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Titre : Interaction Aéro-Acoustique avec des Materiaux Innovants 

Mots-clés : Aéroacoustique des Conduits, Plaque Corruguée, Poutres Vibrants, Métamatériaux, Sifflement 

Résumé : Ces travaux de thèse portent sur le comportement aéroacoustique de nouveaux metamatériaux subjugués à un 
écoulement cisaillé pour comprendre son effet sur la réponse acoustique. Trois matériaux ont été considérés dans cette 
thèse : d’abord, l’investigation d’une plaque corruguée en présence/absence d’écoulement cisaillé est présentée. Dans la 
littérature, corrugations similaires ont montrés intéressants effets d’amplification/affaiblissement à des précis nombres 
de Strouhal liés à la largeur de la cavité (et la nature de son bord), à la vitesse de l’écoulement et la fréquence acoustique. 
Un système de mesure acoustique et optique a été mis en place pour investiguer le régime linéaire de ces perturbations. 
Finalement, les quatre composantes qui produisent la puissance acoustique et leur importance relative ont étés 
caractérisés ainsi comme le mécanisme de production/absorption. La deuxième partie de cette travail est axée sur un 
autre aspect d’effet d’écoulement. Puisque nouveaux métamateriaux sont investigués, très souvent on prend en compte 
une couche qui pourrait bloquer les interactions avec l’écoulement mais qui pourrait laisser passer les ondes acoustiques. 
Autant souvent, cette couche est pensée fabriquée en Kevlar, en vue de son utilisation dans les souffleries 
aéroacoustiques. L’interêt de cette partie était donc de montrer comme la présence d’une couche de Kevlar peut éliminer 
les interactions mais, en même temps, elle limite aussi effets de résonance intéressants et donc ne peut pas être 
considérée ‘transparente’. Ensuite, dans la troisième partie de cette thèse, l’investigation d’une nouvelle conception de 
liner basé sur une poutre en porte-à-faux est présentée. Cette poutre est composée par des plaques articulées et des 
fentes, qui permettent d’améliorer leurs prestations à baisse fréquences, surtout si comparées avec celles d’autre 
métamatériaux ‘vibrantes’ (par exemple membranes). Le liner a été caractérisé en présence/absence d’écoulement 
cisaillé et aussi avec un tube à impédance. Finalement, un modèle nouveau est présenté qui est bien d’accord avec ces 
mesures. 

 

Title: Flow-Acoustic Interaction with Innovative Materials 

Key-words:  Duct Aeroacoustics, Corrugated Plate, Vibrating Beams, Metamaterials, Whistling 

Abstract:  This thesis focuses on the aeroacoustic behavior of novel metamaterials in a grazing flow configuration with 
the scope to understand how the effect of flow plays a role in their acoustic response. Three different materials have been 
considered and whose analysis compose the corpus of this work. First, the investigation around a corrugated plate in 
presence/absence of a grazing flow is shown. In recent literature, acoustic investigations on similar surfaces have shown 
interesting acoustic amplification/attenuation effects at characteristic Strouhal numbers linked to the width (and edge 
quality) of the corrugations, flow velocity and acoustic frequency. An acoustic and optical experimental setup was used 
to investigate the linear regime of these disturbances. In the end, the four components that compose the acoustic power 
have been characterized and their relative importance identified as well as the difference behind gain and loss 
mechanisms explained. The second part of the thesis is focused on another aspect of flow grazing above metamaterials. 
As new metamaterials are investigated, often a "magic layer" which would allow acoustics to pass but suppress the sound-
flow interactions is theorized. For its realization, a Kevlar fabric layer is equally often indicated, because of its utilization 
in aeroacoustic wind tunnels. Thus, we show that, while the presence of Kevlar can eliminate flow-sound interactions 
leading to acoustic amplification and whistling phenomena, this also adds large acoustic losses, which limit interesting 
resonance effects in metamaterials applications and making it non ‘transparent’. Finally, in the third part of this 
manuscript, a liner concept based on a cantilever beam was investigated. The beam is composed of articulated plates and 
resistance slits, in order to improve its performance at lower frequencies, especially when compared with other moving 
surfaces metamaterials (e.g. membranes). The beam was characterized for grazing acoustic incidence in 
absence/presence of flow as well as in an impedance tube at normal incidence. Finally, a new and simple model is 
proposed to predict the attenuation of this type of acoustic treatment which agrees with the acoustic measurements. 
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Chapter One

Introduction

Environmental change is one of today's most challenging issue to be takled and therefore

requires a strong e�ort in order to achieve tangible results. The European Community (EC)

joined its e�orts in its �agship Horizon 2020 (H2020) program which aims at improving sin-

ergy between scienti�c research and industry application by removing barriers to innovation,

so to simplify the exchange of knowledge. Among the several �elds of interest, Horizon 2020

seeks to make the transportation system cleaner and quieter. For the aviation industry, this

is a particularly demanding challenge as these two objectives, with today's technology, push

for opposite requirements and fail at providing the substantial reductions which the program

pursuits. In this sense, the objective of the H2020 program is to investigate radically new

concepts for aeroacoustic attenuation and control in order to overturn these paradigms.

If we look at today's aviation noise mitigation industry, the main technology is represented

by the single or multi degree of freedom perforated liners (SDOF and MDOF, respectively).

These are constituted by a perforated plate which covers a backing up cavity array (usually

in an honeycomb structure). In the SDOF solution, a single layer of cavities is used, while

in a MDOF more layers are used, so to introduce multiple resonance frequencies in the liner.

Finally, it is a common solution to introduce a resistive layer (mesh wires or similar) which

increases the overall damping of the system. The SDOF liner is depicted in �gure 1.1 for

illustrative purpose.

1



(a) (b)

Honeycomb
Structure

Perforated 
Plate

Se SH

Hc

d

���

8

Figure 1.1 � Illustrative �gure of a Single Degree of Freedom acoustic liner (a) and
schematic of a single cell (b)

These kind of liners are built upon the scheme of the classic Helmholtz resonator, which

is, in the most general de�nition, that of a cavity volume connected by a neck to the external

ambient. This system can be thought as a mass-spring-damper system and represents an

e�cient subwavelength system. The spring dynamic is due to the compression of air in

the cavity and the mass and the damping by the passage of air through the holes. The

way these terms interact with each other (see [1] for a thourough analysis of these terms)

gives the system reaction to the acoustic propagation, which is usually characterized by an

impedance. The general de�nition of acoustic impedance is

Z =
p′

v′ · n
(1.1)

where p′ and v′ represent the acoustic pressure and velocity, respectively, at the material

surface, and n is the surface normal vector. If we look at a classic Helmholtz resonator,

these impedances terms act in series and therefore the total impedance is the sum of these

terms. Similarly, it would be the same if we retrieve the impedance of a SDOF (neglecting

viscous and other nonlinear e�ects). Starting from the impedance transport equation for a

1D propagation inside a waveguide:

Z1 =
Z2 + ρ0c0j tan(k0Lc)

ρ0c0 + jZ2 tan(k0Lc)
(1.2)
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where Z1 and Z2 are the impedances at two points distant a length Lc, and k0 is the wavenum-

ber inside the waveguide. If we apply this formula at our case, as shown in �gure 1.1-b, we

retrieve the impedance expression for a cell of this SDOF system as

ZL/ρ0c0 =
i

σ

tan k0d tan k0Hc − σ

tan k0Hc + σ tan k0d
(1.3)

where d,Hc and σ are the thickness of the perforated plate, the height of the cavity and

the Percentage of Open Area, POA( i.e. ratio between the perforated hole area and the

underlying cavity) σ = Se/SH (again, see �gure 1.1-b); ρ0 and c0 are the density and the

speed of sound inside the waveguide, respectively. Then, if the thickness and cavity depth are

much smaller then the propagating acoustic wavelength, equation 1.3 can be approximated

as

ZL/ρ0c0 ≈
i

σ

(
k0d−

σ

k0Hc

)
(1.4)

and the resonance frequency of such a system is obtained when the imaginary part of this

impedance is equal to zero, i.e.

ωr = c0

√
σ

dHc

(1.5)

which is the resonance frequency of an Helmholtz resonator whose neck has a thickness d

and a volume depth H. In �gure 1.2, the resonance frequency obtained through eq. 1.3 is

traced as a function of the POA (for reference values d = 1mm and H = 25mm). We can

see how at low POA the curve becomes very close to the one of an Helmholtz resonator

while, at very large POA grows asymptotically towards the resonance frequency of a quarter

wavelength resonator, fr = c0/4(H + d).

3
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Figure 1.2 � Resonance frequency as a function of the POA value for a SDOF liner
(blue), an Helmholtz resonator (red dash line) and of an equivalent quarter

wavelength resonator (yellow dash line)

Therefore, even if it is possible to tune such a system towards low resonance frequencies,

this is not practically possible due to space constraint as, at all POA, its dependency on the

cavity height is unfavourable. Even more so, as the future request for aero-engines will be to

increase the nacelle sections (for improved air intake and thus fuel consumption e�ciency)

and the available space for acoustic treatments will be reduced.

Therefore, several novel approaches have been investigated, in order to improve the e�-

ciency of such a system (or even change the underlining paradigm). For example, it could

be possible to back up the perforated plates by a porous material element, laying on a

rigid backing, in order to increase the frequency spectrum response. However, in such a

con�guration, the main possibility to shift the frequency response to lower frequencies is

by increasing the porous layer thickness. Another approach is then proposed by [2] and

[3], where the micro-perforate is supported by cavities into which tubes extend. In [2] the

analytical background for the perforated panel with extended tubes (PPET) is provided,

together as well with an optimization procedure for achieving the average best absorption

over a given frequency spectrum. In [3], a similar con�guration of a perforated plate with

extended plastic tube is presented and modeled both by a transfer matrix method and with

a Linearized Euler Equations (LEE) approach. Also, it is interesting that an experimental

4



example was used to validate these models in a grazing �ow con�guration. In both works,

the resulting e�ect of the tubes is to add further inertial and resistance terms to the ones

from cavity and perforated holes. These added terms depend on the relative length of the

tubes w.r.t. the cavity depth other than the cross-section area ratio (see �gure 1.3 for the

schematics of the systems).

(c) (d)

Figure 1.3 � Schematics of one unit of the four parallel-arranged PPETs from [2]:
(a) Side elevation and (b) front elevation. The perforated plate investigated in [3] is
shown by its (c) schematics and (d) realization of the perforated plate investigated in

[3]

.

Another approach which was able to push even further the subwavelength e�ciency of

the acoustic metamaterials (i.e. the ratio between its characteristic resonance wavelength

and thickness) was the one based on the "slow sound" concept. In this case, the idea is

to decrease the sound speed in the material in order to obtain attenuation at a frequency

lower than the natural frequency of the impedance. In such a sense, the acoustic liner is

5



working in the same way as before, but a shift in the resonance frequency is introduced as

large as the sound speed reduction therefore enhancing subwavelength attenuation. This is

straightforward to show, as for a quarter-wavelength resonator the resonance wavelenght is

H = λr/4 =
ce
4fr

→ fr =
ce
4H

(1.6)

where the quantities are the same as indicated above. Then, it is clear that the same liner

can reduce its resonance frequency by simply reducing the sound speed (inside its volume).

In [4], side branches are laterally included in a slit structure to create a locally reacting

impedance (see �gure 1.4). The conceived structure is proved, both from a modeling and

experimental point of view, to slow the sound speed and therefore deliver optimal absorption

at a critical wavelengths much larger than four times the typical length of the impedance.

Finally, another approach regarded with large interest in literature is the use of mem-

branes and vibrating materials. This approach has been investigated both from a passive

and active point of view, the di�erence being that in the latter case energy is given to the

system from an external source (e.g. a loudspeaker). Vibrating membranes have been �rst

investigated by [5] and used for a �rst application in [6]. Recent works have investigated

hybrid resonances obtained through a backed up cavity sealed o� and �lled with a low adi-

abatic index (i.e. low heat capacity ratio) gas [7].

Regarding the active solution, a largely investigated idea is to drive an electro-mechano-

acoustical system (i.e. a loudspeaker membrane) to adapt its impedance toward the optimal

value of the system. This is achieved through electroacoustic absorption (see [8]), which

can be obtained through many strategies (for further details see [9] and [10]). Even if these

solutions o�er a very interesting and e�cient answer to the noise mitigation challenge, the

situation can change when we consider the presence of an external �ow grazing over the

metamaterials surfaces.

In fact, several studies have investigated how such interactions were responsibles for un-

expected and surprising phenomena and therefore to be taken into account. In [11], the

6



performance of a classic perforated liner was analysed with and without a grazing mean

�ow. The experimental analysis was conducted with two sets of microphones before and

after the lined section, from which the scattering matrix can be obtained. In absence of

�ow, the transmission coe�cient shows an attenuation peak near the quarter-wavelength

resonance frequency of its locally reacting resonators. On the other hand, when a grazing

�ow is turned on, an actual ampli�cation (i.e. transmission coe�cient > 1) of the acoustic

wave appears around the same resonance frequency. Other works [12] show how the per-

formances for which metamaterials are designed in no �ow condition, very often deteriorate

greatly when a grazing �ow is present: in this case, a thin subwavelength coiled solution has

been analysed and results show that the presence of �ow reduces the transmission loss of the

metamaterial by a factor 100 (see �gure 1.4).

(a) (b)

Figure 1.4 � Outline of the material investigated in [12] (a) and its Transmission
coe�cient (b): blue/black marks are obtained without an external �ow, while the

green lines are with a M=0.2 �ow. A 100 factor increase in the Transmission curve
can be seen around the �rst resonance frequency. Figure from [12]

.

Together with newly available experimental investigations, also new theoretical consider-

ations have been an important push towards research in this �eld. In [13] the well-posedness

of the Ingard-Myers boundary condition for liners in grazing �ows has been investigated. It is

a very common way of modeling the interaction at the liner interface through its impedance.

However, as Brambley shows, this is proven to be ill-posed and therefore produce unstable

analysis, especially in time domain. Therefore, new research was needed in order to prop-
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erly model the aero-acoustic interaction for those applications where a mean �ow is present

such as aviation, ventilation or turbomachinery. To obtain new detailed informations of

this interaction in the vicinity of liners, optical techniques have proven to be very helpful:

in [14] the numerical investigation of the e�ects of �ow and high amplitude acoustics has

been carried out for SDOF liners. Here, the thesis focused on di�erent aspects of acoustic

propagation (mainly for a single perforated resonator) in a normal and grazing con�gura-

tion, for di�erent sound levels and in presence of �ow. The comparison with LDV data shows

good agreement in de�ning the mechanisms of dissipation, especially at large amplitude (e.g.

vortex shedding), as shown for example in �gure 1.5

(a) (b)

Figure 1.5 � Vorticity �eld for a grazing �ow (M = 0.1) con�guration for (a) 114
and (b) 140.5 dB sound level, at f=1592 Hz (�gure from [14])

The importance of including the aeroacoustic interactions is shown also in di�erent kinds

of applications, like acoustic directivity, cloaking and other innovative application. Most in-

vestigations about cloaking are either theorical or numerical and they ofter require extreme

parameters which also o�er frequency-dispersive metamaterials. Therefore they can work

in a limited frequency range. If the scatterer is put on a �at re�ective ground, cloaking is

easier to achieve [15], but these metamaterials cloak capability is disrupted when subjected

to an external �ow. However, when considering the presence of an external �ow, its in�u-

ence inside the metamaterial is neglected. If �ow is present, then the governing equations

are not anymore formally invariant and therefore cloaking is not achieved [16]. Therefore,

8



in these cases the �uid is considered quiescent. There has been various extensions to these

approaches by including a convective component to the Taylor transformation [15] or topo-

logical approaches. However, in these cases, the metamaterial is needed to be permeable to

the incoming acoustic waves which means that, at the same time, it would be exposed to the

aero-acoustic interaction due to an external �ow that could alter its performance. Then, in

order to concile these two needs, it is assumed that the metamaterial is shielded in some way

from the convective component (i.e. the external �ow) but not the acoustic one. Therefore,

these results are interesting but they can't indicate a practical way for their realization or,

alternatively, require the strong assumption that only the acoustics are able to enter the

metamaterial, while the �ow is not. Furthermore, sometimes it has been indicated that such

layer can be fabricated with a Kevlar layer. Therefore, a part of this thesis is devoted to the

investigation of an array of Helmholtz resonators in presence of an external �ow, with and

without a covering Kevlar layer. As the resonators alone produce dramatic e�ects with �ow

(i.e. whistling), it is shown that a Kevlar layer is able to suppress them, but at the same

time suppressing the e�ects of the metamaterial by introducing a very important acoustic

dissipation and that, contrary to what is often stated, it is not the magic layer advertised.

Finally, moving aside from the realm of metamaterials but in line with �ow e�ects on

materials, interesting e�ects can be observed on corrugated walls when an external mean �ow

is present. In these, self-induced oscillations which could result in fatigue-related failures or

noisy disturbances have been noticed and their nature linked to the corrugated surface of at-

tached piping inner layer [17]. Therefore, the investigation of the arising of these phenomena

is interesting both from a research and industrial point of view: in this thesis, the behaviour

of these interactions in the linear domain have been studied.

In the present thesis di�erent problems have been tackled, mainly from an experimental

point of view. Therefore, in Chapter 2, the experimental setup built has �rst of all been

shown in detail.

In Chapter 3, an experimental investigation by means of acoustic and optical measurements

9



of the aero-acoustic interaction along a corrugated plate has been carried out.

In Chapter 4 the in�uence of a kevlar resistive layer around a metamaterial (an in series

Helmholtz con�guration) has been investigated. Furthermore, in Chapter 5 an investigation

of a vibrating cantilever beam array in normal and grazing con�guration has been carried

out.

Finally, in Chapter 6 Conclusions are drawn.
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Chapter Two

Experimental Setup and Techniques

2.1 Introduction

In this section, the ensemble of the test rig and the experimental techniques have been

presented. While in the next Section the detailed dimensions of this test rig are presented,

the justi�cations of the design can be outlined here. As the investigations carried out in

this thesis are mainly focused around the linear regime, it was important to exlude any

higher order modal content (i.e. having only planar waves) from the measurements while

still operating up to mid range frequencies. In fact, the cut-on frequency for a square section

duct can be written as:

fcut =
c0
2H

(2.1)

where H = 40 mm is the height of the channel. For standard conditions, fcut ≈ 4300 Hz.

From this, it is clear that the upper frequency limit where only one mode is present is in-

versely proportional to the test section dimensions. Furthermore, it is important to notice

that both ends of the duct were equipped with anechoic terminations. This allows precise

Transmission-Re�ection measurements and suppresses any feedback signal which could lead

to whistling phenomena in the investigated problems.
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2.2 Test Rig

The test rig is a uniform rectangular duct whose section is B = 50 mm × H = 40 mm, see

�gure 2.1. In this duct, a mean �ow is produced by a centrifugal fan whose �ow rate can be

continuously adjusted up to a mean velocity of 85 m/s. The �ow velocity is measured by a

Pitot tube (diameter 2.1 mm) in the center of the rectangular duct and by Laser Doppler

Velocimetry (LDV). The duct has upstream and downstream anechoic terminations which

ensure low re�ection coe�cients on both side of the studied corrugated plate. The upstream

anechoic termination is sealed to prevent any leakage of the mean �ow From this upstream

termination up to the studied element, a 1.90 m long rigid pipe segment is installed to allow

a complete development of the �ow. The investigated element is located in a test section of

length L = 200 mm. To allow access for optical measurements, a side wall and the top wall

are made of glass, the �oor being the position of the tested acoustic treatments that can

be easily changed. Downstream of the test section, a second rigid duct segment connects

to the downstream anechoic termination. The sound �eld is produced by a compression

driver (Beyma CP850Nd) which can provide an acoustic level up to 150 dB SPL in the test

section over a frequency range from 500 to 4000 Hz. The acoustic source can be placed either

upstream or downstream of the studied element in order to obtain two di�erent states of the

system.

12



d1 d2 d3 d4u1u2u3u4 ldlu

(a)

(b)

Figure 2.1 � Schematic view (a) and photo (b) of the experimental setup

2.2.1 Microphones Setup

The test rig has been conceived so that both acoustic and optical measurements could be

carried out exactly on the same test section. In order to determine the transmission and

re�ection coe�cients, T± and R±, of the tested element, the upstream and downstream rigid

ducts are equipped with 4 microphones each. The superscripts +/− indicate whether the

quantities are calculated in the case of an acoustic propagation along or against the mean

�ow. Those eight quarter-inch microphones are mounted �ushed to the duct without grids

(B&K 4136 with Nexus 2690 ampli�er). The distances between the �rst microphone and

the test object are lu = 0.112 m, ld = 0.114 m. The distances between the microphones

are xu2−u1 = xd2−d1 = 0.030 m , xu3−u1 = xd3−d1 = 0.175 m and xu4−u1 = xd4−d1 = 0.462
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m. As the investigated frequencies are well below the cut-on frequency of the rigid straight

duct (i.e. 4287.5 Hz), only plane waves propagate to the test section. Thus, the pressure

at any point in the duct (su�ciently far from the source position and from any change in

the duct) can be described by p(x) = p(x)+e−jk+x+ p(x)−ejk
−x where k± is the wavenumber

accounting for the �ow and the visco-thermal losses in the acoustic propagation. The four

microphones at both side of the test section allow an over-determination of the incoming

and outgoing acoustic waves upstream and downstream of the tested element [11]. Using

the two acoustic sources to obtain two di�erent acoustic states of the system [18], the four

elements of the scattering matrix for plane waves (transmission and re�ection coe�cients on

both directions: T± and R±) can be evaluated.

2.2.2 LDV System

A 2D Laser Doppler Velocimetry (LDV) DANTEC 2D FlowExplorer system has been set

up and used to measure the vertical (V along y) and horizontal (U along x) velocities inside

the chosen cavity. Its lasers wavelengths are of 532 and 560 nm at a f=300 mm focus length.

The system has a measurement volume of 0.7 mm3 and its support system is capable of

displacing with a spatial resolution of 0.10 mm. Therefore, the resolution attainable inside

the cavity is hardly beatable by other (optical and not) techniques. The LDV system comes

together with a Burst Spectrum Analyzer (BSA) Dantec software which manages the laser

position in space and the acquisition procedure and allows measurements on a 2D points

grid in space. Regarding the acquisition procedure, main attention has to be given to the

synchronization between the laser and the acoustic source, in order to have measurements

throughout the whole reference signal period. This could be done by a phase-locked approach

but, in order to reduce errors (e.g. data folding over one period), and as we are working

at a single �xed frequency, a simpler approach was used. A source signal, produced by a

frequency generator, feeds both the loudspeaker through an ampli�er and the LDV trigger

14



entrance. This feeding signal is again split to the loudspeakers and reacquired into the LDV

acquisition system (so to always know the reference electronic signal fed to the system). In

this way, we can radiate a single frequency signal in the duct while having a reference trigger

for the acquisition system always identically synchronized at the same time reference. This

appears to be even more important when we have to correlate two sub-volumes data, which

was needed for the corrugated plate, as explained later in Section 3.2.1.

Finally, scattering particles are needed to measure quantities inside the free �ow. Here,

incense particles have been used since they produce favorable diameters smoke particles dc

[19], [20],[21], which equals to a Stokes number of Sk = (2πf/ν)1/2dc ∼ 0.006 − 0.008 if

we also consider the typical forcing frequency of 2 kHz and a dynamic viscosity of air of

ν = 1.81 ∗ 10−5[kg m−1s−1]. This value is obtained by applying the formula from [22]

Sk =
(ω
ν

) 1
2
dp (2.2)

where ω is the forcing frequency, ν the dynamic viscosity of air and dp the particle diameter.

2.3 Experimental Techniques

As described in the previous section, two di�erent experimental setups are available to carry

out acoustic measurements. In this section a brief description about these procedures is given.

2.3.1 Scattering Matrix Method

The �rst and more classic way of measure acoustic quantities is by the means of microphones.

In our case, the general idea is to retrieve the scattering matrix from the microphone mea-
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surements picked up outside the test section p+2

p+1

 =

[
S

] p−2

p−1

 (2.3)

where [S] is the scattering matrix and the subscripts 1, 2 indicates a �xed position before

and after the test section, respectively. As outside the test section, we only consider plane

waves propagation, it is possible to write:

p1 = p+1 e
−jk+x1 + p−1 e

jk−x1 = p+1

(
e−jk+x1 +R1e

jk−x1

)
p2 = p+2 e

−jk+x2 + p−2 e
jk−x2 = p+2

(
e−jk+x2 + 1/R2e

jk−x2

) (2.4)

where x1, x2 are the positions of microphones 1, 2 and R1,2 are respectively

R1 =
p−1
p+1

R2 =
p+2
p−2

(2.5)

Then, we are interested in retrieving the scattering matrix coe�cients

[
S

]
=

 T+ R−

R+ T−

 (2.6)

which are the transmission and re�ection coe�cients when the corresponding termination is

anechoic. For example

T+ =
p+2
p+1

,

R+ =
p−1
p+1

,

when p−2 = 0 (2.7)

and similarly for the other coe�cients. Then, we can write the scattering matrix as the link

between the downstream and upstream running pressures p+2

p+1

 =

 T+ R−

R+ T−


 p−2

p−1

 (2.8)
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which can be normalized by the p+1 pressure, giving T12

R1

 =

[
S

] 1

T12/R2

 (2.9)

where T12 =
p+1
p+2

If we want to retrieve the four scattering matrix coe�cients, the above

relation will require two di�erent measurements obtained at two di�erent system states.

The most common way to achieve this is either changing the termination load of the system

(i.e. changing the impedance of the termination) or by switching the position of the acoustic

source. The latter method has been used mainly because of its malleability and because

it allows us to work always with termination re�ection factors as small as possible. Then,

if it is possible to retrieve Eq. 2.8 w.r.t. two di�erent states (a), (b), we obtain globally 4

unknowns in 4 equations

 T
(a)
12

R
(a)
1

 =

 T+ R−

R+ T−


 1

T
(a)
12 /R

(a)
2


 R

(b)
2

T
(b)
21

 =

 T+ R−

R+ T−


 T

(b)
21 /R

(b)
1

1


(2.10)

where in this case T21 =
p−2
p−1
. Then, combining these two equations we retrieve the expressions

of the four scattering coe�cients

T+ = T
(a)
12

(
1− R

(b)
2

R
(a)
2

)(
1− T

(a)
12 T

(b)
21

R
(a)
2 R

(b)
1

)−1

R+ = R
(a)
1

(
1− T

(a)
12 T

(b)
21

R
(a)
1 R

(a)
2

)(
1− T

(a)
12 T

(b)
21

R
(a)
2 R

(b)
1

)−1

T− = T
(b)
21

(
1− R

(a)
1

R
(b)
1

)(
1− T

(a)
12 T

(b)
21

R
(a)
2 R

(b)
1

)−1

R+ = R
(a)
1

(
1− T

(b)
12 T

(a)
21

R
(b)
1 R

(b)
2

)(
1− T

(a)
12 T

(b)
21

R
(a)
2 R

(b)
1

)−1

(2.11)

17



These expressions link the scattering coe�cients to the transmission and re�ection co-

e�cients actually measured. Then, the last thing to be de�ned is how to retrieve these

coe�cients from the microphone measures.

Once the time signal has been acquired, a transfer function (which accounts for calibration

factors) between two microphones at two dinstinct positions can be de�ned as

Hij(f) =
pi(f)

pj(f)
(2.12)

where pi(f) is the Fourier transform of the pressure time signal pi(t). Then, the afore-

mentioned coe�cients can be rewritten as a function of these transfer functions by noting

that

p+j (xj) = p+1 (x1)e
−jk+1 (xj)

p−j (xj) = p−1 (x1)e
jk−1 (xj)

p+i (xi) = p+1 (x1)e
−jk+1 (xi)

p−i (xi) = p−1 (x1)e
jk−1 (xi)

(2.13)

and so

Hij =
e−jk+1 xi +R1e

jk−1 xi

e−jk+1 xj +R1ejk
−
1 xj

(2.14)

Finally, shu�ing the terms to express directly the re�ection coe�cient, we obtain

R1 =
H1

ije
−jk+1 xj − e−jk+1 xi

ejk
−
1 xi −Hijejk

−
1 xj

(2.15)

and similarly the other coe�cients are retrieved.

Lastly, it must be noted that 2 microphones (on both sides) are su�cient to retrieve the four

coe�cients. However, an overdetermination is foreseeable in principle, as it will improve

greatly the signal-to-noise ratio (over a larger frequency spectrum). In this case, we can

write the problem through a matrix form as
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

−H1
ije

jk−1 x1j + ejk
−
1 x1i 0 0

−H1
ike

jk−1 x1k + ejk
−
1 x1i 0 0

...

−H1
ine

jk−1 x1n + ejk
−
1 x1i 0 0

−H1
iie

jk−1 x1i + ejk
−
1 x1i 0 0

−H21
jj e

jk−1 x1j ejk
−
2 x2j e−jk+2 x2j

−H21
kke

jk−1 x1k ejk
−
2 x2k e−jk+2 x2k

...

−H21
nne

jk−1 x1n ejk
−
2 x2n e−jk+2 x2n



×


R1

T12/R2

T12

 =



−e−jk+1 x1i +H1
ije

−jk+1 x1j

−e−jk+1 x1i +H1
ike

−jk+1 x1k

...

−e−jk+1 x1i +H1
ine

−jk+1 x1n

−H21
ii e

−jk+1 x1i

−H21
jj e

−jk+1 x1j

−H21
kke

−jk+1 x1k

...

−H21
nne

−jk+1 x1n


(2.16)

and retrieve the solution through a least square approach.

2.3.2 LDV Technique

The Laser Doppler Velocimetry (LDV) is an optical technique used to measure the peculiar

velocity of a given �ow. The technique consists in measuring the frequency di�erence between

the laser signal scattered by some re�ective particles inside the �uid and a reference one. The

system uses two laser beams which, interfering with each other, create fringe patterns: the

refracting particle passing through these fringes will re-emit a light signal with a frequency

shift linked to its velocity and the fringe spacing, due to the Doppler e�ect. In Figure 2.2,

a schematic of the basic mechanism is shown. Two laser beams u1,u2 with an identical

wavelength λ0 are shed so to interference themselves at a given measurement point. When

a scattering particle with a velocity v0 passes at this point, it will di�use two waves which,

when superimposed, modulate in amplitude the light intensity at a frequency

FD = Fu2 − Fu1 =
1

λ0

v0 (u1 − u2) (2.17)
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or equivalently

FD =
vx
d

(2.18)

where vx is the velocity component normal to the two laser beams bysect. The distance d is

linked to the laser beams interference process: as these are highly coherent, their crossing cre-

ates interference patterns. Particularly, fringes characterised by high and low light intensity

appear inside a measurement volume (see Figure 2.2). The length d is the spacing between

two fringes peaks (or valleys). In the hypothesis of gaussian cylindrical beam pro�les, it can

be related to the the angle between the two laser beams θ0 and the laser wavelength λ0 by

d =
λ0

2 sin (θ0/2)
(2.19)

These fringes will occupy a measurement volume which depends on the characteristics of the

laser beam pro�le. If this can be considered gaussian, we can de�ne a focusing length df

df =
4wfλ0

πd0
(2.20)

where wf is the focal distance and d0 the beam diameter. Then, the length dx0 indicated in

Figure 2.2, can be calculated as dx0 =
df

cos(θ0/2)
. Finally, as mentioned in 2.2.2, in order to

detect a light signal, a scattering particle is needed inside the �ow but it should also point out

that the measured velocity will be that of a single particle: therefore, a large number of acqui-

sitions are required so to reconstruct in a statistical way the mean and variance of the bulk ve-

locity.

u1

u2

v0
vx

��

ddx0

Figure 2.2 � Schematics of an LDV measuring system
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The velocity retrieved in this way has three main contributions:

u = U0 + u′ + ut (2.21)

which are respectively the time-averaged, the phase-averaged coherent and the turbulent

velocity vectors. The phase-averaged component is the time dependent velocity at the fre-

quency of the acoustic source and therefore will be described as

u′ = a′ sin (2πfst+ ϕ) , (2.22)

where fs is the acoustic source frequency. The turbulent component ut accounts for the

remaining time dependent component inside the velocity signal.

In order to retrieve the periodic component of the velocity, measurements could be carried

out through a phase locked approach, where di�erent measurements at di�erent positions

along the fed signal cycle are needed. This implies that these data need to be folded inside

the same cycle, introducing a truncation error. In our case, as the signal frequency is known

and constant, we decided to directly investigate the presence of such a sinusoidal signal

(whose amplitude and phase have to be retrieved) inside the whole temporal acquired data.

The �rst step consists in checking that the signal frequency remains constant all over the

acquisition window. In fact, if the time window width becomes large (mainly according

to the seeding particle density at measurement point), this frequency could su�er a drift.

Therefore, the fed sinusoidal signal is also reacquired and these acquisition points are folded

into one cycle: if the drift exists, it will induce an uncertainty interval around the pure sine.

Then, a frequency correction which minimizes such spread is introduced and a corrected

frequency is obtained.

Figure 2.4-a shows the total, coherent and mean velocities for a single spatial position, while

in Figure 2.4-b the corresponding histogram points out the gaussian nature of the velocity

distribution. In Figure 2.4-a, the velocities have been folded over one period as a function
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of the phase, in order to enhance readibility. It can be noticed that the coherent velocity

component is rather smaller than the turbulent one, suggesting that, in order to reduce the

error in the coherent component, a large number of particle velocities is needed. This can

also be appreciated from Figure 2.3, where the amplitude and phase of the coherent velocity

have been traced as a function of the number of measured particles through the volume of

measurement. The subscript N represents the velocity measured for a given number N of

particles while the subscript s indicates the �nal `steady' value. We can see a convergence

towards the steady value as the number of retrieved particles increases.

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0.9

1

1.1

1.2

1.3

1.4

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0.8

1

1.2

1.4

1.6

1.8

(a) (b)

Figure 2.3 � Retrieved amplitude (a) and phase (b) of the vertical �uctuating
velocity at a given position in space as a function of the number of measured particles.

At this point, we could retrieve the �uctuating velocity component at this corrected

frequency with di�erent methods. However, as it can be inferred from Figure 2.5, the mains

task is to retrieve the phase-averaged component from a non-uniformly sampled signal. This

means that, in order to use any method based on Fourier transformed signals (FFT, Welch),

some kind of interpolation has to be introduced to have a uniform sampling and corrections

have to be adopted in order to deal with the related bias introduced. Another approach

is to keep the non-uniform sampling and adopt methods based on the minimisation of a

cost function. From literature [23, 24], it can be shown that a least-square based Maximum

Likehood (ML) method will asymptotically reach the theoretical lowest bound (i.e. the

Cramer-Rao bound) in independent Gaussian white noise conditions. This means that in

such conditions it will asymptotically achieve the minimum estimation error. Then, as the
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Figure 2.4 � Example of retrieved �uctuating horizontal velocity at a given position
in space (a) and relative histogram (b). The total acquired and the reconstructed

coherent velocities are shown in dots and solid orange line, respectively, after being
carried over a single (nondimensionalised) time period. Finally, the green dash-dotted

line represents the time-averaged velocity.

assumption of gaussian distribution of the turbulent velocity components is usually well put

and therefore makes the method viable. Finally, the algorithm has been tested on a synthetic

sinusoidal signal at sampling conditions close to measurements giving satisfactory results.

The ML model tries to minimize the squared di�erence between the measured signal and

a pure syntethic sinusoidal signal, whose frequency is known and equivalent to our source

signal.

This means that, if the velocities available data are x[n] at discrete times tn, for n ∈ [0, N−1],

the aim is to �t these data with the following model

x̂[n] = α0 sin(2πF0tn + ϕ0) + C ≡ Asn +Bcn + C, (2.23)

with F0 and tn known, α0, ϕ0 and C unknown. We also note A = α0 cos(ϕ0), B = α0 sin(ϕ0),

ϕn = 2πF0tn, sn = sin(ϕn) and cn = cos(ϕn). Furthermore, we suppose that

x[n] = Asn +Bcn + C + b[n], (2.24)
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Figure 2.5 � Example of horizontal retrieved �uctuating velocity over a small part of
an acquisition window (total width is 0.08 s). The solid green ( ) line represent the
time-averaged velocity, the + symbol represents the total retrieved velocity, while the

solid blue ( ) line represents the �tting sine model

with b[n] a white gaussian noise with variance σ2
b .

Then, from the available data x[n] and from the model x̂[n], we de�ne the cost function

J = E[(x[n]− x̂[n])2] = E[(x[n]− Asn −Bcn − C)2] =
1

N

N−1∑
n=0

(
(x[n]− Asn −Bcn − C)2

)
(2.25)

where E[·] represents the expectance operator which, under the classical assumption of er-

godicity, may be replaced by the summation 1
N

∑N−1
n=0 as above.

Then, di�erentiating J according to the unknown vector θ = {A,B,C} leads to
∂J
∂A

= 0 = AE[s2n]− E[snx[n]] +BE[cnsn] + CE[sn]

∂J
∂B

= 0 = BE[c2n]− E[cnx[n]] + AE[cnsn] + CE[cn]

∂J
∂C

= 0 = C − E[x[n]] + AE[sn] +BE[sn]

(2.26)

or, equivalently, 
E[s2n] E[cnsn] E[sn]

E[cnsn] E[c2n] E[cn]

E[sn] E[cn] 1

 ·


A

B

C

 =


E[snx[n]]

E[cnx[n]]

E[x[n]]

 (2.27)
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And then, �nally
A

B

C

 =


E[s2n] E[cnsn] E[sn]

E[cnsn] E[c2n] E[cn]

E[sn] E[cn] 1


−1

·


E[snx[n]]

E[cnx[n]]

E[x[n]]

 (2.28)

where, under our hypothesis, the terms of the matrix can be written as

1

N

N−1∑
n=0

s2n ,
1

N

N−1∑
n=0

sncn, ... (2.29)

It could be interesting to estimate the Cramer-Rao bound, i.e. the minimum variance of any

unbiased estimator of the unknowns, we have to estimate the Fisher matrix.

Assuming that x[n] are gaussian distributions, we can de�ne the N-dimensional conditional

probability density function as

p(xn, θ) =
1√

(2πσ2
b )

N
exp (x[n]− (Asn +Bcn + C)) (2.30)

and then retrieve the Fisher matrix as

I(θ) =


−E

[
∂2 log(p(x;θ)

∂A2

]
−E

[
∂2 log(p(x;θ)

∂A∂B

]
−E

[
∂2 log(p(x;θ)

∂A∂C

]
−E

[
∂2 log(p(x;θ)

∂B∂A

]
−E

[
∂2 log(p(x;θ)

∂B2

]
−E

[
∂2 log(p(x;θ)

∂B∂C

]
−E

[
∂2 log(p(x;θ)

∂C∂A

]
−E

[
∂2 log(p(x;θ)
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(2.31)

which equals the �rst left hand side matrix calculated in Eq. 2.28 times the multiplicative

factor N
σ2
b
. Taking as example the approximated case of zero extra-diagonal terms (i.e. ϕn
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uniform in the cycle [0, 2π]), by noting that sin2(x) = 1−2 cos(x)
2

, cos2(x) = 1+2 cos(x)
2

, the

inverse of the Fisher matrix assumes the form

I−1(θ) ≈


2N
σ2
b

0 0

0 2N
σ2
b

0

0 0 N
σ2
b

 (2.32)

which translates that the θ variance limits will be

V ar(A) ⩾
2σ2

b

N
, V ar(B) ⩾

2σ2
b

N
, V ar(C) ⩾

σ2
b

N
(2.33)

2.4 Conclusions

In this section, the test rig was presented, together with the experimental techniques adopted.

A waveguide was conceived in order to conduct acoustic measurements in the linear regime

up to 4300 Hz. Furthermore, the duct ends were equipped with anecoich terminations, in

order to reduce end re�ections and therefore eliminate any feedback loop behaviours and

allow high precision measurements. Also, the test section was made with a glass lateral wall,

in order to allow optical and acoustic measurements to be carried out at the same boundary

conditions.

Regarding the measurement techniques, mainly Transmission-Re�ection acoustic measure-

ment and Laser Doppler Measurements were performed. The former are obtain by the means

of two groups (of 4 microphones each) put before and after the test section. By knowing

the relative positions of these microphone, their measurements can be used to determine the

scattering matrix of the acoustic waves incoming and outgoing from the test section. To do

this, two states of the system are needed, which were obtained by switching the acoustic

source in an upstream and downstream position.

The optical measurement were taken out by means of a laser technique: scattering particles

going through the fringe patterns created by these laser beams will generate a Doppler shift
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which, when measured, will indicate their total velocity. As shown in the previous section,

from this measured velocity, the coherent velocity was isolated with a least square approach

with an error inversely proportional to the number of scattered velocity samples.
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Chapter Three

Linear investigation of sound-�ow

interaction along a corrugated plate

3.1 Introduction

Corrugations are a technological solution used to meet the needs for strength and �exibility

of pipes in industrial applications (e.g. gas extraction). However, intense whistling can

occur in these pipes, which can lead to fatigue-related failures and noise disturbances [25,

26]. The �rst investigations on corrugated tubes focused on the whistling behaviour in order

to identify the main parameters underneath. The driving mechanism inducing whistling

is a feedback-loop between two systems, a �uid-dynamic and an acoustic one. The free

shear layer past a cavity is unstable: an instability could create a feedback loop when it

encounters the trailing edge of the cavity. In this case, it will self sustain and behave as a

sound ampli�er. When the natural frequency of this ampli�er is close to one of the acoustic

resonance frequencies of the corrugated tube, then an energy transfer is possible and a

feedback loop is created (see for example [27, 28, 29] and Figure 3.1 for a schematic image

where fv is a general feedback frequency). Speci�cally, the acoustic system act as a �lter, as

the standing wave resonance frequencies are discrete, ampli�cation can be obtained around

these discrete points. It is possible to identify a linear and a nonlinear ampli�cation regime.
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The latter is characterised by large and discrete vortex structures that can produce whistling

and the acoustic power grows linearly with the amplitude of the hydrodynamic perturbations.

In the linear regime, on the other hand, vorticity is at a smaller scale, while the acoustic power

grows quadratically with hydrodynamic perturbations amplitudes. Recent literature has

focused mainly on whistling and the nonlinear regime, in order to characterise this striking

e�ect, both from an experimental and numerical point of view. In [30], the ampli�cation

characteristic Strouhal numbers were identi�ed, as well as the saturation mechanism of the

perturbation velocity which separates linear and nonlinear behaviours. Several other works

[31, 32, 33] investigated the details of corrugated walls and side cavity branches in their

similarities and di�erences. In all these works, a detailed analysis of the literature focused on

the nonlinear regime can be found. In the case of moderate to high amplitude perturbations

the shear layer vorticity concentrates into discrete vortices shed at the upstream edge of the

cavity. To model this behaviour a Discrete Vortex (DV) model has been developed[34, 35,

36]. One of the �rst application is shown in [37], where a single vortex is shed everytime the

acoustic velocity changes its direction inward/outward the cavity. This vortex then moves

at constant velocity along the cavity width. In this model, the vortex convective speed is an

empirical parameter of the problem and therefore also the Strouhal number. In a di�erent

approach [38], vorticity can be thought as distributed along an in�nitely small shear layer in

a Continuous Vortex (CV) model: the distributed vorticity eliminates the vortex singularity

at the upstream edge of the cavity. In [39], this model improves the estimations of the

acoustic power when compared with the results from [36]. However, also in this case, the

lenght of the vorticity strip is inherently an empirical parameter to be �tted.

Regarding the linear regime, on the other hands, literature lacks both experimental and

theoretical results. Experimental data of the linear aeroacoustic �eld in the linear regime

are scarce (e.g. [40]) and they give mainly a global analysis of the aeroacoustic interaction.

Theoretical works based on the stability theory from [41] tried to assess the shear layer

perturbation due to the acoustic forcing but failed in explaining fundamental e�ects. Others,
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like in [42], used an in�nitely small shear layer whose vertical displacement represents the

driving mechanism for the cavity oscillations due to the Kelvin-Helmholtz instability. In all

cases, the di�erence w.r.t. experimental data remains large.

U �

W

fv

Figure 3.1 � Schematic view of the impinging mechanism along a corrugated surface.

Therefore, the main target of the present study is to retrieve, by means of Laser Doppler

Velocimetry (LDV), the aeroacoustic �eld inside a single cavity of a corrugated plate oper-

ating in a linear regime and check whether the aforementioned models remain applicable.

For this reason, a con�guration with small cavities and small amplitude perturbations have

been chosen in a non-whistling case. In sections 3.2.1 and 3.2.2, the experimental rig and

the investigated corrugated plates are introduced. The acoustic and optical results, as well

as the retrieved acoustic power, are presented in section 3.3.

All LDV and acoustic measurements can be found at [43].
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Figure 3.2 � Schematic view of the experimental setup.

3.2 Experimental Setup

3.2.1 Test Rig

The test rig is a uniform rectangular duct whose section is B = 50 mm × H = 40 mm and

has been described in details in Section 2.2. Here, it has been quickly described and shown

in Fig. 3.2. In this duct, the �ow velocity is measured by a Pitot tube (diameter 2.1 mm)

in the center of the rectangular duct and by Laser Doppler Velocimetry (LDV).

3.2.2 Corrugated Walls

The studied corrugated plate is shown in Figure 3.3-b. It is a 200 mm long anodized plate

characterized by an array of 16 cavities: each cavity measures 4x4x50 mm3 (covering the

entire transverse span B = 50 mm of the duct), has square and sharp edges on both sides

and is separated by a 12 mm pitch. The cavity investigated is the third from the end of the

plate (w.r.t. the �ow direction) because here the boundary layer is fully developed.

To have a phase reference, the horizontal periodic velocity u′
ref

was measured away from

the corrugations in the central part of the duct (reference box on Figure 3.4-a). Indeed, in

the central part of the duct, it is possible to consider that the hydrodynamic disturbances are

low and that the horizontal periodic velocity is only due to the acoustics. Thus, the value of
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(a) (b)

Flow

Figure 3.3 � (a) Schematic view (not at scale) of the optical experimental setup and
(b) picture of the investigated corrugated plate.

the horizontal acoustic velocity (averaged over the reference box) was taken as a reference for

the amplitude of the incident acoustic wave and, more importantly, as a phase reference that

does not depend on the acoustic path between the source and the measurement position.

Therefore, all phase values presented in the following are taken relative to this reference.

3.2.3 Mean Flow in the Setup

In this section, we look at the mean quantities associated to the �ow. Figure 3.5-a,b and

�gure 3.5-d,e display the mean horizontal and vertical velocity contours when the upstream

source position is working at 1400 Hz and 2000 Hz. We can see that the velocity �eld is well

resolved and there is no major di�erence between the two measurements in the mean velocity

distribution. This is further con�rmed in �gure 3.5-c, where the horizontal velocity is shown

along the vertical lines indicated in plain and �lled symbols, which correspond to the lines

for x = 0,W/3, 2W/3,W . We can see that the curves are similar for the two frequencies

and that, outside the cavity, the velocity pro�le of the shear layer doesn't change with the

longitudinal position. Equally important is to notice from the streamlines in �gures 3.5-d,

that this shear layer is layed out above a recirculation zone, regardless of the frequency case.

In �gure 3.6-c, the velocity pro�les along the vertical lines at x = 0,W/3, 2W/3 for the
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Figure 3.4 � (a) Position of the measurement box and of the reference box. (b)
Values of the mean vorticity for M∞ = 0.07.

2000 Hz case, are again shown, from inside the cavity up to the centerline of the channel.

In this case, the velocity pro�les are shown in the so called wall coordinates y+ = yν/Uτ

and u+ = U0/Uτ , where ν is the dynamic viscosity of the air and Uτ is the friction velocity

de�ned through the shear stress τ = µdU0/dy|w at the wall as Uτ =
√
τ/ρ. This velocity

was obtained from the slope of the velocity inside the logarithmic layer [44, 45] and its value

is found to be 1.01ms−1. Two layers are then identi�ed: the above mentioned logarithmic

layer, closer to the wall, and an external core layer, where the viscosity due to the turbulence

νt is supposed to be constant. In the �rst, a velocity pro�le of the kind

u+ =
1

K
ln

(
1

K
+ y+

)
+ 5.5 (3.1)

is obtained, while for the core layer, a parabolic pro�le is retrieved

U∞ − U0

Uτ

=
HUτ

2νt

(
1− y

H

)2
(3.2)
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where H is the channel half-height and K is the von Karman constant, K = 0.41. These

two layers match around y+ = 120 (i.e. y ≈ 2 mm) while a viscosity νt = 8.02 · 10−4 m2s−1

is retrieved. In �gure 3.6-b, a cavity close-up of the horizontal mean velocity U0 along the

same three lines is shown. The boundary layer outside the cavity seems to remain unchanged

along the cavity length (for y > 0.2 mm), while this is not true for the shear layer inside

the cavity itself. Inside the cavity, the velocity changes until it reaches an almost steady

value. Then, we can de�ne the thickness of the shear layer as the distance between these

two points. For the x = 0 position, this is roughly 0.6 mm, while for the x = 2W/3 mm

this grows up to 1 mm.

3.2.4 Acoustic velocity Modeling

As shown later in section 3.4, in the present con�guration, the acoustic power can be de-

scribed by the Howe analogy, which basically accounts for the interaction between a Coriolis

force (i.e. the −ρ0 (ω × u) term, where u and ω are the total velocity and vorticity vectors,

respectively, and ρ0 the density of the �uid. As from the measurements it is not feasible to

extract only the acoustic potential velocity component, it is necessary to obtain it through

modelling. There are several ways of solving the compressible �ow �eld, but a rather simple

way was to use the commercial code COMSOL. To retrieve the acoustic velocity in quiescent

conditions (as the Mach number considered is very small), the ACPR Module was used,

which solves the acoustic pressure propagation in the frequency domain.

In �gure 3.7 we can observe the potential �ow�eld obtained for a single cavity: the net

�ow entering in the cavity is zero and the minimum and maximum velocity values appear

at the leading and trailing edge, respectively. Since this is a potential �ow, the velocity us

in all points of the domain is de�ned w.r.t. a reference (i.e. a boundary condition) value.

Therefore, we need to scale the simulated velocity to the actual velocity �eld at a reference

"free stream" position (i.e. the "reference box" indicated in �gure 3.7). At this position, the
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Figure 3.5 � Horizontal mean velocity for the upstream source case at (a) 1400 Hz
and (b) 2000 Hz. In (c) the velocity close to the cavity is shown along the vertical

lines as indicated in the (a-b) �gures. The plain and �lled symbols represent the 1400
and 2000 Hz case, respectively. The vertical mean velocity has been shown for the (d)

1400 and (e) 2000 Hz cases, together with streamlines.
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Figure 3.6 � Horizontal mean velocity for the 2000 Hz upstream source case (a).
The velocity is shown along three vertical lines corresponding to the

x = 0, 1/3W, 2/3W horizontal positions, to which the ◁, ▷, △ symbols corresponds. In
(b) a zoomed �gure of the same velocities inside the cavity is shown, while in (c) the
analytical curves are plotted together with the experimental ones in wall coordinates.
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measured horizontal coherent velocity component is the actual acoustic velocity.

vac/u'ref
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Figure 3.7 � Potential velocity �eld contour as obtained from the COMSOL
simulation. The reference box indicates where the reference velocity was calculated.

The zoomed-in contour shows the velocity �eld close to the cavity while the underlying
plot shows the potential velocity along three horizontal lines above the cavity lid.

3.3 Results

3.3.1 Acoustic measurements

The corrugated plate is �rst characterised by acoustic measurements. Using the 2 × 4 micro-

phones placed on each side of the plate, the transmission and re�ection coe�cients are mea-

sured with and without �ow. The magnitudes of the transmission coe�cients (along/against

the �ow, T+ and T− respectively) are given in �gure 3.8.

In the no-�ow case, due to reciprocity, T+ and T− are quite identical and the di�erences

between both curves are only due to measurement errors (limited to 0.5%).The deviation to

1 of these curves indicates that visco-thermal losses are present along the walls of the duct

corrugated on one of its faces.
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M=0

M=0.07

Figure 3.8 � Absolute value of experimental transmission coe�cients without �ow
and with �ow (M = 0.07). The continuous lines represent |T+| and the dashed lines

|T−|.

When the �ow is present, several observations can be made. First, the |T+| and |T−|

curves are no longer the same, meaning that reciprocity is lost. Secondly, it can be noted that

the transmission curves oscillate around the no-�ow value. At low frequencies (f < 1800

Hz), the attenuation with �ow is greater than in the no-�ow case. Then, over a speci�c

frequency range (1880 Hz < f < 3100 Hz for T+ and 1820 Hz < f < 2400 Hz for T−), the

�ow reduces the attenuation. This kind of behavior has already been observed in cylindrical

corrugated pipes [40] as well as in the e�ect of �ow on a rectangular slot in a wall [46]. The

last point to note is that the transmission coe�cients always remain below unity. This means

that the acoustic losses due to visco-thermal e�ects are not compensated by hydrodynamic

e�ects. As a result, and contrary to what would happen with a cylindrical corrugated pipe

with similar cavities [40], this plate cannot start a whistling process at this �ow velocity.

This is mainly due to the fact that, unlike a cylindrical pipe where the entire inner surface is

corrugated, only the lower quarter of the channel is corrugated here. The Strouhal number

at the frequency (f = 2200 Hz) for which the hydrodynamic ampli�cation is maximum for
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Figure 3.9 � Normalized experimental sound power generated by the grazing �ow
(M = 0.07). The solid line corresponds to the �ow with incident sound in the same
direction and the dashed lines to the case where waves travel against the �ow. The red
dashed arrows point out the frequencies at which the LDV measurements were carried

out.

T+ is given by

St =
fW

Um

= 0.37,

where W = 4 mm is the cavity width in the �ow direction and Um = 24 m.s−1 is the mean

velocity of the �ow. Since this value is close to that found in cylindrical pipes (St ≃ 0.4,

[30, 40]), it can be assumed that the same underlying physical phenomenon occurs in the

two-dimensional (2D) case and in the cylindrical case.

From the scattering matrix measurement, it is also possible to estimate the sound power

produced (or absorbed) at each frequency by the grazing �ow. The ratio of the produced

sound power to the incident sound power is given by [47]:

P± = |T±|2 + (1∓M)2

(1±M)2
|R±|2 − 1. (3.3)

The di�erence between the P± evaluated with and without �ow gives the sound power

produced by the �ow and normalized by the incident sound power. This is shown in Figure

3.9.
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3.3.2 LDV Results

In this section, the interactions between acoustics and hydrodynamics are investigated using

LDV. First, it is possible to see in �gure 3.10(a) that the periodic velocity �eld is well re-

solved with the LDV technique, except, perhaps, in the vicinity of the wall angles where the

measurements are slightly under-resolved. Each pixel in the �gure 3.10(a) represents a mea-

sured value of the vertical periodic velocity v′/|u′
ref
|. The measured coherent velocities have

been nondimensionalised with the respective horizontal coherent velocity at the reference

position uref in order to have a proper comparison between the sets of measurements.

The periodic �eld is characterized by very clear structures that move horizontally at the

cavity lid. Figure 3.10(b,c) gives the amplitude and the phase of the periodic vertical velocity,

respectively, along the cavity which is represented for six horizontal lines corresponding to

the axis y = 0, 0.1 ... 0.5 mm (y = 0 mm is the surface of the plate). The slope of the phase

indicates the convection velocity of the structures. In this particular case, the variation of

the phase is nearly linear, indicating a constant convection velocity given by the slope of

the straight line. Surprisingly, the maximum amplitude of v′ is rather constant over the

length of the cavity as can be seen in �gure 3.10(b). In general, an exponential increase

of the disturbance is expected, whereas here there is only a slight increase over the length

of the cavity. In �gure 3.11, the horizontal coherent velocity is shown. Here, the coherent

structures are more elongated in the horizontal direction and their amplitude decreases when

arriving close the trailing edge of the cavity due to the presence of the wall.

The coherent vorticity ω′ = ∂yu
′ − ∂xv

′, nondimensionalised by the reference vorticity

ωref = |uref|/W , is depicted in Figure 3.12. This vorticity is computed using the central

di�erence for inner data points and using one-sided di�erences for the edges of the domain.

The periodic vorticity is tightly packed at the leading edge of the cavity (w.r.t. the trailing

edge) and the phase has the same linear variation as the vertical velocity. Then, in this linear

regime, the measured structures are associated with a vortical hydrodynamic perturbation

40



-2 -1 0 1 2 3 4 5 6

10-3

0

0.5

1

1.5

2

2.5

-0.4 -0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4
-8

-6

-4

-2

0

2

4

6

v'/|uref||v'|/|uref|

(a)

(b) (c)

-2 0 2

v'/|uref|

ua
�����

ua
������

ua
���

ua
������

ua
������

ua
����

Figure 3.10 � Normalized vertical periodic velocity v′/|u′
ref| colormaps (a) at

di�erent relative phases: ϕs = π/3, 2π/3...2π for the upstream 2000 Hz source position
and M =0.07. Vertical periodic velocity amplitude (b) and phase (c) along the six

horizontal lines corresponding to y = 0, 0.1, ... , 0.5 mm. The thick black line in (c)
is the average over the six values and the blue straight line is a linear �t.
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Figure 3.11 � Normalized horizontal periodic velocity u′/|u′
ref| colormaps at di�erent

relative phases: ϕs = π/3, 2π/3...2π for the upstream 2000 Hz source position and M
=0.07

at the leading edge of the cavity. However, periodic vorticity cannot be considered to be

concentrated on an in�nitely thin line nor at a point. Thus, none of the simplest models,

i.e. shear layer oscillations that increase exponentially with distance from the upstream edge

[48, 49] or shear layer oscillations that break down into discrete vortices [36], can be applied

here. This is due to the �nite thickness of the mean shear layer with respect to the size of

the cavity [37].

Furthermore, from �gure 3.13, we can see that the vorticity structure is composed of

counter-rotating vorticity zones tightly packed. At the leading edge, the vorticity is governed

by the term −∂u′/∂y, while, at the trailing edge, it is the term ∂v′/∂x which prevails. This

could be expected, as at the leading edge the sudden expansion along y is the dominating

e�ect, while at the trailing edge the hard wall imposes a strong x gradient. At the beginning

of the cavity, we can observe counter rotating vorticity zones (almost) stacked on top of each

other. This is due to the u′ pro�le shape which is not monotonic: instead, a crest shape can

be observed, whose maximum is around y = 0 (as shown in �gure 3.13-inset). This is due
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Figure 3.12 � Normalized vorticity ω′/ω′
ref| colormaps at di�erent relative phases:

ϕs = π/3, 2π/3...2π for the upstream 2000 Hz source position and M =0.07.

to the interaction between the potential acoustic velocity (which would be in�nite at the

sharp edge) and the hydrodynamic velocity through the Kutta condition. Therefore, when

u′ is positive, this translates in a positive vorticity area on top of a negative one. Near the

trailing edge, instead, the vorticity distribution ω′ is similar to the v′ distribution (as here

the term ∂v′/∂x dominates), where wider opposite sign zones follow each other.

To test the linearity hypothesis, the corrugated plate was exposed to two di�erent sound

levels, while keeping all other parameters constant. By decreasing the voltage supplied to

the source, the horizontal sound velocity in the reference box u′
ref

was reduced from 0.56

m.s−1 to 0.24 m.s−1 (7.5 dB decrease, see table 3.1). The colormaps of the vertical periodic

velocity normalized by u′
ref

are presented in �gure 3.14. Despite some minor di�erences,

the normalized velocities are globally similar, which indicates the linearity of the studied

phenomena. It should be noted that in the case of lower amplitudes, the signal-to-noise

ratio is lower, which leads to less accurate and more di�cult measurements.
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Figure 3.13 � Normalized vorticities (a) −(∂u′/∂y)/ωref, (b) (∂v
′/∂x)/ωref and (c)

their sum ω′/ω′
ref colormaps at ϕ = 0 for the upstream 2000 Hz source position and M

=0.07 case. The inset indicates the horizontal u′/|uref| velocities and vorticity ω′/ωref

along the x = 0 line.
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Figure 3.14 � Nondimensionalized vertical periodic velocity colormaps for the (a)
low and (b) high amplitude acoustic source cases at ϕs = π/3.
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Frequency Source Position Sound Level

f = 1000 Hz Upstream 140 dB

f= 1400 Hz Upstream 140 dB

Downstream 140 dB

f = 1700 Hz Upstream 140 dB

f = 2000 Hz Upstream 140 dB

Upstream (low amp) 132.5 dB

Downstream 140 dB

Table 3.1 � LDV measurement con�gurations

In the following subsections, di�erent setup con�gurations have been studied as shown in

the table 3.1. These con�gurations have been chosen in order to investigate the e�ects of the

position of the sound source (w.r.t. the direction of the mean �ow) and its frequency. Also,

a separate subsection is devoted to the discussion of the convective velocity of aeroacoustic

structures.

Frequency e�ects

In this section, we analyze the corrugated plate for two di�erent values of the source fre-

quency: 1400 and 2000 Hz. These two con�gurations are detailed in Table 3.1 and the only

di�erence is the source frequency: the value of 2000 Hz corresponds to a (nearly) maximum

produced acoustic power (w.r.t the baseline no-�ow case), while the 1400 Hz corresponds

to an absorbed one. From Figure 3.15, it is possible to appreciate how frequency di�erence
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creates a di�erent relative position of the maxima and minima in the velocity �eld, for the

f = 2000 and 1400 Hz upstream source cases. Furthermore, we can see that in the 2000 Hz

case, a third positive velocity area appears at the trailing edge of the cavity. It is important

to outline that the velocity distribution is directly responsible for acoustic production, as

shown in the later Section 3.4. These structures are characterised by a wavelength λi which

is given by

λi =
Uc

fs
(3.4)

where fs is the source frequency and Uc is the velocity at which such structures are convected

downstream, i.e. the convective velocity. For the 1400 Hz case (3.15-a), this length is

λ1/2 ≈ 2.7 mm while for the 2000 Hz case (3.15-b) the length is λ2/2 ≈ 2.2 mm. On the

other hand, the ratio between the lengths λ1 and λ2 is not exactly equal to the inverse of

the frequency ratio, as one might expect: while the ratio of lengths is ≈ 1.23, the inverse

ratio of frequency is ≈ 1.43 suggesting that the velocity of propagation of disturbances is

a function of frequency. This is shown in �gure 3.16, where the vertical coherent velocity

phases have been traced along the cavity. As this slope is directly linked to the convective

velocity through the acoustic frequency as

Uc =
2πfsW

|∆ϕ/W |
(3.5)

where now |∆ϕ/W | is the phase slope, we can see that the convective velocity grows with

the signal frequency at most 16%. This result challenges the common assumption, when

modeling the shear layer ampli�cation in the linear regime, that this velocity is constant.

Acoustic Source Position E�ect

In this paragraph, we are interested in analysing the e�ect of the of the relative direction of

propagation between the acoustic wave and the �ow. The main discrepancy introduced by

the di�erent propagation direction of the acoustic wave is a phase di�erence. As the measure-
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Figure 3.15 � Vertical periodic velocity (Real part) colormaps for the
fs = 1400 (a), 2000 (b) Hz upstream cases, ϕ = 4/3π
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Figure 3.16 � Vertical periodic velocity phases (a-d) along the six horizontal lines
corresponding to y = 0, 0.1, ... , 0.5 mm for the fs = 1000, 1400, 1700, 2000 Hz
upstream cases. In (e) the convective velocities calculated from the phase slopes for

the same four cases are shown.
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Figure 3.17 � Vertical periodic velocity (Real part) colormaps for the (a) downstream

and (b) upstream fs = 2000 Hz cases, ϕ = 0. In (c) the vertical periodic velocity
phases calculated along the corresponding indicated coloured lines are also shown

ments are taken w.r.t. the reference box, we can see that, at the same phase reference, for

the downstream case, the velocity structures are lagging behind by a small phase di�erence.

This can be directly seen from the periodic velocity colormaps, as done in the precedent

paragraph and shown here in Figure 3.17, which show the vertical periodic velocity for the

two cases. It can be seen that the same �eld structures are retrieved and in the downstream

case the cores of these structures are slightly closer to each other (again, from eq. 3.4, we can

measure λd = 2 mm for the downstream case while λu = 2.2 mm for the upstream one). The

same results, not shown here, have been obtained at the forcing frequency of fref = 1400

Hz.
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Leading Edge Shape E�ect

The leading edge of the cavity can also have an in�uence on the velocity �eld inside the

cavity. As shown by [30], this e�ect can be globally accounted for through some corrective

added length, in the calculation of the Strouhal number corresponding to the peaks and

valleys of acoustic power curve. In Figure 3.18, the vertical velocity �eld is shown for two

types of leading edges, a rounded edge and the sharp one, for a source frequency of 2000 Hz.

It is possible to appreciate that, at the same phase reference, the velocity �eld is sligthly

earlier for the rounded edge case. This result is similar, but accentuated, to what has been

found by shifting the acoustic source from an upstream position to a downstream one. For

this reason, this justi�es the acoustic power curve characteristic frequencies towards lower

values.

(a) (b)

���
-2 0 2

v'/|uref|

Figure 3.18 � Acoustic pressure contours for the (a) rounded and (b) square
upstream cavity edge at f = 2000 Hz and M=0.07.

3.4 Acoustic Power

Considering an homoentropic �ow (with the additional constraint of a low Mach number),

Howe [50] computed the acoustic power formulation as follows:

⟨PH⟩ = −
∫
V

ρ0⟨(ω × u) · ua⟩dV =

∫
V

⟨(Fxua + Fyva)⟩dV, (3.6)

where ω = (Ω0 + ω′) .z, u = (U0 + u′) .x+ (V0 + v′) .y and ua = ua.x+ va.y are respectively

the total vorticity, the total velocity and the acoustic (i.e. potential) velocity of the �ow,
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while F = Fx.x+Fy.y = −ρ0 (ω × u) is the Coriolis force vector. The symbol ⟨ ⟩ represents

the average over one time period. In the case of complex functions, such average can be

directly computed as (e.g. for the �rst term inside the integral of eq. 3.6) :

⟨Fiua⟩ =
1

2
Re
(
F̄iua

)
(3.7)

for i = x, y and F̄i is the complex conjugate of vector Fi.

It is interesting to notice that the vector product F = (Fx, Fy) = −ρ0 (ω × u) is composed

of an horizontal and a vertical Coriolis force term (by unit volume). As explained in section

3.2.4, since the acoustic velocity in Eq. 3.6 cannot be measured directly, a COMSOL fre-

quency domain simulation was carried out to solve the Helmholtz equation. Furthermore,

the acoustic power is nondimensionalised w.r.t. a reference power calculated as follows:

Pa =
|uref|2ρ0c0

2
(3.8)

since, in a centerline position, the relationship pinf/uref = ρ0c0 is a fair assumption and the

periodic horizontal velocity equals the acoustic velocity, i.e. uref ≈ ua.

It should also be noted that from the vector F = −ρ0 ((Ω0 + ω′)× (U0 + u′)), when the time

average inside eq. 3.6 is carried out, the inner product of the mean values do not contribute,

while, at order one, the inner product of the coherent terms can be neglected. Then, each

component of the vector F can be written as

Fx = ρ0 (ω
′V0 + Ω0v

′) (3.9)

Fy = −ρ0 (ω
′U0 + Ω0u

′) (3.10)

Therefore, each component of the Coriolis force can be split into two contributions and

the total acoustic power will result from their inner product with the acoustic velocity. In

other words, the more the Coriolis vector is aligned along the acoustic velocity streamlines,

the larger the acoustic production will be. We can then de�ne, in a de�nitely improper

but practical way, an 'horizontal' and 'vertical' acoustic power as the contributions due to
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the corresponding horizontal and vertical Coriolis forces. In �gure 3.19, these components

are shown, time-averaged, for the 2000 Hz upstream source case, together with the total

acoustic power distribution. It is interesting to notice that the two contributions inside each

component of the Coriolis force are of the same order of magnitude, while, on the other

hand, they are not at all similarly distributed. In the following sections we consider the

spatial distributions of the four contributions for the f = 2000 Hz upstream source case.

This frequency corresponds to a net positive normalized sound-power generation.

3.4.1 Acoustic Power ρ0(ω
′V0)ua contribution

The acoustic power generated by the Coriolis component ρ0(ω′V0) is ρ0(ω′V0)ua and is shown,

averaged over one period, in �gure 3.19-b. As we can see, this power contribution is very

small at all points in the �ow�eld. By looking at the mean vertical velocity V0 (see �gure

3.5), we can see that this velocity is small (when compared with U0) and con�ned inside

the cavity, while almost zero elsewhere. At the same time, the coherent vorticity ω′ is con-

centrated inside the shear layer, which is thin along the cavity lid (see �gure 3.12). Only

near the trailing edge, the vorticity slightly spreads inside the cavity as the shear layer be-

comes thicker. Then, these terms cannot interact with each other: the Coriolis component

ρ0(ω
′V0) and, as a consequence, the corresponding acoustic power ρ0(ω′V0)ua, will be very

small. These observations would probably still hold when the frequency changes.

3.4.2 Acoustic Power ρ0(Ω0v
′)ua contribution

The term ρ0(Ω0v
′)ua is the one which gives the global structure to the total horizontal power,

as can be observed from Figure 3.19-a,c (time averaged) and Figure 3.20 for ϕ = π/3. In

this case, we can identify two dinstinct absorption and production areas which are isolated

from each other. The mean vorticity Ω0 is shed clockwise (i.e. negative) at the leading edge
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Figure 3.19 � Normalised acoustic power due to the horizontal (c) and vertical (f)
Coriolis force, respectively split into their two main contributions (a-b) and (d-e)
following Eq. 3.10, for the 2000 Hz case. Finally, the total acoustic power (g) is

shown.

discontinuity. Furthermore, from �gure 3.10, we can see that the velocity v′ has a very small

phase gap with the vertical acoustic velocity va and therefore the two components have the

same sign. Therefore, when the vertical acoustic velocity va is negative at the leading edge,

the Coriolis term ρ0(Ω0v
′) is here positive. At the same time, the horizontal acoustic velocity
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Figure 3.20 � The normalised acoustic power contribution (Ω0v
′)ua for the (a) 2000

Hz and (b) 1400 Hz upstream case at ϕ = π/3.

.

ua here is positive and so is the contribution ρ0(Ω0v
′)ua. Meanwhile, at the trailing edge,

the vertical velocity v′ is now positive (see �gure 3.10) while Ω0 is still negative and the

Coriolis term ρ0(Ω0v
′) is therefore negative. As the horizontal acoustic velocity ua is here

still positive, an acoustic absorption will be observed. From �gure 3.20, we notice that the

main change with frequency is the absorption position at the trailing edge. This is due to

the fact that the length λi is in�uenced by the frequency while the phase gap between the

acoustic and coherent velocities is not. Furthermore, the fact that the magnitudes of the

velocities v′ (see �gure 3.11-b) and ua don't change along the cavity and that the Ω0 integral

along the y-axis is supposed to stay constant while moving from the leading onto the trailing

edge, suggests why the contribution ρ0(Ω0v
′)ua does not show a dependency on frequency

(see �gure 3.23).

In �gure 3.20, the comparison of the ρ0(Ω0v
′)ua contribution for the 2000 and 1400 Hz case

is shown, at ϕ = π/3.

3.4.3 Acoustic Power −ρ0(Ω0u
′)va contribution

In order to describe the −ρ0(Ω0u
′)va contribution, the same considerations that were made

above for the Ω0 term apply also here. At the leading edge, it can be seen from Figure

3.11 that the horizontal coherent velocity u′ is positive when the acoustic velocity va is

negative. Then, in this position, the Coriolis force is positive when it interacts with a

53



(a) (b)

���

����

�

P/Pref

Figure 3.21 � The normalised acoustic power contribution (−Ω0u
′)va for the (a)

2000 Hz and (b) 1400 Hz upstream case at ϕ = π/3.

.

negative (downward) acoustic velocity, and viceversa. Thus, a negative acoustic contribution

−ρ0(Ω0u
′)va is induced. Also, we can see from Figure 3.11, that the velocity u′ is always very

small close to the trailing edge of the cavity, due to the presence of the cavity hard wall. This

explains why, in Figures 3.21, the acoustic power at the trailing edge is very small. From

this follows also why this contribution is negative over the period and for all frequencies (see

�gure 3.23).

In �gure 3.21, the comparison of the −ρ0(Ω0u
′)va contribution for the 2000 and 1400 Hz case

is shown, for ϕ = π/3.

3.4.4 Acoustic Power −ρ0(ω
′U0)va contribution

If we look at the acoustic power contributions from the vertical Coriolis force Fy (see �gure

3.19-e,f), the term −ρ0(ω
′U0)va, which is the largest contribution, appears to be the one that

gives the power distribution its complexity. Inside the Coriolis force −ρ0(ω
′U0), the mean

horizontal velocity U0 is positive at all points. Moreover, its magnitude does not change

strongly along the cavity length and these variations are con�ned in a very thin shear layer

at the cavity lid. The largest thickness of this layer is around 1 mm (see �gures 3.5a-c).

Therefore, the Coriolis contributions inside the cavity are �ltered out and their sign are

opposite to the vorticity one. Then, at the leading edge, two counter rotating vorticity zones
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Figure 3.22 � The normalised acoustic power contribution (−ω′U0)va for the (a)
2000 Hz and (b) 1400 Hz upstream cases at ϕ = π/3. In (c) and (d) the Coriolis force
−ρ0(ω

′U0) is shown for the 2000 and 1400 Hz cases, respectively, at the same phase.

.

(as explained before, see �gure 3.13) will interact with the va component, giving opposite

acoustic powers, of which the positive one (over the cycle) is larger. At the trailing edge, the

ω′ structure will vary with frequency as the v′ structure does. In order to have production

at the trailing edge, vorticity here should have the same sign of the prevailing vorticity at

the leading edge, as here the velocity va has an opposite sign. This should happen optimally

when the vorticity period is ≈ 2(W/Uc)/3. For the 2000 Hz case, the period is slightly larger

at ≈ W/Uc. Thus, we are not at the point of maximal production, but two co-rotating

vorticity areas at the edges of the cavity are however allowed. When the period becomes

larger (e.g. for the 1400 Hz case), this is not possible anymore and the vorticity at the leading

and trailing edges will have opposite sign, which translates in absorption at the trailing edge.

In �gure 3.22, the comparison of the −ρ0(ω
′U0)va contribution for the 2000 and 1400 Hz case

is shown, for ϕ = π/3.
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Figure 3.23 � Normalised acoustic powers contributions (Ω0v
′)ua and (ω′V0)ua

(�lled upward and downward blue triangles, respectively) and contributions (Ω0u
′)va

and (ω′U0)va (�lled red squares and diamonds, respectively) for the
f = 1000, 1400, 1700, 2000 upstream source cases. Also, the total acoustic power is

shown in �lled black circles

3.4.5 Acoustic Power contributions: Summary

In summary, it has been shown that the acoustic power related to the horizontal Coriolis

force is on the average close to zero: this is because the component ρ0(ω′V0)ua is negligible

everywhere in the aeroacoustic �eld while the integral of the ρ0(Ω0v
′)ua contribution over

the period is zero, even if local production and absorption areas are present at the cavity

edges. Therefore, it is the vertical Coriolis force contribution who �nally determine the be-

haviour of the corrugated wall. In this contribution, the −ρ0(Ω0u
′)va term is responsible

for an absorption area at the leading edge which is always negative with frequency. Then,

the frequency dependency of the absorption and production mechanisms derives from the

−ρ0(ω
′U0)va term, which is also responsible for the complexity of the acoustic power dis-

tribution. In this case, the acoustic frequency in�uences the hydrodynamic wavelength and

the coupling with the cavity length: when the wavelength is close to the 2W/3 + nW value

(with n integer), global acoustic production is possible.

The complexity resulting from the di�erent contributions to acoustic production cannot

be captured through the models usually employed when whistling is present. The simpli�ca-

tions adopted in this case are not applicable here: vorticity cannot be considered concentrated
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in a single moving vortex (like in the SCV model) as it is distributed over the entire cavity.

Furthermore, it has a complex distribution perpendicular to the shear layer while spreading

out along the cavity, a behaviour which is not taken into account in the SDV model. This

shows that the models usually adopted in presence of the whistling cease to be applicable in

the linear regime.

3.4.6 E�ect of Sound Propagation Direction

As explained before (see section 3.3.2), the main e�ect of changing the acoustic source posi-

tion is the introduction of a phase di�erence in the hydrodynamic structures. This in�uences

the acoustic production, as shown in Figure 3.24, where the total acoustic production for

an acoustic source frequency of 2000 Hz is presented, for both a relative upstream and

downstream source positions. Indeed, the phase di�erence for the downstream case shifts

upstream the production region at the trailing edge, which increases the overall interaction.

At the same time, the di�erences at the leading edge appears negligible. This is highlighted

in Figure 3.24-c,d, where the nondimensionalised vertical Coriolis force −ρ0(ω
′U0) is shown.

There, it appears that the main di�erence in the Coriolis distribution is the upstream shift

of the trailing peak, which will therefore have a larger contribution.

3.4.7 Leading Edge Shape E�ect

The e�ect of changing the leading edge is dual: the hydrodynamic structures will be able

to start forming earlier (as the detachment point will be moved upstream w.r.t. the sharp

leading edge) and they will have to travel a larger length before encountering the trailing

edge. The way these two e�ects can in�uence the acoustic production can be understood

from Figure 3.25: in (c-d), the Coriolis contributions −ρ0(Ω0u
′)va are shown for the two

types of leading edges with an upstream acoustic source at 2000 Hz. We can see that, for a

rounded leading edge, the second positive node is almost not modi�ed by the trailing edge
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Figure 3.24 � The normalised acoustic power contribution (−ω′U0)va for the 2000
Hz (a) upstream and (b) downstream case at ϕ = π/3. In (c) and (d) the Coriolis

force −ρ0(ω
′U0) is shown for the 2000 Hz upstream and downstream cases,

respectively, at the same phase.

when compared to the sharp edge case. Also, this interacts with weaker acoustic vertical

velocity thus delivering less acoustic production (as seen from Figure 3.25 -b). At the leading

edge, the di�erence is due to the di�erent Kutta condition: for the rounded case, the vertical

gradient of the acoustic velocity u′ is not as strong reducing the bottom counter rotating

area.
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Figure 3.25 � The normalised acoustic power contribution (−ω′U0)va for the 2000
Hz upstream (a) sharp and (b) round case at ϕ = π/3. In (c) and (d) the normalised
Coriolis force −ρ0(ω

′U0) is shown for the 2000 Hz upstream sharp and round cases,
respectively, at the same phase.

3.5 Conclusions

The aeroacoustic �eld around a corrugated wall in a grazing �ow con�guration has been

studied. First, we investigated the behaviour of the corrugated plate over a wide frequency

band by measuring the scattering matrix of the test sample. This allows to understand how

the corrugations behaved globally and whether or not the Strouhal numbers corresponding to

the characteristic frequencies were similar to the ones obtained in previous studies. Indeed, as

expected from the literature, characteristical frequency ranges where transmission coe�cients

were higher/lower (namely "gain/loss" zones) than the corresponding no-�ow con�guration

have been identi�ed. For all cases, however, the transmission coe�cients stay below unity as

opposed to other studies. This is mainly because in the present setup the corrugated plate

is covering only one side of the waveguide. Then, the acoustic source frequency and the �ow

Mach number have been set in order to investigate four points between the "gain" and the
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"loss" zones using the optical LDV technique. The main quantities which identify the �uid-

dynamic as well as the acoustic �elds have been fully resolved. In particular, coherent velocity

structures are clearly visible and their propagation velocity appears to be weakly function of

frequency. Also, the coherent vorticity, which is directly responsible for the acoustic power

production/absorption is well resolved. However, it is not possible to isolate distinct zones

of absolute acoustic power absorption or production as these are usually entangled in a

complex form due to the acoustic forcing of the hydrodynamic velocity at the leading edge.

However, even in this complex scenario, it is possible to appreciate how a change in frequency

(i.e. a di�erent separation between the velocity structure) or in the source position (i.e. a

relative space shift in the velocity structures) can explain the gain/loss mechanism. These

results also indicate that either one of the 1D models (DV/CV models) is hardly going to

give good predictions. First, source/sink contributions are not distinct between each other

in the measurement volume. Furthermore, the entanglement at the leading edge cannot be

considered in a 1D modeling, as well as the power contribution from the longitudinal Coriolis

term. Also, the contribution to the vertical Coriolis term of the horizontal coherent velocity

(i.e. (Ω0u
′)) is somewhat non negligible and usually not considered. All these contributions

are necessarily not taken into account in a 1D model, which suggests that such a model

would not be a good predictor of the acoustic power. Further studies will therefore need to

account for these discrepancies in order to improve the modeling accuracy. The open access

to the dataset [43] will help speed up this process, which combined e�orts should be able to

solve.

60



Chapter Four

Investigation about Helmholtz

resonators and a Transparent Layer

4.1 Introduction

Metamaterials o�er new opportunities to attenuate or redirect sound waves [51, 52]. New

applications are already being considered, particularly in the �eld of aeronautics [53]. In this

framework, metamaterials are subjected to �ows that can change their e�ect [54, 55]. In some

applications, the metamaterials under consideration are porous, which raises the question of

how acoustic waves can penetrate the material without the �ow penetrating it. In the same

way, acoustic cloaking with �ow relies on the assumption that "the cloak's metamaterials are

rigid and impervious to �uid but are transparent to sound waves" [56]. As this last research

�eld is still mainly theoretical and numerical [57, 58], practical realizations of such a magic

layer are not often discussed. The idea of using a Kevlar sheet is sometimes suggested [59]

since acoustically transparent walls made from tensioned Kevlar cloth are nowadays used in

wind tunnels [60]. However, the acoustic behavior of very large Kevlar walls (with respect to

wavelength) is very di�erent from that of smaller pieces. In fact, Kevlar cloth is a permeable

membrane through which acoustics can pass in two ways. One is related to vibration, as

through an impermeable wall, and the second to permeability, as through a rigid resistive
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wall. For the �rst e�ect the important parameters are the mass per unit area and the tension

of the �lm, while for the second it is the acoustic resistance (pressure drop divided by the

normal �uid velocity). Of course, these two e�ects are always present [61] but we can think

that when the size of the panels is small compared to the wavelength, it is the resistive e�ect

which predominates and that if vibrations are involved, it is in the form of resonances which

are localized in frequency. That is the subject of this paper.

For this, we consider an array of Helmholtz resonators located in the wall of a waveguide.

The acoustic behavior of this metamaterial is �rst analyzed without �ow. Then, it is shown

that the addition of a �ow greatly disturbs the resonator's acoustic performance, as whistling

is induced. Finally, the array is covered with a kevlar fabric. The cloth strongly a�ects the

acoustic behavior of the metamaterial in absence of �ow, while whistling is prevented in

presence of �ow.

4.2 Experimental investigation

The model metamaterial studied in this paper consists of �ve identical Helmholtz resonators

mounted in series [62, 63]. The scattering matrix of this sample is measured with and without

�ow, and with and without a Kevlar cloth glued on the top of the resonators.

4.2.1 Test rig and measurement procedure

An array of �ve Helmholtz resonators is located in the wall of a waveguide of rectangular

section H × B with H = 40 mm and B = 50 mm, see Fig. 4.1(a). This duct facility has

already been introduced in Chapter 2 and a mean �ow whose velocity is up to 80 m/s can

be produced by a centrifugal fan. The unit cell resonator is a square cuboid with a volume

equal to 31 mm × 31 mm × B. Five resonators are placed side by side, forming an array

with a period of 35 mm, and the surface in contact with the �ow has been polished to avoid

any discontinuity that could disturb the mean �ow, see Fig. 4.1(b). The cavity volume has
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Figure 4.1 � (a) Sketch of the Helmholtz resonators mounted in a waveguide of
rectangular section H × B with H = 40 mm and B = 50 mm. Three microphones are
located on each side of the sample to determine its scattering matrix. The resonator
cavity is a square cuboid with a volume equal to 31 mm × 31 mm ×B. The neck of
the resonator is a slit of thickness t = 1.9 mm, and its dimension in the direction of
the �ow is W = 5 mm. (Below) Picture of the metamaterial, without (b) and with (c)
the Kevlar cloth. Only the central part, where the slits can be seen, is in contact with

the inside of the duct.
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been chosen so that a large transmission loss should occur within the target frequency range

of liners designed for aircraft nacelles. The neck of the resonator is a slit whose dimension in

the direction of �ow is W = 5 mm. The slit extends over the entire width of the waveguide

B, and its thickness is equal to t = 1.9 mm. These dimensions have been picked so that

whistling phenomena would be expected in presence of �ow for the range of �ow velocities

that are provided by the fan.

More than two meters of duct separate the fan from the test section. Thus, the �ow can

be considered as turbulent and fully developed when it reaches the Helmholtz resonators.

The �ow velocity is evaluated at the center of the duct downstream of the test section by a

Pitot tube connected to a di�erential pressure sensor. This measurement gives the maximum

value of the �ow velocity in the duct section. It is then multiplied by 0.8 so that the value

of the average velocity and the Mach number M are obtained [64]. The temperature inside

the duct is measured by a type K thermocouple placed upstream of the test section.

The acoustic waves are generated by two compression chambers which can be placed

either upstream, or downstream, of the test section. A sinusoidal sweep ranging from 200

Hz to 4000 Hz with a step of 5 Hz is used. As the frequencies studied are below the �rst

cut-o� frequency of the waveguide, only plane waves can propagate.

The sound pressure in the duct is recorded by two sets of three �ush-mounted microphones

located upstream (ui) and downstream (di) of the test section, where i = 1 indicates the

microphone located the closest to the test section. The positions of the microphones are

xu1 − xu2 = xd2 − xd1 = 30 mm, xu1 − xu3 = xd3 − xd1 = 175 mm, and both u1 and d1 are

placed 113 mm away from the metamaterial. All the microphones are calibrated relative to

u1 in a separate cavity mounted on a loudspeaker. At each frequency step of the sine sweep,

the acoustic pressure on each microphone is calculated by averaging the pressure value over

400 cycles without �ow, and over 1000 cycles with �ow.

An overestimated determination of the incident and re�ected waves on both sides of the

metamaterial is performed. This decomposition is used to ensure, at each frequency step and
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for every �ow velocities, a constant amplitude of the incident acoustic wave. For that purpose,

a �rst measurement is performed with a constant source level, and the recorded pressure

�eld is decomposed in terms of incident and re�ected acoustic plane waves. It appears that

depending on the duct resonances, the incident wave amplitude changes with frequency.

Next, we estimate the voltage that should be applied to the loudspeakers to compensate

for the resonances. The experiment is then run again using these estimated levels, and the

amplitude of the propagating waves are computed. If the amplitude of the incident acoustic

wave is not in a 2% interval around the target value, here chosen as 120 dB, the optimisation

routine is repeated. Otherwise, the elements of the scattering matrix of the metamaterial,

namely the re�ection and transmission coe�cients (R±, T±) de�ned for incident plane waves

coming from upstream (R+, T+) and downstream (R−, T−) of the sample, are computed.

To obtain these four coe�cients, two di�erent acoustic states are needed. The �rst one is

obtained by placing the compression chambers upstream of the resonators, the second one

by placing them downstream. More details about this measurement technique, for the case

of a cylindrical duct, can be found in [65].

4.2.2 Results without Kevlar

First, all the measurements with and without �ow were carried out on the resonator array

before gluing the Kevlar fabric on it. The results are shown by Fig. 4.2, which draws the

transmission coe�cients as functions of frequency. Without �ow, there is a transmission

dip in the vicinity of the resonance frequency of the Helmholtz resonators. There, the

transmission goes down up to |T | = 1.5 10−4 (-76 dB). In the present investigation, the

Bragg band gap lies outside the frequency range studied.

When the �ow is present, it can be noticed that the transmission coe�cients in both

directions are now di�erent. This is due to the loss of reciprocity when there is a �ow. But

the most striking fact is the peak at 1220 Hz which is larger than 1. It actually corresponds to

65



0 1000 2000 3000 4000
0

0.5

1

1.5

M=0

M=0.073

Figure 4.2 � Transmission coe�cients without Kevlar as a function of the
frequency. The continuous lines represent T+ (in the �ow direction) while the dashed
lines represent T− (against the �ow). The cases M = 0 and M = 0.073 are indicated

in the �gure.

a whistling that is audible through the whole duct even in the absence of acoustic excitation.

It should be noted that when whistling is present, the phenomenon becomes non-linear and

the linear transmission as given in Fig. 4.2 becomes meaningless at the frequency of the

whistling.

Consequently, even a weak �ow as in the present case (the mean velocity in the duct is

U = 25 m.s−1 corresponding to a Mach number M = 0.073) has a dramatic e�ect, since the

metamaterial starts to produce sound. This whistling is quite usual when a �ow grazes a

Helmholtz resonator. Moreover, it appears in the classical range of the Strouhal number [66],

since here Sr = fW/U = 0.24 where f is the frequency.

These results prove that something has to be done to prevent such sound-�ow interactions

and instabilities when metamaterials are exposed to a �ow.
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Figure 4.3 � Transmission coe�cients with and without Kevlar when there is no
�ow. The continuous lines represent T+ (in the �ow direction) while the dashed lines

represent T− (against the �ow). The cases with Kevlar and without Kevlar are
indicated in the �gure.

4.2.3 Results with Kevlar

A lightweight Kevlar 49 fabric (weight = 61 g/m2, thickness = 0.12 mm) is now used to

cover the resonators [67], see Fig. 4.1(c). Before being glued to the metamaterial, the piece

of Kevlar was tensioned uniformly by using the mechanism of a 13-inch drum. The e�ect of

the Kevlar sheet on the acoustic behavior of the Helmholtz resonators array when there is

no �ow is shown in Fig. 4.3, where the transmission coe�cients measured with and without

Kevlar are compared.

The drop in transmission in the vicinity of the resonance is much less pronounced with

Kevlar (the minimum transmission is |T | = 0.42 i.e. -7.6 dB) than without it. On the other

hand, this drop in transmission occurs over a much wider frequency range. This indicates

that Kevlar produces a strong damping that decreases the resonance peak while widening it.

It is therefore incorrect to consider that the Kevlar sheet is completely transparent to

acoustic waves.

The e�ect of �ow on a Kevlar coated metamaterial is shown in Fig. 4.4. Again, it
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Figure 4.4 � Transmission coe�cients with Kevlar as a function of the frequency.
The continuous lines represent T+ (in the �ow direction) while the dashed lines

represent T− (against the �ow). The cases M = 0 and M = 0.073 are indicated in the
�gure.

can be noted that, due to the lack of reciprocity, the transmissions in both directions are

slightly di�erent. Most noticeably, the e�ect of the �ow is now much weaker than without the

Kevlar cover. In particular, the whistling that appeared without Kevlar, has now completely

disappeared.

4.3 Numerical approach

In order to better understand the phenomena involved in both Kevlar coating and �ow, a

numerical simulation is carried out. To this end, a multimodal method is used to calculate the

linearized two-dimensional lossless problem with and without �ow and to compare its results

with experimental data. This method has already been described in detail elsewhere [68, 69,

70] and therefore only a few points are merely reported.

The linear propagation of small perturbations in a parallel sheared �ow can be described

by the linearized Euler equations (LEE). The multimodal method is used and the perturba-
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tions are therefore expressed as a linear combination of acoustic and hydrodynamic transverse

modes. These modes and wave numbers are computed on uniform segments using a �nite

di�erence method by discretizing the LEE in the transverse y-direction. The modes must

be calculated in the neck of the resonator, knowing that there are: a shear �ow above (for

0 < y < H), a pressure discontinuity due to an impedance Z at y = 0, and no �ow in

the cavity (for −t − C < y < 0 where C is the cavity depth). The modes must also be

computed outside the neck in the rigid pipe with a shear �ow (0 < y < H) and in the

cavity (−t−C < y < −t). The scattering matrix of one cell is found by using axial velocity

cancellation on the vertical walls and by matching the modes at each discontinuity. The

transmission and re�ection coe�cients of all �ve Helmholtz resonators are determined by

combining the unit scattering matrices.
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Figure 4.5 � Transmission coe�cients without �ow (M = 0) with and without
Kevlar as a function of the frequency. The experimental results are indicated in the
�gure, all the other curves are obtained with the multimodal method. For the results
with Kevlar, the dash-dotted line is produced when Z = 0.34 (purely resistive case)
and the continuous line when inertia is added: Z = 0.34 + i 0.075(f/fR) where

fR = 1250 Hz.

The results without �ow are presented in Fig. 4.5. Without Kevlar, the agreement

between the measurements and the calculations is quite good, although there is a small
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Figure 4.6 � Transmission coe�cients with �ow M = 0.073 with and without
Kevlar as a function of the frequency. The experimental results are indicated in the
�gure, all the other curves are obtained with the multimodal method. The continuous
lines are in �ow direction and the dashed lines are measured or computed against the

�ow. The multimodal method results with Kevlar are obtained with
Z = 0.42 + i 0.062(f/fR) where fR = 1250 Hz. The inset gives the �ow pro�le used

during the computation.

deviation at high frequency which must be due to the lack of consideration of viscous losses

in the model. The presence of Kevlar was �rst modeled by a pure resistance and this gives

the dash-dotted curve in the Fig. 4.5. In this case, the reduced impedance of Kevlar is

purely real and equals to Z = 0.34 where Z = ∆p/ρ0c0v, ∆p is the di�erence in sound

pressure between the two faces of Kevlar, ρ0 is the density of the air, c0 is the speed of sound

and v is the acoustic velocity through Kevlar. The main e�ect of Kevlar is therefore the

addition of a resistance. Beside this, a slight shift in frequency of the attenuation peak is

observed and a better tuning is obtained when an inertial part is added to the impedance as

Z = 0.34 + i 0.075(f/fR) where fR = 1250 Hz is the resonance frequency of the resonator.

However, our experimental device does not allow us to know if this added mass comes from a

vibration of the Kevlar or from a contraction e�ect when the sound enters the Kevlar fabric

openings.
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The numerical results with �ow are compared in Fig. 4.6 with the experimental results.

An ampli�cation (|T | > 1) at a frequency very close to the whistling frequency is predicted

by the model. This ampli�cation is very sensitive to the shape of the pro�le which is here

de�ned by a number n such that U = Um(1− (1− y/H)n)(n+ 1)/n, where Um is the mean

velocity. In the present calculation, this number is equal to n = 15 and the pro�le is given

in the inset in Fig. 4.6. As n increases, the �ow boundary layer becomes thinner and the

calculation becomes more unstable. In the presence of Kevlar, the computation correctly

predicts the measurements when the impedance is equal to Z = 0.42+ i 0.062(f/fR). It can

be noticed that with �ow the resistance of Kevlar is slightly greater than without �ow, and

the added mass is smaller. The same observations have for instance already been made for

perforated plates [1] or for a thin slow sound material [55]. The boundary layer instability

that occurs in the neck of the resonator in the absence of Kevlar is completely removed by

the addition of the resistive layer that Kevlar constitues. In this sense, Kevlar allows much

closer acoustic behavior with and without �ow.

4.4 Conclusion

The metamaterials must be protected from �ow, otherwise extremely unpleasant interactions

between acoustics and �ow can occur. For the metamaterial studied in this paper, this is

materialized by the appearance of a loud whistling sound in the vicinity of its resonance

frequency. To avoid these undesirable e�ects, it would be good to have a "magic layer" that

allows acoustics to pass through while suppressing sound-�ow interactions in the vicinity of

the material. A possible realization of this layer based on Kevlar fabric has been tested.

Although reducing the e�ects of �ow, this Kevlar layer is not acoustically neutral. It can be

described by an acoustic resistance (associated with a low inertial e�ect). This resistance

partly destroys the e�ect of the metamaterial on the sound when it is not accounted for in

the design. Thus, Kevlar is not a magic layer.
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Other realizations can be imagined (membranes, �exible beams with micro-slits, ...)

which overcome the e�ect of the �ow, but which also allow taking advantage of the in-

teractions between the �ow and the deformable structures to have very original behaviors.
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Chapter Five

Vibrating Beams Investigation

5.1 Introduction

Since the aero-acoustic dissipation process in presence of an external �ow is not a conser-

vative one, it implies that there could be clever ways for exploitating this process. In this

sense, in the past there has been a vast interest into vibrating mechanisms as they are able

to absorb energy around their natural frequency (or even extract energy, e.g. in the case of

loudspeakers). Among the �rst studies about vibrating membranes, we can �nd [5] and [6].

Here, the paper investigates a system of membranes put above an honeycomb structure and

the relative performance of single elements compared to their combination. Similarly in [71],

the analysis of a membrane both with and without perforation is carried out: the perforation

is shown to reduce the maximum TL but to introduce at the same time an antipeak at a

lower frequency than the main one, thus enhancing low frequency response. In [7] hybrid res-

onances are, on the other hand, obtain through a backed up cavity sealed o� and �lled with

SF6 gas which allow the membrane to obtain perfect absorption for a normal propagation at

large subwavelength conditions. In [72] the transversal propagation along a vibrating mem-

brane is investigated, together with an active mechanism based on electromagnetic forces

to control the membrane itself. Results show interesting e�ects regarding the adoption of

an electromagnetic mechanism as its e�ects are both positive, through a dynamic e�ect,
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in enhancing the absorption around �rst eigenmodes and toward lower frequencies but also

detrimental, through a static e�ect, that increases the sti�ness of the membrane by an added

tension contribution. Finally, in [73] a beam-like vibrating element was adopted together

with a backing cavity to achieve perfect absorption at mid frequency and non negligible

absorption at lower frequencies.

Using this idea as a starting point, the concept of cantilevered thin blades that can move

above a cavity is investigated. In order to soften these blades, two I-shaped cuts are intro-

duced. The �rst one makes the �xation less rigid while the second, realised in the middle

of the beam, leads to bi-articulated blades with two degrees of freedom and a low sti�ness.

First, a simple analytical model is proposed to predict the behaviour of the blade. Then,

a parametric study is performed in order to design experimental samples. The �rst exper-

iments are conducted in an impedance tube, where both the acoustic in the duct and the

vibration of the beam are measured. The closeness of the experimental and the analytical

results indicates that the right physical phenomena have been identi�ed. Finally, a last set

of experiments performed in a grazing �ow facility gives hint about the possible application

of such acoustic treatments to aircraft noise reduction.

5.2 Vibrating Beams

The considered vibrating beam is composed of 5 x 3 identical beams, each backed up by an

indipendent cavity, in order to cover the whole width of the channel and thus reproduce a

quasi-2D system. Then, this system can be represented by an in-line series of 5 beams of

constant thickness (which depends on the material used, see table 5.1) and 18 mm long. Each

cavity is 29 x 22mm and communicates with the main duct through a laser-cut micro-slit.

The technology used makes it possible to create a slightly conical groove with a width of

50 µm at the narrowest point. These dimensions, as will be clear from the results shown in

sections 5.5.1 and 5.5.2, were chosen in order to have the lowest resonance frequency (and
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therefore the absorption peak) at the lower limit for a realistic problem such as an acoustic

liner.

The test section in this case is shown in Figure 5.1, together with the 2D schematic system.

Regarding the physical properties of the beam, the Young modulus can be expressed as

E = E0 (1 + jνω) where the coe�cient ν represents damping. Finally, in order to obtain low

resonance frequencies, one and two I-shaped cuts were made, depending on the con�guration.

These cuts were made using a very thin beam laser, as mentioned before, and divide the

beam in two elements 9 and 7 mm long, starting from the clamped boundary.

Figure 5.1 � (Top) Schematic representation of the grazing incidence facility used to
characterise the liner sample using two sets of three microphones. The duct has a
rectangular cross section of height H = 4 cm and a rotating lobe blower is used to
introduce �ow. (Bottom) The composite plate has been glued over 15 cavities of

section 15 × 22 mm2 so that there is one cantilever beam per cavity. The height of
the cavities is W = 30 mm.
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Material Thickness Young's Modulus Con�guration

Composite 0.46 mm 125 GPa Double ”I” cuts

Titan 0.20 mm 100 GPa Double ”I” cuts

Titan 0.20 mm 100 GPa Single ”I” cuts

Table 5.1 � Vibrating Beam con�gurations

5.3 Cantilever Beam Modeling

In this section, we want to investigate the behaviour of the cantilever beam when subjected

to an aeroacoustic forcing. In order to do so, it is important to model the parameters of

such a beam which characterise its frequency response. Generally, as we are considering

harmonic excitations, we can assume that the beam will react through the sum of proper

mode displacements each corresponding to a natural frequency of the system. Then, the

displacement of the beam can be described as:

δ(x, t) = δ(x)ejωt (5.1)

where the spatial contribution can be written as

δ(x) =
∑
i

Aiϕi(x) (5.2)

i.e. as a sum of the i-th ϕi mode multiplied by its amplitude Ai. The modal displacement

is a continuous function of the longitudinal coordinate along the beam. A �rst case could

be the example of the dynamic equation of a cantilever beam while a second case could be

represented by a piecewise elements beam. If we consider then a 2D cantilever beam, its

vertical displacement can be described by the following equation:

M
∂2δ

∂t2
+K

∂4δ

∂x4
= ∆p (5.3)

where M is the beam mass, K its �exural rigidity and ∆p the total di�erence pressure load

between its lower and upper surface. The beam mass can be expressed as M = ρbe where
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ρb is the beam material density and e its thickness, while the �exural rigidity K can be

expressed as K = EI i.e. the product of the Young modulus E and the momentum inertia

I. Then, by applying the boundary conditions for a displacement in the form of eq. 5.2 and

relative reacting forces, it can be shown that we obtain a trascendent displacement equation

cos (βL) cosh (βL) = −1 (5.4)

where

β =

(
ω2M

K

)
(5.5)

and whose solution is in the form βiL = [(i−0.5)π]2

2π
for i = 4, ..., n while β1,2,3L = 1.875, 4.694, 7.855

(see, for example, [74]). Therefore, the natural frequencies will be described as

ωi =
β2
i

2π

√
K

M
(5.6)

Alternatively, the beam can be assimilated to a plate rotating around its end with a

restoring torque due to the deformation. The motion equation linking the rotation angle θ

to the pressure di�erence between the two faces of the beam ∆p is given in the frequency

domain (time dependence in exp(jωt) where ω is the frequency) by:

− Jω2
t θ =

∑
M = l∆pSb/2− βθ − γjωθ (5.7)

where the moment of inertia is J = ρbeSbl
2/3, ρb is the density of the plate, e the thickness of

the plate and Sb is the area of the plate. The two coe�cients β and γ are linked respectively

to the sti�ness and to the damping of the beam.

By de�ning the mean normal velocity of the beam by vb = ljωθ/2, the Eq. 5.7 can be

transformed into an equation linking the pressure di�erence ∆p = pi − pc (pi and pc are the

pressure just above the plate and just under the plate in the cavity) to vb:

∆p =

[
jω

4

3
ρbe

(
1− ω2

b

ω2

)
+ ρ0c0δ

]
vb (5.8)

= ρ0c0

[
jkbeb

ω

ωb

(
1− ω2

b

ω2

)
+ δ

]
vb = ρ0c0Zbvb
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where kb = ωb/c0 and eb = 4ρbe/(3ρ0) is an equivalent thickness of the beam.

In the slits, the same pressure di�erence induces a mean velocity vs given by

∆p = ρ0c0(Rs + jkbesω/ωb)vs

= ρ0c0Zsvs

where Rs is the slit resistance and es the equivalent length of the slit. The continuity of the

acoustic �ux implies that

Sivi = Sbvb + Ssvs = Scvc (5.9)

where Si is the area corresponding to one periodic cell of the material, vi is the incident

vertical mean velocity on one cell, Ss is the area of the slits, Sc the transverse area of the

cavity and vc is the mean vertical velocity at the entrance of the cavity. The impedance of

the cavity is given by

pc = ρ0c0Zcvc =
ρ0c0

j tan(kbWω/ωb)
vc (5.10)

where W is the thickness of the cavity. The continuity equation can be written as:[
Sb/Si

ρ0c0Zb

+
Ss/Si

ρ0c0Zs

]
(pi − pc) = vi

from which the impedance Zi seen by an incident wave can be calculated:

Zi =
pi

ρ0c0vi
=

[
Sb/Si

Zb

+
Ss/Si

Zs

]−1

+
Si

Sc

Zc (5.11)

This impedance is that of a resonator placed in parallel with a resistor and loaded by a

cavity.

Even if considered a simple vibrating beam, it is possible to consider several modes appearing.

The displacement of the plate is then written as a sum of the displacements induced by these

modes. The continuity equation (5.9) can then be written as such

Sivi =
∑
j

Sbvbj + Ssvs = Scvc (5.12)
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where vbj is the mean velocity induced by the j mode. Then, we can model the e�ect of the

various modes j by considering that the impedance of the j mode can be written as

Zbj = jkbebj
ω

ωb

(
1−

ω2
bj

ω2

)
+ δj

ant that they are in parallel with the impedance of the micro-slits leading to

Zi =

[∑
j

Sb/Si

Zbj

+
Ss/Si

Zs

]−1

+
Si

Sc

Zc (5.13)

The three parameters that de�ne each of the modes (equivalent mass, resonance frequency

and modal damping) can be determined either analytically from the plate deformation equa-

tion (as mentioned above), numerically or experimentally.
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5.4 Analytical results

(a)

(b)

b

b

Figure 5.2 � (a) Absorption coe�cient and (b) impedance computed from the
mono-articulated model as a function of the frequency normalised by the plate

resonance frequency. Sb/Si = 0.48, Ss/Si = 0.0083, Sc/Si = 0.825, kbeb = 0.8133,
δ = 0.01, R = Si/SsRs = 8 , kbes = 0.0065, kbW = 0.39. The green curve is the

imaginary part induced by the cavity and the blue curve is the imaginary part induced
by the plate and the micro-slits.

The predicted acoustic behaviour of the system is displayed in Fig. 5.2. The absorption

at normal incidence (α = 1−∥(1−Zi)/(1+Zi)∥2) as well as the imaginary and real parts of

the impedance Zi are shown as functions of the frequency normalised by the plate resonance

frequency. The values of the parameters given in the �gure caption correspond to values

close to those obtained experimentally. It can be seen that perfect absorption at normal
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incidence can be achieved at a frequency that is closed to the resonance frequency of the

plate. What generally limits the possibility to obtain low frequency attenuation with liners

is the presence of the backing cavity whose reactance (green curve on Fig. 5.2) goes towards

−∞ as 1/k0W . The plate creates an additional reactance that is negative at low frequency

and positive at high frequencies, with a rapid variation at the beam resonance frequency

where zero is reached. If the plate reactance rises high enough, the cavity reactance can

be counterbalanced and a total zero reactance is obtained for a frequency close to that of

resonance. In the particular case displayed in Fig. 5.2, the ratio between the wavelength at

the plate resonance and the thickness of the cavity is 16.2.

At the same time, in order to obtain perfect absorption, which occurs when Zi = 1 for

normal incidence, the coupled system resistance must be equal to 1. The resistance comes

mainly from the dissipation in the micro-slits. However, near the resonance frequency the

slits are short-circuited, and the velocity in the cavity comes mainly from the motion of the

blade. As the structural damping of the plate is considered to be signi�cantly lower than

the slit resistance, the short-circuit in the vicinity of the resonance produces a localised dip

in the resistance curve whose minimum value depends on the beam structural damping δ.

Then, an appropriate choice of R and δ permits to obtain a resistance of 1 for the frequency

at which the reactance is zero. Thus, perfect absorption is provided for a normally incident

wave.
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5.4.1 In�uence of the parameters

b b

bb

(a) (b)

(c) (d)

Figure 5.3 � Absorption coe�cient computed by the mono-articulated model as a
function of the normalised frequency. (a) Variation of the mass of the plate. (b)

Variation of the thickness of the cavity. (c) Variation of the structural damping (d)
Variation of the resistance. The magenta curves are the same that in Fig. 5.2(a).

The analysis of the e�ects of the problem parameters is illustrated in Fig. 5.3 where,

starting from the reference con�guration already shown in Fig. 5.2, the parameters are varied

one by one.

The �rst parameter that can be changed is the mass of the plate, see Fig. 5.3(a). In

practice, this mass can be changed either by modifying the material and thus the density, or

by changing the thickness of the plate. Obviously, these changes will also involve a change

in the plate resonance frequency fb. A reduction in mass (kbeb decreases) leads to a softer

resonance but with the same amplitude. This leads to an increase in the frequency where the

system is e�cient, as well as a widening of the absorption bandwidth. A small adjustment

of the structural damping δ is needed to achieve perfect absorption again.
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A second parameter that could be modi�ed is the thickness of the cavity W , see Fig.

5.3(b). As it is decreased, the zero crossing of the reactance moves to higher frequencies. At

these frequencies, the corresponding resistance doesn't display a dip and is thus too high to

induce good absorption.

The third parameter that is studied is the structural damping δ, see Fig. 5.3(c). The

increase of δ makes the resonance less pronounced and increases the overall resistance (the

resistance dip is less marked). On the other hand, it can be noted that the very low absorption

values that were reached when f = fb are now increased because the structural damping

takes over the damping in the slits when δ is large enough.

The last parametric study considers the resistance in the slits and the results are shown

in Fig. 5.3(d). For this, we consider the resistance R = Si/SsRs, which takes into account

the percentage of open surface. Therefore, it is referred to the total surface. If the resistance

increases, the width of the system e�ciency peak is reduced. When R=1, the system works

very di�erently. Indeed, the change in reactance due to the plate resonance is very weak and

the reactance passes through zero for higher frequencies (f/fb= 1.84 in this particular case).

Such a frequency is outside the resistance dip and the resistance value is then very close to

the nominal value of 1, which leads to perfect absorption for a frequency close to twice the

resonance frequency of the plate. In fact, in this operating mode, the plate is in its inertial

regime. Perfect absorption is then obtained with a system that consists of a mass (the plate),

a resistance (the slits) placed in parallel and a sti�ness (the cavity). Such systems are called

In-Parallel Resonator and have been investigated in detail in [75]. In the present study, we

are not interested in this type of operating mode, since the goal was to take an acoustic

advantage of the plate resonance that occurs at lower frequencies. It can be noted that an

intermediate resistance (R = 3) induces the two operating modes to work at the same time.

Then, the operating band of the absorber is widened, at the cost of a decrease in maximal

absorption which is now of the order of α = 0.8 for 1.05<f/fb<1.85.

83



5.4.2 In�uence of other modes of the plate

(a)

(b)

Figure 5.4 � (a) Absorption coe�cient and (b) impedance as a function of the
normalised frequency when one (mono-articulated plate, in magenta) or two
(bi-articulated plate, in blue) modes are considered. For the �rst mode, the
parameters are the same that in Fig. 5.2. The second mode is de�ned by

ωb2 = 6.05ωb, kb2eb2 = kbeb/8 and δ2 = 2.5δ.

In any deformable system, several modes can appear. The displacement of the plate

is then written as a sum of the displacements induced by each of these modes. Thus, the

continuity equation (5.9) now reads

Sivi =
∑
j

Sbvbj + Ssvs = Scvc, (5.14)

where vbj is the mean velocity induced by the j-th mode. Then, the e�ect of the various

modes j can be modelled by writting the impedance of the j-th mode as:

Zbj = jkbebj
ω

ωb

(
1−

ω2
bj

ω2

)
+ δj.

Considering that this impedance is in parallel with that of the micro-slits and in series with

the one of the cavity leads to the following expression for the impedance of the coupled
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system:

Zi =

[∑
j

Sb/Si

Zbj

+
Ss/Si

Zs

]−1

+
Si

Sc

Zc. (5.15)

The three parameters that de�ne each of the modes (equivalent mass, resonance frequency

and modal damping) can be determined either analytically from the plate deformation equa-

tion, numerically or experimentally.

To examine the e�ect of the additional modes, two modes are used to calculate the

impedance and the absorption displayed in blue and compared in Fig. 5.4 to the results with

only one mode. It can be observed that the �rst absorption peak is only slightly modi�ed and

that a second peak appears near the resonance frequency of the second mode. The resistance

remains close to its nominal value (here R=8) except near the resonance frequencies where

dips are found. An interesting e�ect of the presence of the additional mode is that the

reactance decreases just after the �rst peak. Between peaks the reactance therefore remains

close to zero, which is usually required for large acoustic attenuation.

85



5.5 Experimental validation

1

14 9

7
12

(a)

(b)

Figure 5.5 � (a) First and (b) second mode of the cantilever beam with the I-cut
shaped slits, as computed using a �nite elements method (Comsol). l1 and l2 are the

lengths of the two parts of the beam.

To test the validity of the above model, tests were performed on a composite material

plate. The plate of thickness 0.48 mm is made with a M21E/IMA carbon �ber/epoxy

material. The IMA component (HexTow IMA, Intermediate Modulus Fibers) are continuous

carbon �bers which are impregnated with a (Hexply M21E) epoxy resin. The density is 1586

kg.m−3, the Young modulus is 125 GPa and the Poisson coe�cient is 0.35.

Using the geometry and the material parameter, the vibration modes of the beam can

be computed using a �nite element method (Comsol). The �rst two vibration modes are

shown in �gure 5.5 . The �rst one corresponds to a mode where the motion is almost a

pure rotation of the whole beam. The sti�ness results from the deformation of the two arms

at the base of the beam. There is a slight di�erence between the calculated frequency (854

Hz) and the measured frequency (fb = 730 Hz) which may result from uncertainties in the
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material parameters due to the possible misalignment of the cuttings with the axes de�ned

by the �bres of the material. The second mode is a bending mode (f= 5315 Hz) while the

third mode (f= 5371 Hz) is a torsion mode which has an average velocity equal to 0 and is

therefore assumed not to interfere with the acoustics.

Two samples have been made: one for a measurement in a normal incidence tube and a

second one for a measurement in the wall of a rectangular duct. For these two samples the

micro-cutting was performed in the same way and with the same geometry.

5.5.1 Normal incidence measurements

Figure 5.6 � Schematic diagram of the experimental setup for impedance tube
measurements. The back cavity can be removed for measurements with the laser

vibrometer.

The circular sample is glued onto a ring (inner diameter 30 mm, outer diameter 38 mm)

and then placed in an impedance tube which is made of steel tubes with an inner diameter

of 30 mm and a wall thickness of 4 mm, see Fig. 5.6. Four microphones (B&K 4136 and

2670 with ampli�er Nexus 2690) are used for the overdetermined separation of incident and

re�ected waves. The microphones are distant of L2 = 30 mm , L3 = 100 mm and L4 = 285

mm in order to cover a large range of frequencies. The length between the �rst microphone

and the sample is L1 = 230 mm. After an in-situ calibration of the microphones, the signal

from the microphones and a laser vibrometer is transferred to a data acquisition system.
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This system is used in sine sweep mode (from 100 to 4000 Hz with a 5 Hz step). At each

frequency, all transfer functions are averaged over 500 cycles.

The measurement system allows to control the acoustic level of the incident wave. Several

levels were tested but no non-linear e�ects were detected.

Vibrometer measurements

First, the velocity of the bi-articulated plate located at the end of the tube (without cavity)

was measured at two points using a laser vibrometer when acoustic excitation is present.

From the sound pressures measured on the three microphones, it is possible to calculate

the sound pressure pi that is applied to the plate. The velocities vM1 and vM2 measured

respectively at the end of the plate and in the middle of the plate (on the �rst part, see

Fig.5.6) related to the incident pressure are plotted in Fig. 5.7. The �rst two modes of the

bi-articulated plate can be seen very clearly. The �rst mode is at a frequency of 700 Hz.

For this mode, we �nd that vM1/(l1 + l2) = vM2/l2 (l1 and l2 are de�ne in Fig. 5.5) which

indicates that this mode is very close to a rotation without deformation of the plate around

its base articulation. For the second mode (f = 3650 Hz), the velocities are almost opposite

vM1 ≃ −vM2 , which indicates that we are dealing with a bending mode as shown in Fig. 5.5.

An average velocity can be computed, assuming two rigid plates pivoted to each other, by

vb = vM2/2 + l1vM1/(l1 + l2). This averaged velocity is also plotted in Fig. 5.7. Assuming a

low radiation impedance of the tube and therefore zero sound pressure on the outside of the

plate, this average velocity relative to the sound pressure on the plate is the inverse of the

impedance of the plate de�ned by Eq. 5.8: Zb = pi/(ρ0c0vb)
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Figure 5.7 � Dimensionless ratio between the velocities vM1 and vM2 and the
pressure on the plate pi. vb is the average velocity along the plate.

Figure 5.8 � Impedance of the beam Zb deduced from the laser vibrometer
measurements. The blue curves are the measurements and the red ones to the �t given

in the text.

These laser vibrometer measurements con�rm that the impedance Zb can be described

by the contribution of the �rst two modes with :

1

Zb

=
1

Zb1

+
1

Zb2
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where

Zb1 = j A1
f

f1

(
1−

(
f1
f

)2
)

+ δ1

Zb2 = j A2
f

f2

(
1−

(
f2
f

)2
)

+ δ2

and this vibration measurement allows to experimentally determine some parameters of the

model described in section 5.3.

Indeed if some of them are easily computable such as the equivalent mass of the beam

for the �rst mode, others are more di�cult to evaluate. From Eq. 5.8, the equivalent

mass is computed from A1 = kbeb = 4ρbωbe/(3ρ0c0) = 10.55. Note that the equivalent

thickness of the beam is eb =0.81m. It corresponds to the thickness of air that would

have to be set in motion to obtain the same e�ect. This shows the interest of vibrating

a solid part when we want to tackle the low frequencies. If we simply consider that the

plate is rotating and that the sti�ness comes from the deformation of the two arms of width

b = 1mm and length a = 4 mm at the base of the plate. The resonance frequency is

obtained by ω2
1 = 0.5(E/ρb)be

2/(Bal3) where E is the Young modulus, B is the width of

the plate and l = l1+ l2 is the length of the plate. Using the dimensions and characteristics

of the cut composite plate, the predicted frequency is equal to f1 = 1080 Hz while the

measured frequency is f1 = 710 Hz. This di�erence comes from the crudeness of the model

used to predict sti�ness. Nevertheless, this model allows us to see the main parameters

in�uencing this resonance frequency and to compare it with that of a cantilever beam of the

same dimensions without I-cuts, which is here given by ω2 = 1.02(E/ρb)e
2/l4 leading to a

frequency f = 2680 Hz. The structural damping is more complex to evaluate and is deduced

from the vibrometer measurements δ1 = 0.01.

The values of the three parameters for the second mode are deduced directly from the

vibrometer measurements: δ2 = 1.25, A2 = 150, f2 = 3730 Hz. The measured impedance

Zb (in blue) and the calculated impedance (in red) are shown in Figure 5.8 which indicates

a correct agreement between these two values, especially in the vicinity of resonances where

90



the imaginary part of Zb becomes zero.

Acoustic measurements

Using the four microphones described in Fig. 5.6, the re�ection coe�cient r can be obtained

by an over-determined separation of incident and re�ected waves by means of a least-squares

method. From r, the absorption coe�cient α = 1−|r|2 and the impedance Z = (1+r)/(1−r)

can be easily computed. The measured device consists of the composite plate where the

cantilever beam with two I-cuts cuts associated with a closed cavity of the same cross-section

as the incident tube (diameter 30 mm) and length 30 mm.

To predict the impedance of this device, the Eq. 5.11 is used. In this equation, the

beam impedance Zb is deduced from the vibration measurements described in the previous

subsection. The cavity impedance Zc can be computed from the Eq. 5.10 with W =30

mm. The most tricky part to estimate is the acoustic impedance of the slit Zs. Indeed,

the slit resistance is extremely sensitive to the width of the slit s. If we use the relation

Rs = 12µe/(ρ0c0s
2) we see that this resistance is inversely proportional to the square of s.

In addition if one relates this impedance to the incident surface R = Si/SsRs, where Si = lss

and ls = 88 mm the total length of the slits, we see that the resistance R is proportional to

s−3. The machining process of these micro-slits results in a slight conicity of the slit which

therefore does not have a constant width s. On the height of e = 500µm, it is estimated that

the width goes from 50µm (see the photo under the microscope on Fig. 5.6) at the narrowest

to 100µm on the other side of the plate. For a constant width s = 50µm the resistance is

R = 16 while for s = 100µm the resistance is R = 2. It is therefore di�cult to say more

than 2 < R < 16 and the exact value of R had to be experimentally adjusted.
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(a)

(b)

Figure 5.9 � (a) Absorption coe�cient and (b) impedance. Comparison between
experimental results and model

The absorption coe�cient α and impedance Z that were measured are plotted with a

wide blue line in Fig. 5.9. What happens on these curves in the vicinity of the �rst resonance

frequency of the beam is very similar to what is shown in Fig. 5.2. In particular we can see

that the maximum absorption frequency (735 Hz) is slightly higher than the �rst resonance

frequency of the beam (710 Hz) which corresponds to a very low absorption. We also note

that the real part of the impedance (dashed in Fig 5.9b) tends at low frequency towards a

constant which is the resistance R . We can therefore estimate the value of the resistance

R = 8.5.

92



At this stage, all the parameters that describe the measured device are known and the

impedance and absorption coe�cient can be calculated ( thin red curve on �gure 5.9). This

suggests that the proposed model takes into account the main e�ects that occur in such a

device and that it is possible to size such a system for speci�c uses.

5.5.2 Grazing incidence measurements

A second sample, to be placed in the wall of a rectangular duct, was made from the same

composite material plate and with exactly the same micro-cutting geometry. This sample is

made in a plate of 120 × 50 mm2 where 3 rows of 5 beams have been micro-cut, in blue on

Fig. 5.1. This plate was glued on a support (in black in Fig. 5.1) with 15 cavities of section

15 × 22 mm2 and height W = 30 mm.

During the measurements, this sample of 15 beams is �ush mounted on the wall of a

waveguide with a rectangular section. The height of the channel is H = 40 mm while the

transverse dimension is 50 mm, which means that the sample covers the entire width of the

channel. This duct facility has already been introduced in [76] . The acoustic waves are gen-

erated by two compression chambers which can be placed either upstream, or downstream,

of the test section. A sinusoidal sweep ranging from 200 Hz to 4000 Hz with a step of 5 Hz

is used.

The sound pressure in the duct is recorded by two sets of three �ush-mounted microphones

located upstream (ui) and downstream (di) of the test section, where i = 1 indicates the

microphone located the closest to the test section. The positions of the microphones are

xu1 − xu2 = xd2 − xd1 = 30 mm, xu1 − xu3 = xd3 − xd1 = 175 mm, and both u1 and d1

are placed 113 mm away from the sample. All the microphones are calibrated relatively to

u1. At each frequency step of the sine sweep, the acoustic pressure on each microphone is

calculated by averaging the pressure value over 400 cycles without �ow, and over 1000 cycles

with �ow.
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This allows an overestimated determination of the incident and re�ected waves on both

sides of the sample. The elements of the scattering matrix of the sample, namely the re-

�ection and transmission coe�cients (r±, t±) de�ned for incident plane waves coming from

upstream (r+, t+) and downstream (r−, t−) of the sample, are computed. To obtain these

four coe�cients, two di�erent acoustic states are needed. The �rst one is obtained by plac-

ing the compression chambers upstream of the resonators, the second one by placing them

downstream. More details about this measurement technique, for the case of a cylindrical

duct, can be found in [65].

Once again, this measuring system makes it possible to control the acoustic level of the

incident wave. Several levels were tested but no non-linear e�ects were detected.

To predict the e�ect of the sample on propagation, two separate actions are required.

The �rst one is to calculate the equivalent impedance of the sample. The second one is to

predict the propagation in the duct in the presence of an acoustically treated wall.

The prediction of impedance is relatively easy since the impedances of the beam Zb and

the slits Zs are identical to the case in normal incidence since it is the same material and

geometry. Similarly, the cavity having the same depth W , the cavity impedance Zc is also

unchanged. The only things that change in Eq. 5.11 are the incident sections Si = 120×50/15

mm2 and the cavity section Sc = 15× 22 mm2.

To predict the propagation with an impedance wall, a numerical simulation is carried

out. To this end, a multimodal method is used to calculate the linearized two-dimensional

lossless problem. This method has already been described in detail elsewhere [68, 69, 70]

and therefore only a few points are merely reported.

The linear propagation of small perturbations can be described by the linearized Euler and

continuity equations. The multimodal method is used and the perturbations are therefore

expressed as a linear combination of acoustic transverse modes. These modes and wave

numbers are computed on uniform segments using a �nite di�erence method by discretizing

the equations in the transverse y-direction. Here, the modes must be calculated in the rigid
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duct and in the lined part wall. The scattering matrix of the sample is found by matching

the modes at the discontinuities at each ends of the sample.

t
r

r

r
+

t

t
+

Figure 5.10 � Transmission and re�ection coe�cients of the lined sample .
Comparison between experimental (red curves) and model (green curves) results

The comparison between the predict and measured transmission and re�ection coe�cient

are depicted in Fig. 5.10. Due to reciprocity, the measured transmission coe�cients in both

directions are identical. Conversely, the re�ection coe�cients t+ and t− di�er slightly. This

seems to indicate an inhomogeneity of the di�erent beams which would not all react in the

same way. This may be due to the bonding of the plate to its support, which may not be

exactly identical at every location. The comparison between predicted and measured values

of transmission and re�ection is relatively correct around the �rst resonance of the plate.

It can be noted that the hypothesis that one can substitute a discrete set of cells, of fairly

large size, with a distributed and homogeneous impedance can quickly �nd its limit when

the frequency increases. Moreover, the implicit assumption that cells do not acoustically

interfere with each other is also very questionable.

A striking e�ect is the disappearance of the second high-frequency peak (near f2 = 3730

Hz). As f=4000 Hz corresponds to the cut-o� frequency of the second propagative mode in
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the rigid conduit that our setup does not allow to characterize, it was not possible to know if

this second peak was rejected at higher frequency or if it simply disappeared. As mentioned

above, for these frequencies the length of a cell is of the order of a quarter of the wavelength

and the hypothesis of uniformity of impedance is no longer valid.

In spite of its approximations, an impedance homogenization model gives good results

at low frequencies and makes it possible to understand the main e�ects of treatments with

vibrating plates and micro slits on the propagation and re�ection of a duct having such a

material.

5.5.3 E�ect of �ow

The implementation of acoustic treatment in the wall of a duct allows to study the e�ect

of a �ow on its acoustic behavior. For this purpose, the duct installation is connected to a

rotating lobe blower that can provide a mean velocity of up to 85 m/s. The �ow velocity is

measured at the center of the duct downstream of the test section by a Pitot tube connected

to a di�erential pressure sensor. This measurement gives the maximum value of the �ow

velocity in the duct section. It is then multiplied by 0.8 in order to obtain the value of the

average velocity and the Mach number M [64]. The measurements shown in Fig. 5.11 were

performed at a Mach number of 0.25.
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t With flow

No flow

Against the flow

Figure 5.11 � Transmission coe�cient of the lined sample without and with �ow
(M=0.25). Comparison between experimental (blue and red curves, for M=0 and

0.25, respectively) and model (cyan curves, M=0.25) results

The presence of an assumed uniform �ow is also fairly easy to take into account in

propagation modeling. To do this, it is necessary to add convection terms to the equations

used. It is also necessary to modify the boundary condition that applies to the wall with

impedance. Here we have used the classical condition of continuity of pressure and normal

displacement also called Ingard-Myers condition. Finally, it is necessary to apply a special

mode matching between the duct with impedance and the rigid duct that takes into account

this Ingard-Myers condition[77, 78, 79].

The fairly good agreement between the experimental results and the model results, shows

that the �ow does not signi�cantly change the value of the impedance of the material. The

e�ect of the �ow is therefore mainly due to convective e�ects both in the propagation itself

and in Ingard-Myers condition.

5.6 Vibrometer Results

As shown above for the normal propagation case, vibrometric analysis have been carried

out also for the transversal propagation con�guration. All three sets of cantilever beams
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described in table 5.1 have been tested. In �gure 5.12, the composite beams together with

the mounting chassis which is used to lock it in position in the waveguide is shown on the

left (each beam outlined with a dashed red line). On the right, the corresponding absolute

velocity values around the �rst resonance frequency is shown for each beam, as retrieved in

Matlab. It is possible to appreciate that, at this frequency, the major part of the beams

react with a large velocity (i.e. their �rst natural frequencies are close to each other and

to the calculated one). On the other hand, the three �rst beams on the �rst line and the

�rst beam on the second line shown a much smaller velocity magnitude (o(10−1) smaller).

This is due, most probably, to errors in the manufacturing procedure, as it is noticeable how

these beams react with a �exural mode whose rigidity is not constant along the transversal

dimension.
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Figure 5.12 � Vibrating Beam elements (as outlined by the rectangular dashed areas
in (a) ) vertical displacement around the �rst natural frequency. It is possible to
appreciate how the displacement is not maximal for all the beam, suggesting a

di�erence in the beams assembly.

In �gure 5.13, the velocity transfer function is shown for the same beams, organized

in lines: the �rst, second and third lines are shown in �gure 5.13-a,b,c respectively. It is

possible to appreciate how these beams have a total di�erent �rst natural frequency around

1.5 kHz. Furthermore, they don't show any signi�cant reaction around the second natural

frency around 4 kHz, where all the other beams seem to be gathered around (still, it is

possible to notice how, at this frequency, it is more di�cult to outline one single peak).
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Figure 5.13 � Velocity magnitude frequency response of the composite vibrating
beam elements

Finally, a comparison between the computed eigemodes for a cantilever beams and the

displacements obtained for the �rst two composite beam eigenmodes is shown in �gure 5.14.

It is possible to see that while the cantilever model recovers a good agreement in the second

half (w.r.t. the "I" cut) of the beam, it understimates the displacement of the �rst half of

the beam which will result in an overall greater rigidity of the structure.
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Figure 5.14 � Global (left) and extrapolated (right) displacement transfer functions
for three sample beams (A5, B5, C5) from the double "I" composite vibrating beam
elements (a). Comparison of a cantilever beam analytical (solid lines) and COMSOL
produced (blue circles) eigenmodes with the nondimensionalised displacement of the

same sample beams (A5, B5, C5) for the �rst (b) and second (c) eigenmodes
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Chapter Six

Conclusions

In this thesis, the nature of the aero-acoustic interaction has been investigated for di�erent

novel materials and systems con�gurations. This has been done by the means of an exper-

imental, a numerical and simple theoretical approaches. Aside from Chapter 2, where the

experimental setup and techniques adopted are described, three main chapters compose this

manuscript. In each, an aeroacoustic problem has been investigated.

In Chapter 3, the acoustic propagation along a corrugated plate inside a square waveguide

has been investigated, with and without a grazing �ow present. Without �ow, the acoustic

propagation along the corrugated plate is almost una�ected by the corrugations and there-

fore similar to the one of a rigid tube, with a slightly lower transmission coe�cient due to

enhanced visco-thermal losses. When the �ow is present, the behaviour changes drastically.

The transmission along and against the �ow direction are not identical anymore. This is

due to the loss of reciprocity due to convection e�ects, but it is also possible to notice os-

cillations of the transmission curves around the no-�ow values. Therefore, it is possible to

identify "gain" ("loss") areas, where transmission is higher (resp., lower) than the no �ow

case. At four of these characteristic frequencies, Laser Doppler Velocimetry (LDV) measure-

ments have then been carried out. This technique allows us to investigate inside a single

corrugation cavity and resolve the main �uid-dynamic and acoustic quantities. What is pos-
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sible to see is that coherent vorticity structures show a rather complex distribution when

compared to deep cavity con�gurations, which makes it di�cult to isolate completely the

acoustic sound production and absorption zones. These structures depend on the frequency

and the longitudinal position along the cavity, which explain the gain/loss mechanism which

is seen in the transmission curves.

In chapter 4, an investigation about the shielding of metamaterials from �ow has been

carried out. This investigation has been inspired by the latest research about metamaterials,

where new ways to manipulate sound waves are investigated. Furthermore, in the aeronau-

tics �eld, these solutions have to deal with the presence of an external �ow which has a

strong in�uence, especially when these materials are porous or, like in cloaking devices, they

have to be shielded from �ow but being transparent to acoustic waves. Therefore, a "magic"

layer is often introduced so to allow acoustics to pass through while suppressing �ow e�ects.

As a practical realization of such a layer, a kevlar sheet is often suggested based on its ap-

plication in wind tunnels. However, we show that, for the matematerial we chose, the e�ect

of �ow is clearly represented by a loud whistling around its resonance frequency. If we put a

kevlar layer covering such metamaterial, �ow e�ects are in fact reduced, but the layer is not

acoustically neutral: the whistling doesn't appear anymore due to an introduced acoustic

resistance and the behaviour of the metamaterial is completely altered. This proves that a

kevlar layer cannot be considered to be an acoustically neutral layer which was advertised.

In chapter 5, the behaviour of vibrating beams associated with micro-slits has been

investigated. The investigated beams are obtained by 50 µm laser cuts cuts from a thin

composite plate. Also, two "I" cuts have been realized orthogonally to the beam longitudinal

direction so to make the �xation less rigid (the �rst cut) and to induce a bi-articulated

behaviour (second cut) with two degrees of freedom and a low sti�ness. A simple analytical

model is proposed to predict the behaviour of the blade. Then, a parametric study is
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performed in order to design experimental samples. An experimental campagin was carried

out to obtain comparison with this model: �rst experiments were conducted in an impedance

tube, where both the acoustic in the duct and the vibration of the beam are measured. The

closeness of the experimental and the analytical results indicates that the right physical

phenomena have been identi�ed. Finally, a last set of experiments performed in a grazing

�ow facility gives hint about the possible application of such acoustic treatments to aircraft

noise reduction.

Future works will be focused on better understanding the di�erence between the be-

haviours of these metamaterials, namely the way the hydrodynamic interaction works inside

the shear layer above a corrugated plate or a vibrating beam. This better understanding

should allow the development of new beams or better metamaterials which would be able to

exploit the aero-acoustic interaction in a favourable way and improve their subwavelength

performances.
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Appendix One

Technical Demonstrator

As foreseen by the ITN H2020 SmartAnswer Training Programme, a technical demonstrator

was planned and developed by the Earl Stage Researchers (ESR). The demonstrator's ob-

jective is to immediately show all the areas of research where the project has focused and its

relative outcomes. Therefore, it was decided for the demonstrator to be a wind tunnel inside

where di�erent airfoils could be put. These airfoils could interact with the vortex shed by a

rod put a little upstream: the e�ects of aeroacoustic would create a large band noise which

would propagate towards the downstream exit of the wind tunnel. After the airfoils, three

di�erent systems of noise reduction devices were conceived to work alternatively: a passive

liner, an active liner and a metamaterial system. These would concentrate on absorbing the

sound emitted at di�erent bands inside the aforementioned aeroacoustic spectrum.

The main area of intervention regarding this thesis was the development of passive liners:

these, were to be thinkered in order to reduce a broadband noise in the 1− 3 Hz spectrum.

The main and most pro�cient response to the need of acoustic passive liner have been the

Single (and Double) Degree of Freedom perforated plates. These are perforated plates with

di�erent amounts of permeability (i.e. percentage of open perforated area) backed up by

a perpendicular, partitioned, layer of cells. Usually, these cells are formed by honeycomb

sheet, where each cell is divided by an impervious wall. Also, sometimes between the plate

and the backing up cavity a wiremesh or an equivalent resistive material is put in order to
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tune the impedance to the ambient conditions.

Regarding this kind of passive liners, one widely used reference model is the one proposed by

Guess [1]. This model takes into account the e�ects of the plate and the underlying cavities

through four parameters: the permeability σ, the thickness of the plate t, the diameter of

the perforated holes d and the depth of the cavities. Furthermore, the e�ect of �ow and the

relative nonlinear e�ects are taken into acount by the means of the Mach number M = u/c

and a correcting factor t′ = t/d. Then, after several computations, Guess summarizes the

total impedance real and imaginary part of such a liner, respectively, as follows:

θ =

√
8νω

σc

(
1 +

t

d

)
+

π

2σ

(
d

λ

)2

+
(1− σ2)

σ

(
|u0|
c

+ sM

)
χ =

ω (t+ δ)

σc
+

√
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(
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t

d

)
− cot

ωH

c

(A.1)

where ω, c, λ are respectively, the angular frequency, the sound speed and the acoustic

wavelength. The third term in the above real part impedance equation represents the in�u-

ence of large sound amplitude and free stream �ow in nonlinearities of the liner. The term

ν is the cinematic viscosity and s is a correlating factor which in our case is s 0.3. Finally,

the term δ is a correction end for the ori�ce diameter, which reads

δ = 8/3
d (1− 0.7

√
σ)

(1 + 305M3)

1 + 5 ∗ 103M2

1 + 104M2
(A.2)

Then, in order to carry out the design of the passive element inside the demonstra-

tor, two steps were required: deriving the optimal impedance relative to the geometri-

cal and ambient conditions followed up by the matching of this value with the one ob-

tained by the liner model. A summary of the process is shown as a chart in Figure A.1
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Figure A.1 � Finding of the best wall impedance and optimal SDOF impedance
match

Regarding the �rst process step, a multimodal method was used in order to retrieved

the scattering matrix before, after and along the treated wall. De�ning the number of

modes which would model the pressure �eld along the lined section, it is possible to retrieve

this once an impedance value is de�ned in input. As the scattering matrix is then known,

the transmission, re�ection and absorption coe�cients can then be obtained. In order to

obtain the optimal impedance, such process can be looped until a cost function is minimized

(e.g. the transmission coe�cient at a few desired frequency points) by starting with a well

�rst guess impedance value like Cremer's impedance. Once the optimal impedance value is

obtained, we can try to match it by the above mentioned Guess model at a desired frequency.

In order to do so, we �rst match the real part rewritten in a simpli�ed fashion as follows:

θ =

√
8νω

σc

(
1 +

t

d

)
+

(1− σ2)

σ
(sM) (A.3)

because the low sound level introduces only negligible nonlinearities and the term π
2σ

(
d
λ

)2
<<

√
8νω
σc

(
1 + t

d

)
so that we can exlude it in the shooting guess and update it afterwards. From

the matching of the real part we retrieve then the optimal σ value and t/d ratio. Then,

once updated the real and imaginary part with these values, we can match the imaginary

part of the impedance by varying the thickness H and hole diameter d obtaining the optimal
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values for these parameters. At the end of the process we are able to match the impedance

of our SDOF liner at the desired frequency. In Figure A.2, the real and imaginary part of

the impedance are shown: in blue, the optimized best wind tunnel impedance (which is very

close to the Cremer value) while in red the SDOF one.
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Figure A.2 � Real part (a) and Imaginary part (b) of the best wall impedance (blue)
and SDOF optimized (red) impedance
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