value of the formula F in the structureM with respect to an evaluation
e, noted ~F�e, is an element of the set {0, 1} and is defined by induction on the depth of F
as follows:

~⊥�e = 0

~P(t1, . . . tn)�e = 1 iff (~t1�e, . . . ~tn�e) ∈ PM

~¬A�e = 1 iff ~A�e = 0
~A ∧ B�e = 1 iff ~A�e = 1 and ~B�e = 1
~A ∨ B�e = 1 iff ~A�e = 1 or ~B�e = 1
~A ⊃ B�e = 0 iff ~A�e = 1 and ~B�e = 0
~∃xA�e = 1 iff there is an a ∈ M such that ~A[a := x]�e = 1
~∀xA�e = 1 iff for any a ∈ M~A[a := x]�e = 1

55

ifM is a first order structure and F a formula we will writeM, e |= F whenever ~F�e = 1
and say that M is a model of F. Let Γ be a set of formulas. We have that Me |= Γ iff
M, e |= A for any A ∈ Γ.

Definition 1.17 (Classical Validity, logical consequence). Let L be a first order language
and F a formula of L. The formula F is valid (noted |= F) iff for any structure M and
valuation e we have thatM, e |= F. We say that a formula A is logical consequence of a set
of formulas Γ iff for any structureM and valuation e we have that

M, e |= Γ impliesM, e |= A

1.5 Proofs
In the sections to follow we present the proof formalism that we will exploit in our dis-
sertation: the sequent calculus and natural deduction. Both were invented (or discovered
as the reader prefer) by Gerhard Gentzen in is PhD dissertation and both system offers a
representation of deductive arguments as trees generated by a set of rules.

1.6 Sequent Calculus
A sequent is an expression Γ ` ∆ where Γ and ∆ are finite (possibly empty) lists of formulas.
The formulas in Γ are called the antecedents or hypothesis of the sequent, and the formulas
in ∆ are called the consequents of the sequent. The intuitive interpretation of a sequent

A1, . . . , An ` B1, . . . , Bm

is that if the conjunction of the antecedents is true then the disjunction of the consequents
is true i.e., the sequent above corresponds to the formula

A1 ∧ · · · ∧ An ⊃ B1 ∨ · · · ∨ Bm

A sequent calculus is a formalism to construct formal deductive arguments. The ar-
guments, called derivations or proofs, are obtained through the application of inference
rules. Inference rules have a (possibly empty) list of sequents as premise and a sequent as
conclusion. A rule is represented, schematically, as follows:

56

Γ1 ` ∆1 · · · Γn ` ∆n r
Σ ` Π

where r is the name of the rule, the sequents Γi ` ∆i for i ∈ {1, . . . n} are called the premises
of the rule and the sequent Σ ` Π is called the conclusion of the rule. A rule is classified
according to the number of its premises. In this thesis we will work with rules with zero,
one or two premises called, respectively, initial rules, unary rules and binary rules. Proofs
in the sequent calculus are trees of sequents that are constructed from a given set of rules.
The leaves of the proof-trees are obtained from initial rules. There exists numerous sequent
calculus systems for many logics 1, here we present the sequent calculus system introduced
by Gerhard Gentzen [58]: LK. The rules of the sequent calculus LK are shown in table 1.1

Definition 1.18. A derivation (or proof) D in LK of a sequent Γ ` ∆ is a finite tree of
sequents constructed according to the rules of table 1.1. The root of the tree, also called
conclusion, is Γ ` ∆, the leaves of the tree are instances of the Id-rule or of the ⊥L-rule. In
the ∃L and ∀R rules, the variable y does not appear in the sequent that is the conclusion of
the rule, and it is called proper parameter or eigenvariable. The formulas that appear both
in the conclusion and in the premises of a rule (the formulas that are not concerned by the
application of the rule) are called context or side formulas.

Rules in the sequent calculus can be divided in the following manner

Structural rules: these inference-rules do not refer to any logical connective, but in-
stead operates on the ‘shape’ of the antecedents or succedents of a sequent. In ta-
ble 1.1 they are shown above the cut-rule. Structural rules mimic intended meta-
theoretic properties of the logic e.g., the structural rules of weakening WL and WR

reflect the fact the consequence relation of classical logic is monotone.

Logical Rules: these inference-rules deals with the connectives and quantifier of a logic:
using inference rules, we can introduce a new formula on the left or on the right of `-
symbol in a sequent. In table 1.1 logical rules are shown below the cut-rule. Remark
that every logical symbol has some dedicated left introduction rules and right intro-
duction rules, and that those rules does not depend on the rules for another logical
symbol.

1The interested reader can consult [132] for a presentation of some sequent calculus system for classical,
intuitionistic, linear and modal logic

57

IdA ` A

Γ, A, B,Σ ` ∆
EL

Γ, B, A,Σ ` ∆

Γ ` Σ, A, B,∆
ER

Γ ` Σ, B, A,∆

Γ ` ∆
WL

Γ, A, ` ∆
Γ ` ∆

WR
Γ ` A,∆

Γ, A, A ` ∆
CL

Γ, A ` ∆

Γ ` A, A,∆
CR

Γ ` A,∆

Γ ` A,∆ Σ, A ` Π
cut

Γ,∆ ` Σ,Π

Γ, A ` ∆
¬L

Γ ` ¬A,∆
Γ ` A,∆

¬R
Γ,¬A ` ∆

⊥L
⊥ `

Γ ` ∆
⊥R

Γ ` ⊥,∆

Γ, A ` ∆
∧L

1Γ, A ∧ B ` ∆

Γ, B ` ∆
∧L

2Γ, A ∧ B ` ∆

Γ ` A,∆ Γ ` B,∆
∧R

Γ ` A ∧ B,∆

Γ, A ` ∆ Γ, B ` ∆
∨L

Γ, A ∨ B ` ∆

Γ ` A,∆
∨R

1Γ ` A ∨ B,∆
Γ ` B,∆

∨R
2Γ ` A ∨ B,∆

Γ ` A,∆ Σ, B ` Π
⊃L

Γ,Σ, A ⊃ B ` ∆,Π

Γ, A ` B,∆
⊃R

Γ ` A ⊃ B,∆

Γ, A[y/x] ` ∆
∃L

Γ,∃xA ` ∆

Γ ` A[t/x],∆
∃R

Γ ` ∃xA,∆

Γ, A[t/x] ` ∆
∀L

Γ,∀xA ` ∆

Γ ` A[y/x],∆
∀R

Γ ` ∀xA,∆

Table 1.1: The sequent calculus LK

58

Theorem 1.1. The sequent calculus LK is a sound and complete proof system for classical
first order logic: for any formula F, there is a LK-derivation D of ` F if and only if F is
valid.

Proof. A detailed proof of this classic result can be found in [54]. �

If we give a closer look to the rules of the sequent calculus LK we notice that the
only inference rule in which the formulas in the premises of the rule are not Gentzen sub-
formulas of the formulas in the conclusion of the rule is the cut-rule. Derivation in which
the cut-rule is not used are called normal and enjoys an important property called the sub-
formula property. In a derivation enjoying the sub-formula property, all formulas appearing
in some sequent of the derivation are (Gentzen) sub-formulas of the conclusion sequent of
the derivation. Such proofs are sometimes also called analytical. A calculus is called
analytical in this sense that, given an arbitrary theorem, by analyzing its logical structure
we have hope to succeed in a bottom-up search for its proof.

Theorem 1.2. In the sequent calculus LK the cut-rule is redundant: if there is a derivation
D of the sequent Γ ` ∆ that contains instances of the cut-rule then there is a derivation D′

of Γ ` ∆ in which no sequent is obtained by using the cut-rule

There are two ways of proving this important theorem. One, the semantical way, is to
prove that every valid sequent has a normal proof. This style of proof is given in the already
quoted [54]. Another way, the algorithmic one, is to define a series of transformation on
derivation that permits, if applied in a certain order, to transform an arbitrary proof of a
sequent in a cut-free proof of the same sequent. This way of proving the theorem was the
one originally studied by Gentzen [58] and modern presentations of this proof can be found
by the reader in [3, 63]. This kind of proof will be presented in detail for a sequent calculus
for the modal logic CK in the third chapter of our dissertation.

We can now refine the statement of theorem 1.1

Theorem 1.3. The sequent calculus LK without the cut-rule is a sound and complete proof
system for classical first order logic: for any formula F, there is cut-free LK-derivation D
of ` F if and only if F is valid.

59

1.7 Variations on the sequent calculus
The sequent calculus LK that we have briefly introduced in the previous section is one of
the many sequent calculi that are cut-free sound and complete for first order classical logic.
In this section we describe some variants on the sequent calculus that will be used in our
dissertation.

1.7.1 Intuitionistic Logic
To obtain a sequent calculus system that is sound and complete for first order intuitionistic
logic, one can simply define a sequent to be an expression Γ ` ∆ where Γ and ∆ are finite
list of formulas such that the list ∆ contains at most one formula and modify the rules of
LK accordingly. Such a sequent calculus is called LJ.

1.7.2 Atomic identity rule
In the Id-rule the formula A is an arbitrary formula. One can restrict the rule, so that A is
an atomic proposition different from ⊥ without changing the set of sequents that are LK
provable. In fact we can always replace an instance of an Id-rule with conclusion ⊥ ` ⊥
with an instance of the ⊥L-rule followed by an instance of the ⊥R-rule. Moreover, we can
expand up-to atomic formulas the non-atomic instances of the Id-rules e.g.,

60

Id
¬A ` ¬A

...
A ` A

¬L
A,¬A `

¬R
¬A ` ¬A

IdB ⊃ C ` B ⊃ C

...
B ` B

...
C ` C

⊃L
B, B ⊃ C ` C

EL
B ⊃ C, B ` C

⊃R
B ⊃ C ` B ⊃ C

IdB ∧C ` B ∧C

...
B ` B

∧L
1B ∧C ` B

...
C ` C

∧L
2B ∧C ` C
∧R

B ∧C ` B ∧C

1.7.3 Negation
By defining the negation of a formula ¬A as A ⊃ ⊥ (as we have done in subsection 1.1.2)
the rules ¬L and ¬R became redundant. Consider the subsystem of LK that contains all the
rules but those of the ¬ connective. Suppose that we have a derivation D1 of Γ, A ` ∆ and
a derivation D2 of Γ ` A,∆. We can construct the following:

D1

...
Γ, A ` ∆

⊥R
Γ, A ` ⊥,∆

⊃R
Γ ` A ⊃ ⊥,∆

≡
Γ ` ¬A,∆

D2

...
Γ ` A,∆ ⊥L

⊥ `
⊃L

Γ, A ⊃ ⊥ ` ∆
≡

Γ,¬A ` ∆

in both derivation we have substituted the formula A ⊃ ⊥ by its definendium ¬A. We used
the ≡-symbol to underline such substitution in the proof-tree

61

1.7.4 Additive vs Multiplicative
Rules for the logical connectives exists in two formats: the multiplicative and the additive
format e.g., the multiplicative rule ⊃R of LK

Γ ` A,∆ Σ, B ` Π
⊃L

Γ,Σ, A ⊃ B ` ∆,Π

in which the side formulas of the two premises does not need to be equals and the side for-
mulas of the conclusion sequent are obtained by concatenation of the list of side formulas
of the premises, can be replaced by the following additive version of the rule

Γ ` A,∆ Γ, B ` ∆
⊃L

Γ, A ⊃ B ` ∆

in which the side formulas in the premises and in the conclusion of the rule are exactly
the same. The multiplicative and additive version of the ⊃L-rule are equivalent modulo the
structural rules. If one has a derivation D1 of the premises of the multiplicative version of
the rule, one can construct a derivation of the conclusion of the multiplicative version of
the rule using the additive version of the rule and the weakening rules. Vice-versa, if one
has a derivation D2 of the premises of the additive version of the rule one can construct a
derivation of the conclusion of the additive rule using the multiplicative version of the rule
and the contraction rules.

D1.1

...
Γ ` A,∆

Γ,Σ, A ` ∆,Π

D1.2

...
Σ, B ` Π

Γ,Σ, B ` ∆,Π
⊃L

Γ,Σ, A ⊃ B ` ∆,Π

D2.1

...
Γ ` A,∆

D2.2

...
Γ, B, ` ∆

⊃L
Γ,Γ, A ⊃ B ` ∆,∆

Γ, A ⊃ B ` ∆

In the derivation on the left-side the multiple lines designates multiple application of
the weakening rules and exchange rules. In the derivation on the right-side they indicate
multiple applications of the contraction and exchanges rules. There exists multiplicative
and additive versions of all the rules for the logical connectives. Modulo the structural rules,
they are always equivalent in the sense specified above. A sensible difference between the
two format of rules appears if we drop some of the structural rules. In particular, if we
drop the structural rules of weakening and contraction the additive and multiplicative rules
defines different connectives. This is one of the main ideas of linear logic.

62

1.7.5 Absorbing the Exchange rules
The left and right exchange rules EL and ER are needed in LK because we have defined a
sequent to be an expression Γ ` ∆ in which Γ and ∆ are finite list of formulas. Since the
order of the hypothesis in a sequent does not matter for logical consequence, we are forced
to introduce the exchange rules to freely permute formulas in a list. If we want to get rid
of exchange rules without losing essential properties of derivations, we can resort to two
alternatives:

1. We define a sequent as an expression Γ ` ∆ where Γ and ∆ are finite multiset of
formulas. A multiset is, informally, a set in which repetition counts or, alternatively,
a list in which the order does not count. Formally a multiset is a pair (Γ,m) where Γ

is a set and m : Γ→ N+ is a function.

2. Following an idea of Herbelin [68], we define a sequent as an expression Γ ` ∆ where
Γ and ∆ are finite set of named formulas. A named formula is a pair (A, n) where A
is a formula and n is an arbitrary name. Of course each formula in Γ and ∆ have a
name that is different from the name of all other formulas in Γ and ∆.

Both alternatives have their advantages and disadvantages, and both will be used in our
PhD dissertation.

1.7.6 Absorbing the Weakening rules
To avoid using the weakening rule, one possibility is to push all the occurrences of the
weakening rules to the id and ⊥L rules and to integrate them there by modifying the Id and
⊥L rules in this way:

Id
Γ, A ` A,∆ ⊥L

Γ,⊥ ` ∆

1.7.7 Absorbing the Contractions rules
it is possible to absorb contraction rules at the level of introduction rules (right and left) for
logical connectives. To do so, it is sufficient to modify them so that the formula introduced
in the conclusion of a rule already appears in the rule’s premises e.g., the rules for the ∃
and the additive rules for the ⊃ connective are modified in the following way

63

Γ,∃xA, A[x/y] ` ∆
∃L

Γ,∃xA ` ∆

Γ ` A[t/x],∃xA,∆
∃R

Γ ` ∃xA,∆

Γ, A ⊃ B ` A,∆ Γ, A ⊃ B, B ` ∆
⊃L

Γ, A ⊃ B ` ∆

Γ, A ` B, A ⊃ B,∆
⊃R

Γ ` A ⊃ B,∆

1.8 Natural Deduction
As it is well explained by Schroeder-Heister [127] natural deduction is based on at least
three major ideas:

• Discharge of hypotheses: hypotheses can be discharged or eliminated in the course
of a proof. Natural deduction deals with proof depending on hypotheses, and this
results in a deductive system enjoying important structural properties.

• Separation: each primitive rule scheme only concerns a single logical operator (con-
nective or quantifier).

• Introductions and eliminations: Each logical operator is given with two rules. In-
troduction rules for an operator ∗ allow one to infer a sentence whose main logical
operator is ∗. Elimination rules for an operator ∗ allow one to infer consequences
from a sentence with ∗ as its main operator.

Natural deduction proofs are finite trees (with some additional information):

• The leaves, the root and internal nodes are labeled with formulas.

• The root formula is called the conclusion of the proof.

• Branching are denoted by a horizontal line and are indexed by the name of the rule.
The formulas above the line are said to be the premise(s) of the rule, and the formula
below the line/rule is called the conclusion of the rule.

• The formulas that label the leaves of the tree are called the hypotheses of the proof.
There are two kinds of hypotheses. Ones are said to be active or undischarged, others

64

are said to be discharged or canceled. The discharged hypotheses are written between
square brackets, possibly with an index specifying the rule which discharged them:
[H]i.

• A tree whose active leaves are H1, . . . ,Hn and whose root is C is a proof of C from
the active (or undischarged) hypotheses H1, . . . ,Hn,

We shall use the graphical notation

...
C

to denote a natural deduction proof of C. Natural deduction proofs will be written as trees;
the leaves of the tree are obtained by the initial rule of natural deduction derivations, which
is called hypothesis rule and permits to prove any formula. In particular the single vertex
proof-tree

A

Is a natural deduction derivation for any formula A. The meaning of such derivation is that
we can prove A under the hypothesis that A holds.

Table 1.2 shows the natural deduction rules for the implicational fragment of intuition-
istic logic i.e., the fragment of intuitionistic logic in which formulas are constructed only
by the connective ⊃.

...
A

...
A ⊃ B [⊃ E]

B

[A]n · · · [A]n

...D
B [⊃ I]nA ⊃ B

Table 1.2: natural deduction rules for the ⊃-fragment of Intuitionistic Propositional Logic

The ⊃ I-rule discharge an arbitrary, finite number (possibly 0) of occurrences of the
formula A that are active in the proof of B. These discharged hypothesis are marked by
the index n in the proof of A ⊃ B. In the ⊃ E-rule (also called modus ponens) the major

65

premises of the rule is the formula A ⊃ B. The active and discharged hypothesis of this
derivation are exactly those of the sub-derivations of A and A ⊃ B. We will write B1, . . . Bn `

A if there is a proof of A with undischarged hypothesis B1, . . . Bn. If all the hypothesis of a
proof D of A are discharged, we will say that D is a closed proof of A.

Example 1.1. We give some examples of natural deduction proofs:

[A]2 [⊃ I]1A ⊃ A [⊃ I]2A ⊃ (A ⊃ A)

[A]1 [⊃ I]1A ⊃ A [⊃ I]2A ⊃ (A ⊃ A)

Remark that in the left-hand proof the first ⊃ I discharge 0 occurrence of the formula A
and the second ⊃ I rule discharge the unique occurrence of the formula A. In the right-hand
proof we face the opposite situation: the first ⊃ I rule discharge the unique occurrence of
the formula A and the second ⊃ I rule discharge 0 occurrences of A.

[A]1 [A ⊃ A]2 [⊃ E]
A [⊃ I]1A ⊃ A [⊃ I]2(A ⊃ A) ⊃ (A ⊃ A)

[A]1 [A ⊃ A]2 [⊃ E]
A [A ⊃ A]2 [⊃ E]

A [⊃ I]1A ⊃ A [⊃ I]2(A ⊃ A) ⊃ (A ⊃ A)

In the left-hand proof we discharge just one occurrence of A ⊃ A while in the right-hand
one we discharge two occurrence of the same formula.

We have introduced a natural deduction system for the implicational fragment of intu-
itionistic logic; there are two reasons for our choice:

1. in our PhD dissertation natural deduction will be used uniquely to represents proofs
for proper fragments of the implicational fragment of proposition intuitionistic logic
i.e., intuitionistic multiplicative linear logic and the Lambek Calculus;

2. We will relate natural deduction with the simply typed λ-calculus in which the only
complex types are functional types.

66

1.8.1 Detours and normal proofs
Let D be a natural deduction proof. An introduction rules for ⊃ that introduces the major
premise of an elimination rule ⊃ E is called a detour or redex. A derivation with no detours
is called normal. There is a reduction rule to eliminates detours in a derivation.

[A]n · · · [A]n

...D
B [⊃ I]nA ⊃ B

...D1

A [⊃ E]
B

...D1 · · ·
...D1

A A{
...D
B

Natural deduction proofs enjoys the following important property (see [63] or [60] for
a proof of the following proposition)

Proposition 1.1. Natural deduction for the ⊃-fragment of intuitionistic logic enjoys strong
normalization: there is no infinite sequence of{ reduction.

A reduction process is confluent whenever if D reduces to D1 and D2 in some number
of steps, then there is D′ such that both D1 and D2 reduces to D′ in some number of steps.
If each time that D reduces to D1 and D2 in one step of reduction, then one can find a D′

such that D1 and D2 reduces to D′ in some number of steps, then the reduction process
is said to be locally confluent. If a reduction process is both strongly normalizing and
locally confluent, then it is confluent. The normalization procedure of natural deduction
for ⊃-fragment is locally confluent (see again [63] or [60]). We can thus conclude that the
following proposition holds.

Proposition 1.2. The reduction process { of natural deduction for the ⊃-connective is
locally confluent.

Remark that by virtue of the two above propositions, every proof D containing detours
can be transformed to a unique proof D′ that contains no detour.

1.8.2 Intuitionistic multiplicative linear logic
Linear logic was introduced by Jean-Yves Girard in his seminal work [59]. Linear logic is a
refinement of classical and intuitionistic logic. Instead of emphasizing truth, as in classical

67

logic, or proof, as in intuitionistic logic, linear logic emphasizes the role of formulas as
resources. The hypothesis of a proof are seen as resources that get consumed to get the
conclusion of the proof. The literature on linear logic is massive, and it will be impossible
to summarize it all. In our PhD dissertation we will use only the intuitionistic fragment
of multiplicative linear logic in which formulas are generated, from a set of propositional
variables, by the connective((linear implication). To obtain a natural deduction system
for intuitionistic multiplicative linear logic (IMLL for short) it is enough to restrict the
rule ⊃ I of table 1.2 so that every application of the rule discharge exactly one formula
occurrence. The natural deduction system for IMLL is nothing but a subsystem of the
natural deduction system presented above, thus proposition 1.1 and 1.2 holds for IMLL as
well.

1.9 The Simply Typed Lambda Calculus
In this section we give a very succinct exposition of the simply typed λ-calculus. We
will introduce only what is strictly needed for our successive exposition. For an in-depth
introduction to the simply typed λ-calculus see [63, 71]. Types of the simply typed λ-
calculus are defined from a set of primitive types P according to the following grammar:

T := P | T → T

any type T ∈ T is given a countable set of variables of this type and constant of this type.
We will use upper case letters from the roman alphabet A, B,C,D . . . etc. to denote types.

The set of typed terms, the set FV(M) of free variables of a term M, and the notion of
subterm of a term are defined as follows:

• variables: if x is a variable of type A written x : A or xA, then x is a term of type
A. The set FV(x) of free variables of x contains only x and x is the only subterm of
itself;

• constants: if k is a constant of type A, written k : A or kA, then k is a term of type A
and the set of free variables of k is empty. The only subterm of k is k itself;

• application: if M is a term of type A → B, written M : A → B or MA→B, and N is a
term of type A, written N : A or NA, then MN is a term of type B. The set FV(MN)

68

is equal to FV(M) ∪ FV(N). The subterms of MN are MN itself, the subterms of M
and the subterms of N;

• abstraction: If M is a term of type B and x is a variable of type A then λxAM is a term
of type A→ B. The set FV(λxM) is equal to FV(M)\{x}. The subterms of λxAM are
λxAM itself and the subterms of M.

Variables and constants will be called atoms. An occurrence of a variable x, which is a
subterm of M but does not belong to FV(M), is said to be bound in M and it is associated
to a unique lambda binder λx.

Let M,N1, . . .Nn be terms and x1, . . . xn be distinct variables, and suppose that for all
i ∈ {1, . . . n} Ni and xi have the same type. The term M[N1/x1, . . .Nn/xn] i.e., the result of
the capture avoiding substitution of Ni to each free occurrence of xi in M for i ∈ {1, . . . n},
is defined by induction on M.

i xi[N1/x1, . . .Nn/xn] = Ni;

ii α[N1/x1, . . .Nn/xn] = α if α is an atom and α , xi for all i ∈ {1, . . . , n};

iii PQ[N1/x1, . . .Nn/xn] = P[N1/x1, . . .Nn/xn]Q[N1/x1, . . .Nn/xn];

iv (λzP)[N1/x1, . . .Nn/xn] = λzP if for all i ∈ {1, . . . , n} xi < FV(P);

v (λzP)[N1/x1, . . .Nn/xn] = λz(P[N1/x1, . . .Nn/xn]) if for some i ∈ {1, . . . , n} xi ∈

FV(P) and z is not free in any of the Ni such that xi ∈ FV(P).

vi (λzP)[N1/x1, . . .Nn/xn] = λw(P[w/z][N1/x1, . . .Nn/xn]) if for some i ∈ {1, . . . n} xi ∈

FV(P) and z is free in some Ni such that xi ∈ FV(P). The variable w appear neither
in P nor in any of the Ni;

vii (λxiP)[N1/x1, . . .Nn/xn] = λxi(P[N1/x1, . . .Ni−1/xi−1Ni+1/xi+1, . . .Nn/xn]).

A redex is an application MN where M is an abstraction λxM′. A term that is redex-free
is said to be normal or in normal form. A term M is in head normal form iff

M = λx1 · · · λxmαN1 · · ·Nn

with m, n ≥ 0 and α is a (possibly bound) atom. Remark that every normal term is in head
normal form but not every term in head normal form is normal e.g., (kA((λzBz)wB) is a term

69

in head normal form but it contains the redex (λzBz)wB A one-step beta reduction is defined

by (λxM)N
β
{1 M[N/x] and it preserves typing. The transitive and reflexive closure of

β
{1

will be written
β
{. The proof of the following proposition can be found in e.g., [63]

Proposition 1.3. In the simply typed λ-calculus Beta reduction is strongly normalizing and
confluent, that is

• strongly normalizing: there is no infinite path of beta reduction in the simply typed
lambda calculus;

• confluent : if M
β
{ N1 and M

β
{ N2 then there is N such that N1

β
{ N and N2

β
{ N.

As a consequence of the previous proposition, we obtain that every term has a normal
form and that this normal form is unique.

We shall consider also eta-expansion, which is defined as follows, where M has type
A→ B and xA < FV(M):

M
η
{ λxAMx

In the following, we will consider β-normal η-long forms that are defined using the
auxiliary notion of atomic forms:

i each atom is an atomic form

ii MN is an atomic form if M is an atomic form and N is β-normal and η-long

iii each atom that has an atomic type is β-normal and η-long

iv λxM is β-normal and η-long whenever M is

Finally, we define two subclasses of simply typed λ-term that will be used in the fol-
lowing.

Definition 1.19. A λ-term M is called a λI term [71, 9] iff for each subterm λx.N of M x
occurs free in N at least once.

A λ-term M is called linear whenever each free variable occurs exactly once, and for
each subterm λx.N of M, x has exactly one free occurrence in N

Let use denote by ΛI the class of λI-terms and by Λlin the class of linear lambda terms.
We have that Λlin ⊂ ΛI; moreover, it is easy to prove that if M ∈ ΛI (resp. M ∈ Λlin) and

M
β
{ N then N ∈ ΛI (resp. N ∈ Λlin).

70

1.10 The Curry-Howard Correspondence

...
N : A

...
M : A ⊃ B [⊃ E]

MN : B

[y1 : A]n · · · [yn : A]n

...
M : B [⊃ I]n

λxA(M[x/y1, . . . x/yn]) : A ⊃ B

Table 1.3: natural deduction Rules with λ-terms decorations.

The Curry Howard Correspondence relates proofs in natural deduction and terms in the
simply typed λ-calculus. A type is seen as a formula, with A ⊃ B representing the type
A→ B of functions from A to B.

The rules of natural deduction are seen as term-construction rules for the simply typed
λ-calculus. A natural deduction derivation D of C is seen as a term M of type C in which:

• the free hypothesis of D are decorated with the free variables of M;

• the discharged hypothesis of D are the bound variables of M.

Natural deduction rules decorated with λ-terms are shown in table 1.3. We suppose that
every formula that is a leaf of a derivation D is decorated with a different variable.

Example 1.2. The natural deduction proofs of example 1.1 corresponds to the following
λ-terms:

[x : A]2 [⊃ I]1
λyAx : A ⊃ A

[⊃ I]2
λxAλyAx : A ⊃ (A ⊃ A)

[x : A]1 [⊃ I]1
λxAx : A ⊃ A [⊃ I]2

λyAλxAx : A ⊃ (A ⊃ A)

[x : A]1 [f : A ⊃ A]2[⊃ E]
f x : A

[⊃ I]1
λxA f x : A ⊃ A

[⊃ I]2
λ f A⊃AλxA f x : (A ⊃ A) ⊃ (A ⊃ A)

[x : A]1 [f1 : A ⊃ A]2 [⊃ E]
f1x : A [f2 : A ⊃ A]2[⊃ E]

f2(f1x) : A
[⊃ I]1

λxA f2(f1x) : A ⊃ A
[⊃ I]2

λ f A⊃AλxA f (f x) : (A ⊃ A) ⊃ (A ⊃ A)

71

The Curry-Howard correspondence does not concern uniquely terms and derivations;
also the computational process of the λ-calculus i.e., β-reduction, corresponds to detour-
elimination in natural deduction.

We Resume the Curry-Howard Correspondence in the following table

λ-calculus Natural Deduction
Type Formula
Type A→ B Formula A ⊃ B
Term of type A Proof of A
β-reduction Detour-elimination

72

Chapter 2

Philosophical Foundations

Abstract
In this chapter we discuss the philosophical relevance of the two proof system that we introduced
in the previous chapter: natural deduction and the sequent calculus. We first detail the relationship
between inferentialism and natural deduction. We then highlight some critical aspects of natural
deduction as meaning conferring system for classical logic. We then sketch a dialogic interpretation
of the sequent calculus that encompass such criticisms.

2.1 Meaning and natural deduction
According to many inferentialist philosophers such as Dummett and Prawitz [116, 117,
118, 41, 42] the meaning of the logical constants can be specified by means of natural
deduction systems. Remember that for an inferentialist the meaning of a sentence is given
by the way in which we can justify its assertion. Inferentialist such as Prawitz and Dummett
specify that the meaning of sentences is given by a certain canonical way of justifying
their assertion. In the case of the logical connectives, the meaning of a sentence A with
main connective ? is given by the set of natural deduction proofs of A that ends with a
?-introduction. The idea that introduction rules in a natural deduction System are meaning
constitutive comes directly by a remark made by Gentzen

The introductions represent, as it were, the “definition” of the symbol con-
cerned, and the eliminations are no more, in the final analysis, then the conse-
quence of these definitions. This fact may be expressed as follows: in elimi-

73

nating a symbol, we may use the formula with those terminal symbol we are
dealing only in the sense afforded it by the introduction of that symbol [58]

In which sense is the meaning conferred by the elimination rules the consequences of
the meaning that is given to the logical constants by the introduction rules? To answer
this question, consider the natural deduction system we have introduced. Let D be a closed
proof of an implicational formula B ⊃ C. Suppose thatD ends in an elimination rule. Thus,
D has the following form

...D1 RA ⊃ (B ⊃ C)

...D2

A
[⊃ E]

B ⊃ C

We affirm that D necessarily contains a redex. Suppose, to reach a contradiction, that D is
normal. Thus, the rule R can neither be a hypothesis rule —because D is a closed proof—
nor an introduction rule. It follows that R must be an elimination rule ⊃ E. By the fact that
D1 ends in an elimination rule, we conclude that D1 and D have the same form i.e., D1 is
of the form

...D1.1 RA1 ⊃ (A ⊃ (B ⊃ C))

...D1.2

A1 [⊃ E]
A ⊃ (B ⊃ C)

By the same kind of reasoning as above, we again conclude that R must be an elimination
rule. Thus, D1.1 will have the same form as D1 and D, and so on. This means, in particular,
that the proof D contains an infinite branch which is clearly absurd.

Elimination rules are thus consequences of the introduction rules in the following sense:
if we take closed proofs ending with an introduction rules as meaning constitutive, closed
proofs that ends in an elimination rule can always be transformed into the former type of
proofs. A closed proof D that ends in an elimination rule necessarily contain a detour. By
applying (a finite number of times) the detour elimination procedure on D, we obtain a
closed normal proof D′. This last proof necessarily ends in an introduction rule.

If this type of meaning explanation works very well with respect to intuitionistic logic,
problems arise if we consider the natural deduction system for (the implicational fragment

74

of) Classical propositional logic. This system is obtained by adding the following two
deduction rules to the one shown in table 1.2

...
⊥ [Efq]
A

[¬A]n · · · [¬A]n

...
⊥ [Raa]nA

In this latter system there are closed normal proof of implicational formulas that do not end
in an implication introduction. Consider the following closed normal proof of the Peirce
law, which exemplifies the foregoing problem (we recall that ¬A is a shortcut for A ⊃ ⊥)

[(((A ⊃ B) ⊃ A) ⊃ A) ⊃ ⊥]3

[(A ⊃ B) ⊃ A]2

[A]1 [⊃ I]0
((A ⊃ B) ⊃ A) ⊃ A [(((A ⊃ B) ⊃ A) ⊃ A) ⊃ ⊥]3

[⊃ E]
⊥ Efq
B [⊃ I]1A ⊃ B

[⊃ E]
A [⊃ I]2((A ⊃ B) ⊃ A) ⊃ A

[⊃ E]
⊥ [Raa]3

((A ⊃ B) ⊃ A) ⊃ A

A partisan of the theory of meaning proposed by Dummett and Prawitz will tend to
dismiss this objection by saying that something is wrong with classical logic: namely since
we cannot give an inferentialist explanation based on the notion of canonical proofs to the
meaning of the classical implication, then the latter connector is simply devoid of intelligi-
ble meaning. Said in another way: the meaning of the classical logical constant is obscure
since their meaning theory is not satisfactory. In our particular case, the meaning of the
classical implication ⊃ is not entirely determined by its introduction rules. To know the
meaning of the logical constant ⊃, we should also know the meaning of classical negation
¬. The reader may wonder ‘what is wrong with the proposition that knowing the meaning
of one logical constant depends upon knowing the meaning of another logical constant?’.
Dummett’s answer would be that this kind of explanation is not molecular: we cannot un-
derstand the meaning of a sentence solely on the basis of the meaning of its components.
We have two answers to this kind of remark. First, it is not clear whether molecularity of
meaning really fails for classical logic. As we will see in the next section, the molecular-
ity problem exposed above seems to be tied to the particular format of natural deduction
rules. Moreover, even were molecularism to fail, we don’t see where the problem is. In
our view, a satisfactory theory of meaning should simply be non-holistic: the meaning of a

75

given expression in language should not depend on the meaning of every other expression
in language. To exemplify this point, note the meaning of classical implication does not
depend upon the meaning of classical disjunction. If we add to natural deduction the rule
for disjunction, no new purely implicational formula became provable.

2.2 Meaning and the Sequent Calculus
Compared to the attention that philosophers have paid to natural deduction systems, the
attention paid to the sequent calculus is very little. We will try to argue that the the sequent
calculus is not philosophically insignificant.

In section 1.6 we have briefly underlined the mathematical importance of normal (or
analytical) proofs; Analytical proofs, however, are important also for a philosophical reason
that was already remarked by Gentzen

Perhaps we may express the essential properties of such a normal proof by
saying: it is not roundabout. No concepts enter into the proof other than those
contained in its final result, and their use was therefore essential to the achieve-
ment of that result. [58]

Suppose, as inferentialist do, that the meaning of a formula F is given by the way in
which we justify the assertion of F. The meaning of a formula is thus conferred by the
inference rules. As we have already remarked, in the sequent calculus every logical symbol
came with right and left introduction rules. Moreover, the rules for each logical constant is
independent of the rules for another logical constant. A way to rephrase this observation is
to say that, if we take the sequent calculus rules as defining the meaning of the logical con-
nectives, then the meaning theory thus obtained is not holistic: the meaning of each logical
connective is defined independently of the meaning of another logical connective. How-
ever, in the presence of the cut-rule can we really rule out the possibility that the meaning
of a logical constant depends upon the meaning of another different logical constant? The
answer is no: suppose that we restrict our self to the implicational fragment of LK, and we
say that the meaning of the logical connective ⊃ in classical logic is entirely defined by this
fragment of LK. Now suppose that we add to this fragment the rules for the conjunction
connective and the cut-rule. How can we be sure of the fact that no purely implication
formula that was not provable in the implicational fragment of LK became provable in the
augmented fragment? We simply cannot: because we might prove it by resorting in an

76

essential way to the conjunction rules and then cutting away the formula introduced by
the conjunction rules. However if we stipulate that the meaning conferring object are the
normal proofs then our meaning theory for the logical constant is indeed non-holistic. In
the previous section we have underlined that, according to inferentialists that take intro-
duction rules in natural deduction as meaning conferring rules, the meaning of the classical
logical constant is ill-defined. There are closed proofs of pure implications that do not end
in implication introduction. Thanks to the sub-formula property this is not the case in the
sequent calculus and it thus enjoys the advantage over natural deduction with respect to
being meaning-conferring. There are however two philosophical difficulties in considering
the sequent calculus in terms of a meaning conferring proof system.

2.2.1 The role of the structural rules
The first difficulty is given by the fact, remarked on in the foregoing, that there are two
kind of rules in the sequent calculus. The logical rules and the structural rules. If we say
that the meaning of a logical constant is given by its left and right introduction rules we are
not saying enough; in this case the meaning of classical, intuitionistic, relevant and linear
implication would be the same since these four connectives have the same left and right
introduction rules in the sequent calculus. Intuitionistic logic is obtained by dropping the
right structural rules of LK, relevant logic by dropping the right and left weakening rules
of LK and linear implication by dropping all the structural rules but the exchange rules.
To obtain a proper characterization of the meaning of the logical constants, one has to take
into account the role of the structural rules.

2.2.2 Formulas vs sequents
The second difficulty is given by the fact that natural deduction rules concerns formulas
while sequent calculus rules concerns sequent. It is quite natural to see a natural deduction
proof as a tree of arguments given in support of the formulas that label its vertex. A rule

...
H1 · · ·

...
Hn

C

77

can be naturally undering in the following terms: ‘to produce an argument that supports
the assertion of C you should produce arguments that supports the assertions of all the Hi’.
Since the inferentialist believes that the meaning of a proposition is given by the argument
that supports the assertion of the proposition, natural deduction proofs have an intuitive
appeal: each step of a natural deduction proof can be seen as the justification of a certain
assertion (under certain hypotheses). The situation is more complicated in the sequent
calculus. A rule is in the following form

Γ1 ` ∆1 · · · Γn ` ∆n r
Σ ` Π

one immediate reflex would be to interpret such a rule by interpreting sequents as their
corresponding formulas. The reading of the above rule would be ‘to justify the assertion of
the disjunction of the formula in Π under the hypothesis that the assertion of the conjunction
of the formulas in Σ can be justified, justify the assertion of the disjunction of the formulas
in ∆i under the hypothesis that the conjunction of the formulas in Γi can be justified for
i ∈ {1, . . . n}’. This kind of reading of the rule is indeed natural and has been advocated
by some philosophers such as Restall [124]. This notwithstanding, the legitimacy of such
a reading has been convincingly questioned by Dummett [42] (p. 87) and Steinberg who
writes:

Moreover, by our inferentialist hypothesis, such a characterization [of the mean-
ing of the logical operators] is to be given within the confines of an interpreted
proof system that codifies all meaning-theoretically relevant inferential rela-
tions. However, if the only possible (informal) interpretation of our proof-
theoretic framework necessitates a prior understanding of certain logical op-
erators, it will not be a suitable medium within which to settle questions of
legitimacy of any of the principles containing the logical constants in ques-
tion [130].

said in a simpler way: to understand the inference rule of the classical sequent calculus we
need to grasp the meaning of the logical operator ∨. This implies a sort of vicious circle.

78

2.3 Meaning and argumentation
The idea that the meaning of the logical constants should be specified in terms of argumen-
tation rules in particular types of two-player argumentation games is due to Paul Loren-
zen [96] and has been philosophically and mathematically developed by Kuno Lorenz in
his PhD dissertation titled ‘Arithmetik und Logik als Spiele’ (Lorenz’s PhD dissertation is
contained in [97]). The two authors introduced Dialogical Logic, which will be focus of
two chapters of our PhD dissertation. Games in dialogical logic are (schematic) argumen-
tative dialogues between two players: one player — the Proponent — tries to construct a
justification for the assertion of a certain formula, while the other player — the Opponent—
doubts that such justification actually exists. Each game is a series of attacks (questions di-
rected toward a certain assertion) and defenses (answers to question that have been asked
in the course of the dialogue). What count as a question about a certain formula depends
upon the logical form of the formula asserted in the game. What counts as an answer for a
question depends upon the question e.g., if the formula F is A∧ B a question on F is either
‘could you assert A?’ or ‘could you assert B?’. An answer to the former question is an A
assertion, while an answer to the latter question is a B assertion. In his book ’Making it
explicit’ [16] the philosopher Robert Brandom argues that linguistic meaning is determined
by inferential practices rather than by truth value. Inferential practices are made explicit
i.e., intersubjectively observable and acquirable, because language user are engaged in a
perpetual game of ‘giving and asking for reasons’. Brandom’s approach is grounded in the
theory of assertions: according to Brandom the speech act of asserting includes the will-
ingness to play this game of ’giving and asking for reasons’. As has already been noted
by Marion, Dialogic logic is particularly well suited to formally capture the philosophical
remarks about meaning theorized by Brandom

My suggestion is simply that dialogical logic is perfectly suited for a precisifi-
cation of these ‘assertion games’. This opens the way to a ‘game-semantical’
treatment of the ‘game of giving and asking for reasons’: ‘asking for reasons’
corresponds to ‘attacks’ in dialogical logic, while ‘giving reasons’ corresponds
to ‘defences’ [98].

To resume: an argument in favor of a statement is often developed when a critical audi-
ence, real or imaginary, doubts the truth, or the plausibility of the proposition. In this case,
in order to successfully assert the statement, a speaker or proponent of it must be capable of

79

providing all the justifications that the audience is entitled to demand. Taking this idea se-
riously, an approximation of the meaning of a sentence in a given situation can be obtained
by studying the argumentative dialogues that arise once the sentence is asserted in front
of such a critical audience. This type of situation is captured — with a reasonable degree
of approximation — by dialogical logic. In the dialogical logic framework, knowing the
meaning of a sentence means being able to provide a justification of the sentence to a crit-
ical audience. Note that with this type of methodology the requirement of manifestability
required to attribute knowledge of the meaning of a sentence to a locutor is automatically
met. The locutor who asserts a certain formula is obliged to make his knowledge of the
meaning manifest so that he can answer the questions and objections of his interlocutor. In
addition, any concessions made by his interlocutor during the argumentative dialogue will
form the linguistic context in which to evaluate the initial assertion.

2.4 A DiaLogical interpretation of the sequent calculus
In this section we try to show how sequent calculus proofs can be seen in terms of strategies
for a particular type of two player games. The game’s participant are the Proponent (P) and
the Opponent (O). The two participants alternate in the game and the proponent starts by
asserting a certain formula. Each move of the game is either a question directed toward a
formula that has been asserted by the other player or an answer to a question that has been
posed by the other player. What answers and question consist of depends upon the form of
the formulas that we are considering. If F is of the form A ⊃ B a question about F would
be “could you assert B if I concede that A holds?”. An answer to this question is simply an
assertion of B. If F is of the form A∨ B a question about F is “could you assert either A or
B?”. An answer to this question is either an assertion of A or an assertion of B; there is no
question directed toward atomic formulas and the Proponent cannot assert the formula that
represent absurdity (⊥). The behavior of the two players is restricted by some simple rules:

• the Proponent cannot assert an atomic formula unless the Opponent has already as-
serted it;

• the Opponent must always react to the immediately preceding Proponent Interven-
tion.

The Proponent wins a Game whenever she asserts an atomic formula as an answer
to a question asked by the Opponent, or whenever she forces the Opponent to assert the

80

absurd ⊥. This type of game is biased toward the Proponent. Note that there is nothing to
prevent her from answering more than once, and in different ways, the same question of
the Opponent.

Now consider the following sequent calculus proof1 D of ` a ∨ ¬a where a is a propo-
sitional variable, and in which we underline the active formula of each rule application.

Ida ` a, a ∨ ¬a,⊥
∨R

1a ` ⊥, a ∨ ¬a
⊃R

` ¬a, a ∨ ¬a
∨R

2` a ∨ ¬a

The proof, if read bottom-up, can be interpreted in terms of a game won by the Proponent:
the root formula a ∨ ¬a correspond to the first assertion of the game. The opponent asks
the proponent to justify this latter assertion by requesting the proponent to assert either a
or ¬a. The Proponent asserts ¬a ≡ a ⊃ ⊥. The Opponent asks the proponent to justify
this latter formula by asserting a and querying the proponent for an assertion of ⊥. The
proponent cannot assert ⊥, thus she answers in a different way to the question concerning
a ∨ ¬a. She thus asserts a and wins the game. We can decorate the above proof by signing
formulas that are asserted by P and O. Side formulas that are asserted by P (somewhere in
the proof) can be re-defended by P

Id
aO ` aP, a ∨ ¬a,⊥

∨R
1aO ` ⊥, (a ∨ ¬a)P

⊃R
` ¬aP, a ∨ ¬a

∨R
2

` (a ∨ ¬a)P

By considering a proof in the sequent calculus in terms of a two player game we can give
a simple explanation of the sequent calculus rules that does not require a previous under-
standing of the meaning of the logical constants themselves; in particular side formulas
on the right of the ` symbol are there to signal that the Proponent has asserted them at
some point of the game, that they have being questioned by the Opponent and that can be
re-defended by the Proponent.

1we use the variant of the sequent calculus in which contraction rules are absorbed in introduction rules.
This variant has been briefly described in subsection 1.7.7 of the previous chapter

81

2.5 Proof Semantics vs Semantics of Proofs
A proof (theoretic) semantics is an explanation of the meaning of formulas in terms of the
arguments, or proofs, that could establish the assertability of the formulas.

~F� = {D |D is a proof of F}

A semantics of proof is an explanation of the meaning of (formal) proofs. The two types
of semantics are distinct but enjoy, at least on a philosophical level, a close kinship. As we
have already remarked, formal proofs in natural deduction can be easily seen as chaining
of arguments. Natural deduction is indeed ‘natural’ in this sense: formal objects of natural
deduction are a good approximation of ‘real’ mathematical proofs. Let us quote Steinberg
once more:

Only those deductive systems that answer to the use we put our logical vocab-
ulary to fit the bill. After all, it is the practice represented, not the formalism as
such, that confers meanings. Therefore, the formalism is of meaning-theoretic
significance and hence of interest to the inferentialist only if it succeeds in cap-
turing (in a perhaps idealised form) the relevant meaning-constituting features
of our practice [...] It has become customary in the inferentialist tradition to
regard Gentzen– Prawitz natural deduction systems as the privileged proof-
theoretic framework within which to carry out the inferentialist program. Its
alleged “close affinity to actual reasoning” is thought to make natural deduction
deserving of the honorific title ‘natural’. [130]

The situation is more complicated in the sequent calculus: in order to gain an intuitive
understanding of the proofs from the sequent calculus, we interpreted these as winning
strategies for a two-player game, i.e., we sketched an informal semantics of proofs for the
sequent calculus in order to see this proof system in terms of a proof theoretic semantics for
classical logic. Indeed, one of the main contribution of our PhD thesis will be to give a game
semantic interpretation of sequent calculus proofs. In light of all the above discussion, our
contribution can be considered both a logical and philosophical contribution.

In particular, we will give a game semantic interpretation of proofs in the classical and
intuitionistic sequent calculus in terms of Dialogical Games, and we will give an interpre-
tation of constructive modal proofs in terms of Game-semantics.

82

2.5.1 Sequent calculus proofs as dialogic games: other approaches.
Our interpretation of the sequent calculus in terms of dialogic games is hardly the first.
According to Girard [62] “It is in Gentzen’s first consistency proof that one can find the first
interpretation of a formula of logic – or rather arithmetic – by a game between a player Me
and an opponent You.” The games are played on formulas of the form ∀x1∃y1,∀xn . . .∃ynF
where F is quantifier free. You (the Opponent) start the game by giving a value n to x1 in.
In this way he challenges Me (the Proponet) to give a proof of ∃y1, . . .∀xn∃ynF[n/x1]. The
proponent then propose a value m for y1 and so on. As in dialogical logic, the proponent
has a crucial advantage: at any point of the game she can change her mind and choose a
new value for an existential quantifier. If the proponent find, after finitely many attempts,
a value n such that a formula A[n] holds, she wins the game. An explicit interpretation
in terms of Games and Strategies of Gentzen’s proof is studied by Coquand [29] and by
Herbelin in his PhD thesis [68].

Ludics [61] is another main contribution to this kind of reading of sequent calculus
proofs as strategies for two player games. In Ludics the main object, design, are a ’syntax
free’ counterpart of sequent calculus proofs. In a design, all the information’s about formu-
las is discarded but the ‘location’ that formulas may occupy during proof search. Design
are seen as fallible strategies in a two player game. Moreover, there are numerous scientific
works that connect the form of inferentialism theorized by Brandom to Ludics [95, 52, 94].
All of these approaches are interesting and would merit thorough consideration. However,
we have chosen to focus on dialogic logic for one reason : its simplicity. Dialogic logic
systems have an intuitive appeal, and the treatment of classical logic within them is very
simple.

83

Part II

Logic and DiaLogical Games

84

Chapter 3

DiaLogical Games

Abstract
In this chapter, we give a proof of the correspondence between the existence of a winning strategy
for E-games and classical validity for first order logic. The proof is obtained by a direct mapping be-
tween formal E-strategies and derivations in a cut-free complete sequent calculus for first order intu-
itionistic logic. Our approach builds on the one developed by Herbelin in his PhD dissertation [68].
We detail also a mapping between winning strategies for Intuitionistic E-games and derivations in
a cut-free complete sequent calculus for first order intuitionistic logic. Our proof greatly simplifies
the proof of correspondence given by Felscher in his classic paper [46]. The result of this chapter
already appears in [22] for classical logic and in [21] for intuitionistic logic.

3.1 Introduction
The art of persuasive debate, dialectics, and the science of valid inference, logic, have been
intrinsically linked since their beginnings [99, 19, 20, 44]. At the dawn of the modern age
the connection between the two disciplines seemed so clear that one of the first sentences
pronounced by Doctor Faustus in Marlowe’s work goes as follows

Is, to dispute well, logic’s chiefest end? Affords this art no greater miracle?

Despite this ancient connection between the two disciplines, mathematical logic had to wait
until the 50s of the last century to determine that the logical concept of validity could be ex-
pressed through the use of dialogical concepts and techniques. The German mathematician

85

and philosopher Lorenzen [96] proposed to analyze the concept of validity of a formula A
through the concept of winning strategy in a particular type of two-player game. This type
of game is nothing more than an argumentative dialogue between a player, called Propo-
nent, who affirms the validity of a certain formula A and another player, called Opponent,
who contests its validity. The argumentative dialogue starts by the Proponent affirming a
certain formula. The Opponent takes his turn and attacks the claim made by the Proponent
according to its logical form. The Proponent can, depending on the form of the attack made
by the Opponent, either defend her previous claim or counter-attack. The debate evolves
following this pattern. The Proponent wins the debate if she has the last word, i.e., the
defense against one of the attacks made by the Opponent is a proposition that the Opponent
cannot attack without violating the debate rules.

Dialogical logic was initially conceived by Lorenzen as a foundation for intuitionis-
tic logic (IL). Subsequently, various dialogical logic systems were developed for the most
diverse logics e.g., modal logics [50], paraconsistent logics [122] free logics [120] etc.
Lorenzen’s original idea was the following: it is possible to define a natural class of dia-
logue games in which given a formula A, the Proponent can always win a game on A, no
matter how the opponent chooses to act in the debate, if and only if A is IL-valid. This intu-
ition was formalized by saying that, given a certain class of dialogue games, and a formula
A

A is IL valid if, and only if, there is a winning strategy for the proponent for the formula
A in the class of games under consideration.

Unfortunately almost 40 years of work were needed to get a first correct proof of the com-
pleteness theorem [46]. In this chapter we will focus on classical dialogical logic and
intuitionistic dialogical logic. We will see in the next section that, despite the fact that dia-
logues for classical logic have been known since Lorenzen’s very first paper on dialogical
logic [96], a convincing proof that, given a first-order formula F, the existence of a winning
strategy for F implies that F is classically valid and vice versa is nowhere to be found in
the literature. To remedy this shortcoming, we give a formulation of dialogical games that
we believe is clearer and more precise. Using this formulation, we show that it is possible
to transform a winning strategy for a formula into a proof in a cut free complete sequent
calculus of the formula and that, conversely, a derivation of the formula can be transformed
into a winning strategy for the formula. We thus obtain a constructive proof of the equiva-
lence between dialogical validity and classical validity. We then show that the exact same

86

method applies to intuitionitistic dialogical logic thus greatly simplifying the notoriously
difficult proof of Felscher.

3.1.1 Previous works
We briefly review the previous works on the equivalence between classical validity and
dialogical validity. If one is interested in finding a proof of the equivalence between classi-
cal validity and dialogical validity for classical propositional logic one can consult [48] in
which a mapping between winning strategies and derivations in a hyper-sequent calculus is
presented or [6] in which some small errors of the previous paper are corrected and a map-
ping of winning strategies to derivations in a Kleene-style sequent calculus is presented.
Another similar result is presented in Herbelin’s PhD dissertation [68]. Herbelin presents a
variant of the LK sequent calculus, called LKQ, and proves that, given a formula A, deriva-
tions for A in the sequent calculus LKQ correspond to winning E-strategies for A and vice
versa. Herbelin’s work only capture the fragment of classical propositional logic without
negation but, despite this fact, offers in our opinion the clearest proof of correspondence
between dialogical validity and (restricted) classical validity.

On the other hand numerous classes of dialogue games for classical first-order logic
have been defined in the literature, but the correspondence between the class of games
and classical validity is merely asserted, and not proved. Such previous work asserting a
correspondence between first-order classical logic and a particular class of Lorenzen dia-
logue games without proof includes [26, 55, 86, 123, 129]. We count just one exception:
Clerbout [25] proves the correspondence between classical validity and a particular class
of games in which the players must declare, at the beginning of each game, the maximum
number of attacks they can make on the same formula. Clerbout shows the completeness
of his dialogical logic system by transforming winning strategies into proofs of a semantic
tableaux system. Clerbout’s proof has, in our opinion, two major flaws. The first de-
fect, which is mostly aesthetic, is simply that the transformation of winning strategies into
tableaux is no less complicated than the one which can be consulted in Felscher’s classic
paper for intuitionistic first-order logic [46]; In addition, the length of the proof and the
absence of intermediate lemmas make it particularly difficult to understand and assess.

The second defect is more serious: Clerbout’s proof is limited to a language in which
no functional symbol appears i.e., the proof of completeness concerns a particular and
restricted first-order language. Clerbout is aware of this limitation; at the end of his paper
he writes

87

We have considered the particular case of a first-order language without equal-
ity and without complex terms i.e., without function symbols. Furthermore,
we have dealt with dialogical games and tableaux for sentences. Hence, fu-
ture work shall consider a generalization of the result for arbitrary first-order
languages and dialogical games and tableaux with free variables. This would
be a chance to study the dialogical manifestation in strategical terms of the
mechanism of unification in tableaux.

However, Clerbout did not publish further results on this topic.
Concerning intuitionistic logic the classic reference in which a proof of correspondence

between the existence of a winning intuitionistic strategy and intuitionistic validity is [46].
Felscher’s proof makes use of various intermediate notions that allow a winning strategy
to be transformed into a proof in the sequent calculus LJ and vice versa. First, Felscher
defines two types of dialogue games, called D-dialogues and E-dialogues. Second, he gives
an algorithm that converts D-strategies into formal E-strategies (strategies that respect the
eigenvariable condition). Third, algorithms are given which transform derivations of the
sequent calculus LJ into what Felscher calls IC-protableaux. Felscher concludes his proof
by providing an algorithm to transform an IC-protableaux into an E-strategy. As one can
see merely from this description, Felscher’s proof is a big nut to crack.

The objective of this chapter is simple: we give a proof of correspondence between the
existence of a winning classical strategy and classical validity for a formula A. As in Her-
belin’s PhD dissertation, we present a complete cut-free sequent calculus system, that we
call SLK (strategic LK), and a mapping between winning strategies for A and derivations
of A in SLK. We then show how, with slight modifications, the same result can be obtained
for intuitionistic winning strategies and intuitionistic validity using the intuitionistic variant
SLJ of our SLK sequent calculus. We thus offer a considerable simplification of Felscher’s
proof.

Organisation Of the Chapter

The rest of the chapter is structured as follows: Sect. 3.2 introduces dialogical logic for
classical logic: we define games and strategies and prove some preliminary results about
them. Sect. 3.3 introduces the sequent calculus SLK (Strategic LK): we prove some results
about SLK, in particular, that SLK is sound and complete for classical first-order logic. In
Sect. 3.5 we show how to transform a winning strategy for a formula A into a derivation of A

88

in the calculus SLK; In Sect. 3.5 we show how to transform a derivation of A in the calculus
SLK into a winning strategy for A. In Sect. 3.6 we consider the intuitionistic variant of our
games, and we show how a natural correspondence between strategies for intuitionistic
games and derivations in the intuitionistic variant SLJ of SLK can be obtained by slightly
modifying the one for classical dialogical games. We conclude with some philosophical
remarks in Sect. 3.7.

3.2 Dialogical Logic

3.2.1 Argumentative dialogues: informal overview
Before entering into the formal matter of dialogical logic, let us give an informal example
of an argumentative dialogue about the validity of a formula. Let A and B stand for two
arbitrary atomic formulas.

0. P: I affirm that A ∧ B ⊃ B

1. O: Let me assume, for the sake of the proof, that A ∧ B holds, can you show that B
holds?

2. P: You admitted that A ∧ B holds, can you admit that B holds?

3. O: Indeed, I must admit that B holds.

4. P: Then I have nothing more to prove, you have admitted that B holds, if A∧B holds.

We can see that the Proponent and the Opponent alternates in the dialogue. The dialogue
is a sequence of interventions. Each intervention but the first is either an attack against a
preceding intervention of the other player or a defense against an attack of the other player.
For example O in intervention 1 attacks intervention 0 by asking P to show that B holds
provided that A ∧ B holds. P’s defense against 1 is the intervention 4. What counts as a
question against an asserted formula A, and what counts as an answer to such a question,
depends upon the logical form of A. For example in 2, P attacks the formula asserted in 1
by asking O to assert B. This is because if one presumes that a conjunction holds, one must
be ready to concede that both members of the conjunction hold.

89

Given the foregoing discussion, an argumentative dialogue will be defined in terms of
sequences of alternating interventions made by the Proponent and the Opponent. Each
intervention in the dialogue is an attack or a defense against a preceding intervention made
by the other player. The dialogue ends whenever the Opponent cannot produce a new
intervention without contradicting what he already conceded.

The next subsections will be devoted to introducing formal content corresponding to
this intuitive discussion. In subsection 3.2.2 we define what a question on a formula is
and what counts as an answer to such a question. In subsection 3.2.3 we formally define
what it means for an intervention in a dialogue to refer to another preceding intervention in
the same dialogue (definitions 3.1 and 3.2). Finally, in subsection 3.2.4, we define (defini-
tion 3.3) the class of argumentative dialogues we are interested in (which we call games)
and the conditions under which P wins in an argumentative dialogue.

3.2.2 Argumentation forms
Let L be a standard first-order language. We denote by T the set of terms of L and by F
the set of formulas of L.

The set of auxiliary symbols Aux is the smallest set containing the symbols ∧1,∧2,∨,∃
and the expressions ∀[t/x] for all terms in T and variables x in L.

Following the terminology of Felscher [47], an argumentation form Arg is a function
assigning to each non-atomic formula A a set of pairs consisting of one question and one
answer with questions being either formulas or symbols in Aux and answers being formu-
las1

Arg(A ⊃ B) = {(A, B)}
Arg(A ∧ B) = {(∧1, A), (∧2, B)}
Arg(A ∨ B) = {(∨, A), (∨, B)}

Arg(∀xA) = {(∀[t/x], A[t/x]) | t ∈ T }
Arg(∃xA) = {(∃, A[t/x]) | t ∈ T }

1The words “question” and “answer” are called “attack” and “defense” by Felscher in [47]; we deviate
from this terminology because we will use the terms “attack” and “defense” exclusively for the moves in a
game, avoiding possible confusion.

90

Given a couple (q, a) ∈ Arg(A), q is called a question on A. Given (q, B) ∈ Arg(A), the
formula B is called an answer to the question q on A. So, for example, if A is B ∧ C, both
∧1 and ∧2 are question on A but only B is an answer to ∧1 and only C is an answer to ∧2.
If A = B ∨ C, the symbol ∨ is a question on A, and both B,C are answers to ∨. Consider
the case where A is B ⊃ C. In this case B is a question on A and C is an answer to B.

3.2.3 Augmented sequence
A defense move is a couple (!, A) where A is a formula. An attack move is a couple (?, s)
where s is either a formula or an auxiliary symbol. A move is either an attack move or a
defense move. A move (?, A), where A is a formula and ? ∈ {?, !}, is called assertion move.
We will also say that the move asserts the formula A, or that A is the asserted formula of
the move. Attack moves of the form (?,∃) are called existential attacks. Attack moves of
the form (?,∨) are called disjunctive attacks. Let ρ = m0,m1, . . .mn . . . be a sequence of
moves. We denote by ρi the ith move of the sequence. The parity of ρi is the parity of i. An
assertion move ρ j = (?, A) is called a reprise if and only if there is move ρk ∈ ρ with k < j
such that ρk = (?′, A) and ρ j, ρk have different parities

Definition 3.1. An augmented sequence is a non-empty sequence of moves ρ together with
a function φ that is defined on each ρi with i ≥ 1 and such that, for all i ≥ 1, φ(ρi) = ρ j for
some j < i. The move φ(ρi) is called the enabler of ρi.

Definition 3.2. Let (ρ, φ) be an augmented sequence:

• an attack move ρi = (?, s) is justified whenever φ(ρi) is of the form (?, A) and s is a
question on A;

• a defense move ρi = (!, B) is justified whenever φ(ρi) is of the form (?, s), φ(ρi) is
justified, φ(φ(ρi)) = (?, A) and B is an answer to the question s on A.

We give an example of an augmented sequence (ρ, φ); we represent the augmented
sequence by a table with two columns and as many rows as there are moves in the sequence
of moves. In the first column, we write down the moves of the sequence. In the second
column, the value of the function φ for the corresponding entry in the first column:

91

σ value of φ

m0 = (?, P ∧ Q)
m1 = (!, P) m0

m2 = (?,∧1) m1

m3 = (?,∧1) m0

m4 = (!, P) m3

m5 = (!,R ∨ Q) m2

m6 = (?,∨) m5

the first three moves, as well as the move m5, are not justified. The moves m3 and m6

(colored in blue) are both justified attack-moves. The move m3 is a justified attack move
because ∧1 is a question on the formulas P ∧ Q asserted by the move m0 and m0 is the
enabler of m3. The move m4 (colored in red) is both the unique reprise of the augmented
sequence, and the unique justified defense move: it is a reprise because it is an assertion
move and there is a move with a smaller index of opposite parity i.e., m1 that asserts the
same formula. It is a justified defense because its enabler (the movem3) is a justified attack
move and the asserted formula P of m4 is an answer to the question ∧1 on the formula that
is asserted by the move m0 i.e., P ∧ Q.

3.2.4 Games
Let (ρ, φ) be an augmented sequence, we say that a formula A appears in the augmented
sequence if and only if there is a movem ∈ ρ that asserts A. We say that a variable v appears
in ρ whenever v occurs free in some asserted formula or there is a move m = (?,∀[v/x]) in
ρ. Fix an enumeration (vi)i∈I of the variables of L.

Definition 3.3 (Game). A game G for a formula A is an augmented sequence (ρ, φ) such
that:

1. ρ0 = (!, A) and for all i > 0 the move ρi is justified;

2. φ(ρi) = ρi−1 if i is odd, φ(ρi) = ρ j with j odd if i is even;

3. if ρi = (?, B) with B atomic formula and i even then ρi is a reprise and B , ⊥;

92

4. if ρi is an attack move of the form (?,∀[t/x]) and i is odd then t = vk; vk is the first
variable in the enumeration (vi)i∈I that does not appear in the prefix of ρ ending with
ρi−1;

5. if ρi = (!, B[t/x]) is a defense move, i is odd and ρi−1 is of the form (?,∃) then t = vk;
vk is the first variable in the enumeration (vi)i∈I that does not appear in the prefix of
ρ ending with ρi−1;

6. if ρi and ρ j are defense moves, i and j are even and φ(ρ j) = φ(ρi) = ρk, then ρk is
either an existential attack or a disjunctive attack.

In a game G, moves ρi with i even are called P-moves. They are called O-moves other-
wise. If Gm is a game and m is P-move, we will write GmP. We will write GmO otherwise.
Let us make some comments about the definition of game. Conditions 1 and 2 assures
us that each, but the first, move in a game is justified by a previous move, that P-moves
are justified by O-moves and that O-moves are justified by the immediately preceding P-
move. Condition 3 is usually called formal condition. The condition says that P can assert
an atomic formula only if the formula has already been asserted by O during the game. The
intuition behind condition 3 is that P’s method of arguing in the game is only determined
by the meaning of the logical constants and quantifiers. The value of atomic formulas is
only known to O, and only he can concede that it holds in the given dialogical context.
Condition 4 says that O requires P to develop an argument in favor of a universally quan-
tified formula using an arbitrary element of the discourse domain: the required term is a
variable which does not appear free in any formula asserted in the game. Condition 5 is the
dual of condition 4. While O defends an existentially-quantified formula, he must choose
an arbitrary element of the discourse domain to do so. Finally, condition 6 asserts that the
P can only re-defend existential formulas or disjunctions.

Let G = (ρ, φ) be a finite game and m be a move. The move m is legal for G if and
only if the augmented sequence (ρm, ψ) is a game, ψ|ρ = φ and ψ(m) ∈ ρ where ψ|ρ is the
restriction of the function ψ to the sequence ρ.

Definition 3.4. A game G is won by P if and only if it is finite and either

• the game is of the form G′mP and there is no move m′ legal for G;

• the game is of the form G′mO and m asserts ⊥.

In what follows, we will often identify a game with the sequence of its moves by an abuse
of notation.

93

3.2.5 Some examples
We give some examples of games. A game will be represented as a table with two columns
and as many rows as there are moves in the game. In the first column of the table, we
will write down the moves of the game. In the second column, we will write the value of
the function φ for the move in the first column. Let a, b, c be propositional variables, P a
unary predicate variable and R a binary predicate variable. We recall that we write ¬A as a
shortcut for A ⊃ ⊥.

m0 = (!, a ∨ ¬a)
m1 = (?,∨) m0

m2 = (!,¬a) m1

m3 = (?, a) m2

m4 = (!, a) m1

m0 = (!, a ⊃ b ⊃ ((b ⊃ c) ⊃ (a ⊃ c)))
m1 = (?, a ⊃ b) m0

m2 = (!, (b ⊃ c) ⊃ (a ⊃ c)) m1

m3 = (?, b ⊃ c) m2

m4 = (!, a ⊃ c) m3

m5 = (?, a) m4

m6 = (?, a) m1

m7 = (!, b) m6

m8 = (?, b) m3

m9 = (!, c) m8

m10 = (!, c) m5

m0 = (!, a ∨ b ⊃ b ∨ a)
m1 = (?, a ∨ b) m0

m2 = (?,∨) m1

m3 = (!, a) m2

m4 = (!, b ∨ a) m1

m5 = (?,∨) m4

m6 = (!, a) m5

m0 = (!, a ∨ b ⊃ b ∨ a)
m1 = (?, a ∨ b) m0

m2 = (?,∨) m1

m3 = (!, b) m2

m4 = (!, b ∨ a) m1

m5 = (?,∨) m4

m6 = (!, b) m5

94

m0 = (!, a ⊃ ¬¬a)
m1 = (?, a) m0

m2 = (!,¬¬a) m1

m3 = (!,¬a) m2

m4 = (!, a) m3

m5 = (?,⊥) m4

m0 = (!,¬¬a ⊃ a)
m1 = (?,¬¬a) m0

m2 = (?,¬a) m1

m3 = (?, a) m2

m4 = (!, a) m1

m0 = (!, (a ∧ ¬a) ⊃ c)
m1 = (?, a ∧ ¬a) m0

m2 = (?,∧1) m1

m3 = (!, a) m2

m4 = (?,∧2) m1

m5 = (!,¬a) m4

m6 = (?, a) m5

m7 = (!,⊥) m6

m0 = (!, a ∨ b ⊃ a)
m1 = (?, a ∨ b) m0

m2 = (?,∨) m1

m3 = (!, a) m2

m4 = (!, a) m1

m0 = (!,¬∀x¬P(x) ⊃ ∃xP(x))
m1 = (?,¬∀x¬P(x) m0

m2 = (?,∀x¬P(x) m1

m3 = (?, [w/x]) m2

m4 = (!,¬P(w)) m3

m5 = (?, P(w)) m4

m6 = (!,∃xP(x)) m1

m7 = (?,∃) m6

m8 = (!, P(w)) m7

m0 = (!,¬∀x¬P(x) ⊃ ∃xP(x))
m1 = (?,¬∀x¬P(x) m0

m2 = (?,∀x¬P(x) m1

m3 = (!,⊥) m2

95

m0 = (!,∃y∀xR(x, y) ⊃ ∀x∃yR(x, y))
m1 = (?,∃y∀xR(x, y)) m0

m2 = (!,∀x∃yR(x, y)) m1

m3 = (?,∀[w/x]) m2

m4 = (!,∃yR(w, y)) m3

m5 = (?,∃) m4

m6 = (?,∃) m1

m7 = (!,∀xR(x, z)) m6

m8 = (?,∀[w/z]) m7

m9 = (!,R(w, z)) m8

m10 = (!,R(w, z)) m5

m0 = (!,∃x(P(x) ⊃ ∀yP(y)))
m1 = (?,∃) m0

m2 = (!, P(k) ⊃ ∀yP(y)) m1

m3 = (?, P(k)) m2

m4 = (!,∀yP(y)) m3

m5 = (?,∀[w/y]) m4

m6 = (!, P(w) ⊃ ∀yP(y)) m1

m7 = (?, P(w)) m6

m8 = (!, P(w)) m5

Remark 1. All the games are won by the Proponent: they either do not admit further
Opponent’s moves or they end with an Opponent’s assertion of ⊥.

The two games for the formula a∨ b ⊃ b∨ a have a common prefix, and they first differ
on an Opponent’s move. In one game the Opponent chooses to assert a in the defense move
m4 while in the other game the Opponent chooses to assert b. In any case the Proponent
wins.

The Proponent wins the game for the formula a∨ b ⊃ a even if this latter formula is not
a tautology of first-order classical logic. Note that if the Opponent had chosen to assert
the formula b instead of the formula a on move 3, then the Proponent would have had no
chance of winning. In the game for the formula ∃y∀xR(x, y) ⊃ ∀x∃yR(x, y), the player does
not defend immediately against the attack move m5. Instead, she delays her defense until

96

the last move. Remark that the last move of all games won by the Proponent ending in a
Proponent’s move are defense moves and assertions of an atomic formula. In all games
formulas asserted by the Proponent are positive sub-formulas of the formula about which
the game is played. Formulas asserted by the Opponent are negative sub-formulas of the
formula about which the game is played. In each game atomic formulas asserted by the
Proponent are both positive and negative sub-formulas of the formula about which the
game is played.

3.2.6 Properties of games
We systematize the observations on the games just made with some simple propositions

Proposition 3.1. Let A be an arbitrary formula and G and arbitrary game for A. If (?, B)
is an assertion move in G, then B is a Gentzen subformula of A.

Proof. By induction on the length of G. �

Proposition 3.2. Let A be an arbitrary formula and G = G′mP be a finite game for A. if G
is won by P then m asserts an atomic Gentzen subformula B of A.

Proof. Suppose, to reach a contradiction, that the last move m of G is not a defense move.
Then it is an attack move of the form (?, s). By the definition of games there is a preceding
O-move mk that asserts some formula C, φ(m) = mk and s is a question on C. Then the
augmented sequence Gn where n = (!,D), φ(n) = m and D is an answer to the question s
on the formula B, is a game. This contradicts the fact that G is won by P. Thus, m must
be a defense move (!, B). If B it is not atomic we reach again a contradiction: in fact by
adding a move n = (?, s) to G where s is a question on B we obtain a game. Thus, we must
conclude that B is an atomic formula. �

Proposition 3.3. Let A be an arbitrary formula and G an arbitrary game for A. If (?, B)
is an assertion move in G that is a P-move (resp. a O-move) then B is a positive (resp.
negative) Gentzen subformula of A.

Proof. Suppose that the proposition holds for all games G having length n, and let G′ be a
game having length n + 1. Let mn be the last move of G′. Suppose that mn is a P-move (the
argument for O-moves runs in a very similar way) We have three cases.

1. Ifmn is not an assertion, the proposition holds automatically by induction hypothesis.

97

2. If mn is a defense-move asserting some formula B, then, since G′ is a game, mn is
enabled by some O-move mk with (k < n). If mk := (?,C) (the other cases are easier)
then it is an attack against mk−1 and mk1 is a P-move that asserts C ⊃ B. By induction
hypothesis C ⊃ B is a positive subformula of A, and C is a negative subformula of A.
Thus B is a positive subformula of A by definition.

3. If mn is an assertion and an attack, let B be the asserted formula. As before, there
must exist an enabler of mn, call it mk (k < n), mk is necessarily a O-move that
asserts the formula B ⊃ C. By induction hypothesis, this last formula is a negative
subformula of A, thus B is a positive subformula of A by definition.

�

Proposition 3.4. Let A be an arbitrary formula and G an arbitrary game for A. If (?, B)
is an assertion move made by P and B is an atomic formula, then B is both a negative and
positive Gentzen subformula of A.

Proof. Direct consequence of Proposition 3.3 and of the condition 3 in the definition of
game. �

3.2.7 Strategies
As we have discussed in remark 1 the game for the formula a ∨ b ⊃ a is won by the
Proponent but by mere accident: if the Opponent had chosen to assert b instead of a the
Proponent would not have had a chance to win. This means that the Proponent cannot win
a game on that formula no matter how the Opponent chooses to act in the game. On the
contrary, the Proponent can win a game on the formula a ∨ b ⊃ b ∨ a no matter how the
Opponent choose to act in the game. This means that there is a Proponent winning strategy
for the formula a ∨ a ⊃ b ∨ a and no winning strategy for the formula a ∨ b ⊃ a.

Intuitively speaking a strategy for a game G is a function. A function that specifies, at
each moment of the game, which move a player must play according to the moves previ-
ously played (the history of the game). A strategy is winning when the player that follows
the strategy wins whatever the history of the game is. As long as each move of the player
that follows the strategy is determined by the strategy itself, it can be concluded that the
game history varies only according to the moves of his opponent. We informally describe
how a strategy should operate and then formalize this notion. Imagine being engaged in a

98

game G, that the last move of G was played according to the strategy, and that it is now
your opponent’s turn to play. Your opponent could extend the game in different ways: for
example if you are playing chess, you are white, and you just made your first move by
moving a pawn to a certain position of the chessboard, black can in turn move a pawn or
move a horse. If you are playing according to the strategy, the strategy should tell you how
to react against either type of move. If black moves a pawn to C6 and you just moved
your pawn to C3, then move the horse to H3. If black moves a horse to H6 and you just
moved your pawn to C3 then move your pawn to B4. Therefore, a strategy can be viewed
as tree in which each node is a move in the game, the moves of my opponent have at most
one daughter, and my moves have as many daughters as there are available moves for my
opponent. A tree can be seen as a prefix-closed set of sequence over an alphabet. Since our
games are sequences over the alphabet of moves we can define strategies in the following
manner:

Definition 3.5. A strategy S for a formula A is a non-empty prefix-closed set of games for
A such that:

1. if GmP and GnP belongs to S then m = n;

2. if G = G′mP ∈ S then GnO ∈ S for each move n legal for G;

3. if G = G′mO ∈ S and m = (?,∃) or m = (?,∨) then, there is an n such that GnP ∈ S

and n is enabled by m.

A strategy S is winning if and only if every maximal, with respect to the prefix order, game
of the strategy is won by P.

Condition 3 in the definition above precludes the Proponent to delay a defense against
an existential attack or a disjunctive attack. Consequently, games like the one for the for-
mula ∃y∀xR(x, y) ⊃ ∀x∃yR(x, y) presented in subsection 3.2.5 cannot belong to a strategy.

Proposition 3.5. Let S be an arbitrary strategy and let G be a game in S that ends in
P-move. The family of moves (mki)(i∈I) such that Gmki ∈ S, is a finite family.

By the proposition above any winning strategy is a finitely branching tree in which each
branch is finite, thus by König’s lemma any winning strategy is a finite tree.

99

3.2.8 Some examples of strategies
Let a, b, c and d be propositional variables and R be a binary predicate variable. According
to definition 3.5 a strategy for a formula A is a tree in which each branch is a game for A.
We will thus represent strategies as trees.

m0 = (!, a ∨ b ⊃ b ∨ a)
m1 = (?, a ∨ b) m0
m2 = (?,∨) m1

m3 = (!, b) m2
m4 = (!, a ∨ b) m1
m5 = (?,∨) m4
m6 = (!, b) m5

m3 = (!, a) m2
m4 = (!, a ∨ b) m1
m5 = (?,∨) m4
m6 = (!, a) m5

m0 = (!, a ∨ b ⊃ a)
m1 = (?, a ∨ a) m0
m2 = (?,∨) m1

m3 = (!, a) m2
m4 = (!, a) m1

m3 = (!, b) m2

100

m0 = (!, ((a ⊃ (b ⊃ c)) ⊃ (((b ⊃ c) ⊃ d) ⊃ (a ⊃ d))
m1 = (?, a ⊃ (b ⊃ c)) m0
m2 = (!, ((b ⊃ c) ⊃ d) ⊃ (a ⊃ d) m1
m3 = (?, (b ⊃ c) ⊃ d) m2
m4 = (!, a ⊃ d) m3
m5 = (?, a) m4
m6 = (?, b ⊃ c) m3

m7 = (?, b) m6
m8 = (?, a) m1
m9 = (!, b ⊃ c) m8
m10 = (?, b) m9
m11 = (!, c) m10
m12 = (!, c) m7

m7 = (!, d) m6
m8 = (!, d) m5

m0 = (!,∃y∀xR(x, y) ⊃ ∀x∃yR(x, y)
m1 = (?,∃y∀xR(x, y)) m0
m2 = (!,∀x∃yR(x, y)) m1
m3 = (?,∀[w/x]) m2
m4 = (?,∃) m1
m5 = (!,∀xR(x, z)) m4
m6 = (?,∀[w/x])) m5
m7 = (!,R(w, z)) m6
m8 = (!,∃yR(w, y)) m3
m9 = (?,∃) m8
m10 = (!,R(w, z)) m9

3.3 The sequent calculus SLK
We now present the sequent calculus SLK. (Strategic LK). SLK is a first-order version of
the calculus LKQ studied by Herbelin in his PhD dissertation [68]. LKQ is a Kleene style
sequent calculus: the active formula of introduction rules is present in the premises of the
rule. LKQ differs from a Kleene-style calculus like GKc [132] because of a restriction
on the use of the left introduction rule for the implication connective. Our system SLK is

101

obtained from LKQ by adding the quantifier rules and imposing a restriction on the use of
the right introduction rule for the disjunction and the existential quantifier connectives.

Definition 3.6. The sequent calculus SLK is defined by the rules in Table 3.1. A sequent
is an expression Γ ` ∆ where Γ and ∆ are finite multisets of formulas. The bold formulas
occurrences in the conclusion of a rule are the active formulas of the rule. Greek upper-
case letters Γ,∆,Σ,Π . . . stand for multisets of formulas. In the Id-rule A is of the form
P(t1, . . . , tn) where P is a predicate variable with arity n ≥ 0 and the ti are terms, and there
is no ⊥ formula in Γ. In the ∀R and ∃L rules the variable y does not occur in the conclusion
sequent, and it is called the proper parameter of the rule.2

A derivation (or a proof) D of a sequent Γ ` ∆ in SLK is a tree of sequents constructed
according to the rules of SLK in which leaves are instances of Id-rules or ⊥-rules, all
sequents of the form Π,⊥ ` Σ are leaves and whose root also called conclusion, is Γ ` ∆

and in which the following restrictions on the use of the ⊃L,∃R and ∨R rules are respected

1. For any application of a left implication introduction rule, the formula occurrence A
in the left-hand premise is active.

Γ, A ⊃ B ` A,∆ Γ, A ⊃ B, B ` ∆
⊃L

Γ,A ⊃ B ` ∆

2. For any application of right existential introduction rule, the formula occurrence
A[t/x] is active in the premise:

Γ ` ∃xA,A[t/x],∆
∃R

Γ ` ∃xA,∆

3. For any application of a right disjunction introduction rule, the formula occurrence
Ai with i ∈ {1, 2} is active in the premise

Γ ` Ai, A1 ∨ A2,∆
∨R

Γ ` A1 ∨ A2,∆
2We can always suppose that every proper parameter is distinct in a derivation

102

Table 3.1: The SLK sequent calculus.

⊥L
Γ,⊥ ` ∆

Id
Γ, A ` A,∆

Γ, A ⊃ B ` A,∆ Γ, A ⊃ B, B ` ∆
⊃L

Γ,A ⊃ B ` ∆

Γ, A ` B,∆
⊃R

Γ ` A ⊃ B,∆

Γ, A, A ∧ B ` ∆
∧L

1Γ,A ∧ B ` ∆

Γ, B, A ∧ B ` ∆
∧L

2Γ,A ∧ B ` ∆

Γ ` A,∆ Γ ` B,∆
∧R

Γ ` A ∧ B,∆

Γ, A ∨ B, A ` ∆ Γ, A ∨ B, B ` ∆
∨L

Γ,A ∨ B ` ∆

Γ ` A, A ∨ B,∆
∨R

1Γ ` A ∨ B,∆
Γ ` B, A ∨ B,∆

∨R
2Γ ` A ∨ B,∆

Γ, A[y/x],∃xA ` ∆
∃L

Γ,∃xA ` ∆

Γ ` A[t/x],∃xA,∆
∃R

Γ ` ∃xA,∆

Γ, A[t/x],∀xA ` ∆
∀L

Γ,∀xA ` ∆

Γ ` A[y/x],∆
∀R

Γ ` ∀xA,∆

103

A sequent Γ ` ∆ is said to be derivable or provable in the sequent calculus SLK when-
ever there exists a proof with conclusion Γ ` ∆. The height |D| of a proof D is the number
of nodes in the maximal branch of the proof tree minus 1.

Example 1. We give two examples of pairs of trees of sequents having the same root. Both
trees in a pair are constructed using the rules of SLK. However, in each couple, only the
second tree complies with the definition of derivation in SLK. Let a, b be propositional
variables and P be a unary predicate variable.

Ida, a ⊃ b, ` a, b
⊃ Ra ⊃ b ` a, a ⊃ b

Idb, a ⊃ b, a ` b
⊃R

b, a ⊃ b ` a ⊃ b
⊃L

a ⊃ b ` a ⊃ b
⊃R

` (a ⊃ b) ⊃ (a ⊃ b)

Ida, a ⊃ b ` a, b Idb, a, a ⊃ b ` b
⊃L

a ⊃ b, a ` b
⊃R

a ⊃ b ` a ⊃ b
⊃R

` (a ⊃ b) ⊃ (a ⊃ b)

In the first tree for the formula (a ⊃ b) ⊃ (a ⊃ b) condition 1 of definition 3.6 is not
respected. The sequent a ⊃ b ` a ⊃ b is proved by the ⊃ L rule. In the left-hand side
premise of the rule the active formula is a ⊃ b, instead of a, which would respect condition 1
of definition 3.6.

Id
∀xP(x), P(y) ` P(y),∃xP(x)

∀L
∀x P(x) ` P(y),∃xP(x)

∃R
∀x P(x) ` ∃x P(x)

Id
∀xP(x), P(y) ` P(y),∃xP(x)

∃R
∀xP(x), P(y) ` ∃x P(x)

∀L
∀x P(x) ` ∃x P(x)

In the first tree of sequents, condition 2 of definition 3.6 is not respected. The sequent
∀ xP(x) ` P(x),∃xP(x) is the premise of the sequent ∀x P(x) ` ∃ xP(x). This latter sequent
is proved from the former sequent by the use of ∃R-rule. In the former sequent the active
formula is ∀x P(x) contrarily to what condition 2 demands.

104

3.3.1 Properties of SLK
In this section we state some proposition that are true about the sequent calculus SLK;
whenever the proof of these proposition is standard, we will omit it. We recall that if D is
a derivation, then |D| denote its height.

Proposition 3.6 (Inversion). For any formula A and B for any multiset of formulas Γ and
∆:

1. if there is a derivation D of Γ ` A ∧ B,∆, then there are derivation D1 of Γ ` A,∆
and D2 of Γ ` B,∆. Moreover, |Di| ≤ |D| for i ∈ {1, 2};

2. if there is a derivationD of Γ ` A ⊃ B,∆, then there is a derivation D1 of Γ, A ` B,∆.
Moreover, |D1| ≤ |D|;

3. if there is a derivation D of Γ ` ∀xA,∆, then there is a derivation D1 of Γ ` A[y/x],∆
where y is a variable that does not appear in Γ Moreover, |D1| ≤ |D|;

4. if there is a derivationD of Γ, A∨B ` ∆, then there are derivationD1 of Γ, A∨B, A ` ∆

and D2 of Γ, A ∨ B, B ` ∆. Moreover, |Di| ≤ |D| for i ∈ {1, 2}.

Proof. By induction on the height |D| of D. �

Corollary 1. For any formula A for any multiset of formula Γ if the main connective of A
is either ∧,⊃ or ∀ and the sequent Γ ` A is provable, then there is a derivation D of Γ ` A
in which A is active.

Let Γ = A1, . . . An be a multiset of formulas. We denote by Γ[t/x] the multiset Γ in which
the term t is substituted to each occurrence of x in Ai i.e., Γ[t/x] = A1[t/x], . . . An[t/x].

Proposition 3.7. For any multiset of formulas Γ and ∆ if there is a derivation D of the
sequent Γ ` ∆ then there is a derivation D[t/y] of Γ[t/y] ` ∆[t/y] provided that no variable
that is free in t became bound after the substitution and that t does not contain variables
that are proper parameters of ∃L or of ∀R. Moreover |D[t/y]| ≤ |D|

Proof. By induction on the height of D. �

Proposition 3.8. Contraction and weakening are height preserving admissible in SLK: for
any formula A for any multiset of formulas Γ and ∆:

105

• if there is a derivation D of Γ, A, A ` ∆ (resp. of Γ ` A, A,∆) and D has height n,
then there is a derivation D1 of Γ, A ` ∆ (resp. Γ ` A,∆) and the height of D1 is (at
most) n;

• if there is a derivation D of Γ ` ∆ and D has height n then there is a derivation D1 of
Γ, A ` ∆ (resp. Γ ` A,∆) and the height of D1 is (at most) n.

Proof. By induction on the height of D using proposition 3.6. �

Proposition 3.9. For all formula A and all multiset of formulas Γ and ∆ there is a derivation
D of the sequent Γ, A ` A,∆. Moreover, in the derivation D either the occurrence of A on
the left of ` is active or the occurrence of A on the right of ` is active.

Proof. Suppose that the proposition holds for all formulas B having depth smaller than n
and let A be a formula of height n. We will detail the proof only for the case in which
A = C ⊃ D. By induction hypothesis, there are proofs of D1 of Γ,C ⊃ D,C ` C,∆ and
D2 of Γ,C ⊃ D,D ` D,∆. We have a problem if in the derivation D1 the active occurrence
of C is the one on the left of the turnstile, i.e. D1 ends in some left introduction rule. If
the main connective of C is ∀,∧ or ⊃, then by corollary 1 we can conclude that there is a
derivation D′1 of Γ,C ⊃ D,C ` C in which the occurrence of C on the right of the turnstile
is active. Thus, we can apply ⊃L on D′1 and D2 to obtain the wanted result. If the main
connective of C is ∃ or ∨ then C has, respectively, the form ∃xC1 or C1 ∨ C2. Let us
consider the second case. By induction hypothesis and weakening admissibility, there are
derivations of Γ′,C1 ∨ C2,C1 ` C1,∆,C1 ∨ C2 and Γ′,C1 ∨ C2,C2 ` C2,∆,C1 ∨ C2 where
Γ′ = Γ,C1 ∨C2 ⊃ D. First we construct the two following derivations:

...
Γ′,C1 ∨C2,C1 ` C1,∆,C1 ∨C2

DA

{
∨R

Γ′,C1 ∨C2,C1 ` C1 ∨C2,∆

...D′2
Γ,C1 ∨C2 ⊃ D,D,C1 ` D,∆

⊃L
Γ,C1 ∨C2 ⊃ D,C1 ` D,∆

...
Γ′,C1 ∨C2,C2 ` C2,∆,C1 ∨C2

DB

{
∨R

Γ′,C1 ∨C2,C1 ` C1 ∨C2,∆

...D′′2
Γ,C1 ∨C2 ⊃ D,D,C2 ` D,∆

⊃L
Γ,C1 ∨C2 ⊃ D,C2 ` D,∆

106

where D′2 and D′′2 are obtained from D2 by weakening. We can now construct a derivation
of Γ,C1 ∨C2 ⊃ D ` C1 ∨C2 ⊃ D,∆

...DA

Γ,C1 ∨C2 ⊃ D,C1 ` D,∆

...DB

Γ,C1 ∨C2 ⊃ D,C2 ` D,∆
∨L

Γ,C1 ∨C2 ⊃ D,C1 ∨C2 ` D,∆
⊃R

Γ,C1 ∨C2 ⊃ D ` C1 ∨C2 ⊃ D,∆

�

Proposition 3.10. For any formula A and B for any multiset of formulas, Γ and ∆ the
sequents:

1. Γ, A, A ⊃ B ` B,∆

2. Γ, A ` A ∨ B,∆

3. Γ, B, ` A ∨ B,∆

4. Γ, A[y/x] ` ∃xA,∆

are derivable in SLK. In 4 y is a variable that does not appears in Γ,∃xA,∆.

Proof. It is an immediate consequence of propositions 3.9. and 3.6.
�

Proposition 3.11. The cut rule

Γ ` A,∆ Γ, A ` ∆
cut

Γ ` ∆

is admissible in SLK : for any formula A for any multiset of formulas Γ and ∆, if the
sequents Γ ` A,∆ and Γ, A ` ∆ are provable, then the sequent Γ ` ∆ is provable.

Proof. By nested inductions on the depth of A (the cut formula), the height of the derivation
D1 of Γ ` A,∆ and the height of the derivationD2 of Γ, A ` ∆. More precisely, we appeal to
the induction hypothesis either with a strictly smaller cut formula, or with an identical cut
formula and two derivations, one of which is strictly smaller while the other stays the same;
the cut admissibility proof follows the usual path of case analysis on the active formula of

107

D1 and D2. We detail two cases. Suppose that the cut-fomula A is B ⊃ C. We have a
derivation D1 of Γ, B ⊃ C ` ∆ and a derivation D2 of Γ ` B ⊃ C,∆. Moreover, suppose
that in both derivation the cut formula B ⊃ C is active. This means that D1 and D2 have the
form:

...D1.1

Γ, B ⊃ C ` B,∆

...D1.2

C, B ⊃ C,Γ ` ∆
⊃L

Γ, B ⊃ C ` ∆

...D2.1

Γ, B ` C,∆
⊃R

Γ ` B ⊃ C,∆

we obtain a derivation of Γ ` ∆ As follows: we first construct a derivation DA of Γ ` C,∆,
and a derivation DB of C,Γ ` ∆, using the admissibility of the cut rule either on derivations
that are smaller than D1 or D2 or on formulas that are smaller than B ⊃ C. In what
follows D1.1

′,D2
′ and D2

′′ are obtained from respectively D1.1 and D2 by height preserving
admissibility of the weakening rule. For the sake of clarity we underline the cut-formula of
each cut-rule instance.

...D1.1
′

Γ, B ⊃ C ` B,C,∆

...D′2
Γ ` B ⊃ C, B,C,∆

Γ ` B,C,∆

...D2.1

Γ, B ` C,∆
}
DA

Γ ` C,∆

...D1.2

C,Γ, B ⊃ C ` ∆

...D′′2
C,Γ ` B ⊃ C,∆

}
DBC,Γ ` ∆

We then put togetherDA andDB using an instance of the cut-rule with cut-formula C. Since
C is a formula strictly smaller than B ⊃ C this application of the cut-rule is allowed by the
induction hypothesis.

...DA

Γ ` C,∆

...DB

Γ,C ` ∆

Γ ` ∆

Now suppose that B ⊃ C is not active in one of the two derivations D1 and D2. Suppose it
is not active in D2 e.g., D2 as the form:

108

...D2.1

Γ ` F1, B ⊃ C,∆′

...D2.2

Γ ` F2, B ⊃ C,∆′

Γ ` F1 ∧ F2, B ⊃ C,∆′

we want to obtain a derivation of the sequent Γ ` F1 ∧ F2,∆
′. A derivation of this sequent

can be constructed by the following method: we first construct two derivations DA and DB
of the sequents Γ ` ∆′, F1 ∧ F2, F1 and Γ ` ∆′, F1 ∧ F2, F1:

...D′1
Γ, B ⊃ C ` ∆′, F1 ∧ F2, F1

...D2.1
′

Γ ` F1, F1 ∧ F2, B ⊃ C,∆′ }
DA

Γ ` ∆′, F1 ∧ F2, F1

...D′′1
Γ, B ⊃ C ` ∆′, F1 ∧ F2, F2

...D′2.2
Γ ` F2, F1 ∧ F2, B ⊃ C,∆′ }

DB
Γ ` ∆′, F2 ∧ F2, F2

we put together the two derivations DA and DB using the ∧R rule and we obtain the wanted
derivation of the sequent Γ ` ∆′, F1 ∧ F2 by admissibility of the contraction rule.

...DA

Γ ` ∆′, F1 ∧ F2, F1

...DB

Γ ` ∆′, F1 ∧ F2, F2
∧R

Γ ` ∆′, F1 ∧ F2, F1 ∧ F2
CR

Γ ` ∆′, F1 ∧ F2

�

3.3.2 SLK: soundness and completeness
We now prove that SLK is sound and complete for classical logic. In order to prove this fact
we show that a sequent Γ ` ∆ is provable in SLK if and only if, it is provable in the sequent
calculus system GKc [132]. GKc is sound and complete for first-order classical logic.
To obtain GKc one simply drop the right-rule restrictions of SLK (condition 2 and 3 of
definition 3.6) as well as the left-implication rule restriction (condition 1 of definition 3.6).
Moreover, one adds the active formula of each right introduction rule to the premises of the

109

rule (as described in subsection 1.7.7 of chapter 1). Thus, one obtains that the ⊃R,∧R and
∀R-rules of GKc have the following form:

Γ, A ` B, A ⊃ B,∆
⊃R

Γ ` A ⊃ B,∆
Γ ` A, A ∧ B,∆ Γ ` B, A ∧ B,∆

∧R
Γ ` A ∧ B,∆

Γ ` A[y/x],∀xA,∆
∀R

Γ ` ∀xA,∆

Lemma 3.1. For any multiset of formulas Γ and ∆, the sequent Γ ` ∆ is provable in SLK if
and only if it is provable in GKc.

Proof. To show that if the sequent Γ ` ∆ is provable in SLK then it is provable in GKc
we first remark that the initial rules ⊥L and Id-rules of the two systems are the same. We
thus show that any other rule of SLK is admissible in GKc i.e., given a derivation of the
premises of a rule R of SLK in the system GKc there is a derivation of the conclusion of
the rule R of SLK in the system GKc. This is easily done by case analysis using the fact
that weakening and contraction are admissible in GKc [132].

To prove that if the sequent Γ ` ∆ is provable in GKc then Γ ` ∆ is provable in SLK,
suppose that for each derivation D in GKc with height n and conclusion Γ′ ` C′ there is a
derivation D′ in SLK having the same conclusion. Let D be a derivation of Γ ` ∆ in GKc
having height n + 1 and let R be the last rule application of D. If R is none of ⊃L,∃R or ∨R

we just have to apply the induction hypothesis on the premises of R and the admissibility
of weakening and contraction of SLK.

If R is ⊃L then the conclusion of D is Γ, A ⊃ B ` ∆ and, by induction hypothesis, we
have an SLK derivation D1 with conclusion Γ, A ⊃ B ` A,∆ and another SLK derivation
D2 with conclusion B,Γ, A ⊃ B ` ∆. We construct a SLK derivation of the sequent Γ, A ⊃
B ` ∆ below.

...D1

Γ, A ⊃ B ` A,∆

...DA

A,Γ, A ⊃ B ` B,∆

...D′2
B,Γ, A, A ⊃ B ` ∆

cut A,Γ, A ⊃ B ` ∆
cut

Γ, A ⊃ B ` ∆

Where the derivation DA exists by proposition 3.10, and D′2 is obtained from D2 by
admissibility of weakening

110

If R is ∃R or ∨R then the conclusion of D is (respectively) of the form Γ ` ∃xA,∆
or Γ ` A1 ∨ A2,∆. By induction hypothesis, we have a SLK derivation D′ of its premise
Γ ` A[t/x],∃xA,∆ or Γ ` Ai, A1 ∨ A2,∆ respectively, where i ∈ {1, 2}. We only provide the
first case.

...D′

Γ ` A[t/x],∃xA,∆

...D[t/y]
Γ, A[t/y] ` ∃xA,∆

cut
Γ ` ∃xA,∃xA,∆

CR
Γ ` ∃xA,∆

whereD exists in virtue of proposition 3.10 andD[t/y] exists in virtue of proposition 3.7
�

The below theorem follows immediately from the latter lemma, since GKc is sound
and complete for classical logic, and we have proved that SLK proves exactly the same
sequents that are provable in GKc.

Theorem 3.1. The sequent system SLK is sound and complete for classical first-order logic.

3.4 From strategies to derivations
In this section we will prove that given a winning strategy S for a formula A, S can be
transformed into a SLK derivation of A. In fact, we have designed the calculus SLK in
such a way that derivations in SLK have the ‘shape’ of winning strategies. The fact that all
binary rules of SLK are context sharing (or additive) is motivated by the fact that we will
recursively associate sequents to the nodes of a strategy starting from the root of the strat-
egy. Using this methodology, it would be hard to split the sequent in the manner required
by context splitting (or multiplicative) rules. The fact that all the left introduction rule of
SLK carry the active formula of the conclusion in the premises of the rule is motivated by
the fact that, as we will see below, left introduction “corresponds” to attack move by P. The
player P can attack the same formula many times. This corresponds, in a SLK derivation,
to a left introduction rule having the same active formula and being used many times in the
derivation. The fact that the only right introduction rules in which the premise carries the
active formula of the conclusion are the existential rule and the disjunction rule is motivated
by the following fact: right introduction rules correspond to defense moves by P and P can
answer to the same question on a formula many times only if that formula is an existential

111

formula or a disjunction (condition 6 of definition 3.3). The two conditions 2 and 3 in the
definition 3.6 of SLK derivation are the sequent-calculus counterparts of condition 3 in the
definition 3.5 of Strategy. The attentive reader will surely notice that SLK obeys a focusing
principle [8]: whenever we apply (bottom-up) an ∃R or a ∨R rule over a sequent Γ ` ∃xB,∆
(resp., Γ ` A∨ B,∆) we are obliged to apply right-rules until an implication, a conjunction,
or a universally quantified formula occupies the position of ∃xB (resp. A ∨ B).

Let S be a strategy for a formula F and let G be a game in S . We define the O-
sequence G|O of G to be the subsequence of G obtained by forgetting all its P-moves, i.e,
if G = m0,m1, . . .mn the O-sequence of G is m1, . . .mn−1. We define the O-tree S|O of a
strategy S to be the prefix closed set of sequence

S|O = {G|O |G ∈ S}

Let S be a strategy for a formula F. We define a function Φ from S|O to a tree of
sequents τ. The function Φ associates some sequent ΓG|O ` ∆G|O to each G|O in S|O. Let us
denote the empty sequence by ε

• if G|O = ε then ΓG|O = ∅ and ∆G|O = F

• if G|O = G′|O(!, A) then ΓG|O = ΓG′ |O , A and ∆G|O = ∆G′ |O .

• if G|O = G′|O(?, A) then ΓG|O = ΓG′ |O , A and ∆G′ |O have the form Σ, A ⊃ B. We put
∆G|O = Σ, B.

• if G|O = G′|O(?,∧1) then ΓG|O = ΓG′ |O and ∆G′ |O have the form Σ, A ∧ B. We put
∆G|O = Σ, A.

• if G|O = G′|O(?,∧2) then ΓG|O = ΓG′ |O and ∆G′ |O have the form Σ, A ∧ B. We put
∆G|O = Σ, B.

• if G|O = G′|O(?,∀[w/x]) then ΓG|O = ΓG′ |O and ∆G′ |O have the form Σ,∀xA. We put
∆G|O = Σ, A[w/x].

• if G|O = G′|O(?,∨) then ΓG|O = ΓG′ |O and ∆G′ |O have the form Σ, A1 ∨ A2. We put
∆G|O = Σ, A1 ∨ A2, Ai where Ai is the formula asserted by the move m ∈ G, G in S
such that φ(m) = (?,∨).

112

• if G|O = G′|O(?,∃) then ΓG|O = ΓG′ |O and ∆G′ |O have the form Σ,∃xA. We put ∆G|O =

Σ,∃xA, A[t/x] where A[t/x] is the formula asserted by the move m ∈ G, G in S such
that φ(m) = (?,∃).

We now prove that given a winning strategy S, Φ(S|O) is almost a derivation in SLK;
all leaves of Φ(S|O) are instances of Id rules or ⊥L rules (proposition 3.13) and Φ(S|O)
respects the variable condition of the ∀R and ∃L rules of SLK (proposition 3.14)

Proposition 3.12. Let S be an arbitrary winning strategy and G be an arbitrary game in
S. If G ends in a P defense move that asserts a formula A then the sequent ΓG|O ` ∆G|O
associated to the O-restriction G|O of G by the function Φ is of the form Γ ` ∆, A

Proof. By induction on the length of G �

Proposition 3.13. Let S, be an arbitrary winning strategy for a formula A and G an arbi-
trary maximal branch in S.

1. If G = G′mO then m asserts ⊥ and the sequent ΓG|O ` ∆G|O associated to the O-
restriction G|O of G by the function Φ is of the form Γ,⊥ ` ∆.

2. if G = G′mP then m = (!,C) with C atomic gentzen subformula of A and the sequent
ΓG|O ` ∆G|O associated to the O-restriction G|O of G by the function Φ is of the form
Γ,C ` C,∆

Proof. (1) is a direct consequence of definition 3.4 and of the definition of the function Φ.
(2) derives from condition 3 in definition 3.3 and proposition 3.12

�

Proposition 3.14. let S be an arbitrary winning strategy and G be a game in S. Suppose
that G ends in O-move that is either

1. an attack against a universal quantifier (?,∀[w/x])

2. or a defense against an existential attack (!, A[w/x]).

Then the variable w does not appear in the sequent associated by the function Φ to the
O-restriction G′|O of the proper prefix G′ of G.

113

Proof. Both (1) and (2) are granted by the conditions 4 and 5 in definition 3.3 and by
condition 3 in definition 3.5.

�

We are now ready to prove the main result of this section. We have just shown that we
can associate a tree of sequents with each winning strategy. In addition, we have shown
that the above-mentioned sequent tree is almost a proof in SLK: all its leaves are instance
of Id rules or ⊥L rules of SLK and it respects the variable restriction on the ∀R and ∃L rules
of SLK.

Theorem 3.2. Let S an arbitrary winning strategy and let S|O be its O-tree. To each
sequence of O-moves G|O in S|O we can associate a derivation DG|O of ΓG|O ` ∆G|O , where
ΓG|O ` ∆G|O is the sequent associated by the function Φ to G|O.

Proof. Let G|O be an arbitrary element of S|O. Suppose that the induction hypothesis holds
for each suffix G′|O of G|O in S|O. We consider the last move P-move m2n of the game
G ∈ S such that the O-restriction of G is G|O.

We only prove some of the cases that are not straightforward

1. if m2n is a defense move (!,∃xA) then there are many cases, depending on the form
of A. We treat only two cases:

• if A is atomic, then G|O(?,∃) is maximal in S|O; we associate with G|O the
following derivation in which A is active.

Id
Γ, A ` A,∃xA,∆

Γ, A ` ∃xA

• if A = B ∨ C, then G|O′ = G|O(?,∃)(?,∨) ∈ S|O because of condition 3 in
definition 3.5. This means in particular that the formula (B ∨ C)[t/x] is active
in the derivation that we associate with G|O

...DG|O′

Γ ` (A ∨ B)[t/x],∃x(A ∨ B),∆
∃R

Γ ` ∃x(A ∨ B),∆

2. if m2n is an attack (?, A) on the assertion A ⊃ C, then there are many cases depending
on the form of A. We again only treat two cases:

114

• if A is atomic, then the immediate suffix of G|O is G|O(!,C) for which the propo-
sition hold by hypothesis. We associate it with the following derivation.

Id
Γ, A ⊃ C, A ` A,∆

...DG|O(!,C)

Γ, A ⊃ C,C ` ∆
⊃L

Γ, A ⊃ C ` ∆

• if A = (A1⊃A2), thenG|O has two immediate suffixes: G|O, (?, A1) andG|O, (!,C),
for which the proposition holds by hypothesis. We associate the following
derivation to G|O.

...DG|O,(?,A1)

Γ, (A1 ⊃ A2) ⊃ C, A1 ` A2,∆
⊃R

Γ, (A1 ⊃ A2) ⊃ C ` A1 ⊃ A2,∆

...DG|O,(!,C)

Γ, (A1 ⊃ A2) ⊃ C,C ` ∆
⊃L

Γ, (A1 ⊃ A2) ⊃ C ` ∆

3. If m2n is an existential repetition asserting a formula A[t/x], we proceed as follows:
we only consider the case where A[t/x] = (B ⊃ C)[t/x]. By induction hypothesis,
there is derivation of the sequent Γ, B[t/x] ` ∃x(B ⊃ C),C[t/x],∆ associated to the
direct suffix G|O(?, B[t/x]) of G|O. We associate the following derivation.

...DG|O(?,B)

Γ, B[t/x] ` ∃x(B ⊃ C),C[t/x],∆
⊃R

Γ ` ∃x(B ⊃ C), (B ⊃ C)[t/x],∆
∃R

Γ ` ∃x(B ⊃ C),∆

�

3.5 From derivations to strategies
Turning a derivation D of a formula F into a winning strategy S for F is easier. To do
so, we describe a procedure, that we call p2s (from a Proof in SLK to a strategy). The
procedure p2s explore the proofs D starting from the root and proceeding by level order
traversal. The order of traversal of daughters is irrelevant. The procedure associate to D a
prefix closed set of games for the formula F.

115

Theorem 3.3. Let F be an arbitrary formula and D be an arbitrary derivation of ` F in
SLK. There is a function p2s such that p2s(D) is a winning strategy S for F.

Proof. Let x be an arbitrary node of D, suppose that n has depth n, and let Γ ` ∆ be the
sequent that decorates x. Suppose that:

1. the branch r = xo, . . . xn = x of the derivation from the root r of D to x is already
associated with a prefix closed set S x of games for the formula F. Each G in S x in
which the last move of P is the assertion of a complex formula or an attack move
ends in a O-move;

2. for each formula B in Γ there is an O-assertion move (?, B) in some game G in S x;

3. the prefix closed set Sx is a strategy for F.

The prefix closed set of games S a1 associated with a1 where a1 is any daughter of x is
defined as follows:

1. if a1 is obtained by an identity rule Γ, A ` A, then S a1 = S x ∪ {G(!, A)} where A is the
active formula of the identity rule and G is a maximal game in S x such that (!, A) is
legal for G.

2. If a1 is labelled with a sequent obtained from a right introduction rule with active
formula A:

(a) if A is B ⊃ C then S a1 = S x ∪ {G(!, B ⊃ C)(?, B)} where G is a maximal game
in S x such that (!, A) is legal for G;

(b) if A is ∀xB, then S a1 is S x ∪ {G, (!,∀xB), (?,∀[w/x])} where G is a maximal
game in S x such that (!, A) is legal for G and the variable w in (?,∀[w/x]) is the
variable that appears in the premise of a1 but not in a1;

(c) if A is B ∧C, then S a1 = S x ∪ {G(!, B ∧C)(?,∧1)} ∪ {G(!, B ∧C)(?,∧2)} where
G is a maximal game in S x such that the P-move (!, B ∧C) is legal for G;

(d) if A is A1 ∨ A2 or ∃xB:

i. if A is not active in a sequent that appears below a1, then S a1 = S x ∪

{G, (!, A), (?, s)} where G is a maximal game in S x such that (!, A) is legal
for G and where (?, s) is the unique attack-move which is legal for G(!, A);

116

ii. otherwise, let F be the formula that is active in the premise of a1. If F
is an implication, a universally quantified formula or a conjunction, then
S a1 is constructed according to 2a, 2b or 2c. Otherwise, S a1 is constructed
according to 2(d)i. Remark F = B[t/x] or F = Ai i ∈ {1, 2} by the definition
of SLK-proof.

3. If a1 is labelled with a sequent obtained from a left introduction rule with active
formula A:

(a) if A is B1 ∧ B2, then S a1 = S x∪ {G(?,∧i)(!, Bi)} where Bi is the direct sub-
formula of B1 ∧ B2 that appears in the premise of a1 but not in a1 and G is a
maximal game in S x such that the P-move (?,∧i) is legal for G;

(b) if A is ∀xB, then S a1 = S x∪ {G(?,∀[t/x])(!, B[t/x])}where B[t/x] is the formula
occurrence that appears in the premise of a1 but not in a1 and G is a maximal
game in S x such that the P-move (?,∀[t/x]) is legal for G;

(c) if A is B ∨ C, then S a1 = S x∪ {G(?,∨)(!, B)} ∪ {G(?,∨)(!,C)} where G is a
maximal game in S x such that the P-move (?,∨) is legal for G;

(d) if A is B ⊃ C, then S a1 = S x∪ {G, (?, B), (?, q1)} ∪ . . . ∪ {G, (?, B), (?, qn)}
∪{(G, (?, B), (!,C)}. Where G is a maximal game in S x such that the P-move
(?, B) is legal for G each qi is a question on B;

(e) if A is ∃xB, S a1 = S x ∪ {G(?,∃)(!, B[w/x])} where G is a maximal game in S x

such that the P-move (?,∃) is legal for G and B[w/x] is a formula that appears
in the premise of a1 but not in a1;

(f) if A is ⊥ then S a1 = S x. Remark that by 1 and 2 this clause is well formulated.

It is easy to check that conditions 1,2 and 3 are respected after the application of the
procedure. Remark that the procedure jumps from a node v of the proof-tree obtained by a
⊃L-rule to the daughter of the daughter of v. The same phenomena occur whenever a right-
hand formula is obtained by an ∨R-rule or ∃R-rule as described in 2(d)ii. For each node v in
a proof tree, there are finitely many ancestors of v, as a consequence the procedure always
ends.

�

117

3.6 Intuitionistic dialogical games
Games of definition 3.3 are games for first-order classical logic. The following is a defini-
tion of games for first-order intuitionistic logic. Let (ρ, φ) be an augmented sequence and
ρi an attack-move in ρ we say that ρi is answered iff there is no defense-move ρ j such that
φ(ρ j) = ρi

Definition 3.7 (Intuitionistic Games). An intuitionistic game for a formula A is an aug-
mented sequence (ρ, φ) satisfying conditions 1 to 5 in the definition 3.3 of game and in
which condition 6 is replaced by the following

Well-bracketing If ρk is a defense move and k is even then φ(ρk) = ρ j is the unanswered
attack move having the greatest odd index in the prefix of ρ ending with ρk−1

The definition of move m legal for a game G as well as the definition of game won by
P remains unchanged. Proposition 3.1,3.2,3.3 and 3.4 holds for intuitionistic games. The
following proposition is a direct consequence of the above definition.

Proposition 3.15. Let G be an intuitionistic game. For each O-attack-move ρ j in G there
is at most one defense-move ρi such that φ(ρi) = ρ j.

3.6.1 Some examples of intuitionistic games
We give some examples of games for intuitionistic logic. Let a be a propositional variable,
and let P and Q be two unary predicate variables

m0 = (!, a ∨ ¬a)
m1 = (?,∨) m0
m2 = (!,¬a) m1
m3 = (?, a) m2

m0 = (!,¬¬a ⊃ a)
m1 = (?,¬¬a) m0
m2 = (?,¬a) m1
m3 = (?, a) m2

m0 = (!,¬¬a ⊃ a)
m1 = (?,¬¬a) m0
m2 = (?,¬a) m1
m3 = (!,⊥) m2

118

m0 = (!,∀x(P(x) ∧ Q(x)) ⊃ ∀xP(x) ∧ ∀xQ(x))
m1 = (?,∀x(P(x) ∧ Q(x))) m0
m2 = (!,∀xP(x) ∧ ∀xQ(x)) m1
m3 = (?,∧1) m2
m4 = (!,∀xP(x)) m3
m5 = (?,∀[w/x]) m4
m6 = (?,∀[w/x]) m1
m7 = (!, P(w) ∧ Q(w)) m6
m8 = (?,∧1) m7
m9 = (!, P(w)) m8
m10 = (!, P(w)) m5

m0 = (!,¬∀x¬P(x) ⊃ ∃xP(x))
m1 = (?,¬∀x¬P(x) m0
m2 = (?,∀x¬P(x) m1
m3 = (?, [w/x]) m2
m4 = (!,¬P(w)) m3
m5 = (?, P(w)) m4

m0 = (!,¬∀x¬P(x) ⊃ ∃xP(x))
m1 = (?,¬∀x¬P(x) m0
m2 = (?,∀x¬P(x) m1
m3 = (!,⊥) m2

Remark 2. Games for the formulas ¬¬a ⊃ a, a∨¬a and ¬∀x¬P(x) ⊃ ∃xP(x) were already
presented in subsection 3.2.4. The difference here is that P cannot win a game over this
formula no matter how O chooses to act. Consider for example the game for the formula
a ∨ ¬a; this game is won by O as it ends in a O-move that is not an assertion of ⊥. The
well-bracketing condition prevents P to make the move (!, a) as a defense against the move
(?,∨), this means that P cannot win a game on this formula. Similar phenomena happen in
the two left-hand game for the formulas ¬¬a ⊃ a and ¬∀x¬P(x) ⊃ ∃xP(x). The proponent
cannot assert a (resp. ∃xP(x)) because there is an answered defense move having greater
index than (?,¬¬a) (resp. (?,¬∀x¬P(x)))

3.6.2 Intuitionistic Strategies
The definition of strategies for Intuitionistic games is the same as the one for classical
games i.e., definition 3.5. Of course, an intuitionistic strategy will be a tree of intuitionistic
games. To prove that a formula is intuitionistic valid if and only if there is a winning

119

intuitionistic strategy for the formula, we proceed as in the classical case. We transform
a winning strategy S for a formula into a derivation D for the formula and vice versa. Of
course, the derivations we consider are constructed in a cut-free complete sequent calculus
for intuitionistic logic. The sequent calculus we are going to consider is the intuitionistic
variant of SLK, and we are going to call it SLJ (strategic LJ).

Definition 3.8. The sequent calculus SLJ is defined by the rules in Table 3.2. A sequent
is an expression Γ ` C where Γ is a finite (possibly empty) multiset of formulas and C is
a formula. Greek upper-case letters Γ,∆,Σ,Π . . . stand for multisets of formulas. In the
Id-rule A is of the form P(t1, . . . , tn) where P is a predicate variable with arity n ≥ 0 and
the ti are terms, moreover ⊥ is not an element of Γ. In the ∀R and ∃L rules, the variable y
does not occur in the conclusion sequent. In the ⊃L rule the left-side premise of the rule is
obtained by an Id-rule or a right introduction rule. In the ∃R-rule as well as in the ∨R-rule,
the premise of the rule is obtained by a textitId-rule or a right introduction rule. The bold
formulas are called active formulas.

A derivation (or a proof) D of a sequent Γ ` C in SLJ is a tree of sequents constructed
according to the rules of SLJ in which leaves are instances of Id-rules or ⊥L-rules, all
sequents of the form Σ,⊥ ` π are leaves and whose root, also called conclusion, is Γ ` C.
The height of a derivation D is the number of nodes in its maximal branch minus 1.

A sequent Γ ` C is said to be derivable or provable in the sequent calculus SLJ whenever
there exists a proof with conclusion Γ ` C.

Remark 3. SLJ is simply SLK in which the right-hand multiset of formulas of a sequent
contains exactly one formula. Usually, sequent calculus system for intuitionistic logic have
sequents of the form Γ ` ∆ where ∆ contains at most one formula. However, by adopting
the ⊥L-rule we can consider sequent of the form Γ ` C (see [132] pp. 72-73 or [68] pp.
13-14 for a discussion)

Propositions 3.6, 3.8, 3.9, 3.10 and 3.11 presented in section 3.3 also holds for the
sequent calculus SLJ If enunciated with the appropriate differences dictated by the par-
ticularities of SLJ i.e., The ∧R,∨L,⊃R-rules and the ∀R-rule of SLJ are height-preserving
reversible, the two rules

Γ ` C W
Γ, A ` C

Γ, A, A ` C
C

Γ, A ` C

120

Table 3.2: The SLJ sequent calculus.

⊥L
Γ,⊥ ` C Id

Γ, A ` A

Γ, A ⊃ B ` A,C Γ, A ⊃ B, B ` C
⊃L

Γ,A ⊃ B ` C
Γ, A ` B,∆

⊃R
Γ ` A ⊃ B

Γ, A, A ∧ B ` ∆
∧L

1Γ,A ∧ B ` C
Γ, B, A ∧ B ` ∆

∧L
2Γ,A ∧ B ` C

Γ ` A Γ ` B
∧R

Γ ` A ∧ B

Γ, A ∨ B, A ` C Γ, A ∨ B, B ` C
∨L

Γ,A ∨ B ` C

Γ ` A
∨R

1Γ ` A ∨ B
Γ ` B

∨R
2Γ ` A ∨ B

Γ, A[y/x],∃xA ` C
∃L

Γ,∃xA ` C
Γ ` A[t/x]

∃R
Γ ` ∃xA

Γ, A[t/x],∀xA ` C
∀L

Γ,∀xA ` C
Γ ` A[y/x]

∀R
Γ ` ∀xA

121

are height preserving admissible, the sequents Γ, A ` A, Γ, A[x/y] ` ∃xA, Γ, A, A ⊃ B `
B, Γ, A ` A ∨ B and Γ, B ` A ∨ B are provable for all multisets of formulas Γ and formulas
A and B. Finally, the cut rule

Γ ` A Γ, A ` C
cut

Γ ` C

is admissible in SLJ. All the proofs of these facts follows the same pattern that in the
classic case. Thanks to these facts, one can prove the following proposition, which implies
that SLJ is sound and complete for first-order inutuitionistic logic

Proposition 3.16. There is a derivation of Γ ` C in G3i if and only if there is a derivation
of Γ ` C in SLJ for all multiset of formulas Γ and formula A.

Proof. The sequent calculus G3i [132] is nothing but SLJ without the restrictions on the
use of the rules ∨R,∃R and ⊃L thus one direction of the proof is for free. For the other
direction one proceeds, as in the classical case, using the admissibility of the cut rule and
proposition 3.10 �

To transform a winning strategy S for a formula A into a derivation D of A, we follow
the same pattern of the classical case. We first recursively associate a sequent to all O-move
in the strategy. This is done by considering the O-tree S|O of S and by defining a function
Φ from S|O to a tree of sequent τ. The function Φ associate a sequent ΓG|O ` CG|O to each
G|O in S|O. Let us denote the empty sequence by ε

• if G|O = ε then ΓG|O = ∅ and CG|O = F;

• if G|O = G′|O(!, A) then ΓG|O = ΓG′ |O , A and CG|O = CG′ |O;

• if G|O = G′|O(?, A) then ΓG|O = ΓG′ |O , A and CG′ |O have the form A ⊃ B we put
CG|O = B;

• if G|O = G′|O(?,∧1) then ΓG|O = ΓG′ |O and CG′ |O have the form A∧ B we put CG|O = A;

• if G|O = G′|O(?,∧2) then ΓG|O = ΓG′ |O and CG′ |O have the form A ∧ B we put CG|O = B

• if G|O = G′|O(?,∀[w/x]) then ΓG|O = ΓG′ |O and CG′ |O have the form ∀xA we put
CG|O = A[w/x];

122

• if G|O = G′|O(?,∨) then ΓG|O = ΓG′ |O and CG′ |O have the form A1∨A2 we put CG|O = Ai

where Ai is the formula asserted by the last move m of G;

• if G|O = G′|O(?,∃) then ΓG|O = ΓG′ |O and CG′ |O have the form ∃xA we put CG|O =

A[t/x] where A[t/x] is the formula asserted by the last move m of G.

We then prove the analogous of propositions 3.12, 3.13 and 3.14. These proposition
guarantees that given a winning intuitionistic strategy S, Φ(S) is a tree of sequents in
which leaves are of the form Γ, A ` A with A atomic or of the form Γ,⊥ ` C, and in which
the variable restriction on the use of ∀R and ∃L is respected. These clarifications been made
we can state the following theorem the proof of which is entirely similar to the one of
theorem 3.2 and will be omitted

Theorem 3.4. Let S an arbitrary winning intuitionistic strategy and let S|O by its O-tree.
To each sequence of O-moves G|O in S|O we can associate a derivation πG|O of ΓG|O ` CG|O ,
where ΓG|O ` CG|O is the sequent associated by the function Φ to G|O

To obtain a winning strategy S for a formula F from a proof D of F in SLJ we use the
same procedure p2s that has been used in the proof of theorem 3.3

Theorem 3.5. Let F be an arbitrary formula and D be an arbitrary derivation of F in SLJ.
There is a function p2s such that p2s(D) is a winning strategy S for F.

Proof. The function that associates a strategy for F to a derivation of F in SLJ is the same
of the function described in theorem 3.3. We only check that given a node x in D the
set of games S x associated to the branch F = x0, x1 . . . , xn−1, xn = x contains only games
that respect the well-bracketing condition. Let G ∈ S x. We can suppose without loss of
generality that xn is decorated by a sequent in which the active formula is on the right.
Suppose that xn = Γ ` B ∧ C then S x = S xn−1 ∪ {G(!, B ∧ C)(?,∧1)} ∪ {G(!, B ∧ C)(?,∧2)}
with G ∈ S xn−1 . The fact that P-move (!, B ∧ C) is justified derives from the subformula
property of SLJ and from the definition of the procedure p2s. The well bracketing condition
derives from the fact that each SLJ sequent has exactly one formula to the right of the `
symbol. �

3.7 Conclusion
We proved that there is a natural correspondence between formal E-strategies for both
classical and intuitionistic logic and derivations of two complete cut-free sequent calculus

123

for first-order classical and intuitionistic logic. We hope that the simplicity of our approach
will help other researchers to appreciate more the dialogical logic approach.

As we have already said our approach builds on the one developed by Herbelin in his
PhD thesis [68] and can be seen as an extension of his result to first-order logic. Being
more precise Herbelin shows the correspondence between winning strategies for games re-
specting the well-bracketing condition (definition 3.7 in this chapter) and derivations in the
sequent calculus LJQ (chapter 5, section 2 of his PhD dissertation), and winning strate-
gies for classical games (definition 3.3 in this chapter) and derivation in LKQ (chapter 5,
section 3 of his PhD dissertation). As Herbelin states LJQ is a sound and complete se-
quent calculus for propositional minimal logic [79] i.e., the proper fragment propositional
intuitionistic logic where formulas constructed using only the connective ∧,∨ and ⊃, the
sequents of LJQ have the form Γ ` ∆ where ∆ contains exactly one formula. LKQ is an
extension of LJQ in which sequents Γ ` ∆ are allowed to contain multiple formulas on
the right of the ` symbol. It should be remarked that is difficult to tell for which logic the
sequent system LKQ is sound and complete for: one can prove the Peirce’s law i.e., the
formula ((X ⊃ Y) ⊃ X)) ⊃ X, but it is impossible to prove that negation is involutive i.e.,
¬¬X ⊃ X and that contradiction is explosive i.e., ⊥ ⊃ A. This is because the system LKQ
lacks rules for both the propositional constant ⊥ and for negation. The sequent calculus
SLJ and SLK that we have presented can be regarded as first-order extension of, respec-
tively, LJQ and LKQ, however contrarily to LJQ the propositional fragment of our calculus
SLJ is complete for intuitionistic propositional logic, and contrarily to LKQ our calculus
SLK is complete for classical logic. Moreover, the two systems we have developed obeys
a focusing principle [8]: whenever we apply (bottom-up) an ∃R-rule or a ∨R-rule over a
sequent Γ ` ∆ we are obliged to apply right-rules until an implication a conjunction or a
universally quantified formula is active. It is quite surprising that formal E-strategies natu-
rally corresponds to this type of calculus. The fact that Felscher himself did not notice such
correspondence is easily explained by remarking when his paper was published: focusing
was not known at the time.

We would like to conclude with some very general remarks on dialogical logic. We have
shown that if a formula is classically (resp. intuitionistically) valid then there is a winning
strategy (resp. a winning intuitionistic strategy) for the formula and that, vice versa, if there
is a winning strategy (resp. winning intuitionistic strategy) for a formula then the formula
is classically (resp. intuitionistically) valid. This has been proved by showing that

1. There is a function that maps proofs in the sequent calculus to winning strategies

124

2. every winning strategy S is the image of some proof D, i.e., the function that goes
from proofs to winning strategies is surjective.

If we conceive, as Lorenzen did, dialogical logic as a semantic for first-order logic then
(1) is a form of soundness : every formula that is provable in first-order logic is dialogically
valid. (2) is a form of completeness : every formula that is dialogically valid is provable in
first-order logic. By looking at (2) more attentively we realize that it is rather strong form
of completeness. Consider the function

ψ : A → {S | S is a winning strategy for A}

.
that maps a formula A to the set of winning strategies for A. The completeness theorem

implies that if A is provable, then ψ(A) , ∅. The form of completeness we have proved
says that every element of ψ(A) is the image of a proof D of A. This form of completeness
is known under the name of full completeness. In light of this latter discussion, we think
that the reader would be puzzled and surprised by the following selection of quotes

In logic, the earliest forerunners [of the game-approach to logic] are Lorenzen
and his coworkers. They considered the activity of proving a formula as a
strategy in what they called a dialogue game between two players: Proponent,
who is responsible for building the proof, and Opponent, who chooses to refute
the formula or any of the intermediate conclusions in the (unraveling of the)
proof. Unfortunately, most of this work focused on provability more than on
proofs themselves [31].

A game semantic approach to proof (or at least provability) was suggested by
Lorenzen and his school. His ideas have been developed and made precise by a
number of people, and form the basis for a distinctive tradition in philosophical
logic [75].

Lorenzen is presumably the only logician of those times to have fully assumed
the dialectic dimension of logic. His School must have been in a cantilevered
position w.r.t. the milieu: [...] No conscience of a layer below 1 [provability];
thus Felscher formulated his theorem under the form if there is a winning strat-
egy, then A is provable, where one would expect: if there is a winning strategy,
then it comes from a proof [62].

125

The reader could object that Curien, Hyland and Girard are not aware of our work.
Nonetheless, it should be remarked that Felscher was completely aware of the — so to say
— correspondence between proofs and strategies

It is the purpose of this article to prove an equivalence theorem, saying that
every strategy for (certain types of) dialogues can, by a well-defined algorithm,
be transformed into a proof in Gentzen’s calculus LJ and vice versa [46].

Felscher proof is not an example of mathematical elegance: as we have said many
times, it is notoriously known to be lengthy and difficult to understand. But by reading
Felscher’s words — that one can find in the first page of Felscher’s paper— it is rather
hard to believe that the German mathematician was only concerned by mere provability as
Curien, Hyland and Girard seems to suggest. Faced to this fact, one could conclude that
the three authors have simply a wrong view of dialogical logic. However, we do think that
in in some sense the dialogical logic analysis of proof miss a crucial aspect, the fact that
proof can be composed: given a proof of A ⊃ B and a proof of B ⊃ C we can compose the
two proofs obtaining a proof of A ⊃ C. This is the content of the cut rule

...
A ` B

...
B ` C cutA ` C

It is of course possible to show that the cut rule is admissible in our variant of dialogical
logic

Proposition 3.17. if there is a winning strategy for A ⊃ B and a winning strategy for B ⊃ C,
then there is a winning strategy for A ⊃ C.

Proof. By theorem 3.2 there are SLK derivation D1 of ` A ⊃ B and D2 of ` B ⊃ C, by
proposition 3.6 the sequents A ` B and B ` C are provable. By admissibility of the cut-rule
(proposition 3.11) the sequent A ` C is provable and thus there is a proof of ` A ⊃ C. By
theorem 3.2 there is a winning strategy for A ⊃ C �

But we think that this way of dealing with the cut rule is not satisfactory. We have not
shown how to construct a strategy for A ⊃ C from strategies for A ⊃ B and B ⊃ C but
merely asserted its existence using cut-admissibility in the sequent calculus SLK. It would
be much more interesting to define an analogous of the cut-rule directly on strategies. We

126

think that this could be obtained by relaxing the definition of game in order to let the
proponent assert, at any point of the game, an arbitrary formula C. After the Proponent
assertion of C, the Opponent can continue the game by either attacking C or by asserting
C in turn. The cut-admissibility theorem for strategies would be obtained by proving that
the set of formulas admitting winning strategies containing this kind of games is equal to
the class of formulas admitting ’regular’ winning strategies. However, we will not pursue
by this path in our thesis. In the next chapter we will present a semantic of proofs that is
heavily inspired by dialogical logic and in which a satisfying treatment of composition of
strategies has already been developed i.e., game semantics. In particular, we will define a
game semantics that is fully complete for a constructive variant of the basic modal logic
K.

127

Chapter 4

Game Semantics for Constructive Modal
Logic

Abstract
In this chapter we provide a game semantics for the constructive modal logic CK. We first study
a complete sequent calculus for the modal logic CK and we prove the cut-elimination theorem for
this calculus. We then define arenas encoding modal formulas, winning innocent strategies for
games on these arenas and we prove their compositionality. Finally, we characterize the winning
strategies corresponding to proofs in the logic CK. To prove the full-completeness of our semantics,
we provide a sequentialization procedure of winning strategies. All the results of this chapter, but
the cut-elimination theorem for the sequent calculus, already appears in [4].

4.1 Introduction
In this chapter we present a denotational semantics for the constructive modal logic CK.
The denotational semantics we are going to present is constructed using techniques from
game semantics.

4.1.1 Generalities about denotational semantics
Semantics is the area of logic concerned with specifying the meaning of the logical con-
structs. We distinguish between two main kinds of the semantic approach to logic. The

128

first, the model-theoretic approach, is concerned with specifying the meaning of formulas
in terms of truth in some model. The second, the semantic of proofs approach, is concerned
with specifying the meaning of proofs of the logic: we associate an appropriate mathemat-
ical object, such as a number, a tuple, a function, or a graph with each proof of the logic
being considered:

{{−}} : { Proofs } → {Mathematical Objects }

D → {{D}}

the map {{−}} from proofs to mathematical objects should respect some minimal require-
ments:

• the map {{−}} is not the identity function;

• the map {{−}} is not degenerate: one can find a formula A and two proof D and D′ of
A such that {{D}} is not equal to {{D′}};

• the map {{−}} is congruent : if D and D′ are obtained by an application of the same
rule R on D1 and D2 and {{D1}} = {{D2}} then {{D}} = {{D′}};

A semantic of proofs is said to be fully complete whenever the map {{−}} is surjective,
that is: every object in the image of {{−}} is the interpretation of some proof. A semantic of
proofs for a logic is called denotational semantic whenever the map {{−}} respects another
important requirement: if there is a notion of transformation, or reduction, between proofs
—usually cut or detour-elimination— then proofs that are equal modulo this notion of
reduction are interpreted by the same mathematical object.

if D reduces to D′ then {{D}} = {{D′}}

Dialogical logic, which we have presented in the previous chapter, is clearly a fully com-
plete semantic of proofs for classical and intuitionistic logic. However, it is not a denota-
tional semantics. There is no obvious way to interpret an application of the cut-rule of the
sequent calculus, and thus we cannot fulfil the last requirement we have presented. In this
chapter we present a fully complete denotational semantics for the constructive variant of
the basic modal logic K.

129

4.1.2 Generalities about constructive modal logics
Modal logics are extensions of classical logic, making use of modalities to qualify the truth
of a judgement. According to the interpretation of such modalities, modal logics find ap-
plications, for example, in knowledge representation [134], artificial intelligence [103] and
formal verification [73]. More precisely, modal logics are obtained by extending classical
logic with a modality operator � (together with its dual operator ^), which are usually
interpreted as necessity (respectively possibility).

When we move from the classical to the intuitionistic setting, the modality ^ is no
longer the dual of the modality � and by consequence the classical k-axiom �(A ⊃ B) ⊃
(�A ⊃ �B) is no longer sufficient to express the behavior of the modality ^. Depend-
ing on the chosen axioms, it is possible to define different flavors of “intuitionistic modal
logics” (see, e.g., [49, 115, 114, 128, 12, 36]). In this chapter we consider the basic fla-
vor of intuitionistic modal logic originated in the classic work of Dag Prawitz [115] and
now called constructive modal logics [12, 66, 101, 45, 85]. In particular, we will be in-
terested in the constructive modal logic K also known as CK. This logic is defined as
the set of formulas containing all theorems of minimal logic, each instance of the axioms
�(A ⊃ B) ⊃ (�A ⊃ �B) and �(A ⊃ B) ⊃ (^A ⊃ ^B) and closed for the rule of modus
ponens and necessitation. The interest of these logics lies in the fact that it is possible to
give them a computational interpretation by extending the simple typed lambda calculus
with specific constructors for the modalities. The modal logic CK is the basic system of
constructive modal logic, in the sense that all other systems are obtained by adding one or
more modal axioms to it.

The model theoretic semantics for CK and its extensions is well studied and understood,
and it is given, in the usual semantics for modal logic, by a particular class of kripke frames
i.e., a set of ‘worlds’ with specific relations between them. We will talk no more about
model theoretic semantics and invite the interested reader to consult [85].

On the contrary, the study of denotational semantics for CK is still rough and the only
full complete denotational model for CK is defined by the quotient of its natural deduction
proofs with respect to detour elimination [11, 12]. Even if the model presented by Bellin
and colleagues is a fully complete denotational model, we cannot be really satisfied with
it. As we have said, proofs are interpreted by classes of equivalence on proofs. Each of
these class of equivalence contains proofs that are equal modulo the reflexive, symmetric
and transitive closure of the relation “the proof D reduces in one step of detour elimination
to the proof D′” i.e., the model studied in [11] is the syntactic category obtained by the

130

quotient of proofs modulo detour. It should be clear that a syntactic model of this kind is in
some sense not concrete: the interpretation of proofs is almost the identity function on the
set of proofs.

4.1.3 Generalities about game semantics
Modern game semantics has been invented (or discovered) independently and almost si-
multaneously by Samson Abramsky and Radha Jagadeesan [1] and by Martin Hyland and
Luke Ong [76]. The two approaches slightly differ, and in this thesis we will focus on
the Hyland-Ong approach. Game semantics has been used to provide denotational models
for both programming languages and logical systems. On the logical side originally game
semantics were developed as a denotational semantic for the multiplicative fragment of
linear logic [1, 76]. On the programming language side game semantics were developed
as denotational models for the language PCF [2, 77]. In game semantic, as in dialogical
logic, proofs are interpreted as winning strategies for a two-player game. As in dialogical
logic, the games are sequences of moves made alternately by the two players, which —
as in dialogical logic— are called Proponent (P) and Opponent (O). However, contrarily
to dialogical logic, the games are played over an arena. Arenas are directed graphs that
represent formulas. A game for a formula A will be a sequence of vertices of the arena
representing A. At each point of the game, the player who is about to make the move must
choose a vertex of the arena that points to one of the vertices that has been already chosen
by the other player. Using again the analogy with chess, an arena represent the chessboard
and the game the configuration of the chessboard at a given moment. What a player can
do at a given moment depends upon the current configuration of the game, the physical
structure of the chessboard and — of course— the rules of chess.

In particular, we will use the techniques of game semantics to construct a concrete
denotational model for the logic CK. In a concrete, fully complete model, the connection
between syntax and semantics is strong without, however, being achieved through a by
product of syntax. This point is well explained by Laurent in [92]

An important topic in the recent developments of denotational semantics has
been the quest for stronger and stronger connections between the syntactical
systems and the denotational models. Works for making the two notions closer
have become from the two sides and can be seen as an attempt to solve the
general question “what is a proof?”. Full abstraction and full completeness

131

results have been initiated with game semantics [...] This full completeness
property can be considered as a measurement of the precision of the semantics
(whatever the syntax might be).

4.1.4 Game semantics for CK
The purpose of this chapter is to provide a fully complete denotational semantics for CK in
terms of a game semantics [2, 77, 100]. Thereby we provide a concrete denotational model
for this logic, that is, a model whose elements are not obtained by the quotient on proofs
induced by cut-elimination.

As mentioned before: in game semantics proofs are denoted by winning strategies for
two-player games played on a graph, called modal arena, that encodes a modal formula.
We denote the players by O (Opponent) and P (Proponent).

Each play consists of an alternation of O-moves and P-moves, that is, a play is repre-
sented by a list of occurrences of the vertices in the modal arena. The first move in a play
is a O-move selected among the →-roots of the modal arena. Each subsequent move of a
player must be justified by a previous move of the other player, that is, the selected vertex
must be the source of a →-edge with target a vertex previously played by the other player.
The game terminates when one player has no possible moves, losing the play.

−−−−−−−−−−− AX
a ` a0
−−−−−−−−−−−−−−− K�
�a ` �a

−−−−−−−−−−− AX
a ` a2

−−−−−−−−− AX
b ` b
−−−−−−−−−−−−−−− K�
�b ` �b

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− ⊃L

a, a ⊃ �b ` �b
−−− K^
^(a ⊃ �b),�a ` ^�b

−− ⊃R

�a ⊃ ^(a ⊃ �b),�a,�a ` ^�b
−−− C
�a ⊃ ^(a ⊃ �b),�a ` ^�b
−− W
�a ⊃ ^(a ⊃ �b),�a, c ` ^�b

== ⊃R

` (((�a ⊃ ^(a ⊃ �b)) ⊃ �a) ⊃ c) ⊃ ^�b

O P O
� ^

a0 �
^

a2 b
� �

a b
c

^ ^ � �
� � ε ε
b b a0 a

^ ^ ^ �
� � ε ε
b b a2 a

^ ^ ^ �

^ ^ a2 a


Figure 4.1: A derivation D of the formula F = (((�a0 ⊃ ^(a2 ⊃ b)) ⊃ �a) ⊃ c) ⊃ ^b, the
modal arena ~F�, and the maximal batched views in the CK-WIS {{D}} of F. We indexed
some occurrences of the atom a to avoid ambiguity in the views.

132

A winning innocent strategy (for P) is a set of plays which takes into account every
possible O-move.

The adjective innocent is referred to the play-style of O which chooses each of its non-
initial moves only according to the previous P-move in the play.

De facto, the presence of the modal axioms leads to the need of a new notion of batches
in a play in order to characterize winning innocent strategies corresponding to proofs

in the constructive modal logic CK. By means of example, consider the formulas �a ⊃
a and (�a ⊃ �b) ⊃ (�(a ⊃ b)) which are not theorems of CK. Their corresponding
modal arenas are pictured below, together with the unique maximal view in their winning
innocent strategies. Instead of representing these views, we represent the corresponding
batched views, which encode the view together with a decoration of each move given by
the modalities in whose scope they occur.

P O
�

a a

(
�

a a

) O P O
�2 � �0

a b b
a

(
�0 � = � �2
b b a a

)

(4.1)
The strategies containing these views cannot be considered satisfactory since the modal-

ities are not “properly batched” with respect to the modal rules in the sequent calculus for
CK. In fact, the WIS containing these maximal views correspond to correct proofs in the
intuitionistic propositional logic of the formulas obtained by removing the modalities, that
is, a ⊃ a and (a ⊃ b) ⊃ (a ⊃ b).

In order to recover the correspondence between winning strategies and proofs, it suffices
to consider two additional constraints on the accepted P-moves. We observe that each
modality has a parity (the same of the corresponding node in the modal arena) and a height
(defined as the number of the modalities in whose scope it belongs). The first constraint
demands that each P-move must be in the scope of the same number of modalities of the
previous O-move, ruling out the leftmost example in Equation (4.1). This constraint allows
us to define sub-plays (corresponding to sub-proofs): whenever a O-move is in the scope of
a new O-modality, that is, a modality whose scope contains no previous moves of the play,
then the successive moves are played in a same sub-play. A sub-play ends when a O-move
is in the scope of no modalities or in the scope of a new O-modality with equal or smaller
height with respect to the previous P-move. Note that sub-plays can be nested. This allows

133

us to gather modalities having the same height and in whose scope there are moves of a
sub-play into batches. The second constraint demands that these batches have a specific
shape, that is, the same of the modalities in the rules of the sequent calculus: only one
O modality occurs, and either all modalities are boxes or there is exactly one P-diamond
and one O-diamond. These conditions rule out the existence of winning strategies for the
formulas from Equation (4.1): in the first one the P-move has not the same height of the
previous O-move, in the second one all the modalities are batched in the same set, which
includes two O modalities.

Contribution of the chapter In this chapter we provide a direct correspondence between
the sequent system for CK and our winning innocent strategies (CK-WIS). In particular,
we show that the set of CK-WISs form a fully complete denotational model for this logic.

Organization of the chapter. In section 4.2 we introduce the constructive modal logic
CK; in particular we introduce a sound and complete sequent calculus system for this logic,
that we call LCK, and we prove the cut-elimination theorem for this sequent calculus sys-
tem. In section 4.3 we introduce the graph that will be used to code formulas in our game
semantics i.e., modal arenas. In section 4.4 we recall the basic definitions of views and
winning (innocent) strategies from game semantics and we enrich them in order to prop-
erly capture winning strategies corresponding to modal proofs that we call CK-WISs for
CK winning innocent strategies. In section 4.5 we prove that we can compose the winning
strategies that we have defined in the preceding section i.e., that given two CK-WISs R and
T for A ⊃ B and B ⊃ C we can construct a CK-WIS for A ⊃ C by “gluing” together R and
T appropriately. In section 4.6 we define the CK-WISs that will be used in section 4.7 to
provide a denotational interpretation of LCK derivations. In section 4.8 we prove that the
game semantic interpretation of LCK derivations is fully complete: each winning CK strat-
egy is the image of some derivation in the sequent calculus. Section 4.9 sketch how, with
a slight modification of the definitions presented in the previous section, we can obtain a
fully complete game semantics for the constructive modal logic CD. Section 7.8 concludes
the chapter providing some leads for extensions and future works.

134

4.2 Background
In this section we present the fragment of the constructive modal logic CK in which we are
interested. Moreover, we provide a complete sequent calculus system LCK, for the con-
structive modal logic CK. We prove that this calculus enjoys the cut-elimination theorem.

4.2.1 The constructive modal logic CK
We consider the (modal) formulas generated by a countable set of (atomic) formulas A =

{1, a, b, . . . }1 and the following grammar

F = A | F ⊃ F | F ∧ F | �F | ^F

Arbitrary formulas will be denoted by upper case letters from the roman alphabet. We say
that a formula is modality-free (respectively unit-free) if it contains no occurrences of �
and ^ (respectively no occurrences of 1). A formula is a ⊃-formula (resp. a ∧ formula) if
it is of the form A ⊃ B (resp. A ∧ B).

The constructive modal logic CK is the smallest set of formulas containing

• all tautologies of minimal logic;

• each instance of the axiom k1 : �(A ⊃ B) ⊃ (�A ⊃ �B);

• each instance of the axiom k2 : �(A ⊃ B) ⊃ ^A ⊃ ^B

• closed for necessitation: if A ∈ CK then �A ∈ CK;

• closed for modus ponens: if A ∈ CK and A ⊃ B ∈ CK then B ∈ CK.

4.2.2 The sequent calculus LCK
We now present two sequent calculus system. We call the first one ,presented in Figure 4.2,
LCK. We call the second one, presented in figure Figure 4.3, LCK?. Usually a sequent for
constructive logic is defined as an expression Γ ` C where C is a formula and the context Γ

is either
1In this chapter we suppose that the setA does not contain ⊥

135

1. a finite, possibly empty, list of formulas.

2. a finite, possibly empty, multiset of formulas.

The approach of point 1 is the one that was used by Gentzen in his PhD dissertation in
which he introduced the sequent calculus. This definition of sequent has the advantage of
making the notion of occurrence of a formula in a context clear, but has a major drawback:
we are forced to introduce a structural rule, the exchange rule, to permute formulas in the
context. The approach of point 2 is the one we chose in the previous chapter. In this way
we do not need the exchange rule, since the order in which formulas appear in the context
is irrelevant. Nevertheless, there is a drawback: the concept of occurrence of a formula in
a context became fuzzy.

Once again we borrow an idea of Herbelin: suppose that we have two disjoint set NH

and NC of Hypothesis names and Conclusion name. A named formula is a pair (A, n)
where A is a formula and n ∈ NH ∪ NC. We will say that n is the name of A or that
A is named by n. A sequent is an expression Γ ` C. The context Γ is a set of named
formulas, each name of a formula belongs to NH, and no two formula are named by the
same element of NH. The conclusion C is a named formula named by an element of NC.
If Γ ` C is a sequent the expression NΓ denotes the set of names of the formulas in Γ i.e.
{n ∈ NH | (A, n) ∈ Γ}. In what follows we will use Greek upper case letters (Γ,∆,Λ,Σ . . .
etc.) to denote a set of named formulas, and we will use Roman low-case letters from
the end of the alphabet (x, y, z,w, u . . . etc.) to denote elements of NH ∪ NC Two sequents
Γ ` C, ∆ ` D are compatible iff D and C have different names and N(Γ) ∩ N(∆) = ∅. If
Γ = (A1, x1), . . . (An, xn) and ∆ = (B1, y1), . . . (Bm, ym) are two set of named formulas such
that n = m and for all i ∈ {1, . . . n} Ai = Bi and xi , yi, then we will say that they are twins.
A sequent calculus system is a set of inference rules. In an instance of an inference rule

Γ1 ` A1 · · · Γn ` An

∆ ` C

all the sequents Γi ` Ai for i ∈ {1, . . . n} are compatible. We call them the premises of the
rule. We call the unique sequent ∆ ` A the conclusion of the rule.

A rule is classified with respect to the number of its premises. In the sequent calculi
systems that we are going to present, rules have either zero premises, one premise or two
premises, and we will call them, respectively, 0-ary rules, unary rules or binary rules. If
a named formula Ax appears in the conclusion of a rule R but not in the premises of the

136

rule, then the name of the formula does not appear in the premises of the rule. In this case
we will say that R introduces Ax or that Ax is introduced by R. In figure 4.2 and 4.3 the
expression �Γ denotes (�A1)y1 , . . . , (�An)yn whenever Γ is A1

x1 , . . . , An
xn with yi , xi for all

i ∈ {1, . . . , n}.
In the binary rules for the sequent system LCK?, i.e., the two rules

Γ ` Ax Γ ` By

Γ ` (A ∧ B)z
Γ, (A ⊃ B)v ` Ax Γ, By ` Cw

Γ, (A ⊃ B)z ` Cw

The letter Γ represent sets of named formulas that are twins.
A derivation (or proof) D of a sequent Γ ` Cy in LCK (resp. LCK?) is a finite tree

of sequents constructed according to the rules showed in figure 4.2 (resp. in figure 4.3).
The leaves of D are instances of the 0-ary rules 1 or AX (we will sometimes call this rule
axiom-rule). The root of the tree, also called conclusion of the proof or simply conclusion,
is Γ ` Cy. A sequent Γ ` Cy is provable in LCK (resp. LCK?) iff there is an LCK (resp.
LCK?) derivation D of Γ ` Cy.

The sequent calculus system LCK? of figure 4.3 is sound and complete for the construc-
tive modal logic CK as it is showed in [87].

Moreover, the rules W,C, cut and the generalized axiom-rule

AX
Γ, Ax ` Ay

where A is any formula and x, y any names are admissible in LCK?. We can thus prove
that also LCK is sound and complete for the constructive modal logic CK thanks to the
following proposition

Proposition 4.1. The sequent Γ ` Cy is provable in LCK iff it is provable in LCK?

Proof. We prove that all rules of LCK are admissible in LCK? and that all rules of LCK?

are admissible in LCK. The proof is by induction on the height |D| of the derivation D of
Γ ` C in LCK (resp. LCK?). For the left to right direction we use the admissibility of the
generalized Axiom-rule for the base case, and we use the admissibility of the rules C,W
and cut for the inductive cases together with the rules of LCK?

For the other direction, we use an instance of AX with A atomic and the W to derive an
instance of the AX? and use use instances of C and W together with the rules of LCK for
the inductive cases. �

137

−−−−−−−−−−−−−− AX
Ax ` Ay

Γ, Bx ` Ay

−−−−−−−−−−−−−−−−−−−−−−− ⊃R

Γ ` (B ⊃ A)z

Γ, Bx,Cy ` Aw

−−−−−−−−−−−−−−−−−−−−−−−−−−−− ∧L

Γ, (B ∧C)z ` A

Γ ` Ax ∆ ` By

−−−−−−−−−−−−−−−−−−−−−−−−−−−−− ∧R

Γ,∆ ` (A ∧ B)z

Γ ` Ax By,∆ ` Cw

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− ⊃L

Γ,∆, (A ⊃ B)z ` Cw

Γ ` Ax Ay,∆ ` Bw

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− cut
Γ,∆ ` Bw

−−−−−−− 1
` 1x

Γ, Bx, By ` Aw

−−−−−−−−−−−−−−−−−−−−−−−−−− C
Γ, Bz ` Aw

Γ ` Ax

−−−−−−−−−−−−−−−−−− W
Γ, By ` Ax

Γ ` Ax

−−−−−−−−−−−−−−−−−−−−− K�
�Γ ` (�A)y

By,Γ ` Ax

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− K^
(^B)z,�Γ ` (^A)w

Figure 4.2: The rules for the sequent system LCK and the cut-rule
−−−−−−−−−−−−−−−−− AX?

Γ, ax ` ay

Γ, Bx ` Ay

−−−−−−−−−−−−−−−−−−−−−−− ⊃R?

Γ ` (B ⊃ A)z

Γ, Bx,Cy ` Aw

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− ∧L?

Γ, (B ∧C)z ` Aw

Γ ` Ax Γ ` By

−−−−−−−−−−−−−−−−−−−−−−−−−−−−− ∧R?

Γ, ` (A ∧ B)z

Γ, A ⊃ Bv ` Ax Γ, By ` Cw

−− ⊃L?

Γ, (A ⊃ B)z ` Cw

−−−−−−−−−−− 1?
Γ ` 1x

Γ ` Ax

−−−−−−−−−−−−−−−−−−−−−−−−−− K�?
�Γ,∆ ` (�A)y

By,Γ ` Az

−−− K^?
(^B)x,�Γ,∆ ` (^A)w

Figure 4.3: The rules for the sequent system LCK?

From the latter proposition one can easily deduce the following

Theorem 4.1. The sequent calculus system LCK is sound and complete for the constructive
modal logic CK

From now on we will entirely forget the sequent calculus system LCK?. Every time that
we will talk about derivations or proofs, we will be talking about proofs and derivations in
LCK.

4.2.3 Cut elimination for LCK
We now prove that the cut-rule is redundant in LCK, i.e., that given a derivation D of
the sequent Γ ` C containing instances of the cut-rule we can construct a derivation D′

of Γ ` C in which no cut-rule is used. To do so, as it is usual, we define a series of
transformations on quasi cut-free derivations. A quasi-cut free derivation is a derivation in
which only one instance of the cut-rule is used, and it is the last rule of the derivation. These
transformations, if opportunely applied, permit to transform a quasi cut-free derivation into
a cut-free derivation of the same sequent. This technique naturally extends to a derivation
D in which more than one instance of the cut-rule appears: we first eliminate cuts on quasi
cut-free sub-derivations of D.

Since we are working with named formulas, we must be careful in the definition of the
transformation. Some transformation steps duplicate the sequents that are premises of the
cut-rule and then apply contraction rules. We thus define the following notion

138

Definition 4.1. A proofD′ with conclusion Γ ` Cz is a variant of a proofD with conclusion
Γ′ ` Cw iff the sets of named formulas Γ and Γ′ are twins andD′ D are obtained by applying
the same rules.

Proposition 4.2. For every proof D there is a variant D′ of D

Proof. Let Ax be any named formula in the context of the conclusion of D. The named
formula Ax has been introduced in D by a rule R. We choose a name v that does not appear
in any sequent of D, and we let R introduce Av instead of Ax. We repeat this procedure for
any formula in the context of the conclusion of D. �

We now define the transformation on quasi cut-free derivations; for ease of reading
(and for ease of writing) we will omit the superscripts of the named formulas, and we will
simply signal to the reader when the notions of definition 4.1 are needed. The general form
of a cut-rule is the following

D1

... R1
Γ ` F

D2

... R2
∆, F ` C

Γ,∆ ` C

We define the transformations by looking at R1 and R2

(∧R/∧L) if R1 = ∧R is a rule that introduce F = A ∧ B and R2 = ∧R is a rule that introduce
F = A ∧ B, then the derivation D has the form

D1.1

...
Γ ` A

D1.2

...
∆ ` B

∧R
Γ,∆ ` A ∧ B

D2.1

...
Σ, A, B ` C

∧L
Σ, A ∧ B ` C

cut
Γ,∆ ` C

The transformation associated to D is the following proof D′

139

D1.1

...
Γ ` A

D1.2

...
∆ ` B

D2.1

...
Σ, A, B ` C

cut
∆,Σ, A ` C

cut
Γ,∆ ` C

(⊃R/⊃L) if R1 = ⊃R is a rule that introduce F = A ⊃ B and R2 = ⊃L is a rule that introduce
F = A ⊃ B, then D has the form

D1.1

...
Γ, A ` B

⊃R
Γ ` A ⊃ B

D2.1

...
∆ ` A

D2.2

...
B,Σ ` C

⊃L
A ⊃ B,∆,Σ ` C

cut
Γ,∆,Σ ` C

The transformation associated to D is the following proof D′

D1.1

...
∆ ` A

D1.2

...
Γ, A ` B

D2.1

...
B,Σ ` C

cut
Γ,Σ, A ` C

cut
Γ,∆,Σ ` C

(K�/K�) if R1 = � is a rule that introduce F = �A and R2 = �A is a rule that introduce
F = �A, then D has the following form

D1.1

...
Γ ` A K��Γ ` �A

D2.1

...
∆, A ` C

K�
�∆,�A ` �C

cut
�Γ,�∆ ` �C

140

The transformation associated to D is the following proof D′

D1.1

...
Γ ` A

D2.1

...
∆, A ` C

cut
Γ,∆, ` C

K�
�Γ,�∆ ` �C

(K�/K^) if R1 = K� is a rule that introduce F = �A and R2 = K^ is a rule that introduce
F = �A, then D has the following form

D1.1

...
Γ ` A K��Γ ` �A

D2.1

...
∆, B, , A ` C

K^�∆,^B,�A ` ^C
cut

�Γ,�∆,^B ` ^C

The transformation associate to D is the following proof D′

D1.1

...
Γ ` A

D2.1

...
∆, B, A ` C

cut
Γ,∆, B ` C

K^�Γ,�∆,^B ` ^C

(K^/K^) if R1 = K^ is a rule that introduces F = ^A and R2 = K^ is a rule that introduces
F = ^A, then D has the following form

D1.1

...
Γ, B ` A

K^�Γ,^B ` ^A

D2.1

...
∆, A ` C

K^�∆,^A ` ^C
cut

�Γ,�∆,^B ` ^C

141

The transformation associated to D is the following derivation D′

D1.1

...
Γ, B ` A

D2.1

...
∆, A ` C

cut
Γ,∆, B ` C

K^�Γ,�∆,^B ` ^C

The cases that we have treated will be called key-cases or logical-cases

(AX) If one betweenD1 andD2 is a derivation obtained by an instance of the AX-rule, then
it is of conclusion F ` F. Suppose it is D1 (the case in which is D2 being perfectly
symmetrical). Thus D2 has conclusion ∆, F ` C and the transformation associated to
D is just D2

W If R2 = W is a rule that introduce F, then D has the following form

D1

... R1
Γ ` F

D2

...
∆ ` C WF,∆ ` C

cut
Γ,∆ ` C

The transformation associate to D is the following proof D′ in which the multiple
lines indicate many instances of the weakening rule

D2

...
∆ ` C

Γ,∆ ` C

C if R2 = C is a rule that introduce F, then D has the following form

142

D1

... R1
Γ ` F

D2

...
F, F,∆ ` C

CF,∆ ` C
cut

Γ,∆ ` C

The transformation associated to D is the following proof D′

D1
′′

... R1
Γ ` F

D1
′

... R1
Γ ` F

D2

...
F, F,∆ ` C

cutF,Γ,∆ ` C
cut

Γ,Γ,∆ ` C
Γ,∆ ` C

Here the two proofs D1
′ and D1

′′ are two different variants of D1 and the multiple
lines denotes many applications of the contraction rule.

(cc)2 If one between R1 and R2 is a rule that introduces a formula A that is not the cut-
formula F, then we remark that neither R1 nor R2 can be a modal rules, and we
proceed as follows; if it is R1 then R1 is one between ⊃L,∧L and A is a formula in Γ.
In the case R1 = ⊃L, then A = B ⊃ D, Γ = Γ1,Γ2 and D has the following form

D1.1

...
Γ1 ` B

D1.2

...
D,Γ2 ` F

⊃L
Γ1,Γ2, B ⊃ D ` F

D2

... R2
∆, F ` C

cut
Γ,∆, B ⊃ D ` C

The transformation associated to D is the following proof D′

143

D1.1

...
Γ1 ` B

D1.2

...
D,Γ2 ` F

D2

... R2
∆, F ` C

cut
Γ2,∆,C ` C

⊃L
Γ,∆, B ⊃ C ` C

If R1 = ∧L, W or C then D has the following schematic form

D1.1

...
Γ1 ` F R1
Γ ` F

D2

... R2
∆, F ` C

cut
Γ,∆ ` C

The transformation associated to D is the following proof D′

D1.1

...
Γ1 ` F

D2

... R2
∆, F ` C

cut
Γ1,∆ ` C R1
Γ,∆ ` C

If the rule is R2, we have all the cases we have encountered for R1 plus the following
two : if R2 is a rule introducing the formula C, then R2 can be either a ⊃R or a ∧R.
We treat only the case of the ⊃R. The derivation D has the form

D1

... R1
Γ ` F

D2

...
F,∆, B ` D

⊃R
F,∆ ` B ⊃ D

cut
Γ,∆ ` B ⊃ B

144

The transformation associated to D is the following proof D′

D1

... R1
Γ ` F

D2

...
F,∆, B ` D

cut
Γ,∆, B ` D

⊃R
Γ,∆ ` B ⊃ D

To prove the cut elimination theorem we use a technique developed by Abrusci and
Tortora De Falco in their book [3].3

We define a set Tglob of ‘global’ transformation steps. The global transformation steps
allow us to transform any derivation into a derivation without cuts of the same conclu-
sion. The global transformation steps are obtained by composing, in a specific way, the
elementary transformation steps we have just introduced.

Remark that we can divide occurrences of the cut-rule into two families

1. Logical cases : these are the cuts (∧R/∧L), (⊃R/⊃L), (K�/K�), (K�/K^) and (K^/K^).
A generic logical cut will by denoted by (L)

2. Structural cases: these are all the other cases. A generic structural-cut will by denoted
by (S)

Remark that to each logical cut we can apply only one transformation. We call such
transformation logical step. This is not true of structural cuts: we can apply different
transformations — that we will call structural step— but in any case, not a logical transfor-
mation. We now define the set Tglob: this set contains each elementary logical step and the
structural step obtained by composing the structural steps (AX), (C), (W) and (cc). We also
use (L) tho denote the generic logical step. We should now define precisely the structural
step (S): such a step is applied when no logical step can be applied, that is, when (with the
chosen notations) at least one of the two rules R1 and R2 is not a logical rule that introduces
the cut-formula F. We now reintroduce the names of the formulas, since they are needed

3We attribute the paternity of this technique to Abrusci and Tortora de Falco, we are unaware whether it
occurs somewhere else in the proof-theory literature

145

to precisely define the structural step (S). Suppose that R2 is a rule that does not introduce
the cut formula Fy in Fy,∆ ` Cw. We can trace the ‘history’ of Fy in D2. More precisely,
we collect the formula occurrences of F that are ‘recursively contracted’ into Fy together
with Fy. First, let us define some auxiliary notions.

Let D be a proof, Γ ` Cy be a sequent in D and F x a formula occurrence that appears in
Γ ` Cy. The sequent Γ ` Cy is the cradle of F x iff F x does not appear in any sequent above
Γ ` Cy.

Definition 4.2. Let F x be a formula occurrence and let D be a derivation. The historyHDFx

of F x in D is the set of formula occurrences defined as follows:

• if D is obtained by an AX-rule or a 1-rule and the conclusion of D is not the cradle
of F thenHDF = ∅,

• if D is obtained by an AX-rule or a 1-rule and the conclusion of D is the cradle of F
thenHDFx = {F x},

• if D is a proof with immediate sub-proofs D1, . . .Dn and the conclusion of D is not
the cradle of F x thenHDFx =

⋃
i≤nH

Di
Fx

• if D is a proof with immediate sub-proofs D1 . . .Dn and the conclusion of D is the
cradle of F x we have two sub-cases:

1. if the conclusion of D is obtained by a logical rule R, or by a weakening rule W
thenHDFx =

⋃
i≤nH

Di
Fx ∪ {F x}

2. if the conclusion of D is obtained by a contraction rule C then, by calling D1

the immediate sub-proof of D with conclusion Γ′, Fy, Fz ` C′w, HDFx = H
D1
Fy ∪

H
D1
Fz ∪ {F x}.

A formula occurrence Fz ∈ HDFx will be called a leaf iff HD
′

Fz = {Fz} where D′ is the
sub-proof of D with conclusion the cradle of Fz.

By the definition of HDFx the leaves of this set will be formula occurrences of F that
are introduced by a logical rule, by an axiom rule or by a weakening rule.

We can now define precisely define the step (S).

146

• For all leaves of HDFy that are obtained in D2 by an AX-rule F ` F. We substitute a
variant of the proof D1 of Γ ` F x to the axiom rule in D2.

• For all leaves Fyi ofHD2
Fy that are obtained in D2 by a logic rules R. Let us denote by

α the derivation above R in D2. We substitute α in D2 with the following derivation

D1

... R1
Γ ` F x

α
... R

∆′, Fyi ` C′w
′

Γ,∆′ ` C′w
′

Where the sequent ∆′, Fyi ` C′w
′

is the cradle of Fyi

• for all leaves of HDFy that are obtained in D2 by a W-rule with premise Λ ` C′w
′

. We
substitute in D the instance of W with the number of application of the W needed to
obtain the sequent Γ,∆ ` C′w

′

. All the formulas name of Γ being fresh.

By applying this procedure, we obtain that in D every leaf ofHD2
Fy is substituted every-

where by Γ. Remark that the only rules that are applied to occurrences of F in D2 that are
not leaf of HD2

Fx
are C-rules. We apply those rules to Γ the right number of times and thus

obtain a derivation of Γ,∆ ` C.

It is evident that the step (S) is obtained by composing together in a certain way reduc-
tion steps that are not logical steps. Let us now state the following definition.

Definition 4.3. Let R by a structural cut-rule, with cut-formula F, and such that the
premises of R are conclusion of a derivation D1 and of a derivation D2 in which the last
rules are, respectively, R1 and R2.

• if both R1 and R2 are rules that do not introduce F then we say that the cut-rule R is
of type S 1

• it is of type S 2 otherwise.

The following lemma is evident by the definition of the global structural step (S).

147

Lemma 4.1. Let R be a structural cut in an almost cut-free derivation D of Γ ` C

1. If S is of type S 1 then by applying the global step (S) to R we obtain a derivation D′

of Γ ` C in which all instance of the cut-rule (if any) are of type S 2

2. If S is of type S 2 then by applying the global step (S) to R we obtain a derivation D′

of Γ ` C in which all instance of the cut-rule (if any) are logical cut

Let D and almost cut-free derivation with cut-rule R. The energy en(D) of D is 2 if R is
a cut of type S 1, 1 is if R is a cut of type S 2 and 0 otherwise. The degree of a cut-rule is the
degree of its cut-formula. The degree σ(D) of an almost cut-free derivation is the degree
of the cut-rule of D. We can finally prove the following

Proposition 4.3. Let D be an almost cut-free derivation of the sequent Γ ` C. If we apply
only reduction steps in Tglob then D can be transformed into a cut-free derivation D′ of
Γ ` C.

Proof. By induction on the couple (δ(D), en(D)) using lemma 4.1 and the fact that the
degree of the cut-formula strictly decreases whenever we apply logical steps of transfor-
mation. �

It is now possible to prove the following theorem by induction on the number n of
cut-rule in D.

Theorem 4.2. There exists a procedure P which associate to each derivation D of Γ ` C a
cut-free derivation D′ with the same conclusion.

4.3 Modal Arenas
In this section we provide the definitions of the graphs that encodes formulas in game
semantics. They are called arenas. The name is due to the fact that the zero-sum games we
are going to define, takes places ‘inside’ these graphs as, in the roman period, the deadly
fights between gladiators took place inside arenas. Arenas are like chessboards: they form
the environment in which a game can take place, and their configuration impose restrictions
on the type of moves the players can make. Being more precise: the games that we are
going to define in the next session are sequences of vertices of arenas. An arena will be
defined as a directed graph with two kinds of edges and in which vertex are labelled with

148

either propositional variables, the � modality or the ^-modality. The two kind of edges
takes into account, respectively, the structure of modality free formulas and the scope of
modalities.

A directed graph G = 〈VG,
G
→〉 is given by a set of vertices VG and a set of direct edges

G
→ ⊆ VG × VG. A vertex v is a

G
→-root, denoted v 6→ if there is no vertex w such that v

G
→w.

We denote by
→

RG the set of
G
→-roots of G. A path from v to w of length n is a sequence

of vertices x0 . . . xn such that v = x0, w = xn and xi
G
→xi+1 for i ∈ {0, . . . , n − 1}. We write

v
G
→∗w if there is a path from v to w. A directed acyclic graph (or dag for short) is a directed

graph such that v
G
→nv implies n = 0 for all v ∈ V.

A two-color directed acyclic graph (or 2-dag for short) G = 〈VG,
G
→,

G
 〉 is given by a

set of vertices VG and two disjoint sets of edges
G
→ and

G
 such that the graph 〈VG,

G
→∪

G
 〉

is acyclic. We denote
G
→← =

G
→ ∪

G
←,

G
! =

G
 ∪

G
f. We omit the superscript when clear

from context and we denote by ∅ the empty 2-dag

Definition 4.4. Let G,H and F , ∅ be 2-dags, we denote by RG
F

the set of edges from the

→-roots of G to the →-roots of F , that is RG
F

= {(u, v) | u ∈
→

RG, v ∈
→

RF }.
We define the following operations on 2-dags:

G+H =〈 VG] VH ,
G
→]

H
→ ,

G
]

H
 〉

G−.F =〈 VG] VF ,
G
→]

F
→] RG

F
,
G
]

F
 〉

G∼.F=〈 VG] VF ,
G
→]

F
→ ,

G
]

F
] RG

F
〉

G−.∅ = ∅ �∼.∅ = ∅ ^∼.∅ = ^

Where] is the disjoint union i.e., A]B = A×{0}∪B×{1}. The operations can be pictured
as follows, with I representing the →-roots of each graph.

G+H G−.H G∼.H G−.∅ = �∼.∅ ^∼.∅

G
I
I

H
I
I

G
I
I

H
I
I

G
I
I

H
I
I

∅ ^

149

That is :

• The operation + puts the two 2-dags G and H side by side without adding any new
edge between the two.

• The operation −. adds a directed edge → from every →-root of G to every →-root
ofH

• The operation ∼. adds a directed edge from every →-root of G to every →-root
ofH

We can associate to each formula F a L-labeled 2-dag ~F� as follows by induction on
the depth |F| of F.

~a� = a ~A ⊃ B� = ~A�−.~B� ~A ∧ B� = ~A�+~B� ~1� = ∅

~�A� = � ∼.~A� ~^A� = ^ ∼.~A� (4.2)

Definition 4.5. A modal arena is a dag G such that G = ~F� for a modal formula F.

if Γ ` A is a sequent, with Γ = B1, B2, . . . Bn−1, Bn we denote by ~Γ ` A� the modal arena

~ (. . . (B1 ∧ B2) . . .) ∧ Bn−1) ∧ Bn) ⊃ A�

By construction, a vertex v in a modal arena ~A� has the form

v = ((. . . ((x, i1), i2)) . . . in))

where i j ∈ {0, 1} for every j ∈ {1, . . . n} and x ∈ A ∪ {�,^} . We call the vertex x the label
of the vertex v, and we denote it by `(v). We say that v is a modal vertex if `(v) = � or
`(v) = ^. We say that v is an atomic vertex otherwise. If G is a modal arena, we denote by
V�
G

the set of vertices of G that are labeled by a � and by V^
G

the set of vertices of G that are
labeled by a ^ modality. We denote by VP

G
the set of odd vertices of G and by VO

G
the set of

even vertices of G.
When no confusion can arise, we will tend to identify a vertex v with its label `(v). This

will drastically simplify the exposition and the drawings present in this chapter.

Definition 4.6. Let G = 〈VG,
G
→,

G

 〉 andH = 〈VH ,
H
→,

H
 〉 be two 2-dag and f a bijective

map from G to H . We say that f is 2-dag isomorphism or simply an isomorphism iff it

preserves labels and edges i.e. `(x) = `(f (x)), x
G
→y iff f (x)

H
→ f (y) and x

G
 y iff f (x)

H
 f (y)

for all x, y in VG. We write G f
∼H whenever f is an 2-dag-isomorphism f : VG → VH

150

Proposition 4.4. [Arena isomorphism] Let A, B and C be three arbitrary formulas. There
exists 2-dag-isomorphism rA, nil, g,m0, c, a and λ such that

~A ∧ 1� rA
∼ ~A� ~A ⊃ 1� nil

∼ ~1� ~1 ⊃ A�
g
∼ ~A� ~�1�m0

∼ ~1�

~A ∧ B� c
∼ ~B ∧ A� ~A ∧ (B ∧C)� a

∼ ~(A ∧ B) ∧C� ~(A ∧ B) ⊃ C� λ
∼ ~A ⊃ (B ⊃ C)�

Proof. These arena isomorphisms are standard in game semantics and are all quite naturally
defined. Recall that a function f : X → Y is a bijection iff there is a function g : Y → X
such that f (g(y)) = y and g(f (x)) = x for all x ∈ X and y ∈ A.
Consider the two functions λ : V~(A∧B)⊃C� → V~A⊃(B⊃C)� and λ−1 : V~A⊃(B⊃C)� → V~(A∧B)⊃C�

defined by

((x, i), i)
λ
−→ (x, i) (x, i)

λ−1

−−→ ((x, i), i)

((x, i), j)
λ
−→ ((x, j), i) ((x, j), i)

λ−1

−−→ ((x, i), j)

Where x is a vertex in one between V~A�,V~B� or V~C� and i, j with i , j are either 0 or
1. We clearly have that λ−1 is the inverse of λ. Moreover, both function trivially satisfies
the condition on labels. The proof is concluded by remarking that the only new edges in
~A ⊃ (B ⊃ C)� are the ones from the → roots of ~A� and ~B� to the →-roots of ~C� and
that the same phenomena occurs in ~(A ∧ B) ⊃ C�.

�

In the introduction we have specified that the notion of winning strategy that we are
going to define requires a notion of batches i.e., given a formula A and a modality ?

1. a way to recognize and count the modalities such that A is in the scope of these
modalities,

2. and supposing that A = ?B, a way to recognize the formulas that were introduced in
a proof by the same rule that introduced ?B, if any.

Definition 4.7. Let G = ~F� be a modal arena and v ∈ VG. The address of v is the unique
sequence of modal vertices addv = m1, . . . ,mh in VG which corresponds to the sequence of
modalities in the path in the formula tree of F connecting the node of v to the root of F.

If addv = m1, . . . ,mh, we denote by hv = |addv| the length of addv and by addk
v = mk its

kth element.

151

Example 4.1. Consider the modal arena and the formula tree of
(
a ⊃ �(b ∧ (c ⊃ ^1d))

)
⊃

^2(e ⊃ f), then

^2

a �

e f

b

c d
^1

⊃

⊃ ^2
a � ⊃

∧ e f
b ⊃

c ^1
d

adda =ε

add� =�
addb =�
addc =�
add^ =^�
addd =^�
add^′=^′

adde =^′

add f =^′

If G is a modal arena and v ∈ VG, we define d(v) as the length of the →-paths from v to
a→-root w ∈

→

RG. Note that the property that all paths in a modal arena from a vertex to any
root have the same length is not trivial, but the proof can be found in [131, Lemma 9]. The
parity of a vertex v is the parity of d(v), which can be either even or odd. We denote by vO

and vP if the parity of v is respectively even or odd. As we will see in the following section,
the players O and P can only play vertices of the corresponding parity, but the parity of the
modalities in which the vertex belongs may not be the same as the parity of the move. By
means of example, consider the atom a2 in Figure 4.1 which is O but it is in the scope of
two P-modalities.

4.4 Winning Strategies for CK
In this section we recall the definition of winning innocent strategy and we characterize the
ones corresponding to correct CK-proofs.

4.4.1 Views
Winning innocent strategies are prefix-closed set of views. Views are a particular class of
games in which both players can act in a very restricted manner: they are obliged to react,
in a sense that we specify below, to the last move of the other player.

152

Definition 4.8. Let F be a formula. A move is a vertex of ~F�. Let p = p0 · · · pn be a
sequence of distinct moves (we denote by ε the empty sequence). If v and w are two moves

in p, we say that a vertex w justifies v whenever v
G
→w. We call a move pi in p a O-move or

P-move if i is respectively even or odd. The games we will present are called views in the
literature on game semantics. We conform to this particular nomenclature.

We say that p is a view in ~F� if the following conditions are fulfilled:

1. p is a play: if p , ε, then p0 ∈
→

RG;

2. p is justified: if i > 0, then pi→pi−2k+1 for a k ∈ N

3. p is O-shortsighted: if pO
i+1 and pP

i , then pi+1→pi;

4. p is P-uniform: if pP
i+1 and pO

i , then `(pi+1) = `(pi).

5. p is modal: `(pi) ∈ A ∪ {^}.

Moreover, if p is a view, we say that

6. p is well-batched: |addp2k | = |addp2k+1 | for every 2k ∈ {0, . . . , n − 1}.

Let us make some comments on this, otherwise obscure, definition. The first condition
impose that the first move of a view in an arena ~F� is a root of the Arena. Since a root
has always O-polarity this is another way of saying that the first move of a view is a O-
move i.e., the O-player starts the game. Condition 2 imposes that each move in a game,
but the first, is justified by a move that already —up to that point— appears in the game.
Moreover, if v is justified by w then there is an even number of moves (possibly zero)
between the two moves. Thus condition 2 together with condition 1 implies that a view
is an alternated sequence of O-moves and P-moves i.e., the two players plays by taking
turns. In fact : suppose that p is a sequence of vertices of a modal arena respecting the two
aforementioned conditions. Suppose moreover that for all i < j pi O-vertex of the arena iff
i is even, and it is a P-vertex if i is odd. The move that justifies p j+1 is an O-move is j + 1
is odd, and it is an P-move is j + 1 is even, we can thus conclude. Condition 3 impose a
restriction on the moves that the O-player can play. Each of his moves is justified by the
immediately preceding move of the other player. Condition 4 puts a restriction on the set of
moves that the P-player can play. Each move that she plays must be a vertex labeled by the
same symbol that labels the vertex of the immediately preceding move of the other player.

153

Condition 5 says that every move in a view is labeled by a propositional variable or by a ^
modality. Finally, condition 6 imposes another restriction to the moves that are played in a
view by P. If she plays a move v, then the move must be in the scope of the same number
of modalities as the immediately preceding move of the other player.

4.4.2 Winning innocent strategies
We can now define strategies. As in the preceding chapter about dialogical logic, a strategy
will be formalized as a tree of views. The tree can branch only after a move of P and it will
be winning whenever maximal (with respect to the prefix order on sequences) views ends
in a P-move.

The predecessor of a non-empty view p is the sequence obtained by removing the last
move in p. The successor is the converse relation.

Definition 4.9. A winning innocent strategy (or WIS for short) for F (or over ~F�) is a
finite non-empty set S of views in ~F� such that:

1. S is predecessor-closed: if p · v ∈ S then p ∈ S;

2. S is O-complete: if p ∈ S has even length, then every successor of p is in S;

3. S is P-deterministic and P-total: if p ∈ S has odd length, then exactly one successor
of p is in S.

We say that a WIS S is trivial if S = {ε} and it is well-batched if all its views are. If S is a
winning innocent strategy over ~F� we will write S : ~F�.

Remark 4.1. Note that our definition of WIS on arenas of modality-free formulas is the
same of the one given in [34, 113, 131] where the modal condition trivially holds. Remark
that in a modal arena, a view can only have a finite number of successors. Thus, WIS are
finitely branching trees. Since each branch is finite we can conclude by König lemma that
every WIS is finite. If G is a non-empty modal arena, then a WIS S on G must contain all
views of the form v with v ∈

→

RG, that is, S is non-trivial.

Example 4.2. Consider the formula (�a) ⊃ a where a is a predicate variable. This formula
is not provable in LCK. The arena of (�a) ⊃ a can be represented as

154

�
P

aP aO

The only views over this arena are the empty view ε and the two views εaO and εaOaP.
This latter view is not well batched because the address of aO is �O and aP has no address.
Thus, there are no well-batched WIS over (�a) ⊃ a.

Unfortunately there are well-batched WIS over formulas that are not provable in the
sequent system LCK. Consider the formulas F = (�a ⊃ �b) ⊃ ((�(a ⊃ b) ⊃ c) ⊃ c) and
G = ^a ⊃ �a whose arenas can be represented as

�
O
0 �

P
5 �

O
4

�
P

�
O

^
P

�
O

aP bO cP

cO aP aO

aO bP

�
O
2 �

P

where in the arena of F we indexed some occurrences of the � modality to speak clearly
about them. The maximal, with respect to the prefix order, views in these two arenas are
respectively

p = cOcPbObPaObP σ = aOaP

both p and σ are well-batched views: each P-move in them have an address of the same
size of the address of the immediately preceding O-move. In p cOcP have both an address of
size 2. addbO = �O

0 and addbP = �P. Finally addaO = �O
2 and addaP = �O

0 . In ρ addaO = �O

and addaP = ^P. Thus the set of views containing p and any of its prefixes as well as the
set of view containing σ and any of its prefixes are WISs for F and G respectively. This
means that well-batched WISs do not capture theorem-hood in CK.

155

4.4.3 CK Winning Innocent Strategies
As pointed out in the introduction, in order to characterize the winning strategies corre-
sponding to proofs in LCK we need some additional definitions. The machine we invented
is based on the following insight. In an LCK theorem, the modality are partitioned. The
partitions of the modality are induced by the introduction rules of the modality themselves.
If we decorate the formulas in the rules with their respective polarities, P for the negative
polarity and O for the positive polarity, the two modal rules have the following form

AP
1 , . . . A

P
n ` CO

K�
(�1A1)P, . . . (�nAn)P ` (�C)O

BP
1 , . . . B

P
m,D

P ` FO

K^
(�1B1)P, . . . , (�nBn)P, (^D)P ` (^F)O

each rule ‘introduces’ exactly one positive modality that can be either an^ or a � depending
on the rule. Moreover, if the rule is a K�-rule then it introduces also n ≥ 0 negative boxes
while the K� introduces exactly one negative diamond and n ≥ 0 negative boxes. Each of
the aforementioned partitions contains the modality that are ’introduced’ in the proof of the
formula by the same instance of a modal rule. We will define the partitions on modalities
of a formula using the closure of a relation defined over elements of addresses —addresses
are sequence of modalities— of consecutive moves. The element of the addresses must
stands at the same depth in addresses of moves. To precisely define this notion we first
need the following technical definition: the addresses of a view can have different sizes,
i.e., two different addresses can have a different number of elements. We need to line up
somehow addresses of different size

Definition 4.10. Let p = p0 · · · pn−1 be a well-batched view on a modal arena G. We
write hp = max{hv | v ∈ p} and we define the batched view of p as the hp × n matrix
F (p) =

(
F (p)0, . . . ,F (p)n

)
with elements in VG∪{ε} such that each column F (p)i is defined

as follows:

F (p)i =



F (p)hp

i = add
hpi
pi

...

F (p)hi+1
i = add1

pi

F (p)hi
i = ε

...

F (p)1
i = ε

F (p)0
i = pi


156

where a hi ∈ {0, . . . , hp} defined for each i ∈ {0, . . . , n}.

Each view induces an equivalence relation
Gp
∼ over VG generated by the transitive, symmet-

ric and reflexive closure of the following relation:

u
Gp
∼ 1w iff

u = F (p)h
2k and w = F (p)h

2k+1
for a 2k < n − 1 and a h ≤ hp

Example 4.3. The batched view of the view p of example 4.2 is

�O
4 �

P
5 �

O
0 �

P �O
2 �

O
0

�O �P ε ε ε ε
cO cP bO bP aO aP

We have the following equivalence classes on this view E1 = {�O
4 ,�

P
5 }, E2 = {�O

0 ,�
P,�O

2 }

and E3 = {�O,�P}. Remark that E2 contains two positive modalities. This is because
�O

0
p
∼1�

P
2 since �O

0 = add2
cP and �O

2 = add2
cO , and because �O

0
p
∼�O

0 by reflexive closure.
We want to exclude strategies in which equivalence classes generated by the ∼ relation
contains more than one positive modality. Moreover, if the positive modality is �, then we
want the class to contain only negative boxes. On the contrary, if the positive modality is
a ^ we want the class to contain exactly one negative ^ and n ≥ 0 negative boxes. We
formally define this requirement as follows

Definition 4.11. Let S be a well-batched strategy on a modal arena G. We say that S

linked if for every p ∈ S the
Gp
∼ -classes are of the shape {vP

1 , . . . , v
P
n ,w

O}. This induces the

edge-relation u
Gp
⇀w iff uPGp

∼wO.
We say that S is CK-batched if each modal vertex wO occurring in the address of a

move in S the following conditions are fulfilled:

1. if wO ∈ V�
G

and v
Gp
⇀w for a p ∈ S, then v ∈ V�

G

2. if wO ∈ V^
G

, then there is a unique u ∈ V^
G

in the set {v ∈ VG | v
Gp
⇀w for a p ∈ S}.

We call a CK-batched WIS a CK-winning innocent strategy (CK-WIS for short).

Remark that the view p of example 4.2 cannot belong to a CK-WIS. As we have saw
in example 3 there is an equivalence class generated by the relation p

∼ on the addresses of
p that contains two positive modalities.

157

4.5 Compositionality of Winning Strategies
In this section we prove that CK-WIS composes i.e., that given a CK-WIS T for A ⊃ B
and a CK-WIS R for B ⊃ C we can construct a CK-WIS for A ⊃ C. This latter strategy on
A ⊃ C will be obtained by playing as T on A and as R on C and using the moves in the two
occurrences of B as a gluing of the two strategies.

In order to simplify the presentation of our compositionality result, we propose a slightly
different approach to the proof of winning strategy’s compositionality with respect to the
one normally used in the literature, e.g. [77, 100], where proofs are given by reasoning on
specific sequences4 over the arena ~A ⊃ (B ⊃ C)� f

∼ ~A, B ` C�, such that these views can
be projected on views over the arenas of A ` B and B ` C. Instead, we here reason directly
on sequences over the arena ~A, B1 ⊃ B2 ` C�. This allows us to preserve the parities of
vertices when performing the projections.

To obtain an intuition behind the idea, consider the additional rule hide removing a
formula of the shape B ⊃ B occurring in the left-hand side of a sequent in order to simulate
the cut as shown below.

Γ ` B ∆, B ` C
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− cut

Γ,∆ ` C

Γ ` B B,∆ ` C
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− ⊃L

Γ,∆, B ⊃ B ` C
−−−−−−−−−−−−−−−−−−−−−−−−−−−−− hide

Γ,∆ ` C

This approach complies with the slogan “interaction + hide” often mentioned in the liter-
ature, e.g., [2, 100]. Here the interaction is represented by the ⊃L-rule, while the hiding is
performed by erasing the formula B ⊃ B using the hide-rule.

In terms of views, our interaction is defined by composing views from the two corre-
sponding strategies by “gluing” them using a copycat strategy5 on the cut-formula while
the hiding consist of ignoring the moves in the hidden formulas.

Notation 4.1. If ∆ is a list (of occurrences) of formulas in Γ ` A and p is a sequence of
moves in ~Γ ` A�, we denote by p|∆ the projection of p on ∆, that is, the sequence obtained
by erasing from p any move not in ∆. By means of example, if A = a ⊃ e, B = b ∧ d and
C = c, then baadcebda|A,C = aacea.

Whenever we consider two distinct occurrences B1 and B2 of the same formula B, we
assume ·⊥ to be the bijection between the vertices in V~B1� and in V~B2� corresponding to
the same atom/modality in B.

4Note that these sequences are not views.
5the copy-cut strategy is precisely defined in section 4.6 of the present chapter.

158

Definition 4.12. Let T and R be CK-WISs respectively for A ` B1 and B2 ` C such that
B1 and B2 are occurrences of the same formula B, and let τ ∈ T and ρ ∈ R.

We define the interaction of τ ad ρ over B as the sequence of moves σ = τ
B
ρ over

~A, B1 ⊃ B2 ` C� following ρ (resp. τ) until a P-move b in B2 (resp. B1) is reached; then it
switches to the corresponding O-move b⊥ in τ (resp. ρ), if it exists. That is,

σ0=ρ0 and σi+1=



τk+1 where σi = τk is a move in A or a O-move in B1

ρk+1 where σi = ρk is a move in C or a O-move in B2

b⊥ where σi = b is a P-move in B1 and b⊥ occurs in ρ
b⊥ where σi = b is a P-move in B2 and b⊥ occurs in τ
not defined otherwise

We define the composition τ
B
◦ ρ of τ and ρ over B as the projection of τ B

ρ over A and C,
that is, τ

B
◦ ρ = (τ B

ρ)|A,C. We define the composition of T and R over B as the following
set of sequences over ~A ` C�

T
B
◦ R = {τ

B
◦ ρ | τ ∈ T , ρ ∈ R}

Intuitively, when defining the interaction , the player O changes her way of play:
whenever the player P plays a move b in B1 (or B2), its successive O-move is the cor-
responding b⊥ in B2 (resp. B1) instead of playing according to O-shortsightedness. By
definition (τ B

ρ)|A,B1 = τ and (τ B
ρ)|B2,C = ρ, hence, (τ B

ρ) is always finite. The rest of

this section is devoted to prove that if T and R are CK-WISs, then also is T
B
◦ R.

Example 4.4. Consider the sequents A ` B1 = (c ⊃ a) ⊃ b ` (d ∧ (c ⊃ a)) ⊃ b and
B2 ` C = (d ∧ (c ⊃ a)) ⊃ b ` (d ∧ ((e ⊃ e) ⊃ a)) ⊃ b and the view τ = bbaacc
on ~A ` B1� and the views ρ1 = bbaaee and ρ2 = bbdd on ~B2 ` C�. Note that these
views are the unique maximal views in the unique WISs for these sequents. Then we can
picture the construction of τ

B
◦ ρ1 as follows, where on the left-hand side we highlight

the two occurrences of ~B� on which the views interact, and the black arrows identify the

159

sequences of moves on the arenas.

τ
B
ρ1 = bbbbaaaaee τ

B
◦ ρ1 = bbaaee

c a b
d b

c a

d b
c a b

d
e e a

projection

c a b
d b

e e a

Similarly τ B
ρ2 = bbbbaa and τ

B
◦ ρ2 = bba. Note that in this case the definition of τ B

ρ2

stops because the successive should be a⊥ but it does not occur in ρ.

Remark 4.2. If A, B1, B2 and C are formulas with B1 and B2 occurrences of the same for-
mula B, then atoms and modalities in these formulas have the same parity in ~A, B1 ⊃ B2 ` C�
and in ~A ` B1� and ~B2 ` C�.

Our definitions allow us to show that the composition of well-batched WISs is a well-
batched WIS.

Lemma 4.2. Let T and R be well-batched WIS for respectively A ` B1 and B2 ` C such
that B = B1 = B2. Then S = T

B
◦ R is a well-batched WIS for A ` C.

Proof. We first prove that for each τ ∈ T and ρ ∈ R we have that τ
B
◦ ρ is a well-batched

view over ~A ` C� since it verifies all conditions in Definition 4.8. For any σ = τ
B
◦ ρ we

have that

1. σ is a play: since σ0 ∈
→

R~B`C� and
→

R~B`C�=
→

R~C�=
→

R~A`C�.

2. σ is justified: if a move in ~A� is justified in τ by a move in ~A� or if a move in ~C�
is justified in ρ by a move in ~C�, then we can conclude. By definition of ~B ` C�
no move in ~C� can be justified ρ by a moved in B. We conclude by remarking that
if a move in ~A� is justified in τ by a move in ~B�, then this move must be a root of

~A�, and then v
~A`C�
→ σ0 since u

~A`C�
→ w for all u ∈

→

R ~A� and w ∈
→

R ~C�.

3. σ is O-shortsighted: by definition of τ and ρ we must have that both σ2k and σ2k+1

are either in ~A� or in ~C�. We conclude by the hypothesis on σ and τ.

160

4. σ is P-uniform: by induction using the P-uniformity of τ and ρ and the fact that
`(v) = `(v⊥).

5. σ is modal: follows by the fact that no move in τ or ρ is a �-vertex.

6. σ is well-batched: it suffices to remark that if addv = m1 · · ·mk, then addv⊥ =

m⊥1 · · ·m
⊥
k . We can conclude similarly to the proof of P-uniformity since in τ

B
ρ

in all moves in a subsequence in B1 and B2 have constant height.

To conclude, we show that that S is

1. predecessor-closed: it follows by the fact that T B
R = {τ

B
ρ | τ ∈ T , ρ ∈ R and τ

B
≡

ρ} is predecessor closed

2. O-complete: if σvP ∈ S then vP appears in a view τ ∈ T or in a view ρ ∈ R as a
P-move. We conclude by the definition of the composition ◦ and by the fact that S
and R are WIS.

3. P-deterministic and P-total: each view σ ∈ S is of the form σ = τ
B
◦ ρ = (τ B

ρ)|A,C
for a τ ∈ T and ρ ∈ R. By induction on the length of τ B

ρ we can prove that
vO ∈ τ

B
ρ is followed by a unique P-move since T and R are P-deterministic and

P-total and each v⊥ ∈ ~B1� and w⊥ ∈ ~B2� is uniquely determined respectively by a
v ∈ ~B2� and a w ∈ ~B1�. To conclude we must prove that whenever s ∈ τ B

ρ and

s = s′xOyPy⊥yz1, . . . znwPw⊥

With xO ∈ ~C� (resp. xO ∈ ~A�), yP ∈ ~B1� (resp. yP ∈ ~B2�) z1 . . . zn a (possibly
empty) sequence of moves in ~A� (resp. in ~C�) and wP ∈ ~B2� (resp. wP ∈ ~B1�)
then there is view ρ′ ∈ R (resp. τ′ ∈ T) such that τ B

ρ′ = s′xOyPy⊥yz1, . . . znwPw⊥zP

(resp. τ′
B
ρ = s′xOyPy⊥yz1, . . . znwPw⊥zP) for a certain z ∈ ~B1 ⊃ C� (resp in

~A ⊃ B1�). Suppose that xO ∈ ~C� and yP ∈ ~B1� . The move wP is in ~B2� and
thus, by the definition of arena, we must have that wP→y⊥. This means, in particular
that w⊥ is an even vertex in ~B1� and that w⊥→yP since s′xOyP|C,B1 = ρ is a view in
R by O-completeness the view σw⊥ ∈ R, we thus conclude by totality.

�

161

To prove that the composition also preserves CK-framing, we use the following remark
and a lemma assuring that each ∼-class defined by a well-batched view contains at least
one vertex in VO.

Remark 4.3. If vO, wP, mP are vertices of a modal arena G such that m = addk
v and v→w,

then m = addk
w.

Lemma 4.3. Let p be a view in a well-batched WIS S over a modal arena. Then the
corresponding p

∼-classes contain at least one even vertex v ∈ VO.

Proof. By definition, a p
∼-class containing an atomic vertex contains exactly one vertex

v = p2k+1 ∈ VP and one w = p2k ∈ VO.
Otherwise, we can prove that given any vertex v = addk

pi
∈ VP, then there is a j < i

such that wO = addk
p j
∈ VO is in the same p

∼-class.

In fact, if i it is even, then by Remark 4.3 we have addk
pi

= addk
pi−1

. Since for any r ∈
→

R
and v ∈ addr we have v ∈ VO, then i − 1 > 0. If i is odd, then addk

pi

p
∼addk

pi−1
and we can

repeat the previous argument on i− 1. If j < i does not exist, then p should have an infinite
prefix. Absurd. �

Let T a CK-WIS for A ⊃ B and T be a CK-WIS for B ⊃ C. The two following
technical lemmas are needed to assure that for each p ∈ S = T

B
◦ R the corresponding

p
∼-classes contains exactly one vertex v ∈ VO.

Lemma 4.4. Let T and R be two CK-WIS for, respectively, A ⊃ B2 and B2 ⊃ C with B1

and B2 occurrences of the same formula B. Let s be a sequence such that s ∈ T B
R and

s = s′xOb1b⊥1 b⊥2 b2b3 . . . bnb⊥n yPs′′

with bi ∈ ~Bk� and b⊥i ∈ ~B j� for i ∈ {1, . . . n} , k , j and k, j ∈ {1, 2}.

1. if xP ∈ ~A� and addk
y ∈ VO

~A� for some k ∈ N, then addk
b⊥i
∈ VP

~B2�
for all i ∈ {1, . . . n}

2. if yP ∈ ~C� and addk
x ∈ VO

~C� for some k ∈ N, then addk
b⊥i
∈ VP

~B1�
for all i ∈ {1, . . . n}

Proof. We prove 1 the proof of 2 being entirely similar. Remark that

s|A,B2 = s′|A,B2b
⊥
1 b⊥2 , . . . b

⊥
n xPs′′|A,B2

162

is a view τ in T . It follows that addk
yP

τ
∼addk

b⊥n
by the definition of the ∼-relation. The fact

that addk
yP

τ
∼addk

b⊥n
and that addk

yP ∈ VO
A implies that addk

b⊥n
∈ VP

B2
otherwise there would be a

τ
∼-class of equivalence containing two distinct even modalities contradicting the hypothesis
that T is a CK-WIS. Let j > 1 and suppose that, for all r > k, r ∈ { j + 1, . . . n} we have that
addk

b⊥r
∈ VP

~B2�
and addk

b⊥r

τ
∼addk

xP .

• If b⊥j+1 ∈ VP
~B2�

then addk
b⊥j+1

τ
∼addk

b⊥j
. This force addk

b j
to belong to VP

B2
. Otherwise,

since addk
b⊥j+1

τ
∼addk

xO there would be a τ
∼-class containing two distinct even modal

vertices.

• If b⊥j+1 ∈ VO
~B2�

since addk
b⊥j+1
∈ VP

B2
and b⊥j+1

~B2�
→ b⊥j we conclude, by remark 4.3 that

addk
b⊥j+1

= addk
b⊥j

and thus that addk
b⊥j+1

τ
∼addk

xP

�

Let us state and prove another technical lemma

Lemma 4.5. Let T and R be two CK-WIS for respectively A ⊃ B2 and B1 ⊃ C with B1 and
B2 two occurrences of the same formula B. Let s = τ

B
ρ ∈ T

B
R and call p the projection

s|A,C of s to A and C. Let m = addk
x for a certain k ∈ N and x ∈ s and suppose x ∈ p. if

there is n = addk
y with y ∈ s such that m p

∼n then there is w = addk
z with z ∈ s such that

either m τ
∼w or m ρ

∼n. Moreover, if n ∈ VO and m , n then w ∈ VO and m , w.

Proof. The proof is by induction on |p|. Suppose that the proposition holds for all p with
length n and consider p = p′xy such that px′ has length n. All cases are trivial except when
y is a P-move and x, y are in two different components. Suppose without loss of generality
that x ∈ ~C� and y ∈ ~A� then p = s = τ

B
ρ|A,C for τ ∈ T and ρ ∈ R and s is equal to

s′xOb1b⊥1 b⊥2 b2b3 . . . bnb⊥n yPs′′

by the definition of the ∼-relation, we have that m = addk
x

p
∼addk

y = n. The w we are
searching for is addk

b1
. Remark that addk

b1

ρ
∼m. Suppose that n , m and n ∈ VO

~A�. By
lemma 4.4 for all i ∈ {1, . . . n} the modality addk

b⊥i
∈ VP

B2
. This means that, addk

b1
∈ VO

~B1�
.

Since w = addk
b1

and m = addk
x are vertices in respectively, ~B1� and ~C� we can conclude

that w , m as we wanted.
�

163

We are now ready to prove that each p
∼ class of a view p ∈ T B

R contains exactly one
positive modality.

Proposition 4.5. Let S and R be two CK-WIS for respectively A ⊃ B1 and B2 ⊃ C with B1

and B2 two occurrences of the same formula B. The strategy S = T
B
◦ R is linked i.e., for

all p ∈ S each p
∼-class contains exactly one even modality m.

Proof. By lemma 4.3 we know, since S is well batched, that each p
∼-class contains at least

one even modality m for p ∈ S. Suppose that the class contains another distinct even modal
vertex n. Then we have that m p

∼n. Remark that p = τ
B
ρ for some τ ∈ T and ρ ∈ R. By

lemma 4.5 there is a modal vertex w , m in either ~B1 ⊃ C� or in ~A ⊃ B2� such that m τ
∼w

or m ρ
∼w. This contradicts the fact that T and R are linked. �

We can now prove that the composition of CK-WISs is a CK-WIS.

Theorem 4.3. Let T and R be CK-WIS for respectively A ⊃ B2 and B1 ⊃ C such that B1

and B2 are occurrences of the same formula B. Then S = T
B
◦ R is a CK-WIS.

Proof. After Lemma 4.2, and proposition 4.5 it suffices to prove that S is CK-batched, i.e.,
by using G for ~A ⊃ C� we must prove that

1. if wO ∈ V�
G

and v
Gp
⇀w for a p ∈ S, then v ∈ V�

G

2. if wO ∈ V^
G

, then there is a unique u ∈ V^
G

in the set {v ∈ VG | v
Gp
⇀w for a p ∈ S}.

For this purpose we define for each σ = τ ◦ ρ the relation
τ ρ
⇀ on the vertices in

~A, B1 ⊃ B2 ` C� as the transitive closure of the following relation

v
τ ρ
⇀ 1w ⇐⇒ vP τ

⇀wO or vP ρ
⇀wO or v = w or vO = (wP)⊥

where we write w
⊥
↼v if vO = (wP)⊥.

We use
τ ρ
⇀ to prove the properties of

σ
⇀. In fact it follows by induction on p = τ

B
◦ ρ

that v
p
⇀w iff v

τ ρ
⇀w.

Suppose that vP τ ρ
⇀wO. We prove 1 by contraposition. If v is labelled by ^, then also

w is labelled by ^: this follows by induction on the definition of
τ ρ
⇀ . The base case of

164

the induction follows by the fact that T and R are CK-WIS and by the fact that −⊥ is a
bijection that preserves labels.

To prove 2, we remark that T and R are linked, then
τ
⇀ and

ρ
⇀ can be considered as

injective functions associating a vertex in VP a unique vertex in VO. Then also
τ ρ
⇀ can be

considered as an injective function since
⊥
↼ is a bijection.

�

Proposition 4.6. Let A, B,C and D formulas. If S is a CK-WIS for A ` B and T is a
CK-WIS for B ` C and R is a CK-WIS for C ` D, then (S

B
◦ T)

C
◦ R = S

B
◦ (T

C
◦ R).

Proof. The operation is associative by Definition 4.12. Moreover, for any ∆ and Σ se-
quences of formulas, the projections on ∆ and Σ permute, that is, (s|∆)|Σ = s|∆,Σ = (s|Σ)|∆.

We conclude by observing that for any σ ∈ S, τ ∈ T and ρ ∈ R such that σ
B
≡ τ and τ

C
≡ ρ

we have

σ
B
◦ (τ

C
◦ ρ) = (σ A (τ

B
◦ ρ))|A,D = (σ B ((τ C

ρ)|B,D))|A,D =

= (σ B (τ C
ρ))|A,D = ((σ B

τ) C
ρ|Γ,∆,C =

= (((σ B
τ)|A,C) C

ρ)|A,D = (((σ
B
◦ τ)A,C) C

ρ)|A,D = (σ
B
◦ τ)

C
◦ ρ

�

4.6 Some remarkable strategies
In this section we define the strategies that will be used to interpret proofs of LCK. Most
of the strategies that we will define are presented in detail in the literature of game seman-
tics [77, 76, 1, 2] where it is proved that they are winning innocent strategies. When the
verification of the additional CK-WIS condition is trivial, we will omit such verification.
In what follows if G is an arena thenVG denotes the set of views over G. Such set is always
non-empty because it always contains at least the empty view ε.

We start with the copy-cut strategy that will be the interpretation of the identity axiom
A ` A. The copy-cut strategy can informally be explained as follows: I claim that I can
always win a game of chess against either Magnus Carlsen or Fabiano Caruana if games
are played simultaneously and I am black on one board and white on the other. The strategy
that I will follow is simple. Suppose that Carlsen starts as white on a board and make a

165

move m, then i will play m on the other board against Caruana, wait for his move n and
play the same move n in the game against Carlsen. Carlsen will reply by a move r, I will
make the move r in the chess game against Caruana and so on. Since Chess are zero-sum
game I must loose in one of the two games and win in the other. The copy-cut strategy
mimics exactly this mechanism. Each time O makes a move on one copy of A in the arena
~A ⊃ A� then P will make the same move in the other copy of A. More formally:

Proposition 4.7. For any formula A IdA, the copycat strategy over the arena ~A ⊃ A�,
defined by

IdA = {ρ ∈ V~A1⊃A2�| τ|A1 = τ|A2 . for each even-length prefix τ of ρ}

is a CK-WIS. We use A1 and A2 to distinguish the two different occurrences of A

Proof. The fact that IdA is a winning innocent strategy for any A is a classical result of
game-semantics and can be found in [75]. The fact that each view τ ∈ IdA is well batched
and CK-framed comes from the fact that if τ′xOyP ∈ IdA then y = x⊥ �

Proposition 4.8. Let S be a CK-WIS for A ⊃ B then S = IdA
A
◦ S = S

B
◦ IdB

The CK-WIS that interprets a ∧R application to some sequents Γ ` A and ∆ ` B is obtained
by ‘ putting side by side’ CK-WISs over ~Γ ` A� and ~∆ ` B�

Proposition 4.9. Let T and R be CK-WIS for respectively A ⊃ C and B ⊃ D then

T ∧ R = {σ ∈ V~A∧B⊃C∧D� |σ|A,C ∈ T and σ|B,D ∈ R }

is a CK-WIS for A ∧ B ⊃ C ∧ D. Moreover IdA∧B = IdA ∧ IdB.

The CK-WIS that will be used to interpret the contraction rule is a CK-WIS over A ⊃
A ∧ A. This CK-WIS (the diagonal strategy) plays as the copy-cut strategy on A for both
occurrences of A in A ∧ A.

Proposition 4.10. Let A be a formula, the following set of views defines a CK-WIS for
A ⊃ A ∧ A

DA = {σ ∈ V~A1⊃A2∧A3� | σ|A1,A3 ∈ IdA and σ|A1,A2 ∈ IdA}

Where we used indices to distinguish the three occurrences of A.

166

If S is a CK-WIS over G, σ0σ1 . . . σn = σ ∈ S and f is a function from G to H then
f (σ) is the sequence f (σ0) f (σ1), . . . f (σn) inH . We write f (S) for

f (S) = {τ ∈ VH | τ = f (σ) for a σ ∈ S}

Proposition 4.11. if S is a CK-WIS for (A ∧ B) ⊃ C then λB(S) is a CK-WIS for A ⊃
(B ⊃ C). If, vice versa, S is a CK-WIS for A ⊃ (B ⊃ C) then λ−1(S) is a CK-WIS for
(A ∧ B) ⊃ C, where λ and λ − 1 are the 2-dag-isomorphism defined in proposition 4.4

Proof. The proof follows by observing that λ and λ−1 are 2-dag isomorphism. They are
thus bijections that preserves labels and edges. �

Let IdB⊃C be the copy-cut strategy for (B ⊃ C) ⊃ (B ⊃ C). Then λ−1(IdB⊃C) is a CK-
WIS for ((B ⊃ C)∧ B) ⊃ C that we will call. EvalB,C. Given a CK-WIS S for (A∧ B) ⊃ C
it is easy to verify that

(λB(S) × IdB)
(B⊃C)∧C
◦ EvalB,C = S

We now define the CK-WISs that will be used to interpret the two modal rules of LCK:
the rule K� and the rule K^. Given a strategy S over the arena ~Γ ` C� the strategy in-
terpreting the K�-rule will be –morally– S played over the arena ~�Γ ` �C� i.e., �S will
be S in which each move in a view σ has a new address �. The strategy that interprets
the K^-rule is defined similarly : given a strategy T over the arena ~Γ, B ` C� the strategy
interpreting the K^-rule will be —morally— T ∪ {^O^P} i.e., T played over the arena
~�Γ,^B ` ^C�.

Proposition 4.12. Let S and T be CK-WISs over, respectively, the arenas ~A1, . . . An ` C�
and ~B1, . . . , Bm, B ` C�, then

1. �S = {τ ∈ V~�A1,...,�An`�C� | τ|A1,...An,C ∈ S}

2. ^T = {τ ∈ V~�B1,...�Bm,^B`^C� | τ|B1,...Bm,B,C ∈ T }

are CK-WISs over the arenas ~�A1, . . .�An ` �C� and ~�B1, . . . ,�Bm,^B ` ^C� respec-
tively.

167

Proof. It is clear that if ^(S) and �(S) are WIS. We only prove that the WIS of 2 is a
CK-WIS. By writing Γ for B1, . . . , Bm:

• ^T is well batched : let τ ∈ ^T and let xOyP two consecutive moves in τ. We must
prove that |addx| = |addy|. We have that in τ|Γ,B,C |addx| = |addy| because T is a
CK-WIS. We can conclude because for w ∈ τ |addw| = |addw| + 1 for w ∈ τ|Γ,B,C

• ^T is linked : condition 1 of definition 4.11 automatically holds: the arena of ^T
and the arena of T have the same even vertex labeled by a �. To check that con-
dition 2 of definition 4.11 let us denote by ^O the vertex v such that `(v) = ^ and
v ~C� and by ^P the vertex w such that `(w) = ^ and v ~A�. By the definition
of ^S the view ε^O^P belong to ^(S) , thus we obtain that ^P⇀^O. The fact that
there is no other vertex v such that v⇀^O is evident.

�

4.7 Game semantics interpretation of CK
A derivation D of Γ ` A will be interpreted as CK-WIS {{D}} : ~Γ ` A�. The interpretation
is given by induction on the proof D of Γ ` A.

If D has height 0 then D is obtained by the rule AX and has conclusion A ` A for some
formula A or by the rule 1, and has conclusion ` 1 In the first case, we define {{D}} = IdA.
In the second case {{D}} is the trivial strategy {ε}. Suppose that for all sequents Γ′ ` C′ for
all proof D′ of Γ′ ` C′ if |D′| ≤ n then the interpretation {{D′}} of D′ is defined. Let D be a
derivation with |D| = n + 1

∧R if D is

D1

...
Γ ` A

D1

...
∆ ` B

Γ,∆ ` A ∧ B

168

By induction hypotheses {{D1}} : ~Γ ` A� and {{D2}} : ~∆ ` B� are CK-WIS. we
define {{D}} = {{D1}} ∧ {{D2}} : ~Γ ∧ ∆ ` A ∧ B�.

∧L if D is

D′

...
Γ, A, B ` C

Γ, A ∧ B ` C

By induction hypothesis {{D′}} : ~Γ ∧ A ∧ B ` C� is a CK-WIS. We thus define
{{D}} = {{D′}}.

⊃R If D is

D′

...
Γ, B ` C

Γ ` B ⊃ C

By induction hypothesis {{D′}} : ~Γ ∧ B ` C� is a CK-WIS. We define {{D}} =

λ({{D′}}) : ~Γ ` B ⊃ C�.

⊃L if D is

D1

...
Γ ` A

D2

...
B,∆ ` C

A ⊃ B,Γ,∆ ` C

169

Then by induction hypothesis {{D1}} : ~Γ ` A� and {{D2}} : ~B ∧ ∆ ` C� are CK-WISs.
We construct {{D}} as follows:

Remark that g = IdA⊃B ∧ {{D1}} : ~(A ⊃ B) ∧ Γ ` (A ⊃ B) ∧ A� is a CK-WIS. Thus,
g ◦ evalA,B : ~A ⊃ B ∧ Γ ` B� is also a CK-WIS. We finally define {{D}} = (g ◦
evalA,B) ∧ Id∆ ◦ {{D2}} : ~A ⊃ B ∧ Γ ∧ ∆ ` C�.

K� If D is

D′

...
Γ ` C
�Γ ` �C

With Γ = A1, . . . An. By induction hypothesis {{D}} : ~A1, . . . , An ` C� is a CK-WIS.
We define {{D}} = �{{D′}} : ~�A1 . . .�An ` �C�.

K^ If D is

D′

...
Γ, B ` C
�Γ,^B ` ^C

with Γ = A1, . . . An. By induction hypothesis {{D}} : ~A1 ∧ · · · An ∧ B ` C� is a CK-
WIS. We define {{D}} = ^{{D′}} : ~�A1, . . .�An,^B ` ^C�.

C If D is

D′

...
Γ, A, A ` C
Γ, A ` C

170

Then by induction hypothesis {{D′}} : ~Γ ∧ A ∧ A ` C� is a CK-WIS. We define
{{D}} = (IdΓ ∧ DA) ◦ {{D′}} : ~Γ ∧ A ` C�. Where DA is the diagonal strategy on
~A ⊃ A ∧ A�.

W If D is

D

...
Γ ` C

Γ, B ` C

Then by induction hypothesis {{D′}} : ~Γ ` C� is a CK-WIS. Remark that for every
modal arena G the trivial CK-WIS {ε} is a CK-WIS over G ⊃ ~1�. Call this latter
strategy h. We obtain {{D′}} × h : ~Γ ∧ B ` C ∧ 1�. We define {{D}} = ({{D′}} ∧ h) ◦ lC?

where lC? is l(IdC∧1).

cut Finally, if D is

D1

...
Γ ` F

D2

...
∆, F ` C

∆,Γ ` C

Then by induction hypothesis {{D1}} : ~Γ ` F� and {{D2}} : ~∆ ∧ F ` C� are are CK-
WIS. We put {{D}} = (Id∆ ∧ {{D1}}) ◦ {{D2}} where Id∆ =

∧m
i=1IdBi if ∆ = B1, . . . Bm.

4.7.1 Denotational Model
In this section we show that if a proof D reduces to a proof D′ then {{D}} = {{D′}}. To show
that this property holds it is enough to show that if D′ is the transformation associated by
the cut-elimination procedure detailed in section 4.2.3 to D then {{D}} = {{D′}}.

171

Proposition 4.13. Let D and D′ two LCK derivations such that D′ is the transformation
associated to D by the cut elimination procedure. We have that {{D}} = {{D′}}.

Proof. By taking arenas as objects and WISs as arrows one obtain a Cartesian Closed
Category [93, 75]. In [110] the authors shows that an arbitrary Cartesian closed category
is a denotational model for the sequent calculus LCK restricted to ⊃ and ∧-formulas. The
interpretation of sequent calculus proofs that we have detailed is the same used —in the
context of an arbitrary Cartesian closed category— by the authors of the aforementioned
paper. By this reason it is enough to consider the three modal cases of cut elimination
(K�/K�), (K^/K^) and (K�/K^). Since the three case are almost identical, we detail only
one of the three.

(K�/K�) if D is

D1.1

...
A1, . . . An ` F

�A1, . . . ,�An ` �F

D2.1

...
B1, . . . Bm, F ` C
�B1, . . . Bm,�F ` �C

�B1, . . . ,�Bm,�A1, . . . ,�An ` �C

The transformation associate to D is the following proof D′

D1.1

...
A1, . . . , An ` F

D2.1

...
B1, . . . Bm, F ` C

B1, . . . , Bm, A1, . . . , An, ` C
�B1, . . . ,�Bm,�A1, . . . ,�An ` �C

the interpretations {{D}} and {{D′}}6 of D and D′ are respectively

{{D}} = ((
∧m

i=1
Id�Bi) ∧ �{{D1.1}})

(
∧m

i=1�Bi)∧�F
◦ �{{D2.1}}

6Remark that this strategy is well-defined since by definition 4.5, ~
∧m

i=1Bi ` C� = ~B1, . . . Bm ` C�

172

{{D′}} = �(((
∧m

i=1
IdBi) ∧ {{D1.1}})

(
∧m

i=1Bi)∧F
◦ {{D2.1}})

The result follows immediately by observing that {{D}}|∆,Γ,C is equal to {{D′}}|∆,Γ,C with
∆ = B1, . . . Bm and Γ = A1, . . . An.

�

4.8 Full Completeness
In this section we prove that our game model is fully complete: each CK-WIS S is the
interpretation of a proof D. To prove this result we give a sequenzialization procedure for
CK-WIS i.e., an algorithm that permits to transform any CK-WIS in a LCK-derivation. In
particular CK-WIS will be transformed into derivation in which leaves obtained from the
AX-rule are of the form a ` a with a atomic. This is not a limitation, since we can always
expand instances of the AX-rule up to atomic formulas.

In order to provide the sequentialization procedure for CK-WIS we prove three prelim-
inary lemmas. In the first two lemmas give a way to sequentialize the CK-WISs when a
∧ in the right-hand side of the sequent or a ⊃ in the left-hand side of the sequent occurs.
In the sequent calculus LCK these connective require the use of rules splitting the context.
In order to avoid reproving the splitting lemmas from [113], we adopt a simpler approach
relying on the presence of W and C in the sequent system. The third result proves that the
presence of the two rules K� and K^ can be easily recognized and sequentialized by only
considering the shape of the conclusion sequent and the CK-framing conditions.

Lemma 4.6. Let Γ ` A1 ∧ A2 such that Γ does not contain ∧-formulas, If S is
CK-WIS for Γ ` A1 ∧ A2, then there are CK-WISs S1 and S2 for Γ ` A1 and Γ ` A2.

Proof. For i ∈ {1, 2} we let Si be the set of views in S starting from a move in Ai plus the
empty view, that is, Si = {p ∈ S | p0 ∈

→

R~Ai�}∪{ε}. By definition of the arena ~Γ ` A1 ∧ A2�,
no move in Ai may occur in a view in S j whenever i , j. Hence S1 and S2 are CK-WISs
for Γ ` A1 and Γ ` A2 respectively. �

Lemma 4.7. Let S be a CK-WIS for Γ ` c. Suppose that Γ does not contain any ∧-formula.
Then either

• The unique cP such that cOcP ∈ S is en element of ~Γ� and cOcP is maximal in S;

173

• or Γ = Γ′, A ⊃ B for some formulas A and B, the unique cP such that cOcP ∈ S

belongs the root of ~A ⊃ B� and there are two CK-WIS S and R for, respectively,
Γ′ ` A and B, A ⊃ B,Γ′ ` c

Proof. Remark that the view cOcP must belong to S because of totality and cP is uniquely
determined because of determinism. Moreover, cOcP is a prefix of every view in S with
length bigger or equal to 2.

We have two possibilities, either cP = ~F� for F ∈ Γ or cP ∈ ~F� for some F ∈ Γ. In
the first case, Γ = Γ′, c and S = {ε, εcO, εcOcP}; this is because there is no vertex that points
cP in ~Γ′�.

if we are in the second case i.e., cP is a vertex in ~F� for some F ∈ Γ then necessarily,
since Γ does not contain ∧ formulas, F is of the form A ⊃ B and cP is a root of ~B�. If a
view σ in S contains a move in A, then it is of the form cOcPτ0 with τ0 ∈

→

R~A�.
We first show that for a v ∈

→

R~A� there is a maximal σ ∈ S such that v = σ2k and σi is
not a move in B{cP} for any i > 2k. First all remark that if v ∈

→

R~A� then there is σ ∈ S such
that vO in σ because of O-completeness. Moreover, by the definition of view v = σ2k for
some k.
let i > 2k such that σi is the first move in ~B{cP}�, hence σi ∈

→

R~B{cP}�. By O-completeness,
there is a σ′ ∈ S such that σ′ = σ0 · · ·σiv. Again, v = σ′2k′ for some k ∈ N; We can repeat
the same reasoning as above. Since views are finite we will find a view σ′′ ∈ S such that
v = σ2k′′ and for all i > 2k′′ σ′′i is not a move in ~B�.

Now observe that since v was an arbitrary root of ~A� the line of reasoning is valid
for any root of ~A� i.e., there is a σw with the same property and such that σv

0 · · ·σ
v
2k−1 =

σw
0 · · ·σ

w
2k−1 for any w ∈

→

RA. We define SplitA
S to be the set containing such a view σw for

each w ∈
→

R~A�. All the σw share the same prefix. We use this SplitA
S to define

T =
{
τ | there are σ and τ′ such that σττ′ ∈ SplitA

S

}
R =

{
ρ | there is no σ such that ρσ ∈ SplitA

S

}
By definition, T is a CK-WIS for Γ ` A and R is a CK-WIS for Γ, A ⊃ B, B ` c and both
are strictly smaller than S. �

Lemma 4.8. Let S be a CK-WISs for Γ′ ` A′ such that A′ = �A or A′ = ^A, the sequent
Γ′ is of the form �Γ,^∆. If at least one move from each formula in Γ′ occurs in a view in
S, then

174

• either Γ′ ` A′ is of the form �Γ ` �A and S|Γ,A is a CK-WIS for Γ ` A

• or Γ′ ` A′ is of the form �Γ,^B ` ^A and S = S|Γ,B,C is a CK-WIS for Γ, B ` A

Proof. If at least one move from each formula in Γ′ occurs in a view in S, then each
principal modality of a formula in Γ′ must occur in the first row of a batched view of a
p ∈ S. By CK-batched condition, all the principal modalities of the formulas in Γ′ must

be in
S
⇀-relation with the principal modality of A′. Hence, Γ′ ` A′ is either of the form

�Γ ` �A or �Γ,^B ` ^A. In the first case, we conclude by remarking that if we remove
the first row in any batched view F (p) with p ∈ S, then we obtain a batched view of the
same p, but in Γ ` A; this is exactly to say that S|Γ,A is a CK-WIS for Γ ` A

The second case is treated similarly. We should only remark that S will contain a
maximal view of the form ^^ and that this view will not appear in S|Γ,B,C

�

Lemma 4.9 (Full Completeness). If S is a CK-WIS over ~Γ ` A� then there is cut-free
proof D such that {{D}} = S.

Proof. The proof is by induction on the triple (|S|, ‖A‖, ‖Γ‖) where, |S| is the cardinality of
S, ‖A‖ is the number of connectives, modalities and atoms in A and if Γ = A1, . . . , An then
‖Γ‖ =

∑n
i=1 ‖Ai‖. We remark that if in no view in a CK-WIS S for Γ, B ` A contains moves

in B, then S is a CK-WIS also for Γ ` A. Observe that in case of ^-formulas occurring
in Γ, we may have that only one of these ^s occurring in a view. In this case, we expect
to observe in the final derivation a K^-rule preceded (bottom-up) by a W-rule. Moreover,
since ~Γ, B ∧C ` A� = ~Γ, B,C ` A�, then each CK-WIS for the first sequent is a CK-WIS
for the second one, but the size of the lhs sequent decreases. A similar reasoning applies to
the sequents Γ ` B ⊃ C and Γ, B ` C. We conclude by Lemmas 4.6, 4.7 and 4.8.

In Figure 4.4 we give a table resuming the sequentialization step to apply according to
the shape of the sequent and the shape of the CK-WIS. The conditions on the sequent (first
column) can be checked in the given order, triggering the corresponding sequentialization
step. �

By the above lemma, the fact that we can interpret derivations in LCK as CK-WISs and
by the fact that proofs that are equal modulo the cut-elimination procedure are interpreted
by the same CK-WIS, we can conclude that

Theorem 4.4. The CK-WISs form a fully-complete denotational semantics for CK.

175

Sequent Shape of S Shape of DS

` 1 S = {ε} −−−−− 1
` 1

a ` a S = {ε, a, aa} −−−−−−−−− AX
a ` a

Γ, B ∧C ` A any

−
DS

∥∥∥∥∥
Γ, B,C ` A
−−−−−−−−−−−−−−−−−−−−−−− ∧L

Γ, B ∧C ` A

Γ ` B ⊃ A any

−
DS

∥∥∥∥∥
Γ, B ` A
−−−−−−−−−−−−−−−−−−− ⊃R

Γ ` B ⊃ A

Γ ` A1 ∧ A2

Γ contains no ∧-formula

S = T ∪ R

T =
{
τ ∈ S | τ contains no moves in A2

}
R =

{
ρ ∈ S | ρ contains no moves in A1

}
−

DT

∥∥∥∥∥
Γ ` A1

−
DR

∥∥∥∥∥
Γ ` A2

−−−−−−−−−−−−−−−−−−−−−−−−−−−−− ∧R

Γ,Γ ` A1 ∧ A2
========================== C
Γ ` A1 ∧ A2

Γ, A ⊃ B{cP} ` cO

Γ contains no ∧-formulas
c atomic

B{cP} contains the atom cP

cOcP ∈ S

T =
{
τ ∈ S | cOcPτ ∈ S with τ0 move in A

}
R =

{
ρ ∈ S | ρ contains no moves in A

}
−

DT

∥∥∥∥∥
Γ ` A

−
DR

∥∥∥∥∥
Γ, B{cP} ` cO

−− ⊃L

Γ,Γ, A ⊃ B{cP} ` cO
====================================== C
Γ, A ⊃ B{cP} ` cO

Γ, B ` A S contains no moves on B

−
DS

∥∥∥∥∥
Γ ` A
−−−−−−−−−−−−−−− W
Γ, B ` A

�Γ ` �A
at least one move of each formula

in �Γ occurs in S

−
DS

∥∥∥∥∥
Γ ` A
−−−−−−−−−−−−−−−− K�
�Γ ` �A

�Γ,^PB ` ^OA
at least one move of each formula

in �Γ,^PB occurs in S

−
D
S\{^O ,^O^P}

∥∥∥∥∥
Γ, B ` A

−−−−−−−−−−−−−−−−−−−−−−−−− K^
�Γ,^B ` ^A

Figure 4.4: Sequentialization procedure

4.9 Bonus: game semantics for CD
The results presented in this chapter can be straightforwardly extended to the constructive
modal logic CD, which is obtained by extending CK with the modal axiom d shown below

176

left:

d : �A ⊃ ^A
Γ ` A

−−−−−−−−−−−−−−−− D
�Γ ` ^A

A sound and complete (cut-free) sequent system for this logic can be obtained by adding
the sequent rule above on the right to the sequent system for CK.

In order to define WIS capturing proofs in CD we need some additional definitions.

Definition 4.13. Let S be a WIS over an arena G. We say that S is CD-batched if it is
atomic, that is, the views in S contains only atomic vertices, linked, and if for each modal
vertex wO occurring in the address of a move in S the following conditions are fulfilled:

i if wO ∈ V�
G

and v
Gp
⇀w for a p ∈ S, then v ∈ V�

G
;

ii if wO ∈ V^
G

, then there is at most a u ∈ V^
G

in the set {v ∈ VG | v
Gp
⇀w for a p ∈ S}.

Note that the first condition is the same first condition from Definition 4.11. The reason
why we do not need the information about the diamonds in the strategies for CD depends
on a property of the logic (see [5, Theorem 2]). The idea is that an instance of weakening
can permute below K^-rules, transforming it into an instance of the D-rule, as shown below
(while in CK the information about the left-hand side diamond must be kept in some way):

−
D

∥∥∥∥∥
Γ ` A
−−−−−−−−−−−−− W
B,Γ ` A

−−−−−−−−−−−−−−−−−−−−−−− K^
^B,�Γ ` ^A

−
D

∥∥∥∥∥
Γ ` A
−−−−−−−−−−−−−−− D
�Γ ` ^A

−−−−−−−−−−−−−−−−−−−−−−− W
^B,�Γ ` ^A

We then define a CD-WIS as a CD-batched WIS. This allows to extend theorem 4.4
with no effort, that is

Theorem 4.5. The CD-WISs form a full-complete denotational semantics for CD.

4.10 Conclusion and Future Work
In this chapter we have defined a game semantics for the constructive modal logic CK and
have shown how it can be extended for the logic CD. We have proved full completeness and
compositionality of our winning strategies, and thus have shown that our model provides

177

a a full complete denotational semantics for CK and CD. The two game semantics that
we have defined provides an inferentialist alternative to the model theoretic semantics of
the two constructive modal logics [85]. Semantics here is defined in a pragmatist way: it
is given by a certain way of playing intuitionist games. In particular, the games for CK
and CD can be seen as intuitionistic games in which the Proponent is forced to play inside
contexts (batches). These contexts are opened by Opponent whenever he plays a move that
is under the scope of a positive modality. The proponent can play only moves that are in the
currently active context, and only the Opponent can switch to an already opened context or
open a new one.

In order to make our alternative approach more attractive we are currently investigating
the possibility of extending our semantics to the logics CT and CS4, that are obtained by
adding the modal axioms

T : (A ⊃ ^A) ∧ (�A ⊃ A) and 4 : (^^A ⊃ ^A) ∧ (�A ⊃ ��A)

However, the problem that arises is that for these logics also the � should be allowed as
move in order to keep track of the rules for T and 4. However, the P-determinism of
winning strategies depends on the fact that atoms and diamonds are paired by the rules
which introduce them. This means that when boxes are allowed as moves, determinism
cannot hold. We have to leave this issue for future work.

It is worth noticing that our result is strongly related to the game semantics for light
linear logic as given in [113]. In fact, light linear logic can be seen, in terms of proof
system, as a ^-free variant of LCK with two modalities ! and § behaving like �, where
weakening and contraction rules are restrained to !-formulas. This suggests the possibility
of using our approach to define a new notion of winning innocent strategies capturing the
proofs in intuitionistic linear logic.

Finally, we conjecture the existence of a one-to-one correspondence between our CK-
WISs and the λ-calculi for constructive modal logics [11, 12]. This investigation will also
be object of future research.

178

Part III

Natural Language Applications of Proof
Theory

179

Chapter 5

Type Logical Grammars: a result about
the syntactic-semantic interface.

Abstract
A natural question in categorial grammar is the relation between a syntactic analysis and its logical
form, i.e. the logical formula obtained from this syntactic analysis, once provided with semantic
lambda terms. More precisely, do different syntactic analyses fed with equal semantic terms, lead to
different logical form? We shall show that when this question is too simply formulated, the answer
is “no” while with some constraints on semantic lambda terms the answer is “yes”. The results of
this Chapter already appears in [23]

5.1 Introduction
Type-logical grammars are a family of frameworks for the analysis of natural language
based on logic and type theory. Type-logical grammars are generally fragments of intu-
itionistic linear logic, with the Curry-Howard isomorphism of intuitionistic logic serving as
the syntax-semantics interface. Figure 5.1 shows the standard architecture of type-logical
grammars.

1. given some input text, a lexicon translates words into formulas, resulting in a judg-
ment in some logical calculus, such as the Lambek calculus or some variant/extension
of it,

180

2. the grammaticality of a sentence corresponds to the provability of this statement
in the given logic (where different proofs can correspond to different interpreta-
tions/readings of a sentence),

3. there is a forgetful mapping from the grammaticality proof into a proof of multiplica-
tive, intuitionistic linear logic,

4. by the Curry-Howard isomorphism, this produces a linear lambda-term representing
the derivational meaning of the sentence (that is, it provides instructions for how to
compose the meanings of the individual words),

5. we then substitute complex lexical meanings for the free variables corresponding to
the lexical entries to obtain a representation of the logical meaning of the sentence,

6. finally, we use standard theorem proving tools (in first- or higher-order logic) to
compute entailment relations between (readings of) sentences.

This chapter is divided into two parts. In the first part of the chapter, we introduce
the various items that compose a type logical grammar based on the product free Lambek
calculus. We explain how one can use such items to obtain, from a syntactic parsing of a
natural language sentence, a logical formula.

In the second part of the chapter we will deal with a natural problem in type logical
grammar: the relation between a syntactic analysis and its logical form, i.e. the logical
formula obtained from this syntactic analysis, once provided with semantic lambda terms.
More precisely, do different syntactic analyses fed with equal semantic terms, lead to dif-
ferent logical form? We shall show that when this question is too simply formulated, the
answer is “no” while with some constraints on semantic lambda terms the answer is “yes”.

Organization of the chapter In section 5.2 we introduce the Lambek Syntactic calculus.
More precisely we introduce a natural deduction system for this logic and then we show
how we can analyze natural language phrases by means of Lambek-deduction, moreover
we briefly introduce the language of multisorted first order logic and show how formulas
of multisorted first order logic can be written in the simply typed λ-calculus. In section 5.3
we show how we can obtain a logical representation of a natural language sentence from a
lambek proof using the Curry-Howard isomorphism. In the following section (section 5.4)
we introduce the question that we are interested in “does different syntactic parsing of the

181

Syntax Semantics
Pragmatics

input text

categorial
grammar

proof

multiplica-
tive linear
logic proof

linear
lambda-

term

logical
semantics
(formulas)

semantics
and

pragmatics

homomorphism

isomorphism

lexical
substitution,

normal-
ization

lexical
substitution,

parsing

theorem
proving

Figure 5.1: The standard architecture of type-logical grammars

182

same sentence give rise to different logical representation of the same sentence?”. We show
that this question —if naively formulated— admits several negative answers. In section 5.5
we introduce the notion of dominance between atomic terms in a lambda-term. By using
this notion, we can reformulate the aforementioned question and obtain a positive answer
to it. Section 5.6 concludes this chapter by sketching some possible extension of our result.

5.2 The Lambek Syntactic calculus
In this section we introduce the Lambek Syntactic Calculus. The Lambek calculus [90] is a
logic developed for analyzing natural language. For Lambek grammars, the grammaticality
of a sentence corresponds to the derivability of a statement in the logical calculus, given a
lexicon mapping the words of the sentence to formulas. Lambek calculus proofs correspond
to logical formulas in a simple and systematic way [135].

The language of the Lambek calculus is specified as follows: given a set of primitive
categories (or primitive formulas) P = {s, n, np, pp, . . . , } sentence, noun, noun phrases,
prepositional phrases, Lambek categories (or formulas) are constructed according to the
following grammar:

Lp = P | (Lp\Lp) | (Lp/Lp)

as usual, we will use roman upper case letters from the beginning of the alphabet A, B,C,D
etc. to denote arbitrary categories. The intuitive meaning of A\B and B/A is the following:
an expression A\B is looking for an expression of type A on its left to produce an expression
of type B. Similarly, an expression B/A is looking for an expression of type A on its right
to produce an expression of type B.

The Natural Deduction rules for the Lambek calculus are shown in figure 5.2. The
elimination rules /E and \E are simply directional versions of the modus ponens rule. The
major premise of an elimination rule is the category whose connective is eliminated by
the rule application. The introduction rules /I and \I require us the discharge exactly one
occurrence of the A category. The introduction rules have the additional condition that the
discharged category A must be the leftmost (resp. rightmost) free hypothesis in the sub-
proof ending in B for the \I rule (resp. the /I rule) and that there must be at least one other
category not already discharged.

183

...
A

...
A\B

[\E]B

[A] · · · · · ·
...
B [\I]

A\B

...
B/A

...
A [/E]B

· · · · · · [A]
...
B [/I]

B/A

Figure 5.2: Natural deduction rules for L

Remark that contrarily to what happens in a natural deduction calculus for intuitionistic
logic (see section 1.8 of chapter 1) there is no need of naming the formula occurrence that
is discharged by an introduction rule. As a consequence the formal structure of a deduction
is a plain tree with leaves labeled with formulas and with nodes labelled by rules: such a
plain tree is enough to reconstruct the deduction, i.e. which hypothesis are free or not and
which hypothesis is discharged by which rule.

LetD be a derivation. An introduction rule for a connective ? that introduces the major
premises for an elimination rule for the same connective ? is called a detour (or redex) in
the derivation D. A derivation with no detour is called normal. There are reduction rules
to eliminate detours in a derivation. In the case of the Lambek calculus the reduction rules
are the following:

...D2

A

[A] · · · · · ·
...D1 {
B [/I]

A\B
[/E]

B

...D2

A · · · · · ·
...D1

B

184

· · · · · · [A]
...D1

B [/I]
B/A

...D2 {
A

[/E]
B

...D2

· · · · · · A
...D1

B

An expansion of a derivation D consists in the replacement of a sub-derivation D′ of D
by another sub-derivation according to one of the two following rules

...D ↪→
A\B

[A]

...D
A\B

[\E]B [\I]
B\A

...D ↪→
B/A

...D
B/A [A] [/E]B [/I]

B/A

the expansion can create new redexes in a derivation. Therefore, we want to allow them
only in position where no new redex are created. A formula occurrence A is said to be
in end position in a derivation D iff it is either the conclusion of D or it is not the major
premise of an elimination rule. A formula occurrence A is in minimal position iff either

• A is the conclusion of an en elimination rule and the premise of an introduction rule
for the same connective.

• A is end position and it is also the conclusion of an elimination rule.

Finally, we say that a derivationD is in long normal form iff its is normal and no expansion
rule at minimal position are possible without creating a detour.

5.2.1 Lambek Calculus and Grammar
In order to test if a sequence w1,w2, . . .wn of words forms a sentence that is grammatically
correct we assign to each word in the sequence a set of Lambek categories i.e., there is a

185

lex(John) = np lex(ran) = np\s
lex(Mary) = np lex(slept) = np\s

lex(the) = np/n lex(ate) = (np\s)/np
lex(report) = n lex(wrote) = (np\s)/np

lex(student) = n lex(everyone) = s/(np\s)
lex(pizza) = n lex(someone) = (s/np)\s
lex(who) = (n\n)/(np\s) lex(every) = (s/(np\s))/n

lex(whom) = (n\n)/(s/np) lex(some) = ((s/np)\s)/n

Table 5.1: Lambek calculus lexicon

every
(s/(np\s))/n

student
n

s/(np\s)
[/E]

[np]

wrote
(np\s)/np [np]

np\s
[/E]

s [\E]

np\s
[\I]

s [/E]

s/np
[/I]

some
((s/np)\s)/n

report
n

(s/np)\s
[/E]

s [\E]

Figure 5.3: Proof of “every student wrote some report”

function lex that assigns to each wi for i ∈ {1, . . . n} a set of Lambek types. In the following
if lex(w) is a singleton set {A} we will simply write lex(w) = A. Table 5.1 gives a simple
Lambek calculus lexicon. Some words, like “John” are assigned atomic categories (here
np for ‘noun phrase’). Similarly, “student” is assigned an atomic category n for ‘noun’.
The article “the” is assigned a complex category np/n indicating it is looking for a noun
n (such as “student”) to its right to form a noun phrase. Similarly, “slept” is assigned a
complex category np\s, indicating is looking for a noun phrase np (such as “the student”
or “John”) to form a sentence.

186

every
(s/(np\s))/n

student
n

s/(np\s)
[/E]

[np]

wrote
(np\s)/np [np]

np\s
[/E]

s [\E]

s/np
[/I]

some
((s/np)\s)/n

report
n

(s/np)\s
[/E]

s [\E]

np\s
[\I]

s [/E]

Figure 5.4: Second proof of “every student wrote some report”

Figure 5.3 shows an example proof for the sentence “every student wrote some report”.
Each non-discharged category in the proof corresponds to a word in the lexicon, and we
have written this word above the category. Note that this is a long normal form deriva-
tion: we have an elimination rule immediately followed by an introduction rule for the np
hypothesis.

It is fairly easy, given a lexicon, to enumerate all long normal form proofs for a sentence
[108], and with the lexicon of Table 5.1 the sentence “every student wrote some report” has
exactly two such proofs, with the second shown in Figure 5.4.

These two proofs correspond to the two readings of the sentence in a Montague-style
treatment of quantification [106]: one where the existential quantifier “some” has wide
scope over the universal quantifier “every”, and one where “every” outscopes “some”.

5.2.2 Multisorted logic and lambda calculus
In this section we briefly introduce the language of multisorted logic and how formulas of
multisorted logic can be coded in the simply typed λ-calculus. Given a non-empty set S 0

of basic sorts, sorts are defined by the following grammar

S := {t} | S 0 | S → S

Let Σ = (P,F, S 0). where S 0 is an at most countable set of sorts for individuals, P is
a set of predicate variables and F is a set of function symbol. The three sets are disjoints
and there is a function α that assign a sort σ = s1 → s2 → · · · sn → t (where each

187

si belongs to S 0 and t is the sort of truth values) to each predicate variable, and a sort
ρ = s1 → s2 → · · · sn to each function symbols. If k ∈ F and α(k) = s with s ∈ S 0 then k

will be called and individual constant. In the same way if R ∈ P and α(P) = t then P will
be called a predicate constant. Suppose that there is a countable set of individual variables
symbols for each s ∈ S 0. We will denote a variable symbol with sort s by xs. Terms of the
language are defined by the following grammar:

t := xs | f (t1, . . . tn)

let ¬,∧,∨,⊃,∀,∃ be the symbols for the usual connective and quantifiers of first order
logic, ⊥ and > be predicate constants. The set At of atomic formulas is the smallest set
containing formulas of the form P(t1, . . . tn), where P is a predicate variable with sort s1 →

s2 → · · · → sn → t and the ti are terms of the appropriate sort. Formulas are specified by
the following grammar:

F := At | ¬F | F ∧ F | F ∨ F | F ⊃ F | ∀xsF | ∃xsF |

The notion of free (resp. bound) variables of a term (resp. formula) will be the usual
ones, as well as the notion of subformula, Gentzen-subformula and positive/negative sub-
formula of a formula.

Let L be a multisorted first order language over the signature (P,F, S 0). To represent
formulas of this first order multi-sorted language as terms of the simply typed λ-calculus,
we need first to assume that the set of base sorts ofL and the set of base types of our simply
typed calculus are the same. We then need to assume that

• we have a λ-constant ¬ : t → t as well as three constants ∧,∨ ⊃ each one of type
t → (t → t)

• for each base type s we have two constants ∀ and ∃ both of type (s→ t)→ t

• for every relational symbol R ∈ R such that α(R) = ρ a λ-constant R : ρ

• for every functional symbol f ∈ F such that α(f) = σ a λ-constant f : σ

Example 5.1. Suppose that h is the sort of human being, nh the sort of non-human being,
that donkey is a predicate with sort nh → t, farmer a predicate with sort h → t and that
owns is a predicate with sort h → (nh → t). The following formula of multisorted first
order logic

188

∀ xh (farmer (x) ∧ (∃ ynh (donkey (y) ∧ owns (x, y)))

can be represented by the following λ-term

∀(h→t)→t(λxh(∧ (farmerh→t x)(∃(nh→t)→t(λynh(∧(donkeynh→t y)(ownsnh→(h→t) x y))))

In general one can always transform a formula F of multisorted first order logic into a
λ-term MF . Moreover, one can show the following proposition by induction on M:

Proposition 5.1. Let M be a eta-long β-normal λ-term of type si with free variables xk of
type sik , then M correspond to a term of multisorted logic of type si whose free variables
are of type xik

We can also show that the following proposition holds by induction on M:

Proposition 5.2. Let M be a eta-long β-normal λ-term of type t, then M corresponds to a
formula F of multisorted first order logic; moreover F and M have the same free variables
of type si for si ∈ S

the detailed proofs of the two above proposition can be found in the third chapter
of [108].

5.3 From Lambek to logic
There is a very direct way to turn the two proofs of the previous section (proofs 5.3 and 5.4)
into (lambda term representations) of the logical formulas representing the two possible
meanings of the sentence. There is a division of labor here: the Lambek calculus proof
specifies how the word in the lexicon are combined (in the form of a linear lambda term)
and the lexical entry for each word specifies a (not necessarily linear) lambda term corre-
sponding to the meaning of the word. To obtain a linear lambda term from out of a lambek
derivation, one usually pass through the intuitionistic fragment of multiplicative linear logic

189

5.3.1 From Lambek to imll
Formulas of multiplicative intuitionistic linear logic (imll for short) are constructed from
an at most countable set of base, or primitive, types using the connective((linear impli-
cation).

Proofs in imll calculus correspond to linear lambda terms. Table 5.2 shows the natural
deduction rules for imll together with term assignment for the proof. The elimination rule
has the condition that M and N do not share variables. The introduction rule has the condi-
tion that exactly one occurrence of the formula A (with variable x) is discharged. Remark
that we need to index the discharged hypothesis an the introduction rule that discharge it
i.e., natural deduction proofs for imll are trees decorated with this additional information.
We describe a very simple way to turn a Lambek proof into a linear λ-term. Assume that
the base type of the lambek calculus are n, np and s. Assume moreover that the only base
types of imll are e (the type of entities) and t (the type of truth values). The mapping .∗

from lambek categories to imll formulas is specified as follows:

n∗ = e(t np∗ = e s∗ = t

(A\B)∗ = (B/A)∗ = A∗ (B∗

the mapping .∗ has the property that it does not only translate Lambek-types to imll
types, but also Lambek derivation rules (and therefore derivations) to imll derivation rules
(and derivations).

The proofs in Figures 5.3 and 5.4 correspond to the lambda terms given in 5.1 and 5.2
respectively.

...
N : A

...
M : A(B [(E]

MN : B

[x : A]
...

M : B [(I]
λxA M : A(B

Table 5.2: Natural deduction rules for multiplicative intuitionistic linear logic.

190

(w4 w5)(λy((w1 w2) (λx((w3 y) x)))) (5.1)
(w1 w2)(λx((w4 w5) (λy((w3 y) x)))) (5.2)

Remark that both terms are of type t, the free variables w1, . . .w5 of the two terms cor-
responds to the words every, . . . , report of the two analyzed sentences, and the two bound
variables x and y corresponds to the discharged hypothesis of the Lambek derivations. Al-
though we use the Lambek calculus as an example in this chapter, most type-logical gram-
mars (including the multi-modal non associative Lambek calculus) have a similar forgetful
mapping from their logical connectives (and the corresponding derivation rules) to imll.

5.3.2 From imll to logical formulas
Finally, to obtain a representation of the meaning of the sentence, we substitute the lexical
meaning for each word. Following Montague, we leave some words unanalyzed, using
the constant student as the meaning of the word “student”, and similarly for “wrote” and
“report”, which are assigned the meaning write and report respectively. The interesting
words in this example are “every” and “some”. Using the constants ∀ and ∃, both of type
(e → t) → t, to represent the universal and the existential quantifier, and the constants ∧,
∨ and ⊃ of type t → (t → t) to represent the binary logical connectives, we can assign the
following lambda term to “every” and to “some”:

λPλQ∀(λx.(⊃ (P x))(Q x)) (5.3)

λPλQ∃(λx.(∧(P x))(Q x)) (5.4)

substituting the lexical terms for each of the corresponding variables derived terms 5.1
and 5.2 produces the following two terms.

(λPλQ∃(λz.(∧(P z))(Q z)) report)(λy((λRλS∀(λv.(⊃ (R v))(S v)) student) (λx((write y) x))))
(5.5)

(λRλS∀(λv.(⊃ (R v))(S v)) student)(λx((λPλQ∃(λz.(∧(P z))(Q z)) report) (λy((write y) x))))
(5.6)

191

these terms normalize to:

∃(λz.(∧(report z))(∀(λv.(⊃ (student v)((write z) v) (5.7)
∀(λv.(⊃ (student v))(∃(λz.(∧(report z))((write z) v) (5.8)

in more standard logical notation, these terms represent the following two formulas:

∃z(report(z) ∧ ∀v.(student(v) ⊃ write(v, z))) (5.9)
∀v(student(v) ⊃ ∃z.(report(z) ∧ write(v, z))) (5.10)

5.4 Syntactic terms and logical readings
In the previous sections we have sketched how, by using type theory, we can produce a
logical formula from a given string of lexicalyzed word. In particular, we have shown that
the same string of words can correspond to different logical formulas: from the same string
of lexicalyzed words we can produce different lambek derivations that will give rise to dif-
ferent linear λ-terms. In the running examples that we have developed through the chapter,
we have two Lambek calculus proofs producing two different readings. Now, while it is the
case that two different natural deduction proofs for the Lambek calculus always produce
two different linear lambda terms (terms like 5.1 and 5.2), the question which will interest
us in the rest of this chapter is the following: when can we guarantee that different Lambek
calculus proofs (or proofs in another system of type-logical grammar) produce different
meanings? By this, we mean different meaning in the sense of different lambda terms after
lexical substitution and normalization, and not terms representing logical formulas which
are not logically equivalent. This distinction is obvious when we replace our example sen-
tence by “some student wrote some report”. Here we still produce two different terms,
where the two existential quantifiers have different scope with respect to each other. How-
ever, these two terms correspond to logically equivalent formulas. In order to make the
question we intend to ask clearer, let us introduce some definitions

Definition 5.1 (Syntactic λ-term). A syntactic λ-term is a β-normal, simply-typed linear
λ-term with one occurrence of each free variable in w1, . . . ,wn with n > 0 — those free
variables are the words of some analyzed sentence.

We focus on linear lambda terms instead of the more restricted class of lambda terms
corresponding to Lambek calculus proofs because:

192

1. linear lambda terms have a simple inductive definition,

2. semantic phenomena like quantifier scope can be captured using linear lambda terms
but not using lambda terms corresponding to Lambek calculus proofs; a simple
counting argument shows that there are not enough Lambek calculus proofs to gen-
erate the n! readings for a sentence with n quantifiers [109],

3. many modern type-logical grammars also produce linear lambda terms for their syn-
tactic proofs, thereby making our results more generally applicable.

Definition 5.2. A semantic lambda term is a β-normal simply typed λ-term in which some
constants occur.

5.4.1 The problem
Assume that the sentence w1 · · ·wn has two syntactic λ-term P1 and P2 associated to it.
When replacing each vi (a free variable representing wi in the syntactic λ-term) by the
associated lexical lambda term Ni (non linear, with constants) in P1 and in P2 does beta
reduction give different lambda terms (i.e. logical formulas), i.e. does one have

P1[N1/v1 · · ·Nn/vn]
β

, P2[N1/v1 · · ·Nn/vn] ?

where
β
= is the symmetric, transitive and reflexive closure of

β
{1

5.4.2 Some counterexamples
In its most general form, the answer to our question is negative:

Proposition 5.3. There exist P1, P2 two syntactic λ-terms both of type σ and with the same
free variables w1,w2 . . .wn, and and there exist N1,N2 . . . ,Nn n semantic λ-terms such

P1
β

, P2 and P1[N1/w1 · · ·Nn/wn]
β
= P1[N1/w1 · · ·Nn/wn]

Proof. Take
P1 ≡ w1((w2w3)w4)

P2 ≡ w1((w2w4)w3)

193

where w1 : t → t, w2 : e→ (e→ t) and w3,w4 are both of type e. Moreover take

N1 ≡ λy.k1 N2 ≡ λx1λx2((k2x1)x2)) N3 ≡ k3 N4 ≡ k4

where k1 : t, y : t, k2 : e → (e → t) and t3, t4, x1 and x2 are of type e. Make the following
substitution.

P1[N1/w1,N2/w2,N3/w3,N4/w4] P2[N1/w1,N2/w2,N3/w3,N4/w4]

Both terms reduce to k1 �

This proposition (counter example to our question) holds because β-reduction can delete
i.e., when we have M := λxM′ in which x < Fv(M′) MN reduces in one step to M′ for all
N. Therefore, is it essential to exclude such cases if one hopes to give a positive answer to
the claim.

However, people who experimented categorial lexicons have probably noticed that se-
mantic lambda terms are λI-terms i.e. β reduction never erase any subterm. One may
wonder whether semantic lambda terms could be asked to be linear. This would be a too
severe constraint, since many common semantic lexical entries such as generalized quanti-
fiers cannot be expressed by linear lambda terms.

every : λPλQ∀(λx.(⊃ (P x))(Q x))

Definition 5.3. A simple semantic lambda term is a β-normal η-long λI-term M1 with
constants whose head symbol is a constant i.e.,

M := λz1, · · · znkN1N2 · · ·Nm

where k is a constant.

We want to preserve the difference between syntactic terms throughout β reduction.
Therefore, we just consider the case when free variables in the syntactic terms are substi-
tuted with semantic λ-terms with constants as head term. This restriction is severe but still
allows the capture of some non-trivial differences between syntactic analysis of the same
sentence e.g. scope ambiguity for quantifiers.

1Remark that β-normal η-long terms have been defined in chapter 1 (p.70) as well as the notion ofλI-term
(definition 1.19)

194

Proposition 5.4. There exist P1, P2 two syntactic λ-terms both of type σ and with the same
free variables w1,w2, . . .wn, and there exist N1,N2 . . . ,Nn n simple semantic λ-terms such
that

P1
β

, P2 and P1[N1/w1, . . .Nn/wn]
β
= P2[N1/w1, . . . ,Nn/wn]

Proof. take
P1 ≡ ((w1w2)w3)

P2 ≡ ((w1w3)w2)

with w1 : e→ (e→ t) and w2,w3 of type e

N1 ≡ λx1λx2((k1x1)x2) N2 ≡ k2 N3 ≡ k2

with k1 : e→ (e→ t), x2, x2, k2 of type e and make the following substitution

P1[N1/w1,N2/w2,N3/w3] P2[N1/w1,N2/w2,N3/w3]

After β-reduction the two terms become β-equal.
�

This counterexample shows that we should also require, at least, that the n lexical
lambda terms all have a different head-constant. Unfortunately — even with this restric-
tion — if one formalizes the notion of difference between the two syntactic analyses of
the sentence w1 · · ·wn in terms of β-difference between syntactic terms, one is doomed to
failure.

Proposition 5.5. There exists P1 and P2 two syntactic terms, both of type σ and with the
same free variables w1, . . . ,wn. There exists N1,N2 . . . ,Nn n simple semantic lambda terms
such that whenever i , j then the head-constant of Ni is different from the head-constant of
N j. We have that

P1
β

, P2 and P1[N1/w1, . . . ,Nn/wn]
β
= P1[N1/w1, . . . ,Nn/wn]

Proof. take
P1 ≡ w1(λxλy((w2x)y))

P2 ≡ w1(λyλx((w2x)y))

195

where x : e, y : e,w2 : e→ (e→ t),w1 : (e→ (e→ t))→ t. Take

N1 ≡ λP(k1((Px)x)) N2 ≡ (λzλy((k2z)y))

where P : (e → (e → t)) → t, k1 : t → t, k2 : e → (e → t) and x, z, y are of type e. And
make the following substitution

P1[N1/w1,N2/t2] P2[N1/w1,N2/w2]

After β-reduction the two terms become β-equal. �

5.5 Dominance
In the last section, we have seen that the question has a negative answer if the difference
between the two syntactic analyses is just syntactic difference (up to the renaming of bound
variables). By consequence, we can attack the problem by using at least two different
strategies.

Strategy 1 Refining our notion of syntactic lambda-terms. We know that not all linear
lambda terms have a corresponding Lambek calculus derivation, because Lambek
calculus is not commutative and therefore is proofs correspond to a proper subset
of the linear lambda terms. Similarly, most other type-logical grammars produce
generate a proper subset of the linear lambda terms as well. Although such proofs
are possible, it may be hard to give a precise and succinct statement of these classes
of lambda terms (for the Lambek calculus, we could follow the ideas of [142] for a
directional lambda calculus)

Strategy 2 Define a stronger notion of difference between syntactic analyses and the re-
sulting lambda terms.

The first strategy seems promising: the two syntactic terms P1 = w1(λyλx((w2x)y)) P2 =

w1(λyλx((w2x)y)) of Proposition 5.4 cannot correspond to two Lambek calculus parses
obtained by the same category assignment to the free variables w1 and w2. However, it
is really difficult to exactly characterize the subclass of typed linear lambda terms that
corresponds to derivations in the Lambek-calculus. The translation from the latter to the
former is not injective, and thus some information that could be relevant is lost.

196

The second strategy could be pursued only if the new notion of difference captures some
interesting differences between syntactic analysis of the same sentence e.g., scope ambi-
guity for quantifiers. We are going to pursue this path by defining a notion of dominance
between occurrences of atoms in λ-terms.

Definition 5.4 (leftmost-innermost subterm). The leftmost-innermost subterm of a term M
is defined as follows.

• If the term M is atomic the leftmost-innermost subterm is M itself.

• If the term M is an application M1M2, the leftmost innermost subterm of M is the
leftmost innermost subterm of M1.

• If the term M is an abstraction λx.M1, the leftmost innermost subterm of M is the
leftmost innermost subterm of M1

Proposition 5.6. The leftmost-innermost subterm of a term M is atomic and thus normal.

Definition 5.5 (Dominance). In a term M, occurrences of constants and variables are
endowed with a dominance relation as follows.

• If the term is atomic there is no elementary dominance relation.

• If the term M is an application M0M1, the elementary dominance relations are the
union of the ones in each of the Mi, plus the relations: Let M′

0 be the leftmost in-
nermost subterm of M0. Let M′

1 be the leftmost innermost subterm of M1 then M′
0

dominates M′
1

• If the term M is an abstractions λx. M1, then the dominance relations are the ones in
M1.

The occurrence of atomic term h elementary dominates the occurrence of atomic term
h′ is written h /1 h′, and the transitive reflexive closure of /1 is written /.

Example 5.2. Figure 5.5 in the next page shows an example of the dominance relations
between occurrences of constants and variables for lambda term 5.5 trough β-reduction.
The lambda terms corresponds to the sentence “every student wrote a report” with the
existential quantifier having wide scope. Remark that after each step of β we have that
∃ / ∀.

197

∃

∧

P

z

Q

z

report ∀

⊃

R

v

S

v

student write

x y

∃

∧

report

z

Q

z

∀

⊃

R

v

S

v

student write

y x

∃

∧

report

z

Q

z

∀

⊃

student

v

S

v

write

y x

∃

∧

report

z

Q

z

∀

⊃

student

v

write

y x v

∃

∧

report

z

Q

z

∀

⊃

student

v

write

y v

∃

∧

report

z

∀

⊃

student

v

write

v x

z

∃

∧

report

z

∀

⊃

student

v

write

v z

Figure 5.5: Example of the evolution of dominance relations for lambda term 5.5 through
β-reduction

198

Before showing that dominance between constant is preserved trough β-reduction, let
us state some obvious propositions:

Proposition 5.7. Let P be a syntactic lambda term with words w1, . . . ,wn. Let Mi for
1 ≤ i ≤ n be the corresponding simple semantic lambda terms with head constant ki. If
wi0 / wi1 in P then ki0 / ki1 in P[N1/w1, . . .Nn/wn].

Proposition 5.8. Let (λx.M)N be a redex where λx.M and N are normal terms. Let h1, h2

be two atomic terms s.t. h1 is a subterm of λx.M, h2 is a subterm of N. We have that h1 / h2

iff h1 is the head variable (constant) of λx.M

Proposition 5.9. In a term M the leftmost-innermost subterm M0 of M dominates all oc-
currences of all the atomic subterm of M.

The exact formulation of the following theorem is quite cumbersome. However its
“moral” content is easy: β-reduction cannot reverse the dominance relation between two
occurrences of constants in a λI-term. If k1 / k2 in U and U reduces to U′ then there
are possibly new occurrences of k1 and k2 and between all the occurrences produced by
β-reduction the dominance relation still holds.

Theorem 5.1 (Dominance preservation). Let M be a typed lambda I term including two

occurrences of constants k and k′ such that k / k′ in M. Assume M
β
{ M′. Then each copy

ki of k is associated with a set of occurrences k′i
j of k′ in M′ with ki / k′i

j in M′ — the sets
K′i = {k′i

j
} define a partition of copies of k′ in M′. In particular, there is never a relation the

other way round after reduction: k′i 6/ ki in M′ for all i.

Proof. Let k and k′ be occurrences of constants. It is enough to show that whenever k / k′,
then, after one step of innermost β-reduction, ki / k′i . With ki and k′i being copies of k and k′

as stated above.
A redex in M looks like M = P[(λx.A)B], moreover, we can suppose that both λxA and

B are normal. This is enough, since β-reduction is confluent.
For each relation k/1 k′ (because of the implicit recursion on the number of β reductions

performed so far there might already be several such pairs), because of the definition of
dominance k we see that k and k′ necessarily in one of the following relations in M =

P[(λx.A)B]:

1. outside the redex, i.e. elsewhere in P, k and k′ do not move

199

2. both in A. The only interesting case is when we have that k/x/k′ where x is the bound
variable in λx.A. We can assume that we have /1 between the three symbols. Since
we are using innermost reduction, B is a term in normal form. This means that it has
a head variable (constant) h. In the initial configuration we have -by the definition
of dominance- that k is the leftmost innermost subterm of a subterm of λxA. Call
the subterm of A A?. A? is applied to another normal subterm A?

1 having x as head
variable which is applied to another normal subterm A?

2 having k′ as head constant
i.e., the configuration is the following A?(A?

1 A?
2). After β-reduction the configuration

became A?(A?
1 [B/x]A?

2). In this case h — the head variable (constant) of B— is the
leftmost-innermost term of A?

1 [B/x] by the definition of dominance h /1 k′. Again by
the definition of dominance k /1 h

3. both in B, k and k′ move inside A being possibly duplicated

4. k is in λxA and k′ is in B. Since we are using innermost reduction, both term are in
normal form. This implies (Proposition 5.8) that k is the head constant of λx.A and
thus is leftmost-innermost subterm. This is still true after β-reduction i.e., k is the
leftmost-innermost subterm of A[B/x]. This implies (Proposition 5.9) that k / k′ (for
each occurred of k’) in A[B/x]

In any case k / k′ also holds after reduction to A[B/x]. In case the “initial” k and k′ are
both in B and A contains several occurrences of x, they have several traces which are in a
one to one correspondence with k / k′ in t′.

Note that having λI terms is crucial otherwise both k and k′ or just k′ may disappear
during the β reduction. �

It should be observed that dominance relations, even between occurrences of constants,
can be introduced by β-reduction (when a constant becomes the head variable of some
term), but this does not prevent the proposition to hold, since we only require the dominance
relation to not inverse an already existing relation between two occurrences of constants.

Corollary 2. Assume two syntactic analyses P1 and P2 give opposite dominance relation
between two words, u / u′ in P1 and u / u′ in P2. Whatever the semantic lambda terms
for u and u′ with different head constant k and k′ are, the associated logical forms will be
different.

200

5.6 Conclusion
In the first part of this chapter, we have introduced the architecture of type-logical grammar.
In particular, we have shown how we can assign to a natural language sentence a logical
formula. These latter formula corresponds to one of the meaning of the sentence. The
architecture we have described can be implemented. By means of example, type logical
grammars as described in this chapter are the basis of the wide-coverage French parser
which is part of the Grail family of theorem provers [107]: Grail uses a deep learning model
to predict the correct formulas for each word, finds the best way to combine these lexical
entries and finally produces a representation of a logical formula using the architecture
of type logical grammar we have just described. Admittedly the meaning that we assign
to natural language sentence is rather simplistic. Logical formulas cannot capture all the
subtleties of natural language expressions; however, this simplified meaning assignment
has a tremendous advantage: it can be automatically obtained and that it is of exactly the
right form for logic-based entailment tasks. Logic-based natural language entailment tasks
will be the focus of the next chapter.

In the second part of this chapter we have addressed a natural problem in type logical
grammar : do different syntactic analyses, fed with equal semantic terms, lead to differ-
ent logical forms? We have shown that some quite reasonable formalization of the claim
“different syntactic analyses yield different readings” are false. We nevertheless established
that with stronger constraints on the allowed semantic terms, and using dominance relations
between constants, the claim is true.

One open question, interesting more from a technical point of view than from a natural
language semantics point of view, is whether a stronger theorem holds when we assume
the syntactic terms are lambda terms obtained from Lambek calculus proofs, i.e. are the
commutative “trace” of non-commutative proofs. In proposition 5.5 the two terms P1 and
P2 cannot correspond to two different lambek proofs of the same sentence i.e., P1 and P2

are not the commutative trace of two different non-commutative proofs. We thus may hope
for a stronger result.

As said supra, this is of a limited interest for computational semantics. Indeed, plain
Lambek calculus is not able to derive some syntactic structures, like the reading of a sen-
tence with three quantifiers, with the middle one taking scope over the other two.

Another open question would be to see how to extend the current results to more gen-
eral classes of semantic lambda terms, for example by incorporating reflexives (which are
assigned semantics terms of the form λPλx. Pxx, and have no head constant). Observe

201

that some counter examples we gave are using semantic lambda terms whose structures are
quite similar to reflexives.

202

Chapter 6

Textual Entailement Recognition and
DiaLogical Games

Abstract
In this chapter we show, by constructing concrete examples, how we can use dialogical logic to
solve problems of textual entailment recognition. We start with some simple problems that can be
dealt with purely logical means. We then introduce games in which player can use the inferential
properties of words. Part of the content of this chapter already appears in [22]

6.1 Introduction
In this chapter we will illustrate the application of the inferentialist view to natural lan-
guage semantics with a very natural task: the recognition of natural language inference, a
task also known as textual entailment. In the current context, we use textual entailment in
a more limited sense than it is generally used in natural language processing tasks. Textual
entailment in natural language processing generally aims to obtain human-like performance
on relating a text and a possible conclusion [32]. Natural language processing systems are
evaluated on their ability to approach the performance of humans when deciding between
entailment, contradiction and unknown (i.e., neither the entailment relation nor the contra-
diction relation holds between the text and the given candidate conclusion). We consider
textual entailment from a purely logical point of view, taking entailment and contradiction
in their strictly logical meanings. In our opinion, a minimal requirement for a textual en-
tailment system should be that it can handle the well-known syllogisms of Aristotle, as well

203

as a number of other patterns [112] with perfect accuracy1.
The computational correspondence between natural language sentences and logical for-

mulas is obtained using type-logical grammars. In a sense, type-logical grammars are de-
signed to produce logical meanings for grammatical sentences. They compute the possible
meanings of a sentence viewed as logical formulae.

In the first part of this chapter, we show how we can solve simple instances of textual
entailment recognition within the framework of classical dialogical logic. We then intro-
duce dialogical games in which the players can use the inferential information provided by
non-logical words. In these latter games, called Unfold-Games, the players plays modulo
a fixed set of axioms. Each of these axioms has the form ∀x1, . . .∀xm(Q ⇐⇒ B) where
Q is a predicate variable (let’s call this formula the definiendum) and B is an arbitrary for-
mula (let’s call this formula definiens). Whenever P asserted an atomic formula Q that is a
definiendum O asks P to assert the definiens B of Q; If O assert an atomic formula Q that
is a definiendum P may ask O to assert the definies of the formula. Said in a less verbose
way : we study games in which the players can ask question about the meaning of atomic
formulas.

Organization of the chapter In section 6.2 we first briefly present the task of Textual
Entailment Recognition and the FraCas Benchmark. We then present, trough examples,
our solution to the problem of textual entailment recognition. In the subsequent section 6.3
we discuss entailment relations that holds by virtue of the meaning of non-logical words.
To treat these kinds of entailment recognition problems, we define unfold games and prove
some properties about these games. We finally show how we can solve textual entailment
problem by means of winning U-strategies.

6.2 Textual Entailment Recognition
In natural language processing, textual entailment is usually defined as a relation between
text fragments that holds whenever the truth of one text fragments follows from another

1The patterns in the well-known corpus for testing Textual Entailment recognition called FraCaS [28]
greatly vary in difficulty. We expect only some of them (monotonicity, syllogisms) to be handled easily,
whereas we expect others (plurals, temporal inference for aspectual classes) to be much more difficult for
systems based on automated theorem provers, or, indeed, for any automated system.

204

text. Textual entailment recognition is the task of determining, given text fragments, whether
the relation of textual entailment holds between these texts.

Our examples below are taken from the FraCaS benchmark; the FraCaS benchmark was
built in the mid 1990s; the aim was developing a general framework from computational
semantics. The data set consists of problems, each containing one or more statements and
one yes/no-question. An example taken from the date set is the following

(6.1) A Swede won a Nobel prize.

(6.2) Every Swede is a Scandinavian.

(6.3) Did a Scandinavian won a Nobel prize? [Yes]

6.2.1 First Example
We illustrate our methodology to solve inference problems using examples. First we turn
the question (6.3) into an assertion, i.e.,

(6.4) Some Scandinavian won a Nobel prize.

We then use the Type-Logical-Grammars to translate the sentences into logical formulas. In
the enumeration below we report, in order: the sentence in English and the logical formula
that a Type-Logical-Grammar outputs from the input of the latter.

(6.5) A Swede won a Nobel prize
H1 = ∃ x1 [Swede (x1) ∧ (∃ x2 Nobel-prize (x2) ∧ won (x1, x2))]

(6.6) Every Swede is a Scandinavian
H2 = ∀ x3, [Swede (x3) ⊃ Scandinavian (x3)]

(6.7) Some Scandinavian won a Nobel prize
C = ∃ x4 [Scandinavian (x4) ∧ (∃ x5 Nobel-prize (x5) ∧ won (x4, x5))]

Finally, we construct a dialogical logic winning strategy for the formula H1 ∧ · · · ∧ Hn ⊃

C where each Hi is the logical formula that a type logical grammar associates to each
statement from the data set, and C is the formula that associated to the assertion obtained
from the pair question-answer in the data-set. Below we show a winning strategy for the
formula H1 ∧ H2 ⊃ C. In the strategy Sw, N-p and Sc stands for Swede, Nobel-prize and
Scandinavian

205

m0 = (!,
(
∃x1[Sw(x1) ∧ (∃x2 N-p(x2) ∧ w(x1, x2))] ∧ ∀x3[S w(x3) ⊃ S c(x3)]

)
⊃ ∃x4[(Sc(x4) ∧ (∃ x5 N-p(x5) ∧ w(x4, x5))]

m1 = (?,
(
∃x1[Sw(x1) ∧ (∃x2 N-p(x2) ∧ w(x1, x2))] ∧ ∀x3[S w(x3) ⊃ S c(x3)]

)
) m0

m2 = (?,∧1) m1
m3 = (!,∃x1Sw(x1) ∧ (∃x2 N-p(x2) ∧ w, (x1, x2))) m2
m4 = (?,∃) m3
m5 = (!, Sw(y1) ∧ (∃x2 N-p(x2) ∧ w (y1, x2))]) m4
m6 = (?,∧) m5
m7 = (!, Sw(y1)) m6
m8 = (?,∧2) m5
m9 = (!, (∃x2 N-p (x2) ∧ w (y1, x2))) m8
m10 = (?,∃) m9
m11 = (!,N-p (y2) ∧ w (y1, y2)) m10
m12 = (?,∧2) m1
m13 = (!,∀x3(Sw (x3)ımpSc (x3)) m12
m14 = (?,∀[y1/x3]) m13
m15 = (!, Sw (y1) ⊃ Sc (y1)) m14
m16 = (?, Sw (y1)) m15
m17 = (!, Sc (y1)) m16
m18 = (!,∃x4[(Sc(x4) ∧ (∃ x5 N-p(x5) ∧ w(x4, x5))]) m1
m19 = (?,∃) m18
m20 = (!, (Sc (y1) ∧ (∃ x5 N-p (x5) ∧ w (y1, x5))) m19

m21 = (?,∧1) m20
m22 = (!, Sc (y1)) m21

m21 = (?,∧2) m20
m22 = (!, (∃ x5 N-p (x5) ∧ w (y1, x5))) m21
m23 = (?,∃) m22
m24 = (!,N-p (y2) ∧ w (y1, y2))) m23

m25 = (?,∧1) m24
m26 = (!,N-p (y2)) m25

m25 = (?,∧2) m24
m26 = (!,w (y1, y2)) m24

6.2.2 Second Example
(6.8) Some Irish delegates finished the survey on time.

(6.9) Did any delegates finish the survey on time? [Yes]

206

The answer to the question is affirmative. This means that if (6.8) is true, then the sentence
“some delegate finished the survey on time” must also be true.

(6.10) Some Irish delegates finished the survey on time
F1 = ∃ x1 [(Irish (x1) ∧ delegate (x1)) ∧ ∃ x2 (survey (x2) ∧ finished-on-time (x1, x2))]

(6.11) Some delegates finished the survey on time.
F2 = ∃ x3 [delegate (x3) ∧ ∃ x4 (survey (x4) ∧ finished-on-time (x3, x4))]

A winning strategy for the formula F1 ⊃ F2 is shown below; Ir, de, f-o-t and su stands for
Irish, delegate, finished-on-time and survey respectively.

m0 = (!, (∃ x1 [(Ir (x1) ∧ de (x1)) ∧ ∃ x2 (su (x2) ∧ f-o-t (x1, x2))]
)

⊃ ∃ x3 [de (x3) ∧ ∃ x4 (su (x4) ∧ f-o-t (x3, x4)))
m1 = (?,∃ x3 [de (x3) ∧ ∃ x4 (su (x4) ∧ f-o-t (x3, x4))) m0
m2 = (?,∃) m1
m3 = (!, (Ir (y1) ∧ de (y1)) ∧ ∃ x2 (su (x2) ∧ f-o-t (y1, x2))) m2
m4 = (?,∧1) m3
m5 = (!, (Ir (y1) ∧ de (y1))) m4
m6 = (?,∧2) m5
m7 = (!, de (y1)) m6
m8 = (?,∧2) m3
m9 = (!,∃ x2 (su (x2) ∧ f-o-t (y1, x2)))) m8
m10 = (?,∃) m9
m11 = (!, (su (y2) ∧ f-o-t (y1, y2)))) m10
m12 = (?,∧1) m11
m13 = (!, su (y2)) m12
m14 = (?,∧2) m11
m15 = (!, f-o-t (y1, y2)) m14
m16 = (!,∃ x3 [de (x3) ∧ ∃ x4 (su (x4) ∧ f-o-t (x3, x4)))]) m1
m17 = (?,∃) m16
m18 = (!, de (y1) ∧ ∃ x4 (su (x4) ∧ f-o-t (y1, x4)))) m17

m19 = (?,∧1) m18
m20 = (!, de (y1)) m19

m19 = (?,∧2) m18
m20 = (∃ x4 (su (x4) ∧ f-o-t (y1, x4)))) m19
m21 = (?,∃) m20
m22 = (!, (su (y2) ∧ f-o-t (y1, y2)))

m23 = (?,∧1) m22
m24 = (!, su (y2)) m23

m23 = (?,∧2) m22
m24 = (!, f-o-t (y1, y2)) m23

207

6.2.3 Third Example
(6.12) No delegate finished the report on time.

(6.13) Did any Scandinavian delegate finished the report on time? [No]

In this example, the question should get a negative reply. A positive answer would be
implied by the existence of a Scandinavian delegate who finished the report in the time
allotted. Thus, the sentence (6.12) plus the sentence “Some Scandinavian delegate finished
the report on time” should imply a contradiction. We first translate the two sentences into
logical formulas.

(6.14) No delegate finished the report on time.
F1 = ∀ x1 (delegate (x1) ⊃ ¬(∃ x2 (report (x2) ∧ finished-on-time (x1, x2)))

(6.15) Some Scandinavian delegate finished the report on time.
F2 = ∃ x3 [Scandinavian (x3) ∧ delegate (x3) ∧ ∃ x4 (report (x4) ∧ finished-on-time (x3, x4))]

The two formulas F1 and F2 are contradictory. So there exists a winning strategy for
the formula ¬(F1 ∧ F2) as shown below. In the strategy de, re, f-o-t and Sc stands for,
respectively, delegate, report, finished-on-time and Scandinavian

208

m0 = (!,¬(F1 ∧ F2))
m1 = (?, F1 ∧ F2) m0
m2 = (?,∧2) m1
m3 = (!,∃ x3 (Sc (x3) ∧ de (x3) ∧ ∃ x4 (re (x4) ∧ f-o-t (x3, x4)))) m2
m4 = (?,∃) m3
m5 = (!, (Sc (y1) ∧ de (y1)) ∧ ∃ x4 (re (x4) ∧ f-o-t (y1, x4)))) m4
m6 = (?,∧1) m5
m7 = (!, Sc (y1) ∧ de (y1)) m6
m8 = (?,∧2) m7
m9 = (!, de (y1)) m8
m10 = (?,∧2) m5
m11 = (!,∃ x4 (re (x4) ∧ f-o-t (y1, x4)))) m6
m12 = (?,∃) m11
m13 = (!, (re (y2) ∧ f-o-t (y1, y2)))) m12
m14 = (?,∧1) m12
m15 = (!, re (y2)) m14
m16 = (?,∧2) m13
m17 = (!, f-o-t (y1, x4)) m16
m18 = (?,∧1) m1
m19 = (!, [∀ x1 (de (x1) ⊃ ¬(∃ x2 (re (x2) ∧ f-o-t (x1, x2)))) m18
m20 = (?,∀[y1/x1]) m19
m21 = (!, (de (y1) ⊃ ¬(∃ x2 (re (x2) ∧ f-o-t (y1, x2)))) m20
m22 = (?, de (y1)) m21
m23 = (!,¬(∃ x2 (re (x2) ∧ f-o-t (y1, x2))) m22
m24 = (?,∃ x2 (re (x2) ∧ f-o-t (y1, x2)) m23

m25 = (?,∃) m24
m26 = (!, re (y2) ∧ f-o-t (y1, y2)) m25

m27 = (?,∧1) m26
m28 = (!, re (y2)) m27

m27 = (?,∧2) m26
m28 = (!f-o-t (y1, y2)) m27

m25 = (!,⊥) m24

6.2.4 Fourth Example
In this example we focus on a series of sentences that our system should not solve, because
the question asked neither has a positive nor a negative answer.

(6.16) A Scandinavian won a Nobel prize.

209

(6.17) Every Swede is a Scandinavian

(6.18) Did a Swede win a Nobel prize? [Don’t know]

This means that, on the basis of the information provided, we can neither say that a Swede
has won a Nobel Prize nor that there are no Swedes who have won a Nobel Prize.

(6.19) A Scandinavian won a Nobel prize.
F1 = ∃ x1 [Scandinavian (x1) ∧ ∃ x2 (Nobel-prize (x2) ∧ won (x1, x2))]

(6.20) Every Swede is a Scandinavian
F3 = ∀ x3 (Swede (x3) ⊃ Scandinavian (x3))

In dialogical logic terms, the fact that we do not have enough information to answer the
question (6.18), either positively or negatively, means that there is no winning strategy for
the formula F1 ∧ F2 ⊃ F3 nor for the formula F1 ∧ F2 ⊃ ¬F3 where the formula F3 is

F3 = ∃ x4 (Swede (x4) ∧ ∃ x5 (Nobel-prize (x5) ∧ won (x4, x5)))

We consider what a winning strategy for the formula F1 ∧ F2 ⊃ F3 must look like.
We recall that, by definition, a game is won by P iff it is finite and either ends with a P-
move that asserts an atomic formula or ends with an O-move that asserts ⊥. Since there
is no occurrence of ⊥ in the formula H = F1 ∧ F2 ⊃ F3 all games in a winning strat-
egy for H must end with a P-assertion of an atomic formula. By proposition 3.4 P can
assert an atomic formula B in a game for a formula F only if B is both a positive and
negative gentzen sub-formula of F. In the case of the formula H, the only atomic for-
mulas that are both positive and negative gentzen subformulas of H are Nobel-prize (t)
for all term t of the language, and won (t1, t2) for all terms t1 and t2 of the language.
In order to assert the formulas Nobel-prize (t) and won (t1, t2) P must assert the formula
∃ x4 (Swede (x4) ∧ ∃ x5 (Nobel-prize (x5) ∧ won (x4, x5))). If a game G,mP ∈ S where
m = (!,∃ x4 (Swede (x4)∧∃ x5 (Nobel-prize (x5)∧won (x4, x5)))) then, by the definition 3.5
of strategy, S must contain also the game G1 = GmPm′OnPn′O where m′ = (?,∃), n =

(!, (Swede (t′)∧∃ x5 (Nobel-prize (x5)∧won (t′, x5))) where t′ is a term of the language, and
n′ = (?,∧1). Remark that there cannot be any move legal for the game G1: this is because
the formula Swede (t′) is only a negative gentzen subformula of H for all terms t′. By this
we can conclude that there is no winning strategy S for the formula H = F1 ∧ F2 ⊃ F3.

210

since ¬F3 is a positive formula is a positive formula of F1 ∧ F2 ⊃ ¬F3 then, if it is
asserted in a game G, it is P that asserts it. This means that P cannot win the game because
O asserts ⊥. Thus if there is a winning strategy S for F1 ∧ F2 ⊃ ¬F3 it should only contain
games ending with a P-move. This means that the P-move that is the last move on each
of these games must be a defence-move that asserts some atomic gentzen subformula of
F1 ∧ F2 ⊃ ¬F3. Using again proposition 3.4 we must conclude that the only formula that
appears both positively and negatively in F1 ∧ F2 ⊃ ¬F3 is Swede(t) for all terms t in
the language. Let Gm be a game in S where m is an assertion of swede(t) for some term
t. We conclude that m must be an attack move. If it were a defense instead, this would
mean that there must be a sub-formula G of F1 ∧ F2 ⊃ F3 and that G is of of the form
∀w.Swede(w) or ∃w(swede (w)) or G′∨Swede (w) or G′∧Swede (w) or G′ ⊃ Swede (t) such
that P asserts G. This implies that this formula G must be a positive Gentzen subformula
of F1 ∧ F2 ⊃ ¬F3. But not such formula exists. Thus, the move m asserting Swede (t)
must be an attack. Since the only formula that can be attacked by this means is the formula
Swede(t) ⊃ Scandinavian(t), O can answer by asserting Scandinavian(t), and P cannot win
the game. Thus, there is no winning strategy S for the formula F1 ∧ F2 ⊃ ¬F3.

6.3 Word Knowledge
In this section we extend our simple model. We take into account inference problems whose
solution must invoke some background word knowledge. Consider the following couple of
sentences:

(6.21) The cost of living soared.

(6.22) The cost of living raised.

Any English speaker would recognize that if the statement 6.21 is true then the state-
ment 6.22 must also be true. This is simply because “to soar” means “to raise quickly”.
To solve correctly the inference problem, one need to take into account the meaning of the
verb “to soar”. We now introduce a way to take into account this kind of implicit word
knowledge into the winning strategies of dialogical logic. Our idea to take into account
inference that involve word knowledge is very simple: let us put ourselves in the shoes of
someone who does not know the meaning of a word e.g., the verb “to soar”. How would
she react to the assertion of the statement 6.21? Probably she would look confused and

211

simply ask for the meaning of “to soar”. If she receives a good explanation she would
certainly —at least we hope— conclude that 6.22 is logical consequence of 6.21.

6.3.1 Unfolding
If A and B are formulas we write A ⇐⇒ B as a shortcut for (A ⊃ B) ∧ (B ⊃ A). Let L be
a first order language and consider the following set;

AX = {F is a formula of L | F is of the form ∀ x1, . . . ,∀ xm (P ⇐⇒ C)}

where m ≥ 0, P is an atomic formula and C is a formula. The definition to follow is taken
from [40]

Definition 6.1. We say that an atomic proposition A unfolds to a proposition B if A = θ(P)
and B = θ(C) for some ∀ x1, . . .∀ xm(P ⇐⇒ C) ∈ AX and some substitution θ. We assume
that AX is such that each atomic formula unfolds to at most one formula. Moreover, we
suppose that the set AX is consistent: there is an interpretation structure M such that
M |= F for any F ∈ AX.

Remark that —according to the above definition— if P unfolds to C, then the formula
C may contain occurrences of P. However, for the applications we are interested in, we can
assume that if P unfolds to C then P does not occur in C.

We consider that a set of formulas AX is given; the set Aux of auxiliary symbols is
the smallest containing the symbols ∧1,∧2,∨,∃,U and the expression ∀[t/x] for all terms
t and variables x. Recall that the function Arg that maps non-atomic formulas to set of
pairs in which each pair is composed of a question and an answer has been defined in
subsection 3.2.2 as follows:

Arg(A ⊃ B) = {(A, B)}
Arg(A ∧ B) = {(∧1, A), (∧2, B)}
Arg(A ∨ B) = {(∨, A), (∨, B)}

Arg(∀xA) = {(∀[t/x], A[t/x]) | t ∈ T }
Arg(∃xA) = {(∃, A[t/x]) | t ∈ T }

we now extend this definition

212

Definition 6.2 (Unfold argumentation form). An Unfold argumentation form ArgU is a
partial function that maps formulas to sets of pairs of question and answers. A question is
either a formula or an element of Aux and an answer is a formula.

• ArgU(A) = Arg(A) if A is non-atomic

• ArgU(A) = {(U,C)} if A is atomic and A unfold to C;

• It is undefined otherwise.

A defense move is a pair (!, A) where A is a formula. An attack move is a pair (?, s)
where s is either a formula or an auxiliary symbol. The notion of justified attack move and
justified defense move are defined as in definition 3.2 with the only difference that what
count as a question about a formula and what counts as an answer about that question are
now defined with respect to the function ArgU. We define games in which the two player
can use the information provided by the set of formulasAX

Definition 6.3 (Unfold Game). An Unfold Game (U-Game for short) is a game (ρ, φ) in
the sense of definition 3.3 in which condition 3 is replaced by

• if (!, B) = mk ∈ ρ where B is an atomic formula and k is even, then either mk is a
repetition and B , ⊥ or B unfolds to C.

The notion of movem that is legal for a game G is defined exactly as in subsection 3.2.4
as well as the notion of game won by P (definition 3.4). Games in the sense of definition 3.3
will be called regular games in this section.

6.3.2 Some Examples of U-games
Consider a first order language L in which the only predicate symbols are the binary pred-
icate symbol ∈ and the binary predicate symbol ⊆. Suppose that the only formula inAX is
∀ x∀ y (x ⊆ y ⇐⇒ ∀ z (z ∈ x ⊃ z ∈ y)). We show two games won by P

213

m0 = (!, x ⊆ x)
m1 = (?,U) m0
m2 = (!,∀ z (z ∈ x ⊃ z ∈ x)) m1
m3 = (?, [y1/z]) m2
m4 = (!, y1 ∈ x ⊃ y1 ∈ x) m3
m5 = (?, y1 ∈ x) m4
m6 = (!, y1 ∈ x) m5

m0 = (!, (x1 ⊆ x2 ∧ x2 ⊆ x3) ⊃ x1 ⊆ x3)
m1 = (?, x1 ⊆ x2 ∧ x2 ⊆ x3) m0
m2 = (!, x1 ⊆ x3) m1
m3 = (?,U) m2
m4 = (!,∀ z (z ∈ x1 ⊃ z ∈ x3)) m3
m5 = (?,∀[y1/z]) m4
m6 = (!, y1 ∈ x1 ⊃ y1 ∈ x3) m5
m7 = (?, y1 ∈ x1) m6
m8 = (?,∧1) m1
m9 = (!, x1 ⊆ x2) m8
m10 = (?,U) m9
m11 = (!,∀ z (z ∈ x1 ⊃ z ∈ x2)) m10
m12 = (?,∀[y1/z]) m11
m13 = (!, y1 ∈ x1 ⊃ y1 ∈ x2) m12
m14 = (?, y1 ∈ x1) m13
m15 = (?, y1 ∈ x2) m14
m16 = (?,∧2) m1
m17 = (!, x2 ∈ x3) m16
m18 = (?,U) m17
m19 = (?,∀ z (z ∈ x2 ⊃ z ∈ x3)) m18
m20 = (!,∀[y1/z]) m19
m21 = (?, y1 ∈ x2 ⊃ y1 ∈ x3) m20
m22 = (?, y1 ∈ x2) m21
m23 = (?, y1 ∈ x3) m22
m24 = (!, y1 ∈ x3) m7

Consider a multi-sorted first order languageL in which the set of sorts includes the sort
e of entities and the sort v of events, tony and christopher are constants symbols of sorts
e, α is a constant symbol of fort v, and in which there are predicate symbols killing with
sort v → t, agent and patient with sort v → (e → t), intentionally with sort v → t , and
murderer with sort e→ t. Finally, suppose thatAX contains the formula

∀ xe [murderer(x) ⇐⇒ ∃ zv ∃ye((killing (z) ∧ intentionally (z)) ∧ (agent (z, x) ∧ patient (z, y))))]

214

m0 = (!, [(ki (α) ∧ in (α)) ∧ (ag (α, tony) ∧ pa(α, christopher))] ⊃ mu (tony))
m1 = (?, [(ki (α) ∧ in (α)) ∧ (ag (α, tony) ∧ pa(α, christopher))]) m0
m2 = (!,mu (tony)) m1
m3 = (?,U) m2
m4 = (!,∃ zv ∃ye((ki (z) ∧ in (z)) ∧ (ag (z, tony) ∧ pa (z, y))))) m3
m5 = (?,∃) m4
m6 = (!,∃ye((ki (α) ∧ in (α)) ∧ (ag (α, tony,) ∧ pa (α, y))))) m5
m7 = (?,∃) m6
m8 = (!, (ki (α) ∧ in (α)) ∧ (ag (α, tony,) ∧ pa (α, christopher))) m7
m9 = (?,∧2) m8
m10 = (?,∧2) m1
m11 = (!, (ag (α, tony,) ∧ pa (α, christopher)) m10
m12 = (!, (ag (α, tony,) ∧ pa (α, christopher)) m9
m13 = (?,∧1) m12
m14 = (?,∧1) m11
m15 = (!, ag (α, tony)) m14
m16 = (!, ag (α, tony)) m13

In the above game ki stands for killing, mu stands for murderer, ag stands for agent etc.

6.3.3 Properties of U-games
We now prove that from a winning U-game we can construct a regular winning game
and vice versa. This result is fairly obvious, and we include the proof for the sake of
completeness. Let G be a U-game,AX a set of formulas and H = ∀x1, . . .∀xm(P ⇐⇒ C)
a formula inAX. We say that H is used in G iff there is movem ∈ G such thatm = (!, θ(C))
for some substitution θ.

Lemma 6.1. Let AX be a set of formulas, A a formula, G a U-game for A won by P and
H1,H2, . . .Hn formulas ofAX that are used in G. There is a regular game Gr won by P for
the formula H1 ∧ H2 ∧ · · · ∧ Hn ⊃ A.

Proof. The regular game Gr for the formula H1 ∧ H2 ∧ · · · ∧ Hn ⊃ A is played as follows:
after P-assertion of H1∧H2 · · ·∧Hn ⊃ A, the player O asserts the formula H1∧H2∧· · ·∧Hn.
P attacks this latter formula obliging O to assert each Hi for i ∈ {1, . . . n}, then:

• if A is an atomic formula then, since there is a winning U-game for A, A must unfold
to one of the Hi i.e., there is an i ∈ {1, . . . n} such that Hi = ∀x1, . . .∀xn((B ⊃ A1) ∧

215

(A1 ⊃ B)) and A = A1[t1/x1, . . . tn/xn] where each ti is a term. P attacks the O-
assertion of the universally quantified formula Hi and oblige O to assert the formula
Hi[t1/x1]. Subsequently, she attacks the O-assertion of Hi[t1/x1] and obliges O to
assert the formula Hi[t1/x1][t2/x2] and so on; After 2n steps O-asserts [(A1 ⊃ B) ∧
(B ⊃ A1)][~ti/xi]. The player P forces O to assert B ⊃ A1[~ti/xi]. We can suppose,
without loss of generality, that B1 = B[~ti/xi] is a non-atomic formula. If B1 was
atomic, since there is a U-game for A and A unfolds to B1, B1 itself must unfold to
another formula C and we can repeat the same line of reasoning as above. We thus
let P attack the O-assertion of B1 ⊃ A by asserting, in turn, B1. We continue the game
by letting O assert A as a defense against this latter P attack. Finally, we let P assert
A;

• if A is non-atomic we let P assert A as a defense against the O-assertion of H1∧H2∧

· · · ∧ Hn and we play the game Gr as the U-game G ‘below’ A with the following
differences:

1. suppose that P asserts (in the U-game G) an atomic formula Q, and that this
assertion is not a repetition. This means that Q unfold to some formula B i.e.,
there is an i ∈ {1, . . . n} such that Hi = ∀x1, . . . xn[(B1 ⊃ Q1) ∧ (Q1 ⊃ B1)], Q =

Q1[~ti/xi] and B = B1[~ti/xi]. In the game Gr, P attacks the assertion of Hi and
obliges O to assert Hi[t1/x1], then she attacks Hi[t1/x1] and obliges O to assert
Hi[t1/x1, t2/x2] and so on. Once O has asserted Hi[~ti/xi] = (B ⊃ Q) ∧ (Q ⊃ B),
P forces O to assert B ⊃ Q, then she attack this latter assertion by a move (?, B).
The player O finally assert Q and P asserts Q in turn. The game Gr continues
as G below the P-assertion of Q;

2. Suppose that (in the U-game G) O asserts some formula B as a defense against
a P attack of the form (?,U), this latter attack being directed against an O
assertion of some atomic formula P. As usual this means that there is a formula
Hi in AX such that Hi = ∀~xi[(B1 ⊃ Q1) ∧ (Q1 ⊃ B1)] and B = B1[~ti/xi]. The
regular game Gr is constructed as follows: after O assertion of Q, P attacks
the formula Hi (in the usual way detailed above) until O is forced to assert
(B ⊃ Q) ∧ (Q ⊃ B). The player P forces O to assert Q ⊃ B and then she
attacks this latter assertion by asserting, in turn, the formula Q (remark that O
has already asserted Q). This P attack forces O to assert B and the game Gr

continues as U-game G below B.

216

�

Lemma 6.2. Let H1, . . . ,Hn be formulas of the form ∀x1, . . . ,∀xm(Q ⇐⇒ C) where P
is an atomic formula and C is a formula. Let A be a formula and Gr be a regular game
won by P for the formula H1 ∧ · · · ∧ Hn ⊃ A. There is a U-game G′ won by P for A if
{H1, . . . ,Hn} ⊆ AX.

Proof. Recall that a game is an augmented sequence=(σ, φ) where σ is a sequence of
moves and φ a pointing function. We say that a move m is hereditary enabled by a move if
n is the transitive, reflexive closure of the relation m is enabled by n′. The regular game Gr

starts by a P-assertion of H1∧· · ·∧Hn ⊃ C. The second movem1 is (?,H1∧· · ·∧Hn). Since
the formulas H1, . . .Hn are elements ofAX andAX is consistent, the move m = (!, A) be-
longs to the regular game Gr. Consider the set of moves:

Mm2 = {n ∈ Gr | n is hereditary enabled by m2}

And the difference Mm2 − M(!,A) where M(!,A) is the set of moves hereditary enabled by
the move m = (!, A). We delete from Gr all moves that belongs to the aforementioned
difference, obtaining an augmented sequence (ρ, φ) in which all moves belong toM(!,A). To
transform (ρ, φ) in an U-game G won by P for A we use the unfold attacks and defenses to
simulate the deductive links that are given by the formulas H1, . . .Hn.

�

The notion of strategy for U-games is defined exactly as in subsection 3.2.7 (defini-
tion 3.5). We say that a formula H ∈ AX is used in a strategy S iff H is used in some game
G ∈ S. The following theorem directly follows from the two above lemmas.

Theorem 6.1. LetAX be a set of formulas of the form ∀x1, . . .∀xm(P ⇐⇒ C) where P is
an atomic formula and C is a formula. Let A be an arbitrary formula. There is a winning
U-strategy S for A if and only if there is a winning strategy T for

∧
Γ ⊃ A where Γ is the

finite subset of formulas ofAX that are used in S.

6.4 Textual entailment and U-strategies
Consider a first order language L in which there are four unary predicates cost-of-living,
soared, raised, quickly. Suppose that the setAX as the following formula as element

217

∀ x1[soared (x1) ⇐⇒ raised (x1) ∧ quickly (x1)]

the logical form of (6.21) and (6.22) are respectively

(6.23) F1 = ∃ x1 [cost-of-living (x1) ∧ soared (x1)]

(6.24) F2 = ∃ x2 [cost-of-living (x2) ∧ raised (x2)]

We show a winning U-strategy for F1 ⊃ F2:

m0 = (!,∃ x1 [cost-of-living (x1) ∧ soared (x1)] ⊃ ∃ x2 [cost-of-living (x2) ∧ raised (x2)])
m1 = (?,∃ x1 [cost-of-living (x1) ∧ soared (x1)]) m0
m2 = (?,∃) m1
m3 = (!, [cost-of-living (y) ∧ soared (y)]) m2
m4 = (?,∧1) m3
m5 = (!, cost-of-living (y)) m4
m6 = (?,∧2) m3
m7 = (!, soared (y)) m6
m8 = (?,U) m7
m9 = (!, raised (y) ∧ quickly (y)) m8
m10 = (?,∧1) m9
m11 = (!, raised (y)) m10
m12 = (!,∃ x2 [cost-of-living (x2) ∧ raised (x2)]) m1
m13 = (?,∃) m12
m14 = (!, cost-of-living (y) ∧ raised (y)) m13

m15 = (?,∧1) m14
m16 = (!, cost-of-living (y)) m15

m15 = (?,∧2) m14
m16 = (!, raised (y)) m15

Let us now consider a more complex example:

(6.25) Some patient has aphasia and is a child.

(6.26) Every boy or girl suffering from mutism consult a psychiatrist.

(6.27) Does some patient consult a doctor? [Yes]

let L be a first order language. Let has-aphasia, patient, child, boy, girl, speak, and write
be unary predicates. Suppose that the elements ofAX are the following formulas

∀x1 [(has-aphasia (x1)) ⇐⇒ (¬speak (x1) ∧ ¬write (x1))]

218

∀ x2 [child (x2) ⇐⇒ (boy (x2) ∨ girl (x2))]

∀ x3 [has-mutism (x3) ⇐⇒ ¬speak (x3)]

∀ x4 [psychiatrist (x4) ⇐⇒ (doctor (x4) ∧ treats-mental-issues (x4))]

The logical formulas corresponding to (6.25), (6.26) and to the assertion implicit in (6.27)

are:

(6.28) Some patient has aphasia and is a child.
F1 = ∃ y1 [patient (y1) ∧ (has-aphasia (x1) ∧ child (x1))]

(6.29) Every boy or girl suffering from mutism consult a psychiatrist.
F2 = ∀ y2 [(boy (y2) ∨ girl (y2) ∧ has-mutism (y2)) ⊃
∃ y3 (psychiatrist (y3) ∧ consult (y2, y3))]

(6.30) Some patient consults a doctor.
F3 = ∃ (y4) [patient (y4) ∧ ∃y5 (doctor y5 ∧ consult (y4, y5))]

Below we show a winning U-strategy for the formula F1 ∧ F2 ⊃ F3. For typographical
reason the strategy for this formula will be split in two. In the strategy we abbreviate the
predicates in the usual manner.

219

m0 = (!, F1 ∧ F2 ⊃ F3)
m1 = (?, F1 ∧ F2) m1
m2 = (?,∧1) m1
m3 = (!,∃ y1 [pa (y1) ∧ (h-a (x1) ∧ ch (x1))]) m2
m4 = (?,∃) m3
m5 = (!, pa (z) ∧ (h-a (z) ∧ ch (z))) m4
m6 = (?,∧2) m4
m7 = (!, h-a (z) ∧ ch (z)) m6
m8 = (?,∧1) m7
m9 = (!, h-a (z)) m8
m10 = (?,U) m9
m11 = (!,¬sp (z) ∧ ¬wr (z)) m10
m12 = (?,∧1) m11
m13 = (!,¬sp (y)) m12
m14 = (?,∧2) m7
m15 = (!, ch (z)) m12
m16 = (?,U) m13
m17 = (!, bo (z) ∨ gi (z)) m14
m18 = (?,∧2) m1
m19 = (!,∀ y2[(bo (y2) ∨ gi (y2) ∧ h-m (y2)) ⊃ ∃ y3 (ps (y3) ∧ co (y2, y3))]) m17
m20 = (?,∀[z/y3]) m19
m21 = (!, (bo (z) ∨ gi (z)) ∧ h-m (z)) ⊃ ∃ y3 (ps (y3) ∧ co (z, y3))) m20
m22 = (?, (bo (z) ∨ gi (z)) ∧ h-m (z)) m21

m23 = (?,∧1) m22
m24 = (?,∨) m15

m25 = (!, bo (z)) m24
m26 = (!, bo (z) ∨ gi (z) m23
m27 = (?,∨) m26
m28 = (!, bo (z)) m27.

m25 = (!, gi (z)) m24
m26 = (!, bo (z) ∨ gi (z) m23
m27 = (?,∨) m26
m28 = (!, gi (z)) m27.

m23 = (?,∧2) m22
m24 = (!, h-m (z)) m23
m25 = (?,U) m24
m26 = (!,¬sp (z)) m25
m27 = (?, sp (z)) m26
m28 = (?, sp (z)) m13
m29 = (!,⊥) m2

220

m0 = (!, F1 ∧ F2 ⊃ F3)
m1 = (?, F1 ∧ F2) m1
m2 = (?,∧1) m1
m3 = (!,∃ y1 [pa (y1) ∧ (h-a (x1) ∧ child (x1))]) m2
m4 = (?,∃) m3
m5 = (!, pa (z) ∧ (h-a (z) ∧ child (z))) m4
m6 = (?,∧2) m4
m7 = (!, h-a (z) ∧ ch (z)) m6
m8 = (?,∧1) m7
m9 = (!, h-a (z)) m8
m10 = (?,U) m9
m11 = (!,¬sp (z) ∧ ¬write (z)) m10
m12 = (?,∧1) m11
m13 = (!,¬sp (y)) m12
m14 = (?,∧2) m7
m15 = (!, child (z)) m12
m16 = (?,U) m13
m17 = (!, bo (z) ∨ gi (z)) m14
m18 = (?,∧2) m1
m19 = (!,∀ y2[(bo (y2) ∨ gi (y2) ∧ h-m (y2)) ⊃ ∃ y3 (ps (y3) ∧ co (y2, y3))]) m17
m20 = (?,∀[z/y3]) m19
m21 = (!, (bo (z) ∨ gi (z)) ∧ h-m (z)) ⊃ ∃ y3 (ps (y3) ∧ co (z, y3))) m20
m22 = (?, (bo (z) ∨ gi (z)) ∧ h-m (z)) m21
m23 = (!,∃ y3 (ps (y3) ∧ co (z, y3))) m22
m24 = (?,∃) m23
m25 = (!, ps (w) ∧ co (z, y3)) m24
m26 = (?,∧1) m25
m27 = (!, ps (w)) m26
m28 = (?,U) m27
m29 = (?, do (w) ∧ t-m-h (w)) m28
m30 = (?,∧1) m29
m31 = (do (w)) m30
m32 = (!,∃ (y4) [pa (y4) ∧ ∃y5 (do y5 ∧ co (y4, y5))]) m1
m33 = (?,∃) m32
m34 = (!, pa (z) ∧ ∃y5 (do (y5) ∧ co (z, y5))

m35 = (?,∧1) m34
m36 = (!,∧1) m5
m37 = (!, pa (z) m36
m38 = (!, pa (z)) m35

m35 = (?,∧2) m34
m36 = (!,∃ y5 (do (y5) ∧ co (z, y5)) m35
m37 = (?,∃) m36
m38 = (!, do (w) ∧ co (z,w)) m37

m39 = (?,∧1) m38
m40 = (?, do (w)) m39

m39 = (?,∧2) m38
m40 = (!, co (y,w)) m39

221

6.5 Conclusion
In this chapter we have seen how we can solve simple instances of the textual entailment
recognition problem using type logical grammars and dialogical logic. The examples are
taken from the FraCas dataset and covers simple examples of textual entailment recogni-
tion. We also presented dialogical games that are better suited to the treatment of inferences
in which the meaning of words is essential. The meaning of certain words (atomic proposi-
tion) is given to the two players in the form of explicit definitions. The players can unfold
these definitions. In doing so, inferential links that are due solely to the meaning of words
can be used in dialogic games. Unfold (and Fold) rules were first studied by Prawitz in the
context of Natural Deduction systems [115], then by Schroeder-Heister in the context of
the sequent calculus [126] and have been developed extensively by Dowek [40]. Unfold
rules permits to considerably reduce the size of formal proofs and for this reason versions
of these types of rules are the basis of many approaches to automated proof search in the
sequent calculus e.g., [39, 17].

222

Chapter 7

DiaLogical Games for anaphora and
ellipsis resolution

Abstract
In this chapter we develop a proof theoretic approach to anaphora and ellipsis resolution. Our
approach is based on the introduction of a new quantifier AxF whose meaning is specified in the
context of particular dialogical games. The bound variable of the quantifier can only be instantiated
with terms that already appears in the game. We present in detail some examples of entailment
recognition involving anaphora and ellipsis resolution. Much of the content of this chapter already
appears in in [24] .

7.1 Introduction
In this chapter we propose a novel solution to anaphora and ellipsis resolution. A meaning
η is anaphoric just in case it cannot occur without the co-occurrence of another mean-
ing η′ from which it is indistinguishable, dubbed its antecedent. One obvious example of
anaphora in English is ‘he’ in ‘John believes he proved the theorem’, where ‘he’ is under-
stood to be John. But ellipsis —the absence of some subcategorized for expression— is a
variety of anaphora too [111]. Anaphora resolution is the process by which the meaning of
anaphoric expressions is identified with the meaning of their antecedents. Since the space
of possible antecedents is in principle wide, but people find the correct (=intended) refer-
ent quickly and often without error, anaphora resolution poses an interesting puzzle for any
theory of linguistic semantics.

223

We propose that anaphora can be accounted for by means of proof-theoretic methods
in (multi-sorted) first order dialogical logic. We introduce a new quantifier A, which is
intuitively understood to correspond to quantification over non-fresh terms. Given a context
p which includes a proposition with A binding an occurrence x, there is a proof of some
proposition q which is the result of substituting some term t in the context of p for the
x bound by A. This proof-theoretic approach is extended to resolution of post-auxilliary
ellipsis (PAE) [104] by the introduction of events into the inventory of sorts. In short, PAE
under the present theory is event anaphora.

Organization of the Chapter

In the next section, we introduce the phenomena under study–pronouns and anaphoras–
and our conception of their resolution. In the subsequent section we introduce a dialogical
logic system for anaphora resolution. Section 7.4 shows how we can solve textual entail-
ment recognition problems involving anaphoric reference by means of our dialogical sys-
tem. In Section 7.5 we discuss post-auxiliary ellipsis and event semantics. The subsequent
section 7.6 presents examples of entailment problems that are solved by our methodology.
In section 7.7 we succinctly discuss other approaches to anaphora and ellipsis resolution
and the role of sorting in our system. Section 7.8 concludes.

7.2 Pronouns
Since the pioneering work of [67, 80], pronouns in natural language semantics have re-
ceived much attention. The conception of pronouns in these theories is under girded by the
view that some expressions introduce semantic objects dubbed discourse referents (drefs)
and others refer back to these drefs. Much of the work in this tradition is concerned with
when an antecedent dref is ‘accessible’ for a pronoun to be resolved to it. Consider the
following:

(7.1) Not everyone smiled. *He had a terrible headache.

(7.2) Someone did not smile. He had a terrible headache.

(7.3) Pedro didn’t buy a donkey. *It is grey.

(7.4) Bill bought a donkey. It is grey.

224

(7.5) Bill didn’t visit Sue. She is out.

Where a pronoun that cannot reefer to an entity introduced in the previous sentence is
preceded by *. According to DRT [81], negation blocks the introduction of (some) drefs in
its scope, which are otherwise introduced by indefinites. Names, unlike indefinites, project
the dref they introduce outside the scope of negation. Consequently, while ‘she’ can refer
to Sue in (7.5), and ‘it’ can refer to Bill’s donkey in (7.4), ‘it’ cannot be understood to refer
to the donkey Pedro didn’t buy in (7.3), which needn’t even exist. However, since the scope
of indefinites is not restricted to the complement of negation, there is a second reading of
(7.3) on which the indefinite outscopes the negation. The two scopes of the indefinite are
represented in first order logic below, where p is ‘Pedro’:

(7.6) ¬∃x.donkey(x) ∧ buy(p, x)

(7.7) ∃x.donkey(x) ∧ ¬buy(p, x)

The second reading is sometimes said to be ‘specific’ in that it is felicitous (=judged coher-
ent) in the context in which Bill bought some gray donkey which Pedro didn’t buy. Since
there is a gray donkey in this context, one could felicitously utter the discourse in (7.3).
A variety of other contexts where drefs don’t seem to project have exercised semanticists.
Some drefs don’t project outside the scope of ‘if,then’ expressions; others don’t project
outside the scope of ‘every’. Modelling the contexts in which drefs do and don’t project
is one of the primary projects of those theories of semantics dubbed ‘dynamic’, which de-
part from the static Montagovian [105] picture of meaning in viewing the meaning of an
utterance first and foremost in terms of how it can change the context of a discourse.

7.3 Dialogical games for Anaphora and Ellipsis resolution:
A-games

As we have anticipated in the introduction of this chapter, the solution that we propose
rely on the introduction of a new quantifierA. Formulas that are asserted by the Opponent
trough a dialogical game G are considered to be granted; this is the meaning of the formal
rule 3 in the definition 3.3 of game. The Proponent can safely assert atomic formulas
that the Opponent already asserted because the truth of those formulas is taken for granted
i.e., Opponent’s assertion forms the context or common ground of the game. Our idea to

225

treat anaphora resolution is thus simple. Whenever the assertion of formula F = A y G is
attacked, the defense must be the assertion of G[k/y] where k is a constant that occurs in
some formula that has been previously asserted by the Opponent. The constant k represent
an entity whose existence — in the context of the game— is taken for granted.

Given a non-empty set S 0 of basic sorts, we define the set S of sort as follows :

S := {t} | S 0 | S → S

where t is the sort of booleans. Consider a multi-sorted first order language L in which the
set T of terms of L is the union of the set C of sorted constant (for any base sort si ∈ S 0

we have arbitrarily many constants of that sort) and of the set V of sorted variables (for
any base sort si ∈ S 0 we have countably many variables of that sort). Let R be an at
most countable set of predicate variables. To each predicate variable we associate a sort
s1 → (s2 → · · · → (sn → t)) with n ≥ 0 and for all i ∈ {1, . . . n} si ∈ S 0. The set At of
atomic formulas has for elements expressions P(t1, . . . tn) where P is a predicate variable
with sort s1 → (s2 → · · · → (sn → t)) and each ti for i ≥ 0 is of sort si.

Let ∧,∨,⊃,∀,∃ be the usual connectives and quantifiers of multisorted first order logic,
letA be our new quantifier. Formulas are defined by the following grammar

F = At | F ∧ F | F ∨ F | F ⊃ F | ∀xαF | ∃xαF | AxαF

As usual the negation of a formula is defined as ¬F = F ⊃ ⊥. In this section the set Aux
of auxiliary symbols is defined ad the smallest set with elements ∧1,∧2,∨,∃,A and the
expression ∀[kα/xα] for all constants k and variables x. The function Arg that maps non-
atomic formulas to sets of pairs of auxiliary symbols and formulas is defined as follows:

Arg(A ⊃ B) = {(A, B)}
Arg(A ∧ B) = {(∧1, A), (∧2, B)}
Arg(A ∨ B) = {(∨, A), (∨, B)}
Arg(∀xαA) = {(∀[kα/x], A[kα/x]) | kα ∈ C}
Arg(∃xαA) = {(∃, A[kα/x]) | kα ∈ C}
Arg(AxαA) = {(A, A[kα/x]) | kα ∈ C}

A defense move is a pair (!, A) where A is a formula. An attack move is a pair (?, s)
where s is either a formula or an auxiliary symbol. The notion of justified attack move and
justified defense move are defined as in definition 3.2 with the only difference that what

226

count as a question about a formula and what counts as an answer about that question are
now defined with respect to the function Arg defined above.

Let (ρ, φ) be an augmented sequence, we say that a formula A appears in the augmented
sequence iff there is a move m ∈ ρ that asserts A. We say that a constant k appears in
ρ whenever k occurs in some asserted formula, or there is a move m = (?,∀[k/x]) in
ρ. Fix an enumeration (ki)i∈I of constants of C. The definition of games for anaphora is
entirely similar to the definition 3.3 of “plain” games. However, we recast it for the sake of
intelligibility

Definition 7.1 (A-Game). An Anaphora Game (A-Game for short) G for a formula F is
an augmented sequence (ρ, φ) where ρ = m0 · · ·mn · · · is non-empty and such that

1. m0 = (!, F) and for all i > 0 the move mi is justified;

2. φ(mi) = mi−1 if i is odd, φ(mi) = m j with j odd if i is even;

3. if mi = (?, B) with B atomic formula and i even then mi is a reprise and B , ⊥;

4. if mi is an attack move of the form (?,∀[kα/x]) and i is odd then kα is the first constant
in the enumeration (ki)i∈I that does not appear in the prefix of ρ ending in mi−1;

5. if mi = (!, B[kα/x]) is a defense move, i is odd and mi−1 is of the form (?,∃) then kα

is the first constant in the enumeration (ki)i∈I that does not appear in the prefix of ρ
ending in mi−1;

6. if mi = (!, B[kα/x]) is a defense move and φ(ρi) is of the form (?,A) then there is an
assertion move m j = (?,C) with j < i and j odd such that kα occurs in C.

7. if mi = (?,A) and i is even, then there is an assertion move m j = (?,C) ∈ ρ and a
constant kα such that kα occurs in C, j < i and j is odd.

Condition 4 ensures that P must instantiate a universal quantifier with a fresh constant.
Condition 5 ensures that O must do the same thing with existential quantifiers. Condition 6
determines the behavior of the quantifierA in a game. This quantifier must be instantiated
with a constant that appears in the common ground of the game where the common ground
is the set of formulas asserted by O through the game. Finally, condition 7 assures that P
can attack a move that asserts a formulaAxA only if O can defend against this attack.

227

A-games winning conditions are defined exactly as in definition 3.4. An A-strategy
S for a formula F is defined as in definition 3.5 with the only difference that S will be a
prefix-closed set ofA-games for F.

7.3.1 Properties ofA-Games
Propositions 3.1, 3.2, 3.3 and 3.4 of section 3.2.6 holds for A-games. Moreover, we can
prove the following

Proposition 7.1. Let F be a multi-sorted first order formula in which there is no occurrence
of the quantifierA. There is a winningA-strategy S for F if and only if there is a winning
strategy T for F.

Proof. It is sufficient to remark that each plain game is a A-game and that if F has no
occurrence ofA then eachA-game for F is a plain game for F. �

A logic can be defined as a set of formulas. We say that a set of formulas is consistent
iff there is a formula B that does not belong to it . Define the set

TeorA = {F is a multi-sorted formula | there is a winningA-strategy for F}

Because of proposition 7.1 Teor is a consistent set. Thus the logic defined by the set of
formulas for which there is a winning A-strategy is consistent. Let Γ be a set of formulas
and F a formula. We say that F is anA-consequence of Γ iff there is a winningA-strategy
for

∧
Γ ⊃ F. The consequence relation we have just defined is non-monotonic i.e., there

are ∆ and Γ and F such that F is A-consequence of ∆, ∆ ⊆ Γ and there is no winning
A-strategy for

∧
Γ ⊃ F. For a simple example, consider ∆ = {P(k),AyQ(y)} where k1

is a constant. The formula P(k1) ∧ Q(k) is an A-consequence of ∆, while it is not a A-
consequence of {P(k2), P(k1),AyQ(y)}, where k2 is a constant different from k1.

7.4 Textual Entailment Recognition and Anaphora Reso-
lution

We present some examples of textual entailment recognition involving anaphoras, and we
show how they can be solved using the notions defined in the previous subsection. We

228

choose some examples of anaphora resolution that we find representative. We do not claim
that our method can solve all example of anaphora resolution. The extension of this class of
problems is unclear, and we content our self to show that some inference problem involving
anaphora resolution can be solved usingA-games.

7.4.1 First Example Involving Anaphoras
In subsection 7.2 we saw that in sentence (7.1) i.e.,

(7.8) Not everyone smiled. He had an headache.

The pronoun He cannot be solved by the subject of Not everyone smiled. On the contrary
the pronoun in sentence (7.2) i.e.,

(7.9) Someone did not smile. He had an headache.

The pronoun He can be solved by someone. What is remarkable in this two examples is
that the sentences Someone did not smile and Not everyone smiled are logically equivalent
in classical logic. In fact their logical form are, respectively,

¬∀ x1 smile (x1)

∃ x1 ¬smile (x1)

In the logic we have introduced in the preceding section the sentence He had an headache
can be rendered as

A y1 had-headache (y1)
1

One way of seeing the fact that the pronoun He cannot be solved in (7.8) but can be solved
in (7.9) is that from (7.8) we cannot derive the sentence there is someone who did not smile
and had a terrible headache while we can derive it from (7.9). Let us convince our self that
there is no winningA-strategy for the formula

F = [¬∀ x1 smile (x1) ∧A y1 had-headache (y1)] ⊃ ∃ x2 (¬smile (x2) ∧ had-headache (x2))

1Here the sorting is not strictly required and we suppose that all variables and constants have the same
sort

229

we remark immediately that the formulaA y1 had-headache (y1) is a negative sub-formula
of F. By condition 6 in definition 7.1 this means that the quantifier A cannot be instanti-
ated with the same constant that instantiate ∀ x1 smile (x1): this latter formula is a positive
sub-formula of F and therefore only P can assert it; in particular this means that only P
can assert the formula smile(x1)[k/x1] as a defense against an attack (?,∀[k/x1]) made by
O against the P assertion of ∀ x1 smile (x1). If P asserts the formula ∃ x2 (¬smile (x2) ∧
had-headache (x2)), O would force him to instantiate the existential quantifier with a con-
stant k′ and then the strategy will branch: we will have a branch in which P must assert
the formula had-headache (k′) to win the game. For what we said and for condition 3 in
definition 7.1 a branch in which P asserts the formula had-headache (k′) for some constant
k′ cannot exist.

On the contrary we can easily obtain a winningA-strategy for the formula

G = [∃ x1 ¬smile (x1) ∧A y1 had-headache (y1)] ⊃ ∃ x2 (¬smile (x2) ∧ had-headache (x2))

such a strategy is presented in figure 7.1

m0 = (!,∃ x1 ¬smile (x1) ∧A y1 had-headache (y1)] ⊃ ∃ x2 (¬smile (x2) ∧ had-headache (x2)))
m1 = (?,∃ x1 ¬smile (x1) ∧A y1 had-headache (y1)) m0
m2 = (?,∧1) m1
m3 = (!,∃ x1 ¬smile (x1)) m2
m4 = (?,∃) m3
m5 = (!,¬smile (k1)) m4
m6 = (?,∧2) m1
m7 = (!,A y1 had-headache (y1)) m6
m8 = (?,A) m7
m9 = (!, had-headache (k1)) m8
m10 = (!,∃ x2 (¬smile (x2) ∧ had-headache (x2))) m1
m11 = (?,∃) m10
m12 = (!,¬smile (k1) ∧ had-headache (k1)) m11

m13 = (?,∧1) m12
m14 = (!,¬smile (k1)) m13
m15 = (?, smile (k1)) m14
m16 = (?, smile (k1)) m5
m17 = (!,⊥) m5

m13 = (?,∧2) m12
m14 = (!, had-headache (k1)) m13

Figure 7.1: WinningA-strategy for the formula G

230

7.4.2 Second Example Involving anaphoras
We took the following example from the FraCas data-set.

(7.10) Smith attended a meeting.

(7.11) She chaired it.

(7.12) Did Smith chaired a meeting? [Yes]

The answer to (7.12) is affirmative. This means that if (7.10) and (7.11) are true then
the sentence “Smith chaired a meeting” must be true. Let h be the sort of human being and
o be the sort of inanimate objects. Let meeting be a predicate with sort o→ t and attended
and chaired be predicates with sort h → (o → t). Finally let smith be a constant symbol
with sort h.

(7.13) Smith attended a meeting.
∃ x1

o (meeting (x1) ∧ attended (smith, x1))

m0 = (!, [(∃ x1
o (me (x1)) ∧ at (smith, x1)) ∧ (A x2

hA x3
o (ch (x2, x3)))] ⊃ ∃ x4

o (ch (smith, x4)))
m1 = (?, (∃ x1

o (me (x1)) ∧ at (smith, x1)) ∧ (A x2
hA x3

o (ch (x2, x3)))) m0
m2 = (?,∧1) m1
m3 = (!,∃ x1

o (me (x1)) ∧ at (smith, x1))) m2
m4 = (?,∃) m3
m5 = (!, (me (k1)) ∧ at (smith, k1)) m4
m6 = (?,∧2) m1
m7 = (!,A x2

hA x3
o (ch (x2, x3))) m6

m8 = (?,A) m7
m9 = (!,A x3

o (ch (smith, x3))) m8
m10 = (?,A) m7
m11 = (! ch (smith, k1)) m10
m12 = (!,∃ x4

o (ch (smith, x4)) m1
m13 = (?,∃) m12
m14 = (!, ch (smith, k1)) m13

Figure 7.2: WinningA-strategy for the second example involving anaphoras

231

(7.14) She chaired it.
A x2

hA x3
o (chaired (x2, x3))

(7.15) Smith chaired a meeting.
∃ x4

o (chaired (smith, x4) ∧ meeting (x4))

Call the formula in (7.13) F1, the formula in (7.14) F2 and the formula in (7.15) F3.
Figure 7.2 shows a winning strategy for the formula F1 ∧ F2 ⊃ F3. In the figure, me stands
for meeting, at stands for attended and ch stands for chaired.

7.4.3 Third Example Involving anaphoras
(7.16) Smith delivered a report to ITEL.

(7.17) She also delivered them an invoice.

(7.18) She also delivered them a project proposal.

(7.19) Did Smith delivered a report, an invoice and a project proposal to ITEL? [Yes]

The answer to the question (7.19) is affirmative, this means that if (7.16), (7.18) and (7.19)
are true then the sentence “Smith delivered a report an invoice and a project proposal to
ITEL” is true. Let h be the sort of humans, c be the sort of companies and i be the sort
of information. Let smith and itel be two constants with, respectively, sort h and c. Let
report, invoice and project-proposal be three predicates with sort i → t and delivered a
predicate with sort (h→ (i→ c))→ t

(7.20) Smith delivered a report to ITEL.
∃ x1

i (report (x1) ∧ delivered (smith, itel, x1))

(7.21) She also delivered them an invoice.
∃ x2

i (invoice (x2) ∧A y1
hA y2

c delivered (y1, y2, x2))

(7.22) She also delivered them a project proposal.
∃ x3

i (project-proposal (x2) ∧A y3
hA y4

c delivered (y3, y4, x3))

232

G =

m0 = (!, ((F1 ∧ F2) ∧ F3) ⊃ F4)
m1 = (?, ((F1 ∧ F2) ∧ F3)) m0
m2 = (?,∧1) m1
m3 = (!,∃ x1

i (re (x1) ∧ de (sm, it, x1)) ∧ ∃ x2
i (in (x2) ∧A y1

hA y2
c de (y1, y2, x2))) m2

m4 = (?,∧1) m3
m5 = (!,∃ x1

i (re (x1) ∧ de (sm, it, x1))) m4
m6 = (?,∃) m5
m7 = (!, re (k1) ∧ de (sm, it(k1)) m6
m8 = (?,∧1) m7
m9 = (!, re (k1)) m8
m10 = (?,∧2) m7
m11 = (!, de (smith, it, k1)) m10
m12 = (?,∧2) m3
m13 = (!,∃ x2

i (in (x2) ∧A y1
hA y2

c de (y1, y2, x2))) m12
m14 = (?,∃) m13
m15 = (!, in (k2) ∧A y1

hA y2
c de (y1, y2, k2))) m14

m16 = (?,∧1) m15
m17 = (!, in (k1)) m16
m18 = (?,∧2) m15
m19 = (!,A y1

hA y2
c de (y1, y2, k2)) m18

m20 = (?,A) m19
m21 = (!,A y2

c de (sm, y2, k2)) m20
m22 = (?,A) m21
m23 = (!, de (sm, it, k2)) m22
m24 = (?,∧2) m1
m25 = (!,∃ x3

i (p-p (x2) ∧A y3
hA y4

c de (y3, y4, x3))) m24
m26 = (?,∃) m25
m27 = (!, p-p (k2) ∧A y3

hA y4
c de (y3, y4, k2)) m26

m28 = (?,∧1) m27
m29 = (!, p-p (k2)) m28
m30 = (?,∧2) m29
m31 = (!,A y3

hA y4
c de (y3, y4, k2)) m30

m32 = (?,A) m31
m33 = (!,A y4

c de (sm, y4, k2)) m32
m34 = (?,A) m33
m35 = (!, de (sm, it, k2)) m34
m36 = (!, (∃ x4

i re (x4) ∧ de(sm, it, x4)) ∧ (∃ x5
i in(x5) ∧ de(sm, it, x5)) m1

∧(∃ x6
i p-p (x6) ∧ de (sm, it, x6)))

Figure 7.3: WinningA-strategy for the third example involving anaphoras. First part

233

G

m37 = (?,∧1) m36
m38 = (∃ x4

i re (x4) ∧ de(sm, it, x4)) m37
∧(∃ x5

i in(x5) ∧ de(sm, it, x5))

m39 = (?,∧1) m38
m40 = (!, (∃ x4

i re (x4) ∧ de(sm, it, x4))) m39
m41 = (?,∃) m40
m42 = (!, re (k1) ∧ de(sm, it, k1))) m41

m43 = (?,∧1) m42
m44 = (!, re (k1) m43

m43 = (?,∧2) m42
m44 = (!, de (sm, it, k1)) m43

G

m37 = (?,∧1) m36
m38 = (∃ x4

i re (x4) ∧ de(sm, it, x4)) m37
∧(∃ x5

i in(x5) ∧ de(sm, it, x5))

m39 = (?,∧2) m38
m40 = (!, (∃ x5

i in (x5) ∧ de(sm, it, x5))) m39
m41 = (?,∃) m40
m42 = (!, re (k2) ∧ de(sm, it, k2))) m41

m43 = (?,∧1) m42
m44 = (!, in (k2) m43

m43 = (?,∧2) m42
m44 = (!, de (sm, it, k2)) m43

G

m37 = (?,∧2) m36
m38 = (!, (∃ x6

i p-p (x6) ∧ de (sm, it, x6)))) m37
m39 = (?,∃) m38
m40 = (!, p-p (k3) ∧ de (sm, it, k3))) m39

m41 = (?,∧1) m40
m42 = (!, p-p (k3) m41

m41 = (?,∧2) m40
m42 = (!, de (sm, it, k3) m41

Figure 7.4: WinningA-strategy for the third example involving anaphoras. Second part

234

(7.23) Smith delivered a report, an invoice and a project proposal to ITEL.
(∃ x4

i report (x4) ∧ delivered(smith, itel, x4)) ∧ (∃ x5
i invoice(x5) ∧

delivered(smith, itel, x5)) ∧ (∃ x6
i project-proposal (x6) ∧

delivered (smith, itel, x6))

Call the formulas in (7.20), (7.21), (7.22) and (7.22) F1, F2, F3 and F4 respectively. For
reasons of space we show a winning A strategy for the formula ((F1 ∧ F2) ∧ F3) ⊃ F4 in
figure 7.3 and figure 7.4. In the figures re stands for report, de for delivered, in for invoice,
p-p for project-proposal, sm for smith and it for itel.

7.4.4 Fourth Example Involving Anaphoras: Donkey Anaphora
The following example is not taken from the FraCas test suite. The examples of E-type
pronouns and Donkey anaphoras [67] in the FraCas test-suite involve vague quantifiers
such as ‘several’. However, the example follows the pattern of those from the suite.

(7.24) Every farmer who owns a tractor has a service contract for it.

(7.25) Smith is farmer who owns some tractors.

(7.26) Does Smith has a service contract for all his tractors? [Yes]

The sentence (7.24) is an example of the so-called donkey sentence. Donkey sentences
are sentences in which a pronoun — the pronoun it in our sentence— is semantically
bound by a quantifier but lies, syntactically, outside the scope of that quantifier. Barker
and Shan [10] defines a Donkey pronoun as

a pronoun that lies outside the restrictor of a quantifier or the if-clause of a
conditional, yet covaries with some quantificational element inside it, usually
an indefinite.

A possible translation of 7.24 in multi-sorted first order logic would be

(7.27) ∀xh [farmer (x) ∧ ∃ ynh (tractor (y) ∧ owns (x, y)) ⊃ has-service-contract (znh, x)]

where h is the sort of humans and nh the sort of non-humans. As the reader can see, the
variable znh lies outside the scope of the quantifier ∃, even if it is semantically bound by
it. As we have already done, we solve this problem by letting the quantifier A bind the
occurrence of z

235

G1

m15 = (?,∧2) m14
m16 = (?,∧2) m1
m17 = (!,∃ x3

nh ((tr (x3) ∧ ow (sm, x3)) ∧ fa (sm)) m16
m18 = (?,∧1) m17
m19 = (!,∃ x3

nh ((tr (x3) ∧ ow (sm, x3))) m18
m20 = (?,∃) m15
m21 = (!, (tr (k2) ∧ ow (sm, k2))) m20
m22 = (?,∧1) m21
m23 = (!, (tr (k2))) m22
m24 = (?,∧) m21
m25 = (!, ow (sm, k2)) m24
m26 = (!,∃ x2

nh (tr (x2) ∧ ow (sm, x2))) m15
m27 = (?,∃) m26
m28 = (!, (tr (k2) ∧ ow (sm, k2))) m27

m29 = (?,∧1) m28
m30 = (!, tr(k2)) m29

m29 = (?,∧2) m28
m30 = (!, ow (sm, k2)) m29

G1

m15 = (?,∧1) m14
m16 = (?,∧2) m1
m17 = (!,∃ x3

nh ((tr (x3) ∧ ow (sm, x3)) ∧ fa (sm)) m16
m18 = (?,∧2) m17
m19 = (!, fa (sm)) m18
m20 = (!, fa (sm)) m15

m15 = (!,A y1
nh h-a-c (sm, y1)) m14

m16 = (?,A) m15
m17 = (!, h-a-c (sm, k1)) m16
m18 = (!, h-a-c (sm, k1)) m5

Figure 7.5: WinningA-strategy for the fourth example involving anaphoras.

236

(7.28) Every farmer who owns a tractor has a service contract for it.
∀x1

h [farmer (x1) ∧ ∃ x2
nh (tractor (x2) ∧ owns (x1, x2)) ⊃

A y1
nh has-service-contract (y1, x1)]

(7.29) Smith is a farmer who owns some tractors.
∃ x3

nh ((tractor (x3) ∧ owns (smith, x3)) ∧ farmer (smith)

(7.30) Smith has a service contract for all his tractors
∀ x4

nh (tractor (x4) ∧ owns (smith, x4) ⊃ has-service-contract (smith, x4))

Let G1 be the following game

G1 =

m0 = (!, F1 ∧ F2 ⊃ F3)
m1 = (?, F1 ∧ F2) m0
m2 = (!,∀ x4

nh (tr (x4) ∧ ow (sm, x4) ⊃ h-s-c (sm, x4))) m2
m3 = (?,∀[k1/x4]) m2
m4 = (!, tr (k1) ∧ ow (sm, k1) ⊃ h-s-c (sm, k1))) m3
m5 = (?, tr (k1) ∧ ow (sm, k1)) m4
m6 = (?,∧1) m5
m7 = (!, tr (k1)) m6
m8 = (?,∧2) m5
m9 = (!, ow (sm, k1)) m8
m10 = (?,∧1) m1
m11 = (!,∀x1

h [fa (x1) ∧ ∃ x2
nh (tr (x2) ∧ ow (x1, x2)) ⊃ A y1

nh h-s-c (y1, x1)]) m10
m12 = (?,∀[sm/x1]) m11
m13 = (!, fa (sm) ∧ ∃ x2

nh (tr (x2) ∧ ow (sm, x2)) ⊃ A y1
nh h-s-c (sm, y1)) m12

m14 = (?, fa (sm) ∧ ∃ x2
nh (tr (x2) ∧ ow (sm, x2))) m13

A strategy for the formula F1 ∧ F2 ⊃ F3 is shown in figure 7.5

7.5 Ellipsis
We consider the problem of resolving Post-Auxilliary Ellipsis (PAE) [65], more commonly
referred to by the term verb-phrase ellipsis (VPE), using the technology used to resolve
pronouns.2 The following discourse exemplifies the phenomenon:

(7.31) John slept.

2VPE doesn’t describe the whole distribution of PAE, since, unless one extends the notion of VP well
beyond its descriptive use, the antecedents for PAE need not be VPs. See [74] for excellent descriptive
discussion of the distribution of ellipsis in English.

237

(7.32) Bill did not.

If the only context for the second sentence is the first sentence, one would correctly infer
that what Bill didn’t do is sleep. The terseness of the antecedent might give the impression
that ellipsis resolution is resolution to some preceding property–here the property of sleep-
ing. This picture is complicated by the possibility of resolving the ellipsis to a modified
property, without thereby including the modifier in the resolution. The following discourse
from [28] exemplifies the phenomenon:

(7.33) John spoke to Mary at four o’clock.

(7.34) And Bill did at five o’clock.

PAE is a highly studied topic in both theoretical syntax and linguistic semantics [102].
Linguistic theories are often split by whether they presume there is hidden syntactic struc-
ture in the ellipse, i.e. whether ‘and Bill did at five o’clock’ is underlyingly ‘and Bill spoke
to Mary at five o’clock’, and whether the resolution of the antecedent is in terms of (more
or less) syntactic or semantic representation. Among the theories proposed, few of them
enjoy the rigor of a logic [56, 138, 14, 33] and fewer directly employ the proof theory of
the logic [78]. This list is not exhaustive, but it suffices to show the privilege of denotation
over deduction in the use of logic for linguistic semantics.

We contend that ellipsis can be resolved by means of deduction in the logic we use to
resolve pronouns. We propose to use the notion of an event, common to philosophy since
[35] but widely employed in subsequent linguistic theory [133]. Events are denoted by
verbs, and therefore provide objects which can be subsequently referred to.

7.5.1 Events
We propose every verb introduces an event, which event may subsequently be referred to.
While events are put to a wide variety of uses in philosophy and linguistics, they remain a
somewhat vexed notion.3 Our use of events is modest but deserves some discussion. Events
are a sort in the underlying first order language we reason over.

To be more precise about our conception of events, consider the sort of discourse which
[35] used to motivate events:

3See [133] for an overview of some of the uses of events in linguistics and philosophy. [140] divided
events into various subtypes: achievements, activities, accomplishments, and states. We will not be concerned
with subtyping events in the present paper.

238

(7.35) Jones buttered the toast. He did it slowly in the bathroom at midnight.

For Davidson, Jones buttering his toast is an event, which event is referred to by ‘it’ in the
subsequent sentence. The verb in the first sentence is conjectured to introduces some object
—the event— for further description. This suggests an event is something with time and
extension.4 Now consider the following discourse:

(7.36) John reviewed the paper on Tuesday and Bill did (it) on Wednesday.

It is likely that what Bill did Wednesday is review the paper John reviewed the previous
day. But obviously Bill’s reviewing the paper doesn’t require his reviewing to be in or at
the time or extension of John’s reviewing the paper. Consequently what ‘did (it)’ refers to
need not include the time or extension in which the antecedent of ‘did (it)’ happened. But
then, if events are construed in terms of some time and extension, ‘did (it)’ could not refer
to reviewing the paper per se. This predicament can be resolved without wrecking our folk
conception of events or their utility in theories of anaphoric reference.

We propose that ‘did it’ retrieves the event kind of reviewing. There is precedent for the
notion of event kind in linguistic theory [57], though we commit to no pre-existing theory
of whether or how such kinds could be (re)constructed from the Davidsonian notion of
event. Subsequently, we will use the term ‘event kind’ to refer to our theoretic conception
of events and the term ‘event proper’ to refer to the tokening of an event kind with respect
to some time, extension, and participant(s). When no confusion is possible, we will simply
use the term ‘event’. We will subsequently use the Neo-Davidsonian idiom of ‘thematic
roles’ when discussing the participants of an event token, which will be modelled in terms
of properties of triples of entities, times, and event kinds. We argue that referring back to
an event kind needn’t involve referring to those involved in the event proper or the time of
the event proper–under our theory these further references correspond to further anaphoras.
To see how the time and extension of an event proper are resolved independently of event
kinds consider the following:

(7.37) John reviewed the paper on Tuesday at his home. Bill did (it) the same day and at
John’s house too.

4While ‘do it’ is not uniformly considered anaphoric to some event [27], this view enjoys wide support
among both linguists and philosophers. The arguments [27] levies against ‘do it’ referring to some event
deserve considered discussion, but space restrictions prevent us from providing such discussion here. David-
son’s argument for events is first and foremost that they provide a solution to the problem of underspecified
adicity [82]. [69, 70] argues they provide the means to model some phenomena that otherwise would require
higher-order terms. Neither of these points are, we think, rebutted by [27].

239

The expression ‘same’ is anaphoric to the time of the preceding event proper, while the
additive expression ‘too’ is anaphoric to the extension of the previous event proper.5 With-
out these explicit devices for referring to parts of the preceding event proper, it would be
unjustified to conclude the event kind corresponding to Bill reviewing the paper includes
reference to the time or extension of John reviewing the paper.

Given the foregoing, we think our notion of event kind is of merit. Event anaphora is
event kind anaphora, while the event proper is determined by specifying the participant(s),
time, and extension of the event kind. The object of the reviewing event Bill is involved in
will be rolled into a condition on the term corresponding to PAE; we discuss the resolution
of objects in the sequel. While we are here concerned with ellipsis, our account could be
extended to ‘do it’ and ‘do so’ too.

7.6 Textual Entailment Recognition and Ellipsis Resolu-
tion

We present some examples of textual entailment recognition involving ellipsis revolution.

7.6.1 First Example involving Ellipsis: VP-ellipsis
(7.38) John spoke to Mary at four o’clock.

(7.39) Bill did it at five o’clock.

(7.40) Did Bill speak to Mary at five o’clock? [Yes]

The answer to (7.40) is affirmative, this means that if the two sentences (7.38) and (7.39)
are true so the sentence “Bill speak to Mary at five o’clock” must be true. As previously
specified, we use a neodavidsonian account of event and thus translate the sentences as
follows: let mh be the sorts of male humans, f h the sort of female humans, v be the sort of
events and n the sort of time moments. Let john and bill be constants of sort mh, mary
be a constant of sort f h and 4 and 5 be constants with sort n. The sorts of the predicates
can be inferred by the sorts of their arguments.

5We are not here concerned with the distinction between anaphora and presupposition. The content of
‘too’ is sometimes said to be a presupposition, while ‘same’ is quite uniformly considered anaphoric. Since
[137], presuppositions are often considered a variety of anaphora.

240

(7.41) John spoke to Mary at four o’clock.
∃xv

1 (((spoke(x1) ∧ agent (x1, john, 4)) ∧ (pa(x1, mary, 4))

m0 = (!, [∃xv
1 (((sp(x1) ∧ ag (x1, jo, 4)) ∧ (pa(x1, ma, 4)) ∧Ay1

vAy2
f h(ag(y1, bi, 5) ∧ pa(y1, y2, 5))]

⊃ ∃xv
2 ((sp (x2) ∧ ag (x2, bi, 5) ∧ pa (x2, ma, 5))

m1 = (?,∃xv
1 (((sp(x1) ∧ ag (x1, jo, 4)) ∧ (pa(x1, ma, 4)))) ∧Ay1

vAy2
f h(ag(y1, bi, 5) ∧ pa(y1, y2, 5))) m0

m2 = (?,∧1) m1
m3 = (!,∃xv

1 (((sp(x1) ∧ ag (x1, jo, 4)) ∧ (pa(x1, ma, 4))))) m2
m4 = (?,∃) m3
m5 = (!, (((sp(k1) ∧ ag (k1, jo, 4)) ∧ (pa(k1, ma, 4))))) m4
m6 = (?,∧1) m5
m7 = (!, sp(k1) ∧ ag (k1, jo, 4)) m6
m8 = (?,∧1) m7
m9 = (!, sp(k1)) m8
m10 = (?,∧2) m7
m11 = (!, ag (k1, jo, 4)) m10
m12 = (?,∧2) m5
m13 = (!, pa (k1, ma, 4)) m12
m14 = (?,∧2) m1
m15 = (!,Ay1

vAy2
f h(ag(k1, bi, 5) ∧ pa(y1, y2, 5))) m14

m16 = (?,A) m15
m17 = (!,Ay2

f h (ag (k1, bi, 5) ∧ pa (k1, y2, 5))) m16
m18 = (?,A) m17
m19 = (!, ag (k1, bi, 5) ∧ pa (k1, ma, 5)) m18
m20 = (?,∧1) m19
m21 = (!, ag (k1, bi, 5)) m20
m22 = (?,∧2) m19
m23 = (!, pa (k1, ma, 5)) m22
m24 = (!,∃xv

2 ((sp (x2) ∧ ag (x2, bi, 5) ∧ pa (x2, ma, 5)))) m1
m25 = (?,∃) m24
m26 = (!, ((sp (k1) ∧ ag (k1, bi, 5) ∧ pa (k1, ma, 5))

m27 = (?,∧1) m26
m28 = (!, sp (k1) ∧ ag (k1, bi, 5)) m27

m29 = (∧1) m28
m30 = (!, sp (k1)) m29

m29 = (?,∧2) m28
m30 = (!, ag (k1, bi, 5)) m29

m27 = (?,∧2) m26
m28 = (!, pa (k1, ma, 5) m27

Figure 7.6: WinningA-strategy for the first example involving ellipsis resolution

241

(7.42) Bill did it at five o’clock.
Ay1

vAy2
f h(agent(y1, bill, 5) ∧ patient(y1, y2, 5))

(7.43) Bill spoke to Mary at five o’clock.
∃xv

2 ((spoke (x2) ∧ agent (x2, bill, 5)) ∧ patient (x2, mary, 5))

We consider that the thematic role agent and patient conveys temporal information
about the event. We also consider that the patient of did it is anaphoric. As usual, we call
the formulas in (7.41), (7.42) and (7.43) F1, F2 and F3 respectively. Figure 7.6 shows a
winningA-strategy for the formula F1 ∧ F2 ⊃ F3.

7.6.2 Second Example Involving Ellipsis
(7.44) John slept.

(7.45) Bill did not.

(7.46) Does Bill slept? [No]

The answer to (7.46) is negative. This means that if (7.44) and (7.45) are true, then the
sentence “Bill did not sleep” must be true. If we use a neodavidsonian account of meaning
this latter sentence is ambiguous. It could either mean that “there is no event x such that x
is a sleeping event and Bill is the agent of x” or “there is an event x, x is a sleeping event
and Bill is not the agent of x. The two possible reading of ‘Bill did not sleep’ are shown
in (7.49).

(7.47) John slept.
F1 = ∃xv

1 (sleep (x1) ∧ agent (x1, john))

(7.48) Bill did not.
F2 = Ayv

1 ¬agent (y1, bill)

(7.49) Bill did not slept.
H = ¬(∃xv

2 (sleep (x1) ∧ agent (x2, bill)))
G = ∃x2

v (sleep (x2) ∧ ¬agent (x2, bill))

242

m0 = (!, [∃xv
1 (sl (x1) ∧ ag (x1, jo)) ∧Ayv

1 ¬ag (y1, bi)] ⊃ ¬(∃xv
2 (sl (x2) ∧ ag (x2, bi))))

m1 = (?,∃xv
1 (sl (x1) ∧ ag (x1, jo)) ∧Ayv

1 ¬ag (y1, bi)) m0
m2 = (!,¬(∃xv

2 (sl (x1) ∧ ag (x2, bi)))) m1
m3 = (?, (∃xv

2 (sl (x1) ∧ ag (x2, bi)))) m2
m4 = (?,∃) m3
m5 = (!, (sl (k1) ∧ ag (k1, bi))) m4
m6 = (?,∧2) m5
m7 = (!, ag (k1, bi)) m6
m8 = (?,∧2) m1
m9 = (!,Ayv

1 ¬ag (y1, bi)) m8
m10 = (?,A) m9
m11 = (!,¬ag (k1, bi)) m10
m12 = (?, ag (k1, bi)) m11
m13 = (!,⊥) m12

Figure 7.7: WinningA-strategy for the first version of the second example involving ellip-
sis resolution

Figure 7.7 shows a winningA-strategy for the formula F1∧F2 ⊃ H, while figure 7.8 shows
a winning A-strategy for the formula F1 ∧ F2 ⊃ G. In the figure sl, ag and bi stands for,
respectively, sleep, agent and bill. Bill has sort h (the sort of humans) while v is the sort
of events. The predicate’s sorts can be inferred by the one of their arguments.

7.7 Discussion

7.7.1 Other Works
The most obvious theories to compare the present work to are Discourse Representation
Theory (DRT) [80, 81], Dynamic Predicate Logic (DPL) [64], Dekker’s Predicate Logic
with Anaphora [37] and Predicate Logic with Indices [38]. We briefly discuss these theories
in turn.

DRT is concerned with the construction of Discourse Representation Structures (DRS),
which serve to track objects invoked by speakers in the course of producing some discourse.
It includes rules for introducing, blocking, and linking (sub)DRSs to one another. The
semantics of the DRS language, in its standard version, is given by an embedding function

243

m0 = (!, [∃xv
1 (sl (x1) ∧ ag (x1, jo)) ∧Ayv

1 ¬ag (y1, bi)] ⊃ ∃x2
v (sl (x2) ∧ ¬ag (x2, bi)))

m1 = (?,∃xv
1 (sl (x1) ∧ ag (x1, jo)) ∧Ayv

1 ¬ag (y1, bi)) m0
m2 = (?,∧1) m1
m3 = (!,∃xv

1 (sl (x1) ∧ ag (x1, jo))) m2
m4 = (?,∃) m3
m5 = (!, (sl (k1) ∧ ag (k1, jo))) m4
m6 = (?,∧2) m1
m7 = (!,Ayv

1 ¬ag (y1, bi)) m6
m8 = (?,A) m7
m9 = (!,¬ag (k1, bi)) m8
m10 = (!,∃x2

v (sl (x2) ∧ ¬ag (x2, bi))) m1
m11 = (?,∃) m10
m12 = (!, sl (k1) ∧ ¬ag (k1, bi)) m11

m13 = (?,∧1) m12
m11 = (!, sl (k1)) m13

m13 = (?,∧2) m12
m14 = (!,¬ag (k1, bi)) m13
m15 = (?, ag (k1, bi)) m14
m16 = (?, ag (k1, bi)) m9
m17 = (!,⊥) m16

Figure 7.8: Winning A-strategy for the second version of the second example involving
ellipsis resolution

into first order logic (FOL for short). Some attempts have been made to do inference
directly over DRSs; [84] provides a brief but non-exhaustive survey of existing inference
systems for DRT and DPL circa 2000. Subsequently, he proposes a tableaux theorem
proving method for DRT that includes a connective quite close to ourA connective.

DPL, unlike DRT, just is first order logic. However, it effectively redefines the seman-
tics of FOL in order to extend the scope of ∃. It is, in principle, a reconstruction of DRT.
While much work develops DPL’s novel semantics for FOL [141], the proof theory of the
logic receives less study. DPL’s proof theory only fully developed some years after its dis-
covery. The most successful study of DPL’s proof theory is [139]. However, DPL relies on
the linguist to select the correct variable for a pronoun to be resolved by its antecedent and
is therefore modelling anaphoric dependence but not resolution.

Dekker develops two logics for anaphora, intending to show the minimum needed to

244

modify FOL to account for pronouns. Dekker’s approach is more proof-theoretic in adding
pronouns to the inventory of terms, which, in [38], are de Bruijn (pre-)indexed identity
functions on (sequences of) the ith antecedent. Such terms are subject to inference rules.
Nonetheless, the preindexing corresponds to the choice of variable made by the linguist in
choosing the antecedent of a pronoun in DPL.

The price of modelling resolution in our logic is the multiplicity of possible antecedents
for an anaphor. If there is a disjunction of possible antecedents, the selection of just one
could be enforced by means of further axioms. In fact, the winnowing down of possible
antecedents, is present in common symbolic approaches to anaphora resolution. We are
presently considering how to implement Centering Theory [18] and/or Coherence Theory
[72] in our logic, which we intend to present in future work.

7.7.2 Sorting
The mechanism that we invented to treat anaphora and ellipsis deductively heavily depends
on sorting. Consider the sentence

(7.50) Someone entered a room. He whistled.

here the pronoun he reefers to Someone. Any competent English speaker will recognize
this fact. Let o be the sort of inanimate object and h the sort of humans. A possible
translation in first order multi-sorted logic of the above sentence may be:

(7.51) F = (∃ xo
1 [room (x1) ∧ ∃xh

2entered (x2, x1)]) ∧ (A yh
1 whistled (y1))

from this latter formula we can deduce the sentence “someone entered a room and whistled”
i.e., there is a winningA-strategy for the formula

F ⊃ ∃ xo
3[room (x3) ∧ ∃ xh

4(entered (x4, x3) ∧ whistled (x4))]

the fact that we can construct a winning A-strategy for the above formula depends upon
the following fact. We have attributed the same sort to paul and the variable bound by A
and another different sort to the variable bound by ∃. If we formalize (7.50) in plain first
order logic e.g.,

(7.52) G = (∃ x1 [room (x1) ∧ ∃x2 entered (x2, x1)]) ∧ (A y1 whistled (y1))

245

then we are not able to construct a winningA-strategy for

G ⊃ ∃ x3[room (x3) ∧ ∃ x4(entered (x4, x3) ∧ whistled (x4))]

this is because we will have the variable bound by the quantifierA will have two ‘possible
antecedents’: the instantiation of the variable x1 bound by the leftmost existential quantifier
of G and the instantiation of the variable x2 bound by the other existential quantifier of G.
However, the use of sorting is a fairly natural assumption, at least as far as the formalization
of fragments of the English language is concerned. In a sentence like

(7.53) A man took a train to Baltimore. it whistled at twelve o’clock.

we know that the pronoun it refers to a train. First the pronoun cannot reefer to a man, since
it is a neutral pronoun that —normally— reefers to impersonal physical objects, abstract
concepts, situations, actions, characteristics, etc, but not humans. Furthermore, we know
that whatever the reference of it may be, this reference must be something that whistles. A
city, like Baltimore, cannot whistle i.e., they are not the kind, or sort, of entities that can
be in the extension of the predicate whistles. Similar considerations stands as basis of the
work of Retore [125] on —compositional— lexical semantics by means of the polymorphic
lambda calculus. In turn, Retore’s work is inspired by Pustejovsky’s linguistic theory of
the generative lexicon [119].

7.8 Conclusion
This chapter proposes a novel proof-theoretic method of resolving anaphora in first order
multi-sorted logic. This method is the introduction of a new quantifier. The semantics of
this quantifier is given by the Dialogical Rules that specifies what counts as an attack against
the assertion of a formula AxA and what count as a defense against such an attack. Such
rules prescribe that a formula AxA can only be instantiated in a game by a term t whose
already appears in the game i.e., the quantifierA varies on individuals whose existence has
been asserted in the course of the game.

Despite our preference for an inferentialist theory of meaning, we believe that it is
necessary to develop a veroconditional semantics for our logic. That is, we would like to
understand what is the class of first-order structures that characterize the logic we have
introduced.

246

Although we believe that the dialogical system we created has an inherent logical in-
terest, we cannot deny that it is its application to natural language that makes it potentially
attractive. We would therefore like to better understand what the limitation of our system
are. Understanding its limitations could help us improve it significantly. Unfortunately,
such work requires the analysis of many cases of anaphora and ellipsis resolutions. It
would therefore be useful to carry out a comparative study of our system with more seman-
tically oriented theories of anaphora, such as DRT and work in the dynamic tradition. The
language of DRT, DPL and of our system is first order logic. So it should be possible to
give an overview of predicted accessibility relations and to compare results.

247

Part IV

Conclusion

248

Chapter 8

Conclusion

We conclude our thesis by trying to sketch possible future developments of the research
reported herein. We divide them into possible developments in the field of proof theory
and applications of proof theory to natural language semantics and syntax. We begin with
the former.

8.1 Proof theory

8.1.1 Dialogical Logic
Despite the fact that dialogical logic first developed more than 70 years go, dialogical
logic is somewhat neglected in proof theory. Its ‘cousins’ i.e., sequent calculus systems
and tableaux systems, are much more popular in the proof theory community. Perhaps
this is due to the seeming obscurity of work on the topic, which is not renowned for its
mathematical elegance. This view was already stated by Felscher in 1985 [46] and we
must write with regret that the situation has not evolved much. Although the literature on
dialogical logic contains many interesting ideas, we found that articles on this topic often
lack proofs of the main results or precise definitions of the objects being manipulated. By
means of example in [121] the author develop a dialogical logic system for the propositional
fragment of linear logic. The ideas developed in the article are attractive and simple: by
attacking the connectives of linear logic a player open a context that can be considered
as a sub-game. The nature of these sub-games depends on the logical connective that

249

has been attacked: sub-games for additive connectives can share some information with
other sub-games, while those for multiplicative connectives cannot. This idea fits well with
the intuitive interpretation of linear logical connectives. According to such interpretation,
multiplicative logical connectives express properties of parallel threads of computation in a
program. Despite these interesting ideas, the aforementioned paper does not contain a proof
of the correspondence between the existence of winning strategies for the games introduced
in the paper and provability in linear logic. One could argue that the correspondence is
intuitively obvious and that writing a proof of it would only contribute to deforestation. We
beg to dissent.

In our thesis we proved that winning strategies in a standard dialogical logic system
correspond naturally to proofs in a polarized sequent calculus; we would like to extend
this work to dialogical logic system for others logic such as modal logic and linear logic.
As we have already argued, sequent systems do not have an intuitive reading in inferential
terms. On the contrary, dialogical logic systems have an intuitive and pedagogical appeal.
We therefore believe that it would be useful to develop dialogical logic systems for logics
that are difficult to understand intuitively, such as modal logics and linear logic.

We also plan to study the counterpart of the cut rule in dialogical logic. We think that
this could be obtained by relaxing the definition of game in order to let the proponent assert,
at any point of the game, an arbitrary formula C. After the Proponent’s assertion of C, the
Opponent can continue the game by either attacking C or by asserting C in turn. The cut-
admissibility theorem for strategies would be obtained by proving that the set of formulas
admitting winning strategies containing this kind of games is equal to the class of formulas
admitting ‘regular’ winning strategies.

We would like to conclude this subsection with some very general remarks on dialogical
logic and argumentation. We have many times remarked that the games of dialogical logic
are nothing but idealized argumentative dialogues. We use the adjective ‘idealized’ because
argumentative dialogues (or debates) between real people have little chance of resembling
those studied in dialogical logic. In a ‘real’ argumentative dialogue it is unlikely, though
not impossible, that if one of the two disputants states “If Bill killed someone then Bill is a
murderer” the other disputant will react by saying “Suppose Bill killed someone, can you
prove that Bill is a murderer?”. The artificial character of the games of dialogical logic is
what makes them ‘formalizable’. Given a finite sequence of moves, we can always decide
whether it is a game in the sense of dialogical logic. We can also always decide whether
it is a game won by the proponent. By contrast, we have no precise definition of what a
debate between two (or more) people is. We have no clear criteria to determine neither

250

who won a debate between two or more people, nor why a certain intervention counts as an
‘attack to’ or a ‘defense from’ another intervention in the debate. This situation is reflected
in the very abstract definition of argumentation framework à la Dung [43].

Argumentation frameworks are pairs (A,R), where A is a set and R a binary relation
over A. The set A represents a set of arguments, and the relation R the ‘attack’ relation
between arguments. In this setting, arguments do not have any internal structure and any
couple of argument can be in the attack relation.

A less abstract implementation of argumentation frameworks are the so-called logic
based argumentation frameworks, where arguments are formalized as follows: given a finite
set ∆ of logical formulas, an argument is a pair (Γ, A) where Γ is a minimal (with respect to
inclusion) consistent subset of ∆ such that Γ |= A. For example if ∆ = {A∧B, A ⊃ C, A ⊃ A}
the pair ({A ∧ B, A ⊃ C},C) is an argument while the pair ({A ⊃ A, A ∧ B}, A ⊃ A) is not.
In this less abstract setting the notion of ‘an argument attacks another arguments’ can be
defined e.g., an argument (Γ, A) attacks an argument (∆,C) if A |= ¬B1 ∧ · · · ∧ ¬Bn where
{B1, . . . Bn} ⊆ ∆.

Despite the fact that this setting is less abstract and gives us a way to compute (at least
in the predicate calculus case) attacks between arguments, we think that there is a problem
with it. Intuitively an argument is something that grant the truth of a proposition i.e., albeit
arguments are not exactly proof in the mathematical sense, they do share some similarities
with proofs. In the setting of logic based argumentation frameworks ‘arguments’ in our
sense are not taken into consideration: a logic based argument is, more or less, a prov-
able sequent. No attention is paid to the proofs by means of which we establish that the
sequent is provable. By considering arguments as proofs, new attack relations can arise.
For instance: if we consider a valid formula A there still can be ‘bad’ arguments for A.
We encounter such arguments quite often: incorrect ‘proofs’ of true statements are quite
common in mathematical practice. It is by analyzing the structure of such ‘proofs’ that we
find flaws.

To sum it up: dialogical logic games are too ‘precise’ to be considered a realistic
analysis of argumentation: there is too much structure. On the contrary, argumentation
frameworks cannot be considered a realistic analysis of argumentation because they are
too abstract and permissive since there is not enough structure. We think that it would be
interesting to try to find a compromise between the two approaches to argumentation. A
starting point could be a ‘formalization’ of the kind of dialogues that are presented in the
classic Book of Latakatos Proofs and refutations [88]. The book takes the form of a dis-
cussion between a teacher and some pupils. The dialogue participants analyze attempts to

251

prove a mathematical statement. The setting of the dialogue that is presented in Lakatos’s
book is dialectical: some pupils tries to argue in favor of a given mathematical proposition,
some others propose counter-examples or simply point out flaws in previous arguments.
We think that it would be interesting and fruitful to develop games in the style of dialogical
logic to model the dynamic of proposing arguments and refutations.

8.1.2 Game Semantic
We have presented game semantics for the constructive modal logic CK and CD. We would
like to extend our work to some other logics of the so-called modal cube. In particular we
would like to develop a game semantics for the constructive version of the modal logic T
(CT) and S4 (CS4). These two logic are obtained by adding to the set of formulas of CK
the following axiom schemes

�T : �A ⊃ A ^T : A ⊃ ^A

�4 : �A ⊃ ��A ^4 : �(A ⊃ ^B) ⊃ (^A ⊃ ^B)

More precisely CT is obtained by adding the axiom schemes �T and ^T to CK. CS4 is
obtained by adding the axioms schemes �4 and ^4 to CT. Apart from pure mathematical
interest, there are other reasons that entice us to study the game semantics of these logics.
Let us state two:

• The proof theory of CS4 has found applications in the analysis of staged computation
i.e., a refined form of partial evaluation, in a functional programming context. The
authors of [36] construct an ML-style typing system in which modalities can act on
the evaluation properties of programs. The approach of the authors of the aforemen-
tioned paper is purely syntactical. We think that it would be interesting, and maybe
instructive, to study such evaluation properties from a semantic perspective.

• It is known that the �-modality of CS4 behaves similarly to the !-modality of (in-
tuitionistic) linear logic. In particular, The �-modality of the logic CS4 behaves
similarly to the !x-modality of bounded linear logic. The meaning of a formula !xA
in bounded linear logic is “the resource A can be reused x times”. The (simplified
version) of sequent calculus rules for the !x-modality are the following

252

Γ, B ` C
Γ, !1B ` C

!~y Γ ` C
!x~y Γ `!xC

Γ ` C
Γ, !0B ` C

Γ, !xA, !yA ` C
Γ, !x+yA ` C

while the sequent calculus rules for the �-modality of CS4 are

Γ, B ` C
Γ,�B ` C

�,Γ ` C
�Γ ` �C

The difference between the �-modality and the !x-modality is that the latter deals
with resources, i.e., contraction and weakening, while � does not. The complex-
ity of cut-elimination in bounded linear logic is polynomial i.e., any functional term
(proof) of appropriate type actually encodes a polynomial-time algorithm and, con-
versely, any polynomial-time function can be obtained in this way. Bounded linear
logic is generalized by the so-called graded modal type theories. The modality !n of
bounded linear logic is indexed by elements of the semi-ring of natural numbers. The
modalities �i of graded modal type theories are indexed by elements of an arbitrary
semi-ring. Different graded modalities can be obtained by choosing different semi-
rings. Graded modal type theories are used to conduct fine-grained analysis of the use
of resources in programs. To our knowledge, no denotational semantic treatment of
graded modal types is discussed in the literature. We would like to extend our game
semantics of modal logic in order to capture the modalities of bounded linear logic
and graded modal type theories. We think that this could be obtained by first studying
the conditions that are needed to capture the behavior of the �-modality of CS4 in
our game semantic setting. Once we have captured such behavior we could focus on
the “resource-management” aspect of the graded modal types modalities. We believe
that the resource management aspect can be captured by imposing restrictions on the
repetition of P-moves in a game.

8.2 Applications of proof theory to natural language.

8.2.1 Syntactic terms and semantic readings
In the fifth chapter of this thesis we have presented a small result about the syntactic-
semantic interface of Type Logical Grammars. This result is based on the introduction of

253

many assumptions about the form of semantic lambda terms. This is due to the fact that
we do not have a precise definition of a semantic term and it is also unlikely that one could
exist. To prove this result we have moreover established that a syntactic term is nothing
else but a linear lambda term in which some variables appear unbounded. Obviously, this
characterization is far from optimal. Usually, categorial grammars are proper sub-systems
of multiplicative intuitionistic linear logic. Consequently, the classes of lambda terms cor-
responding to these derivations — the real syntactic terms— are proper subclasses of the
class of linear lambda terms. We suppose that the assumptions of our theorem can be
relaxed if we consider such classes. We conjecture, for example, the following

let P1 and P2 be two linear lambda terms of the same type ‘corresponding’ to
normal proofs in the Lambek calculus. Suppose that M1, . . .Mn are n simple
semantic lambda terms such that the head constant of Mi is different from the
head constant of M j whenever i , j.

if P1 ,β P2 then P1[M1/x1, . . .Mn/xn] ,β P2[M1/x1, . . .Mn/xn]

provided that FV(P1) = FV(P2) = {x1, . . . xn}.

We have already obtained a preliminary result that goes in this direction. We have defined
the notion of dominance over the proofs of the Lambek calculus and shown that two β-
different proofs (in the sense of the lambek calculus) of the same judgment have different
dominance relations. This result is false in the case of linear lambda terms. We have neither
published this result nor presented it in our thesis because it is still not sufficient to prove
the aforementioned conjecture.

8.2.2 Textual Entailment Recognition, anaphora, ellipsis and Dialogi-
cal Logic

The problems of textual entailment recognition that we have studied in our thesis are ad-
mittedly very simple. We believe that many aspects of inferences in natural language are
too subtle to be captured by a logical system. They involve aspects of world knowledge and
linguistic idiosyncrasies whose precise definition is difficult. Moreover, even for aspects of
natural language that are well understood (e.g., plurals) logical modeling seems to be diffi-
cult. We have tried to incorporate more complex elements into the treatment of inferences:
the meaning of non-logical words and the resolution of anaphora and ellipses. To obtain a

254

treatment of inferences that are due to the linguistic meaning of the terms used, we intro-
duced Unfold rules into dialogical logic. We considered a very simple framework in which
the two players share the same meaning of linguistic terms and each atomic proposition
is defined by at most another formula. In a sense this is because we assume that the two
players are nothing more than two ‘perfectly rational’ beings. Two model speakers of the
same language who know (and agree on) the meaning of each term. This model is clearly
unrealistic. People often have a limited understanding of the meaning of words or, worse,
associate the same word with definitions that are only partially overlapping or even diamet-
rically opposed. We thus could study systems of Unfold games in which P and O play by
‘using’ different set of axioms or in which atomic proposition can unfold to more than one
formula. It would be particularly interesting to study such a system to model reasoning and
debates in natural language.

Debates often arise because two or more disputants cannot agree on the meaning of the
terms used: i.e., they accord to the same linguistic term partially or diametrically opposed
meanings. Debates in which the participants do not necessarily agree on the meaning of
words have been studied using Ludics [51, 95]. It would then be a way to partially integrate
such analysis in the simpler framework of dialogical logic.

We conclude by anticipating some of the work that needs to be done on the treatment
of anaphoras and ellipsis by mean of A-games. We would like to understand which first
order structure characterize this logic. Even if we tend to prefer inferentialist semantics,
we think that a model-theoretical understanding of the quantifierA is needed. In particular
this would facilitate the task of comparing the logic ‘defined’ by A-games to more tradi-
tional approach to anaphora resolution in natural language such as [80]. This comparison
is indeed very important to test the limit of our logical system and eventually improve it.
There is no precise linguistic definition of either ‘anaphora’ or ‘ellipsis’. If one want to
understand the depth of a logical contribution to this subject, empirical work is needed.

255

Bibliography

[1] S. Abramsky and R. Jagadeesan. Games and full completeness for multiplicative
linear logic. Journal of Symbolic Logic, 59, 04 2003.

[2] S. Abramsky, P. Malacaria, and R. Jagadeesan. Full abstraction for pcf. In In-
ternational Symposium on Theoretical Aspects of Computer Software, pages 1–15.
Springer, 1994.

[3] V. M. Abrusci and L. Tortora De Falco. Logica Volume 1: Dimostrazioni e modelli
al primo ordine. Springer Verlag, 2014.

[4] M. Acclavio, D. Catta, and L. Straßburger. Game semantics for constructive modal
logic. In D. Anupam and N. Sara, editors, Automated Reasoning with Analytic
Tableaux and Related Methods, 30th International Conference, TABLEAUX 2021,
Birmingham, UK, September 6–9, 2021, Proceedings, volume 12842 of Lecture
Notes in Artificial Intelligence, pages 428–445. Springer International Publishing,
2021.

[5] M. Acclavio, D. Catta, and L. Straßburger. Towards a Denotational Semantics for
Proofs in Constructive Modal Logic. preprint, Apr. 2021.

[6] J. Alama, A. Knoks, and S. Uckelman. Dialogues games for classical logic,
2011. preprint https://www.researchgate.net/publication/228823176_
Dialogue_games_for_classical_logic.

[7] M. Amblard, C. Beysson, P. de Groote, B. Guillaume, and S. Pogodalla. A French
Version of the FraCaS Test Suite. In LREC 2020 - Language Resources and Evalu-
ation Conference, page 9, Marseille, France, May 2020.

256

https://www.researchgate.net/publication/228823176_Dialogue_games_for_classical_logic
https://www.researchgate.net/publication/228823176_Dialogue_games_for_classical_logic

[8] J.-M. Andreoli. Logic programming with focusing proofs in linear logic. Journal of
Logic and Computation, 2:297–347, 1992.

[9] H. P. Barendregt. The lambda calculus: its syntax and semantics, volume 103 of
Studies in Logic and the Foundations of Mathematics. Elsevier, 1984.

[10] C. Barker and C. Shan. Donkey anaphora is in-scope binding. Semantics and Prag-
matics, 1:1–42, 2008.

[11] G. Bellin, V. De Paiva, and E. Ritter. Extended Curry-Howard correspondence for
a basic constructive modal logic. In In Proceedings of Methods for Modalities, 05
2001.

[12] G. M. Bierman and V. C. de Paiva. On an intuitionistic modal logic. Studia Logica,
65(3):383–416, 2000.

[13] A. Blass. A game semantics for linear logic. Annals of Pure and Applied Logic,
56(1):183–220, 1992.

[14] J. Bos. Vp ellipsis in a drt-implementation. In Sixth Conference of the European
Chapter of the Association for Computational Linguistics, 1993.

[15] R. Brandom. Articulating Reasons: An Introduction to Inferentialism. Harvard
University Press, 2000.

[16] R. B. Brandom. Making It Explicit: Reasoning, Representing, and Discursive Com-
mitment. Harvard University Press, 1994.

[17] P. Brauner, C. Houtmann, and C. Kirchner. Principles of superdeduction. In Pro-
ceedings of Symposium on Logic in Computer Science, page 41–50, 08 2007.

[18] S. E. Brennan, M. W. Friedman, and C. Pollard. A centering approach to pronouns.
In 25th Annual Meeting of the Association for Computational Linguistics, pages
155–162, 1987.

[19] B. Castelnérac and M. Marion. Arguing for inconsistency: Dialectical games in the
academy. In G. Primiero, editor, Acts of Knowledge: History, Philosophy and Logic.
College Publications, 2009.

257

[20] B. Castelnérac and M. Marion. Antilogic. The Baltic International Yearbook of
Cognition, Logic and Communication, 8(1), 2013.

[21] D. Catta. From strategies to derivations and back. an easy completeness proof for
first order intuitionistic dialogical logic. In A. Piccolomini d’Aragona, editor, Per-
spectives on Deduction. Springer, (To appear).

[22] D. Catta, R. Moot, and C. Retoré. Dialogical argumentation and textual entail-
ment. In R. Loukanova, editor, Natural Language Processing in Artificial In-
telligence—NLPinAI 2020., volume 939 of Studies in Computational Intelligence.
Springer, 2021.

[23] D. Catta, R. Moot, and C. Retoré. Do different syntactic trees yield different logical
readings? some remarks on head variables in typed lambda calculus. EasyChair
Preprint no. 209, EasyChair, 2018.

[24] D. Catta and S. Stevens-Guille. Lorenzen won the game, lorenzen did too: Dialogical
logic for anaphora and ellipsis resolution. In A. Silva, R. Wasserman, and R. de
Queiroz, editors, Logic, Language, Information and Computation. WoLLIC 2021,
volume 13038 of Lecture Notes in Computer Science. Springer, 2021.

[25] N. Clerbout. First-order dialogical games and tableaux. Journal of Philosophical
Logic, 43(4):785–801, 2014.

[26] N. Clerbout, M.-H. Gorisse, and S. Rahman. Context-sensitivity in jain philosophy:
A dialogical study of siddarsighani’s commentary on the handbook of logic. Journal
of Philosophical Logic, 40(5):633–662, 2011.

[27] A. Colapinto. Do it anaphora without covert events: In defense of a pro-verb analy-
sis. Lingua, 245:102921, 2020.

[28] R. Cooper, D. Crouch, J. Van Eijck, C. Fox, J. V. Genabith, J. Jaspars, H. Kamp,
D. Milward, M. Pinkal, M. Poesio, S. Pulman, T. Briscoe, H. Maier, and K. Konrad.
Using the framework, 1996. FraCaS deliverable D16.

[29] T. Coquand. A semantics of evidence for classical arithmetic. Journal of Symbolic
Logic, 60(1):325–337, 1995.

258

[30] C. Cozzo. Meaning and Argument: A Theory of Meaning Centred on Immediate Ar-
gumental Role. Stockholm Studies in Philosophy. Almqvist & Wiksell International,
1994.

[31] P. Curien. Notes on game semantics, 2006.
Online version https://citeseerx.ist.psu.edu/viewdoc/download?doi=

10.1.1.676.7186&rep=rep1&type=pdf.

[32] I. Dagan, D. Roth, M. Sammons, and F. M. Zanzotto. Recognizing textual entail-
ment: Models and applications, volume 6(4) of Synthesis Lectures on Human Lan-
guage Technologies. Morgan & Claypool Publishers, 2013.

[33] M. Dalrymple, S. M. Shieber, and F. C. Pereira. Ellipsis and higher-order unification.
Linguistics and philosophy, 14(4):399–452, 1991.

[34] V. Danos, H. Herbelin, and L. Regnier. Game semantics and abstract machines. In
Proceedings of the 11th Annual IEEE Symposium on Logic in Computer Science,
LICS ’96, page 394, USA, 1996. IEEE Computer Society.

[35] D. Davidson. The logical form of action sentences. In N. Rescher, editor, The Logic
of Decision and Action, pages 81–95. University of Pittsburgh Press, 1967.

[36] R. Davies and F. Pfenning. A modal analysis of staged computation. Journal of the
ACM (JACM), 48(3):555–604, 2001.

[37] P. Dekker. Predicate logic with anaphora. In Dynamic Semantics, pages 7–47.
Springer, 2012.

[38] P. Dekker. Exclusively indexical deduction. The Review of Symbolic Logic,
9(3):603–637, 2016.

[39] D. Delahaye. Automated Deduction Modulo. In Proof-Search in Axiomatic Theories
and Type Theories (PSATTT), page online, Palaiseau, France, Nov. 2013.

[40] G. Dowek. About folding-unfolding cuts and cuts modulo. Journal of Logic and
Computation, 11:419–429, 11 2000.

[41] M. A. E. Dummett. What is a theory of meaning? In S. Guttenplan, editor, Mind
and Language. Oxford University Press, 1975.

259

https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.676.7186&rep=rep1&type=pdf
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.676.7186&rep=rep1&type=pdf

[42] M. A. E. Dummett. The Logical Basis of Metaphysics. Harvard University Press,
1991.

[43] P. M. Dung. On the acceptability of arguments and its fundamental role in nonmono-
tonic reasoning, logic programming and n-person games. Artificial Intelligence,
77(2):321–357, 1995.

[44] C. Dutilh Novaes. Medieval “obligationes” as logical games of consistency mainte-
nance. Synthese, 145(3):371–395, 2005.

[45] M. Fairtlough and M. Mendler. Propositional lax logic. Information and Computa-
tion, 137(1):1–33, 1997.

[46] W. Felscher. Dialogues, strategies, and intuitionistic provability. Annals of Pure and
Applied Logic, 28(3):217 – 254, 1985.

[47] W. Felscher. Dialogues as a foundation for intuitionistic logic. In D. M. Gabbay and
F. Guenthner, editors, Handbook of Philosophical Logic, pages 115–145. Springer
Netherlands, Dordrecht, 2002.

[48] C. G. Fermüller. Parallel dialogue games and hypersequents for intermediate log-
ics. In M. Cialdea Mayer and F. Pirri, editors, Automated Reasoning with Analytic
Tableaux and Related Methods, pages 48–64, Berlin, Heidelberg, 2003. Springer
Berlin Heidelberg.

[49] F. B. Fitch. Intuitionistic modal logic with quantifiers. Portugaliae mathematica,
7(2):113–118, 1948.

[50] M. Fontaine and J. Redmond. Logique Dialogique: une introduction, Volume 1:
Méthode de Dialogique: Règles et Exercies, volume 3 of Cahiers de logique et
d’Epistémologie. College Publications, 2008.

[51] C. Fouqueré and M. Quatrini. Ludics and Natural Language: First Approaches. In
A. D. Denis Béchet, editor, LACL 2012 seventh International Conference on Logi-
cal Aspects of Computational Linguistics, volume 7351 of Logical Aspects of Com-
putational Linguistics, 7th International Conference, LACL 2012, Nantes, France,
July 2-4, 2012. Proceedings, pages 21–44, Nantes, France, July 2012. Laboratoire
d’Informatique Nantes Atlantique, Springer.

260

[52] C. Fouqueré and M. Quatrini. Argumentation and inference a unified approach. In
The Baltic International Yearbook of Cognition, Logic and Communication Volume
8: Games, Game Theory and Game Semantics, pages 1–41. New Paririe Press, 2013.

[53] N. Francez. Proof Theoretical Semantics, volume 57 of Studies in Logic. College
Publication, 2015.

[54] J. H. Gallier. Logic for Computer Science: Foundations of Automatic Theorem Prov-
ing, Second Edition. Dover Publications, Inc., USA, 2015.

[55] D. Galmiche, D. Larchey-Wendling, and J. Vidal-Rosset. Some Remarks on Rela-
tions between Proofs and Games. In P. E. Bour, M. Rebuschi, and L. Rollet, editors,
Construction - Festschrift for Gerhard Heinzmann. College Publications, 2010.

[56] C. Gardent. Sloppy identity. In International Conference on Logical Aspects of
Computational Linguistics, pages 188–207. Springer, 1996.

[57] B. Gehrke. Event kinds. The Oxford handbook of event structure, 205:233, 2019.

[58] G. Gentzen. Untersuchungen über das logische Schließen. I. Mathematische
Zeitschrift, 39:176–210, 1935.

[59] J.-Y. Girard. Linear logic. Theor. Comput. Sci., 50(1):1–102, Jan. 1987.

[60] J.-Y. Girard. Proof Theory and Logical Complexity. Bibliopolis, Napoli, 1987.

[61] J.-Y. Girard. Locus solum: From the rules of logic to the logic of rules. Mathematical
Structures in Computer Science, 11(3):301–506, 2001.

[62] J.-Y. Girard. The blind spot – lectures on logic. European Mathematical Society,
2011.

[63] J.-Y. Girard, P. Taylor, and Y. Lafont. Proofs and Types. Cambridge University
Press, USA, 1989.

[64] J. Groenendijk and M. Stokhof. Dynamic predicate logic. Linguistics and philoso-
phy, pages 39–100, 1991.

261

[65] J. Hankamer. On the nontransformational derivation of some null vp anaphors. Lin-
guistic Inquiry, 9(1):66–74, 1978.

[66] S. Heilala and B. Pientka. Bidirectional decision procedures for the intuitionistic
propositional modal logic IS4. In International Conference on Automated Deduc-
tion, pages 116–131. Springer, 2007.

[67] I. Heim. The semantics of definite and indefinite noun phrases. PhD thesis, Univer-
sity of Massachusetts Amherst, 1982.

[68] H. Herbelin. Séquents qu’on calcule : de l’interprétation du calcul des séquents
comme calcul de λ-termes et comme calcul de stratégies gagnantes. Phd thesis,
Université Paris 7, Janvier 1995.

[69] J. Higginbotham. The logic of perceptual reports: An extensional alternative to
situation semantics. The Journal of Philosophy, 80(2):100–127, 1983.

[70] J. Higginbotham. Linguistic theory and davidson’s program in semantics. In E. LeP-
ore, editor, Truth and Interpretation: Perspectives on the Philosophy of Donald
Davidson, pages 29–48. Cambridge: Blackwell, 1986.

[71] J. R. Hindley. Basic Simple Type Theory, volume 42 of Cambridge Tracts in The-
oretical Computer Science. Cambridge University Press, 1997. Corrected edition,
2008.

[72] J. R. Hobbs. Coherence and coreference. Cognitive science, 3(1):67–90, 1979.

[73] R. Horne, K. Y. Ahn, S.-w. Lin, and A. Tiu. Quasi-open bisimilarity with mismatch is
intuitionistic. In Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic in
Computer Science, LICS ’18, page 26–35, New York, NY, USA, 2018. Association
for Computing Machinery.

[74] R. Huddleston, G. K. Pullum, et al. The cambridge grammar of english. Language.
Cambridge: Cambridge University Press, 1:23, 2002.

[75] M. Hyland. Game semantics. In A. Pitts and P. Dybjer, editors, Semantics and
Logics of Computation, pages 131–182. Cambridge University Press, 1997.

262

[76] M. Hyland and L. Ong. Fair games and full completeness for multiplicative linear
logic without the mix-rule, 1993.

[77] M. Hyland and L. Ong. On full abstraction for PCF: I, II, and III. Information and
Computation, 163(2):285 – 408, 2000.

[78] G. Jäger. Anaphora and type logical grammar, volume 24. Springer Science &
Business Media, 2006.

[79] I. Johansson. Der minimalkalkül, ein reduzierter intuitionistischer formalismus.
Compositio Mathematica, 4:119–136, 1937.

[80] H. Kamp. A theory of truth and semantic representation. In P. Portner and B. H. Par-
tee, editors, Formal Semantics — the Essential Readings, pages 189–222. Blackwell,
1981.

[81] H. Kamp and U. Reyle. From discourse to logic: introduction to model theoretic
semantics of natural language, formal logic and discourse representation theory.
Part 1. Kluwer Academic, 1993.

[82] A. Kenny. Action, emotion and will. Routledge, 2003.

[83] J. King and K. Lewis. Anaphora. In Edward N., editor, The Stanford Encyclo-
pedia of Philosophy. Fall 2018 edition, 2018. https://plato.stanford.edu/

archives/fall2018/entries/anaphora/.

[84] M. Kohlhase. Model generation for discourse representation theory. In ECAI, pages
441–445, 2000.

[85] K. Kojima. Semantical study of intuitionistic modal logics. PhD thesis, Kyoto Uni-
versity, 2012. Ph.D. thesis.

[86] E. C. W. Krabbe. Formal systems of dialogue rules. Synthese, 63(3):295–328, 1985.

[87] R. Kuznets, S. Marin, and L. Straßburger. Justification logic for constructive modal
logic *. IMLA 2017 - 7th Workshop on Intuitionistic Modal Logic and Applications,
July 2017.

263

https://plato.stanford.edu/archives/fall2018/entries/anaphora/
https://plato.stanford.edu/archives/fall2018/entries/anaphora/

[88] I. Lakatos, J. Worrall, and E. Zahar. Proofs and refutations : the logic of mathemat-
ical discovery / Imre Lakatos ; edited by John Worrall and Elie Zahar. Cambridge
University Press Cambridge ; New York, 1976.

[89] F. Lamarche. Sequentiality, games and linear logic (manuscript), 1992.

[90] J. Lambek. The mathematics of sentence structure. American Mathematical
Monthly, 65:154–170, 1958.

[91] J. Lambek. The mathematics of sentence structure. The American Mathematical
Monthly, 65(3):154–170, 1958.

[92] O. Laurent. Syntax vs. Semantics: a polarized approach. Theoretical Computer
Science, 343:177–206, 2005.

[93] O. Laurent. Game semantics for first-order logic. Logical Methods in Computer
Science, 6(4):3, Oct. 2010.

[94] A. Lecomte. Meaning, Logic and Ludics. Imperial College Press, 2011.

[95] A. Lecomte and M. Quatrini. Figures of dialogue: a view from ludics. Synthese,
183(1):59–85, 2011.

[96] P. Lorenzen. Logik und agon. Atti Del XII Congresso Internazionale di Filosofia,
4:187–194, 1958.

[97] P. Lorenzen and K. Lorenz. Dialogische Logik. Wissenschaftliche Buchgesellschaft,
[Abt. Verlag], 1978.

[98] M. Marion. Between saying and doing: From lorenzen to brandom and back. In
Pierre Edouard Bour, M. Rebuschi, and L. Rollet, editors, Constructions. Essays in
Honour od Gerhard Heinzmann, pages 489–497. College Publications, London.

[99] M. Marion and H. Rückert. Aristotle on universal quantification: A study from the
point of view of game semantics. History and Philosophy of Logic, 37(3):201–229,
2016.

[100] G. McCusker. Games and full abstraction for FPC. Information and Computation,
160(1):1 – 61, 2000.

264

[101] M. Mendler and S. Scheele. Cut-free gentzen calculus for multimodal CK. Informa-
tion and Computation, 209(12):1465–1490, 2011.

[102] J. Merchant. Ellipsis: A survey of analytical approaches. The Oxford handbook of
ellipsis, pages 18–46, 2019.

[103] J.-J. Meyer and F. Veltmanw. Intelligent agents and common sense reasoning. In
P. Blackburn, J. Van Benthem, and F. Wolter, editors, Handbook of Modal Logic,
volume 3 of Studies in Logic and Practical Reasoning, pages 991 – 1029. Elsevier,
2007.

[104] P. Miller and G. K. Pullum. Exophoric vp ellipsis. The core and the periphery:
Data-driven perspectives on syntax inspired by Ivan A. Sag, 5:32, 2013.

[105] R. Montague. The proper treatment of quantification in ordinary english. In Ap-
proaches to natural language, pages 221–242. Springer, 1973.

[106] R. Montague. The proper treatment of quantification in ordinary English. In
R. Thomason, editor, Formal Philosophy. Selected Papers of Richard Montague.
Yale University Press, New Haven, 1974.

[107] R. Moot. The Grail Theorem Prover: Type Theory for Syntax and Semantics. In
Z. Luo and S. Chatzikyriakidis, editors, Modern Perspectives in Type-Theoretical
Semantics, volume Studies in Linguistics and Philosophy of Part III, pages 247–
277. Springer, 2017.

[108] R. Moot and C. Retoré. The Logic of Categorial Grammars: A Deductive Account
of Natural Language Syntax and Semantics. Number 6850 in Lecture Notes in Arti-
ficial Intelligence. Springer, 2012.

[109] R. Moot and C. Retoré. Natural language semantics and computability. Technical
report, arXiv, 2016.

[110] A. Mori and Y. Matsumoto. Coherence for cartesian closed categories: A sequential
approach. In N. Dershowitz and N. Lindenstrauss, editors, Conditional and Typed
Rewriting Systems, pages 276–295, Berlin, Heidelberg, 1995. Springer Berlin Hei-
delberg.

265

[111] G. V. Morrill. Type logical grammar: Categorial logic of signs. Springer Science &
Business Media, 2012.

[112] L. Moss. Natural logic. In S. Lappin and C. Fox, editors, Handbook of Contemporary
Semantic Theory, chapter 18, pages 561–592. John Wiley and Sons, second edition,
2015.

[113] A. S. Murawski and C. H. Luke Ong. Evolving games and essential nets for affine
polymorphism. In S. Abramsky, editor, Typed Lambda Calculi and Applications,
pages 360–375, Berlin, Heidelberg, 2001. Springer Berlin Heidelberg.

[114] G. Plotkin and C. Stirling. A framework for intuitionistic modal logics. In Proceed-
ings of the 1st Conference on Theoretical Aspects of Reasoning about Knowledge
(TARK), pages 399–406, 1986.

[115] D. Prawitz. Natural deduction: A proof-theoretical study. Dover Publications, 1965.

[116] D. Prawitz. Towards a foundation of general proof theory. In I̧tetsuppes1973. North
Holland, Amsterdam, 1973.

[117] D. Prawitz. On the idea of a general proof theory. Synthese, 27(1-2):63–77, 1974.

[118] D. Prawitz. The epistemic significance of valid inference. Synthese, 187(3):887–
898, Aug 2012.

[119] J. Pustejovsky. The generative lexicon. Computational Linguistics, 17, 07 2002.

[120] S. Rahman. On Frege’s Nightmare: A Combination of Intuitionistic, Free and Para-
consistent Logics. In essays on non-classical logic. 2001.

[121] S. Rahman. Un desafı́o para las teorı́as cognitivas de la competencia lógica: los
fundamentos pragmáticos de la semántica de la lógica linear. Manuscrito, 25:381–
432, 2002.

[122] S. Rahman and W. A. Carnielli. The dialogical approach to paraconsistency. Syn-
these, 125(1):201–232, 2000.

266

[123] S. Rahman, N. Clerbout, and L. Keiff. On Dialogues and Natural Deduction. In
G. P. et alii, editor, Acts of Knowledge: History and Philosophy of Logic, College
Publictions. Tributes, pages 301–336. College Publications, 2009.

[124] G. Restall. Multiple conclusions. In P. Hájek, L. Valdés-Villanueva, and D. Wester-
ståhl, editors, Logic, Methodology and Philosophy of Science. College Publications,
2005.

[125] C. Retoré. The montagovian generative lexicon lambda tyn: a type theoretical frame-
work for natural language semantics. In 19th International Conference on Types for
Proofs and Programs (TYPES 2013), volume 26, pages 202–229, 2014.

[126] P. Schroeder-Heister. Cut-elimination in logics with definitional reflection. In
D. Pearce and H. Wansing, editors, Nonclassical Logics and Information Process-
ing, volume 619 of Lecture Notes in Computer Science (Lecture Notes in Artificial
Intelligence). Springer, Berlin, Heidelberg., 1992.

[127] P. Schroeder-Heister. Proof Theoretic Semantic. In E. Zalta, editor, The Stan-
ford Encyclopedia of Philosophy. Metaphysics Research Lab, Stanford Univer-
sity, spring 2018 edition, 2018. https://plato.stanford.edu/archives/

spr2018/entries/proof-theoretic-semantics/.

[128] A. K. Simpson. The proof theory and semantics of intuitionistic modal logic. PhD
thesis, University of Edinburgh. College of Science and Engineering, 1994.

[129] W. Stegmüller. Remarks on the completeness of logical systems relative to the
validity-concepts of p. lorenzen and k. lorenz. Notre Dame Journal of Formal Logic,
5(2):81–112, 1964.

[130] F. Steinberger. Why conclusions should remain single. Journal of Philosophical
Logic, (3):333–355, 2011.

[131] L. Straßburger, W. Heijltjes, and D. J. D. Hughes. Intuitionistic proofs without syn-
tax. In LICS 2019 - 34th Annual ACM/IEEE Symposium on Logic in Computer
Science, pages 1–13, Vancouver, Canada, June 2019. IEEE.

[132] A. S. Troelstra and H. Schwichtenberg. Basic Proof Theory. Cambridge University
Press, USA, 1996.

267

https://plato.stanford.edu/archives/spr2018/entries/proof-theoretic-semantics/
https://plato.stanford.edu/archives/spr2018/entries/proof-theoretic-semantics/

[133] R. Truswell. The Oxford Handbook of Event Structure. Oxford University Press,
2019.

[134] D. Vakarelov. Modal logics for knowledge representation systems. Theor. Comput.
Sci., 90:433–456, 01 1991.

[135] J. van Benthem. Language in Action: Categories, Lambdas and Dynamic Logic.
MIT Press, Cambridge, Massachusetts, 1995.

[136] D. van Dalen. Logic and Structure. Universitext. Springer-Verlag, fifth edition,
2013.

[137] R. A. Van der Sandt. Presupposition projection as anaphora resolution. Journal of
semantics, 9(4):333–377, 1992.

[138] J. van Eijck and N. Francez. Verb-phrase ellipsis in dynamic semantics. In Applied
Logic: How, What and Why, pages 29–59. Springer, 1995.

[139] J. van Eijck, J. Heguiabehere, and B. Ó Nualláin. Tableau reasoning and program-
ming with dynamic first order logic. Logic Journal of IGPL, 9(3):411–445, 2001.

[140] Z. Vendler. Linguistics in philosophy. Cornell University Press, 2019.

[141] C. F. M. Vermeulen. Sequence semantics for dynamic predicate logic. Journal of
Logic, Language and Information, 2(3):217–254, 1993.

[142] H. Wansing. Formulas-as-types for a hierarchy of sublogics of intuitionistic propo-
sitional logic. In D. Pearce and H. Wansing, editors, Nonclassical Logics and Infor-
mation Processing, pages 125–145. Springer, Berlin, Heidelberg, 1992.

268

	Introduction en français
	Théories référentialistes de la signification
	Théories inférentialistes de la signification
	Inférentialisme et dialogues argumentatifs
	Résultats du travail de thèse
	Théorie de la preuve
	Modélisation de la syntaxe et de la sémantique du langage naturel

	Organisation du manuscrit
	Mathematical and Philosophical foundations
	Logic and DiaLogical Games
	Natural Language Applications of Proof Theory

	Introduction
	Referentialist theories of meaning
	Inferentialist theories of meaning
	Inferentialism and argumentative dialogues
	Thesis's results
	Proof theory
	Natural language syntax and semantics modelisation

	Thesis's organization
	Mathematical and Philosophical foundations
	Logic and DiaLogical Games
	Natural Language Applications of Proof Theory

	I Mathematical and Philosophical foundations
	Mathematical preliminaries
	First Order Language
	First Order Terms
	First Order Formulas

	Trees
	Sequences
	Semantic
	Proofs
	Sequent Calculus
	Variations on the sequent calculus
	Intuitionistic Logic
	Atomic identity rule
	Negation
	Additive vs Multiplicative
	Absorbing the Exchange rules
	Absorbing the Weakening rules
	Absorbing the Contractions rules

	Natural Deduction
	Detours and normal proofs
	Intuitionistic multiplicative linear logic

	The Simply Typed Lambda Calculus
	The Curry-Howard Correspondence

	Philosophical Foundations
	Meaning and natural deduction
	Meaning and the Sequent Calculus
	The role of the structural rules
	Formulas vs sequents

	Meaning and argumentation
	A DiaLogical interpretation of the sequent calculus
	Proof Semantics vs Semantics of Proofs
	Sequent calculus proofs as dialogic games: other approaches.

	II Logic and DiaLogical Games
	DiaLogical Games
	Introduction
	Previous works

	Dialogical Logic
	Argumentative dialogues: informal overview
	Argumentation forms
	Augmented sequence
	Games
	Some examples
	Properties of games
	Strategies
	Some examples of strategies

	The sequent calculus SLK
	Properties of SLK
	SLK: soundness and completeness

	From strategies to derivations
	From derivations to strategies
	Intuitionistic dialogical games
	Some examples of intuitionistic games
	Intuitionistic Strategies

	Conclusion

	Game Semantics for Constructive Modal Logic
	Introduction
	Generalities about denotational semantics
	 Generalities about constructive modal logics
	Generalities about game semantics
	Game semantics for CK

	Background
	The constructive modal logic CK
	The sequent calculus LCK
	Cut elimination for LCK

	Modal Arenas
	Winning Strategies for CK
	Views
	Winning innocent strategies
	CK Winning Innocent Strategies

	Compositionality of Winning Strategies
	Some remarkable strategies
	Game semantics interpretation of CK
	Denotational Model

	Full Completeness
	Bonus: game semantics for CD
	Conclusion and Future Work

	III Natural Language Applications of Proof Theory
	Type Logical Grammars: a result about the syntactic-semantic interface.
	Introduction
	The Lambek Syntactic calculus
	Lambek Calculus and Grammar
	Multisorted logic and lambda calculus

	From Lambek to logic
	 From Lambek to imll
	From imll to logical formulas

	Syntactic terms and logical readings
	The problem
	 Some counterexamples

	Dominance
	Conclusion

	Textual Entailement Recognition and DiaLogical Games
	Introduction
	Textual Entailment Recognition
	First Example
	Second Example
	Third Example
	Fourth Example

	Word Knowledge
	Unfolding
	Some Examples of U-games
	Properties of U-games

	Textual entailment and U-strategies
	Conclusion

	DiaLogical Games for anaphora and ellipsis resolution
	Introduction
	Pronouns
	Dialogical games for Anaphora and Ellipsis resolution: A-games
	Properties of A-Games

	Textual Entailment Recognition and Anaphora Resolution
	First Example Involving Anaphoras
	Second Example Involving anaphoras
	Third Example Involving anaphoras
	 Fourth Example Involving Anaphoras: Donkey Anaphora

	Ellipsis
	Events

	Textual Entailment Recognition and Ellipsis Resolution
	First Example involving Ellipsis: VP-ellipsis
	Second Example Involving Ellipsis

	Discussion
	Other Works
	Sorting

	Conclusion

	IV Conclusion
	Conclusion
	Proof theory
	Dialogical Logic
	Game Semantic

	Applications of proof theory to natural language.
	Syntactic terms and semantic readings
	Textual Entailment Recognition, anaphora, ellipsis and Dialogical Logic

