
HAL Id: tel-03588416
https://theses.hal.science/tel-03588416

Submitted on 24 Feb 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Automated loop-level perturbative calculations beyond
the Standard Model

Grégoire Uhlrich

To cite this version:
Grégoire Uhlrich. Automated loop-level perturbative calculations beyond the Standard Model.
Physics [physics]. Université de Lyon, 2021. English. �NNT : 2021LYSE1182�. �tel-03588416�

https://theses.hal.science/tel-03588416
https://hal.archives-ouvertes.fr

N°d’ordre NNT : 2021LYSE1182

THESE de DOCTORAT DE L’UNIVERSITE DE LYON
opérée au sein de

l’Université Claude Bernard Lyon 1

Ecole Doctorale N° 52

Ecole Doctorale de Physique et Astrophysique

Spécialité de doctorat : Physique Théorique

Discipline : Physique des Particules

Soutenue publiquement le 01/10/2021, par :

Grégoire Uhlrich

Automatisation des calculs perturbatifs
à boucle au-delà du Modèle Standard

Devant le jury composé de :

Kraml, Sabine Directrice de Recherche Université Grenoble Alpes Rapporteure
Raklev, Are Professeur Université d’Oslo Rapporteur
Belyaev, Alexander Professeur Université de Southampton Examinateur
Deandrea, Aldo Professeur Université Lyon 1 Examinateur
Isidori, Gino Professeur Université de Zürich Examinateur
Mahmoudi, Farvah Maître de Conférences Université Lyon 1 Directrice de thèse

Résumé

Le Modèle Standard (MS) de la physique des particules a été formulé théoriquement
au cours du vingtième siècle et achevé dans les années 1970. Depuis lors, toutes les parti-
cules dans ce modèle ont été observées expérimentalement. La dernière découverte, celle
du boson de Higgs en 2012, a confirmé que le MS décrit très bien le monde des particules
élémentaires, du moins à des énergies inférieures à 1 TeV. Le moment dipolaire magné-
tique anomal de l’électron, qui est souvent considéré comme "la prédiction la plus précise
de l’histoire de la physique" grâce à des décennies de calculs très complexes, a été prédit
jusqu’à dix chiffres significatifs par le MS.

Nous savons cependant que le MS est incomplet et qu’il ne peut pas décrire correc-
tement la physique des particules élémentaires à des énergies très élevées. Les études
au-delà du modèle standard (AMS) deviendront de plus en plus importantes dans un
futur proche avec l’augmentation rapide de la quantité de données provenant de diffé-
rentes expériences dans le monde. L’étude complète des modèles AMS est en général une
tâche extrêmement longue impliquant des calculs difficiles. En pratique il n’est pas pos-
sible de faire des prédictions exhaustives dans ces modèles à la main, en particulier si
l’on veut effectuer une comparaison statistique avec les données et le MS.

Nous présentons dans quelle mesure les calculs nécessaire pour la phénoménologie
AMS peuvent être entièrement automatisés pour des scénarios AMS généraux à travers
la présentation de MARTY, le programme C++ que nous avons développé pour relever ce
défi, qui peut devenir un outil très puissant pour la phénoménologie AMS dans tous les
domaines de la physique des particules. À travers des exemples de calculs dans des cas
particuliers qui reposent sur une grande diversité de techniques, nous montrons ensuite
que MARTY est capable de calculer des amplitudes, amplitudes carrées et coefficients de
Wilson dans des scénarios AMS généraux, à l’arbre et à une boucle.

Keywords: Calculs automatiques, Phénoménologie, Au-delà du Modèle Standard,
Calculs à boucle, Amplitudes, Coefficients de Wilson

iv

Abstract

The Standard Model (SM) of particle physics was formulated theoretically during
the twentieth century and completed in the 1970s. Since then, all the particles in this
model have been observed experimentally. The latest discovery was the Higgs boson in
2012 and confirmed that the SM describes very well the world of elementary particles, at
least when considering energies below 1 TeV. The anomalous magnetic dipole moment
of the electron – which is often credited as "the most accurate prediction in the history
of physics" thanks to decades of very involved calculations – was computed up to ten
significant digits by the SM.

We know however that the SM is incomplete and cannot describe correctly elemen-
tary particle physics at very high energies. Studies Beyond the Standard Model (BSM)
will become more and more important in the near future with the rapidly increasing
amount of data from different experiments around the world. The full study of BSM
models is in general an extremely time-consuming task involving long and difficult cal-
culations. It is in practice not possible to do exhaustive predictions in these models by
hand, in particular if one wants to perform a statistical comparison with data and the SM.

We present how the calculations required for BSM phenomenology can be fully auto-
mated for general BSM scenarios through the presentation of MARTY – the C++ framework
that we developed to address this challenge – that can become a very powerful tool for
BSM phenomenology in all domains of particle physics. Through particular calculation
examples which rely on a wide range of techniques we then present MARTY’s ability to cal-
culate amplitudes, squared amplitudes and Wilson coefficients in general BSM scenarios
at the tree level and the one-loop level.

Keywords: Automated calculation, Phenomenology, Beyond the Standard Model,
One-loop, Amplitudes, Wilson coefficients

vi

Acknowledgments

J’aimerais tout d’abord remercier toute l’équipe de l’IP2I pour son accueil chaleureux,
et l’école doctorale de physique et astrophysique (ED PHAST 52) grâce à qui j’ai pu ef-
fectuer mon doctorat. Merci à Dany pour son écoute et sa franchise, et à Sylvie pour son
implication dans le bien-être des doctorants.

Merci à tous les membres du jury d’avoir accepté cette responsabilité, et à ceux qui
ont fait le déplacement quand la situation sanitaire le permettait. Merci également aux
rapporteurs qui ont pris le temps de lire cette thèse et de proposer des corrections pour
le manuscrit.

Je suis très reconnaissant d’avoir pu travailler sur le sujet qui a été le mien, et qui
correspondait parfaitement à ce sur quoi j’avais envie de réfléchir pendant trois années.
Cela n’aurait pas été possible sans le soutien et la confiance de Nazila, ma directrice de
thèse, que je remercie donc tout particulièrement. Un grand merci aussi à Alexandre, tous
les deux ont suivi de très près ce projet et ont toujours su me conseiller avec pertinence,
gentillesse et bonne humeur.

Un grand merci également aux premiers utilisateurs de MARTY qui m’ont fait des re-
tours précieux pour faire des ajustements nécessaires, et notamment Arnab, Marco et
Amine. Merci pour leur temps, leur patience et leur confiance.

Je me dois également de remercier tous les doctorants du laboratoire et ceux avec qui
j’ai passé le plus de temps, qui ont égayé ce doctorat. La salle du billard et l’Oxxo se sou-
viendront de nous. Et bien sûr, comment ne pas remercier Aurélien tout particulièrement
qui, pendant trois ans, sans relâche, m’a bien fait comprendre que son nom devait appa-
raître explicitement dans mes remerciements de thèse. Le voilà donc Aurélien, merci
pour tout et surtout pour toute cette joie, partagée j’espère, pendant cette inoubliable
partie de Mario Kart.

Ensuite, je remercie tous mes amis en dehors du laboratoire qui m’ont accompagné
pendant tout mon cursus de physique. Ces 7 dernières années, cela a toujours été un
grand plaisir de partager des discussions philosophiques, et des moments plus festifs,
avec eux. J’espère que la tradition du Nouvel An perdurera.

Un immense merci va maintenant à ma famille paisible, aimante et soudée sans qui
tout ceci aurait été plus difficile. Elle m’a toujours permis d’avancer sans me poser de
questions, soutenu et accompagné dans tous mes projets. Merci pour tout.

Enfin j’aimerais terminer ces remerciements en adressant un très grand merci, forcé-
ment trop sobre, à Léa et son soutien inconditionnel depuis 7 ans.

vii

viii

Contents

List of Figures xv

List of Tables xvii

List of Code Samples xx

List of Abbreviations xxi

1 Introduction 1

1.1 The Standard Model of particle physics . 1

1.2 Motivations to go beyond the Standard Model 6

1.2.1 Theoretical shortcomings . 6

1.2.2 Flavor anomalies . 8

1.2.3 The anomalous magnetic dipole moment of µ 9

1.2.4 The Hierarchy problem . 10

1.3 Model building in particle physics . 11

1.3.1 Symmetries . 11

1.3.2 Matter content . 13

1.3.3 Spontaneous symmetry breaking . 15

1.3.4 Additional interactions and anomalies 19

1.3.5 Discussion on Standard Model extensions 20

1.4 Need for automated calculations . 24

1.5 Existing packages . 26

1.5.1 Mathematica packages . 27

1.5.2 Open-source solutions . 28

1.5.3 Limitations . 28

1.6 MARTY . 30

1.6.1 Presentation . 30

1.6.2 Limitations . 31

1.6.3 Connection to phenomenology . 32

2 MARTY – An open-source solution 33

2.1 Requirements . 33

2.1.1 Generality . 33

2.1.2 Performance . 35

2.1.3 Software engineering standards . 36

2.2 Symbolic manipulations . 39

2.2.1 Internal representation of an expression 39

ix

x CONTENTS

2.2.2 Dynamic programming and polymorphism 39

2.2.3 Canonical forms of expressions . 40

2.2.4 Automatic ordering of expressions 42

2.2.5 Limitations of symbolic computations 44

2.3 CSL . 46

2.3.1 Philosophy . 46

2.3.2 C++ basics . 47

2.3.3 C++ good manners . 48

2.3.4 The Expr type . 51

2.3.5 CSL good manners . 53

2.4 CSL as a module of MARTY . 55

2.5 GRAFED . 56

3 Quantum fields 59

3.1 Introduction . 59

3.2 Different types of quantum fields . 60

3.2.1 Particle types . 61

3.2.2 Fermions . 62

3.2.3 Vectors . 62

3.2.4 Scalars . 63

3.3 Using and modifying a Particle . 63

3.3.1 Obtaining particles from a model . 63

3.3.2 Simple particle properties . 65

3.3.3 Gauge and Flavor representations 68

3.4 Quantum Fields in expressions . 71

3.4.1 Indices . 71

3.4.2 Space-time point . 72

3.4.3 Creating an expression from a Particle 73

3.4.4 Type system . 75

3.4.5 Polarization field . 75

4 Models for high energy physics 79

4.1 Introduction . 79

4.2 Adding / Removing particles . 80

4.3 Obtaining / Defining couplings . 81

4.4 Lagrangian . 82

4.4.1 Lagrangian in MARTY . 82

4.4.2 Interaction terms . 83

4.5 Adding Lagrangian terms . 84

4.5.1 Built-in interaction terms . 84

4.5.2 General interactions . 85

4.6 Fermion number violating interactions . 88

4.6.1 Definition . 88

4.6.2 The conjugation matrix . 89

4.6.3 Fermion number violation in MARTY 90

CONTENTS xi

4.7 Group theory objects . 91

4.7.1 Gauge and flavor . 92

4.7.2 Gauged and flavor groups . 92

4.7.3 Gauge representations . 93

4.7.4 Groups and algebras . 93

5 Group theory 95

5.1 Semi-simple Lie algebras . 96

5.1.1 Principle . 96

5.1.2 Semi-simple Lie algebras in MARTY 96

5.2 Irreducible representations . 97

5.2.1 Highest-weight state . 97

5.2.2 The su(2) example . 97

5.2.3 The su(3) example . 98

5.2.4 Irreducible representations in MARTY 99

5.3 Product decomposition . 100

5.4 Gauge representations . 101

5.5 Dynkin labels for common representations 102

5.5.1 su(N) . 103

5.5.2 so(N) . 104

5.5.3 sp(N) . 104

5.5.4 E6 . 104

5.5.5 E7 . 105

5.5.6 E8 . 105

5.5.7 F4 . 106

5.5.8 G2 . 106

6 Automated calculations with MARTY 107

6.1 Introduction . 107

6.2 Building blocks . 109

6.2.1 Propagators and external fields . 112

6.2.2 Feynman rules . 114

6.3 Amplitudes . 117

6.3.1 Finding diagrams . 117

6.3.2 Gauge fixing . 118

6.3.3 Initial amplitude expression . 119

6.3.4 Simplification of expressions . 120

6.3.5 The procedure using MARTY . 125

6.4 Squared Amplitudes . 127

6.4.1 Generalities . 127

6.4.2 Spin sums . 129

6.4.3 Traces . 131

6.4.4 A computational challenge . 134

6.4.5 Squared amplitudes in MARTY . 135

6.5 Wilson coefficients . 136

xii CONTENTS

6.5.1 Generalities . 136
6.5.2 Additional simplifications . 136

6.6 Automating calculations . 142

7 Selection of results 145

7.1 Introduction . 145
7.1.1 Validation . 145
7.1.2 Different kinds of tests . 146

7.2 Amplitude calculations . 146
7.2.1 Conjugation matrix consistency . 147
7.2.2 Relative Sign of Interfering Feynman graphs (RSIF) 148

7.3 Squared amplitudes . 151
7.3.1 Tree-level partial decay widths . 151
7.3.2 One-loop partial decay widths . 154
7.3.3 Cross sections for 2 to 2 processes 156
7.3.4 e+e− → µ+µ− at tree-level . 157
7.3.5 gg → tt̄ at tree-level . 162

7.4 Wilson coefficients . 166
7.4.1 Magnetic 2-fermion operators . 166
7.4.2 4-fermions operators . 173

7.5 Performance . 176

8 Analytical results in NMFV-MSSM 177

8.1 Introduction . 177
8.1.1 (g − 2)µ . 178
8.1.2 Flavor anomalies . 178
8.1.3 NMFV-MSSM scenarios . 179

8.2 Methods . 180
8.2.1 Theoretical calculations . 180
8.2.2 Numerical evaluation . 181
8.2.3 Random scan . 181

8.3 Results . 182
8.3.1 Wilson coefficients . 182
8.3.2 (g − 2)µ . 184

8.4 Combined analysis . 184
8.5 Discussion . 185

Conclusion 187

Bibliography 198

List of Figures

1.1 The Standard Model . 2

1.2 Neutrino-less double β-decay . 7

1.3 Flavor anomalies . 8

1.4 Anomalous magnetic dipole moment . 9

1.5 Correction to the Higgs mass . 10

1.6 Gauge interaction example . 12

1.7 Mexican hat potential . 16

1.8 Quantum anomalies . 20

1.9 Energy scales in the SM . 21

1.10 (g − 2)µ with New Physics effects . 22

(a) Photon . 22

(b) Higgs . 22

(c) Weak - W . 22

(d) Weak - Z . 22

(e) Weak - Z2 . 22

(f) New Physics - X . 22

1.11 Toolchain for phenomenology 1/2 . 25

1.12 Feynman diagram description . 25

1.13 Toolchain for phenomenology 2/2 . 30

2.1 Tree representation of A
(

1 + cos
2πt

T

)

. 40

2.2 Simplified inheritance hierarchy of CSL . 51

2.3 Principle of MARTY . 56

2.4 GRAFED screen shots . 57

3.1 Principle of MARTY quantum fields . 60

3.2 Inheritance tree for quantum fields . 61

3.3 Gauge group definitions . 64

3.4 Dirac fermion embedding . 65

3.5 Field contractions . 67

(a) Standard contractions . 67

(b) Self-conjugate contractions . 67

4.1 Inheritance tree for Model . 79

4.2 Fermion-number violating interactions . 88

4.3 Fermion-number violating processes . 89

4.4 Physics to group theory . 92

xiii

xiv LIST OF FIGURES

5.1 The su(2) algebra . 98
5.2 Weight lattice of su(3) . 99
5.3 Common representations of su(3) . 99

6.1 Quantum process example . 108
6.2 Field insertions in the LSZ formula . 111
6.3 External leg for a vector boson . 112
6.4 External leg for a fermion . 113
6.5 Field contractions in Feynman rules . 116
6.6 Scalar QED 3-vertex . 116
6.7 Yang-Mills propagators . 118
6.8 Transition diagrams . 126
6.9 Collider principle . 128
6.10 Group theory traces in amplitudes . 133

7.1 Majorana termination test . 147
(a) 2-point function . 147
(b) 3-point function . 147
(c) 4-point function . 147

7.2 Diagrams for ψψ → Φψλ . 149
(a) iM0 . 149
(b) iM1 . 149
(c) iM2 . 149
(d) iM3 . 149

7.3 Examples of SM decays . 152
(a) h → W+W− . 152
(b) h → ZZ . 152
(c) h → bb̄ . 152
(d) W+ → l̄ν . 152
(e) W+ → b̄c . 152
(f) Z → s̄s . 152

7.4 h → BB at one-loop . 155
(a) h → γγ . 155
(b) h → gg . 155

7.5 e+e− → µ+µ− in the SM . 157
7.6 Vertices for ee → µµ . 158

(a) Photon coupling . 158
(b) Z boson coupling . 158

7.7 Cross-section for ee → µµ . 160
7.8 Forward-backward asymmetry . 160

(a) Backward process . 160
(b) Forward process . 160

7.9 Forward-backward asymmetry in ee → µµ 161
7.10 Diagrams for gg → tt̄ in the SM . 162

(a) QED-like t-channel . 162
(b) QED-like u-channel . 162

LIST OF FIGURES xv

(c) QCD-specific g3-vertex contribution 162
7.11 Ghost-gluon Feynman rules . 164
7.12 Ghost contributions to gg → tt̄ . 164

(a) iMg . 164
(b) iM̄g . 164

7.13 Total cross-section for gg → tt̄ . 165
7.14 2-fermion operators in b → s transitions . 166

(a) b → sγ operator . 166
(b) b → sg operator . 166

7.15 C7 contributions in the SM . 168
(a) WWt loop . 168
(b) ttW loop . 168
(c) GGt loop . 168
(d) WGt loop . 168
(e) Gtt loop . 168

7.16 Results for C7 in the SM . 169
7.17 C8 contributions in the SM . 170
7.18 Results for C8 in the SM . 171
7.19 MSSM contributions to C7 . 171
7.20 Results for C7 in the MSSM 1/2 . 173
7.21 Results for C7 in the MSSM 2/2 . 173
7.22 4-fermion operator in b → sµµ̄ transitions 174
7.23 Box contributions to C9 in the SM . 174

(a) WW box . 174
(b) WG box . 174
(c) GW box . 174
(d) GG box . 174

7.24 Mass corrections contributing to C9 in the SM 175
(a) b propagator corrected by W . 175
(b) b propagator corrected by G . 175

7.25 Results for C9 in the SM . 175

8.1 Feynman diagrams in the NFMV . 180
(a) χ̃+ penguins in (g − 2)µ . 180
(b) χ̃0/g̃ penguins in C7 and C9 . 180
(c) χ̃0 boxes in Cµ9 . 180

8.2 Posterior distributions . 182
8.3 Distribution of C7 and C9 . 183
8.4 Combined distribution of C7 and C9 . 183
8.5 Distribution of (g − 2)µ . 184
8.6 Coupling to the slepton mass scale . 185

xvi LIST OF FIGURES

List of Tables

1.1 Standard Model content before symmetry breaking 4
1.2 Standard Model content after symmetry breaking 5

2.1 Rules for expression ordering in CSL . 43

3.1 Properties of Quantum fields . 65
3.2 Dynkin classification . 69
3.3 Common Dynkin labels . 69

4.1 ModelData content . 81

5.1 Lorentz representations . 96
5.2 su(N) Dynkin labels . 103
5.3 su(3) Dynkin labels . 103
5.4 so(N) Dynkin labels . 104
5.5 sp(N) Dynkin labels . 104
5.6 E6 Dynkin labels . 105
5.7 E7 Dynkin labels . 105
5.8 E8 Dynkin labels . 105
5.9 F4 Dynkin labels . 106
5.10 G2 Dynkin labels . 106

6.1 Gauge choices . 118

7.1 Numerical setup for C7 in the MSSM . 172

8.1 List of contributions in the NMFV . 180
8.2 Input parameters . 181

xvii

xviii LIST OF TABLES

List of code samples

1 Simplicity in C++ . 38

2 Examples of ordering test . 44

3 C++ vector good manners, part 1 . 49

4 C++ vector good manners, part 2 . 50

5 Basics on Expr . 52

6 Functions with Expr objects . 52

7 Operators with Expr . 52

8 Good habits with symbolic manipulations 54

9 Creating fermions . 62

10 Creating vector bosons . 62

11 Creating scalars . 63

12 Creating ghosts and Golstones . 63

13 Getting a particle from a model . 64

14 Dirac fermion embedding . 65

15 Quantum fields properties . 68

16 Setting gauge representations . 70

17 Setting flavor representations . 71

18 Generating indices . 72

19 Generating space-time points . 73

20 From particles to symbolic expressions . 74

21 From symbolic expressions to particles . 75

22 Polarization fields . 77

23 Adding / Removing particles . 81

24 Managing couplings . 82

25 Adding mass terms explicitly . 85

26 Getting γ-matrices . 87

27 Getting group generators . 87

28 Vector spaces . 88

29 Gauge and flavor . 92

30 Gauge and flavor groups . 93

31 Getting representations from particles . 93

32 Abstract groups and algebras . 94

33 Semi-simple Lie algebras . 97

34 Irreducible representations of algebras . 100

35 Representation product decomposition . 101

36 Irreducible representations of gauge groups 102

37 Feynman rules . 115

38 Gauge fixing . 119

xix

xx LIST OF CODE SAMPLES

39 Field insertions . 126
40 Amplitude calculation for h → ee . 127
41 Squared amplitudes . 135
42 Wilson coefficients 1/2 . 141
43 Wilson coefficients 2/2 . 141
44 Get particles lists from a model . 142
45 Automate a large number of calculations 143

List of Abbreviations

BSM Beyond the Standard Model

DM Dark Matter

EFT Effective Field Theory

irrep Irreducible representation

LEP Large Electron-Positron collider (CERN)

LFU Lepton Flavor Universality

LFUV Lepton Flavor Universality Violation

LHC Large Hadron Collider (CERN)

LO Leading Order

MSSM Minimal Supersymmetric Standard Model

NLO Next-to-Leading Order

NMFV Non-Minimal Flavor Violation

NMSSM Next-to-Minimal Supersymmetric Standard Model

PDF Parton Distribution Function

PDG Particle Data Group

pMSSM phenomenological Minimal Supersymmetric Standard Model

QCD Quantum Chromo-Dynamics

QED Quantum Electro-Dynamics

RGE Renormalization Group Equations

SM Standard Model

SMEFT Standard Model Effective Field Theory

SUSY Super-Symmetry

UFO Universal Feynman rules Output

VEV Vacuum Expectation Value

2HDM 2 Higgs Doublets Model

xxi

xxii LIST OF ABBREVIATIONS

CHAPTER1
Introduction

1.1 The Standard Model of particle physics

Introduction

The Standard Model (SM) of particle physics is the best model we have to describe
elementary particle interactions at high energies. Its content is presented in figure 1.1.
This model describes three of the four fundamental forces:

The electromagnetic force. Carried by the photon γ, it is responsible for light and
all electromagnetic waves in general (radio, micro-waves,X-rays, γ-rays, . . .). More
importantly, this force is the main source of repulsion in matter e.g. preventing the
gravitational collapse of planets and stars.

The strong nuclear force. Carried by the gluon g it glues quarks together in nucle-
ons (protons and neutrons). At larger scales it contains multiple nucleons in atomic
nuclei and, together with electromagnetism, generates all the chemical diversity we
know from the periodic table of elements.

The weak nuclear force. Less critical to describe matter, the weak nuclear force
is mediated by the W - and Z- bosons and is responsible for example of neutron
β-decays to proton + electron + anti-electron-neutrino: n → p+e−ν̄e. While for
practical purposes this force is too weak to have a large impact on the world we
see, it is very important theoretically in our understanding of the smallest scales of
physics as we will discuss in the following.

A bit of History

The SM has been built progressively during the twentieth century. The first element
in figure 1.1 to be known was the particle of light, the photon. 1 Around 1900 the elec-
tron was observed as a negatively-charged particle in matter for example in the famous

1. We cannot give a precise time for the photon discovery as our description of light has gone through
a lot of debates and controversies during several centuries.

1

CHAPTER 1. INTRODUCTION

Standard Model of Elementary Particles
three generations of matter

(fermions)
I II III

interactions / force carriers
(bosons)

mass
charge

spin

Q
U

A
R

K
S

u
≃2.2 MeV/c²
⅔
½

up

d
≃4.7 MeV/c²
−⅓
½

down

c
≃1.28 GeV/c²
⅔
½

charm

s
≃96 MeV/c²
−⅓
½

strange

t
≃173.1 GeV/c²
⅔
½

top

b
≃4.18 GeV/c²
−⅓
½

bottom

LE
PT

O
N

S

e
≃0.511 MeV/c²
−1
½

electron

νe
<1.0 eV/c²
0
½

electron
neutrino

μ
≃105.66 MeV/c²
−1
½

muon

νμ
<0.17 MeV/c²
0
½

muon
neutrino

τ
≃1.7768 GeV/c²
−1
½

tau

ντ
<18.2 MeV/c²
0
½

tau
neutrino G

A
U

G
E

B
O

SO
N

S
VE

C
TO

R
 B

O
SO

N
S

g
0
0
1

gluon

γ
0
0
1

photon

Z
≃91.19 GeV/c²
0
1

Z boson

W
≃80.39 GeV/c²
±1
1

W boson

SC
A

LA
R

 B
O

SO
N

S

H
≃124.97 GeV/c²
0
0

higgs

Figure 1.1 – The Standard Model content [1]. The three fermion generations are similar, only the masses are
different and particles of higher generation are more massive (and therefore less abundant in the Universe).

cathode experiment [2]. The electron-neutrino was observed in 1956 [3], previously pos-
tulated to explain the apparent violation of energy conservation in neutron β-decays.
In 1959 a theory describing electromagnetism and the weak nuclear force was intro-
duced [4], postulating in particular the force mediatorW that was later discovered exper-
imentally. Although the Z-boson was not predicted initially it quickly became necessary,
in particular for the Higgs mechanism [5, 6] (1964) that has the ability to explain why the
W -boson has a non-zero mass contrary to the photon if a new weak neutral mediator is
postulated. 2 This particle, the Z-boson, was later discovered at CERN in 1983 [7]. The
paper by Weinberg [8] (1967) successfully unified all the concepts above and strongly
resembles to the actual Standard Model with less particle content.

As quarks cannot be observed as free particles at reasonable energies, they were only
discovered later thanks to deep-inelastic scattering experiments in 1969 [9,10] that probed
the internal structure of protons. Later on, in 1979, we discovered gluons in three-jets
events [11] caused by the production of a quark/anti-quark pair and a gluon. Quarks
were postulated theoretically in the so-called quark model that inferred the internal struc-
ture of hadrons (particles composed of quarks such as neutrons and protons) by classi-
fying their different species observed in experiment. We later realized that quark flavors

2. Without a new particle the Higgs mechanism would predict a mass for the photon. The Z-boson is
thus required to absorb this mass from the Higgs mechanism and keep the photon massless.

2

CHAPTER 1. INTRODUCTION

are not conserved by the weak interaction. This gave rise to the so-called CKM ma-
trix [12] parametrizing the relative strengths of flavor changing charged currents through
W -boson interactions.

The matter content of the second and third fermion generations has been discovered
progressively such as the charm quark in 1974 [13, 14], the tau particle in 1975 [15] or the
top quark at Fermilab [16] and D0 [17] (1995). The Higgs boson was the last missing piece
of the Standard Model and was discovered in 2012 at the LHC [18, 19].

The fourth missing fundamental interaction

The SM does not describe gravity. This deficiency is the main motivation for quantum

gravity, a theory that would describe gravitation at the quantum level i.e. mediated by
another elementary particle, the graviton. For now, particle interactions can be predicted
by the SM which is based on quantum field theory and the gravitational force is under-
stood thanks to the general theory of relativity which is a non-quantized description of
the space-time curvature. Several theories can have a quantized gravity such as string
theory [20–23] or loop quantum gravity [24, 25] but to this day still struggle to provide
predictions for elementary particle physics that we could measure at the energy scales
available to us. Quantum gravity is beyond our scope as we will discuss observable
phenomena in high energy physics.

A more theoretical description of the SM

The Standard Model particle content presented in figure 1.1 does not describe per-
fectly the fundamental structure of particles. In the following we present the SM content
in a more mathematical way, introducing gauge groups and representations.

A gauge group corresponds to a fundamental interaction and comes with a gauge
boson that mediates the associated force. Then, each particle can feel the force in different
ways (or equivalently interact with the gauge boson in different ways) depending on its
representation in this group. For more details about representation theory see chapter 5.
Before the electroweak symmetry breaking, the SM gauge group is

SU(3)c × SU(2)L × U(1)Y , (1.1)

with SU(3)c the color group of the strong nuclear force and SU(2)L×U(1)Y that contains
both the weak nuclear force and electromagnetism. For example, quarks are triplets of
SU(3)c meaning that they have three possible color states conventionally namedR,G and
B that are connected by interactions with gluons carrying the force. Such representations
are noted from their dimensions e.g. 3 in the triplet example. The U(1)Y group is similar
to the U(1)em group of electromagnetism, i.e. to each particle is associated a fractional
charge and the representation is denoted by the charge value.

The Standard Model content in terms of spin and gauge representations before sym-
metry breaking is presented in table 1.1. At high energies the SM Lagrangian has more
symmetries and there are less independent fields. QL for example contains 3 × 3 × 2 = 18
fermions because the three fermion generations, the three SU(3)c colors and the two parts
of the SU(2)L doublet (later identified as up- and down-type quarks) are degenerate.

3

CHAPTER 1. INTRODUCTION

Particle Spin SU(3)c × SU(2)L × U(1)Y representation

QL 1/2 (3, 2, 1/6)

UR 1/2 (3, 1, 2/3)

DR 1/2 (3, 1,−1/3)

LL 1/2 (1, 2,−1/2)

ER 1/2 (1, 1,−1)

H 0 (1, 2, 1/2)

g 1 (8, 1, 0)

W 1 (1, 3, 0)

B 1 (1, 1, 0)

Table 1.1 – Content of the Standard Model before the electroweak symmetry breaking i.e. at very high energies.
The three fermion generations are implicit with the upper case letters, for example U ≡ (u, c, t). QL contains
all up- and down-type left-handed quarks. Similarly, LL contains all left-handed neutrinos and leptons (e,µ,τ).

When considering the same theory at low energies, the Higgs doublet H gets a non-
negligible vacuum expectation value (VEV) and the SU(2)L×U(1)Y symmetry is sponta-
neously broken to the electromagnetism U(1)em. This means that three of the four bosons
gauging SU(2)L ×U(1)Y acquire a non-zero mass and one combination of them remains
massless: The photon. The Higgs VEV also gives mass to fermions. Fermions in SU(2)L
doublets are not degenerate anymore and must therefore be considered separately e.g.

LL →
{

NL

EL
,

QL →
{

UL
DL

,

(1.2)

for all three generations (implicitly considered through upper-case letters) with NL =
(νe, νµ, ντ). The flavor symmetry between the different generations is also broken and
the final Standard Model content in the unbroken gauge

SU(3)c × U(1)em (1.3)

is presented in table 1.2.
One can see that the model now contains only one real scalar boson, the Higgs boson

h, whereas in table 1.1 there were four scalar degrees of freedom in the complex doublet
H . The three missing degrees of freedom are absorbed when W± and Z acquire non-
trivial masses and correspond to the spin 0 projection of the weak bosons that are not
physical for massless vectors. 3

3. A massless vector can have 2 different spin projections: ±1. When it acquires a non-zero mass the
spin projection 0 becomes physical and corresponds to a third degree of freedom.

4

CHAPTER 1. INTRODUCTION

Particle Spin SU(3)c × U(1)em representation

uL 1/2 (3, 2/3)

uR 1/2 (3, 2/3)

dL 1/2 (3,−1/3)

dR 1/2 (3,−1/3)

νeL 1/2 (1, 0)

eL 1/2 (1,−1)

eR 1/2 (1,−1)

h 0 (1, 0)

g 1 (8, 0)

W± 1 (1, 1)

Z 1 (1, 0)

γ 1 (1, 0)

Table 1.2 – Content of the Standard Model after the electroweak symmetry breaking i.e. at low energies. Only
the first fermion generation is shown as the other ones are identical. The neutrino is the only fermion to have
no right-handed counter-part in the SM.

The theoretical framework

The SM is a quantum field theory built to describe elementary particle interactions. A
particle is described as a relativistic quantum field defined at each space-time point X
such as

Φ̂(X) =

∫

p

(

âpe
−ipX + â†

pe
+ipX

)

, (1.4)

that is an excitation of the field Φ̂ at X , an infinite sum of oscillation modes with mo-
mentum p. Creation and annihilation quantum operators â and â† are similar to the ones
defined in the quantum harmonic oscillator [26], creating or annihilating one particle of
momentum p. The definition above corresponds to a real spin 0 particle for simplicity. All
fields are Lorentz covariant, i.e. transform correctly under the Lorentz transformations of
special relativity. These definitions allow us to describe relativistic particles which have
very high energies while keeping track of their quantum nature. Then, the quantum vac-
uum with no particle is defined as the quantum state |0〉 and creation operators â†

p for
example act on this state to produce another one, containing a particle. Namely

â†
p |0〉 ≡ |Φp〉 , (1.5)

with |Φp〉 the quantum state containing one particle Φ with momentum p. All the states
defined in this way lie in a Fock space, also generalized from the simple quantum har-
monic oscillator.

From a theory describing elementary particles we want to predict physical phenom-
ena i.e. transitions between different quantum states. For example, a β-decay corre-
sponds to a transition from an initial state |n〉 to a final state |peν̄〉 where we ignore
momenta. From quantum mechanics, the transition amplitude noted iM is the product
between the initial and final states:

iM(n → peν̄) ∼ 〈peν̄|n〉 , (1.6)

5

CHAPTER 1. INTRODUCTION

and the transition probability P is then proportional to the squared amplitude, namely

P (n → peν̄) ∝ |iM|2, (1.7)

which represents the theory prediction. Now that the framework is well-known the chal-
lenge for theoretical physicists is to calculate the so-called S-matrix elements such as
〈peν̄|n〉 in a given theory (the SM or beyond), a task known to be very hard and time-
consuming. This calculation is based on the Lagrangian formalism. The Lagrangian L is
a mathematical expression containing all the theory interactions and amplitudes such as
〈peν̄|n〉 are derived from it as presented in chapter 6.

In the SM the descriptions of electromagnetism and the strong nuclear force with
quantum field theory are provided with Quantum Electro-Dynamics [27] (QED), and
Quantum Chromo-Dynamics [28] (QCD) respectively. We will not present further fun-
damental aspects of quantum field theory as it requires dedicated books such as the
Schwartz [29] or the more involved Weinberg trilogy [30–32].

1.2 Motivations to go beyond the Standard Model

In the previous section the Standard Model of particle physics whose last piece, the
Higgs boson, was observed at the LHC in 2012 was briefly presented. By introducing
some historical facts about its construction we discussed how theoretical predictions
were important to guide experimental measurements at a time when the picture in fig-
ure 1.1 was incomplete. These predictions are always driven by inconsistencies in the
theory or experiments. The neutrino was required to respect energy conservation in β-
decays, the W -boson was then needed to build a consistent theory of these decays, the
Higgs mechanism allowed physicists to explain particle masses, etc.

Now one may wonder if the Standard Model is complete or if we still miss some
un-discovered particles and/or interactions. From our understanding of the underlying
theory, we know for sure that the Standard Model does not describe all the phenom-
ena we observe and that we must search for new physics. The question is therefore to
know where the SM must be corrected or complemented. While most of the elementary
interaction measurements are in very good agreement with the SM, there are still ques-
tions to which particle physicists must answer. Let us now present some inconsistencies
we observe nowadays thanks to particle physics experiments, that could lead us to new
discoveries in the twenty-first century.

1.2.1 Theoretical shortcomings

Neutrino masses

In the SM, fermion mass terms can be generated with a left- and a right-handed parts,
namely

−m
(

ψ̄LψR + ψ̄RψL
)

, (1.8)

for a Dirac fermion ψ of mass m. The left- and right-handed parts of ψ are noted ψL and
ψR respectively. In the SM, neutrinos have no right-handed parts and cannot get such a

6

CHAPTER 1. INTRODUCTION

mass term whereas we measured experimentally from neutrino oscillations [33, 34] that
they have non-zero masses. This issue has however a very special feature because from
the SM structure we know that a right-handed neutrino would not be measurable 4 as
it would not interact with any other particle (i.e. it would be transparent to electromag-
netism, weak and strong nuclear forces). It is moreover the most simple solution to this
problem because it requires no additional hypothesis to make neutrinos different from
the other fermions.

Another possibility is to consider a Majorana neutrino without right-handed counter-
part that couples to itself such as

− m

2

(

λTLiσ2λL + λ†
Liσ2λ

∗
L

)

, (1.9)

where λL is a Majorana fermion of mass m and σ2 the second Pauli matrix. Such a
mass definition implies that the fermion is its own anti-particle. In the neutrino case,
this would imply the possibility of neutrino-less double β-decay (often noted 0νββ) as
presented in figure 1.2. A β-decay is already a rare process, the neutrino-less double
decay is therefore even less likely to happen (considering that neutrinos are Majorana
particles) and has not yet been observed experimentally [35].

Figure 1.2 – Neutrino-less double β-decay which is possible if the neutrino is a Majorana fermion νM . Each
vertex ⊗ represents a β-decay. The same neutrino can participate to both because it is its own anti-particle.
This diagram has been generated using GRAFED, see section 2.5 for more details.

Dark matter

From several cosmological measurements such as galaxy rotation curves or galaxy
collisions, we know that there is in the Universe a large amount of matter that we cannot
see i.e. that does not interact with light. The measurements of the Cosmic Microwave
Background (CMB) by WMAP [36–40] and Planck [41, 42] also represent strong evidence
for the existence of dark matter. In particular, the power spectrum of the CMB cannot

4. Strictly speaking this is not true as the right-handed neutrino still couples to its left-handed counter-
part through the mass term and could be observed in couplings proportional to its mass with the Higgs
boson for example. However, as neutrino masses are extremely small (< 1.1 eV [35] i.e. 500′000 times
lighter that the electron) such processes are for the moment not measurable.

7

CHAPTER 1. INTRODUCTION

be explained without dark matter. It has been derived that dark matter is several times
more abundant than the baryonic matter that we can observe in our telescopes. This
matter can be of several kinds such as elementary particles, dark objects or primordial
black holes. It is important to note here that dark matter may not be made of particles
but as particle physicists we can investigate which extensions of the SM could provide a
good dark matter candidate. In the following we therefore consider only the elementary
particle alternative.

Similarly to the neutrino mass, this issue has the peculiar feature to be explained by
very simple and non-observable scenarios. We know that if dark matter is composed
of elementary particles they interact only weakly to ordinary matter, but it could also
in principle not interact at all. Table 1.1 presented the high energy content of the SM,
before the electroweak symmetry breaking. There is no theoretical constraint on the types
of representations a model can contain. In particular, nothing prevents us to add pure
gauge singlets i.e. with a representation (1, 1, 0). Such fields would not interact with
anything except through the gravitational force and would therefore behave like dark
matter without being ever measurable in particle physics experiments.

As the study of non-observable theories is speculative and unscientific, search for
dark matter in particle physics consists in the theoretical and experimental study of BSM
models that provide a candidate for dark matter which still interacts with ordinary matter
and is therefore observable.

1.2.2 Flavor anomalies

Experimental measurements of b → s transitions, presented in figure 1.3, present
tensions with SM predictions in particular for b → sµ+µ− processes (see e.g. [43–48]).
These tensions are called the flavor anomalies. If confirmed, they could be the sign of

Figure 1.3 – Generic loop-level process for rare b → sX decays with X any electrically neutral final state. This
diagram has been generated using GRAFED, see section 2.5 for more details.

Lepton-Flavor Universality Violation (LFUV) stating that not all leptons behave in the
same way (independently of their different masses).

Several BSM models are candidate to explain flavor anomalies:

Z ′ models (see e.g. [49–51]) introduce a boson similar to Z but with non-vanishing
tree-level flavor-changing couplings with quarks.

Composite Higgs models (see e.g. [52–54]) can cause LFUV at the tree level. They
postulate that the Higgs boson is not an elementary particle but composed of fermions.

8

CHAPTER 1. INTRODUCTION

Leptoquark models (see e.g. [55–59]) define a direct lepton-quark-leptoquark cou-
pling that would participate to flavor-changing currents. The new particles, the
leptoquarks, can therefore be either scalar or vector fields.

1.2.3 The anomalous magnetic dipole moment of µ

The muon magnetic dipole moment can be physically interpreted as the coupling
between the muon spin and the electromagnetic field. As the muon is electrically charged
this interaction is non-zero and the muon produces a magnetic field. The Dirac equation
predicts a muon dipole moment [35]

~M = gµ
e

2mµ

~S, (1.10)

with the gyro-magnetic ratio gµ = 2, mµ the muon mass, ~S its spin and finally e the uni-
versal electromagnetic coupling constant. However, this magnetic moment must be cor-
rected by quantum loop effects such as the leading contribution presented in figure 1.4.

Figure 1.4 – QED contribution to the muon anomalous magnetic dipole moment in the SM. This diagram has
been generated using GRAFED, see section 2.5 for more details.

We parametrize the deviation from the tree-level value with the so-called anomalous

magnetic dipole moment

aµ ≡ gµ − 2

2
, (1.11)

often noted (g − 2)µ. The combined experimental average is [60]

aEXPµ = 116 592 061(41) × 10−11, (1.12)

while the value predicted by the SM is [61]

aSMµ = 116 591 810(43) × 10−11. (1.13)

The tension between experiments and the theoretical prediction is therefore

aEXPµ − aSMµ = (251 ± 59) × 10−11, (1.14)

that corresponds to a 4.2σ discrepancy. There are still some interrogations about the theo-
retical prediction from the Standard Model (see for example lattice QCD calculations [62])
but such a large tension could be a sign of new physics in the muon sector motivating the
search for BSM scenarios shifting the value of aµ.

9

CHAPTER 1. INTRODUCTION

1.2.4 The Hierarchy problem

The Higgs mass is measured to be [35]

mh = 125.25 ± 0.17 GeV, (1.15)

and is in agreement with the leading SM predictions from the electroweak spontaneous
symmetry breaking. However, the Higgs mass gets quantum corrections from loop ef-
fects as presented in figure 1.5.

Figure 1.5 – Generic diagram representing loop corrections to the Higgs mass. This diagram has been generated
using GRAFED, see section 2.5 for more details.

These loop corrections depend quadratically on the energy cut-off used in the calcu-
lation i.e. the energy scale at which our description is not correct anymore. This cut-off is
at most equal to the Planck mass

mP =

√

~c

G
, (1.16)

at which we need a theory of quantum gravity. In natural units ~ = c = 1 and the Planck
mass reads

mP = G−1/2 ≈ 1.22 × 1019 GeV. (1.17)

This energy scale is much larger thanmh and a small correction to the Higgs mass cannot
be explained. This is known as the hierarchy problem related to the enormous energy
gap between the weak nuclear force at ∼ 100 GeV and the gravitation at ∼ 1019 GeV.
Some physicists argue that there must be new physics between those scales to solve this
issue, motivating the search for BSM models in this energy range. From the experimental
point of view of particle colliders, we are for now able to reach energies of the order of
1 TeV = 1000 GeV in the center of mass frame.

Some BSM scenarios can theoretically solve the Higgs mass corrections issue:

Supersymmetric (SUSY) models [63–66], such as the Minimal Supersymmetric Stan-
dard Model (MSSM), predict cancellations in the involved loop corrections between
SM particles and their SUSY partners.

Composite Higgs models [67]. As in these models the Higgs boson is no longer
a fundamental scalar particle, its mass corrections are therefore not calculated in
the same way and composite Higgs models are candidates to solve the Higgs mass
correction issue.

10

CHAPTER 1. INTRODUCTION

1.3 Model building in particle physics

A particle physics model is built from several different elements. Such a model must
be able to describe the different elementary particles that exist and their interactions. To
build a model, the symmetries and the fundamental interactions must be defined first.
Then, the matter content is constructed with all the different species and their couplings
to the fundamental forces. Finally, additional couplings respecting the model symme-
tries can be postulated such as the Yukawa couplings in the Standard Model that couple
the Higgs field to fermions and explain why fermions have non-zero masses through the
Higgs mechanism. As a last step, one should check the model’s consistency by ensuring
that it is anomaly-free as we will discuss at the end of this section.

1.3.1 Symmetries

A model is symmetrical with respect to a transformation T if the Lagrangian L –
containing all the kinetic, mass and interaction terms – is physically invariant under this
transformation:

T (L) = L + ∂µV
µ, (1.18)

with ∂µV µ a possible divergence term that cancels out of any physical calculation.
Let us consider the free electron, a spin 1/2 particle ψ of mass m. The corresponding

Lagrangian reads
L = ψ̄iγµ∂µψ −mψ̄ψ. (1.19)

This Lagrangian describes the free propagation of the electron and is symmetrical under
several transformations such as

ψ 7→ Tα(ψ) = eiαψ

ψ̄ 7→ Tα(ψ̄) = e−iαψ̄,
(1.20)

with α a real number. One can check that Tα indeed leaves the Lagrangian invariant:

Tα(L(ψ, ψ̄)) ≡ L(Tα(ψ), Tα(ψ̄)) = L(ψ, ψ̄). (1.21)

This is a global symmetry, meaning that the Lagrangian is invariant under a transforma-
tion with constant parameters α. If we promote α to be a function over the Minkowski
space-time α(X), the Lagrangian is not invariant anymore because ∂µα 6= 0 and

δαL ≡ Tα(L) − L = −∂µαψ̄γµψ, (1.22)

where we used the Taylor development considering α as an infinitesimal parameter

eiα = 1 + iα+ O(α2). (1.23)

One can see that the derivative prevents the symmetry to be promoted to a local symme-

try, i.e. valid for any α(X). This local symmetry can be achieved by adding a new field
Aµ also transformation under Tα following

Aµ 7→ Tα(A)µ = Aµ + ∂µα. (1.24)

11

CHAPTER 1. INTRODUCTION

With this new field, one can create an invariant term by introducing the covariant deriva-
tive Dµ

ψ̄iγµDµψ, (1.25)

with
Dµ = ∂µ − iAµ. (1.26)

Using the transformations defined above, this term now transforms as

Tα(ψ̄iγµDµψ) = Tα(ψ̄iγµ∂µψ) + ψ̄γµTα(Aµ)ψ

= (−∂µα+ ∂µα) ψ̄γµψ + ψ̄iγµDµψ

= ψ̄iγµDµψ.

(1.27)

This connection between the electron ψ and the photon Aµ is therefore invariant un-
der the gauge transformation. In general, any matter field transforming under an un-
broken gauge symmetry is connected to the gauge boson (Aµ in this case) through an
interaction of the type ψ̄Aψ like the one presented in figure 1.6.

Figure 1.6 – General form of gauge interaction preserving the associated gauge symmetry. Two matter particles
ψ interact with one gauge boson A.

The local symmetries of a model define therefore the gauge symmetries, i.e. the fun-
damental forces. The principle above can be generalized to arbitrary couplings and di-
mensions. The strong nuclear force mediated by the 8 gluons gAµ gauging the SU(3)c
symmetry group has gauge couplings of the form

ψ̄iγ
µ(Dµψ)i = ψ̄iiγ

µ∂µψi + igsψ̄iγ
µgAµ T

A
ijψj , (1.28)

with i the quark color indices, gs the strong coupling constant, TAij the tensor connection
between the gluon gAµ and the matter field ψi ensuring that the SU(3)c gauge transforma-
tion leaves the Lagrangian invariant.

Global symmetries can also be defined in a particle physics model. They are not local,
i.e. are not gauged and are not associated with a gauge boson or a fundamental force.
They are the simple consequence of the empirical observation that some interactions,
while allowed theoretically, do not exist. In the Standard Model for example, the baryon
number B and the lepton number L are conserved. We associate with each of these con-
servation laws a U(1) symmetry group (as the example above for the transformation Tα),
U(1)B and U(1)L. These symmetries are not local and the Lagrangian is only invariant

12

CHAPTER 1. INTRODUCTION

under a constant transformation αL and αB . (Anti-)quarks have a baryon number (−)1/3
and (anti-)leptons have a lepton number (−)1. Terms such as

φA l̄ΓAl,

φAq̄ΓAq,
(1.29)

for a lepton l and a quark q conserve both symmetries but a coupling between one lepton
and one quark is not possible as

φAq̄ΓAl, (1.30)

would not be invariant under the baryon or lepton number transformations. In the equa-
tions above, φA and γA are arbitrary boson and γ-matrix combination respectively.

To summarize what we discussed about symmetries, let us recall the three main fea-
tures of symmetries:

Any unbroken symmetry, local or global, is associated with a conservation law.
In the Standard Model for example, the U(1)em symmetry is associated with the
electric charge conservation and the global U(1)L symmetry is associated with the
conservation of the lepton number.

Local / Gauge symmetries are conserved locally, i.e. under a transformation with
variable α(X) parameters. In order for the symmetry to be conserved, any dy-
namical field transforming non-trivially must couple to the gauge boson through a
gauge interaction. These couplings are what we interpret as the fundamental forces
of nature.

Global symmetries are conserved only with constant parameters α. They do not
require any additional particle or gauge interaction and are the mathematical oc-
currence of a conservation law in the Lagrangian.

1.3.2 Matter content

Once the gauge group has been defined, all postulated particles must be irreducible
representations of this gauge group. 5 Table 1.1 presented the matter content of the SM
as a set of particles, irreducible representations of the unbroken gauge group

SU(3)c × SU(2)L × U(1)Y , (1.31)

and table 1.2 presented the content in the final gauge group that we observe at low ener-
gies

SU(3)c × U(1)em, (1.32)

with the unbroken strong nuclear force SU(3)c with massless gluons, electromagnetic
force U(1)em with a massless photon, and the broken weak nuclear force with massive
vector bosons W± and Z0.

The irreducible representation of a U(1) group is a numerical charge such as the elec-
tric charge. For a non-abelian group such as SU(2) or SU(3), the representation is defined

5. See also chapter 5 for more details on irreducible representations.

13

CHAPTER 1. INTRODUCTION

by a dimension that is the number of independent degrees of freedom mixing under the
transformation. For the spin group SU(2) for example, spin 1/2 fermions are the dimen-
sion 2 representation with spin up and down (2 possible states). This group is the same
as SU(2)L from which is named the weak isospin that follows the same rules. In the case
of SU(2)L, the isospin up and down correspond for example to the electron neutrino νe
and the left-handed electron eL respectively that form a doublet (dimension 2 represen-
tation). A particle that does not feel the force associated to a group G is in the trivial

representation of G, of charge 0 for U(1) and of dimension 1 for non-abelian groups.
There is no limitation in the matter content when one builds a BSM model, any par-

ticle in an irreducible representation of the unbroken gauge group can be added in the
model.

What is a particle ?

One can see that there could be some ambiguity in what is called a particle. In table 1.1
for example, QL is defined as one particle while it actually contains all six left-handed
quarks uL, dL, cL, sL, tL and bL. The QL notation is not just a shortcut to define multiple
particles at once and reflects the way we would experimentally detect quarks at very high
energies.

The lightest quark is u (up) with a mass around 2.5 MeV while the heaviest is t (top)
with a mass about 173 GeV. Particles of different masses are distinguishable. In the
quark case, one can know whether an up-type quark is a u or a t depending on its mass.
At very high energies however, well above the electroweak scale (MW ≈ 100 GeV) and
the top quark mass scale (mt ≈ 200 GeV) the 6 quarks have negligible masses and they
become indistinguishable. 6

We therefore consider that degenerate quantum states with the same quantum num-
bers and interactions are simply different inner states of the same particle. This is the case
for quark colors. All quarks have three independent color states conventionally called R,
G andB but these states are not considered as different particles. Similarly, the gluon has
8 degenerate color degrees of freedom and is considered as a unique particle.

Therefore, there are in general much less particles than the number of independent
dynamical degrees of freedom in a model. Counting one degree of freedom for each
color or spin state, there are in the Standard Model

6 × 3 × 4
︸ ︷︷ ︸

quarks

+ 3 × 4
︸ ︷︷ ︸

charged leptons

+ 3 × 2
︸ ︷︷ ︸

neutrinos

+ 8 × 2
︸ ︷︷ ︸

gluon

+ 2
︸︷︷︸

photon

+ 3
︸︷︷︸

Z

+ 3 × 2
︸ ︷︷ ︸

W±

+ 1
︸︷︷︸

Higgs

= 118 (1.33)

degrees of freedom, while we define 27 independent particles (counting anti-particles)
for the interactions we observe at the typical energy scales of particle colliders and only
9 different particles in the limit of very high energies.

6. Different states still can be distinguished such as a spin measurement for an electron. The two spin
states have the same mass, but one can measure the spin by imposing a magnetic field for example.

14

CHAPTER 1. INTRODUCTION

1.3.3 Spontaneous symmetry breaking

Inconsistent mass terms

In a theory without symmetry breaking, it is not possible to write down a gauge
invariant mass term for gauge bosons or SM fermions, while we observe masses for the
bosons W± and Z and all fermions.

For a gauge boson Aµ, a mass term such as

L ∋ 1

2
M2
AAµA

µ, (1.34)

would not be gauge invariant. If we apply for example the transformation given in equa-
tion 1.24, we obtain

δL = M2
AA

µ∂µα+ O(α2) 6= 0. (1.35)

For a fermion ψ composed of Weyl fermions ψL and ψR, the mass term is

L ∋ −m(ψ̄LψR + ψ̄RψL). (1.36)

For a fermion to have a mass term such as the ones we observe in nature, we must there-
fore couple the left- and right-handed parts together. However, as table 1.1 presented,
left- and right-handed fermions have different gauge representations in the SU(2)L and
U(1)Y groups. This has the simple consequence that the term above cannot be gauge
invariant for any SM fermion.

We justified above the fact that mass terms that respect the gauge symmetry can-
not be written in general for gauge bosons and SM fermions, that all transform under
non-abelian gauge groups. As we observe massive particles, we need a gauge invari-
ant procedure that can explain non-zero masses for SM particles. This procedure is the
spontaneous symmetry breaking.

Principle

A symmetry is said spontaneously broken when the Lagrangian is invariant under
this symmetry but that the vacuum is not. This mechanism is opposed to the explicit
symmetry breaking, when the Lagrangian is not invariant. An example of such a sym-
metry can be seen in a quartic potential for a complex scalar boson φ:

V (φ, φ†) = −aφ†φ+
b

2

(

φ†φ
)2
, (1.37)

where a and b are two positive constants. This is the so-called Mexican hat potential
as presented in figure 1.7. The minimum of the potential is not located at φ = 0 and
consequently no quantum field theory calculation can be performed with φ as it is not
a perturbation around the ground state i.e. the state that minimizes the potential. The
minimum of V (φ, φ†) can be found by finding the classical solution of

∂V (φ, φ†)
∂φ† = 0

⇔
(

−a+ bφ†φ
)

φ = 0, with φ 6= 0

⇔ φ†φ =
a

b
.

(1.38)

15

CHAPTER 1. INTRODUCTION

Re(φ)

Im(φ)

V (φ, φ†)

Figure 1.7 – Mexican quartic potential for a complex scalar field φ, expressed as a 2D function of the real and
imaginary parts of φ.

The minimum is therefore any state for which the squared modulus of φ is equal to a/b,
namely

φ =

√
a

b
eiα, (1.39)

with α any angle in [0, 2π[. From the point of view of quantum mechanics, this minimum
is interpreted as the vacuum expectation value (VEV) of the field φ, i.e. its average value,
around which excited states can be measured. This is noted

〈φ〉 =

√
a

b
eiα. (1.40)

The phase α is arbitrary and can be chosen, without loss of generality, to zero. Then, the
field is expanded around its vacuum expectation value to define a new field φ̃ that has a
vanishing VEV:

φ ≡
√
a

b
+ φ̃. (1.41)

We can check that the new field has no VEV:

〈φ〉 =

〈√
a

b
+ φ̃

〉

⇔
√
a

b
=

√
a

b
+ 〈φ̃〉

⇔ 0 = 〈φ̃〉.

(1.42)

The potential in equation 1.37 can now be expressed as a function of φ̃ and reads

V (φ̃, φ̃†) =
a

2

(

φ̃† + φ̃
)2

︸ ︷︷ ︸

=2aRe(φ̃)2

+
√
abφ̃†φ̃

(

φ̃† + φ̃
)

+
b

2

(

φ̃†φ̃
)2
,

(1.43)

where constant terms have been dropped as they do not contribute to physical observ-
ables. We see 3- and 4-vertex interactions for φ̃ but more importantly that the real part

16

CHAPTER 1. INTRODUCTION

of the new scalar field acquires a mass, contrary to the imaginary part, through the term
2aRe(φ̃). This means that the two degrees of freedom are now different particles with
distinct free dynamics. Re(φ̃) is the massive degree of freedom consequence of the sym-
metry breaking, and Im(φ̃) is the associated massless Goldstone boson. By defining

φ̃ ≡ h+ iG√
2

, (1.44)

with h and G the real massive and Goldstone bosons respectively, the final potential is

V (h,G) =
1

2
m2
hh

2 +

√

ab

2

(

h3 + hG2
)

+
b

8

(

h4 + 2h2G2 +G4
)

, (1.45)

with
mh =

√
2a, (1.46)

the mass of the real scalar boson h.
We described the potential behavior for the initial complex scalar φ and showed that

the latter field has a non zero VEV. Once expanded around the potential minimum, the
two degrees of freedom of φ are dynamically separated because one of them acquire a non
zero mass, h, while the other remains massless, G. Combined with a gauge interaction,
this mechanism can provide an explanation for the observation of massive vector bosons.

Mass for vector bosons

If the scalar field φ defined in the previous section is coupled to a gauge boson by
gauge interaction, this boson also acquires a non zero mass. In equation 1.26 we defined
the covariant derivative for a field charged under a U(1) symmetry with a gauge boson
A. Applying this to φ, its kinetic term reads

Lkin ∋ (Dµφ)†Dµφ = (∂µφ
† + iAµφ

†) (∂µφ− iAµφ)

= ∂µφ
†∂µφ+ iAµ(φ†∂µφ− φ∂µφ†) +AµAµφ

†φ,
(1.47)

where we recover the standard interactions of scalar QED. The last term in the above
equation is important because after symmetry breaking the field φ is expressed as

φ =

√
a

b
+
h+ iG√

2
, (1.48)

and the vector boson therefore acquires a mass:

AµA
µφ†φ ∋ a

b
AµA

µ ≡ 1

2
M2
AAµA

µ, (1.49)

with

MA =

√

2a

b
. (1.50)

This principle can be generalized to an arbitrary gauged group provided that the scalar
field is a non-trivial representation of it. In the SM, the Higgs mechanism uses a scalar

17

CHAPTER 1. INTRODUCTION

field H that is a doublet of SU(2)L and charged under U(1)Y . H contains 4 degrees of
freedom and is coupled to the 3 gauge bosons W 1,2,3 of SU(2)L and the one of U(1)Y
named B. After spontaneous symmetry breaking, one H degree of freedom, the Higgs

boson, becomes massive. The symmetry breaking also provides masses for the weak
mediators. The covariant derivative for the H doublet is

(DµH)i = ∂µHi − igW a
µτ

a
ijHj − 1

2
ig′BµHi, (1.51)

with g and g′ coupling constants, τa the SU(2) generators and the 1/2 factor is the hyper-
charge of H . The Higgs doublet H has a non zero VEV and is expanded following

H =

(

G+

v+h+iG0√
2

)

, (1.52)

with G0 and G± the three massless Goldstone bosons, h the massive degree of freedom
and v the VEV parameter. By expanding the kinetic Lagrangian, one finds the following
mass Lagrangian for electroweak bosons:

Lmass ∋ M2
WW

+
µ W

−µ +
1

2
M2
ZZµZ

µ, (1.53)

with

W± =
W 1 ∓ iW 2

√
2

, (1.54)

Z = cos θWW
3 − sin θWB, (1.55)

where we defined

tan θW =
g′

g
, (1.56)

MW =
1

2
gv, (1.57)

MZ =
MW

cos θW
. (1.58)

One combination of W 3 and B remains therefore massless and it is the photon

A = sin θWW
3 + cos θWB. (1.59)

It can be shown that, as the Higgs transforms under the gauge transformation SU(2)L×
U(1)Y , the three Goldstone bosons G± and G0 are not physical and can be absorbed by
a gauge transformation. These three degrees of freedom were however physical before
the symmetry breaking and must appear in the low energy theory. As W± and Z acquire
a mass, their spin 0 projections become physical and these bosons have 3 independent
degrees of freedom while a massless vector boson only has the two possible projections
±1. We say that the Goldstone bosons G± and G0 are absorbed in the longitudinal po-
larizations (spin 0 projection) of W± and Z respectively. Among the 4 initial degrees of
freedom of H , one becomes a real massive scalar h and three are absorbed by the three
non-zero vector boson masses for W+, W− and Z.

18

CHAPTER 1. INTRODUCTION

Fermion masses

By coupling the scalar field φ to fermions in a gauge invariant way we can also gener-
ate fermion masses. These couplings are called Yukawa interactions and takes the general
form for a fermion ψ = ψL + ψR:

L ∋ −Y φψ†
LψR + h.c. . (1.60)

After the symmetry breaking, ψ also acquires a mass term and its mass mψ reads

mψ = Y

√
a

b
. (1.61)

The mass term above can explain SM fermion masses. The scalar field H is a SU(2)
doublet and allows us to write down a mass term such as

− YuQ̄
i
LURǫijH

i† + −YdQ̄iLDRH
i + h.c. , (1.62)

with i, j SU(2) indices, ǫij the fully anti-symmetric tensor and QL, UR and DR quark
fields defined in table 1.1 (other indices are ignored in the argument). One can check from
table 1.1 the the terms above indeed are gauge invariant. Under the right conditions, the
spontaneous symmetry breaking can explain distinct and non-zero masses for u and d
because of the fact that H is a SU(2)L doublets. This allows us to couple QL to UR and
DR in a gauge invariant way. This procedure ends up producing masses for SM fermions
by setting appropriate values for the Yukawa parameters Yψ in the initial Lagrangian.

By postulating the Higgs mechanism in the 60’s [6], theoretical physicists had there-
fore a unique, elegant and gauge invariant way to explain the masses of weak bosons,
W± and Z, and all SM fermions. The only missing piece to confirm this hypothesis was
the remaining massive degree of freedom, the Higgs boson h, that was discovered about
fifty years later [18, 19].

1.3.4 Additional interactions and anomalies

Any Lorentz and gauge invariant interaction can be added consistently to a particle
physics model. There is however one limitation when building a new model: it must
be anomaly-free. In quantum field theory, any symmetry classically conserved is said
anomalous if it is violated by quantum loop corrections. If a gauge symmetry is anoma-
lous it implies that the theory is not unitary. In the latter case, one could observe that
energy is not conserved in some processes for example, or that when we sum the prob-
abilities of an event’s possible outcomes the result is not equal to 1. A reasonable theory
must therefore be unitary and anomaly-free, i.e. all gauge symmetries must be conserved
at the quantum level. We will not detail here how anomalies are derived from the quan-
tum one-loop calculations. We nevertheless give the simple recipe allowing us to check
that a theory is anomaly-free in the following.

Anomalies can be checked through triangle one-loop diagrams such as the one pre-
sented in figure 1.8 and it is known (see for example [29]) that it is proportional to

∑

fL

Tr
(

TAfLT
B
fL
TCfL

)

−
∑

fR

Tr
(

TAfRT
B
fR
TCfR

)

, (1.63)

19

CHAPTER 1. INTRODUCTION

with fL and fR all the left- and right-handed fermions of the theory respectively and
TA,B,Cf the generalized gauge couplings of the fermion f to the gauge bosons A, B and
C. These couplings are equal to the charge for U(1) groups and algebra generators for
non-abelian symmetries.

Figure 1.8 – Triangle loop-diagrams involved in the calculation of gauge anomalies in quantum field theory.
The fermions in the loop are all the Weyl fermions of the theory. The anomaly must cancel for all A, B and C
gauge bosons of the theory. This diagram has been generated using GRAFED, see section 2.5 for more details.

In order to have an anomaly-free theory, equation 1.63 must vanish identically for
all gauge bosons A, B and C. To illustrate the procedure, let us present two Standard
Model examples of anomaly cancellations. Using the quantum numbers in table 1.1, we
can calculate the anomalies for the diagrams SU(2)2

L × U(1)Y and U(1)3
Y . The anomaly

for the first one reads
∑

fL

Tr
(

T ifLT
j
fL
YfL

)

−
∑

fR

Tr
(

T ifRT
j
fR
YfR

)

,

= Tr

(

σi

2

σj

2

)

2
︸︷︷︸

SU(2) doublets

×
(

3 × 1

6
︸ ︷︷ ︸

3 colors×YQL

− 1

2
︸︷︷︸

YLL

)

= 0,
(1.64)

with T i,jf the generators of SU(2)L and Yf the hypercharge of the fermion f . As both LL
and QL are SU(2)L doublets, their generators are the Pauli matrices σi/2. For the U(1)3

Y

diagram, there is no generator and the anomaly is simply a combination of hypercharge
values:

∑

fL

Y 3
fL

−
∑

fR

Y 3
fR

= 2 × Y 3
LL

− Y 3
ER

+ 3 ×
(

2 × Y 3
QL

− Y 3
UR

− Y 3
DR

)

= 2 × (−1/2)3 − (−1)3 + 3 × (2 × (1/6)3 − (2/3)3 − (−1/3)3) = 0.

(1.65)

It has been proven above that the SM is anomaly-free for two types of diagrams,
SU(2)2

L × U(1)Y and U(1)3
Y . This must be done in general for all different types. When

building a new BSM model it is crucial to check that it is anomaly-free before deriving
any prediction as otherwise the model is simply inconsistent.

1.3.5 Discussion on Standard Model extensions

Beyond the Standard Model scenarios are particle physics models that extend the
SM and lead to similar predictions at low energies. At higher energies however, they
must describe new physics effects that are not predicted by the SM and possibly answer
the questions that are not addressed by the SM. The typical mass scales of the Standard

20

CHAPTER 1. INTRODUCTION

Energy
(GeV)

LHC
LEP

Stable content
in the Universe

Figure 1.9 – Energy scales of Standard Model particles in GeV. BSM searches study New Physics (NP) effects
at higher energy scales than the more massive particles in the SM.

Model particles are presented in figure 1.9. For now, the most powerful particle collider
we have is the LHC, producing an effective energy 7 at the center of mass in the TeV
range. A BSM scenario must reproduce all the physics we observe below the TeV scale
and provide new physics effects at higher energies that answer questions raised by the
SM.

The top-down approach

To build a BSM model, one can choose the top-down approach, i.e. defining a model at
very high energies and deriving predictions at lower energies. This method is in general
motivated by fundamental features of particle interaction and aims to provide a model
that deepens our understanding of the laws of nature. Examples are Grand Unification
Theories (GUT) that unify the three fundamental particle interactions (electromagnetism,
weak and strong nuclear forces) at very high energies in one unique force from which
all the SM can be derived. This approach has the advantage to generate elegant and
enlightening models, also unifying matter particles. The drawback is that they are less

7. The center of mass energy at the LHC is 13 TeV but as we collide protons, the interacting partons
(quarks and gluons) carry only a fraction of this energy.

21

CHAPTER 1. INTRODUCTION

connected to phenomenology as they predict NP effects at energy scales that we may not
be able to reach with our current technology.

The bottom-up approach

The bottom-up approach is the inverse of the top-down method. It consists in describ-
ing empirically what we observe at low energies and try to understand what happens at
higher energies but without necessarily providing a complete picture. Effective Field
Theories (EFT) in particular follow this approach. As our knowledge is based on exper-
iment iterations always at higher energies, we naturally follow a bottom-up approach.
From a theoretical point of view, the bottom-up approach is minimal to describe NP ef-
fects.

In particular, it is possible to build BSM scenarios as simple SM extensions, adding
only a few features to the model. One can for example postulate the existence of a new
neutral massive vector boson X that couples to the Standard Model leptons and con-
tribute, at the one-loop level, to (g − 2)µ that was introduced in section 1.2.3. This is
presented in figure 1.10. Without providing a deeper explanation for the existence of X ,

(a) Photon (b) Higgs

(c) Weak - W (d) Weak - Z (e) Weak - Z2

(f) New Physics - X

Figure 1.10 – One-loop diagrams to (g − 2)µ with the Standard Model contributions and one New physics
diagram involving a massive neutral vector boson X. These diagrams have been generated using GRAFED, see
section 2.5 for more details.

22

CHAPTER 1. INTRODUCTION

we can predict that such a particle would imply a correction to (g − 2)µ of the order

δ(g − 2)µ ∝
(
mµ

MX

)2

, (1.66)

with MX the mass of the new vector boson X . Then, one has to know what would be the
other phenomenological implications of such vector boson, and what symmetry could
explain such a particle. Let us here only consider the (g − 2)µ example. From the relative
(g − 2)µ enhancement of 10−9 presented in equation 1.14 with respect to the electroweak
scale at 102 GeV, we can predict an approximate mass for X if we suppose that it couples
to µ in a similar way as weak bosons:

δ(g − 2)µ
(g − 2)µ

≈ M2
W

M2
X

⇔ MX ≈ MW

√
109 ≈ 106 GeV,

(1.67)

which is well above the LHC energy scale. This prediction is of course very incomplete
and would have to be refined for all different coupling types and strengths. We presented
this argument for pedagogical reasons and to show in a simple case the link between one
experimental tension and a possible NP effect.

There is no fundamental argument to ensure that there are new particles at scales
close to the electroweak scale, typically at the TeV − 10 TeV range. This is because we
already know, from the SM, that it is possible to have large energy gaps between particles
masses. We have in the SM

me

mν
> 5 × 105, (1.68)

which is an enormous gap. If a similar gap exists between the electroweak scale and new
particles, it means that the new particles would have masses above 105 TeV which is not
reachable with our current technology or even in the next decades.

However, particle physicists can discover very massive particles without having to
reach the required energies to produce them. It is possible to use high-luminosity 8 ex-
periments rather that high-energy ones. Thanks to quantum field theory, we are able
to make extremely precise predictions from a model. As massive particles contribute
in Feynman diagrams, it is possible to deduce their existence even from experiments at
much lower energies. In the above example, we showed that the knowledge of (g − 2)µ
at a relative precision of 10−9 can probe elementary particle physics effects up to the
105 TeV scale. In the limit of our quantum field theory validity domain, there is therefore
no limitation in the energy scales we can probe provided that we have sufficiently precise
measurements based on a large number of events.

8. The luminosity refers to the number of events in a collider. The higher is the luminosity, the more
events we observe and the more precise is the statistics.

23

CHAPTER 1. INTRODUCTION

1.4 Need for automated calculations

The picture

After presenting the SM together with motivations to go beyond, let us discuss the
way BSM scenarios are studied. First, it is important to distinguish two different families
of new physics models:

Theoretically motivated models. These are not necessarily based on a phenomeno-
logical motivation such as the ones presented in the previous section although they
often try to address some. In particular, they do not extend the SM but explore a
new sector to understand its properties.

Phenomenologically motivated models. These scenarios extend the SM and try to
address some specific questions raised by experiments while maintaining the same
predictive power as the SM.

Although all the following arguments apply to a certain extent to theoretically motivated
models, the demand is more important for phenomenology because one has in princi-
ple to perform a very large number of calculations in all the newly suggested models.
The real limitation in these studies is to maintain "the same predictive power as the SM".
These predictions have been calculated since decades and measured in different experi-
ments. We now have a very large number 9 of SM predictions that have been compared
to measurements. A new model should therefore be tested on all these observables but
this requires to calculate all the associated predictions. We know from our SM experi-
ence that it is a very long task involving the high energy physics community for decades
and we obviously cannot do it for the hundreds of models out there. Consequently, BSM
scenarios cannot be studied in detail without automation.

The purpose

Among the hundreds of models that are candidates to solve phenomenological issues,
it is likely that many of them are not relevant to describe nature 10 but we cannot realize
it yet as we do not possess a systematic and general automated tool to derive predictions
from all these scenarios.

Figure 1.11 presents one possible representation of a general tool to perform system-
atic BSM analyses. Question marks represent the main steps for which automation is re-
quired. To be able to provide such a tool, all the procedures must be model-independent

i.e. not specialized for a given type of model.
There three main procedures to automate for general BSM phenomenology are:

9. This number is hard to estimate exactly. The Particle Data Group (PDG) [35] is reedited every year
and enumerates the main experimental measurements in particle physics. It represents very well the state
of our knowledge.

10. A BSM model can always be at least as relevant as the SM to describe nature by setting its parameters
to very small values. However, search for BSM scenarios must be driven by SM deviations or explicit new
phenomena. With a detailed analysis one could show for example that the new model cannot bring anything
new to the picture without breaking other observables.

24

CHAPTER 1. INTRODUCTION

??? BSM
Lagrangian

???
Model

independent
program

Symbolic
Theoretical
quantities

???

Observables
 - Flavor
 - DM
 - Higgs
 - Lepton
 - ...

Phenomenological tool chain

Model building

Symbolic manipulations Numerical computations

Figure 1.11 – Concept of a tool chain to automate systematic BSM phenomenology. From a BSM Lagrangian
and a model-independent program, we want a tool chain able to predict observables in all domains of particle
physics. Question marks represent places where automated tools are required.

Model building. This part cannot be fully automated but is not a time-critical part.
For example, one can decide to add a right-handed neutrino in the SM singlet gauge
representation to create a new model. For practical purposes however, model build-
ing must be assisted by automated methods allowing us to derive easily the exact
BSM Lagrangians.

Symbolic theoretical calculations. These calculations, from a BSM Lagrangian, are
model-dependent and must be performed analytically. They represent the steps
that can take decades to perform and therefore are the main limitation to BSM phe-
nomenology.

Numerical observable calculations. From the analytically simplified theoretical
quantities, observables can be calculated numerically in a model-independent way
for all domains of particle physics. This last step in the prediction derivation is
simpler to automate and as we will discuss several tools are already dedicated to it.

Theoretical calculations

Symbolic theoretical calculations from the Lagrangian are very time-consuming and
prevent us to derive exhaustive predictions from BSM models. These calculations can be
described using the so-called Feynman diagrams as demonstrated in figure 1.12.

= + + + · · ·

Figure 1.12 – Calculation principle of the 1-loop corrections to the Higgs mass. Several Feynman diagrams
have to be calculated and the resulting amplitude is the sum of all contributions. These diagrams have been
generated using GRAFED, see section 2.5 for more details.

In principle, the transition amplitude from an initial state i to a final state f can be

25

CHAPTER 1. INTRODUCTION

defined as follows

iM(i → f) =
+∞∑

NL=0

∑

d∈DNL (i→f)

iM(d), (1.69)

with a sum over NL the number of loops, DNL(i → f) the set of all possible diagrams
with exactly NL loops for the process i → f in the theory and iM(d) the amplitude of the
diagram d. Each additional loop makes the contribution smaller and a diagram with NL

loops is proportional to
(
α

4π

)NL+E0

, (1.70)

with E0 the exponent of tree-level diagrams, and α coupling constants typically of the
order of 10−1/10−2. Starting from tree-level diagrams, one generally obtains one or two
more significant digits when considering the next loop level.

From the transition amplitude iM one can calculate more relevant quantities for phe-
nomenology such as squared amplitudes |M|2 that require again more algebra or Wilson
coefficients that are identified as complex-valued functions in front of particular struc-
tures in the amplitude. Squared amplitudes are crucial for collider phenomenology and
Wilson coefficients are used in particular in flavor physics. More details about these dif-
ferent calculations are given in chapter 6.

For phenomenology we need one-loop calculations (NL = 1) because they often rep-
resent the leading contributions such as in the motivations we discussed in the previous
section: Flavor anomalies, the muon anomalous magnetic dipole moment and Higgs
mass corrections are example of observables that require one-loop calculations. Unfortu-
nately, calculating an amplitude at the one-loop level is already a very hard task for one
process. If one wants to perform a detailed phenomenological analysis of a BSM model,
hundreds of processes have to be calculated and it is simply not possible to do it by hand.
This is why we need automated software programs able to perform analytical theoretical
calculations from general BSM Lagrangians, at tree-level and one-loop.

1.5 Existing packages

In the following we present general purpose software programs automating theoreti-
cal calculations from the Lagrangian or an equivalent description. Codes that are mostly
dedicated to SM observables are therefore not discussed here. There are two main types
of codes performing this sort of calculations:

Mathematica packages. Mathematica [68] is a commercial and closed software for
symbolic manipulations. As the theoretical calculations must be performed ana-
lytically, several physics programs are based on this computer algebra system to
implement high energy physics calculations.

Open-source solutions. Other programs are free of Mathematica and use their own
symbolic computation tools to carry out the calculations or hard-code some identi-
ties and equations to derive specific observables.

26

CHAPTER 1. INTRODUCTION

1.5.1 Mathematica packages

Mathematica is a powerful computer algebra system, packages written with it there-
fore logically provide more general features than the open-source codes which will be
presented in the next section.

FeynRules

FeynRules [69] calculates the expression of Feynman rules in BSM models from their
Lagrangian. From the vertices it can straight-forwardly provide 1 → 2 decay rates by
squaring the interaction and efforts are made for loop-level calculations [70]. A main
strength of FeynRules is that it can provide Feynman rules as input to other computer
programs such as FeynArts, CompHEP, MadGraph5_aMC@NLO, . . . , that we present in the
following. These interfaces are possible thanks to the Universal Feynman rule Output
(UFO) [71].

FeynArts / FormCalc

FeynArts [72] and FormCalc [73] have been developed jointly to provide a powerful
tool for general BSM phenomenology. The role of FeynArts is to initialize amplitude
expressions by finding all possible diagrams, drawing them and applying Feynman rules
that must be given as input, for example from FeynRules. Then, FormCalc uses FORM [74]
and Mathematica to fully simplify the amplitudes at tree-level or at one-loop in a large
variety of BSM models. These models include for example general SU(N) gauges and
not only the SM gauge. FormCalc can also square amplitudes for collider physics. It is
written in a very general way and provides a solution to the issue presented in section
1.4.

FormFlavor

FormFlavor [75] is based on FeynArts / FormCalc and calculates Wilson coefficients
at the one-loop level. The Wilson coefficients are straight-forward to obtain at the tree-
level once the amplitude can be derived. As it will be discussed later in section 6.5, the
real difficulties come at the one-loop level because additional simplification procedures
must be implemented to extract the coefficients. Although FormFlavor could in principle
be used to calculate general BSM Wilson coefficients, it has been developed specifically
to derive them in MSSM scenarios with non-minimal flavor violation.

SARAH

SARAH [76] is closely related to the Fortran code SPheno [77, 78] and mostly addresses
the phenomenology of SUSY models. It is however able to handle also other BSM scenar-
ios and provide several methods to calculate specific quantities such as one-loop Renor-
malization Group Equations (RGE), two-loop RGE in SUSY models, two-body decays at
the one-loop level, This code is written in a less general way than FormCalc for ex-
ample. This makes it more suitable for SUSY-specific analysis but cannot be used as a
general tool for BSM phenomenology.

27

CHAPTER 1. INTRODUCTION

1.5.2 Open-source solutions

LanHEP

LanHEP [79] is a Feynman rule calculator i.e. derives expressions for vertices in the
theory directly from its Lagrangian. It is a C program implementing its own symbolic
manipulation routines. From the vertices calculated by LanHEP, other packages such as
CompHEP, CalcHEP or MadGraph5_aMC@NLO, that are discussed next, are able to calculate
automatically squared amplitudes in models that LanHEP can build in particular, in the
Standard Model gauge group presented in equation 1.3 or beyond.

CalcHEP and CompHEP

CalcHEP [80] and CompHEP [81] are open-source Lagrangian-level tools using their
own symbolic computation frameworks to calculate tree-level squared amplitudes an-
alytically. They rely on a vertex calculator such as LanHEP that provides the Feynman
rules for the diagram calculations. The automation of a large number of calculations is
also more difficult in CompHEP as it has been originally designed with a graphical user
interface to be very simple to use for few processes.

MadGraph5 aMC@NLO

MadGraph5_aMC@NLO [82] is a python / C++ / Fortran code automating the calcula-
tion of cross-sections that can be used directly for event generation in the SM and BSM
scenarios at tree-level and at one-loop. It can take as input Feynman rules from UFO files
generated by vertex calculator such as FeynRules or LanHEP in order to extend some of
its capabilities to BSM models. MadGraph5_aMC@NLO is very powerful for the calculation
of SM processes. 11 Although it has several capabilities for BSM models, it has not been
designed originally for this purpose and is therefore limited. In particular, it does not
rely on a computer algebra system and calculations are restricted to the quantities that
have been explicitly implemented by the developers, unable to provide general symbolic
results for cross-sections.

1.5.3 Limitations

As we discussed in this section, several packages exist automating different theo-
retical calculations. Before going further let us recall the scope of our discussion. Our
purpose is to design a tool for general BSM phenomenology as presented in figure 1.11.
While codes that are specific to SM or SUSY calculations are very valuable because we still
need to investigate further these models, we consider here a broader scope. In particular,
the SM will probably have to be extended because of future experimental breakthroughs
and SUSY models are not the only options. We are therefore looking for a software pro-
gram able to manage all different types of models and calculations in a very general way.

11. See the online interface <http://madgraph.phys.ucl.ac.be/>

28

http://madgraph.phys.ucl.ac.be/

CHAPTER 1. INTRODUCTION

Specialization

Usually, computing packages are built first from common cases and then extended for
more general purposes. This implies a lot of work for developers that can only provide
a finite number of features because they have to be hard-coded to some extent. One-
loop calculations in particular are often considered in the SM case. Without a general
implementation on all aspects it is great challenge to generalize such calculations to BSM
scenarios.

FormCalc on the other hand is written in a very general way by using all the symbolic
manipulation abilities of FORM and Mathematica. Models are not much constrained and
calculations are performed using general quantum field theory relations and not limited
to specific processes.

Mathematica

The most effective tools for general BSM phenomenology are written with Mathe-
matica. This is in particular the case of FeynRules and FormCalc. Codes not relying
on Mathematica such as CompHEP, CalcHEP or MadGraph_aMC@NLO are not able to provide
a full one-loop support as it requires high-performance analytical calculations. One is
therefore forced to use Mathematica in order to obtain relevant quantities for BSM phe-
nomenology. This implies multiple drawbacks:

Closed software. Mathematica is closed meaning that the source code is not public
and we can only use it as a black-box. For scientific purposes, this is very inconve-
nient.

Commercial software. Mathematica is expensive, in particular each active session
of this program must correspond to a purchased license. Even if the Mathematica
packages are themselves free and open-source, one has to pay for a Mathematica
license to use them.

It is preferable for the high energy physics research not to rely on this software and to
provide its own free and open-source tools, even for general BSM phenomenology.

Wilson coefficients

No computer program, even using Mathematica, is for now able to provide Wilson
coefficients for general BSM scenarios at the one-loop level. As we discussed in sec-
tion 1.2, these quantities are required in particular to study the impact of new physics on
flavor anomalies, one of the most promising experimental hints that the Standard Model
is incomplete.

Model building

Model building is not really considered in general and the standard procedure to
define a model is to write explicitly the whole Lagrangian by hand. This feature has
some unfortunate consequences:

Giving the explicit Lagrangian of BSM models is a very tedious and error-prone
task as the number of terms grows rapidly and their exact form depends heavily

29

CHAPTER 1. INTRODUCTION

on conventions that can be inconsistent between different references. In the un-
constrained MSSM for example, there are about 104 interaction terms. 12 This is a
problem considering that results derived from the model strongly depend on the
correctness of the different vertices.

(B)SM models are better described at high energies, with all symmetries preserved.
For a newly constructed BSM model, one therefore has to derive the low energy
Lagrangian by calculating the different steps of symmetry breaking. This is again
another possible way to introduce mistakes.

A solution to this issue is to provide assistance for model building through automated
routines as it was suggested in figure 1.11.

1.6 MARTY

1.6.1 Presentation

Motivated by the arguments introduced in section 1.2 we present MARTY [83–85], a
C++ program published under the terms of the GNU GPLv3 license, that complements
the ecosystem of existing packages listed in section 1.5 by providing unique features
which were lacking in the previously published computer programs. More information
on MARTY can be found in the website 13 on which the user manual [86] and the documen-
tation [87] can be found. The basic principle of MARTY in the context of systematic BSM
analyses is shown in figure 1.13.

MARTY BSM
Lagrangian

MARTY
Model

independent
program

Symbolic
Theoretical
quantities

Pheno
code

Observables
 - Flavor
 - DM
 - Higgs
 - Lepton
 - ...

Phenomenological tool chain

Model building

Symbolic manipulations Numerical computations

Figure 1.13 – The complete version of the tool chain in figure 1.11 filled in. The existing and open-source
codes for phenomenology can perform the numerical computations and MARTY takes the responsibility to do the
theoretical symbolic calculations and to provide assistance for model building.

MARTY stands for Modern ARtificial Theoretical phYsicist and is dedicated to symbolic
theoretical calculations for general beyond the Standard Model scenarios, at tree-level
and at one-loop. MARTY’s main features are the following:

12. The exact number depends also on conventional choices.
13. See <https://marty.in2p3.fr>.

30

https://marty.in2p3.fr

CHAPTER 1. INTRODUCTION

It is independent of any other external program and in particular does not rely on
Mathematica. In particular, MARTY enters the category of open-source programs.

Thanks to its CSL module, MARTY is a symbolic computation program. It can there-
fore manage all kinds of mathematical expressions and calculations. Although it
is a part of MARTY, CSL has a separate user manual [88] and its own documenta-
tion [89].

Implementations are very general, not specifically adapted to any kind of model.
In particular, any arbitrary combination of semi-simple Lie groups can be used as
the gauge group for a model (not limited to SU(N) in particular, see chapter 5 for
more details).

Amplitudes, squared amplitudes and Wilson coefficients can be derived in all mod-

els, at tree-level and at one-loop.

All the calculation mentioned above are performed automatically, symbolically

and without approximation. 14

C++ numerical libraries are generated automatically and contain functions imple-
menting the symbolic formulas derived for scalar quantities such as squared am-
plitudes or Wilson coefficients.

Model building is supported by a lot of built-in functions that automate modi-
fications of the Lagrangian such as replacements, field rotations, diagonalization,
symmetry breaking,

Spectrum generation with general mixings is supported in all models in MARTY. In
particular, a dedicated C++ spectrum generator for any given model can be gener-
ated automatically in the same C++ library that contains the results.

1.6.2 Limitations

MARTY is very general but still has some limitations. Besides the ones implicitly given
in the features list, the main limitations are:

Dimension 4 space-time. While dimensional regularization at the one-loop level
promotes calculations to D-dimensions, models must be defined in 4D.

Spin 0, 1/2 and 1 particles. A spin 1/2 particle can be a Weyl, Dirac or Majorana
fermion. Scalar and vector particles are also supported. Higher spin fields such as
spin 3/2 or 2 cannot be described yet.

Complete NLO description. All one-loop quantities can be calculated, and the
complicated theoretical calculations are taken care of automatically. However, for
well-defined NLO quantities more work is needed to combine the relevant tree-
level and one-loop calculations.

These constraints could be lifted by extending MARTY to the relevant calculations. As it is
a very general and modular code with a complete symbolic manipulation support, it is
possible to implement the missing procedures.

14. Except of course the perturbative expansion on which quantum field calculations are based.

31

CHAPTER 1. INTRODUCTION

1.6.3 Connection to phenomenology

The scope of MARTY is the theoretical side of phenomenology, namely all the long and
error-prone steps from model building to final symbolic theoretical quantities. As shown
in figure 1.13, MARTY does not participate beyond the derivation of these quantities. For
example, squared amplitudes at tree-level and one-loop in general BSM models can be
calculated but cross-sections must be derived by users. As discussed in section 6.4, the
complicated theoretical calculation stops when the squared amplitude is fully simplified
analytically. Then, a simple numerical program can derive the cross-section as we present
later in chapter 7. Therefore, unlike programs such as MadGraph_aMC@NLO or CompHEP,
MARTY delegates numerical calculations as they are already performed by other reliable
and open-source packages.

SuperIso [90–93] for example can derive flavor observables in a model-independent
manner from the values of Wilson coefficients, and SuperIso Relic [94–96] calculates the
dark matter relic density together with direct and indirect detection rates from squared
amplitudes of 2 → 2 processes in a given model. Interfaces with these two software
programs are already a work in progress.

In general, the way to obtain a phenomenological tool chain such as the one illus-
trated in figure 1.13 is to implement interfaces with codes on the phenomenology side.
In this way, the full chain can be automated and allows one to perform easily detailed
analysis of any new BSM model. An interface with GAMBIT [97] together with its different
modules [98–103] could be very interesting as it provides general tools to compare BSM
models to experimental data and the SM in all domains of particle physics, starting from
theoretical quantities which MARTY can deliver also in a very general manner.

An overview of MARTY is presented in chapter 2, introducing in particular the soft-
ware requirements and its two independent modules: CSL and GRAFED. Chapters 3, 4
and 5 will present MARTY in more details through its quantum field, particle physics
model and group theory implementations respectively. Then, specific calculation pro-
cedures for BSM phenomenology and their impact on the code development are detailed
in chapter 6. As a demonstration of MARTY’s ability to automate tree-level and one-loop
calculations for general BSM scenarios, a selection of results will be presented in chap-
ter 7. Finally in chapter 8, new analytical results we have obtained at the loop level with
MARTY in Non-Minimal Flavor Violating (NMFV) MSSM scenarios are presented.

32

CHAPTER2
MARTY – An open-source solution

MARTY [83] is the solution we propose to the technical issues that have been presented
in the previous chapter. The basic principle is to provide an independent computer
program able to calculate theoretical predictions automatically for Beyond the Standard
Model scenarios, starting from the Lagrangian. This requires symbolic manipulations as
those calculations must be done analytically. MARTY is a free and open-source all-in-one
package, independent from any external program, implementing its own C++ Symbolic
computation Library (CSL). This chapter introduces the solution first by presenting the
requirements of MARTY then by explaining what are symbolic computations and finally
how it is done by CSL and used in MARTY.

2.1 Requirements

Requirements are the set of conditions a program must fulfill. The obvious one, that
is always implicit, is that the program must work. Then one has to specify what strengths
the program must have (simplicity, performance, development time, etc). This section is
about the main specifications of MARTY that have driven its development, with each time
the costs that are associated with them.

2.1.1 Generality

MARTY must be as general as possible, not specifically designed for a few BSM scenar-
ios or use cases. The advantage is that the code can be used in many different physical
studies, which is a very powerful feature. There are two main costs when writing a gen-
eral purpose code:

Simple cases are more difficult to optimize. In the case of a calculation program
such as MARTY, it means that simple problems are solved using a general solution
that is not particularly adapted. Results are then harder to obtain and can be less
simplified mathematically.

Development time. Writing a general code requires time to first understand the

33

CHAPTER 2. MARTY – AN OPEN-SOURCE SOLUTION

global picture and take into account all edge cases to finally implement the relevant
software architecture.

If the costs above are affordable, generality is a great reward. In the case of MARTY there
are two main tasks to implement in a general way, model building and calculations.

Models

Before making any prediction, MARTY must be able to store and manipulate theories
Beyond the Standard Model. For phenomenological purposes, the most important fea-
tures concern particle types and group theory 1. To describe most of BSM theories, one
must handle

Spin 0 particles, Lorentz scalars.

Spin 1/2 particles with Weyl, Dirac and Majorana fermions.

Spin 1 particles, vector bosons.

In terms of group theory, most models are based on SU(N), SO(N) and U(1) gauge
groups. In MARTY we decided to implement a general description of semi-simple Lie
groups, including

The abelian U(1) group, used for example to describe electromagnetic interactions.

SU(N) groups, describing the strong and weak nuclear interactions in the Standard
Model.

SO(N) groups.

Sp(N) groups.

The 5 exceptional groups E6−8, F4 and G2.

This is probably more general than what is required solely by phenomenology but the
formalism of semi-simple Lie algebras allows us to describe all these groups at once,
and this generality could extend the range of MARTY’s applications to more theoretical
capabilities.

The main limitations of models that can be built in MARTY are:

The space-time, limited for now to a 4D Minkowski space.

Particles spins, limited to spin 1. Spin 3/2 or spin 2 (such as the hypothetical gravi-
ton) can also be interesting phenomenologically but cannot be constructed in this
framework.

Calculations

The main purpose of MARTY is to automate calculations Beyond the Standard Model
for all scenarios that can be defined and to provide routines for amplitudes, squared
amplitudes and Wilson coefficients at the tree and one-loop levels. Such calculations are
already a challenge by hand and they represent an even bigger difficulty to automate.
Being general at the calculation level requires to implement simplification procedures

1. Particle types (a.k.a. spins in MARTY) can also be described with group theory as the spin corresponds
to the Lorentz group representation. Spin is however most of the time considered independently.

34

CHAPTER 2. MARTY – AN OPEN-SOURCE SOLUTION

that are context independent, i.e. the model, particles involved, number of diagrams,
expressions for the vertices, etc. This may be the biggest challenge in the development of
MARTY for the two following reasons:

One has to understand all aspects of perturbative calculations to build a general
procedure. This includes Dirac algebra, group theory, loop calculations, etc.

By definition, a general procedure must not fail in any case meaning that one must
build a program that can adapt to any calculation without destroying performance,
a very difficult task in symbolic computations when manipulating large expres-
sions. 2 The challenge is then to find the minimal set of instructions that can solve
the general problem.

2.1.2 Performance

The problem that MARTY addresses is performance-critical for several reasons. Sym-
bolic manipulation is not a task that fits well computer architectures, it requires highly
dynamical programs known to be slow. Furthermore, one-loop calculations generate
very large expressions and add more difficulty to the initial task. Finally, as we discussed
in the previous section, generality has a high structural performance cost. For all these
reasons C++ has been chosen as the programming language for MARTY and many efforts
have been dedicated to performance, being for the execution time or the amount of mem-
ory the programs need to run.

There are two main challenges to optimize the execution time for such a program.
The first one is to have a very good knowledge of C++ to take the best advantage of it.
Secondly, one must maximally reduce unnecessary calculations, a very complex task in a
general code relying on symbolic manipulations that must simplify correctly all possible
expressions.

The amount of memory is also a main concern as expressions can have very large
sizes and require many optimizations to be stored in the memory of a laptop. The first
key to reduce memory consumption is obviously to have light-weight symbolic objects,
carrying the absolute minimum of information with them. This is however not enough
to perform general calculations beyond the Standard Model and one needs to introduce
relevant 3 abbreviations in expressions to compress the final results. For example, two
expressions

x = 1 + (a+ b)(a− b),

y = 3 +
(a+ b)

(a− b)
,

2. A good example of this issue is expansion. An ultimate way to be fully general in perturbative
calculations is to expand the entire amplitude. However, this cannot be done because it would generate
gigantic expressions in many cases, that could not be handled by any software.

3. The more the abbreviation is used in other expressions the more relevant it is.

35

CHAPTER 2. MARTY – AN OPEN-SOURCE SOLUTION

can be compressed with the following definitions:

x = 1 +Ab1 ·Ab2,

y = 3 +
Ab1

Ab2
,

with

Ab1 = a+ b,

Ab2 = a− b.

This principle allows us to store only once an expression in the entire program and use
its abbreviation several times, which is much lighter than its encapsulated expression.
This method saves time, space, and produces more compact results. It is therefore crucial
in general for the performance of MARTY and any computer algebra system manipulating
large expressions.

Performance optimizations have, as any optimization, a cost. In general and in the
particular case of MARTY, a better performance means a more complex code, harder to
develop and maintain. A common piece of advice in software engineering is to never
optimize any code that is not performance critical because one will have to pay the costs
without getting the benefits.

2.1.3 Software engineering standards

MARTY is designed for the members of the high energy physics community, i.e. users
and developers. It must therefore comply to high quality standards for the user interface
and the internal code structure.

User interface

The user interface must be simple and not demand a deep C++ knowledge. This
means that most of the features must be encapsulated in simple interface functions hiding
all object types and data transfer. As an example of interface, let us consider the (squared)
amplitude calculation within a model toyModel for a µ → µγ process:

auto amplitude = toyModel.computeAmplitude(

Order::OneLoop,

{Incoming("mu"), Outgoing("mu"), Outgoing("A")}

); // calculating mu -> mu A at one loop

Display(amplitude);

Show(amplitude);

auto squaredAmplitude = toyModel.computeSquaredAmplitude(ampl);

Display(squaredAmplitude);

Using correctly old and modern C++ features one can hide most of the implementation
details and simply ask users the minimal required quantity of information, i.e. the or-
der of development (TreeLevel or OneLoop) and field insertions. In this example, the auto

36

CHAPTER 2. MARTY – AN OPEN-SOURCE SOLUTION

keyword (C++11) allows the compiler to automatically deduce the returned type, users
thus do not have to know it. The amplitude is returned in a variable of a given type, and
used in other interface functions such as Display() (writing symbolic results in standard
output), Show() (displaying Feynman diagrams in GRAFED) or the squared amplitude cal-
culation (squaring the result). A more advanced user will know that the amplitude is of
type mty::Amplitude, that the squared result is a simple csl::Expr and how to customize
the output. In most MARTY use cases this is however not required and a basic knowledge
of the user interface is enough to perform all types of calculations.

Code quality

MARTY is also meant to be developed and extended by the community. As any software
package designed to be used during a long time by several people, MARTY must comply
to general software engineering standards:

General code readability. The computer program, considered as a pure text file for
the moment, must be readable. This means that style conventions must be fixed 4

and be followed during the whole development. Rules are often partially arbitrary
because they are subjective. There are tools 5 that provide a way to define clear
conventions and even to apply them automatically on any C++ source file.

Specific code readability. Once the code is a readable text, it must be a readable
computer program. In order to improve code quality, a same problem may be ex-
pressed differently in C++ depending on the context as we discussed in sample
code 1.

Separation of concerns. This principle is probably the one with the biggest im-
pact on the overall code structure. It states that two different problems should be
handled by two separate logical units. This applies at all abstraction levels: one
instruction per line, one irreducible task per function, one purpose per object. To
give an example at the level of functions, a common piece of advice is to limit their
size to 20 lines maximum. This may seem arbitrary but it is true that most of the
time a bigger function can be separated in several more fundamental tasks.

Modularity. This principle is the separation of concerns applied at the biggest scale
of the code. In MARTY the main modules are CSL for the symbolic manipulation,
GRAFED to draw Feynman diagrams and finally the physics core of MARTY. In partic-
ular CSL and GRAFED do not contain any physics consideration and can be used as
standalone. This is modularity, i.e. trying to maximally decouple large parts of the
code that do not fundamentally need to be entangled together.

Simplicity. From the point of view of software engineering, the best solution to
solve a problem is not the most impressive or elegant one, but the simplest one. A
simple solution is easier to write, read, maintain, and is the best investment one can
make.

4. See the example presented on this web page <https://named-data.net/doc/ndn-cpp-dev/0.4.0/

code-style>.
5. See the online clang-formatter <https://zed0.co.uk/clang-format-configurator/>.

37

https://named-data.net/doc/ndn-cpp-dev/0.4.0/code-style
https://named-data.net/doc/ndn-cpp-dev/0.4.0/code-style
https://zed0.co.uk/clang-format-configurator/

CHAPTER 2. MARTY – AN OPEN-SOURCE SOLUTION

Sample code 1: Simplicity in C++

We consider the iteration through a container of integers:

std::vector<int> vec {1, 2, 3, 4, 5};

If no index is needed, the range-for loop should be preferred:

for (int x : vec) {

std::cout << x << '␣'; // >> 1 2 3 4 5

}

If an index is needed however, this loop becomes more difficult to understand:

size_t i = 0;

for (int &x : vec) {

x = 2*i + 1;

++i;

}

In this case, the classic for loop is simpler:

for (size_t i = 0; i != vec.size(); ++i) {

vec[i] = 2*i + 1;

}

Note Compiler optimizations guarantee that equivalent implementations will
have no measurable difference in terms of performance, letting us express better
our intent when writing a piece of code.

Different kinds of complexity

Let us balance the concept of simplicity with the difference between essential and ac-
cidental complexity in software engineering 6 introduced by Frederick Phillips Brooks Jr.,
“There is no silver bullet” [104]. The essential complexity is a fundamental consequence of
a problem’s structure whereas the accidental complexity is a side effect coming from the
implementation choice. In terms of development best practices this has two implications:

Accidental complexity should be maximally reduced at all development steps. The
choice of technology, the architectural design of the code, the separation of concerns
and finally micro-optimizations must be adapted.

Essential complexity cannot be reduced and must be identified early in the develop-
ment for two reasons. First, no implementation can reduce it and resources should
not be spent in that purpose. Then, identifying it allows a developer to have a
deeper understanding of the problem and consequently to avoid accidental com-
plexity.

In this section we have presented general coding standards that we followed to de-
velop MARTY. It is important to mention that coding standards and code requirements are
often in conflict. To give an example in the case of MARTY, generality is always achieved at

6. Although it has been formulated in the context of software development, these concepts can be
applied to any kind of problem solving tasks including physics modeling for example.

38

CHAPTER 2. MARTY – AN OPEN-SOURCE SOLUTION

the cost of simplicity, because the more different cases there are the more complex MARTY

must become to handle all of them, even if most of the use cases are simple. This is one
consequence of the fact that there is no such thing as a perfect software program. Even
at the level of micro-developments there is almost never one best solution but rather so-
lutions that are better than others for particular purposes. Knowing that, the software
developer must always find a good balance when choosing a particular solution and
learn to compromise at all stages of software development.

2.2 Symbolic manipulations

A symbolic manipulation software has the ability to store and manipulate abstract
mathematical expressions. In programming, an expression like 2*a + b is generally a
numerical calculation, a and b having definite values, and the result can be computed
immediately. A symbolic manipulation software can manipulate such mathematical ex-
pressions without having to know any value for the variables, keeping their symbols all
along in full generality. This requires a whole system to store internally symbolic expres-
sions and manipulate them in a mathematically consistent way. This section presents
core principles of symbolic manipulation programs and how CSL applies them.

2.2.1 Internal representation of an expression

Expressions can naturally fit in trees. They are in general arbitrary functions of others,
cos(x) for example can be a valid mathematical expression whatever is x (variable, sum,
another function, etc). The expression

A

(

1 + cos
2πt

T

)

, (2.1)

can be represented in a tree as figure 2.1 shows.
Expressions can be composed with each other arbitrarily. It means that one particu-

lar node may be any expression. The tree representation is therefore of much relevance
because one node can be added, changed or removed without having to modify or copy
the rest of the expression. A linear representation (a character string for example) would
not provide such an advantage as a modification in the middle would in general require
to move contiguous elements forward or backward even if they have not been modified.

2.2.2 Dynamic programming and polymorphism

When summing two symbolic expressions, the result’s type cannot be known by the
compiler as it can be any type of expression: a + b is a sum, a + a = 2a a product,
a − a = 0 a number, etc. In terms of C++ software engineering this is very challenging
because object types cannot be determined at compile-time, meaning that the code must

39

CHAPTER 2. MARTY – AN OPEN-SOURCE SOLUTION

Figure 2.1 – Tree representation of A
(

1 + cos
2πt

T

)

. Red nodes (leafs) are building blocks, and intermediate

nodes are functions of others.

be highly polymorphic 7 and perform a large number of memory allocations / dealloca-
tions (known to have a high performance overhead). Dynamic programming is at the
center of any symbolic manipulation system to store arbitrary expressions in a computer
program 8. Once their storage has been set properly, the system must provide a way to
modify and simplify them. Some simplifications must be done automatically to keep
expressions manageable in a computer program. This is the role of expression canonical-
ization presented in the following section.

2.2.3 Canonical forms of expressions

In CSL and most of the existing computer algebra systems, expressions are always
kept in a canonical form when created. Canonicalization is the set of fundamental simpli-
fications applied to all expressions created in the program to make them fit into precise
definitions. It is mandatory for symbolic computations to obtain not only correct, but
readable and manageable expressions in space (memory) and time (execution speed).
Those simplifications are performed every time an expression is created, and must there-
fore be as fast as possible.

Here are some of the canonicalization rules of CSL:

A term of a sum cannot be itself a sum (a+ (b+ c) 7→ a+ b+ c).

An element of a product cannot be itself a product (a · (bc) 7→ abc).

If a sum or product contains only one element it is converted into this element.

7. A polymorphic algorithm is defined as a unique piece of code that can be used for different types of
objects. Symbolic manipulations require this behavior at all time as, for example, the + operation for two
operands A and B (A+B) must be valid for all possible A and B whatever their type is.

8. Polymorphism and dynamic programming are not a design choice to solve this particular problem.
They are the fundamental consequence of analytical calculations in mathematics and cannot be bypassed:
any solution to this problem should have these two properties one way or another.

40

CHAPTER 2. MARTY – AN OPEN-SOURCE SOLUTION

The repetition of an operation is transformed into the appropriate operation: a +
2a 7→ 3a, 2a · 4a2 7→ 8a3.
Special values of sums, products or functions are applied immediately (0x 7→ 0,
1x 7→ x, cos(0) 7→ 1, . . .).
There are no subtraction or division operations in the program (except integer frac-
tions): a− b 7→ a+ (−1) · b and a/b 7→ a · b−1.

Example of canonical expression Let us illustrate the canonicalization of expres-
sions with an example: The Taylor development of cos(π/2 + ωt) around t = 0 up to the
order t2 included. The standard calculation by hand gives:

cos(π/2 + ωt) ≈ cos(π/2) − ωt sin(π/2) + O
(

t3
)

= −ωt+ O
(

t3
)

This takes two steps if we need one to evaluate special values of cos and sin functions.
Let us see what a naive symbolic computer program would do without canonicalization.
The rules followed by the program to differentiate general expressions with respect to a
variable t are the following:

sum: d
dt

∑

i fi(t) =
∑

i
dfi
dt ,

product: d
dt

∏

i fi(t) =
∑

i

(
∏

j<i fj(t) · dfidt · ∏k>i fk(t)
)

,

composition: d
dt(f ◦ g)(t) = dg

dt ·
(
df
dt ◦ g

)

(t).

We note T fn (x) the coefficient of order n in the development for a function f . It can be
calculated recursively for efficiency, we therefore obtain intermediate steps Cfn(x) and
evaluate the derivative part at the end:

Cfn(x) =
d

dx
Cfn−1(x) for n > 0,

Cf0 (x) = f(x),

T fn (x) =
(x− x0)n

n!
· Cfn(x0).

Applying these rules on cos(π/2 + ωt) gives without canonicalization

cos(π/2 + ωt) ≈ cos(π/2 + ω × 0) +

(
t

1

)

(0 + (0 × t+ ω × 1)) × (−1 × sin(π/2 + ω × 0))

+

(
t

2

)(
t

1

)

× [0 + ((0 × t+ 0 × 1) + (0 × 1 + ω × 0)) × (−1 × sin(π/2 + ω × 0))

+ (0 + ((0 × t) + ω × 1)) × (0 × sin(π/2 + ω × 0)

+(−1) × ((0 + (0 × t+ ω × 1)) × cos(π/2 + ω × 0)))] .

The result is mathematically exact but is two orders of magnitude larger 9 than the math-
ematically equivalent −ωt. One can easily understand that such a naive symbolic manip-
ulation system would be useless.

9. The size used for this measure is the number of tokens, i.e. the number of building blocks (numbers,
variables), mathematical function (cos, sin) and mathematical operations (+, ×, ˆ).

41

CHAPTER 2. MARTY – AN OPEN-SOURCE SOLUTION

Applying arithmetic rules on 0 and 1 simplifies drastically the result but it is still not
acceptable. Letting parenthesis around sums or products that contain one element only
we obtain

cos(π/2 + ωt) ≈ cos((π/2)) + (t)(ω)(−1 × sin((π/2)))

+
t

2
· (t) [(ω)(−1 × ((ω) × cos((π/2))))] (ω).

With canonicalization of sums and products with one element the result is better but not
satisfying

cos(π/2 + ωt) ≈ cos(π/2) + (−1) × ωt · sin(π/2) +
−1

2
ω2t2 cos(π/2).

Finally special values of functions can be applied to recover our calculation by hand:

cos(π/2 + ωt) ≈ (−1)ωt+ O
(

t3
)

.

This example demonstrates the importance of always keeping expressions in canonical
forms: it corresponds to steps of calculation that we neither explicitly nor consciously do
by hand but that must be done by a computer program in order to produce manageable
results.

2.2.4 Automatic ordering of expressions

Automatic ordering of expressions has been integrated in CSL in order to have human-
readable expressions and to better simplify them. It allows to order different expressions
by simplicity. For example we have

x is simpler than y,
xy is simpler than yx,

1 is simpler than cos(x)2 + sin(x)2,

x is simpler than x2

x+y2/z
+ x·y2/z

x+y2/z
.

(2.2)

The ordering rule noted < must be total, i.e. if E is the set of CSL mathematical ex-
pressions, the rule must respect the following conditions:

∀x, y, z ∈ E :

if x ≤ y and y ≤ z then x ≤ z (transitivity),

if x ≤ y and y ≤ x then x = y (antisymmetry),

x ≤ y or y ≤ x, (connexity).

(2.3)

Once the order has been defined, expressions can always be kept sorted to improve
readability and more importantly enable simplifications that would not be possible oth-
erwise. CSL follows closely the rules given in [105] that provides a total order for mathe-
matical expressions. Applying this order, we have for example:

tyx+ 1 + cos(x+ 1)
becomes−−−−−→ 1 + txy + cos(1 + x).

42

CHAPTER 2. MARTY – AN OPEN-SOURCE SOLUTION

Table 2.1 shows some of the rules for CSL expressions. The specific rules referenced in
this table are defined in the following:

O1 for two integers: Arithmetic comparison of values of u and v.

O2 for two products: Compares arguments from the end of the two products (last
arguments). When the first non-equivalent arguments are encountered, the result
is returned. Otherwise u < v if u has less arguments than v.

O3 for two pow objects: Compares arguments from the beginning of the two pow
objects. When the first non-equivalent arguments are encountered, the result is
returned. Returns false otherwise.

O4 for two sums: Equivalent to O2.

O5 for two functions: If the types of functions are different, returns the correspond-
ing type order in csl::Type. Otherwise returns the order of the arguments of both
function: Arg(u) < Arg(v).

O6 for two indexed tensors follows three steps.

If the two tensors have different names, returns the alphabetical order of them.

Otherwise if one of the tensors is complex conjugated and not the other, re-
turns true if the right operand v is complex conjugated.

Otherwise returns the alphabetical order of the tensor index structures.

u↓ < v→ table Integer · ˆ + Function Indexed tensor

Integer O1(u, v) true true true true true

· false O2(u, v) u < ·v u < ·v u < ·v u < ·v
ˆ false ·u < v O3(u, v) u < v1 u < v1 u < v1

+ false ·u < v u1 < v O4(u, v) u < +v u < +v

Function false ·u < v u1 < v +u < v O5(u, v) false

Indexed tensor false ·u < v u1 < v +u < v true O6(u, v)

Table 2.1 – Sample of ordering rules in CSL. The rows correspond to u and the columns to v.

In case of doubt using CSL, one can at all time test the order of two expressions using
operator<(), operator<=(), operator>(), operator>=(). This is presented in sample code 2.

Ordering is not only a cosmetic feature as it is of great importance for automated sim-
plifications. The cost of always keeping expressions sorted is not negligible but allows
us to have much better and simpler simplification algorithms. To illustrate this point let
us consider two complicated cases of expression comparison that become trivial when
expressions follow a total order, multi-argument functions and indexed tensor compar-
isons:

a+ xb− 3
?
= −3 + bx+ a, (2.4)

AjiAjk
?
= AkjAij , (2.5)

with Aij = Aji a symmetric 2-dimensional tensor. Without ordering, one must write
respectively O(N2) and O(m2 · N2) algorithms with N the number of different terms

43

CHAPTER 2. MARTY – AN OPEN-SOURCE SOLUTION

Sample code 2: Examples of ordering test

#include <csl>

#include <iostream>

using namespace std;

using namespace csl;

int main() {

Expr a = constant_s("a");

Expr b = constant_s("b");

Expr x = variable_s("x");

Expr y = variable_s("y");

cout << boolalpha;

cout << (a < b) << endl; // >> true

cout << (y >= x) << endl; // >> true

cout << (cos_s(x) < sin_s(x)) << endl; // >> true

cout << (1 + b*x > 1 + a*y) << endl; // >> false

}

and m the maximum number of indices for one tensor. By sorting expressions in sums,
products, and indices inside (anti-)symmetrical tensor permutations the above equations
become

−3 + a+ bx
?
= −3 + a+ bx, (2.6)

AijAjk
?
= AijAjk, (2.7)

which are trivially solvable with respectively O(N) and O(m ·N) algorithms that are also
much simpler to write and maintain. While this argument seems to highlight a trade-off
between sorting or comparison times, the choice is simpler than it looks like. Sorting is
performed during expression construction that also requires comparisons (in particular
for canonicalization, see section 2.2.3) while comparison is a pure read-only algorithm
that does not create or modify expressions. In other words, performance while creating
expressions is limited by both sorting and comparison so an equal trade-off between the
two has no impact 10 while for comparison only, the performance gain is very important
if sorting is enabled.

2.2.5 Limitations of symbolic computations

Computers are not smart

While it is often possible to automate some computations, one should keep in mind
that the automation of symbolic computations come along with strong limitations. In

10. The trade-off is not equal as one could expect and is actually in favor of the ’sorting first’ method.
When comparing two linear collections for example, sorting and comparing is O(N logN) while the un-
sorted comparison goes in O(N2).

44

CHAPTER 2. MARTY – AN OPEN-SOURCE SOLUTION

particular, all clever tricks a human may find to simplify complicated mathematical ex-
pressions are almost impossible to automate. A deterministic algorithm 11 can only test
a predefined set of simplifications, but the addition of more tricks will increase the com-
putational complexity much faster than the number of problems the system can solve.
Considering the two following expressions

A = x2/x, (2.8)

B = x, (2.9)

one can wonder if they are equivalent. While it is trivial for us to know that A and B are
equal, a computer program will not in general know it if A is not simplified. One could
write a more complex function to compare expressions, however symbolic manipulation
have a high performance cost and thus require to have the least number of systematic
operations possible. In this first example, canonicalization is enough because

x2/x 7→ x2 × x−1 7→ x2−1 7→ x1 7→ x. (2.10)

Considering a more complicated example

A = a · (1 + x), (2.11)

B = a+ ax, (2.12)

it is again clear that A = B mathematically. However, no symbolic manipulation system
would expand or factor automatically expressions as this would represent a catastrophic
performance cost overall. Without extra help or particular care, a symbolic manipulation
program will therefore answer that A 6= B, or avoid to give any answer in the best case
scenario. A boolean mathematical statement for a computer program will not necessarily
mean the same thing as for a mathematician. In particular, A = B has different mean-
ings in both. While a mathematician tries to know if the two objects are fundamentally
identical, the computer program will stick to a structural comparison.

Take away This limitation makes computer algebra systems much more useful to per-
form a lot of relatively simple calculations than fewer and more complicated ones.

Computers are meant to use numbers, not symbols

Our human brains are better to treat abstract objects than numbers. The operation
x + y for example is easier to understand for us than 3.23543 + 43.4321. One the other
hand a numerical addition such as 3.23543 + 43.4321 corresponds for a computer to only
one or few core operation while creating and storing the symbolic representation x + y
will require several memory allocations and probably between 102 and 103 core opera-
tions for a decent implementation. This represents an important contrast between our
intuitive representation of analytical calculations and the way they are implemented in-
side a computer.

Any user of a symbolic computation program should be aware of this contrast in
order to apprehend correctly performance measurements and good practices using such

11. Artificial intelligence could have a role to play in this matter.

45

CHAPTER 2. MARTY – AN OPEN-SOURCE SOLUTION

software. As demonstrated in section 2.3.5, writing algorithms using symbols like we
write them using numbers is a very bad habit, in particular for CSL. An algorithm as
simple as a sum for example must be adapted to the symbolic world to avoid terrible
performance costs.

2.3 CSL

This section presents a summary of major CSL features and guiding principles. For
more explanations and details on the different mathematical objects of CSL see the user
manual [88] and the documentation [89].

2.3.1 Philosophy

The C++ language CSL is developed in C++ based only on the standard library
(C++17 standard). The reasons for the language choice are multiple. One of the main
considerations is to choose a language that is modern and commonly used in the high
energy physics community. This leaves Python and C++ as possible technologies. C++
has been chosen for two main reasons:

Performance: Symbolic expressions cannot benefit from Python’s high performance
features, i.e. array manipulations. The tree representation presented in the previous
section requires a specific implementation, that is much more efficient 12 in C++, a
compiled language, than in Python.

Structure: For such a big computer program, constraints coming with a less per-
missive language like C++ (data types, memory / life-time management) force the
code to be better structured. It requires thus more efforts at the first stages of the
development but will naturally yield more robust and reliable software.

Independence CSL is built from scratch in order to have a free and independent pro-
gram. The cost is substantial in terms of developing work compared to the direct use
of an existing library such as Mathematica [68], a symbolic manipulation software with
its own language (Wolfram language), or SageMath [106] a free python library. These
libraries provide very high-level features to manipulate mathematical expressions. It is
of course very tempting to use them and it could be perfectly justified. However, if it is
feasible to develop only what is required from scratch, for high energy physics purposes,
the effort is rewarding. The physics community then have a total control on the program,
even its deepest features, while being independent of any bug or update of an external
software used as a black box.

Minimal solution for high energy physics With CSL we do not pretend to have a
better program than professional computer algebra systems. Its only purpose is to pro-
vide a self-made mathematical basis for MARTY and physicists using it. CSL is designed for

12. For similar instructions, C++ can be between 10 and 1000 times faster than Python depending on
the problem.

46

CHAPTER 2. MARTY – AN OPEN-SOURCE SOLUTION

high-energy physics, even if no physics appear at this stage. It must be fast and powerful
enough to manipulate expressions from the theory to experimental predictions, but will
not be a complete general purpose symbolic manipulation library. For example, while it
is a common feature of computer algebra systems, no equation resolution algorithm is
provided. In general, features that are not used in perturbative calculations are absent or
limited.

2.3.2 C++ basics

This section presents the basics of C++, its philosophy, main features and guideline
examples.

History, philosophy

C++ is a compiled language developed during the 80’s by Bjarne Stroustrup. The
basic idea was to take the C language and add object oriented features and classes. The
name was initially C with classes. Its first standardization dates from 1998 (C++98 stan-
dard), and a new standard came in 2003 (C++03) with minor improvements (mostly bug
fixes).

Similarly to the C language, C++ is low level and very efficient. It means that writing
C++ will be harder than a higher-level language (especially learning it), the same tasks
will require more lines of code but there is a gain in efficiency and control on all parts of
the code (provided that the developer has a good knowledge of the language).

While the initial idea of C++ was C with classes, it is today way more than that. C++
evolves, in particular since the 2011 standard (C++11) that represent kind of a revolution
for the language. Since then, a new standard is released every 3 years, together with bet-
ter compilers. C++11, C++14, C++17, and now C++20 represent what is called Modern
C++. Besides new language features and extensions of the standard library, new ways of
writing and thinking C++ are developed based on the following principles (not exhaus-
tive):

Safety. Modern C++ helps developers to write safe code without too much effort,
in particular avoiding the so called Segmentation fault crash, extremely common in
C or C++ programs.

Performance. C and C++ are compiled and very efficient languages. New features
coming with modern C++ must absolutely not make C++ less efficient. 13

Readability. New features are often introduced to clarify C++ code and make the
intent explicit. Modern implementations are easier to understand, for a developer
with a good knowledge of C++, by simply reading it without needing additional
comments.

Compile-time vs. run-time

As we said, C++ is a compiled language. This means that before being able to run
anything, a compiler must read the code and produce an executable file. This is compile-

13. C++ is not less efficient than C but requires a bigger knowledge to reach the same performance.

47

CHAPTER 2. MARTY – AN OPEN-SOURCE SOLUTION

time, translating human-language to computer-language. Then, the executable can be
ran, this is run-time. Interpreted languages like Python do not have a compile-time, the
code is read and executed on the go by an external program.

Compile-time is a blessing for developers. Nowadays, compilers are very efficient
and detect numerous errors, often specifying how to correct them before running the
first instruction of the program. C++ aims to find as many errors as possible at compile-
time. In general, the effect of an error must be detected early after the cause. The longer
is the time passed between the bug’s cause and its visible consequences, the more dif-
ficult debugging is. There are two solutions to address this issue. The first is to catch
errors early at run-time by checking regularly that variables are valid. This has run-time
overhead (time to check), and is not perfect.

The best solution when it can be implemented is to detect the error at compile-time.
These errors are the simplest to debug because they are decoupled from any program
state, and as the checking takes place at compile-time the execution suffers of no over-
head.

C++ compilers usually have good reasons to forbid a developer do to something.
Compiler errors and warnings may be annoying at first but they are the very best debug-
ging tools we have. Compiler warnings and errors must be understood in the following
way:

[Warnings] ’You may know what you are doing but I doubt it.’,

[Errors] ’This will not work, I cannot let you do it.’.

This is like having a C++ professor telling the developer what is wrong and very often
how to make it work.

Modern compilers are also very good to generate a better machine code than what
is written by the developer. This feature has a nice consequence allowing developers
in most cases to write clearer code with better abstractions, while generating the same
machine code as the equivalent, minimal but less human readable code.

2.3.3 C++ good manners

In this section we introduce two features of C++ and the way in which they must
be used, namely memory allocations and the std::vector. C++ core guidelines [107] or
books such as [108] are dedicated to C++ good manners and provide more insights on
how to maximally benefit from C++ features.

Memory allocation

Memory allocation is used in many places in CSL and the standard library. One must
not avoid it at all costs but be aware that its use must be minimal. If it is not manda-
tory, there is no reason to allocate a variable on the heap rather that on the stack (static
variable). The overheads of heap allocation are the following:

Time. Static allocation is basically changing the stack pointer value, and possibly
call a constructor. Heap allocation is asking to the operating system a memory
address where a certain quantity of contiguous blocks are available, allocating this

48

CHAPTER 2. MARTY – AN OPEN-SOURCE SOLUTION

memory and returning the pointer to it. This may take time, especially in programs
that allocate a lot of memory.

Risk of pointers. By allocating variables dynamically, one manipulates pointers
with all the risks associated with them (null pointer in particular).

Life-time management. Dynamic memory allocation requires deallocation, i.e.
managing an object’s life-time. This problem is however almost completely solved
by C++11 smart pointers that take full responsibility in this matter.

C++ vectors

std::vector is the main general purpose container in C++. It is very efficient provided
it is used correctly. Pieces of advice to properly use this container are presented through
an example in sample code 3 and sample code 4.

Sample code 3: C++ vector good manners, part 1

Here is an example to demonstrate the value of reserve. We overload operators new

and delete in order to count memory allocations / de-allocations. We also create
an object that counts the number of times it is copied. The setup is the following:

#include <iostream>

#include <vector>

using namespace std;

size_t alloc = 0;

size_t dealloc = 0;

size_t copy = 0;

void* operator new(size_t sz) {

alloc+= 1;

return malloc(sz);

}

void operator delete(void* ptr) noexcept {

dealloc+= 1;

free(ptr);

}

struct A {

int value;

A() : value(0) {}

A(int t_value): value(t_value) {}

A(A const &a) : value(a.value) { ++copy; }

};

See the test in sample code 4.

49

CHAPTER 2. MARTY – AN OPEN-SOURCE SOLUTION

Sample code 4: C++ vector good manners, part 2

Here is the test of the setup presented in sample code 3 (without and with
reserve of 1000 elements).

First method, really bad

size_t N = 1000;

std::vector<A> vec1;

for (size_t i = 0; i != N; ++i)

vec1.push_back(A(7));

std::cout << "Copies␣:␣" << copy << std::endl; // >> 2023

std::cout << "Alloc␣␣:␣" << alloc << std::endl; // >> 11

std::cout << "Dealloc:␣" << dealloc << std::endl; // >> 10

Second method, using reserve

std::vector<A> vec2;

vec2.reserve(N);

for (size_t i = 0; i != N; ++i)

vec2.push_back(A(7));

std::cout << "Copies␣:␣" << copy << std::endl; // >> 1000

std::cout << "Alloc␣␣:␣" << alloc << std::endl; // >> 1

std::cout << "Dealloc:␣" << dealloc << std::endl; // 0

Third method, using reserve and emplace_back

std::vector<A> vec3;

vec3.reserve(N);

for (size_t i = 0; i != N; ++i)

vec3.emplace_back(7);

std::cout << "Copies␣:␣" << copy << std::endl; // >> 0

std::cout << "Alloc␣␣:␣" << alloc << std::endl; // >> 1

std::cout << "Dealloc:␣" << dealloc << std::endl; // 0

One can see the importance of reserving the memory space. Using emplace_back

instead of push_back allows the vector to create the object in place (giving argu-
ments of construction directly to the function) instead of creating it and copying it
into the container.

Note All three counters must be set to 0 before each test, even the first one, as
starting a C++ program may imply memory (de-)allocation.

50

CHAPTER 2. MARTY – AN OPEN-SOURCE SOLUTION

2.3.4 The Expr type

The most important things to know about Expr are summarized in the following state-
ments:

It is the type representing a mathematical expression in CSL.

There is no other general purpose expression type.

It is a pointer-type, in particular a std::shared_ptr. An expression may be shared
between others, and its destruction does not depend on the user or the developer
but on the standard library implementation.

Expr is a pointer-type because as we said, the underlying expression may be any-
thing. Anything means any type, and in C++ it is not possible to handle different types
in the same container. It is however possible to manipulate pointers of the same type, but
pointing to objects of different types. This is "polymorphism".

A very simplified version of the inheritance hierarchy in CSL is presented in figure 2.2.
Mathematical expressions all inherit from an abstract base class, Abstract, and specialize
step by step up to the final objects one may encounter in expressions. An important
feature is that no intermediate abstract class may be built. This prevents any user to
build objects that are not specialized enough to have a meaning mathematically.

Figure 2.2 – Simplified inheritance hierarchy of mathematical expressions in CSL. One can find the full diagram
in the documentation [89].

The Expr class is a std::shared_ptr<Abstract> with more interface. This pointer does
not point to a pure Abstract object, but to one specialization that is a particular mathe-
matical expression.

The Expr type has few subtleties in its use for the user. As each copy of a shared
pointer increases its reference count, it means that more operations are done than a sim-
ple copy of pointer. Expr object are then always passed by reference in functions. This
reference is const if the function does not modify the expression (Expr const&), non-const
otherwise (Expr &). Examples are presented in sample code 6. Arithmetic and compari-
son operators are defined with Expr object, as shown in sample code 7.

51

https://marty.in2p3.fr/doc/csl/html/classcsl_1_1Abstract.html
https://marty.in2p3.fr/doc/marty/html/classExpr.html

CHAPTER 2. MARTY – AN OPEN-SOURCE SOLUTION

Sample code 5: Basics on Expr

Using std::shared_ptr<Abstract> features of Expr, using a dot

Expr expr = functionReturningExpr();

// Displaying the reference count of the shared ptr

cout << expr.use_count() << endl;

// Getting the raw pointer from the shared ptr

Abstract *raw_ptr = expr.get();

Using features of the underlying CSL object, using the arrow, de-referencing, or
interface functions

Expr expr = functionReturningExpr();

// Directly

cout << expr->getType() << endl; // may display "Cos" for ex

cout << (*expr).getType() << endl; // may display "Cos" for ex

// Using an interface function

cout << GetType(expr) << endl; // may display "Cos" for ex

Note When calling expr->getType(), C++ gets to know the exact type of the
pointed expression and calls the corresponding virtual function of that type.

Sample code 6: Functions with Expr objects

Full example showing how to pass and return Expr

Expr func(// Replaces B by A+1 and returns the old value of B

Expr const &A,

Expr &B

)

{

Expr B_copy = B;

B = A + 1;

return B_copy;

}

Sample code 7: Operators with Expr

Arithmetic and comparison operators work on Expr as expected:

Expr a = constant_s("a");

Expr x = variable_s("x");

Expr y = 4 * (a + x)/(a - x);

cout << (a == y) << endl; // >> 0

cout << (a != y) << endl; // >> 1

cout << (a <= y) << endl; // >> 1

See also Section 2.2.4 for the operator<() acting on expressions (simplicity order-
ing).

52

CHAPTER 2. MARTY – AN OPEN-SOURCE SOLUTION

2.3.5 CSL good manners

This section is dedicated to a user knowing already the basics of C++ and CSL. In the
following some pieces of advice to use CSL appropriately are presented. CSL provides its
own objects that use memory allocations and de-allocations. In order to have dynamic
and arbitrary mathematical expressions, a lot of memory management must be done. At
each intermediate step of calculation, expressions are created on the heap and destroyed
(such as during the canonicalization procedure discussed in section 2.2.3). Manipulating
a sum of ten CSL expressions for example (copying, modifying) will be much slower than
ten integers in a std::vector. CSL expressions are not just containers.

The Expr type

While Expr is still heavier to copy than a raw pointer like int*, it is very simple and
in particular does not imply the copy of the underlying expression. In the following
example, the expression 2 + exp(3) is stored once in memory, a and b pointing to it:

Expr a = 2 + exp_s(3);

Expr b = a; // Just pointer copy

As Expr is a pointer, it can be invalid. There is nothing fundamentally wrong about writ-
ing something like

Expr x = nullptr;

Expr y;

It is possible to do it, in particular to express the fact that the expression may be invalid.
But in no circumstance a null Expr should enter a CSL expression. CSL takes for granted
the validity of Expr objects. No test is done to check if pointers are valid because they are
meant to be, and it would represent an important run-time overhead. Giving a null Expr
to CSL will certainly cause a bug but the exact behavior is not defined. Because of the fact
that Expr is a pointer type, an un-initialized Expr is null. To express that an expression
is invalid, one should consider to use std::optional<Expr> or the undefined CSL constant
CSL_UNDEF instead.

Avoidable allocations

Sums and products are dynamic containers, i.e. can store an arbitrary number of ar-
guments. Therefore, they rely on memory allocation and must be used carefully. There
are several ways to build multi-functions like sums in CSL that are not equivalent in terms
of performance. In particular, writing symbolic algorithms in the same way as numerical
instructions has often a high performance cost. This is summarized in sample code 8.

53

CHAPTER 2. MARTY – AN OPEN-SOURCE SOLUTION

Sample code 8: Good habits with symbolic manipulations

Product of few elements, a bad solution:

std::cout << x * x * x * x * x << std::endl;

// ~40 allocations/deallocations of pure Expr

// >> x^5

Product of few elements, a good solution:

std::cout << prod_s({x, x, x, x, x}) << std::endl;

// ~15 allocations/deallocations of pure Expr

// >> x^5

The chained operators correspond in this case to do x× (x× (x× (x× x))) which
requires many more intermediate steps than the second solution.

In the following we consider a function f() returning an Expr.
Sum of many elements, a very bad solution:

Expr sum = 0;

for (int i = 0; i = 1000; ++i) {

sum += f(); // Performs simplifications 1000 times

}

Sum of many elements, a good solution:

std::vector<Expr> terms(1000);

for (int i = 0; i = 1000; ++i) {

terms[i] = expr; // Pointer copy, no symolic machinery

}

Expr sum = sum_s(terms); // Simplify only once, at the end

The first solution that invokes symbolic summations at each iteration can have
a disastrous impact on performance for large expressions and must always be
avoided.

Heavy interface functions

Heavy modifiers, interface functions or algorithms (i.e. that (re-)allocate many expres-
sions) should be used only when they are necessary. In particular:

DeepCopy() re-allocates the entire expression ensuring that no object is shared be-
tween the old and new expressions. If repeated this may take time in the program.

DeepRefresh() performs a DeepCopy() but also applies simplification rules to ensure
the canonical form of the resulting expression.

Repeated calls to modifier functions in general must be avoided when possible such
as DeepExpand(), DeepFactor(), Replace(), . . .

The ForEachNode() algorithm should be preferred in general to Transform(), be-
cause it does not refresh the expression on the go. If the result does not need to
be refreshed the second option has an unnecessary run-time overhead.

54

CHAPTER 2. MARTY – AN OPEN-SOURCE SOLUTION

2.4 CSL as a module of MARTY

MARTY is a very general code for high-energy physics. From model building to theo-
retical calculations at one-loop, many calculations can be performed by MARTY for BSM.
Amplitudes, squared amplitudes and Wilson coefficients may be calculated in full gener-
ality in a very large variety of BSM scenarios. The idea behind that code is to be able to
build a new BSM model easily and perform a detailed phenomenological study within a
few lines of C++ code and in very little time, greatly accelerating the research Beyond the
Standard Model.

Such a complex code must encapsulate as many features as possible and provide a
simple user interface. Most of the features can be accessed through a single function
call and parameters are simplified as much as possible in order to ask to users the min-
imal quantity of information. A sketch of how MARTY works internally is presented in
figure 2.3. One may see in particular that there is no direct communication between the
user and the calculation modules of MARTY. This is the consequence of the fact that calcu-
lations are fully automated. All CSL capabilities can still be used to modify the results as
they are symbolic expressions stored in Expr variables. 14

A standard MARTY program always goes through the same steps.

Model loading. The model can be ready to be used or need some calculation steps
to be derived by MARTY.

Setting of options. Before doing calculations, one may want to change some op-
tions to customize the output.

Calculations. Once the model is loaded and options are set, one can launch the
calculation(s) that MARTY must perform. Details are given in chapter 6.

Library generation. After calculating a theoretical quantity analytically, MARTY gen-
erates the corresponding C++ code to evaluate the results numerically depending
on the model parameters. This procedure is also automated.

All the steps detailed above are typically very simple to implement and a MARTY pro-
gram rarely takes more than a hundred lines of code when written correctly.

Once the numerical C++ code is generated, the resulting values can be used in a phe-
nomenological code to scan the model parameters, detect interesting scenarios with re-
spect to the SM, perform comparisons with experimental data, etc. The ultimate tool
would be a direct interface between MARTY and such codes. It is already on the way for
SuperIso [90–92] in flavor physics, and SuperIso Relic [94–96] in Dark Matter. With
such interfaces, a complete phenomenological analysis for a BSM model can be auto-
mated at tree-level or one-loop by providing only a BSM Lagrangian.

14. Results are rarely composed only of symbolic expressions because there is more information to return
to the user. One may however always get to symbolic expressions and use CSL to modify them.

55

CHAPTER 2. MARTY – AN OPEN-SOURCE SOLUTION

Figure 2.3 – Sketch of MARTY’s basic principle. The user communicates (in C++) with the high-energy physics
model to get / modify its content, and to perform calculations. These calculations are done internally by MARTY

(using CSL) and are completely separated from the user interface.

2.5 GRAFED

GRAFED is a Generating and Rendering Application for FEynman Diagrams, a Lin-
ux/Mac desktop application to generate and create any type of Feynman diagrams. It is
a module of MARTY but can be used as standalone to create publication-quality diagrams.
In particular, all the diagrams presented in this thesis have been generated automatically
or created with GRAFED.

GRAFED has been developed with the non-commercial version of Qt [109], a C++
framework to create desktop applications. We developed GRAFED for three main pur-
poses:

Design. We wanted MARTY to have the ability to display nice Feynman diagrams on
screen.

Validation. It is important when developing or using the code to know quickly
what diagrams contribute to a calculation in order to understand what MARTY cal-
culates.

Diagram creation. GRAFED provides a simple and comprehensive interface allowing
users to edit, create and save Feynman diagrams. They can then be exported as
.png image files or LATEX source code for features supported by the TikZ-Feynman
package [110]. Examples of edition are shown in figure 2.4.

56

CHAPTER 2. MARTY – AN OPEN-SOURCE SOLUTION

Figure 2.4 – Screen shots of the GRAFED application on Linux while creating a h → γγ diagram. The two
screen-shots present two different steps of edition with the edge-specific edition panel (top) and the node-specific
panel (bottom).

The algorithm

Automated generation of Feynman diagrams requires to derive their layout, i.e. the
vertex positions. This is not an easy task as there exists many different topologies and
the purpose is to have an algorithm that generates nice diagrams which correspond to
standard conventions in high energy physics. Another possibility could be to work with
topologies, for example defining one layout for each different topology. We decided how-
ever to implement one unique and general algorithm that matches better MARTY’s design
principles.

For a given graph G = (V,E) with vertices V and edges E, we define a layout of G as
a set of vertex positions in the 2D plane namely

ℓG ≡ {(xv, yv) ∀v ∈ V } . (2.13)

We associate to each layout ℓG of G a unique energy E(ℓG) that can be defined in general
as

E(ℓG) ≡
∑

i

αi · ei(ℓG), (2.14)

57

CHAPTER 2. MARTY – AN OPEN-SOURCE SOLUTION

with ei(ℓG) fundamental energy costs of the layout ℓG and αi layout-independent coeffi-
cients. The different ei(ℓg) have precise definitions. For example we defined an energy
cost for edge lengths that must be close to a given distance d0:

ed0(ℓG) ≡
∑

(vi,vj)∈E

(

d2
0 − d2

ij

)

, (2.15)

where
d2
ij ≡ (xvi − xvj)

2 + (yvi − yvj)
2. (2.16)

We defined several fundamental energies for distances, relative and absolute edge
angles around the vertices, crossing edges, Once the energy functionE has been fully
defined, a minimization algorithm can be used to find the best layout ℓ̄G minimizing the
energy given by

ℓ̄G = argminℓG(E(ℓG)), (2.17)

for all graphs G in a given process. 15 Following the definition of ℓG in equation 2.13 one
can see that the minimization is done on 2|V | real parameters with |V | the number of
vertices in G. 16 The energy functions ei together with values of the coefficients αi have
to be tuned empirically to generate nice layouts. This algorithm has the nice feature of
being unique and not limited to any topology.

Most of the diagrams we show in this thesis have be created with GRAFED for peda-
gogical purposes. There are nevertheless diagrams that are direct outputs of the layout
generation algorithm presented above such as those in figure 7.1.

15. The algorithm must only be ran once for each topology, the same layout is then used for similar
diagrams that simply use different particles.

16. To avoid local minima with crossing edges, the minimization is first promoted in a 3D-space with
3|V | parameters to allow the graph to expand and is then projected on a relevant 2D-plane to terminate
the minimization.

58

CHAPTER3
Quantum fields

3.1 Introduction

A brief overview of MARTY has been presented in the previous chapter, discussing in
particular the challenge that symbolic manipulations represent in general and the way in
which this project fits into the context of BSM phenomenology. We are now interested in
the way MARTY can automate the theoretical calculations from general BSM Lagrangians.
In order to do so, the first step is to introduce the main ingredient of elementary particle
physics: The particles. Then, chapter 4 will present how (B)SM models are described in
MARTY. Finally, after a discussion on group theory implementations in chapter 5, auto-
mated calculations for BSM phenomenology will be addressed in chapter 6.

Quantum fields can represent both the abstract concept of particle e.g. the electron
in the SM and objects entering mathematical expressions such as eα(X) or e†

β(Y). We
present how these features are implemented in MARTY through a description of the corre-
sponding user interface. More details on particle types and properties can be found in
the user manual [86] or the documentation [87]. If needed the CSL user manual [88] and
documentation [89] present in details tensor fields and their properties in general.

The QuantumField object inherits from TensorFieldElement in CSL. A tensor field is a
tensor with a space-time point:

Aµν → Aµν(X), (3.1)

and a quantum field is a tensor field with more properties. Figure 3.1 presents a sketch
on how quantum fields are represented inside MARTY following the same principle as in
CSL. The abstract field, a QuantumFieldParent, has one unique copy in the entire program
and contains all the particle’s intrinsic properties (spin, mass, gauge representation, . . .)
whereas QuantumField objects entering expressions are multiple and carry only their ex-
trinsic properties (indices, space-time point) and a reference to their parent to access their
fundamental features.

As in the case of simple tensors, the parent object is not directly the quantum parent,
but in this case a Particle. It is a shared pointer to QuantumFieldParent, ensuring a well-
managed life-time for the parent. MARTY’s user interface always takes Particle objects,
and the QuantumFieldParent interface can be accessed simply using -> on a Particle.

59

CHAPTER 3. QUANTUM FIELDS

Figure 3.1 – Working principle of quantum fields in MARTY. The parent (QuantumFieldParent) is unique
in the program, contains all its intrinsic properties, and can generate symbolic expressions (QuantumField)
given some indices and a space-time point. The + sign indicates that an index is up.

3.2 Different types of quantum fields

All possible quantum fields in MARTY inherit from QuantumFieldParent as shown in
figure 3.2. The base class is not constructible, one manipulates a (shared) pointer to this
base class. This shared pointer is encapsulated in a Particle object and can then refer-
ence a Dirac fermion, a vector boson, etc. This is exactly equivalent to the Expr interface
pointing to a Abstract object presented in section 2.3.4.

A particle in MARTY is one specialization of QuantumFieldParent: 1

ScalarBoson: Trivial representation of the Lorentz group.

WeylFermion: Chiral 4-component fermion. They are always projected on left or
right chiralities in amplitudes. They may be paired to form a Dirac fermion.

DiracFermion: 4-component fermion. Can represent either a Dirac particle or a Ma-
jorana particle if the fermion is self-conjugate.

VectorBoson: Spin 1 particleAµ, associated with a field strength Fµν . A vector boson
can also have associated ghost and Goldstone bosons.

GaugeBoson: Specialization of VectorBoson that keeps a reference to the group of
which it is the gauge boson. In a non abelian gauged group (different from U(1)) a
gauge boson has a predefined GhostBoson.

FieldStrength: Field strength object for a vector boson (gauge or not) Fµν = ∂µAν −
∂νAµ. This object is intentionally does not contain covariant derivative terms that
are treated independently.

1. BaseVectorBoson is not a specialization that can be created, only a common interface that is used
for FieldStrength and VectorBoson.

60

CHAPTER 3. QUANTUM FIELDS

GhostBoson: Ghost bosons defined in non abelian gauged groups. They are non-
physical anti-commuting bosonic fields introduced to quantize correctly the theory
and appear only at the one-loop level in diagrams. 2 They are linked with their
GaugeBoson through gauge fixing.

GoldstoneBoson: Goldstone bosons can be defined to link a scalar boson of the the-
ory as the Goldstone of a vector boson in order to have gauge invariant quantities
when using massive vector bosons.

Figure 3.2 – Inheritance tree for the QuantumFieldParent object. It first inherits from CSL tensors, and
then each particle type is a different specialization of QuantumFieldParent.

3.2.1 Particle types

Some particles may be defined automatically by MARTY, such as the gauge bosons and
ghosts, when defining the gauge group of the theory. For most phenomenological pur-
poses one has to define a custom particle content, 3 using built-in functions that create
all the required particles described above. All particles are built in the same way. The
particle name, the model in which it lives and additional arguments specific to the par-
ticle must be given to the relevant builder function. In all sample codes presented in the
following, model is assumed to be a valid Model object, whose gauge is already initialized
(see the model building chapter of the user manual [86] for more details).

2. They can also appear in external legs replacing gauge bosons in order to respect gauge invariance
while using a simple polarization sum for the vector.

3. Only in a model building context. When using a built-in model, there is no need to define anything
before using the model.

61

CHAPTER 3. QUANTUM FIELDS

3.2.2 Fermions

Three types of spin 1/2 particles can be built in MARTY, namely Weyl, Dirac, and Ma-
jorana fermions. Majorana fermions do not have their own builder function, as they do
not have their own class either. To create a Majorana particle one must first build a Dirac
fermion, and then specify that it is self-conjugate. Doing so will enable non-trivial con-
tractions in diagrams such as 〈ψψ〉 and

〈

ψ̄ψ̄
〉

, whereas for Dirac fermions only
〈

ψψ̄
〉

and
〈

ψ̄ψ
〉

do not vanish. Sample code 9 presents a summary on how to build fermions.

Sample code 9: Creating fermions

Dirac fermion

Particle e = diracfermion_s("e", model);

Weyl fermion

Particle muL = weylfermion_s("mu_L␣;␣\\mu_L", model, Chirality::Left);

Particle muR = weylfermion_s("mu_R␣;␣\\mu_R", model, Chirality::Right);

Majorana fermion

Particle maj = diracfermion_s("M", model);

maj->setSelfConjugate(true);

Note One can give different names for the particle in the program (its identifier)
and in diagrams (displayed as Latex code on the screen) separated by a semi-colon.
Spaces around the character ; are ignored.

3.2.3 Vectors

Spin 1 particles are often built by default in MARTY, as they are in general gauge bosons
that are created automatically when the gauge group is defined. Most of high-energy
physics models e.g. the SM or even BSM scenarios do not have additional spin 1 particles.
It is still possible in MARTY to create other spin 1 fields, that are not gauge bosons, as shown
in sample code 10.

Sample code 10: Creating vector bosons

Vector boson

Particle A = vectorboson_s("A", model);

Field strength

Particle F_A = A->getFieldStrength();

Note Vector bosons are real by default. To create a complex vector one has to use
A->setSelfConjugate(false);.

62

CHAPTER 3. QUANTUM FIELDS

3.2.4 Scalars

Spin 0 particles are very simple to create as they have no specific property due to their
spin. The procedure to create a scalar boson is presented in sample code 11.

Sample code 11: Creating scalars

Particle phi = scalarboson_s("phi␣;␣\\phi", model);

Ghosts and Goldstone bosons can be created explicitly as shown in sample code 12,
but in general will be handled automatically by MARTY during the model construction. As
those particles are tied to a given VectorBoson, there is no need to define any property.
Only the associated vector and an optional name have to be given.

Sample code 12: Creating ghosts and Golstones

Considering a vector boson A as in sample code 10.

Ghost

Particle ghost_A = ghostboson_s("c", A);

// Or with name chosen by marty

Particle ghost_A = ghostboson_s(A);

Goldstone

Particle goldstone_A = goldstoneboson_s("c", A);

// Or with name chosen by marty

Particle goldstone_A = goldstoneboson_s(A);

3.3 Using and modifying a Particle

Once a particle has been built following prescriptions of section 3.2, the interface
is almost always identical for all the different types of particles. This section presents
how to perform basic manipulations on particles. The documentation of Particle and
QuantumFieldParent [87] contains all the interface methods presented in this section.

3.3.1 Obtaining particles from a model

Gauge-related particles

We saw in the previous section how to create new particles. Before going further, it is
necessary to explain how to get particles that MARTY creates on its own. Figure 3.3 presents
the objects that are automatically created with gauged groups, including naming conven-
tions, in MARTY. All default names can be changed by the user. It is however important to
know the initial convention to be able to access all objects created automatically.

63

CHAPTER 3. QUANTUM FIELDS

Figure 3.3 – Sketch of the main objects a MARTY gauged group creates automatically. No ghost particle or
generators are created for the abelian U(1) group.

The way to get different kinds of particles from a model is demonstrated in sample
code 13.

Sample code 13: Getting a particle from a model

Particle e_L = model.getParticle("e_L"); // Weyl fermion

Particle A = model.getParticle("A_G"); // Vector boson of group "G"

Particle F_A = model.getParticle("F_A_G"); // Field strength

// Or get the FieldStrength from the VectorBoson

// Particle F_A = A->getFieldStrength();

Particle c_A = model.getParticle("c_A_G"); // Ghost boson

Dirac fermion embedding

When creating a Dirac fermion, MARTY automatically creates its left-handed and right-
handed parts. The three generated particles can talk to each other, and in particular a user
can navigate in the triangle they define through simple function calls. This is presented
in figure 3.4 and concrete examples in a MARTY program are shown in sample code 14.

64

CHAPTER 3. QUANTUM FIELDS

Figure 3.4 – Sketch of the relations between the different parts of a Dirac fermion embedding ψ ≡ ψL ⊕ ψR.
The getWeylFermion() function takes as argument a Chirality value.

Sample code 14: Dirac fermion embedding

Creating a Dirac fermion

Particle psi = diracfermion_s("psi", model);

Navigating in the triangle

Particle psi_L = psi->getWeylFermion(Chirality::Left);

Particle psi_R = psi_L->getChiralityCounterPart();

Particle other_psi = psi_R->getDiracParent();

3.3.2 Simple particle properties

Simple particle properties do not include gauge and flavor representations, treated
separately in section 3.3.3. The main properties of quantum fields are presented in ta-
ble 3.1.

Property Type Getter Setter

Name string getName() setName()

Latex name string getLatexName() setLatexName()

Spin dimension int getSpinDimension()

Mass Expr getMass() setMass()

Width Expr getWidth() setWidth()

Self-conjugation bool isSelfConjugate() setSelfConjugate()

Physicality bool isPhysical() setPhysical()

Table 3.1 – List of properties for quantum fields with the type, getter and setter functions when relevant. For
setter functions, one must give an argument of the specified type.

65

CHAPTER 3. QUANTUM FIELDS

Name

Names of particles have two different purposes apart from identifying their owners
in expressions. First, they must uniquely define particles to allow a user to identify a
particle in a model. This name has to be short and simple to make the program readable.
Another use of names is in Feynman diagrams, where we prefer in general to see νµL
rather than num. The problem is that latex expressions are complicated, in this case one
should write "\\nu_{\\mu_L}" each time referring to the muon neutrino.

This is why regular and latex names are separated in MARTY. If not specified, the
latex name will be identical to the regular one. To avoid multiple calls (setName() and
setLatexName()), it is possible when creating a particle to give both names in the same
string literal separated by a ; (spaces around it are ignored). For example, one can define
a neutrino with

Particle num = weylfermion_s("num␣;␣\\nu_{\\mu_L}", Chirality::Left);

For identification purposes "num" will then have to be used, but Feynman diagrams will
display νµL .

Spin

The spin can of course not be changed, as it would require to change the particle type.
The value of spin can be accessed at anytime with the getSpinDimension() function. As
this function returns an integer, one does not obtain the spin but the spin dimension

d = 2j + 1, (3.2)

for a particle of spin j. Examples of property usage are presented in sample code 15.

Self-conjugation

The self-conjugation property is in general the possibility for the field to contract with
itself, i.e. without being complex conjugated. For a self-conjugate field, contractions such
as 〈φφ〉 and

〈

φ†φ†
〉

are enabled in diagrams whereas only
〈

φφ†
〉

and
〈

φ†φ
〉

are for other
fields, as shown in figure 3.5. This is a general statement. For integer spin particles it is
simpler because the self-conjugate property implies that fields are real

φ† = φ for scalars bosons,

A†
µ = Aµ for vector bosons.

(3.3)

There is in this case only one possible contraction.
For fermions one must be more careful because the self-conjugate Dirac field is not

real. It has 2 degrees of freedom instead of 4 but this is not equivalent to ψ† = ψ, at least
not in all realizations. For spin 1/2 particles, the self-conjugate property reads

ψc ≡ Cψ̄T = ψ, (3.4)

with the conjugation matrix
C ≡ −iγ0γ2, (3.5)

66

CHAPTER 3. QUANTUM FIELDS

in the Weyl realization for γ-matrices that is the one used in MARTY. As the relation is not
as simple as ψ† = ψ, we keep both ψ and ψ† in the Lagrangian, and the four possible
contractions presented in figure 3.5 are possible replacing φ by ψ. Examples of property
usage are presented in sample code 15.

(a) Standard contractions (b) Self-conjugate contractions

Figure 3.5 – Possible field contractions. For non self-conjugate particles only contractions (a) do not vanish.
For self-conjugate particles, all four contractions are non-zero. These diagrams have been generated using
GRAFED, see section 2.5 for more details.

Mass and Width

A particle’s mass and width arise in propagators when calculating an amplitude.
They may be set to any expression, not only constants or zero. One may for example
give a mass

MG =
√

ξMA (3.6)

to a Goldstone boson related to a vector A, with gauge fixing parameter ξ.

The mass M and width Γ of a particle appear in propagator denominators

1

p2 −M2 + iMΓ
. (3.7)

The mass also appears in numerators for fermions and vector bosons but we will not
detail theses dependencies here. The width is by default zero for all particles to lighten
the symbolic results. Depending on the kinematics, one should add non trivial widths
for particles produced around their resonance peak e.g. the Standard Model Z boson at
90 GeV. Examples of property usage are presented in sample code 15.

67

CHAPTER 3. QUANTUM FIELDS

Sample code 15: Quantum fields properties

Building particles for the example

Particle W = vectorboson_s("W", model);

Particle c_W = ghostboson_s(W);

Particle psi = diracfermion_s("psi", model);

The basics

cout << c_W->getSpinDimension() << "␣" << psi->getSpinDimension()

<< "␣" << W->getSpinDimension();

// >> 1 2 3

Mass and width

Expr xi = constant_s("xi");

Expr M_W = constant_s("M_W");

Expr G_W = constant_s("G_W");

W->setMass(M_W);

W->setWidth(G_W);

c_W->setMass(sqrt_s(xi) * W->getMass()); // mcW
=

√
ξMW

cout << c_W->getMass() << endl;

// >> xi^(1/2)*M_W

3.3.3 Gauge and Flavor representations

Gauge and flavor representations are a central part in MARTY’s model building fea-
tures, users should thus have a good knowledge of this aspect.

Gauge representations

MARTY can handle all irreducible representations of semi-simple Lie groups. These
representations are uniquely defined by Dynkin labels [111] that are positive integers.
The number of labels required to define the representations of a given group corresponds
to the rank ℓ of the algebra. Table 3.2 presents the link between gauged groups and their
corresponding algebra. Dynkin labels for common representations used in high-energy
physics are written in table 3.3.

The abelian U(1) group must be treated independently as there is no Dynkin label
in this case. U(1) representations are defined by (possibly fractional) charges. In order
to unify notations when doing model building for U(1) or non abelian gauged groups,
a fractional charge is treated as a pair of Dynkin labels, one for the numerator and one
for the denominator. For example in the SM, the electron has Dynkin labels (−1, 1) for
the electromagnetic U(1) gauge whereas the up quark has labels (2, 3). More details on
irreducible representations are given in chapter 5.

By default, all representations are trivial 4. Sending the gauge group name and the

4. Trivial representations are dimension 1 for non abelian gauged group and representations of charge
0 for U(1) groups.

68

CHAPTER 3. QUANTUM FIELDS

Group Algebra Rank

SU(N) Aℓ ℓ = N − 1
SO(2N + 1) Bℓ ℓ = N
Sp(2N) Cℓ ℓ = N
SO(2N) Dℓ ℓ = N
E6 E6 ℓ = 6
E7 E7 ℓ = 7
E8 E8 ℓ = 8
F4 F4 ℓ = 4
G2 G2 ℓ = 2

Table 3.2 – Link between semi-simple Lie groups and their algebras. The rank ℓ of the Lie algebra corresponds
to the number of Dynkin labels defining uniquely irreducible representations.

Group Algebra Dynkin labels Dimension

SU(2) A1 (1) 2 (doublet)
SU(2) A1 (2) 3 (triplet)
SU(3) A2 (1, 0) 3 (triplet)
SU(3) A2 (0, 1) 3̄ (anti-triplet)
SU(3) A2 (1, 1) 8 (octet)
SU(3) A2 (2, 0) 6 (sextet)
SO(4) D2 (1, 0) 2 (left spinor)
SO(4) D2 (0, 1) 2̄ (right spinor)
SO(4) D2 (1, 1) 4 (vector)

Table 3.3 – Common representations in high energy physics, with their group, algebra, Dynkin labels and
dimensions. Trivial representations (dimension 1) have always labels equal to zero.

69

CHAPTER 3. QUANTUM FIELDS

Dynkin labels between curly braces to setGroupRep() will automatically change the par-
ticle representation. An example in a SU(2)L × U(1)Y gauge is given in sample code 16.

Sample code 16: Setting gauge representations

Considering a gauge composed of one SU(2) group named "L" and one U(1)
group named "Y", one can set the representation of eL : (2,−1) and uR : (1, 2/3)
writing

Particle e_L = weylfermion_s("e_L", model, Chirality::Left);

e_L->setGroupRep("L", 1); // curly braces not required for one value

e_L->setGroupRep("Y", -1); // denomimator = 1 omitted

for the electron and

Particle u_R = weylfermion_s("u_R", model, Chirality::Right);

u_R->setGroupRep("Y", {2, 3}); // fractional charge 2/3,

// more than one value -> curly braces

for the quark.

Note This example does not exactly correspond to SM conventions for simplicity.

Note When the denominator of a fractional charge is 1 it may be omitted when
giving the representation.

See also Chapter 5 for more details on representations.

Flavor representations

A flavor symmetry indicates that several particles have the same interactions in a
given theory, without being related to a gauge symmetry i.e. a fundamental force of na-
ture. Flavor symmetries, like gauge symmetries, can hold at high energies and be broken
at lower energies. In the Standard Model the three fermion generations are described
with a flavor symmetry. It is broken at low energies and the masses of e.g. the electron,
muon and tau particles 5 are different. Flavor representations in MARTY are for now lim-
ited to two types:

Complex flavors. Mixes N complex fields that are considered as a fundamental
representation of a SU(N) flavor group. The SM flavor symmetry is a SU(3) group.

Real flavors. Mixes N real fields that are considered as a vector representation of a
SO(N) flavor group.

The flavor machinery could be extended in the future if needed. We may consider for
example different representations of a same flavor group, with tensors mixing different
representations. However, these cases are very rare and there is no support in MARTY

to do it automatically. Work-arounds are nevertheless already possible as interactions

5. In the SM, the electron, muon and tau particles are exactly identical at high energies (typically above
1 TeV) but the symmetry is broken by the Higgs potential and they acquire different masses.

70

CHAPTER 3. QUANTUM FIELDS

can be user-defined in a very general way, introducing custom tensors coupling between
different fields, as demonstrated in the next section. Sample code 17 shows how to define
flavor representations for particles in a MARTY model.

Sample code 17: Setting flavor representations

In the following we consider a complex flavor SU(3) named "C" and one real
SO(4) named "R".

Creating the fields

// Real field for the real SO(4) flavor

Particle phi = scalarboson_s("phi", model);

phi->setSelfConjugate(true);

// Complex field for the complex SU(3) flavor

Particle psi = diracfermion_s("psi", model);

Setting the representations

phi->setFundamentalFlavorRep("R");

psi->setFundamentalFlavorRep("C");

Note As MARTY may be extended for non fundamental representations in the fu-
ture, one has to precise that the representation is fundamental through the function
name.

3.4 Quantum Fields in expressions

This section presents how to handle quantum fields in symbolic expressions. This is
important when doing model building in MARTY as a BSM Lagrangian requires in general
custom interactions other than gauge couplings (automatically provided by MARTY). This
section is about how to obtain or create all objects required to build interaction terms, and
how to write the couplings in a way that MARTY understands. When the model is already
provided, the features presented in the following are not necessary to use MARTY.

3.4.1 Indices

To create symbolic quantum field objects, one must first define indices for the particles
as explained in figure 3.1. Minkowski, Dirac and gauge indices can be obtained simply
from the user interface. There is several ways to get indices, the simplest one is presented
in sample code 18. Group indices are more complicated to obtain. There is one vector
space per irreducible representation and per gauged group. The model will generate
group indices given:

The number of different indices that must be generated.

The model.

The group that can be specified with its name.

71

CHAPTER 3. QUANTUM FIELDS

A particle name, the model returns indices in the vector space corresponding to the
representation of the particle in this particular group.

In the unbroken Standard Model for example there are 7 independent index families:

Minkowski indices for space-time and vector bosons generally noted µ, ν . . .

Spinor indices in Dirac space generally noted α, β . . .

Flavor indices for the three fermion generations generally noted I, J . . .

Gluon color indices (octet representation of SU(3)C) generally noted A,B . . .

Quark color indices (triplet representation of SU(3)C) generally noted a, b . . .

Weak boson indices (triplet representation of SU(2)L) generally noted A,B . . .

Weak indices for matter particles (doublet representation of SU(2)L) generally
noted i, j . . .

Sample code 18: Generating indices

Minkowski indices

auto mu = MinkowskiIndices(10); // 10 indices

Dirac indices

auto alpha = DiracIndices(10); // 10 indices

Gauge indices, for the representation of the particle "phi" in the gauged group

"g"

auto A = GaugeIndices(10, model, "g", "phi"); // 10 indices

Flavor indices, for the flavor "f"

auto I = FlavorIndices(10, model, "f"); // 10 indices

Indices can then be used simply using the subscript operator []

mu[i]; // is a Minkowski index for i in [0, 10[

alpha[i]; // is a Dirac index for i in [0, 10[

A[i]; // is a Group index for i in [0, 10[

I[i]; // is a Flavor index for i in [0, 10[

Note The auto keyword allows the user to not care about the type of the index
collection i.e. std::vector<csl::Index>.

3.4.2 Space-time point

Quantum fields are tensor fields. They need then a space-time point to live, and
MARTY for now is limited to the Minkowski space 6. One simply generates a space-time
point (vector in Minkowski space) following the prescription given in sample code 19.

6. This statement does not mean that tensor fields can only live in the Minkowski space. CSL is general
and there is no such limitation. MARTY calculations are limited to the Minkowski space-time for now, so
are quantum fields.

72

CHAPTER 3. QUANTUM FIELDS

Sample code 19: Generating space-time points

The easy way

Tensor X = MinkowskiVector("X");

The alternative way

Tensor X("X", &Minkowski);

Note The second way is fully general and can be used for any vector space
(Minkowski here).

When building a Lagrangian, there is no support in MARTY for non-local terms i.e. not
located on the same space-time point. MARTY thus allow users to omit this detail and give
only indices when building a Lagrangian, basically replacing in interaction terms

φI(X) 7→ φI , (3.8)

where the space-time point X is added by default automatically.

3.4.3 Creating an expression from a Particle

We saw in section 3.4.1 how to generate indices for quantum fields and in section 3.4.2
how to generate (or omit) space-time points, the two required ingredients to create sym-
bolic quantum fields from particles.

Let us consider the example of a SU(3)C × SU(2)L gauge with a fermion Q in the
fundamental representation of both groups, and a vector W in the adjoint representation
of the SU(2)L group. In addition, we introduce a complex SU(3) flavor named ’F’ for
the fermion in order to have a complete example. Sample code 20 shows how to create a
gauge interaction term as the following

L ∋ igψ̄ /Wψ = igψ̄Iaiα (X)γµαβW
A
µ (X)TAijψ

Iaj
β (X), (3.9)

with µ a Minkowski index, (i, j) indices in the doublet representation of SU(2)L, a an
index in the triplet representation of SU(3)C , A an index in the triplet representation
of SU(2)L and I an index in the 3-dimensional complex flavor for the fermion. This
example is complicated on purpose because it shows how to create arbitrary interaction
terms in MARTY, introducing all the necessary user interface to do so. One may notice that
all indices are explicit in MARTY. We chose to have one unique and general treatment for
all indices rather than having a mix between explicit and implicit indices. The interface
could be improved in the future allowing for example to omit indices in bi-linear diagonal
couplings (like SU(3)C and the flavor indices in equation 3.9), but for now all indices
must be given.

It is important to know the order of indices defined for quantum fields. If not given
in order, MARTY will raise an error and stop the program. The order is the following, to
give from left to right:

Flavor indices of non trivial representations, in the same order than when adding
the corresponding flavors to the model.

73

CHAPTER 3. QUANTUM FIELDS

Gauge indices of non trivial representations in the same order than when adding
the corresponding gauged groups to the model.

Space-time indices for spin 1/2 particles (Dirac index) and spin 1 (Minkowski in-
dex).

The term presented in equation 3.9 and in sample code 20 is a gauge interaction, that is of
course given automatically by MARTY. Knowing how to build it by hand is nevertheless a
good starting point to create general BSM interactions.

Sample code 20: From particles to symbolic expressions

Consider a gauge formed by a SU(3) group "C" and a SU(2) "L", with psi in the
fundamental representation of both groups and in an additional SU(3) flavor "F",
and finally W in the adjoint of the SU(2).

Generating indices and space-time point

auto I = FlavorIndices(1, model, "F");

auto a = GaugeIndices(1, model, "C", "psi");

auto A = GaugeIndices(1, model, "L", "W");

auto i = GaugeIndices(2, model, "L", "psi");

auto mu = MinkowskiIndices(1);

auto al = DiracIndices(2);

Tensor X = MinkowskiVector("X");

Getting the two additional tensors we need

Tensor gamma = DiracGamma();

Tensor T = GetGenerator(model, "L", "psi");

Creating the expression

Expr g = constant_s("g");

Expr term = CSL_I * g

* GetComplexConjugate(psi({I[0], a[0], i[0], al[0]}, X)),

* W({A[0], +mu[0]}, X)

* T({A[0], i[0], i[1]})

* gamma({mu[0], al[0], al[1]})

* psi({I[0], a[0], i[1], al[1]}, X);

Note Here as all fields have the same point X, one can omit it and the default
space-time point of MARTY will be introduced automatically.

Note There is no need for γ0 as in MARTY ψ† is defined as ψ̄ = ψ†γ0. This saves a
lot of unnecessary calculations.

See also Sample code 27 for more details on how to get generators from a model.

74

CHAPTER 3. QUANTUM FIELDS

3.4.4 Type system

CSL type system does not include MARTY objects, and in particular quantum fields.
MARTY extends the type system to generalize it to any type, even types that may be later
user-defined 7. While CSL type system allows one to find out the type of an expression
(number, tensor, sum, etc), the extended type system allows one to compare the expres-
sion to any given type (including MARTY types) and convert back to it (if the type is cor-
rect). The example given in sample code 21 shows how to, from a CSL expression con-
taining a quantum field, recover the field inside the expression and its Particle parent.

Sample code 21: From symbolic expressions to particles

We consider that sfield is an expression (Expr) containing a quantum field.

Using only CSL, we cannot obtain particle properties

cout << IsIndicialTensor(sfield) << endl;

// >> 1

cout << GetPrimaryType(sfield) << endl;

// >> Indicial

cout << GetType(sfield) << endl;

// >> TensorFieldElement

Using the extended type system in MARTY, obtaining the QuantumField and the

Particle

if (IsOfType<QuantumField>(sfield)) {

QuantumField field = ConvertTo<QuantumField>(sfield);

Particle particle = field.getParticle();

}

Warning If one wants to modify the quantum field and the symbolic expression at
the same time, one must get a pointer to the field:

if (IsOfType<QuantumField>(sfield)) {

QuantumField *field = ConvertToPtr<QuantumField>(sfield);

// Here modification of field will affect sfield also

Particle particle = field->getParticle();

}

3.4.5 Polarization field

Polarization fields are another quantum field type object in expressions. They repre-
sent momentum space fields with explicit spin indices. This gives

φ(X) → φ(p) for scalars, (3.10)

Aµ(X) → ǫµλ(p) for vectors, (3.11)

ψα(X) → uασ(p) for fermions, (3.12)

7. This generalization has a cost which is to be slightly less simple and optimized.

75

CHAPTER 3. QUANTUM FIELDS

with λ a spin index for the vector and σ for the fermion. The relation between position-
and momentum-space fields for fermions is:

ψα(X) =

∫
d3p

(2π)3

1
√

2p0

∑

σ=±1/2

(

uασ(p)aσ,pe
−ipX + vασ(p)b†

σ,pe
+ipX

)

, (3.13)

with aσ,p and bσ,p quantum annihilation operators. While ψ(X) and ψ(Y) do not com-
mute because of quantum properties, u(p) and v(p) do because they are simply (possibly
complex) coefficients. For scalars the spin-0 object φ(p) given in 3.10 is not defined in
general because it is trivial, but allows MARTY to keep track of external fields in the result
and is therefore used in practice.

Spin indices are important when squaring an amplitude as spin sum rules must be
applied:

∑

λ

ǫµλ(p)ǫ∗νλ (p) → −igµν (3.14)

for the photon for example, and

∑

σ

uασ(p)ūβσ(p) →
(

/p+m
)

αβ
(3.15)

for fermion particles.

All the statements given for quantum fields in sections 3.4.3 and 3.4.4 are also valid
for polarization fields, with two main differences:

The type of expression is not the same, QuantumField must then be replaced by
PolarizationField when testing the type or converting a symbolic expression (see
sample code 21).

Polarization fields are generated also by the same particle, giving a polarization in-
dex separately before the other indices. An example is presented in sample code 22.

76

CHAPTER 3. QUANTUM FIELDS

Sample code 22: Polarization fields

Taking the same example as in sample code 20, we create here the same term but
with PolarizationField objects instead of QuantumField objects (useless here but
for pedagogical purpose)

Creating polarization indices

auto pol = Euclid_R3.generateIndices(3);

Creating the expression

Expr g = constant_s("g");

Expr term = CSL_I * g

* GetComplexConjugate(psi(pol[0], {I[0], a[0], i[0], al[0]}, X)),

* W(pol[1], {A[0], +mu[0]}, X)

* T({A[0], i[0], i[1]})

* gamma({mu[0], al[0], al[1]})

* psi(pol[2], {I[0], a[0], i[1], al[1]}, X);

Note Vector spaces for polarization indices do not matter. They can be built from
any vector space in the program independently of the particle, such as the built-in
3 dimensional space Euclid_R3 for example.

Warning For scalar bosons one must also give a polarization index, even if the
particle has no spin.

This chapter presented the different types of fields that MARTY provides i.e. particles of
spin 0, 1/2 and 1 which are the basic components of BSM models. A particle is contained
in a model and is in particular an irreducible representation of the gauge group. To de-
scribe particle interactions, we therefore need to embed these particles into a high energy
physics model with a gauge group that represents the fundamental interactions of the
theory. Model structures and how they are related to quantum fields and gauge groups
in MARTY are introduced in the next chapter. Abstract group and representation theory
implementations will be later detailed in chapter 5.

77

CHAPTER 3. QUANTUM FIELDS

78

CHAPTER4
Models for high energy physics

4.1 Introduction

Models for high energy physics are the main ingredients in BSM phenomenology.
When searching for new physics, we must compare theory predictions and experimental
measurements in order to understand which BSM scenarios are compatible with nature.
The set of models that MARTY is able to build therefore represents the domain of elemen-
tary particle physics that we can describe, in particular among the phenomena that have
not been observed yet. Models in MARTY lie in a 4-dimensional Minkowski space-time.
The gauge group (i.e. the fundamental forces) can be any combination of semi-simple Lie
groups that are discussed in chapter 5. However, interactions are not limited to funda-
mental gauge couplings and can be defined in a very general way as this chapter demon-
strates.

Figure 4.1 – Inheritance tree for the Model object. The three parts composing a model are the data container
(the most fundamental, on the top), the model builder, and the final interface with calculation features.

In MARTY, Model objects represent beyond the Standard Model theories and contain
the necessary methods for model building and calculations. The interface for models
is divided into three different parts, ModelData, ModelBuilder and Model, for which the
inheritance hierarchy is presented in figure 4.1.

ModelData contains almost all the content of the model: Lagrangian, particles, gauge,

79

CHAPTER 4. MODELS FOR HIGH ENERGY PHYSICS

flavor, etc. It also provides methods to get and modify the different elements.

ModelBuilder implements all model building features such as gauge symmetry break-
ing, particle replacement, diagonalization, etc. This interface is not presented in the
following for simplicity but can be found in the dedicated chapter of the user man-
ual [86].

Model has methods to perform physical calculations in BSM scenarios. Feynman
rules, amplitudes, squared amplitudes and Wilson coefficients can be calculated
from this class. This interface is detailed in chapter 6 through the presentation of
calculation procedures.

Class ModelData contains all the basic interface to store and manipulate the content of
a high-energy physics model. Table 4.1 presents the main attributes of ModelData giving
their types and roles in the program. One may not access them directly but only through
different class methods. More details on how to manipulate these attributes are given in
the next sections.

For the class methods that take a Particle as parameter, one can often give different
objects, not only a Particle. Functions are templates, taking any argument that may be
given to the getParticle() function. In other words, when MARTY asks the user a Particle

object, any object may be given that is either directly a Particle or an object MARTY can
use to find a particle through its getParticle() methods. 1 This simplifies the interface for
users, as basically any object representing a field can be given to the template methods.
This allows one to replace code like

model.doSomeThingWithParticle(model.getParticle("phi"));

by

model.doSomeThingWithParticle("phi");

In particular, one can give a name "phi" for example instead of searching the actual vari-
able containing phi.

The same principle holds for gauge and flavor groups and the getGroup() methods.
This means in particular that a method taking a group as parameter can use a group
name instead of a Group object.

4.2 Adding / Removing particles

Particles may be added to or removed from a Model, in particular during model
building. Once a particle is added in the model its gauge and flavor representations
must not be changed as some default gauge interactions are introduced automatically by
MARTY at that moment. Kinetic and mass terms are also introduced automatically, but as
explained in section 4.4, masses of particles may still be changed later on. It is also possi-
ble to forbid MARTY to introduce any Lagrangian term by giving a boolean when adding
the particle. A particle may also be removed from a model. In this case, the particle and

1. Such as a name, a QuantumField object, a QuantumFieldParent variable or an expression (Expr)
if it represents a quantum field.

80

CHAPTER 4. MODELS FOR HIGH ENERGY PHYSICS

all the Lagrangian terms containing it are removed from the theory. All the procedures
described above are presented in sample code 23.

Sample code 23: Adding / Removing particles

Creating particles

Particle psi = diracfermion_s("psi", model);

// Setting psi representation ...

Particle phi = scalarboson_s("phi", model);

// Setting phi representation ...

Adding the particles

model.addParticle(psi); // Adds psi with default interactions

model.addParticle(phi, false); // Adds phi without any Lagrangian term

Removing a particle

model.removeParticle(psi); // psi and all its interactions are removed

Attribute name Type Purpose

L Lagrangian

Lagrangian of the model, contains
all interaction terms. See section
4.4 for more details.

spaceTime Space const*
Space-time of the theory, for now
always Minkowski.

gauge unique_ptr<Gauge>
Gauge group, containing all gauged
groups.

flavor unique_ptr<Flavor> Flavor, containing all flavor groups

particles vector<Particle> List of all particles in the model.

quantumNumbers vector<QuantumNumber>
List of quantum numbers in the
model.

scalarCouplings vector<Expr>
List of all scalar couplings, in
particular gauge couplings.

tensorCouplings vector<Tensor> List of all tensor couplings.

gaugeLocked bool

Tells if the gauge is fully initialized
(true) and if particle content may
be added.

Table 4.1 – Attributes of the ModelData class with their type and purpose.

4.3 Obtaining / Defining couplings

It is important to have access to the couplings present in the model, in case for exam-
ple one wants to extend the model using them. As shown in table 4.1 there are two kinds

81

CHAPTER 4. MODELS FOR HIGH ENERGY PHYSICS

of couplings in a MARTY model:

Scalar couplings. Gauge couplings are automatically added in this category when
created.

Tensor couplings. Initially empty, can contain any tensor.

One can obtain expressions for scalar couplings (Expr objects, typically constants) and
tensors for tensor couplings (Tensor objects) from a model, given the name of the cou-
pling. Initially the model only contains gauge couplings, but one can add couplings
(scalars or tensors) to the model, and retrieve them later on. As we saw in figure 3.3,
gauge couplings are defined initially with a name "g_<group-name>". This procedure is
summarized in sample code 24.

Sample code 24: Managing couplings

Getting gauge couplings

// Getting the couplings of two gauge groups "Y" and "L"

Expr g_Y = model.getScalarCoupling("g_Y");

Expr g_L = model.getScalarCoupling("g_L");

Adding couplings

Expr e = constant_s("e");

model.addScalarCoupling(e);

// Defining our own gamma matrix

Tensor my_gamma("gamma", {&Minkowski, &dirac4, &dirac4});

model.addTensorCoupling(my_gamma);

Getting tensor couplings

Tensor my_gamma_2 = model.getTensorCoupling("gamma");

Note The first example is the most important to remember because there is no
other simple way to get default gauge couplings from a model.

4.4 Lagrangian

The Lagrangian is almost entirely encapsulated by the ModelData class. In other words,
a user will probably not directly interact with it, but through the interface functions of
the model. Section 4.5 shows for example how to add interaction terms to the Lagrangian,
using methods of the ModelData class. In general, the Lagrangian is just a container of
symbolic expressions, and all modifications to it are ordered by Model classes.

4.4.1 Lagrangian in MARTY

The Lagrangian contains all kinetic, mass, and interaction terms of the theory. An
InteractionTerm in MARTY may contain any of the three kinds of terms. The Lagrangian is
therefore a collection of such objects, divided in three parts:

82

CHAPTER 4. MODELS FOR HIGH ENERGY PHYSICS

Kinetic terms. Purely informative. No physics in MARTY depend on them, but they
can be used to check if the user-defined model building prescriptions are consistent.

Mass terms. For built-in models, they do not have any impact on the calculations
either. However during model building MARTY uses this part of the Lagrangian to
determine masses of the particles and matrices to diagonalize.

Interaction terms. They determine the physics and vertices used in Feynman dia-
grams. They are used to derive Feynman rules (see section 6.2.2 for more details).

Amplitude calculations depend on two main objects for a given model, propagators and
vertices. As we saw in section 3.3.2, the mass and width of a particle to insert in the prop-
agators are taken from the particle itself, not the model. Changing a mass explicitly as
shown in sample code 15 will not change the mass Lagrangian. Mass terms are meant to
be used during model building but will not prevent a user to change masses and widths
for any particle before running a calculation.

Kinetic terms could in principle affect physics because they determine the free equa-
tions of motions i.e. the propagators. A scalar Lagrangian such as

L =
1

2
∂µφ∂

µφ− 1

2
m2φ2 (4.1)

implies the following equation of motion for φ

(� +m2)φ = 0, (4.2)

which in turns gives a propagator of the type

1

� +m2
→ 1

−p2 +m2
. (4.3)

Kinetic terms could be used to determine the propagators in MARTY, but would require
unnecessary algebra. Instead all propagators are fixed with a denominator as in equa-
tion 4.3, letting the possibility to define custom propagators.

Feynman rules are calculated from the interaction Lagrangian. Together with particle
propagators (masses, widths, . . .), they are the building blocks of quantum field theory
calculations.

4.4.2 Interaction terms

The InteractionTerm object is used for the three kinds of terms in the Lagrangian. It
contains a mathematical expression corresponding to a term in a Lagrangian such as

igψ̄iαγ
µ
αβW

A
µ T

A
ijψjβ. (4.4)

For model building procedures, the InteractionTerm class can easily provide the relevant
properties of an interaction e.g. the particle content.

InteractionTerm also keep track of all different index contractions in the interaction.
When calculating Feynman rules, the Lagrangian expansion is done explicitly using in-
teraction terms. The Wick theorem and most of the algebra is done with a generic expres-
sion, with only the field content, and the InteractionTerm class recovers all factors and

83

CHAPTER 4. MODELS FOR HIGH ENERGY PHYSICS

index symmetries in the final result. Taking the example of equation 4.4, the Feynman
rule calculation injects in the Wick theorem a generic term such as

ψ̄iαW
A
µ ψjβ (4.5)

with only free indices, and the InteractionTerm object is asked to recover, in the final
result, the initial index structure and factors of the Lagrangian term.

4.5 Adding Lagrangian terms

There are three ways to add a Lagrangian term in MARTY. The first one is automated,
just by adding a new particle in the model. In this case MARTY initializes automatically
gauge interactions, default kinetic and mass terms. The second way is to use built-in
functions to add common mass terms for different kinds of particles. Finally, as presented
in section 3.4.3, it is possible to build general interaction terms building explicitly the
corresponding mathematical expression.

4.5.1 Built-in interaction terms

There are for now only three types of interaction terms in MARTY one can easily add to
a model. These are bosonic mass terms

L ∋ −sη ·m2φ†φ, (4.6)

Dirac or Majorana mass terms

L ∋ −η ·mψ̄ψ, (4.7)

and Weyl mass terms

L ∋ −m
(

ψ̄RψL + ψ̄LψR
)

. (4.8)

In the above equations, η is 1 for complex fields, and 1
2 for real ones, s = +1 for scalars

and s = −1 for vectors. In the Dirac mass terms η = 1
2 corresponds to a Majorana mass.

The procedure to add such mass terms is presented in sample code 25. The η and s factors
are determined automatically by MARTY.

84

CHAPTER 4. MODELS FOR HIGH ENERGY PHYSICS

Sample code 25: Adding mass terms explicitly

For a boson B (scalar or vector)

Expr M = constant_s("M");

model.addBosonicMass("B", M);

// Or

model.addBosonicMass("B", "M");

For a Dirac or Majorana fermion F

Expr m = constant_s("m");

model.addFermionicMass("F", m);

// Or

model.addFermionicMass("F", "m");

For a pair of Weyl fermions (L + R) F_L and F_R

Expr m = constant_s("m");

model.addFermionicMass("F_L", "F_R", m);

// Or

model.addFermionicMass("F_L", "F_R", "m");

Note When adding a particle to a model, a mass term will be defined automatically
if it has a non zero mass. This procedure is useful when one wants to add a mass
explicitly during model building for example.

4.5.2 General interactions

To add general interactions one must provide explicitly the expressions to MARTY. It is
more involved but completely general and allows us to build any BSM Lagrangian. The
procedure to build these expressions was introduced in section 3.4.3 with an example.

An unusual fermion bilinear definition

Before presenting the main ingredients to build general interactions, let us discuss the
conventions and notations used for spin 1/2 particles. In MARTY the hermitic conjugate of
a fermion, ψ†, is defined as being equal to the usual ψ̄ = ψ†γ0 to avoid to deal with too
many unnecessary γ0 matrices in vertex definitions and calculations. This means that a
term such as

ψ̄γµχ = ψ†γ0γµχ, (4.9)

is instead defined following
ψ̃†γ̃µχ̃, (4.10)

i.e. by removing γ0 and redefining fields ψ̃ and χ̃. This is possible when considering only
fermion bilinears, 2 with the redefinition of the hermitic conjugation of γ-matrices. With
explicit γ0 one has for example

(γµ)† = γ0γµγ0, (4.11)

2. Fermion interactions for BSM physics are always defined using fermion bilinears.

85

CHAPTER 4. MODELS FOR HIGH ENERGY PHYSICS

implying

(

ψ†γ0γµχ
)†

= χ†γ0γµψ

= χ̄γµψ,
(4.12)

where we used
(
γ0
)2

= 1. Keeping γ0 implicit and defining

(

ψ̃†
)†

≡ ψ̃, (4.13)

one must define
(γ̃µ)† = γ̃µ (4.14)

to obtain an equivalent property. With these definitions we indeed recover the initial
behavior of our bilinear:

(

ψ̃†γ̃µχ̃
)†

= χ̃†γ̃µψ̃. (4.15)

For a general matrix Γ, if Γ† ≡ Γ′ with explicit γ0 one has to define

Γ̃† ≡ γ0Γ′γ0 (4.16)

to perform consistent calculations with fermion bilinears without using γ0 anywhere. 3

For automated calculation purposes this has a great impact on performance. The only
consequence at the user level is the implicit use of γ0 when writing the hermitic conjugate
of a fermionic field ψ† ≡ ψ̄.

Ingredients to build a general BSM Lagrangian

Let us review here the main ingredients for building interaction terms from scratch.

Particles. One must have the Particle objects, required to generate quantum fields
in expressions. They can be user-defined or obtained from a model, see sample
code 13.

Indices. Indices are necessary to generate symbolic expressions from particles.
Sample code 18 shows how to get all the necessary indices and sample code 20
how to use them.

Space-time point. This ingredient is not necessary for interaction terms. Users
may omit it and MARTY will automatically place all fields at the space-time point
defined for the rest of the Lagrangian. Sample code 19 gives more details on how
to generate space-time points if needed.

Gauge couplings. One may have to define new interactions depending on the
gauge couplings of the model. The procedure to get gauge couplings has been
developed in sample code 24.

γ-matrices. They are built-in and may be accessed simply as shown in sample
code 26.

3. γ0 matrices in equation 4.16 can always be simplified using commutation and contraction identities
as demonstrated for Γ = γµ.

86

CHAPTER 4. MODELS FOR HIGH ENERGY PHYSICS

Generators. One may have to define new interactions depending one the group
generators (TAij , fABC etc) of the model. All generators can be obtained through
interface function calls as depicted in sample code 27.

Vector spaces. To create a new custom tensor, one has to obtain the vector spaces
(csl::Space) corresponding to all the tensor indices. This is presented in sample
code 28.

CSL. The CSL manual [88] contains all the details and allow the users to write in-
teractions, building new couplings and tensors. Terms can be defined in a very
general way and are not limited to particular forms.

With these ingredients it is possible to write any unreasonably complicated Lagrangian
starting from the example in sample code 20.

Sample code 26: Getting γ-matrices

The easy way, using the interface

Tensor gamma = DiracGamma(); // gamma matrix

Tensor gamma5 = DiracGamma5(); // gamma5 matrix

Tensor sigma = DiracSigma(); // sigma matrix

Tensor P_L = DiracPL(); // left projector

Tensor P_R = DiracPR(); // right projector

Tensor C = DiracCMatrix(); // Conjugation matrix

Sample code 27: Getting group generators

Taking the Standard Model example, there is a "Q_L" particle in the doublet
representation of a SU(2) "L" and a gluon "G" in the adjoint representation of a
SU(3) "C". One can obtain the generators for these representations.

Obtaining the generators from the model

Tensor T_SU2_2 = model.getGenerator("L", "Q_L");

Tensor f_SU3 = model.getGenerator("C", "G");

Getting the generators from the interface

Tensor T_SU2_2 = GetGenerator(model, "L", "Q_L");

Tensor f_SU3 = GetGenerator(model, "C", "G");

87

CHAPTER 4. MODELS FOR HIGH ENERGY PHYSICS

Sample code 28: Vector spaces

Taking an example with a "C" gauged group and an "F" flavor group.

From the interface

auto gaugeVectorSpace = GetVectorSpace(model, "C", "phi");

auto flavorVectorSpace = GetVectorSpace(model, "F", "phi");

From the model

auto gaugeVectorSpace = model.getVectorSpace("C", "phi");

auto flavorVectorSpace = model.getVectorSpace("F", "phi");

Note The auto here deduces the type Space const* that is a pointer to a constant
CSL vector space.

Creating a new tensor from vector spaces

Tensor T("T", {&Minkowski, gaugeVectorSpace, flavorVectorSpace});

// T has one index in Minkowski, one gauge and one flavor index

Note Minkowski is a built-in Space object, the & symbol must thus be used to get
a pointer whereas the spaces returned from the interface are already pointers (no
need for &).

4.6 Fermion number violating interactions

4.6.1 Definition

This section is about fermion number violating interactions. Such vertices require
a particular care from MARTY, but also from the user. Figure 4.2 presents examples of
interactions that may violate the fermion number.

Figure 4.2 – Examples of interactions that can lead to fermion number violating processes. ψ and χ are regular
spin 1/2 particles, N a Majorana and B a boson (scalar or vector). These diagrams have been generated using
GRAFED, see section 2.5 for more details.

There is a calculation difficulty with these vertices in processes such as those depicted
in figure 4.3 e.g. in SUSY models with SM fermions (ψ), neutralinos (N) and charginos
(χ). A naive use of Feynman rules leads to unusual fermion bilinears because the fermion

88

CHAPTER 4. MODELS FOR HIGH ENERGY PHYSICS

number is not conserved along the line while we always want to have expressions such
as

ψ̄Γχ, (4.17)

with Γ a combination of gamma matrices with indices flowing from left to right. The
reason bilinears must be ordered is not only to have standard expressions, but mostly
to be able to simplify them further using well-known identities. To solve this issue, we
follow prescriptions similar to those in [112].

Figure 4.3 – Examples of fermion number violating (locally at least) processes. ψ is a regular spin 1/2, N a
Majorana and B a boson (scalar or vector). These diagrams have been generated using GRAFED, see section 2.5
for more details.

4.6.2 The conjugation matrix

The conjugation matrix C depends on the γ−matrix realization. In the Dirac realiza-

tion a fermion is expressed as

(

ψL
ψR

)

. In this basis, one has

C = −iγ0γ2. (4.18)

In particular, C = C∗ = −CT = −C† = −C−1. A charge conjugated fermion is then
defined by

ψc ≡ Cψ̄T . (4.19)

A Majorana fermion N is its own charge conjugated particle and the previous equation
reads

N ≡ N c = CN̄T . (4.20)

Regarding fermionic external legs, the conjugation matrix has contraction properties
with fermion external states u(p) (and v(p) for anti-particles). C is defined as the relation
between particle (u) and anti-particle (v) spinors. In particular one has

ū = Cv, (4.21)

v̄ = Cu, (4.22)

and equivalently

u = v̄C, (4.23)

v = ūC. (4.24)

89

CHAPTER 4. MODELS FOR HIGH ENERGY PHYSICS

C also fulfills properties with transposed gamma matrices namely

CΓTi C
† ≡ Γ′

i = ηiΓi, (4.25)

with

ηi =

{

+1 for Γi = 1, γ5, γµγ5,
−1 for Γi = γµ, σµν .

(4.26)

Rules given in [112] consist in defining a fermion line and inserting conjugation ma-
trices C to recover a standard fermion bilinear such as the one in equation 4.17, while
being mathematically equivalent. By ordering the fermion lines, the only subtlety is to
obtain the correct sign at the end for the diagram in order for the interference patterns to
remain consistent. Therefore, one needs to be careful about the signs while defining such
interactions. This is explained in the next section.

4.6.3 Fermion number violation in MARTY

Golden rules

There are two golden rules in the definition of fermion number violating interactions
in MARTY. The first rule is: Not to use the charge conjugation matrix in vertices with

Majorana fermions. This is because from equation 4.20 we know that a conjugation
matrix can be simplified away contracting it with a Majorana fermion. It is possible with
MARTY to use charge conjugation matrices with Majorana interactions, but if one has to do
it, it probably means that the vertex expression should be reconsidered by checking that
no mistake has been made. Let us present an example of charge conjugation in a vertex
with a Majorana N , a Dirac fermion ψ and a vector A

L ∋ λAµNγ
µψc = λAµNγ

µCψ̄T . (4.27)

Using equations 4.20 and 4.25, one can transform the vertex into

L ∋λAµN̄T (γµ)T ψ̄T

=λAµ
(

N̄T (γµ)T ψ̄T
)T

= − λAµψ̄γ
µN̄ ,

(4.28)

which does not contain any conjugation matrix. Vertices with two Majorana fermions
should also follow this rule.

The second rule is: For fermion number violating interactions between non-Majorana

fermions, make sure that the position and sign of C are correct. One should most of all
make sure that conjugation matrices are placed correctly. In particular, in case a fermion
number violating vertex or process vanishes incorrectly, conjugation matrices introduced
in the Lagrangian should be checked first, in particular considering that

Cγµ 6= γµC, (4.29)

Cαβ = −Cβα. (4.30)

The way to obtain the symbolic tensor corresponding to the conjugation matrix C in
MARTY was presented in sample code 26.

90

CHAPTER 4. MODELS FOR HIGH ENERGY PHYSICS

Conventions can be misleading

The convention used to define fermions in MARTY is based on 4-component objects
with explicit indices. It is different from the 2-component notation in which the conjuga-
tion matrix is not explicit. Using the latter convention, up- or down-indices have a dif-
ferent meaning and a spinor contraction like ψαχα with two left-handed Weyl fermions,
usually abbreviated as ψ · χ, contains an implicit conjugation matrix when expressed in
MARTY’s convention, namely

ψαχα = ǫαβψαχβ

= iσαβ2 ψαχβ

= ψαCαβχβ,

(4.31)

where we used 4-component notation together with the definition in equation 4.18 for
the last step. ǫ is the fully anti-symmetric symbol verifying

ǫ12 = −ǫ21 = 1, (4.32)

and σ2 = −iǫ is the second Pauli matrix. In MARTY no implicit tensor is used for index
contraction i.e. all spinor indices are equivalent (no up- or down-type indices), and 4-
component tensor couplings between spinors must be given.

In summary, one should remember the convention used by MARTY when defining
fermion interactions and consider translating any Lagrangian expressed with a 2-component
notation before building interaction terms with MARTY. In particular, a well-defined object
defined in the 2-component notation properly translated in MARTY’s convention should
behave well in calculations, allowing the simplification procedures to finish correctly.
Otherwise MARTY will complain and stop the calculation, in which case fermion interac-
tions should be double checked in the Lagrangian. For more definitions and identities
using the 2-component notation see [113].

4.7 Group theory objects

The ModelData class also contains the gauge group defining the theory’s fundamental
interactions. In general, one can obtain from a model the Gauge, Flavor, all GaugedGroup
and FlavorGroup objects. In addition, the particle representations for the whole gauge
(GaugeIrrep), the flavor (FlavorIrrep) or a specific group (Irrep) can be obtained.

Manipulating these objects is a deep feature of MARTY and is not needed in standard
use cases. Representation theory is however an important feature of high energy physics
models, this is why we present how to access particle representations in the following.
We present the group theory structure in MARTY, starting from a high energy physics
model up to the more abstract mathematical definitions of semi-simple Lie algebras. This
will also provide a transition to the next chapter dedicated to group theory. Figure 4.4
presents a summary of the different interfaces presented in this section, and in particular
how to get from a high-energy physics model to abstract group theory implementations
in MARTY.

Except for representation objects, all groups (flavor or gauged) must be used as point-

ers. This is because they are unique in the program and must then not be copied.

91

CHAPTER 4. MODELS FOR HIGH ENERGY PHYSICS

Figure 4.4 – Sketch of the successive logical top-down links from a high-energy physics model to abstract group
theory implementations in MARTY. Representations are derived by SemiSimpleAlgebra and several interfaces
exist to go from abstract representations to a particle physics model.

4.7.1 Gauge and flavor

The Gauge contains all the gauge groups and the Flavor all the flavor groups. They
can be accessed as shown in sample code 29.

Sample code 29: Gauge and flavor

Getting the gauge and flavor of a model

Gauge *gauge = model.getGauge();

Flavor *flavor = model.getFlavor();

Warning Pointers to these objects must always be kept as they must not be copied.

4.7.2 Gauged and flavor groups

A gauge contains several gauged groups, and a flavor several flavor groups. From
their names (user-defined when created), one can obtain the groups from a model, as
depicted in sample code 30.

92

CHAPTER 4. MODELS FOR HIGH ENERGY PHYSICS

Sample code 30: Gauge and flavor groups

Considering a model with a SU(3) "C" gauged group, and a SU(3) "F" flavor.

Getting the gauge and flavor groups from the model

GaugedGroup *ggroup = model.getGaugedGroup("C");

FlavorGroup *fgroup = model.getFlavorGroup("F");

Warning The pointers to these objects must be kept as they must not be copied.

4.7.3 Gauge representations

Obtaining the gauge representation of a particle in a specific group is a task that can
be done easily using MARTY’s interface. One has to specify the particle (or its name), and
the group (or its name) for the model to return the corresponding representation. More
details on representations will be given in chapter 5. Examples on how to get particle
representations are given in sample code 31.

Sample code 31: Getting representations from particles

We define a particle phi in a model containing a SU(3) "C" gauged group, and a
SU(3) "F" flavor.

Getting the full gauge and flavor representations

GaugeIrrep gaugeRep = model.getGaugeIrrep("phi");

FlavorIrrep flavorRep = model.getFlavorIrrep("phi");

Getting a specific group representation (gauged or flavor)

Irrep ggroupRep = model.getGroupIrrep("phi", "C");

Irrep fgroupRep = model.getFlavorIrrep("phi", "F");

4.7.4 Groups and algebras

GaugedGroup and FlavorGroup objects are additional abstraction layers with respect
to groups from a pure group theory point of view. They contain particular quantum
field theory implementations that are not required to define abstract groups, e.g. cou-
plings and generators (these objects are presented in sections 4.3 and 4.5.2 respectively).
There are in MARTY deeper data structures for groups and algebras. Groups that MARTY
can define are semi-simple Lie groups, coming with their semi-simple Lie algebras. The
class SemiSimpleAlgebra implements the abstract representation machinery of MARTY, and
SemiSimpleGroup is an interface to connect algebras to groups we know better (SU(N),
SO(N), Sp(N)) as figure 4.4 shows. The way to obtain groups and algebras from a model
is presented in sample code 32.

93

CHAPTER 4. MODELS FOR HIGH ENERGY PHYSICS

Sample code 32: Abstract groups and algebras

Considering a model with a SU(3) "C" gauged group, and a SU(3) "F" flavor.

Getting gauged and flavor groups

GaugedGroup *ggroup = model.getGroup("C");

FlavorGroup *fgroup = model.getFlavor("F");

Getting abstract groups from gauged and flavor groups

SemiSimpleGroup *group1 = ggroup->getGroup();

SemiSimpleGroup *group2 = fgroup->getGroup();

Getting algebras from the groups

SemiSimpleAlgebra *algebra1 = group1->getAlgebra();

SemiSimpleAlgebra *algebra2 = group2->getAlgebra();

Warning The pointers to these objects must always be kept as they must not be
copied.

After discussing the link between group theory structures and high energy models in
MARTY, the next chapter presents more abstract features of representation theory and the
corresponding implementations in MARTY.

94

CHAPTER5
Group theory

This chapter goes beyond the scope of amplitude calculations in quantum field theory
as it presents a deeper feature of MARTY, its representation theory implementation, that is
not required for perturbative calculations in high energy physics.

As we saw in section 3.3.3, a quantum field is an irreducible representation of the
gauge group. We introduced in particular the link between semi-simple Lie algebras and
groups in table 3.2, while table 3.3 presented the definition of the main representations
used in physics in terms of Dynkin labels. This chapter introduces how irreducible rep-
resentations are defined, computed in MARTY and the algebraic calculations that can be
done with them.

Section 5.1 will present in details what semi-simple algebras are in MARTY, while sec-
tions 5.2 and 5.3 will respectively introduce irreducible representations (irreps) and the
decomposition of irrep products into sums of irreps. These calculations are similar to
what LieART [114], another Mathematica-based program, can do. Finally, section 5.4 will
recall the link between these abstract group theory considerations and quantum field
theory and in particular the calculations done by MARTY with gauge representations.

The Lorentz group A particle is also an irreducible representation of the Lorentz
group, that corresponds to the spin. The Lorentz group SO(1, 3) has the same algebra as
SO(4). The algebra of SO(4) is

so(4) = D2
∼= A1 ⊕A1 = su(2) ⊕ su(2). (5.1)

In D2 or A1 ⊕ A1, one must give two Dynkin labels. The common representations are
presented in table 5.1.

95

CHAPTER 5. GROUP THEORY

Particle Dynkin labels Dimension

Scalar (0, 0) 1
Left Weyl fermion (1, 0) 2
Right Weyl fermion (0, 1) 2
Dirac fermion (0, 1) ⊕ (1, 0) 4 = 2 ⊕ 2
Vector (1, 1) 4

Table 5.1 – Correspondence between Lorentz representations (spin) and Dynkin labels in the algebra D2
∼=

A1 ⊕A1 = su(2) ⊕ su(2).

5.1 Semi-simple Lie algebras

5.1.1 Principle

Here we will not go into much theoretical details. More information about semi-
simple Lie algebras can be found in [111, 114, 115].

Semi-simple Lie algebras have a common definition, and can be described with the
same formalism. They are defined as having have no non-zero abelian ideal. One must
find the maximal Cartan sub-algebra, whose dimension is called the rank ℓ of the algebra.
There are seven different types of such algebras.

Aℓ for ℓ ≥ 1.

Bℓ for ℓ ≥ 1.

Cℓ for ℓ ≥ 1.

Dℓ for ℓ ≥ 2.

Eℓ for 6 ≤ ℓ ≤ 8.

Fℓ for ℓ = 4.

Gℓ for ℓ = 2.

AlgebrasEℓ toGℓ are called exceptional whileAℓ toDℓ are the algebras of SU(N), SO(N)
and Sp(N) groups. They can however all be described with the same formalism. This is
what is implemented in MARTY to define irreducible representations in all these algebras.

The Cartan sub-algebra defines the so-called simple roots of the semi-simple Lie al-
gebra. An algebra of rank ℓ has exactly ℓ simple roots, and an irreducible representation
is defined from them.

5.1.2 Semi-simple Lie algebras in MARTY

In MARTY, algebras Aℓ to Gℓ are SemiSimpleAlgebra objects. The way to create semi-
simple algebras is presented in sample code 33. Irreducible representations will be pre-
sented in the next section.

96

CHAPTER 5. GROUP THEORY

Sample code 33: Semi-simple Lie algebras

Creating algebras

auto A2 = CreateAlgebra(algebra::Type::A, 2);

auto B7 = CreateAlgebra(algebra::Type::B, 7);

auto F4 = CreateAlgebra(algebra::Type::F4);

auto G2 = CreateAlgebra(algebra::Type::G2);

Note The type deduced by auto is unique_ptr<SemiSimpleAlgebra>. It is a pointer
and one must use -> to access member functions of SemiSimpleAlgebra.

Note Algebra names being very unspecific, the prefix algebra::Type is required to
access algebra type names.

5.2 Irreducible representations

5.2.1 Highest-weight state

As we saw in the previous section, irreducible representations in a semi-simple Lie
algebra are defined from ℓ simple roots. The roots define a ℓ-dimensional discrete lattice,
in which states |ψi〉 are living. A state is defined with ℓ integer as

|ψi〉 ≡ |i1, i2, . . . iℓ〉, ij integers. (5.2)

An irreducible representation is defined uniquely by its highest-weight state, and
from this highest-weight are deduced all other states of the representation R. Each state
|ψi〉 has a multiplicity mi, and the dimension of the irrep is simply

dR =
∑

|ψi〉∈R
mi. (5.3)

From the highest weight state one can get all the states and their multiplicities using
annihilation operators recursively.

5.2.2 The su(2) example

Let us consider the simplest example, the spin in SU(2). The algebra is A1, with a
one dimensional, discrete lattice. Highest weights must have a positive (unique) Dynkin
label, and lower states are found by applying the only annihilation operator 1

J− =
1√
2

(σ1 + iσ2). (5.4)

1. This is the same operator as the W− boson in the SM that is the annihilation operator for the weak
isospin: W− = 1√

2
(W 1 + iW 2).

97

CHAPTER 5. GROUP THEORY

From the spin 1/2 state, one can obtain the spin -1/2 state and find the 2-dimensional
spin 1/2 representation. From the spin 1 highest weight, spin 0 and -1 states arise to
finally obtain a 3-dimensional representation. This is represented in figure 5.1. Dynkin
labels in su(2) are just twice the spin value.

Figure 5.1 – 1-dimensional weight lattice of A1 = su(2), with spin 1/2 (red) and spin 1 (blue) representations
with 2 and 3 states respectively. Correspondence with Dynkin labels is shown. The action of the annihilation
operator J− = 1√

2
(σ1 + iσ2) is presented on the different states, starting each time from the highest weight of

the representation.

This principle is then generalized in ℓ dimensions, and irreducible representations in
all semi-simple Lie algebras can be uniquely defined.

5.2.3 The su(3) example

Let us consider now the most complicated generalization of the previous section, that
can still be represented on paper, the 2D case. The weight lattice of A2 = su(3) is 2-
dimensional and is represented in figure 5.2.

Highest-weights may be any state in the dominant Weyl chamber, i.e. must have pos-
itive Dynkin labels. The state |0, 0, . . . , 0〉 is always the trivial 1-dimensional representa-
tion. A highest weight state in su(3) is defined by two Dynkin labels (2D plane), and this
time there are two different annihilation operators that have to be applied recursively to
the highest weight state to derive all states in an irreducible representation. The two anni-
hilation operators are geometrically along −~α and −~β, with ~α and ~β the two simple roots
of A2. Common representations, the quark, anti-quark and gluon of SU(3)C symmetry
group are presented in figure 5.3.

98

CHAPTER 5. GROUP THEORY

Figure 5.2 – Root and weight lattices of su(3). α and β are the two simple roots. Dynkin labels of irreducible
representations correspond to the position of the highest-weight state on the weight lattice. The dominant Weyl
chamber is defined by the set of all positive-weight states. It contains all states that can be highest-weights,
i.e. that can define an irreducible representation.

Figure 5.3 – Usual QCD representations (quark, anti-quark and gluon respectively) in the weight lattice of
su(3). The coordinates of their highest weight is shown. In the 8-dimensional representation the state of weight
(0, 0) has multiplicity 2, the total number of states is therefore indeed 8.

5.2.4 Irreducible representations in MARTY

From a semi-simple Lie algebra, one can build any irreducible representation given
the Dynkin labels of its highest-weight state, as discussed in the previous section. The
procedure to make MARTY derive an irreducible representation is presented in sample
code 34. All the procedure, namely applying annihilation operators from the highest
weight to find all the states and deriving the multiplicities, is automated in MARTY for all
semi-simple Lie algebras.

99

CHAPTER 5. GROUP THEORY

Sample code 34: Irreducible representations of algebras

Taking algebras defined in sample code 33.

From the interface

Irrep quark = GetIrrep(A2, {1, 0});

Irrep gluon = GetIrrep(A2, {1, 1});

Irrep exotic = GetIrrep(F4, {1, 1, 0, 0});

Through member functions

Irrep quark = A2->highestWeightRep({1, 0});

Irrep gluon = A2->highestWeightRep({1, 1});

Irrep exotic = F4->highestWeightRep({1, 1, 0, 0});

Getting dimensions

cout << quark.getDimension() << endl; // 3

cout << gluon.getDimension() << endl; // 8

cout << exotic.getDimension() << endl; // 29172

5.3 Product decomposition

Products of irreducible representations have an important meaning in particle physics.
Each interaction vertex is in fact such a product of the interacting particle representa-
tions. It can be decomposed in a sum of irreducible representations, the total number
of dimensions being conserved. For an interaction to be physically consistent, the trivial
representation must appear in the decomposition. With this procedure one can know for
example the type of the representation that can be obtained from the annihilation of two
particles, or what quark arrangements may result in a color-blind structure (mesons qq̄,
baryons qqq, or any combination of them). The procedure to decompose a product into
a direct sum of irreducible representations can be found in [114]. Let us give examples
with first a well-known SU(2) spin

2 ⊗ 2 = 1 ⊕ 3, (5.5)

with integers representing the dimensions of the representations. Group theory tells us
that combining two 1/2 spins one may either get a scalar or a spin 1 but not any other
spin. For the collision of two gluons 2, we obtain

8 ⊗ 8 = 1 ⊕ 8 ⊕ 8 ⊕ 10 ⊕ 10 ⊕ 27, (5.6)

which shows that we can get a neutral particle, another gluon-type particle or a more
exotic 10- or 27-dimensional representation.

With a simple interface, one can make MARTY decompose such products. The result is
not an Irrep but a SumIrrep. The interface allows one to sum, multiply and display any of

2. Purely in terms of SU(3) color structure.

100

CHAPTER 5. GROUP THEORY

these objects. Sample code 35 shows two examples. The link between the SU(3) example
and physics interpretations is the answer to the question ’Which quarks arrangements can
be color neutral and explain the structure of neutrons and protons ?’. A neutral state is a trivial
SU(3) representation, i.e. of dimension 1. When taking products of quarks, one knows if
it can be in a neutral state if the trivial representation appears in the decomposition. The
example confirms that qq̄ and qqq are the only states with 2 or 3 quarks that can be color
neutral. 3

Sample code 35: Representation product decomposition

Taking the sample algebras in sample code 33.

In the A2 algebra

Irrep quark = GetIrrep(A2, {1, 0});

Irrep antiquark = GetIrrep(A2, {0, 1});

cout << "3␣x␣3␣=␣" << quark * quark << endl;

// >> 3 x 3 = 3 + 6 (Total dim = 9)

cout << "3␣x␣3c␣=␣" << quark * antiquark << endl;

// >> 3 x 3c = 1 + 8 (Total dim = 9)

cout << "3␣x␣3␣x␣3␣=␣" << quark * quark * quark << endl;

// >> 3 x 3 x 3 = 1 + 8 + 8 + 10 (Total dim = 27)

cout << "3␣x␣3␣x␣3c␣=␣" << quark * quark * antiquark << endl;

// >> 3 x 3 x 3c = 3 + 3 + 6 + 15 (Total dim = 27)

In the F4 algebra

Irrep exotic1 = GetIrrep(F4, {1, 0, 0, 0});

Irrep exotic2 = GetIrrep(F4, {0, 0, 0, 1});

cout << exotic1 << endl;

// >> Representation |1,0,0,0> of dimension 52

cout << exotic2 << endl;

// >> Representation |0,0,0,1> of dimension 26

SumIrrep decomposition = exotic1 * exotic2;

cout << "52␣x␣26␣=␣" << decomposition << endl;

// >> 52 x 26 = 26 + 273 + 1053 (Total dim = 1352)

5.4 Gauge representations

A gauge representation is simply a collection of group representations. The principle
is the same as for Irrep and SumIrrep, but this time one manipulates representations in
different groups at the same time in objects GaugeIrrep and SumGaugeIrrep. Taking a sam-
ple SU(3)C ⊗ SU(2)L SM gauge for example, one can take the product of a left-handed

3. Arbitrary combinations of those two building blocks will of course generate color-neutral states, as
tetra-quarks qqq̄q̄ and penta-quarks qqqqq̄ or q̄q̄q̄q̄q for example.

101

CHAPTER 5. GROUP THEORY

quark with a left-handed anti-quark

(3, 2) ⊗ (3̄, 2̄) = (1 ⊕ 8, 1 ⊕ 3) = (1, 1) ⊕ (8, 1) ⊕ (1, 3) ⊕ (8, 3). (5.7)

For gauge representations, one may directly use a high-energy physics model with
its interface as we showed in section 4.7. Sample code 36 presents how to perform the
example above, build a Gauge from scratch independently of any quantum field theory
consideration, and calculate the decomposition of qq̄ in this SU(3)C ⊗ SU(2)L gauge.

Sample code 36: Irreducible representations of gauge groups

Building a SU(3) × SU(2) gauge

Gauge gauge;

gauge.addGroup(group::Type::SU, "C", 3);

gauge.addGroup(group::Type::SU, "L", 2);

Obtaining the quark (3, 2) and anti-quark (3̄, 2̄) representations

// Two representations between {},

// {1, 0} is SU(3) triplet

// {1} is SU(2) doublet

GaugeIrrep quark = gauge.getRepresentation({{1, 0}, {1}});

GaugeIrrep antiquark = quark.getConjugatedRep();

cout << quark << endl;

// >> (3 , 2)

cout << antiquark << endl;

// >> (3 , 2)

Obtaining the decomposition of qq̄

SumGaugeIrrep decomposition = quark * antiquark;

cout << decomposition << endl;

// >> (1 , 1) + (8 , 1) + (1 , 3) + (8 , 3)

if (decomposition.containsTrivialRep()) {

cout << "Contains␣trivial␣rep␣!" << endl;

// >> Contains trivial rep !

}

Note The containsTrivialRep() method for gauge representations is used in MARTY

to check that interaction terms do not obviously violate gauge invariance. They
still can violate the gauge invariance even if respecting this condition but it is more
difficult to test automatically.

5.5 Dynkin labels for common representations

In this section we present the correspondence between Dynkin labels and the most
common irreducible representations (irreps) for all semi-simple Lie groups. In MARTY,
Dynkin labels allow users to define uniquely irreps when creating particles. Each time,
these positive integers must be given between {}, as for a SU(3) "C" group

102

CHAPTER 5. GROUP THEORY

particle->setGroupRep("C", {1, 0});

for the fundamental representation of SU(3) with Dynkin labels (1, 0), typically quarks.
Gauge bosons are in the adjoint representation of their gauged groups, and generally

non-trivial representations are the fundamental ones (doublet of SU(2), triplet of SU(3)
etc), but this section also presents more exotic irreps. Trivial irreps (dimension 1) have al-
ways 0 Dynkin labels (0, · · · , 0) but need not to be defined in MARTY. The correspondence
between groups and algebras Aℓ, Bℓ, Cℓ and Dℓ was given in table 3.2.

5.5.1 su(N)

su(N) is an algebra of rank N − 1 corresponding to AN−1, therefore an irrep in that
group is uniquely defined by N − 1 positive integers. Starting from su(2) with one label,
common representations are presented in table 5.2.

Dynkin labels Dimension Common name

(1, 0, · · · , 0) N Fundamental
(0, · · · , 0, 1) N Anti-fundamental

(1, 0, · · · , 0, 1) N2 − 1 Adjoint

Table 5.2 – Dynkin labels for common su(N) irreducible representations.

The su(2) case

For the su(2) algebra, there is only one Dynkin label λ corresponding to the spin j
through the relation

j =
λ

2
. (5.8)

One can then straight-forwardly deduce the Dynkin label for a representation of spin j
(dimension 2j + 1) by multiplying it by 2.

The su(3) case

su(3) representations are defined with two Dynkin labels. Table 5.3 presents the cor-
respondence with common su(3) irreps.

Dynkin labels Dimension Common name

(1, 0) 3 Triplet
(0, 1) 3 Anti-triplet
(1, 1) 8 Adjoint
(2, 0) 6 Sextet
(0, 2) 6 Anti-sextet
(2, 1) 10 Decuplet
(1, 2) 10 Anti-decuplet

Table 5.3 – Dynkin labels for common su(3) irreducible representations.

103

CHAPTER 5. GROUP THEORY

5.5.2 so(N)

so(2ℓ) and so(2ℓ+ 1) are algebras of rank ℓ namely Dℓ and Bℓ respectively. Particular
cases must be mentioned for low ℓ to define vector, adjoint, and spinor representations of
so(N). Table 5.4 gives the Dynkin labels of common so(N) irreducible representations.

Group Algebra Dynkin labels Dimension Common name

SO(5) B2 (1, 0) 5 Vector
SO(5) B2 (0, 2) 10 Adjoint

SO(2ℓ+ 1) Bl, ℓ ≥ 3 (1, 0, 0, · · · , 0) 2ℓ+ 1 Vector
SO(2ℓ+ 1) Bl, ℓ ≥ 3 (0, 1, 0, · · · , 0) ℓ(2ℓ+ 1) Adjoint
SO(4) D2 (1, 1) 4 Vector
SO(4) D2 (2, 1) 6 Adjoint
SO(6) D3 (1, 0, 0) 6 Vector
SO(6) D3 (0, 1, 1) 15 Adjoint
SO(2ℓ) Dℓ, ℓ ≥ 4 (1, 0, 0, · · · , 0) 2ℓ Vector
SO(2ℓ) Dℓ, ℓ ≥ 4 (0, 1, 0, · · · , 0) ℓ(2ℓ− 1) Adjoint
SO(2ℓ) Dℓ (0, · · · , 0, 1, 0) 2ℓ−1 Left spinor
SO(2ℓ) Dℓ (0, · · · , 0, 0, 1) 2ℓ−1 Right spinor

Table 5.4 – Dynkin labels for the simplest so(N) irreducible representations. Dimensions have been calculated
with MARTY as shown in section 5.2.

5.5.3 sp(N)

sp(2ℓ) is an algebra of rank ℓ, namely Cℓ. Dynkin labels for the fundamental and
adjoint representations of Sp(N) groups are given in table 5.5.

Group Algebra Dynkin labels Dimension Common name

Sp(2ℓ) Cℓ (1, 0, · · · , 0) 2ℓ Fundamental
Sp(2ℓ) Cℓ (2, 0, · · · , 0) ℓ(2ℓ+ 1) Adjoint

Table 5.5 – Dynkin labels for the simplest sp(2ℓ) irreducible representations. Dimensions have been calculated
with MARTY as shown in section 5.2.

5.5.4 E6

E6 is an exceptional algebra of rank 6. Dynkin labels for the simplest E6 representa-
tions are given in table 5.6.

104

CHAPTER 5. GROUP THEORY

Dynkin labels Dimension

(1, 0, 0, 0, 0, 0) 27
(0, 1, 0, 0, 0, 0) 351
(0, 0, 1, 0, 0, 0) 2925
(0, 0, 0, 1, 0, 0) 351
(0, 0, 0, 0, 1, 0) 27
(0, 0, 0, 0, 0, 1) 78
(1, 1, 0, 0, 0, 0) 5824
(1, 0, 1, 0, 0, 0) 51975
(1, 0, 0, 1, 0, 0) 7371
(1, 0, 0, 0, 1, 0) 650
(1, 0, 0, 0, 0, 1) 1728

Table 5.6 – Dynkin labels for the simplest E6 irreducible representations. Dimensions have been calculated
with MARTY as shown in section 5.2.

5.5.5 E7

E7 is an exceptional algebra of rank 7. Dynkin labels for the simplest E7 representa-
tions are given in table 5.7.

Dynkin labels Dimension

(1, 0, 0, 0, 0, 0, 0) 133
(0, 1, 0, 0, 0, 0, 0) 8645
(0, 0, 1, 0, 0, 0, 0) 365750
(0, 0, 0, 1, 0, 0, 0) 27664
(0, 0, 0, 0, 1, 0, 0) 1539
(0, 0, 0, 0, 0, 1, 0) 56
(0, 0, 0, 0, 0, 0, 1) 912

Table 5.7 – Dynkin labels for the simplest E7 irreducible representations. Dimensions have been calculated
with MARTY as shown in section 5.2.

5.5.6 E8

E8 is an exceptional algebra of rank 8. Dynkin labels for the simplest E8 representa-
tions are given in table 5.8.

Dynkin labels Dimension

(1, 0, 0, 0, 0, 0, 0, 0) 3875
(0, 0, 0, 0, 0, 1, 0, 0) 30380
(0, 0, 0, 0, 0, 0, 1, 0) 248

Table 5.8 – Dynkin labels for the simplest E8 irreducible representations. Dimensions have been calculated
with MARTY as shown in section 5.2.

105

CHAPTER 5. GROUP THEORY

5.5.7 F4

F4 is an exceptional algebra of rank 4. Dynkin labels for the simplest F4 representa-
tions are presented in table 5.9.

Dynkin labels Dimension

(1, 0, 0, 0) 52
(0, 1, 0, 0) 1274
(0, 0, 1, 0) 273
(0, 0, 0, 1) 26
(1, 1, 0, 0) 29172
(1, 0, 1, 0) 8424
(1, 0, 0, 1) 1053
(0, 1, 1, 0) 107406
(0, 1, 0, 1) 19278
(0, 0, 1, 1) 4096

Table 5.9 – Dynkin labels for the simplest F4 irreducible representations. Dimensions have been calculated
with MARTY as shown in section 5.2.

5.5.8 G2

G2 is an exceptional algebra of rank 2. Dynkin labels for the simplest G2 representa-
tions are presented in table 5.10.

Dynkin labels Dimension

(1, 0) 7
(0, 1) 14
(1, 1) 64
(2, 0) 27
(0, 2) 77
(2, 1) 189
(1, 2) 286
(2, 2) 729

Table 5.10 – Dynkin labels for the simplest G2 irreducible representations. Dimensions have been calculated
with MARTY as shown in section 5.2.

106

CHAPTER6
Automated calculations with MARTY

6.1 Introduction

Several of the main features of MARTY have been discussed through the presentation
of symbolic calculations, quantum fields, models and group theory in chapters 2, 3, 4
and 5 respectively. This chapter will show how the combination of all these features
allow MARTY to perform calculations for beyond the Standard Model theories. The theo-
retical quantities that MARTY can derive are amplitudes, squared amplitudes, and Wilson
coefficients. All these calculations can be done at the tree-level or at the one-loop level.

Deriving the amplitude is always the first step as squared amplitudes and Wilson
coefficient calculations are based on it. The transition amplitude between an initial state
i and a final state f is generally noted iM(i → f) and is a part of the so-called S−matrix
element

〈f | Ŝ |i〉 ≡ 〈f |i〉 + 〈f | iT̂ |i〉 , (6.1)

with
〈f | iT̂ |i〉 ≡ iM(i → f) · (2π)4δ(4)

(∑

k

pk
)

, (6.2)

and
∑

k pk the sum of momenta entering the process that must vanish because of 4-
momentum conservation. We are in general interested in i 6= f and equation 6.1 then
reads

〈f | Ŝ |i〉 ≡ iM(i → f) · (2π)4δ(4)
(∑

k

pk
)

. (6.3)

The quantum mechanical transition amplitude 〈f | Ŝ |i〉 squared is proportional to the
transition probability from i to f , P (i → f), namely

|iM(i → f)|2 ∝ P (i → f), (6.4)

that we need to calculate in order to obtain experimental predictions from beyond the
Standard Model scenarios. Figure 6.1 represents a 2 → 3 process in quantum field theory,
i.e. two incoming particles as initial state i giving after the interaction, represented by the
red bulb, a final state f composed of three particles. Fields Φik/ok here are generic and

107

CHAPTER 6. AUTOMATED CALCULATIONS WITH MARTY

Figure 6.1 – Example of a process that can be calculated in quantum field theory. Two incoming particles (on
the left) interact to give three, maybe different, particles (on the right). The interaction is represented by the
red bulb. This diagram has been generated using GRAFED, see section 2.5 for more details.

can represent any kind of quantum field. The calculation of a transition amplitude means
defining the initial state i and final state f of the process, and deriving the interaction
strength from the Lagrangian.

After introducing library generation that is the main output format of MARTY, sec-
tion 6.2 will present the building blocks of the amplitude calculation from the quantum
field theory point of view, and sections 6.3, 6.4 and 6.5 will respectively introduce calcu-
lation procedures for amplitudes, squared amplitudes and Wilson coefficients.

Library generation

Once a theoretical calculation has been performed by MARTY the main output is under
the form of C++ code automatically generated. The analytical results are in general too
large to be interpreted explicitly, in particular when they are derived at one-loop by an
automated software program. Mathematical expressions have therefore mostly a vali-
dation purpose and MARTY generates C++ numerical functions that allow us to evaluate
these results given precise values for the model parameters. To illustrate this, let us use
the ghost squared amplitude example presented later in equation 7.73:

|Mg|2 =
3g4
s

32

s13s14

s2
12

, (6.5)

with gs the strong coupling constant and

sij ≡ pi · pj , (6.6)

which are kinematic factors depending on external momenta pi. This is a scalar function
(without free indices) that can be evaluated numerically to probe its behavior with respect
to the model parameters. Such an expression will be translated into a C++ function by
MARTY e.g. 1

1. The real output is slightly different than the one presented in the following and has been modified
to remove details that are not necessary for the argument presented here. The function corresponds the
the squared amplitude of cg c̄g → tt̄ in the SM (with cg the gluon ghost) that will be presented in details
in chapter 7.

108

CHAPTER 6. AUTOMATED CALCULATIONS WITH MARTY

complex_t M2_g(param_t const ¶m)

{

const real_t g_s = param.g_s;

const real_t s_12 = param.s_12;

const real_t s_13 = param.s_13;

const real_t s_14 = param.s_14;

const complex_t IT_0 = s_13*s_14;

const complex_t IT_1 = (-12)*IT_0;

const complex_t IT_2 = pow(s_12, -1);

const complex_t IT_3 = (complex_t{0, 1})*g_s;

const complex_t IT_4 = IT_2*pow(IT_3, 2);

const complex_t IT_5 = 0.5*IT_4;

return (-0.03125)*IT_1*IT_5*conj(IT_5);

}

Several intermediate steps IT_i are defined by MARTY and the function returns a complex
number which is the final result of the calculation. This number can then be evaluated
to perform a phenomenological study of the model as presented extensively in chapter
7. The param_t object is the parameter structure that contains all parameters that must be
user-defined. real_t and complex_t are type definitions for respectively real and complex
numbers. We chose on purpose a very simple example to be displayed on only a few
lines but in general expressions are much longer and very difficult to read analytically.

MARTY generates on demand comprehensive and ready-to-use C++ libraries contain-
ing calculation results such as the one presented above together with general utilities and
an integrated tree-level spectrum generator for any given BSM model. More details are
given in the dedicated chapter of the user manual [86].

6.2 Building blocks

In this section, the building blocks required from quantum field theory to build tran-
sition amplitudes are presented. Once the amplitude has been constructed it must be
simplified, this will be discussed in section 6.3.

The LSZ formula

Before entering into more concrete considerations let us define the basis formula, the
starting point of amplitude calculations in quantum field theory. It is called the LSZ

reduction formula from its authors: Lehmann, Symanzik and Zimmermann [116]. For
general fields {Φi

in(Pi)}i in the initial state and {Φj
out(Qj)}j in the final state, the LSZ

formula gives the expression of the corresponding S-matrix element, that we defined in

109

CHAPTER 6. AUTOMATED CALCULATIONS WITH MARTY

equation 6.3, for a theory with an interaction Lagrangian Lint:

S
(

{Φi
in(Pi)}i → {Φj

out(Qj)}j
)

=

∏

i

(

iǫ[Φi
in;Pi] ·

∫

d4Xie
−iPµi ·Xiµ · EOM[Φi

in;Xi]

)

·
∏

j

(

iǫ[Φj
out;Qj] ·

∫

d4Yje
iQµj ·Yjµ · EOM[Φj

out;Yj]

)

·
〈
∏

i

Φi
in(Xi)

∏

j

Φj
out(Xj)e

i
∫
d4XLint

〉

,

(6.7)

where

EOM[Φ;X] is the differential operator for the equation of motion for Φ at X .

The integrated operators before the brackets project each particle on its on-shell
state with the right 4-momentum Pµi or Qµj .

The brackets 〈〉 represent the vacuum expectation value of the fields’ time-ordered
product, taken in the interaction picture. It is evaluated using Wick’s theorem [117].

Lint is the interaction Lagrangian of the theory.

ǫ[Φi;Pi] corresponds to the spin tensor of the field Φi. It is equal to 1 for a scalar
(spin 0) field, and is non trivial otherwise (see below for more details).

The 4-momentum conservation implies that:
∑

i P
µ
i =

∑

j Q
µ
j .

The hermitic conjugation of fields Φ is not specified in this equation.

Bosons’ and fermions’ free dynamics are governed respectively by the so-called Klein-

Gordon and Dirac equations, 2 so that for a boson φ of mass mφ and a fermion ψ of mass
mψ:

(

�X +m2
φ

)

φ(X) = 0, (6.8)
(
−i/∂X +mψ

)
ψ(X) = 0, (6.9)

with

�X ≡ ∂

∂Xµ

∂

∂Xµ
,

/∂X ≡ γµ
∂

∂Xµ
,

(6.10)

using the γ-matrices in Dirac space γµ. Then one can deduce the expression of EOM[Φ;X]:

EOM[φ;X] = �X +m2, (6.11)

for a scalar of mass m and
EOM[ψ;X] = −i/∂X +m, (6.12)

2. Spin 1/2 particles are solutions of the Dirac equation and also the Klein-Gordon equation.

110

CHAPTER 6. AUTOMATED CALCULATIONS WITH MARTY

for a an incoming anti-fermion or an outgoing fermion of mass m and finally

EOM[ψ̄;X] =
(
−i/∂X −m

)T
, (6.13)

for a an outgoing anti-fermion or an incoming fermion of mass m.
Field insertions in the time-ordered product of equation 6.7 can be conjugated or not

if the field is incoming or outgoing, particle or anti-particle. This is summarized in fig-
ure 6.2.

Figure 6.2 – Field insertions for a generic field Φ in the LSZ formula. Incoming fields are placed on the left
and outgoing ones on the right. The rest of the process is represented by the red bulb. For bosons Φ̄ is the
hermitic conjugate φ̄ ≡ φ† and for spin 1/2 fermions ψ̄ = ψ†γ0. These diagrams have been generated using
GRAFED, see section 2.5 for more details.

The Lagrangian’s exponential can be expressed as a Taylor series and reads

e
∫

X
Lint =

+∞∑

n=0

1

n!

(∫

X
Lint

)n

, (6.14)

which can be truncated at a fixed order N in the limit of small coupling constants (g ≪ 1)
in the interaction Lagrangian, giving

e
∫

X
Lint(X) ≈

N∑

n=0

1

n!

(∫

X
Lint(X)

)n

= 1 +

∫

X
Lint(X) +

1

2

∫

X1,X2

Lint(X1)Lint(X2)

+ . . .+
1

n!

∫

X1,...,XN

Lint(X1) . . .Lint(XN).

(6.15)

Once developed, the calculation can start following several steps:

Replace ǫ[Φ;P] in equation 6.7 by the appropriate external leg (see the next section).

For all terms in equation 6.15, calculate the time-ordered product to find all non-
zero field arrangements contracting pairs of fields, using Wick’s theorem. These
non-trivial contributions correspond to the so-called Feynman diagrams.

Replace the contracted pairs in the time-ordered product by the appropriate prop-

agators (see the next section).

The exact algebraic steps to simplify all the integrals introduced by the LSZ formula
will not be detailed here as they are quite involved. One can have more details about this
procedure, that is automated in MARTY, in [29].

111

CHAPTER 6. AUTOMATED CALCULATIONS WITH MARTY

6.2.1 Propagators and external fields

Without considering interactions for the moment, two main ingredients are required
to apply the LSZ formula in 6.7: The Spin tensors ǫ[Φ;P] and the field contractions in the
time-ordered product, the so-called propagators describing the dynamics of free parti-
cles.

Scalar fields (spin 0)

The scalar field has no spin by definition, its polarization tensor is then trivial, namely
for a scalar φ(X)

ǫ[φ;P] = 1. (6.16)

The propagator for the scalar field reads

〈
φ(X)φ∗(Y)

〉
=

∫
d4q

(2π)4

(

i

q2 −m2
φ + iε

· eiq·(Y−X)

)

, (6.17)

with mφ the mass of φ(X) and ε an infinitesimal parameter to avoid the pole in q2 = m2
φ.

Vector fields (spin 1)

A vector field Aµ(X) has a non trivial spin tensor

ǫ[Aµ;P] = −ǫ∗µλ (P),

ǫ[A†µ;P] = −ǫµλ(P),
(6.18)

with a λ index that runs over its spin degrees of freedom (dof) 3. This is represented in
figure 6.3.

Figure 6.3 – External legs for a vector boson as a particle in the LSZ formula. Minus signs appearing in
equation 6.18 are omitted to avoid any confusion with Feynman rules considering that they have no impact on
physical observables anyway. For anti-particles, ǫ and ǫ∗ are swapped. These diagrams have been generated
using GRAFED, see section 2.5 for more details.

The propagator of a massless vector field reads

〈
Aµ(X)Aν∗(Y)

〉
=

∫
d4q

(2π)4

−i
(

gµν − (1 − ξ)
qµqν

q2

)

q2 + iε
· eiq·(Y−X), (6.19)

with gµν the Minkowski metric, and ξ a gauge fixing parameter.

3. A vector field has either 2 dof if it is massless (spin projection ±1) or 3 dof if it has a non zero mass
(spin projection 0,±1).

112

CHAPTER 6. AUTOMATED CALCULATIONS WITH MARTY

The propagator of a massive vector field is the following:

〈
Aµ(X)Aν∗(Y)

〉
=

∫
d4q

(2π)4

−i
(

gµν − (1 − ξ)
qµqν

q2 − ξm2
A

)

q2 −m2
A + iε

· eiq·(Y−X), (6.20)

with mA the mass of the field Aµ(X).

Fermion field (spin 1/2)

There are several realizations of spin 1/2 particles and the Dirac fermions are used in
the following. Weyl and Majorana fermion identities can be obtained from the ones for
Dirac particles using respectively projection relations

ψL/R = PL/Rψ, (6.21)

and the conjugation relation for Majorana fermions ψM

Cψ̄TM = ψM . (6.22)

The Dirac field ψ(X)α is a 4-component spinor with 4 degrees of freedom: particle/anti-
particle and spin ±1/2. They are split in two two-component spin tensors, one for the
particle (uασ(P)) and one for the anti-particle (vασ (P)), with σ the index running over the
two possible spin projections ±1/2. The LSZ elements are then defined as

ǫ[ψα;P] = ūσα(P),

ǫ[ψ̄α;P] = uσα(P),
(6.23)

for a particle, and

ǫ[ψα;P] = v̄σα(P),

ǫ[ψ̄α;P] = vσα(P),
(6.24)

for an anti-particle. This is summarized in figure 6.4.

Figure 6.4 – External legs for a Dirac fermion in the LSZ formula. These diagrams have been generated using
GRAFED, see section 2.5 for more details.

The propagator of a massive Dirac field is the following:

〈
ψα(X)ψβ(Y)

〉
=

∫
d4q

(2π)4

i
(

/q +mψ

)

αβ

q2 −m2
ψ + iε

· eiq·(Y−X), (6.25)

113

CHAPTER 6. AUTOMATED CALCULATIONS WITH MARTY

with mψ the mass of the field ψα(X) that can be set to zero straight-forwardly. As
fermions anti-commute with each other the inverted propagator simply reads

〈
ψα(X)ψβ(Y)

〉
= −

〈
ψβ(Y)ψα(X)

〉
= −

∫
d4q

(2π)4

i
(

/q +mψ

)

βα

q2 −m2
ψ + iε

· e−iq·(Y−X)

=

∫
d4q

(2π)4

i
(

/q −mψ

)

βα

q2 −m2
ψ + iε

· eiq·(Y−X).

(6.26)

6.2.2 Feynman rules

Once the LSZ formula introduced in equation 6.7 and the associated algebraic ma-
nipulations have been implemented, amplitude calculations can be expressed in terms
of Feynman rules directly in momentum space i.e. without any integration (except for
calculations at the loop level). Once all the diagrams for a given process are known, or
equivalently all non-zero contractions in the time-ordered product of the LSZ formula,
each diagram can be calculated using well-known shortcuts, the Feynman rules. They
include external legs like those presented in figures 6.3 and 6.4, symmetry factors, mo-
mentum conservation rules, momentum integration in loop diagrams, and more impor-
tantly 4 simple expressions for interaction vertices preventing us to apply explicitly the
LSZ formula.

MARTY uses both methods, the LSZ reduction formula and Feynman rules. First, Feyn-
man rules are calculated from the Lagrangian by applying the LSZ formula and per-
forming all the required algebra. The LSZ reduction formula is still used at this point to
derive symmetry factors and momentum conservation at each vertex, but the calculation
is faster and the result is more compact. This allows MARTY to provide a fully general cal-
culation procedure while using relevant shortcuts to make it more efficient. As Feynman
rules represent an important interest for users in terms of physics and code validation,
we present them through typical use cases in a MARTY program.

Get Feynman rules in MARTY

Feynman rules are stored in the class FeynmanRule. This class is mostly encapsulated
by the Model class. This means that a user will not have to manipulate explicitly the
vertices in a standard use case. Feynman rules will be automatically computed before a
calculation if they have not already been derived. The procedure to calculate the Feyn-
man rules of a model and retrieve them is presented in sample code 37. There is a simple
interface for the user to get the information about the different vertices, being the Feyn-
man diagrams (using GRAFED) or the symbolic expressions. One can compute Feynman
rules at any time during model building.

4. As stated here Feynman rules are more than interaction vertices but in the following we will not
consider the other rules as they do not represent a challenge in automated BSM calculations.

114

CHAPTER 6. AUTOMATED CALCULATIONS WITH MARTY

Sample code 37: Feynman rules

Launch the calculation of Feynman rules

model.computeFeynmanRules();

Get Feynman rules

// No need to ask the explicit computation when obtaining the rules.

auto rules = model.getFeynmanRules();

Display the rules

Display(rules); // Displays expressions in standard output

Show(rules); // Shows Feynman diagrams for rules with GRAFED

Note The auto keyword deduces the type vector<FeynmanRule> here, i.e. a list of
rules.

Note The computation of Feynman rules can be done several times if needed.
When getting Feynman rules, they will be calculated only if it is not already done,
and then simply returned.

Read Feynman rules from MARTY

It is important to be able for a user to read Feynman rules, and check that they are
correct. When doing model building, this is the most important part. An incorrect vertex
coming from a misunderstanding of different conventions in the model will end up in
wrong results.

A Feynman rule is a set of fields that enter the Wick theorem, with which other fields
will contract. Here is an example of a Feynman rule for a fermion-photon interaction:

(0) : Rule for A_mu(p_1) psi_b(p_2)^(*) psi_a(p_3) :

-i*e*gamma_{mu,a,b}

One can see the field content of the first line, with corresponding indices and momenta.
The expression of the Feynman rule is given in the line below. We see the coupling,
the γ-matrix, but more importantly one may want to know which fermion is incoming,
psi_b(p_2)^(*) or psi_a(p_3). A vertex is not defined with the fields it contains but the
ones that can be contracted with it. This principle is explained in figure 6.5. One can now
be certain that ψ∗ in the vertex corresponds to the incoming fermion, and must then be
associated with the second index b of the γ-matrix.

Let us now consider other Feynman rules as examples such as a scalar QED theory,
with a U(1) gauge. There are two vertices, namely a 3-vertex with a derivative of the
scalar φ and a 4-vertex. The Feynman rules are the following

(0) : Rule for A_mu(p_1) phi(p_2) phi(p_3)^(*) :

i*e*(p_1_mu + 2*p_2_mu)

(1) : Rule for A_mu(p_1) A_nu(p_2) phi(p_3) phi(p_4)^(*) :

2*i*e^2*g_{mu,nu}

115

CHAPTER 6. AUTOMATED CALCULATIONS WITH MARTY

Figure 6.5 – Vertex for a Feynman rule, with a fermion-photon interaction example. The fields in the vertex
are shown in the middle, and fields using the rule (contracting with it) are on the outside. The outside fields
are the ones defining a Feynman rule, that MARTY displays as the content of a vertex. This diagram has been
generated using GRAFED, see section 2.5 for more details.

Figure 6.6 – 3-vertex rule in Scalar QED. The diagram presented here does not correspond to the inner vertex
but to MARTY’s Feynman rule, as explained in figure 6.5. All momenta in Feynman rules are directed towards
the vertex. This diagram has been generated using GRAFED, see section 2.5 for more details.

One can see the momentum dependence that arises in the 3-vertex. Figure 6.6 shows in
more details this dependence. Momenta in Feynman rules are always considered incom-
ing by default.

Let us complete the presentation of Feynman rules through a QCD example. There is
a fermion-gluon interaction similar to the QED vertex with a SU(3) generator, together
with a 4-gluon vertex introducing SU(3) structure constants fABC . The two rules are the
following in MARTY:

(4) : Rule for G_{h,tau}(p_1) X_{b,eps}(p_2)^(*) X_{a,del}(p_3) :

i*g*T_{h,a,b}*gamma_{tau,del,eps}

(5) : Rule for G_{a,+tau}(p_1) G_{b,+mu}(p_2) G_{c,nu}(p_3) G_{d,rho}(p_4) :

-i*g^2*(f_{a,d,%h}*f_{b,c,%h}*g_{+mu,+tau}*g_{rho,nu}

+ f_{a,c,%h}*f_{b,d,%h}*g_{+mu,+tau}*g_{rho,nu}

- f_{a,c,%h}*f_{b,d,%h}*delta_{+mu,nu}*delta_{rho,+tau}

- f_{a,b,%h}*f_{c,d,%h}*delta_{+mu,nu}*delta_{rho,+tau}

- f_{a,d,%h}*f_{b,c,%h}*delta_{+mu,rho}*delta_{+tau,nu}

116

CHAPTER 6. AUTOMATED CALCULATIONS WITH MARTY

+ f_{a,b,%h}*f_{c,d,%h}*delta_{+mu,rho}*delta_{+tau,nu})

The 4-vertex reads (renaming indices to a vertex GAµ(p1)GBν(p2)GCρ(p3)GDσ(p4))

−ig2
(

fadhf bchgµνgρσ + fachf bdhgµνgρσ

−fachf bdhgµσgνρ − fabhf cdhgµσgνρ

−fadhf bchgµρgνσ + fabhf cdhgµρgνσ
)

,

(6.27)

which can be factored to recover the well-known rule [29]

−ig2
(

fabhf cdh (gµρgνσ − gµσgνρ)

+fachf bdh (gµνgρσ − gµσgνρ)

+fadhf bch (gµνgρσ − gµρgνσ)

)

.

(6.28)

6.3 Amplitudes

The calculation of transition amplitudes is the basis of theoretical predictions. They
are not directly observables but are required to calculate squared amplitudes (see sec-
tion 6.4) and Wilson coefficients (see section 6.5). In this section the main procedures
required to calculate amplitudes, and the way to obtain such theoretical quantities with
MARTY are presented.

6.3.1 Finding diagrams

Finding all the diagrams for a given process can be done in several ways. Fey-
nArts [73] for example uses a hard-coded set of possible topologies for tree-level and
one-loop processes with a given number of external legs. Once done, it tries to fit par-
ticles to each leg of each topology. MARTY uses a more straight-forward way (although
not particularly simpler) by explicitly using the Wick theorem and trying all possible La-
grangian interactions for each vertex in the diagram. 5 This can be longer but has the
advantage of being fully general, in particular not limited to the one-loop order or to a
maximum number of external legs.

The algorithm finding all the diagrams is highly optimized to avoid deriving multi-
ple times the same diagram and search only for distinct contractions, keeping track of the
degeneracy factor. Let us consider the MSSM example that contains about 104 interaction
terms. A 1-loop amplitude with 3 external particles requires to develop to L3 in pertur-
bation theory i.e. to test a priori (104)3 = 1012 terms. This cannot be done in a reasonable
amount of time on a standard computer. The algorithm must therefore benefit from the
redundancy in the different terms to reduce the number of tests and find only a small

5. The maximum number of vertices is determined by the order of expansion.

117

CHAPTER 6. AUTOMATED CALCULATIONS WITH MARTY

number of independent diagrams. In the above example, there are typically only 102 to
103 independent diagrams starting from the initial 1012 possibilities.

The Wick theorem method results in a set of possible diagrams, each of which is asso-
ciated to an initial mathematical expression that relies on external legs, propagators and
Feynman rules for vertices. Each diagram comes with a symmetry factor that is automat-
ically derived by applying Wick’s theorem, and a possible sign coming from Grassmann
ordering (fermions and ghosts) that is also taken care of.

6.3.2 Gauge fixing

Gauge fixing can take place for any vector boson, independently of a gauge group.
Taking the most general case of a massive vector boson Aµ of mass M with a Goldstone
boson φ and a ghost c, one can write down the propagators of these different particles
depending on the gauge fixing parameter ξ [29], as presented in figure 6.7. Correspon-
dence between the different gauges available in MARTY and the ξ parameter is detailed in
table 6.1.

= −i
gµν − (1 − ξ) pµpν

p2−ξM2

p2 −M2
,

=
i

p2 − ξM2
,

=
i

p2 − ξM2
.

Figure 6.7 – Propagators for a vector boson and its Goldstone and ghost bosons depending on the gauge fixing
parameter ξ. These diagrams have been generated using GRAFED, see section 2.5 for more details.

Name Parameter value Name in MARTY

Feynman ’t Hooft ξ = 1 gauge::Feynman

Lorenz ξ = 0 gauge::Lorenz

Unitary ξ = ∞ gauge::Unitary

Rξ ξ gauge::NotDefined

Table 6.1 – List of the different gauges that one can choose for a particular vector boson in MARTY. The Rξ

gauge lets an explicit ξ dependence in the calculation that should cancel in physical observables. The unitary
gauge (ξ = ∞) is possible only for massive vector bosons.

One can see that setting the gauge choice for a vector boson will simply modify its
propagator, and masses of the associated ghost and Goldstone bosons. As physical re-
sults must be gauge invariant, doing a calculation in one gauge or another should give
the same result. In particular, a calculation in the Rξ gauge will be expressed as a function
of ξ but should not depend on it. In the special case of the unitary gauge, the propagator
or the vector becomes

− i
gµν − pµpν

M2

p2 −M2
, (6.29)

118

CHAPTER 6. AUTOMATED CALCULATIONS WITH MARTY

and the ghost and Goldstone bosons acquire an infinite mass
√
ξM → ∞ and decouple

from the theory. In particular, MARTY simply disables these scalars in diagrams for the
unitary gauge. The latter gauge must not be used for massless vector bosons as the limit
ξ → ∞ is ill-defined. The procedure to fix a gauge choice for a vector boson is presented
in sample code 38.

Sample code 38: Gauge fixing

Setting the unitary gauge for the W boson and Feynman gauge for the photon A
in the Standard Model

model.setGaugeChoice("W", gauge::Unitary);

model.setGaugeChoice("A", gauge::Feynman);

Note The default gauge choice in MARTY is gauge::Feynman with ξ = 1.

For now Goldstone - ghost interactions as presented in [118] are not defined in MARTY’s
built-in models. They arise after the SM gauge symmetry breaking and are not written
in general. These gauge fixing terms, depending on ξ, can be user-defined in the La-
grangian. When using the corresponding vertices, ξ will be replaced by its value before
the simplification procedures. For processes using such interactions, the corresponding
interaction terms must be added as demonstrated in section 4.5.

6.3.3 Initial amplitude expression

The amplitude iM(i → f) of a transition from an initial state i to a final state f is
defined from the S-matrix element

〈

f |Ŝ|i
〉

≡
〈

f |(1 + iT̂)|i
〉

= 〈f |i〉 + (2π)4δ(4)
(
∑

i

pi −
∑

f

pf

)

· iM(i → f),
(6.30)

with pi incoming and pf outgoing momenta. The quantity that MARTY calculates contains

the (2π)4δ(4)

(
∑

i pi − ∑

f pf

)

factor coming from the general momentum conservation

but it is removed from the result to obtain iM(i → f). The term proportional to the iden-
tity is not relevant in quantum field theory calculations as we are interested in processes
where |i〉 6= |f〉. Feynman rules are properly inserted at each interaction vertex, and mo-
mentum conversation in the diagram is calculated from the LSZ formula that introduces
Ve + Vi + E integrals, one for each external vertex (Ve), internal vertex (Vi) and edge (E)
in the diagram. These integrals simplify following the rules

∫

d4XeiX(p−q) = (2π)4δ(4)(p− q), (6.31)
∫

d4q δ(4)(p− q)f(q) = f(p). (6.32)

119

CHAPTER 6. AUTOMATED CALCULATIONS WITH MARTY

There is always one momentum conservation property that is not integrated at the end
of the calculation i.e. a delta function containing

∑

i

pi −
∑

f

pf = 0. (6.33)

The number of edges in a diagram reads

E = V − 1 +NL = VI + VE − 1 +NL, (6.34)

with V = VI+VE the total number of vertices, andNL the number of loops. A tree with V
vertices has V − 1 edges, and each additional connection will add a loop to the diagram.
The LSZ formula introduces

V = VE + VI = VE + VI − 1 + 1 (6.35)

position-space integrals. VE+VI−1 of them simplify one by one the momentum integrals,
and the last one (the +1 left) gives the momentum conservation on the whole diagram.
With initially E momentum space integrals, we are left with

E − (VE + VI − 1) = VI + VE − 1 +NL − (VE + VI − 1) = NL (6.36)

momentum integrals in the final expression of the amplitude. The latter must then be
simplified, as explained in section 6.3.4.

6.3.4 Simplification of expressions

Once the amplitude has been constructed using Feynman rules, it must be simplified
in several ways to obtain the final result. Without simplification, no further numerical
evaluation would be possible because of the initial expression size. The different simpli-
fication procedures presented in the following are the reasons why we need automated
symbolic calculations.

Group theory

Group generators define the algebra through their commutation relation
[

TA, TB
]

≡ ifABCTC , (6.37)

with fABC the algebra’s structure constants. Group theory simplifications include simple
tensor contractions and trace of generators such as

Tr(TA1TA2 · · ·TAN). (6.38)

Traces can be calculated in all representations of semi-simple Lie groups. They are de-
composed in a combination of invariant fully-symmetric tensors dA1···AN and fABC con-
tributions. There are additional simplification identities in the defining representation of
these groups [115, 119] such as

TAij T
A
kl =

1

2

(

δilδjk − 1

N
δijδkl

)

(6.39)

120

CHAPTER 6. AUTOMATED CALCULATIONS WITH MARTY

in SU(N).

Group theory simplifications are mostly used at the squared amplitude level, more
details are given in section 6.4.

Diracology

Fermions are ubiquitous in particle physics calculations and in particular spin 1/2
particles. The identities presented in the following can be generalized to higher spins
such as spin 3/2 particles but as MARTY does not support them yet we only discuss rela-
tions for spin 1/2 particles.

Transition amplitudes are always expressed with fermion bilinears:

ψ̄Γξ, (6.40)

with ψ̄ and ξ two fermions and Γ some combination of γ-matrices. Most of the processes
involving fermions that are calculated for a phenomenological purpose will have one or
two bilinears (two or four external fermions). The γ-matrix denomination includes here
γµ and all objects built from it:

γ5 ≡ iγ0γ1γ2γ3, (6.41)

PL ≡ 1 − γ5

2
, (6.42)

PR ≡ 1 + γ5

2
, (6.43)

σµν ≡ i

2
[γµ, γν] , (6.44)

C ≡ −iγ0γ2. (6.45)

γµ are generators of the Clifford algebra respecting

{γµ, γν} = 2gµν . (6.46)

They are built from the basis of 2 × 2 hermitian matrices composed of the identity and

121

CHAPTER 6. AUTOMATED CALCULATIONS WITH MARTY

the three Pauli matrices and read

γ0 =








0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0







,

γ1 =








0 0 0 1
0 0 1 0
0 −1 0 0

−1 0 0 0







,

γ2 =








0 0 0 −i
0 0 i 0
0 i 0 0

−i 0 0 0







,

γ3 =








0 0 1 0
0 0 0 −1

−1 0 0 0
0 1 0 0







,

(6.47)

where we expressed γµ in the Weyl realization acting on a vector space with Dirac fermions
ψD defined from chiral particles ψL/R (left/right):

ψD ≡ ψL ⊕ ψR =








ψL1

ψL2

ψR1

ψR2







. (6.48)

In this basis the chirality operator γ5 is diagonal:

γ5 =








−1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 1







, (6.49)

and projectors PL and PR indeed respect together projection identities, namely

PL + PR = 1,

P 2
L = PL,

P 2
R = PR,

PLPR = PRPL = 0.

(6.50)

One can derive new properties from the definitions above, e.g. in aD-dimensional space-
time

γµγµ = D,
{

γµ, γ5
}

= 0,

γµPL = PRγ
µ.

(6.51)

122

CHAPTER 6. AUTOMATED CALCULATIONS WITH MARTY

An automated computer program must therefore apply all the relations above to fully
simplify the results. At the tree level calculations are often trivial but at one-loop one
has to implement general simplifications for any combinations of matrices Γ arising in
amplitudes.

Traces of γ-matrices arise in fermion loops and squared amplitudes and can be calcu-
lated recursively from the two most elementary relations

Tr (γµγν) = 4gµν , (6.52)

Tr
(

γµγνγργσγ5
)

= −4iǫµνρσ, (6.53)

with ǫµνρσ the fully anti-symmetric symbol defined by ǫ0123 = 1. For example, the trace
of 2n matrices without γ5 is expressed as a function of traces with 2n− 2 matrices:

Tr (γµ1γµ2 . . . γµ2n) =
2n∑

i=2

(−1)igµ1µi Tr (γµ2 . . . γ̂µi . . . γµ2n) , (6.54)

where γ̂ means that the corresponding matrix is removed from the trace. Similarly, one
can derive the chiral trace

Tr
(

γµ1γµ2 . . . γµ2nγ5
)

=
2n−1∑

i=1

(−1)⌊ i−1
2

⌋
2n∑

j=i+1

(−1)i+j+1gµiµj

· Tr
(

γµ1 . . . γ̂µi . . . γ̂µj . . . γµ2nγ5
)

.

(6.55)

The trace of any odd number of γ-matrices vanishes and using
(
γ5
)2

= 1 and equa-
tion 6.51 one can prove that there is no independent trace with more that one γ5. Traces
with projectors PL/R and σµν can be trivially deduced.

The conjugation matrix
C ≡ −iγ0γ2 (6.56)

also appears in amplitudes due to Majorana fermions or fermion-number violating inter-
actions, and must be simplified using its properties e.g.

C2 = −1, (6.57)

Cγµ = −γµTC, (6.58)

v = CūT . (6.59)

In particular, the matrix C must always cancel out in simplifications and if it appears in a
trace it means that the calculation is ill-defined. More details can be found in section 4.6.

To fully simplify transition amplitudes one finally has to apply the Dirac equation,
namely on on-shell spinors with momentum p:

/pu(p) = mu(p), (6.60)

/pv(p) = −mv(p), (6.61)

with u(p) and v(p) the spinors of fermions and anti-fermions respectively (see section
6.2.1) and

/p ≡ γµpµ. (6.62)

123

CHAPTER 6. AUTOMATED CALCULATIONS WITH MARTY

One-loop calculation

As we said in section 6.3.3, a one-loop calculation requires the evaluation of one mo-
mentum integral such as

I =

∫
d4q

iπ2

∏n
i=1 q

µi

∏m−1
j=0 ((q − pj)2 −m2

j)
(6.63)

for the m−point function of rank n, with p0 = 0, {pj}j≥1 combinations of external mo-
menta and mj the masses of the particles in the loop. m is therefore the number of prop-
agators and n, the rank, the number of momenta in the numerator. Letters are associated
to n-point functions, starting withA for the 1-point function, up toE for the 5-point func-
tion. Such integrals can be decomposed in different Lorentz structure. Considering for
example the 3-point function of rank 2

Cµν ≡
∫
d4q

iπ2

qµqν

(q2 −m2
0)((q − p1)2 −m2

1)((q − p2)2 −m2
2)
, (6.64)

one can write without loss of generality

Cµν = C00(pi,mj)g
µν + C11(pi,mj)p

µ
1p

ν
1 + C22(pi,mj)p

µ
2p

ν
2

+ C12(pi,mj)(p
µ
1p

ν
2 + pν1p

µ
2).

(6.65)

The decomposition is done by MARTY and factors Cij are numerical functions imple-
mented in the Fortran / C library LoopTools [73] that are used when results are evaluated
numerically.

The scalar factors coming from one-loop integrals can have a divergent part that is
regularized by taking the space-time dimension D = 4 − 2ǫ. Integrals then take the
general form

I ≡ a

ǫ
+ b+ O(ǫ). (6.66)

Factors of D coming from Minkowski index contractions must therefore be kept to de-
termine the local terms they generate when multiplied by a divergent integral [120, 121].
For the scalar 1-point function for example, one can derive the finite part of DA0(m2)

Finite(DA0(m2)) = Finite((4 − 2ǫ)A0(m2)) = −2m2 + 4 · Finite(A0(m2)). (6.67)

MARTY automatically adds local terms when necessary before replacing D by 4 in ampli-
tudes.

One loop calculations are for now limited to

At most 1-point function of rank 2, Aµν .

At most 2-point function of rank 3, Bµνρ.

At most 3-point function of rank 4, Cµνρσ.

At most 4-point function of rank 5, Dµνρσλ.

At most 5-point function of rank 4, Eµνρσ.

124

CHAPTER 6. AUTOMATED CALCULATIONS WITH MARTY

Propagators with denominators of the type 1
p2−X(m)

. Note that one can absorb in
general a factor in front of p2 in the numerator.

The rank limitations 6 are due to the integrals LoopTools provides. They could however
be relaxed in the future as we could implement reduction formulas for higher-rank in-
tegrals, in particular Passarino Veltman reductions [122, 123]. It can be difficult to adapt
the procedure to generalized propagators as all standard calculations are based on mas-
ter integrals that are provided by libraries like LoopTools. One can still do tree-level
calculations in models relying on such propagators and as they are mostly exotic theo-
ries (Lorentz violating models for example), tree-level quantities are usually sufficient for
phenomenological purpose.

Expansion, index contraction

In order to apply simplifications such group theory identities, diracology or equations
of motions, one has to expand the expression at many places. For examples, the following
trace

Tr
(

(/p+m)(/p+m)
)

, (6.68)

must be expanded into

Tr
(

/p
2
)

+ 2mTr
(

/p
)

+m2 Tr(1) = 4p2 + 0 + 4m2, (6.69)

using trace identities. For one expansion with a few terms there is no difficulty. However,
most of the required simplifications in amplitudes imply expansion and generate again
more terms to expand. This is in particular the case for γ-matrix traces in equations 6.54
and 6.55 that require to expand the amplitude to recognize γ-matrix products and gen-
erate sums of gµν that must be further expanded to simplify the result. At the one-loop
level one has to expand propagators to recognize integrals of the form of equation 6.64,
and the decomposition procedure such as the one presented in equation 6.65 generates
again new terms.

We only presented a few examples above but there are in general many reasons to
expand the amplitude when it must be fully simplified. As the total number of terms in
the result grows exponentially with the number of different objects to expand, a naive
procedure cannot be used and more care must be given to this problem. The basic idea
is to always keep manageable expressions in terms of memory and time, otherwise the
calculation cannot be performed or the result becomes unusable. Some elements of im-
plementation are given in section 6.4 as this issue is more important in squared amplitude
calculations.

6.3.5 The procedure using MARTY

External legs, that we discussed from a theoretical point of view in section 6.2.1, are
the only pieces of information a user has to give beside the order of expansion. From
external legs, MARTY finds all possible diagrams as presented in figure 6.8.

6. Rank limitations can also affect some gauges because a vector boson in unitary or Lorenz gauge
introduces additional momenta in the numerators and denominators of propagators.

125

CHAPTER 6. AUTOMATED CALCULATIONS WITH MARTY

= + + · · ·

Figure 6.8 – Different 1-loop Feynman diagrams possible for the h → γγ process in the SM. There are for
example fermion and W -boson triangles. These diagrams have been generated using GRAFED, see section 2.5
for more details.

An external leg carries four pieces of information:

The underlying quantum field.

The direction, incoming or outgoing.

The conjugation, particle or anti-particle. This is optional, by default external fields
are particles.

The equation of motion, on-shell or off-shell. This is optional, by default external
fields are on-shell.

MARTY provides a simple interface to create field insertions that is shown in sample code 39.
There are four interface functions (Incoming(), Outgoing(), AntiPart(), OffShell()) that
can be combined to build the relevant field insertion, starting from a Particle object or
the particle name.

Sample code 39: Field insertions

An incoming off-shell fermion "psi"

Incoming(OffShell("psi"));

// Or

// OffShell(Incoming("psi"));

An outgoing anti "phi"

Outgoing(AntiPart("psi"));

// Or

// AntiPart(Outgoing("psi"));

To give a list of insertions as function parameters, one can put them in curly braces
{} (here for an electron self-energy calculation):

{Incoming(OffShell("e")), Outgoing(OffShell("e"))}

Knowing how to create external legs for MARTY, one can launch without effort an am-
plitude calculation as demonstrated in sample code 40.

126

CHAPTER 6. AUTOMATED CALCULATIONS WITH MARTY

Sample code 40: Amplitude calculation for h → ee

Calculate the amplitude from the model

auto res = model.computeAmplitude(

TreeLevel, // or OneLoop

{Incoming("h"), Outgoing("e"), Outgoing(AntiPart("e"))}

);

Display the results

Display(res); // Prints symbolic result in standard output

Show(res); // Shows Feynman diagrams with GRAFED

Get the different terms of the amplitude

for (auto &diagram : res.getDiagrams()) {

Expr &term = diagram.getExpression();

// Do something to term

}

Note auto deduces the type Amplitude that contains all expressions and diagrams
of the process.

For now library generation is only available for scalar quantities. An amplitude (with
non-scalar external particles) has indices and cannot be given directly to the library gen-
erator presented in the user manual [86]. To generate C++ code corresponding to an
amplitude, one must decompose it in Wilson coefficients, that are scalar quantities in
front of different operators. For example the vacuum energy iΠµν(p) of a vector boson A
can be decomposed in general as

iΠµν(p) = α(p2,m2)gµν + β(p2,m2)pµpν , (6.70)

which corresponds to the amplitude

iM = α(p2,m2) (ǫ∗(p) · ǫ(p)) + β(p2,m2) (p·ǫ
∗(p)) (p · ǫ(p)) , (6.71)

with ǫ(p) polarization tensors for the external bosons. Calculating Wilson coefficients for
this amplitude as explained in section 6.5 allows us to obtain α(p2,m2) and β(p2,m2) that
can be given to MARTY for code generation.

6.4 Squared Amplitudes

6.4.1 Generalities

Cross-sections are among the most straight-forward observables one can obtain from
a theory as they are simply proportional to a number of events we measure in particle
colliders. The instantaneous luminosity of a detector is expressed, in SI units, in m−2·s−1

and is proportional to the number of particle collisions per unit of time in a given area. 7

7. Although it is expressed in m−2, the instantaneous luminosity is integrated over the whole collision
surface.

127

CHAPTER 6. AUTOMATED CALCULATIONS WITH MARTY

Left
Beam

Right
Beam

Detector

Figure 6.9 – Simple representation of the working principle of most particle colliders. Two particle beams are
accelerated and meet at a precise position where a detector is placed to measure the products of collisions.

Figure 6.9 represents the working principle of particle colliders. There are in general
two beams of particles colliding at a given position, the instantaneous luminosity is then
the number of collisions in this area per unit of time. At the LHC for example the two
proton 8 beams are accelerated in two separate tubes and cross each other only at precise
positions, where the different detectors are placed.

The integrated luminosity represents the total number of collisions between an initial
time ti and a final time tf , namely

Lint =

∫ tf

ti

L(t)dt, (6.72)

and is thus expressed in m−2 if L(t) is the instantaneous luminosity. The number of times
NA an event A will happen in this period of time then reads

NA ≡ σ(A) · Lint, (6.73)

with σ(A) the cross-section of the event, always positive and expressed in m2 so that the
number of events is dimension-less. Note that NA does not predict the exact number of
times the event A will happen as the underlying process, following quantum mechanics,
is fundamentally random. NA is thus a statistical average.

While the luminosity is a pure hardware parameter, the cross-section is decoupled
from the experimental context and contains the theory prediction for the event A. The
larger is the cross-section the more likely it becomes to observe the event at colliders, in
the limit of the zero cross-section corresponding to a forbidden process.

MARTY does not compute directly cross-sections but automates the complicated theo-
retical part i.e. the squared amplitude |M(A)|2. For incoming particles I with dI degrees
of freedom (dof) and outgoing particles O with dO dof, the averaged squared amplitude

8. Sometimes lead ions are used instead of protons at the LHC.

128

CHAPTER 6. AUTOMATED CALCULATIONS WITH MARTY

is (as a function of the amplitude iM(A) that depends on the particle dof)

|M̄(A)|2 ≡ ηO
∏

I dI

∑

dI ,dO

|M(A)|2. (6.74)

This number takes into account the spin, gauge and flavor dimensions. In the SM for
example the gluon has dg = 8 × 2 = 16 dof because it is in the octet representation of
SU(3) and has 2 spin dof as a massless vector boson. ηO is a combinatorial factor taking
into account indistinguishable outgoing particles. If all outgoing fields are distinguish-
able, 9 we have ηO = 1. Otherwise, this number takes a factor 1/n! for each group of n
indistinguishable outgoing particles.

This quantity contains the theoretical prediction under the form of a positive number
whose value depends on incoming and outgoing particles momenta (energy, speed, di-
rection, . . .). Multiplied by a kinematic factor K(A) that also depends on the event A and
the Lorentz invariant phase space dΠLIPS (depending only on external momenta), one can
obtain the differential cross-section

dσ(A) = K(A) · |M̄(A)|2dΠLIPS, (6.75)

that can be integrated over to derive the total cross-section

σ(A) =

∫

dσ(A) =

∫

K(A) · |M̄(A)|2dΠLIPS, (6.76)

related to the measured number of events in colliders by equation 6.73.
The hard part of a cross-section calculation is the squared amplitude |M|2 because the

other steps to arrive at the prediction for colliders is model independent and more impor-
tantly does not require symbolic calculation. In particular, a simple numerical program
can calculate σ from a squared amplitude value. This is why MARTY does not provide an
automated procedure for this calculation.

Squaring an amplitude iM means calculating

|M|2 = iM · (iM)† , (6.77)

implying several manipulations to obtain the final result. The amplitude has indices,
summed or not, and they must all be contracted to obtain a scalar result that can be
evaluated numerically. This requires several simplification procedures that are presented
in the following sections.

6.4.2 Spin sums

As seen in section 6.3, amplitudes are expressed as functions of external particles, e.g.
for N field insertions Φi(pi) indexed by i from 1 to N

iM = iTA1...AN
α1...αN

(p1, . . . , pN)Φ1(p1)A1
λ1α1

. . .ΦN (pN)ANλNαN , (6.78)

9. Two field insertions are distinguishable if they belong to different species (electron and muon for
example) or if there is one particle and one anti-particle.

129

CHAPTER 6. AUTOMATED CALCULATIONS WITH MARTY

with Ai generalized indices for gauge and flavor vector spaces, αi Lorentz indices when
relevant, λi spin indices and TA1···AN

α1...αN
(p1, · · · , pN) a general tensor function depending on

external momenta, main result of the amplitude calculation. Φi(pi)
Ai
λiαi

are the external
fields in momentum space, that have different realizations for spin 0, 1/2 and 1 particles.
External fields carry the free indices of the amplitude 10 that are summed up when it is
squared, namely

|M|2 = iMλ1...λN (iMλ1...λN)†

= TA1...AN
α1...αN

(p1, . . . , pN)
(

TB1...BN
β1...βN

(p1, . . . , pN)
)†∏

i




∑

λi

Φi(pi)
Ai
λiαi

(

Φi(pi)
Bi
λiβi

)†


 ,

(6.79)

where sums over external fields’ spins λi is explicitly represented because they can be
replaced by well-known identities that are presented in the following. For a scalar φ,
there is no spin to sum, no Lorentz index and the identity is trivial

∑

λ

φ(p)Aλ

(

φ(p)Bλ

)†
= δAB. (6.80)

For fermions, the spin tensor is noted u(p) for particles and v(p) for anti-particles. Equa-
tions of motion for spin 1/2 particles of mass m imply the following spin sum rules:

∑

λ

u(p)Aλαū(p)Bλβ =
(

/p+mi

)

αβ
· δAB,

∑

λ

v(p)Aλαv̄(p)Bλβ =
(

/p−mi

)

αβ
· δAB,

(6.81)

with α and β Dirac indices, and the spin index λ summed over the two possible values
of spin, ±1/2. We have used the identities

ū/v(p) ≡ u/v(p)
†γ0, (6.82)

/p ≡ pµγ
µ. (6.83)

For spin 1 particles, the spin tensor is usually noted ǫ and the spin sum rule reads

∑

λ

ǫ(p)Aλµ

(

ǫ(p)Bλν

)†
→ −gµν · δAB (6.84)

for massless particles and

∑

λ

ǫ(p)Aλµ

(

ǫ(p)Bλν

)†
=

(

−gµν +
pµpν
M2

)

· δAB (6.85)

for a vector boson of mass M . Here λ takes the spin values −1, 0 and 1 while we know
from quantum field theory that a massless vector boson has only two allowed spin values

10. These indices are generally not represented in the literature, one thus has to keep in mind that the
amplitude is not a simple number but an indexed tensor in the spin spaces of external fields.

130

CHAPTER 6. AUTOMATED CALCULATIONS WITH MARTY

because as it lies on the light cone, spin 0 is forbidden. For abelian gauge theories, for
example the U(1) group of the electromagnetic interaction in the SM, the replacement
in equation 6.84 gives correct results as the non-physical spin 0 contribution vanishes
through Ward identities. For non-abelian gauge theories however, this contribution does
not vanish and must be compensated. In MARTY we still use the simple spin sum rules
in equation 6.84 for non-abelian groups and proper quantization is ensured by ghosts as
explained in 6.3.2.

Consequently, MARTY has to apply equations 6.80, 6.81, 6.84 and 6.85 to replace exter-
nal fields in the results. The specific simplifications that must then be performed in the
different vector spaces (Minkowski, Dirac and group representations) will be presented
in the following section.

There are two differences between spin tensor definitions in this section and in the
literature that are important to highlight:

Spin tensors are not defined for scalar particles in the literature, as a proper defini-
tion would imply the trivial relation φ(p) = 1 ∀p.

Spin tensors do not carry gauge and flavor indices, noted A and B here. Their
mathematical definition includes only spin and Lorentz indices.

These are not accidental differences as they are meant to keep track of external legs all
along the calculation without losing any information. For example, one could encounter
in the literature an amplitude such as

iM ∝ TABµ ǫ(p)µ, (6.86)

with some tensor TABµ and gauge indices A and B. One cannot tell just from this expres-
sion what are the external particles, and which carry gauge indices. We can only infer
that there is one vector boson, and two particles carrying a gauge index (not knowing if
the vector is one of them). In MARTY however, an equivalent amplitude could read

iM ∝ TABµ ǫ(p)µAλ φ(k)Bλ′φ(q)λ′′ , (6.87)

with the explicit index dependence for external fields that makes it clear what process
has been calculated, with two scalar particles. When doing a calculation by hand it is
always known what are the external legs and where the indices come from, but for an
automated software program information loss can be an issue if it is needed later on. In
this case, keeping gauge indices and spin tensors for scalars is used to calculate Wilson
coefficients (see section 6.5) and to connect pieces of amplitudes that have been calculated
separately. One can check that using modified spin tensors and the sum rules defined in
equations 6.80, 6.81, 6.84 and 6.85, any observable calculated from the amplitude (like its
square) will yield the same result as when standard prescriptions are used.

6.4.3 Traces

Starting from 6.79 and applying sum rules defined in the previous section for external
fields, the squared amplitude takes the form

|M|2 = TA1...AN
α1...αN

(p1, . . . , pN)
(

TA1...AN
β1...βN

(p1, . . . , pN)
)†

· Sα1...αN β1...βN (p1, . . . , pN), (6.88)

131

CHAPTER 6. AUTOMATED CALCULATIONS WITH MARTY

with Sα1...αN β1...βN (p1, . . . , pN) the result of sum rules depending on external momenta.
All indices are now contracted, and the only tensors that can appear in this expression
are: 11

External momenta pµi .

Minkowski metric gµν .

Fully anti-symmetric symbol ǫµνρσ.

Gamma matrices γµ and related tensors.

Group generators TAij , f
ABC and related tensors.

As all indices are contracted, the number of possible structures remaining in the ex-
pression are limited, namely

Products of momenta gµνp
µ
i p

ν
j .

Fully anti-symmetric product of momenta ǫµνρσp
µ
i p

ν
j p
ρ
kp
σ
l .

γ-matrix traces, Tr (γµ1 . . . γµN) or Tr
(
γµ1 . . . γµNγ5

)
.

Group generator traces Tr
(

TA1 . . . TAN
)

.

Traces can be calculated as explained in section 6.3 to yield simpler tensors. The result
is then composed only of scalar quantities once we define

sij ≡ gµνp
µ
i p

ν
j , (6.89)

and
eijkl ≡ ǫµνρσp

µ
i p

ν
j p
ρ
kp
σ
l , (6.90)

that is non zero only for independent momenta i, j, k, l i.e. with four different momenta
in a process with at least five external legs (otherwise one can apply momentum conser-
vation to replace one of the four momenta by the other ones). A squared amplitude in
MARTY is typically expressed as a real function of model parameters and scalar quantities
such as sij and eijkl that have to be user-defined at the numerical level.

For group theory traces more structures can arise, in particular when the amplitude
already contains a trace from a loop. Figure 6.10 shows an example of a process contain-
ing a loop at the amplitude level. Such a trace can be expressed in general as

Tr
(

TATBTC
)

= dABC + iCfABC , (6.91)

with C a numerical constant, dABC a fully symmetric tensor and fABC the fully anti-
symmetric structure constants of the underlying algebra. When taking the square of such
an amplitude, one obtains

∥
∥
∥

(

dABC + iCfABC
)∥
∥
∥

2
= dABCdABC + C2fABCfABC , (6.92)

11. There can be a few exceptions but the way BSM theories are built in general imply that all indices
are Lorentz or gauge / flavor symmetry indices, in which case invariant Lagrangian terms that can be
written contain only tensors of this list without loss of generality.

132

CHAPTER 6. AUTOMATED CALCULATIONS WITH MARTY

Figure 6.10 – Example of a generic process containing a trace of group theory structures at the amplitude
level. Each of the three vertices carries a generator TA/B/C and the amplitude is therefore proportional to
Tr
(
TATBTC

)
. This diagram has been generated using GRAFED, see section 2.5 for more details.

in which the products of f and d vanish trivially through their respective (anti-)symmetry.
Finding the values of all the possible contractions for all algebras and products of dia-
grams is a very tedious task as one can see in [124]. Instead of trying to catch ’em all it
is simpler to build a pokedex, catalog of all possible structures, do the work only for the
simpler ones and let the user fill the missing values. In the example above one can define
a scalar quantity in a given group G

dG33 ≡ dABCG dABCG . (6.93)

The value of d33 will be provided by MARTY in SU(N) but exotic quantities such as d55 or
d5333 may not be. The latter can be retrieved from the literature if needed. The main work
of MARTY is to perform all the complicated algebra and let only to users the task to define
scalar quantities from the process kinematics (sij , eijkl defined above) and possibly group
theory in one-loop processes with multiple external vector bosons.

A word on group indices

Figure 6.10 presented a process containing a trace of algebra generators TA, that de-
pends on the representation inside the loop R and should be noted TA(R). Equation 6.91
thus becomes

Tr
(

TA(R)TB(R)TC(R)
)

= dABC(R) + iβ(R)fABC , (6.94)

with dABC(R) depending on the representation. This means that identities such as equa-
tion 6.93 should in principle be defined for all representations in a given group. Follow-
ing [124], we implemented in MARTY the reduction of fully-symmetric tensors to reference
tensors together with the initial trace calculation. The previous equation then reads

Tr
(

TA(R)TB(R)TC(R)
)

= I(R)dABC + iC(R)fABC , (6.95)

with dABC the reference 3D fully-symmetric tensor that is representation-independent.
MARTY calculates automatically the expression of the trace for an arbitrary number of gen-
erators 12, group indices I(R) and coefficients C(R) in all semi-simple Lie groups and

12. Traces with more generators generate more terms and there is therefore a computational limitation.

133

CHAPTER 6. AUTOMATED CALCULATIONS WITH MARTY

their representations, letting to users only the definition of reference tensor products such
as the one defined in equation 6.93, that have the nice property of being representation-
independent. These products, hard to calculate in a general and systematic way, can be
found in the literature e.g. in [124].

6.4.4 A computational challenge

As specified in section 6.3, an amplitude calculation is already a time consuming task
that can generate very large expressions, especially at the loop level with numerous dia-
grams. For an amplitude withN terms, the squared quantity will have at leastN2, but the
number is actually much larger because of spin sums, traces and index contractions that
we presented previously in this section. There are two main challenges for the squared
amplitude:

The calculation must be well-contained in space (memory) and time for large ex-
pressions to allow a program to be executed on a standard laptop.

The resulting expression must be well-enough factored to be as compact as possi-
ble. An expression can be too large to be usable at the numerical level because of
compilation issues or even time optimization, as they are often meant to be called
millions, billions or more times to scan the parameter space of a BSM theory.

This issue has been for some time a strong limitation for the calculation of squared
amplitudes at the loop level. With optimizations that we implemented at the CSL level
MARTY is now able to handle one-loop squared amplitudes in most cases. These optimiza-
tions are:

A Smart expansion. The best way to obtain a factored result is to avoid expanding
anything. This is unfortunately not possible, as index contraction requires to ex-
pand indexed structures. A smart expansion must therefore be able to expand only
what is needed for a precise calculation and keep the rest of the expression fac-
tored. This is possible using the CSL algorithm DeepPartialExpand(), more efficient
than the usual DeepExpand().

A Smart factorization. This procedure comes at the end of a calculation and must
be able to find common factors to minimize the number of mathematical operations
defining the result, even with only partial matches. This is possible using the CSL

algorithm DeepHardFactor(), much more efficient than the usual DeepFactor().

A Compression algorithm. Finally, a compression algorithm can recognize pat-
terns in the result to find new abbreviations and reduce the size of the expression
(in the symbolic program and the generated code). This is possible using the CSL

algorithm matcher::compress().

These three specific algorithms bring two main gains. The first one takes place during
the symbolic calculations. By expanding less terms and using an efficient factorization
algorithm, expressions are smaller and all the calculations become faster while taking
much less memory. The better factorization combined with the compression brings an-
other important gain, this time during the numerical computations i.e. when using the

134

CHAPTER 6. AUTOMATED CALCULATIONS WITH MARTY

code generated by MARTY to evaluate the results (see section 6.1). With a smaller expres-
sion and by finding common patterns that can be evaluated only once, the number of nu-
merical operations required to evaluate a large expression is lowered significantly. This
second gain is the most important. While the symbolic calculations are performed only
once to make MARTY generate the final library, the following phenomenological analysis
relies in general on multiple evaluations of the numerical results (squared amplitudes or
Wilson coefficients). This is for example the case when scanning the parameter space of
a BSM model and evaluating the results for each scenario. Consequently, the generated
numerical program must be as efficient as possible and the three algorithms discussed
above are necessary for that purpose.

6.4.5 Squared amplitudes in MARTY

We saw in section 6.3 and in particular in sample code 40 how to calculate amplitudes
with MARTY. Squaring an amplitude is even simpler as demonstrated in sample code 41.

Sample code 41: Squared amplitudes

Calculating a transition amplitude

auto res = model.computeAmplitude(

TreeLevel, // or OneLoop

{Incoming("h"), Outgoing("e"), Outgoing(AntiPart("e"))}

);

Squaring the amplitude

Expr square = model.computeSquaredAmplitude(res);

Displaying the result in standard output

cout << square << endl;

Note The squared amplitude is a simple CSL expression that can be used without
additional abstraction.

135

CHAPTER 6. AUTOMATED CALCULATIONS WITH MARTY

6.5 Wilson coefficients

6.5.1 Generalities

Wilson coefficients are complex-valued functions in front of operator structures in
MARTY. In Effective Field Theories (EFT), it is convenient to use an effective Hamiltonian
instead of a Lagrangian:

Ĥeff ≡
∑

i

CiÔi, (6.96)

with Ôi effective operators and Ci their Wilson coefficients. The transition amplitude
between an initial state i and a final state f is the matrix element of this Hamiltonian:

iM(i → f) = 〈f |(−iĤeff)|i〉 = −i
∑

i

Ci〈f |Ô|i〉. (6.97)

The operator matrix elements 〈f |Ô|i〉 are not in general calculated pertubatively and con-
tain long distance (low energy) effects. This is in particular the case when considering
hadron physics in which the long distance QCD effects break the purely perturbative
calculations that MARTY automates. Nevertheless, the BSM dependence lies in the Wil-
son coefficients and a perturbative calculation can be used to determine their values as
explained in [125]. Consequently, the contributions of matrix elements – that are model-
independent – to observables can be measured in colliders or calculated with lattice QCD
once and for all. Then, theoretical physicists only need to compute Wilson coefficients Ci
to study a new BSM scenario.

In MARTY a matrix element is simply a particular index contraction of external fields.
A general amplitude with N external fields {ΦAI

I }I with generalized indices AI can be
expressed as

iM ≡ −iα
∑

i

Ci · TA1···AN
i · ΦA1

1 · · · ΦAN
N , (6.98)

with TA1···AN
i all different external fields contractions in the resulting amplitude and α a

convention dependent constant. Multiplying the result by i
α , Wilson coefficients can be

identified as the scalar factors Ci in front of the different matrix elements.
When asked, MARTY can decompose an amplitude in the different external field con-

tractions it encounters and return the coefficients in front, taking into account a global
user-defined factor α. This can be used to extract precise contributions in the amplitude.

6.5.2 Additional simplifications

From equation 6.98, the derivation of Wilson coefficients seems to be only a matter of
coefficient identification in the amplitude result. In practice, this requires more care and
in particular to define correctly and uniquely the different structures TA1...AN

i .

136

CHAPTER 6. AUTOMATED CALCULATIONS WITH MARTY

LO vs. NLO

For now MARTY provides matching at the Leading Order (LO) at tree-level or one-
loop and Next-to-Leading Order (NLO) complications are therefore not mentioned in the
following. Although it is possible in MARTY to perform calculations with integrated-out
particles such as the W -boson in the SMEFT that has an effective propagator

−igµν
p2 −M2

W

→ igµν
M2
W

+ O
(

p2

M2
W

)

, (6.99)

the matching procedure has not been automated. In case one wants to calculate NLO
corrections (one-loop quantities correcting the tree level), the process can be calculated in
both the effective and full theories. Then, the matching has to be done by hand using the
coefficient in both theories. See [125] for more details on NLO matching.

Fierz identities

For 4-fermion operators, a term in the amplitude is typically expressed as

iM ∋ α
(

ψ̄1ΓAψ2

)

·
(

ψ̄3ΓBψ4

)

, (6.100)

with α a coefficient, ψi the four external fermions and ΓA,B Dirac structures. In the fol-
lowing we define

(

ΓA
)

ij
≡
(

ψ̄iΓ
Aψj

)

. (6.101)

One common issue that has to be addressed with these operators is that the amplitude
will typically contain different pairings between fermions such as

iM ∋ β
(

ΓA
)

14

(

ΓB
)

32
, (6.102)

whereas Wilson coefficients for a given process are always defined with fixed pairings,
for example (12)(34). One then has to find the contribution of a term (14)(32) to a co-
efficient defined with (12)(34) in the literature. This is possible using general Fierz-type
identities [126]. Defining ΓA in a minimal basis one has two well-know choices:

ΓA ∈
{

1, γ5, γµ, γµγ5, σµν
}

,

ΓA ∈ {PL, PR, γµPL, γµPR, σµν} ,
(6.103)

that we name standard and chiral basis respectively. The dual bases are defined as

ΓA ∈
{

1, γ5, γµ, γ
5γµ, σµν

}

,

ΓA ∈
{

PL, PR, γµPR, γµPL,
1

2
σµν

}

,
(6.104)

by imposing
Tr
(

ΓAΓB
)

= λ · δAB, (6.105)

137

CHAPTER 6. AUTOMATED CALCULATIONS WITH MARTY

with λ equal to 4 and 2 for the standard and chiral bases respectively.
As derived from the completeness relation in [126], the generalized Fierz-type iden-

tity reads
(

ΓA
)

14

(

ΓB
)

32
=

1

λ2

∑

C,D

Tr
(

ΓAΓCΓBΓD
) (

ΓD
)

12

(

ΓC
)

34
. (6.106)

This general relation allows us to express all contributions with only one fermion pattern.
As equation 6.106 is linear in ΓA and ΓB and that the bases in equation 6.103 are complete,
Fierz identities can be used for any initial ΓA,B .

By applying twice Fierz identities we can simplify general products of bilinears de-
pending on non-elementary Γ̂A and Γ̂B and obtain
(

Γ̂A
)

12

(

Γ̂B
)

34
=

1

λ4

∑

C,D,E,F

Tr
(

Γ̂AΓC Γ̂BΓD
)

Tr
(

ΓDΓEΓCΓF
) (

ΓF
)

12

(

ΓE
)

34
, (6.107)

which is now expressed only with basis elements ΓE and ΓF . These simplifications im-
ply a lot of algebra but are necessary to fully simplify 4-fermion amplitudes and extract
general Wilson coefficients. Note that this is completely unnecessary when calculating
a squared amplitude as complicated Dirac structures Γ̂A and Γ̂B are simplified in traces
anyway.

Fermion ordering

For processes that rely on fermion-violating interactions or Majorana particles the
order of one fermion bilinear can be undefined. Let us consider a simple example with
two fermions ψ and ξ. One can obtain an amplitude such as

iM = α
(

ψ̄Γ1ξ
)

+ β
(

ξ̄Γ2ψ
)

, (6.108)

with two bilinears that have a different flow. Following identities given in section 4.6.2 a
fermion bilinear can be reversed using the conjugation matrix C and

ξ̄Γ2ψ =
(

ξ̄Γ2ψ
)T

= ψTΓT2 ξ̄
T

= ψ̄CΓT2 Cξ

= −ψ̄Γ′
2ξ,

(6.109)

where Γ′
2 is the conjugate of Γ2 defined in equation 4.25 that always has a regular form. 13

The amplitude then reads
iM = ψ̄

(
αΓ1 − βΓ′

2

)
ξ. (6.110)

In order to illustrate the relevance of such a transformation, let us consider the case Γ′
2 =

Γ1. The amplitude becomes
iM = (α− β)ψ̄Γ1ξ, (6.111)

13. The distinction between particles and anti-particles (u and v spinors) is not considered here as the
identities are identical and that terms with the same fermion flow but different particle conjugations (such
as ūψvξ and v̄ψuξ) cannot arise in the same calculation.

138

CHAPTER 6. AUTOMATED CALCULATIONS WITH MARTY

where the coefficient in front of ψ̄Γ1ξ is now α − β whereas in the bare result of equa-
tion 6.108 one would have read only the α contribution. Together with Fierz identities
presented in the section above, fermion ordering allows us to define one unique struc-
ture and apply it to all terms in the amplitude. This is required to match the results with
operators in the literature that are always defined with fixed fermion flows.

Once again, fermion ordering is irrelevant in squared amplitude calculations as using
identities of section 4.6.2 one can extend spin sums defined in equation 6.81 to mixed
terms such as

∑

λ

u(p)Aλαv(p)Bλβ =

[
∑

λ

u(p)Aλαū(p)Bλδ

]

Cδβ =
(

/p+mi

)

αδ
Cδβ · δAB,

∑

λ

ū(p)Aλαv̄(p)Bλβ = Cαδ

[
∑

λ

v(p)Aλδ v̄(p)Bλβ

]

= Cαδ
(

/p−mi

)

δβ
· δAB,

(6.112)

with an explicit dependence on C that will cancel out before any trace calculation to
finally recover well-defined fermion loops.

Matching of different operator bases

Once the amplitude has been maximally reduced one can identify Wilson coefficients
at LO directly in the result. In practice, MARTY could stop there and delegate this part
to users as it does not require much algebra. It is however more practical and more
importantly less error prone to have an automated way to identify coefficients as we
demonstrate in the following.

The final challenge consists in matching conventions regularly used in the literature to
the automated calculation output. As equation 6.103 introduced in the case of γ-matrices,
multiple bases can be used to define the set of operators we consider. In flavor physics,
different bases can even be used in the same operator such as

O10 = (s̄γµPLb)
(

µ̄γµγ
5µ
)

(6.113)

that mixes PL and γ5 from two different bases. Then, depending on the basis used to
express the results one has to know the contribution to O10 of structures such as

T1 = (s̄γµb)
(

µ̄γµγ
5µ
)

(6.114)

in the standard basis or
T2 = (s̄γµPLb) (µ̄γµPRµ) (6.115)

in the chiral basis.
In MARTY we chose the standard basis as the reference because it contains the identity.

As the chiral basis does not contain the identity that it is always implicit in expressions, it
can cause trouble to identify operator contributions. We therefore project both the result
(T1 and T2 in the example) and the operator for which we search the contribution (O10)

139

CHAPTER 6. AUTOMATED CALCULATIONS WITH MARTY

on the same basis. In this example we obtain

O10 =
1

2
(s̄γµb)

(

µ̄γµγ
5µ
)

− 1

2

(

s̄γµγ5b
) (

µ̄γµγ
5µ
)

,

T1 = (s̄γµb)
(

µ̄γµγ
5µ
)

T2 =
1

4
(s̄γµb) (µ̄γµµ) − 1

4

(

s̄γµγ5b
)

(µ̄γµµ)

+
1

4
(s̄γµb)

(

µ̄γµγ
5µ
)

− 1

4

(

s̄γµγ5b
) (

µ̄γµγ
5µ
)

.

(6.116)

For the target operator the relation must be reversed to find the correct contributions
from the basis that we defined, namely

α (s̄γµb)
(

µ̄γµγ
5µ
)

→ +αO10

α
(

s̄γµγ5b
) (

µ̄γµγ
5µ
)

→ −αO10,
(6.117)

that can be derived in this case from 1 = PR +PL and γ5 = PR −PL. Let us now consider
an explicit amplitude that could be an output of MARTY:

iM ≡ iαT1 + iβT2. (6.118)

One can derive from the amplitude expression the contribution of T1,2 to O10, namely
(multiplying the amplitude by i to obtain the Wilson coefficient):

− M = −
(

α+
β

2

)

O10 + . . . , (6.119)

where the dots mean that there are other contributions and we finally obtain the coeffi-
cient

C10 = −
(

α+
β

2

)

. (6.120)

This procedure to match operators expressed in different bases is a challenge when one
writes an automated program to calculate Wilson coefficients and is not a simple iden-
tification process in the amplitude. The amplitude together with the effective operators
must be projected on a given basis to obtain the final coefficients. Furthermore, a simple
user interface must be provided to define easily operator structures from which users
want to extract the Wilson coefficients.

Wilson coefficients in MARTY

There are two ways to derive Wilson coefficients in MARTY. If one wants only to de-
compose the result on different operator structures without searching for precise contri-
butions (or when the decomposition is very simple), the amplitude can be calculated sep-
arately and then given to MARTY for the coefficient extraction as shown in sample code 42.

140

CHAPTER 6. AUTOMATED CALCULATIONS WITH MARTY

Sample code 42: Wilson coefficients 1/2

Let us consider here a variable res containing the result of an amplitude calcula-
tion as shown in sample code 40.

Decomposing the amplitude in the operator basis

auto wilsons = model.getWilsonCoefficients(res);

Display(wilsons);

The type deduced by auto is WilsonSet.

Getting the expressions of Wilson coefficients

int nCoefs = wilsons.size();

Expr C1 = wilsons[0].coef.getCoefficient();

Expr C2 = wilsons[1].coef.getCoefficient();

Note The resulting expressions can be given to the library generators as presented
in the user manual [86].

When calculating Wilson coefficients, in particular for 4-fermion operators, MARTY
must apply specific procedures at the amplitude level and therefore cannot take an am-
plitude calculated separately. 14 This is presented in sample code 43.

Sample code 43: Wilson coefficients 2/2

Setting options for the Wilson coefficients

FeynOptions options;

// Setting the Dirac basis for the decomposition:

options.setWilsonOperatorBasis(OperatorBasis::Standard); // or ::Chiral

// Defining a global coefficient factored out from Wilsons:

options.setWilsonOperatorCoefficient(e*e/(4*CSL_PI));

Calculating directly the Wilson coefficients

auto wilsons = model.computeWilsonCoefficients(

OneLoop,

{Incoming("b"), Outgoing("s"), Outgoing("A")}, // b -> s gamma

options // send the options the the model

);

Display(wilsons);

14. The amplitude can be calculated separately to extract Wilson coefficients but with 4-fermion opera-
tors complications arise in operator definitions and without a specific treatment of the amplitude it is hard
to recover a well-defined basis.

141

CHAPTER 6. AUTOMATED CALCULATIONS WITH MARTY

6.6 Automating calculations

In some phenomenological analyses it is necessary to perform a large number of sim-
ilar calculations. In this case the method of using explicit particle names is tedious and
not recommended. The calculation of all 2-to-2 processes for a model with 50 particles
for example is a task that one has to automate. While the getParticles() method of
a model returns the list of all particles, the method that must be used in that case is
getPhysicalParticles(). Contrary to the first option, this method removes redundancies.
For a Dirac fermion ψ for example the left- and right-handed parts are also considered
as particles and will cause redundancies in calculations. The getPhysicalParticles()

method will take care of it and return a list of independent physical particles. This is also
possible to filter even more this list, as summarized in sample code 44.

Sample code 44: Get particles lists from a model

Exhaustive list, but not suited to automate calculations

auto particles = model.getParticles();

Removing redundancies

auto particles = model.getPhysicalParticles();

Filtering physical particles

auto fermions = model.getPhysicalParticles(

[&](Particle p) { return p->isFermionic(); }

);

auto bosons = model.getPhysicalParticles(

[&](Particle p) { return p->isBosonic(); }

);

auto vectors = model.getPhysicalParticles(

[&](Particle p) { return (p->getSpinDimension() == 3); }

);

auto Ni = model.getPhysicalParticles(

[&](Particle p) { return (p->getName()[0] == 'N'); }

);

Note The deduced return type is each time std::vector<mty::Particle> allowing
one to iterate over it.

Note The lambda expression given to filter out the result can be any user-defined
boolean predicate taking a Particle as parameter.

Once the lists of particles have been filtered out from the model, one can iterate over
them to automate the calculation of a large number of processes. This is presented in
sample code 45.

142

CHAPTER 6. AUTOMATED CALCULATIONS WITH MARTY

Sample code 45: Automate a large number of calculations

for (auto f : fermions) {

for (auto v : vectors) {

auto ampl = model.computeAmplitude(// f fbar -> v vbar

TreeLevel,

{Incoming(f), Incoming(AntiPart(f))),

Outgoing(v), Outgoing(AntiPart(v))}

);

auto squared = model.computeSquaredAmplitude(ampl);

// Store, do something with the squared amplitude

}

}

This chapter presented some of the main challenges and requirements for automated
BSM one-loop calculations. They are multiple, starting from the theory Lagrangian up
to the final analytical and simplified quantities. The derivation of Feynman rules and
diagrams, the γ-matrix identities and traces, the group theory simplifications, the ten-
sor reduction at one-loop, the general Fierz identities, the spin sum rules and the equa-
tions of motions must be applied automatically by MARTY in order to generate theoretical
quantities for general BSM scenarios. All these steps must be based on a reliable high-
performance symbolic computation machinery able to manipulate large expressions and
generate compact results quickly. As discussed in this chapter, CSL is the symbolic com-
putation library embedded in MARTY and its algorithms have been designed specifically
for high energy physics purposes. Several examples of results demonstrating the ability
of MARTY to perform all the calculations previously introduced are presented in the next
chapter.

143

CHAPTER 6. AUTOMATED CALCULATIONS WITH MARTY

144

CHAPTER7
Selection of results

7.1 Introduction

In this chapter some of the results of the calculations that we have performed using
MARTY are presented. They rely on the simplification procedures developed in chapter 6
to calculate amplitudes, squared amplitudes and Wilson coefficients at tree-level and at
one-loop. For pedagogical and validation purposes we consider known examples in the
SM and beyond. However, MARTY has not been developed for these specific examples and
is fully general. Therefore, the calculations that we develop can be straight-forwardly
generalized to all models that can be built in MARTY. 1

The results presented in this chapter have been translated into automated tests for
MARTY to facilitate future releases. All related programs can be found on the public gitlab
repository [127].

7.1.1 Validation

There are five main features of MARTY that we can test:

Symbolic calculations, i.e. the mathematical accuracy of CSL.

Built-in models in MARTY, for now the Standard Model (SM), 2 Higgs Doublets
Models (2HDM) and the Minimal Super-symmetric Standard Model (MSSM). If
calculations are accurate but the model is inconsistent, the results will be wrong.
Checking that models are valid is therefore an important part of the test procedures.

Transition amplitude calculations.

Squared amplitude calculations.

Wilson coefficient calculations.

The two first features are not tested directly. We can consider the validity of symbolic
manipulations and built-in models for granted as they are indirectly tested when con-
sidering high energy physics calculations. Consequently, when building a new model

1. See chapter 4 for the models that can be implemented in MARTY.

145

CHAPTER 7. SELECTION OF RESULTS

with MARTY one should check that interaction vertices are consistent with its theoretical
definition before doing any calculation with it.

7.1.2 Different kinds of tests

In the following we will refer to three types of tests:

Numerical tests. They simply compare numbers such as squared amplitudes. They
are composed of two programs: The MARTY script at the symbolic level and a nu-
merical C++ code using a library generated by MARTY during the execution of the
first program.

Symbolic tests. Their success depends on the precise mathematical expressions of
the results. These tests do not use any numerical library generated by MARTY. 2

Termination tests. They are not for comparison purpose, just to make sure that a
program gets to the end without error. They are less informative but still relevant
because MARTY performs a large number of consistency checks during a calculation.
If the procedures finish normally it means that they are mathematically consistent,
even if it does not guarantee the result’s accuracy.

7.2 Amplitude calculations

A pure amplitude calculation 3 is harder to test as one must look at the exact symbolic
expression, that depends on conventions and more importantly on the exact simplifi-
cation procedures that can change between two versions of the code. One example of
difficulty is momentum conservation. Consider a 1 + 2 → 3 + 4 process whose ampli-
tude is proportional to (p1 + p2)2. Using a slightly different procedure, the momentum
conservation could yield an amplitude proportional to (p3 + p4)2 instead. The two are
mathematically equivalent but the comparison is not trivial. In general, it is almost im-
possible to ensure that two different realizations of the same procedure will yield the
exact same symbolic expression. This is in particular true when the simplification meth-
ods are improved to lighten the results.

There are therefore very few direct tests of amplitudes, but as one can see in the next
sections they can be indirectly tested in squared amplitudes and Wilson coefficients. If ex-
amples are chosen appropriately there are no feature of amplitudes that cannot be tested
indirectly in squared amplitude and Wilson coefficient calculations.

There are for now two bare amplitude tests that address the conjugation matrix prob-
lem introduced in section 4.6 when considering fermion-number violating interactions.

2. When automated, one still has to find a way to generate a number because it is the only reliable
object that one can use for comparison when writing tests.

3. As opposed to squared amplitude and Wilson coefficient calculations.

146

CHAPTER 7. SELECTION OF RESULTS

7.2.1 Conjugation matrix consistency

We test here that fermion loops with Majorana fermions are simplified consistently.
As explained in section 4.6, conjugation matrices can appear in vertices or Majorana prop-
agators and must be simplified in traces. If an inconsistency is detected during the cal-
culation, MARTY will not be able to calculate traces and the program will be stopped. This
test is a termination test.

The Lagrangian composed of a vector boson A, a scalar boson S, a pseudo-scalar
boson P , a Dirac fermion ψ and a Majorana fermion λ reads [128]

L = −1

4
FµνF

µν +
1

2
λ̄i/∂λ+ ψ̄

(
i /D −m

)
ψ

+ (DµS)† (DµS) +m2S†S + (DµP)† (DµP) +m2P †S

+ iQ
[

ψ̄
(

S + iγ5P
)

λ− λ̄
(

S† + iγ5P †
)

ψ
]

+
Q2

2

(

S†P − SP †
)2
,

(7.1)

where Dµ ≡ ∂µ+ iQAµ and Fµν ≡ ∂µAν −∂νAµ. S, P and ψ have a charge Q with respect
to the U(1) group gauged by the photon A. The last interaction term is purely scalar and
is not the purpose of this test.

From this Lagrangian the amplitude for the diffusion process SS → SS can be calcu-
lated at the one-loop level. Examples of contributions are presented in figure 7.1. From

(a) 2-point function (b) 3-point function (c) 4-point function

Figure 7.1 – Examples of diagrams with Majorana particles in loops for the theory with the Lagrangian given
in 7.1 for the process SS → SS.These diagrams have been generated automatically by GRAFED, see section 2.5
for more details.

the fermion propagators given in sections 4.6 and 6.2 one can derive expressions for
fermion traces that appear in the diagrams in figure 7.1 and simplify the conjugation
matrix to recover standard traces. The trace for the contribution in 7.1c for example can
be expressed generically as

Tr
(

(/q +m)(/q +m)C(/q +m)T (/q +m)TC
)

, (7.2)

that can be transformed into a trace that we know how to calculate, namely

Tr
(

(/q +m)(/q +m)(/q −m)(/q −m)
)

, (7.3)

147

CHAPTER 7. SELECTION OF RESULTS

where we used the relations

CγµC† = − (γµ)T ,

C · C† = 1,

C† = −C.
(7.4)

The simplification from 7.2 to 7.3 is performed automatically by MARTY, and the amplitude
is indeed free of any Dirac index as all traces are calculated successfully. The test is also
done for the PP → PP process that contains γ5 matrices and also works as expected in
MARTY.

Note that we used a very generic form of the trace in equations 7.2 and 7.3, not spec-
ifying signs and momenta. This is because the test is only about consistency, i.e. sim-
plification of conjugation matrices and transposed γ-matrices. In the following section a
precise amplitude test of Majorana interactions is presented.

7.2.2 Relative Sign of Interfering Feynman graphs (RSIF)

Once the calculation procedures can simplify the conjugation matrix in a consistent
way, yielding well-defined fermion chains with no conjugation or transposed γ-matrix,
one has to check the relative signs between the different contributions. The purpose is
to test the RSIF at the amplitude level, this is thus a symbolic test. We follow [112] and
in particular the 5-legs process in section 3.3, ψψ → Φψλ. Again ψ is a Dirac fermion,
λ a Majorana and Φ a boson. We consider the following generic Lagrangian which is
obtained after removing generation indices a, b, c of equation 2.1 in [112]:

L =
1

2
λ̄(i/∂ −M)λ+ ψ̄(i/∂ −m)ψ

+
1

2
giλ̄ΓiλΦ + hiψ̄ΓiψΦ + ki

(

λ̄ΓiψΦ† + h.c.
)

,
(7.5)

with gi, hi, ki coupling constants, Γi = 1, iγ5, γµγ
5, γµ, σµν , and Φ a boson of any kind

contracting in the appropriate way with Γi to yield a Lorentz invariant Lagrangian. We
decided to specialize the test on common examples for a scalar boson φ and a vector
boson A. Based on equation 7.5 our final Lagrangian reads

L =
1

2
λ̄(i/∂ −M)λ+ ψ̄(i/∂ −m)ψ

+
g

2
λ̄λφ+ hψ̄ψφ+ k

(

ψ̄λφ+ h.c.
)

+
g

2
λ̄γµλA

µ + hψ̄γµψA
µ + k

(

ψ̄γµλA
µ + h.c.

)

,

(7.6)

where we used the same couplings for φ and A as they will not interfere with each other.
Considering the fermion-violating interactions ψψ → φψλ and ψψ → Aψλ, the only

relevant terms in the interaction Lagrangian are

Lint ∋ k
(

ψ̄λφ+ ψ̄γµλA
µ + h.c.

)

. (7.7)

148

CHAPTER 7. SELECTION OF RESULTS

(a) iM0 (b) iM1 (c) iM2 (d) iM3

Figure 7.2 – Diagrams for the fermion-number violating process ψψ → φψλ from the Lagrangian defined in
equation 7.6. Diagrams for ψψ → Aψλ are identical replacing φ by A. Diagrams (b), (c) and (d) correspond
respectively to diagrams 1), 2) and 3) in figure 3.3 of [112].These diagrams have been generated automatically
by GRAFED, see section 2.5 for more details.

There are four possible diagrams for the process ψψ → φψλ as shown in figure 7.2.
Exact expressions for diagrams 7.2b, 7.2c and 7.2d are given respectively in equations

3.4a, 3.4b and 3.4c of [112] (diagram 7.2a is not given). Defining our process ψ1(p1) +
ψ2(p2) → ψ3(p3)+λ4(p5)+Φ5(p5) those expressions can be translated in our conventions,
namely

iM1 = (+1)
i

(p3 + p4)2(p5 − p1)2

[

v̄1(p1)(/p5 − /p1 +M)u2(p2)

]

·
[

ū3(p3)v4(p4)

]

, (7.8)

iM2 = (−1)
i

(p2 − p4)2(p5 − p1)2

[

ū3(p3)(/p1 − /p5 +M)u1(p1)

]

·
[

ū4(p4)u2(p2)

]

, (7.9)

iM3 = (+1)
i

(p1 − p4)2(p5 − p2)2

[

ū3(p3)(/p2 − /p5 +M)u2(p2)

]

·
[

ū4(p4)u1(p1)

]

, (7.10)

which represent the test for φ, where we used the trivial relation

1
′ ≡ C1C† = 1. (7.11)

Setting the massesm andM to zero for simplicity, applying the Dirac equation and defin-
ing sij ≡ pi · pj , equations 7.8 to 7.10 become

iM1 = (−1)
i

4s15s34

[

v̄1(p1) /p5u2(p2)

]

·
[

ū3(p3)v4(p4)

]

, (7.12)

iM2 = (+1)
i

4s15s24

[

ū3(p3) /p5u1(p1)

]

·
[

ū4(p4)u2(p2)

]

, (7.13)

iM3 = (−1)
i

4s14s25

[

ū3(p3) /p5u2(p2)

]

·
[

ū4(p4)u1(p1)

]

. (7.14)

The output of MARTY for the same amplitudes is

1 : -1/4*i*g^3*(p_3_%nu + p_4_%nu)*gamma_{+%nu,%gam,%eta}*lam_{l,%beta}(p_4)

phi_m(p_5)^()*psi_{i,%gam}(p_1)^(*)*psi_{k,%beta}(p_3)^(*)*psi_{j,%eta}(p_2)

/(s_34*(s_23 + s_24 + -s_34))

149

CHAPTER 7. SELECTION OF RESULTS

2 : -1/4*i*g^3*(p_2_%nu + -p_4_%nu)*gamma_{+%nu,%gam,%eps}*lam_{l,%eta}(p_4)^(*)

phi_m(p_5)^()*psi_{i,%eps}(p_1)*psi_{k,%gam}(p_3)^(*)*psi_{j,%eta}(p_2)

/(s_24*(s_23 + s_24 + -s_34))

3 : 1/4*i*g^3*(p_1_%mu + -p_4_%mu)*gamma_{+%mu,%gam,%eta}*lam_{l,%eps}(p_4)^(*)

phi_m(p_5)^()*psi_{i,%eps}(p_1)*psi_{k,%gam}(p_3)^(*)*psi_{j,%eta}(p_2)

/(s_14*(s_13 + s_14 + -s_34))

One can see that signs are not in agreement with equations 7.12, but that the form is dif-
ferent. External fields carry spin indices i,j,k,l,m, including for the scalar field phi(p_5)

as explained in section 6.2. Then, momentum conservation p1 + p2 = p3 + p4 + p5 has to
be applied in order to match both expressions, namely

s23 + s24 − s34 = −1

2
(−p2 + p3 + p4)2 = −1

2
(p1 − p5)2 = s15,

s13 + s24 − s34 = −1

2
(−p1 + p3 + p4)2 = −1

2
(p2 − p5)2 = s25.

(7.15)

Finally using momentum conservation, massless fermions and the Dirac equation we can
match

v̄1(/p3 + /p4)u2 = −v̄1 /p5u2,

ū3(/p2 − /p4)u1 = +ū3 /p5u1,

ū3(/p1 − /p4)u2 = +ū3 /p5u2,

(7.16)

which imply the following equivalent expressions for MARTY’s output

iMMARTY

1 = (+1)
i

4s15s34

[

v̄1(p1) /p5u2(p2)

]

·
[

ū3(p3)v4(p4)

]

, (7.17)

iMMARTY

2 = (−1)
i

4s15s24

[

ū3(p3) /p5u1(p1)

]

·
[

ū4(p4)u2(p2)

]

, (7.18)

iMMARTY

3 = (+1)
i

4s14s25

[

ū3(p3) /p5u2(p2)

]

·
[

ū4(p4)u1(p1)

]

. (7.19)

We thus recover the result of [112] with a global sign that is convention dependent, i.e.
the RSIF that are the only physical signs are correctly predicted by MARTY.

Similarly for A couplings, one must consider the relation

γ′
µ ≡ CγTµC

† = −γµ, (7.20)

and the amplitude in equation 7.12 takes a relative sign. We will not derive here the
analytical result and compare it to the output of MARTY as it is more involved than in the
scalar case, but this can be done and has been implemented with MARTY to be tested the
same way. In both cases, MARTY predicts the same relative signs as those given in [112].

This validation example demonstrates that amplitude tests are more difficult to im-
plement because there are multiple ways to express an amplitude. Furthermore, MARTY is
an automated program and its results are not always expressed in the same way as the

150

CHAPTER 7. SELECTION OF RESULTS

ones derived by hand because its procedures are slightly different, suited for a computer.
One will then probably have to do algebra by hand to match the output of MARTY with
an expression in the literature when looking for a match at the amplitude level. This
can be done as we showed in this example but is in general a tedious task. As squared
amplitudes at the numerical level are decoupled from conventions, they are much more
relevant for automated testing purposes.

7.3 Squared amplitudes

Squared amplitude calculations have been presented in section 6.4. They represent
very good tests for MARTY as they rely on all aspects of general calculations and are much
easier to find in the literature than amplitude expressions. We present first 1 → 2 pro-
cesses i.e. partial decay widths at tree-level and one-loop. Then, a few well-known 2 → 2
processes will be presented with the calculation of more diverse observables. In this
section we always consider the squared amplitude averaged over incoming degrees of
freedom as defined in equation 6.74 but refer to it simply by writing |M|2.

While the average over incoming degrees of freedom is done by MARTY automatically,
the numerical calculation of cross-sections from squared amplitudes (adding kinematic
factors and possibly integrating over the phase space) must be done by the user. How-
ever, as explained in section 6.4, the derivation of a cross-section from a squared ampli-
tude is a simple numerical computation that can be quickly implemented as needed.

All calculations presented in the following have been performed using the built-in
Standard Model in MARTY. See the SM_Model class or the user manual [86] for more details.
To load the SM, reproduce the test and obtain expressions and diagrams for (squared-
)amplitudes one simply has to write e.g. for h → WW at tree-level

SM_Model sm;

auto ampl = sm.computeAmplitude(TreeLevel,

{Incoming("h"), Outgoing("W"), Outgoing(AntiPart("W"))});

Display(ampl); // Displays the expressions in the terminal

Show(ampl); // Show the Feynman diagram(s)

auto squared = sm.computeSquaredAmplitude(ampl);

Display(squared); // Displays the expression in the terminal

This code sample can be straight-forwardly modified to calculate other processes.

7.3.1 Tree-level partial decay widths

For a particle of mean life-time τ , the decay rate is define as the inverse

Γ ≡ 1

τ
, (7.21)

and has a dimension of energy in natural units ~ = c = 1. Stable particles have a zero
decay rate and infinite life-time, this is in particular the case for photons and electrons in
the Standard Model. For the up quark, since it cannot be observed as a free particle its
life-time is not well defined. Instead we measure it for the proton (uud) and we have [35]

τp > 1031 to 1032 years, (7.22)

151

CHAPTER 7. SELECTION OF RESULTS

which means that there is for now no experimental evidence that the proton is not abso-
lutely stable and its mean life-time is at least much larger than the age of the Universe
that is of the order of 1010 years.

Life-time is an important observable that one can predict from a high energy physics
model. In particular, the decay rate Γi for one given 1 → 2 decay mode i is simply
proportional to the squared amplitude of this process and reads in the center of mass
frame

Γi =
|~p|

8πM2
|Mi|2, (7.23)

with M the decaying particle mass, |~p| the outgoing momentum and |Mi|2 the squared
amplitude of the process. For a particle with multiple decay modes i (into 2 or more
particles) the mean life-time therefore reads

τ =
1

∑

i Γi
. (7.24)

Let us consider the calculation of Γi with MARTY for a particular mode i to obtain the
partial contribution to Γ by injecting the squared amplitude in equation 7.23. We consider

(a) h → W+W− (b) h → ZZ (c) h → bb̄

(d) W+ → l̄ν (e) W+ → b̄c (f) Z → s̄s

Figure 7.3 – Examples of 1 → 2 decay modes calculated with MARTY in the SM. (a) and (b) are not physical
because mh < 2MW , 2MZ but are considered for testing purposes. These diagrams have been generated using
GRAFED, see section 2.5 for more details.

the decays shown in figure 7.3 and assign momenta p1, p2, p3 for the process 1 → 2 + 3

152

CHAPTER 7. SELECTION OF RESULTS

and define momenta squared sij ≡ pi · pj . The results of MARTY are the following:

|M(h → W+W−)|2 =
2M2

W e
2

sin2 θW

(

1 +
s2

23

2M4
W

)

, (7.25)

|M(h → ZZ)|2 = 4M2
W e

2

(

1 +
s2

23

2M4
Z

)(

sin θW +
sin3 θW

2 cos2 θW
+

cos2 θW
2 sin2 θW

)2

, (7.26)

|M(h → bb̄)|2 =
e2m2

b

4M2
W sin2 θW

(

−12m2
b + 12s23

)

, (7.27)

|M(W → νeē)|2 =
2e2

3 sin2 θW

(

s23 +
s12s13 − 1

2M
2
W s23

M2
W

)

, (7.28)

|M(W → cb̄)|2 =
2e2V 2

cb

3 sin2 θW

(

s23 +
s12s13 − 1

2M
2
W s23

M2
W

)

, (7.29)

|M(Z → ss̄)|2 = −2em2
s sin θW

3 cos θW
f(e, θW)

+
4

9

(

s23 +
s12s13 − 1

2M
2
Zs23

M2
Z

)

·
(

e2 sin2 θW
cos2 θW

+
1

4
f(e, θW)2

)

,

(7.30)

where we neglected fermion masses in W → ff̄ ′ decays, used e as electromagnetic cou-
pling constant, θW the Weinberg angle, andMW ,MZ andmb are the masses ofW+, Z and
b respectively. We also defined a custom abbreviation f(e, θW) to lighten the expression:

f(e, θW) = e
sin θW
cos θW

+ 3e
cos θW
sin θW

. (7.31)

Results have been compared to the corresponding analytical expressions in [35] and
match perfectly, even though MARTY’s output is not expressed in the same way.

Final remarks

One can see that some final simplifications could be done by hand e.g. for functions
of θW , but the results are overall well factored and compact. This is what we expect from
an automated computer program, the resulting expressions must only be well suited for
further numerical evaluation. Analytical interpretation is possible only on very simple
processes like the ones presented above and are thus rarely useful.

Expressions in equations 7.25 to 7.30 have been evaluated using the following com-
mand:

Evaluate(squared, eval::abbreviation);

If not evaluated, expressions are abbreviated by MARTY and equation 7.26 for example
reads

|M(h → ZZ)|2 =

(

1 +
1

2
Ab0022

)

C0050C
∗
0050, (7.32)

153

CHAPTER 7. SELECTION OF RESULTS

where MARTY has defined automatically

Ab0022 =
s2

23

M2
Z

,

C0050 = 2iAb0018,

Ab0018 =
1

2
Ab0016Ab0017,

Ab0017 = eMW ,

Ab0016 = Ab0014 +Ab0015 + 2 sin θW ,

Ab0015 =
cos2 θW
sin θW

,

Ab0014 =
sin3 θW
cos2 θW

.

(7.33)

7.3.2 One-loop partial decay widths

In this section we demonstrate how to calculate partial decay widths at the one-loop
level. We consider processes that are important for phenomenology, the double photon /
gluon production from a Higgs particle, namely h → γγ and h → gg loop amplitudes in
the Standard Model. These two processes are in particular involved in the measurement 4

that lead to the Higgs discovery in 2012 by ATLAS [19] and CMS [18] at the LHC.
For simplicity we consider only the top quark contributions to the two processes. The

diagrams are presented in figure 7.4. There is only a constant factor of difference between
the top loop contributions in h → γγ and h → gg, which depend on the photon (electric
charge) and gluon (color charge) couplings of the top quark. The first squared amplitude
is

|M(h → tt̄ → γγ)|2 ∝
[(

2

3

)2

Tr(1)

]2

=
16

9
, (7.34)

where the factor 2/3 is the top quark electric charge and the trace is over the three quark
colors and is trivially equal to 3. The diagram involving gluons has a different factor
given by

|M(h → tt̄ → gg)|2 ∝
[

Tr
(

TATB
)]2

=

[
1

2
δAB

]2

= 2, (7.35)

with TA generators of the triplet representation of SU(3) normalized by

Tr
(

TATB
)

=
1

2
δAB. (7.36)

Indices A and B are in the octet representation of SU(3) (gluons), which imply the iden-
tity

(

δAB
)2

= δABδAB = δAA = 8. (7.37)

4. Strictly speaking we should consider gg → h instead of h → gg to reproduce the same process as in
the LHC. However, the calculation is the same up to an integer factor.

154

CHAPTER 7. SELECTION OF RESULTS

Setting strong and electromagnetic couplings αs and αem to the same value, the SM thus
predicts

|M(h → tt̄ → gg)|2
|M(h → tt̄ → γγ)|2 =

9

8
. (7.38)

(a) h → γγ (b) h → gg

Figure 7.4 – Leading contributions, top quark loops, to the processes h → γγ and h → gg. There are 2
different diagrams for each: once the two bosons are distinguished in the process 1 → 2 + 3, the top quark loop
can flow in two different directions ((123) or (132) cycles). These diagrams have been generated using GRAFED,
see section 2.5 for more details.

Symbolic results at one-loop in MARTY will not be given explicitly as they are more in-
volved. They typically depend on integral functions Cij(m2

h, 0, 0,m
2
t ,m

2
t ,m

2
t) introduced

in section 6.3.4. We can however give the numerical result. Considering only one spatial
direction without loss of generality, the momentum conservation in the center of mass
frame for h → γγ gives:

(

mh

0

)

=

(

Eγ
Eγ

)

+

(

Eγ
−Eγ

)

, (7.39)

implying
Eγ =

mh

2
, (7.40)

and similarly for the gluon. Injecting M = mh and |p| = mh
2 in equation 7.23 one can

derive the partial one-loop decay widths for diagrams in figure 7.4 from the squared
amplitude given by MARTY (in natural units):

Γ(h → tt̄ → γγ) = 7.553 · 10−7 GeV, (7.41)

Γ(h → tt̄ → gg) = 2.080 · 10−4 GeV, (7.42)

that are in perfect agreement with the analytical expressions given in [129]. To obtain the
above numbers we used the following set of SM parameters:

αem = 1/137,

αs = 0.1142,

mh = 125.1,

mt = 173.34.

(7.43)

Furthermore, we can check equation 7.38 with MARTY by imposing αem = αs, simply to
check explicitly the groups factors. We found a ratio exactly equal to 1.125 = 9/8 as
expected.

155

CHAPTER 7. SELECTION OF RESULTS

7.3.3 Cross sections for 2 to 2 processes

Generalities

Before considering specific examples of 2 → 2 cross-sections let us present general
features. We use the kinematics of A+A → B +B processes in the center of mass frame,
with particles A andB of mass mA andmB respectively. 4-momentum conservation thus
gives

(

EA
~pi

)

+

(

EA
−~pi

)

=

(

EB
~pf

)

+

(

EB
− ~pf

)

, (7.44)

with 3D momenta ~pi and ~pf . Using the on-shell condition p2 = m2 one can derive energy
and momentum values in the previous equation with respect to two parameters:

The center of mass energy ECM .

The angle θ between ~pi and ~pf .

We deduce

EA = EB =
ECM

2
, (7.45)

pi = ECM

√

1 − 4m2
A

E2
CM

, (7.46)

pf = ECM

√

1 − 4m2
B

E2
CM

, (7.47)

which require

ECM > 2mA,

ECM > 2mB.
(7.48)

From these identities one can derive kinematic variables defined by MARTY e.g.

s12 = p1 · p2 =
E2
CM − 2m2

A

2
,

s13 = p1 · p3 =
ECM

4
(1 −K · cos θ) ,

s14 = p1 · p4 =
ECM

4
(1 +K · cos θ) ,

(7.49)

where we defined

K ≡ pipf
E2
CM

=

√

1 − 4m2
A

E2
CM

√

1 − 4m2
B

E2
CM

. (7.50)

The differential cross-section depending on the solid angle Ω for a 2 → 2 process in
the center of mass frame is expressed as a function of the squared amplitude and reads

dσ

dΩ
=

1

64π2E2
CM

| ~pf |
|~pi|

|M|2. (7.51)

156

CHAPTER 7. SELECTION OF RESULTS

The total cross-section can be derived by integrating over the solid angle Ω. The integra-
tion over the polar angle φ is trivial and we are left with an integral over θ:

σ =
1

32πE2
CM

| ~pf |
|~pi|

∫ π

0
|M|2 sin θdθ. (7.52)

7.3.4 e+e− → µ+µ− at tree-level

The e+e− → µ+µ− process was one of the dominant processes at LEP as it has a high
probability at the typical energy range of this collider. The leading contributions come
from a photon exchange at low energies and a Z boson exchange around 90 GeV at the
center of mass i.e. the Z resonance. These contributions are presented in figure 7.5.

Figure 7.5 – Diagrams for the e+e− → µ+µ− process in the Standard Model at tree-level, neglecting the Higgs
contribution. This diagram has been generated using GRAFED, see section 2.5 for more details.

Several quantities can be calculated from this process, we present two of them in this
section. The first one is the total integrated cross-section as a function of the center of
mass energy ECM to demonstrate MARTY’s ability to calculate a 2 → 2 cross-section and
to reproduce the correct interference term between the two diagrams in particular. The
second quantity that we consider is the forward-backward asymmetry generally noted
AFB(P) for a process P .

In the following calculations, we use the Breit-Wigner propagator [130] to address the
Z resonance at ECM ≈ MZ . The Z propagator denominator of momentum p therefore
reads

∆Z(p2) =
1

p2 −M2
Z + iMZΓZ

, (7.53)

where the term iMZΓZ has been added to the standard propagator, which depends on the
fullZ decay width ΓZ that was defined in equation 7.21. This propagator shifts the pole to
a non-real value, avoiding then the divergence at p2 = M2

Z . This comes from the fact that
the Z particle is unstable with a finite lifetime τZ = 1/ΓZ . If a Z boson is mostly virtual in
a diagram, i.e. that it is far from its pole p2 = M2

Z , the standard propagator can be used.
Around the resonance however, the particle is real and its propagation must take into
account the fact that it can decay (and not only in the final state considered in the process).
The Breit-Wigner propagator introduced in equation 7.53 is a very good approximation
of this effect in most cases as stated in [130] and in particular for the propagator of a
single decaying particle.

157

CHAPTER 7. SELECTION OF RESULTS

We need now to define the couplings between particles used in the following calcu-
lations. Vertices with their corresponding Feynman rules are shown in figure 7.6. For
simplicity fermion masses are set to zero; me = mµ = 0. We used the following values

(a) Photon coupling (b) Z boson coupling

Figure 7.6 – Feynman rules defined in our toy model to calculate e+e− → µ+µ− at tree-level. Leptons have
(a) a vector coupling to the photon proportional to their charge −1 and (b) chirality-specific couplings to the
Z boson different for left- (gL) and right- (gR) currents. These diagrams have been generated using GRAFED,
see section 2.5 for more details.

for SM parameters:

e =
√

4π/137,

MZ = 91.19 GeV,

ΓZ = 2.49 GeV,

θW = 0.1566π,

(7.54)

from which the couplings are defined:

gY = e,

gL =
e

cos θW sin θW

(

−1

2
+ sin2 θW

)

,

gR = e tan θW .

(7.55)

Results for the squared amplitude

Considering the two diagrams presented in figure 7.5, we can define the two am-
plitudes as iMγ and iMZ for the photon and Z boson respectively. The total squared
amplitude is therefore

|M|2 = |iMγ + iMZ |2

= |Mγ |2 + |MZ |2 + MγM∗
Z + M∗

γMZ ,
(7.56)

in which the two first terms correspond respectively to the pure photon and pure Z con-
tributions and the two last terms correspond to the interference between the two dia-
grams. This can be calculated with MARTY, the output (simply evaluating abbreviations)

158

CHAPTER 7. SELECTION OF RESULTS

is the following:

|M|2 = 4g4
Ls14s23|∆Z |2

+ 4g4
Rs14s23|∆Z |2

+ 8g2
Lg

2
Rs13s24|∆Z |2

− 2ig2
Y

s12

(

ig2
Ls14s23∆Z + ig2

Rs14s23∆Z + 2igLgRs13s24∆Z

)

+
4ig2

Y

s12

(

− igLgRs13s24∆∗
Zs12

− ig2
Y

s14s23 + s13s24

2s12

− s14s23

2

(

ig2
L∆∗

Z + ig2
R∆∗

Z

))

,

(7.57)

where we used the Breit-Wigner propagator for the Z boson defined in equation 7.53 to
lighten the output. One can recognize the different contributions in the expression above,
namely

|Mγ |2 = 2g4
Y

s14s23 + s13s24

s2
12

, (7.58)

|MZ |2 = 4g4
Ls14s23|∆Z |2 + 4g4

Rs14s23|∆Z |2 + 8g2
Lg

2
Rs13s24|∆Z |2, (7.59)

MγM∗
Z =

4ig2
Y

s12

(

− igLgRs13s24∆∗
Zs12 − s14s23

2

(

ig2
L∆∗

Z + ig2
R∆∗

Z

))

, (7.60)

M∗
γMZ = −2ig2

Y

s12

(

ig2
Ls14s23∆Z + ig2

Rs14s23∆Z + 2igLgRs13s24∆Z

)

, (7.61)

from which we can check for example that indeed M∗
γMZ = (MγM∗

Z)∗.

Total cross-section

The total integrated cross-section has been defined in equation 7.52 as a function of
the squared amplitude |M|2 that MARTY provides. It depends in particular on the center
of mass energy ECM . The calculation of |M|2 is done at the symbolic level and automat-
ically by MARTY whereas equation 7.52 must be applied at the numerical level.

The numerical results obtained from MARTY are presented in figure 7.7. They have
been compared to analytical calculations and match perfectly. One can see the Z peak
around ECM = MZ = 91.19 GeV where the process is largely dominated by this reso-
nance and peaks around σγ+Z ≈ 1.9nb. At low energies the photon dominates with its
resonance at ECM = 0 as it is massless.

159

CHAPTER 7. SELECTION OF RESULTS

Figure 7.7 – Total integrated cross-section for e+e− → µ+µ− in the Standard Model as a function of the
center of mass energy ECM for (dashed red line) only the photon contribution and (plain blue line) the full
contribution with the photon and the Z boson.

Forward-backward asymmetry

Kinematics for a 2 → 2 process have been defined in equation 7.44 but the orientation
of the angle θ was not defined. More precisely, θ can be defined as the angle between ~pi
and ~pf or between ~pi and − ~pf . When the two incoming particles are indistinguishable
(or equivalently the two outgoing ones) the two possible definitions of θ will produce
the same results. However, when particles are distinguishable (such as particle / anti-
particle) the process can be asymmetrical and depend on the definition of θ. Such an
asymmetry is called a forward-backward asymmetry that can be measured by compar-
ing processes such as those presented in figure 7.8.

(a) Backward process (b) Forward process

Figure 7.8 – Example of measurement that can be asymmetrical in the e+e− → µ+µ− process between the
realization (a) with an angle θ between the two particles e− and µ− and the realization (b) with the same angle
θ but this time between the particle e− and the anti-particle µ+.

Such an asymmetry arises when the differential cross-section has a term proportional

160

CHAPTER 7. SELECTION OF RESULTS

to cos θ, namely 5

dσ

dΩ
∋ A cos θ, (7.62)

with some non-vanishing value A that can be a function of the other parameters. When
the differential cross-section is integrated over theta such a contribution vanishes because

∫ π

0
A cos θdθ = A

∫ π

0
cos θdθ = 0. (7.63)

However, if one is interested in the differential cross-section, there is a difference be-
tween the two scenarios presented in figure 7.8. Recalling equation 7.44, these two sce-
narios correspond to flipping the sign of cos θ. Therefore, the sign of the A-term defined
above is also flipped. In order to measure the difference the so-called forward-backward
asymmetry is defined as [131]:

AFB ≡ 2π

∫ π/2
0

dσ
dθ dθ −

∫ π
π/2

dσ
dθ dθ

σ
∝ A, (7.64)

where the 2π factor comes from the integration over the polar angle φ.
The result of the calculation of AFB(e+e− → µ+µ−) as a function of the center of mass

energy ECM is presented in figure 7.9, and is in agreement with [132].

Figure 7.9 – Result of the forward-backward asymmetry in MARTY for the process e+e− → µ+µ− at tree-level
with γ and Z boson contributions as a function of the center of mass energy ECM .

5. Strictly speaking all odd powers of cos θ generate an asymmetry but in the example presented here
there is no higher order term.

161

CHAPTER 7. SELECTION OF RESULTS

7.3.5 gg → tt̄ at tree-level

Motivation

The tt̄ production from gluon-fusion is of great relevance at the LHC for several rea-
sons:

The top quark is the heaviest particle of the Standard Model and should therefore
be more sensitive to very high energy phenomena that we did not observed yet, i.e.
new physics effects.

The tt̄ production cross-section is large at the LHC. To produce a tt̄ pair one needs
about 350 GeV and the center of mass energy at the LHC is about 13 TeV. Taking
into account the parton effect, interacting particles coming from the proton beams
carry only a fraction of the total energy, typically between 10 GeV and 1 TeV. This
means that the production peak for tt̄ lies in the typical energy range of incom-
ing protons at the LHC. Details about Parton Distribution Functions (PDF) can be
found in [133].

The gluon-fusion channel gg → tt̄ at tree-level is the main contribution to the tt̄
production at the LHC. In the Standard Model other contributions come from qq̄ →
tt̄ at tree-level and finally higher-order quantities.

From a theoretical point of view gg → tt̄ is also very useful to test MARTY’s abilities
because as the SU(3) color group is non-abelian there are more diagrams contributing to
the process and gauge invariance must be carefully considered. Diagrams contributing
to the amplitude iM(gg → tt̄) at tree-level are presented in figure 7.10.

(a) QED-like t-channel (b) QED-like u-channel

(c) QCD-specific g3-vertex contribution

Figure 7.10 – Diagrams contributing to the amplitude of gg → tt̄ at tree-level in the Standard Model. There
are QED-like diagrams in (a) t-channel and (b) u-channel and (c) a contribution coming from the non-abelian
property of the strong nuclear force different from QED. These diagrams have been generated using GRAFED,
see section 2.5 for more details.

162

CHAPTER 7. SELECTION OF RESULTS

Complications due to Yang-Mills

The two first diagrams iM1 and iM2 in figure 7.10 are proportional to TATB with A
and B external gluon indices, whereas the last diagram has an amplitude

iM3 ∝ fABCTC = −i
[

TA, TB
]

, (7.65)

where we see the explicit dependency on the non-abelian property of SU(3)

[

TA, TB
]

6= 0. (7.66)

When calculating the squared amplitude, one can use the spin sum rule defined in
equation 6.84 for the massless external gluons. However, the gµν term is just a shortcut
that happens to produce correct results in QED. As the gluon is massless it has two pos-
sible polarizations ǫ1 and ǫ2. They are transverse so that if the gluon propagates on the
z-axis we have

ǫ1 =








0
1
0
0







, ǫ2 =








0
0
1
0







. (7.67)

The spin sum can then be derived explicitly and reads

∑

λ

ǫµλ(p)ǫ∗νλ (p) = ǫµ1 ǫ
∗ν
1 + ǫµ2 ǫ

∗ν
2 =








0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0







. (7.68)

A general polarization ǫλ(p) can be any combination of ǫ1 and ǫ2 but as the spin sum
must be independent on the choice of basis and Lorentz covariant one can without loss
of generality calculate it using only ǫ1 and ǫ2.

One can see that indeed the spin sum in equation 7.68 is not equal to

− gµν =








−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1







, (7.69)

which contains two non-zero contributions on the t and z components. It can be demon-
strated that the unwanted contributions in −gµν get contracted, during the squared am-
plitude calculation, to terms proportional to [TA, TB] that vanish in QED. 6 In QCD how-
ever, these contributions do not vanish and spin sum rules given in equation 6.84 have
to be adapted. It is also possible to still use −gµν but in this case the unwanted terms
have to be compensated by new contributions. This can be done using the so-called
Faddeev-Popov procedure [134] built from the BRST symmetry [135, 136]. We introduce
un-physical particles in the theory to compensate our incorrect way to describe gauge

6. Using the QED Ward identity it is straight-forward to demonstrate that −gµν can be used for abelian
gauge theories.

163

CHAPTER 7. SELECTION OF RESULTS

invariance for non-abelian symmetry groups such as SU(3). These particles are called
ghosts and are anti-commuting scalar bosons, i.e. two ghosts c1(X) and c2(Y) satisfy the
relation

c1(X)c2(Y) = −c2(Y)c1(X), (7.70)

which is important to determine the signs of Feynman diagrams containing such par-
ticles. Ghosts lie in the same representation as their corresponding gauge bosons and
the Feynman rule for the ghost-gluon interaction in the Standard Model is presented in
figure 7.11.

Figure 7.11 – Feynman rule for the gluon-ghost interaction in the Standard Model. gs is the strong coupling
constant. This diagram has been generated using GRAFED, see section 2.5 for more details.

Ghost contributions must be considered in loops when calculating an amplitude but
we will not present this kind of calculations here. We are interested in the way ghosts
compensate our incorrect spin sum. Unwanted contributions arise at the squared ampli-
tude level and must be compensated by calculating the same squared amplitude, replac-
ing pairs of external gluons by pairs of ghosts. 7 The corrected squared amplitude that
we note |Mc|2 therefore reads

|Mc|2 = |M|2 − |Mg|2 − |M̄g|2, (7.71)

where |M|2 refers to the purely gluonic squared amplitude and Mg and M̄g are the two
ghost contributions that are presented in figure 7.12. Ghost squared amplitudes compen-
sate exactly the un-physical polarizations we introduced in the spin sum and we recover
the physical squared amplitude |Mc|2.

(a) iMg (b) iM̄g

Figure 7.12 – Ghost contributions to the squared amplitude for gg → tt̄ at tree-level in the Standard Model.
These diagrams have been generated using GRAFED, see section 2.5 for more details.

7. By construction, ghosts always appear in pairs in loops and external legs.

164

CHAPTER 7. SELECTION OF RESULTS

Results with MARTY

The full analytical calculation 8 can be found in chapter 7 of [137] and we compared
our results numerically with [35]. We used as numerical inputs the following Standard
Model values:

mt = 172.76 GeV,

gs =
√

4π · 0.1179,
(7.72)

where gs is the strong coupling constant.
The analytical results for the ghost contributions read in MARTY:

|Mg|2 =
3g4
s

32

s13s14

s2
12

, (7.73)

|M̄g|2 =
3g4
s

32

s23s24

s2
12

. (7.74)

The result for the gluon diagrams will not be written here as it is much longer. We calcu-
lated the total cross-section from the squared amplitudes |M|2, |Mg|2 and |M̄g|2 derived
by MARTY. Results are presented in figure 7.13. We note that un-physical polarizations
(present in the dashed red curve, removed by ghosts in the plain blue curve) lower the
integrated cross-section by 10% around the peak and are therefore not negligible. As
we previously discussed, the cross-section has indeed a peak in the LHC typical energy
range for incoming gluons. This peak has its maximum around 500 GeV where the cross-
section reaches 20 pb.

Figure 7.13 – Integrated cross-section for the process gg → tt̄ at tree-level in the Standard Model with (dashed
red line) only the gluon contributions and (blue plain line) gluon and ghosts contributions corresponding to the
final physical result.

8. A demonstration of this calculation together with all related material can be found on the website
<https://marty.in2p3.fr/publications.html>.

165

https://marty.in2p3.fr/publications.html

CHAPTER 7. SELECTION OF RESULTS

7.4 Wilson coefficients

In this section we present Wilson coefficient calculations that have been introduced
in section 6.5. These calculations are particularly relevant in flavor physics in which they
are used to decouple perturbative model-dependent contributions (Wilson coefficients)
from non-perturbative model-independent ones (matrix elements). In the following sev-
eral examples of 2- and 4-fermion operators in b → s transitions in the Standard Model
and the phenomenological Minimal Supersymmetric Standard Model [65] (pMSSM) are
presented.

7.4.1 Magnetic 2-fermion operators

Presentation

Effective 2-fermion operators for the b → s transition in the Standard Model Effective
Field Theory (SMEFT) are presented in figure 7.14. The amplitude for such processes is

(a) b → sγ operator (b) b → sg operator

Figure 7.14 – Effective b → s 2-fermion operators in the SMEFT. The interaction represented by ⊗ is generic
and does not assume any particular contribution. These diagrams have been generated using GRAFED, see
section 2.5 for more details.

in general composed of several contributions. In this section we will consider only the
magnetic dipole moment, namely for the photon

iMγ ∋ α · ǫµ(q) (s̄iσµνqνPXb) , (7.75)

with α a coefficient, q and ǫµ(q) respectively the momentum and polarization tensor of
the outgoing photon, PX ∈ {PL, PR} and

σµν =
i

2
[γµ, γν] . (7.76)

The tensor structure in equation 7.75 does not arise naturally when calculating naively
the amplitude. One has to apply Dirac equation to simplify σµνqν in the fermion current
and obtain new structures that depend only on pb, ps, γµ and PX . These new structures
can be identified with the result of the amplitude calculation.

For the gluon as outgoing boson the expression is similar simply adding the SU(3)
tensor coupling TA:

iMg ∋ α · ǫµ(q)
(

s̄iσµνqνPXT
Ab
)

. (7.77)

166

CHAPTER 7. SELECTION OF RESULTS

b → sγ and b → sg transitions are zero at tree-level in the SM. In general, there is no
Flavor Changing Neutral Current (FCNC) in the SM i.e. a neutral particle like γ, Z0 or h
that couples to two quarks of different flavors. Hence, such processes only appear at the
loop level and we will therefore present one-loop quantities in the following.

The muon anomalous magnetic moment The extraction of a coefficient such as the
one presented in equation 7.75 can also be used to calculate the so-called muon anoma-
lous magnetic moment (g−2)µ that presents small but significant experimental deviations
from the SM [60,138] (see section 1.2.3 for more details). This quantity is therefore of great
importance for BSM phenomenology. The calculation is the same as for b → sγ and one
calculates the coefficient β in the µ → µγ amplitude defined as

iM ∋ β · ǫµ(q) (µ̄iσµνqνµ) . (7.78)

Using the calculations that we present in the following for b → s transitions one can
calculate for example the leading contribution to (g − 2)µ, at the one-loop level and for
any BSM model using MARTY.

The effective Hamiltonian

Considering only top quark contributions for simplicity we define the effective Hamil-
tonian as [139]:

Heff ≡ −4GF√
2
V ∗
tsVtb

[

C7(µ)Q7 + C ′
7(µ)Q′

7 + C8(µ)Q8 + C ′
8(µ)Q′

8

]

, (7.79)

with µ an energy scale, GF the Fermi coupling constant defined through the relation

GF√
2

=
e2

8M2
W sin2 θW

, (7.80)

and operators Q(′)
7/8 defined by 9

〈sγ|Q(′)
7 |b〉 =

e

16π2
mbǫµ(q)s̄σµνqνPR(L)b, (7.81)

〈sγ|Q(′)
8 |b〉 =

e

16π2
mbǫµ(q)s̄σµνqνPR(L)T

Ab, (7.82)

with ǫµ(q) the polarization tensor of the photon in Q(′)
7 and the gluon in Q(′)

8 respectively.
After multiplying the amplitude by i, coefficients can simply be identified in the result

from the effective Hamiltonian expression using the operator definitions. In the following
the leading contributions at the weak scale, i.e. one-loop calculations of C(0)

7 (µ = MW)

and C(0)
8 (µ = MW), are presented.

9. We do not consider long distance effects and form factors in this definition, only the perturbative
quantities.

167

CHAPTER 7. SELECTION OF RESULTS

(a) WWt loop (b) ttW loop (c) GGt loop

(d) WGt loop (e) Gtt loop

Figure 7.15 – Some of the diagrams contributing to C
(′)
7 in the Standard Model using the Feynman gauge.

Counting separately tL and tR contributions there are in total 14 diagrams: 1 diagram of both types (a) and
(b) and 4 diagrams of types (c), (d) and (e). There are also 10 mass correction diagrams that do not contribute

to C
(′)
7 .These diagrams have been generated automatically by GRAFED, see section 2.5 for more details.

C7 in the SM

Diagrams contributing to C(′)
7 in the Standard Model are presented in figure 7.15. We

perform the calculation in the Feynman gauge, i.e with Goldstone boson G+ contribu-
tions and a simple W propagator

−igµν
p2 −M2

W

.

The calculation is done with on-shell massive quarks. The analytical result for C(0)
7 (MW)

that we obtain with MARTY reads

C
(0)
7 (MW) = −m2

s

2

(

CW1 + CW11 + CW12 + −2

3
Ct12

)

+M2
W

(

CW1 + −2

3
Ct11 + −CW12 + −2

3
Ct12 + −CW22

)

− m2
t

2

(

CW0 +
2

3
Ct0 + CW1 +

4

3
Ct1 + 2CW2

+
2

3
Ct11 + CW12 +

2

3
Ct12 + CW22

)

,

(7.83)

168

CHAPTER 7. SELECTION OF RESULTS

where integral functions have been defined as follows:

CtI ≡ CI(m
2
b ,m

2
s, 0,m

2
t ,M

2
W ,m

2
t),

CWI ≡ CI(m
2
b , 0,m

2
s,m

2
t ,M

2
W ,M

2
W),

(7.84)

with I representing any kind of indices. The m2
s contribution in equation 7.83 is usu-

ally neglected in the literature as m2
s ≪ m2

t ,M
2
W . For the numerical analysis we set the

following values for SM masses:

mb = 4.18 GeV,

ms = 95 MeV,

MW = 80.379 GeV.

(7.85)

The result of MARTY is plotted in figure 7.16 and has been validated using analytical ex-
pressions in [91].

Figure 7.16 – Numerical result for top quark contributions of C
(0)
7 (MW) as a function of the top quark mass

mt. The red cross indicates the SM value that is C
(0)
7 (MW) = 0.44 for mt = 173 GeV.

C8 in the SM

The diagram contributing to C(′)
8 in the Standard Model is presented in figure 7.17.

We perform this time the calculation in the unitary gauge, i.e without Goldstone boson
contributions and a modified W -propagator

−i
gµν − pµpν

M2
W

p2 −M2
W

.

The calculation is done with on-shell massive quarks and because of the modified W -
propagator we need to define

s12 ≡ pb · ps =
m2
b +m2

s

2
, (7.86)

169

CHAPTER 7. SELECTION OF RESULTS

Figure 7.17 – Only diagram contributing to C
(′)
8 in the Standard Model using the unitary gauge. There are

also 2 mass correction diagrams that do not contribute to C
(′)
8 . This diagram has been generated automatically

by GRAFED, see section 2.5 for more details.

where the exact expression is derived from 1 → 2 kinematics in the center of mass frame.
The analytical result for C(0)

8 (MW) that we obtain with MARTY reads

C
(0)
8 (MW) =

1

12
+ C00 + 3C002 −M2

W (C11 + C12)

− m2
t

2
(C0 + 2C1 + C2 + C11 + C12)

− s12(C2 + C12 + 2C22 + C122 + C222)

+
m2
b

2
(C2 + 2C12 + 2C22 + C112 + 2C122 + C222)

+
m2
s

2
(C2 + C12 + 2C22 + C222),

(7.87)

where integral functions have been defined as follows

CI ≡ CI(m
2
b ,m

2
s, 0,m

2
t ,M

2
W ,m

2
t), (7.88)

with I representing any kind of indices. One can see that there is now integral functions
with three indices such as C002 because the unitary gauge introduced more momenta
through the W -propagator. This represents a good test for MARTY as we already did the
calculation of C7 in the Feynman gauge. The result in the Feynman gauge would have
been expressed differently but would be mathematically equivalent. While we present
the unitary gauge for this calculation we do not recommend in general to use it as the
Feynman gauge is far more convenient for simplifications in MARTY.

The numerical result of MARTY for C(0)
8 (MW) is plotted in figure 7.18 and has been

validated using analytical expressions in [91].

170

CHAPTER 7. SELECTION OF RESULTS

Figure 7.18 – Numerical result for the top quark contribution of C
(0)
8 (MW) as a function of the top quark

mass mt. The red cross indicates the SM value that is C
(0)
8 (MW) = 0.236 for mt = 173 GeV.

C7 in the MSSM

The following example follows closely the section 6.2 of the main MARTY publica-
tion [83].

We consider in this example one of the supersymmetric contributions to C7 i.e. dia-
grams with stop and charginos shown in figure 7.19. We perform the calculation on-shell
in the Feynman-’t Hooft gauge. The fermion-flow reversal in the diagrams is due to
fermion-number violating interactions between charginos and SM fermions. At the end
of the calculation the fermion flow is regular but may get a sign due to charge conjuga-
tion matrix C which appears as we discussed in section 4.6. This sign must be correctly
derived to reproduce interference patterns between diagrams.

Figure 7.19 – Two types of contribution for C7 in the pMSSM, with stops t̃ and charginos χ̃. These diagrams
have been generated using GRAFED, see section 2.5 for more details.

Contributions to C7 come from chargino and stop loops and depend on two pMSSM
parameters: µ (a parameter of the Higgs super-potential) and M2 (the Wino mass). More

171

CHAPTER 7. SELECTION OF RESULTS

details on pMSSM parameters are given in [63]. The chargino mass matrix reads

Mχ =

(

0 XT

X 0

)

, (7.89)

with

X =

(

M2

√
2 sin βMW√

2 cosβMW µ

)

, (7.90)

β being the angle between the two Higgs doublets’ Vacuum Expectation Values (VEVs).
The stop squared mass matrix reads

M2
t̃ =

(

m2
Q3

+m2
t + ∆ũL v(A∗

t sin β − µyt cosβ)

v(At sin β − µ∗yt cosβ) m2
u3

+m2
t + ∆ũR

)

, (7.91)

where mQ3 and mu3 are soft supersymmetry breaking parameters, At is a trilinear cou-
pling, yt the top Yukawa and finally

∆ũL =

(
1

2
− 2

3
sin2 θW

)

cos(2β)M2
Z ,

∆ũR =
2

3
sin2 θW cos(2β)M2

Z .

(7.92)

The numerical values of SM and pMSSM parameters used to evaluate C7 are pre-
sented in table 7.1.

Parameter Value

MW 80.379 GeV
mb 4.18 GeV
ms 95 MeV
mt 173.34 GeV
At 500
mQ3 1000 GeV
mu3 1000 GeV
tan β 50
µ [−800, 800] GeV
M2 [−1000, 1000] GeV

Table 7.1 – Numerical values of supersymmetric and SM parameters used to evaluate C7. M2 and µ are varied
in the given ranges. Other pMSSM parameters are irrelevant for the calculation presented here.

The results are shown in figures 7.20 and 7.21. MARTY’s output is compared with the
analytical formula given in [140] and with SuperIso [90–93]. Numerical evaluations have
been done for two different spectra. This first one (figure 7.20) is a tree-level spectrum
computed by MARTY using GSL [141] for numerical diagonalization, and the result is com-
pared with the analytical formula in [140]. The second spectrum (figure 7.21) is calculated
by SOFTSUSY [142,143] with two-loop order corrections which are known to be important
for the charginos [63]. For this spectrum, we compare MARTY with the output of SuperIso.

172

CHAPTER 7. SELECTION OF RESULTS

Figure 7.20 – Results for C7 (chargino and stop contributions) in the pMSSM, from MARTY on the left and
from the analytical formula [140] on the right, using the spectrum generated by MARTY at tree-level. The results
match to four digits in average.

Figure 7.21 – Results for C7 (chargino and stop contributions) in the pMSSM, from MARTY one the left and
from the output of SuperIso [90–93] on the right, using the spectrum generated by SOFTSUSY [142,143] with
two-loop corrections. The results match to four digits in average.

7.4.2 4-fermions operators

Presentation

In this section we present the calculation of the Wilson coefficient of a 4-fermion oper-
ator in b → sµ+µ− transitions. These processes are important to describe in BSM scenar-
ios as experimental predictions show tensions with the SM [43–48]. The effective operator
describing such transitions is presented in figure 7.22.

173

CHAPTER 7. SELECTION OF RESULTS

Figure 7.22 – Effective operator for b → sµµ̄ transitions. The interaction represented by ⊗ is generic and does
not assume any particular contribution. This diagram has been generated using GRAFED, see section 2.5 for
more details.

C9 in the SM

The leading order of b → sµµ̄ is at one-loop with contributions from several diagrams.
We perform the calculation in the Feynman gauge. First, diagrams contributing to C7

such as those in figure 7.15 also contribute to C9 multiplying by the tree-level coupling
Aµµ̄. These contributions also exist replacing the photon by a Z-boson, the Goldstone
boson GZ or the Higgs boson h0. Considering only top quark contributions, there are
box diagrams as shown in figure 7.23 and mass corrections that are presented in figure
7.24.

(a) WW box (b) WG box

(c) GW box (d) GG box

Figure 7.23 – Box diagram contributions to C9 in the Standard Model in the Feynman gauge.These diagrams
have been generated automatically by GRAFED, see section 2.5 for more details.

One has some liberty when calculating the C9 Wilson coefficient and the muon mass
in particular can be set to zero. As the neutrino is massless, setting mµ = 0 means that
GZ and h0 contributions vanish because diagrams in figures 7.15 and 7.24 become pro-
portional to mµ or mνµ when replacing the photon by GZ or h0. Similarly, Goldstone

174

CHAPTER 7. SELECTION OF RESULTS

(a) b propagator corrected by W (b) b propagator corrected by G

Figure 7.24 – Mass corrections contributing to C9 in the SM in the Feynman gauge. Similar corrections to the
s external line must be considered. The photon A can be replaced by other bosonic mediators such as Z, GZ
and h0.These diagrams have been generated automatically by GRAFED, see section 2.5 for more details.

contributions in box diagrams vanish and one is left with three different types of contri-
butions: The box diagram involving two W -bosons, penguins and mass corrections with
a photon mediator and penguins and mass corrections with a Z-boson mediator.

Numerical values for parameters used in the calculation are the following:

MW = 80.379 GeV,

MZ = 91.188 GeV,

mb = 4.18 GeV,

ms = 95 MeV.

(7.93)

The results of MARTY’s calculations for the three contributions above as a function of the
top quark mass mt are presented in figure 7.25 and have been validated using analytical
expressions in [91].

Figure 7.25 – Results for C
(0)
9 (MW) in the Standard Model. The three types of contributions are plotted

as a function of the top quark mass mt together with the total contribution (blue plain line). A black cross

represents the SM value C
(0)
9 (MW) = −0.35 at mt = 173 GeV.

175

CHAPTER 7. SELECTION OF RESULTS

7.5 Performance

The calculations presented in this chapter require model building procedures for the
simple scenarios, symbolic calculations and simplifications, the automated library gen-
eration, the compilation of the generated libraries and finally the numerical evaluation
of the calculated quantities. 10 Each individual tree-level calculation presented in this
chapter takes typically a fraction of a second, and one-loop results require more time.
One-loop calculations and in particular the extraction of Wilson coefficients of 4-fermion
operators can take a time of the order of one or several minutes. Running the entire test
suite presented in this chapter, all the results presented above are derived in less than
3 min, without parallelization and on a standard laptop.

Besides being able to perform the general calculations at one-loop, MARTY performs
them in a very short time thanks to the C++ speed and a lot of work dedicated to make
CSL and MARTY as optimized as possible. When models become large, the number of
diagrams for one process together with the size of expressions in the calculations grow
very quickly and performance becomes crucial.

10. The numerical evaluation using the libraries generated by MARTY are done only for squared amplitude
and Wilson coefficient calculations.

176

CHAPTER8
Analytical results in NMFV-MSSM

8.1 Introduction

Analytical calculations in general BSM scenarios are a strong limitation to NP phe-
nomenology. This is even more pronounced considering the fact that loop-level calcu-
lations, which are very time-consuming, are required for many observables. This is in
particular the case in the MSSM in which loop-level analytical results are mostly known
in simplified scenarios but not in the general MSSM. Motivated by experimental ten-
sions with the Standard Model predictions from the LHC and Fermilab experiments, we
present the full one-loop analytical contributions of the general MSSM to Wilson coef-
ficients relevant for flavor anomalies, namely C7 and C9, together with the anomalous
muon magnetic dipole moment (g − 2)µ. The analytical results have been obtained with
MARTY with general mixings and we restricted the numerical analysis to a particular set
of Non-Minimal Flavor Violating (NMFV) MSSM scenarios.

While the Standard Model of particle physics predicts very well the majority of the
measurements done in particle colliders since several decades, there are experimental
tensions with the SM predictions in several channels as discussed in chapter 1. Here we
are particularly interested in

— The anomalous muon magnetic moment (g − 2)µ that measures the quantum cor-
rections to the tree-level relation of the coupling between the electromagnetic field
and the muon spin (gµ = 2 at tree-level).

— Flavor anomalies, in particular in b → sµ+µ− transitions. The b → sγ is also
phenomenologically motivated since it is well constrained experimentally.

In the following we present the full one-loop contributions to (g−2)µ and Wilson coef-
ficients relevant for the study of flavor anomalies in the general MSSM. Then, we present
the numerical evaluation of the analytical results obtained by MARTY in a particular set of
NMFV-MSSM scenarios.

177

CHAPTER 8. ANALYTICAL RESULTS IN NMFV-MSSM

8.1.1 (g − 2)µ

As explained in chapter 1, the anomalous magnetic dipole moment is parametrized
by aµ defined in the µ → µγ amplitude following

iM(µ → µγ) ∋ aµ
ie

4mµ
(µ̄σµνµ)Fµν , (8.1)

with mµ the muon mass, e the electromagnetic coupling constant and Fµν the photon
field strength that we define in momentum space as

Fµν ≡ i(pµǫν(p) −mνǫν(p)), (8.2)

where ǫµ is the photon polarization vector and p its momentum.
The combined experimental average for aµ is [60]

aEXPµ = 116 592 061(41) × 10−11, (8.3)

and the SM prediction is [61]

aSMµ = 116 591 810(43) × 10−11. (8.4)

The tension between experiments and the theoretical prediction is therefore

aEXPµ − aSMµ = (251 ± 59) × 10−11, (8.5)

that corresponds to a 4.2σ tension. 1

8.1.2 Flavor anomalies

Rare B-meson decays relying on the b → s transition at the parton level also present
large tensions with the SM, in particular in the muon sector (see e.g. [43–48]). These
tensions are persistent, consistent and could be the sign of Lepton Flavor Universality
Violation (LFUV). Theoretically, observables are described in terms of hadronic matrix
elements and Wilson coefficients. Matrix elements cannot be calculated perturbatively
because they contain long-distance effect from transitions between different hadronic
bound states but are model-independent. The BSM dependence is therefore contained
in the Wilson coefficients only, that can be calculated with perturbation theory.

A model-independent global fit of experimental data [144] with 20 Wilson coefficients
involved in b → s transitions presents two major features. In the b → sγ and b → sµ+µ−

transitions we define the Wilson coefficients C7 and C9 respectively following:

iM(b → sγ) ∋ +i
4GF√

2
VtbV

∗
ts

e

16π2
mbC7 (s̄σµνPRb)Fµν ,

iM(b → sµµ) ∋ +i
4GF√

2
VtbV

∗
ts

e2

16π2
Cµ9 (s̄γµPLb) (µ̄γµµ) ,

(8.6)

1. Considering the lattice QCD calculations [62], the tension is however substantially reduced.

178

CHAPTER 8. ANALYTICAL RESULTS IN NMFV-MSSM

with GF the Fermi coupling constant and Vij CKM elements. From the global fit we have
that the following corrections to C7 and C9:

δC7 = 0.05 ± 0.03 (CSM7 ≈ −0.3),

δCµ9 = −1.16 ± 0.17 (Cµ,SM9 ≈ 4.2),
(8.7)

would fit better the data than the SM. In particular, C7 must not acquire a large shift
because the b → sγ process is well constrained experimentally while a significant shift of
Cµ9 (from about 25%) is the main leverage we have to address flavor anomalies.

8.1.3 NMFV-MSSM scenarios

The general SUSY-breaking Lagrangian is (see the review [63] for more details):

Lsoft = − 1

2

(

M1B̃B̃ +M2W̃W̃ +M3g̃g̃ + c.c.
)

−
(

˜̄uauQ̃Hu − ˜̄dadQ̃Hd − ˜̄eaeL̃Hd + c.c.
)

− Q̃†
m

2
QQ̃− L̃†

m
2
LL̃− ˜̄um

2
ū

˜̄u† − ˜̄dm
2
d̄

˜̄d† − ˜̄em2
ē
˜̄e†

−m2
HuH

†
uHu −m2

Hd
H†
dHd − (bHuHd + c.c.) ,

(8.8)

and contains in total 105 free parameters:

— 3 Higgs parameters (m2
Hu
,m2

Hd
, b) that can be redefined more conventionally with

(M2
A, µ, tan β).

— 3 gaugino masses M1, M2 and M3.

— 54 trilinear couplings between Higgs (Hu and Hd) and sfermions in 3 general com-
plex 3 × 3 matrices au, ad and ae.

— 45 sfermion mass parameters in 5 hermitian matrices m
2
Q, m

2
ū, m

2
d̄

, m
2
L and m

2
ē .

We consider in the following scenarios without universality assumption at the GUT
scale. The pMSSM has 19 free parameters and forbids off-diagonal elements in SUSY-
breaking matrices for trilinear couplings and sfermion masses. Vanishing off-diagonal
elements for the 8 matrices defined above imply Minimal Flavor Violation (MFV), i.e.
flavor violation only caused by the Standard Model Yukawa couplings. In this kind of
scenarios such as the pMSSM, analytical calculations have been performed for several
one-loop quantities such as C7, C9 [145] and (g − 2)µ [146].

In NMFV scenarios however, some calculations have been performed at the one-loop
level (see e.g. [147]) but the general contributions to C7, C9 and (g−2)µ are not known. In
the following sections we present the methods that we used to derive analytically these
quantities in the general MSSM with 105 parameters, together with their evaluation in a
particular subset of NMFV scenarios with 42 parameters.

179

CHAPTER 8. ANALYTICAL RESULTS IN NMFV-MSSM

8.2 Methods

8.2.1 Theoretical calculations

In figure 8.1 examples of Feynman diagrams contributing to (g − 2)µ, C7 and Cµ9 in
the general MSSM are presented.

(a) χ̃+ penguins in (g − 2)µ (b) χ̃0/g̃ penguins in C7 and
C9

(c) χ̃0 boxes in Cµ9

Figure 8.1 – Examples of contributions in NMFV-MSSM scenarios. Only a selection is presented, other chargino,
neutralino and Higgs diagrams also contribute to C7, C9 and (g − 2)µ.

In order to derive the full one-loop NMFV contributions toC7, Cµ9 and (g−2)µ, a large
number of Feynman diagrams must be calculated. We performed the analytical calcula-
tion in the unconstrained MSSM with general mixings. This means that diagrams must
be summed over all particle families: 2 charginos χ̃+

1,2, 4 neutralinos χ̃0
1,2,3,4, 6 sleptons

l̃1,2,3,4,5,6, 6 up squarks ũ1,2,3,4,5,6, 6 down squarks d̃1,2,3,4,5,6 and 3 sneutrinos ν̃1,2,3. For
the diagram shown in figure 8.1c for example, there are 4 × 4 × 6 × 6 × 2 = 1152 indepen-
dent diagrams, where the factor of 2 comes from the two possible contractions for any
given ordered pair of neutralinos (counting the crossed diagrams).

We used MARTY to calculate automatically all the involved Feynman diagrams and
extract the coefficients (g−2)µ, C7 andCµ9 . The number of diagrams for each contribution
is presented in table 8.1. As MARTY counts left and right Dirac projectors PL and PR as
independent vertices, the number of diagrams is larger that what a standard counting
method would imply.

χ̃+
i χ̃0

i g̃ H+ H0, A0

(g − 2)µ 96 96 0 1 2

C7 240 96∗ 24∗ 24 0

C9/γ−penguins 240 96∗ 24∗ 24 0

C9/Z−penguins 624 1344∗ 240∗ 78 0

C9/boxes 864 13824∗ 0 12 0

Table 8.1 – Number of diagrams for each contribution calculated by MARTY. NMFV-specific contributions are
the starred orange numbers. By definition, C7 and (g−2)µ only receive contributions from γ-penguin diagrams.
There are in total 17949 Feynman diagrams.

180

CHAPTER 8. ANALYTICAL RESULTS IN NMFV-MSSM

8.2.2 Numerical evaluation

The mathematical expressions resulting from the sum of thousands of one-loop di-
agrams are too large for any analytical purpose. In order to obtain predictions, MARTY
generates a numerical C++ library containing functions evaluating the results given a
general MSSM scenario. From a set of values for the SUSY-breaking parameters pre-
sented in equation 8.8, we are therefore able to evaluate the exact values of C7, Cµ9 and
(g − 2)µ at the one-loop level in the library generated by MARTY.

While MARTY also generates a tree-level spectrum generator to calculate masses and
mixings from the initial model parameters, loop corrections are known to be large and
we therefore use SPheno [77, 78] to produce a more precise spectrum including loop-
level corrections and phenomenological constraints. Finally, the values of the Wilson
coefficients are given to SuperIso [90–93] to apply Renormalization Group Equations
and evolve the coefficients down to the b mass scale. This allows us to compare our
results to standard analyses such as [144] that consider the Wilson coefficients at the scale
of B-meson decays, i.e. µ = mb.

8.2.3 Random scan

To sample the MSSM parameter space, we used a random scan in 42 dimensions
with NMFV only in the squark sector to reduce the number of free parameters. Input
parameter ranges are presented in table 8.2.

Parameter Scanned range

tan β [2, 60]
µ [−100, 1000] GeV

M1,M2 [100, 3000] GeV
M3 [100, 7000] GeV
MA [100, 5000] GeV

(m2
Q)ii [102, 107] GeV2

(m2
ū)ii [102, 107] GeV2

(m2
d̄
)ii [102, 107] GeV2

(m2
L)ii [102, 106] GeV2

(m2
ē)ii [102, 105] GeV2

Parameter Scanned range

(ae)33 [−100, 100] GeV
(au/d)11 [−0.1, 0.1] GeV

(au/d)22 [100, 100] GeV

(au/d)33 [10−4, 104] GeV

(m2
Q)23 [0, 103] GeV2

(m2
d̄
)23 [0, 103] GeV2

(au)ij , i 6= j [−100, 100] GeV
(ad)ij , i 6= j [−100, 100] GeV

Table 8.2 – Input parameters for the random scan. Specific ranges have been chosen empirically to improve
the scan efficiency. There are in total 42 free parameters, which include the 19 pMSSM parameters and 14
flavor violating parameters (m2

Q)23, (m2
d̄
)23, (au)ij and (ad)ij for i 6= j.

The scan efficiency is of about 0.05%, corresponding to physical scenarios for which
SPheno can calculate a spectrum. For such a low efficiency there is a large bias in the
selected scenarios. Consequently, we also present some posterior distributions for ele-
ments of the spectrum in figure 8.2. The scan could be refined with better constraints
on the input parameters to improve the efficiency. The following analysis is therefore
more a proof of principle rather than a complete phenomenological study of the MSSM
parameter space. There are two visible biases in the posterior distributions of spectrum

181

CHAPTER 8. ANALYTICAL RESULTS IN NMFV-MSSM

Figure 8.2 – Posterior distributions for gaugino, squark and slepton masses. For particle families, the distribution
corresponds to the lightest particle of the family. Chargino and gluino mass distributions extend up to 3 TeV
and 7 TeV respectively.

parameters:

— Charged sleptons are lighter than sneutrinos because the range for m2
ē is smaller

than the one of m2
L. In particular, charged sleptons have masses around 100 GeV

while sneutrinos are at the TeV scale.

— The lightest neutralino is always lighter that 400 GeV contrary to the lightest chargino.
This is because we impose the condition to have a neutral Lightest Supersymmetric
Particle (LSP) to be a dark matter candidate.

To improve the scan efficiency, we considered machine learning techniques to sample
the parameter space. The purpose of these techniques is to create a sampling bias towards
scenarios that generate valid scenarios, that therefore improves the scan efficiency. How-
ever, while these techniques can be implemented without much difficulty for the pMSSM
with 19 parameters, the 43-dimensional space of the NMFV scenarios we present in this
paper is too large for the machine learning-based sampling to be established. Indeed, in
the absence of prior knowledge on the distribution of valid parameters, and because of
the high number of dimensions, no efficient sampler can be constructed with the consid-
ered techniques such as Normalizing Flows or Hamiltonian Monte Carlo samplers.

8.3 Results

Using as input the NMFV-MSSM spectra obtained with SPheno, the numerical func-
tions generated by MARTY evaluate the full 1-loop contributions to C7, Cµ9 and (g−2)µ. As
the scan is random, we show distributions for the different quantities that we calculated
for the 70282 different scenarios. In the following, independent analyses of the Wilson
coefficients and (g − 2)µ are presented. Then, the relation between these two sectors will
be discussed.

8.3.1 Wilson coefficients

The distributions for the 1-loop contributions to the Wilson coefficients C7 and Cµ9 are
presented in figure 8.3. Both distributions are centered around zero as expected. While

182

CHAPTER 8. ANALYTICAL RESULTS IN NMFV-MSSM

Figure 8.3 – Distribution of the Wilson coefficients δC7 and δCµ9 at the b mass scale. 1σ best fit regions
from [144] are shown in orange.

the majority of δC7 points are close to zero and the best fit region, many scenarios are
already excluded because of a large shift to this coefficient. The analysis for δCµ9 is differ-
ent as the best fit region is shifted by −1 from the SM value. While it possible to obtain
substantial C9 shifts in our scenarios, only a handful of them predict δCµ9 < 0.2.

It is important to note that the best fit region for Cµ9 must not be considered as a dis-
criminant criterion. First, the best fit depends on the set of coefficients that are considered
as free parameters. Then, any scenario between the SM and the best fit can still fit better
flavor observables and should be carefully considered.

A 2D distribution of (δC7, δC
µ
9) is presented in figure 8.4. It is clear that the constraint

on δC7 exclude several scenarios with δCµ9 < −0.15. It seems possible to address both
coefficients but a larger data set is required to explore the region with large negative δC9.

Figure 8.4 – Combined distribution of the Wilson coefficients δC7 and δCµ9 at the b mass scale. The best fit
region for δC7 is shown in green.

183

CHAPTER 8. ANALYTICAL RESULTS IN NMFV-MSSM

8.3.2 (g − 2)µ

While our present analysis does not strictly consider NMFV parameters in the lepton
sector 2 as discussed in table 8.2, the numerical results for (g − 2)µ are presented in the
following. The mass distribution for charged sleptons is around the electroweak scale,
i.e. a few hundred GeV (see figure 8.2). This implies significant contributions to (g − 2)µ
that are shown in figure 8.5. As the experimental deviation is very small, it is not hard
to address (g − 2)µ alone. The next section presents the relation between the results for
(g − 2)µ and Wilson coefficients.

Figure 8.5 – Distribution of δ(g− 2)µ. Only scenarios with a positive shift are considered and the experimental
measurement with its 1σ uncertainty is shown in orange.

8.4 Combined analysis

As shown in figure 8.1, the lepton and quark sectors are sensitive to the neutralino and
chargino mass scales. However, while there are sleptons contributions in box diagrams
for Cµ9 , these contributions are small and the latter coefficient is almost independent of
the slepton masses. Figure 8.6 shows the dependence of (g − 2)µ and Cµ9 with respect to
the relative slepton mass scale. 3

This analysis shows that by rescaling the slepton masses (charged sleptons and sneu-
trinos), one can shift the value of (g − 2)µ and let Wilson coefficients C7 and Cµ9 stable.
It is therefore possible to search for a scenario that fits well flavor observables and adjust
the slepton mass scale to address (g − 2)µ.

2. There is no limitation for NMFV in the lepton sector, this choice has been made to reduce the
number of free parameters and concentrate on flavor observables that are more difficult to address because
of the Cµ9 shift.

3. C7 is completely independent of the slepton sector.

184

CHAPTER 8. ANALYTICAL RESULTS IN NMFV-MSSM

Figure 8.6 – Decoupling between Wilson coefficients and (g − 2)µ through slepton mass adjustment. The
evolution of the relative mean absolute value of C9 and (g− 2)µ for the entire data set is plotted as a function
of the relative slepton mass scale. The initial, non-modified data set corresponds to the point at (1, 1).

8.5 Discussion

We presented the full 1-loop analytical contributions in the general MSSM to (g −
2)µ, C7 and Cµ9 that we obtained using MARTY. By scanning the MSSM parameter space
randomly by setting non-zero values for flavor violating parameters, we obtained using
SPheno 70282 scenarios with their individual spectra. In these scenarios we showed that
Cµ9 can be shifted towards the best fit region given in [144] but that we have only a few
points that shift Cµ9 in the favored direction and let C7 close to the SM prediction. Then,
we discussed the scaling of (g− 2)µ with the slepton mass scale that allows us to address
(g − 2)µ without modifying the predictions for flavor observables.

The present analysis is limited by the small sample of scenarios, i.e. 70282 model
points. As a perspective, the scan should be optimized by searching a parameter set that
is more likely to produce physical scenarios. In particular, by looking at the posterior dis-
tributions of the input parameters it is possible to refine the scan, improve the efficiency
and generate more scenarios to analyse. Finally, experimental constraints could be stud-
ied to compare the obtained spectra with direct searches of SUSY particles, in particular
from LHC measurements.

While the analysis in itself is not exhaustive and requires more statistics and phe-
nomenological studies, the method that we presented is very promising for general BSM
phenomenology. The procedure is completely model-independent and in particular MARTY
is not limited to SUSY models or the quantities that we have evaluated. Furthermore,
NMFV-MSSM scenarios generate a very large number of diverse contributions as pre-
sented in table 8.1. The fact the MARTY is able to handle this scenario proves that it can in
practice be used in a large variety of BSM models for phenomenological one-loop analy-
ses in many distinct domains of particle physics.

185

CHAPTER 8. ANALYTICAL RESULTS IN NMFV-MSSM

186

Conclusion

In this final chapter we first sum up the main project achievements through a re-
minder of what MARTY can bring to the high energy physics community. Then, we wrap-
up this manuscript by introducing the ongoing projects that use MARTY for BSM phe-
nomenology and the development perspectives that could make this tool even more gen-
eral for elementary particle physics purposes.

MARTY, an innovation

MARTY is a general-purpose symbolic manipulation program, published under the
terms of the GNU GPLv3 license, automating theoretical calculations from the Lagrangian
for BSM scenarios. MARTY is specialized for analytical theoretical calculations from the
Lagrangian and provide automated procedures to calculate amplitudes, squared ampli-
tudes and Wilson coefficients for general BSM scenarios at tree-level and one-loop.

Such a level of generality has never been reached before, especially when considering
the fact that MARTY is written in C++, relies only on the C++ standard library 4 and does
not require a commercial software such as Mathematica [68]. Examples of results have
been presented in chapter 7 to demonstrate the ability of MARTY to fulfill its requirements.
This software program is the very first code for BSM phenomenology that provides all
theoretical tools to go from the Lagrangian to fully simplified one-loop quantities. This
generality makes MARTY very useful for all domains of particle physics such as dark mat-
ter, Higgs physics or precision physics for example, which all rely on theoretical one-loop
calculations from the Lagrangian. While all the results presented in chapter 7 are derived
in less than 3 min by MARTY and not limited to the SM or the MSSM, similar calculations
in new scenarios could take weeks, months or years to perform by hand. This makes
programs such as MARTY absolutely necessary for general BSM studies.

In addition, MARTY can derive Wilson coefficients for general BSM scenarios at the
one-loop level. The latter feature was up to now lacking in existing codes that are usually
specialized for specific scenarios such as SUSY models. Therefore, MARTY is also a solution
to systematize analyses of BSM scenarios in flavor physics, in particular with respect to
the flavor anomalies. In the last chapter we presented a new result in NMFV-MSSM
scenarios in which we used MARTY to calculate (g − 2)µ and Wilson coefficients at the
one-loop level.

MARTY is composed of three main C++ modules:

CSL is the C++ Symbolic computation Library and is dedicated to the manipulation
of general mathematical expressions in the program. We presented CSL in chapter 2.

4. At the numerical level, i.e. in C++ libraries that MARTY generates automatically, one-loop quantities
require the C / Fortran LoopTools [73] library for the evaluation of integrals. However, MARTY itself does
not need it to generate fully simplified analytical results.

187

CHAPTER 8. ANALYTICAL RESULTS IN NMFV-MSSM

GRAFED is a Generating and Rendering Application for FEynman Diagrams allow-
ing MARTY to display automatically diagrams on the screen and users to create cus-
tom ones. We presented GRAFED in section 2.5.

The physics core of MARTY. It relies on CSL to manipulate general mathematical ex-
pressions and contains all the physics implementations for quantum fields, high
energy physics models, group theory and calculations that we described respec-
tively in chapters 3, 4, 5 and 6.

MARTY as a C++ software development project is large. It represents about 170 000 lines
distributed in around 450 source files. Together with all this code, we released the doc-
umentation of CSL and MARTY under the form of Doxygen-generated [148] HTML docu-
ments and more than 300 pages of user manual. All of this material, the code and related
publications can be found on the website <https://marty.in2p3/fr>. Furthermore, as
we demonstrated through sample codes all along this thesis the user interface is minimal
and does not require a broad knowledge of C++ to be used.

Ongoing projects

Several projects are already ongoing using MARTY as an automated tool for BSM phe-
nomenology. As stated in chapter 1, MARTY can be applied in all domains of particle
physics phenomenology. The ongoing projects based on MARTY belong to very different
domains such as leptogenesis [149], dark matter and flavor physics.

In a first project [150], we aim to study the impact of a dark U(1)D sector on leptoge-
nesis and baryonic asymmetry such as described for example in [151]. Some of these sce-
narios include fermion-number violating interactions that were presented in section 4.6.

In a second project [152], we are interested in the dark matter relic density that can
be calculated by SuperIso Relic [94–96] from squared amplitude expressions, in SUSY
and general non-SUSY BSM models.

Finally, observables relevant for flavor anomalies will be obtained [153] in several
BSM scenarios such as NMFV-MSSM [63] and leptoquark models [55]. This will allow us
to derive the associated flavor observables with SuperIso [90–93] and confront them to
the data.

Development perspectives

MARTY has some limitations but can be extended beyond its present scope especially
thanks to its independence and generality. Let us consider the example of particle types.
For now only spins 0, 1/2 and 1 can be described in MARTY. One can nevertheless imple-
ment the relevant definitions for spin 3/2 [154] and 2 [155] particles without having to
change the way MARTY describes other fields (see figure 3.2). Similarly, while we focused
on quantum field theory in a 4D Minkowski space-time for simplicity nothing prevents
a developer to also implement new relations for extra-dimensions phenomenology [156]
without having to change the way MARTY works in general.

MARTY can be improved in several aspects and in particular at the numerical level. As
we mentioned above, NLO-specific relations are not automated and one can simply ac-
cess bare tree-level and one-loop quantities. One could implement such relations without

188

https://marty.in2p3/fr

CHAPTER 8. ANALYTICAL RESULTS IN NMFV-MSSM

entering in MARTY’s source code as it requires only to define appropriate generic counter-
terms and find proper combinations of tree-level and one-loop results to obtain the final
NLO quantity [29].

Finally, interfaces with other computer programs would be a great improvement. For
example, a C++ program reading input model files of commonly used Mathematica pack-
ages such as FeynRules [69] or SARAH [76] would be a great help for users.

Final word

As it is an open-source C++ program, independent of any other external package,
well-documented and fully general, we think that MARTY is excellent to be carried on
by the high energy physics community for BSM theory and phenomenology. In return,
MARTY would benefit from a joint effort from this community to make it even more gen-
eral and interfaced with codes on the phenomenology sides as it was suggested in the
introduction in figure 1.13.

189

CHAPTER 8. ANALYTICAL RESULTS IN NMFV-MSSM

190

Bibliography

[1] MissMJ and Cush, “Standard Model of Elementary Particles.”
https://en.wikipedia.org/wiki/File:

Standard_Model_of_Elementary_Particles.svg, 2019.

[2] J.J. Thomson, XL. Cathode Rays, The London, Edinburgh, and Dublin Philosophical
Magazine and Journal of Science 44 (1897) 293.

[3] R. Frederick and C.C. L., The Neutrino, Nature 178 (1956) 446.

[4] A. Salam and J.C. Ward, Weak and electromagnetic interactions, Il Nuovo Cimento 11

(1959) 568.

[5] P.W. Higgs, Broken Symmetries and the Masses of Gauge Bosons, Physical Review
Letters 13 (1964) 508.

[6] F. Englert and R. Brout, Broken Symmetry and the Mass of Gauge Vector Mesons, Phys.
Rev. Lett. 13 (1964) 321.

[7] G. Arnison et al., Experimental observation of lepton pairs of invariant mass around 95
GeV/c2 at the CERN SPS collider, Physics Letters B 126 (1983) 398.

[8] S. Weinberg, A Model of Leptons, Physical Review Letters 19 (1967) 1264.

[9] E.D. Bloom et al., High-Energy Inelastic e− p Scattering at 6° and 10°, Phys. Rev. Lett.
23 (1969) 930.

[10] M. Breidenbach et al., Observed Behavior of Highly Inelastic Electron-Proton
Scattering, Phys. Rev. Lett. 23 (1969) 935.

[11] D.P. Barber et al., Discovery of three-jet events and a test of quantum chromodynamics at
petra, Phys. Rev. Lett. 43 (1979) 830.

[12] M. Kobayashi and T. Maskawa, CP-Violation in the Renormalizable Theory of Weak
Interaction, Progress of Theoretical Physics 49 (1973) 652.

[13] J.J. Aubert et al., Experimental Observation of a Heavy Particle J , Phys. Rev. Lett. 33

(1974) 1404.

[14] J.E. Augustin et al., Discovery of a Narrow Resonance in e+e− Annihilation, Phys. Rev.
Lett. 33 (1974) 1406.

[15] M.L. Perl et al., Evidence for Anomalous Lepton Production in e+ − e− Annihilation,
Phys. Rev. Lett. 35 (1975) 1489.

[16] CDF collaboration, Observation of Top Quark Production in pp Collisions with the
Collider Detector at Fermilab, Phys. Rev. Lett. 74 (1995) 2626.

[17] D0 collaboration, Observation of the Top Quark, Phys. Rev. Lett. 74 (1995) 2632.

[18] CMS Collaboration, Observation of a new boson at a mass of 125 GeV with the CMS
experiment at the LHC, Physics Letters B 716 (2012) 30.

191

https://en.wikipedia.org/wiki/File:Standard_Model_of_Elementary_Particles.svg
https://en.wikipedia.org/wiki/File:Standard_Model_of_Elementary_Particles.svg
https://doi.org/10.1080/14786449708621070
https://doi.org/10.1080/14786449708621070
https://doi.org/10.1038/178446a0
https://doi.org/10.1007/BF02726525
https://doi.org/10.1007/BF02726525
https://doi.org/10.1103/PhysRevLett.13.508
https://doi.org/10.1103/PhysRevLett.13.508
https://doi.org/10.1103/PhysRevLett.13.321
https://doi.org/10.1103/PhysRevLett.13.321
https://doi.org/https://doi.org/10.1016/0370-2693(83)90188-0
https://doi.org/10.1103/PhysRevLett.19.1264
https://doi.org/10.1103/PhysRevLett.23.930
https://doi.org/10.1103/PhysRevLett.23.930
https://doi.org/10.1103/PhysRevLett.23.935
https://doi.org/10.1103/PhysRevLett.43.830
https://doi.org/10.1143/PTP.49.652
https://doi.org/10.1103/PhysRevLett.33.1404
https://doi.org/10.1103/PhysRevLett.33.1404
https://doi.org/10.1103/PhysRevLett.33.1406
https://doi.org/10.1103/PhysRevLett.33.1406
https://doi.org/10.1103/PhysRevLett.35.1489
https://doi.org/10.1103/PhysRevLett.74.2626
https://doi.org/10.1103/PhysRevLett.74.2632
https://doi.org/https://doi.org/10.1016/j.physletb.2012.08.021

BIBLIOGRAPHY

[19] ATLAS Collaboration, Observation of a new particle in the search for the Standard
Model Higgs boson with the ATLAS detector at the LHC, Physics Letters B 716 (2012) 1.

[20] K.G. Wilson, Confinement of Quarks, Phys. Rev. D 10 (1974) 2445.

[21] M.B. Green and J.H. Schwarz, Anomaly Cancellation in Supersymmetric D=10 Gauge
Theory and Superstring Theory, Phys. Lett. B 149 (1984) 117.

[22] A.M. Polyakov, Fine Structure of Strings, Nucl. Phys. B 268 (1986) 406.

[23] M.B. Green, J.H. Schwarz and E. Witten, Superstring Theory. Vol. 1: Introduction,
Cambridge Monographs on Mathematical Physics (Jul, 1988).

[24] L. Smolin, An invitation to quantum loop gravity, World Scientific (Oct, 2004),
10.1142/9789812702340_0078, [hep-th/0408048].

[25] C. Rovelli, Loop Quantum Gravity, Living Reviews in Relativity 1 (1998) .

[26] C. Cohen-Tannoudji, B. Diu and F. Laloë, Quantum mechanics; 1st ed, Wiley, New
York, NY (1977).

[27] R.P. Feynman, Quantum electrodynamics, Frontiers in Physics (1962) .

[28] W. Marciano and H. Pagels, Quantum chromodynamics, Physics Reports 36 (1978)
137.

[29] M.D. Schwartz, Quantum Field Theory and the Standard Model, Cambridge
University Press (Mar, 2014).

[30] S. Weinberg, The Quantum theory of fields. Vol. 1: Foundations, Cambridge
University Press (Jun, 2005).

[31] S. Weinberg, The quantum theory of fields. Vol. 2: Modern applications, Cambridge
University Press (Aug, 2013).

[32] S. Weinberg, The quantum theory of fields. Vol. 3: Supersymmetry, Cambridge
University Press (Jun, 2013).

[33] K.S. Hirata et al., Observation of a small atmospheric vµ/ve ratio in Kamiokande, Physics
Letters B 280 (1992) 146.

[34] Y. Fukuda et al., Evidence for Oscillation of Atmospheric Neutrinos, Physical Review
Letters 81 (1998) 1562–1567.

[35] PARTICLE DATA GROUP collaboration, Review of Particle Physics, PTEP 2020 (2020)
083C01.

[36] WMAP collaboration, First year Wilkinson Microwave Anisotropy Probe (WMAP)
observations: Preliminary maps and basic results, Astrophys. J. Suppl. 148 (2003) 1
[astro-ph/0302207].

[37] WMAP collaboration, Wilkinson Microwave Anisotropy Probe (WMAP) three year
results: implications for cosmology, Astrophys. J. Suppl. 170 (2007) 377
[astro-ph/0603449].

[38] WMAP collaboration, Five-Year Wilkinson Microwave Anisotropy Probe (WMAP)
Observations: Cosmological Interpretation, Astrophys. J. Suppl. 180 (2009) 330
[0803.0547].

192

https://doi.org/https://doi.org/10.1016/j.physletb.2012.08.020
https://doi.org/10.1103/PhysRevD.10.2445
https://doi.org/10.1016/0370-2693(84)91565-X
https://doi.org/10.1016/0550-3213(86)90162-8
https://doi.org/10.1142/9789812702340_0078
https://arxiv.org/abs/hep-th/0408048
https://doi.org/10.12942/lrr-1998-1
https://doi.org/10.1103/physrevlett.81.1562
https://doi.org/10.1103/physrevlett.81.1562
https://doi.org/10.1093/ptep/ptaa104
https://doi.org/10.1093/ptep/ptaa104
https://doi.org/10.1086/377253
https://arxiv.org/abs/astro-ph/0302207
https://doi.org/10.1086/513700
https://arxiv.org/abs/astro-ph/0603449
https://doi.org/10.1088/0067-0049/180/2/330
https://arxiv.org/abs/0803.0547

BIBLIOGRAPHY

[39] WMAP collaboration, Seven-Year Wilkinson Microwave Anisotropy Probe (WMAP)
Observations: Cosmological Interpretation, Astrophys. J. Suppl. 192 (2011) 18
[1001.4538].

[40] WMAP collaboration, Nine-Year Wilkinson Microwave Anisotropy Probe (WMAP)
Observations: Cosmological Parameter Results, Astrophys. J. Suppl. 208 (2013) 19
[1212.5226].

[41] PLANCK collaboration, Planck 2013 results. XVI. Cosmological parameters, Astron.
Astrophys. 571 (2014) A16 [1303.5076].

[42] PLANCK collaboration, Planck 2015 results. XIII. Cosmological parameters, Astron.
Astrophys. 594 (2016) A13 [1502.01589].

[43] R. Aaij et al., Measurement of Form-Factor-Independent Observables in the Decay
B0 → K∗0µ+µ−, Physical Review Letters 111 (2013) .

[44] R. Aaij et al., Angular analysis of the B0 → K∗0µ+µ−-decay using 3 fb-1 of integrated
luminosity, Journal of High Energy Physics 2016 (2016) .

[45] R. Aaij et al., Test of lepton universality with B0 → K∗0ℓ+ℓ−-decays, Journal of High
Energy Physics 2017 (2017) .

[46] R. Aaij et al., Measurement of CP-Averaged Observables in the B0 → K∗0µ+µ−-Decay,
Physical Review Letters 125 (2020) .

[47] LHCB collaboration, Test of lepton universality in beauty-quark decays, 2103.11769.

[48] LHCB collaboration, Branching fraction measurements of the rare B0
s → φµ+µ− and

B0
s → f ′

2(1525)µ+µ− decays, 2105.14007.

[49] P. Langacker, The Physics of Heavy Z’ Gauge Bosons, Rev. Mod. Phys. 81 (2009) 1199
[0801.1345].

[50] A.J. Buras and J. Girrbach, Left-handed Z’ and Z FCNC quark couplings facing new
b → sµ+µ− data, Journal of High Energy Physics 2013 (2013) .

[51] B.C. Allanach, J.M. Butterworth and T. Corbett, Collider constraints on Z’ models for
neutral current B-anomalies, Journal of High Energy Physics 2019 (2019) .

[52] D. Marzocca, Addressing the B-physics anomalies in a fundamental Composite Higgs
model, Journal of High Energy Physics 2018 (2018) .

[53] M. Chala and M. Spannowsky, Behavior of composite resonances breaking lepton flavor
universality, Physical Review D 98 (2018) .

[54] A. Carmona and F. Goertz, Recent B physics anomalies: a first hint for compositeness?,
The European Physical Journal C 78 (2018) .

[55] W. Buchmuller, R. Ruckl and D. Wyler, Leptoquarks in Lepton - Quark Collisions,
Phys. Lett. B 191 (1987) 442.

[56] A.J. Buras, J. Girrbach-Noe, C. Niehoff and D.M. Straub, B → K(∗)νν̄ decays in the
Standard Model and beyond, 1409.4557.

[57] J. Fuentes-Martín et al., Vector leptoquarks beyond tree level, Physical Review D 101

(2020) .

[58] J. Fuentes-Martín et al., Vector leptoquarks beyond tree level. II. O(αs) corrections and
radial modes, Physical Review D 102 (2020) .

193

https://doi.org/10.1088/0067-0049/192/2/18
https://arxiv.org/abs/1001.4538
https://doi.org/10.1088/0067-0049/208/2/19
https://arxiv.org/abs/1212.5226
https://doi.org/10.1051/0004-6361/201321591
https://doi.org/10.1051/0004-6361/201321591
https://arxiv.org/abs/1303.5076
https://doi.org/10.1051/0004-6361/201525830
https://doi.org/10.1051/0004-6361/201525830
https://arxiv.org/abs/1502.01589
https://doi.org/10.1103/physrevlett.111.191801
https://doi.org/10.1007/jhep02(2016)104
https://doi.org/10.1007/jhep08(2017)055
https://doi.org/10.1007/jhep08(2017)055
https://doi.org/10.1103/physrevlett.125.011802
https://arxiv.org/abs/2103.11769
https://arxiv.org/abs/2105.14007
https://doi.org/10.1103/RevModPhys.81.1199
https://arxiv.org/abs/0801.1345
https://doi.org/10.1007/jhep12(2013)009
https://doi.org/10.1007/jhep08(2019)106
https://doi.org/10.1007/jhep07(2018)121
https://doi.org/10.1103/physrevd.98.035010
https://doi.org/10.1140/epjc/s10052-018-6437-1
https://doi.org/10.1016/0370-2693(87)90637-X
https://arxiv.org/abs/1409.4557
https://doi.org/10.1103/physrevd.101.035024
https://doi.org/10.1103/physrevd.101.035024
https://doi.org/10.1103/physrevd.102.035021

BIBLIOGRAPHY

[59] J. Fuentes-Martín et al., Vector leptoquarks beyond tree level. III. Vectorlike fermions and
flavor-changing transitions, Physical Review D 102 (2020) .

[60] MUON g − 2 COLLABORATION collaboration, Measurement of the Positive Muon
Anomalous Magnetic Moment to 0.46 ppm, Phys. Rev. Lett. 126 (2021) 141801.

[61] T.o. Aoyama, The anomalous magnetic moment of the muon in the Standard Model,
Phys. Rept. 887 (2020) 1 [2006.04822].

[62] S. Borsanyi et al., Leading hadronic contribution to the muon magnetic moment from
lattice qcd, Nature 593 (2021) 51–55.

[63] S.P. Martin, A supersymmetry primer, Advanced Series on Directions in High Energy
Physics (1998) 1–98.

[64] M. Drees, R. Godbole and P. Roy, Theory and phenomenology of sparticles: An account
of four-dimensional N=1 supersymmetry in high energy physics, World Scientific
Publishing Co. Pte. Ltd. (2004), 10.1142/4001.

[65] MSSM WORKING GROUP collaboration, The Minimal supersymmetric standard
model: Group summary report, in GDR (Groupement De Recherche) - Supersymetrie,
Dec, 1998 [hep-ph/9901246].

[66] P. Binetruy, Supersymmetry: Theory, experiment and cosmology, OUP Oxford (2006).

[67] R. Contino, The Higgs as a Composite Nambu-Goldstone Boson, 1005.4269.

[68] Wolfram Research, Inc., “Mathematica, Version 12.1.”
https://www.wolfram.com/mathematica.

[69] A. Alloul et al., FeynRules 2.0 - A complete toolbox for tree-level phenomenology,
Comput. Phys. Commun. 185 (2014) 2250 [1310.1921].

[70] C. Degrande, Automatic evaluation of UV and R2 terms for beyond the Standard Model
Lagrangians: a proof-of-principle, Comput. Phys. Commun. 197 (2015) 239 [1406.3030].

[71] C. Degrande et al., UFO - The Universal FeynRules Output, Comput. Phys. Commun.
183 (2012) 1201 [1108.2040].

[72] T. Hahn, Generating Feynman diagrams and amplitudes with FeynArts 3, Computer
Physics Communications 140 (2001) 418–431.

[73] T. Hahn and M. Perez-Victoria, Automatized one loop calculations in four-dimensions
and D-dimensions, Comput. Phys. Commun. 118 (1999) 153 [hep-ph/9807565].

[74] B. Ruijl, T. Ueda and J. Vermaseren, FORM version 4.2, 1707.06453.

[75] J.A. Evans and D. Shih, FormFlavor Manual, 1606.00003.

[76] F. Staub, Exploring new models in all detail with SARAH, Adv. High Energy Phys. 2015

(2015) 840780 [1503.04200].

[77] W. Porod, SPheno, a program for calculating supersymmetric spectra, SUSY particle
decays and SUSY particle production at e+e− colliders, Computer Physics
Communications 153 (2003) 275.

[78] W. Porod and F. Staub, SPheno 3.1: extensions including flavour, CP-phases and models
beyond the MSSM, Computer Physics Communications 183 (2012) 2458–2469.

194

https://doi.org/10.1103/physrevd.102.115015
https://doi.org/10.1103/PhysRevLett.126.141801
https://doi.org/10.1016/j.physrep.2020.07.006
https://arxiv.org/abs/2006.04822
https://doi.org/10.1038/s41586-021-03418-1
https://doi.org/10.1142/9789812839657_0001
https://doi.org/10.1142/9789812839657_0001
https://doi.org/10.1142/4001
https://arxiv.org/abs/hep-ph/9901246
https://arxiv.org/abs/1005.4269
https://www.wolfram.com/mathematica
https://doi.org/10.1016/j.cpc.2014.04.012
https://arxiv.org/abs/1310.1921
https://doi.org/10.1016/j.cpc.2015.08.015
https://arxiv.org/abs/1406.3030
https://doi.org/10.1016/j.cpc.2012.01.022
https://doi.org/10.1016/j.cpc.2012.01.022
https://arxiv.org/abs/1108.2040
https://doi.org/10.1016/s0010-4655(01)00290-9
https://doi.org/10.1016/s0010-4655(01)00290-9
https://doi.org/10.1016/S0010-4655(98)00173-8
https://arxiv.org/abs/hep-ph/9807565
https://arxiv.org/abs/1707.06453
https://arxiv.org/abs/1606.00003
https://doi.org/10.1155/2015/840780
https://doi.org/10.1155/2015/840780
https://arxiv.org/abs/1503.04200
https://doi.org/https://doi.org/10.1016/S0010-4655(03)00222-4
https://doi.org/https://doi.org/10.1016/S0010-4655(03)00222-4
https://doi.org/10.1016/j.cpc.2012.05.021

BIBLIOGRAPHY

[79] A. Semenov, LanHEP: A Package for the automatic generation of Feynman rules in field
theory. Version 3.0, Comput. Phys. Commun. 180 (2009) 431 [0805.0555].

[80] A. Pukhov et al., CompHEP: A Package for evaluation of Feynman diagrams and
integration over multiparticle phase space, hep-ph/9908288.

[81] COMPHEP collaboration, CompHEP 4.4: Automatic computations from Lagrangians
to events, Nucl. Instrum. Meth. A 534 (2004) 250 [hep-ph/0403113].

[82] J. Alwall et al., The automated computation of tree-level and next-to-leading order
differential cross sections, and their matching to parton shower simulations, Journal of
High Energy Physics 2014 (2014) .

[83] G. Uhlrich, F. Mahmoudi and A. Arbey, MARTY – Modern ARtificial Theoretical
phYsicist: A C++ framework automating theoretical calculations Beyond the Standard
Model, Computer Physics Communications 264 (2021) 107928.

[84] G. Uhlrich, F. Mahmoudi and A. Arbey, MARTY: a new C++ framework for
automated symbolic calculations in Beyond the Standard Model physics, PoS ICHEP2020

(2021) 928.

[85] G. Uhlrich, F. Mahmoudi and A. Arbey, Semi-automated BSM model building
procedures in MARTY-1.1 through a 2HDM example, PoS TOOLS2020 (2021) 042.

[86] G. Uhlrich, “MARTY – User manual.”
https://marty.in2p3.fr/doc/marty-manual.pdf, 2020.

[87] G. Uhlrich, “Documentation of MARTY.”
https://marty.in2p3.fr/doc/marty/html/index.html, 2020.

[88] G. Uhlrich, “CSL – User manual.”
https://marty.in2p3.fr/doc/csl-manual.pdf, 2020.

[89] G. Uhlrich, “Documentation of CSL.”
https://marty.in2p3.fr/doc/csl/html/index.html, 2020.

[90] F. Mahmoudi, SuperIso: A Program for calculating the isospin asymmetry of B → K∗γ
gamma in the MSSM, Comput. Phys. Commun. 178 (2008) 745 [0710.2067].

[91] F. Mahmoudi, SuperIso v2.3: A Program for calculating flavor physics observables in
Supersymmetry, Comput. Phys. Commun. 180 (2009) 1579 [0808.3144].

[92] F. Mahmoudi, SuperIso v3.0, flavor physics observables calculations: Extension to
NMSSM, Comput. Phys. Commun. 180 (2009) 1718.

[93] S. Neshatpour and F. Mahmoudi, Flavour Physics with SuperIso, PoS TOOLS2020

(2021) 036 [2105.03428].

[94] A. Arbey and F. Mahmoudi, SuperIso Relic: A Program for calculating relic density
and flavor physics observables in Supersymmetry, Comput. Phys. Commun. 181 (2010)
1277 [0906.0369].

[95] A. Arbey and F. Mahmoudi, SuperIso Relic v3.0: A program for calculating relic
density and flavour physics observables: Extension to NMSSM, Comput. Phys. Commun.
182 (2011) 1582.

[96] A. Arbey, F. Mahmoudi and G. Robbins, SuperIso Relic v4: A program for calculating
dark matter and flavour physics observables in Supersymmetry, Comput. Phys. Commun.
239 (2019) 238 [1806.11489].

195

https://doi.org/10.1016/j.cpc.2008.10.012
https://arxiv.org/abs/0805.0555
https://arxiv.org/abs/hep-ph/9908288
https://doi.org/10.1016/j.nima.2004.07.096
https://arxiv.org/abs/hep-ph/0403113
https://doi.org/10.1007/jhep07(2014)079
https://doi.org/10.1007/jhep07(2014)079
https://doi.org/10.1016/j.cpc.2021.107928
https://doi.org/10.22323/1.390.0928
https://doi.org/10.22323/1.390.0928
https://doi.org/10.22323/1.392.0042
https://marty.in2p3.fr/doc/marty-manual.pdf
https://marty.in2p3.fr/doc/marty/html/index.html
https://marty.in2p3.fr/doc/csl-manual.pdf
https://marty.in2p3.fr/doc/csl/html/index.html
https://doi.org/10.1016/j.cpc.2007.12.006
https://arxiv.org/abs/0710.2067
https://doi.org/10.1016/j.cpc.2009.02.017
https://arxiv.org/abs/0808.3144
https://doi.org/10.1016/j.cpc.2009.05.001
https://doi.org/10.22323/1.392.0036
https://doi.org/10.22323/1.392.0036
https://arxiv.org/abs/2105.03428
https://doi.org/10.1016/j.cpc.2010.03.010
https://doi.org/10.1016/j.cpc.2010.03.010
https://arxiv.org/abs/0906.0369
https://doi.org/10.1016/j.cpc.2011.03.019
https://doi.org/10.1016/j.cpc.2011.03.019
https://doi.org/10.1016/j.cpc.2019.01.014
https://doi.org/10.1016/j.cpc.2019.01.014
https://arxiv.org/abs/1806.11489

BIBLIOGRAPHY

[97] P. Athron et al., GAMBIT: the global and modular beyond-the-standard-model inference
tool, The European Physical Journal C 77 (2017) .

[98] C. Balázs et al., ColliderBit: a GAMBIT module for the calculation of high-energy
collider observables and likelihoods, The European Physical Journal C 77 (2017) .

[99] T. Bringmann et al., DarkBit: a GAMBIT module for computing dark matter observables
and likelihoods, The European Physical Journal C 77 (2017) .

[100] F.U. Bernlochner et al., FlavBit: a GAMBIT module for computing flavour observables
and likelihoods, The European Physical Journal C 77 (2017) .

[101] P. Athron et al., SpecBit, DecayBit and PrecisionBit: GAMBIT modules for computing
mass spectra, particle decay rates and precision observables, The European Physical
Journal C 78 (2018) .

[102] G.D. Martinez et al., Comparison of statistical sampling methods with ScannerBit, the
GAMBIT scanning module, The European Physical Journal C 77 (2017) .

[103] J.J. Renk et al., CosmoBit: a GAMBIT module for computing cosmological observables
and likelihoods, Journal of Cosmology and Astroparticle Physics 2021 (2021) 022–022.

[104] J. Frederick P. Brooks, “No Silver Bullet — Essence and Accident in Software
Engineering.” http://worrydream.com/refs/Brooks-NoSilverBullet.pdf.

[105] J.S. Cohen, Computer Algebra and Symbolic Computation: Elementary Algorithms, A K
Peters/CRC Press (2002), 10.1201/9781439863695.

[106] The Sage Developers, “SageMath, the Sage Mathematics Software System.”
https://www.sagemath.org/.

[107] B. Stroustrup and H. Sutter, “C++ Core Guidelines.”
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines.

[108] S. Meyers, Effective Modern C++: 42 Specific Ways to Improve Your Use of C++11 and
C++14, O’Reilly Media, Inc. (2014).

[109] The Qt Company, “Qt Open Source Model.”
https://www.qt.io/download-open-source, 2020.

[110] J.P. Ellis, TikZ-Feynman: Feynman diagrams with TikZ, Computer Physics
Communications 210 (2017) 103–123.

[111] P. Cvitanović, Group Theory, Princeton University Press (2008).

[112] A. Denner et al., Feynman rules for fermion-number-violating interactions, Nuclear
Physics B 387 (1992) 467.

[113] H.K. Dreiner, H.E. Haber and S.P. Martin, Two-component spinor techniques and
Feynman rules for quantum field theory and supersymmetry, Physics Reports 494 (2010)
1–196.

[114] R. Feger, T.W. Kephart and R.J. Saskowski, LieART 2.0 – A Mathematica application
for Lie Algebras and Representation Theory, Computer Physics Communications 257

(2020) 107490.

[115] P. Cvitanovic, Group theory for Feynman diagrams in non-Abelian gauge theories, Phys.
Rev. D 14 (1976) 1536.

196

https://doi.org/10.1140/epjc/s10052-017-5321-8
https://doi.org/10.1140/epjc/s10052-017-5285-8
https://doi.org/10.1140/epjc/s10052-017-5155-4
https://doi.org/10.1140/epjc/s10052-017-5157-2
https://doi.org/10.1140/epjc/s10052-017-5390-8
https://doi.org/10.1140/epjc/s10052-017-5390-8
https://doi.org/10.1140/epjc/s10052-017-5274-y
https://doi.org/10.1088/1475-7516/2021/02/022
http://worrydream.com/refs/Brooks-NoSilverBullet.pdf
https://doi.org/10.1201/9781439863695
https://www.sagemath.org/
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines
https://www.qt.io/download-open-source
https://doi.org/10.1016/j.cpc.2016.08.019
https://doi.org/10.1016/j.cpc.2016.08.019
https://doi.org/10.1016/j.physrep.2010.05.002
https://doi.org/10.1016/j.physrep.2010.05.002
https://doi.org/10.1016/j.cpc.2020.107490
https://doi.org/10.1016/j.cpc.2020.107490
https://doi.org/10.1103/PhysRevD.14.1536
https://doi.org/10.1103/PhysRevD.14.1536

BIBLIOGRAPHY

[116] H. Lehmann, K. Symanzik and W. Zimmermann, Zur Formulierung quantisierter
Feldtheorien, Il Nuovo Cimento 1 (1955) 205.

[117] G.C. Wick, The Evaluation of the Collision Matrix, Phys. Rev. 80 (1950) 268.

[118] J.C. Romão and J.P. Silva, A resource for signs and feynman diagrams of the standard
model, International Journal of Modern Physics A 27 (2012) 1230025.

[119] S. Okubo, Casimir Invariants and Vector Operators in Simple Lie Algebra, J. Math.
Phys. 18 (1977) 2382.

[120] A. Denner, Techniques for calculation of electroweak radiative corrections at the one loop
level and results for W physics at LEP-200, Fortsch. Phys. 41 (1993) 307 [0709.1075].

[121] G. Sulyok, A closed expression for the UV-divergent parts of one-loop tensor integrals in
dimensional regularization, Physics of Particles and Nuclei Letters 14 (2017) 631–643.

[122] G. Passarino and M. Veltman, One Loop Corrections for e+e− Annihilation Into µ+µ−

in the Weinberg Model, Nucl. Phys. B 160 (1979) 151.

[123] R.K. Ellis et al., One-loop calculations in quantum field theory: From Feynman diagrams
to unitarity cuts, Physics Reports 518 (2012) 141–250.

[124] T. van Ritbergen, A. Schellekens and J. Vermaseren, Group theory factors for
Feynman diagrams, Int. J. Mod. Phys. A 14 (1999) 41 [hep-ph/9802376].

[125] A.J. Buras, Weak Hamiltonian, CP violation and rare decays, in Les Houches Summer
School in Theoretical Physics, Session 68: Probing the Standard Model of Particle
Interactions, Jun, 1998 [hep-ph/9806471].

[126] C.C. Nishi, Simple derivation of general Fierz-type identities, American Journal of
Physics 73 (2005) 1160–1163.

[127] G. Uhlrich, “MARTY test suite.” https://gitlab.in2p3.fr/marty/test-suite/,
2020.

[128] A. Denner et al., Compact Feynman rules for Majorana fermions, Phys. Lett. B 291

(1992) 278.

[129] G. Cacciapaglia, A. Deandrea and J. Llodra-Perez, H → γγ beyond the Standard
Model, Journal of High Energy Physics 2009 (2009) 054–054.

[130] E. Fuchs and G. Weiglein, Breit-Wigner approximation for propagators of mixed
unstable states, Journal of High Energy Physics 2017 (2017) .

[131] M. Wen-Gan et al., Forward-backward asymmetry with Z ′ effects in the process
e+e− → µ+µ−, Journal of Physics G: Nuclear and Particle Physics 20 (1994) 1391–1398.

[132] Fernández, “Physics at LEP-1 and LEP-2.”
https://cds.cern.ch/record/850586/files/008cartagena1.pdf, 2000.

[133] A.D. Martin et al., Parton distributions for the LHC, The European Physical Journal C
63 (2009) 189–285.

[134] L.D. Faddeev and V.N. Popov, Feynman Diagrams for the Yang-Mills Field, Phys. Lett.
B 25 (1967) 29.

[135] G. Barnich, F. Brandt and M. Henneaux, Local BRST cohomology in gauge theories,
Physics Reports 338 (2000) 439–569.

197

https://doi.org/10.1103/PhysRev.80.268
https://doi.org/10.1142/s0217751x12300256
https://doi.org/10.1063/1.523225
https://doi.org/10.1063/1.523225
https://doi.org/10.1002/prop.2190410402
https://arxiv.org/abs/0709.1075
https://doi.org/10.1134/s154747711704015x
https://doi.org/10.1016/0550-3213(79)90234-7
https://doi.org/10.1016/j.physrep.2012.01.008
https://doi.org/10.1142/S0217751X99000038
https://arxiv.org/abs/hep-ph/9802376
https://arxiv.org/abs/hep-ph/9806471
https://doi.org/10.1119/1.2074087
https://doi.org/10.1119/1.2074087
https://gitlab.in2p3.fr/marty/test-suite/
https://doi.org/10.1016/0370-2693(92)91045-B
https://doi.org/10.1016/0370-2693(92)91045-B
https://doi.org/10.1088/1126-6708/2009/06/054
https://doi.org/10.1007/jhep09(2017)079
https://doi.org/10.1088/0954-3899/20/9/008
https://cds.cern.ch/record/850586/files/008cartagena1.pdf
https://doi.org/10.1140/epjc/s10052-009-1072-5
https://doi.org/10.1140/epjc/s10052-009-1072-5
https://doi.org/10.1016/0370-2693(67)90067-6
https://doi.org/10.1016/0370-2693(67)90067-6
https://doi.org/10.1016/s0370-1573(00)00049-1

BIBLIOGRAPHY

[136] N. Dragon and F. Brandt, BRST symmetry and cohomology, in Strings, gauge fields,
and the geometry behind: The legacy of Maximilian Kreuzer, World Scientific (2013).

[137] P. Aurenche, J.-P. Guillet and E. Pilon, “QED, QCD en pratique.”
https://cel.archives-ouvertes.fr/cel-01440544v2/file/cours-QCD.pdf,
Oct., 2016.

[138] MUON G-2 collaboration, Final report of the E821 muon anomalous magnetic moment
measurement at BNL, Phys. Rev. D 73 (2006) 072003.

[139] A.J. Buras, Gauge Theory of Weak Decays: The Standard Model and the Expedition to
New Physics Summits, Cambridge University Press (2020), 10.1017/9781139524100.

[140] M. Ciuchini et al., Next-to-leading QCD corrections to B → Xsγ in supersymmetry,
Nuclear Physics B 534 (1998) 3–20.

[141] GNU Project, “GNU Scientific Library (GSL).”
https://www.gnu.org/software/gsl/.

[142] B. Allanach et al., The inclusion of two-loop SUSYQCD corrections to gluino and squark
pole masses in the minimal and next-to-minimal supersymmetric standard model:
SOFTSUSY3.7, Computer Physics Communications 219 (2017) 339–345.

[143] B. Allanach, Softsusy: A program for calculating supersymmetric spectra, Computer
Physics Communications 143 (2002) 305–331.

[144] T. Hurth and F. Mahmoudi and D. Martinez Santos and S. Neshatpour, More
Indications for Lepton Nonuniversality in b → sℓ+ℓ−, 2104.10058.

[145] C. Bobeth, A.J. Buras and T. Ewerth, B → Xsℓ
+ℓ− in the MSSM at NNLO, Nuclear

Physics B 713 (2005) 522–554.
[146] S.P. Martin and J.D. Wells, Muon anomalous magnetic dipole moment in

supersymmetric theories, Physical Review D 64 (2001) .
[147] A. Dedes, J. Rosiek and P. Tanedo, Complete one-loop MSSM predictions for

B0 → ℓ+ℓ− at the Tevatron and LHC, Physical Review D 79 (2009) .
[148] D. van Heesch, “Doxygen.” https://www.doxygen.nl, 1997.
[149] S. Davidson, E. Nardi and Y. Nir, Leptogenesis, Physics Reports 466 (2008) 105.
[150] A. Dasgupta and G. Uhlrich, A Boltzmann equation solver for leptogenesis in general

BSM scenarios using MARTY, work in progress (2021) .
[151] D. Borah, A. Dasgupta and S.K. Kang, Leptogenesis from dark matter annihilations in

scotogenic model, 1806.04689.
[152] A. Arbey, F. Mahmoudi, M. Palmiotto and G. Uhlrich, Dark matter relic density in

general BSM scenarios, work in progress (2021) .
[153] A. Boussejra, F. Mahmoudi and G. Uhlrich, Flavor anomalies in the context of

Non-Minimal Flavor Violating MSSM scenarios, to appear (2021) .
[154] N.D. Christensen et al., Simulating spin- 3/2 particles at colliders, The European

Physical Journal C 73 (2013) .
[155] Y.M. Zinoviev, On massive spin 2 interactions, Nuclear Physics B 770 (2007) 83.
[156] D. Hooper and S. Profumo, Dark matter and collider phenomenology of universal extra

dimensions, Physics Reports 453 (2007) 29–115.

198

https://cel.archives-ouvertes.fr/cel-01440544v2/file/cours-QCD.pdf
https://doi.org/10.1103/PhysRevD.73.072003
https://doi.org/10.1017/9781139524100
https://doi.org/10.1016/s0550-3213(98)00516-1
https://www.gnu.org/software/gsl/
https://doi.org/10.1016/j.cpc.2017.05.006
https://doi.org/10.1016/s0010-4655(01)00460-x
https://doi.org/10.1016/s0010-4655(01)00460-x
https://arxiv.org/abs/2104.10058
https://doi.org/10.1016/j.nuclphysb.2005.02.011
https://doi.org/10.1016/j.nuclphysb.2005.02.011
https://doi.org/10.1103/physrevd.64.035003
https://doi.org/10.1103/physrevd.79.055006
https://www.doxygen.nl
https://arxiv.org/abs/1806.04689
https://doi.org/10.1140/epjc/s10052-013-2580-x
https://doi.org/10.1140/epjc/s10052-013-2580-x
https://doi.org/10.1016/j.physrep.2007.09.003

	List of Figures
	List of Tables
	List of Code Samples
	List of Abbreviations
	Introduction
	The Standard Model of particle physics
	Motivations to go beyond the Standard Model
	Theoretical shortcomings
	Flavor anomalies
	The anomalous magnetic dipole moment of
	The Hierarchy problem

	Model building in particle physics
	Symmetries
	Matter content
	Spontaneous symmetry breaking
	Additional interactions and anomalies
	Discussion on Standard Model extensions

	Need for automated calculations
	Existing packages
	Mathematica packages
	Open-source solutions
	Limitations

	+MARTY+
	Presentation
	Limitations
	Connection to phenomenology

	+MARTY+ – An open-source solution
	Requirements
	Generality
	Performance
	Software engineering standards

	Symbolic manipulations
	Internal representation of an expression
	Dynamic programming and polymorphism
	Canonical forms of expressions
	Automatic ordering of expressions
	Limitations of symbolic computations

	+CSL+
	Philosophy
	C++ basics
	C++ good manners
	The Expr type
	+CSL+ good manners

	+CSL+ as a module of +MARTY+
	+GRAFED+

	Quantum fields
	Introduction
	Different types of quantum fields
	Particle types
	Fermions
	Vectors
	Scalars

	Using and modifying a Particle
	Obtaining particles from a model
	Simple particle properties
	Gauge and Flavor representations

	Quantum Fields in expressions
	Indices
	Space-time point
	Creating an expression from a Particle
	Type system
	Polarization field

	Models for high energy physics
	Introduction
	Adding / Removing particles
	Obtaining / Defining couplings
	Lagrangian
	Lagrangian in +MARTY+
	Interaction terms

	Adding Lagrangian terms
	Built-in interaction terms
	General interactions

	Fermion number violating interactions
	Definition
	The conjugation matrix
	Fermion number violation in +MARTY+

	Group theory objects
	Gauge and flavor
	Gauged and flavor groups
	Gauge representations
	Groups and algebras

	Group theory
	Semi-simple Lie algebras
	Principle
	Semi-simple Lie algebras in +MARTY+

	Irreducible representations
	Highest-weight state
	The su(2) example
	The su(3) example
	Irreducible representations in +MARTY+

	Product decomposition
	Gauge representations
	Dynkin labels for common representations
	su(N)
	so(N)
	sp(N)
	E6
	E7
	E8
	F4
	G2

	Automated calculations with +MARTY+
	Introduction
	Building blocks
	Propagators and external fields
	Feynman rules

	Amplitudes
	Finding diagrams
	Gauge fixing
	Initial amplitude expression
	Simplification of expressions
	The procedure using +MARTY+

	Squared Amplitudes
	Generalities
	Spin sums
	Traces
	A computational challenge
	Squared amplitudes in +MARTY+

	Wilson coefficients
	Generalities
	Additional simplifications

	Automating calculations

	Selection of results
	Introduction
	Validation
	Different kinds of tests

	Amplitude calculations
	Conjugation matrix consistency
	Relative Sign of Interfering Feynman graphs (RSIF)

	Squared amplitudes
	Tree-level partial decay widths
	One-loop partial decay widths
	Cross sections for 2 to 2 processes
	e+e-+- at tree-level
	ggt at tree-level

	Wilson coefficients
	Magnetic 2-fermion operators
	4-fermions operators

	Performance

	Analytical results in NMFV-MSSM
	Introduction
	(g-2)
	Flavor anomalies
	NMFV-MSSM scenarios

	Methods
	Theoretical calculations
	Numerical evaluation
	Random scan

	Results
	Wilson coefficients
	(g-2)

	Combined analysis
	Discussion

	Conclusion
	Bibliography

