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Ces travaux de thèse portent sur le comportement aéroacoustique de nouveaux metamatériaux subjugués à un écoulement cisaillé pour comprendre son effet sur la réponse acoustique. Trois matériaux ont été considérés dans cette thèse : d'abord, l'investigation d'une plaque corruguée en présence/absence d'écoulement cisaillé est présentée. Dans la littérature, corrugations similaires ont montrés intéressants effets d'amplification/affaiblissement à des précis nombres de Strouhal liés à la largeur de la cavité (et la nature de son bord), à la vitesse de l'écoulement et la fréquence acoustique. Un système de mesure acoustique et optique a été mis en place pour investiguer le régime linéaire de ces perturbations. Finalement, les quatre composantes qui produisent la puissance acoustique et leur importance relative ont étés caractérisés ainsi comme le mécanisme de production/absorption. La deuxième partie de cette travail est axée sur un autre aspect d'effet d'écoulement. Puisque nouveaux métamateriaux sont investigués, très souvent on prend en compte une couche qui pourrait bloquer les interactions avec l'écoulement mais qui pourrait laisser passer les ondes acoustiques. Autant souvent, cette couche est pensée fabriquée en Kevlar, en vue de son utilisation dans les souffleries aéroacoustiques. L'interêt de cette partie était donc de montrer comme la présence d'une couche de Kevlar peut éliminer les interactions mais, en même temps, elle limite aussi effets de résonance intéressants et donc ne peut pas être considérée 'transparente'. Ensuite, dans la troisième partie de cette thèse, l'investigation d'une nouvelle conception de liner basé sur une poutre en porte-à-faux est présentée. Cette poutre est composée par des plaques articulées et des fentes, qui permettent d'améliorer leurs prestations à baisse fréquences, surtout si comparées avec celles d'autre métamatériaux 'vibrantes' (par exemple membranes). Le liner a été caractérisé en présence/absence d'écoulement cisaillé et aussi avec un tube à impédance. Finalement, un modèle nouveau est présenté qui est bien d'accord avec ces mesures.

Introduction

Environmental change is one of today's most challenging issue to be takled and therefore requires a strong eort in order to achieve tangible results. The European Community (EC) joined its eorts in its agship Horizon 2020 (H2020) program which aims at improving sinergy between scientic research and industry application by removing barriers to innovation, so to simplify the exchange of knowledge. Among the several elds of interest, Horizon 2020 seeks to make the transportation system cleaner and quieter. For the aviation industry, this is a particularly demanding challenge as these two objectives, with today's technology, push for opposite requirements and fail at providing the substantial reductions which the program pursuits. In this sense, the objective of the H2020 program is to investigate radically new concepts for aeroacoustic attenuation and control in order to overturn these paradigms.

If we look at today's aviation noise mitigation industry, the main technology is represented by the single or multi degree of freedom perforated liners (SDOF and MDOF, respectively).

These are constituted by a perforated plate which covers a backing up cavity array (usually in an honeycomb structure). In the SDOF solution, a single layer of cavities is used, while in a MDOF more layers are used, so to introduce multiple resonance frequencies in the liner.

Finally, it is a common solution to introduce a resistive layer (mesh wires or similar) which increases the overall damping of the system. The SDOF liner is depicted in gure 1.1 for illustrative purpose. These kind of liners are built upon the scheme of the classic Helmholtz resonator, which is, in the most general denition, that of a cavity volume connected by a neck to the external ambient. This system can be thought as a mass-spring-damper system and represents an ecient subwavelength system. The spring dynamic is due to the compression of air in the cavity and the mass and the damping by the passage of air through the holes. The way these terms interact with each other (see [START_REF] Guess | Calculation of perforated plate liner parameters from specied acoustic resistance and reactance[END_REF] for a thourough analysis of these terms)

gives the system reaction to the acoustic propagation, which is usually characterized by an impedance. The general denition of acoustic impedance is

Z = p ′ v ′ • n (1.1)
where p ′ and v ′ represent the acoustic pressure and velocity, respectively, at the material surface, and n is the surface normal vector. If we look at a classic Helmholtz resonator, these impedances terms act in series and therefore the total impedance is the sum of these terms. Similarly, it would be the same if we retrieve the impedance of a SDOF (neglecting viscous and other nonlinear eects). Starting from the impedance transport equation for a 1D propagation inside a waveguide:

Z 1 = Z 2 + ρ 0 c 0 j tan(k 0 L c ) ρ 0 c 0 + jZ 2 tan(k 0 L c ) (1.2)
where Z 1 and Z 2 are the impedances at two points distant a length L c , and k 0 is the wavenumber inside the waveguide. If we apply this formula at our case, as shown in gure 1.1-b, we retrieve the impedance expression for a cell of this SDOF system as

Z L /ρ 0 c 0 = i σ tan k 0 d tan k 0 H c -σ tan k 0 H c + σ tan k 0 d (1.3)
where d, H c and σ are the thickness of the perforated plate, the height of the cavity and the Percentage of Open Area, POA( i.e. ratio between the perforated hole area and the underlying cavity) σ = S e /S H (again, see gure 1.1-b); ρ 0 and c 0 are the density and the speed of sound inside the waveguide, respectively. Then, if the thickness and cavity depth are much smaller then the propagating acoustic wavelength, equation 1.3 can be approximated as

Z L /ρ 0 c 0 ≈ i σ k 0 d - σ k 0 H c (1.4)
and the resonance frequency of such a system is obtained when the imaginary part of this impedance is equal to zero, i.e. Therefore, even if it is possible to tune such a system towards low resonance frequencies, this is not practically possible due to space constraint as, at all POA, its dependency on the cavity height is unfavourable. Even more so, as the future request for aero-engines will be to increase the nacelle sections (for improved air intake and thus fuel consumption eciency) and the available space for acoustic treatments will be reduced.

Therefore, several novel approaches have been investigated, in order to improve the eciency of such a system (or even change the underlining paradigm). For example, it could be possible to back up the perforated plates by a porous material element, laying on a rigid backing, in order to increase the frequency spectrum response. However, in such a conguration, the main possibility to shift the frequency response to lower frequencies is by increasing the porous layer thickness. Another approach is then proposed by [START_REF] Li | Enhancing the low frequency sound absorption of a perforated panel by parallel-arranged extended tubes[END_REF] and [START_REF] Simon | Long Elastic Open Neck Acoustic Resonator for low frequency absorption[END_REF], where the micro-perforate is supported by cavities into which tubes extend. In [START_REF] Li | Enhancing the low frequency sound absorption of a perforated panel by parallel-arranged extended tubes[END_REF] the analytical background for the perforated panel with extended tubes (PPET) is provided, together as well with an optimization procedure for achieving the average best absorption over a given frequency spectrum. In [START_REF] Simon | Long Elastic Open Neck Acoustic Resonator for low frequency absorption[END_REF], a similar conguration of a perforated plate with extended plastic tube is presented and modeled both by a transfer matrix method and with a Linearized Euler Equations (LEE) approach. Also, it is interesting that an experimental example was used to validate these models in a grazing ow conguration. In both works, the resulting eect of the tubes is to add further inertial and resistance terms to the ones from cavity and perforated holes. These added terms depend on the relative length of the tubes w.r.t. the cavity depth other than the cross-section area ratio (see gure 1.3 for the schematics of the systems).

(c) (d)

.3 Schematics of one unit of the four parallel-arranged PPETs from [START_REF] Li | Enhancing the low frequency sound absorption of a perforated panel by parallel-arranged extended tubes[END_REF]:

(a) Side elevation and (b) front elevation. The perforated plate investigated in [START_REF] Simon | Long Elastic Open Neck Acoustic Resonator for low frequency absorption[END_REF] is shown by its (c) schematics and (d) realization of the perforated plate investigated in [START_REF] Simon | Long Elastic Open Neck Acoustic Resonator for low frequency absorption[END_REF] .

Another approach which was able to push even further the subwavelength eciency of the acoustic metamaterials (i.e. the ratio between its characteristic resonance wavelength and thickness) was the one based on the "slow sound" concept. In this case, the idea is to decrease the sound speed in the material in order to obtain attenuation at a frequency lower than the natural frequency of the impedance. In such a sense, the acoustic liner is working in the same way as before, but a shift in the resonance frequency is introduced as large as the sound speed reduction therefore enhancing subwavelength attenuation. This is straightforward to show, as for a quarter-wavelength resonator the resonance wavelenght is

H = λ r /4 = c e 4f r → f r = c e 4H (1.6)
where the quantities are the same as indicated above. Then, it is clear that the same liner can reduce its resonance frequency by simply reducing the sound speed (inside its volume).

In [START_REF] Groby | The use of slow waves to design simple sound absorbing materials[END_REF], side branches are laterally included in a slit structure to create a locally reacting impedance (see gure 1.4). The conceived structure is proved, both from a modeling and experimental point of view, to slow the sound speed and therefore deliver optimal absorption at a critical wavelengths much larger than four times the typical length of the impedance.

Finally, another approach regarded with large interest in literature is the use of membranes and vibrating materials. This approach has been investigated both from a passive and active point of view, the dierence being that in the latter case energy is given to the system from an external source (e.g. a loudspeaker). Vibrating membranes have been rst

investigated by [START_REF] Ackermann | Technical Note: Noise Reduction in an Exhaust Stack of a Papermill[END_REF] and used for a rst application in [START_REF] Frommhold | Acoustic Performance of Membrane Absorbers[END_REF]. Recent works have investigated hybrid resonances obtained through a backed up cavity sealed o and lled with a low adiabatic index (i.e. low heat capacity ratio) gas [START_REF] Ma | Acoustic metasurface with hybrid resonances[END_REF].

Regarding the active solution, a largely investigated idea is to drive an electro-mechanoacoustical system (i.e. a loudspeaker membrane) to adapt its impedance toward the optimal value of the system. This is achieved through electroacoustic absorption (see [START_REF] Lissek | Electroacoustic absorbers: Bridging the gap between shunt loudspeakers and active sound absorption[END_REF]), which can be obtained through many strategies (for further details see [START_REF] Galland | Hybrid passive/active absorbers for ow ducts[END_REF] and [START_REF] Boulandet | Duct modes damping through an adjustable electroacoustic liner under grazing incidence[END_REF]). Even if these solutions oer a very interesting and ecient answer to the noise mitigation challenge, the situation can change when we consider the presence of an external ow grazing over the metamaterials surfaces.

In fact, several studies have investigated how such interactions were responsibles for unexpected and surprising phenomena and therefore to be taken into account. In [START_REF] Aurégan | Experimental evidence of an instability over an impedance wall in a duct with ow[END_REF], the performance of a classic perforated liner was analysed with and without a grazing mean ow. The experimental analysis was conducted with two sets of microphones before and after the lined section, from which the scattering matrix can be obtained. In absence of ow, the transmission coecient shows an attenuation peak near the quarter-wavelength resonance frequency of its locally reacting resonators. On the other hand, when a grazing ow is turned on, an actual amplication (i.e. transmission coecient > 1) of the acoustic wave appears around the same resonance frequency. Other works [START_REF] Aurégan | Low frequency sound attenuation in a ow duct using a thin slow sound material[END_REF] show how the performances for which metamaterials are designed in no ow condition, very often deteriorate greatly when a grazing ow is present: in this case, a thin subwavelength coiled solution has been analysed and results show that the presence of ow reduces the transmission loss of the metamaterial by a factor 100 (see gure 1.4).

(a) (b) Figure 1.4 Outline of the material investigated in [START_REF] Aurégan | Low frequency sound attenuation in a ow duct using a thin slow sound material[END_REF] (a) and its Transmission coecient (b): blue/black marks are obtained without an external ow, while the green lines are with a M=0.2 ow. A 100 factor increase in the Transmission curve can be seen around the rst resonance frequency. Figure from [START_REF] Aurégan | Low frequency sound attenuation in a ow duct using a thin slow sound material[END_REF] .

Together with newly available experimental investigations, also new theoretical considerations have been an important push towards research in this eld. In [START_REF] Brambley | Well-Posed Boundary Condition for Acoustic Liners in Straight Ducts with Flow[END_REF] the well-posedness of the Ingard-Myers boundary condition for liners in grazing ows has been investigated. It is a very common way of modeling the interaction at the liner interface through its impedance.

However, as Brambley shows, this is proven to be ill-posed and therefore produce unstable analysis, especially in time domain. Therefore, new research was needed in order to prop-erly model the aero-acoustic interaction for those applications where a mean ow is present such as aviation, ventilation or turbomachinery. To obtain new detailed informations of this interaction in the vicinity of liners, optical techniques have proven to be very helpful:

in [START_REF] Roche | Simulation numérique des propriétés acoustiques de cavités résonantes en présence d'écoulement[END_REF] the numerical investigation of the eects of ow and high amplitude acoustics has been carried out for SDOF liners. Here, the thesis focused on dierent aspects of acoustic propagation (mainly for a single perforated resonator) in a normal and grazing congura- The importance of including the aeroacoustic interactions is shown also in dierent kinds of applications, like acoustic directivity, cloaking and other innovative application. Most investigations about cloaking are either theorical or numerical and they ofter require extreme parameters which also oer frequency-dispersive metamaterials. Therefore they can work in a limited frequency range. If the scatterer is put on a at reective ground, cloaking is easier to achieve [START_REF] Palma | Acoustic metamaterials in aeronautics[END_REF], but these metamaterials cloak capability is disrupted when subjected to an external ow. However, when considering the presence of an external ow, its inuence inside the metamaterial is neglected. If ow is present, then the governing equations are not anymore formally invariant and therefore cloaking is not achieved [START_REF] Chen | Acoustic cloaking in three dimensions using acoustic metamaterials[END_REF]. Therefore, in these cases the uid is considered quiescent. There has been various extensions to these approaches by including a convective component to the Taylor transformation [START_REF] Palma | Acoustic metamaterials in aeronautics[END_REF] or topological approaches. However, in these cases, the metamaterial is needed to be permeable to the incoming acoustic waves which means that, at the same time, it would be exposed to the aero-acoustic interaction due to an external ow that could alter its performance. Then, in order to concile these two needs, it is assumed that the metamaterial is shielded in some way from the convective component (i.e. the external ow) but not the acoustic one. Therefore, these results are interesting but they can't indicate a practical way for their realization or, alternatively, require the strong assumption that only the acoustics are able to enter the metamaterial, while the ow is not. Furthermore, sometimes it has been indicated that such layer can be fabricated with a Kevlar layer. Therefore, a part of this thesis is devoted to the investigation of an array of Helmholtz resonators in presence of an external ow, with and without a covering Kevlar layer. As the resonators alone produce dramatic eects with ow (i.e. whistling), it is shown that a Kevlar layer is able to suppress them, but at the same time suppressing the eects of the metamaterial by introducing a very important acoustic dissipation and that, contrary to what is often stated, it is not the magic layer advertised.

Finally, moving aside from the realm of metamaterials but in line with ow eects on materials, interesting eects can be observed on corrugated walls when an external mean ow is present. In these, self-induced oscillations which could result in fatigue-related failures or noisy disturbances have been noticed and their nature linked to the corrugated surface of attached piping inner layer [START_REF] Belfroid | Flow-Induced Pulsations due to Flexible Risers[END_REF]. Therefore, the investigation of the arising of these phenomena is interesting both from a research and industrial point of view: in this thesis, the behaviour of these interactions in the linear domain have been studied.

In the present thesis dierent problems have been tackled, mainly from an experimental point of view. Therefore, in Chapter 2, the experimental setup built has rst of all been shown in detail.

In Chapter 3, an experimental investigation by means of acoustic and optical measurements of the aero-acoustic interaction along a corrugated plate has been carried out.

In Chapter 4 the inuence of a kevlar resistive layer around a metamaterial (an in series Helmholtz conguration) has been investigated. Furthermore, in Chapter 5 an investigation of a vibrating cantilever beam array in normal and grazing conguration has been carried out.

Finally, in Chapter 6 Conclusions are drawn.

Chapter Two

Experimental Setup and Techniques

Introduction

In this section, the ensemble of the test rig and the experimental techniques have been presented. While in the next Section the detailed dimensions of this test rig are presented, the justications of the design can be outlined here. As the investigations carried out in this thesis are mainly focused around the linear regime, it was important to exlude any higher order modal content (i.e. having only planar waves) from the measurements while still operating up to mid range frequencies. In fact, the cut-on frequency for a square section duct can be written as:

f cut = c 0 2H (2.1)
where H = 40 mm is the height of the channel. For standard conditions, f cut ≈ 4300 Hz.

From this, it is clear that the upper frequency limit where only one mode is present is inversely proportional to the test section dimensions. Furthermore, it is important to notice that both ends of the duct were equipped with anechoic terminations. This allows precise Transmission-Reection measurements and suppresses any feedback signal which could lead to whistling phenomena in the investigated problems.

Test Rig

The test rig is a uniform rectangular duct whose section is B = 50 mm × H = 40 mm, see 

Microphones Setup

The test rig has been conceived so that both acoustic and optical measurements could be carried out exactly on the same test section. In order to determine the transmission and reection coecients, T ± and R ± , of the tested element, the upstream and downstream rigid ducts are equipped with 4 microphones each. The superscripts +/indicate whether the quantities are calculated in the case of an acoustic propagation along or against the mean ow. Those eight quarter-inch microphones are mounted ushed to the duct without grids (B&K 4136 with Nexus 2690 amplier). The distances between the rst microphone and the test object are l u = 0.112 m, l d = 0.114 m. The distances between the microphones are x u2-u1 = x d2-d1 = 0.030 m , x u3-u1 = x d3-d1 = 0.175 m and x u4-u1 = x d4-d1 = 0.462 m. As the investigated frequencies are well below the cut-on frequency of the rigid straight duct (i.e. 4287.5 Hz), only plane waves propagate to the test section. Thus, the pressure at any point in the duct (suciently far from the source position and from any change in the duct) can be described by p(x) = p(x) + e -jk + x + p(x) -e jk -x where k ± is the wavenumber accounting for the ow and the visco-thermal losses in the acoustic propagation. The four microphones at both side of the test section allow an over-determination of the incoming and outgoing acoustic waves upstream and downstream of the tested element [START_REF] Aurégan | Experimental evidence of an instability over an impedance wall in a duct with ow[END_REF]. Using the two acoustic sources to obtain two dierent acoustic states of the system [START_REF] Åbom | Measurement of the scattering-matrix of acoustical two-ports[END_REF], the four elements of the scattering matrix for plane waves (transmission and reection coecients on both directions: T ± and R ± ) can be evaluated.

LDV System

A 2D Laser Doppler Velocimetry (LDV) DANTEC 2D FlowExplorer system has been set up and used to measure the vertical (V along y) and horizontal (U along x) velocities inside the chosen cavity. Its lasers wavelengths are of 532 and 560 nm at a f=300 mm focus length.

The system has a measurement volume of 0.7 mm 3 and its support system is capable of displacing with a spatial resolution of 0.10 mm. Therefore, the resolution attainable inside the cavity is hardly beatable by other (optical and not) techniques. The LDV system comes together with a Burst Spectrum Analyzer (BSA) Dantec software which manages the laser position in space and the acquisition procedure and allows measurements on a 2D points grid in space. Regarding the acquisition procedure, main attention has to be given to the synchronization between the laser and the acoustic source, in order to have measurements throughout the whole reference signal period. This could be done by a phase-locked approach but, in order to reduce errors (e.g. data folding over one period), and as we are working at a single xed frequency, a simpler approach was used. A source signal, produced by a frequency generator, feeds both the loudspeaker through an amplier and the LDV trigger entrance. This feeding signal is again split to the loudspeakers and reacquired into the LDV acquisition system (so to always know the reference electronic signal fed to the system). In this way, we can radiate a single frequency signal in the duct while having a reference trigger for the acquisition system always identically synchronized at the same time reference. This appears to be even more important when we have to correlate two sub-volumes data, which was needed for the corrugated plate, as explained later in Section 3.2.1.

Finally, scattering particles are needed to measure quantities inside the free ow. Here, incense particles have been used since they produce favorable diameters smoke particles d c [START_REF] Lin | Particle Size Distribution of Aromatic Incense Burning Products[END_REF], [START_REF] Hamdi | Comparison of dierent tracers for PIV measurements in EHD airow[END_REF], [START_REF] Melling | Tracer Particles and Seeding for Particle Image Velocimetry[END_REF], which equals to a Stokes number of Sk = (2πf /ν) 1 /2d c ∼ 0.006 -0.008 if we also consider the typical forcing frequency of 2 kHz and a dynamic viscosity of air of ν = 1.81 * 10 -5 [kg m -1 s -1 ]. This value is obtained by applying the formula from [START_REF] Hjelmfel | Motion of Discrete Particles in a Turbulent Fluid[END_REF] Sk = ω ν

1 2 d p (2.2)
where ω is the forcing frequency, ν the dynamic viscosity of air and d p the particle diameter.

Experimental Techniques

As described in the previous section, two dierent experimental setups are available to carry out acoustic measurements. In this section a brief description about these procedures is given.

Scattering Matrix Method

The rst and more classic way of measure acoustic quantities is by the means of microphones.

In our case, the general idea is to retrieve the scattering matrix from the microphone mea-surements picked up outside the test section

   p + 2 p + 1    = S    p - 2 p - 1    (2.3)
where [S] is the scattering matrix and the subscripts 1, 2 indicates a xed position before and after the test section, respectively. As outside the test section, we only consider plane waves propagation, it is possible to write:

p 1 = p + 1 e -jk + x 1 + p - 1 e jk -x 1 = p + 1 e -jk + x 1 + R 1 e jk -x 1 p 2 = p + 2 e -jk + x 2 + p - 2 e jk -x 2 = p + 2 e -jk + x 2 + 1/R 2 e jk -x 2 (2.4)
where x 1 , x 2 are the positions of microphones 1, 2 and R 1,2 are respectively

R 1 = p - 1 p + 1 R 2 = p + 2 p - 2 (2.5) 
Then, we are interested in retrieving the scattering matrix coecients

S =    T + R - R + T -    (2.6)
which are the transmission and reection coecients when the corresponding termination is anechoic. For example

T + = p + 2 p + 1 , R + = p - 1 p + 1 , when p - 2 = 0 (2.7)
and similarly for the other coecients. Then, we can write the scattering matrix as the link between the downstream and upstream running pressures

   p + 2 p + 1    =    T + R - R + T -       p - 2 p - 1    (2.8)
which can be normalized by the p + 1 pressure, giving

   T 12 R 1    = S    1 T 12 /R 2    (2.9)
where

T 12 = p + 1 p + 2
If we want to retrieve the four scattering matrix coecients, the above relation will require two dierent measurements obtained at two dierent system states.

The most common way to achieve this is either changing the termination load of the system (i.e. changing the impedance of the termination) or by switching the position of the acoustic source. The latter method has been used mainly because of its malleability and because it allows us to work always with termination reection factors as small as possible. Then, if it is possible to retrieve Eq. 2.8 w.r.t. two dierent states (a), (b), we obtain globally 4 unknowns in 4 equations

   T (a) 12 R (a) 1    =    T + R - R + T -       1 T (a) 12 /R (a) 2       R (b) 2 T (b) 21    =    T + R - R + T -       T (b) 21 /R (b) 1 1    (2.10)
where in this case T 21 = p - 2 p -

1

. Then, combining these two equations we retrieve the expressions of the four scattering coecients

T + = T (a) 12 1 - R (b) 2 R (a) 2 1 - T (a) 12 T (b) 21 R (a) 2 R (b) 1 -1 R + = R (a) 1 1 - T (a) 12 T (b) 21 R (a) 1 R (a) 2 1 - T (a) 12 T (b) 21 R (a) 2 R (b) 1 -1 T -= T (b) 21 1 - R (a) 1 R (b) 1 1 - T (a) 12 T (b) 21 R (a) 2 R (b) 1 -1 R + = R (a) 1 1 - T (b) 12 T (a) 21 R (b) 1 R (b) 2 1 - T (a) 12 T (b) 21 R (a) 2 R (b) 1 -1 (2.11)
These expressions link the scattering coecients to the transmission and reection coecients actually measured. Then, the last thing to be dened is how to retrieve these coecients from the microphone measures.

Once the time signal has been acquired, a transfer function (which accounts for calibration factors) between two microphones at two dinstinct positions can be dened as

H ij (f ) = p i (f ) p j (f ) (2.12)
where p i (f ) is the Fourier transform of the pressure time signal p i (t). Then, the aforementioned coecients can be rewritten as a function of these transfer functions by noting that

p + j (x j ) = p + 1 (x 1 )e -jk + 1 (x j ) p - j (x j ) = p - 1 (x 1 )e jk - 1 (x j ) p + i (x i ) = p + 1 (x 1 )e -jk + 1 (x i ) p - i (x i ) = p - 1 (x 1 )e jk - 1 (x i ) (2.13) 
and so

H ij = e -jk + 1 x i + R 1 e jk - 1 x i e -jk + 1 x j + R 1 e jk - 1 x j (2.14)
Finally, shuing the terms to express directly the reection coecient, we obtain

R 1 = H 1 ij e -jk + 1 x j -e -jk + 1 x i e jk - 1 x i -H ij e jk - 1 x j (2.15)
and similarly the other coecients are retrieved.

Lastly, it must be noted that 2 microphones (on both sides) are sucient to retrieve the four coecients. However, an overdetermination is foreseeable in principle, as it will improve greatly the signal-to-noise ratio (over a larger frequency spectrum). In this case, we can write the problem through a matrix form as -e -jk + 1 x 1i + H 

                          (2.16)
and retrieve the solution through a least square approach.

LDV Technique

The Laser Doppler Velocimetry (LDV) is an optical technique used to measure the peculiar velocity of a given ow. The technique consists in measuring the frequency dierence between the laser signal scattered by some reective particles inside the uid and a reference one. The system uses two laser beams which, interfering with each other, create fringe patterns: the refracting particle passing through these fringes will re-emit a light signal with a frequency shift linked to its velocity and the fringe spacing, due to the Doppler eect. In Figure 2.2, a schematic of the basic mechanism is shown. Two laser beams u 1 , u 2 with an identical wavelength λ 0 are shed so to interference themselves at a given measurement point. When a scattering particle with a velocity v 0 passes at this point, it will diuse two waves which, when superimposed, modulate in amplitude the light intensity at a frequency

F D = F u 2 -F u 1 = 1 λ 0 v 0 (u 1 -u 2 )
(2.17)

or equivalently

F D = v x d (2.18)
where v x is the velocity component normal to the two laser beams bysect. The distance d is linked to the laser beams interference process: as these are highly coherent, their crossing creates interference patterns. Particularly, fringes characterised by high and low light intensity appear inside a measurement volume (see Figure 2.2). The length d is the spacing between two fringes peaks (or valleys). In the hypothesis of gaussian cylindrical beam proles, it can be related to the the angle between the two laser beams θ 0 and the laser wavelength λ 0 by

d = λ 0 2 sin (θ 0 /2) (2.19)
These fringes will occupy a measurement volume which depends on the characteristics of the laser beam prole. If this can be considered gaussian, we can dene a focusing length d f

d f = 4w f λ 0 πd 0 (2.20)
where w f is the focal distance and d 0 the beam diameter. Then, the length d x 0 indicated in Figure 2.2, can be calculated as

d x 0 = d f cos(θ 0 /2)
. Finally, as mentioned in 2.2.2, in order to detect a light signal, a scattering particle is needed inside the ow but it should also point out that the measured velocity will be that of a single particle: therefore, a large number of acquisitions are required so to reconstruct in a statistical way the mean and variance of the bulk velocity.

u 1 u 2 v 0 v x � � d d x 0 Figure 2.

Schematics of an LDV measuring system

The velocity retrieved in this way has three main contributions:

u = U 0 + u ′ + u t (2.21)
which are respectively the time-averaged, the phase-averaged coherent and the turbulent velocity vectors. The phase-averaged component is the time dependent velocity at the frequency of the acoustic source and therefore will be described as u ′ = a ′ sin (2πf s t + ϕ) , (2.22) where f s is the acoustic source frequency. The turbulent component u t accounts for the remaining time dependent component inside the velocity signal.

In order to retrieve the periodic component of the velocity, measurements could be carried out through a phase locked approach, where dierent measurements at dierent positions along the fed signal cycle are needed. This implies that these data need to be folded inside the same cycle, introducing a truncation error. In our case, as the signal frequency is known and constant, we decided to directly investigate the presence of such a sinusoidal signal (whose amplitude and phase have to be retrieved) inside the whole temporal acquired data.

The rst step consists in checking that the signal frequency remains constant all over the acquisition window. In fact, if the time window width becomes large (mainly according to the seeding particle density at measurement point), this frequency could suer a drift. Therefore, the fed sinusoidal signal is also reacquired and these acquisition points are folded into one cycle: if the drift exists, it will induce an uncertainty interval around the pure sine. Then, a frequency correction which minimizes such spread is introduced and a corrected frequency is obtained. In Figure 2.4-a, the velocities have been folded over one period as a function of the phase, in order to enhance readibility. It can be noticed that the coherent velocity component is rather smaller than the turbulent one, suggesting that, in order to reduce the error in the coherent component, a large number of particle velocities is needed. This can also be appreciated from Figure 2.3, where the amplitude and phase of the coherent velocity have been traced as a function of the number of measured particles through the volume of measurement. The subscript N represents the velocity measured for a given number N of particles while the subscript s indicates the nal `steady' value. We can see a convergence towards the steady value as the number of retrieved particles increases. At this point, we could retrieve the uctuating velocity component at this corrected frequency with dierent methods. However, as it can be inferred from Figure 2.5, the mains task is to retrieve the phase-averaged component from a non-uniformly sampled signal. This means that, in order to use any method based on Fourier transformed signals (FFT, Welch), some kind of interpolation has to be introduced to have a uniform sampling and corrections have to be adopted in order to deal with the related bias introduced. Another approach is to keep the non-uniform sampling and adopt methods based on the minimisation of a cost function. From literature [START_REF] Rife | Single-Tone Parameter Estimation from[END_REF][START_REF] Valière | Acoustic Particle Velocity Measurements Using Lasers: Principles, Signal Processing and Applications[END_REF], it can be shown that a least-square based Maximum Likehood (ML) method will asymptotically reach the theoretical lowest bound (i.e. the Cramer-Rao bound) in independent Gaussian white noise conditions. This means that in such conditions it will asymptotically achieve the minimum estimation error. Then, as the assumption of gaussian distribution of the turbulent velocity components is usually well put and therefore makes the method viable. Finally, the algorithm has been tested on a synthetic sinusoidal signal at sampling conditions close to measurements giving satisfactory results.

The ML model tries to minimize the squared dierence between the measured signal and a pure syntethic sinusoidal signal, whose frequency is known and equivalent to our source signal.

This means that, if the velocities available data are x[n] at discrete times t n , for n ∈ [0, N -1],

the aim is to t these data with the following model

x[n] = α 0 sin(2πF 0 t n + ϕ 0 ) + C ≡ As n + Bc n + C, (2.23) 
with F 0 and t n known, α 0 , ϕ 0 and C unknown. We also note A = α 0 cos(ϕ 0 ), B = α 0 sin(ϕ 0 ), Then, from the available data x[n] and from the model x[n], we dene the cost function

ϕ n = 2πF 0 t n , s n = sin(ϕ n ) and c n = cos(ϕ n ). Furthermore, we suppose that x[n] = As n + Bc n + C + b[n], (2.24 
J = E[(x[n] -x[n]) 2 ] = E[(x[n] -As n -Bc n -C) 2 ] = 1 N N -1 n=0 (x[n] -As n -Bc n -C) 2 (2.25)
where E[•] represents the expectance operator which, under the classical assumption of ergodicity, may be replaced by the summation 1 N N -1 n=0 as above.

Then, dierentiating J according to the unknown vector θ = {A, B, C} leads to

           ∂J ∂A = 0 = AE[s 2 n ] -E[s n x[n]] + BE[c n s n ] + CE[s n ] ∂J ∂B = 0 = BE[c 2 n ] -E[c n x[n]] + AE[c n s n ] + CE[c n ] ∂J ∂C = 0 = C -E[x[n]] + AE[s n ] + BE[s n ] (2.26) or, equivalently,       E[s 2 n ] E[c n s n ] E[s n ] E[c n s n ] E[c 2 n ] E[c n ] E[s n ] E[c n ] 1       •       A B C       =       E[s n x[n]] E[c n x[n]] E[x[n]]       (2.27)
And then, nally

      A B C       =       E[s 2 n ] E[c n s n ] E[s n ] E[c n s n ] E[c 2 n ] E[c n ] E[s n ] E[c n ] 1       -1 •       E[s n x[n]] E[c n x[n]] E[x[n]]       (2.28)
where, under our hypothesis, the terms of the matrix can be written as

1 N N -1 n=0 s 2 n , 1 N N -1 n=0 s n c n , ... (2.29)
It could be interesting to estimate the Cramer-Rao bound, i.e. the minimum variance of any unbiased estimator of the unknowns, we have to estimate the Fisher matrix.

Assuming that x[n] are gaussian distributions, we can dene the N-dimensional conditional probability density function as

p(x n , θ) = 1 (2πσ 2 b ) N exp (x[n] -(As n + Bc n + C)) (2.30)
and then retrieve the Fisher matrix as 

I(θ) =         -E ∂ 2 log(p(x;θ) ∂A 2 -E ∂ 2 log(p(x;θ) ∂A∂B -E ∂ 2 log(p(x;θ) ∂A∂C -E ∂ 2 log(p(x;θ) ∂B∂A -E ∂ 2 log(p(x;θ) ∂B 2 -E ∂ 2 log(p(x;θ) ∂B∂C -E ∂ 2 log(p(x;θ) ∂C∂A -E ∂ 2 log(p(x;θ) ∂C∂B -E ∂ 2 log(p(x;θ) ∂C 2         = =       1 σ 2 b N -1 n=0 s 2 n 1 σ 2 b N -1 n=0 s n c n 1 σ 2 b N -1 n=0 s n 1 σ 2 b N -1 n=0 s n c n 1 σ 2 b N -1 n=0 c 2 n 1 σ 2 b N -1 n=0 c n 1 σ 2 b N -1 n=0 s n 1 σ 2 b N -1 n=0 c n N σ 2 b       (2.
(x) = 1-2 cos(x) 2 , cos 2 (x) = 1+2 cos(x)
2 , the inverse of the Fisher matrix assumes the form

I -1 (θ) ≈       2N σ 2 b 0 0 0 2N σ 2 b 0 0 0 N σ 2 b       (2.32)
which translates that the θ variance limits will be

V ar(A) ⩾ 2σ 2 b N , V ar(B) ⩾ 2σ 2 b N , V ar(C) ⩾ σ 2 b N (2.33)

Conclusions

In this section, the test rig was presented, together with the experimental techniques adopted.

A waveguide was conceived in order to conduct acoustic measurements in the linear regime up to 4300 Hz. Furthermore, the duct ends were equipped with anecoich terminations, in order to reduce end reections and therefore eliminate any feedback loop behaviours and allow high precision measurements. Also, the test section was made with a glass lateral wall, in order to allow optical and acoustic measurements to be carried out at the same boundary conditions.

Regarding the measurement techniques, mainly Transmission-Reection acoustic measurement and Laser Doppler Measurements were performed. The former are obtain by the means of two groups (of 4 microphones each) put before and after the test section. By knowing the relative positions of these microphone, their measurements can be used to determine the scattering matrix of the acoustic waves incoming and outgoing from the test section. To do this, two states of the system are needed, which were obtained by switching the acoustic source in an upstream and downstream position.

The optical measurement were taken out by means of a laser technique: scattering particles going through the fringe patterns created by these laser beams will generate a Doppler shift which, when measured, will indicate their total velocity. As shown in the previous section, from this measured velocity, the coherent velocity was isolated with a least square approach with an error inversely proportional to the number of scattered velocity samples.

Chapter Three

Linear investigation of sound-ow interaction along a corrugated plate

Introduction

Corrugations are a technological solution used to meet the needs for strength and exibility of pipes in industrial applications (e.g. gas extraction). However, intense whistling can occur in these pipes, which can lead to fatigue-related failures and noise disturbances [START_REF] Crawford | Singing Corrugated Pipes[END_REF][START_REF] Rockwell | Review -Self-Sustaining Oscillations of Flow Past Cavities[END_REF]. The rst investigations on corrugated tubes focused on the whistling behaviour in order to identify the main parameters underneath. The driving mechanism inducing whistling is a feedback-loop between two systems, a uid-dynamic and an acoustic one. The free shear layer past a cavity is unstable: an instability could create a feedback loop when it encounters the trailing edge of the cavity. In this case, it will self sustain and behave as a sound amplier. When the natural frequency of this amplier is close to one of the acoustic resonance frequencies of the corrugated tube, then an energy transfer is possible and a feedback loop is created (see for example [START_REF] Nakamura | Sound generation in corrugated tubes[END_REF][START_REF] Kopiev | Flow noise in a corrugated pipe in terms of the theory of instability waves[END_REF][START_REF]Admittance of a groove on a rigid surface under a grazing ow[END_REF] and Figure 3.1 for a schematic image where f v is a general feedback frequency). Specically, the acoustic system act as a lter, as the standing wave resonance frequencies are discrete, amplication can be obtained around these discrete points. It is possible to identify a linear and a nonlinear amplication regime.

The latter is characterised by large and discrete vortex structures that can produce whistling and the acoustic power grows linearly with the amplitude of the hydrodynamic perturbations.

In the linear regime, on the other hand, vorticity is at a smaller scale, while the acoustic power grows quadratically with hydrodynamic perturbations amplitudes. Recent literature has focused mainly on whistling and the nonlinear regime, in order to characterise this striking eect, both from an experimental and numerical point of view. In [START_REF] Nakibo | On the whistling of corrugated pipes: eect of pipe length and ow prole[END_REF], the amplication characteristic Strouhal numbers were identied, as well as the saturation mechanism of the perturbation velocity which separates linear and nonlinear behaviours. Several other works [START_REF] Salt | Aeroacoustic sources generated by owsound interaction in a T-junction[END_REF][START_REF] Tonon | Whistling of a pipe system with multiple side branches: Comparison with corrugated pipes[END_REF][START_REF] Shaaban | Fully developed building unit cavity source for long multiple shallow cavity congurations[END_REF] investigated the details of corrugated walls and side cavity branches in their similarities and dierences. In all these works, a detailed analysis of the literature focused on the nonlinear regime can be found. In the case of moderate to high amplitude perturbations the shear layer vorticity concentrates into discrete vortices shed at the upstream edge of the cavity. To model this behaviour a Discrete Vortex (DV) model has been developed [START_REF] Howe | Contributions to the theory of aerodynamic sound, with application to excess jet noise and the theory of the ute[END_REF][START_REF] Bruggeman | Self-sustained aero-acoustic pulsations in gas transport systems: Experimental study of the inuence of closed side branches[END_REF][START_REF] Nelson | Fluid dynamics of a ow excited resonance, Part II: Flow acoustic interaction[END_REF]. One of the rst application is shown in [START_REF] Bruggeman | Flow induced pulsations in gas transport systems: analysis of the inuence of closed side branches[END_REF], where a single vortex is shed everytime the acoustic velocity changes its direction inward/outward the cavity. This vortex then moves at constant velocity along the cavity width. In this model, the vortex convective speed is an empirical parameter of the problem and therefore also the Strouhal number. In a dierent approach [START_REF] Elliott | Corrugated Pipe Flow[END_REF], vorticity can be thought as distributed along an innitely small shear layer in a Continuous Vortex (CV) model: the distributed vorticity eliminates the vortex singularity at the upstream edge of the cavity. In [START_REF] Bruggeman | Flow induced pulsations in pipe systems[END_REF], this model improves the estimations of the acoustic power when compared with the results from [START_REF] Nelson | Fluid dynamics of a ow excited resonance, Part II: Flow acoustic interaction[END_REF]. However, also in this case, the lenght of the vorticity strip is inherently an empirical parameter to be tted.

Regarding the linear regime, on the other hands, literature lacks both experimental and theoretical results. Experimental data of the linear aeroacoustic eld in the linear regime are scarce (e.g. [START_REF] Golliard | Experimental study of plane wave propagation in a corrugated pipe: Linear regime of acoustic-ow interaction[END_REF]) and they give mainly a global analysis of the aeroacoustic interaction.

Theoretical works based on the stability theory from [START_REF] Michalke | On spatially growing disturbances in an inviscid shear layer[END_REF] tried to assess the shear layer perturbation due to the acoustic forcing but failed in explaining fundamental eects. Others, like in [START_REF] Howe | Interaction of sound with solid structures[END_REF], used an innitely small shear layer whose vertical displacement represents the driving mechanism for the cavity oscillations due to the Kelvin-Helmholtz instability. In all cases, the dierence w.r.t. experimental data remains large. Therefore, the main target of the present study is to retrieve, by means of Laser Doppler Velocimetry (LDV), the aeroacoustic eld inside a single cavity of a corrugated plate operating in a linear regime and check whether the aforementioned models remain applicable.

U � W f v
For this reason, a conguration with small cavities and small amplitude perturbations have been chosen in a non-whistling case. In sections 3.2.1 and 3.2.2, the experimental rig and the investigated corrugated plates are introduced. The acoustic and optical results, as well as the retrieved acoustic power, are presented in section 3.3.

All LDV and acoustic measurements can be found at [START_REF] Massimo | Dataset for H2020 Smartanswer Corrugations Experiment[END_REF]. 

Test Rig

The test rig is a uniform rectangular duct whose section is B = 50 mm × H = 40 mm and has been described in details in Section 2.2. Here, it has been quickly described and shown in Fig. 3.2. In this duct, the ow velocity is measured by a Pitot tube (diameter 2.1 mm) in the center of the rectangular duct and by Laser Doppler Velocimetry (LDV).

Corrugated Walls

The studied corrugated plate is shown in the horizontal acoustic velocity (averaged over the reference box) was taken as a reference for the amplitude of the incident acoustic wave and, more importantly, as a phase reference that does not depend on the acoustic path between the source and the measurement position.

Therefore, all phase values presented in the following are taken relative to this reference.

Mean Flow in the Setup

In this section, we look at the mean quantities associated to the ow. Figure 3.5-a,b and gure 3.5-d,e display the mean horizontal and vertical velocity contours when the upstream source position is working at 1400 Hz and 2000 Hz. We can see that the velocity eld is well resolved and there is no major dierence between the two measurements in the mean velocity distribution. This is further conrmed in gure 3.5-c, where the horizontal velocity is shown along the vertical lines indicated in plain and lled symbols, which correspond to the lines for x = 0, W/3, 2W/3, W . We can see that the curves are similar for the two frequencies and that, outside the cavity, the velocity prole of the shear layer doesn't change with the longitudinal position. Equally important is to notice from the streamlines in gures 3.5-d, that this shear layer is layed out above a recirculation zone, regardless of the frequency case.

In gure 3.6-c, the velocity proles along the vertical lines at x = 0, W/3, 2W/3 for the In this case, the velocity proles are shown in the so called wall coordinates y + = yν/U τ and u + = U 0 /U τ , where ν is the dynamic viscosity of the air and U τ is the friction velocity dened through the shear stress τ = µdU 0 /dy| w at the wall as U τ = √ τ /ρ. This velocity was obtained from the slope of the velocity inside the logarithmic layer [START_REF] Karman | Mechanical similitude and turbulence[END_REF][START_REF] Schlichting | Boundary-Layer Theory[END_REF] and its value is found to be 1.01ms -1 . Two layers are then identied: the above mentioned logarithmic layer, closer to the wall, and an external core layer, where the viscosity due to the turbulence ν t is supposed to be constant. In the rst, a velocity prole of the kind

u + = 1 K ln 1 K + y + + 5.5 (3.1)
is obtained, while for the core layer, a parabolic prole is retrieved

U ∞ -U 0 U τ = HU τ 2ν t 1 - y H
where H is the channel half-height and K is the von Karman constant, K = 0.41. These two layers match around y + = 120 (i.e. y ≈ 2 mm) while a viscosity ν t = 8.02 • 10 -4 m 2 s -1 is retrieved. In gure 3.6-b, a cavity close-up of the horizontal mean velocity U 0 along the same three lines is shown. The boundary layer outside the cavity seems to remain unchanged along the cavity length (for y > 0.2 mm), while this is not true for the shear layer inside the cavity itself. Inside the cavity, the velocity changes until it reaches an almost steady value. Then, we can dene the thickness of the shear layer as the distance between these two points. For the x = 0 position, this is roughly 0.6 mm, while for the x = 2W/3 mm this grows up to 1 mm.

Acoustic velocity Modeling

As shown later in section 3.4, in the present conguration, the acoustic power can be described by the Howe analogy, which basically accounts for the interaction between a Coriolis force (i.e. the -ρ 0 (ω × u) term, where u and ω are the total velocity and vorticity vectors, respectively, and ρ 0 the density of the uid. As from the measurements it is not feasible to extract only the acoustic potential velocity component, it is necessary to obtain it through modelling. There are several ways of solving the compressible ow eld, but a rather simple way was to use the commercial code COMSOL. To retrieve the acoustic velocity in quiescent conditions (as the Mach number considered is very small), the ACPR Module was used, which solves the acoustic pressure propagation in the frequency domain.

In gure 3.7 we can observe the potential oweld obtained for a single cavity: the net ow entering in the cavity is zero and the minimum and maximum velocity values appear at the leading and trailing edge, respectively. Since this is a potential ow, the velocity u s in all points of the domain is dened w.r.t. a reference (i.e. a boundary condition) value.

Therefore, we need to scale the simulated velocity to the actual velocity eld at a reference "free stream" position (i.e. the "reference box" indicated in gure 3.7). At this position, the The velocity is shown along three vertical lines corresponding to the x = 0, 1/3W, 2/3W horizontal positions, to which the ◁, ▷, △ symbols corresponds. In (b) a zoomed gure of the same velocities inside the cavity is shown, while in (c) the analytical curves are plotted together with the experimental ones in wall coordinates. 

Results

Acoustic measurements

The corrugated plate is rst characterised by acoustic measurements. Using the 2 × 4 microphones placed on each side of the plate, the transmission and reection coecients are measured with and without ow. The magnitudes of the transmission coecients (along/against the ow, T + and T -respectively) are given in gure 3.8.

In the no-ow case, due to reciprocity, T + and T -are quite identical and the dierences between both curves are only due to measurement errors (limited to 0.5%).The deviation to 1 of these curves indicates that visco-thermal losses are present along the walls of the duct corrugated on one of its faces. 

|T -|.
When the ow is present, several observations can be made. First, the |T + | and |T -| curves are no longer the same, meaning that reciprocity is lost. Secondly, it can be noted that the transmission curves oscillate around the no-ow value. At low frequencies (f < 1800

Hz), the attenuation with ow is greater than in the no-ow case. Then, over a specic frequency range (1880 Hz < f < 3100 Hz for T + and 1820 Hz < f < 2400 Hz for T -), the ow reduces the attenuation. This kind of behavior has already been observed in cylindrical corrugated pipes [START_REF] Golliard | Experimental study of plane wave propagation in a corrugated pipe: Linear regime of acoustic-ow interaction[END_REF] as well as in the eect of ow on a rectangular slot in a wall [START_REF] Kooijman | Acoustical response of orices under grazing ow: Eect of boundary layer prole and edge geometry[END_REF]. The last point to note is that the transmission coecients always remain below unity. This means that the acoustic losses due to visco-thermal eects are not compensated by hydrodynamic eects. As a result, and contrary to what would happen with a cylindrical corrugated pipe with similar cavities [START_REF] Golliard | Experimental study of plane wave propagation in a corrugated pipe: Linear regime of acoustic-ow interaction[END_REF], this plate cannot start a whistling process at this ow velocity. This is mainly due to the fact that, unlike a cylindrical pipe where the entire inner surface is corrugated, only the lower quarter of the channel is corrugated here. The Strouhal number at the frequency (f = 2200 Hz) for which the hydrodynamic amplication is maximum for Figure 3.9 Normalized experimental sound power generated by the grazing ow (M = 0.07). The solid line corresponds to the ow with incident sound in the same direction and the dashed lines to the case where waves travel against the ow. The red dashed arrows point out the frequencies at which the LDV measurements were carried out.

T + is given by

St = f W U m = 0.37,
where W = 4 mm is the cavity width in the ow direction and U m = 24 m.s -1 is the mean velocity of the ow. Since this value is close to that found in cylindrical pipes (St ≃ 0.4, [START_REF] Nakibo | On the whistling of corrugated pipes: eect of pipe length and ow prole[END_REF][START_REF] Golliard | Experimental study of plane wave propagation in a corrugated pipe: Linear regime of acoustic-ow interaction[END_REF]), it can be assumed that the same underlying physical phenomenon occurs in the two-dimensional (2D) case and in the cylindrical case.

From the scattering matrix measurement, it is also possible to estimate the sound power produced (or absorbed) at each frequency by the grazing ow. The ratio of the produced sound power to the incident sound power is given by [START_REF] Morfey | Acoustic energy in non-uniform ows[END_REF]:

P ± = |T ± | 2 + (1 ∓ M ) 2 (1 ± M ) 2 |R ± | 2 -1. (3.
3)

The dierence between the P ± evaluated with and without ow gives the sound power produced by the ow and normalized by the incident sound power. This is shown in Figure 3.9.

LDV Results

In this section, the interactions between acoustics and hydrodynamics are investigated using LDV. First, it is possible to see in gure The periodic eld is characterized by very clear structures that move horizontally at the cavity lid. Figure 3.10(b,c) gives the amplitude and the phase of the periodic vertical velocity, respectively, along the cavity which is represented for six horizontal lines corresponding to the axis y = 0, 0.1 ... 0.5 mm (y = 0 mm is the surface of the plate). The slope of the phase indicates the convection velocity of the structures. In this particular case, the variation of the phase is nearly linear, indicating a constant convection velocity given by the slope of the straight line. Surprisingly, the maximum amplitude of v ′ is rather constant over the length of the cavity as can be seen in gure 3.10(b). In general, an exponential increase of the disturbance is expected, whereas here there is only a slight increase over the length of the cavity. In gure 3.11, the horizontal coherent velocity is shown. Here, the coherent structures are more elongated in the horizontal direction and their amplitude decreases when arriving close the trailing edge of the cavity due to the presence of the wall.

The coherent vorticity ω ′ = ∂ y u ′ -∂ x v ′ , nondimensionalised by the reference vorticity

ω ref = |u ref |/W , is depicted in Figure 3.
12. This vorticity is computed using the central dierence for inner data points and using one-sided dierences for the edges of the domain.

The periodic vorticity is tightly packed at the leading edge of the cavity (w.r.t. the trailing edge) and the phase has the same linear variation as the vertical velocity. Then, in this linear regime, the measured structures are associated with a vortical hydrodynamic perturbation at the leading edge of the cavity. However, periodic vorticity cannot be considered to be concentrated on an innitely thin line nor at a point. Thus, none of the simplest models, i.e. shear layer oscillations that increase exponentially with distance from the upstream edge [START_REF] Elder | The mechanism of sound production in organ pipes and cavity resonators[END_REF][START_REF] Howe | Acoustics of uid-structure interactions[END_REF] or shear layer oscillations that break down into discrete vortices [START_REF] Nelson | Fluid dynamics of a ow excited resonance, Part II: Flow acoustic interaction[END_REF], can be applied here. This is due to the nite thickness of the mean shear layer with respect to the size of the cavity [START_REF] Bruggeman | Flow induced pulsations in gas transport systems: analysis of the inuence of closed side branches[END_REF].

Furthermore, from gure 3.13, we can see that the vorticity structure is composed of counter-rotating vorticity zones tightly packed. At the leading edge, the vorticity is governed by the term -∂u ′ /∂y, while, at the trailing edge, it is the term ∂v ′ /∂x which prevails. This could be expected, as at the leading edge the sudden expansion along y is the dominating eect, while at the trailing edge the hard wall imposes a strong x gradient. At the beginning of the cavity, we can observe counter rotating vorticity zones (almost) stacked on top of each other. This is due to the u ′ prole shape which is not monotonic: instead, a crest shape can be observed, whose maximum is around y = 0 (as shown in gure 3.13-inset). This is due to the interaction between the potential acoustic velocity (which would be innite at the sharp edge) and the hydrodynamic velocity through the Kutta condition. Therefore, when u ′ is positive, this translates in a positive vorticity area on top of a negative one. Near the trailing edge, instead, the vorticity distribution ω ′ is similar to the v ′ distribution (as here the term ∂v ′ /∂x dominates), where wider opposite sign zones follow each other.

To test the linearity hypothesis, the corrugated plate was exposed to two dierent sound levels, while keeping all other parameters constant. By decreasing the voltage supplied to the source, the horizontal sound velocity in the reference box u 

.1 LDV measurement congurations

In the following subsections, dierent setup congurations have been studied as shown in the table 3.1. These congurations have been chosen in order to investigate the eects of the position of the sound source (w.r.t. the direction of the mean ow) and its frequency. Also, a separate subsection is devoted to the discussion of the convective velocity of aeroacoustic structures.

Frequency eects

In this section, we analyze the corrugated plate for two dierent values of the source frequency: 1400 and 2000 Hz. These two congurations are detailed in Table 3. 

λ i = U c f s (3.4)
where f s is the source frequency and U c is the velocity at which such structures are convected downstream, i.e. the convective velocity. For the 1400 Hz case (3.15-a), this length is λ 1 /2 ≈ 2.7 mm while for the 2000 Hz case (3.15-b) the length is λ 2 /2 ≈ 2.2 mm. On the other hand, the ratio between the lengths λ 1 and λ 2 is not exactly equal to the inverse of the frequency ratio, as one might expect: while the ratio of lengths is ≈ 1.23, the inverse ratio of frequency is ≈ 1.43 suggesting that the velocity of propagation of disturbances is a function of frequency. This is shown in gure 3. [START_REF] Chen | Acoustic cloaking in three dimensions using acoustic metamaterials[END_REF], where the vertical coherent velocity phases have been traced along the cavity. As this slope is directly linked to the convective velocity through the acoustic frequency as

U c = 2πf s W |∆ϕ/W | (3.5) 
where now |∆ϕ/W | is the phase slope, we can see that the convective velocity grows with the signal frequency at most 16%. This result challenges the common assumption, when modeling the shear layer amplication in the linear regime, that this velocity is constant.

Acoustic Source Position Eect

In this paragraph, we are interested in analysing the eect of the of the relative direction of propagation between the acoustic wave and the ow. The main discrepancy introduced by the dierent propagation direction of the acoustic wave is a phase dierence. As the measure- This can be directly seen from the periodic velocity colormaps, as done in the precedent paragraph and shown here in Figure 3.17, which show the vertical periodic velocity for the two cases. It can be seen that the same eld structures are retrieved and in the downstream case the cores of these structures are slightly closer to each other (again, from eq. 3.4, we can measure λ d = 2 mm for the downstream case while λ u = 2.2 mm for the upstream one). The same results, not shown here, have been obtained at the forcing frequency of f ref = 1400

Hz.

Leading Edge Shape Eect

The leading edge of the cavity can also have an inuence on the velocity eld inside the cavity. As shown by [START_REF] Nakibo | On the whistling of corrugated pipes: eect of pipe length and ow prole[END_REF], this eect can be globally accounted for through some corrective added length, in the calculation of the Strouhal number corresponding to the peaks and valleys of acoustic power curve. In Figure 3.18, the vertical velocity eld is shown for two types of leading edges, a rounded edge and the sharp one, for a source frequency of 2000 Hz.

It is possible to appreciate that, at the same phase reference, the velocity eld is sligthly earlier for the rounded edge case. This result is similar, but accentuated, to what has been found by shifting the acoustic source from an upstream position to a downstream one. For this reason, this justies the acoustic power curve characteristic frequencies towards lower values. 

Acoustic Power

Considering an homoentropic ow (with the additional constraint of a low Mach number),

Howe [START_REF] Howe | Mechanism of sound generation by low Mach number ow over a wall cavity[END_REF] computed the acoustic power formulation as follows:

⟨P H ⟩ = - V ρ 0 ⟨(ω × u) • u a ⟩dV = V ⟨(F x u a + F y v a )⟩dV, (3.6) 
where ω = (Ω 0 + ω ′ ) .z, u = (U 0 + u ′ ) .x + (V 0 + v ′ ) .y and u a = u a .x + v a .y are respectively the total vorticity, the total velocity and the acoustic (i.e. potential) velocity of the ow, while F = F x .x + F y .y = -ρ 0 (ω × u) is the Coriolis force vector. The symbol ⟨ ⟩ represents the average over one time period. In the case of complex functions, such average can be directly computed as (e.g. for the rst term inside the integral of eq. 3.6) :

⟨F i u a ⟩ = 1 2 Re Fi u a (3.7) 
for i = x, y and Fi is the complex conjugate of vector F i .

It is interesting to notice that the vector product F = (F x , F y ) = -ρ 0 (ω × u) is composed of an horizontal and a vertical Coriolis force term (by unit volume). As explained in section 3.2.4, since the acoustic velocity in Eq. 3.6 cannot be measured directly, a COMSOL frequency domain simulation was carried out to solve the Helmholtz equation. Furthermore, the acoustic power is nondimensionalised w.r.t. a reference power calculated as follows:

P a = |u ref | 2 ρ 0 c 0 2 (3.8)
since, in a centerline position, the relationship p inf /u ref = ρ 0 c 0 is a fair assumption and the periodic horizontal velocity equals the acoustic velocity, i.e. u ref ≈ u a .

It should also be noted that from the vector F = -ρ 0 ((Ω 0 + ω ′ ) × (U 0 + u ′ )), when the time average inside eq. 3.6 is carried out, the inner product of the mean values do not contribute, while, at order one, the inner product of the coherent terms can be neglected. Then, each component of the vector F can be written as

F x = ρ 0 (ω ′ V 0 + Ω 0 v ′ ) (3.9) F y = -ρ 0 (ω ′ U 0 + Ω 0 u ′ ) (3.10)
Therefore, each component of the Coriolis force can be split into two contributions and the total acoustic power will result from their inner product with the acoustic velocity. In other words, the more the Coriolis vector is aligned along the acoustic velocity streamlines, the larger the acoustic production will be. We can then dene, in a denitely improper but practical way, an 'horizontal' and 'vertical' acoustic power as the contributions due to the corresponding horizontal and vertical Coriolis forces. In gure 3.19, these components are shown, time-averaged, for the 2000 Hz upstream source case, together with the total acoustic power distribution. It is interesting to notice that the two contributions inside each component of the Coriolis force are of the same order of magnitude, while, on the other hand, they are not at all similarly distributed. In the following sections we consider the spatial distributions of the four contributions for the f = 2000 Hz upstream source case.

This frequency corresponds to a net positive normalized sound-power generation.

Acoustic Power

ρ 0 (ω ′ V 0 )u a contribution
The acoustic power generated by the Coriolis component ρ 0 (ω ′ V 0 ) is ρ 0 (ω ′ V 0 )u a and is shown, averaged over one period, in gure 3.19-b. As we can see, this power contribution is very small at all points in the oweld. By looking at the mean vertical velocity V 0 (see gure 3.5), we can see that this velocity is small (when compared with U 0 ) and conned inside the cavity, while almost zero elsewhere. At the same time, the coherent vorticity ω ′ is concentrated inside the shear layer, which is thin along the cavity lid (see gure 3.12). Only near the trailing edge, the vorticity slightly spreads inside the cavity as the shear layer becomes thicker. Then, these terms cannot interact with each other: the Coriolis component ρ 0 (ω ′ V 0 ) and, as a consequence, the corresponding acoustic power ρ 0 (ω ′ V 0 )u a , will be very small. These observations would probably still hold when the frequency changes.

Acoustic Power

ρ 0 (Ω 0 v ′ )u a contribution
The term ρ 0 (Ω 0 v ′ )u a is the one which gives the global structure to the total horizontal power, as can be observed from Figure 3.19-a,c (time averaged) and Figure 3.20 for ϕ = π/3. In this case, we can identify two dinstinct absorption and production areas which are isolated from each other. The mean vorticity Ω 0 is shed clockwise (i.e. negative) at the leading edge discontinuity. Furthermore, from gure 3.10, we can see that the velocity v ′ has a very small phase gap with the vertical acoustic velocity v a and therefore the two components have the same sign. Therefore, when the vertical acoustic velocity v a is negative at the leading edge, the Coriolis term ρ 0 (Ω 0 v ′ ) is here positive. At the same time, the horizontal acoustic velocity . u a here is positive and so is the contribution ρ 0 (Ω 0 v ′ )u a . Meanwhile, at the trailing edge, the vertical velocity v ′ is now positive (see gure 3.10) while Ω 0 is still negative and the Coriolis term ρ 0 (Ω 0 v ′ ) is therefore negative. As the horizontal acoustic velocity u a is here still positive, an acoustic absorption will be observed. From gure 3.20, we notice that the main change with frequency is the absorption position at the trailing edge. This is due to the fact that the length λ i is inuenced by the frequency while the phase gap between the acoustic and coherent velocities is not. Furthermore, the fact that the magnitudes of the velocities v ′ (see gure 3.11-b) and u a don't change along the cavity and that the Ω 0 integral along the y-axis is supposed to stay constant while moving from the leading onto the trailing edge, suggests why the contribution ρ 0 (Ω 0 v ′ )u a does not show a dependency on frequency (see gure 3.23).
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In gure 3.20, the comparison of the ρ 0 (Ω 0 v ′ )u a contribution for the 2000 and 1400 Hz case is shown, at ϕ = π/3.

Acoustic Power

-ρ 0 (Ω 0 u ′ )v a contribution
In order to describe the -ρ 0 (Ω 0 u ′ )v a contribution, the same considerations that were made above for the Ω 0 term apply also here. At the leading edge, it can be seen from Figure 3.11 that the horizontal coherent velocity u ′ is positive when the acoustic velocity v a is negative. Then, in this position, the Coriolis force is positive when it interacts with a . negative (downward) acoustic velocity, and viceversa. Thus, a negative acoustic contribution -ρ 0 (Ω 0 u ′ )v a is induced. Also, we can see from Figure 3.11, that the velocity u ′ is always very small close to the trailing edge of the cavity, due to the presence of the cavity hard wall. This explains why, in Figures 3.21, the acoustic power at the trailing edge is very small. From this follows also why this contribution is negative over the period and for all frequencies (see gure 3.23).

In gure 3.21, the comparison of the -ρ 0 (Ω 0 u ′ )v a contribution for the 2000 and 1400 Hz case is shown, for ϕ = π/3.

Acoustic Power

-ρ 0 (ω ′ U 0 )v a contribution
If we look at the acoustic power contributions from the vertical Coriolis force F y (see gure 3.19-e,f ), the term -ρ 0 (ω ′ U 0 )v a , which is the largest contribution, appears to be the one that gives the power distribution its complexity. Inside the Coriolis force -ρ 0 (ω ′ U 0 ), the mean horizontal velocity U 0 is positive at all points. Moreover, its magnitude does not change strongly along the cavity length and these variations are conned in a very thin shear layer at the cavity lid. The largest thickness of this layer is around 1 mm (see gures 3.5a-c).

Therefore, the Coriolis contributions inside the cavity are ltered out and their sign are opposite to the vorticity one. Then, at the leading edge, two counter rotating vorticity zones ω ′ structure will vary with frequency as the v ′ structure does. In order to have production at the trailing edge, vorticity here should have the same sign of the prevailing vorticity at the leading edge, as here the velocity v a has an opposite sign. This should happen optimally when the vorticity period is ≈ 2(W/U c )/3. For the 2000 Hz case, the period is slightly larger at ≈ W/U c . Thus, we are not at the point of maximal production, but two co-rotating vorticity areas at the edges of the cavity are however allowed. When the period becomes larger (e.g. for the 1400 Hz case), this is not possible anymore and the vorticity at the leading and trailing edges will have opposite sign, which translates in absorption at the trailing edge.

In gure 3.22, the comparison of the -ρ 0 (ω ′ U 0 )v a contribution for the 2000 and 1400 Hz case is shown, for ϕ = π/3. 

�� � v')u a � �� � u')v a � ��'V 0 )u a � ��'U 0 )v a � Figure 3.23 Normalised acoustic powers contributions (Ω 0 v ′ )u a and (ω ′ V 0 )u a
(lled upward and downward blue triangles, respectively) and contributions (Ω 0 u ′ )v a and (ω ′ U 0 )v a (lled red squares and diamonds, respectively) for the f = 1000, 1400, 1700, 2000 upstream source cases. Also, the total acoustic power is shown in lled black circles

Acoustic Power contributions: Summary

In summary, it has been shown that the acoustic power related to the horizontal Coriolis force is on the average close to zero: this is because the component ρ 0 (ω ′ V 0 )u a is negligible everywhere in the aeroacoustic eld while the integral of the ρ 0 (Ω 0 v ′ )u a contribution over the period is zero, even if local production and absorption areas are present at the cavity edges. Therefore, it is the vertical Coriolis force contribution who nally determine the behaviour of the corrugated wall. In this contribution, the -ρ 0 (Ω 0 u ′ )v a term is responsible for an absorption area at the leading edge which is always negative with frequency. Then, the frequency dependency of the absorption and production mechanisms derives from the -ρ 0 (ω ′ U 0 )v a term, which is also responsible for the complexity of the acoustic power distribution. In this case, the acoustic frequency inuences the hydrodynamic wavelength and the coupling with the cavity length: when the wavelength is close to the 2W/3 + nW value (with n integer), global acoustic production is possible.

The complexity resulting from the dierent contributions to acoustic production cannot be captured through the models usually employed when whistling is present. The simplications adopted in this case are not applicable here: vorticity cannot be considered concentrated in a single moving vortex (like in the SCV model) as it is distributed over the entire cavity.

Furthermore, it has a complex distribution perpendicular to the shear layer while spreading out along the cavity, a behaviour which is not taken into account in the SDV model. This

shows that the models usually adopted in presence of the whistling cease to be applicable in the linear regime.

Eect of Sound Propagation Direction

As explained before (see section 3.3.2), the main eect of changing the acoustic source position is the introduction of a phase dierence in the hydrodynamic structures. This inuences the acoustic production, as shown in Figure 3.24, where the total acoustic production for an acoustic source frequency of 2000 Hz is presented, for both a relative upstream and downstream source positions. Indeed, the phase dierence for the downstream case shifts upstream the production region at the trailing edge, which increases the overall interaction.

At the same time, the dierences at the leading edge appears negligible. This is highlighted in Figure 3.24-c,d, where the nondimensionalised vertical Coriolis force -ρ 0 (ω ′ U 0 ) is shown.

There, it appears that the main dierence in the Coriolis distribution is the upstream shift of the trailing peak, which will therefore have a larger contribution.

Leading Edge Shape Eect

The eect of changing the leading edge is dual: the hydrodynamic structures will be able to start forming earlier (as the detachment point will be moved upstream w.r.t. the sharp leading edge) and they will have to travel a larger length before encountering the trailing edge. The way these two eects can inuence the acoustic production can be understood 

Conclusions

The aeroacoustic eld around a corrugated wall in a grazing ow conguration has been studied. First, we investigated the behaviour of the corrugated plate over a wide frequency band by measuring the scattering matrix of the test sample. This allows to understand how the corrugations behaved globally and whether or not the Strouhal numbers corresponding to the characteristic frequencies were similar to the ones obtained in previous studies. Indeed, as expected from the literature, characteristical frequency ranges where transmission coecients were higher/lower (namely "gain/loss" zones) than the corresponding no-ow conguration have been identied. For all cases, however, the transmission coecients stay below unity as opposed to other studies. This is mainly because in the present setup the corrugated plate is covering only one side of the waveguide. Then, the acoustic source frequency and the ow Mach number have been set in order to investigate four points between the "gain" and the "loss" zones using the optical LDV technique. The main quantities which identify the uiddynamic as well as the acoustic elds have been fully resolved. In particular, coherent velocity structures are clearly visible and their propagation velocity appears to be weakly function of frequency. Also, the coherent vorticity, which is directly responsible for the acoustic power production/absorption is well resolved. However, it is not possible to isolate distinct zones of absolute acoustic power absorption or production as these are usually entangled in a complex form due to the acoustic forcing of the hydrodynamic velocity at the leading edge.

However, even in this complex scenario, it is possible to appreciate how a change in frequency (i.e. a dierent separation between the velocity structure) or in the source position (i.e. a relative space shift in the velocity structures) can explain the gain/loss mechanism. These results also indicate that either one of the 1D models (DV/CV models) is hardly going to give good predictions. First, source/sink contributions are not distinct between each other in the measurement volume. Furthermore, the entanglement at the leading edge cannot be considered in a 1D modeling, as well as the power contribution from the longitudinal Coriolis term. Also, the contribution to the vertical Coriolis term of the horizontal coherent velocity (i.e. (Ω 0 u ′ )) is somewhat non negligible and usually not considered. All these contributions are necessarily not taken into account in a 1D model, which suggests that such a model would not be a good predictor of the acoustic power. Further studies will therefore need to account for these discrepancies in order to improve the modeling accuracy. The open access to the dataset [START_REF] Massimo | Dataset for H2020 Smartanswer Corrugations Experiment[END_REF] will help speed up this process, which combined eorts should be able to solve.

Chapter Four Investigation about Helmholtz resonators and a Transparent Layer

Introduction

Metamaterials oer new opportunities to attenuate or redirect sound waves [START_REF] Ma | Acoustic metamaterials: From local resonances to broad horizons[END_REF][START_REF] Cummer | Controlling sound with acoustic metamaterials[END_REF]. New applications are already being considered, particularly in the eld of aeronautics [START_REF] Palma | Acoustic metamaterials in aeronautics[END_REF]. In this framework, metamaterials are subjected to ows that can change their eect [START_REF] Elnady | Quenching of acoustic bandgaps by ow noise[END_REF][START_REF] Aurégan | Low frequency sound attenuation in a ow duct using a thin slow sound material[END_REF]. In some applications, the metamaterials under consideration are porous, which raises the question of how acoustic waves can penetrate the material without the ow penetrating it. In the same way, acoustic cloaking with ow relies on the assumption that "the cloak's metamaterials are rigid and impervious to uid but are transparent to sound waves" [START_REF] Huang | Analysis of scattering from an acoustic cloak in a moving uid[END_REF]. As this last research eld is still mainly theoretical and numerical [START_REF] Iemma | Convective correction of metauid devices based on Taylor transformation[END_REF][START_REF] He | Extensions to the acoustic scattering analysis for cloaks in non-uniform mean ows[END_REF], practical realizations of such a magic layer are not often discussed. The idea of using a Kevlar sheet is sometimes suggested [START_REF] Ma | Design method for an acoustic cloak in ows by topology optimization[END_REF] since acoustically transparent walls made from tensioned Kevlar cloth are nowadays used in wind tunnels [START_REF] Devenport | The Kevlar-walled anechoic wind tunnel[END_REF]. However, the acoustic behavior of very large Kevlar walls (with respect to wavelength) is very dierent from that of smaller pieces. In fact, Kevlar cloth is a permeable membrane through which acoustics can pass in two ways. One is related to vibration, as through an impermeable wall, and the second to permeability, as through a rigid resistive wall. For the rst eect the important parameters are the mass per unit area and the tension of the lm, while for the second it is the acoustic resistance (pressure drop divided by the normal uid velocity). Of course, these two eects are always present [START_REF] Ingard | Notes on Acoustics[END_REF] but we can think that when the size of the panels is small compared to the wavelength, it is the resistive eect which predominates and that if vibrations are involved, it is in the form of resonances which are localized in frequency. That is the subject of this paper.

For this, we consider an array of Helmholtz resonators located in the wall of a waveguide.

The acoustic behavior of this metamaterial is rst analyzed without ow. Then, it is shown that the addition of a ow greatly disturbs the resonator's acoustic performance, as whistling is induced. Finally, the array is covered with a kevlar fabric. The cloth strongly aects the acoustic behavior of the metamaterial in absence of ow, while whistling is prevented in presence of ow.

Experimental investigation

The model metamaterial studied in this paper consists of ve identical Helmholtz resonators mounted in series [START_REF] Sugimoto | Dispersion characteristics of sound waves in a tunnel with an array of Helmholtz resonators[END_REF][START_REF] Cai | Noise control zone for a periodic ducted Helmholtz resonator system[END_REF]. The scattering matrix of this sample is measured with and without ow, and with and without a Kevlar cloth glued on the top of the resonators. been chosen so that a large transmission loss should occur within the target frequency range of liners designed for aircraft nacelles. The neck of the resonator is a slit whose dimension in the direction of ow is W = 5 mm. The slit extends over the entire width of the waveguide B, and its thickness is equal to t = 1.9 mm. These dimensions have been picked so that whistling phenomena would be expected in presence of ow for the range of ow velocities that are provided by the fan.

More than two meters of duct separate the fan from the test section. Thus, the ow can be considered as turbulent and fully developed when it reaches the Helmholtz resonators.

The ow velocity is evaluated at the center of the duct downstream of the test section by a

Pitot tube connected to a dierential pressure sensor. This measurement gives the maximum value of the ow velocity in the duct section. It is then multiplied by 0.8 so that the value of the average velocity and the Mach number M are obtained [START_REF] Schlichting | Boundary layer theory. 7th[END_REF]. The temperature inside the duct is measured by a type K thermocouple placed upstream of the test section.

The acoustic waves are generated by two compression chambers which can be placed either upstream, or downstream, of the test section. A sinusoidal sweep ranging from 200

Hz to 4000 Hz with a step of 5 Hz is used. As the frequencies studied are below the rst cut-o frequency of the waveguide, only plane waves can propagate.

The sound pressure in the duct is recorded by two sets of three ush-mounted microphones located upstream (u i ) and downstream (d i ) of the test section, where i = 1 indicates the microphone located the closest to the test section. The positions of the microphones are a whistling that is audible through the whole duct even in the absence of acoustic excitation.

x u 1 -x u 2 = x d 2 -x d 1 = 30 mm, x u 1 -x u 3 = x d 3 -x d 1 =
It should be noted that when whistling is present, the phenomenon becomes non-linear and the linear transmission as given in Fig. 4.2 becomes meaningless at the frequency of the whistling.

Consequently, even a weak ow as in the present case (the mean velocity in the duct is U = 25 m.s -1 corresponding to a Mach number M = 0.073) has a dramatic eect, since the metamaterial starts to produce sound. This whistling is quite usual when a ow grazes a Helmholtz resonator. Moreover, it appears in the classical range of the Strouhal number [START_REF] Dequand | Helmholtz-like resonator self-sustained oscillations, part 1: Acoustical measurements and analytical models[END_REF],

since here S r = f W/U = 0.24 where f is the frequency.

These results prove that something has to be done to prevent such sound-ow interactions and instabilities when metamaterials are exposed to a ow. 

Results with Kevlar

A lightweight Kevlar 49 fabric (weight = 61 g/m 2 , thickness = 0.12 mm) is now used to cover the resonators [START_REF] Kennedy | Trinity College[END_REF], see Fig. can be noted that, due to the lack of reciprocity, the transmissions in both directions are slightly dierent. Most noticeably, the eect of the ow is now much weaker than without the Kevlar cover. In particular, the whistling that appeared without Kevlar, has now completely disappeared.

Numerical approach

In order to better understand the phenomena involved in both Kevlar coating and ow, a numerical simulation is carried out. To this end, a multimodal method is used to calculate the linearized two-dimensional lossless problem with and without ow and to compare its results with experimental data. This method has already been described in detail elsewhere [START_REF] Dai | Acoustic of a perforated liner with grazing ow: Floquet-Bloch periodical approach versus impedance continuous approach[END_REF][START_REF] Dai | Flexural instability and sound amplication of a membranecavity conguration in shear ow[END_REF][START_REF] Dai | A cavity-by-cavity description of the aeroacoustic instability over a liner with a grazing ow[END_REF] and therefore only a few points are merely reported.

The linear propagation of small perturbations in a parallel sheared ow can be described by the linearized Euler equations (LEE). The multimodal method is used and the perturba-tions are therefore expressed as a linear combination of acoustic and hydrodynamic transverse modes. These modes and wave numbers are computed on uniform segments using a nite dierence method by discretizing the LEE in the transverse y-direction. The modes must be calculated in the neck of the resonator, knowing that there are: a shear ow above (for 0 < y < H), a pressure discontinuity due to an impedance Z at y = 0, and no ow in the cavity (for -t -C < y < 0 where C is the cavity depth). The modes must also be computed outside the neck in the rigid pipe with a shear ow (0 < y < H) and in the cavity (-t -C < y < -t). The scattering matrix of one cell is found by using axial velocity cancellation on the vertical walls and by matching the modes at each discontinuity. The Kevlar as a function of the frequency. The experimental results are indicated in the gure, all the other curves are obtained with the multimodal method. For the results with Kevlar, the dash-dotted line is produced when Z = 0.34 (purely resistive case) and the continuous line when inertia is added: Z = 0.34 + i 0.075(f /f R ) where f R = 1250 Hz.

The results without ow are presented in Fig. 4.5. Without Kevlar, the agreement between the measurements and the calculations is quite good, although there is a small deviation at high frequency which must be due to the lack of consideration of viscous losses in the model. The presence of Kevlar was rst modeled by a pure resistance and this gives the dash-dotted curve in the Fig. 4.5. In this case, the reduced impedance of Kevlar is purely real and equals to Z = 0.34 where Z = ∆p/ρ 0 c 0 v, ∆p is the dierence in sound pressure between the two faces of Kevlar, ρ 0 is the density of the air, c 0 is the speed of sound and v is the acoustic velocity through Kevlar. The main eect of Kevlar is therefore the addition of a resistance. Beside this, a slight shift in frequency of the attenuation peak is observed and a better tuning is obtained when an inertial part is added to the impedance as Z = 0.34 + i 0.075(f /f R ) where f R = 1250 Hz is the resonance frequency of the resonator.

However, our experimental device does not allow us to know if this added mass comes from a vibration of the Kevlar or from a contraction eect when the sound enters the Kevlar fabric openings.

The numerical results with ow are compared in Fig. 4.6 with the experimental results.

An amplication (|T | > 1) at a frequency very close to the whistling frequency is predicted by the model. This amplication is very sensitive to the shape of the prole which is here dened by a number n such that U = U m (1 -(1 -y/H) n )(n + 1)/n, where U m is the mean velocity. In the present calculation, this number is equal to n = 15 and the prole is given in the inset in Fig. 4.6. As n increases, the ow boundary layer becomes thinner and the calculation becomes more unstable. In the presence of Kevlar, the computation correctly predicts the measurements when the impedance is equal to Z = 0.42 + i 0.062(f /f R ). It can be noticed that with ow the resistance of Kevlar is slightly greater than without ow, and the added mass is smaller. The same observations have for instance already been made for perforated plates [START_REF] Guess | Calculation of perforated plate liner parameters from specied acoustic resistance and reactance[END_REF] or for a thin slow sound material [START_REF] Aurégan | Low frequency sound attenuation in a ow duct using a thin slow sound material[END_REF]. The boundary layer instability that occurs in the neck of the resonator in the absence of Kevlar is completely removed by the addition of the resistive layer that Kevlar constitues. In this sense, Kevlar allows much closer acoustic behavior with and without ow.

Conclusion

The metamaterials must be protected from ow, otherwise extremely unpleasant interactions between acoustics and ow can occur. For the metamaterial studied in this paper, this is materialized by the appearance of a loud whistling sound in the vicinity of its resonance frequency. To avoid these undesirable eects, it would be good to have a "magic layer" that allows acoustics to pass through while suppressing sound-ow interactions in the vicinity of the material. A possible realization of this layer based on Kevlar fabric has been tested.

Although reducing the eects of ow, this Kevlar layer is not acoustically neutral. It can be described by an acoustic resistance (associated with a low inertial eect). This resistance partly destroys the eect of the metamaterial on the sound when it is not accounted for in the design. Thus, Kevlar is not a magic layer.

Other realizations can be imagined (membranes, exible beams with micro-slits, ...) which overcome the eect of the ow, but which also allow taking advantage of the interactions between the ow and the deformable structures to have very original behaviors.

Chapter Five

Vibrating Beams Investigation

Introduction

Since the aero-acoustic dissipation process in presence of an external ow is not a conservative one, it implies that there could be clever ways for exploitating this process. In this sense, in the past there has been a vast interest into vibrating mechanisms as they are able to absorb energy around their natural frequency (or even extract energy, e.g. in the case of loudspeakers). Among the rst studies about vibrating membranes, we can nd [START_REF] Ackermann | Technical Note: Noise Reduction in an Exhaust Stack of a Papermill[END_REF] and [START_REF] Frommhold | Acoustic Performance of Membrane Absorbers[END_REF].

Here, the paper investigates a system of membranes put above an honeycomb structure and the relative performance of single elements compared to their combination. Similarly in [START_REF] Langfeldt | Perforated membrane-type acoustic metamaterials[END_REF],

the analysis of a membrane both with and without perforation is carried out: the perforation is shown to reduce the maximum TL but to introduce at the same time an antipeak at a lower frequency than the main one, thus enhancing low frequency response. In [START_REF] Ma | Acoustic metasurface with hybrid resonances[END_REF] hybrid resonances are, on the other hand, obtain through a backed up cavity sealed o and lled with SF 6 gas which allow the membrane to obtain perfect absorption for a normal propagation at large subwavelength conditions. In [START_REF] Chiu | Drum-like silencers using magnetic forces in a pressurized cavity[END_REF] the transversal propagation along a vibrating membrane is investigated, together with an active mechanism based on electromagnetic forces to control the membrane itself. Results show interesting eects regarding the adoption of an electromagnetic mechanism as its eects are both positive, through a dynamic eect, in enhancing the absorption around rst eigenmodes and toward lower frequencies but also detrimental, through a static eect, that increases the stiness of the membrane by an added tension contribution. Finally, in [START_REF] Farooqui | Compact beam liners for low frequency noise[END_REF] a beam-like vibrating element was adopted together with a backing cavity to achieve perfect absorption at mid frequency and non negligible absorption at lower frequencies.

Using this idea as a starting point, the concept of cantilevered thin blades that can move above a cavity is investigated. In order to soften these blades, two I-shaped cuts are introduced. The rst one makes the xation less rigid while the second, realised in the middle of the beam, leads to bi-articulated blades with two degrees of freedom and a low stiness.

First, a simple analytical model is proposed to predict the behaviour of the blade. Then, a parametric study is performed in order to design experimental samples. The rst experiments are conducted in an impedance tube, where both the acoustic in the duct and the vibration of the beam are measured. The closeness of the experimental and the analytical results indicates that the right physical phenomena have been identied. Finally, a last set of experiments performed in a grazing ow facility gives hint about the possible application of such acoustic treatments to aircraft noise reduction.

Vibrating Beams

The considered vibrating beam is composed of 5 x 3 identical beams, each backed up by an indipendent cavity, in order to cover the whole width of the channel and thus reproduce a quasi-2D system. Then, this system can be represented by an in-line series of 5 beams of constant thickness (which depends on the material used, see table 5.1) and 18 mm long. Each cavity is 29 x 22mm and communicates with the main duct through a laser-cut micro-slit.

The technology used makes it possible to create a slightly conical groove with a width of 50 µm at the narrowest point. These dimensions, as will be clear from the results shown in sections 5.5.1 and 5.5.2, were chosen in order to have the lowest resonance frequency (and therefore the absorption peak) at the lower limit for a realistic problem such as an acoustic liner.

The test section in this case is shown in Figure 5.1, together with the 2D schematic system.

Regarding the physical properties of the beam, the Young modulus can be expressed as E = E 0 (1 + jνω) where the coecient ν represents damping. Finally, in order to obtain low resonance frequencies, one and two I-shaped cuts were made, depending on the conguration.

These cuts were made using a very thin beam laser, as mentioned before, and divide the beam in two elements 9 and 7 mm long, starting from the clamped boundary. Single "I" cuts Table 5.1 Vibrating Beam congurations

Cantilever Beam Modeling

In this section, we want to investigate the behaviour of the cantilever beam when subjected to an aeroacoustic forcing. In order to do so, it is important to model the parameters of such a beam which characterise its frequency response. Generally, as we are considering harmonic excitations, we can assume that the beam will react through the sum of proper mode displacements each corresponding to a natural frequency of the system. Then, the displacement of the beam can be described as:

δ(x, t) = δ(x)e jωt where the spatial contribution can be written as

δ(x) = i A i ϕ i (x) (5.2) 
i.e. as a sum of the i-th ϕ i mode multiplied by its amplitude A i . The modal displacement is a continuous function of the longitudinal coordinate along the beam. A rst case could be the example of the dynamic equation of a cantilever beam while a second case could be represented by a piecewise elements beam. If we consider then a 2D cantilever beam, its vertical displacement can be described by the following equation:

M ∂ 2 δ ∂t 2 + K ∂ 4 δ ∂x 4 = ∆p (5.3)
where M is the beam mass, K its exural rigidity and ∆p the total dierence pressure load between its lower and upper surface. The beam mass can be expressed as M = ρ b e where ρ b is the beam material density and e its thickness, while the exural rigidity K can be expressed as K = EI i.e. the product of the Young modulus E and the momentum inertia I. Then, by applying the boundary conditions for a displacement in the form of eq. 5.2 and relative reacting forces, it can be shown that we obtain a trascendent displacement equation cos (βL) cosh (βL) = -1

(5.4)

where

β = ω 2 M K (5.5)
and whose solution is in the form β i L = [(i-0.5)π] 2 2π for i = 4, ..., n while β 1,2,3 L = 1.875, 4.694, 7.855 (see, for example, [START_REF] Li | Vibration control of beams with active constrained layer damping[END_REF]). Therefore, the natural frequencies will be described as

ω i = β 2 i 2π K M (5.6)
Alternatively, the beam can be assimilated to a plate rotating around its end with a restoring torque due to the deformation. The motion equation linking the rotation angle θ to the pressure dierence between the two faces of the beam ∆p is given in the frequency domain (time dependence in exp(jωt) where ω is the frequency) by:

- In the slits, the same pressure dierence induces a mean velocity v s given by

Jω 2 t θ = M = l∆pS b /2 -βθ -γjωθ
∆p = ρ 0 c 0 (R s + jk b e s ω/ω b )v s = ρ 0 c 0 Z s v s
where R s is the slit resistance and e s the equivalent length of the slit. The continuity of the acoustic ux implies that

S i v i = S b v b + S s v s = S c v c (5.9)
where S i is the area corresponding to one periodic cell of the material, v i is the incident vertical mean velocity on one cell, S s is the area of the slits, S c the transverse area of the cavity and v c is the mean vertical velocity at the entrance of the cavity. The impedance of the cavity is given by

p c = ρ 0 c 0 Z c v c = ρ 0 c 0 j tan(k b W ω/ω b ) v c (5.10)
where W is the thickness of the cavity. The continuity equation can be written as:

S b /S i ρ 0 c 0 Z b + S s /S i ρ 0 c 0 Z s (p i -p c ) = v i
from which the impedance Z i seen by an incident wave can be calculated:

Z i = p i ρ 0 c 0 v i = S b /S i Z b + S s /S i Z s -1 + S i S c Z c (5.11)
This impedance is that of a resonator placed in parallel with a resistor and loaded by a cavity.

Even if considered a simple vibrating beam, it is possible to consider several modes appearing.

The displacement of the plate is then written as a sum of the displacements induced by these modes. The continuity equation (5.9) can then be written as such

S i v i = j S b v bj + S s v s = S c v c (5.12)
where v bj is the mean velocity induced by the j mode. Then, we can model the eect of the various modes j by considering that the impedance of the j mode can be written as

Z bj = jk b e bj ω ω b 1 - ω 2 bj ω 2 + δ j
ant that they are in parallel with the impedance of the micro-slits leading to

Z i = j S b /S i Z bj + S s /S i Z s -1 + S i S c Z c
(5.13)

The three parameters that dene each of the modes (equivalent mass, resonance frequency and modal damping) can be determined either analytically from the plate deformation equation (as mentioned above), numerically or experimentally. -∞ as 1/k 0 W . The plate creates an additional reactance that is negative at low frequency and positive at high frequencies, with a rapid variation at the beam resonance frequency where zero is reached. If the plate reactance rises high enough, the cavity reactance can be counterbalanced and a total zero reactance is obtained for a frequency close to that of resonance. In the particular case displayed in Fig. 5.2, the ratio between the wavelength at the plate resonance and the thickness of the cavity is 16.2.

At the same time, in order to obtain perfect absorption, which occurs when Z i = 1 for normal incidence, the coupled system resistance must be equal to 1. The resistance comes mainly from the dissipation in the micro-slits. However, near the resonance frequency the slits are short-circuited, and the velocity in the cavity comes mainly from the motion of the blade. As the structural damping of the plate is considered to be signicantly lower than the slit resistance, the short-circuit in the vicinity of the resonance produces a localised dip in the resistance curve whose minimum value depends on the beam structural damping δ.

Then, an appropriate choice of R and δ permits to obtain a resistance of 1 for the frequency at which the reactance is zero. Thus, perfect absorption is provided for a normally incident wave. In any deformable system, several modes can appear. The displacement of the plate is then written as a sum of the displacements induced by each of these modes. Thus, the continuity equation (5.9) now reads

S i v i = j S b v bj + S s v s = S c v c , (5.14) 
where v bj is the mean velocity induced by the j-th mode. Then, the eect of the various modes j can be modelled by writting the impedance of the j-th mode as:

Z bj = jk b e bj ω ω b 1 - ω 2 bj ω 2 + δ j .
Considering that this impedance is in parallel with that of the micro-slits and in series with the one of the cavity leads to the following expression for the impedance of the coupled material parameters due to the possible misalignment of the cuttings with the axes dened by the bres of the material. The second mode is a bending mode (f = 5315 Hz) while the third mode (f = 5371 Hz) is a torsion mode which has an average velocity equal to 0 and is therefore assumed not to interfere with the acoustics.

Two samples have been made: one for a measurement in a normal incidence tube and a second one for a measurement in the wall of a rectangular duct. For these two samples the micro-cutting was performed in the same way and with the same geometry. This system is used in sine sweep mode (from 100 to 4000 Hz with a 5 Hz step). At each frequency, all transfer functions are averaged over 500 cycles.

Normal incidence measurements

The measurement system allows to control the acoustic level of the incident wave. Several levels were tested but no non-linear eects were detected.

Vibrometer measurements

First, the velocity of the bi-articulated plate located at the end of the tube (without cavity)

was measured at two points using a laser vibrometer when acoustic excitation is present.

From the sound pressures measured on the three microphones, it is possible to calculate the sound pressure p i that is applied to the plate. The velocities v M 1 and v M 2 measured respectively at the end of the plate and in the middle of the plate (on the rst part, see For this mode, we nd that v M 1 /(l 1 + l 2 ) = v M 2 /l 2 (l 1 and l 2 are dene in Fig. 5.5) which indicates that this mode is very close to a rotation without deformation of the plate around its base articulation. For the second mode (f = 3650 Hz), the velocities are almost opposite v M 1 ≃ -v M 2 , which indicates that we are dealing with a bending mode as shown in Fig. 5.5.

An average velocity can be computed, assuming two rigid plates pivoted to each other, by

v b = v M 2 /2 + l 1 v M 1 /(l 1 + l 2 )
. This averaged velocity is also plotted in Fig. 5.7. Assuming a low radiation impedance of the tube and therefore zero sound pressure on the outside of the plate, this average velocity relative to the sound pressure on the plate is the inverse of the impedance of the plate dened by Eq. 5.8:

Z b = p i /(ρ 0 c 0 v b )
the imaginary part of Z b becomes zero.

Acoustic measurements

Using the four microphones described in Fig. 5.6, the reection coecient r can be obtained by an over-determined separation of incident and reected waves by means of a least-squares method. From r, the absorption coecient α = 1-|r| 2 and the impedance Z = (1+r)/(1-r)

can be easily computed. The measured device consists of the composite plate where the cantilever beam with two I-cuts cuts associated with a closed cavity of the same cross-section as the incident tube (diameter 30 mm) and length 30 mm.

To predict the impedance of this device, the Eq. 5.11 is used. In this equation, the beam impedance Z b is deduced from the vibration measurements described in the previous subsection. The cavity impedance Z c can be computed from the Eq. 5.10 with W =30 mm. The most tricky part to estimate is the acoustic impedance of the slit Z s . Indeed, the slit resistance is extremely sensitive to the width of the slit s. If we use the relation R s = 12µe/(ρ 0 c 0 s 2 ) we see that this resistance is inversely proportional to the square of s.

In addition if one relates this impedance to the incident surface R = S i /S s R s , where S i = l s s and l s = 88 mm the total length of the slits, we see that the resistance R is proportional to s -3 . The machining process of these micro-slits results in a slight conicity of the slit which therefore does not have a constant width s. On the height of e = 500µm, it is estimated that the width goes from 50µm (see the photo under the microscope on Fig. 5.6) at the narrowest to 100µm on the other side of the plate. For a constant width s = 50µm the resistance is R = 16 while for s = 100µm the resistance is R = 2. It is therefore dicult to say more than 2 < R < 16 and the exact value of R had to be experimentally adjusted. The absorption coecient α and impedance Z that were measured are plotted with a wide blue line in Fig. 5.9. What happens on these curves in the vicinity of the rst resonance frequency of the beam is very similar to what is shown in Fig. 5.2. In particular we can see that the maximum absorption frequency (735 Hz) is slightly higher than the rst resonance frequency of the beam (710 Hz) which corresponds to a very low absorption. We also note that the real part of the impedance (dashed in Fig 5 .9b) tends at low frequency towards a constant which is the resistance R . We can therefore estimate the value of the resistance R = 8.5.

At this stage, all the parameters that describe the measured device are known and the impedance and absorption coecient can be calculated ( thin red curve on gure 5.9). This suggests that the proposed model takes into account the main eects that occur in such a device and that it is possible to size such a system for specic uses.

Grazing incidence measurements

A second sample, to be placed in the wall of a rectangular duct, was made from the same composite material plate and with exactly the same micro-cutting geometry. This sample is made in a plate of 120 × 50 mm 2 where 3 rows of 5 beams have been micro-cut, in blue on The sound pressure in the duct is recorded by two sets of three ush-mounted microphones located upstream (u i ) and downstream (d i ) of the test section, where i = 1 indicates the microphone located the closest to the test section. The positions of the microphones are This allows an overestimated determination of the incident and reected waves on both sides of the sample. The elements of the scattering matrix of the sample, namely the reection and transmission coecients (r ± , t ± ) dened for incident plane waves coming from upstream (r + , t + ) and downstream (r -, t -) of the sample, are computed. To obtain these four coecients, two dierent acoustic states are needed. The rst one is obtained by placing the compression chambers upstream of the resonators, the second one by placing them downstream. More details about this measurement technique, for the case of a cylindrical duct, can be found in [START_REF] Aurégan | Measurement of liner impedance with ow by an inverse method[END_REF].

x u 1 -x u 2 = x d 2 -x d 1 = 30 mm, x u 1 -x u 3 = x d 3 -x d 1 =
Once again, this measuring system makes it possible to control the acoustic level of the incident wave. Several levels were tested but no non-linear eects were detected.

To predict the eect of the sample on propagation, two separate actions are required.

The rst one is to calculate the equivalent impedance of the sample. The second one is to predict the propagation in the duct in the presence of an acoustically treated wall.

The prediction of impedance is relatively easy since the impedances of the beam Z b and the slits Z s are identical to the case in normal incidence since it is the same material and geometry. Similarly, the cavity having the same depth W , the cavity impedance Z c is also unchanged. The only things that change in Eq. 5.11 are the incident sections S i = 120×50/15 mm 2 and the cavity section S c = 15 × 22 mm 2 .

To predict the propagation with an impedance wall, a numerical simulation is carried out. To this end, a multimodal method is used to calculate the linearized two-dimensional lossless problem. This method has already been described in detail elsewhere [START_REF] Dai | Acoustic of a perforated liner with grazing ow: Floquet-Bloch periodical approach versus impedance continuous approach[END_REF][START_REF] Dai | Flexural instability and sound amplication of a membranecavity conguration in shear ow[END_REF][START_REF] Dai | A cavity-by-cavity description of the aeroacoustic instability over a liner with a grazing ow[END_REF] and therefore only a few points are merely reported.

The linear propagation of small perturbations can be described by the linearized Euler and continuity equations. The multimodal method is used and the perturbations are therefore expressed as a linear combination of acoustic transverse modes. These modes and wave numbers are computed on uniform segments using a nite dierence method by discretizing the equations in the transverse y-direction. Here, the modes must be calculated in the rigid duct and in the lined part wall. The scattering matrix of the sample is found by matching the modes at the discontinuities at each ends of the sample. 

Comparison between experimental (red curves) and model (green curves) results

The comparison between the predict and measured transmission and reection coecient are depicted in Fig. 5.10. Due to reciprocity, the measured transmission coecients in both directions are identical. Conversely, the reection coecients t + and t -dier slightly. This seems to indicate an inhomogeneity of the dierent beams which would not all react in the same way. This may be due to the bonding of the plate to its support, which may not be exactly identical at every location. The comparison between predicted and measured values of transmission and reection is relatively correct around the rst resonance of the plate.

It can be noted that the hypothesis that one can substitute a discrete set of cells, of fairly large size, with a distributed and homogeneous impedance can quickly nd its limit when the frequency increases. Moreover, the implicit assumption that cells do not acoustically interfere with each other is also very questionable.

A striking eect is the disappearance of the second high-frequency peak (near f 2 = 3730 Hz). As f =4000 Hz corresponds to the cut-o frequency of the second propagative mode in the rigid conduit that our setup does not allow to characterize, it was not possible to know if this second peak was rejected at higher frequency or if it simply disappeared. As mentioned above, for these frequencies the length of a cell is of the order of a quarter of the wavelength and the hypothesis of uniformity of impedance is no longer valid.

In spite of its approximations, an impedance homogenization model gives good results at low frequencies and makes it possible to understand the main eects of treatments with vibrating plates and micro slits on the propagation and reection of a duct having such a material.

Eect of ow

The implementation of acoustic treatment in the wall of a duct allows to study the eect of a ow on its acoustic behavior. For this purpose, the duct installation is connected to a rotating lobe blower that can provide a mean velocity of up to 85 m/s. The ow velocity is measured at the center of the duct downstream of the test section by a Pitot tube connected to a dierential pressure sensor. This measurement gives the maximum value of the ow velocity in the duct section. The presence of an assumed uniform ow is also fairly easy to take into account in propagation modeling. To do this, it is necessary to add convection terms to the equations used. It is also necessary to modify the boundary condition that applies to the wall with impedance. Here we have used the classical condition of continuity of pressure and normal displacement also called Ingard-Myers condition. Finally, it is necessary to apply a special mode matching between the duct with impedance and the rigid duct that takes into account this Ingard-Myers condition [START_REF] Ingard | Inuence of uid motion past a plane boundary on sound reection, absorption, and transmission[END_REF][START_REF] Myers | On the acoustic boundary condition in the presence of ow[END_REF][START_REF] Renou | Failure of the IngardMyers boundary condition for a lined duct: An experimental investigation[END_REF].

The fairly good agreement between the experimental results and the model results, shows that the ow does not signicantly change the value of the impedance of the material. The eect of the ow is therefore mainly due to convective eects both in the propagation itself and in Ingard-Myers condition.

Vibrometer Results

As shown above for the normal propagation case, vibrometric analysis have been carried out also for the transversal propagation conguration. All three sets of cantilever beams described in table 5.1 have been tested. In gure 5.12, the composite beams together with the mounting chassis which is used to lock it in position in the waveguide is shown on the left (each beam outlined with a dashed red line). On the right, the corresponding absolute velocity values around the rst resonance frequency is shown for each beam, as retrieved in Matlab. It is possible to appreciate that, at this frequency, the major part of the beams react with a large velocity (i.e. their rst natural frequencies are close to each other and to the calculated one). On the other hand, the three rst beams on the rst line and the rst beam on the second line shown a much smaller velocity magnitude (o( 10-1 ) smaller). This is due, most probably, to errors in the manufacturing procedure, as it is noticeable how these beams react with a exural mode whose rigidity is not constant along the transversal dimension.

(a) (b) It is possible to see that while the cantilever model recovers a good agreement in the second half (w.r.t. the "I" cut) of the beam, it understimates the displacement of the rst half of the beam which will result in an overall greater rigidity of the structure.

Chapter Six

Conclusions

In this thesis, the nature of the aero-acoustic interaction has been investigated for dierent novel materials and systems congurations. This has been done by the means of an experimental, a numerical and simple theoretical approaches. Aside from Chapter 2, where the experimental setup and techniques adopted are described, three main chapters compose this manuscript. In each, an aeroacoustic problem has been investigated. In Chapter 3, the acoustic propagation along a corrugated plate inside a square waveguide has been investigated, with and without a grazing ow present. Without ow, the acoustic propagation along the corrugated plate is almost unaected by the corrugations and therefore similar to the one of a rigid tube, with a slightly lower transmission coecient due to enhanced visco-thermal losses. When the ow is present, the behaviour changes drastically.

The transmission along and against the ow direction are not identical anymore. This is due to the loss of reciprocity due to convection eects, but it is also possible to notice oscillations of the transmission curves around the no-ow values. Therefore, it is possible to identify "gain" ("loss") areas, where transmission is higher (resp., lower) than the no ow case. At four of these characteristic frequencies, Laser Doppler Velocimetry (LDV) measurements have then been carried out. This technique allows us to investigate inside a single corrugation cavity and resolve the main uid-dynamic and acoustic quantities. What is pos-sible to see is that coherent vorticity structures show a rather complex distribution when compared to deep cavity congurations, which makes it dicult to isolate completely the acoustic sound production and absorption zones. These structures depend on the frequency and the longitudinal position along the cavity, which explain the gain/loss mechanism which is seen in the transmission curves.

In chapter 4, an investigation about the shielding of metamaterials from ow has been carried out. This investigation has been inspired by the latest research about metamaterials, where new ways to manipulate sound waves are investigated. Furthermore, in the aeronautics eld, these solutions have to deal with the presence of an external ow which has a strong inuence, especially when these materials are porous or, like in cloaking devices, they have to be shielded from ow but being transparent to acoustic waves. Therefore, a "magic" layer is often introduced so to allow acoustics to pass through while suppressing ow eects.

As a practical realization of such a layer, a kevlar sheet is often suggested based on its application in wind tunnels. However, we show that, for the matematerial we chose, the eect of ow is clearly represented by a loud whistling around its resonance frequency. If we put a kevlar layer covering such metamaterial, ow eects are in fact reduced, but the layer is not acoustically neutral: the whistling doesn't appear anymore due to an introduced acoustic resistance and the behaviour of the metamaterial is completely altered. This proves that a kevlar layer cannot be considered to be an acoustically neutral layer which was advertised.

In chapter 5, the behaviour of vibrating beams associated with micro-slits has been investigated. The investigated beams are obtained by 50 µm laser cuts cuts from a thin composite plate. Also, two "I" cuts have been realized orthogonally to the beam longitudinal direction so to make the xation less rigid (the rst cut) and to induce a bi-articulated behaviour (second cut) with two degrees of freedom and a low stiness. A simple analytical model is proposed to predict the behaviour of the blade. Then, a parametric study is performed in order to design experimental samples. An experimental campagin was carried out to obtain comparison with this model: rst experiments were conducted in an impedance tube, where both the acoustic in the duct and the vibration of the beam are measured. The closeness of the experimental and the analytical results indicates that the right physical phenomena have been identied. Finally, a last set of experiments performed in a grazing ow facility gives hint about the possible application of such acoustic treatments to aircraft noise reduction. Future works will be focused on better understanding the dierence between the behaviours of these metamaterials, namely the way the hydrodynamic interaction works inside the shear layer above a corrugated plate or a vibrating beam. This better understanding should allow the development of new beams or better metamaterials which would be able to exploit the aero-acoustic interaction in a favourable way and improve their subwavelength performances.

tune the impedance to the ambient conditions.

Regarding this kind of passive liners, one widely used reference model is the one proposed by Guess [START_REF] Guess | Calculation of perforated plate liner parameters from specied acoustic resistance and reactance[END_REF]. This model takes into account the eects of the plate and the underlying cavities through four parameters: the permeability σ, the thickness of the plate t, the diameter of the perforated holes d and the depth of the cavities. Furthermore, the eect of ow and the relative nonlinear eects are taken into acount by the means of the Mach number M = u/c and a correcting factor t ′ = t/d. Then, after several computations, Guess summarizes the total impedance real and imaginary part of such a liner, respectively, as follows:

θ = √ 8νω σc 1 + t d + π 2σ d λ 2 + (1 -σ 2 ) σ |u 0 | c + sM χ = ω (t + δ) σc + √ 8νω σc 1 + t d -cot ωH c (A.1)
where ω, c, λ are respectively, the angular frequency, the sound speed and the acoustic wavelength. The third term in the above real part impedance equation represents the inuence of large sound amplitude and free stream ow in nonlinearities of the liner. The term ν is the cinematic viscosity and s is a correlating factor which in our case is s 0.3. 
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 811 Figure 1.1 Illustrative gure of a Single Degree of Freedom acoustic liner (a) and schematic of a single cell (b)
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 1512 Figure 1.2 Resonance frequency as a function of the POA value for a SDOF liner (blue), an Helmholtz resonator (red dash line) and of an equivalent quarter wavelength resonator (yellow dash line)
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 15 Figure 1.5 Vorticity eld for a grazing ow (M = 0.1) conguration for (a) 114 and (b) 140.5 dB sound level, at f=1592 Hz (gure from [14])
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 21 In this duct, a mean ow is produced by a centrifugal fan whose ow rate can be continuously adjusted up to a mean velocity of 85 m/s. The ow velocity is measured by a Pitot tube (diameter 2.1 mm) in the center of the rectangular duct and by Laser Doppler Velocimetry (LDV). The duct has upstream and downstream anechoic terminations which ensure low reection coecients on both side of the studied corrugated plate. The upstream anechoic termination is sealed to prevent any leakage of the mean ow From this upstream termination up to the studied element, a 1.90 m long rigid pipe segment is installed to allow a complete development of the ow. The investigated element is located in a test section of length L = 200 mm. To allow access for optical measurements, a side wall and the top wall are made of glass, the oor being the position of the tested acoustic treatments that can be easily changed. Downstream of the test section, a second rigid duct segment connects to the downstream anechoic termination. The sound eld is produced by a compression driver (Beyma CP850Nd) which can provide an acoustic level up to 150 dB SPL in the test section over a frequency range from 500 to 4000 Hz. The acoustic source can be placed either upstream or downstream of the studied element in order to obtain two dierent states of the system.
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 21 Figure 2.1 Schematic view (a) and photo (b) of the experimental setup

Figure 2 . 4 -

 24 Figure 2.4-a shows the total, coherent and mean velocities for a single spatial position, while
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 23 Figure 2.3 Retrieved amplitude (a) and phase (b) of the vertical uctuating velocity at a given position in space as a function of the number of measured particles.
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 24 Figure 2.4 Example of retrieved uctuating horizontal velocity at a given position in space (a) and relative histogram (b). The total acquired and the reconstructed coherent velocities are shown in dots and solid orange line, respectively, after being carried over a single (nondimensionalised) time period. Finally, the green dash-dotted line represents the time-averaged velocity.
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 25 Figure 2.5 Example of horizontal retrieved uctuating velocity over a small part of an acquisition window (total width is 0.08 s). The solid green ( ) line represent the time-averaged velocity, the + symbol represents the total retrieved velocity, while the solid blue ( ) line represents the tting sine model
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 31 Figure 3.1 Schematic view of the impinging mechanism along a corrugated surface.
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 32 Figure 3.2 Schematic view of the experimental setup.
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 33 Figure 3.3 (a) Schematic view (not at scale) of the optical experimental setup and (b) picture of the investigated corrugated plate.
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 3 Figure 3.4 (a) Position of the measurement box and of the reference box. (b) Values of the mean vorticity for M ∞ = 0.07.
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 35 Figure 3.5 Horizontal mean velocity for the upstream source case at (a) 1400 Hz and (b) 2000 Hz. In (c) the velocity close to the cavity is shown along the vertical lines as indicated in the (a-b) gures. The plain and lled symbols represent the 1400 and 2000 Hz case, respectively. The vertical mean velocity has been shown for the (d) 1400 and (e) 2000 Hz cases, together with streamlines.
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 36 Figure 3.6 Horizontal mean velocity for the 2000 Hz upstream source case (a).
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 37 Figure 3.7 Potential velocity eld contour as obtained from the COMSOL simulation. The reference box indicates where the reference velocity was calculated. The zoomed-in contour shows the velocity eld close to the cavity while the underlying plot shows the potential velocity along three horizontal lines above the cavity lid.
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 0738 Figure 3.8 Absolute value of experimental transmission coecients without ow and with ow (M = 0.07). The continuous lines represent |T + | and the dashed lines

  3.10(a) that the periodic velocity eld is well resolved with the LDV technique, except, perhaps, in the vicinity of the wall angles where the measurements are slightly under-resolved. Each pixel in the gure 3.10(a) represents a measured value of the vertical periodic velocity v ′ /|u ′ ref |. The measured coherent velocities have been nondimensionalised with the respective horizontal coherent velocity at the reference position u ref in order to have a proper comparison between the sets of measurements.
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 33 Figure 3.10 Normalized vertical periodic velocity v ′ /|u ′ ref | colormaps (a) at dierent relative phases: ϕ s = π/3, 2π/3...2π for the upstream 2000 Hz source position and M =0.07. Vertical periodic velocity amplitude (b) and phase (c) along the six horizontal lines corresponding to y = 0, 0.1, ... , 0.5 mm. The thick black line in (c) is the average over the six values and the blue straight line is a linear t.
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 3 Figure 3.12 Normalized vorticity ω ′ /ω ′ ref | colormaps at dierent relative phases: ϕ s = π/3, 2π/3...2π for the upstream 2000 Hz source position and M =0.07.
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 3 Figure 3.13 Normalized vorticities (a) -(∂u ′ /∂y)/ω ref , (b) (∂v ′ /∂x)/ω ref and (c) their sum ω ′ /ω ′ ref colormaps at ϕ = 0 for the upstream 2000 Hz source position and M =0.07 case. The inset indicates the horizontal u ′ /|u ref | velocities and vorticity ω ′ /ω ref along the x = 0 line.
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 3 Figure 3.14 Nondimensionalized vertical periodic velocity colormaps for the (a) low and (b) high amplitude acoustic source cases at ϕ s = π/3.

  1 and the only dierence is the source frequency: the value of 2000 Hz corresponds to a (nearly) maximum produced acoustic power (w.r.t the baseline no-ow case), while the 1400 Hz corresponds to an absorbed one. From Figure3.15, it is possible to appreciate how frequency dierence creates a dierent relative position of the maxima and minima in the velocity eld, for the f = 2000 and 1400 Hz upstream source cases. Furthermore, we can see that in the 2000 Hz case, a third positive velocity area appears at the trailing edge of the cavity. It is important to outline that the velocity distribution is directly responsible for acoustic production, as shown in the later Section 3.4. These structures are characterised by a wavelength λ i which is given by
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 333 Figure 3.15 Vertical periodic velocity (Real part) colormaps for the f s = 1400 (a), 2000 (b) Hz upstream cases, ϕ = 4/3π

Figure 3 .

 3 Figure 3.18 Acoustic pressure contours for the (a) rounded and (b) square upstream cavity edge at f = 2000 Hz and M=0.07.
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 3 Figure 3.19 Normalised acoustic power due to the horizontal (c) and vertical (f) Coriolis force, respectively split into their two main contributions (a-b)and (d-e) following Eq. 3.10, for the 2000 Hz case. Finally, the total acoustic power (g) is shown.

Figure 3 .

 3 Figure 3.20 The normalised acoustic power contribution (Ω 0 v ′ )u a for the (a) 2000 Hz and (b) 1400 Hz upstream case at ϕ = π/3.

Figure 3 .

 3 Figure 3.21 The normalised acoustic power contribution (-Ω 0 u ′ )v a for the (a) 2000 Hz and (b) 1400 Hz upstream case at ϕ = π/3.

Figure 3 .

 3 Figure 3.22 The normalised acoustic power contribution (-ω ′ U 0 )v a for the (a) 2000 Hz and (b) 1400 Hz upstream cases at ϕ = π/3. In (c) and (d) the Coriolis force -ρ 0 (ω ′ U 0 ) is shown for the 2000 and 1400 Hz cases, respectively, at the same phase..
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 333 Figure 3.24 The normalised acoustic power contribution (-ω ′ U 0 )v a for the 2000 Hz (a) upstream and (b) downstream case at ϕ = π/3. In (c) and (d) the Coriolis force -ρ 0 (ω ′ U 0 ) is shown for the 2000 Hz upstream and downstream cases, respectively, at the same phase.
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 21 Test rig and measurement procedure An array of ve Helmholtz resonators is located in the wall of a waveguide of rectangular section H × B with H = 40 mm and B = 50 mm, see Fig. 4.1(a). This duct facility has already been introduced in Chapter 2 and a mean ow whose velocity is up to 80 m/s can be produced by a centrifugal fan. The unit cell resonator is a square cuboid with a volume equal to 31 mm × 31 mm × B. Five resonators are placed side by side, forming an array with a period of 35 mm, and the surface in contact with the ow has been polished to avoid any discontinuity that could disturb the mean ow, see Fig. 4.1(b). The cavity volume has

Figure 4 .

 4 Figure 4.1 (a) Sketch of the Helmholtz resonators mounted in a waveguide of rectangular section H × B with H = 40 mm and B = 50 mm. Three microphones are located on each side of the sample to determine its scattering matrix. The resonator cavity is a square cuboid with a volume equal to 31 mm × 31 mm × B. The neck of the resonator is a slit of thickness t = 1.9 mm, and its dimension in the direction of the ow is W = 5 mm. (Below) Picture of the metamaterial, without (b) and with (c) the Kevlar cloth. Only the central part, where the slits can be seen, is in contact with the inside of the duct.

  175 mm, and both u 1 and d 1 are placed 113 mm away from the metamaterial. All the microphones are calibrated relative to u 1 in a separate cavity mounted on a loudspeaker. At each frequency step of the sine sweep, the acoustic pressure on each microphone is calculated by averaging the pressure value over 400 cycles without ow, and over 1000 cycles with ow.An overestimated determination of the incident and reected waves on both sides of the metamaterial is performed. This decomposition is used to ensure, at each frequency step and
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 42 Figure 4.2 Transmission coecients without Kevlar as a function of the frequency. The continuous lines represent T + (in the ow direction) while the dashed lines represent T -(against the ow). The cases M = 0 and M = 0.073 are indicated in the gure.

Figure 4 . 3

 43 Figure 4.3 Transmission coecients with and without Kevlar when there is no ow. The continuous lines represent T + (in the ow direction) while the dashed lines represent T -(against the ow). The cases with Kevlar and without Kevlar are indicated in the gure.

  4.1(c). Before being glued to the metamaterial, the piece of Kevlar was tensioned uniformly by using the mechanism of a 13-inch drum. The eect of the Kevlar sheet on the acoustic behavior of the Helmholtz resonators array when there is no ow is shown in Fig. 4.3, where the transmission coecients measured with and without Kevlar are compared. The drop in transmission in the vicinity of the resonance is much less pronounced with Kevlar (the minimum transmission is |T | = 0.42 i.e. -7.6 dB) than without it. On the other hand, this drop in transmission occurs over a much wider frequency range. This indicates that Kevlar produces a strong damping that decreases the resonance peak while widening it. It is therefore incorrect to consider that the Kevlar sheet is completely transparent to acoustic waves. The eect of ow on a Kevlar coated metamaterial is shown in Fig. 4.4. Again, it

Figure 4 . 4

 44 Figure 4.4 Transmission coecients with Kevlar as a function of the frequency. The continuous lines represent T + (in the ow direction) while the dashed lines represent T -(against the ow). The cases M = 0 and M = 0.073 are indicated in the gure.

  transmission and reection coecients of all ve Helmholtz resonators are determined by combining the unit scattering matrices.

Figure 4 . 5

 45 Figure 4.5 Transmission coecients without ow (M = 0) with and without

Figure 4 . 6

 46 Figure 4.6 Transmission coecients with ow M = 0.073 with and without Kevlar as a function of the frequency. The experimental results are indicated in the gure, all the other curves are obtained with the multimodal method. The continuous lines are in ow direction and the dashed lines are measured or computed against the ow. The multimodal method results with Kevlar are obtained with Z = 0.42 + i 0.062(f /f R ) where f R = 1250 Hz. The inset gives the ow prole used during the computation.
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 51 Figure 5.1 (Top) Schematic representation of the grazing incidence facility used to characterise the liner sample using two sets of three microphones. The duct has a rectangular cross section of height H = 4 cm and a rotating lobe blower is used to introduce ow. (Bottom) The composite plate has been glued over 15 cavities of section 15 × 22 mm 2 so that there is one cantilever beam per cavity. The height of the cavities is W = 30 mm.

(5. 7 ) 3 ρ b e 1 - ω 2 b ω 2 +b 1 - ω 2 b ω 2 +

 7322122 where the moment of inertia is J = ρ b eS b l 2 /3, ρ b is the density of the plate, e the thickness of the plate and S b is the area of the plate. The two coecients β and γ are linked respectively to the stiness and to the damping of the beam. By dening the mean normal velocity of the beam by v b = ljωθ/2, the Eq. 5.7 can be transformed into an equation linking the pressure dierence ∆p = p i -p c (p i and p c are the pressure just above the plate and just under the plate in the cavity) to v b : ∆p = jω 4 ρ 0 c 0 δ v b (5.8) = ρ 0 c 0 jk b e b ω ω δ v b = ρ 0 c 0 Z b v b where k b = ω b /c 0 and e b = 4ρ b e/(3ρ 0 ) is an equivalent thickness of the beam.

Figure 5

 5 Figure 5.2 (a) Absorption coecient and (b) impedance computed from the mono-articulated model as a function of the frequency normalised by the plate resonance frequency. S b /S i = 0.48, S s /S i = 0.0083, S c /S i = 0.825, k b e b = 0.8133, δ = 0.01, R = S i /S s R s = 8 , k b e s = 0.0065, k b W = 0.39. The green curve is the imaginary part induced by the cavity and the blue curve is the imaginary part induced by the plate and the micro-slits.
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 42 Inuence of other modes of the plate

Figure 5 .

 5 Figure 5.4 (a) Absorption coecient and (b) impedance as a function of the normalised frequency when one (mono-articulated plate, in magenta) or two (bi-articulated plate, in blue) modes are considered. For the rst mode, the parameters are the same that in Fig. 5.2. The second mode is dened by ω b2 = 6.05ω b , k b2 e b2 = k b e b /8 and δ 2 = 2.5δ.
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 56 Figure 5.6 Schematic diagram of the experimental setup for impedance tube measurements. The back cavity can be removed for measurements with the laser vibrometer.

Fig. 5 . 6 )

 56 Fig.5.6) related to the incident pressure are plotted in Fig. 5.7. The rst two modes of the

Figure 5 . 9 (

 59 Figure 5.9 (a) Absorption coecient and (b) impedance. Comparison between experimental results and model

Fig. 5 . 1 .

 51 Fig. 5.1. This plate was glued on a support (in black in Fig. 5.1) with 15 cavities of section 15 × 22 mm 2 and height W = 30 mm.

1 .

 1 175 mm, and both u 1 and d 1 are placed 113 mm away from the sample. All the microphones are calibrated relatively to u At each frequency step of the sine sweep, the acoustic pressure on each microphone is calculated by averaging the pressure value over 400 cycles without ow, and over 1000 cycles with ow.
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 5 Figure 5.10 Transmission and reection coecients of the lined sample .

Figure 5 .

 5 Figure 5.11 Transmission coecient of the lined sample without and with ow (M=0.25). Comparison between experimental (blue and red curves, for M =0 and 0.25, respectively) and model (cyan curves, M =0.25) results

Figure 5 .

 5 Figure 5.12 Vibrating Beam elements (as outlined by the rectangular dashed areas in (a) ) vertical displacement around the rst natural frequency. It is possible toappreciate how the displacement is not maximal for all the beam, suggesting a dierence in the beams assembly.

Figure 5 .

 5 Figure 5.13 Velocity magnitude frequency response of the composite vibrating beam elements

2 (A. 2 )

 22 Finally, the term δ is a correction end for the orice diameter, which readsδ = 8/3 d (1 -0.7 √ σ) (1 + 305M 3 ) 1 + 5 * 10 3 M 2 1 + 10 4 MThen, in order to carry out the design of the passive element inside the demonstrator, two steps were required: deriving the optimal impedance relative to the geometrical and ambient conditions followed up by the matching of this value with the one obtained by the liner model. A summary of the process is shown as a chart in Figure A.1

  

 (3.2) 

for every ow velocities, a constant amplitude of the incident acoustic wave. For that purpose, a rst measurement is performed with a constant source level, and the recorded pressure eld is decomposed in terms of incident and reected acoustic plane waves. It appears that depending on the duct resonances, the incident wave amplitude changes with frequency.

Next, we estimate the voltage that should be applied to the loudspeakers to compensate for the resonances. The experiment is then run again using these estimated levels, and the amplitude of the propagating waves are computed. If the amplitude of the incident acoustic wave is not in a 2% interval around the target value, here chosen as 120 dB, the optimisation routine is repeated. Otherwise, the elements of the scattering matrix of the metamaterial, namely the reection and transmission coecients (R ± , T ± ) dened for incident plane waves coming from upstream (R + , T + ) and downstream (R -, T -) of the sample, are computed.

To obtain these four coecients, two dierent acoustic states are needed. The rst one is obtained by placing the compression chambers upstream of the resonators, the second one by placing them downstream. More details about this measurement technique, for the case of a cylindrical duct, can be found in [START_REF] Aurégan | Measurement of liner impedance with ow by an inverse method[END_REF].

Results without Kevlar

First, all the measurements with and without ow were carried out on the resonator array before gluing the Kevlar fabric on it. The results are shown by Fig. 4.2, which draws the transmission coecients as functions of frequency. Without ow, there is a transmission dip in the vicinity of the resonance frequency of the Helmholtz resonators. There, the transmission goes down up to |T | = 1.5 10 -4 (-76 dB). In the present investigation, the Bragg band gap lies outside the frequency range studied.

When the ow is present, it can be noticed that the transmission coecients in both directions are now dierent. This is due to the loss of reciprocity when there is a ow. But the most striking fact is the peak at 1220 Hz which is larger than 1. It actually corresponds to The rst parameter that can be changed is the mass of the plate, see Fig. 5.3(a). In practice, this mass can be changed either by modifying the material and thus the density, or by changing the thickness of the plate. Obviously, these changes will also involve a change in the plate resonance frequency f b . A reduction in mass (k b e b decreases) leads to a softer resonance but with the same amplitude. This leads to an increase in the frequency where the system is ecient, as well as a widening of the absorption bandwidth. A small adjustment of the structural damping δ is needed to achieve perfect absorption again.

A second parameter that could be modied is the thickness of the cavity W , see Fig.

5.3(b).

As it is decreased, the zero crossing of the reactance moves to higher frequencies. At these frequencies, the corresponding resistance doesn't display a dip and is thus too high to induce good absorption.

The third parameter that is studied is the structural damping δ, see Fig. 5.3(c). The increase of δ makes the resonance less pronounced and increases the overall resistance (the resistance dip is less marked). On the other hand, it can be noted that the very low absorption values that were reached when f = f b are now increased because the structural damping takes over the damping in the slits when δ is large enough.

The last parametric study considers the resistance in the slits and the results are shown in Fig. 5.3(d). For this, we consider the resistance R = S i /S s R s , which takes into account the percentage of open surface. Therefore, it is referred to the total surface. If the resistance increases, the width of the system eciency peak is reduced. When R=1, the system works very dierently. Indeed, the change in reactance due to the plate resonance is very weak and the reactance passes through zero for higher frequencies (f /f b = 1.84 in this particular case). Such a frequency is outside the resistance dip and the resistance value is then very close to the nominal value of 1, which leads to perfect absorption for a frequency close to twice the resonance frequency of the plate. In fact, in this operating mode, the plate is in its inertial regime. Perfect absorption is then obtained with a system that consists of a mass (the plate), a resistance (the slits) placed in parallel and a stiness (the cavity). Such systems are called In-Parallel Resonator and have been investigated in detail in [START_REF] Aurégan | In-parallel resonators to increase the absorption of subwavelength acoustic absorbers in the mid-frequency range[END_REF]. In the present study, we are not interested in this type of operating mode, since the goal was to take an acoustic advantage of the plate resonance that occurs at lower frequencies. It can be noted that an intermediate resistance (R = 3) induces the two operating modes to work at the same time.

Then, the operating band of the absorber is widened, at the cost of a decrease in maximal absorption which is now of the order of α = 0.8 for 1.05<f /f b <1.85. system:

(5.15)

The three parameters that dene each of the modes (equivalent mass, resonance frequency and modal damping) can be determined either analytically from the plate deformation equation, numerically or experimentally.

To examine the eect of the additional modes, two modes are used to calculate the impedance and the absorption displayed in blue and compared in Fig. 5.4 to the results with only one mode. It can be observed that the rst absorption peak is only slightly modied and that a second peak appears near the resonance frequency of the second mode. The resistance remains close to its nominal value (here R=8) except near the resonance frequencies where dips are found. An interesting eect of the presence of the additional mode is that the reactance decreases just after the rst peak. Between peaks the reactance therefore remains close to zero, which is usually required for large acoustic attenuation. These laser vibrometer measurements conrm that the impedance Z b can be described by the contribution of the rst two modes with :

where

and this vibration measurement allows to experimentally determine some parameters of the model described in section 5.3.

Indeed if some of them are easily computable such as the equivalent mass of the beam for the rst mode, others are more dicult to evaluate. From Eq. 5. where dierent airfoils could be put. These airfoils could interact with the vortex shed by a rod put a little upstream: the eects of aeroacoustic would create a large band noise which would propagate towards the downstream exit of the wind tunnel. After the airfoils, three dierent systems of noise reduction devices were conceived to work alternatively: a passive liner, an active liner and a metamaterial system. These would concentrate on absorbing the sound emitted at dierent bands inside the aforementioned aeroacoustic spectrum.

The main area of intervention regarding this thesis was the development of passive liners:

these, were to be thinkered in order to reduce a broadband noise in the 1 -3 Hz spectrum.

The main and most procient response to the need of acoustic passive liner have been the Regarding the rst process step, a multimodal method was used in order to retrieved the scattering matrix before, after and along the treated wall. Dening the number of modes which would model the pressure eld along the lined section, it is possible to retrieve this once an impedance value is dened in input. As the scattering matrix is then known, the transmission, reection and absorption coecients can then be obtained. In order to obtain the optimal impedance, such process can be looped until a cost function is minimized (e.g. the transmission coecient at a few desired frequency points) by starting with a well rst guess impedance value like Cremer's impedance. Once the optimal impedance value is obtained, we can try to match it by the above mentioned Guess model at a desired frequency.

In order to do so, we rst match the real part rewritten in a simplied fashion as follows: