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Présentée et soutenue par

Rachel Blin

Dirigée par Samia Ainouz
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piègne, Heudiasyc

Rapportrice

M. Vincent Frémont Professeur, Centrale Nantes, LS2N Rapporteur
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Acronyms

2D Two Dimensions. 31, 63–70

3D Three Dimensions. 4, 10, 23, 31, 32, 54, 55, 63–70

4D Four Dimensions. 74

Adam Adaptive moment estimation. 101, 103, 110

ADAS Advanced Driver-Assistance Systems. I, III, 16, 30, 73

AP Average Precision. 47, 93

ASFF Adaptively Spatial Feature Fusion. 59

AVOD Aggregate View Object Detection. 65

BDD100K Berkeley Deep Drive dataset. 69, 74, 89, 93, 95, 125, 131

BEV Bird Eye View. 65, 66

BiFPN Bi-directional Feature Pyramid Network. 61

CE Cross Entropy. 45, 46

CIE Lab Lightness, Green-magenta chromatic axis, Blue-Yellow chromatic axis. 16,
23, 26–28, 32, 125, 126

CNN Convolutional Neural Network. 3, 37, 39, 41, 43, 48, 51, 57, 59, 61

CPNDet Corner Proposal Network for Object Detection. 62

CycleGAN Cycle-Consistent Generative Adversarial Network. I, III, 5, 6, 11, 12, 34,
48, 49, 51, 86–89, 91, 93, 95, 121, 135, 137, 138, 141, 143

DETR DEtection TRansformer. 61, 62

DNN Deep Neural Network. 33, 34, 57, 73, 86, 98, 108, 112

DPM Deformable Part Model. 116

DSSD Deconvolutional Single Shot Detector. 60
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Acronyms

FCOS Fully Convolutional One Stage object detector. 60

FID Fréchet Inception Distance. 91

FIR Far Infrared. 64

FL Focal Loss. 45, 46, 60, 99

FPN Feature Pyramid Networks. 43, 58–60, 62

fps Frames per second. 59, 68, 75, 78, 99, 120

FSAF Feature Selective Anchor-Free. 60

FV Front View. 63, 65, 66

GAN Generative Adversarial Networks. 48, 49

GCNet Global Context Network. 58

GPS Global Positioning System. 69

GPU Graphic Processing Unit. 67

HSV Hue, Saturation, Value. 16, 23, 25, 26, 32, 83, 85, 103, 107, 108, 112, 125, 126,
128, 135

HTC Hybrid Task Cascade. 58

ILSVRC ImageNet Large Scale Visual Recognition Challenge. 33, 67

IMU Inertial Measurement Unit. 69

IOU Intersection Over Union. 44, 47, 58, 59, 61, 118

KITTI Karlsruhe Institute of Technology and Toyota Technological Institute dataset.
4, 10, 68, 69, 74, 89, 93, 95, 108, 110, 112

LiDAR Light Detection And Ranging. I, III, 1, 4, 6, 7, 10, 12, 16, 30–32, 53, 55, 56,
63–66, 68–70, 137, 141

MAL Multiple Anchor Learning. 61

mAP Mean Average Precision. 47, 68, 93, 101, 103, 110, 125, 126, 128, 133, 134

MIR Middle Infrared. 64

MLP Multilayer Perceptron. 34, 42, 51

MS COCO Microsoft Common Object in COntext. 3, 9, 58, 60, 67, 89, 91, 99, 100,
103, 108, 110, 112, 113
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Acronyms

MSE Mean-Squared Error. 36, 45

MV3D Multi-View 3D network. 65

MVX-Net Multimodal Voxel Network. 63

NASNets Neural Architecture Search Networks. 58

NiN Network in Network. 64

NIR Near Infrared. 64

NMS Non-Maximum Suppression. 44, 45, 57–62, 116–118, 126, 128, 130, 133, 135,
138, 142

PANet Path Aggregation Network. 58

PASCAL VOC Pattern Analysis, Statistical Modelling and Computational Learning
Visual Object Classes. 66, 100, 101

R-CNN Region Based Convolutional Neural Network. 3, 9, 57–60, 63, 64, 68

R-FCN Region-based Fully Convolutional Network. 58

Radar Radio Detection And Ranging. 1, 4, 7, 10, 53, 55, 56, 64, 65, 69, 70

ReLU Rectified Linear Unit. 40

ResNet Residual Network. 57, 60, 64, 65, 99, 108, 121, 126, 130

RGB Red, Green, Blue. I, III, 3–5, 10, 11, 16, 23, 25, 26, 28, 32, 55, 62–66, 82, 83, 85,
87–89, 91, 93, 95, 98, 103, 105, 108, 110, 112, 113, 121, 125, 126, 128, 130–133,
137, 141

ROI Region Of Interest. 3, 42, 57, 58, 62, 65

RPN Region Proposal Network. 42, 58

RRPN Radar Region Proposal Network. 65

SAPD Soft-Anchor-Point Object Detection. 60

SAR Synthetic-Aperture Radar. 54, 83

SENets Squeeze-and-Excitation Networks. 57

SPPNet Spatial Pyramid Pooling Network. 57

SSD Single Shot MultiBox Detector. 3, 9, 59, 60, 65, 99

SVM Support Vector Machine. 57
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Acronyms

TPU Tensor Processing Unit. 67

TSD Task-aware Spatial Disentanglement. 59, 68

VGG Visual Geometry Group network. 57–60, 108

YCrCb Luminance, Chrominance (red-yellow), Chrominance (blue-yellow). 16, 23,
29, 32, 125, 126, 128

YOLO You Only Look Once. 3, 9, 59, 64, 99
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Glossary

2D Geometrical space where two parameters are required to determine the position of
an element. XXI, 31, 69, 72

3D Geometrical space where three parameters are required to determine the position
of an element. XVI, XXI, 4, 25, 27, 29, 72

4D Geometrical space where four parameters are required to determine the position
of an element. 74

Adam Optimizer based on adaptive moment estimation. 101

ADAS Electronic systems assisting drivers. I

AP A metric used to measure the accuracy of a model. XXI, XXII, 47, 68, 72, 102,
105

ASFF An algorithm palliating the inconsistency across the scales of a Feature Pyramid
Network. 59, 68

AVOD A network for multimodal fusion. 65

BDD100K A dataset containing road scenes. XVIII, XXII, 69, 90, 93, 94

BEV The bird eye view of a LiDAR point clouds. 65, 72

BiFPN A derivative of Feature Pyramid Networks. 61

CE A regression loss function. 45

CIE Lab A Color space that describes an object by its perceptual lightness, and the
four unique colors of human vision. XVI, 15, 16, 26–28, 126–129

CNN A type of neural network mostly containing convolutional layers. 3

CPNDet A deep neural network for object detection. 62, 68

CycleGAN Unsupervised algorithm for image-to-image translation. I, XVII, XVIII,
XX, 50, 51, 88, 89, 123, 124

DETR A deep neural network for object detection. 61, 68
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Glossary

DNN A Neural Network with more than two layers. 33

DPM Machine Learning algorithm for object detection. 116

DSSD A deep neural network for object detection. 60, 68

FCOS A deep neural network for object detection. 60, 68

FID A metric used to evaluate the quality of images generated by a GAN. 91

FIR A modality capturing waves of the Far Infrared spectrum (25µm-350µm). 64

FL A regression loss function. 45

FPN A Network with a pyramidal architecture enabling to combine low-resolution
with high resolution features. XVII, 42, 43

fps A metric measuring the frame rate of a sensor. 59

FSAF An algorithm attributing attention weights to anchor boxes. 60, 68

FV The front view of a LiDAR point clouds. 63, 72

GAN Unsupervised networks enabling to generate images. 48

GCNet A deep neural network for object detection. 58, 68

GPS A device used to determine the satellite position of a vehicle. 69

GPU A device used to efficiently process images. XXI, 67, 68

HSV A Color space that describes an object by its tint, its amount of gray and its
brightness value. XVI, XVIII, XIX, XXI, 15, 16, 25, 26, 73, 83–86, 104–107, 111,
112, 126, 127, 129

HTC A deep neural network for object detection. 58, 68

ILSVRC A challenge for visual recognition at a large scale. 33, 66–68

IMU A device used to determine the speed and acceleration of a vehicle. 69

IOU A metric evaluating how close is the predicted bounding box from the ground
truth. XVII, XXI, 44, 72

KITTI A dataset containing road scenes. XVIII–XXII, 4, 68, 69, 72, 90, 93, 110,
176–178

LiDAR A sensor modeling a scene in 3D. I, XVI, 15, 31, 32, 69, 72

MAL An algorithm reducing anchor boxes priors. 61, 68
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Glossary

mAP A metric used to measure the mean accuracy of a model. XVIII, XX, 47, 72,
94, 134

MIR A modality capturing waves of the Middle Infrared spectrum (5µm-25µm). 64

MLP A neural network constituted of several layers of fully connected formal neurons.
34

MS COCO A dataset containing diverse scenes for common object detection. XIX,
XXI, XXII, 3, 66–68, 93, 100, 104, 109

MSC-MultiBox A deep neural network for object detection. 59

MSE A measure that characterizes the precision of an estimator. 36

MV3D A network for multimodal fusion. 65

MVX-Net A network for multimodal fusion. 63

NASNets A deep neural network for object classification. 58

NiN A network for object classification. 64

NIR A modality capturing waves of the Near Infrared spectrum (0.7µm-5µm). 64

NMS An algorithm aiming to keep the most relevant proposition for the object de-
tection task. XVII, XIX, XX, XXII, 44, 46, 118, 127, 129, 131, 132, 134, 135

PANet A deep neural network for object detection. 58, 68

PASCAL VOC A dataset containing diverse scenes for the object detection task.
XIX, XXII, 66, 68, 100, 102

R-CNN A deep neural network for object detection. 3, 68

R-FCN A deep neural network for object detection. 58, 68

Radar A sensor using electromagnetic waves to determine the position and the speed
of an object. 1, 69

ReLU An activation function which output is the maximum between 0 and the input.
40

ResNet A type of neural network that handles deep learning tasks. 57, 126, 127, 129

RGB A Color space that describes an object by the chromaticities of the red, green
and blue. I, XV, XVIII–XX, XXII, XXIII, 15, 23, 24, 69, 72, 77, 78, 82–85, 89,
92–94, 104–106, 110–112, 117, 121–124, 126, 127, 129, 131, 132, 134, 135

ROI A subregion of an image which contains relevant information. XVII, 3, 42
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Glossary

RPN A network that returns regions of interest of an input image. XVII, 42

RRPN A network for multimodal fusion. 65

SAPD An algorithm attributing attention weights to anchor boxes. 60, 68

SAR A radar that is usually used to capture satellite images of landscapes. 54

SENets A deep neural network for object classification. 58

SPPNet A deep neural network for object detection. 57, 68

SSD A deep neural network for object detection. 3, 68

SVM A classification algorithm. 57

TPU A device used to efficiently process tensors. 67, 68

TSD An algorithm to avoid misalignment between the classification and the regression
sub-networks of object detectors. 59

VGG A type of neural network that handles deep learning tasks. 57

YCrCb A Color space that describes an object by its luminance, its red-yellow chromi-
nance and its blue-yellow chrominance. XVI, 15, 16, 29, 30, 126, 127, 129

YOLO A deep neural network for object detection. 3, 68
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Notations

AP Average Precision metric. 47, 91, 101, 103, 110, 125, 126, 131, 132

A Calibration matrix of the linear polarimetric camera. XVI, XXI, 18, 20, 27, 87, 92,
169

B Orthonormal basis. XVI, 16, 27

CE Cross Entropy loss function. 45

C Value of the loss function. 36

DX Discriminative model of the domain X. 49, 51

DY Discriminative model of the domain Y . 49, 51

D Discriminative model. XX, 48, 123

ER Error Rate evolution function. 91, 93, 103, 105, 111, 112, 125, 127, 129, 131, 132

Ex Amplitude of the magnetic field according to the horizontal axis. 16, 17

Ey Amplitude of the electric field according to the vertical axis. 16, 17

FL Focal Loss function. 46

FN Number of False Negatives. 47

FP Number of False Positives. 47

G Generative model. 48

Hr Height of the rectified feature map. 40

Hpolar Height of the polarimetric images. 120

H Height of the input of a convolution layer. 37–40

IOU Intersection Over Union function. 44, 45, 119

I0 Intensity corresponding to the polarizer oriented at 0°. XV, XVIII–XX, 18–20, 22,
77, 78, 82, 83, 85, 86, 88, 89, 92, 99, 100, 103, 108, 117, 118, 122, 125, 130, 169,
170, 176–178
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Notations

I135 Intensity corresponding to the polarizer oriented at 135°. XV, XVIII, XX, 18, 20,
22, 78, 82, 83, 88, 92, 169, 170, 176–178

I45 Intensity corresponding to the polarizer oriented at 45°. XV, XVIII–XX, 18, 20,
22, 77, 78, 82–84, 86, 88, 92, 99, 100, 103, 108, 117, 118, 125, 130, 169, 170,
176–178

I90 Intensity corresponding to the polarizer oriented at 90°. XV, XVIII–XX, 18, 20,
22, 77, 78, 82, 83, 86, 88, 92, 99, 100, 103, 108, 117, 118, 125, 130, 169, 170,
176–178

IHH Intensity corresponding to an horizontal transmitted and horizontal received light
wave. 83

IHV Intensity corresponding to an horizontal transmitted and vertical received light
wave. 83

IV H Intensity corresponding to an vertical transmitted and horizontal received light
wave. 83

IV V Intensity corresponding to an vertical transmitted and vertical received light wave.
83

Iαi
Intensity corresponding to the polarizer oriented at an angle αi. XV, 17–19, 82

I Intensities vector. XXI, 18, 20, 83, 87, 92, 169, 170

MSE Mean-Squared Error function. 36

MXY Mapping function of domain X towards domain Y . 48, 49, 51, 87

MY X Mapping function of domain Y towards domain X. 48, 49, 51, 87

S0 First Stokes parameter. XV, XVIII, XIX, XXI, 17, 18, 20–22, 82–87, 92, 103, 108,
118, 125, 130

S1 Second Stokes parameter. XV, XVIII, XIX, XXI, 17, 18, 20–22, 82–84, 86, 87, 92,
103, 108, 118, 125, 130

S2 Third Stokes parameter. XV, XXI, 17, 18, 20–22, 82, 87, 92, 103, 108, 125, 130

S Stokes vector. XV, XXI, 17–20, 83, 87, 92

TP Number of True Positives. 47

Wr Width of the rectified feature map. 40

Wpolar Width of the polarimetric images. 120

W Width of the input of a convolution layer. 37–40

Id Identity matrix. 170
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Notations

Ker Kernel of a space. 170

αi Orientation’s angle of the polarizer. XV, 17–19, 82

r̄ Recall values that exceed a given one. 47

β Down-weighting factor of the Focal Loss. 46

°C Degree Celsius. 30

°F Degree Fahrenheit. 30

`1 Manhattan distance. 49

`2 Euclidean distance. 87

η Hyper-parameter that controls the influence of the reconstruction term. 49, 51, 88

Î0 Generated Intensity corresponding to the polarizer oriented at 0°. 87

Î90 Generated Intensity corresponding to the polarizer oriented at 90°. 87

Î Generated Intensities vector. 87

Ŝ0 Generated First Stokes parameter. 87

Ŝ1 Generated Second Stokes parameter. 87

Ŝ2 Generated Third Stokes parameter. 87

Ŝ Generated Stokes vector. 87

κ Learning rate. 37, 121

λ Wavelength of an electromagnetic wave. XVI, 30, 31

〈.〉 Temporal mean of a signal. 17

b.c Floor operation. 38

E Expectation of a distribution. 48, 49, 87

R Real numbers. 87, 88

C1 Calibration constraint. XXI, 87, 91, 92

C2 First admissibility constraint. XXI, 87, 91, 92

C3 Second admissibility constraint. XXI, 87, 91, 92

LC1 Calibration constraint related loss. XVIII, XXI, 87, 88, 92

LC2 Admissibility constraint related loss. XVIII, XXI, 87, 88, 92

13



Notations

LCycleGAN CycleGAN loss. 49, 88

LGAN GAN loss. 48, 49

Lclassification Classification loss function of the network. 45

Lfinal Polarimetric CycleGAN loss. 88

Lreco Reconstruction loss. 49

Lregression Regression loss function of the network. 45

L Loss function of the network. 45

µ Hyper-parameter that controls the admissibility constraint. 88

ν Hyper-parameter that controls the calibration constraint. 88

ω Pulsation of an electromagnetic field. 16

φ Angle Of Polarization. XV, XVIII, 20–22, 83–86, 103, 108

π Archimedes’ constant, approximately equal to 3.14159. 20, 85

ψx Phase of the magnetic field. 16, 17

ψy Phase of the electric field. 16, 17

ψ Phase of an electromagnetic field. 16

ρ Degree Of Polarization. XV, XVIII, 20–22, 83–86, 103, 108

σ Gaussian weight of the soft-NMS algorithm. 45, 118

Ã Pseudo-inverse of the calibration matrix of the linear polarimetric camera. 20, 169

$ Weight factor of the classification loss function. 45

~E(t) Electromagnetic field. 16

~ux horizontal axis defining the orthonormal basis. 16

~uy Vertical axis defining the orthonormal basis. 16

~z Direction of propagation of the electrical field. 16

ζ Weight factor of the regression loss function. 45

c Speed of light, approximately equal to 299800 km.s−1. 31

d Distance of an object to the LiDAR emitter. 31

e Prediction error of a neuron. 36, 37
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Notations

fp Pooling function. 40

k Wave number. 16

mAP mean Average Precision metric. 47, 93, 102, 105, 111, 112, 125–127, 129, 132

pX Distribution of domain X. 48, 49

pY Distribution of domain Y . 49, 87

pZ Distribution of domain Z. 48

pc Convolution padding. XVII, 38–40

ps Precision at a given recall. 47

pt Vector containing the evaluated distance of the estimated probabilities to the ground
truth. 45, 46

pinterp Maximum precision for which recall is greater than a given one. XVII, 47, 48

p Vector of the estimated probabilities of belonging to each class. 45, 46

r Recall level. XVII, 47, 48

s Convolution stride. XVII, 38–40

t0 Emission time of the light pulse. 31

tr Reception time of the most important echo of the reflected light pulse. 31

w0 Bias or threshold of an artificial neuron. 34

wp Pooling window width. 40

w Weights associated to the entry of an artificial neuron. XVI, 34, 36–39

x Input of an artificial neuron. XVI, 34, 36–39

ypooling Output of a pooling layer. 40

yrectified Output of a non-linear rectification. 39, 40

y Output of an artificial neuron. 34, 36–38

z Ground truth label. 36, 45, 46

a Offset to the cyan → magenta axis of the CIE Lab color space. XVI, 27, 28

B Blue axis of the RGB color space. XV, XVIII, 24, 26, 29, 30, 77, 78

b Offset to the blue → yellow axis of the CIE Lab color space. XVI, 27, 28
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Notations

Cb Blue chrominance axis of the YCrCb color space. XVI, 29, 30

Cr Red chrominance axis of the YCrCb color space. XVI, 29, 30

G Green axis of the RGB color space. XV, XVIII, 24, 26, 29, 30, 77, 78

H Hue axis of the HSV color space. XVI, 25, 26

L Luminance axis of the CIE Lab color space. XVI, 27

R Red axis of the RGB color space. XV, XVIII, 24, 26, 29, 30, 77, 78

S Saturation axis of the HSV color space. XVI, 25, 26

V Value axis of the HSV color space. XVI, 25, 26

Y Luma axis of the YCrCb color space. XVI, 29, 30
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Abstract

Autonomous vehicles and Advanced Driver-Assistance Systems (ADAS) have shown
outstanding improvements these past few years thanks to a more accurate and reliable
road scene analysis. These enhancements are mostly due to the emergence of deep
learning, enabling a very accurate road object detection. However, even if nowadays
autonomous vehicles can be found in several countries, they show limits when then
visibility is altered. Non-conventional modalities are the best solution to overcome
this limitation, thanks to their ability to see beyond human vision, yet without being
robust to any test. In this thesis, we aim to address this challenge by using polarimetric
imaging, describing objects by their physical properties invariant to visibility changes.

In this thesis, we first give the background knowledge on multimodality. The polar-
ization formalism is detailed, followed by the color models, aiming to represent human
trivariant vision. Infrared imaging and Light Detection And Ranging (LiDAR) point
clouds are explained as they play an important role in autonomous navigation. The
theory behind deep learning, especially regarding convolutional neural networks is then
addressed. Among them, the object detectors are described as they play an important
role in this thesis. An overview of Cycle-Consistent Generative Adversarial Networks
(CycleGAN) is also given.

The literature review comes next to bridge the gap between these two fields to
understand how they work together to enable autonomous navigation. The appli-
cations of polarimetric imaging are drawn up, as well as the limitations of current
non-conventional modalities used in autonomous systems. It gives an intuition on the
use of polarimetric features to enhance road scene analysis in complex situations. The
different object detectors are also presented, followed by the multimodal fusion archi-
tectures.

Afterwards, the datasets constituted to carry out the needed experiments are then
presented, including the acquisition process, their content and their labels, as well as
the established polarimetric data formats. The designed CycleGAN generating polari-
metric images under constraints from Red, Green, Blue (RGB) ones is also sketched.
Empirical evidence show that the polarimetric equivalent of the benchmarks of the
literature are an asset to enhance road object detection.

Finally, different experiments are conducted to demonstrate that polarimetric fea-
tures learnt in good weather conditions are still able to efficiently detect road objects
under fog. From these experiments, a multimodal color-based and polarimetric fu-
sion scheme is designed. Not only it enables to enhance object detection under fog,
but it generalizes the obtained results to several visibility conditions, including various
densities of fog and dense rain.
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Résumé

Les véhicules autonomes et les ADAS ont connu des améliorations remarquables ces
dernières années grâce à une analyse plus précise et plus fiable des scènes routières.
Ces améliorations sont principalement dues à l’émergence de l’apprentissage profond,
qui permet une détection très précise des obstacles routiers. Cependant, même si l’on
trouve aujourd’hui des véhicules autonomes dans plusieurs pays, ils atteignent leurs
limites lorsque la visibilité est altérée. Les modalités non conventionnelles sont la
meilleure solution pour surmonter ces limitations, grâce à leur capacité à voir au-delà
de la vision humaine, sans pour autant être robustes à tout test. Dans cette thèse,
nous répondons à ce défi en utilisant l’imagerie polarimétrique, décrivant les objets par
leurs propriétés physiques, invariantes aux changements de visibilité.

Dans cette thèse, le concept de multimodalité est d’abord introduit. Le formalisme
de polarisation est détaillé, suivi par les modèles colorimétriques, visant à représenter
la vision trivariante humaine. L’imagerie infrarouge et les nuages de points LiDAR
sont également abordés, car ils jouent un rôle important dans la navigation autonome.
La théorie de l’apprentissage profond, notamment les réseaux de neurones convolutifs,
est ensuite abordé. Parmi eux, les détecteurs d’objets sont décrits car ils jouent un rôle
important dans cette thèse. Un aperçu du CycleGAN est également donné.

L’état de l’art vient ensuite faire le pont entre ces deux domaines afin de compren-
dre comment leur combinaison permet la navigation autonome. Les applications de
l’imagerie polarimétrique sont parcourures, ainsi que les limites des modalités non
conventionnelles actuellement utilisées dans les systèmes autonomes. Cela permet
d’avoir une intuition sur l’utilisation des caractéristiques polarimétriques pour améliorer
l’analyse des scènes routières en situations complexes. Les différents détecteurs d’objets
sont également présentés, suivis des architectures de fusion multimodale.

Ensuite, les jeux de données constitués pour réaliser les expériences nécessaires sont
présentés, y compris le processus d’acquisition, leur contenu et leurs étiquettes, ainsi
que les formats de données polarimétriques établis. La méthode conçue pour générer
des images polarimétriques sous contraintes à partir des images RGB est également
esquissée. Les preuves empiriques montrent que l’équivalent polarimétrique des bases
de données repères de la littérature permet d’améliorer la détection d’obstacles routiers.

Enfin, différentes expériences sont menées pour démontrer que les caractéristiques
polarimétriques apprises lorsque la visibilité est bonne peuvent décrire les obstacles
routiers dans le brouillard. Ces expériences ont permis de concevoir un schéma de
fusion multimodal basé sur l’imagerie couleur et polarimétrique. Ce schéma permet
d’améliorer la détection d’objets sous le brouillard et étend les résultats obtenus à
d’autres situations, y compris diverses densités de brouillard et la pluie dense.
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”Une danseuse souffre en silence.”
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et qui m’a appris une qualité que, selon moi, tout scientifique devrait posséder, à savoir
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qu’il m’ait été donné de rencontrer dans ma vie1. J’accorde également une mention
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remercie également Maël, Enrique, Djamila, Flavie, Linlin, Florencia, Caterine, Maria
et tous ceux que j’ai pu oublier et avec qui j’ai partagé, ne serait-ce qu’un moment qui
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Introduction

Context and motivations

The 1960s mark the emergence of works on autonomous navigation. These projects are
materialized in 1977, with the construction of the first semi-automated car [5]. A major
milestone is achieve in 1995 with NavLab [6], completing the first mostly autonomous
drive of more than four thousands kilometers. This breakthrough opened the door to
several autonomous driving challenges, including the DARPA grand-challenge [7] in
2002, aiming to evaluate the performances of autonomous vehicles. Autonomous navi-
gation has boomed since 2010s with the emergence of deep learning, which has shown
outstanding performances at this task. Nowadays, the SAE classification [8], a six-levels
classification system, is used to give indications on the level of automation of the differ-
ent vehicles. The six levels, ranging from fully manual to fully automated systems, are
illustrated in Figure 25. Several autonomous vehicles can be found all around the world
with different autonomy levels. Among which, we can cite the Waymo6 autonomous
car, a systems that operates at level 4 autonomy, the Tesla Autopilot system7, that
enables a level 2 autonomy or the Rouen Normandy autonomous lab8, that provides a
level 3 autonomy in a restricted area.

However, the above-mentioned systems find limitations in complex situations such
as adverse weather conditions [9, 10]. Enabling autonomous navigation when the vis-
ibility is altered is one of the grand challenges that need to be addressed to reach
the level 5 autonomy. Current autonomous systems use non-conventional modalities
as they offer the best results to palliate this limitation. Infrared imaging is used to
enhance pedestrians, cyclists and motorcyclists detection [11] and enables a detection
of road users at a larger range under fog, rain and snow [12]. However, it shows limits
under heavy fog or rain, as they can modify the thermal footprint of objects [13]. Radio
Detection And Ranging (Radar) is another non-conventional modality used to enhance
road object detection in adverse weather conditions [14], yet without guarantee optimal
accuracy since it is affected by thermal noise [15]. LiDAR is mainly used to enhance
road scene analysis under low visibility [16] but come up with a lot of noise due to
snowflakes or drops misinterpretations [17].

To provide an accurate road scene analysis when the visibility is altered, other
non-conventional modalities need to be explored. They would come up with further

5Source: https://newsroom.intel.com/
6https://waymo.com/
7https://www.tesla.com/autopilot
8https://www.rouennormandyautonomouslab.com/
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Figure 2: The six automation levels of autonomous systems.

information, more robust to external changes. In this thesis, we decided to focus our
research on polarimetric imaging to enhance the detection of the different road users.
This non-conventional modality characterizes an object from its physical features, in-
variant to strong illuminations or low visibility [18].

Polarimetric imaging

Polarization is a rich modality describing the light wave reflected by the object it im-
pinges on. As a matter of fact, when an unpolarized light wave is being reflected by
an object, it becomes partially polarized. In other terms, it travels in a well deter-
mined direction [18]. The direction in which the wave is travelling depends on the
surface’s material and is invariant to the visibility conditions. The reflected wave can
be described by a set of measurable parameters called the Stokes vector.

Polarimetric imaging consists in capturing polarimetric intensities of the scene, in
order to recover the three Stokes parameters, giving direct information on the physical
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properties of each pixel. Thanks to this property, polarimetric images find applications
in a wide range of fields. Polarimetric medical imaging use this principle to distinguish
defective cells from healthy ones from their physical composition [19], while they are
indiscernible to the naked eye. Polarimetric images also prove to be a real added value
to dehaze a scene [20], since physical properties of haze particles are different from the
ones of the rest of the scene. More recently, this non-conventional modality has shown
outstanding results to enhance autonomous navigation, by providing an accurate depth
map of the scene [21] or by reducing the false alarm rate when detecting cars [22]. These
results, as well as the application domains of polarimetric imaging, are encouraging
towards its use to overcome adverse weather conditions in road scenes.

Object detection

Object detection has gained recent interest, mostly due to the expansion of deep learn-
ing frameworks. This task forms part of a wide research field, resulting in more and
more accurate models. It takes an important place in road scene analysis since it pro-
vides direct information on the position and the nature of the different objects of the
scene. These information are needed in autonomous systems’ decision pipelines and
paramount to guarantee road users’ safety.

Nowadays, there are several paradigms to perform object detection, all based on
Convolutional Neural Networks (CNN) widely used in the computer vision field. Two
stages detection is the first formulation of this problem and still leads to off-the-shelf
detectors. It consists in first finding Region Of Interest (ROI) in images processed by
CNN. These ROI are then regressed to better fit the object localization and classified
to find the nature of the object. Several architectures, such as Faster Region Based
Convolutional Neural Networks (R-CNN) [23] and its derivatives [24] are milestones
that still regularly outperform architectures of the state of the art.

Single shot detectors are another paradigm that is very popular since it enables
object detection in real time. It consists in performing the classification and the re-
gression steps simultaneously from the image processed by CNN. The ROI proposed
by two stages detectors are replaced by a grid with each cell generating a fixed number
of proposition in You Only Look Once (YOLO) [1] and anchor boxes priors in Single
Shot MultiBox Detector (SSD) [2] and RetinaNet [3]. A recent approach [25] gets rid
of priors by formulating object detection as a direct set prediction problem.

Another paradigm sees object detection as the prediction of a set of key points. It
produces heatmaps giving the location of points of interest, mainly the top left and
the top right corners of the bounding box locating the object [26], sometimes enriched
with the center of the bounding box [27]. It can also predict four extreme points (top
most, bottom most, left most and right most) [28] or even more key points drawing the
global shape of the object [29].

All these architectures are evaluated on benchmarks addressing the object detection
task of several common objects at a large scale. The Microsoft Common Object in
COntext (MS COCO) dataset [4] is nowadays the mostly used since it contains more
than 120,000 complex indoor and outdoor scenes with more than 880,000 instances
from 91 classes. Even if these pipelines are tested on color-based RGB images, they
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can be modified to process other modalities. Hence, they are often used as basis to
multimodal fusion architectures.

Multimodal fusion

As mentioned previously, multimodality is the core of road scene analysis in complex
situations. To perform an efficient multimodal fusion, it is usual to answer the following
questions:

What to fuse? The choice of the modalities to fuse is highly dependant of the aimed
application. Infrared images are often combined with color-based images to enhance
pedestrian detection in every situation [30]. LiDAR point clouds and color-based images
are joint together to perform Three Dimensions (3D) road object detection [31]. On
the other hand, Radar signals and color-based images are merged to increase the speed
and accuracy of detections [32]. Finally, LiDAR point clouds and the map of the
environment are fused to predict both the intention of the other road users as well as
their 3D localization [33].

When and how to fuse? Three fusion pipelines can be used to efficiently fuse
multimodal information, with their advantages and drawbacks [34]. The Early fusion
scheme combines raw or pre-processed data at an early stage. While this pipeline fully
exploits raw data from their joint representation and results in lighter architectures, it
is inflexible to sensor replacement and not robust to sensor breakdown. The Late fusion
scheme on the contrary is highly flexible since it processes each modality separately. It
is therefore more robust to sensor breakdown but results in computationally expensive
pipelines. Finally, the Middle fusion scheme is the best of both worlds since it first
processes each modality separately and combines them halfway of the network. It leads
to lighter and more flexible architectures. However, a lot of neural architecture search
is required to find the optimal Middle fusion design.

As for conventional object detectors, several benchmarks aim to evaluate the perfor-
mances of the different fusion schemes. The KAIST dataset [35] is often used to evaluate
the pipelines aiming to enhance pedestrian detection, as it contains color-based and
thermal images. Karlsruhe Institute of Technology and Toyota Technological Institute
dataset (KITTI) [36] is one of the mostly used datasets, as it contains LiDAR point
clouds and RGB images, and is labelled to detect various road users. The Waymo
Open dataset [37] is a larger alternative to KITTI.

Contributions

In this thesis, we came up with three main contributions, which are the constitution
of the first large multimodal polarimetric and color-based dataset for road object de-
tection in several weather conditions, improvements on road scene analysis in adverse
weather conditions using polarimetric imaging and a fusion pipeline for color-based
and polarimetric images. Regarding the first application, our contributions can be
summarized as follows:
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I We propose several datasets, containing different kind of road scenes in different
weather conditions, labelled for road object detection. Some acquisitions are
made outdoors while some others are made in a tunnel simulating adverse weather
conditions.

II We come up with six polarimetric data formats, providing well chosen combina-
tions of polarimetric features, encoded for machine learning.

III We design a CycleGAN under physical constraints, generating polarimetric im-
ages from RGB ones, which provides a polarimetric equivalent of benchmarks for
road object detection.

As for the improvements on road scene analysis in adverse weather conditions, our
contributions are:

I We demonstrate that off-the-shelf object detectors of the literature can be used
to process efficiently polarimetric road scenes.

II We show that polarimetric features learnt in good weather conditions are still
valid to detect road objects under fog unlike color-based features.

Finally, concerning the fusion pipeline for color-based and polarimetric images, our
contributions are:

I We compare several fusion pipelines, including an Early fusion pipeline and five
designed filters used for Late fusion purposes, to find the most effective to enhance
road scene analysis in adverse weather.

II We generalize the results obtained under fog to dense rain and to several fog
densities and find the limitations of polarimetric features under very dense fog.

The different contributions have been published in the following papers:

� Journal papers

1 Rachel Blin, Samia Ainouz, Stéphane Canu, Fabrice Mériaudeau. ”The Po-
larLITIS dataset: road scenes under fog”, Transactions on Intelligent Trans-
portation Systems (T-ITS), 2021.

2 Rachel Blin, Samia Ainouz, Stéphane Canu, Fabrice Mériaudeau. ”Road
scene analysis under fog: towards an optimal conventional-non-conventional
fusion scheme”, submitted to Transactions on Intelligent Vehicles (T-IV),
2021.

3 Cyprien Ruffino, Rachel Blin, Samia Ainouz, Gilles Gasso, Romain Hérault,
Fabrice Mériaudeau, Stéphane Canu. ”Generating physically admissible po-
larimetric images as data augmentation for road-scene analysis”, Currently
in preparation.

� Conference papers

5



Introduction

1 Rachel Blin, Samia Ainouz, Stéphane Canu, Fabrice Mériaudeau. ”Adapted
learning for Polarization-based car detection”, Quality Control by Artificial
Vision (QCAV), 2019.

2 Rachel Blin, Samia Ainouz, Stéphane Canu, Fabrice Mériaudeau. ”Road
scenes analysis in adverse weather conditions by polarization-encoded images
and adapted deep learning”, IEEE International Conference on Intelligent
Transportation Systems (ITSC), 2019.

3 Rachel Blin, Samia Ainouz, Stéphane Canu, Fabrice Mériaudeau. ”A new
multimodal rgb and polarimetric image dataset for road scenes analysis”,
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition Workshops (CVPR Workshops), 2020.

4 Rachel Blin, Samia Ainouz, Stéphane Canu, Fabrice Mériaudeau. ”Multi-
modal Polarimetric And Color Fusion For Road Scene Analysis In Adverse
Weather Conditions”, IEEE International Conference on Image Processing
(ICIP), 2021.

5 Rachel Blin, Samia Ainouz, Stéphane Canu, Fabrice Mériaudeau. ”Road
scene analysis: A study of polarimetric and color-based features under var-
ious adverse weather conditions”, submitted to IEEE International Confer-
ence on Computer Vision Workshops (ICCV Workshops), 2021.

Outline

This thesis is divided into six chapters as follows:

� Chapter 1 introduces the concept of multimodality by presenting polarimetric
imaging, color-based imaging, infrared imaging and LiDAR point clouds.

� Chapter 2 gives the background knowledge on Deep Learning frameworks, in-
cluding object detectors and CycleGAN.

� Chapter 3 reviews the applications of polarimetric images in the literature and
the role of multimodality in autonomous driving. It also describes the different
object detectors and the multimodal fusion architectures.

� Chapter 4 details the different datasets constituted to carry out the experiments
of this thesis.

� Chapter 5 demonstrates the role of polarimetric imaging to enhance road scene
analysis under fog.

� Chapter 6 presents the color-based and polarimetric fusion pipelines that improve
road object detection in a wide range of adverse weather conditions.

� Finally, we draw conclusions about our work and present the future perspectives.
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Contexte et motivations

Les années 1960 marquent l’émergence de travaux sur la navigation autonome. Ces
projets se concrétisent en 1977, avec la construction de la première voiture semi-
automatique [5]. Une étape majeure est franchie en 1995 avec NavLab [6], qui réalise le
premier trajet de plus de quatre mille kilomètres en autonomie complète. Cette percée
technologique a ouvert la porte à plusieurs défis de conduite autonome, dont la com-
pétition lancée par DARPA [7] en 2002, visant à évaluer les performances des véhicules
autonomes. La navigation autonome est en plein essor depuis les années 2010 avec
l’émergence de l’apprentissage profond qui a montré des performances exceptionnelles
pour accomplir cette tâche. Aujourd’hui, la classification SAE [8], un système de classi-
fication à six niveaux, est utilisée pour donner des indications sur le niveau d’autonomie
des différents véhicules. Les six niveaux, qui vont des systèmes entièrement manuels
aux systèmes entièrement automatisés, sont illustrés en Figure 39. Plusieurs véhicules
autonomes existent dans le monde entier avec différents niveaux d’autonomie. Parmi
eux, on peut citer la voiture autonome Waymo10, un système qui fonctionne au niveau
4 d’autonomie, le système Autopilot de Tesla11, qui permet une autonomie de niveau 2
ou encore le laboratoire autonome Rouen Normandie12, qui fournit une autonomie de
niveau 3 dans une zone restreinte.

Cependant, les systèmes mentionnés ci-dessus montrent leurs limites en situations
complexes telles que des conditions météorologiques défavorables [9, 10]. Permettre la
navigation autonome lorsque la visibilité est altérée est l’un des grands défis à relever
pour atteindre le niveau 5 d’autonomie. Les systèmes autonomes actuels utilisent des
modalités non conventionnelles car elles permettent d’obtenir les meilleurs résultats
pour pallier cette limitation. L’imagerie infrarouge est utilisée pour améliorer la dé-
tection des piétons, des cyclistes et des motocyclistes [11] et permet une détection des
usagers de la route à une plus grande distance sous le brouillard, la pluie et la neige [12].
Cependant, l’imagerie infrarouge montre ses limites en cas de brouillard épais ou de
pluie dense qui peuvent modifier l’empreinte thermique des objets [13]. Le Radar est
une autre modalité non conventionnelle utilisée pour améliorer la détection d’obstacles
routiers en conditions météorologiques défavorables [14], sans toutefois garantir une
précision optimale puisqu’il est affecté par le bruit thermique [15]. Le LiDAR est prin-

9Source : https://newsroom.intel.com/
10https://waymo.com/
11https://www.tesla.com/autopilot
12https://www.rouennormandyautonomouslab.com/
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Figure 3: Les six niveaux d’autonomie des systèmes autonomes.

cipalement utilisé pour améliorer l’analyse des scènes routières par faible visibilité, mais
le signal peut être très bruité à cause d’erreurs d’interprétation des flocons de neige ou
des gouttes.

Pour permettre l’analyse précise d’une scène routière lorsque la visibilité est altérée,
d’autres modalités non conventionnelles doivent être explorées. Elles apporteraient des
informations supplémentaires, plus robustes aux changements externes. Dans cette
thèse, nous avons décidé de concentrer nos recherches sur l’imagerie polarimétrique
pour améliorer la détection des différents usagers de la route. Cette modalité non con-
ventionnelle caractérise un objet à partir de ses caractéristiques physiques, invariantes
aux forts éclairages ou à la faible visibilité [18].

Détection d’objet

La détection d’objets a récemment suscité l’intérêt de nombreux chercheurs, principale-
ment en raison de l’expansion de d’apprentissage profond. Cette tâche s’inscrit dans
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un large champ de recherche, résultant en des modèles de plus en plus précis. Elle
occupe une place importante dans l’analyse des scènes routières car elle fournit des
informations directes sur la position et la nature des différents objets de la scène. Ces
informations sont nécessaires dans les pipelines de décision des systèmes autonomes et
sont primordiales pour garantir la sécurité des usagers de la route.

Il existe aujourd’hui plusieurs paradigmes pour effectuer la détection d’objets, tous
basés sur les réseaux neuronaux convolutifs qui sont très utilisés dans le domaine de la
vision par ordinateur. La détection en deux étapes est la première formulation de ce
problème et résulte encore aujoud’hui en des détecteurs très performants. Elle consiste
à trouver d’abord les régions d’intérêt dans les images traitées par réseaux neuronaux
convolutifs. Les coordonnées de ces régions d’intérêt sont ensuite modifiées pour mieux
correspondre à la localisation de l’objet et classés pour trouver la nature de l’objet.
Plusieurs architectures, comme Faster R-CNN [23] et ses dérivés [24] sont des jalons
qui surpassent encore régulièrement les architectures de l’état de l’art.

Les détecteurs à coup unique sont un autre paradigme très populaire puisqu’il per-
met la détection d’objets en temps réel. Il consiste à effectuer simultanément les étapes
de classification et de régression à partir de l’image traitée par un réseau neuronal con-
volutif. Les régions d’intérêt proposées par les détecteurs à deux étapes sont remplacés
par une grille dont chaque cellule génère un nombre fixe de propositions dans YOLO [1]
et par des bôıtes d’ancrage préalablement définies dans SSD [2] et RetinaNet [3]. Une
approche récente [25] se débarrasse des prédictions préalablement initialisées en formu-
lant la détection d’objets comme un problème de prédiction d’ensemble direct.

Un autre paradigme modélise la détection d’objets comme la prédiction d’un ensem-
ble de points clés. Il produit des cartes thermiques donnant la localisation de points
d’intérêt, principalement les coins supérieurs gauche et droit de la bôıte englobante
localisant l’objet [26], parfois enrichie du centre de la bôıte englobante [27]. Il peut
également prédire quatre points extrêmes (le plus haut, le plus bas, le plus à gauche
et le plus à droite) [28] ou encore plus de points clés dessinant la forme globale de
l’objet [29].

Toutes ces architectures sont évaluées sur des bases de données repères, traitant
la détection d’objets courants à grande échelle. Le jeu de données MS COCO [4] est
aujourd’hui le plus utilisé car il contient plus de 120 000 scènes complexes d’intérieur
et d’extérieur avec plus de 880 000 instances issues de 91 classes. Même si ces pipelines
sont testés sur des images en couleur, ils peuvent être modifiés pour traiter d’autres
modalités. Ils sont donc souvent utilisés comme base pour les architectures de fusion
multimodale.

Fusion multimodale

Comme mentionné précédemment, la multimodalité est au cœur de l’analyse des scènes
routières en situations complexes. Pour réaliser une fusion multimodale efficace, il est
d’usage de répondre aux questions suivantes :

Quoi fusionner ? Le choix des modalités à fusionner dépend de l’application visée.
Les images infrarouges sont souvent combinées avec des images couleur pour améliorer
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la détection des piétons dans toutes les situations [30]. Les nuages de points LiDAR et
les images couleur sont combinés pour effectuer la détection 3D d’obstacles routiers [31].
D’autre part, les données Radar et les images couleur sont fusionnées pour augmenter
la vitesse et la précision des détections [32]. Enfin, les nuages de points LiDAR et la
carte de l’environnement sont fusionnés pour prédire à la fois l’intention des autres
usagers de la route et leur localisation 3D [33].

Quand et comment fusionner ? Trois pipelines de fusion peuvent être utilisés pour
fusionner efficacement des informations multimodales, chacune ayant des avantages et
des inconvénients [34]. Le schéma de fusion précoce combine les données brutes ou
prétraitées à un stade précoce. S’il exploite pleinement les données brutes à partir de
leur représentation conjointe et permet d’obtenir des architectures plus légères, il n’est
pas facilement modifiable si un capteur a besoin d’être remplacé et n’est pas robuste
aux pannes de ces derniers. Le schéma de fusion tardive, au contraire, est très flexible
puisqu’il traite chaque modalité séparément. Il est donc plus robuste aux pannes de
capteurs, mais entrâıne des pipelines coûteux en calcul. Enfin, le schéma de fusion
intermédiaire est le meilleur des deux mondes puisqu’il traite d’abord chaque modalité
séparément et les combine à mi-chemin du réseau. Il permet d’obtenir des architectures
plus légères et plus flexibles. Cependant, il est nécessaire d’effecture de la recherche
d’architecture neuronale pour trouver l’architecture de fusion intermédiaire optimale.

Comme pour les détecteurs d’objets conventionnels, plusieurs bases de données
repères servent à évaluer les performances des différents schémas de fusion. Le jeu de
données KAIST [35] est souvent utilisé pour évaluer les pipelines visant à améliorer
la détection des piétons, car il contient des images thermiques et des images couleur.
Le jeu de données KITTI [36] est l’un des plus utilisés, car il contient des nuages de
points LiDAR et des images RGB, et est étiqueté pour détecter divers usagers de la
route. Le jeu de données Waymo Open [37] est une alternative à KITTI, contenant
plus d’images.

Contributions

Dans cette thèse, nous avons apporté trois contributions principales, qui sont la con-
stitution du premier grand jeu de données multimodales polarimétriques et basées sur la
couleur pour la détection d’obstacles routiers dans plusieurs conditions météorologiques,
des améliorations sur l’analyse de scènes routières dans des conditions météorologiques
dégradées en utilisant l’imagerie polarimétrique et un pipeline de fusion pour les images
couleur et polarimétriques. En ce qui concerne la première application, nos contribu-
tions peuvent être résumées comme suit :

I Nous proposons plusieurs jeux de données, contenant différents types de scènes
routières dans différentes conditions météorologiques et étiquetées pour la détec-
tion d’obstacles routiers. Certaines acquisitions sont faites en extérieur tandis que
d’autres sont réalisées dans un tunnel simulant des conditions météorologiques
défavorables.
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II Nous proposons six formats de données polarimétriques, chacun proposant des
combinaisons bien choisies de caractéristiques polarimétriques, encodées pour
l’apprentissage automatique.

III Nous concevons un CycleGAN sous contraintes physiques, générant des images
polarimétriques à partir d’images RGB, et fournissant ainsi un équivalent po-
larimétrique des bases de données repères utilisées pour la détection d’obstacles
routiers.

Quant aux améliorations apportées à l’analyse de la scène routière en conditions
météorologiques dégradées, nos contributions sont les suivantes :

I Nous démontrons que les détecteurs d’objets disponibles dans la littérature peu-
vent être utilisés pour traiter efficacement les images polarimétriques de scènes
routières.

II Nous montrons que les caractéristiques polarimétriques apprises dans de bonnes
conditions météorologiques sont utilisables pour détecter des obstacles routiers
dans le brouillard, contrairement aux caractéristiques basées sur la couleur.

Enfin, concernant le pipeline de fusion pour les images couleur et polarimétriques,
nos contributions sont les suivantes :

I Nous comparons plusieurs pipelines de fusion, dont un pipeline de fusion précoce
et cinq filtres conçus à des fins de fusion tardive, afin de trouver le plus effi-
cace pour améliorer l’analyse des scènes routières en conditions météorologiques
dégradées.

II Nous étendons les résultats obtenus sous le brouillard à la pluie dense et à
plusieurs densités de brouillard et trouvons les limites des caractéristiques po-
larimétriques sous un brouillard très dense.

Les différentes contributions ont été publiées dans les articles suivants :

� Articles de revues

1 Rachel Blin, Samia Ainouz, Stéphane Canu, Fabrice Mériaudeau. ”The Po-
larLITIS dataset: road scenes under fog”, Transactions on Intelligent Trans-
portation Systems (T-ITS), 2021.

2 Rachel Blin, Samia Ainouz, Stéphane Canu, Fabrice Mériaudeau. ”Road
scene analysis under fog: towards an optimal conventional-non-conventional
fusion scheme”, soumis à Transactions on Intelligent Vehicles (T-IV), 2021.

3 Cyprien Ruffino, Rachel Blin, Samia Ainouz, Gilles Gasso, Romain Hérault,
Fabrice Mériaudeau, Stéphane Canu. ”Generating physically admissible po-
larimetric images as data augmentation for road-scene analysis”, Actuelle-
ment en préparation.

� Articles de conférences
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1 Rachel Blin, Samia Ainouz, Stéphane Canu, Fabrice Mériaudeau. ”Adapted
learning for Polarization-based car detection”, Quality Control by Artificial
Vision (QCAV), 2019.

2 Rachel Blin, Samia Ainouz, Stéphane Canu, Fabrice Mériaudeau. ”Road
scenes analysis in adverse weather conditions by polarization-encoded images
and adapted deep learning”, IEEE International Conference on Intelligent
Transportation Systems (ITSC), 2019.

3 Rachel Blin, Samia Ainouz, Stéphane Canu, Fabrice Mériaudeau. ”A new
multimodal rgb and polarimetric image dataset for road scenes analysis”,
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition Workshops (CVPR Workshops), 2020.

4 Rachel Blin, Samia Ainouz, Stéphane Canu, Fabrice Mériaudeau. ”Multi-
modal Polarimetric And Color Fusion For Road Scene Analysis In Adverse
Weather Conditions”, IEEE International Conference on Image Processing
(ICIP), 2021.

5 Rachel Blin, Samia Ainouz, Stéphane Canu, Fabrice Mériaudeau. ”Road
scene analysis: A study of polarimetric and color-based features under var-
ious adverse weather conditions”, soumis à IEEE International Conference
on Computer Vision Workshops (ICCV Workshops), 2021.

Organisation

Cette thèse est divisée en six chapitres comme suit :

� Le chapitre 1 introduit le concept de multimodalité en présentant l’imagerie po-
larimétrique, l’imagerie couleur, l’imagerie infrarouge et les nuages de points Li-
DAR.

� Le chapitre 2 présente les connaissances de base sur l’apprentissage profond, no-
tamment les détecteurs d’objets et les CycleGAN.

� Le chapitre 3 passe en revue l’état de l’art des applications des images po-
larimétriques et le rôle de la multimodalité dans la conduite autonome. Il décrit
également les différents détecteurs d’objets et les architectures de fusion multi-
modales.

� Le chapitre 4 détaille les différents jeux de données constitués pour réaliser les
expériences de cette thèse.

� Le chapitre 5 démontre le rôle de l’imagerie polarimétrique pour améliorer l’analyse
des scènes routières dans le brouillard.

� Le chapitre 6 présente les pipelines de fusion utilisant l’imagerie couleur et po-
larimétrique améliorant la détection d’obstacles routiers dans un large éventail
de conditions météorologiques dégradées.
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� Enfin, nous tirons des conclusions sur notre travail et présentons les perspectives
futures.
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Chapter 1

Background on multimodality

Contents
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1.3 Color models . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

1.3.1 RGB color space . . . . . . . . . . . . . . . . . . . . . . . . . 23
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1.3.4 YCrCb color space . . . . . . . . . . . . . . . . . . . . . . . . 29

1.4 Other non-conventional imaging systems . . . . . . . . . . 30

1.4.1 Passive infrared . . . . . . . . . . . . . . . . . . . . . . . . . . 30

1.4.2 LiDAR point clouds . . . . . . . . . . . . . . . . . . . . . . . 31

1.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

1.1 Introduction

The world is composed of diverse phenomena that are perceived differently through the
lens of the different living beings. This set of perceptions constitutes the characteristics
of each phenomenon, which can be captured by different acquisition frameworks. The
information resulting of each acquisition framework, or in other terms, each sensor, is
called ”modality” [38].

Color-based imaging, sound, or both information combined resulting in a video
are examples of modalities inspired by the Human perception. Since it is rare that
a single modality provides the complete knowledge of a natural phenomenon, these
modalities are usually combined to provide rich characteristics to describe it. However,
the human perception is not sufficient to face complex situations. Some sensors are
designed to acquire information circumventing to Human perception, which enable to
describe phenomenon difficult or impossible to characterize otherwise. The sensors
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of this category are known as non-conventional sensors, capturing non-conventional
modalities.

Non-conventional modalities are used in a wide range of fields. They can be pro-
cessed on their own, or in complement to conventional ones. In the medical branch,
Computed Tomography combined with Magnetic Resonance Imaging and Positron
Emission Tomography to name a few, enable a precise description of the internal
functioning of the body [39]. Non-conventional modalities, such as infrared imag-
ing [12, 40, 41] or Lidar [42, 43, 44], combined with color-based images are used in
autonomous vehicles or ADAS to reliably describe road scenes. These modalities are
essential given that they are more robust to day/night variation or adverse weather con-
ditions than conventional imaging; yet without totally enabling autonomous driving in
every situation [9].

In this thesis, the impact of polarimetric imaging in improving road scene anal-
ysis under adverse weather conditions is addressed. As a matter of fact, this non-
conventional modality describes an object by its physical information, even under poor
illumination or strong reflections [18]. This section clarifies the formalism of polarimet-
ric images, as well as four color spaces including RGB, Hue, Saturation, Value (HSV),
Lightness, Green-magenta chromatic axis, Blue-Yellow chromatic axis (CIE Lab) and
Luminance, Chrominance (red-yellow), Chrominance (blue-yellow) (YCrCb). Infrared
imaging and LiDAR technologies are also described, as they play a significant role in
the autonomous driving field.

1.2 Linear Polarization formalism

In its propagation plan, the electromagnetic field of a plane progressive transverse
wave [45], with a pulsation ω and a phase ψ, in the orthonormal basis B = { ~ux, ~uy}
has the following equation:

~E(t) = Ex(t) cos(−k~z + ωt+ ψx(t)) ~ux + Ey(t) sin(−k~z + ωt+ ψy(t)) ~uy , (1.1)

where k is the wave number, t is the time, ~z the direction of propagation and Ex,
Ey are respectively the amplitudes of ~E(t) according to ~ux and ~uy. Ey and Ex are
respectively related to the electric and the magnetic fields of the electromagnetic wave.
ψx and ψy are respectively the components according to ~ux and ~uy of the phase of
the electromagnetic wave. Figure 1.1 illustrates the composition of an electromagnetic
wave.

Polarization is the property of light waves describing the direction in which the wave
is travelling. It is better understood by introducing the three states of polarization of
the light [18]:

� the wave is totally polarized when the direction of its electrical field is well de-
termined, in this case, it is elliptic, linear or circular,

� the wave is unpolarized when the light waves oscillate in totally random direc-
tions,
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Figure 1.1: Electric and magnetic fields of a light wave.

� it is partially polarized when there is a combination of a polarized part and an
unpolarized part.

Polarimetric imaging consists in giving the polarization state of the reflected light
wave for each pixel of a scene. It is historically used to dissociate metallic object from
dielectric surface [46]. The mechanism of the polarization is that when an unpolar-
ized light wave is being reflected by an object, it becomes partially linearly polarized.
The reflected light wave can be described by a measurable vector, called the linear

Stokes vector, S =
[
S0 S1 S2

]>
. It is defined as the co-variance parameters of the

electromagnetic wave components of equation (1.1):S0
S1
S2

 =

 〈Ex2〉+ 〈Ey2〉
〈Ex2〉 − 〈Ey2〉

2〈ExEy cos(ψy − ψx)〉

 ,

where 〈.〉 refers to the temporal mean of the signal.
By its construction, the Stokes parameters satisfy the physical admissibility con-

straints defined by the following equations:

S0 > 0 and S0
2 > S1

2 + S2
2 . (1.2)

The first constraint means that any object reflects a light. The second constraint
means that the total energy is always greater than the sum of the partial ones. The
reflected wave is thus totally polarized if the equality holds meaning that S0

2 = S1
2 +

S2
2. It is partially polarized if we have strict inequality and unpolarized if S0 > 0,

S1 = 0, S2 = 0.
In order to obtain polarimetric images, a polarizer oriented at a specific angle αi is

placed between the scene and the sensor. Most of polarimetric cameras use four linear
polarizers, oriented at four different angles (αi,i=1:4 = {0°, 45°, 90°, 135°}), enabling
to get simultaneously four different intensities Iαi ,i=1:4 of the same scene. Figure 1.3
illustrates the output of a polarimetric camera for each orientation. The light wave is
filtered in order to recover its polarized part in the desired orientation. This filtering
process is illustrated for each of the four linear polarizers in Figure 1.2. To get the
three Stokes parameters, at least three different orientations of the polarizer are needed.
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Figure 1.2: Illustration of the filtering action of the four linear polarizers on an unpolarized
light wave. They transmit a polarized light wave in the desired orientation. Here, the four
linear polarizers are respectively oriented at 0°, 45°, 90° and 135°.

The relationship between each intensity Iαi
and the Stokes parameters is illustrated in

Figure 1.4 and given by:

Iαi
=1

2
[
1 cos(2αi) sin(2αi)

] S0
S1
S2

 ,

∀i = 1, . . . , 4 .

(1.3)

In a more compact representation, equation (1.3) can be written in the following
way:

I = AS , (1.4)

where I =
[
I0 I45 I90 I135

]>
refers to the four intensities according to each angle

of the polarizer. S =
[
S0 S1 S2

]>
is the Stokes vector and A ∈ R4×3 is commonly

called the calibration matrix of the linear polarizer, defined as:

A = 1
2


1 cos(2α1) sin(2α1)
1 cos(2α2) sin(2α2)
1 cos(2α3) sin(2α3)
1 cos(2α4) sin(2α4)

 = 1
2


1 1 0
1 0 1
1 −1 0
1 0 −1

 . (1.5)

Knowing the intensities Iαi ,i=1:4 reaching the camera and the calibration matrix A,
the only unknowns in equation (1.4) are the Stokes parameters. As the matrix A is
not square, the most used solution in the literature to get the Stokes parameters for
each pixel is the least mean square solution. The Stokes vector is then calculated by
the following formula:
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Figure 1.3: Output of a polarimetric camera with four linear polarizers respectively oriented
at 0°, 45°, 90° and 135°. The raw polarimetric image is constituted of super pixels. Each
super pixel contains the values of the four intensities related to the four linear polarizers for
each pixel of the scene. The intensities are reconstructed by selecting their corresponding
value in each super pixel.

Figure 1.4: Illustration of the polarization process of the light wave. The incident light is
being reflected by the object it impinges on and becomes partially polarized. This reflected
light can be described by the Stokes vector S. It is then filtered by a polarizer oriented
at a desired angle αi. The filtered wave is captured by the camera to get the intensity Iαi

associated to the object. Here the process is illustrated for αi = 0 which is Iαi = I0.
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S = ÃI , (1.6)

where Ã = (A>A)−1A> the pseudo-inverse matrix of A. The proposed mean square
solution is submitted to some additional constraints on the acquired intensities. Indeed,
if we combine equations (1.4) and (1.6), we get the following equation:

I = AÃI . (1.7)

This equality holds if and only if:

I0 + I90 = I45 + I135 . (1.8)

The proof of the condition in equation (1.8) can be found in appendix C.
Note that from equations (1.4), (1.6) and (1.8), the Stokes vector can be given by:

S =

 I0 + I90
I0 − I90
I45 − I135

 . (1.9)

Other important physical parameters can be obtained from the Stokes parameters,
the Angle Of Polarization (φ) and the Degree Of Polarization (ρ) [47]. φ and ρ can be
determined from the obtained Stokes vector with the following formulas:

φ = 1
2 arctan2

(
S2

S1

)
, (1.10)

ρ =
√
S12 + S22

S0
. (1.11)

ρ ∈ [0, 1] is one of the most important physical properties. It refers to the quantity
of polarized light in a wave. It is equal to 1 for a totally polarized light, between 0 and
1 for the partially polarized light and to 0 for an unpolarized light. φ∈

]
−π

2 ; π2
]

is the
orientation of the polarized part of the wave with regards to the incident plan. ρ and
φ can be represented in a unitary circle following equations (1.2), (1.10) and (1.11).
This representation can be found in Figure 1.5. Figure 1.6 illustrates an example of a
road scene and its representation within this non-conventional space.
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Figure 1.5: Representation of ρ and φ in the unitary circle. The abscissa is the value of the
second Stokes parameter S1 normalized by the first Stokes parameter S0 and the ordinate is
the value of the third Stokes parameter S2 normalized by S0. ρ is the norm of the vector of
the polarization state at coordinates (S1

S0
, S2
S0

) and φ is half of the angle formed by the abscissa
and the vector of the polarization state.
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Figure 1.6: Example of a polarimetric image. From left to right and from top to bottom: I0,
I45, I90, I135, S0, S1, S2, φ and ρ.
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1.3 Color models

Color models are mathematical representations of color. They are usually represented
by three values to match the human trivariant color vision. Each color is characterized
by a triplet of values that can be represented by a point in a 3D space. The set of all
the colors described by a color model is a color space.

There are plenty of different color spaces that aim to highlight different properties
of an image. While some of them describe the image according to three chromatici-
ties, others enable to visualize its hue or its saturation. In the computer vision field,
the representation of an image in a given color space is made by concatenating three
grayscale images. It is possible to convert an image from one color space to another
since they contain the same amount of information while represented differently.

In this section, the four color spaces that are used in this thesis are detailed. First,
the RGB color space is described, followed by the HSV color space, the CIE Lab color
space and finally details are given about the YCrCb color space.

1.3.1 RGB color space

The RGB color space is described by three chromaticities which are the red, the green
and the blue. Figure 1.7 represents the RGB color space. This color space is created
according to the Young-Helmholtz theory [48], stating that all the visible colors can be
described by the red, the green and the blue light waves. These three light waves refer
to the three cones of the human eye, which restitute a color by combining the red, the
green and the blue information they receive.

The first RGB image is constituted in 1861 by James Clerk Maxwell [49] by project-
ing three color-filtered images (using a red, a green and a blue filters) on a white wall.
This first experiment is the base of the additive synthesis of images. In the case of the
RGB color space, the additive synthesis is made by using the three additive primary
colors: red, green and blue. An illustration of an RGB image and of the content of
each channel can be found in Figure 4.15.

In computer vision, the principle of combining red, green and blue chromaticities
is still applied to constitute RGB images. These three chromaticities constitute the
channels of the image. Each pixel of an image has a color value which is a combination
of the values respectively of the red, green and blue channels of this pixel. These three
values are integers usually within the [0, 255] range for 8 bits images and sometimes
within the [0, 65535] range for 16 bits images. The shade of a color is deduced by
the greatest value of the three channels. If the greatest value is in the red channel,
the color has a red shade. The same principle applies to the blue and green channels.
In the meantime, values close to 0 give a darker shade to the color whereas the ones
close to 255 (or 65535 for 16 bits images) give a lighter shade to the color. White is
reached when the three channels are equal to 255 for 8 bits images (or 65535 for 16 bits
images) whereas black is reached when the three channels are equal to 0. Figure 1.7
illustrates an example of how a color is defined, according to its red, green and blue
channels values in 8 bits images and Figure 4.15 shows an RGB image and its channels
decomposition.
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Figure 1.7: RGB color space representation in 3D space. R, B and G respectively represent
the red, the blue and the green axis. The color in the example has a red value of 153, a green
value of 102 and a blue value of 255.

Figure 1.8: Example of an RGB image and its channels decomposition. From left to right,
the red channel, the green channel, the blue channel and their concatenation to constitute an
RGB image.
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Figure 1.9: HSV color space representation in 3D space. H represents the hue axis, S rep-
resents the saturation axis and V represents the value axis. The color in the example has a
hue of 336°, a saturation of 40 and a value of 90.

The RGB color space is considered a reference to all the other color spaces. The
equations to convert an image from each color space to the RGB color space (stored in
8 bits) are given in the following sections.

1.3.2 HSV color space

The HSV color space is created in 1970 by computer graphics researchers [50]. The
intuition behind this color space is to describe colors so they can align with the human
perception. Indeed, describing a color by its proportion of red green and blue is not
intuitive. This color model is thus described by the hue of a color, its saturation and
its value. The goal of this color space is to model the colors under the light. The
maximum values of colors can be seen as the white light projection on a colored object,
enabling to have a bright and intense color. The other values of the colors can be seen
as a dimmer light projection on the same colors which results in darker and less bright
colors. The HSV color space is illustrated Figure 1.9.

The HSV color space can be described as a hexcone model of which the base is
the optimal color limits with white at the center of the base of the cone and black at
the vertex of the cone. The three parameters describing the HSV color space are the
followings:

� The hue (H), describing the color shade within the [0°, 360°] range. It describes
the transition between the primary colors in an angular way. The transition starts
with the primary red at 0°, then passes through the primary green at 120° and
the primary blue at 240° to come back to the primary red at 360°.

� The saturation (S), describing how pure the color is with a value within the [0,
100] range. A saturation of 100 leads to the pure color whereas a saturation of 0
refers to white.

� The value (V), describing how dark the color is with a value within the [0, 100]
range. A value of 100 results in a bright color whereas a value of 0 refers to black.
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Figure 1.10: Example of an HSV image and its channels decomposition. From left to right,
the hue, the saturation, the value and their concatenation to constitute an HSV image.

It is important to note that, in the HSV color space, two colors are complementary if,
mixed in the same proportions, their saturation is equal to 0.

In the computer vision field, the three components of images in the HSV color space
are rescaled to constitute 8 bits images. H becomes an integer within the [0, 179] range
while S and V become integers within the [0, 255] range. Figure 1.10 shows an HSV
image and its channels decomposition.

To convert an HSV image to the RGB color space [50], the following parameters
are first computed: 

V = V
100 × 255

S = S
100

H̃ =
⌊
H
60

⌋
mod 6

F = H
60 − H̃

L = V × (1− S)
M = V × (1− F × S)
N = V × (1− (1− F )× S)

they are then placed into different configurations to constitute the RGB image, accord-
ing to the value of Hi, which are:

(R,G,B) =



(V,N, L) if H̃ = 0
(M,V, L) if H̃ = 1
(L, V,N) if H̃ = 2
(L,M, V ) if H̃ = 3
(N,L, V ) if H̃ = 4
(V, L,M) if H̃ = 5

1.3.3 CIE Lab color space

The CIE Lab color space is defined from the CIE XYZ color space [51], an enhanced
version of the RGB color space enabling a better spacial representation of colors. It is
created in 1976 to better characterize the surface’s colors [52]. Its goal is to describe
the colors’ repartition similarly to the color offsets perception of the human eye. This
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Figure 1.11: CIE Lab color space representation in 3D space. L represents the luminance
axis, A is the offset to the cyan → magenta axis and B is the offset to the blue → yellow
axis. The color in the example has a luminance of 64, a 52 offset to the cyan→ magenta axis
and a 67 offset to the blue → yellow axis.

color space is described by three parameters. The first parameter is the luminance of
the surface (L) and the two others (a and b) are the offsets of the color to the gray
surface with the same luminance. The offset to the gray surface is defined by the offset
to the cyan→ magenta axis (a) and the one to the blue→ yellow axis (b). These three
parameters constitute the three channels of an image in the CIE Lab color space. This
color space is illustrated in Figure 1.11.

The existing colors in the CIE Lab color space actually constitute a complex cornet-
shaped geometrical volume with the upper vertex corresponding to white and the lower
vertex to black. For a better understanding, this complex geometry is here approxi-
mated with three circular slices corresponding to three different luminances (see Fig-
ure 1.11). The center of each of the three circles constitutes a gray level (a=b=0). If
two points are at an equal distance from the gray surface, their color difference is equal,
which means they have the same contrast.

For 8 bits images, each point of the CIE Lab color space is within the following
color ranges:

� The luminance L is an integer set within the [0, 100] range,

� The offset towards the cyan (-a) → magenta (+a) axis is an integer within the
[−128, 127] range,

� The offset towards the blue (-b) → yellow (+b) axis is an integer within the
[−128, 127] range.

In this configuration, a negative value of ”b”gives a blue shade to the color whereas a
positive value of ”b”gives a yellow shade to the color. In the same way, a negative value
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Figure 1.12: Example of a CIE Lab image and its channels decomposition. From left to right,
the luminance, the offset towards the cyan (-a) → magenta (+a) axis, the offset towards the
blue (-b) → yellow (+b) axis and their concatenation to constitute a CIE Lab image.

of ”a” gives a cyan shade to the color whereas a positive value of ”a” gives a magenta
shade to the color. As for the luminance, a value close to 0 gives a darker shade to the
color whereas a value close to 100 gives a lighter shade to the color. Figure 1.12 shows
a CIE Lab image and its channels decomposition.

To convert a value from the CIE Lab color space to the RGB color space [52, 51],
it must be converted to the CIE XYZ color space following:

X = Xnf
(
L+16
116 + a

500

)
Y = Ynf

(
L+16
116

)
Z = Znf

(
L+16
116 −

b
200

)
with:


Xn = 95.0489
Yn = 100
Zn = 108.8840

and:

f(x) =


x3 if x > 6

29
1
3(29

6 )2
(
x− 4

29

)
else

Once the CIE Lab coordinates are converted to CIE XYZ coordinates, they can be
converted to RGB coordinates following:


Rl = 3.24096994X − 1.53738318Y − 0.49861076Z
Gl = −0.96924364X + 1.8759675Y + 0.04155506Z
Bl = 0.05563008X +−0.20397696Y + 1.05697151Z

with Rl, Gl and Bl are respectively the red, green and blue linear values on which we
need to apply a gamma correction to obtain the final values, which is:
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Figure 1.13: YCrCb color space representation in 3D space. Y represents the luma axis, Cr
represents the red chrominance axis and Cb represents the blue chrominance axis. The color
in the example has a luma of 211, a 98 red chrominance value and a 68 blue chrominance
value.


R = γ(Rl)
G = γ(Gl)
B = γ(Bl)

with:

γ(x) =

12.92x if x ≤ 0.0031308
1.055x 1

2.4 − 0.055 else

1.3.4 YCrCb color space

The YCrCb color space is created to address the compatibility between color television
and black & white television. It follows the intuition that both grayscale and color
images are the sum of all the colors that compose them. This color space is described by
three components which are the luma, the red chrominance and the blue chrominance.
The luma is the sum of the red, the green and the blue components of the image. The
red chrominance and the blue chrominance are respectively the difference between the
luma and the red component and the luma and the blue component. In this way, the
black and white sensors only process the luma component of this data format. The
color sensors compute the green component from the luma, as well as the red and the
blue components to display color images. The YCrCb color space is represented in
Figure 1.13.

In the computer science field, the three components of YCrCb images are integers
within the [0, 255] range to constitute 8 bits images. Figure 1.14 shows an YCrCb
image and its channels decomposition.

An image can be converted from the YCrCb color space to the RGB color space [53]
using the following equations:
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Figure 1.14: Example of an YCrCb image and its channels decomposition. From left to right,
the luma, the red chrominance, the blue chrominance and their concatenation to constitute
an YCrCb image.


R = Y + 1.402(Cr − 128)
G = Y − 0.34414(Cb− 128)− 0.71414(Cr − 128)
B = Y + 1.772(Cb− 128)

1.4 Other non-conventional imaging systems

In this section, the passive infrared and the LiDAR modalities are explained. These two
non-conventional modalities play an important role in ADAS and autonomous vehicles.
A brief background on their functioning is given to understand the state of the art of
autonomous driving.

1.4.1 Passive infrared

Passive infrared sensors measure the quantity of infrared light radiating from ob-
jects [54]. All the objects that have a temperature greater than the absolute zero
(-273.15°C=-459.67°F) emit heat in the form of electromagnetic radiation. These elec-
tromagnetic waves are invisible with the human eye since their wavelength are in the
infrared domain. The wavelength of the emitted electromagnetic radiation depends on
the temperature of an object. The hotter the object, the smaller the wavelength is.
Figure 1.15 illustrates the different spectrum of an electromagnetic wave according to
their wavelength λ.

In the computer vision field, passive infrared images are relatively used for person
detection [55, 56, 57] since the corporal heat is usually greater than the ambient heat.
This corporal heat remains the same whatever the luminosity of the scene. Because
passive infrared imaging provides information invisible with the human eye, it is a
complementary information to the color domain. Passive infrared images are grayscale
images within the [0, 255] range for 8 bits images and within the [0, 65535] range for
16 bits images.
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Figure 1.15: The different spectrum according to their wavelength λ. The visible spectrum
has light waves between 360 nm and 750 nm whereas the infrared domain gathers all the light
waves between 750 nm and 1 mm. Here, UV stands for the ultraviolet domain. In the visible
spectrum, V, B, G, Y, O and R respectively stand for violet, blue, green, yellow, orange and
red.

1.4.2 LiDAR point clouds

The LiDAR is an active sensor that measures the distance of an object from an emitter
using a laser beam with a wavelength either in the ultraviolet, the visible or the infrared
spectra [58]. The sensor actually measures the time laps between the emission of
light pulse and the reception of the reflected light pulse. Figure 1.16 illustrates the
mechanism behind the LiDAR sensor.

The following equation enables to measure the distance of an object from the LiDAR
emitter:

d = c

2(tr − t0)

with t0 the emission time of the light pulse, tr the reception time of the most important
echo of the reflected light pulse and c = 299800 km.s−1 the speed of light.

There are mainly two types of LiDAR:

� the 3D LiDAR that enables to map the target surface in 3D [59, 60],

� the Two Dimensions (2D) LiDAR that evaluates the distance of an obstacle at a
given height [61].

LiDAR sensors are very accurate since they have a scope of about a 100 meters with
only a few centimeters precision. Since the emitted and reflected light pulses travel at
the speed of light, they can process a scene in real time.

LiDAR data are generally stored as 2D or 3D point clouds for respectively 2D and
3D sensors. The 3D point cloud can be converted to grayscale images in 8 bits (values
normalized to fit in the [0, 255] range) or 16 bits images (values normalized to fit in
the [0, 65535] range).
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Figure 1.16: Mechanism of the LiDAR sensor. A light pulse is emitted and goes through a
semi-reflective blade and is being reflected by a second reflective blade before reaching the
obstacle. Once the obstacle is reached, the light pulse is being reflected once by the object
and twice by respectively the reflective and the semi-reflective blades before reaching the
receptor.

1.5 Summary

This chapter defines the concept of multimodality and gives details about the ones
playing an important role in autonomous driving. The physical theory behind a lin-
early polarized light wave is first detailed. It enables to understand the functioning of
the linear polarimetric camera used in this thesis, as we study the role of polarimet-
ric imaging in improving road scene analysis in adverse weather. The different color
spaces of conventional imaging are also detailed, including RGB, HSV, CIE Lab and
YCrCb. Their specificities as well as the formulas to convert an image from a color
space to another are given. Finally, two other non-conventional modalities that play an
important role in autonomous driving are explained. The characterization of an object
by its temperature is explained through the definition of infrared imaging. The mech-
anism behind the modelization of a scene in 3D using a LiDAR is also detailed. All
these modalities provide complementary information useful to describe a road scene.
Their impact in enhancing road scene analysis in complex situations is detailed in the
followings chapters.
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Background on Deep Learning
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2.1 Introduction

Deep Learning algorithms are a branch of Machine Learning algorithms which are a
branch of Artificial Intelligence themselves. They aim to solve problems associated to
large datasets, containing raw and non-processed data.

The year 2012 is a turning point in the history of Deep Learning. A Deep Neural
Network (DNN) architecture, AlexNet [62], showed outstanding results at the Ima-
geNet Large Scale Visual Recognition Challenge (ILSVRC) [63] that year. It greatly
outperformed the Machine Learning algorithms used in this challenge so far. From
that moment, DNN gained a lot of popularity and proved their added value in a wide
range of fields.

Nowadays, DNN are used to perform numerous and various tasks, including image
classification [64], image detection [65], image generation [66] and language process-
ing [67] to name a few. These different tasks enable to enhance medical diagnosis [39],
for automatic language translation [68] and are paramount to enable autonomous driv-
ing [69].
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This chapter presents the necessary background knowledge on Deep Learning, more
particularly on DNN for image processing. The concept of an artificial neuron is first
detailed. The intuition behind the combination of several artificial neurons, constitut-
ing a multilayer perceptron, to solve more complex problems is then presented. The
convolution layer, which is the core of Deep architectures performing image processing
tasks, is explained. All these basics notions are essential to understand the function-
ing of Object Detectors. The main architectures performing object detection and their
evaluation metrics are explained. Finally, CycleGAN are described. The theory behind
all these concepts gives support to the different experiments carried out in this thesis.

2.2 Basics of Deep Learning

This section gives details on the basic concepts behind Deep architectures. It includes
the artificial neuron, and the combination of artificial neurons to constitute a Multilayer
Perceptron (MLP). The convolution function is then reminded before explaining how
it is used to constitute a convolution layer, essential for image processing.

2.2.1 Artificial neurons and Multilayer Perceptron

An artificial neuron can be seen as the mathematical representation of a biological
neuron. It is first introduced by Warren et al. in 1943 [70].

Each entry of an artificial neuron can be seen as a vector x =
[
x1 x2 ... xm

]>
of m elements. A weight w =

[
w1 w2 ... wm

]>
is associated to this entry. The

difference between the element wise multiplication between the entry x and its weight
w and a bias w0 is processed by an activation function f . The output of an artificial
neuron is the following:

y = f
( m∑
j=1

wjxj − w0

)
, (2.1)

where y is the output of the artificial neuron. Equation (2.1) is illustrated in Figure 2.2.
The most common activation functions are illustrated in Figure 2.1.

Artificial neurons used on their own can implement simple operations such as the
AND and OR boolean functions. In order to solve more complex problems, the mul-
tilayer perceptron is introduced in 1957 by Rosenblatt [71]. This architecture is a
combination of several layers of artificial neurons. Each neuron of a layer (l) is con-
nected to each neuron of layer (l + 1), implying that the outputs of the neurons of
layer (l) are the inputs of the neurons of layer (l+ 1). The architecture of a multilayer
perceptron is illustrated in Figure 2.3.

To automatically correct the errors in the multilayer perceptron’s predictions, the
backpropagation is introduced in 1986 by Rumelhart et al. [72]. The backpropagation
enables to corrects the weights of each layer regularly during the training process.

In order to update the weights of a neural network during the training process, it
is paramount to quantify the error. To this end, a loss function is used depending on
the nature of the input data and the problem to solve. The lower the loss function
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Figure 2.1: Example of activations functions f used by artificial neurons.

Figure 2.2: Illustration of an artificial neuron. The whole process is summarized up by
equation (2.1).
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Figure 2.3: Illustration of the architecture of a multilayer perceptron. x
(l−1)
k is the kth element

of layer (l−1) output and the kth element of layer (l) input. w
(l)
jk is the weight of the connection

between neuron k of layer (l − 1) and neuron j of layer (l).

value is, the more accurate the predictions are. The Mean-Squared Error (MSE) is an
example of loss function [73], measuring the distance between the prediction and the
ground truth, and has the following from:

MSE(y, z) = 1
p

p∑
i=1

(yi − zi)2 (2.2)

where y is the network prediction, z is the ground truth and p is the number of neurons
in the last layer of the perceptron.

The value of the loss function C is the initialization of the backpropagation algo-
rithm. The error e

(l)
j of the neuron j of layer (l) is computed the following way:

e
(l)
j = f ′(l)

( q1∑
k=1

w
(l)
jkx

(l−1)
k

) q2∑
i=1

w
(l+1)
ij e

(l+1)
i ∀l = 1, . . . , n− 1 , (2.3)

e
(n)
i = C ∀i = 1, . . . , p ,

where f ′ is the derivative of the activation function of the artificial neuron j of layer
(l), q1 and q2 respectively the number of neurons in layers (l − 1) and (l + 1), w

(l)
jk , is

the weight of the connection between neuron k of layer (l−1) and neuron j of layer (l),

x
(l−1)
k is the output of neuron k of layer (l − 1) (x

(0)
k is the kth element of the network

input) and C is the loss function value.
Using equation (2.3), the weights are updated the following way:
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w
(l)
ij = w

(l)
ij − κe

(l)
i x

(l−1)
j ∀l = 1, . . . , n ,

where w
(l)
ij , is the weight of the connection between neuron j of layer (l−1) and neuron

i of layer (l), κ the learning rate, x
(l−1)
j is the output of neuron j of layer (l − 1) (x

(0)
j

is the jth element of the network input) and e
(l)
i is the error of neuron i of layer (l).

2.2.2 Convolutional Neural Networks

CNN aim to process data while keeping spatial and temporal dependencies. Their ar-
chitecture is inspired by the human visual cortex. The objective of such architectures
is to reduce the data features to the most informative ones while loosing the least infor-
mation. This mechanism of describing data of the same category by general features,
makes CNN scalable to massive datasets.

Several operations are needed to build a CNN. These operation are the convolution,
the non-linear rectification and the pooling are described in this section.

Convolution

The convolution operation on two functions f and g is the mean of these two functions
and is defined as follows:

(f ∗ g)(x) =
∫ +∞

−∞
f(t)g(x− t)dt (2.4)

where (f ∗ g)(x) is the weighted average of the function f(t) at the moment x and
g(x− t) is the weighting shifted by amount x.

In CNN, the convolution operation is the sum of the elementwise multiplication
between a sliding window and the data matrix. This window is called the convolution
kernel or a filter. This operation enables to extract specific features on the data de-
pending on the convolution kernel. The equation of a convolution layer is the following:

y(i, j) =
n∑
a=1

n∑
b=1

w(a, b)x(i+ a, j + b) , (2.5)

∀i = 1, ..., H − n+ 1 ,∀j = 1, ...,W − n+ 1 ,

where w is a n×n convolution kernel and the weights of the convolution layer, x is the
input of a convolution layer of shape H ×W and y the output of a convolution layer
of shape (H − n+ 1)× (W − n+ 1).

The convolution kernel has the same depth as the data it processes. In the image
processing field, the convolution kernel is a sliding window aiming to process a n × n
neighborhood around each pixel of an image. When processing a grayscale image, i.e.
a one channel image, the shape of the convolution kernel is n × n × 1. In the same
way, when processing a three channels image, the shape of the convolution kernel is
n× n× 3. If the kernel depth is greater than one, the convolution result is the sum of
the convolution operations over each channel.
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The result of the convolution operation over a matrix is a feature map. Each
channel of the feature map extracts useful features to characterize the data. In image
processing, each channel of the feature map contains a filtered version of the image (e.g.
a blurred image or its edge detection). The depth of a feature map is the number of
filters (or convolution kernels) used in the convolution layer to process the image. The
weights of a convolution layer are the values of all the convolution kernels it contains.

The size of each feature map depends on different parameters. Its depth is the
number of convolution filters used on the data. Its width and height, however, depend
on two parameters: the convolution stride and the convolution padding.

The convolution stride is the equivalent of the moment x in equation (2.4). It
controls how the filters convolves around the input volume. When processing matrices,
the stride is the distance between the current position and the next position on which
the convolution operation is applied. The stride s is a strictly positive integer, as it
characterizes the distance between two elements of a matrix. Equation (2.5) with a
stride s becomes:

y(i, j) =
n∑
a=1

n∑
b=1

w(a, b)x((i− 1)× s+ a+ 1, (j − 1)× s+ b+ 1) , (2.6)

∀i = 1, ...,

H − n+ s

s

 ,∀j = 1, ...,

W − n+ s

s

 ,

where b.c if the floor operation.
Figure 2.4 illustrates the effect of the stride variation on the output shape of the

feature map. If the input matrix is of shape H × W and the convolution kernel of
shape n × n, the shape of the resulting feature map is bH−n+s

s
c × bW−n+s

s
c, with s

the convolution stride. The greater the stride is, the smaller the output width and
height will be. In practice, reducing the output shape enables to gain computational
efficiency since the output data has smaller spatial dimensions. It also extracts higher
level features on the input data.

As mentioned above, another way to control the shape of a feature map is the
convolution padding operation. Equation (2.6) of a convolution layer with a stride s
and padding pc becomes:

y(i, j) =
n∑
a=1

n∑
b=1

w(a, b)x((i− 1)× s+ a+ 1, (j − 1)× s+ b+ 1) , (2.7)

∀i = 1, ...,

H − n+ pc + s

s

 ,∀j = 1, ...,

W − n+ pc + s

s

 ,

where pc is an even positive integer, implying that pc

2 columns are added respectively on
the left and on the right borders of the input data and pc

2 lines are added respectively
on the top and on the bottom borders of the input data.

The padding operations can be classified into two categories:

� The Valid Padding: there is no padding applied to the matrix. In this case, if
the input matrix is of shape H ×W , the convolution kernel if of shape n×n and
the stride is s, the shape of the resulting feature map is bH−n+s

s
c × bW−n+s

s
c,
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Figure 2.4: Example of a convolution operation when varying the convolution stride. On
top, the convolution stride is one and on the bottom, the convolution stride is two. In red,
the region of the matrix on which the convolution window is initialized. In green and in
blue respectively the next regions of the matrix on which the convolution kernel is applied
horizontally and vertically.

� The Same padding: a layer of values (usually zeros known as zero padding) are
added around the edges of the input matrix. In this case, the height and width
of the resulting feature map are bH−n+pc+s

s
c × bW−n+pc+s

s
c. It is the same as the

input matrix if the convolution stride and the convolution padding are set to
s = 1 and pc = 2 with a 3× 3 kernel.

These two padding operations are illustrated Figure 2.5.

Non-linear rectification

In order to extract relevant features to describe objects, the network can not entirely
rely on the convolution operation. Indeed, the convolution operation is linear which
results in a linear function if used on its own. However, most of problems can not be
solved with a linear function. This is the reason why non-linear information must be
introduced into CNN to create non-linear decision boundaries.

Non-linear information is often introduced by applying a non-linear function to the
resulting feature map. This process is called the non-linear rectification. The equation
of a convolutional layer (see equation (2.7)) with non-linear rectification becomes:

yrectified(i, j) = f

 n∑
a=1

n∑
b=1

w(a, b)x((i− 1)× s+ a+ 1, (j − 1)× s+ b+ 1)
 , (2.8)
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Figure 2.5: Illustration of the padding operations with a stride s = 1. On the left, the Valid
Padding is illustrated on a 7 × 7 input matrix, resulting in a 5 × 5 output matrix after the
convolution operation. On the right, the Same Padding is illustrated with a padding pc = 2
on a 7× 7 input matrix which remains the same shape after the convolution operation with
a 3× 3 kernel.

∀i = 1, ...,

H − n+ pc + s

s

 ,∀j = 1, ...,

W − n+ pc + s

s

 ,

where f is the non-linear rectification function.
Different functions are used to perform non-linear rectification. Some of them are

illustrated Figure 2.1. In practice, the Rectified Linear Unit (ReLU) function and its
derivatives (Leaky ReLU, Threshold ReLU, etc.) are mainly used since they provide
the best results.

Pooling

Once the rectified feature maps obtained, it is paramount to reduce their dimensions
in order to reduce the computational power of the network. However, the reduction of
spatial dimensions must not come at the cost of loosing relevant information extracted
in the feature maps.

To reach this goal, the pooling operation is introduced after non-linear rectification.
The principle of the pooling operation is to first define spatial neighborhood of the
feature map, i.e. divide the image into wp×wp windows. Then, an operation is applied
on each spatial window, reducing its content to one value. The equation of a convolution
layer with non-linear rectification (see equation (2.8)) and pooling becomes:

ypooling(i, j) = fp(yrectified((i− 1)× wp + 1 : i× wp, (j − 1)× wp + 1 : j × wp) ,

∀i = 1, ...,

Hr

wp

 ,∀j = 1, ...,

Wr

wp

 ,

where fp is the pooling function, wp is the window width and Hr and Wr are respectively
the height and the width of the rectified feature map yrectified.

There are two main pooling operations illustrated in Figure 2.6:
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Figure 2.6: Illustration of the Max Pooling and Average Pooling operations on a given matrix.
In this example, the different spatial neighborhoods are 2 × 2 windows (left) represented in
red, green, blue and yellow. On the right, the result of the Max Pooling (top) and Average
Pooling (bottom) operations are given for each spatial neighborhood.

� The Max Pooling selects the maximum value of each spatial neighborhood of the
feature map. It provides the best results in practice since it is more likely to
suppress the potential noise in rectified feature maps,

� The Average Pooling selects the average value of each spatial neighborhood of the
feature map. It generally provides lower results than the Max Pooling operation
since it takes the potential noise in rectified feature maps into account.

Pooling operations reduce the data spatial dimensions, which makes them easier to
work with. By reducing the number of features to process, the computational efficiency
of the network is increased and over-fitting is more likely to be limited. Pooling oper-
ations also make the network invariant to small transformations such as distortion or
translation. Finally, pooling operations give an equivarient representation of the input
matrix, i.e. invariant to the scale. In image processing, this implies that an object can
be described the same way no matter if it is big or small.

To summarize up, this section reviews the different operations constituting a con-
volution layer. More specifically, it is the combination of convolution, non-linear recti-
fication and pooling operations that makes CNN efficient tools to process images while
increasing their computational efficiency. As a matter of fact, the described operations
extract relevant features, characterizing efficiently all the objects of a same category,
and invariant to the scale and to small transformations. It is important to note that, as
the successive convolution operations describe the input data with higher-level features,
the deeper the network is, the higher-level the extracted features will be.

2.3 Object detectors

Object detectors aim to detect objects in an image, i.e. give their nature and their
position in it. The detection task consists in predicting a set of bounding boxes, each
one containing an identified object. The predicted bounding boxes are actually the 4
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Figure 2.7: Illustration of one stage and two stages detectors. One stage detectors can make
their predictions on one or several (using a Feature Pyramid Network (FPN)) feature maps.
The two stages detectors are composed of two subnetworks, the first one (a Region Proposal
Network (RPN)) predicting Regions Of Interest (ROI) and the second one that classifies
them.

coordinates of the area containing the object, (xmin, ymin, xmax, ymax) or (xmin, ymin,
width, height), and the nature of the object (its classification). In this section, the
different tasks to predict the bounding boxes and evaluate their quality are described.

2.3.1 The different architectures

There are two main architectures to achieve object detection. The first one is the two
stages detector which is composed of two successive networks to make its predictions.
The second one is the one stage detector which is an end-to-end architecture enabling to
make predictions. The different object detectors architectures are illustrated Figure 2.7
and are detailed in the following sections.

Two stages detectors

The first step of two stages detectors consist in predicting a set of ROI from a feature
map using a Region Proposal Networks (RPN) [23]. These ROI are the coordinates of
the detected objects and are unlimited in number. The second step consists in using
a classification network over these ROI, i.e. giving the nature of the object. The
classification network is a MLP, which last layer contains a neuron for each class. Each
of these neurons returns the probability of the object to belong to the corresponding
class and the sum of these probabilities is one. The highest probability determines the
class of the object and is called the detection score.

The two stages detectors are usually slower since they are composed of two networks
but more precise. However, because of the downsampling caused by the successive
convolution and pooling layers, their performances on small objects can be altered.
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Figure 2.8: Example of anchor boxes initialization. In full lines, the final anchors boxes and
in dashed lines, the anchors boxes suppressed because they are not within the image. The
different anchor boxes predicted at each location (red dot) are illustrated on the right.

One stage detectors

One stage object detectors are initialized with anchors boxes over the image. The most
relevant anchors boxes are selected and corrected to become the predicted bounding
boxes. As a matter of fact, this initialization step is paramount since it is difficult for
CNN to predict bounding boxes from scratch.

Anchor boxes of different sizes and shapes are initialized at regular positions of the
image and only the ones within the images are selected. They cover all the image,
enabling to detect all the objects it contains. Figure 2.8 illustrates the anchor boxes
initialization in an image. In practice, there are thousands of anchor boxes initialized
in an image. This number vary depending on the neural network.

Once the anchors boxes initialized, two tasks are performed at the same time. The
first one consists in predicting from one or several feature maps the final coordinates
of each anchor box. To predict on several feature maps, a Feature Pyramid Networks
(FPN) [74] is usually used. It enables to provide a representation of the same object
at different scales to reinforce the feature extraction. The second one is the character-
ization of each anchor box’s content while providing a score similarly to the one stage
detector. These two tasks are respectively called regression and classification. When
predicting on one feature map, the subsampling caused by the several convolution and
pooling layers may lead to a loss of information. This implies a loss of performances
when it comes to small objects. FPN [74], however, prevent loss of information and
improve small objects detection as the predictions are made at different scales. At the
end of the process, one prediction is made for each anchor box (or several predictions,
i.e. a prediction at each scale, for each anchor box in case of a FPN), resulting in
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Figure 2.9: Illustration of the Intersection Over Union (IOU) operation. In dark blue, the
intersection of bounding boxes A and B and in pale blue the union of bounding boxes A and
B.

thousands of bounding boxes. A filtering step is thus necessary to select only the most
relevant ones.

The filtering process depends on the Intersection Over Union (IOU) between the
predicted bounding box and the ground truth bounding box. This operation is the
following:

IOU(A,B) = A ∩B
A ∪B

,

where A and B are two bounding boxes, ∩ is the intersection operation and ∪ is the
union operation.

The IOU ∈ [0, 1] enables to measure how close are two bounding boxes. IOU = 1 if
the two bounding boxes are the same and IOU = 0 is the two bounding boxes do not
intersect. This operation is illustrated in Figure 2.9.

There are different algorithms to perform the filtering step. The two main algo-
rithms are the Non-Maximum Suppression (NMS) [75] and the soft-NMS [76] and are
detailed in algorithm 1. Their action is illustrated Figure 2.10. Their filtering processes
are the followings:

� The NMS filters the proposals to keep only the most relevant ones. To achieve
this goal, the propositions with the highest scores are selected among similar ones
and the others are suppressed. This algorithm shows limits when there are two
objects to be detected, close to one another.

� The soft-NMS enables to keep all the proposals. It selects the proposition with
the highest scores among similar ones and modifies the scores of the others. This
algorithm enables to detect close objects at a cost of keeping bounding boxes
detecting the same object if they have a high detection score.

Note that algorithm 1 presents the common part of NMS and soft-NMS algorithms
in black. The lines in red are used in the NMS algorithm while the ones in blue are
used in the soft-NMS algorithm. The function f used in the soft-NMS algorithm is the
following:
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Algorithm 1 NMS and soft-NMS algorithms

Require: B = b1, ..., bn the initial detection boxes, S = s1, ..., sn their corresponding
detection scores, Nt the NMS threshold.
D← {}
while B 6= ∅ do

m← argmax(S)
M← bm . Select element with highest score
D← D ∪M
B← B−M . Remove element from proposals
for bi in B do

if IOU(M, bi) ≥ Nt then
B← B− bi . NMS
S← S− si

end if
si ← si × f(IOU(M, bi)) . soft-NMS

end for
end while
return D, S

f(IOU(M, bi)) = exp
(−IOU(M, bi)

σ

)
,

where σ is the Gaussian weight of the soft-NMS algorithm.

2.3.2 Loss functions

The loss functions used in object detectors aim to both evaluate if the objects are
correctly classified and how far are the predicted coordinates from the ground truth.
This is the reason why a classification and a regression loss are defined to evaluate each
of these tasks. The final loss of the network can be written:

L = $Lclassification + ζLregression ,

where L refers to the loss of the network, Lclassification to the classification loss and
Lregression the regression loss and $ and ζ their respective weight factors.

The MSE (see equation (2.2)) can be used as a regression loss since it evaluates
the distance between two points. As for the classification loss, the Cross Entropy (CE)
loss [77] or the Focal Loss (FL) [3] can be used since the network performs multiclass
prediction. The CE loss equation is the following:

CE(p, z) =
c∑
i=1

log(pti
) ,

pti
=

pi if zi = 1
1− pi else

,
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Figure 2.10: Illustration of the filtering process using the NMS algorithm (top right) and
soft-NMS (bottom right).

where p =
[
p1 p2 ... pi ... pc

]
is the vector of the estimated probabilities of be-

longing to each class i, which sum equals to 1, pt =
[
pt1 pt2 ... pti ... ptc

]
is the

vector evaluating the distance of p to the ground truth z =
[
z1 z2 ... zi ... zc

]
(zi = 1 if the object belong to class i and zi = 0 else ∀i = 1, ..., c) and c the number of
classes.

The CE loss is limited when the classes are unbalanced. As a matter of fact,
since it sums the errors of all predictions, the network can choose to sacrifice a minor
class performances to improve the overall performance. The FL, however, is designed
to down-weight well classified examples to focus the network’s training on the hard
misclassified ones. Its equation is the following:

FL(p, z) =
c∑
i=1

(1− pti
)β log(pti

) , (2.9)

where β ∈ [0, 5] the down-weighting factor. The closer pti
is to 1 (good classification),

the smaller (1− pti
) will be, which down-weight the loss for well classified examples.

2.3.3 Evaluation metrics

Once the network is trained, the predictions are evaluated using specific metrics. Object
detectors aim to increase the number of good predictions while decreasing the number
of false predictions. To achieve this goal, two metrics are defined: the precision and
the recall. The precision measures the quantity of correct predictions among all the
predictions. The recall measures the quantity of correct predictions with regards to the
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ground truth. To make good predictions, an object detector must have a good balance
between its precision and its recall metrics. Their equations are the followings:

precision = TP

TP + FP
,

recall = TP

TP + FN
,

where TP stands for True Positives and is the number of results predicted positive by
the model that are actually positive, FP stands for False Positives and denotes the
number of results predicted positive by the model that are actually negative and FN
stands for False Negatives and is the number of results predicted negative by the model
that are actually positive.

In multiclass object detectors, the positive and negative predictions are determined
by a threshold for the IOU between the ground truth and the predicted bounding
boxes. If the IOU between the prediction and the ground truth is above the threshold,
the prediction is considered positive, it is considered negative otherwise. To measure
the quality of the predictions, the precision and recall are calculated while varying the
IOU threshold. The precision recall-curve, which gives indications about the balance
between the precision and recall of the predictions, is obtained by plotting the precisions
with regards to their respective recalls. For more interpretability on this curve, the
Average Precision (AP) metric is created. The AP is the precision averaged across all
unique recall levels and has the following formula:

pinterp(r) = max
r̄:r̄≥r

(ps(r̄))

AP = 1
11

∑
r∈[0,0.1,...,1]

pinterp(r)

where r ∈ [0, 0.1, ..., 1] is the set of eleven equally spaced possible recall levels, r̄ is all
recall values that exceed a given one r, pinterp(r) is the maximum precision for which
recall is greater or equal to r and ps(r̄) is the precision at the corresponding recall r̄.
This formula is illustrated Figure 2.11.

The AP is computed for each class separately. In order to measure the overall per-
formance of object detectors, the Mean Average Precision (mAP) over all the possible
classes is computed. The formula of the mAP is the following:

mAP = 1
c

c∑
i=1

AP i , (2.10)

where c is the number of classes and AP i is the AP of class i.
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Figure 2.11: Illustration of the computation of pinterp(r) on the precision-recall curve.

2.4 Cycle-Consistent Generative Adversarial Net-

works

CycleGAN [78] aim to achieve the image-to-image translation task. Given two domains
X and Y , unpaired image-to-image translation is the task of learning the mapping
functions MXY : X → Y and MY X : Y → X using unpaired samples xi ∈ X with
i ∈ [1..N ] and yj ∈ Y with j ∈ [1..M ].

The two mapping models, MXY and MY X , are learnt by combining the objective
function of the standard Generative Adversarial Networks (GAN) [66] with a Cycle-
Consistency loss function. The adversarial cost related to the GAN serves for training
the models to generate samples that match the target domain distribution, while the
Cycle-Consistency cost ensures that the learned models are able to correctly reconstruct
an original image (of the source domain) from a generated one.

Formally a GAN is composed of a generative model G : Z → X which maps a
known distribution pZ , usually normal or uniform, to the unknown distribution pX of
the samples and a discrimination model D : X → [0, 1]. Both the generator and the
discriminator are fully CNN. The generator G attempts to fool the discriminator D,
which in turn tries to distinguish a real sample from a sample generated by the model
G. Learning a GAN amounts to solve the following problem:

G∗, D∗ = arg minG maxD LGAN(D,G) ,

with LGAN(D,G) = Ex∼pX

[
log(D(x))

]
+ Ez∼pZ

[
log(1−D(G(z)))

]
,

48



CHAPTER 2. BACKGROUND ON DEEP LEARNING

where E refers to the expectation.
For its part, CycleGAN learns the two models MXY and MY X by using unpaired real

samples x ∈ X and y ∈ Y respectively drawn according to the (unknown) distributions
pX and pY as input. It also learns two discrimination networks DX : X → [0, 1] and
DY : Y → [0, 1] able to detect generated samples from real ones in the domains X
and Y respectively. CycleGAN relies on the Least-Squares variant of GAN [79] and
considers the following adversarial costs:

LGAN(DY ,MXY ) = E
y∼pY

[
(DY (y)− 1)2

]
+ E

x∼pX

[
DY (MXY (x))2

]
,

LGAN(DX ,MY X) = E
x∼pX

[
(DX(x)− 1)2

]
+ E

y∼pY

[
DX(MY X(y))2

]
.

In order to ensure the cyclic consistency, i.e. both the compositions MXY ◦ MY X

and MY X ◦ MXY are identity functions, a `1 reconstruction error term is devised for
the mapping models:

Lreco(MXY ,MY X) = E
y∼pY
||y −MXY (MY X(y))||1 + E

x∼pX
||x−MY X(MXY (x))||1 .

Gathering all these elements leads to the objective function:

LCycleGAN(DX , DY ,MXY ,MY X) = LGAN(DY ,MXY ) +
LGAN(DX ,MY X) + ηLreco(MXY ,MY X) , (2.11)

where η > 0 is an hyper-parameter that controls the influence of the reconstruction
term. Training a CycleGAN consists in solving, via alternate gradient descent, the
following minmax problem:

MXY
∗,MY X

∗, DX
∗, DY

∗ = arg min
MXY
MY X

max
DX
DY

LCycleGAN(DX , DY ,MXY ,MY X) . (2.12)

The full learning procedure of a CycleGAN is sketched in Algorithm 2 and illus-
trated in Figure 2.12.
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Figure 2.12: Illustration of the image-to-image translation process using a CycleGAN. On
top row, the translation from domain X to domain Y is illustrated. On bottom row, the
translation from domain Y to domain X is illustrated.
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Algorithm 2 CycleGAN training algorithm
Require: X and Y two unpaired datasets, MXY and MY X the mapping networks, DX

and DY the discrimination models, m the mini-batch size
while stopping condition is not met do

sample a mini-batch {xi}mi=1 from X
sample a mini-batch {yi}mi=1 from Y
update DX by stochastic gradient descent of∑m

i=1(DX(xi)− 1)2 + (DX(MY X(yi)))2

update DY by stochastic gradient descent of∑m
i=1(DY (yi)− 1)2 + (DY (MXY (xi)))2

sample a mini-batch {xi}mi=1 from X
sample a mini-batch {yi}mi=1 from Y
update MXY by stochastic gradient descent of∑n

i=1(DY (MXY (xi))− 1)2 + η(||xi −MY X(MXY (xi))||1
+||yi −MXY (MY X(yi))||1)

update MY X by stochastic gradient descent of∑n
i=1(DX(MY X(yi))− 1)2 + η(||xi −MY X(MXY (xi))||1

+||yi −MXY (MY X(yi))||1)
end while

2.5 Summary

This chapter gives the necessary background on Deep Learning to understand the
experiments carried out in this thesis. The basic concepts of Deep Learning are first
described, starting from the functioning of an artificial neuron. The combination of
several artificial neurons to constitute a MLP is then detailed. This concept comes
with the backpropagation algorithm, enabling the network to adjust its parameters to
their optimal value during the training process. The description of the convolution
operation and how it is integrated to convolution layers is also given. Convolution
layers are used to CNN, which are the most efficient architectures to process images.
From these basic concepts, the elements constituting object detectors are presented.
The different architectures performing object detection are first described. The loss
functions used in object detectors, quantifying the error, are also detailed, followed by
the evaluation metrics, giving indications on the quality of the predictions. Finally, the
CycleGAN, performing image-to-image translation, is explained. Deep architectures
combined with multimodal data are widely used in the autonomous driving fields.
Their ability to provide an accurate and relevant road scene analysis in real time make
them a powerful tool to achieve this task. The different deep architectures of the state
of the art are reviewed in the following chapter.
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Literature review
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3.1 Introduction

Object detection is a fundamental task to perform an accurate road scene analysis.
Recent progresses, such as the ChauffeurNet [80] architecture behind the Waymo car
or the HydraNet [81] architecture behind Tesla Autopilot, enable a high autonomy
when the vision is clear. However, some improvements still need to be done when
the visibility is altered. To overcome this limitation, non-conventional sensors are
introduced to see beyond color-based vision, yet without guarantee an accurate road
scene analysis in every situation.

In this chapter, we first go through the use of polarimetric imaging in the literature.
The applications of this modality give an intuition on its use to enhance road object
detection in adverse weather. The role of the non-conventional sensors currently used
in the literature to overcome an altered visibility is then reviewed. The specificities
of infrared imaging, LiDAR and Radar, enhancing road scenes analysis in complex
situations, as well as their limits are detailed.

To improve road object detection, these non-conventional modalities are often cou-
pled with deep architectures. Following this stream, the different off-the-shelf object
detectors of the literature are described to provide an overview of each pipeline. Since
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the last part of this thesis focuses on multimodal fusion, this chapter explains the differ-
ent fusion schemes by sketching the different architectures of the literature. Finally, dif-
ferent datasets are presented to visualize the performances of the mentioned pipelines,
performing color-based common object detection or providing different modalities to
allow autonomous navigation. These datasets are used in the literature as benchmarks,
enabling a fair comparison between different architectures performing the same task.
The literature reviewed in this chapter lays the foundations of the work achieved in
this thesis, including the datasets constitution, road object detection in polarimetric
scenes in adverse weather and multimodal color-based and polarimetric fusion.

3.2 Non-conventional modalities

Non-conventional modalities are becoming more and more popular in autonomous nav-
igation. As a matter of fact, they provide information complementing conventional
color-based vision, which is highly affected by visibility changes and lighting conditions.
In this section, we first review polarimetric imaging, a non-conventional modality de-
scribing objects by their physical properties. The use of this modality in different fields
is detailed to understand the intuition behind its application in autonomous naviga-
tion. The non-conventional sensors currently used to enhance road scene analysis in
complex situations are then detailed, as well as their limits.

3.2.1 Polarimetric imaging

In the polarization formalism described in section 1.2, it is mentioned that this modal-
ity is able to describe objects by their reflective properties which are object specific.
Thanks to the strong features provided by polarimetric imaging, it is widely used in the
biomedical field. As a matter of fact, since defective cells do not have the same com-
position as healthy ones, polarization enables pathological diagnosis, such as cancer, at
an early stage [19, 82, 83, 84, 85, 86, 87, 88].

Another application of this non-conventional modality consists in enhancing per-
ception under water [89, 90, 91, 92, 93, 94, 95, 96], where color-based sensors fail
to distinguish the different elements of the scene. The interpretation of satellite
images is also improved using Synthetic-Aperture Radar (SAR) polarimetric imag-
ing [97, 98, 99, 100, 101, 102, 103], due to the different reflective properties of land
surfaces, buildings and rivers among others. Polarimetric imaging is also popular in
dehazing algorithms [20, 104, 105, 106, 107, 108] since the light reflected from the haze
particles can be easily distinguished from the light reflected from the rest of the scene.

Polarimetric imaging also provides an accurate depth map [21, 109, 110, 111, 112]
of a scene, which has proved to enhance indoor autonomous navigation. In the same
vein, polarization helps 3D objects reconstruction [113, 114, 115, 116, 117] by using the
information provided by the angle of polarization of the reflected wave.

These applications have lead to recent interest in this modality to enhance au-
tonomous driving. Huber et al. [118] use polarimetric images to detect glare in road
scenes, induced by the presence of water or ice on the road. Fan et al. [22] employ
polarimetric images to detect cars with a higher accuracy than conventional images.
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Blanchon et al. [119] apply polarization properties to perform an efficient segmentation
of highly reflective areas on the road such as puddles. Li et al. [120] operate on polari-
metric images to perform road segmentation in a scene regardless of the illumination
conditions to enhance autonomous navigation.

These applications, i.e. the dehazing properties of polarimetric images and their
ability to detect highly reflective surfaces, are encouraging towards the use of this
modality to enhance road scene analysis in adverse weather conditions.

3.2.2 Road scenes analysis in complex situations

Complex situations, such as strong illumination or low visibility, are very challenging
for autonomous driving since conventional sensors do not provide reliable information
in such conditions [9, 10]. Some non-conventional sensors, such as LiDAR, Radar or
infrared imaging have proved to be more efficient than the regular RGB camera to
address road scene analysis when the visibility is altered. In this section, the different
modalities used to improve road scene analysis are reviewed, starting from the sensors
used to enhance night vision, followed by the means to overcome adverse weather
conditions or strong illuminations.

Night vision Images provided by color-based cameras vary a lot with the scene
illumination as they are based on human vision. During nighttime, the color or shape
of road objects is altered since the lighting of the scene is provided by streetlights or
headlights of other vehicles if any. Hence, the provided information is not reliable,
which is an issue to guarantee the safety of the most vulnerable road users.

To overcome this issue, infrared imaging is introduced, especially to enhance pedes-
trians, cyclists or motorcyclists detection [11, 121, 122, 123, 124, 125, 126, 127] since it
relies on an entity’s temperature, which is usually higher than the background for living
beings. Animals can be another obstacle in road scenes that are efficiently detected
using infrared imaging [128, 129, 130]. However, infrared imaging often suffer from low
resolution and pedestrians can be confounded by hot parts of vehicles [124].

Radar is another sensor that provides information regarding the geometry of the
scene or the distance and speed of other road users in real time, no matter the lighting
conditions. It is able to efficiently estimate the road curvature in very low visibility
conditions [131, 132, 133]. It is also able to efficiently detect potholes [134] or the speed
of other road users when the visibility is very low [135]. However, Radars are affected
by the thermal noise of the external environment [15], as a consequence, the detections
include noise.

LiDAR can also accurately analyze road scenes at nighttime since they provide a
3D representation of the scene that is not affected by the scene illumination. They
therefore enable to efficiently detect road users [16, 136, 137, 138] or animals [139].
LiDAR also perform recognition of roads in low visibility [140, 43, 141]. However,
LiDAR lack of precision when detecting long distance objects since they often suffer of
poor resolution [142].
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Adverse weather conditions and strong illuminations Adverse weather condi-
tions are also challenging situations an autonomous vehicle must address. As a matter
of fact, weather changes, such as fog or rain alter the scene visibility, as well as the
color or shape of objects. On the other hand, a bright sun induces strong reflections on
the scene, a sharp backlight and glare. These perturbations highly affect conventional
color-based sensors and result in a non reliable road scene description [9].

Infrared imaging also finds applications in road scene analysis in adverse weather
conditions. It enables a detection of road users at a larger range than visible cameras
under fog, rain and snow [12, 9, 143, 144, 145, 146]. It also enables to detect traf-
fic signs and landmarks more efficiently under fog, rain and snow [12, 147] and the
presence of water and ice on the road [148, 149, 150, 151]. However infrared imaging
shows limits in adverse weather conditions such as heavy fog or rain because they can
modify the thermal footprint of vulnerable road users such as pedestrians, cyclists and
motorcyclists [13].

LiDAR is another sensor robust to lighting changes. This property implies that
the previously reviewed tasks to enhance night vision are still valid to overcome strong
reflections and glare. However, LiDAR is weakly reflective on wet road surfaces [42],
causing a lack of measures. On the other hand, adverse weather causes undesired
measurement points due to snowflakes or drops misinterpretations [17, 152, 153].

Similarly to the LiDAR sensor, Radar are invariant to illumination conditions,
hence, their improvements to enhance night vision are still valid in strong illumina-
tions and invariant to glare. On top of that, Radars perform a more reliable road users
detection under snow, rain and fog than visible cameras [14, 154, 155, 156]. However,
Radar are likely to be affected by the thermal noise of adverse weather [15].

Summary of non-conventional sensors In this section, we reviewed the different
sensors that can be an added value to enhance the scenes’ perception in complex sit-
uations. However, even if infrared imaging, LiDAR and Radar overcome color-based
perception in adverse weather or during nighttime, they all show limits when the vis-
ibility is very low. This limitation reminds that autonomous navigation in complex
situations is still a grand challenge to address. Hence, other non-conventional modali-
ties need to be explored as an alternative to the ones used in the literature.

3.3 Object detection

Performing an accurate object detection is paramount to provide a reliable road scene
analysis. Deep architectures nowadays have shown outstanding performances and are
the most adapted to achieve this task. There are plenty of different pipelines detecting
objects since this research field is getting more and more popular. This section first
focuses on the most competitive architectures for common object detection. Then,
the fusion architectures aiming to fuse different modalities to perform autonomous
navigation are described. Finally, the different datasets used as benchmarks to evaluate
the performances of the different architectures are detailed.
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3.3.1 Deep architectures

In this section, the deep architectures performing object detection are reviewed. The
origin of the detection task is first presented through the early deep architectures. Off-
the-shelf one stage and two stages object detectors, as well as their enhanced version
are also detailed and summarized in Figure B.1.

Two stages detectors

Two stages detectors consist in dividing the detection task into two subtasks, which
are finding ROI first and then classify each of these ROI. In this section, the early
methods are first reviewed, leading to the concept of backbone networks. Finally, the
different end-to-end two stages object detectors are presented.

• Early methods DetectorNet [157] is the first attempt to address the object de-
tection problem. Object are detected using a coarse-to-fine mask regression approach
followed by a regression step. One DetectorNet is trained per class contained in the
dataset which makes it computationally expensive. Its 7 layers architecture, including
5 convolutional and 2 fully connected layers, inspired several other early two stages
object detectors. Among them, we can cite R-CNN [158] and Spatial Pyramid Pooling
Network (SPPNet) [159], which introduce the concept of priors by using the selective
search algorithm [160] to extract 2000 region proposals, each one processed by a 7 layer
architecture before being classified by a linear Support Vector Machine (SVM) [161].
DeepMultiBox [162] is a less computationally expensive approach since it predicts a
fixed number of bounding boxes (100 or 200), which represent potential objects, using a
DetectorNet-based architecture. A score is associated to each bounding box, enabling
the NMS algorithm [75] to reduce the proposals before classifying them by a simi-
lar CNN. OverFeat [163] similarly to DeepMultiBox predicts the four coordinates of a
bounding box, before classifying it with a similar architecture.

• From early methods to backbones of end-to-end architectures Deeper ar-
chitectures later provide more accurate alternatives to the 7 layer architecture, fol-
lowing the early two stages principles. We can cite Visual Geometry Group network
(VGG) [164], stacking 13 (VGG16) and 16 (VGG19) convolutional layers, providing
higher level features to describe an image. GoogLeNet [165] rethinks the convolution
operation by introducing the Inception block, enabling an optimized deeper architec-
ture while keeping the computational budget constant.

These architectures are nowadays used as backbones of end-to-end object detec-
tors and their performances are evaluated on ImageNet [63]. Among them, we can
find Residual Network (ResNet) (ResNet-50, ResNet-101, ResNet-152) [166] which use
residual information of previous layers to ease the training of deep architectures. Their
variant, ResNeXt [167], increases the cardinality of the network instead of going deeper
for better performances, while Densely Connected Convolutional Networks (DenseNets)
connect each layer to every other layer in a feed forward fashion. MobileNets [168]
provide light weight DNN by dividing a standard convolution layer into a depthwise
convolution layer followed by a pointwise convolution layer. Squeeze-and-Excitation
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Networks (SENets) [169] generalize extremely well across challenging datasets, since
they adaptively recalibrate channel-wise feature responses by explicitly modeling inter-
dependencies between channels. Neural Architecture Search Networks (NASNets) [170]
propose a method that learns the model architecture directly on the dataset of interest.
Finally, EfficientNets [171] balance the network depth, width and resolution according
to the computational resources to increase performances. An illustration of the core
operations of these architectures can be found in Figure B.2.

• End-to-end architectures Fast R-CNN [65] marks an important milestone in the
object detection field. It is the first architecture trained end-to-end with a multi-task
loss, performing both bounding boxes classification and regression, enabling a faster
and more accurate detection. Multiple ROI priors and an image are input to the
network, which is composed of a VGG16 backbone and fully connected layers. The
output contains a score for each bounding box, which is a softmax probability for each
class and for the background, and four refined coordinates.

Faster R-CNN [23] improves the previously described architecture by introducing
the concept of RPN. This fully convolutional network enables to share full-image con-
volutional features with the detection pipeline. It acts as a sliding window on feature
maps which produces 9 anchor boxes at each location as priors. A score indicating if
the anchor contains an object is associated to each anchor box. By merging RPN and
Fast R-CNN, the resulting ROI are then refined and classified before being filtered by
the NMS algorithm. The whole pipeline is trained end-to-end, and enables to process
several frames per second since the region proposal step is nearly cost-free.

The Faster R-CNN pipeline is nowadays used as a basis to two stages object detec-
tors. Some modifications have lead to improvements on the detection task on the MS
COCO detection challenge [4]. We can cite Region-based Fully Convolutional Network
(R-FCN) [172] which provides a more accurate and efficient detection by replacing
the costly fully connected layers by convolutional ones. Faster R-CNN combined with
SNIPER [173] processes context regions around ground truth instances, adaptively
generated based on the scene complexity and at a larger scale than regular feature
maps, instead of every pixel in an image, enabling a higher detection accuracy. Path
Aggregation Network (PANet) [174] identifies that the way information propagates in
neural networks plays an important role in its performances and proposes a Bottom-
up Feature Pyramid to propagate efficiently semantically strong features. Cascade
R-CNN [24] introduces a multistage detection sub-network, with different IOU thresh-
olds, to reduce the false positive detection rate, later improved by Hybrid Task Cascade
(HTC) [175], performing cascade refinement jointly on the classification and regression
tasks. Global Context Network (GCNet) [176] introduces the non-local convolution
operation (see Figure B.2), capturing long-range dependencies by aggregating infor-
mation from other positions to a query position. TridentNet [177] uses dilated con-
volutions [178] to generate scale-specific feature maps with a uniform representational
power. Grid R-CNN [179] replaces the offset regression branch by a grid-guided mech-
anism providing probability heatmaps giving the location of the bounding boxes. Libra
R-CNN [180] revisits the standard training process by balancing the information flow
in each resolution of the FPN (see Figure B.3), leading to more discriminative features.
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D2Det [181] improves the localization of the bounding boxes by predicting multiple
offsets for an object proposal. Dynamic R-CNN [182] adapts automatically the IOU
threshold used for the label assignment criteria and the parameter of the regression loss
function, based on the statistics of proposals during training. Faster R-CNN combined
with Task-aware Spatial Disentanglement (TSD) [183] bridges the gap between sensi-
tive location for localization and classification, to remedy the spacial misalignment in
the sibling heads hurting the training process. More recently, DetectoRS [184] com-
bines Recursive FPN (see Figure B.3) with switchable Atrous convolutions (dilated
convolutions), enabling to look twice or more at the input features at different scales.

One stage detectors

One stage detectors, unlike two stages detectors, enable to make the region proposals
and classification tasks in a single forward pass. This pipeline design leads to faster
predictions but sometimes at the cost of less accurate predictions.

The single-shot object detection paradigm is first formulated by the MSC-MultiBox
architecture [185]. The intuition behind this network is to predict both the four co-
ordinates and the confidences score for each of the 11 anchor boxes priors at each
scale. However, even if this architecture provides a higher computational efficiency, its
performances do not overcome the two stages methods of the state of the art. Dense-
Box [186] remedies this limitation by introducing a fully convolutional network, based
on VGG19. This architecture takes an image pyramid, i.e. the same image at different
scales (see Figure B.3), sets an anchor box at every four pixels of each image of each
scale, then refines each bounding box while predicting a detection score indicating if
the box contains or not an object. The final predictions are obtained by performing a
NMS filtering step.

The YOLO network [1] marks a milestone in single-shot object detectors and is
illustrated in Figure 3.1. This architecture enables to perform object detection at 45
frames per second (fps). It divides the input image into a S × S grid (usually 7 × 7),
used to predict both the class probability map of each cell and a fixed number of
bounding boxes, i.e. the four coordinates and its confidence score of containing an
object. The final detections are determined by linking the predicted bounding boxes to
their respective class from the class probability map. YOLO9000 [187] improves this
pipeline by incorporating batch normalization to converge faster and by using anchor
boxes priors using the k-means algorithm [188]. It enhances small objects detection
and overall accuracy by predicting the anchor boxes offsets instead of the bounding
boxes from scratch and performing multi-scale training. YOLOv3 [189] introduces a
deeper network with a multilabel approach by using independent logistic classifiers in
order to address more complex domains such as the Open Images dataset [190]. It
achieves higher performances by predicting bounding boxes at 3 different scales using a
FPN [74]. The Adaptively Spatial Feature Fusion (ASFF) [191] enhances YOLOv3 by
palliating the inconsistency across the scales of the FPN, by learning weights assessing
a spatial importance to each feature map. YOLOv4 [192] achieves an even higher
accuracy by including features to improve CNN, such as weighted residual connections
and Cross-Stage-Partial-connections [193] to its backbone.

Another branch of one stage detectors is introduced by SSD [2], a fully convolu-
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Figure 3.1: The architecture of YOLO [1]. Here FC stands for Fully Connected layer.

Figure 3.2: The architecture of SSD [2].

tional architecture which outperformed Faster R-CNN on MS COCO, illustrated in
Figure 3.2. It originally uses VGG16 as a backbone, extended by 10 convolution layers
used to perform multi-scale prediction. It sets prior anchor boxes at equally spaced
locations on each feature map, for which coordinates offsets and a softmax probability
on all the classes are predicted. A filtering step, using the NMS algorithm is performed
to obtain the final predictions. Deconvolutional Single Shot Detector (DSSD) [194]
adds deconvolutional layers to introduce additional large scale context in object detec-
tion, enhancing small objects detection. RefineDet [195] improves this architecture by
introducing inter-connected anchor refinement and an object detection module, reduc-
ing the search space for the classifier by filtering out negative anchors. M2Det [196]
introduces the concept of Multi-Level Feature Pyramids, an enhanced version of FPN
(see Figure B.3), providing richer feature maps to improve object detection at different
scales.

The RetinaNet network [3] is another off-the-shelf one stage architecture, illustrated
in Figure 3.3. It is the first architecture that couples its backbone, originally a ResNet-
50, with FPN, enhancing multi-scale prediction. Similarly as the SSD architecture,
anchor boxes are initialized at each pyramid level. A regression and a classification
subnetworks respectively predict the offset coordinates and softmax probabilities for
each anchor box in a fully connected fashion. Once again the NMS algorithm enables
to get the final bounding boxes. This architecture also introduces the FL (see equa-
tion (2.9)), designed to focus the training process on hard misclassified examples. An
enhanced version of RetinaNet includes the Soft-Anchor-Point Object Detection algo-
rithm (SAPD) [197], assigning attention weights to anchor boxes to avoid suppressing
the boxes with a more precise location but a lower score. The Feature Selective Anchor-
Free (FSAF) module [198], however, consists in plugging a convolution layer in parallel
of each subnet providing feature maps, respectively activated by regions containing
objects and the class it belongs, to reinforce the detection of small objects missed by
anchor boxes. Fully Convolutional One Stage object detector (FCOS) [199] on the other
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Figure 3.3: The architecture of RetinaNet [3].

hand is fully convolutional and anchor box free, performing a per-pixel bounding box
prediction, coupled with a center-ness operation, suppressing the low quality detected
bounding boxes. The Multiple Anchor Learning (MAL) approach [200] generates an
anchor bag for each object at each feature map pyramid level, to jointly optimize clas-
sification and localization subnetworks. More recently, FreeAnchors [201] proposes a
learning-to-match approach for object detection, by constituting bags of anchors for
each object and selecting the most relevant one using the maximum likelihood approach
instead of an IOU threshold.

Another family of single shot detectors comes with the design of EfficientDet [202].
This pipelines follows the principle of most other single shot object detectors, i.e.
a backbone providing the image features with anchor boxes refined and classified.
This architecture involves a Bi-directional Feature Pyramid Network (BiFPN) (see
Figure B.3), allowing easy and fast multi-scale feature fusion. It also includes a com-
ponent scaling method that uniformly scales the resolution depth and width of the
networks to enable an optimized architecture.

More recently, a new family of detectors has emerged, based on the transformers
encoder-decoder’s architecture [203]. The DEtection TRansformer (DETR) [25] views
object detection as a direct set prediction problem, removing anchor generation and
the NMS post-processing step. Its set-based global loss forces unique predictions via bi-
partite matching. This pipeline is composed of a CNN backbone giving a set of image
features, flatten as a sequence and fed to a transformer encoder. This sequence is fed to
a transformer decoder, which uses a fixed number of learnt object queries to determine
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where to look for an object in the encoded sequence. Each object query is transformed
into an output embedding by the decoder, which are independently processed by a feed
forward network predicting if it contains an object and if so, predicts the class and
the coordinates of the bounding box. Deformable DETR [204] introduces a deformable
attention module to focus on a small set of key points sampling instead of the whole
image, to ease the convergence. Swin Transformer [205] produces a hierarchical feature
representation of the image, enabling to model various scales of an instance.

Objects as a set of points

Another paradigm of object detection is introduced by the CornerNet architecture [26].
It gets rid of priors by detecting objects as a pair of key points, the top left and the
bottom right corners of the bounding box. This architecture is based on 2 Hourglass
networks [206] put end-to-end as a backbone, enabling to capture both global and local
features of an image. The backbone is extended by two prediction modules, respectively
for the top left and the bottom right corners. Each prediction module is composed
of the localization sub-module, containing the heatmap locating the corners of the
different object categories, the offset sub-module to adjust the corners’ position and
the embedding sub-module determining if two corners describe the same object. A post-
processing algorithm is required to filter and assemble the set of corners. CenterNet [27]
improves the accuracy by predicting a triplet of key points, including the center of
the bounding box instead of just two corners. ExtremeNet [28] on the other hand
predicts four extreme points (top most, bottom most, left most and right most) and
one center point to refine the prediction. Matrix Nets [207] combine CornerNet with
an enhanced version of the FPN, providing a scale and aspect ratio aware architecture
(see Figure B.3). Corner Proposal Network for Object Detection (CPNDet) [208] uses
the basis of CornerNet to constitute a two stages object detector, constituting ROI
from the extracted corners and assigning a label to each proposal by a standalone
classification stage.

RepPoints [29] is another approach aiming to represent objects as a set of sample
points used for localization and recognition in a multi-stage fashion. It uses a FPN
as a backbone, where each pyramidal level predicts a set of RepPoints. Each set
of RepPoints is given to an afterwards pipeline containing several regression steps
refining the previous proposition. The penultimate set of RepPoints obtained after
multiple regressions is then classified while a last regression step is performed. The
final propositions are obtained after using the NMS filter as a post-processing step.
RepPoints v2 [123] improves this architecture by using a verification branch, predicting
a Corner Point and a foreground heatmaps, reinforcing the regression step.

3.3.2 Deep fusion for autonomous navigation

The previous section reviewed the different object detectors. However, they process one
modality at the time, mainly RGB color-based images. To efficiently describe a road
scene, several modalities are needed to provide further information on the scene [209,
210]. These past few years, people have come up with deep architectures aiming to
optimally fuse the different modalities. In this section, the different fusion schemes
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Figure 3.4: Illustration of the different fusion schemes.

and the resulting architectures for autonomous navigation purposes are described. The
three different fusion pipelines are reviewed, including Early, Late and Middle fusion,
which are sketched in Figure 6.1.

Early fusion

Early fusion consists in fusing raw or pre-processed data at the early stage of the
network, enabling to fully exploit raw data by learning their joint representation. It
results in lighter architectures and thus requires lower computation resources. However,
fusing the modalities at an early stage results in inflexible networks, that need to be
retrained completely when one modality needs to be replaced by another. On top of
that, this pipeline is sensitive to sensor breakdown and data misalignment.

Because of the drawbacks of this fusion scheme, it is not often used for autonomous
navigation. Liu et al. [30] explore an Early, a Middle and a Late fusion schemes, based
on the Faster R-CNN network. These architectures fuse RGB and thermal images to
enhance pedestrian detection and compare their performances. However, the Early
fusion pipeline does not provide the best results. In the same vein, Wagner et al. [211]
also compare the Early and Late fusion pipelines to fuse RGB and thermal images to
enhance pedestrian detection and leaded to similar conclusions.

Pfeuffer et al. [212] use Faster R-CNN as a basis to build an Early, a Middle and
a Late fusion pipelines to fuse RGB images with a LiDAR depth map to enhance road
object detection in adverse weather. Once again, the Early fusion scheme provides
lower results than the two others. Sindagi et al. [213] propose Multimodal Voxel
Network (MVX-Net), fusing RGB images and LiDAR Front View (VF) maps at an
early stage based on VoxNet [214]. PointFusion is explored, which consists in projecting
the 3D point cloud onto the image using a known calibration matrix. They also explore
VoxelFusion, which involves projection of 3D voxels1, onto the RGB images at a later
stage which results in a lower accuracy.

Late fusion

Late fusion consists in processing each modality separately and combining the decision
output of each domain. Late fusion has a high flexibility since only one network needs

1A voxel is to a pixel what 3D is to 2D. While a point cloud contains continuous observation of
the scene, the voxel mesh is a dense volume modeling these observations in a discrete space.
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to be retrained to replace one modality. It is also robust to sensor breakdown, since
the other modalities provide valid predictions to backup the whole pipeline. However,
this pipeline is computationally expensive because it requires multiple networks.

Mees et al. [215] fuse RGB images with a depth map, using two Fast R-CNN
in the Late fusion fashion to enhance indoor pedestrian detection. The modalities
are fused in a supervised way using a gating network finding the adapted weight of
each modality. Takumi et al. [216] combine the detection of RGB, Near Infrared
(NIR), Middle Infrared (MIR) and Far Infrared (FIR) modalities using four YOLO
architectures to enhance road object detection. Shin et al. [217] present RoarNet,
which first extracts a set of 2D bounding boxes on RGB images and then finds one
or several corresponding areas in the 3D point cloud, which are used to perform 3D
object detection. Following the same principle, Du et al. [218] projects the LiDAR
point cloud towards the corresponding RGB image to refine the point cloud area on
which the 3D object detection is made. Wang et al. [219] also use 2D regions detected
on RGB images to generate frustums, i.e. portions of the pyramid generated from the
2D region, containing LiDAR point-clouds of the corresponding area. Each frustum is
processed using a PointNet [220] and the results are concatenated and fed to a fully
convolutional network which classifies and predicts the coordinates of the 3D bounding
box.

Middle fusion

Middle fusion is a compromise between early and late fusion. It consists in first pro-
cessing each modality separately and combining them or sharing connections at inter-
mediate layers of the networks. This property of the network allows to learn different
representation of the cross modalities at different scales, resulting in a highly flexible
network. However, even if Middle fusion is the best of both worlds, it requires a lot
of neural architecture search to find the optimal way to fuse intermediate layers. In
practice, Middle fusion is mainly used since it achieves the best detection results.

Even though Middle fusion is often used to perform 3D object detection, since
most of them are designed to process LiDAR point clouds, some of them perform
exclusively 2D object detection. Schneider et al. [221] combine RGB image and their
depth maps using an architecture composed of an adapted GoogLeNet, processing RGB
data, inter-connected with an adapted Network in Network (NiN) [222], processing
depth data. This architecture provides fused representations of these two modalities,
modeling complex intra-domain dependencies, enabling to enhance 2D object detection.
Guan et al. [223] propose an illumination-aware multispectral deep neural network,
fusing RGB and thermal images, to enhance pedestrian detection. The two modalities
are first processed separately and fed into a illumination-aware network that attributes
the optimal weight to each modality with regards to the lighting conditions. Chadwick
et al. [224] fuse Radar and RGB images to enhance distant vehicle detection. The two
modalities are processed separately first, using ResNet-18 blocks, and concatenated to
be processed a second time, using ResNet-18 blocks, to perform 2D detection at several
scales. Bijelic et al. [225] fuse stereo RGB images, gated NIR images, FIR images,
Radar and LiDAR front view point clouds to enable 2D detection under fog without
seeing fog during the training process. An entropy is estimated for each modality and
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fed at several stages of the corresponding SSD network. The pipelines processing each
modality are inter-connected to provide intra-modalities representations. Nabati et al.
[32] propose a Radar Region Proposal Network (RRPN) that fuses RGB images with
Radar signals to increase the speed and accuracy of 2D detections. They first map the
Radar coordinates towards the RGB image and use these points to generate anchor
boxes on the RGB image to reduce the priors. The regions are then processed by an
off-the-shelf object detector to get the final detections. Kim et al. [226] propose a deep
fusion architecture to enhance 2D car detection when randomly inducing light variations
or occlusion on the scene. This architecture is composed of two SSD adapted for each
modality, containing interconnected layers performing a Gated Information Fusion on
the two modalities to perform object detection at several scales.

The previous paragraph reviewed the architectures performing 2D detection, now we
describe the pipelines achieving 3D object detection. Qi et al. [227] introduce Frustum
PointNets, fusing RGB information with the corresponding LiDAR point cloud. They
use a 2D object detector to extract 2D regions from RGB images, which are used to
extract the corresponding frustums to perform Point Cloud segmentation to find the
3D instances. Xu et al. [228] present PointFusion that leverages both RGB images
and LiDAR FV point cloud information to perform 3D object detection. A ResNet-50
and a PointNet are respectively used to process separately the cropped RGB image
and its corresponding LiDAR point cloud. The processed data are fed to a dense
Fusion network, providing an optimal intra-domain representation to perform 3D object
detection. Ku et al. [229] propose an Aggregate View Object Detection (AVOD), fusing
LiDAR Bird Eye View (BEV) point clouds with RGB images to perform 3D object
detection. Each modality is first processed separately by a fully convolutional network
and the obtained features are cropped and resized before being fused to perform object
detection. The proposals and the separately processed features are fused a second time
to provide the final detections. Wang et al. [230] fuse BEV LiDAR point clouds with
RGB images using two RetinaNet with interconnected intermediate layers to perform
3D object detection. Chen et al. [31] propose a Multi-View 3D network (MV3D),
combining RGB images, LiDAR BEV point clouds and LiDAR FV point clouds to
perform 3D object detection. The first stage consists in processing separately the three
modalities and predicting the 3D ROI from the LiDAR BEV map. These 3D ROI
are projected towards the other modalities. A deep fusion network is used to combine
region-wise features for each ROI in order to predict its class and its oriented 3D box
regression. Casa et al. [33] propose IntentNet to predict road users’ intention and their
respective 3D bounding boxes from the raw LiDAR BEV point cloud and the map of
the environment. The two modalities are processed separately by a fully convolutional
backbone and concatenated to be processed by another backbone in order to perform
3D object detection and predict their intention. Liang et al. [231] fuse RGB images
and BEV LiDAR point clouds to perform an accurate 3D object detection. The RGB
image is processed by several ResNet-18 networks in order to extract multi-scale feature
maps combined with a multi-scale fusion operation. The fused maps are then processed
by continuous fusion layers and added at different stages of the LiDAR BEV pipeline
to perform 3D object detection. Dou et al. [232] propose SEG-VoxelNet, which fuses
RGB images with LiDAR BEV point clouds. The network first segments the RGB
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Dataset PASCAL VOC 2007 [235] PASCAL VOC 2012 [236] ILSVRC [63] MS COCO [4] Open Images V4 [190]

Images 9,963 11,540 476,688 123,287 1,910,098
Classes 20 20 200 91 600

Instances 24,640 31,561 534,309 886,284 15,440,132
Instances/image 2.47 2.73 1.12 7.19 8.08

Table 3.1: Large scale datasets for common object detection summary.

input while another branch aligns the LiDAR point cloud towards the RGB image.
The segmentation and the alignment maps are then combined and fed to another
network to perform 3D object detection. Liang et al. [233] fuse BEV LiDAR point
clouds with RGB images and a depth map to perform 2D and 3D objects detection.
They densely fuse layers of the two backbones of each modality at several scales to
process intra-modal representations of data during the whole training process. Vora et
al. [234] proposes PointPainting, fusing 3D LiDAR FV point cloud with RGB images.
The RGB images are first segmented and a PointPainting operation is made to paint
the corresponding LiDAR points into the segmented class. An off-the-shelf 3D object
detector is then applied to the painted map to perform object detection.

3.3.3 Datasets

In the previous sections, we reviewed the object detectors of the literature as well as
the different fusion architectures. Their performances are either evaluated on a dataset
specifically hand-crafted for the task but more often on suitable public datasets used as
benchmarks. In this section, the different datasets used to evaluate the object detector
performances are first presented. Then, the ones used for road object detection are
detailed. The performances of the different pipelines on these datasets are also given.

Large scale datasets for common object detection

Over the years, several datasets have been constituted to address the object detection
challenge at a large scale. Because these datasets contain diverse images with several
common classes, they are used as benchmarks to evaluate the performances of object
detectors. The different datasets’ properties are summarized up in Table 3.1.

PASCAL VOC The Pattern Analysis, Statistical Modelling and Computational
Learning Visual Object Classes (PASCAL VOC) [235] was organized annually from
2005 to 2014, providing a benchmark to evaluate the performances of object detection
algorithms. Even though this dataset was enlarged along the years, the PASCAL VOC
2007 [237] and the PASCAL VOC 2012 [236] datasets are the ones used as benchmarks
to evaluate object detectors.

PASCAL VOC 2007 is composed of 9,963 images containing 24,640 annotated ob-
jects as bounding boxes. The objects belong to 20 classes, including person, animal,
vehicle and indoor objects. PASCAL VOC 2012 contains 11,540 images containing
31,561 annotated objects as bounding boxes from the same 20 classes.
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ILSVRC The ILSVRC [63] started in 2010 and was originally designed to perform
large scale image classification. In 2012, several images are labelled with bounding
boxes to perform object detection. The latest version of the dataset is composed of
476,688 images with 534,309 instances labelled with bounding boxes. The objects are
from 200 categories, including vehicles, person, food, animals, furniture and household
electrical appliances among others.

MS COCO In 2014, a larger dataset, the MS COCO [4] is released, challenging ob-
ject recognition. Complex everyday scenes containing common objects in their natural
context are collected for this purpose. MS COCO is composed of 123,287 images with
886,284 instances labelled with bounding boxes. The objects are from 91 categories,
including accessories, vehicles, road signals, animals, sport, food and cutlery, furniture
and household electrical appliances.

Open Images The Open Images Dataset [190] is the latest large scale dataset for
multilabel object detection. The images have been collected without a predefined list of
class names to enable natural class statistics and avoid design bias. The Open Images
V4 [238] is the version of this dataset used as a benchmark to evaluate object detector
performances. It contains 1,910,098 images with 15,440,132 instances annotated with
bounding boxes. The objects belong to 600 classes, which are grouped into parent
classes, enabling multilabel detection. The classes include vehicles, food, animals,
furniture, person, buildings and road signs among others.

Performances of the different architectures In the previous paragraphs, we pre-
sented the properties of the baseline datasets for object detection at a large scale. We
now review the performances of the different architectures presented in section 3.3.1.
These performances are reported in Table 3.2, with regards to the Graphic Processing
Unit (GPU) or Tensor Processing Unit (TPU) used to run the tests.

Datasets for road object detection

We previously reviewed the large datasets used to address common object detection at
a large scale. In this section, we focus on datasets for road object detection. Several
datasets are used for road scene analysis, but only the ones labelled with at least 2D
or 3D bounding boxes are mentioned in this section. Therefore, AppoloScape [239],
Mapillary [240] or Cityscapes [241] are not detailed since they perform semantic or
instance segmentation. The datasets’ properties are summarized up in Table 3.3.

Daimler Monocular Pedestrian Detection Enzweiler et al. [242] present the
Daimler Monocular Pedestrian Detection dataset in 2008, a benchmark for pedestrian
detection. It is composed of daytime images of road scenes in a restricted area, acquired
with a color-based camera. It contains 21,790 images with 56,492 labelled pedestrians.

Caltech Pedestrian Dollár et al. [243] introduce the Caltech Pedestrian dataset
in 2009, a pedestrian detection benchmark. This dataset provides daytime images of
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Pipeline Performances on datasets (mAP) Memory usage fps

PASCAL VOC 2007 PASCAL VOC 2012 ILSVRC MS COCO

DetectorNet [157] 29.7 - - - - -
R-CNN [158] 58.5 53.3 - - test: 1 GPU∗ 0.08
SPPNet [159] 59.2 - - - test: 1 GTX Titan GPU 2.62

DeepMultiBox [162] 29.2 - - - test: GPU∗ 0.5
OverFeat [163] - - 29.9 - test: 1 K20x GPU 0.5

Fast R-CNN [65] 66.9 65.7 - 19.7 test: 1 K40 GPU 3.3
Faster R-CNN [23] 69.9 67.0 - 21.5 test: 1 K40 GPU 5

R-FCN [172] 79.5 77.6 - 34.9 train: 8 K40 GPU, test: 1 K40 GPU 5.9
SNIPER [173] - - - 46.1 train: 8 GPU V100, test: 1 GPU V100 5
PANet [174] - - - 47.4 train: multi-GPU∗ -

Cascade R-CNN [24] - - - 42.8 train: 8 Titan Xp GPU test: 1 Titan Xp GPU 7.1
HTC [175] - - - 47.1 train: 16 Titan Xp GPU, test: 1 Titan XP GPU 2.1

GCNet [176] - - - 48.4 train: 8 GPU∗ -
TridentNet [177] - - - 48.4 train: 8 GPU∗ -

Grid R-CNN [179] - - - 43.2 train: 32 Nvidia Titan Xp GPU -
Libra R-CNN [180] - - - 43.0 train: 8 GPU∗ -

D2Det [181] - - - 50.1 train: 8 GPU∗ -
Dynamic R-CNN [182] - - - 49.2 test: 1 RTX 2080TI GPU 13

TSD [183] - - - 51.2 train: 16 GPU∗, test: 1 Tesla V100 GPU 4.9
DetectoRS [184] - - - 51.3 - 3.9

YOLO [1] 63.4 57.9 - - test: 1 Titan X GPU 45
YOLO9000 [187] 76.8 73.4 - 21.6 - 67
YOLOv3 [189] - - - 33.0 test: 1 Titan X GPU 78

ASFF [191] - - - 43.9 train: 4 Tesla V100 GPU, test: 1 Tesla V100 GPU 29.4
YOLOv4 [192] - - - 43.5 test: 1 Tesla V100 GPU 65

SSD [2] 71.6 74.9 43.4 26.8 test: 1 Titan X GPU 19
DSSD [194] 81.5 80.0 - 33.2 train: 4 P40 GPU, test: 1 Titan X 6.6

RefineDet [195] 85.8 86.8 - 41.8 train: 4 M40 GPU, test: 1 Titan X GPU 24.1
M2Det [196] - - - 41.0 train: 4 Titan X GPU, test: GPU V100 11.8
RetinaNet [3] - - - 39.1 train: 8 GPU∗, test: 1 M40 GPU 5
SAPD [197] - - - 43.1 train: 8 GPU∗, test: 1 GTX 1080Ti 6.1
FSAF [198] - - - 44.6 train: 8 GPU∗, test: 1 Titan X GPU 2.8
FCOS [199] - - - 44.7 - -
MAL [200] - - - 47.0 train: 8 GPU∗ -

FreeAnchor [201] - - - 47.3 train: 8 Tesla V100 GPU -
EfficientDet [202] - - - 52.2 train: 32 TPU, test: 1 Titan V GPU 3.8

DETR [25] - - - 44.9 train: 16 V100 GPU, test: 1 V100 GPU 10
Deformable DETR [204] - - - 52.3 test: 1 Tesla V100 GPU 19
Swin Transformer [205] - - - 58.7 train: 8 GPU∗, test: 1 V100 GPU 15.3

CornerNet [26] - - - 42.1 train: 10 Titan X GPU, test: 1 Titan X GPU 4.1
CenterNet [27] 84.5 - - 47.0 train: 8 Tesla V100 GPU, test: 1 Tesla P100 GPU 3.7

ExtremeNet [28] - - - 43.7 train: 5 GPU∗ 3.1
MatrixNet [207] - - - 47.8 train: 10 Titan Xp GPU -
CPNDet [208] - - - 41.6 train: 8 Tesla V100 GPU, test: 1 Tesla V100 GPU 26.2
RepPoints [29] - - - 46.5 train: 4 GPU∗ -

RepPoints v2 [123] - - - 52.1 train: 8 GPU∗, test: 1 Titan XP GPU 3.8

Table 3.2: Summary of large scale datasets for common object detection. The MS COCO
style AP [4] is used for the performances on MS COCO. *: The GPU is not specified. The best
detection scores and the highest fps are in bold. The reported scores and their associated fps
are the highest in the original paper. Note that the V100 GPUs perform faster computations.

road scenes from a color-based camera. It is composed of 250,000 images, labelled with
350,000 2D bounding boxes of pedestrians.

KITTI The KITTI dataset [36] marks an important milestone in the autonomous
driving field. It was released in 2012 and is nowadays still a benchmark to evaluate
algorithms aiming to address challenging tasks such as 2D or 3D road object detection.
It is the first large dataset providing outdoor scenes with data from multiple calibrated
sensors, including 4 color-based cameras and 1 LiDAR. It is composed of 14,999 im-
ages with 80,256 2D bounding boxes and their 3D equivalent, from 8 different classes
including car, pedestrian, van, truck, cyclist and tram.
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Dataset Sensor Time of the day Weather Several cities Images Classes 2D labelled objects 3D labelled objects

Daimler [242] 1 RGB camera Day Clear 8 21,790 1 56.492 8

Caltech [243] 1 RGB camera Day Clear 8 250,000 1 350,000 8

KITTI [36]
4 RGB cameras

1 LiDAR
Day Clear 8 14,999 8 80,256 80,256

KAIST [35]
1 RGB camera

1 thermal camera
Day

Night
Clear 8 95,328 3 103,128 8

BDD100K [244] 1 RGB camera
Day

Night
Dawn

Clear
Overcast
Snowy
Rainy

Cloudy
Foggy

3 100K 10 1,841,435 8

Waymo [37]
5 RGB cameras

5 LiDAR

Day
Night
Dawn

Clear 3 390,000 4 11.8M 12.6M

nuScenes [245]

6 RGB cameras
1 LiDAR
5 Radars
1 GPS
1 IMU

Day
Night

Clear
Rainy

3 40,000 23 8 1.4M

UA-DETRAC [246] 1 RGB camera
Day

Night
Dawn

Clear
Rainy

Cloudy
8 140,000 4 1.21M 8

Argoverse [247]
360°RGB images from 7 cameras

2 stereo RGB cameras
1 long range LiDAR

Day Clear 8 100 segments 17 8 300,000

PandaSet

5 Wide-Angle RGB cameras
1 Long-Focus RGB camera

1 Mechanical Spinning LiDAR
1 Solid-State LiDAR

Day
Night
Dawn

Clear 3 48,000 28 8 1.4M

Table 3.3: Summary of datasets for road object detection.

KAIST Hwang et al. [35] propose the KAIST dataset in 2015, a multispectral
pedestrian benchmark. This dataset provides daytime and nighttime images from a
color-based and a thermal cameras. This dataset is composed of 95,328 images, labelled
with 103,128 2D bounding boxes from 3 classes, including person, people and cyclist.

BDD100K In 2018, Yu et al. [244] released the Berkeley Deep Drive dataset con-
taining 100K images (BDD100K) dataset, a larger dataset with more heterogeneous
data than the KITTI dataset. As a matter of fact, it contains outdoors scenes in several
places, under several weather conditions and at different times of the day. It is com-
posed of 100,000 images with 1,841,435 2D bounding boxes from 10 classes including
car, sign, light, person and bike among others.

Waymo Open dataset In 2020, Sun et al. [37] introduce the Waymo Open dataset.
It contains a large number of data, collected in several places at different time of the
day, using 5 color-based cameras and 5 LiDAR. This dataset contains 390,000 images
labelled with 12.6 millions 3D bounding boxes and 11.8 millions 2D bounding boxes
from 4 classes including vehicles, pedestrian, cyclists and signs.

nuScenes In 2020, Caesar et al. [245] present the nuScenes dataset. It contains
a large number of road scenes in several places and different traffic conditions. The
acquisitions campaigns were made at different time of the day under several weather
conditions, using several synchronized sensors, including 6 color-based cameras, 1 Li-
DAR, 5 Radars, 1 Global Positioning System (GPS) and 1 Inertial Measurement Unit
(IMU). This dataset is composed of 40,000 images labelled with 1.4 million of 3D
bounding boxes from 23 classes including pedestrian, car, bus, animal, bicycle and
motorcycle among others.
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UA-DETRAC Wen et al. [246] propose the UA-DETRAC dataset in 2020. This
dataset provides road scenes from different points of view, at different times of the
day and under different weather conditions using a color-based camera. The dataset is
composed of 140,000 of images, labelled with 1.21 million of 2D bounding boxes from
4 different classes, including van, bus, cars among others.

Argoverse Chang et al. [247] propose the Argoverse dataset in 2019. This dataset
aims at tracking 3D road users using 360°images from 7 color cameras, 2 stereo color
cameras and 3D point clouds from 1 long range LiDAR. This dataset is composed of
more than 10,572 objects to track from 100 segments from 15 to 60 seconds length,
labelled with 300,000 3D bounding boxes from 17 classes including vehicle, pedestrian,
bicycle, motorcycle and animal among others.

PandaSet In 2020, the PandaSet dataset2 is presented. This dataset provides road
scenes from different points of view, at different times of the day and under different
weather conditions using 5 Wide-Angle color cameras, 1 long focus color camera, 1
Mechanical Spinning LiDAR and 1 Solid-State LiDAR. This dataset is composed of
48,000 images labelled with 1.4 million of 3D bounding boxes from 28 classes including
pedestrian, car, bicycle and motorcycle among others.

Performances of fusion architectures In the previous paragraphs, we review the
properties of the baseline datasets for road object detection. We now review the per-
formances of the different fusion architectures presented in section 3.3.2. The perfor-
mances of the different architectures are summarized up in Table 3.4.

3.4 Summary

In this chapter, we first reviewed non-conventional modalities. The applications of
polarimetric imaging in the literature are first listed to understand the intuition behind
its use to enhance road scene analysis in adverse weather. The other non-conventional
modalities of the literature, including LiDAR, infrared imaging and Radar, addressing
challenging road situations, such as low visibility or adverse weather, are then detailed.
Their applications to circumvent complex situations and their limits are described.

Object detection being a fundamental task to perform an accurate road scene analy-
sis, the different architectures performing common object detection are then explained.
Different paradigms are used to enable object detection. The two stages detectors are
first sketched as object detectors are historically designed according to this paradigm.
They are followed by one stages detectors, designed to increase the speed of the latter.
Another paradigm consists in seeing object detection as a set of points in order to get
rid of the computationally expensive bounding boxes priors.

Following the description of these pipelines, the different fusion schemes are detailed.
They are often based on off-the-shelf object detectors or their backbones. The fusion
schemes can be divided in three categories, the Early, the Late and the Middle fusion.

2https://scale.com/open-datasets/pandaset
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The Early fusion scheme consists in fusing the desired modalities at the entry of the
network. While it fully exploits the raw data of the two modalities, it is very sensitive
to sensor breakdown or data misalignment. Late fusion, on the contrary, consists in
processing each modality separately and combining their decision. While it is robust to
sensor breakdown, the whole pipeline is computationally expensive. For this reason, the
Middle fusion emerged, combining the best of these two worlds by starting to process
each modality of the network and fusing them halfway. It has shown accurate results
while saving some computational resources.

To compare the performances of these architectures, people have come up with
different benchmarks. The final section of this chapter consists in reviewing the differ-
ent datasets used to evaluate common object detectors. A summary of the detection
scores achieved by the above-mentioned architectures on these benchmarks is also given.
These results are followed by a review of the popular datasets used for road object de-
tection, mainly composed of multimodal data. The performances of the different fusion
schemes, achieved on the different benchmarks are also reminded.
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Dataset Architecture Fusion Modalities Detection mAP0.5 mAP0.7 car AP0.5 car AP0.7 pedestrian AP0.5 cyclist AP0.5 MR

KAIST

ConvNet [30] Early
RGB

thermal
2D - - - - - - 40.34

ConvNet [30] Middle
RGB

thermal
2D - - - - - - 36.44

ConvNet [30] Late
RGB

thermal
2D - - - - - - 40.77

CaffeNet-based [211] Early
RGB

thermal
2D - - - - - - 52.20

CaffeNet-based [211] Late
RGB

thermal
2D - - - - - - 42.32

IADTN + IAMSS [223] Middle
RGB

thermal
2D - - - - - - 28.93

Faster R-CNN-based [212] Early
RGB

LiDAR FV
2D 76.2 - 77.6 - 50.9 72.9 -

Faster R-CNN-based [212] Middle
RGB

LiDAR FV
2D 75.6 - 78.0 - 51.1 71.4 -

Faster R-CNN-based [212] Late
RGB

LiDAR FV
2D 75.8 - 77.7 - 51.6 71.2 -

Frustum PointNets [220] Middle
RGB

LiDAR FV
2D - - - 90.78 - - -

AVOD [229] Middle
RGB

LiDAR FV
2D - - - 89.73 - - -

MV3D [31] Middle
RGB

LiDAR FV
LiDAR BEV

2D - - - 90.53 - - -

R-DML [226] Middle
RGB

LiDAR FV
2D - - 98.69 - - - -

Multi-task multi-sensor [233] Middle
RGB

LiDAR FV
2D - - - 91.82 - - -

MVX-Net (VoxelFusion) [213] Early
RGB

LiDAR FV
3D - 82.3 - - - - -

MVX-Net (PointFusion) [213] Early
RGB

LiDAR FV
3D - 85.5 - - - - -

KITTI
RoarNet [217] Late

RGB
LiDAR BEV

3D 83.71 - - - - - -

CNN [218] Late
RGB

LiDAR BEV
3D 87.69 57.63 - - - - -

Frustum PointNets [220] Middle
RGB

LiDAR FV
3D - - - 81.2 - - -

Frustum ConvNet [219] Late
RGB

LiDAR BEV
3D 89.02 - 85.88 - 52.37 79.58 -

PointFusion [228] Middle
RGB

LiDAR FV
3D - - - 77.92 33.36 49.34 -

AVOD [229] Middle
RGB

LiDAR FV
3D - - - 84.41 50.8 64.0 -

MV3D [31] Middle
RGB

LiDAR FV
LiDAR BEV

3D - - 96.02 71.29 - - -

Continuous Fusion [231] Middle
RGB

LiDAR BEV
3D - - - 86.32 - - -

SEG-VoxelNet [232] Middle
RGB

LiDAR BEV
3D - - - 86.32 - - -

Multi-task multi-sensor [233] Middle
RGB

LiDAR FV
3D - - - 86.81 - - -

PointPainting [234] Middle
RGB

LiDAR FV
3D 69.86 - - 92.45 58.7 83.91 -

Table 3.4: Performances of the fusion architectures on KITTI and KAIST. The rows in red
and in blue are respectively the architectures performing 3D and 2D object detection. MR
stands for ”missing rate”. In bold, the best detection score for each task (column). AP0.5 and
AP0.7 respectively stand for AP with a IOU threshold of 0.5 and 0.7.
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4.1 Introduction

Road objects detection is a fundamental step to achieve a reliable road scene analysis.
Based on the literature reviewed in Chapter 3, DNN are the best solution to accomplish
this task in real time with a high accuracy. However, providing an accurate road
scene analysis when the visibility is altered is one of the challenging research problems,
limiting the deployment of autonomous cars and ADAS at a larger scale.

73



CHAPTER 4. THE DATASETS

Using non-conventional modalities, combined with conventional ones are yet the
best solutions to enhance road scene analysis when the conditions are not optimal
[12]. Polarimetric imaging is a rich modality that enables to characterize objects not
only by their color or shape but also regarding their physical information, invariant to
visibility changes [18]. Thanks to this property, this non-conventional imaging could
provide complementary information to color-based features to characterize road objects
in every situation.

Deep architectures require rather large and diverse datasets to provide reliable re-
sults. Some adapted datasets, containing polarimetric images of road scenes in ad-
verse weather conditions, are needed to carry out the experiments of this thesis. Such
datasets are not publicly available and the first stage of this thesis is dedicated to their
constitution. This chapter focuses on the different steps to constitute the polarimet-
ric and multimodal datasets aiming to detect road objects in adverse weather. The
different acquisition setups are first described, followed by the datasets constitution,
including data sorting and labelling. We also go through the encoding of polarimetric
images for machine learning, by describing the different polarimetric data formats con-
stituted for the experiments. Finally, it is important to note that data acquisition, data
sorting and data labelling, are expensive tasks. In order to circumvent this limitation,
we address the problem of generating polarimetric images from color-based ones. It
enables to provide a polarimetric version of flagship datasets of the literature, such as
KITTI [36] or BDD100K [244], to carry out further experiments.

4.2 The acquisitions

Prior this work, there were no large and diverse enough public datasets containing
polarimetric images of road scenes, labelled for object detection. This is the reason why
data are collected, sorted and annotated for this purpose. In this section, the different
acquisition campaigns are first described, followed by the constituted datasets.

4.2.1 Polarimetric acquisitions

The first acquisition campaign aims to collect polarimetric images of road scenes. The
intuition behind this campaign is to palliate the lack of publicly available polarimetric
data to analyze road scenes at a large scale. To this end, it is important to take several
parameters into account. First the data must be both numerous and diverse enough to
cover as many road situations as possible. Secondly, the viewing point of road scenes
must be close to the driver’s one.

To cope with all these requirements, a Polarcam Four Dimensions (4D) Technol-
ogy polarimetric camera (see section 1.2 for further information) is placed behind the
windshield at the height of the driver’s eye, constituting an embedded system. This
acquisition setup is similar to the one used for the BDD100K [244], which is a reference
in autonomous driving. The acquisitions are made while driving in order to capture re-
alistic road scenes. A large enough area is covered nearby Rouen-Normandy during this
campaign. It provides the necessary data variability to constitute a reliable dataset.
The data collected during this acquisition campaign are within the purple area drawn

74



CHAPTER 4. THE DATASETS

on the map in Figure 4.1. It is important to note that this acquisition campaign is
made under sunny weather. Examples of road scenes collected during this campaign
are shown in Figure 4.2.

4.2.2 Multimodal acquisitions

To carry out further experiments, it is necessary to get multimodal, paired, color-based
and polarimetric data. The same requirements apply to this acquisition campaign, i.e.
getting a large and diverse dataset from a viewpoint similar to driver’s one.

To satisfy the need of getting multimodal information of the same scene, a color-
based sensor, a Basler camera later replaced by a GoPro to increase the performances,
is placed next to the polarimetric camera. The obtained acquisition setup is placed
behind the windshield at the height of the driver’s eye. This embedded system is shown
Figure 4.3.

To increase the diversity of the acquired multimodal road scenes, a larger area
nearby Rouen-Normandy is explored. Road scenes of highways, cities, small villages,
parking and academic areas are collected. To increase the variability of the scenes,
the acquisitions are made under various weather conditions, including sunny, cloudy
and foggy. The circuit of this acquisition campaign is represented by the grey (cloudy
weather), the green (cloudy weather) and the blue (sunny weather) lines in Figure 4.1.
The red star in the same figure indicates the place where the foggy scenes are acquired.
Examples of paired multimodal scenes are shown in Figure 4.4

Another acquisition campaign is made in order to get more adverse weather scenes.
Because it is difficult to capture outdoor scenes in adverse weather, the acquisitions
are made in a simulation platform. This platform is located at the Cerema Center
in Clermont-Ferrand1. It provides night/day simulation as well as fog from 15 meters
visibility and drizzle to dense rain. The advantage of such a platform is that the exact
visibility of each scene is known unlike in real scenes. Examples of paired multimodal
scenes acquired at the Cerema platform are shown in Figure 4.5.

4.2.3 Datasets constitution

Once the images acquired, they need to be sorted and labelled to constitute relevant
datasets to perform the needed experiments. In this section, the choices regarding the
data sorting and labelling are detailed as well as the final datasets features.

Data sorting and labelling

Before giving further details on the sorting task, it is important to review the polari-
metric and color-based sensors properties. The polarimetric camera has a frame rate of
25 fps while the color-based sensor has a frame rate set to 30 fps during the acquisition
campaigns. Regarding the sensors’ properties, the polarimetric camera has a standard
lens and has a resolution of 500 × 500 pixels. As for the Basler color-based camera,
it has a standard lens and a resolution of 720 × 480 pixels. Finally, the GoPro has a

1More information can be found at https://www.cerema.fr/en
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Figure 4.1: Data acquisition circuits. The purple area indicates the acquisitions of polarimet-
ric images only. The blue (train, sunny), grey (train, cloudy) and green (validation, cloudy)
as well as the red star (test, foggy) indicate the circuit of the multimodal acquisitions. Note
that the training, validation and testing sets of the multimodal dataset cover different areas.
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Figure 4.2: Examples of road scenes captured during the polarimetric acquisition campaign.
Here (I0, I45, I90) are placed as the (R, G, B) format.

Figure 4.3: Embedded acquisition setup.

Figure 4.4: Examples of road scenes captured during the multimodal acquisition campaign.
First row contains the the polarimetric version of the scenes, represented by the intensity I0,
and second row is their RGB equivalent.
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Figure 4.5: Examples of road scenes captured during the multimodal acquisition campaign at
the Cerema tunnel. First row contains the the polarimetric version of the scenes, represented
by the intensity images I =(I0, I45, I90), and second row is their RGB equivalent.

Sensor Modality Frame rate Type of lens Resolution Post processing Final resolution

Polarcam (I0, I45, I90, I135) 25 fps standard 500× 500 pixels ∅ 500× 500 pixels

Basler (R, G, B) 30 fps standard 720× 480 pixels
Crop width

fill top with 0
557× 557 pixels

GoPro (R, G, B) 30 fps fisheye 3648× 2736 pixels Crop image 906× 945 pixels

Table 4.1: Overview of the different sensors properties as well as their post processing to get
the closest multimodal pair of images.

fisheye lens and a resolution of 3648× 2736 pixels. In order to get the closest content
possible between two multimodal paired images, the color-based images are processed.
Regarding the images from the Basler camera, their width is cropped to 557 pixels to
get the closest content possible to their polarimetric equivalent. Their height is filled
with 0 at the top of the image (sky) to get squared-shaped images without altering the
original objects’ shapes which result in a 557× 557 image. As for the GoPro camera,
the edges are cropped to get a 906 × 945 pixels image. Note that this process also
reduces the deformation caused by the fisheye lens, accentuated at the edges of the
image, since the interesting content of the raw color-based images is mostly located at
their center. The properties of the different sensors are summarized up in Table 4.1.

Since the two acquisitions campaigns, polarimetric only and multimodal, have two
different purposes, the data sorting is done accordingly in the following ways:

� Polarimetric only: since this acquisition campaign aims to explore the relevance
of polarimetric features to describe road scenes, one out of 25 frames are kept
to constitute the final dataset. This enables to get a diverse and various enough
dataset aiming to characterize road scenes by their polarimetric features;

� Multimodal acquisitions (sunny and cloudy): this acquisition campaign aims to
cover the wide range of diversity encountered in road scenes. To achieve this goal,
one out of 50 frames and one out of 60 frames are kept respectively regarding the
polarimetric and color-based (GoPro) sensors to constitute the final dataset.
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Figure 4.6: Illustration of the labelling precision.

� Multimodal acquisitions (foggy and Cerema tunnel): these acquisition campaigns
aim to collect road scenes in adverse weather. Since the acquisitions are made in
restricted areas, the images are selected manually to maximize their variability.

Note that, for the polarimetric acquisitions and the multimodal acquisitions (sunny and
cloudy), the choices are made according to the different sensors’ frame rates. Synchro-
nizing the cameras and a well-chosen camera calibration and sensor placement could
have avoided such image selection.

Bounding boxes are used to label images since the dataset aims to perform object
detection. Four classes are selected to annotate the most frequently encountered ob-
jects in road scenes, which are ’car’, ’person’, ’bike’, and ’motorbike’. The ’car’ class
contains all four-wheels motor vehicles, including cars, vans, trucks and buses. The
’person’ class contains all kinds of road users, including pedestrians, cyclists and bik-
ers, except car drivers. The ’bike’ class contains regular and electric bikes without
including the cyclists. The class ’motorbike’ contains the motorbikes without includ-
ing the bikers. Every object is labelled in the images, including semi-occluded objects
(i.e. people behind parked cars) and mostly occluded objects (i.e. parts of windshields
corresponding to cars parked behind many others). Figure 4.6 illustrates the precision
of the labels.

Datasets properties

To carry out the different experiments of this thesis, six different datasets are con-
stituted. The first dataset is exclusively composed of polarimetric images in sunny
weather. It explores the relevance of using polarimetric features to characterize road
scenes. The second dataset studies the behavior of polarimetric features under ad-
verse weather. Its training and validation sets exclusively contain polarimetric images
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Dataset Purpose Modalities Labels Weather Conditions

1
Exploration of

polarimetric features2 polarimetric Bounding boxes sunny

2
Study of polarimetric features

under fog3

polarimetric
color-based

Bounding boxes
sunny
foggy

3
Comparison and fusion of

multimodal features under fog4

polarimetric
color-based

Bounding boxes
sunny
cloudy
foggy

4
Generation of

polarimetric images5

polarimetric
color-based

∅† sunny
cloudy

5
Evaluation of

generated polarimetric images6 polarimetric Bounding Boxes
sunny
cloudy

6
Study of polarimetric features in

several weather conditions7

polarimetric
color-based

Bounding Boxes
fog (several densities)

dense rain

Table 4.2: Overview of the different datasets used in this work. †: data generation is an
unsupervised training process which does not require labels.

in sunny weather and its testing set is composed of paired multimodal color-based
and polarimetric images under fog. The third dataset, named the PolarLITIS dataset,
contains paired multimodal polarimetric and color-based images. It compares how
color-based and polarimetric features vary with the weather conditions. It is also used
for multimodal fusion to improve road scenes description in adverse weather conditions.
Its training set is composed of sunny and cloudy scenes, its validation set of cloudy
scenes and its testing set of foggy scenes. The training, validation and testing sets of the
PolarLITIS dataset cover different areas as shown in Figure 4.1 to minimize the risk of
over-fitting. The fourth dataset aims to generate polarimetric images from color-based
ones and contains unpaired multimodal images in sunny and cloudy weather. The fifth
dataset only contains polarimetric features in sunny and cloudy weather and evaluates
the quality of the generated polarimetric images. Finally, the sixth dataset is com-
posed of paired multimodal color-based and polarimetric images. The acquisitions are
made in the Cerema tunnel, simulating road scenes under fog and rain. Such a device
gives the exact visibility distance of fog and rain. Eleven different weather conditions
are contained in this dataset, including foggy scenes with respectively 15m, 20m, 25m,
30m, 35m, 40m, 45m, 50m, 60m and 70m and tropical rain. This dataset conducts a
further analysis of the impact of polarimetric features to characterize road scenes when
the visibility is altered. The overall information of these six datasets are summarized
up in Table 4.2 and their size, as well as the number of instances of each class can be
found in Table 4.3.

2The dataset can be downloaded at: https://doi.org/10.5281/zenodo.5547728
3The dataset can be downloaded at: https://doi.org/10.5281/zenodo.5547750
4The dataset can be downloaded at: https://doi.org/10.5281/zenodo.5547760
5The dataset can be downloaded at: https://doi.org/10.5281/zenodo.5547768
6The dataset can be downloaded at: https://doi.org/10.5281/zenodo.5547796
7The dataset can be downloaded at: https://doi.org/10.5281/zenodo.5547801
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Dataset Properties Train Validation Test

1

Weather conditions sunny sunny sunny
Number of images 1005× 0.8∗ 1005× 0.2∗ 231
Instances of ’car’ 7743× 0.8∗ 7743× 0.2∗ 645
Instances of ’person’ 503× 0.8∗ 503× 0.2∗ 153
Instances of ’bike’ 0 0 4
Instances of ’motorbike’ 19× 0.8∗ 19× 0.2∗ 0

2

Weather conditions sunny sunny foggy
Number of images 2221× 0.8∗ 2221× 0.2∗ 509
Instances of ’car’ 11687× 0.8∗ 11687× 0.2∗ 9265
Instances of ’person’ 1488× 0.8∗ 1488× 0.2∗ 442
Instances of ’bike’ 4× 0.8∗ 4× 0.2∗ 12
Instances of ’motorbike’ 21× 0.8∗ 21× 0.2∗ 0

3

Weather conditions sunny/cloudy cloudy foggy
Number of images 1640 420 509
Instances of ’car’ 6061 2102 9265
Instances of ’person’ 527 134 442
Instances of ’bike’ 39 7 7
Instances of ’motorbike’ 14 5 0

4

Weather conditions sunny/cloudy ∅† ∅†
Number of images 2485 ∅† ∅†
Instances of ’car’ ∅† ∅† ∅†
Instances of ’person’ ∅† ∅† ∅†
Instances of ’bike’ ∅† ∅† ∅†
Instances of ’motorbike’ ∅† ∅† ∅†

5

Weather conditions sunny/cloudy sunny/cloudy sunny/cloudy
Number of images 3861 1248 509
Instances of ’car’ 19587 3793 2793
Instances of ’person’ 2049 294 161
Instances of ’bike’ 16 35 3
Instances of ’motorbike’ 52 4 5

6

Weather conditions ∅‡ ∅‡ foggy/rainy
Number of images ∅‡ ∅‡ 484
Instances of ’car’ ∅‡ ∅‡ 461
Instances of ’person’ ∅‡ ∅‡ 718
Instances of ’bike’ ∅‡ ∅‡ 152
Instances of ’motorbike’ ∅‡ ∅‡ 0

Table 4.3: Datasets properties. ∗: four-fifth of the train/validation set are used for training
purposes and the remaining one-fifth for validation purposes. †: data generation is an unsu-
pervised training process using unpaired data which does not require neither validation and
testing sets nor labels. ‡: this dataset is used for evaluation purposes only.
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4.3 Encoding images for machine learning

In section 4.2, the different datasets constituted for experimental purposes are pre-
sented. However, since these datasets do not contain enough images to perform an
efficient training from scratch, it is paramount to use networks pre-trained on larger
RGB datasets for the different experiments. To this end, three channels images con-
taining different polarimetric features are constituted, leading to six different data
formats. As seen in section 1.2, several polarimetric features can be computed from
the four acquired intensities I0, I45, I90 and I135. Six data formats, resulting in different
polarimetric features combinations, are constituted to provide different information of
the same scene. In order to get more homogeneous images, each channel of the polari-
metric images is normalized between 0 and 255. This normalization is chosen so that
the polarimetric images are coded in the same range as the 8 bits RGB images to be
processed by neural networks in the same way. The different data formats, which have
a physical meaning, and the intuition behind them are presented in this section.

4.3.1 Intensities images

This data format gathers three intensities Iαi ,i=1:3 associated to three angles of the linear
polarizer αi,i=1:3. The choice of three angles instead of four comes from equation (1.8),
implying that theoretically the fourth channel can be deduced from the three others.
The intensities I0, I45 and I90 thus contain all the necessary information for the learning
process and I135 would be redundant. This data format is referred to as intensities
images I = (I0, I45, I90). An example of such coding is illustrated in Figure 4.7.

4.3.2 Stokes images

The linear Stokes vector is a rich polarimetric feature that directly describes the re-
flected light wave. Knowing that, the three Stokes parameters are chosen to constitute
another data format. This data format is referred as the Stokes images S = (S0, S1,
S2) and is illustrated in Figure 4.8.

Figure 4.7: Example of an intensity image. I0, I45 and I90 are placed respectively as the
RGB configuration.
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Figure 4.8: Example of a Stokes image. S0, S1 and S1 are placed respectively as the RGB
configuration.

4.3.3 Pauli inspired images

This data format is a mix between the polarimetric intensities I and the linear Stokes
vector S. It is inspired by the Pauli decomposition [248] of the polarimetric information
contained in polarization-encoded SAR images. The Pauli decomposition has shown
high performances in image classification [249], [250]. Unlike, the four intensity images
I0, I45, I90 and I135 obtained in linear polarization, the polarimetric SAR intensities are
encoded as IHH , IHV , IV H and IV V , which respectively refer to orientations H (horizon-
tal) and V (vertical) of the received and the transmitted light wave. For instance, the
crossed polarization IHV represents the intensity of a horizontal transmitted light by a
source and a vertical received light wave by the sensor. The original Pauli decomposi-
tion is carried out for IHH − IV V , IHV and IHH + IV V components placed respectively
as the RGB configuration. According to the rotation of the polarizer, similarities be-
tween IHH and I0 are noticed, even if the incident light is not known, meaning that the
polarizer oriented at an angle of 0° is assimilated to an horizontal polarization filter.
In the same way, IV V can be assimilated to I90 for the vertical filter. IV H is assimi-
lated to I45 as it corresponds to the mean orientation between the horizontal and the
vertical filters. From equation (1.9), the Stokes parameters S0 and S1 are calculated
as S0 = I0 + I90 and S1 = I0− I90. Following the Pauli inspired format, the data is en-
coded as Pauli = (I0− I90, I45, I0 + I90) which means Pauli = (S1, I45, S0) respectively
coded as the RGB configuration. An illustration of this data format can be found in
Figure 4.9.

4.3.4 HSV images

From the polarimetric features, it is possible to obtain the HSV format of the scene
[251]. This equivalence between the HSV encoding and the polarization parameters is
based on the intuition that the angle of polarization φ corresponds to the Hue channel,
the degree of polarization ρ to the Saturation and the total intensity S0 to the Value
of each pixel. The HSV data format is encoded as HSV = (φ, ρ, S0). An illustration
of this data format can be found in Figure 4.10. It is important to note that, to fulfill
the HSV format, the channel containing φ is normalized between 0 and 180.
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Figure 4.9: Example of a Pauli inspired image. S1, I45 and S0 are placed respectively as the
RGB configuration.

Figure 4.10: Example of a polarimetric HSV image. φ, ρ and S0 are placed respectively as
the RGB configuration.

84



CHAPTER 4. THE DATASETS

Figure 4.11: Example of a polarimetric pseudo-HSV image. I0, ρ and φ are placed respectively
as the RGB configuration.

Figure 4.12: Example of a Poincaré inspired image from its polarimetric features. S0,
ρ cos(2φ) and ρ sin(2φ) are placed respectively as the RGB configuration.

4.3.5 pseudo-HSV images

The pseudo-HSV images, which are the first version of the HSV images, are used in
early experiments. In this data format, I0, ρ and φ are respectively placed as the RGB
configuration, leading to pseudo-HSV = (I0, ρ, φ). An illustration of this data format
can be found in Figure 4.11. It is important to note that, because φ ∈ [−π2 ,

π
2 ] and with

regards to the HSV format, the channel containing φ is normalized between 0 and 180.

4.3.6 Poincaré inspired images

This data format is inspired by the representation of the Stokes vector, normalized by
its first component S0, in the Poincaré sphere [252]. In the case of linear polarization,
the Stokes vector is of dimension three instead of dimension four in a general Stokes
formalism. The Stokes vector normalized by its first element is no longer represented in
a Poincaré sphere, but in a unitary circle. This representation is sketched in Figure 1.5
and illustrates equations (1.10) and (1.11). The projection of ρ on the abscissa x
and the ordinate y axis of the unit circle results in two components, ρ cos(2φ) and
ρ sin(2φ). These components are used to constitute this new data format, in which S0,
ρ cos(2φ) and ρ sin(2φ) are placed as the RGB configuration resulting in Poincaré = (S0,
ρ cos(2φ), ρ sin(2φ)). An illustration of this data format can be found in Figure 4.12.

To sum up, six polarimetric data formats, encoded for machine learning, are consti-
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Data format Channel 1 Channel 2 Channel 3

I I0 I45 I90
S S0 S1 S1

Pauli S1 I45 S0
HSV φ ρ S0

pseudo-HSV I0 ρ φ
P S0 ρ cos(2φ) ρ sin(2φ)

Table 4.4: Summary of the different polarimetric data formats. Here I, S, Pauli, HSV,
pseudo-HSV and P stand respectively for intensities images, Stokes images, Pauli inspired
images, HSV images, pseudo-HSV images and Poincaré inspired images.

tuted. Table 4.4 recaps the content of each channel of the polarimetric data formats.

4.4 Data generation

As mentioned previously, constituting a dataset is an expensive task. Both the data
acquisition, data sorting and data annotation are time-consuming tasks that limit the
sizes of the constituted datasets. This section explains how performing image-to-image
translation enables to dispose of large polarimetric datasets, labelled for road object
detection.

4.4.1 Motivations

The datasets presented in section 4.2, are the first multimodal polarimetric and color-
based public datasets for road object detection. However, the sizes of the constituted
datasets are limited by the expensive labelling task. Disposing of larger datasets would
enable to explore further the behavior of polarimetric features in road scenes. Conven-
tional data augmentation methods often palliate the lack of color-based data during
the training process of DNN. This method is excluded when learning polarimetric fea-
tures since the augmented images do not satisfy the physical admissibility constraints
presented in equations (1.2) and (1.4). This is the reason why the best solution is to
formulate the problem of polarimetric image generation as a CycleGAN learning prob-
lem (see section 2.4) under physical constraints. The CycleGAN algorithm achieves
unpaired image-to-image translation with only a few images and the added constrains
ensure that the generated images are valid. This method allows to circumvent the
expensive labelling step by transferring a source labelled dataset to one or multiple
target domains [253] by keeping unchanged the shapes of the source image. In this
section, the adapted CycleGAN algorithm is explained and the generation results are
presented.
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4.4.2 Proposed approach

As discussed above, the goal is to learn a generative model able to produce realistic
polarization-based images from RGB images. For the sake, an image-to-image transla-
tion framework is adopted and extended to account for admissibility the constraints a
polarimetric image must fulfill.

To generate a polarimetric image from an RGB image, the CycleGAN approach is
proposed to learn the translation models MXY and MY X between X the domain of
the polarimetric images and Y the RGB images domain (see section 2.4). Let Î ∈ R4

be the intensity vector associated to a pixel of a generated polarimetric image. To
be physically admissible, each pixel has to satisfy the admissibility constraints (see
equation (1.2)) and the calibration constraint (see equation (1.4)). These polarimetric
constraints are referred by C1, C2 and C3 as follows:

C1 : I = AS ,

C2 : S0
2 > S1

2 + S2
2 ,

C3 : S0 > 0 .

By construction, S0 is always positive as it represents the total intensity reflected
from an object. As the last layer of the generation models customary uses the hyper-
bolic tangent as activation function, each output intensity Î is within the range ]−1, 1[
which is scaled to ]0, 255[. Hence Ŝ0 = Î0 + Î90 (see equation (1.9)) is ensured to be
strictly positive. Therefore, constraint C3 can be deemed satisfied for the generated po-
larimetric images. To handle the remaining constraints C1 and C2, one could resort to
the Lagrangian dual of CycleGAN optimization problem (see equation (2.12)) subject
to these constraints. However, this may be computationally expensive, as it requires to
entirely optimize four neural networks (respectively the discrimination and the map-
ping network models) in an inner loop of a dual ascent algorithm. Moreover the overall
optimization procedure may not be stable because of the minmax game involved in the
CycleGAN learning.

In order to derive an efficient algorithm to learn CycleGAN under output con-
straints, a relaxation of the problem is introduced. Instead of strictly enforcing the
constraints, a measure of how far the generated image pixels are from the admissibility
domain is made, through additional cost functions to minimize. For the constraint C1,
a `2 distance between the generated image MY X(y) and AŜ is proposed. It reads:

LC1 = E
y∼pY
||MY X(y)− AŜ||2 ,

with Ŝ =
[
Ŝ0 Ŝ1 Ŝ2

]>
the Stokes vector calculated from the generated image by

MY X using equation (1.9). Similarly, to enforce the constraint C2, a rectified linear
penalty LC2 is considered. It is defined by:

LC2 = E
y∼pY

max
(
Ŝ1

2 + Ŝ2
2 − Ŝ0

2, 0
)
.

The loss LC1 translates the respect of the acquisition conditions according to the cal-
ibration matrix A while LC2 is related to the physical admissibility constraint on the
deduced Stokes vectors from the generated image.
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Figure 4.13: Overview of the CycleGAN training process extended with LC1 and LC2 .

Gathering all these elements, the CycleGAN under physical constraints is trained
by optimizing the following objective function:

Lfinal = LCycleGAN + µLC1 + νLC2 . (4.1)

The non-negative hyper-parameters µ and ν ∈ R+ control respectively the balance
of admissibility and calibration constraints according to the CycleGAN loss LCycleGAN

(see equation (2.11)). As the values of LC1 and LC2 are computed pixel-wisely, their
averages over the whole image in the objective function are considered. The training
principle of the proposed generative model is illustrated in Figure 4.13.

4.4.3 Experimental evaluation

Hereafter, the experimental setup, including the image generation procedure and its
evaluation, is presented.

Polarimetric images generation using CycleGAN

To conduct the experiments, 2485 unpaired images from each domain (RGB and po-
larimetry, see row 5 of Table 4.3) are selected. Example instances are shown in Fig-
ure 4.14 and Figure 4.15 for polarimetric and RGB images respectively. The polari-
metric images are of dimension 500× 500× 4. The latter dimension is due to the four
intensities acquired by the camera, namely I0, I45, I90 and I135. The RGB images are
of dimension 906× 945× 3.

The extended CycleGAN is trained for 400 epochs on randomly cropped patches
of size 200 × 200. As for the constraints, it is found experimentally that setting the
hyper-parameters µ = 1 and ν = 1 in (4.1) provides the best performances. As for the
original CycleGAN, the hyper-parameter η, controlling the reconstruction cost, is set
to η = 10. The learning rate is decreased linearly from 2× 10−4 to 2× 10−6 during the
400 training epochs.
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Figure 4.14: Examples of polarimetric images used to train the adapted CycleGAN. Only the
intensities I0 are shown here.

Figure 4.15: Examples of RGB images used to train the adapted CycleGAN.

To evaluate the effectiveness of the trained generative model, KITTI and BDD100K
(only using daytime images since polarimetry fails to characterize objects during night-
time) are considered, which often serve as testbed in applications related to road scene
object detection. The constrained-output CycleGAN trained is used to transfer RGB
images from KITTI and BDD100K to the polarimetric domain. The resulting datasets
are denoted respectively as Polar-KITTI and Polar-BDD100K. Since the CycleGAN
architecture is fully convolutional, it has no requirement on the size of the input image.
Therefore, even if the model was trained on 200 × 200 patches, it scales straightfor-
wardly to the images of size 1250 × 375 from KITTI and of size 1280 × 720 from
BDD100K datasets.

To assess wether or not fulfilling the physical constraints is paramount, a variant
of Polar-KITTI and Polar-BDD100K are investigated: a standard unconstrained Cy-
cleGAN based on the same unpaired RGB/polarimetric images is learnt. It is worth
mentioning that the so generated polarization-encoded images may not mandatory
satisfy the feasibility constraints.

Evaluation of the generated images

To assert the ability of the generated Polar-KITTI and Polar-BDD100K datasets to
preserve the relevant features for road scene applications, a detection network is trained
following the setup in Figure 4.16. For this experiment, a RetinaNet-50 [3] (see sec-
tion 5.2 for more information) pre-trained on the MS COCO dataset [4] is fine-tuned
in three different settings. In the first setup, the detection model is fine-tuned based on
the original RGB KITTI (or BDD100K) while the second experimental setting consid-
ers the fine-tuning on the generated polarimetric images from KITTI (Polar-KITTI)
or BDD100K (Polar-BDD100K) datasets. The third experimental setting uses the
unconstrained variant of the generated images from KITTI or BDD100K datasets. Af-
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Figure 4.16: Setup of the detection evaluation experiment. The procedure is illustrated with
the KITTI dataset and straightforwardly extends to the BDD100K dataset.
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terwards the three final detection models are obtained by a last fine-tuning on the real
polarimetric dataset (see row 5 of Table 4.3).

Overall, the trained CycleGAN and detection networks under these settings are
evaluated in qualitative and quantitative ways. The end goal is to check: (i) the
ability of the generated images to help learning polarimetry-based features for object
detection, and (ii) the influence of respecting the polarimetric feasibility constraints on
detection performances.

The visual quality of the generated images is measured by computing the classical
Fréchet Inception Distance (FID) [254]. Computing this distance requires to extract
visual features from each set of images (real and generated) using a pre-trained deep
neural network (usually an Inception v3 [255] network pre-trained on ImageNet [63])
and to evaluate the Fréchet (or Wasserstein) distance between the distributions of these
features, which are assumed to be Gaussian distributions. This distance is calculated
using 509 images from each generated polarimetric dataset and from the test set as
described in Table 4.3.

As feature extractor, because the classical Inception v3 network is not adapted to
polarimetric images since it is trained on ImageNet [63], the convolutional part of a
polarimetry-adapted RetinaNet detection network [256] is used, which has been trained
on the MS COCO dataset and fine-tuned on a real polarimetric dataset.

In order to evaluate the improvements in the detection, the error rate evolution
ERo is computed. The improvement ERo on the detection of the object o is given by:

ERo = 1− AP p
o − (1− APRGB

o )
1− APRGB

o

,

where APRGB
o and AP p

o respectively denote the average precision for object o detection
in RGB and in polarimetric images. Note that a negative ER0 means that AP p

o is
improved over APRGB

o .

4.4.4 Results and discussion

First an evaluation of wether the generated images are qualitatively coherent is made.
For the sake, polarimetric images are generated from their RGB equivalent. An example
of the generated polarimetric images is displayed in Figure 4.17.

As for the constraints, Table 4.5 shows how including them to the CycleGAN’s
loss helps generating images which better fulfill the physical polarimetric properties at
the pixel scale. The errors related to the constraints C1 and C2 on generated images
using this approach are consistent with the observed errors on the real images, whereas
the unconstrained approach yields poor results. Obviously, constraint C3 is met for
all generated images thanks to the tanh activation at the last layer of the generative
models. Additionally, the obtained FID are of 6022.7 for the unconstrained CycleGAN
and 4485.1 for our approach8, which indicates that taking the constraints into account
improves visual and physical quality of the generated samples.

8Note that the scale of the FID scores computed with the pre-trained RetinaNet is larger than
when using a pre-trained Inception v3 network.
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Figure 4.17: Examples of polarimetric image generation. From left to right: I0, I45, I90 and
I135 ground truth, RGB image and I0, I45, I90 and I135 generated from RGB image.

Datasets C Mean Median

Real C1 0.06 ± 0.04 0.04
polar C2 2.47 ± 7.11% 0.48%

C3 0% 0%

Generated C1 0.26 ± 0.19 0.23
polar no C C2 27.31 ± 43.5% 2.15%

C3 0% 0%

Generated C1 0.12 ± 0.04 0.12
polar with C C2 1.55 ± 3.36% 0.14%

C3 0% 0%

Table 4.5: Evaluation of the constraint fulfillment using the designed losses LC1 and LC2 at the
pixel scale. Here, the column C indicates the evaluated constraint. C1 refers to the constraints
I = AS, C2 to S0

2 > S1
2 +S2

2 and C3 to S0 > 0. The mean and the median of the percentage
of pixels in an image that do not fulfill the constraints C2 and C3 are computed. Regarding
the constraint C1, the mean and the median of ||I −AS||/(||I||+ ||AS||) is computed.
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Databases used Class Test ERo Databases used Class Test ERo

KITTI RGB person 0.663 N/A BDD100K RGB person 0.736 N/A
+ real polar car 0.785 N/A + real polar car 0.821 N/A

mAP 0.724 N/A mAP 0.778 N/A

Polar-KITTI no C person 0.673 -0.03 Polar-BDD100K no C person 0.720 0.06
+ real polar car 0.786 -0.01 + real polar car 0.816 0.03

mAP 0.730 -0.02 mAP 0.768 0.05

Polar-KITTI with C person 0.704 -0.12 Polar-BDD100K with C person 0.762 -0.10
+ real polar car 0.794 -0.04 + real polar car 0.815 0.03

mAP 0.749 -0.09 mAP 0.789 -0.05

Table 4.6: Comparison of the detection performance after the two successive fine-tunings.
RetinaNet-50 pre-trained on MS COCO is the baseline of all the experiments. The first row
refers to the RetinaNet-50 fine-tuned on KITTI or BDD100K RGB. The second row refers
to the fine-tuning on Polar-KITTI or Polar-BDD100K without constraints while the bottom
row represents the detection models fine-tuned on Polar-KITTI or Polar-BDD100K with the
constraints. All these models are finally fine-tuned on the real polarimetric dataset.

Next, the benefit of the generated images is shown for an application example which
is the object detection task. This enables to check if objects contained in the scene are
globally physically coherent. A RetinaNet-based detection model is learnt according to
the setups described in Section 4.4.3 and the obtained detection performances in term
of mAP are summarized in Table 4.6. The bike and motorbike detection performances
are not evaluated as the polarimetric dataset does not contain enough objects of these
two classes.

As can be seen in Table 4.6, using the generated polarimetric images improves the
detection performance in real polarimetric images. The improvement is substantial
for car and pedestrian detection. An improvement of 4% for car detection is achieved
and of 12% for pedestrian detection which leads to a global improvement of 9% in the
detection, using Polar-KITTI with constraints. Similarly for Polar-BDD100K dataset,
an improvement of 10% for pedestrian detection is noticed which leads to an increased
mAP of 5% (pedestrians and cars). However, regarding BDD100K similar detection
performances are obtained either for RGB or polarimetric images and this is due to
the fact that generated images using CycleGAN do not perform well on small objects.
To verify that, an analysis of the detection scores, while varying the minimal area
of the bounding boxes from which objects are taken into account, is made. The ob-
tained results are shown for the training including the Polar-BDD100K and the RGB
BDD100K in Figure 4.18. They illustrate that, when the minimal area of bounding
boxes increases, the AP of car regarding the training including Polar-BDD100K, over-
comes the one including RGB BDD100K. Even if the results are limited by a lower
quality of small objects in the generated images in this specific case, the generated
polarimetric images help improving the overall detection results.
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Figure 4.18: Evolution of the average precision when setting a minimal area of the bounding
boxes to be detected. PolarC refer to the generated polarimetric images under the admissi-
bility physical constraints. Here green lines refer to the evolution of cars’ detection, blue lines
to the evolution of the mAP and red lines to the evolution of person’s detection. The dashed
lines refer to the training including the BDD100K RGB and the solid lines to the training
including Polar-BDD100K.
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4.5 Summary

This chapter presents the polarimetric and multimodal datasets constituted to carried
out all the required experiments within this thesis. The polarimetric and multimodal
(polarimetric and color-based) acquisitions setups, as well as the different acquisition
circuits, are sketched. The properties of the different sensors are given, which are used
to sort the acquired frames, in order to maximize the diversity of the different datasets.
The post-processing operations, enhancing the collected images are detailed followed
by the annotation technique. The intuition behind every experiment carried out in
this thesis is also explained before giving the properties of the constituted datasets.
In order to enable deep architectures to process polarimetric images, we come up with
six polarimetric data formats, encoded for machine learning. These polarimetric data
formats include different polarimetric features combinations, giving different informa-
tion on the scene. Even though the constituted datasets are the first publicly available
datasets for road object detection, they are limited by their sizes as we could not afford
dedicating more time to their constitution. To overcome this limitation, an image-to-
image translation pipeline is designed, enabling to generate polarimetric images from
RGB ones. The CycleGAN architecture, the best solution to this problem, is mod-
ified so that the generated images meet the physical admissibility constraints of the
polarimetric images. The designed pipeline enables to generate polarimetric versions
of flagship color-based datasets for road object detection, such as KITTI or BDD100K
and can be extended to similar datasets. The next chapter focuses on the experiments
carried out using these datasets, demonstrating the impact of polarimetric features to
enhance road object detection in adverse weather.
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5.1 Introduction

The previous chapter presents the different acquisition campaigns aiming to collect
polarimetric images of road scenes in several weather conditions. Prior this work, there
were no large enough and publicly available datasets, containing polarimetric images
for road object detection. Data collection is therefore paramount to study the impact of
polarimetric features combined with deep architectures on road scene analysis. Using
the constituted datasets, this chapter focuses on the experiments demonstrating the
added value of polarimetric features for road object detection in foggy scenes.

A first experiment is conducted on polarimetric sunny road scenes. It aims to find
a deep architecture suited for road object detection and verifies that it is adapted to
process polarimetric images. It also demonstrates that the constituted dataset performs
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an efficient training without over-fitting, with detection scores in the same range as the
state of the art.

The second experiment gives a first intuition on the utility of polarimetric features
to enhance road scene analysis under fog. To this end, two deep architectures are
trained separately on unpaired polarimetric and RGB datasets, containing road scenes
in sunny weather. The obtained architectures are tested respectively on road scenes un-
der fog. The experimental results show that polarimetric features seem more invariant
to visibility changes than color-based ones.

The third experiment demonstrates and confirm this first intuition. Using the paired
multimodal PolarLITIS dataset, the training processes are conducted on the same
basis. On top of that, this experiment explores further polarimetric data formats. The
evaluation task demonstrates reliably that, unlike color-based features, the polarimetric
characteristics learnt in good weather condition can be used to detect road objects
under fog. This property can be a real asset to enhance autonomous driving, since
being able to describe a scene despite unexpected visibility changes would improve
road users’ safety.

5.2 Learning polarimetric features using Deep Neu-

ral Networks

Before evaluating the impact of polarimetric imaging for road scene understanding, it is
necessary to find an adapted architecture to process it. As a reminder, this work is the
first attempt to combine polarimetric imaging with deep architectures for road object
detection. The ability of such architectures to perform efficiently object detection in
polarimetric road scenes is thus unknown. This experiment aims to evaluate if color-
based and polarimetric features achieve similar performances in detecting road objects.
To this end, a DNN is trained on polarimetric road scenes and its performances are
compared to the state of the art.

In this section, the properties of the required architecture to perform this experiment
are first given. Once the adapted DNN presented, the experimental setup in which it
is included is sketched. The experimental results are then exposed and discussed.

5.2.1 Experiments

In this section, the experiments carried out are detailed. The required features, moti-
vating the choice of an adapted deep architecture for road object detection in polari-
metric images, are first exposed. Based on these information, the experimental setup
performing this task is then described.

Choosing an adapted architecture

The first step of this experiment consists in selecting the best architecture to perform
road object detection on polarimetric images. To justify the technical choices, it is
important to remind the properties of the polarimetric dataset. It is composed of
1236 images with 4 unbalanced classes (see row 1 of Table 4.3 for more information).
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As a matter of fact, because the acquisitions are made on road scenes in real traffic
conditions, cars are encountered more often than other road users. To avoid neglecting
the underrepresented classes during the training process, the architecture must use the
FL (see section 2.3 for more information). The FL is known to enable an efficient
training from an unbalanced dataset.

The class unbalancement is not the only particularity of the used dataset. Since
it is composed of 1236 images, it is paramount to use an architecture able to perform
an efficient training on small datasets without relying on data augmentation. Indeed,
the polarimetric images responding to physical constraints (see section 1.2), the images
must remain unchanged during the training process. As a matter of fact, applying a
rotation, a translation or a distortion to a polarimetric image do not guarantee the
respect for the physical constraints at the pixel scale for the resulting image.

The last parameter to take into account is the nature of the task. As a matter of
fact, object detection must be performed in real time by autonomous vehicles. This is
the reason why the network must be both accurate and able to process several frames
per second.

Considering all these technical constraints, RetinaNet [3] is best suited for this
experiment. It is originally designed to use the FL and it does not rely on data aug-
mentation to perform an efficient training unlike the SSD architecture [2]. On top of
that, it processes up to 14 fps while reaching an accurate detection. Finally, this ar-
chitecture is able to detect small objects better than the YOLO [1] architecture. Small
objects mostly refer to distant road users and detecting them the soonest possible would
enable to anticipate the decisions, directly impacting road users’ safety.

Since RetinaNet is originally designed to use ResNet-50 [166] as a backbone, most
of its performances in the state of the art are made using this architecture. Our
experiment aims to compare the performances of polarimetric features to the state of
the art. It is thus paramount to keep this pipeline to perform a fair comparison. From
now on, this architecture is referred to as RetinaNet-50.

Experimental setup

At this stage, the RetinaNet-50 network is selected for the experiments, as well as
the polarimetric dataset detailed in the first row of Table 4.3. As can be seen in this
table, the training/validation set is composed of 1005 images of road scenes under
good weather conditions. As a matter of fact, a deep architecture can not be trained
on such a small dataset from scratch without over-fitting. This is the reason why
the RetinaNet-50 is first trained on the MS COCO dataset [4], which is rather large
since it contains more than 200k labelled images, to perform a reliable and efficient
training. On top of that, MS COCO contains various color-based road scenes under
good weather conditions and similar road objects as the polarimetric dataset and a
RetinaNet-50 pre-trained on this dataset is publicly available.

Once the RetinaNet-50 is pre-trained on MS COCO, it is fine-tuned on the po-
larimetric dataset. The relevance of polarimetric features to describe a road scene is
evaluated using the intensities images I = (I0, I45, I90) (see section 4.3 for more in-
formation). Four fifths of the training/validation set are used for the training purpose
and the remaining fifth is used for the validation purpose. The obtained network is

99



CHAPTER 5. POLARIMETRIC IMAGING FOR ADVERSE WEATHER
CONDITIONS

Figure 5.1: Experimental setup. The first row refers to RetinaNet-50 pre-trained on MS
COCO, fine-tuned on I = (I0, I45, I90) and tested on I. The second row is the RetinaNet-50
trained on MS COCO and tested on I. The third row is the RetinaNet-50 trained and tested
on PASCAL VOC 2012, providing state of the art performances on this dataset.

then evaluated on the testing set. The different road objects’ detection scores are re-
spectively compared to the state of the art performances on PASCAL VOC 2012 [235]
achieved with the same deep architecture. Unlike other datasets for which only the
overall detection performance is available publicly, PASCAL VOC 2012 is the only one
providing the score of each detection task with the RetinaNet-50 architecture. Simi-
larly to MS COCO, PASCAL VOC 2012 contains road scenes in good weather with
the desired road objects. To visualize the relevance of fine-tuning the network on po-
larimetric data, the RetinaNet-50 pre-trained on MS COCO is also evaluated on the
polarimetric testing set. An illustration of this experimental setup can be found in
Figure 5.1.

As for the the technical details, the network is trained during 50 epochs to ensure its
convergence and without conventional data augmentation to avoid altering the physical
features of polarimetric images. The weights used for evaluation are the ones associated
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(a) Detections before fine-tuning on I (b) Detections after fine-tuning on I

Figure 5.2: Detection results using RetinaNet-50

to the lowest validation loss. The original parameters of the RetinaNet network are
kept, i.e. an Adaptive moment estimation (Adam) optimizer [257] with a 10−5 learning
rate.

5.2.2 Results and discussions

Before discussing the obtained results, it is important to note that, because there are
less than 20 instances of classes bike and motorbike, they are not taken into consider-
ation for the evaluation task. The formula used to compute the mAP can be found in
equation (2.10). In this experiment, n = 2 and AP i ∈ {AP person, AP car}.

The obtained results are summarized up in Table 5.1. As can be seen in this table,
the detections results on polarimetric images are improved after fine-tuning the network
on polarimetric features. This shows that the training process is done correctly and
that a deep architecture is able to learn polarimetric features. The added value of
fine-tuning the network on polarimetric features is illustrated in Figure 5.2.

As for the comparison with the state of the art, we can notice that the car detection
score achieved on PASCAL VOC 2012 is of the same order as the one obtained on
polarimetric images. As for the pedestrian detection, the score achieved on polarimetric
images is not of the same order as the one achieved in the state of the art at this point.
This could be due to the fact that the testing set contains a majority of partially
and mostly occluded objects of the person class, unlike in the PASCAL VOC dataset.
Some further experiments need to be carried out on a larger dataset, containing more
instances of the person class, with a good balance between partially occluded and non-
occluded objects. Such an experiment would enable to draw a more reliable conclusion
regarding polarimetric pedestrian detection.
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Class name State of the art AP no FT AP FT

car 89.0 84.5 90.0
person 91.1 33.3 34.8
mAP 90.1 58.9 62.4

Table 5.1: Detections results using RetinaNet-50. The first column is the state of the art
detection results on PASCAL VOC 2012. The second column is the detection results on
I without fine-tuning the network on the polarimetric dataset. The third column is the
detection results on I after fine-tuning the network on polarimetric features.

5.3 Polarimetric imaging under fog

In section 5.2, the ability of deep architectures to learn polarimetric features is stud-
ied. The faculty of polarimetric features to characterize road objects, especially cars,
under good weather conditions, is demonstrated. However, this experiment must be
reproduced on a larger dataset to extend the obtained results to other road users, such
as pedestrians.

Since polarimetric features are known to be invariant to strong illuminations or low
visibility (see section 1.2 for more details), they could be a great asset to characterize
road scenes when the visibility is altered. This is the reason why the experiments in this
section are focused on road scenes under fog. As a matter of fact, color-based features
vary a lot with the visibility conditions. Deep color-based architectures, trained on
road scenes in good weather conditions, fail to efficiently detect road objects when the
visibility is altered. Since polarimetric features are invariant to luminosity changes,
they should be able to characterize road objects whatever the weather condition.

In the previous section, only three polarimetric intensities, associated to three ro-
tation angles of the polarizer, are studied. However, the different polarimetric features
respectively provide specific complementary information to describe objects. Some
polarimetric parameters could be more invariant to visibility changes and thus more
adapted than others to describe road scenes in every situation. This is the reason why
this experiment also studies the impact of other polarimetric features on road scene
analysis.

To summarize up, this experiment investigates the ability of different polarimetric
features, learnt in good weather conditions, to describe road objects in adverse weather
conditions. To this end, the experimental setup is first described. The results are then
exposed before being discussed.

5.3.1 Experimental setup

As a reminder, the goal of this experiment is to evaluate the faculty of polarimetric
features to provide information invariant to visibility conditions. To this end, the
polarimetric features describing road objects in good weather conditions are extracted
using a deep architecture. This deep architecture is then evaluated exclusively on foggy
road scenes. If such an architecture provides good detection scores, the invariance of
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polarimetric features to weather conditions is proved.
For all of the experiments, the RetinaNet-50 network is used. The reasons for

this choice are mentioned in section 5.2. The dataset used for this experiment is
detailed in the second row of Table 4.3. The training/validation set contains 2221
images and is thus larger than the one used in the experiment of section 5.2. However,
it still does not enable an efficient training from scratch on the polarimetric dataset
without over-fitting the network. This is the reason why, once again, a RetinaNet-
50 pre-trained on MS COCO is used as a basis for all of the experiments. The first
experiment consists in fine-tuning separately this architecture on three different data
formats, respectively the intensities images I = (I0, I45, I90), the Stokes images S =
(S0, S1, S2) and pseudo-HSV = (I0, φ, ρ) (more details can be found in section 4.3).
The three obtained models are tested on their respective data format. At this stage
there were no public dataset containing paired multimodal color-based and polarimetric
road scenes for the object detection task. To overcome this limitation and to proceed
to the fairest comparison possible, a network pre-trained on MS COCO, which mostly
contains road scenes in good weather conditions, is tested on color-based foggy scenes.
It is important to note that, the polarimetric and the color-based testing sets are paired
and thus contain the same road objects. As mentioned previously, in order to study the
ability of polarimetric features to describe a scene whatever the visibility conditions, the
training and validation sets contain scenes in good weather conditions and the testing
set contains scenes under fog. This experimental setup is illustrated in Figure 5.3.

As for the technical details, the RetinaNet-50 is trained on 50 epochs with an Adam
optimizer [257] and a learning rate of 10−5. The weights selected for the evaluation are
the one corresponding to the lowest validation loss. Regarding the training/validation
set, four fifths of this set are used for the training purpose and the remaining fifth for
the validation task.

5.3.2 Results and discussions

Since there are less than 25 instances of the classes bike and motorbike in the train-
ing/validation and testing sets, they are not taken into consideration for the evaluation
process. Similarly to the previous experiment, the formula used to compute the mAP
can be found in equation (2.10). Here, n = 2 and AP i ∈ {AP person, AP car}. The im-
provement of polarimetric scores towards RGB ones is quantified using the error rate
evolution which has the following formula:

ERd
o = 1− AP d

o − (1− APRGB
o )

1− APRGB
o

× 100 , (5.1)

where ERd
o is the percentage of error rate for the object o ∈ {′person′,′ car′} and the

polarimetric data format d, APRGB
o is the average precision for object o with the RGB

data format while AP d
o denotes the average precision after fine-tuning on the object o

and the related polarimetric data format d.
The different detection scores can be found in Table 5.2. As can be seen in this

table, I and S improve the detection results. The error rate is decreased by 45.9% for
the person detection and by 19.4% for the car detection regarding I. As for S, the
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Figure 5.3: Experimental setup. The first column refers to polarimetric data formats, from
top to bottom, I, S and pseudo-HSV. Three RetinaNet-50 pre-trained on MS COCO are
fine-tuned and tested respectively on I, S and pseudo-HSV. The second column refers to the
RGB images. The training set contains scenes in good weather conditions and the testing set
contains foggy scenes.
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Entries Class name AP no FT AP FT ER

person 82.54 8 8

RGB car 66.39 8 8

mAP 74.47 8 8

person 85.56 90.79 -45.9
I car 60.64 72.90 -19.4

mAP 73.10 81.85 -28.9

person 42.58 82.77 -1.3
S car 21.47 69.75 -10.0

mAP 32.03 76.26 -7.0

person 14.99 61.35 121.4
pseudo-HSV car 18.89 67.79 -4.2

mAP 16.94 64.57 38.8

Table 5.2: Comparison of the detection with RetinaNet-50 before and after fine tuning. AP
no FT and AP FT stand respectively for Average Precision before Fine Tuning and Average
Precision after Fine Tuning. In blue, the detection scores on the color-based images (RGB)
and in bold all the scores that overcome them. The best score is in green.

error rate is respectively decreased by 1.3% and by 10% regarding the person and the
car detection.

The obtained results demonstrate that two polarimetric data formats, I and S,
improve object detection in road scenes under fog. As a matter of fact, the deep
architectures are trained exclusively on road scenes under good weather conditions and
tested exclusively on road scenes under fog. This confirms the intuition that, unlike
color-based features, the polarimetric features are more invariant to weather condition
changes. The physical information provided by polarimetric parameters is a reliable
feature, describing an object when its color or shape are altered by the foggy conditions.
Road object detection under fog is illustrated in Figure 5.4 for the three polarimetric
data formats and and its RGB equivalent.

This experiment also demonstrates that people are well detected on polarimetric
images. Unlike in the experiment carried out in section 5.2, the dataset used for the
evaluation step is thought to contain a realistic representation of this class. Instead of
having a majority of occluded objects, this dataset contains a good balance between
occluded and non-occluded objects.

Finally, this experiment demonstrates that once again pre-trained color-based mod-
els can be used as a basis to ease the convergence towards polarimetric features. The
different detection tasks are improved after fine-tuning the networks respectively on
the three polarimetric data formats. These improvements are illustrated in Figure 5.5.

105



CHAPTER 5. POLARIMETRIC IMAGING FOR ADVERSE WEATHER
CONDITIONS

Figure 5.4: Detection results in foggy weather. On top left I, on top right S, on bottom left
pseudo-HSV and on bottom right RGB.
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Figure 5.5: Detection results with RetinaNet-50. On top and bottom row, respectively the
detection results before and after fine-tuning. From left to right: I, S and pseudo-HSV.

5.4 A deeper study of polarimetric features under

fog

In section 5.3, the experiments carried out show encouraging results towards the added
value of polarimetric imaging for road scene analysis under fog. However, these results
are limited since the dataset used for the experiments does not contain paired multi-
modal color-based and polarimetric images. This is the reason why it is paramount to
reiterate these experiments with a multimodal polarimetric and color-based dataset.

On the other hand, other polarimetric data formats need to be explored. The
pseudo-HSV images used in the previous experiment are refactored to contain informa-
tion homogeneous with the real color-based HSV format. Based on the literature, new
polarimetric data formats, closer to the physics of a polarized light wave, are consti-
tuted and their impact on road scenes is studied. All these data formats are detailed
in section 4.3.

Since only one deep architecture, the RetinaNet-50 network, is studied so far, other
backbones to the RetinaNet network are used to reiterate the experiments.

To summarize up, this section aims to confirm the ability of polarimetric features
to describe road scenes, no matter the visibility conditions. It also aims to study
five polarimetric data formats for this purpose. Finally, other deep architectures are
studied. To this end, the different experimental setups are first described and the
results are exposed before being discussed.
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5.4.1 Experimental setups

The first part of the experiment consists in confirming the ability of polarimetric fea-
tures to analyze road scenes whatever the visibility conditions. To this end, the Polar-
LITIS dataset, described in the third row of Table 4.3, is used. This dataset contains
1640 images in the training set and 420 images in the validation set. The training set
contains sunny and cloudy images while the validation set contains exclusively cloudy
scenes. To evaluate the robustness of polarimetric features to weather changes, the
testing set is exclusively constituted of foggy scenes.

It is important to note that, the PolarLITIS dataset contains paired multimodal
polarimetric and color-based images. This property enables to perform a strong and
reliable comparison between the polarimetric and the color-based evaluation. As a
matter of fact, the color-based and polarimetric training processes are carried out on
the same content, enabling an evaluation on these two modalities on the same basis.

Similarly to the experiments carried out in sections 5.2 and 5.3, a RetinaNet-50
pre-trained on MS COCO is used as a basis for the experiments. This network is fine-
tuned respectively on five polarimetric data formats, respectively the intensities images
I = (I0, I45, I90), the Stokes images S = (S0, S1, S2), the HSV images HSV = (φ, ρ,
S0) the Pauli inspired images Pauli = (S1, I45, S0) and the Poincaré inspired images
P = (S0, ρ cos(2φ), ρ sin(2φ)) and on RGB images to perform a fair comparison. This
experimental setup is illustrated in Figure 5.6.

The second experiment consists in studying different deep architectures to extract
physical features in polarimetric images. To this end, different backbones are used for
the RetinaNet architecture, among which, ResNet-50, ResNet-101 [166], VGG16 and
VGG19 [164]. Since, at this point, not all these deep architectures pre-trained on MS
COCO were publicly available, another training process is designed. Training a DNN
from scratch on such a large dataset can take several weeks and a lot of computing
resources. This is the reason why this possibility is excluded. As all these backbones
can be found pre-trained on ImageNet [63], they are used as a basis for this second
experiment. Even if ImageNet is designed for object classification, it is proved that us-
ing a network that has converged into another domain makes transfer learning possible
and efficient [258].

However, to perform object detection, a transfer learning step on a dataset designed
for this purpose is paramount. The KITTI dataset [36] is used for this task since it con-
tains road scenes in good weather conditions and its content is close to the PolarLITIS
dataset. Moreover, because KITTI is not as large as MS COCO, it enables an efficient
training in a reasonable amount of time. To summarize the second experiment, the
four constituted architectures (i.e. RetinaNet using the four different backbones) are
initialized with backbones pre-trained on ImageNet. These architectures are then used
to perform transfer learning on KITTI. Finally, the obtained networks are fine-tuned
on the PolarLITIS dataset on each of the five polarimetric data formats separately and
on the RGB images before being tested on their respective data format. As a reminder,
the training process is done using road scenes in good weather conditions and the ob-
tained architectures are evaluated on road scenes under fog. This training process is
illustrated for the intensities images in Figure 5.7 and can be extended to the others
data formats.
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Figure 5.6: Experimental setup. Here, RetinaNet-50 pre-trained on MS COCO is fine-tuned
on each data format separately.
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Figure 5.7: Experimental setup. Here, a backbone pre-trained on ImageNet is used as a basis.
Transfer learning is then performed with this architecture on KITTI and then fine-tuned on
the PolarLITIS dataset (polarimetric formats and RGB).

As for the training details, regarding the first experiment, the RetinaNet-50 is
trained on 20 epochs on the PolarLITIS dataset. Regarding the second experiment,
the four architectures are trained on 20 epochs on both the KITTI and the PolarLITIS
datasets. For both experiments, the Adam optimizer using a learning rate of 10−5 is
used. The optimal weights for each training process are the ones associated to the
lowest value of the validation loss.

5.4.2 Results and discussions

Similarly to the experiments carried out in sections 5.2 and 5.3, since there are not
enough instances of the classes bike and motorbike in the training set, they are ex-
cluded from the evaluation. The formula used to compute the mAP can be found
in equation (2.10). Here, n = 2 and AP i ∈ {AP person, AP car}. The error rate evolu-
tion is computed to quantify the improvements of the detection scores associated to the
polarimetric data formats towards the ones associated to RGB following equation (5.1).

The different detection scores of the first experiment can be found in Table 5.3. As
can be seen on this table, there are three polarimetric data formats that overcome the
RGB modality regarding road object detection under fog. I, S and the Pauli inspired
images respectively improve road object detection by 26.7%, 9.1% and 20.3%. This
implies that the polarimetric intensities and the polarimetric Stokes parameters are
more invariant to weather changes than the RGB images and therefore more reliable
to describe road objects when the visibility is altered. Figure 5.8 shows an example of
road object detection under fog on the same scene using the RGB modality and the
five polarimetric data formats.

The different detection scores of the second experiment are summarized up in Ta-
ble 5.4. This experiment confirms that I, S and the Pauli inspired images achieve
the best detection scores. However, the obtained results using RetinaNet pre-trained
on KITTI are not as good as the ones obtained using a RetinaNet pre-trained on
MS COCO. This can be explained by the fact that MS COCO contains more than
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Format RGB I ERI S ERS Pauli ERPauli HSV ERHSV P ERP

car 73.28 77.18 -14.6 72.43 3.2 75.09 -6.8 30.86 158.8 39.10 127.9
person 80.97 89.27 -43.6 86.01 -26.5 88.45 -39.3 57.52 123.2 69.14 62.2

mAP 77.13 83.23 -26.7 79.22 -9.1 81.77 -20.3 44.19 144.0 54.12 100.6

Table 5.3: Comparison of the detection using RetinaNet-50 on the different polarimetric data
formats and on RGB images. In blue, the RGB detection scores in percentage, in bold the
polarimetric detection scores that overcome it and in green the best detection score.

Figure 5.8: Detection using RetinaNet-50 on an RGB foggy scene and its polarimetric equiv-
alent. From left to right and from top to bottom, RGB, I, S, Pauli, HSV and P .
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Backbone Classes RGB I ERI S ERS Pauli ERPauli HSV ERHSV P ERP

car 4.96 68.09 -66.4 64.72 -62.9 60.28 -58.2 38.27 -35.0 38.47 -35.3
VGG16 person 12.76 72.59 -68.6 55.73 -49.3 59.50 -53.6 47.58 -39.9 56.88 -50.6

mAP 8.86 70.34 -67.5 60.23 -56.4 59.89 -56.0 42.93 -37.4 47.68 -42.6

car 2.89 64.46 -63.4 64.53 -63.5 60.76 -59.6 30.0 -27.9 41.10 -39.3
VGG19 person 37.71 73.72 -57.8 68.41 -49.3 49.48 -18.9 48.26 -16.9 49.92 -19.6

mAP 20.30 69.09 -61.2 66.47 -57.9 55.12 -43.7 39.13 -23.6 45.51 -31.6

car 22.43 57.99 -45.8 63.16 -52.5 61.54 -50.4 26.65 -5.4 42.58 -26.0
ResNet50 person 33.95 64.36 -46.0 64.25 -45.9 69.31 -53.53 36.11 -3.3 41.57 -11.5

mAP 28.19 61.18 -45.9 63.71 -49.5 65.43 -51.9 31.38 -4.4 42.08 -19.3

car 31.29 59.51 -41.1 64.12 -47.8 64.90 -48.9 21.26 14.6 30.49 1.2
ResNet101 person 35.82 63.94 -43.8 64.11 -44.1 69.20 -52.0 19.37 25.6 25.39 16.3

mAP 33.56 61.73 -42.4 64.12 -46.0 67.05 -50.4 20.32 19.9 27.94 8.5

Table 5.4: Comparison of the detection using RetinaNet with different backbones on the
different data formats. In blue, the scores achieved by the RGB images, in bold all the scores
that overcome them and in green the best detection scores.

220k images whereas KITTI only contains 7k images. RetinaNet pre-trained on MS
COCO provides more general characteristics to describe road objects as it is larger
than KITTI. The best results are achieved using a network pre-trained on a more gen-
eral and larger dataset. We can conclude that the choice of the dataset on which the
network is pre-trained is more relevant than the choice of the architecture itself.

The results of the two experiments enable to highlight the robustness of polari-
metric features to weather changes. The physical features provided by polarimetric
images to describe road objects are invariant to visibility changes. Polarimetric fea-
tures are therefore a strong asset to analyze road scenes in every situation. Unlike
color-based features, polarimetric features guarantee a reliable object detection in case
of an unexpected alteration of the visibility, such as foggy weather, increasing road
users’ safety.

5.5 Summary

In this chapter, the ability of DNN to perform an efficient road object detection in
polarimetric images is first explored. The RetinaNet architecture is chosen for this task,
since it performs an efficient training on unbalanced datasets and processes images in
real time. It proves that the car detection score achieved by polarimetric images is
in the same range as the one achieved in the state of the art using RGB images. As
a matter of fact, windshield and metallic bodywork are very reflective surfaces, more
polarized than non-reflective ones, providing relevant features to characterize a car,
regardless of its shape.

Following these encouraging results, the problem of road object detection under fog
using polarimetric features is addressed. A second experiment uses a larger dataset
containing sunny polarimetric images in its training set and foggy multimodal (po-
larimetric and color-based) images in its testing set. A deep architecture is trained
respectively on three polarimetric data formats, I, S and pseudo-HSV, in good visi-
bility conditions and tested on foggy scenes. The obtained results are compared with
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the ones obtained in the same foggy RGB scenes, by using the same deep architec-
ture trained on MS COCO. The obtained results give an intuition on the invariance of
polarimetric features to foggy scenes, enabling a reliable person and car detection.

A final experiment confirms that polarimetric features characterizing road objects
in good weather conditions are still valid to detect objects in foggy scenes, unlike color-
based ones. The PolarLITIS dataset, containing multimodal polarimetric and color-
based images, is used for this experiment. The polarimetric and RGB training processes
are carried out in the same basis using this dataset this time. The experimental results
prove that three polarimetric data formats, I, S and Pauli, enable good detection results
in foggy scenes. Knowing that adverse weather conditions are not the most common
in road scenes, providing information that describe an object, whatever the visibility
conditions, makes autonomous vehicles more robust to unexpected changes. In the next
chapter, several fusion schemes are explored to enhance road object detection under
fog and the experiments are extended to a wide range of weather conditions.
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Chapter 6

Polarimetric and color fusion
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6.1 Introduction

The previous chapter demonstrates that polarimetric features are more robust than
color-based ones, especially to weather changes. These results are based on the fact
that a deep architecture trained on polarimetric road scenes in good weather conditions
are able to detect road objects more efficiently than the same color-based architecture.
However, these results could be improved by fusing the different modalities. On top of
that, other adverse weather conditions need to be explored to generalize the obtained
results to all kind of visibility alterations.

A first experiment explores several fusion schemes to find the most adapted one.
These fusions schemes are tested with several polarimetric data formats and color
spaces since they provide complementary information. This process enables to find the
best modalities combination to enhance road scene analysis under fog.

The second part of this chapter validates all the experimental results of this the-
sis on other weather conditions. The best fusion schemes are applied to well chosen
polarimetric and color-based features to enhance road object detection in several fog
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densities and under tropical rain. This pipeline enables to extend the obtained results
to other situations where the visibility is altered and to find its limitations.

6.2 Multimodal fusion

In Chapter 5, the added value of polarimetric features for road scenes analysis under
fog is shown. However, when the visibility is altered, autonomous vehicles can not rely
exclusively on one sensor’s information to make their decisions. In fact, any pertur-
bation in the sensor could alter the scene analysis and thus directly impact the final
decision. Combining information from multiple sensors is a guarantee of safety since,
in case of any perturbation in a sensor, the functional sensors can backup a broken
one [34]. Moreover, information provided by multimodal sensors are complementary
and enable to describe a road scene under different angles [259, 260]. Combining infor-
mation from multiple and multimodal sensors is therefore paramount to reinforce the
predictions when the visibility is altered [225].

Previous work [22] have shown that color-based features combined with polarimetric
ones help enhancing car detection. However, the experiments are carried out under
good weather conditions with a Deformable Part Model (DPM). This work focuses on
the exploration of various fusion schemes between polarimetric and color features, using
deep architectures. Several color spaces are explored to select the most relevant ones.
Finally, two data registration methods are explored in order to palliate the problem of
fusing non-stackable pixelwise images with an inconsistent offset.

6.2.1 The different fusion schemes

In order to improve object detection under fog, six fusion schemes are explored. The
different fusion schemes are the followings and summed up in Figure 6.1:

1. Early fusion: the two images are stacked in order to create a six-channels image
to be processed by the neural network,

2. Late fusion with naive NMS filter: the two images are processed separately by two
different neural networks. The raw predicted bounding boxes are concatenated
before being filtered by the NMS algorithm [75] (see algorithm 1),

3. Late fusion with naive soft-NMS filter: the two images are processed separately
by two different neural networks. The raw predicted bounding boxes are concate-
nated before being filtered by the soft-NMS algorithm [261] (see algorithm 1),

4. Late fusion with double soft-NMS filter: the two images are processed separately
by two different neural networks. The raw predicted bounding boxes of each
modality are filtered separately a first time by the soft-NMS algorithm. The
filtered boxes of each modality are then concatenated before being filtered a
second time using the soft-NMS algorithm,

5. Late fusion with OR filter: the two images are processed separately by two dif-
ferent neural networks. The raw predicted bounding boxes of each modality are
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Figure 6.1: Illustration of the different fusion schemes. Here the fusion between RGB and
intensities images I = (I0, I45, I90) is illustrated (see Table 4.4 for more details) and can be
extended to the other modalities combinations.

filtered separately a first time by the soft-NMS algorithm. Then an OR operation
is made between these two sets of bounding boxes,

6. Late fusion with AND filter: the two images are processed separately by two
different neural networks. The raw predicted bounding boxes of each modality
are filtered separately a first time by the soft-NMS algorithm. Then an AND
operation is made between these two sets of bounding boxes.

The PolarLITIS dataset is used for all the experiments. This dataset contains paired
information from a color-based and a polarimetric sensor. The two paired images are
therefore non-stackable pixelwise. The early fusion scheme is sensitive to data mis-
alignment [34], which is the case for the color and polarimetric images in this dataset.
Nevertheless, this fusion scheme is investigated to check the ability of the network to
palliate the sensors’ offset before image registration at first. In a second time, after
image registration, the ability of this fusion scheme to address road object detection
under fog is evaluated. However, early fusion relies on the information of both sensors
to make an accurate prediction. An alteration of the signal of one of the sensors greatly
impacts the predictions which makes it not robust to sensor breakdown.

Regarding the filters used for the late fusion purpose, five different configurations
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Figure 6.2: From left to right, the detections on the intensities images I = (I0, I45, I90), on
the Pauli inspired images Pauli = (S1, I45, S0) and the fusion of these two modalities using a
naive NMS filter. A loss of information can be noticed regarding the prediction of the fused
modalities when cars are parked one behind another. This is due to the suppression of close
bounding boxes when the naive NMS filter has to process too many of them.

are chosen. As mentioned in [261], when two predicted bounding boxes have a high
IOU (see Figure 2.9), the NMS algorithm will only keep the one with the highest score
. In the late fusion scheme, the number of predicted bounding boxes is doubled since
each modality is processed separately before their concatenation. Thereby, in case
of close objects (e.g. a line of cars parked behind one another), the NMS algorithm
suppresses relevant bounding boxes as it is illustrated in Figure 6.2. Even if the soft-
NMS filter is designed to palliate this problem, it shows limits when there are too
many bounding boxes to process. This is the reason why a third late fusion scheme
is proposed, the Double soft-NMS filter. This filter reduces the number of bounding
boxes to process by filtering each prediction separately a first time before concatenating
them. The lightened bounding boxes concatenation is filtered a second time to get
the final predictions. It is worth noticing that, all the hyper-parameters used in the
experiments are found experimentally, i.e. several values are tested and the optimal
ones are selected. For the soft-NMS filter, the hyper-parameter σ of the Gaussian
penalty function is set to σ = 1. As for the Double soft-NMS function, the hyper-
parameters σpolar and σcolor of the Gaussian penalty functions, respectively associated
to the soft-NMS filtering polarimetric and color predictions, are set to σpolar = 0.4 and
σcolor = 2.0. Finally, the hyper-parameter σfinal of the Gaussian penalty function of the
soft-NMS filter, applied to the combination of the previously filtered predictions of the
two modalities, it is set to σfinal = 1.0.

The two other designed filters are meant to target the false negative and false
positive rates. Regarding the OR filter, after getting the two sets of filtered bounding
boxes from each modality, there are two possibilities. If the bounding box is detected
in one modality and not in the other, it is kept. If the bounding box is detected in the
two modalities, only the one with the best detection score is kept. This filter reduces
the false negative rate and its details are presented in algorithm 3. As for the AND
fusion filter, the final bounding boxes are the ones detected in both modalities. This
filter reduces the false positive rate and its details are presented in algorithm 4.
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Algorithm 3 Or filter algorithm. In this work, lThresh=0.05 and uThresh=0.89 and
were found experimentally, i.e. several values of each parameter are tested while fixing
the other to find the optimal ones.
Require: Detections of the two modalities : detectionsMod1, detectionsMod2

detectionsFusion ← detectionsMod1
for d2 ∈ detectionsMod2 do

for d1 ∈ detectionsMod1 do
if IOU(d1, d2) < lThresh then

Add d2 to detectionsFusion
else if IOU(d1, d2) > uThresh & score(d2) > score(d1) then

Replace d1 by d2 in detectionsFusion
end if

end for
end for
return detectionsFusion

Algorithm 4 AND filter algorithm. In this work, thresh=0.55 and was found experi-
mentally, i.e. several values of this parameter are tested to find the optimal one.
Require: Detections of the two modalities : detectionsMod1, detectionsMod2

detectionsFusion ← ∅
for d1 ∈ detectionsMod1 do

IOUtemp ← 0
maxDetection ← ∅
for d2 ∈ detectionsMod2 do

if IOU(d1, d2) > thresh & IOU(d1, d2) > IOUtemp then
IOUtemp ← IOU(d1, d2)
if score(d1) ≥ score(d2) then

maxDetection ← d1
else

maxDetection ← d2
end if

end if
end for
if maxDetection 6= ∅ then

Add maxDetection to detectionsFusion
end if

end for
return detectionsFusion
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The late fusion scheme, unlike the early fusion process, enables to analyze separately
the information provided by the two sensors. The functional sensor is thus not impacted
by the other one’s potential perturbations. Thereby, it still provides a reliable road
scene analysis.

6.2.2 Data registration

In this section, the different registration processes for non-aligned data are presented.
The registration of the predicted bounding boxes of the color modality towards the
polarimetric modality is first described. Then, the other registration scheme, which
consists in registering color images towards the polarimetric ones, is detailed.

Bounding box registration

Because the color and polarimetric images are not stackable pixelwise, the color bound-
ing boxes are readjusted towards the polarimetric ones using two functions. The first
function expresses the polarimetric abscissas of the bounding boxes (xpolar) against the
color abscissas (xcolor) of the bounding boxes and the second one expresses the polari-
metric ordinates of the bounding boxes (ypolar) against the color ordinates (ycolor) of the
bounding boxes. These functions are found by plotting several polarimetric bounding
boxes coordinates against color ones and applying a linear regression to this scatter
plot. The obtained functions are the followings:

xpolar = max(0,min(0.919xcolor − 15.4,Wpolar)) ,

ypolar = max(0,min(1.04ycolor − 83, Hpolar)) .

where Wpolar is the width of the polarimetric image and Hpolar is the height of the
polarimetric image.

Figure 6.3 illustrates the superposition of the bounding boxes of the two modalities
before and after registration.

This registration process enables to recover information from the two modalities
while keeping the original images intact. However, it might be limited by the inconsis-
tent offset between the different pair of images in the PolarLITIS dataset. This is the
reason why this experiment also explores a more adapted adapted process which is im-
age registration. This process would enable to overcome data misalignment penalizing
early fusion.

Image registration

As mentioned previously, the polarimetric and color images are not stackable pixelwise.
Since the images from the two modalities are selected automatically according to their
sensors’ theoretical fps, which do not exactly match their sensors’ actual fps, there is a
non-consistent temporal offset between the two modalities. An illustration of the offset
variation can be found in Figure 6.4. This implies that the spatial offset between two
paired images can not be generalized to the whole dataset.
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Figure 6.3: Illustration of the RGB (orange) and polarimetric (blue) predicted bounding
boxes projected on polarimetric images. On the left, the RGB bounding boxes are projected
towards the polarimetric images without bounding boxes registration. On the right, the
RGB bounding boxes are projected towards the polarimetric images after bounding boxes
registration.

To overcome this limitation, it is paramount to find a method that adapts the
registration of color images towards polarimetric regardless of the offset variations. To
achieve this goal, a CycleGAN [262] is trained on the paired color and polarimetric
images. By training a CycleGAN in this specific configuration, the optimal projection
of each color image towards its polarimetric equivalent is found. The registered RGB
images are thus stackable pixelwise with the polarimetric ones, enabling each pair of
images from the two modalities to contain the exact same content. It is important
to note that there are three weather conditions in the PolarLITIS datasets, sunny,
cloudy and foggy weather. These three weather conditions corresponding to three
different domains, three CycleGANs are respectively trained on them separately. These
CycleGANs are trained on 400 epochs each, with a learning rate κ = 2×10−4, decreased
linearly to 0 from epoch 100. To restore the sharp details potentially lost during
the generation process, the guided filter [263] is used as a post-processing step. An
illustration of the registration setup can be found in Figure 6.5. Examples of registered
images using this setup in the three weather conditions can be found in Figure 6.6.

6.2.3 Experimental setup

A RetinaNet network is used as a basis for all the fusion schemes. The motivations for
this choice are detailed in section 5.2. To reinforce the obtained results, three different
backbones are used in the RetinaNet network, respectively ResNet-50, ResNet-101 and
ResNet-152 [166]. For the early fusion scheme, the backbones are modified to take a
six-channels image in entry.
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Figure 6.4: Illustration of the offset variation. The first row is the polarimetric images repre-
sented by I0 and the second row their RGB equivalent. In the first column, the polarimetric
and RGB images are almost stackable whereas in the second and third columns a slight
temporal offset is noticed between the RGB and polarimetric images.
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Figure 6.5: Illustration of the image registration process using a CycleGAN. Here, the Cy-
cleGAN is trained on paired polarimetric I and RGB images. DRGB and DI are the dis-
criminators that respectively evaluate the distance between the generated RGB image and
the real one and the generated polarimetric image and the real one. MIRGB and MRGBI

are respectively the generator of RGB modality from the polarimetric modality I and the
generator of the polarimetric modality I from the RGB one.
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Figure 6.6: Example of registered images using a CycleGAN. The first column contains the
real RGB images, the second column contains polarimetric intensities images I and the third
column contains the RGB images that are registered towards I.
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Because the PolarLITIS dataset only contains 1640 images in its training set and
420 in its validation set, it is paramount to pre-train the network on another dataset to
avoid over-fitting [264]. Since the intended purpose is detecting objects in road scenes,
the network is pre-trained on the BDD100K dataset [265] from scratch. This dataset
is rather large and aims to perform object detection in road scenes. It is thus adapted
to perform this task. Regarding the early fusion scheme, each image is stacked with
itself to constitute a six-channels image for the pre-training purpose to get the desired
dimensions in entry. The obtained networks are then fine-tuned on their respective
data format or combination of formats regarding the early fusion scheme.

Based on the results obtained in section 5.4, the most relevant polarimetric data
formats are selected. These data formats include the intensities images I = (I0, I45,
I90), the Pauli inspired images Pauli = (S1, I45, S0) and the Stokes images S = (S0, S1,
S2) (see section 4.3 for more details). Four different color spaces are used, including
RGB, HSV, CIE Lab and YCrCb (see section 1.3 for more details). This experiment
aims to select the most adapted color space for polarimetric and color fusion.

As for the training hyper-parameters, all the architectures are trained with the
Adam optimizer with a learning rate of 10−5. The network is trained on BDD100K
until convergence (i.e. until the validation loss reaches its lowest value) for all the
architectures. The obtained networks are trained for 40 epochs on each data format or
combination of data formats. The weights are selected according to the lowest value of
the validation loss. All the training processes are repeated five times to provide reliable
results.

6.2.4 Discussion and results

In order to prove the efficiency of the fusion schemes it is important to compute the
detection scores on the different data formats separately. These results are summed
up in Table 6.1. As one can see, the three polarimetric data formats overcome the
color spaces when it comes to object detection in road scenes under fog. Regarding
the color-based features, the RGB color space achieves the best detection scores with
a mAP of 71.63%, which implies respectively scores of 78.73% and 64.53% for person
and car detection. The same experiment results in a mAP of 80.82% for polarimetric
intensities images I which implies respectively scores of 89.61% and 72.02% for person
and car detection. The intensities images, providing the highest scores, are used as the
reference to evaluate the efficiency of each fusion scheme from now on.

Regarding the different fusion schemes, their results can be found in Table 6.2 for
bounding boxes registration and in Table 6.3 for image registration. To evaluate the
increase in detection scores, the error rate evolution is computed as follows:

ERI+M
o = 1− AP I+M

o − (1− AP I
o)

1− AP I
o

× 100 ,

where ERI+M
o is the error rate evolution associated to the fusion scheme between I

and the modality M ∈ {S, RGB, HSV, CIE Lab, YCrCb} for object o ∈ {′person′,
′car′, mAP}, AP I

o is the average precision for object o with I, used as the reference
score, while AP I+M

o denotes the average precision on the object o and the related fusion
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Backbone Class RGB HSV CIE Lab YCrCb I Pauli S

person 72.52 ± 1.3 10.30 ± 3.1 61.94 ± 1.6 63.98 ± 4.7 83.73 ± 1.1 83.19 ± 2.7 80.47 ± 1.3
ResNet-50 car 58.55 ± 3.4 3.74 ± 0.3 50.14 ± 4.0 47.82 ± 1.4 71.77 ± 1.2 69.85 ± 2.7 67.88 ± 1.7

mAP 65.54 ± 1.9 7.02 ± 1.6 56.04 ± 2.7 55.90 ± 2.3 77.75 ± 0.4 76.52 ± 2.2 74.18 ± 0.5

person 73.27 ± 3.8 5.78 ± 1.8 66.94 ± 2.6 67.62 ± 2.4 86.26 ± 0.9 85.93 ± 1.0 79.49 ± 2.2
ResNet-101 car 59.92 ± 2.6 5.37 ± 2.2 52.13 ± 3.6 52.35 ± 2.7 71.80 ± 1.0 70.44 ± 2.1 68.84 ± 2.4

mAP 66.60 ± 2.6 5.57 ± 1.8 59.54 ± 2.9 59.99 ± 1.9 79.03 ± 0.9 78.19 ± 1.1 74.17 ± 1.7

person 78.73 ± 1.9 17.34 ± 5.9 67.44 ± 4.1 70.66 ± 3.7 89.61 ± 1.4 89.16 ± 1.1 84.73 ± 1.6
ResNet-152 car 64.53 ± 1.4 3.94 ± 1.5 52.22 ± 4.5 52.93 ± 2.3 72.02 ± 2.0 70.87 ± 1.4 73.68 ± 0.7

mAP 71.63 ± 0.4 10.64 ± 3.6 59.83 ± 4.0 61.80 ± 2.7 80.82 ± 1.2 80.02 ± 1.1 79.21 ± 0.7

Table 6.1: Comparison of the detection on the different data formats. The detection scores of
the RGB color space are in blue, the ones that overcome it are in bold and the best detection
score is in green.

scheme between modalities I and M . Note that a negative error rate is associated to
an increase of AP I+M

o with regards to AP I
o and a positive error rate is associated to a

decrease of AP I+M
o with regards to AP I

o.

Bounding boxes registration

Since the best results on the different data formats are obtained using RetinaNet with
a ResNet-152 backbone, the influence of the fusion schemes on the detection scores is
evaluated accordingly. All the results, including the ones using the other backbones,
are shown in Table 6.2. As it can be seen in this table, the best results are provided by
the late fusion scheme using an OR filter and a Double soft-NMS filter. Compared to
classical filters (NMS and soft-NMS), the Double soft-NMS filter reaches a 10% increase
of the mAP. It also enables a 13.8% increase of the mAP when fusing I an S which
leads to a 18.3% increase of the car detection and a 1.9% increase for person detection.
Regarding the OR filter, an 3.2% increase in the mAP can be noticed when fusing I
and S which leads to a 3.9% increase for car detection and a 1.3% increase regarding
the person detection. The early fusion between I and color images does not overcome
the reference scores, which is verified for the three backbones. As it is expected, the
offset between color and polarimetric images probably penalizes the training process.
However, even the fusion between polarimetric features (I and S) does not overcome
the reference scores, even though they are stackable pixelwise. Consequently, early
fusion is not adapted when it comes to detect object in road scenes under fog. As for
the AND filter used in the late fusion scheme, it is not adapted for this purpose. The
reduction of the false negatives aimed by this filter does not overcome the reduction of
the true positives. Regarding the different color spaces, we can notice that HSV, CIE
Lab and YCrCb are more adapted than RGB to be fused with polarimetric features,
especially HSV. This might be due to the fact that images in these color spaces provide
less false positive detections than images in the RGB color space.
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Fusion Backbone Class I I + S ERI+S I+ RGB ERI+RGB I+ HSV ERI+HSV I+ CIE Lab ERI+LAB I+ YCrCb ERI+YCrCb

1

person 83.73 ± 1.1 81.03 ± 1.3 16.6 73.86 ± 2.2 60.6 70.35 ± 1.9 82.2 78.44 ± 1.8 32.5 80.38 ± 1.5 2.6
ResNet-50 car 71.77 ± 1.2 67.63 ± 1.2 14.7 57.85 ± 1.3 49.3 48.63 ± 1.6 82.0 61.65 ± 1.7 35.8 61.24 ± 1.1 37.3

mAP 77.75 ± 0.4 74.33 ± 0.7 15.4 65.85 ± 1.1 53.5 59.49 ± 1.5 82.1 70.04 ± 0.8 34.7 70.81 ± 1.3 31.2
person 86.26 ± 0.9 81.83 ± 2.8 32.2 73.53 ± 1.9 92.6 49.89 ± 8.2 264.7 79.87 ± 1.4 46.5 81.94 ± 0.6 31.4

ResNet-101 car 71.80 ± 1.0 70.83 ± 2.3 3.4 58.41 ± 0.7 47.5 38.21 ± 4.2 119.1 65.15 ± 1.7 23.6 61.79 ± 1.5 35.5
mAP 79.03 ± 0.9 76.33 ± 0.9 12.9 65.97 ± 0.6 62.3 44.05 ± 5.7 166.8 72.52 ± 0.8 31.0 71.87 ± 0.6 34.1
person 89.61 ± 1.4 83.49 ± 1.3 58.9 72.77 ± 1.6 162.1 70.62 ± 2.0 182.8 81.51 ± 1.5 80.0 80.93 ± 1.8 83.5

ResNet-152 car 72.02 ± 2.0 63.79 ± 2.3 29.4 57.16 ± 3.4 53.1 49.70 ± 2.7 79.8 58.22 ± 0.4 49.3 59.04 ± 2.3 46.4
mAP 80.82 ± 1.2 73.64 ± 1.3 37.4 64.96 ± 2.3 82.7 60.16 ± 2.1 107.7 69.86 ± 0.8 57.1 69.98 ± 1.4 56.5

2

person 83.73 ± 1.1 83.46 ± 1.7 1.7 77.50 ± 3.2 38.3 83.68 ± 1.1 0.3 81.43 ± 2.8 14.1 80.46 ± 3.2 20.1
ResNet-50 car 71.77 ± 1.2 71.75 ± 0.6 0.1 70.13 ± 1.0 5.8 71.19 ± 1.2 2.1 69.85 ± 1.2 6.8 69.89 ± 1.4 6.7

mAP 77.75 ± 0.4 77.61 ± 1.0 0.6 73.81 ± 1.4 17.7 77.43 ± 0.3 1.4 75.64 ± 1.3 9.5 75.18 ± 1.3 11.6
person 86.26 ± 0.9 84.23 ± 1.3 14.8 75.59 ± 4.0 77.7 86.24 ± 1.0 0.1 78.01 ± 3.4 60.0 77.04 ± 3.8 67.1

ResNet-101 car 71.80 ± 1.0 71.59 ± 1.2 0.7 66.84 ± 2.3 17.6 71.44 ± 1.1 1.3 68.90 ± 1.9 10.3 68.92 ± 1.9 10.2
mAP 79.03 ± 0.9 77.91 ± 0.9 5.3 71.21 ± 3.0 37.3 78.84 ± 0.9 0.9 73.46 ± 2.3 26.6 72.98 ± 2.3 28.3
person 89.61 ± 1.4 89.00 ± 1.7 5.9 80.61 ± 1.6 86.6 89.30 ± 1.4 3.0 79.29 ± 4.0 99.3 81.95 ± 2.1 73.7

ResNet-152 car 72.02 ± 2.0 74.02 ± 1.2 -7.1 67.65 ± 1.4 15.6 71.43 ± 2.0 2.1 66.51 ± 2.0 19.7 67.22 ± 2.7 17.2
mAP 80.82 ± 1.2 81.51 ± 0.9 -3.6 74.13 ± 1.2 34.9 80.37 ± 1.2 2.3 72.90 ± 2.1 41.3 74.59 ± 2.3 32.3

3

person 83.73 ± 1.1 83.53 ± 1.7 1.2 77.53 ± 3.2 38.1 83.71 ± 1.0 0.1 81.50 ± 2.8 13.7 80.51 ± 3.2 19.8
ResNet-50 car 71.77 ± 1.2 72.30 ± 0.5 -1.9 70.27 ± 0.9 5.3 71.39 ± 1.2 1.3 70.02 ± 1.2 6.2 70.05 ± 1.4 6.1

mAP 77.75 ± 0.4 77.92 ± 1.0 -0.8 73.90 ± 1.4 17.3 77.55 ± 0.3 0.9 75.76 ± 1.3 8.9 75.28 ± 1.2 11.1
person 86.26 ± 0.9 83.91 ± 1.3 17.1 75.72 ± 4.0 76.7 86.29 ± 0.9 -0.2 78.02 ± 3.4 60.0 77.10 ± 3.8 66.7

ResNet-101 car 71.80 ± 1.0 72.09 ± 0.9 -1.0 67.03 ± 2.2 16.9 71.66 ± 1.1 0.5 69.03 ± 1.9 9.8 69.09 ± 1.9 9.6
mAP 79.03 ± 0.9 78.00 ± 0.8 4.9 71.38 ± 2.9 36.5 78.98 ± 0.9 0.2 73.53 ± 2.3 26.2 73.09 ± 2.3 28.3
person 89.61 ± 1.4 89.01 ± 1.7 5.8 81.07 ± 1.6 82.2 89.33 ± 1.4 2.7 79.31 ± 4.1 99.1 81.97 ± 2.1 73.5

ResNet-152 car 72.02 ± 2.0 74.17 ± 1.2 -7.7 68.52 ± 1.7 12.5 71.53 ± 2.0 1.8 66.64 ± 2.0 19.2 67.28 ± 2.8 16.9
mAP 80.82 ± 1.2 81.59 ± 0.9 -4.0 74.80 ± 1.2 31.4 80.43 ± 1.2 2.0 72.98 ± 2.1 40.9 74.63 ± 2.3 32.3

4

person 83.73 ± 1.1 84.42 ± 1.7 -4.2 77.29 ± 3.8 39.5 84.23 ± 1.0 -3.1 81.99 ± 3.0 10.7 80.81 ± 3.9 17.9
ResNet-50 car 71.77 ± 1.2 74.83 ± 0.9 -10.8 73.11 ± 0.9 -4.7 73.63 ± 1.0 -6.6 72.94 ± 1.0 -4.1 72.79 ± 0.9 -3.6

mAP 77.75 ± 0.4 79.63 ± 1.2 -8.4 75.20 ± 1.8 11.5 78.93 ± 0.4 -5.3 77.47 ± 1.6 1.3 76.80 ± 1.7 4.3
person 86.26 ± 0.9 84.45 ± 1.5 13.2 74.84 ± 4.2 83.1 86.29 ± 1.0 -0.2 76.14 ± 3.6 73.7 74.38 ± 5.4 86.5

ResNet-101 car 71.80 ± 1.0 75.13 ± 1.2 -11.8 70.43 ± 2.1 4.9 73.63 ± 1.0 -6.5 72.00 ± 1.6 -0.7 73.15 ± 0.7 -4.8
mAP 79.03 ± 0.9 79.79 ± 1.1 -3.6 72.63 ± 2.7 30.5 79.96 ± 0.7 -4.4 74.07 ± 2.3 23.7 73.77 ± 2.6 25.1
person 89.61 ± 1.4 89.81 ± 1.7 -1.9 79.48 ± 1.8 97.5 86.46 ± 6.4 30.3 76.69 ± 5.6 124.4 80.77 ± 2.7 85.1

ResNet-152 car 72.02 ± 2.0 77.13 ± 1.1 -18.3 69.53 ± 1.7 8.9 76.33 ± 8.3 -15.4 69.20 ± 1.7 10.1 70.40 ± 2.3 5.8
mAP 80.82 ± 1.2 83.47 ± 0.9 -13.8 74.50 ± 1.6 33.0 81.39 ± 1.1 -3.0 72.94 ± 3.0 41.1 75.58 ± 2.4 27.3

5

person 83.73 ± 1.1 84.16 ± 0.8 -2.6 84.11 ± 0.9 -2.3 84.03 ± 0.9 -1.8 84.05 ± 0.9 -2.0 84.02 ± 0.9 -1.8
ResNet-50 car 71.77 ± 1.2 72.88 ± 1.0 -3.9 72.74 ± 1.2 -3.4 72.71 ± 1.2 -3.3 72.72 ± 1.2 -3.4 72.72 ± 1.2 -3.4

mAP 77.75 ± 0.4 78.52 ± 0.3 -3.5 78.43 ± 0.5 -3.1 78.37 ± 0.5 -2.8 78.38 ± 0.4 -2.8 78.37 ± 0.4 2.8
person 86.26 ± 0.9 86.36 ± 1.2 -0.7 86.25 ± 0.8 0.1 86.49 ± 0.9 -1.7 86.47 ± 0.8 -1.5 86.19 ± 0.8 0.5

ResNet-101 car 71.80 ± 1.0 72.86 ± 1.1 -3.8 72.73 ± 1.0 -3.3 72.70 ± 1.0 -3.2 72.76 ± 1.0 -3.4 72.77 ± 1.0 -3.4
mAP 79.03 ± 0.9 79.61 ± 0.9 -2.8 79.49 ± 0.8 -2.2 79.60 ± 0.8 -2.7 79.62 ± 0.8 -2.8 79.48 ± 0.8 -2.1
person 89.61 ± 1.4 89.75 ± 1.4 -1.3 89.72 ± 1.4 -1.1 89.72 ± 1.4 -1.1 89.64 ± 1.3 -0.3 89.73 ± 1.4 -1.2

ResNet-152 car 72.02 ± 2.0 73.10 ± 2.2 -3.9 72.75 ± 1.9 -2.6 72.75 ± 1.9 -2.6 72.71 ± 2.0 -2.5 72.74 ± 2.0 -2.6
mAP 80.82 ± 1.2 81.43 ± 1.1 -3.2 81.24 ± 1.1 -2.2 81.27 ± 1.1 -2.3 81.17 ± 1.1 -1.8 81.23 ± 1.1 -2.1

6

person 83.73 ± 1.1 82.91 ± 1.3 5.0 70.29 ± 3.9 82.6 20.74 ± 4.9 387.1 72.59 ± 2.0 68.4 72.05 ± 2.5 71.8
ResNet-50 car 71.77 ± 1.2 71.60 ± 1.2 0.6 56.43 ± 1.6 54.3 10.52 ± 1.4 216.9 51.72 ± 1.4 71.0 50.00 ± 1.5 77.1

mAP 77.75 ± 0.4 77.26 ± 1.1 2.2 63.36 ± 2.6 64.7 15.63 ± 3.1 279.2 62.16 ± 1.1 70.1 61.03 ± 1.8 75.1
person 86.26 ± 0.9 80.60 ± 2.0 41.2 67.51 ± 4.0 136.5 9.34 ± 3.3 559.8 67.38 ± 3.6 137.4 65.67 ± 6.2 149.9

ResNet-101 car 71.80 ± 1.0 70.24 ± 1.2 5.5 55.91 ± 2.4 56.3 12.00 ± 4.4 212.1 51.93 ± 3.8 70.5 53.56 ± 1.9 64.7
mAP 79.03 ± 0.9 75.42 ± 1.2 17.2 61.71 ± 2.7 83.0 10.67 ± 3.5 326.0 59.66 ± 2.5 92.4 59.62 ± 3.8 92.6
person 89.61 ± 1.4 86.10 ± 1.2 33.8 71.08 ± 2.9 178.3 25.83 ± 8.8 613.9 66.95 ± 6.6 218.1 70.18 ± 3.9 187.0

ResNet-152 car 72.02 ± 2.0 72.35 ± 1.0 -1.2 57.02 ± 1.2 53.6 8.18 ± 3.2 228.2 51.13 ± 2.6 74.7 51.09 ± 2.5 74.8
mAP 80.82 ± 1.2 79.23 ± 0.8 8.3 64.05 ± 1.8 87.4 17.00 ± 5.9 333.7 59.04 ± 3.2 113.6 60.64 ± 2.8 105.2

Table 6.2: Comparison of the detection scores with the different fusion schemes with bounding
boxes registration. I reaches the best detection scores on the individual formats and is used
as a reference (blue). From top to bottom: Early Fusion (1), Naive NMS (2), Naive soft-
NMS (3), Double soft-NMS (4), OR filter (5), AND filter (6). The scores that overcome the
reference scores are in green and the best detection score is in bold.
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Image registration

Registering the color images towards the polarimetric ones lead to improvements on
the detection performances. The evaluation of the different fusion schemes using regis-
tered images are shown in Table 6.3. Providing multimodal images, stackable pixelwise,
indeed improves the performances regarding the early fusion schemes. Again, these im-
provement still do not overcome the detection on the intensities images without fusion.
The early fusion scheme is therefore not adapted for road object detection in foggy
scenes. The Double soft-NMS filter also shows great improvements regarding color
and polarimetric fusion. The mAP reached by the intensities and RGB images fusion
reaches 74.50% when registering the bounding boxes whereas it reaches 80.22% when
registering images. The mAP achieved when fusing the intensities and HSV images is
of 81.39% when registering the bounding boxes whereas it is of 81.47% when register-
ing images. As for the intensities and CIE Lab images fusion, the mAP is of 72.94%
when registering the bounding boxes whereas it reaches 77.53% when registering im-
ages. Finally, the YCrCb and intensities images fusion reaches 75.58% when registering
bounding boxes and it is of 79.27% when registering images.

Overall discussion

To summarize the obtained results, the fusion schemes enabling the best results are the
late fusion scheme with the Double soft-NMS filter and the OR filter. The Double soft-
NMS enables to provide the best results when combining the most relevant data format
for road object detection under fog which are the intensities and the Stokes images. The
OR filter, however, reaches slightly lower results than the Double soft-NMS filter but it
is more robust to the data combination, since it reaches at least the performances of the
control data format. The modalities combinations that provide the best results are the
intensities images combined with the Stokes images and the intensities images combined
with the HSV images. Regarding the registration processes, the image registration
provides better results than the bounding boxes registration.

To conclude, even if these fusion schemes enable to both generalize the features
learnt in good weather conditions to adverse scenes and improve the detections results
under fog, some improvements could be made to fuse more efficiently color and polari-
metric features. One can imagine an optimized fusion between color and polarimetric
features as a deep fusion scheme. In this way, these complementary features could be
associated in an optimal way during the training process and thus improve the detection
results under fog. Nevertheless, the results achieved so far are encouraging especially
to improve road object detection under fog. They also enable to find color spaces which
are more adapted than RGB for multimodal fusion with polarimetric images.
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Fusion Backbone Class I I + S ERI+S I+ RGB ERI+RGB I+ HSV ERI+HSV I+ CIE Lab ERI+LAB I+ YCrCb ERI+YCrCb

1

person 83.73 ± 1.1 81.03 ± 1.3 16.6 77.80 ± 2.5 36.4 52.46 ± 3.4 192.2 79.50 ± 1.5 26.0 78.10 ± 1.6 34.6
ResNet-50 car 71.77 ± 1.2 67.63 ± 1.2 14.7 65.00 ± 2.3 24.0 44.99 ± 1.6 94.8 66.32 ± 1.8 19.3 65.75 ± 1.0 21.3

mAP 77.75 ± 0.4 74.33 ± 0.7 15.3 71.40 ± 1.9 28.5 48.72 ± 2.3 130.5 72.91 ± 1.6 21.8 71.93 ± 1.1 26.2
person 86.26 ± 0.9 81.83 ± 2.8 32.24 80.22 ± 5.0 44.0 30.21 ± 2.7 407.9 82.26 ± 1.7 29.1 81.55 ± 1.8 34.3

ResNet-101 car 71.80 ± 1.0 70.83 ± 2.3 3.4 63.95 ± 2.1 27.8 39.57 ± 4.0 114.3 62.29 ± 1.9 33.7 63.43 ± 1.6 29.7
mAP 79.03 ± 0.9 76.33 ± 0.9 12.9 72.09 ± 2.9 33.1 34.89 ± 3.2 210.5 72.28 ± 1.7 32.2 72.49 ± 1.6 31.2
person 89.61 ± 1.4 83.49 ± 1.3 58.9 84.04 ± 1.2 53.6 66.72 ± 4.6 220.3 83.54 ± 0.7 58.4 79.01 ± 3.0 102.0

ResNet-152 car 72.02 ± 2.0 63.79 ± 2.3 29.4 60.92 ± 1.5 39.7 51.31 ± 2.4 74.0 60.93 ± 3.5 39.6 60.44 ± 1.6 41.4
mAP 80.82 ± 1.2 73.64 ± 1.3 37.4 72.48 ± 1.1 43.5 59.02 ± 3.4 113.7 72.23 ± 2.0 44.8 69.72 ± 1.5 57.9

2

person 83.73 ± 1.1 83.46 ± 1.7 1.7 81.50 ± 2.2 13.7 83.72 ± 1.0 0.1 82.58 ± 1.9 7.1 83.57 ± 1.0 1.0
ResNet-50 car 71.77 ± 1.2 71.75 ± 0.6 0.1 71.16 ± 1.5 2.2 70.94 ± 1.3 2.9 70.35 ± 1.2 5.0 70.97 ± 1.4 2.8

mAP 77.75 ± 0.4 77.61 ± 1.0 0.6 76.33 ± 0.5 6.4 77.33 ± 0.3 1.9 76.47 ± 0.8 5.8 77.27 ± 0.4 2.2
person 86.26 ± 0.9 84.23 ± 1.3 14.8 82.12 ± 3.0 30.1 86.25 ± 1.0 0.1 83.22 ± 1.9 22.1 84.38 ± 2.5 13.7

ResNet-101 car 71.80 ± 1.0 71.59 ± 1.2 0.7 69.53 ± 1.5 8.0 71.29 ± 1.2 1.8 68.99 ± 2.1 10.0 70.12 ± 1.5 6.0
mAP 79.03 ± 0.9 77.91 ± 0.9 5.3 75.83 ± 2.2 15.3 78.77 ± 1.0 1.2 76.11 ± 1.7 13.9 77.25 ± 1.2 8.5
person 89.61 ± 1.4 89.00 ± 1.7 5.9 87.55 ± 0.4 198.3 89.57 ± 1.5 0.4 83.18 ± 3.6 61.9 85.78 ± 2.6 36.9

ResNet-152 car 72.02 ± 2.0 74.02 ± 1.2 -7.1 69.56 ± 1.6 8.8 71.17 ± 2.1 3.3 69.41 ± 2.4 9.3 69.66 ± 2.4 8.4
mAP 80.82 ± 1.2 81.51 ± 0.9 -3.6 78.56 ± 0.9 11.8 80.37 ± 1.2 2.3 76.30 ± 2.1 23.6 77.72 ± 2.1 16.2

3

person 83.73 ± 1.1 83.53 ± 1.7 1.2 81.52 ± 2.2 13.6 83.74 ± 1.0 -0.1 82.60 ± 1.9 6.9 83.60 ± 1.0 0.8
ResNet-50 car 71.77 ± 1.2 72.30 ± 0.5 -1.9 71.13 ± 1.7 2.3 71.13 ± 1.2 2.3 70.56 ± 1.2 4.3 71.17 ± 1.4 2.1

mAP 77.75 ± 0.4 77.92 ± 1.0 -0.7 76.33 ± 0.6 6.4 77.44 ± 0.3 1.4 76.58 ± 0.8 5.3 77.39 ± 0.4 1.6
person 86.26 ± 0.9 83.91 ± 1.3 17.1 81.65 ± 3.2 33.6 86.31 ± 0.9 -0.4 83.28 ± 1.9 21.7 84.39 ± 2.5 13.6

ResNet-101 car 71.80 ± 1.0 72.09 ± 0.9 -1.0 72.64 ± 1.1 -3.0 71.52 ± 1.2 1.0 69.20 ± 2.1 9.2 70.28 ± 1.5 5.4
mAP 79.03 ± 0.9 78.00 ± 0.8 4.9 77.15 ± 2.1 9.0 78.92 ± 1.0 0.5 76.24 ± 1.7 13.3 77.34 ± 1.2 6.2
person 89.61 ± 1.4 89.01 ± 1.7 5.8 87.62 ± 0.5 19.2 89.59 ± 1.5 0.2 83.19 ± 3.6 61.8 85.77 ± 2.6 37.0

ResNet-152 car 72.02 ± 2.0 74.17 ± 1.2 -7.7 69.71 ± 1.7 8.3 71.28 ± 2.2 2.6 69.5 ± 2.5 9.0 69.79 ± 2.5 8.0
mAP 80.82 ± 1.2 81.59 ± 0.9 -4.0 78.66 ± 0.9 11.3 80.43 ± 1.2 2.0 76.35 ± 2.1 23.3 77.78 ± 2.2 15.8

4

person 83.73 ± 1.1 84.42 ± 1.7 -4.2 82.00 ± 2.3 10.6 84.37 ± 0.9 -3.9 83.22 ± 1.8 3.1 84.23 ± 1.0 -3.1
ResNet-50 car 71.77 ± 1.2 74.83 ± 0.9 -10.8 73.81 ± 1.0 -7.2 73.40 ± 1.1 -5.8 73.39 ± 0.9 -5.7 73.52 ± 1.1 -6.2

mAP 77.75 ± 0.4 79.63 ± 1.2 -8.4 77.91 ± 0.9 -0.7 78.89 ± 0.3 -5.1 78.31 ± 0.7 -2.5 78.87 ± 0.4 -5.0
person 86.26 ± 0.9 84.45 ± 1.5 13.1 81.65 ± 3.2 33.6 86.33 ± 1.0 -0.5 83.10 ± 1.8 23.0 84.15 ± 2.8 15.4

ResNet-101 car 71.80 ± 1.0 75.13 ± 1.2 -11.8 72.64 ± 1.1 -3.0 71.52 ± 1.2 1.0 72.70 ± 1.4 -3.2 73.30 ± 1.1 -5.3
mAP 79.03 ± 0.9 79.79 ± 1.1 -3.6 77.15 ± 2.1 9.0 78.92 ± 1.0 0.5 77.90 ± 1.3 5.4 78.73 ± 1.3 1.4
person 89.61 ± 1.4 89.81 ± 1.7 -1.9 87.78 ± 0.5 17.6 89.77 ± 1.6 -1.5 82.12 ± 4.3 72.1 85.34 ± 3.2 41.1

ResNet-152 car 72.02 ± 2.0 77.13 ± 1.1 -18.3 72.66 ± 1.2 -2.3 73.17 ± 1.6 -4.1 72.95 ± 1.6 -3.3 73.20 ± 1.6 -4.2
mAP 80.82 ± 1.2 83.47 ± 0.9 -13.8 80.22 ± 0.7 3.1 81.47 ± 1.1 -3.4 77.53 ± 2.3 17.2 79.27 ± 2.2 8.1

5

person 83.73 ± 1.1 84.16 ± 0.8 -2.6 84.07 ± 0.9 -2.1 84.03 ± 0.9 -1.8 84.03 ± 0.9 -1.8 84.03 ± 0.9 -1.8
ResNet-50 car 71.77 ± 1.2 72.88 ± 1.0 -3.9 72.72 ± 1.2 -3.4 72.71 ± 1.2 -3.3 72.71 ± 1.2 -3.3 72.70 ± 1.2 -3.3

mAP 77.75 ± 0.4 78.52 ± 0.3 -3.5 78.40 ± 0.5 -2.9 78.37 ± 0.5 -2.8 78.37 ± 0.5 -2.8 78.37 ± 0.5 -2.8
person 86.26 ± 0.9 86.36 ± 1.2 -0.7 85.87 ± 0.6 2.8 86.49 ± 0.9 -1.7 86.17 ± 0.6 0.7 86.28 ± 1.1 -0.1

ResNet-101 car 71.80 ± 1.0 72.86 ± 1.1 -3.8 72.73 ± 1.0 -3.3 72.70 ± 1.0 -3.2 72.71 ± 1.0 -3.2 72.70 ± 1.0 -3.2
mAP 79.03 ± 0.9 79.61 ± 0.9 -2.8 79.30 ± 0.6 -1.3 79.60 ± 0.8 -2.7 79.44 ± 0.8 -2.0 79.49 ± 0.8 -2.2
person 89.61 ± 1.4 89.75 ± 1.4 -1.3 89.58 ± 1.3 0.3 89.72 ± 1.4 -1.1 89.65 ± 1.3 -0.3 89.58 ± 1.4 0.3

ResNet-152 car 72.02 ± 2.0 73.10 ± 2.2 -3.9 72.87 ± 1.9 -3.0 72.81 ± 2.0 -2.8 72.81 ± 2.0 -2.8 72.81 ± 2.0 -2.8
mAP 80.82 ± 1.2 81.43 ± 1.1 -3.2 81.23 ± 1.1 -2.1 81.26 ± 1.1 -2.3 81.23 ± 1.2 -2.1 81.20 ± 1.2 -2.0

6

person 83.73 ± 1.1 82.91 ± 1.3 5.0 77.39 ± 1.7 39.0 8.87 ± 2.0 460.1 70.14 ± 4.6 83.5 15.86 ± 8.33 417.1
ResNet-50 car 71.77 ± 1.2 71.60 ± 1.2 0.6 55.85 ± 5.0 56.4 13.67 ± 1.6 205.8 48.47 ± 2.5 82.5 24.06 ± 6.8 169.0

mAP 77.75 ± 0.4 77.26 ± 1.1 2.2 66.62 ± 3.1 50.0 11.27 ± 1.5 298.8 59.31 ± 3.4 82.9 19.96 ± 7.3 259.7
person 86.26 ± 0.9 80.60 ± 2.0 41.2 73.45 ± 5.2 93.2 2.3 ± 0.9 611.1 69.95 ± 3.5 118.7 64.36 ± 11.9 159.4

ResNet-101 car 71.80 ± 1.0 70.24 ± 1.2 5.5 54.23 ± 2.6 62.3 6.74 ± 1.1 230.7 39.73 ± 5.2 113.7 40.62 ± 8.2 110.5
mAP 79.03 ± 0.9 75.42 ± 1.2 17.2 63.84 ± 3.1 72.4 4.5 ± 0.7 355.4 54.84 ± 3.9 115.4 52.49 ± 9.6 126.6
person 89.61 ± 1.4 86.10 ± 1.2 33.8 82.94 ± 1.7 64.2 4.29 ± 2.4 821.2 75.02 ± 5.8 140.4 75.73 ± 5.9 133.6

ResNet-152 car 72.02 ± 2.0 72.35 ± 1.0 -1.2 56.61 ± 2.1 55.1 9.19 ± 2.0 224.6 48.78 ± 5.7 83.1 47.41 ± 4.5 88.0
mAP 80.82 ± 1.2 79.23 ± 0.8 8.3 69.78 ± 1.5 57.6 6.74 ± 2.0 386.2 61.90 ± 5.2 98.6 61.57 ± 4.6 100.4

Table 6.3: Comparison of the detection scores with the different fusion schemes with image
registration. I reaches the best detection scores on the individual formats and is used as a
reference (blue). From top to bottom: Early Fusion (1), Naive NMS (2), Naive soft-NMS (3),
Double soft-NMS (4), OR filter (5), AND filter (6). The scores that overcome the reference
scores are in green and the best detection score is in bold.
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6.3 Validation on more diverse adverse situations

In section 6.2, different fusion schemes are explored to enhance road object detection in
foggy scenes. It is shown that using a late fusion scheme with a Double soft-NMS or and
OR filter improves detection scores, especially when fusing intensities and Stokes im-
ages. However, even if this pipeline can be applied to other adverse weather conditions,
its behavior in these situations is unknown.

This section focuses on the study of polarimetric and color-based features in a
wide range of adverse weather situations. The performances of intensities images,
Stokes images, RGB images and their fusion in eleven different weather situations,
including different densities of fog and tropical rain, are evaluated. The experimental
results enable to extend the conclusions drawn previously to other weather conditions.
They also show the limits of this pipeline in adverse weather conditions with very low
visibility.

6.3.1 Experimental setup

In order to study the behavior of the polarimetric features in several weather con-
ditions, the following experiments are carried out. The first goal of this experiment
is to evaluate how invariant are the polarimetric features characterizing road objects
to the visibility conditions. The second goal of the experiment is to evaluate the rele-
vance of multimodal fusion to enhance road object detection in several adverse weather
situations. The polarimetric features selected for this experiment are the intensities im-
ages I = (I0, I45, I90) and the Stokes images S = (S0, S1, S2) described in [266]. The
color-based features are RGB information.

The training and validation sets used for this experiments are the ones of the Polar-
LITIS dataset (see third row of Table 4.3) and contain sunny and cloudy road scenes.
The testing set, however is constituted exclusively of eleven adverse weather conditions,
including several densities of fog, including 15m, 20m, 25m, 30m, 35m, 40m, 45m, 50m,
60m and 70m of visibility distance, and tropical rain (see sixth row of Table 4.3). Be-
cause the adverse scenes are acquired in a tunnel, their variability is limited. Including
them into the training process is likely to cause over-fitting towards the testing set and
bias the detection results. On top of that, this design enables to evaluate if the road
objects features learnt in good weather conditions are still valid to detect objects when
the visibility is altered. The RetinaNet network [3], using a ResNet-152 backbone [166]
is used for this task. As a matter of fact, this object detector, thanks to the Focal loss,
focuses on hard misclassified examples during its training process. This property is
useful to process datasets with unbalanced classes, as it is the case in this experiment.
It is also able to process images in real time with a high accuracy, which is paramount
to perform object detection in road scenes. All the experimental setups are sketched
in Figure 6.7.

A late fusion scheme is used to fuse the different modalities used in this experiment.
This fusion architecture is based on the results of section 6.2. This work proves that an
early fusion scheme is not adapted to analyze road scenes in adverse weather conditions
because polarimetric and color-based images are not stackable pixelwise. Based on this
work, the Double soft-NMS and the OR filters are used to fuse these modalities since
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Figure 6.7: Experimental setup. On the left, the training processes on each modality, respec-
tively I, S and RGB is illustrated. On the right, the two fusion schemes (Double soft-NMS
filter and OR filter) are illustrated with I and RGB fusion and can be extended to I and S
fusion.

they provide the best results. To fuse the polarimetric and color-based images, the
offset between these two modalities is computed.

Since the training set is composed of 1640 images and the validation set of 420
images, it is paramount to pre-train the network on a larger dataset. The BDD100K
dataset [244] is selected for this task since it is rather large and aims to detect objects
in road scenes in good weather conditions. On top of that, it contains all the classes
of the PolarLITIS dataset, making fine-tuning towards this dataset easier. Once the
architecture pre-trained on BDD100K, it is fine-tuned on PolarLITIS, on each modality
separately (I, S and RGB).

Regarding the training hyperparameters, the ones provided by the RetinaNet’s
article are kept, i.e. a learning rate of 10−5 and the Adam optimizer [257]. Each
training process is repeated five times to provide reliable results. Note that the different
architectures are trained for 50 epochs on BDD100K and for 20 epochs on PolarLITIS.
The optimal weights are selected according to the lowest value of the validation loss.

6.3.2 Discussion and results

To evaluate the increase in detection scores, the error rate evolution is computed as
follows:

ERM
o = 1− APM

o − (1− AP I
o)

1− AP I
o

× 100 , (6.1)

where ERM
o is the error rate evolution between the intensities polarimetric data format
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Modality Class 15m 20m 25m 30m 35m 40m 45m 50m 60m 70m rain

I
person 49.46± 2.6 33.96± 5.1 35.63± 2.8 48.73± 4.6 68.76± 3.2 60.61± 3.1 71.89± 2.3 74.72± 1.3 76.49± 1.5 71.97± 2.1 73.68± 2.8

car 0± 0 6.99± 1.2 41.65± 3.7 69.21± 4.3 85.21± 5.4 58.85± 7.4 75.40± 2.7 79.83± 8.5 90.97± 3.2 86.56± 4.6 85.69± 7.3
mAP 24.73± 1.3 20.48± 2.4 38.64± 3.2 58.97± 4.1 76.98± 2.1 59.73± 4.2 73.65± 2.2 77.28± 4.7 83.73± 1.7 79.27± 2.6 79.69± 4.1

S
person 50.64± 5.1 51.58± 8.1 44.47± 3.4 66.69± 2.5 68.88± 4.1 68.61± 4.2 70.24± 2.2 77.29± 3.3 68.40± 2.2 68.43± 2.9 78.26± 6.1

car 0.48± 0.6 13.73± 1.9 37.59± 8.5 47.16± 10.2 77.06± 7.2 53.51± 17.7 63.76± 14.4 64.61± 15.6 70.35± 7.4 70.78± 9.7 93.10± 4.4
mAP 25.56± 2.7 32.66± 3.6 41.03± 4.6 56.92± 5.6 72.97± 4.9 61.06± 10.2 67.00± 8.2 70.95± 9.4 69.37± 4.1 69.61± 6.0 85.68± 4.7

ERS

person -2.3 -26.7 -13.7 -35.0 -0.4 -20.3 5.9 -10.2 34.4 12.6 -17.4
car -0.5 -7.3 7.0 71.6 55.1 13.0 47.3 75.5 228.3 117.4 -51.8
mAP -1.1 -15.3 -3.9 5.0 17.4 -3.3 25.2 27.9 88.3 46.6 -29.5

RGB
person 14.56± 4.9 16.27± 3.2 8 8 18.19± 2.5 16.68± 1.8 18.80± 3.1 12.00± 4.3 24.26± 4.3 18.22± 1.9 21.08± 4.3

car 0.00± 0.0 0.00± 0.0 8 8 0.00± 0.0 6.82± 0.0 8.89± 0.4 1.84± 4.1 28.48± 0.7 20.90± 0.9 14.52± 3.5
mAP 7.28± 2.5 8.14± 1.6 8 8 9.10± 1.2 11.75± 0.9 13.85± 1.7 6.90± 3.4 26.37± 2.1 19.56± 1.2 17.80± 4.3

ERRGB

person 69.1 26.8 8 8 161.9 11.5 188.9 248.1 222.2 191.8 199.8
car 0.0 7.5 8 8 576.1 126.4 270.4 386.7 692.0 488.5 497.3
mAP 23.2 15.5 8 8 294.9 191.5 226.9 309.8 352.6 288.0 304.7

I + S
Double soft-NMS

person 54.14± 3.1 53.03± 7.4 45.07± 3.2 69.23± 3.1 72.62± 2.7 69.84± 4.0 76.93± 2.1 78.99± 1.9 77.00± 1.4 74.51± 2.5 83.24± 2.8
car 0.45± 0.6 13.60± 2.1 46.85± 5.3 71.19± 4.4 88.85± 2.4 61.70± 10.5 74.58± 4.3 75.40± 11.5 90.28± 3.8 84.59± 5.3 93.35± 3.7
mAP 27.30± 1.7 33.31± 3.4 45.96± 3.3 70.21± 3.4 80.74± 2.5 65.77± 5.5 75.76± 3.1 77.19± 6.3 83.64± 2.3 79.55± 3.6 88.29± 2.3

ERI+S

Double soft-NMS

person -10.3 -28.9 -14.7 -40.0 -12.4 -23.4 -17.9 -16.9 -2.2 -9.1 -36.3
car -0.5 -7.1 -8.9 -6.4 -24.6 -6.9 3.33 22.0 7.6 14.6 -53.5
mAP -3.4 -16.1 -11.9 -27.4 -16.3 -15.0 -8.0 0.4 0.6 -1.4 -42.3

I + S
OR filter

person 51.05± 2.6 41.25± 5.5 37.49± 3.3 50.25± 4.9 69.10± 3.0 63.97± 1.7 72.30± 2.4 75.48± 1.8 76.81± 1.4 72.72± 2.2 73.61± 2.9
car 0.08± 0.2 8.34± 2.7 40.30± 5.6 70.08± 3.3 83.42± 4.4 59.04± 7.1 74.66± 3.7 78.84± 7.9 90.82± 3.3 86.40± 4.0 86.64± 6.6
mAP 25.56± 1.3 24.79± 2.4 38.90± 3.5 60.17± 3.8 76.26± 1.1 61.51± 4.0 73.48± 2.5 77.16± 4.3 83.82± 1.6 79.56± 2.4 80.13± 3.7

ERI+S

OR filter

person -3.1 -11.0 -2.9 -3.0 -1.1 -8.5 -1.5 -3.0 -1.4 -2.7 0.3
car -0.1 -8.2 2.3 -2.8 12.1 -0.5 3.0 4.9 1.7 1.2 -6.6
mAP -1.1 -5.4 -0.4 -2.9 3.1 -4.4 0.6 0.5 -0.6 -1.4 -2.2

I+RGB
Double soft-NMS

person 49.65± 2.7 38.06± 3.8 8 8 69.07± 4.5 61.08± 3.1 72.94± 2.6 75.10± 1.5 76.08± 3.1 72.83± 2.5 72.95± 2.7
car 0.00± 0.0 5.49± 2.0 8 8 83.64± 5.2 59.26± 6.26 76.80± 2.4 78.39± 9.7 87.59± 3.6 89.95± 3.2 77.23± 7.5
mAP 24.83± 1.4 21.77± 1.5 8 8 76.35± 2.5 60.17± 3.5 74.87± 2.2 76.74± 5.4 81.84± 3.2 81.39± 2.6 75.09± 3.6

ERI+RGB

Double soft-NMS

person -0.4 -6.2 8 8 -1.0 -1.2 -3.7 -1.5 1.7 -3.1 2.8
car 0.0 1.6 8 8 10.6 -1.0 -5.7 7.1 37.4 -25.2 59.1
mAP -0.1 -1.6 8 8 2.7 -1.1 -4.6 2.4 11.6 -10.2 22.6

I+RGB
OR filter

person 49.58± 2.6 31.34± 5.8 8 8 68.74± 3.3 60.26± 3.1 71.35± 1.9 74.19± 2.0 73.89± 1.5 72.43± 2.2 73.72± 2.8
car 0.00± 0.0 6.29± 1.9 8 8 84.94± 5.5 59.10± 7.4 74.88± 2.8 79.12± 9.1 89.89± 3.0 86.54± 4.6 81.72± 7.2
mAP 24.79± 1.3 18.82± 3.0 8 8 76.84± 2.0 59.68± 4.2 73.12± 1.8 76.65± 5.5 81.89± 1.8 79.49± 2.6 77.72± 3.9

ERI+RGB

OR filter

person -0.2 -4.0 8 8 0.1 0.9 1.9 2.1 11.1 -1.6 -0.2
car 0.0 0.8 8 8 18.3 -0.6 2.1 3.5 12.0 0.1 27.7
mAP -0.1 2.1 8 8 0.6 0.1 2.0 2.8 11.3 -1.1 9.7

Table 6.4: Comparison of the detection scores. The best detection scores for each adverse
weather condition are in blue. The crosses (8) remind that the RGB images of foggy scenes
with 25m and 30m visibility are not available for this experiment.

I and the modality M ∈ {S, RGB, I + S, I+RGB} for object o ∈ {′person′, ′car′,
mAP}, AP I

o is the average precision for object o with data format I, while APM
o

denotes the average precision on the object o with modality M . A negative error rate
is associated to an increase of APM

o with regards to AP I
o and a positive error rate is

associated to a decrease of APM
o with regards to AP I

o.

The intensities images I are used as a reference to compute the error rate evolution
since they provide the best results in sections 6.2 and 5.4.

As PolarLITIS does not contain enough instances of the class bike, it is not taken
into account during the evaluation process. Note that there are no instances of the class
motorbike in the testing set. It is important to remind that the architectures used for
this experiment are exclusively trained on good weather conditions (sunny and cloudy)
and tested exclusively on adverse scenes (foggy scenes with different visibilities and
rain). This pipeline enables to evaluate how polarimetric and color-based features vary
with the visibility conditions. On top of that, since the acquisitions are made into a
tunnel, the glare is an additional visibility alteration. The results of the experiments
can be found in Table 6.4.

As can be seen in this table, regarding the three data formats, the polarimetric
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Figure 6.8: Examples of false positives detection in adverse weather conditions. Blue red and
orange bounding boxes respectively denote car, person and bike detection.

detection scores overcome the RGB detection scores in every adverse situation. We
can also notice that the Stokes images S are more adapted to detect road objects in
foggy scenes when the fog visibility is lower than 30m with up to 15% amelioration in the
mAP. S are also more adapted to detect objects under tropical rain with a 30% increase
in the mAP. When processing scenes under fog with greater visibility distances, the
intensities images I are more adapted. These results are also summarized in Figure 6.9
regarding fog detection. Note that even if there is a gap between the detection scores
corresponding to 35m and 40m visibility. This gap can be due to a higher number
of non-ideal images contained in the class 40m visibility or ideal images contained in
the 35m visibility class. Nevertheless, the increasing curve tendency shows enhanced
detection scores with a greater visibility distance. These results give a first intuition on
the use of fusing I and S in order to improve road object detection in every situation.

Regarding the fusion schemes, when fusing I and S using a late fusion scheme with
the Double soft-NMS filter, it leads up to a 27% increase of the mAP for road object
detection under fog and to a 42% increase of the mAP for road object detection under
tropical rain. The same fusion scheme with an OR filter is less adapted since it takes
into account the false positives, which are more numerous in adverse weather conditions
as seen in Figure 6.8. It enables a slight amelioration for I and S fusion with up to a
5% amelioration of the mAP for road object detection under fog and a 2% increase of
the mAP under tropical rain.

As for the polarimetric and color-based fusion, as mentioned previously, the end-
fusion scheme using an OR filter is not adapted to fuse RGB images and I since it
takes the false positives into account. The same pipeline using soft-NMS filter applied
to these two modalities, however, is not adapted to every situation. They overcome
I and S fusion in foggy scenes when the visibility is the greatest, i.e. of 70m. As a
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Figure 6.9: Evolution of the mAP in foggy scenes while varying the visibility distance. I, S
and the RGB scores are respectively in blue, red and yellow (full lines). The fusion scores of
I and S are respectively in pale and dark purple for the Double soft-NMS and the OR filters
(dashed lines). The fusion scores of I and RGB are respectively in pale and dark green for
the Double soft-NMS and the OR filters (dashed lines).

matter of fact, the mAP in this situation is increased by 10%.
From all these results, we can conclude that when the visibility is very low, as it is

the case in very dense fog and tropical rain, S and I fusion provides the best results.
The color-based and polarimetric fusion is beneficial in adverse road scenes with a better
visibility, such as light fog. However, as can be seen in Figure 6.9, when the visibility is
lower than 30m, the polarimetric features learnt in good weather conditions are not able
to detect efficiently all road objects in adverse scenes. This limitation could be overcome
by including adverse situations in the training process. Despite this limitation, the
experimental results show that under tropical rain and under fog from 30m visibility,
polarimetric features are a real added value to enhance road objects detection. On top
of that, as it can be seen in Figure 4.5, polarimetric features are more robust to the
glare and to drops or veils of water on the windshield, causing deformation and loss
of information in color-based images. Overall, polarimetric features are more adapted
than color-based features to characterize objects in unexpected visibility alterations,
as it is illustrated in Figure 6.10.
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Figure 6.10: Detection results in several adverse weather conditions. From top to bottom:
tropical rain and fog with respectively 35m and 60m visibility. From left to right: I, S, RGB,
I + S (Double soft-NMS), I + S (OR filter), I+RGB (Double soft-NMS) and I+RGB (OR
filter). Bounding boxes in green, blue, red and orange denote respectively the ground truth,
car, person and bike detection.

6.4 Summary

In this chapter, six fusion schemes are studied to enhance road object detection un-
der fog as a first step. Several color-spaces are explored for multimodal polarimetric
and color-based fusion. It is demonstrated that fusing polarimetric intensities and
Stokes images, using a late fusion scheme with a Double soft-NMS filter, provides the
best results for road scene analysis in adverse weather. Fusing HSV with polarimetric
intensities images is the most adapted combination for multimodal polarimetric and
color-based fusion. The OR filter is also an added value since it increases the true
positive rate. Finally, a CycleGAN is used for image registration with an inconsistent
offset. The registered images increase the detection results when fusing the polarimetric
and color-based features, since the fused images are stackable pixelwise.

A final experiment is carried out to study the behavior of polarimetric features
in a wide range of adverse weather conditions. It is showed that once again, fusing
polarimetric intensities and Stokes images, using a deep architecture with a Double
soft-NMS filter, provides the best results in several densities of fog and under tropical
rain. Polarimetric and color-based fusion on the other hand are an added value when
the fog’s visibility is greater. However, this pipeline shows limits when the visibility is
very low, such as fog with a visibility distance under 30m. Even though polarimetric
features are more invariant than color-based ones to the visibility alterations, some
adverse situations should be included in the training process to deploy this pipeline at
a large scale.
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Conclusion

This thesis aimed at enhancing road scene analysis in adverse weather conditions,
fusing polarimetric features and color-based images. In Chapter 1, we introduced the
concept of multimodality. The polarization formalism is first detailed, followed by color
models and other non-conventional modalities such as infrared imaging or LiDAR point
clouds. Chapter 2 gives the background knowledge on deep learning, especially on the
object detection paradigm but also an overview on CycleGAN. The literature of non-
conventional modalities, as well as object detectors is reviewed in Chapter 3, showing
how they fall within autonomous systems’ pipelines to enhance road scene analysis
in complex situations. Chapter 4 presents the datasets constituted to perform road
scene analysis in adverse weather conditions using polarimetric features, as well as the
polarimetric data formats encoded for machine learning. It also describes the adapted
CycleGAN designed to generate polarimetric images under physical constraints from
RGB ones, enabling to have a polarimetric equivalent of the road object detection
benchmarks. A demonstration of the invariance of polarimetric features to the visibility
conditions is made in Chapter 5, by comparing their detection performances with the
color-based ones in foggy road scenes. Finally, these results are enhanced and extended
to other adverse weather conditions in Chapter 6, by designing an adapted color-based
and polarimetric fusion scheme.

In more details, in this thesis we came up with the first large polarimetric and
color-based dataset, labelled for road object detection in several weather conditions.
It contains both road scenes acquired in real conditions and road scenes acquired in
a tunnel simulating fog and rain. To enlarge this dataset, we designed an adapted
CycleGAN, generating polarimetric images from RGB ones, with respect to the physical
constraints. Empirical results demonstrated that, the polarimetric equivalent of road
object detection benchmarks, are an added value to enhance road scene analysis.

From this labelled dataset, we were able to conduct experiments to evaluate the
invariance of polarimetric features to weather changes. To this aim, we compared
the ability of color-based and polarimetric features learnt exclusively in good weather
conditions to detect road objects under fog. The experiment demonstrated that po-
larimetric features are more robust to weather changes than color-based ones. Further
experiments demonstrated that the polarimetric intensities and the Stokes parameters
are the most adapted polarimetric features to enhance road scene analysis under fog.

On top of that, we tested several fusion schemes, including an Early fusion pipeline
and five Late fusion pipelines, in order to improve road scene analysis under fog. It
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was shown that the Double soft-NMS filter and the OR filter applied to the Late fusion
scheme were able to enhance the detection scores. Finally, these two pipelines are used
to extend the results obtained in foggy conditions to a wide range of adverse weather
conditions. Scenes under ten different fog densities and under rain are evaluated. The
results demonstrated once again the ability of polarimetric features to detect road
objects in adverse weather conditions.

To summarize up, we demonstrated in this thesis that polarimetric imaging is in-
variant to visibility changes, particularly induced by fog, rain, or the glare, unlike
conventional sensors. It would be a real asset to enhance road scene analysis in adverse
weather conditions, which is paramount in autonomous navigation.

Perspectives

Based on the work presented in this thesis, we now discuss some interesting perspectives
for future research.

In Chapter 4, we presented the different datasets constituted to perform the exper-
iments in our work and the designed pipeline for polarimetric images generation under
constraints. Although the constituted datasets are the first large, publicly available
datasets for road scene analysis in adverse weather, some improvements could be made
to carry further experiments. First, the constituted datasets are not self-sufficient to
perform an efficient training from scratch. As a matter of fact, it was paramount to
use pre-trained deep architectures to avoid over-fitting on this dataset. One solution
would be to augment the dataset with further road scenes, preferably from other cities
than Rouen to increase its variability. Moreover, because the dataset does not contain
enough instances of the classes ”bike” and ”motorbike”, the evaluation could not be
conducted on these objects. It would be beneficial to collect more instances of these
two classes to generalize the obtained results to a wide range of road uses. Integrat-
ing the generated polarimetric images to the training process would also reinforce the
training process. Moreover, the frames of the dataset are collected according to their
sensor’s fps rate which does not match their real fps rate, resulting in an inconsistent
offset between each pair of images. It would be interesting to sort again the record-
ings of the acquisition campaigns to come up with strictly multimodal paired images.
Finally, regarding the designed CycleGAN, another metric to evaluate the generated
images could be designed. As a matter of fact, the current pipeline performs a pixel-
wise evaluation of the physical constraints. By taking the whole object into account,
it would reinforce the physical admissibility of the objects, resulting in more realistic
polarimetric images.

Chapters 5 and 6 respectively presented the experiments demonstrating the in-
variance of polarimetric features to weather changes and the polarimetric and color-
based fusion pipelines improving road scene analysis. Even if these experiments opened
the path to further research on polarimetric images, to overcome unexpected weather
changes in autonomous navigation, they have some drawbacks. The experiments con-
ducted on adverse scenes are limited to a restricted area. Indeed, adverse conditions
are not the most common and acquisition campaigns in such conditions are difficult
to plan, since the weather is often unpredictable. One solution would be to conduct
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extensive acquisition campaigns to maximize the chances to collect several weather con-
ditions. Regarding the fusion scheme itself, it would be interesting to explore a Middle
fusion scheme to explore intra-modalities representation during the training process.
Finally, the experiments demonstrated the limits of polarimetric features in very dense
fog. To overcome this limitation, a pre-processing step should be considered to restore
the visibility of images. As it is reviewed in the literature, several dehazing algorithms
have shown outstanding performances in retrieving polarimetric scenes’ details.

From all the work accomplished in this thesis and the listed perspectives, we hope
that polarimetric sensors will be popularized in autonomous navigation. Combined
with the usual non-conventional sensors, they would provide further information on
the scene, more robust to unexpected weather changes, which would be a great asset
to autonomous navigation.
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Conclusion

Cette thèse vise à améliorer l’analyse des scènes routières en conditions météorologiques
dégradées, en fusionnant des caractéristiques polarimétriques et des images couleur.
Dans le chapitre 1, nous avons introduit le concept de multimodalité. Le formalisme
de polarisation est d’abord détaillé, suivi des modèles de couleur et d’autres modalités
non conventionnelles telles que l’imagerie infrarouge ou les nuages de points LiDAR.
Le chapitre 2 présente les connaissances de base sur l’apprentissage profond, en parti-
culier le paradigme de la détection d’objets, mais aussi un aperçu du CycleGAN. Le
chapitre 3 passe en revue la littérature sur les modalités non conventionnelles, ainsi
que les détecteurs d’objets, en montrant comment ils s’intègrent dans les pipelines des
systèmes autonomes pour améliorer l’analyse des scènes routières en situations com-
plexes. Le chapitre 4 présente les jeux de données constitués pour effectuer l’analyse
de scènes routières dans des conditions météorologiques défavorables à l’aide de carac-
téristiques polarimétriques, ainsi que les formats de données polarimétriques encodés
pour l’apprentissage automatique. Il décrit également le CycleGAN adapté conçu pour
générer des images polarimétriques sous contraintes physiques à partir d’images RGB,
ce qui permet d’avoir un équivalent polarimétrique des bases de données repères pour la
détection d’obstacles routiers. Une démonstration de l’invariance des caractéristiques
polarimétriques aux conditions de visibilité est faite dans le chapitre 5, en comparant
leurs performances de détection avec celles des images couleur pour des scènes routières
dans le brouillard. Enfin, ces résultats sont améliorés et étendus à d’autres conditions
météorologiques défavorables dans le chapitre 6, en concevant un schéma de fusion
adapté, basé sur l’imagerie couleur et la polarimétrie.

Plus particulièrement, nous avons constitué dans cette thèse le premier grand jeu
de données multimodal, contenant des images polarimétriques et leur équivalent en
imagerie couleur, étiqueté pour la détection d’obstacles routiers dans diverses conditions
météorologiques. Il contient à la fois des scènes routières acquises en conditions réelles
et des scènes routières acquises dans un tunnel simulant du brouillard et de la pluie.
Pour élargir ce jeu de données, nous avons conçu un CycleGAN adapté, générant des
images polarimétriques à partir d’images RGB, respectant les contraintes physiques de
la polarimétrie. Les résultats empiriques ont démontré que l’équivalent polarimétrique
des bases de données repères, utilisées pour la détection d’obstacles routiers, constitue
une valeur ajoutée pour améliorer l’analyse de scènes routières.

À partir de cette base de données étiquetées, nous avons pu mener des expéri-
ences pour évaluer l’invariance des caractéristiques polarimétriques aux changements
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météorologiques. De ce fait, nous avons comparé la capacité des caractéristiques po-
larimétriques et des caractéristiques basées sur la couleur, apprises exclusivement dans
de bonnes conditions météorologiques, à détecter des obstacles routiers dans le brouil-
lard. L’expérience a démontré que les caractéristiques polarimétriques sont plus ro-
bustes aux changements météorologiques que celles basées sur la couleur. D’autres
expériences ont démontré que les intensités polarimétriques et les paramètres de Stokes
sont les caractéristiques polarimétriques les plus adaptées pour améliorer l’analyse des
scènes routières sous le brouillard.

En outre, nous avons testé plusieurs schémas de fusion, dont un schéma de fusion
précoce et cinq schémas de fusion tardive, afin d’améliorer l’analyse des scènes routières
dans le brouillard. Nous avons démontré que le filtre Double soft-NMS et le filtre
OR appliqués au schéma de fusion tardive étaient capables d’améliorer les scores de
détection. Enfin, ces deux pipelines sont utilisés pour étendre les résultats obtenus dans
le brouillard à un large éventail de conditions météorologiques dégradées. Des scènes
sous dix densités de brouillard différentes et sous la pluie intense sont évaluées. Les
résultats ont démontré une fois de plus la capacité des caractéristiques polarimétriques
à détecter des obstacles routiers en conditions météorologiques dégradées.

Pour résumer, nous avons démontré dans cette thèse que l’imagerie polarimétrique
est invariante aux changements de visibilité, notamment induits par le brouillard, la
pluie, ou l’éblouissement, contrairement aux capteurs conventionnels. Cette propriété
constitue un réel atout pour améliorer l’analyse des scènes routières dans des condi-
tions météorologiques dégradées, ce qui est primordial pour permettre la navigation
autonome.

Perspectives

En nous basant sur les travaux présentés dans ce manuscrit, nous abordons maintenant
quelques perspectives intéressantes pour des recherches futures.

Dans le chapitre 4, nous avons présenté les différents jeux de données constitués
pour réaliser les expériences de notre travail et l’algorithme conçu pour la génération
d’images polarimétriques sous contraintes. Bien que les jeux de données constitués
soient les premiers grands jeux de données accessibles au public pour l’analyse de scènes
routières lorsque les conditions météorologiques sont dégradées, certaines améliorations
pourraient être faites pour réaliser d’autres expériences. Tout d’abord, les ensembles
de données constitués ne sont pas suffisants pour effectuer un entrâınement efficace à
partir de zéro. Il était primordial d’utiliser des architectures profondes pré-entrâınées
pour éviter un sur-apprentissage sur ce jeu de données. Une solution serait d’enrichir
le jeu de données avec d’autres scènes routières, de préférence provenant d’autres villes
que Rouen pour augmenter sa variabilité. Par ailleurs, le jeu de données ne contenant
pas suffisamment d’instances des classes ”vélo” et ”moto”, l’évaluation n’a pas pu être
menée sur ces objets. Il serait bénéfique de collecter plus d’instances de ces deux classes
pour généraliser les résultats obtenus à d’autres d’usagers de la route. L’intégration des
images polarimétriques générées au processus d’apprentissage renforcerait également ce
dernier. De plus, les images du jeu de données sont collectées selon le taux de capture
d’images par seconde théorique de leur capteur qui ne correspond pas à leur taux
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de capture d’images par seconde réel, ce qui entrâıne un décalage inconstant entre
chaque paire d’images. Il serait intéressant de trier à nouveau les enregistrements des
campagnes d’acquisition pour aboutir à des images multimodales strictement appariées.
Enfin, en ce qui concerne le CycleGAN conçu, une autre métrique pour évaluer les
images générées pourrait être mise au point. En effet, le pipeline actuel effectue une
évaluation des contraintes physiques au pixel près. En prenant en compte l’ensemble de
l’objet, on renforcerait l’admissibilité physique de ceux-ci, ce qui permettrait d’obtenir
des images polarimétriques plus réalistes.

Les chapitres 5 et 6 ont respectivement présenté les expériences démontrant
l’invariance des caractéristiques polarimétriques aux changements météorologiques et
les schémas de fusion d’images polarimétriques et couleur améliorant l’analyse des
scènes routières. Même si ces expériences ont ouvert la voie à la recherche sur les im-
ages polarimétriques pour surmonter les changements météorologiques inattendus dans
la navigation autonome, elles présentent certains inconvénients. En effet, les expéri-
ences menées conditions dégradées sont effectuée dans une zone restreinte. En effet, les
conditions dégradées ne sont pas les plus courantes et les campagnes d’acquisition dans
de telles conditions sont difficiles à planifier, car les conditions météorologiques sont
souvent imprévisibles. Une solution serait de mener des campagnes d’acquisition inten-
sives, afin de maximiser les chances de collecter plusieurs conditions météorologiques.
En ce qui concerne le schéma de fusion lui-même, il serait intéressant d’explorer un
schéma de fusion intermédiaire pour explorer une représentation intra-modale des don-
nées pendant le processus d’enrâınement. Enfin, les expériences ont démontré les lim-
ites des caractéristiques polarimétriques dans un brouillard très dense. Pour surmonter
cette limitation, une étape de prétraitement devrait être envisagée pour restaurer la
visibilité des images. En effet, comme on peut le voir dans l’état de l’art, plusieurs
algorithmes de désembrumage ont montré des performances remarquables dans la re-
construction détaillée des scènes polarimétriques.

En nous basant sur l’ensemble du travail accompli dans cette thèse et des perspec-
tives énumérées, nous espérons que l’usage des capteurs polarimétriques sera popu-
larisé dans la navigation autonome. Combinés avec les capteurs non conventionnels
habituels, ils fourniraient des informations supplémentaires sur la scène, plus robustes
aux changements météorologiques inattendus, ce qui serait un grand atout pour la
voiture autonome.
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Appendix A

Physical property I0 + I90 = I45 + I135

This appendix aims at showing that the intensities associated with a polarizer verify
the physical constraint:

I0 + I90 = I45 + I135 .

If I is a polarimetric image, it satisfies the following equation (see equations (1.7)
and (1.5)):

I = AÃI , (A.1)

with:

A = 1
2


1 cos(2α1) sin(2α1)
1 cos(2α2) sin(2α2)
1 cos(2α3) sin(2α3)
1 cos(2α4) sin(2α4)

 = 1
2


1 1 0
1 0 1
1 −1 0
1 0 −1

 , (A.2)

and:

Ã = (A>A)−1A> = 1
2

1 1 1 1
2 0 −2 0
0 2 0 −2

 . (A.3)

By replacing the values of A (equation (A.2)) and Ã (equation (A.3)) in equa-
tion (A.1):


I0
I45
I90
I135

 = 1
4


1 1 0
1 0 1
1 −1 0
1 0 −1


1 1 1 1

2 0 −2 0
0 2 0 −2



I0
I45
I90
I135

 .

By denoting M = AÃ, equation (A.1) becomes:

I = MI ,
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I0
I45
I90
I135

 = 1
4


3 1 −1 1
1 3 1 −1
−1 1 3 1
1 −1 1 3



I0
I45
I90
I135

 .

Thus, the set Ipolar of polarimetric images is:

Ipolar = {I|I = MI} = {I|(M − Id)I = 0} ,

that is:
Ipolar = Ker(M − Id) .

Since:

M − Id = 1
4


−1 1 −1 1
1 −1 1 −1
−1 1 −1 1
1 −1 1 −1

 ,

I is a polarimetric image if:

1
4


−1 1 −1 1
1 −1 1 −1
−1 1 −1 1
1 −1 1 −1



I0
I45
I90
I135

 =


0
0
0
0

 ,

that is I0 − I45 + I90 − I135 = 0.
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Appendix B

Details on literature
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APPENDIX B. DETAILS ON LITERATURE

Figure B.1: Summary of object detectors and of their main properties.
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APPENDIX B. DETAILS ON LITERATURE

Figure B.2: Illustration of different convolutional blocks.
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Figure B.3: Illustration of the different operations on the backbone’s feature maps.
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Appendix C

Generation of polarimetric images
from the KITTI dataset

175



APPENDIX C. GENERATION OF POLARIMETRIC IMAGES FROM THE
KITTI DATASET

Figure C.1: Examples of generated polarimetric images from the KITTI dataset. From top
to bottom, original image, I0, I45, I90 and I135.
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APPENDIX C. GENERATION OF POLARIMETRIC IMAGES FROM THE
KITTI DATASET

Figure C.2: Examples of generated polarimetric images from the KITTI dataset. From top
to bottom, original image, I0, I45, I90 and I135.
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APPENDIX C. GENERATION OF POLARIMETRIC IMAGES FROM THE
KITTI DATASET

Figure C.3: Examples of generated polarimetric images from the KITTI dataset. From top
to bottom, original image, I0, I45, I90 and I135.
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