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Abstract 

Eutrophication episodes are commonly observed in coastal areas, causing significant damage 

to the ecosystem, especially in the Mediterranean Basin which represents the major world’s 

tourism hotspot. For this reason, anticipate their presence, is a matter of importance, to 

prevent risks. Predictive models are effective techniques for eutrophication forecasting since 

ecologists and environmentalists are able to predict water pollution levels and take necessary 

precaution measures in advance. Previous studies have confirmed the superiority of Machine 

Learning (ML) in modeling water quality parameters.   

In this work, a characterization, in terms of space, time and season of the physico-chemical 

water quality parameters in the North Lagoon of Tunis, a shallow restored Mediterranean 

coastal ecosystem located in the north of Tunisia is done.  The present study of seven physico-

chemical parameters (Secchi depth, dissolved oxygen, pH, salinity, water temperature, total 

phosphorus and total nitrogen), in addition to the Chl-a has covered approximately three 

decades (January 1989 - April 2018) without interruption, at five representative positions 

throughout the area of the North lagoon of Tunis.  In this study, chlorophyll-a (Chl-a) is used 

as water quality indicator. After preprocessing the data, an Artificial Neural Network (ANN), 

a data-driven modeling approach from ML techniques, is proposed to predict the ecological 

state of the North Lagoon of Tunis. A Nonlinear Auto Regressive with eXternal inputs 

(NARX) neural network model was fitted to predict Chl-a concentrations in the North Lagoon 

of Tunis as an eutrophication indicator. The predictor variables (inputs) used are those that 

contribute the most to the variation of Chl-a concentration according to the Random Forest 

(RF) model, which is also a technique belonging to ML. According to RF, Secchi depth along 

with dissolved oxygen are the variables that most condition the variation of Chl-a. Various 

model scenarios with different NARX architectures were tested for Chl-a predictions. To 

verify the model performances, the trained models were applied to field monitoring data. In 



 

addition, various mathematical parameters to measure the performance of the model were 

calculated (R, R
2
, MSE). Results indicated that the developed NARX model can predict one 

step ahead (1 month) the Chl-a concentrations in the North Lagoon of Tunis with high 

accuracy (R= 0.79; R
2
= 0.62; MSE= 0.31). In addition, results showed that RF and NARX 

models generally performed better than the multivariate linear regression (R
2
= 0.2).  

Besides the NARX network, a Seasonal Auto-Regressive Integrated Moving Average 

(SARIMA) model was developed to forecast monthly Chl-a concentrations in the North 

Lagoon of Tunis, using three decades of Chl-a historical data. Results showed SARIMA 

(2,0,2)(2,0,2)12 was the best fitted model for Chl-a forecasting in the North Lagoon of Tunis. 

The developed SARIMA model was validated with actual monthly Chl-a concentrations from 

last observations. Furthermore, we have demonstrated that with only one input variable 

SARIMA model shows great applicability as an eutrophication early warning tool using past 

Chl-a data. Finally, the developed SARIMA model was used to forecast Chl-a concentrations 

on a long-term scale for the period starting from May 2018 through December 2025, as a 

predictive approach to the ecosystem management that could serve for decision makers for the 

future generations. Based on the strong forecasting ability of the SARIMA model, and the 

powerful expression ability of the NARX neural network in nonlinear relationships, a hybrid 

model which combines SARIMA and NARX is also proposed in this study, for Chl-a 

forecasting. The use of linear and nonlinear approaches to model the linear and nonlinear 

terms (respectively) of Chl-a time series in the hybrid model increased the efficiency and 

accuracy of the predictions. The tests carried out for the hybrid approach proved its excellent 

performance. The use of hybrid model improved the prediction capability of Chl-a time series 

with the best performance being achieved (R= 0.82; R
2
=0.68; MSE= 0.24). 

For comparison, we simulated the same approaches on the historical data of the Station 5 

(shown to be the most affected area by the eutrophication).  



 

Keywords: Tunis North Lagoon, Eutrophication, Chlorophyll-a, Machine Learning, 

Predictive modeling, Forecasting.  



 

Résumé 

Les épisodes d'eutrophisation sont couramment observés dans les zones côtières, causant des 

dommages importants aux écosystèmes littoraux, en particulier dans le bassin méditerranéen 

qui représente la principale destination du tourisme mondiale.  Il est donc important 

d'anticiper leur manifestation pour prévenir les risques. Les modèles prédictifs sont des 

techniques relativement efficaces pour la prévision de l'eutrophisation, car les écologistes et 

les environnementalistes sont désormais capables de prévoir les niveaux de pollution de l'eau 

et de prendre les mesures de précaution nécessaires à l'avance. Des études antérieures ont 

confirmé la supériorité des algorithmes de l'apprentissage automatique (Machine Learning ou 

ML) dans la modélisation des paramètres de la qualité de l'eau.  

Dans la présente étude, une caractérisation, en termes d'espace, de temps et de saison, de la 

qualité physico-chimique de l'eau dans la Lagune Nord de Tunis est établie. Cette lagune 

ayant fait l'objet d'un projet de restauration écologique, est un écosystème côtier 

méditerranéen, peu profond situé au nord de la Tunisie. Le suivi portant sur plusieurs 

paramètres physico-chimique (profondeur de Secchi, oxygène dissous, pH, salinité, 

température de l'eau, phosphore total et azote total), en plus de la Chlorophylle-a (Chl-a), a 

couvert environ trois décennies (Janvier 1989 - Avril 2018) sans interruption, dans à cinq 

stations représentatives de la Lagune Nord de Tunis. Dans cette étude, la Chl-a est utilisée 

comme indicateur de la qualité de l'eau. Après avoir réaliser le prétraitement des données, un 

réseau neuronale artificiel (ANN) qui est une approche issue des techniques ML est proposé. 

Un modèle de réseau neuronal non-linéaire autorégressif avec des entrées externes (Nonlinear 

autoregressive with external inputs neural network ou NARX) a été développé pour prédire 

les concentrations de la Chl-a dans la lagune en tant qu'indicateur d'eutrophisation. Les 

variables prédictives (entrées externes du NARX) utilisées sont celles qui contribuent le plus à 

la variation de la concentration de la Chl-a selon le modèle des forêts aléatoires (Random 



 

Forest ou RF) qui est également une technique appartenant à ML. D'après RF, la profondeur 

de Secchi avec l'oxygène dissous sont les variables qui conditionnent le plus la variation de la 

Chl-a. Divers scénarios de modèles NARX avec différentes architectures ont été testés pour la 

prédiction de la Chl-a. Les simulations des divers modèles formés ont été comparées aux 

données réelles pour vérifier leurs performances. En plus, différents paramètres 

mathématiques ont été calculés (R, R
2
, MSE). Les résultats ont indiqué que le modèle NARX 

développé peut prédire avec une grande précision (R=0,79 ; R
2
=0,62 ; MSE= 0,31) la 

concentration de la Chl-a dans la Lagune Nord de Tunis avec un pas d'avance d'un mois. En 

outre, les résultats ont clairement confirmé que les modèles NARX et RF sont plus 

performants que la régression linéaire multivariée (MVLR) avec R
2
=0,2.  En plus du NARX, 

le modèle saisonnier, autorégressif, à moyenne mobile intégrée (SARIMA) a été développé 

pour prévoir les concentrations mensuelles de la Chl-a. Les résultats ont montré que SARIMA 

(2,0,2)(2,0,2)12 est le modèle le plus adapté pour la prévision de la concentration de la Chl-a 

dans la Lagune Nord de Tunis. Le modèle SARIMA développé a été validé par les 

concentrations mensuelles réelles de la Chl-a relatives aux dernières observations. Il a été 

démontré qu'avec une seule variable d'entrée, le modèle SARIMA présente une grande 

applicabilité en tant que technique pour alerter en avance une manifestation d'eutrophisation 

dans l'écosystème. Enfin, le modèle SARIMA développé a été utilisé pour prévoir les 

concentrations de la Chl-a pour la période allant de Mai 2018 à Décembre 2025. Basé sur la 

forte capacité de prévision du modèle SARIMA, et de la puissante capacité d'expression du 

réseau neuronal NARX dans les relations non-linéaires entre les variables, un modèle hybride 

combinant SARIMA et NARX est proposé pour la prévision de la Chl-a dans cette étude. 

L'utilisation combinée (modèle hybride) des approches linéaires et non-linéaires pour 

modéliser les spécificités linéaires et non-linéaires (respectivement) de la série temporelle de 

la Chl-a a permis d'améliorer la qualité et la précisions des prévisions. L'utilisation du modèle 



 

hybride a permis d'améliorer la capacité de prédiction d'un pas de temps en avance (1 mois) 

de la Chl-a, avec les meilleurs performances obtenues (R= 0,82; R
2
= 0,67; MSE=0,24). 

Pour comparaison, nous avons simulé les mêmes approches sur les données historiques de la 

station 5 (trouvée la plus affectée par l'eutrophisation). 

Mots-clés : Lagune Nord de Tunis, Eutrophisation, Chlorophylle-a, Machine Learning, 

Modélisation prédictive, Prévisions. 
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General Introduction 

Transitional water bodies, such as coastal lagoons, are situated at the interface between the 

continent and the sea. These are active zones that provide important ecological services 

(Mooney et al. 2009; Newton et al. 2018), and they cover around 13% of the world's coastline 

(Barnes, 1980). On a global scale, human activities have significantly affected coastal and 

transitional waters, making eutrophication of coastal ecosystems a worldwide issue, 

particularly in coastal lagoons (Nixon, 1995; Cloern, 2001).  

Eutrophication is known as the enrichment of nutrients, composed of nitrogen and / or 

phosphorus, causing an accelerated development of phytoplankton and Macroalgae which 

causes an undesirable disturbance of the balance of organisms present in the water and a 

degradation of the quality of the water in question (Ferreira et al., 2011). 

The increase in nutrient inputs, enhanced by urbanization, agriculture or industry, has led to 

complex direct and indirect responses by natural ecosystems (Schramm, 1999; Viaroli et al., 

2008). Anoxic crises caused by a strong degradation of the organic matter, toxic algal blooms, 

loss of biodiversity, and more generally, deterioration of ecosystem functions and services are 

all consequences of anthropogenic eutrophication (Cloern, 2001; Zaldivar et al., 2008 a, b). 

Furthermore, this process can be a threat on the human health, for example, following the 

consumption of contaminated shellfish or fish (phycotoxins, ammonium). 

Water Framework Directive (WFD) assumed that “Water is not a commercial product like 

any other but, rather, a heritage which must be protected, defended and treated as such.” 

(WFD, Directive 2000/60/EC).  

Eutrophication is descriptor 5 of Marine Strategy Framework Directive (MSFD) and some 

criteria and methodological standards have been set for al ecosystems.  
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MSFD stated that those ecosystems constitute “a precious heritage that must be protected, 

preserved and, where practicable, restored with the ultimate aim of maintaining biodiversity 

and providing diverse and dynamic oceans and seas which are clean, healthy and productive” 

(MSFD, Directive 2008/56/EC). 

For decades, Mediterranean coastal lagoons have been subjected to anthropogenic 

eutrophication, making them the most vulnerable ecosystems (Viaroli et al., 2005; Zaldívar et 

al., 2008; Souchu et al., 2010). They are impacted by highly inhabited and intensively farmed 

watersheds, particularly during the summer when the Mediterranean is a significant vacation 

destination (Vogiatzakis et al., 2006).  

Aside from urban pressures, these habitats are vulnerable also due to their transitional state 

and their restricted exports to the open sea (de Jonge and Elliott, 2002; Newton et al., 2014).  

Several studies have been undertaken to determine the extent of eutrophication in coastal 

Mediterranean lagoons. García-Ayllón (2017), stated that the Mar Menor lagoon, located in 

the east of the region of Murcia in Spain, has suffered an important process of intense 

anthropization over the last five decades. The rapid population growth of a new jellyfish 

species, which has reached over 100 million, especially in summer, was one of the principal 

indicators (Robledano et al., 2011). Thau Lagoon is another particularly interesting case of a 

Mediterranean coastal lagoon suffering from eutrophication. It is an ecosystem located at the 

Mediterranean French coast which is famous by supporting traditional shellfish farming 

activities in France. This lagoon has been subject to eutrophication leading to major anoxic 

events associated with massive mortalities of shellfish stocks (Derolez et al., 2020). 

We can also mention the Palavasian lagoon complex, which is a collection of eight lagoons 

along the French Mediterranean coast that experienced extensive eutrophication over a four-

decade period, mostly due to nutrient over-enrichment from constant sewage discharges 

(Leruste et al., 2016). The Ghar el Melh lagoon provides another good example for the study 
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of the eutrophication process in coastal Mediterranean lagoons. According to Shili et al. 

(2002), the lagoon experienced several dystrophic crises during the period 1994–1996. In 

addition, Turki et al. (2007) reported the proliferation of harmful algal species in the lagoon, 

such as Kryptoperidinium foliaceum, Prorocentrum micans and Anabaena sp.  

The lagoon of Bizerte, on the south-western border of the Mediterranean Sea, located at the 

north of Tunisia is considered to have undergone eutrophication and has developed an 

intensive shellfish farming (Sakka Hlaili et al., 2008).  

In this context, the North Lagoon of Tunis, a restored south Mediterranean lagoon in northern 

Tunisia, serves as a valuable example for eutrophication diagnosis and research in coastal 

ecosystems. In fact, this ecosystem has a long history of contamination and was one of the 

most polluted lagoons in the world (Harbridge et al., 1976; Afli et al., 2008; Armi et al., 

2008). To limit the anthropogenic input, a major restoration project was implemented in 1985. 

Before this project was conducted, the above-mentioned lagoon was the main outlet for solid 

waste and domestic/industrial wastewaters stemming from the city of Tunis (the capital of 

Tunisia). Process such as dystrophic episodes, anoxia, fish mortality and red waters were 

observed in the North Lagoon of Tunis ecosystem (Belkhir, 1984; Zaouali and Batten, 1985). 

The North lagoon of Tunis is currently a completely artificial environment following the 

human intervention, and the ecological follow-up is a necessity to guarantee the good 

ecological functioning of this ecosystem located in the center of the urban zone. 

Chlorophyll-a (Chl-a) is the principal pigment in aerobic photosynthetic organisms. Its 

measurement is used to determine the amount of phytoplankton biomass in the water, and 

hence the extent of eutrophication in the environment (Tian et al., 2017). The probable 

presence of algae blooms that have a significant impact on the physical, chemical and 

biological processes of the lagoon can be interpreted as elevated Chl-a levels (Tian et al., 

2017). According to the Organization for Economic Development and Cooperation (OECD, 
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1982), classification of trophic state, 8.00 μg L
-1

 of Chl-a concentration is the threshold for 

eutrophication. 

Cyanotoxins produced by cyanobacteria in lake water might endanger human health (Watzin 

et al., 2006; Mc Quaid et al., 2011; Kalaji et al., 2016). When the present concentration of 

cyanotoxins is unavailable, Chl-a is commonly used as a proxy metric for cyanobacterial 

density (Wheeler et al., 2012). Therefore, controlling Chl-a concentrations is essential and as 

a result providing information for water quality management. 

The capacity to automatically monitor water quality is especially beneficial in sensitive 

locations where (1) there is a high risk of probable contamination episodes and (2) relevant 

socioeconomic activities are carried out that necessitate preventative actions. However, as far 

as anyone knows, there is no automated device that can correctly measure Chl-a 

concentrations in real time. Chl-a measurements must be done in laboratories or by satellites, 

which means high latency and high cost (Jimeno-Sáez et al., 2020), and when using satellites 

measurements, there is the common problem of missing data (Al Shehhi and Kaya, 2020). To 

avoid such inconveniences, most ecologists recently have been using modeling techniques.  

The world is changing at an alarming rate, allowing study into ecosystems to become 

increasingly more complicated, and many new challenges are emerging every day (Griitzner, 

1996). Some traditional methodologies, such as field investigations or laboratory experiments, 

are no longer sufficient for describing complex systems accurately and completely (Griitzner, 

1996). Ecology has long acknowledged the necessity to collaborate with mathematics, 

statistics, informatics, and computational fields (Otto and Day, 2007). This interdisciplinary 

approach is well illustrated in some of the most frequently cited papers by early ecology 

pioneers such as Fisher, Preston and MacArthur, who used mathematical methods to describe 

and analyze ecological observations (Fisher et al., 1943; Mac Arthur, 1967). 



 

5 

The disciplines of mathematical and theoretical ecology have become a tool to ecologists to 

use. According to Codling and Dumbrell (2012), without these new disciplines in ecology, 

collecting data is a futile and meaningless task. 

When an environmentalist's view is limited, a successful mathematical model relates the data 

to environmental problems and gives sufficient knowledge (Kompare et al., 1994). In terms of 

model development, there are typically two approaches in ecological modeling: (1) 

physically-based (or conceptual) and (2) data-driven-based models (Babovic, 2005; He et al., 

2014; Zhang et al., 2016). On one hand, physically-based models identify the fundamental 

mechanisms for algae growth and outbreak (Hood et al., 2006; Zhang et al., 2013). However, 

owing to the complexities of marine environments and the vast range of parameters that need 

calibration, many physical, chemical and biological processes remain unclear. Such types of 

models are used mostly for scenario analysis rather than prediction (Recknagel et al., 2014). 

On the other hand, data-driven models are easier to incorporate, they are not so complex and 

eliminate the need for advanced knowledge of physical processes (Bowden et al., 2006). 

These models are popular and widely used for modeling complex natural processes, mostly in 

predictive modeling as predictive ability is considered by many to be the ultimate goal in 

ecology (Peters 1991).  

Despite the number of studies that have been focusing on this eutrophication process in 

natural aquatic ecosystems (Delbaere and Nieto-Serradilla, 2004; García Pintado et al., 2007), 

there is still relatively few works done in setting up a proactive early-warning approach, to 

identify and prevent potential problems, especially in the Mediterranean scale.  

Various statistical methodologies based on regression analysis have been used in predictive 

modeling. These traditional data processing methods, often employ a linear method to 

simplify complicated situations, resulting in poor outcomes since they are inefficient in 

dealing with complicated non-linear relationships between the variables involved (Su et al., 
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2015). To overcome the mentioned restrictions, a productive and cost-efficient technique for 

eutrophication estimation using effective and resilient advanced approaches is required 

(Tiyasha et al., 2020). Machine learning (ML) methods have been demonstrated to be more 

efficient than traditional data processing techniques in forecasting water quality (Abba et 

al.,2017), owing to their ability to predict nonlinear and complicated functions. Previous 

research has shown that ML outperforms the conventional techniques in modeling water 

quality factors (Juntunen et al., 2012; Charulatha et al., 2017). 

In this study we developed among ML techniques a commonly used neural network, in 

addition to the Random Forest model for feature selection, to forecast Chl-a concentrations in 

the North Lagoon of Tunis as an eutrophication indicator. 

In predictive modeling and especially in forecasting tasks, when using time series, we need to 

work with the famous method of Box and Jenkins (1967) named Auto-regressive integrated 

moving average (ARIMA) model. This technique have simple structure and fast modeling 

features. It is also important to mention the SARIMA model, which consists of the ARIMA 

model, including the seasonal portion of time series data, which is very frequently used for 

monthly time series with seasonal patterns (Prista et al., 2011). 

In time series modeling, a recent but commonly used practice for improving the forecasting 

accuracy has been made: the hybrid model. The hybrid model would take the best 

characteristics of the neural network and do the same for Box and Jenkins method, to perform 

a more accurate and reliable model. It is important to highlight that all of those techniques 

will be explained in further details in the following chapters. 

The ecological stability of the North Lagoon of Tunis makes it of a significant socio-

economic and ecological values. Multiples services are provided in this ecosystem, such as in 

tourism (water sports), in fisheries, and in the conservation of sea birds. Thus, it is necessary 

to improve our understanding of the eutrophication process and of the interactions among the 
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water quality parameters in the lagoon, to adopt sustainable management strategies. One of 

the most important indicator of the presence and degree of eutrophication in water bodies is 

the Chl-a content. Taking the North Lagoon of Tunis as the case study, the objectives of this 

thesis are divided in five chapters: 

 In the first chapter, we will begin by presenting the study area. Then, we will 

characterize the spatio-temporal and seasonal variation of the physico-chemical 

parameters of the water in the North Lagoon of Tunis. To do so, monthly time series 

from January 1989 to April 2018 for each parameter (Chlorophyll-a, Secchi depth, 

total nitrogen, total phosphorus, pH, salinity, water temperature and dissolved oxygen) 

were used. The parameters were sampled at 5 representative Stations of the lagoon, set 

up according to a hydrodynamic model. This characterization is used to identify any 

hidden patterns in the water quality time series and choose the most adequate 

predictive modeling technique to evaluate and predict the eutrophication level in the 

North Lagoon of Tunis.  

 In the second chapter, the objectives were: to use ML powerful nonlinear techniques 

(1) to select the specific variables that are most related to the Chl-a concentrations in 

the North lagoon of Tunis  (2) to develop a predictive model to estimate and forecast 

one step ahead the Chl-a concentrations based on neural networks techniques, (3) to 

validate the performance of the predictive model. For comparison, the same 

approaches were performed on the historical data of Station 5 (the most affected area  

by the eutrophication, in the lagoon). Our findings in this chapter allowed us to write a 

paper published in Wetlands Journal.  

 In the third chapter, the objective was to forecast on a long-term period the Chl-a 

concentrations as a eutrophication indicator, using approximately three decades of 

historical Chl-a data (January 1989 to April 2018) in the North Lagoon of Tunis, 
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simulating the technique of Box and Jenkins named Seasonal Auto-Regressive 

Integrated Moving Average (SARIMA) model. SARIMA algorithm was developed, 

and its accuracy discussed. For comparison, the same approach was performed on the 

historical data of Station 5. This chapter's results, enabled us to write a second paper 

submitted and under revision now in the Journal of Coastal Conservation.  

 In the fourth chapter, a hybrid model was developed by combining the neural network 

with SARIMA technique to improve the forecasting accuracy of the Chl-a in the North 

Lagoon of Tunis. For comparison, the same approach was performed on the historical 

data of Station 5. 

 The last chapter summarizes the main findings of this study and presents perspectives 

for future work. 
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Chapter I: Study area presentation and physico-chemical 

parameters characterization 

1. Introduction  

Coastal lagoons are vital transition zones between freshwater and seawater, and as such, they 

are extraordinarily varied and complex structures (Levin et al., 2001; Pérez-Ruzafa et al., 

2007). Nevertheless, they are subjected to natural and anthropogenic pressure. They are 

subject to intermittent or persistent seawater inputs during high tides and floods, and human 

impact on these ecosystems has significantly increased the quantity of entering nutrients 

(Nixon, 1995; Howarth and Marino, 2006).  

The physico-chemical properties of these transitional zones are defined by the mixing of salt 

and fresh water, which varies substantially within and between annual cycles due to the 

unpredictability of the incoming fluxes. The emergence of substantial human populations in 

coastal locations over the previous centuries has changed the number and form of these 

fluxes, increasing their unpredictability and trophic charge (Elliott and Quintino, 2007). 

The major issue impacting most of the world's coastal areas is eutrophication, which has 

serious and long-term consequences for ecosystems (Coelho et al., 2015). To assess the health 

of an ecosystem, it has been recognized that eutrophic symptoms (i.e., anoxia, high 

Chlorophyll-a concentrations, etc.) are primarily a result of eutrophication, and that 

measuring physico-chemical variables such as nutrients, salinity, dissolved oxygen, 

Chlorophyll-a, and so on can help understand these process (Coelho et al., 2015). 

Population expansion, increased urbanization, and rural emigration to huge coastal 

agglomerations in Tunisia, as in numerous other countries in the Mediterranean's south and 

east, have resulted in a significant rise in water discharges, which is the cause of ecosystems 

degradation (Ben Maiz, 1997). 
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The current study was carried out at the North Lagoon of Tunis which provides a good 

example for this topic. It is one of Tunisia's most important lagoons, which has reached a 

critical ecological state as a result of urban growth. In fact, annual average salinity values 

exceeded 50 Zaouali (1974), Schneider (1978), Belkhir (1980), Belkhir et Hadj Ali (1981) . The 

Chl-a annual average concentration was of about 61µg L-1 Zaouali (1974), Schneider (1978), 

Belkhir (1980), Belkhir et Hadj Ali (1981). Nutrients showed high levels (the annual average 

concentration of the total phosphorus was equal to 600 µg L-1 and total nitrogen was equal to 

4400 µg L-1 Zaouali (1974), Schneider (1978), Belkhir (1980), Belkhir et Hadj Ali (1981). The 

dissolved oxygen rate varied between 0 to 200% Zaouali (1974), Schneider (1978), Belkhir 

(1980), Belkhir et Hadj Ali (1981). 

  
Its strategic location in the heart of the capital, along with its ecological significance, piqued 

the Tunisian government's interest, leading to the construction of a lagoon restoration project 

based on water circulation, which was held in 1985 and monitored by “Al Buhaira Invest 

company”, which had the name of “Promotion company of Tunis Lagoon” or “Société de 

Promotion du Lac de Tunis” (SPLT) back then. 

In this first chapter, we shall introduce the studied area. Then, we will look at the 

spatiotemporal and seasonal variations in the physico-chemical water quality parameters in 

the North Lagoon of Tunis. 

To accomplish so, we employed a monthly time series from January 1989 to April 2018 

(about three decades) of seven physico-chemical and one biological parameters (Secchi depth, 

total nitrogen, total phosphorus, pH, salinity, dissolved oxygen, temperature and Chlorophyll-

a). These parameters were sampled at 5 representative Stations of the lagoon, set up according 

to the hydrodynamic model, established during the restoration project, mentioned earlier.  
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2. Study Area  

The North Lagoon of Tunis is a well-mixed shallow coastal seawater lagoon located in the 

north of Tunisia (36°45′–36°52′ N and 10°10′–10°20′ E) and at the south of the Mediterranean 

Sea (Figure 1). Covering about 22 km
2
, with an average depth of 2 m (range; 0.5 – 3.5 m), 

this lagoon is one of the largest shallow water bodies of the Tunisian coast (Trabelsi-Bahri, 

2013). It is connected to the open sea (Gulf of Tunis) and water is exchanged with the 

Mediterranean Sea through the Kheireddine channel, which measures 800 m in length and 40 

m in width and has a mean depth of approximately 2.5 m (Ben Charrada, 1992). 

In 1985 a large restoration project had been undertaken in this lagoon to stop pollution and 

eutrophication (Van Berk and Oostinga, 1992). In this contaminated lagoon, the ultimate 

objective of this project was to achieve a good chemical and ecological status and to achieve 

significant land reclamation all around. 

The restoration project resulted in a clear improvement of the biodiversity (Shili, 2008). 

However, being aware of the importance and fragility of this ecosystem, it must always 

remain under observation. 
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Figure 1. Geographic location of the North Lagoon of Tunis. 

 

2.1. The history of the North Lagoon of Tunis genesis  

The North Lagoon of Tunis has interested numerous researchers, historians, and geographers 

due to its crucial geographic location. According to Pimienta (1959), The North Lagoon was 

formed by the collapse of a Pliocene substratum. The geomorphologic development that 

resulted in its formation is presented in four major stages (Figure 2): 

- A Holocene transgression allowed the transformation of a continental depression into a bay 

widely open to the sea (Zaouali, 1974). 

- The development of a sedimentary coastline progressing towards the Southwest, between 

Rades and Kheireddine (Zaouali, 1974). 
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- Between the 5th and the 13th century BC, the coastline was developed in a fragmentary way 

between Rades and Kheireddine (Zaouali, 1974). 

- According to Jouirou (1982), as a result from the activity of the Medjerda wadi, a deltaic 

transport from North to South, has led to a progressive separation between the lagoon and the 

sea by the formation of a littoral arrow (a double North-South tombolo); Thus, the North 

lagoon of Tunis, took shape in the 16th century. 

 
Figure 2. The stages of the genesis of the Tunis lagoon (Pimienta, 1959). 

 

2.1.1. The degradation of the natural environment of the North Lagoon of 

Tunis 

The first evidence of pollution in the North Lagoon of Tunis date back to 1724, when 

Peysonnel detected a siltation of the ecosystem as a result of continuous and increasing 

pollution (Zaouali, 1983). Indeed, since the lagoon's existence, effluent from the city has been 

rejected.  

Eutrophication was observable by a very apparent ecological imbalance in the summer period 

(Figure 3), affecting the biological diversity: only a few tolerant fish species remained, such 

as Mugil Ramada (Zaouali, 1977) and a dozen of nitrophilic macro algae such as Ulva 
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(Zaouali et Beaten, 1984; Ben Maiz, 1995). This ecosystem deterioration led to the 

proliferation of sulfurous bacteria, anoxia and the appearance of red water (Zaouali, 1974; 

Schneider, 1977; Caumette, 1987; Van Berk et Oostinga, 1992). 

The development of nitrophilic algae was favored by the shallow depth, abundant nutrients, 

adequate light, and weak water currents (Schneider, 1977).  

In early summer, algae such as Ulva developed a considerable biomass in several areas of the 

lagoon disturbing, the water circulation (Belkhir et Hadj Ali Salem, 1981). By the end of the 

summer, rising temperatures cause widespread death of these algae. Decomposition 

necessitates a considerable consumption of dissolved oxygen, promoting the expansion of 

sulphate-reducing bacteria that produce sulfurous hydrogen (Zaouali; 1977; Caumette, 1987). 

The presence of sulfurous hydrogen in addition to the lack of oxygen has made the 

environment toxic (Zaouali; 1977; Caumette, 1987). 

 

  
 

Figure 3. North lagoon of Tunis ecological situation before the restoration work 

(On the right: Dead water zone, on the left: Biomass accumulation). 
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2.2. The restoration project 

In order to stop pollution and eutrophication, a massive restoration operation was launched in 

this lagoon in 1985 (Van Berk and Oostinga, 1992). The ultimate objective of this project was 

to attain good chemical and ecological status in this toxic environment, as well as to allow 

considerable land recovery all around. The goal was the reduction of water retention time in 

the lagoon (Figure 4). In order to do this, a tide-driven circulation system was developed after 

the construction of the (east-west) longitudinal dividing dam across the lagoon and the 

inlet/outlet gates at the entrance of the canal (Figure 5) connecting the lagoon to the open sea 

(Trabelsi-Bahri, 2013). The gates and the separation dam allowed strong circulation of the 

lagoon's water (Van Berk and Oostinga, 1992). In addition, the coastline was rectified to a 

straight line to prevent water stagnation (Trabelsi-Bahri, 2013). 

 

 
 

Figure 4. Water circulation in the North Lagoon of Tunis before restoration  

Bleu arrows: lagoon waters renewal; Red arrows: arrival of sewage (Ben Maiz, 2008). 
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Figure 5. The unidirectional inlet/outlet water circulation system after restoration of the 

North Lagoon of Tunis (Trabelsi-Bahri, 2013). 

 

2.3. The North lagoon of Tunis after the restoration works 

After the completion of the restoration works, the ecosystem marked an improvement in water 

quality with the disappearance of Ulva in favor of filamentous algae Chaetomorpha and the 

expansion of marine magnoliophyta (Shili, 1995). 

The average speed of the water streams became homogeneous with a reduced residence time 

ranging from 17 to 21 days, while before the restoration it was close to 28.5 to 30 days 

(Rezgui et al., 2008). After the restoration works, the lagoon was receiving about 1.6 million 

m
3
 of seawater per day (Shili, 1995). 

The quality of the water recorded in the lagoon after the restoration works showed a 

significant improvement (Table 1) with a marked reduction in eutrophication factors such as: 

 The reduced fluctuations in salinity and pH of the water. 

 The decrease in nutrient content in water (Nitrogen, Phosphorus). 

 The absence of large fluctuations of dissolved oxygen.  
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 The absence of anoxia phenomenon in summer season. 

 Significant improvement in the bacteriological quality of the waters: results of the 

analysis testify to water suitable for bathing in almost all areas of the lagoon. 

 Significant improvement in water transparency: visibility often reaching down to the 

bottom. 

Table 1. Characteristics of the North lagoon of Tunis before and after the 

restoration work. 

 
Variable Before restauration work After restauration work 

Salinity 

 

Annual average 

Value: 28 to 50 

Reference:  

Zaouali (1974), Schneider (1978), 

Belkhir (1980), Belkhir et Hadj Ali 

(1981)  

Value: 32 to 43 

Reference: 

Ben Maiz (1992) ; Ben Charrada 

(1992);  

Trabelsi –  

Annabi, 2001)  

 

Total nitrogen 

 

Annual average 

(µgL-1) 

Concentration:  

4.400  

Reference: 
Zaouali (1974), Schneider (1978), 

Belkhir (1980), Belkhir et Hadj Ali 

(1981) 

 

Concentration: 

460 

Reference: 
Ben Maiz (1992) ; Ben Charrada 

(1992);  

Trabelsi –  

Annabi, 2001)  

 

Total phosphorus 

 

Annual average 

(µgL-1) 

Concentration:  

600 

Reference: 
Zaouali (1974), Schneider (1978), 

Belkhir (1980), Belkhir et Hadj Ali 

(1981) 

 

Concentration: 

20 

Reference: 
Ben Maiz (1992) ; Ben Charrada 

(1992);  

Trabelsi –  

Annabi, 2001)  

 

Dissolved oxygen 

 

Annual average 

(%) 

Value: 0 to 200 

Reference:  

Zaouali (1974), Schneider (1978), 

Belkhir (1980), Belkhir et Hadj Ali 

(1981)  

Value: 30 to 110 

Reference: 

Ben Maiz (1992) ; Ben Charrada 

(1992);  

Trabelsi –  

Annabi, 2001)  

 

pH Value: 6.4 to 9.5 

Reference:  

Zaouali (1974), Schneider (1978), 

Belkhir (1980), Belkhir et Hadj Ali 

(1981)  

Value: 7.9 to 8.7 

Reference: 

Ben Maiz (1992) ; Ben Charrada 

(1992);  

Trabelsi –  

Annabi, 2001)  

 

Chlorophyll-a 

 

Annual average 

(µgL-1) 

Concentration:  

61 

Reference: 
Zaouali (1974), Schneider (1978), 

Belkhir (1980), Belkhir et Hadj Ali 

(1981) 

 

Concentration: 

4 

Reference: 
Ben Maiz (1992) ; Ben Charrada 

(1992);  

Trabelsi –  

Annabi, 2001)  
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The restoration project resulted in a clear improvement of the lagoon (Ben Maiz, 1992). Thus, 

in January 2013, the North Lagoon of Tunis was deemed as a Wetland of International 

Importance, Ramsar site (Mdaini et al., 2019).  

3. Methodology 

The monthly concentrations of Chl-a data along with physico-chemical parameters of water 

quality of the North Lagoon of Tunis for the period from January 1989 to April 2018 were 

collected. 

In the present study, a set of seven environmental variables known to affect Chl-a 

concentrations were monitored: Secchi depth, dissolved oxygen, total phosphorus, total 

nitrogen, pH, salinity and water temperature. Sampling cruises have been carried out from 

February 2014 through April 2018 at five sampling Stations. Water samples were collected 

about 10-20 cm below the water surface according to standard methods.  

In addition, Al-Buhaira Invest Company, which is in charge of the ecosystem, provided us 

with important monthly time series sequences, as a part of the monitoring program for the 

lagoon, in order to gather information on the physical and chemical characteristics of the 

ecosystem. 

3.1. Sampling cruise 

The lagoon is characterized by its shallow depth; the sampling cruise were carried out using a 

coastal boat (Figure 6), with a flat bottom, of about 12 m in length and equipped with a 40-

horsepower engine (Figure 7).  
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Figure 6. The boat used in the field work. Figure 7. The engine. 

3.2. Description of the Stations 

For the coherence of the study, the sampling Stations are the same as those set up by the Al 

Buhaira Invest Company for the control of water quality. The Stations were chosen according 

to the hydrodynamic model established during the restoration project mentioned above 

(Figure 8).  
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Figure 8. Water quality monitoring Stations (1–5) in the North Lagoon of Tunis. 

 

The lagoon has been subdivided into five different compartments (Table 2). 

Table 2. Characteristics of the sampling Stations in the North lagoon of Tunis. 

Stations Characteristics 

Station 1 It is the first section of the lagoon to receive seawater, which enters through the north 

gates of Kheireddine channel. This area's chemical, physical, and biological qualities 

are the most similar to those of the marine environment. 

Station 2 It is a transitional environment between lagoon and marine ecosystems. 

Station 3 It was the most damaged section prior to the restoration project. A significant amount 

of organic materials has been removed as part of the renovation procedure. 

Station 4 It is the most important area representative of the South part. It is characterized by a 

shallow depth as well as a high concentration of macroalgae such as Chaetomorpha. 

Station 5 It is the last area in the lagoon, the farthest from the marine influence. 
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3.3. Physico-Chemical variables  

Physico-chemical variables, including water temperature and practical salinity (Sp; IOC et al., 

2010) called salinity, were measured in situ using a WTW LF325 conductivity meter (Figure 

9). pH was measured by a pH 330i WTW pH meter.  

The Secchi depth of the lagoon was measured with a 25 cm diameter Secchi disc (Figure 10).  

the Secchi depth is the visibility of the Secchi disc. In fact, the Secchi depth is a parameter 

indicator of the transparency of the water column and it is the depth of disappearance of the 

Secchi disc. In each Station we took two measurements of the Secchi depth.  

Since the end of the restoration works, the visibility of the lake bottoms has improved 

significantly. In the absence of strong wind the rapport (transparency / depth) generally 

exceeds 90% (Shili, 1995). 

Dissolved oxygen was measured by profiline OXY 197 oxymeter.  

  

Figure 9. Conductivity meter. Figure 10. Secchi disc. 

 

Surface water samples were analyzed in the laboratory for total phosphorus and total nitrogen. 

Samples for nutrient determinations were collected in 1000 ml acid-washed polypropylene 

bottles and stored on ice (Figure 11).  



 

22 

 

Figure 11. Preparation of samples for the analysis in the laboratory. 

Nutrient analyses were performed using spectrophotometric methods (Strickland and Parsons, 

1972) with a UV–visible spectrophotometer. Total phosphorus TP and Total nitrogen TN 

were determined after alkaline peroxodisulfate digestion in an autoclave using unfiltered 

water. For the determination of total phosphorus, the phosphorus compounds were 

mineralized to orthophosphate ions in an autoclave at 100 °C using a solution of sulfuric acid 

and potassium persulfate. 

Determination of total Nitrogen compounds requires high oxidation of the nitrogenous ions 

into nitrates, in an autoclave using an alkaline solution of persulfate, then by the reduction of 

nitrates to nitrites by passing through a cadmium column. The nitrites formed were 

determined using sulfanilamide and N-naphthyl-ethylene.  

3.4. Chlorophyll-a 

Water samples of 500 ml, for Chl-a measurement, were collected at 20-30 cm below the 

surface, and filtered through a whatman filter GF/C with a 0.45µm pore-size membrane 

(Millipore) and a diameter of 47 mm as shown in figure 12. We always try to proceed to the 
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analyses right away after the field work, but when it is impossible to do so, the samples are 

stored in the freezer at -20°C. 

Nevertheless, After the filtration, the filters were stored at - 20°C until analysis. Chl-a was 

extracted in 10 ml of 90% acetone for 24 hours, in the dark at 4°C following the procedure 

given by Parsons et al. (1984). The extract concentration was analyzed spectrophotometrically 

(Figure 13) according to the method of Lorenzen (1967): 

[Chl-a]µg L-1= 26.7 (A
na

665-A
a
665)*v/(l*V) ……  ………………………………    (1) 

With, 

V= Filtred sea water (l) 

v= Volume of extraction solvent (ml) 

l= length of the cell used in the spectrophotometer 

A
na

665= Absorbance of the unacidified extract measured at 665 nm 

A
a
665= Absorbance of the acidified extract measured at 665 nm 

  

Figure 12. Water filtration device. Figure 13. The spectrophotometer. 

3.5. Analysis of variance (ANOVA) 

Analysis of variance ANOVA was performed to ascertain if there was any significant 

difference in physico-chemical conditions (Total Nitrogen, Total Phosphorus, dissolved 

oxygen, Secchi depth, pH, water temperature, and salinity) and in Chl-a concentrations 

among the sampling Stations in the North Lagoon of Tunis.  
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ANOVA modeling was performed using the MATLAB software MATLAB® software 

(version 9.3.0.948333 (R2017b), The Mathworks, MA, USA). 

4. Spatio-temporal and seasonal variation of the physico-chemical 

parameters in the North Lagoon of Tunis 

Measuring physico-chemical characteristics is of a significant importance for assessing 

environmental quality in aquatic habitats. Often, physico-chemical characteristics condition 

the species distribution in the ecosystems. 

It is also worth noting that in natural ecosystems, the eutrophication episodes may be 

enhanced by seasonal occurrences such as rainfall runoff, which modifies the physical and 

chemical properties of water due to the freshwater influx (Herrera- Silveira et al., 2002; 

Coelho et al., 2007). In addition, water temperature is one of the essential parameters that 

influences the growth of flora and fauna (Brown, 1992), hot and dry episodes can affect the 

natural ecosystem. Seasonal scales would be extremely helpful in analyzing the effects of 

climate change on ecological functions.  

4.1. Results 

4.1.1 Water temperature 

Water temperature is an essential physical parameter in the circulation of water bodies as well 

as in biological cycles such as reproduction and dispersion of living organisms (Amniot et 

Chausepied, 1983).  

It is a parameter that is affected by climatological variables. Because of the short depth of the 

North Lagoon of Tunis, water temperature varies as a function of the ambient air. The surface 

water temperature measured during daytime in the study sites ranged from 20 to 30 °C and 8 
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to 20.5 °C in spring/ summer and autumn/winter seasons, respectively. The temperature of the 

water is relatively homogeneous among the five Stations (Figure 14).  

 

Figure 14. Temporal variability of water temperature in the North Lagoon of Tunis: a) 

Station 1; b) Station 2; c) Station 3; d) Station 4; e) Station 5; blue line: temperature 

values at the Station - purple line: lagoon mean values over the sampling Stations. 

Clearly, the water temperature at the North Lagoon of Tunis fluctuates seasonally, due to the 

lagoon's shallowness (Figure 15).  
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Figure 15. Seasonal variation of the water temperature in the North Lagoon of Tunis. 

 

4.1.2 pH 

During our study period, the mean pH values ranged from 7.2 to 8.7, in the North Lagoon of 

Tunis. The maximum pH noticed in the study period was 8.7 at Station 5 and the minimum 

pH recorded was 7.2 at Stations 1, 2 and 3 (Figure 16). 
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Figure 16. Temporal variability of pH in the North Lagoon of Tunis: a) Station 1; b) 

Station2; c) Station 3; d) Station 4; e) Station 5; blue line: pH values at the Station - 

purple line: lagoon mean values over the sampling Stations - Red lines: APHA 

thresholds. 

Although the North Lagoon of Tunis was slightly alkaline throughout the year, it reached its 

lowest values in the winter and its highest values in the summer (Figure 17). 

 
Figure 17. Seasonal variation of the pH in the North Lagoon of Tunis. 
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4.1.3 Secchi depth 

Figure 18 shows the variation of Secchi Depth (SD) values obtained at the five Stations 

throughout the study period of observations. From June 1995 to June 2010, the deepest sites 

of the lagoon were Stations 3 and 5, while the shallowest was Station 4 throughout the 

research period. During the latter years of our observations, Station 3 became the deepest area 

in the lagoon due to some dredging operations. 

The lowest depth measurements were at Station 4 (0.58 m) and the deepest measurements 

were at Station 3 (3.5 m). 

 

Figure 18. Temporal variability of the Secchi depth in the North Lagoon of Tunis: a) 

Station 1; b) Station 2; c) Station 3; d) Station 4; e) Station 5; blue line: Secchi depth 

values at the Station - purple line: lagoon mean values over the sampling Stations - Red 

line: OECD threshold. 

The comparison of SD variations revealed that the seasonal fluctuations were quite apparent 

(Figure 19).  In general, the SD was found to be shallowest during the summer and deepest 

during the winter at all sample sites. This can be attributed to water evaporation and a 

reduction in precipitation during the dry season (summer), and vice versa. 
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Figure 19. Seasonal variation of the Secchi depth in the North Lagoon of Tunis. 

4.1.4 Total phosphorus 

The total phosphorus (TP) is a fundamental factor in the fertility and productivity of the 

ecosystems (Sujitha and Ravindhranath, 2017).  

Concentration of TP fluctuated significantly during the study periods. On one hand, the higher 

values were recorded at Station 5 (65 µg L
-1

; above the lagoon average), especially in the wet 

season. These waters come from an area (Station 4) not affected by the dredging work 

undertaken as part of the lagoon restoration project, characterized by a very rich substrate in 

nutrients. On the other hand, the lowest phosphorous concentrations were measured at the 

second Station (4 µg L
-1

) during the dry or hot season (Figure 20). 
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Figure 20. Temporal variability of the total phosphorus concentrations in the North 

Lagoon of Tunis: a) Station 1; b) Station 2; c) Station 3; d) Station 4; e) Station 5; blue 

line: total phosphorus concentrations at the Station - purple line: lagoon mean 

concentration over the sampling Stations - Red line: OECD threshold. 

As found in most Mediterranean lagoons, TP in the North Lagoon of Tunis varied among the 

seasons with concentrations low in spring but high in autumn and winter (rainy season), 

which could be attributed to internal phosphorous loading (Figure 21). 

 

Figure 21. Seasonal variation of total phosphorus concentrations in the North Lagoon of 

Tunis. 
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4.1.5 Total nitrogen 

The spatio-temporal variation of the total nitrogen (TN) in the North Lagoon of Tunis is 

presented in figure 22. Clearly, Stations 4 and 5, located at the south part of the lagoon are 

more loaded with TN than the north part of the ecosystem. TN exhibits the same spatial 

gradient than TP (Figure 20). This is explained by the water circulation system installed in the 

lagoon during the restoration project. 

The higher concentration of total nitrogen recorded at Station 5, in comparison with the other 

Stations, is in agreement with the high level of all the nutrients measured in this area of the 

lagoon. These waters originate from a location (Station 4) that was not impacted by the 

dredging work carried out during the restoration project, and are distinguished by a nutrient-

rich bottom. Thus, the relatively high concentrations in total nitrogen are in good agreement 

with the relatively high TP concentrations shown above in Figure 20. 

 

Figure 22. Temporal variability of the total nitrogen concentrations in the North Lagoon 

of Tunis: a) Station 1; b) Station 2; c) Station 3; d) Station 4; e) Station 5; ; blue line: 

total nitrogen concentrations at the Station - purple line: lagoon mean concentration 

over the sampling Stations - Red lines: Wetzel thresholds. 
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Nutrient concentrations (TP and TN) exhibit a common seasonal variation, being relatively 

high in autumn and winter and low in summer (Figure 23). 

The high nutrient concentrations seen in the North Lagoon of Tunis during the winter can be 

attributed to external nutrient imports from the Gulf of Tunis, as well as phytoplankton 

growth. 

 

Figure 23. Seasonal variation of total nitrogen concentrations in the North Lagoon of 

Tunis. 

4.1.6 Chlorophyll-a  

The most essential pigment in aerobic photosynthetic organisms is chlorophyll-a (Chl-a). 

Indeed, it is measured to quantify the quantity of phytoplankton biomass in the water, and 

hence the degree of eutrophication (Tian et al., 2017). 

The lowest Chl-a measurements were recorded between 2000 to 2009 and the highest Chl-a 

concentration were recorded during the first and last decades of our time series (Figure 24).  
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Figure 24. Temporal variability of Chl-a in the North Lagoon of Tunis: a) Station 1; b) 

Station2; c) Station 3; d) Station 4; e) Station 5; blue line: Chl-a concentrations at the 

Station - purple line: lagoon mean concentration over the sampling Stations - Red line: 

OECD threshold. 

The Chl-a concentrations were high at the south part of the lagoon (Station 5; clearly exceeds 

the lagoon average), the values reached at Station 5, 10 µg L
-1

 in 2015. This variation is 

mainly due to the water circulation system installed in the lagoon during the restoration work. 

In fact, the south part of the lagoon is located at the exit of the waters from the lagoon to the 

sea, via the Gulf of Tunis. In general, the water is loaded at this area. 

The concentrations of Chl-a followed a seasonal trend (Figure 25), with concentrations being 

greater in the spring (13 - 16 °C). During the summer through winter (19 - 28 °C), Chl-a 

fluctuations were minimal and reasonably constant.  
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Figure 25. Seasonal variation of Chlorophyll-a in the North Lagoon of Tunis. 

4.1.7 Dissolved oxygen 

Important biological processes are associated with oxygen distribution, such as 

photosynthesis, respiration, and decomposition (Srichandan et al., 2015). Usually in coastal 

lagoons the occurrence of algal blooms is followed by eventual rate's oxygen decrease in the 

water column. This allows us to associate the quantitative variability of the phytoplankton as 

descriptor of environmental stress (Domingos et al., 2012).  

Before the restoration project in the North Lagoon of Tunis, the dissolved oxygen levels were 

characterized by very remarkable fluctuations, with many periods of anoxia generating high 

mortalities of fish and organisms (Zaouali, 1974).  Since the restoration of the ecosystem, the 

environment is much more oxygenated (Shili, 1995).  

The level of dissolved oxygen (DO) ranged from 4.2 to 8 mg L
-1

 and 8.7 to 11.5 mg L
-1

 in 

summer and winter seasons, respectively (Figure 26). In reality, dissolved oxygen production 

is inversely related to temperature. Low temperatures reduce oxygen diffusion in the 

atmosphere while increasing its solubility in water (Belkhir et Haj Ali, 1981). In addition, 

significant algal death has been observed in the North Lagoon of Tunis due to high 
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temperatures. The decomposition of this dead biomass needs DO consumption, which makes 

its level lower in hot episodes. Figure 26 shows that the temporal (seasonal and interannual) 

variations of dissolved oxygen are very similar at all five Stations in the lagoon. This figure 

further illustrates that the lagoon remains well oxygenated from the inlet to the outlet gates. 

Thus, suggesting that the dissolved oxygen air-sea exchanges are efficient and that the lagoon 

ecological state remains healthy.  

The variations of the dissolved oxygen seem to be more important at Station 4. This can be 

due to its shallowness, which facilitates the exchanges between the atmosphere and the water.  

 
Figure 26. Temporal variability of the dissolved oxygen in the North Lagoon of Tunis: a) 

Station 1; b) Station2; c) Station 3; d) Station 4; e) Station 5; blue line: dissolved oxygen 

concentrations at the Station - purple line: lagoon mean concentration over the sampling 

Stations - Red lines: EU and WHO thresholds. 
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Figure 27. Seasonal variation of dissolved oxygen in the North Lagoon of Tunis. 

4.1.8 Salinity 

Salinity is one of the most important variables influencing the dispersion of living organisms. 

Indeed, its variations can significantly alter their physiological activities as well as their 

ecological tolerances (Kinné, 1958). Salinity occurs as a key component in studies of the 

physicochemical properties of water, which is a result of numerous processes (natural or 

manmade). 

Water salinity level in the North Lagoon of Tunis ranges between 30 to 46 with a mean of 

about 38 (Figure 28). It is worth mentioning that before the restoration of the North Lagoon of 

Tunis, salinity was about 50 (Belkhir, 1980). 

High salinity values are recorded at Station 4 and 5 (south part of the lagoon) and the lowest 

values are recorded at Station 1 and 2 (north part of the lagoon). This gradient is similar to 

that of the nutrients and Chl-a, which may be explained by the system of water circulation in 

the lagoon established during the restoration program. It is clear that salinity at all Stations, in 

addition to the lagoon mean values are below the amount recorded before the restoration of 

the North Lagoon of Tunis. 
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Figure 28. Temporal variability of the salinity in the North Lagoon of Tunis: a) Station 

1; b) Station 2; c) Station 3; d) Station 4; e) Station 5; blue line: salinity values at the 

Station - purple line: lagoon mean concentration over the sampling Stations - Red line: 

salinity level before the lagoon restoration. 

Salinity was low during the winter season and gradually increased as the season advanced 

towards summer. On the one hand, this can be explained by water evaporation during high-

temperature events throughout the summer season, as well as a decrease in precipitation and 

water runoff. On the other hand, high dilution during the rainy season, might lead to a drop in 

salt concentration in the lagoon (Figure 29). 
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Figure 29. Seasonal variation of the salinity in the North Lagoon of Tunis. 

 

4.2. Discussion 

The mean temperature of the North Lagoon of Tunis (19 °C) is comparable to the mean 

values of about 19.22 °C and 19.27 °C in Sardinian ecosystems, Calish lagoon and Santa 

Guista lagoon in Italy, as reported by Satta et al., 2020. 

In addition, the mean temperature of the North Lagoon of Tunis is similar to that of other 

Tunisian ecosystems, such as Bizerte Lagoon (19.69°C) and Ghar el Melh Lagoon (19.35°C), 

as reported by Béjaoui et al. 2016., 2018. 

Before the restoration project, in the North Lagoon of Tunis, Ben Charrada (1992) recorded 

pH values that ranged from 9.2 to 6.4 and this may be due to significant photosynthetic 

activity. After the restoration, Shili (1995) recorded values that ranged between 8.2 and 8.4. 
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Similarly to the North Lagoon of Tunis which pH varies between 8.7 and 7.2, Ouijid et al., 

2020, found that the pH of another Mediterranean lagoon (Nador Lagoon) along the 

Morocco's Mediterranean coast fluctuated from 7.73 to 8.2. 

The pH of the surface water in the North Lagoon of Tunis showed a slight decline since 2010 

and an alkaline tendency during all the seasons, in the five Stations. In natural waters, 

generally, pH values vary between 6 and 8.5 (Chapman et al., 1996). A pH range of 6.5 to 8.5 

is acceptable for aquatic biota according to the American Public Health Association (APHA, 

1999). As a result, we may conclude that the North Lagoon of Tunis is in good agreement 

with these limits. 

According to the Organization for Economic Development and Cooperation (OECD, 1982), 

the hyper eutrophic lakes generally showed the maximum transparency values at ≤1.5 m and 

minimum transparency ≤0.7 m. This indicates that the North lagoon of Tunis is a highly 

productive ecosystem with areas affected by eutrophication. 

As compared with other Mediterranean lagoons, the average Secchi depth of the North 

Lagoon of Tunis (2 m) is deeper than Calish lagoon (1.2 m), Santa Guista lagoon (1 m) as 

reported by Satta et al. (2020). We can also mention Or lagoon (1 m) as specified by David et 

al. (2019). Also, the North Lagoon of Tunis is shallower than other Mediterranean lagoons 

like Thau lagoon, which has an average depth of 4 m (Delorez et al., 2020). 

The TP values in the lagoon vary between 4 – 65 µg L
-1

, which is greater than the ecosystems 

at the Palvasian lagoon complex (varies between 0.9 - 12 µg L
-1

) reported by Leruste et al., 

2015.  According to the Organization for Economic Development and Cooperation (OECD, 

1982) for trophic state classification, the limit of TP to define eutrophic ecosystem is 35.0 μg 

L
-1

. Considering this, we must point out, that the south part of the lagoon, especially, Stations 

4 and 5 are eutrophic areas in the ecosystem. 
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According to Wetzel (2001), total nitrogen concentrations ranging from 500 and 1100 µg L
-1

 

are considered to be thresholds for eutrophication in aquatic habitats. Figure 22 clearly shows 

that Stations 4 and 5, located in the south area of the lagoon, exceed those limits especially 

since 2007. 

According to OECD (1982), classification of trophic state, 8.00 μg L
-1

 of Chl-a concentration 

is the threshold for eutrophication, and in the present study; Station 5, were found to have 

Chl-a concentrations beyond the prescribed limit. As compared with other lagoons, the 

concentrations of Chl-a in the North Lagoon of Tunis (0.22 - 10 μg L
-1

) was lower than some 

Tunisian lagoons, such as, Ghar el Melh lagoon (1.5 to 9.7 μg L
-1

), Bizerte lagoon (the 

average value is about 7.20 µg L
-1

), as recorded by Béjaoui et al., 2018; 2016, respectively.  

The concentration range of the DO in the North Lagoon of Tunis (4.2 -11.5 mg L
-1

), is almost 

similar to most other Mediterranean lagoons. In fact, dissolved oxygen in Nador lagoon 

located in Morocco, varied between 3.84 and 13.8 mg L
-1

 (Ouijidi et al., 2020). According to 

the World Health Organization (WHO, 1996) and European Union (EU, 1998), the standard 

for DO value for fisheries and aquatic life is between 5.0 and 9.0 mg L
-1

. Concentrations 

below 4.0 mg L
-1

 adversely affect aquatic life. The lagoon approximately fits in the range of 

WHO (1996) and EU (1998) guidelines, but slightly exceeds the maximum permissible 

values.  

In comparison with other Mediterranean lagoons, salinity in the North Lagoon of Tunis is 

higher than in Thau lagoon, where salinity ranges between 29.6 and 40.8, according to 

Derolez et al. (2020), and Calish lagoon (mean salinity of about 17.73) and Santa Guista 

lagoon (mean salinity of about 32.13) reported by Satta et al. (2020).  We can also mention Or 

lagoon where salinity values are between 2 to 35 according to David et al. (2019). 

The salinity in the North lagoon of Tunis can be relatively similar with Tunisian 

Mediterranean lagoons. In fact, in Ghar Melh lagoon, salinity ranges between 26.6 and 51.2 
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(Béjaoui et al., 2018). Also, in Bizerte lagoon, salinity showed fluctuations between 34.2 to 

38.4 according to Béjaoui et al. (2016). 

4.3. Analysis of variance (ANOVA) 

ANOVA revealed no significant difference among the sampling Stations with p-values > 0.05 

in the lagoon for any of the physico-chemical variables or Chl-a (Table 3). Therefore, all data 

were grouped by month to reconstruct the monthly dynamics of each variable in the North 

Lagoon of Tunis. 

Table 3. ANOVA results (p-values) 

 Chl-a SD DO TP TN Temperature Salinity pH 

 

Station 1 0.09 

 

0.51 

 

0.44 

 

0.64 0.97 

 

0.56 

 

0.82 

 

0.06 

 

Station 2 0.29 

 

0.32 0.58 

 

0.79 

 

0.82 

 

0.54 

 

0.69 

 

0.12 

 

Station 3 0.25 

 

0.28 

 

0.45 

 

0.56 

 

0.64 

 

0.45 

 

0.52 

 

0.09 

 

Station 4 0.36 

 

0.08 

 

0.52 

 

0.49 

 

0.73 

 

0.53 

 

0.72 

 

0.23 

 

Station 5 0.06 

 

0.4 

 

0.47 

 

0.38 0.69 

 

0.61 

 

0.91 

 

0.31 
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5. Conclusion 

This first chapter gives an overview of the data and the spatio-temporal distribution of the 

physico-chemical characteristics of the lagoon, as well as their seasonal changes. 

Sampling cruise, analyzes in the laboratory, data provided by Al Buhaira Invest company, as 

well as the bibliographic study enabled us to reconstruct a time series of 7 physico-chemical 

variables and one biological (Secchi depth, total nitrogen, total phosphorus, pH, salinity, 

dissolved oxygen, water temperature and chlorophyll-a) for approximately three decades 

(January 1989 - April 2018). The spatio-temporal and seasonal representations of these 

variables enabled us to conclude that: 

The water temperature gradually increases as the ambient air temperature increased. But we 

have not reported a sudden increase, which confirms the absence of thermal pollution in the 

study area. It should be noted that prior to the restoration project, the studied lagoon was 

subjected to thermal pollution produced by discharges from the Tunisian Electricity and Gas 

Company. 

The salinity depends on the position of the sampling location; the northern part of the lagoon 

is characterized by a lower salinity concentration than the southern part. In fact, the marine 

water from the Gulf of Tunis comes into the lagoon at the north part. The strategy of water 

circulation allows its loading with nutrients and suspended matter during its residence time in 

the lagoon, which contribute to the increased salinity in the southern part. In addition, in the 

southern part, the evaporation is more intense (shallower depth), because, while realizing the 

restoration project, the dredging works mainly concerned the north part of the lagoon.  

The salinity content also depends on the season due to the influence of the rainfall especially 

at the Stations near the areas where the rainwater is discharged (Stations 1, 2 and 3). 

The recorded pH values do not exceed the standards according to APHA (1999) and which 

are of a basic nature (pH>7).  
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Dissolved oxygen (DO) is an essential parameter in the maintenance of aquatic life, such as 

the process of degradation of organic matter and photosynthesis. In the North Lagoon of 

Tunis, DO contents were higher in the northern side, where the marine waters from the Gulf 

of Tunis comes in, rather than the southern side where the waters are already loaded, which 

reduce the DO content. 

Some relatively high values of Chl-a concentrations, as well as total nitrogen and total 

phosphorus, may indicate a state of eutrophication in certain areas of the lagoon, particularly 

in the southern part. 

Among the environmental and biological data, dissolved oxygen, total phosphorus, salinity 

and Chl-a values were the most affected by the seasonal variations.  

The highest values were recorded for salinity, total phosphorus and total nitrogen during the 

summer (or dry) season. In spring, Chl-a followed by DO showed high values.  

Most of the parameters exhibited a significant spatial variation. They revealed that the coastal 

water was significantly influenced by freshwater input from the gulf of Tunis. In general, the 

physico-chemical water quality agrees fairly well with the marked improvement in the 

eutrophication state of the North Lagoon of Tunis.  

According to our data, the iterannual trends of the Chl-a can be divided in 5 periods. Between 

January 1989 and May 1996, the Chl-a concentrations are approximately similar. There has 

been a relatively large increase between June 1996 and December 1996. The period between 

January 1997 and February 2001 is similar to the first one. In Mars 2001 to September 2008, a 

significant decrease in the Chl-a concentrations has been noticed which shows the good 

functioning of the ecosystem and the gradual decrease in the lagoon trophic level. Since 2008, 

an increase in the Chl-a content is noticed but it's less significant than the previous rise in Chl-

a concentrations between 89-96.   
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The North Lagoon of Tunis is now a totally artificialized environment as a result of human 

intervention, and ecological follow-up is required to ensure the proper ecological functioning 

of this ecosystem located in the heart of the metropolitan zone. 

Knowing that, predictive modeling seems to be an appropriate technique to work with in the 

North Lagoon of Tunis, in the purpose to predict and anticipate any deterioration or pollution 

phenomenon in this natural ecosystem.  

In order to determine the most appropriate algorithm, pre-processing the data like it is done in 

this chapter, is a crucial step to capture any hidden pattern in the distribution of the 

environmental variables like spatial, temporal, seasonal, linear, nonlinear, etc.  

Zhang and Qi (2005) created a predictive model that takes seasonality into account, 

emphasizing the need of appropriate data pre-processing to account for seasonal or trend 

fluctuation. 

Our data appears to have nonlinear and seasonal characteristics. Indeed, before doing any 

complex modeling we need to take those specificities into account. Then, the most adequate 

technique chosen will be one of the tools used to monitor the ecological status of the 

ecosystem. 
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Chapter II: Machine Learning modeling techniques for 

forecasting the trophic level in a restored South Mediterranean 

lagoon using Chlorophyll-a 

1. Introduction 

Chlorophyll-a is a commonly used environmental indicator of algal biomass and lake 

eutrophication (Latif et al., 2003). High Chl-a concentrations may be interpreted as the 

presence of algae blooms in coastal waters, which are one of the most serious environmental 

challenges, due to their negative economic and environmental consequences on water bodies 

(Pearson et al., 2001). 

As stated earlier in this study, Chl-a in-situ sampling and measurement programs require 

routine monitoring and laboratory analysis. Because of various constraints, these programs 

have limited environmental management capabilities to effectively track and respond to 

eutrophication occurrences, such as (i) field monitoring budget, (ii) availability of personnel 

and equipment, (iii) field safety concerns and (iv) lengthy time intervals between data 

collection, reporting, and public notification. Therefore, in order to reduce the cost and time 

required for aquatic environmental in-situ monitoring and laboratory analyses, a predictive 

modeling approach that provides the Chl-a values automatically is essential to prevent or 

mitigate the occurrence of eutrophication and, ultimately, to minimize the potential adverse 

effects on water bodies (Oh et al., 2007). 

Data-driven Machine Learning (ML) models are popular and widely used for modeling 

complicated natural processes, particularly in predictive modeling. They can be useful in 

modeling and predicting eutrophication events in any natural environment (Nayak et al., 

2005; Wu et al., 2011; He et al., 2014). 
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The factors influencing Chl-a concentrations in water bodies are diverse and complicated 

(Jimeno-Sáez et al., 2020). Various mathematical approaches have been used in current 

literature to forecast Chl-a based on regression analysis. However, these traditional data 

processing methods generally employ a linear connection to simplify complex situations, 

resulting in poor results since they are inefficient in dealing with complicated non-linear 

relationships between the variables involved (Su et al., 2015). 

Because they are ideally adapted for forecasting non-linear and complicated functions, ML 

algorithms have been proven to be more efficient than traditional data processing approaches 

in monitoring water quality (Abba et al., 2017). Previous studies have shown that ML 

outperforms traditional techniques to modeling water quality factors (Juntunen et al., 2012; 

Charulatha et al., 2017). 

Artificial neural networks (ANN) algorithms are used intensively among ML techniques. It 

imitates human learning processes by network preparation and calibration. This skill makes 

ANN useful tools for analyzing dynamic situations that are difficult to explain using 

traditional methods (Daliakopoulos et al., 2005; Samarasinghe, 2007). The ability to capture 

system dynamics and nonlinearities makes ANN particularly suited for the investigation of 

natural environments, which typically have distinctive spatial–temporal heterogeneity (ASCE, 

2000).  

The ANN algorithms were also applied to Chl-a dynamics since it is one of the variables that 

represents algae biomass and has been recognized as one of the proactive early-warning 

techniques to preventing the occurrence of some algal blooms. Li et al. (2017) and Yi et al. 

(2018) applied different types of artificial neural networks to estimate the concentration of 

Chl-a in 27 lakes in China and in one Korean river, respectively. Tian et al. (2017) used an 

ANN to predict Chl-a concentrations to an estuary reservoir in East China.  
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Back Propagation networks, Radial Basis Function networks, and other categories exist in 

artificial neural networks. Back propagation is a learning method that is widely employed in 

ANN applications. In this study, a nonlinear autoregressive with external inputs (NARX) 

neural network, a contemporary ANN method, was developed. NARX is a dynamic neural 

network that belongs to the non-linear back propagation class (Markova, 2019). 

In terms of time consuming and high cost, reducing the number of parameters to be measured 

is very important. For this reason, it is of a big interest to select specific variables that are 

most related to Chl-a concentrations. The Random Forest (RF) approach, developed by ML, 

is an effective method for accomplishing this task. RF has been applied in many studies. 

Béjaoui et al. (2016) investigated with the RF model the most important predictor variables 

for Chl-a variation in the lagoon of Bizerte situated in the north of Tunisia. In another 

research study, Béjaoui et al. (2018) used the RF model to investigate the dynamics of the 

plankton in Ghar Melh lagoon located in the Tunisian Mediterranean coast.  

As well known, an early-warning proactive approach of the Ch-a content is essential to 

prevent the occurrence of eutrophication episodes, especially in sensitive ecosystems. For this 

reason, we used NARX to perform a one-step ahead forecasting of the Chl-a concentration in 

the North Lagoon of Tunis. 

Given the superiority of the ML algorithms, this study has been conducted to achieve the 

following objectives: (1) to select the specific variables that are the most related to Chl-a 

concentrations in the North Lagoon of Tunis and Station 5, using, especially, RF model. To 

do so, different variables combinations were tested, (2) to develop an ANN network to 

estimate and forecast one step ahead of Chl-a concentrations based on NARX neural network 

and to (3) validate the performance of the model in the lagoon and at Station 5.  

Several studies have been conducted on the eutrophication process and water quality 

indicators of the North Lagoon of Tunis (Ben Charrada, 1992; Rezgui et al., 2008; Trabelsi-
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Bahri et al., 2013). However, to the very best of our knowledge, there is no previous research 

using ML models to predict water quality parameters in this lagoon, specifically, Chl-a 

concentrations. 

2. Machine Learning (ML) 

Building that precise mathematical formalisms is difficult for ecologists to consider and 

explain, and even more hard to do so in a programming language (Kompare et al., 1994). If 

these tasks have been completed, the computational modeling traps, data lack and 

inconsistency, difficulties with the correct modeling parameters, and so on might be 

challenging. We would all welcome a computer program that could understand our common 

descriptions of ecosystems and convert them into a machine code (Kompare et al., 1994). 

Recently, data-driven Machine Learning techniques, also known as Artificial Intelligence, 

have gotten a lot of attention because of their ability to solve complicated multivariate 

nonlinear problems (Nyshadham et al., 2019). This is done, by developing mathematical 

models to describe relationships between inputs (influence factors) and outputs (Hayajneh et 

al., 2009). 

Performing Machine Learning means creating a model. The best way to define Machine 

learning approaches is to state that ML teaches computers to do what comes naturally to 

humans: learn from experience (Williams and Poff, 2006).  

Machine learning algorithms are employed in a variety of situations when it is difficult or 

impossible to build an algorithm that properly describes a complex natural process (Kompare 

et al., 1994). That is, machine learning algorithms employ computational methods to "learn" 

information directly from data, rather than depending on a preset equation as a model 

(Williams and Poff, 2006). It is to be mentioned that machine learning allows the use of vast 
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amounts of data (Kompare et al., 1994). As the number of samples available for learning 

increases, the algorithms performance improves adaptively [1].  

Machine Learning (ML) has made significant development in recent years, and it has been 

widely applied in many new applications where data can be collected and processed locally 

(Gohel et al., 2019). These data may be used to train machine learning models, which can 

then be used to make predictions, and helping in management decisions making in a variety of 

applications (Wu et al., 2011). 

Machine learning employs two techniques (Figure 30): supervised learning, which creates a 

model of known input and output data in order to predict future outputs, and unsupervised 

learning, which seeks out hidden patterns or intrinsic structures in data [1]. 

 

 

Figure 30. Representation of the machine learning techniques [1].  

There are several of supervised and unsupervised machine learning algorithms, each has its 

own method to learning (Figure 31). Choosing the best technique depends on the type of data 

considered in input and output and the type of task or problem to be solved, which can be 

overwhelming. There is no optimum approach, nor is there a one-size-fits-all solution. The 

search for the best algorithm is largely based on trial and error, and even highly competent 

computer scientists cannot predict whether an algorithm will work without trying it [1].  
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Highly adaptable models have a tendency to over-fit data by simulating small changes that 

may or may not represent noise. Simple models are easy to comprehend, but their accuracy is 

frequently poorer. As a result, selecting the best algorithm leads to balancing benefits such as 

model speed, accuracy, and complexity. ML is built around trial and error. If one method or 

algorithm fails, the only option is to try another [1]. 

 

Figure 31. Machine Learning algorithms [1]. 

Netflix's inaugural "Netflix Prize" competition was launched in 2006 to discover a program 

that could better predict customers' interests and enhance the accuracy of its current 

Cinematch movie recommendation system by at least 10% using machine learning techniques 

[2]. 

In 2010 The Wall Street Journal wrote about the firm Rebellion Research and their use of 

machine learning to predict the financial crisis (Patterson, 2010). 
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In 2012, co-founder of Sun Microsystems, Vinod Khosla, predicted that 80% of medical 

doctors' jobs would be lost in the next two decades to automated machine learning medical 

diagnostic software [3]. 

Social Medias are the most widely used interfaces on the planet. According to estimates, there 

are over two billion users. Instagram, YouTube, Twitter, Tik Tok, Facebook, and other social 

media platforms are employing powerful machine learning algorithms to propose content and 

advertisements to viewers based on predictive modeling. 

3. Methodology 

3.1.  Random Forest (RF) 

ML algorithms are generally performed using a collection of predictor variables (input 

variables) and one or more target variables (output variables) expressed as a continuous value 

(Kohavi and Jhon, 1997), where the fundamental aim of predictive modeling is to maximize 

accuracy (Motoda and Liu, 2002). To estimate a parameter of water quality we can use all 

available predictor variables or select a smaller number of them. This might result in the 

model having too few or too many inputs, both of which are undesirable (Maier et al., 2010). 

This study performed a predictor variable selection stage to minimize redundant data in order 

to address this issue. The objective of reducing the number of predictor variables in ML is to 

speed up the learning algorithm process, increasing prediction accuracy and comprehensibility 

of learning findings (Motoda and Liu, 2002). It is known that Chl-a concentrations are 

influenced by a variety of factors. The Random Forest model was used in this work to find the 

most relevant predictor variables for Chl-a concentrations.  

RF modeling is a relatively recent ML method that is built on multiple decision trees and 

trained on a set of input predictor variables to predict the output variable accurately (Breiman, 

2001; Strobl et al., 2006; Strobl et al., 2008).  

https://en.wikipedia.org/wiki/Sun_Microsystems
https://en.wikipedia.org/wiki/Vinod_Khosla
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The RF method has several advantages. First, there is no assumption of a probability 

distribution for predictor variables. Second, it is capable of dealing with a huge number of 

variables and picking the most helpful ones among them (Mulia et al., 2013; Park et al., 

2015). Third, RF predictions are extremely reliable since they are based on the average of 

several basic models, avoiding the over-fitting issue typical of many non-linear regression 

approaches (Phillips et al., 2008; Huang et al., 2015). 

Fourth, because each tree is created on a random subset of the original data, there is no need 

for a separate independent dataset or cross-validation technique to assess the model's 

prediction ability (Were et al., 2015). Finally, the RF method is appropriate for natural 

ecosystems with a high number of physicochemical and biological variables with complicated 

interactions. 

The RF model has this interesting aspect of providing a quantitative assessment of the 

relevance of the predictor variables in the final outcome, which can be useful in selecting the 

most essential ones. 

The method used to evaluate the ranking of the most important predictor variables from the 

RF model is the out-of-bag (OOB) technique by permutation; a technique that measures how 

influential the predictor variables in the model are at predicting the response variable (Chl-a). 

The effect of the predictor variable increases with the value of this measure.  

If a predictor variable influences the prediction, then the permutation of its values should have 

an impact on the model error. If a predictor variable is not influential, the permutation of its 

values should have little to no effect on the model error (Mitchell, 2011). It consists of 

calculating the gain in the mean square error, which is computed by permuting OOB data: for 

each tree, the prediction error on the OOB portion of the data is recorded; the same is done by 

permuting each predictor variable (Mitchell, 2011). The differences between the two OOB 
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errors are then averaged over all trees and normalized by the standard deviation of the 

differences (Mitchell, 2011).  

In Machine Learning (ML), a variety of measures are used to assess a model's prediction 

accuracy. The choice of accuracy metric depends on the ML task. In ML it is advisable to use 

as minimum mathematical measurements as possible to evaluate a model [4]. It helps in a fair 

and accurate assessment among all the models to be tested.  

The mean of squared errors (MSE) and coefficient of correlation (R) were used to evaluate RF 

model performance.  

MSE is a numerical measure of the model's error when it makes predictions for the target 

variable. It is sensitive to outliers, and should be used in conjunction with other metrics to 

evaluate a particular model, when the data studied is messy (Cutler et al., 2007). If the MSE is 

close to 0, it indicates a very close approximation to the actual values. The MSE is defined as: 

    
 

 
           

   ……  ……………………………… ………………. (1) 

Where: 

   and     denote the modeled concentrations and the observed concentrations of Chl-a, 

respectively and   is the amount of data in each data set. 

Prediction accuracy R represents the degree of correlation between the prediction values and 

the observed values, and a high R value (close to 1) means the prediction is close to the 

observed value (Xu et al., 2019). 

     
           

   

           
   

 

 

 
          (2) 

 

Where:     denotes the average of the observed values of Chl-a. 

It is to be mentioned that the coefficient of determination (R
2
) was calculated from R to 

contribute to the assessing and comparing the performance of the models. Thus, useful 
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information can be obtained concerning the relative importance of all variables and their 

capability of forecasting Chl-a concentrations. 

The RF model was simulated twice. First, we considered only the seven physico-chemical 

predictors we had for predicting Chl-a concentrations. Second, we examined if there was any 

evidence of spatial or seasonal dependency among Chl-a predictors. In other words, we 

investigated whether the predictions of Chl-a concentrations might be improved by taking 

sampling Stations and seasons into account as observable factors. This was accomplished by 

introducing two additional categorical predictor variables, one for each of the five Stations 

and the four seasons. This was conceivable because RF models can handle both quantitative 

and qualitative predictor variables. 

RF modeling was performed using the MATLAB software MATLAB® software (version 

9.3.0.948333 (R2017b), The Mathworks, MA, USA). 

3.2. Artificial Neural Networks (ANNs)  

 Among the different approaches, the artificial neural networks (ANNs), were widely applied 

in the last decades in the fields of bioinformatics (Dopazo et al., 1997), ecology (Lek et al., 

1996; Lek and Guegan, 1999), and environmental engineering (Singh et al., 2009; Hill and 

Minsker, 2010; Sahoo et al., 2013). In fact, the good performance of ANNs in various 

ecological models was verified (Park et al., 2003; Song et al., 2013).  

The human brain is extraordinarily sophisticated and, quite literally, the most 

powerful computer engine ever known. ANNs are computer neural networks that are 

inspired by biological neural networks. The ANN method's ultimate goal was to solve 

problems in the same way as a human brain can. However, over time, attention moved to 

performing specific tasks, leading to deviation from biology (Rajaee et al., 2019). Artificial 

neural networks have been used to perform a wide range of tasks. They can be used to 
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estimate functions that are usually unknown (medical diagnosis, computer vision, voice 

recognition, etc.) or to forecast future values of potentially noisy time series based on 

historical data. A typical ANN is made up of numerous components known as neurons 

(processing elements) and connections that connect them. Neurons with comparable 

characteristics are clustered together in a single layer. An ANN typically has three distinct 

layers (Figure 32), including the input, hidden, and output layers (Rajaee et al., 2019). 

 

 

Figure 32. Artificial Neural Network architecture [5]. 

 

The network consists of connections, and a given neuron can have multiple input and output 

connections (Markova, 2019), each connection providing the output of one neuron as an input 

to the next neuron. Each connection is given a weight that changes as the learning process 

progresses and indicates its relative performance (Dogan et al., 2009).
 

The “weight” analysis computes the strength of the connections between the input factors and 

the output factors quantitatively and can be employed to explain the relations between the 

input variables and the output variable in ANNs (Garson, 1991). 

 In the hidden and output layers, each neuron passes its weighted input through a transfer 

(activation) function to produce a result. The activation function key feature is that it provides 
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a smooth, differentiable transition as input values change, in other words, a small change in 

the input produces a small change in the output (Rajaee et al., 2019). Then, the propagation 

function computes the input to a neuron from the outputs of its predecessor neurons and their 

connections as a weighted sum (Rajaee et al., 2019). A bias term can be added to the result of 

the propagation (Rajaee et al., 2019). 

ANNs are trained with sample data, so that an input leads to a specific target output. Training 

means tuning the adjustable network parameters (called delays and hidden neurons) to 

optimize the network performance (weights and bias). The training process can be done with 

various training (learning) algorithms. The Levenberg-Marquardt (LM) algorithm, the 

backpropagation (BP) algorithm, the Bayesian regularization (BR) algorithm are examples of 

most used training algorithms in the literature.  

The most essential characteristic of a model for predicting is its ability to generalize. 

Although generalization competence denotes the model's capacity to perform well on data that 

was not used to train it, over-fitting prevents model generalization (Schlink et al., 2003). To 

avoid over-fitting, the most frequently used regularization technique is to split the data into 

three sets (training, testing, and validating). 

Different ANN types have been widely used in the literature, but regardless of the type of the 

utilized ANN, they have some common modeling stages (Figure 33).  
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Figure 33. The common stages of using ANNs. 

Because of its ability to assign meaning to input parameters and to map the inputs to the 

outputs, the ANN model is an effective modeling technique when relationships between the 

variables of the underlying physical processes are complex or uncertain (Wei et al., 2001). 

These neural networks are a nonlinear modeling tool that can manage a large number of 

inputs to determine one or more outputs (Fogelman et al., 2006). 

When compared to conventional models, ANN models can be easily transformed from 

univariate to multivariate technique, and model complexity may be modified simply by 

modifying the training process or network design (Rajaee et al., 2019). Like the regression 

models, an empirical evidence or correlation analysis may be used to identify the input 

variables (Rajaee et al., 2019). Furthermore, the results in the literature indicated that ANNs 

capture the dynamic nonlinear behavior of the time series comparatively better than standard 

regression models (Rajaee et al., 2019). 

 

7. Using the chosen ANN for the specific task (clustering, fitting, 
forecasting ,...) 

6. Trial and Error method to improve the ANN performance  

5. Train the ANN 

4. Selecting ANN (Type, Architecture, ...) 

3. Dividing data (Train, validate and test sets) 

2. Selecting output or target variable 

1. Selecting input variables  
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3.2.1.  Nonlinear AutoRegressive with eXternal inputs (NARX) neural 

network 

NARX model is a dynamic recurrent neural network (Fig. 34) that encloses several layers 

(Hayken, 1999). It has previously been applied by many researchers to model nonlinear 

processes. In 1996, Lin et al. stated that NARX network is a powerful modeling and 

validation tool with a much faster convergence that generalizes much better than other ANNs. 

There are many applications for the NARX network in representing nonlinear dynamic 

behaviors.  

A NARX model is defined as follows: 

                                                               …… ... (3) 

 

Where: f is generally unknown and can be approximated; u (n) and y (n) denote the input and 

output of the model at discrete time step  , respectively. 

The first step in a NARX model is to determine the input and output variables. In our study, 

the output is the Chl-a variable, and the input variables are those having the highest 

permutation importance according to RF model. To ascertain that, different predictor 

variables combinations were tested. The next step is to set up the network configuration, 

which consists of determining the number of neurons in the hidden layer and the number of 

time delays in the input layer to maximize modeling ability. The prediction accuracy (weights 

and biases) can be improved by adjusting these two parameters (Xu et al., 2019). However, 

there is no default criterion for determining the optimal structure, we assessed the network's 

performance with various structures after a training period that was mostly focused on the 

amount of errors, such as evaluating the MSE and R, as in the RF model. In addition, the error 

autocorrelation function and input-error cross-correlation function were also checked to 

evaluate the NARX performance. The autocorrelation error function describes how prediction 

errors are related in time. For a perfect model of prediction, the difference between the two 
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errors should be small enough to be statistically insignificant. This would mean that the 

prediction errors are entirely uncorrelated with each other. This also means that the values of 

error autocorrelation should mostly be within a certain confidence interval of 95% (Xu et al., 

2019). 

The input-error cross-correlation function explains how the errors are correlated with the 

input sequence. For the ideal prediction model, all correlations should be zero, except for the 

one at zero lag (Markova, 2019). 

Three training algorithms, which are the fastest and most adopted in NARX training were 

tested: Levenberg-Marquardt algorithm, the backpropagation algorithm and the Bayesian 

regularization algorithm. 

Multiple scenarios with different predictor variables combinations (inputs) were tested to 

simulate the NARX model, and the one with the best performance were used to develop the 

network for forecasting.  

 

Figure 34. The structure of the NARX network.  

 

When using NARX, the network conducts a one-step ahead prediction only after it has been 

trained. All training is performed in an open loop (also called a series-parallel architecture) 

including the validation and testing phases. The typical workflow is to fully create the 

network in an open loop, only when it has been trained (which includes validation and testing 

steps), it is transformed to closed loop for future predictions (Markova, 2019). NARX 

performs a one-step-ahead prediction of y (t) from historical values of y (t) and x (t). To do so, 
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a delay is removed from the network to get the prediction one time step early. The output of 

the network is then y (t + 1) instead of y (t).  

From figure 35, we can see that the network is identical to the previous open-loop network, 

except that one delay has been removed.  

NARX modeling was performed using the MATLAB software MATLAB® software (version 

9.3.0.948333 (R2017b), The Mathworks, MA, USA). 

 

 

Figure 35. NARX Neural Network closed loop (left) and one step ahead prediction 

(right) diagrams. 

 

4. Results and discussion 

4.1. Nonlinear AutoRegressive with eXternal inputs (NARX) Neural 

Network  

Using nearly three decades of data, the NARX was used to forecast Chl-a levels in the North 

Lagoon of Tunis.  

As mentioned above, we used Chl-a concentrations as the target, and as inputs, the physico-

chemical data, including water temperature, total phosphorus, total nitrogen, Secchi depth, 

dissolved oxygen, pH and salinity.  

The topology with 10 neurons in one hidden layer and 2 lags in the input variables provided 

the best performance in the prediction of Chl-a concentrations among all the tested scenarios.  
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The Levenberg–Marquardt algorithm as an extensively recognized training algorithm was 

used (Table 4). 

Table 4. NARX predictions results for Chlorophyll-a between Levenberg-Marquardt, 

Bayesian Regularization and Scaled Conjugate Gradient algorithms. 

Algorithm R MSE 

Levenberg-Marquardt 0.68 0.42 

Bayesian Regularization 0.52 0.46 

Scaled Conjugate Gradient 0.49 0.51 

 

The network performance was verified by the error autocorrelation function. Figure 36 shows 

the autocorrelation plot. It indicates that correlations exceeded the 95% confidence limits 

around zero, meaning the prediction errors are significantly correlated.  

 

Figure 36. Autocorrelation plot. 

 

The training algorithm showed a relative unsatisfying correlation (R=0.68, R
2
=0.46) between 

target and output data (Figure 37). The target on the X axis means the observed Chl-a 

concentrations and the output on the Y axis with the equation means the model calculations 

(model outputs). The correlation R is calculated for the three sets (training, validation and 

testing), then it is calculated for the whole model. 
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Figure 37. Correlation between original (target) and predicted (output) Chlorophyll-a 

values obtained with the NARX network.  

The forecasting of the Chl-a variation one month ahead indicated about 0.8 µg L-1; it was 

compared to the observed value (0.5 µg L-1). The forecast is not perfect even though it 

indicates a relatively normal rate of monthly Chl-a variation in the lagoon.  

To obtain additional verification on the network performance we verified the error histogram 

and the input-error cross-correlation function.  

Figure 38 exhibits a histogram of errors between the estimated and the actual Chl-a data. We 

can clearly see that the error histogram is biased toward the left and not fitted as a bell-shaped 

normal distribution, meaning that the errors of the developed model are not normally 

distributed.  
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Figure 38. Error Histogram.  

According to the input-error cross-correlation plot (Figure 39), we see that all the correlations 

between the errors and inputs exceed the confidence bounds around zero, which means that 

inputs and errors are correlated.  

 

Figure 39. The input-error cross-correlation plot.  

The network seems to have some performance problems, presenting a relative weak R, and 

strong correlations while the diagnosis of the errors. Thus, it should be possible to improve 

the network predictions. To do so, we chose to limitate the number of the variable predictors 

as external inputs of the NARX. For determining the most important variable predictors, 

several scenarios have been tested based on Random Forest model from machine learning 

techniques, and multivariate linear regression model. 
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4.2. Random Forest (RF) 

Chl-a is one of the most relevant markers of water bodies presence and degree of 

eutrophication (Lu et al., 2016). In the North Lagoon of Tunis, Chl-a concentrations range 

from a minimum of 0.22 µg L-1 and maximum of 3.65 µg L-1. Chl-a levels can have 

complex relationships with both nutrient components (total phosphorus, total nitrogen) and 

water quality variables (salinity, pH, temperature, dissolved oxygen and Secchi depth) in 

coastal ecosystems (Jimeno-Sáez et al., 2020). The RF is a suitable technique from ML 

algorithms when it comes to dealing with complex relations between variables. The RF model 

was trained on the North Lagoon of Tunis data-352 samples of 7 predictor variables (Secchi 

depth, dissolved oxygen, temperature, salinity, total nitrogen, total phosphorus and pH) and 

one target variable, the Chl-a. The implementation gave an R
2
 measure of about 0.62 and 

MSE equal to 0.28. Figure 40 shows the ranking of predictor variables according to their 

importance by OOB technique by permutation. Only a few descriptors contributed noticeably 

to the estimation of the Chl-a content namely, Secchi depth followed by the dissolved oxygen 

and pH. 

In aerobic photosynthetic species, Chl-a is the most significant pigment. The depth will 

impact the strength of sunlight in water and thus the process of photosynthesis (Frolov et al., 

2012), explaining the strong correlation between the depth and Chl-a. 

Algae produce oxygen during the day and absorb it during the night. Oxygen consumption 

also occurs during the process of algae death and decay (Béjaoui et al., 2016). In agreement 

with that, our findings have shown that dissolved oxygen is also associated with Chl-a 

concentrations. 

In addition, several studies have demonstrated the strong correlation between Chl-a and pH 

(Menendez et al., 2001; Zang et al., 2010; Wallace et al., 2016).  
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Figure 40. Predictors importance ranking for the "first" Random Forest model to 

predict Chlorophyll-a content in the North Lagoon of Tunis. The importance of each 

predictor is measured using the out-of-bag (OOB) technique by permutation due to each 

predictor. 

 

In decreasing order of importance, the other predictor variables included in the RF model 

were: total phosphorus, total nitrogen, salinity and temperature. 

A direct comparison (scatter plot) of the observed and predicted Chl-a concentrations is 

shown in Figure 41. The fitted RF model was much better than the one reported by Béjaoui et 

al. (2016) for Bizerte lagoon (R
2
=0.51), and similar to the one reported by Béjaoui et al. 

(2018) for Ghar el Melh lagoon (R
2
=0.64). Both lagoons are located in the Mediterranean 

coast of north Tunisia. Hence, for the North Lagoon of Tunis, the observed Chl-a 

concentrations were more accurately predicted than those of Bizerte lagoon. It is known that 

for predictive modeling, the number of the observed data is very important for the accuracy of 

the model (Béjaoui et al. 2016). We used long-term of monthly observations that lasted 

approximately three decades in the North Lagoon of Tunis, which makes the results of the RF 

accurate in the studied ecosystem.  



 

66 

 

Figure 41. Random Forest Prediction of the Chl-a concentrations using the physico-

chemical predictor variables data in the North lagoon of Tunis. Predicted response is 

Predicted Chl-a values and True response is Observed Chl-a values. 

For comparison, a Multivariate Linear Regression (MVLR) model was fitted in addition to the 

RF model. The linear model parameters (Estimate) between predictor variables and Chl-a 

concentrations were almost consistent with the relationships found with the above RF model 

(Table 3). Both Secchi depth and dissolved oxygen were the two most important predictors 

explaining Chl-a concentration levels, with a p-value ≤ 0.05. Thus, the linear model 

quantitatively confirmed the outcomes of the RF model.  

P-values and coefficients (estimate) in regression analysis are gathered to tell which 

relationships in the model are statistically significant. The coefficients describe the 

mathematical relationship between each independent variable and the dependent variable. The 

p-values for the coefficients indicate whether these relationships are statistically significant. 

SE is the standard error of the coefficients. The t-stat for each coefficient is a value to test the 

null hypothesis that the corresponding coefficient is zero against the alternative that it 

is different from zero, given the other predictors in the model. It is to be mentioned that t-stat 

= Estimate/ SE. The t-stat is then converted to a p-value. A p-value is the probability that the 
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null hypothesis that all predictors are the same is true. In other words, a lower p-value reflects 

a value that is more significantly different across predictors. Predictors with significant 

correlation with Chl-a concentrations have p-values ≤ 0.05. 

MVLR gave an R
2
 of about 0.29. It is obvious that the RF model captures more efficiently the 

dependency of Chl-a concentrations on other variables than the MVLR. The quality of the 

results is ensured by using the OOB procedure by permutation. We can thus confirm that the 

RF model could be used to better understand more complex dependencies among variables 

since it has several advantages over traditional correlative analyses (i.e., a decrease in outlier 

sensitivity, no implicit assumptions on data distribution). 

According to the MVLR, the Chl-a concentrations had a significant correlation with water 

quality variables, as Secchi depth, dissolved oxygen followed by total phosphorus in the study 

area with a p-value ≤ 0.05. However, the weakness of its performance suggests that the use of 

traditional regression methods in the modeling of such a complex process is meaningless, so 

there is a great need to use more effective techniques (Mjalli et al.; 2006). 

This fact may support the conclusion drawn by Maier et al. (2010) that using a linear 

approach to define which of the potential input variables have a significant relationship with 

the model output is not sufficient for the development of ANN models.  

All variables were transformed, to normalize their distribution prior to any modeling analyses. 

However, the transformations did not improve the performance of the MVLR.  

The relationship between all variables is strictly non-linear, which is expected and shown in 

chapter I. Natural ecosystems are governed by several complex processes due to the impacts 

of hydro-climatic variables such as evaporation, temperature, precipitation, etc. and 

anthropogenic contribution (Schramm, 1999; Viaroli et al., 2008).  

In recent studies of similar lagoons located in the north of Tunisia, Chl-a concentrations were 

found linearly not related to the physico-chemical parameters (Béjaoui et al.; 2016; 2018). 
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We performed all our modeling directly on the original data using ML techniques, known for 

their abilities to deal with non-linear complex time series processes. Fitting a model directly 

without transformation is advantageous for forecasting because forecasts are returned on the 

original scale. 

Table 5. Regression coefficients between Chl-a and physico-chemical variables in the 

North Lagoon of Tunis using linear model (coefficients marked with (*) are statistically 

significant at p-value < 0.05). 

 ESTIMATE SE T-STAT P-VALUE 

INTERCEPT 3.434 2.3318 1.4727 0.14175 

DISSOLVED OXYGEN -0.12818 0.05122 -2.5026 0.012792* 

TOTAL PHOSPHORUS 0.012391 0.00753737 2.3059 0.021713* 

SECCHI DEPTH -0.47539 0.17532 -2.7116 0.007032* 

TEMPERATURE 0.0077276 0.013261 0.58275 0.56045 

PH -0.19153 0.21548 -0.8882 0.37472 

SALINITY 0.027982 0.032362 0.86464 0.38784 

TOTAL NITROGEN -0.00012694 0.0001341 -0.94663 0.34449 

 

A second RF model was also fitted by adding two new categorical variables: Station (for an 

observable spatial dependence) and season (for an observable seasonal dependence). The 

performance of the RF slightly decreases and attains an R
2
 of about 0.59. 

The addition of a new predictor variable containing spatial information (Station) appears to 

have little importance on the model simulating Chl-a concentrations (Fig. 42). The existence 

of a strong correlation between Chl-a concentrations and Secchi depth showed that depth data 

itself might be sufficient for demonstrating the spatial variations of Chl-a concentrations in 

the lagoon without including the categorical variable (Station). Moreover, for the RF model, 

the categorical variable (season) did not really have an important effect on Chl-a 

concentrations. This finding was expected since the variable (temperature) can interfere with 

the variable (season). Additionally, we may state that this can be due to the climate of Tunis, 

which stays relatively warm all along the year, including winter. 
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Figure 42. Predictors importance ranking for the "second" Random Forest model to 

predict Chlorophyll-a content in the North Lagoon of Tunis. The importance of each 

predictor is measured using the out-of-bag (OOB) technique by permutation due to each 

predictor. 

 

RF is a good predictive technique to study the correlations between physico-chemical and/or 

biological variables in coastal ecosystems. Béjaoui et al. (2016) showed that mainly dissolved 

inorganic nitrogen (NO3) along with dissolved oxygen are the greatest contributors to Chl-a 

content in Bizerte lagoon. Furthermore, in 2018, Bejaoui et al. reported that temperature and 

silicates are the two most strongly correlated variables to the plankton dynamics in Ghar Melh 

lagoon.  

Although, the influence of the predictor variables on Chl-a were different in several research 

works, the dissolved oxygen and Secchi depth generally were among the main variables.  

For exemple, Palani et al. (2008) applied the ANN model with location variables; 

orthophosphates (PO4) dissolved oxygen and temperature as the explanatory variables to 

predict Chl-a concentration. Li et al. (2017) selected the concentration of total phosphorus 

and total nitrogen, temperature, Secchi depth, and dissolved oxygen among the most 
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influential input variables for Chl-a. Furthermore, Kuo et al. (2007) defined the Chl-a model 

by the input of month, temperature, pH, Secchi depth, suspended solids (SS), PO4 and NO3.  

It is important to highlight that the difference in the predictor variables selection between the 

previous ecosystems with the North Lagoon of Tunis can be explained by the ecosystem 

specificities, as dimensions of water masses, different eutrophic states, water depth and 

communication with the sea. In addition, various modeling approaches, in addition to 

different field works and laboratory analysis techniques may have contributed to these 

differences. 

4.3. Nonlinear AutoRegressive with external inputs (NARX) Neural 

Network 

In this study, four scenarios with different input combinations of the predictor variables are 

tested for estimating and forecasting Chl-a concentration values in the North Lagoon of Tunis 

using the NARX network. 

The first input scenario (S1) considered all parameters we had as inputs without selection. The 

second scenario (S2) included only the three most important predictor variables according to 

the RF model. The third input scenario (S3) included only the most highly correlated 

parameters according to the MVLR. The last scenario (S4) included only the two most 

important predictor variables according to the RF model. Summarized results of predictor 

variables selection are shown in Table 4. 
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Table 6. Summarized results of predictor variables selection. 

Algorithm N. of predictor 

variables (inputs) 

selected 

Predictor variables 

selected 

Input scenario 

NARX without inputs 

selection 

7 All S1 

NARX with three most 

important predictor variables 

selected with RF 

3 Depth 

Dissolved oxygen 

pH 

S2 

NARX with the correlated 

predictor variables selected 

with MVLR 

3 Depth 

Dissolved oxygen 

Total phosphorus 

S3 

NARX with two most 

important predictor variables 

selected with RF 

2 Depth 

Dissolved oxygen 

S4 

 

The NARX models with the four input scenarios described in Table 4 were developed to 

simulate the Chl-a concentrations. The four versions of each model represent four 

substantially different chlorophyll-a models, due to the different combinations of variables 

used as predictors. Different ML models are compared based on statistical indices such as R, 

R
2
, MSE, etc (Jimeno-Saez., 2020). These performance measurements are summarized in 

Table 5 for the NARX network. Different parameters are tried for each NARX model and the 

best one; with the minimum MSE and maximum R and R
2
 in selected for the forecast of Chl-a 

task. 

The topology with 10 neurons in one hidden layer and 2 lags in the input variables provided 

the best performance in the prediction of Chl-a concentrations among all the scenarios. Our 

study considered that a proportion of 70% training, 15% validation and 15% test is a 

favorable implementation. 

The Levenberg–Marquardt algorithm, an extensively recognized training algorithm, was used 

for minimizing nonlinear functions. Training automatically stops when generalization stops 
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improving, as indicated by an increase in the mean square error of the validation samples 

(Mammadli, 2017; Xu et al., 2019).  

Table 7. Performance of Chl-a estimation from NARX models based on four different 

input scenarios. 

Scenarios R R
2
 MSE 

S1 0.68 0.46 0.42 

S2 0.75 0.56 0.31 

S3 0.74 0.55 0.40 

S4 0.79 0.62 0.31 

 

The comparative results between the four versions of the NARX model reveal that the NARX 

with two inputs selected by the RF algorithm yielded the best accuracy among all the 

developed NARX models in term of higher R and R
2
 and lower MSE values (R= 0.79; 

R
2
=0.62; MSE=0.31).  

With three inputs, selected also according to the RF model, the S2 scenario is the second most 

accurate model with a performance close to the best one. 

Because simulating time and over-fitting risks increase with the number of predictor variables 

in predictive modeling, a good practice is to create a model using as few predictor variables as 

possible (Jimeno-Saez at al., 2020).  

We now present one step-ahead (a month) forecasting results for the eutrophication indicator 

considering the three datasets: Chl-a concentrations as the target, using Secchi depth and 

dissolved oxygen as external inputs.  

Most of the NARX model errors were very close to zero and fall within the confidence 

interval (Fig.43), therefore the autocorrelation errors were negligible.  
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Figure 43. Autocorrelation plot.  

 

In general, the input-error cross-correlation plot (Figure 44) showed that all the correlations 

fell within the confidence bound. Furthermore, the obtained results (Fig.45) show an overall 

correlation of R= 0.79 between the actual data (targets) and the predicted values (the outputs). 

The error histogram was checked. It presents a closely bell-shaped normal distribution of the 

errors (Fig.46). Given that, we can conclude that, residuals of the NARX model are 

uncorrelated and normally distributed.  

 

 

 

Figure 44. Cross-correlation plot. 
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Figure 45. Correlation between original (target) and predicted (output) Chlorophyll-a 

values obtained with the NARX network.  

 

 

Figure 46. Error Histogram of the NARX network. 

 

The model's fitness is described in figure 47 and a visual comparison of Chl-a concentrations 

predictions with respect to the observed data is shown. There is a fairly good match between 
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the observed values and the fitted values. The NARX network was able to predict the high 

variability of Chl-a concentrations, therefore, the fitted model seems to be mathematically 

accurate and the NARX could be used on a new data set. Given its effectiveness, multiple 

studies used neural networks techniques to model the Chl-a contents as an eutrophication 

indicator in coastal ecosystems. We can mention the study of Nazeer et al. (2017), who 

suggested, using ML methods, such as ANN for a more accurate and efficient routine 

monitoring of coastal water quality parameters, particularly Chl-a, in a coastal area of Hong 

Kong. In another study carried out in the Mar Menor lagoon in Spain, a Multilayer Neural 

Networks have been used for the eutrophication modeling, considering Chl-a as the 

eutrophication indicator (Jimeno-Sáez et al., 2020). In 2003, Lee et al. (2003) used back-

propagation learning algorithm for training the ANN to predict the algal bloom dynamics of 

the coastal waters of Hong Kong using a 4-year set of phytoplankton abundance data. Lu et 

al. (2016) used a back-propagation ANN model for the prediction of Chl-a concentrations in 

Lake Champlain in China.  

 

Figure 47. Observed and modeled Chlorophyll-a concentrations using NARX Network. 
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By comparing the NARX results (R= 0.79; R
2
= 0.62) with the MVLR including just the two 

most important predictors for the Chl-a concentrations, the performance of the latter linear 

model decreases further and attains an R
2
 of about only 0.2. We can thus confirm that the 

relationship between the variable predictors and Chl-a concentrations is obviously non-linear 

and the use of the NARX, RF and generally ML techniques, is adequate for forecasting Chl-a 

contents in the studied lagoon.  

The forecasting of the Chl-a content one month ahead gave a value about 0.51 µg L-1, which 

was close to the observed value (0.5 µg L-1). These values are practically similar, which 

indicates a relative normal Chl-a level of monthly variation in the lagoon and the accuracy of 

the developed NARX model. 

5. Station 5 

Since Station 5 was found the area the most affected by the eutrophication, due to its position 

(the furthest from the sea), it is important to enhance our knowledge of the eutrophication 

process and the connections between the lagoon's water quality indicators in this sensitive 

area.  

In this section, I present the results from training using only historical data of Station 5, with 

the same machine learning approaches (Random Forest and Nonlinear AutoRegressive with 

eXternal inputs neural network), as in this chapter.  

Figure 48 illustrates the ranking of predictor variables according to their importance by OOB 

technique by permutation. It shows clearly that total phosphorus along with salinity followed 

by the total nitrogen are the variables that best predict Chl-a concentrations at Station 5.  

This result is expected, since the greater concentration of Chl-a at Station 5 compared to the 

other Stations corresponds to the high level of all nutrients detected in this section of the 

lagoon. These waters originate from a location (Station 4) that was unaffected by the dredging 
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work carried out as part of the lagoon restoration project. This area of the lagoon is 

distinguished by a nutrient-rich bottom and the permanent renewal of the lagoon waters is 

allowing the gradual washing of the nutrient reserves from the sediment.  

Total phosphorus and total nitrogen are nutrients that every aerobic photosynthetic organism 

requires for growth. Several studies in different coastal ecosystems have demonstrated the 

significant link between Chl-a and total phosphorus and total nitrogen concentrations (Souchu 

et al., 2010; Bennett et al., 2017; Ruzafa et al., 2019).  

Salinity is one of the most significant factors influencing the dispersal of living creatures, 

among others photosynthetic organisms. Multiples researchers demonstrated the strong 

correlation between the Chl-a and the salinity in aquatic ecosystems (Håkanson and M Eklund 

2010; Desmit et al., 2015). 

 

Figure 48. Predictors importance ranking with Random Forest model in Station 5. The 

importance of each predictor is measured using the out-of-bag (OOB) technique by 

permutation due to each predictor. 

Here the Random Forest (RF) model produced an R
2
 of around 0.55 (table 6). This result is 

close to the result achieved by modeling RF with monthly dynamics of each variable across 

https://www.researchgate.net/profile/Lars-Hakanson-2
https://www.researchgate.net/scientific-contributions/Jenny-M-Eklund-2163525416?_sg%5B0%5D=_hrgQwZnAku-MAW1ZVhLnJt4mlYoUpcUG9DQa5nLfttK_bgJgTyvhSbS4hADAehcCBJG5Jk.RbyROqoh-I1YeGFFBxR0WG3GNW4yh9VljhzvVHu9C34VsySCUCY2sErN9Zmy5nY-EToYhHq_yMTTzwAquM7-Qg&_sg%5B1%5D=_OlTm0e0mCITdv58xVM3QTzuQYy7M-0W44YK-JfmPajSMawds1tV0cW3pJ0waynM_L9L-vk.oKRFAOHnbyZ1WyzHCHLZziYUa91y1KbvTBUYB3Hm5AWXhWJZjfW6z9k67q4VozpQvvy_nlXA4UMDcXGcq4QyvA
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the whole lagoon (R
2
= 0.62). This slight decrease in the model performance maybe attributed 

to the data that is qualified to be more heterogeneous and have more enhanced nonlinear 

relationships in Station 5. 

Despite this small decrease in the prediction accuracy, RF is identified as an effective 

technique to select the specific variables that are the most related to Chl-a concentrations at 

the Station 5 of the North Lagoon of Tunis. 

In order to forecast the Chl-a concentrations, one step ahead early in Station 5, a nonlinear 

autoregressive with external inputs neural network (NARX) is performed. 

The implemented NARX considers the variables that best predict the Chl-a concentrations 

(total phosphorus and salinity) as inputs and the Chl-a as the target. 

Among all scenarios, the architecture with 10 neurons in one hidden layer and two delays in 

the input variables offered the highest performance in predicting Chl-a concentrations. 

Our study considered that a proportion of 70% training, 15% validation and 15% test is a 

favorable implementation. 

Since the Levenberg–Marquardt algorithm is famous for reducing nonlinear functions 

(Mammadli, 2017; Xu et al. 2019), it is not surprising to determine that it is the best method 

to use here. 

The variations between the observed and simulated data from Station 5 are clearly less 

important than the fluctuations recorded between the observed data in Station 5 and the 

simulated data of the whole lagoon performed previously in this chapter (Figure 49). It 

addition, figure 50 represents the models fitness and the comparison of Chl-a concentration 

predictions in the lagoon and at Station 5 versus the observed data at Station 5. The latter and 

the fitted values at Station 5 are reasonably close and predicts more effectively than the 
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NARX performed for the whole lagoon. Considering that, it is of a big importance to develop 

the NARX for Station 5 and look closely at the Chl-a levels in this area of the lagoon. 

 

Figure 49. (a) Variations between observed Station 5 Chl-a data and simulated Station 5 

Chl-a data (mean = 0.016 +/- 0.003), and (b) variations between observed Station 5 Chl-a 

data and simulated Chl-a data from the lagoon data (mean = 0.99 +/- 3.13). 

 

 

Figure 50. Measured and simulated Chl-a concentrations using NARX network at 

Station 5 and in the North Lagoon of Tunis. 

The NARX network was able to predict Chl-a concentrations with satisfactory results and the 

fitted model appears to be mathematically accurate. It can be observed that the NARX has 

slightly underestimated at some high concentrations of Chl-a, while adequately estimated 

Chl-a at reasonable concentrations. This may be due to the training of the network with 
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mostly reasonable concentration data. In addition, the data sets' underestimate is most likely 

due to the non-homogeneous character of the input and output water quality variables. These 

data were collected over a 30-years period, resulting in a considerable variance in the values 

of water quality indicators in this study. 

The error autocorrelation function is used to assess the network performance (Figure 51). The 

autocorrelation plot indicates that almost all correlations lie within the 95% confidence limits 

around zero, which indicates that the prediction errors are significantly uncorrelated.  

 

 

Figure 51. Autocorrelation plot. 

Table 8. Comparison between the lagoon results and the Station 5 results.  

Techniques Lagoon Station 5 

 

Random Forest 

 

R
2
= 0.62 

Predictor variables: 

Depth/ Dissolved oxygen 

 

R
2
= 0.55 

Predictor variables:  

Total Phosphorus/ Salinity  

 

NARX 

 

R= 0.79 

MSE= 0.31 

 

R= 0.73 

MSE= 0.40 

 

Overall, a high correlation (R= 0.73) is observed between in situ measured and estimated Chl-

a concentrations in Station 5 (Figure 52). This result is slightly lower than the previous 

developed NARX (R=0.79) and the non-Stationarity and heterogeneity of the time series can 

explain this small decrease (table 6), especially at Station 5, where there are high fluctuations. 
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Nevertheless, the predictions of the Chl-a content one month ahead gave a value about 1.9 µg 

L-1, which was close to the observed value (1.7 µg L-1). These results are quite similar, 

indicating a typical monthly variation in Chl-a levels in the lagoon at Station 5, which shows 

the good performance of the proposed NARX model. 

For comparison, we simulated a NARX network with total phosphorus, salinity and total 

nitrogen as inputs. The performance decreases further and attains R= 0.69. 

 

 

Figure 52. Correlation between original (target) and predicted (output) Chl-a values 

obtained with the NARX network in Station 5. 

 

To quantify the spatial heterogeneity in the lagoon, a comparison is made between model 

results simulated using monthly dynamics of each variable in the whole lagoon and model 

results simulated exclusively with data from Station 5. It is demonstrated that using only a 

few predictor variables, the NARX created was able to forecast Chl-a concentrations 

dynamics quite effectively in Station 5.  

It is important to mention, that the North Lagoon of Tunis offers great possibilities for fishing, 

because the high salinity of its waters has made plankton flourish feeding mollusks and fish in 

large quantities. There are fisheries at the exit of the lagoon to catch the fish as they leave the 
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ecosystem and head for the open sea. So, it is of a great importance to control the water 

quality in this area of the lagoon.  

The main factors to the eutrophication evaluation and forecasts in Station 5 are total 

phosphorus and salinity. According to our results, it is recommended to regularly monitor 

total phosphorus and salinity in the south part of the lagoon, especially at Station 5. In the 

north part of the lagoon (Stations 1, 2 and 3), it is suggested to control the Secchi depth 

(transparency) and the dissolved oxygen. This variable selection is a crucial step in order to 

reduce the cost and time consuming of field monitoring and laboratory analysis.  

6. Conclusion 

The approach proposed in the current chapter relies on a combination of ML methods, using 

NARX neural network and RF model to predict and forecast Chl-a concentrations in the 

North Lagoon of Tunis. Mainly Secchi depth along with dissolved oxygen are the greatest 

contributors to this eutrophication assessment and forecasting. Our results agree well with 

findings from other studies carried out on Mediterranean coastal lagoons. It's worth 

mentioning that Secchi depth and dissolved oxygen are very practical variables to measure, 

without the need of extra laboratory analysis.  

The NARX developed was able to predict Chl-a concentration dynamics fairly well using 

minimal input predictor variables (R= 0.79). Our results show that complex behavior in the 

eutrophication process could be modeled using the NARX technique and, some extreme 

values were successfully estimated.  

The same approaches were simulated on historical data of the Station 5, which is the most 

affected area with eutrophication in the lagoon. Total phosphorus and salinity were 

demonstrated to be the variables that best predict the Chl-a levels at Station 5, and the created 

NARX was able to forecast the Chl-a concentrations quite effectively (R= 0.73).  
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The findings verified the relevance and usefulness of intelligent modeling as a tool that is 

simple, quick, easy to use, and inexpensive. The developed model can be used to (1) estimate 

Chl-a concentrations when the real value is unavailable (2) simulate alternative water quality 

scenarios over extreme ranges of input and output parameters. 

It is important to mention that despite the important amount of the observed data 

(approximately three decades) used for developing the NARX, it has a very short 

computational time. 

In the wider context of the study of coastal lagoons and other transitional ecosystems, our 

approach could be used to assess and predict the eutrophication process of these natural 

environments and help in assisting civil authorities, engineers, economists, investors, and 

other interested stakeholders in making decisions. 
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Chapter III:  Long time Chl-a forecasting in the North lagoon of 

Tunis using Box and Jenkins methodology 

1. Introduction 

The focused monitoring of major water pollution indicators may detect eutrophication 

episodes within coastal settings (Chen et al., 2015). Chl-a measurements are used to estimate 

the amount of phytoplankton biomass in the water, the potential algal bloom, and hence the 

degree of environmental eutrophication (Tian et al., 2017).  

The mechanisms and processes involved in the initiation and outbreak of eutrophication are 

important to control. Anticipating possible eutrophication episodes is an important emergency 

management measure (Villanoy et al., 2005; Dippner et al., 2011; Recknagel et al., 2013, 

2014), which, in turn, has stimulated the development of ecological forecasting models. 

As mentioned earlier in this manuscript, data driven models based on auto-regression, 

multivariate regression, piecewise regression or artificial neural networks (ANNs), were 

rapidly developed and applied to eutrophication forecasting. Despite the lack of an explicit 

function to define the model system, data-driven methods are effective at forecasting data 

(Chen et al., 2015). Oh et al. (2007) applied two ANN models to identify temporal 

phytoplankton community patterns. Wang et al. (2010) developed an ANN model to predict 

cyanobacterial blooms based on weather conditions for use as an early warning system. 

Regression models are set to identify governing factors and to establish their approximate 

relationship to dependent variables (Cui et al., 2007; Onderka, 2007; Davis et al., 2009; 

Wilhelm et al., 2011) using data samples to estimate model parameters and evaluate model 

performance. Ouchi (1982) applied principal component analysis to develop a multivariate 

prediction model for algal biomass in northern Hiroshima Bay, Japan. Lui et al. (2007) 

developed a vector-based auto-regression model for algal bloom forecasting in Hong Kong 
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waters. For Stationary systems, these models typically show a high predictive capability. 

However, eutrophication is event-driven and characterized by non-Stationary characteristics 

(Hasting, 2001; Onderka, 2007; Paerl and Huisman, 2008; Recknagel et al., 2013). More 

importantly, aquatic ecological data are usually sparse and incomplete, lacking either in 

hydro-environmental or biological parameters. Such data makes it difficult to create 

multivariate regression models, despite the availability of strategies for dealing with missing 

data (Donner, 1982). 

Box and Jenkins (1976) techniques have been widely employed in a variety of disciplines. 

Box and Jenkins is a dynamic, computer-based iterative process that generates an 

autoregressive, integrated moving average model (ARIMA), optimized for seasonal and trend 

variables (Gaynor and Kirkpatrick, 1994).  

ARIMA model is being used in different studies. For instance, to predicting water levels in 

Lake Malawi (Makwinja et al., 2017), or water salinity in Apalachicola bay in Florida (Sun 

and Koch, 2001) and to forecasting sulphur dioxide in Tehran (Hassanzadeh et al., 2009). 

Chen et al. (2015) have developed an ARIMA model to predict daily Chl-a concentrations in 

Taihu Lake (China) and demonstrated its effectiveness in comparison to a multivariate linear 

regression (MVLR). The seasonal, autoregressive, integrated moving average (SARIMA) 

model is composed of ARIMA model including seasonal component of the time series data. 

SARIMA is very frequently used for monthly time series that exhibit a seasonal pattern 

(Prista et al., 2011). Chl-a is a parameter known to be related to temperature (Tizro et al., 

2014), which have seasonal characteristics. For that reason, a SARIMA model is implemented 

to handle the characteristics of the Chl-a seasonal variations, which improves the prediction 

accuracy (Tizro et al., 2014). Furthermore, the SARIMA model requires just one input 

variable, indicating greater application.  
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The objective of this chapter was indeed to investigate the applicability of a SARIMA model 

in algal bloom forecasting, using Chl-a concentrations as a eutrophication indicator using a 

period of approximately three decades (January 1989 - April 2018) of retrospective Chl-a data 

in the North Lagoon of Tunis.  

In comparison, SARIMA was also applied to forecast Chl-a concentrations at Station 5 of the 

lagoon. 
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2. Time Series  

A time series is, at its most basic definition, a set of measurements taken progressively 

through time.  

Time series analysis was used in the Kyoto Protocol for lowering greenhouse gas emissions. 

Scientific research, economics, and time series analysis are all used to justify reducing 

greenhouse gas emissions. Decisions made in the coming years will have an impact on the 

planet's future (Cowpertwait and Metcalfe, 2008). 

Time series techniques are employed in operational decisions on a daily basis. Gas suppliers 

in the United Kingdom, for example, would place orders for gas from offshore sources one 

day ahead of delivery (Cowpertwait and Metcalfe, 2008). Geophysicists are constantly 

studying the earth's shaking or trembling in order to forecast potentially coming earthquakes 

(Cowpertwait and Metcalfe, 2008). An electroencephalogram records brain waves produced 

by an electroencephalograph in order to detect a neurological disease (Cowpertwait and 

Metcalfe, 2008). In addition, we can mention the recent events when scientists are using the 

daily number of Coronavirus new cases and deaths to predict how the pandemic will evolve in 

the near and far future, so they can make the right decisions about this crisis. 

Obviously, there are several justifications for documenting and evaluating time series data. 

Among these are the capacities to gain a better knowledge of the data generation process and 

anticipate future values for optimal system control (Cowpertwait and Metcalfe, 2008).  

3. Common approaches to time series 

When it comes to evaluating time series data, there are four main techniques.  

Briefly, decomposition models, smoothing methods, autoregressive models, and Box and 

Jenkins methodology are described here for time series analysis and forecasting. 
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o In preparation for prediction, decomposition techniques give strategies for dividing the 

time sequence into trends, cycles, seasons, and irregular components [6]. 

o  Smoothing methods are extrapolation techniques based on moving average (MA) [6]. 

The moving average model is the most fundamental method to time series modeling [6]. 

The next observation is just the mean of all previous observations. Despite its simplicity, 

this model may be surprisingly accurate, and it serves as an excellent starting point. 

Otherwise, the moving average can be utilized to spot intriguing data trends. We may 

create a window to smooth the time series and emphasize various trends using the 

moving average methodology [6]. 

o Briefly, autoregressive models are essentially a regression of the time series onto itself 

[6]. 

o The Box and Jenkins techniques combine simpler models to create a sophisticated model 

for time series with non-Stationary features and seasonality. There is the ARIMA model, 

which differentiates the series to Stationarity and then combines the moving average 

(MA) with autoregressive (AR) parameters to yield a comprehensive model amenable to 

forecasting [4]. There is the SARIMA when dealing with seasonality and finally the 

ARMA method, when dealing with a Stationary time series. 

 

Further in this chapter we'll discuss more in details the Box and Jenkins methodology. 

4. Box and Jenkins  

4.1. Presentation  

Box and Jenkins is a dynamic, computer-based iterative method that creates an auto-

regressive, integrated moving average model that is applicable for seasonal and trend factors 
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(Gaynor and Kirkpatrick, 1994). The technique is suitable for medium to long-term time 

series with at least 50 observations (Wei, 1990). 

The ability to deal with complicated dynamic processes, its flexibility in processing dependent 

time series data,  its advanced computational and mathematical methods, its functionality in 

uncertainty analysis and the simplicity of its execution (Lu et AbouRizk, 2008), made Box 

and Jenkins method one of the best techniques to create a model as a forecasting tool .  

Box and Jenkins methodologies provide the most reliable forecasting models for any data set 

(Gaynor and Kirkpatrick, 1994). Armstrong's comparison test (Armstrong,1985) on the 

ranking of extrapolation methods (from the highest rank as 1 to the lowest rank as 5) for both 

short-range and long-range graded Box and Jenkins methods in terms of cost, 

comprehensibility, and forecast accuracy as 1.5 for short-range forecast accuracy and 2 for 

long-range forecast accuracy (Lu et AbouRizk, 2008).  

Box and Jenkins methods generally start with the most recent observations and then analyze 

recent forecasting errors to determine the appropriate modifications for future periods. In 

doing so, they enable a more flexible imitation of a certain dynamic pattern or seasonality 

while making timely adjustments to error levels (Lu et AbouRizk, 2008).  

Box and Jenkins models are capable of handling dependent time-series data that are 

considered not suitable for other approaches. A regression model, for instance, has a standard 

assumption that the term for error should be statistically independent. In fact, often related 

data are either dependent or correlated with each other (Lu et AbouRizk, 2008). 

Box and Jenkins' technique is based on the fact that the process that generated the time series 

can be approximated using an ARMA model if it is Stationary or an ARIMA model if it is 

non-Stationary (Lu et AbouRizk, 2008). 
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4.2. Stationarity 

A time series is considered to be Stationary if there is no systematic change in mean (no 

trend). In other words, the characteristics of one segment of data are relatively similar to those 

of any other segment (Cowpertwait and Metcalfe, 2008). 

The time plot should give an idea if the time serie is Stationary or not, but it's important to 

double check the Stationarity in a mathematical way. To do so, a test is done called the 

Augmented Dickey Fuller Test (ADF). 

In statistics, the ADF test examines the null hypothesis that the time series is non-Stationary. 

The alternative hypothesis is that the time series is Stationary [7]. 

. Null Hypothesis (H0): If it is not rejected, it shows that the time series is non-Stationary. 

. Alternate Hypothesis (H1): The null hypothesis is rejected; it implies that the time series is 

Stationary. 

 

The p-value from the test is used to interpret this result. A p-value less than a certain threshold 

(5%) indicates that we reject the null hypothesis (Stationary); conversely, a p-value greater 

than the threshold indicates that we fail to reject the null hypothesis (non-Stationary). 

. P-value > 0.05: Fail to reject the null hypothesis (H0), the data is non-Stationary. 

. P-value <= 0.05: Reject the null hypothesis (H0), the data is Stationary. 

4.3. The Autocorrelation Function (ACF) 

The concepts of correlation are very important in time series analysis. In particular, we can 

examine the correlation structure of the original data to help us identify possible form(s) of 

(none) Stationary models [1]. Autocorrelation is the correlation of a variable with itself at 

https://en.wikipedia.org/wiki/Statistics
https://en.wikipedia.org/wiki/Null_hypothesis
https://en.wikipedia.org/wiki/Alternative_hypothesis
https://en.wikipedia.org/wiki/Stationarity_(statistics)


 

91 

differing time lags.  Autocorrelation between any two observations only relies on the time lag 

(h) between them [1]. For Stationary processes define:  

                 

Lag-h autocorrelation is given by: 

                  
  

  
  

This function plays an essential role in the analysis of data aimed at determining the degree of 

the lag in a moving average (MA) model [1].  

The usage of this function was presented as part of the Box and Jenkins approach to time 

series modeling, in which displaying the autocorrelation function allowed one to identify the 

proper lags q in an MA (q) model or an extended ARIMA (p,d,q) model (Omer, 2010). 

4.4. Partial autocorrelation function (PACF) 

The partial autocorrelation function (PACF) measures the linear correlation of a series  xt 

and a lagged version of itself  xt+k  with the linear dependence 

of {xt−1,xt−2,…,xt−(k−1)}{xt−1,xt−2,…,xt−(k−1)} removed [1].  

This function plays an important role in data analysis aimed at identifying the extent of the lag 

in an autoregressive (AR) model [1]. The use of this function was introduced as part of the 

Box and Jenkins approach to time series modeling, whereby plotting the partial 

autocorrelation function one could determine the appropriate lags p in an AR (p) model or in 

an extended ARIMA (p,d,q) model (Omer, 2010).  

In more plain words, the Autocorrelation Function and the Partial Autocorrelation Function 

are functions that express information useful in determining the orders p and q of an ARIMA 

(p,d,q) model (table 7). 

 

https://en.wikipedia.org/wiki/Autoregressive_model
https://en.wikipedia.org/wiki/Box%E2%80%93Jenkins
https://en.wikipedia.org/wiki/Autoregressive_model
https://en.wikipedia.org/wiki/Autoregressive_integrated_moving_average
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Table 9. ACF and PACF in identifying p and q [1]. 

Conditional Mean Model ACF PACF 

AR(p) progressively decreases Cuts off after p lags 

MA(q) Cuts off after q lags progressively decreases 

ARMA(p,q) progressively decreases progressively decreases 

ARIMA (p,d,q) Cuts off after q lags Cuts off after p lags 

 

4.5. Quantile - Quantile plot  

The quantile - quantile plot, often known as the Q-Q plot, is a graphical approach for 

determining if a set of data is likely to originate from any theoretical distribution, such as the 

normal or exponential distribution. A normal Q-Q plot, for example, may be used to test if our 

variable is normally distributed, after realizing a statistical analysis.  It is a visual assessment 

that allows us to understand at a glance if our assumption is credible and, if not, how the 

assumption is violated and which data points contribute to the violation [8].  

Q-Q plot takes your sample data and sort it ascendingly before plotting it against quantiles 

generated from a theoretical distribution. If both sets of quantiles originate from the same 

distribution, the dots should form (Figure 53) an almost straight line [7]. 

 

Figure 53. An example of a normal distribution based on Q-Q plot [8]. 
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5. Methodology  

The auto regressive integrated moving average (ARIMA) models developed by Box and 

Jenkin (1976) are the most widely used approach for time series analysis.  

ARIMA models, developed by Box and Jenkins (Box et al., 2008), provide a robust approach 

to time series forecasting. Based on the autocorrelation analysis of the time series, a 

mathematical model to characterize the sequence may be developed (Chen et al., 2015). 

Once the model is built, it is expected to predict future values considering the time series in 

the past and at present (Chen et al., 2015).  

The assumption of some sort of statistical equilibrium is a key aspect in the creation of time 

series models (Hyndman and Athanasopoulos, 2013). Assumption of this kind is that of 

Stationarity (Pai and Lin, 2005). Forecasting is based on a linear combination of previous 

observations, which requires a stable time series with no discernible trend in the data (Pai and 

Lin, 2005). The ARIMA model assumes that the process remains at a statistical equilibrium 

with probabilistic properties that do not change over time, varying with a fixed constant mean 

level and with constant variance (Box et al., 2008). If the mean increases or decreases over 

time or if the variance does (as indicated by the excursions around the mean becoming smaller 

or larger over time), the series may need to be transformed to make it Stationary before 

modeling (Allard, 1998). Often, time series data are not Stationary, and they often have 

variations over time in means and variances (Helfenstein, 1991). Previously, researchers 

discovered that by differencing the time series, they could remove trend components in the 

mean (Helfenstein, 1991). Typically, one or two orders of differencing are sufficient to 

prepare data for the technique (Dindarloo, 2015). In addition to the trend components, time 

series related to the ecology field often show seasonal patterns. Box and Jenkins have 

developed a method to handle time series that contain seasonality (Box et al., 2008).  
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In this case, the model is known as SARIMA model with S observations per period. It is 

represented by SARIMA (p,d,q) (P,D,Q)S, which has the following form: 

 

                                         ... (1) 

With 

                    
 . (2) 

                
 ……. (3) 

            
       

   (4) 

           
       

   …. (5) 

Where p is the autoregressive order, d is the number of differencing operations, q is the 

moving average order and P, D, and Q are the corresponding seasonal orders. 

To build an ARIMA or SARIMA model for a time series, Box and Jenkins (1976) proposed 

an iterative approach (Tiao, 2001) involving four steps: Stationarity check, identification and 

estimation, diagnostic and residual check and prediction (Fig. 54). 

This technique has become widely used, facilitating the practical application of time series 

models for forecasting. The Stationarity check phase involves suitable time series 

differencing. It is performed to achieve Stationarity and normality; the Stationarity of the time 

series is checked using the Augmented Dickey Fuller (ADF) test. The null hypothesis for this 

test is that the data is non-Stationary. For the data to be Stationary, we want to reject the 

null hypothesis, which means, a Stationary data with a p-value of equal or less than 0.05.  

The temporal correlation structure of the transformed data (or not transformed, depending on 

the ADF test) is identified by examining its autocorrelation (ACF) and partial autocorrelation 

(PACF) functions (Mishra and Desai, 2005). The goal is to reduce the selection of 

parsimonious models worthy of further examination (Tiao, 2001). According to the ACF and 

PACF graphs of the Stationary series, various ARIMA models can be identified. ACF and 
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PACF plots are used to identify the six parameters (p, d, q, P, D, Q) in the SARIMA model. 

The minimum Aikake information criterion (AIC) and Bayesian information criterion (BIC) 

introduced by Akaike (1972) and Schwartz (1978), respectively, are used to select the best-fit 

model (Fraley and Raftery, 1998) among the candidate ones that were developed in the 

previous step.  

AIC estimates the relative amount of information lost by a given model: the lesser 

information a model loses, the higher the quality of that model (Aho et al., 2014).  

         
        

BIC is a criterion for model selection, which is closely related to the AIC. The model with the 

lowest BIC is preferred (Aho et al., 2014). 

         
           

Where,   
     the maximum likelihood estimation of the innovation variance, r is the number 

of parameters in the model and T is the size of the sample series. 

After an appropriate model is chosen and the parameters are estimated, several tests are 

required (model fitness and residual checking) to verify whether the model is adequate for 

describing the studied process. 

To do so, the ACF and quantile-to-quantile (Q-Q) figures of residuals were plotted. In 

addition, the forecast accuracy of the model was evaluated by splitting the data in two sets. 

The last observations in our data set were used to compare between simulated values and 

actual ones. Finally, the chosen SARIMA model was applied to predict the monthly Chl-a 

future values.  

The long time series which covers approximately three decades of monthly Chl-a historical 

data, enabled us to perform multiple time steps ahead (Wei, 1990) from May 2018 to 

December 2025.   

 

 

https://en.wikipedia.org/wiki/Model_selection
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The modeling of the SARIMA model was performed using Econometrics toolbox in the 

MATLAB software MATLAB® software (version 7860349 (R2020b), The Mathworks, MA, 

USA). 
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Figure 54. The prediction process using the SARIMA model. 
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6. Results and discussion 

The time series of monthly Chl-a values is showed in figure 55. The autocorrelation pattern of 

Chl-a in the North Lagoon of Tunis (Fig.56) showed that the correlation coefficient declined 

relatively quickly. It was better to perform an ADF test to check the Stationarity of Chl-a 

concentrations time sequence (Table 8).  

 

Figure 55. Temporal distribution of Chlorophyll-a concentrations in the North lagoon of 

Tunis. 

 

The ADF test confirmed the Stationarity of Chl-a time series with a p-value < 0.05. 

According to that, the time series does not need transformation. It was not necessary to 

transform the data by differencing. Instead, we used the data on the original scale. Fitting a 

SARIMA model directly is advantageous for forecasting because forecasts are returned on the 

original scale. 

Table 10. ADF test results applied to the Chl-a original time series. 

Null Rejected P-value Statistics Tests Critical 

value 

Significance level 

True 0.001 -4.599 -1.941 0.0500 
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Based on the PACF (Fig. 56), all SARIMA (p, d, q, P, D, Q) models in which the 

autocorrelation delay p and seasonal autocorrelation delay P was less than or equal to 4 and 

the moving average q and seasonal moving average Q was less than or equal to 4, were tested. 

As mentioned above, Chl-a time series data contain a seasonal component. To analyze its time 

series from January 1989 through April 2018, we defined S=12 because we have 12 

observations per year. 

It was found the minimal AIC and BIC information when performing a SARIMA 

(2,0,2)(2,0,2)12 with AIC = 628.91, BIC = 666.78 and R
2 

= 0.52. To avoid making remarkable 

changes in the original data, it is better to keep the number of parameters to a minimum, so 

that the values of p, P, q, Q, d, and D selected are less than or equal to 2 (Hintze, 2007).  

It was observed that our developed SARIMA (2,0,2)(2,0,2)12 for Chl-a forecasting with AIC= 

628.91 and BIC=666.78 and R
2
=0.52 performed better than SARIMA(1,0,0)(2,0,0)12 with 

AIC = 1593, BIC =1612 and R
2
= 0.46 reported by Raman et al. (2018) for forecasting 

monthly fish catch data in Chilika lagoon situated in East Coast of India. In addition, our 

SARIMA (2,0,2)(2,0,2)12 was better than the SARIMAX with AIC = 1114.2, BIC = 1141.0, 

and R
2
 = 0.52 developed also by Raman et al. (2018). Even though, the coefficient of 

determination R
2
 is similar, our model presented the lowest AIC and BIC. 

It is to be mentioned that the SARIMAX, is a model developed using Box and Jenkins (1976). 

SARIMAX is a SARIMA with external factors derived using PCA analysis (Raman et al.; 

2018).  
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Figure 56. Autocorrelation Function (a) and Partial Autocorrelation Function (b) of the 

monthly Chlorophyll-a variations in the North lagoon of Tunis. 

 

Estimation of the SARIMA (2,0,2)(2,0,2)12 model parameters and their testing results are 

presented in table 9. All estimated coefficients are statistically significant (p-value < 0.05).  

Table 11. Parameter estimates and their testing results of the SARIMA (2,0,2)(2,0,2)12 

model. 

Parameter Coefficient Standard Error T statistics p-value 

Constant 0.0448 0.0031 2.4357 0.01511 

AR (1) 0.0896 0.0400 1.9890 0.03227 

AR (2) 0.0812 0.0333 2.2383 0.02156 

SAR (12) 0.0967 0.0435 2.2250 0.02156 

SAR (24) 0.6763 0.0342 19.7782 4.5892e-87 

MA (1) -0.0686 0.3935 -0.0217 0.0382 

MA (2) -0.3391 0.1912 -1.7739 0.0491 

SMA (12) -0.0983 0.0577 1.7045 0.0488 

SMA (24) -0.6917 0.0578 -11.6159 5.3588e-33 

Variance 0.3302 0.0225 14.6879 7.7121e-41 

 

The model fit analysis is done by residuals checking. The residuals ACF of SARIMA 

(2,0,2)(2,0,2)12 is presented in Figure 57. Residuals ACF suggested autocorrelations near 0. 

This indicates that the residuals did not deviate significantly from a 0 mean. In more plain 

words, it means that the residuals are not correlated. 



 

101 

The residual Q-Q plot (Fig.58) suggests that the residuals are approximately normally 

distributed, with slightly heavier tail. Given that, we can conclude that, residuals of the 

SARIMA (2,0,2)(2,0,2)12 model are uncorrelated and approximately normally distributed.  

 

 

Figure 57. Autocorrelation Function (ACF) of residuals. 

 

 

Figure 58. Residual Quantile - Quantile (Q-Q) plot. 

 

Comparison of observed Chl-a data with the fitted ones by the SARIMA (2,0,2)(2,0,2)12 

model are presented in figure 59. There is a good match between the observed values and the 

fitted ones. To check the forecasting accuracy, table 10, shows a comparison between the 

predicted values and the observed ones for the period from January 2017 to April 2018. 
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Figure 59. SARIMA (2,0,2)(2,0,2)12 model fit of the Chlorophyll-a content time series in 

the North lagoon of Tunis from January 1989 to April 2018. 

 

Table 12. Comparison of predicted and observed monthly Chlorophyll-a variations 

using the SARIMA (2,0,2)(2,0,2)12 model for the data from January 2017 to April 2018. 

Month Predicted Values Observed Values 

January 1.44 1.2 

February 1.22 1.3 

March 1.15 0.5 

April 0.84 0.54 

May 0.68 0.72 

June 0.74 0.58 

July 0.57 0.48 

August 0.91 0.76 

September 0.74 0.82 

October 1.52 1.8 

November 0.87 1.06 

December 0.62 0.78 

January 1.23 1.48 

February 0.98 1.3 

March 0.76 0.80 

April 0.63 0.5 

 

In this study, we have applied a SARIMA (p,d,q)(P,D,Q)S model to analyze Chl-a variations 

of monthly collected data in the North lagoon of Tunis from 1989 through 2018, in the 

purpose of assessing and forecasting eutrophication and contributing to prevent any 

deterioration in the studied ecosystem. We have developed a SARIMA that closely fitted Chl-

a observed data. According to our results, the SARIMA model developed in this study was 

reliable with high validity, which suggests that our model could be an appropriate statistical 

tool to predict the future changing trends of Chl-a values or any other key parameters, thus 

preventing high eutrophication scenarios in the North lagoon of Tunis or other ecosystems. 
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SARIMA has several advantages over other predictive methods, such as moving average, 

exponential smoothing, etc, in particular, because of its forecasting capability, especially in 

case of long periods of time, and its richer information on time-related changes (Linthicum et 

al., 1999; Box et al., 2008).  

Once we obtained the satisfactory model, we have used it to forecast future values of the Chl-

a in the ecosystem. Figure 60 shows the forecast of Chl-a concentrations in the North lagoon 

of Tunis. The model seems to provide realistic predictions in the future. 

 

Figure 60. Time series plot of Chlorophyll-a concentrations in the North lagoon of Tunis 

with forecasts and forecast intervals at 75%. 

 

To the best of our knowledge, this is the first study that has applied the SARIMA model to fit 

and forecast monthly Chl-a variations, in the North lagoon of Tunis.  

Forecasting plays an essential role in policy formulation and implementation especially in the 

management of fisheries or aquatic resources. In this context, several time series model have 

been developed for forecasting purposes, such as ARIMA model, multiple linear regression 

(MLR), non-linear regression (NLR), smoothing models, dynamic models, harmonic 

regression (HREG), Vector auto regression model, generalized auto regressive conditional 

heteroscedasticity (GARCH), Gausian autoregressive models (Stergiou 1991; Stergiou et al. 
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1997; Romilly 2005), the studies showed that ARIMA validation errors are significantly 

lower, and is a better forecasting model (Raman et al., 2018). 

It is known that the SARIMA modeling process needs a large amount of data. An early study 

suggested that a minimum of 50 observations are needed to build a reasonable SARIMA 

model (Wei, 1990), explaining most of its variance and adequately modeling the seasonality 

and correlation structure of the data (Stergiou 1991; Pajuelo and Lorenzo 1995). To obtain a 

stable and precise SARIMA model, we had to collect 352 observations of Chl-a data over the 

past three decades without interruption to be mentioned. We can state that the results of our 

study are robust enough.  

Similar, ARIMA model has been used in various studies in great lagoons such as on net basin 

supply (NBS) for extreme flood study in lakes Eric and Ontario (Mathier et al. 1992), on 

modeling of the great lakes freeze for ferrous scrap (Albertson and Aylen 1996), and on 

spatio-temporal behavior of atmospheric temperature data of great lakes US (Agrawal 2011) 

and reliable predictions by ARIMA with acceptable accuracy showed a important role for 

aquatic natural ecosystems managers. 

The SARIMA model may not have a good interpretation of the eutrophication process or 

internal/external factors affecting Chl-a rates, but from implementation point of view it is the 

simplest and most suitable model to apply over other nonlinear models (Adhikari and 

Agrawal 2013). Indeed, the model needs only one input variable and provides predictions 

with acceptable accuracy, which makes its applicability easier for practical applications in 

early-warning of algal blooms. In addition, it is important to mention that working with only 

one variable is money and time-saving for researchers.  

 

 



 

105 

7. Station 5 

For comparison, the Box en Jenkins methodology was realized on the observed Chl-a data of 

the Station 5. Indeed, this area of the North Lagoon of Tunis was identified the most 

influenced by the pollution, regarding to its position in the ecosystem.  

An ADF test was performed to check the Stationarity of the Chl-a time series at the Station 5 

of the lagoon (p-value = 0.1). The ADF test confirmed the non-Stationarity of the Chl-a time 

series with a p-value > 0.05.  

According to that,  it was necessary to transform the data by differencing. It's possible that 

this finding is due to the data in Station 5 being more heterogeneous and having more 

increased nonlinear interactions. 

Based on the autocorrelation pattern of the Chl-a, ACF and PACF (Fig.61), all SARIMA (p, 

d, q, P, D, Q)S models in which the autocorrelation delay p and seasonal autocorrelation delay 

P was less than or equal to 3 and the moving average q and seasonal moving average Q was 

less than or equal to 3, were tested. 

 

Figure 61. ACF (a) and PACF (b) of the monthly Chl-a variations in the Station 5. 

It was found the minimal AIC and BIC information when performing a SARIMA 

(1,1,0)(0,1,0)12, with AIC = 1210.0 and BIC = 1222.2. 

a b 
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The performance of the SARIMA slightly decreased in comparison with the SARIMA 

(2,0,2)(2,0,2)12 realized with monthly dynamics of the Chl-a in the lagoon, given the 

heterogeneity of the data at Station 5. 

The differences between observed and simulated data from Station 5 are clearly less 

significant than the differences between observed data from Station 5 and simulated data from 

the entire lagoon performed earlier in this manuscript (Figure 62). Given this, it is critical to 

create the SARIMA model for Station 5 and closely monitor the Chl-a levels in this part of 

the lagoon. 

 

Figure 62. (a) Variations between observed Station 5 Chl-a data and simulated Station 5 

Chl-a data (mean =  0.021 +/- 0.002), and (b) variations between observed Station 5 Chl-

a data and simulated Chl-a data from the lagoon data (mean =   0.95 +/- 0.01). 

 

The ACF of SARIMA (1,1,0)(0,1,0)12 residuals is presented in Figure 63. Residuals did not 

deviate considerably from a 0 mean, which means that the residuals are uncorrelated. 
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Figure 63. ACF  of residuals. 

The residual Q-Q plot (Fig. 64) suggests that the residuals are approximately normally 

distributed, with slightly heavier tail. Given that, we can conclude that, residuals of the 

SARIMA (1,1,0)(0,1,0)12 model are uncorrelated and normally distributed.  

 

 

Figure 64. Residuals (Q-Q) plot. 

Figure 65 compares the observed Chl-a data with the model-fitted data using the SARIMA 

(1,1,0)(0,1,0)12  model. We can see that between the measured values and the fitted values, 

there is a good agreement. 
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Figure 65. SARIMA (1,1, 0) (0,1,0)12 model fit of Chl-a content time series in Station 5. 

Once we had a good model, we were able to predict future Chl-a values in the ecosystem at 

Station 5. Figure 66 represents the predicted Chl-a concentrations in Station 5 from May 2018 

to December 2025. The model appears to be capable of making accurate forecasts for the 

future, despite the fact that the model underestimated the high values of the Chl-a. 

 

Figure 66. Time series plot of Chl-a concentrations in the North Lagoon of Tunis Station 

5 with forecasts and at 75% confidence interval. 
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The data sets underestimation is most likely owing to the non-homogeneous nature of the data 

water quality characteristics. These data were gathered over a 30-year period, resulting in a 

significant variation in the values of water quality indicators in this study, especially at Station 

5. 

A comparison is conducted between model results simulated using monthly dynamics of Chl-

a in the whole lagoon and model results simulated only using data from Station 5 to assess the 

spatial heterogeneity in the lagoon. 

It is shown that with only one input variable , the SARIMA created was able to forecast Chl-a 

concentration dynamics quite effectively in Station 5. 

As mentioned earlier in this manuscript, the North Lagoon of Tunis offers excellent fishing 

opportunities. Fisheries are installed in the south-east zone of the ecosystem, to catch fishes 

how are trying to reach the open sea. As a result, controlling water quality in this section of 

the lagoon is critical. 
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8. Conclusion 

In our study, we have used the SARIMA model to forecast future values of Chl-a in the North 

Lagoon of Tunis as an eutrophication indicator. This model was applied for a time window of 

approximately three decades. Different SARIMA (p,d,q)(P,D,Q)S models were implemented. 

The chosen one, a SARIMA (2,0,2)(2,0,2)12 with the lowest AIC and BIC was used for 

forecasting.  

The goodness of fit was analyzed by comparing with the actual data from last observations 

and checking the residuals. The residual diagnostic indicated that they are uncorrelated and 

approximately normally distributed.  

The forecasting results are quite satisfactory (AIC=628.91; BIC=666.78 and R
2
=0.52) since 

the forecasting period seems to reproduce relatively well the normal Chl-a monthly content in 

the lagoon.  

The same approach was simulated on historical data of the Station 5, which seems to be the 

most affected area with eutrophication in the lagoon. The created SARIMA (1,1, 0) (0,1,0)12 

for Station 5, was able to forecast the Chl-a concentration quite effectively.  

Despite the fact that the North lagoon of Tunis was classified as a Wetland of International 

Importance (Ramsar site), given its history and importance, this ecosystem is still a fragile 

one. The SARIMA model applied to historical data of Chl-a or any other key parameter could 

be an important tool to providing early evidence that guides prevention and control 

interventions for the ecosystem. 
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Chapter IV: Hybrid model: Integrating artificial intelligence and 

Box and Jenkins time series models (SARIMA-NARX) 

1. Introduction 

One of today's most challenging environmental issues impacting surface water systems is 

eutrophication (Li et al., 2017). Hydro-climatic variables such as evaporation, temperature, 

precipitation, etc. in addition to anthropogenic contribution, made eutrophication qualified as 

a complicated process to control (Schramm, 1999; Viaroli et al., 2008). 

Proper ecosystem management cannot be achieved without access to precise data to realize 

accurate predictions of eutrophication episodes for effective resource conservation operations 

(Borja et al., 2008). Forecasting, as a form of early monitoring and pollution detection, can 

help in the creation of successful environmental control measures (Tian et al., 2017).  

Accurate forecasting of eutrophication episodes is critical for more timely and efficient 

ecosystem management (Borja et al., 2008). If natural resources are managed in a sustainable 

manner, coastal ecosystems should be able to supply goods and services that support varied 

human needs (Borja et al., 2008). 

Previous research principally implemented two methods for time series forecasting of 

eutrophication, using the Chlorophyll-a as an eutrophication indicator: (i) linear approach: 

MVLR (multivariate linear regression); Box and Jenkins techniques (ARIMA, SARIMA,…); 

and (ii) non-linear approach: ANNs (artificial neural networks). First, the linear method is 

useful when the independent and dependent variables have a linear relationship (Koo et al., 

2010; Hong et al., 2012). 

The ARIMA model, created by Box and Jenkins, uses auto-correlation analysis of time series 

data to predict future values (Box and Jenkins, 1976). The SARIMA model can be utilized if 

there is a seasonal trend in time series data (Zhang et al., 2003). 
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Sun and Koch (2001) predicted the future values of water salinity in Apalachicola bay in 

Florida using an ARIMA model. Hassanzadeh et al. (2009) and Makwinja et al. (2017) used 

ARIMA model to forecast sulphur dioxide in Tehran and water levels in Lake Malawi, 

respectively. 

When compared to exponential smoothing and to MVLR model, the ARIMA model was 

shown to be the most superior (Jeong et al., 2014). 

Second, the non-linear method is appropriate in cases when the independent and dependent 

variables have a non-linear relationship (Jeong et al., 2014). 

Previous researches have used ANN models in non-linear methods as a representative 

technique. Wang et al. (2010) predicted cyanobacterial blooms in Dianchi Lake in China 

based on weather conditions using ANN methods. Li et al. (2017) and Yi et al. (2018) applied 

different types of artificial neural networks to estimate the concentration of Chl-a in 27 lakes 

in China and in one Korean river, respectively. 

Compared to the MVLR model and to support vector machine, the ANN model was shown as 

the most superior (Jeong et al., 2014). 

Zhang and Qi (2005) created an ANN model that takes seasonality into account, emphasizing 

the need of appropriate data pre-processing to account for seasonal or trend fluctuation. 

Real processes, often have both linear and nonlinear characteristics, and earlier research tried 

to clarify the variability of real problems by combining two techniques (Chen et al., 2007). 

For example, coastal lagoons are vulnerable to regular environmental disturbances and 

variations (evaporation, precipitation, etc.), in addition to a tight link with temperature and 

season dependency. As a result, the combined model, often known as the hybrid model, has 

become a popular technique for improving forecasting accuracy. 

In neural network forecasting research, several combining techniques have been studied. 

Haizum Abd Rahman et al. (2019) described a combining methodology using Artificial 
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Neural Network and the Seasonal ARIMA to forecast air pollutant index in Johor city, 

Malaysia. Yu et al. (2019) presented a hybrid SARIMA and NARX network approach for 

predicting the incidence of schistosomiasis in China. Pelikan et al. (1992) and Ginzburg and 

Horn (1994) proposed to combine several feed-forward neural networks to improve time 

series forecasting accuracy.  

In the previous chapters Seasonal Autoregressive integrated moving average (SARIMA) 

model and artificial neural network NARX model have performed well in forecasting linear 

and non-linear Chl-a content time series in the North Lagoon of Tunis, individually as an 

eutrophication indicator. 

The aim of this chapter is to create a predictive model for forecasting Chl-a content in the 

North Lagoon of Tunis by combining the SARIMA model (linear method) with the NARX 

network (non-linear approach). 

This chapter was conducted in three steps: (1) establishment of Chl-a concentrations data in 

the North Lagoon of Tunis; (2) Forecasting the monthly Chl-a variation using the linear 

approach (SARIMA model); and (3) improvement in prediction accuracy by considering the 

non-linearity of the residual from the SARIMA model using the NARX model. 
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2. Time series forecasting models 

Time series modeling may be done in a variety of approaches. One of the most appropriate 

and often used time series technique is the autoregressive integrated moving average 

(ARIMA) model (Zhang, 2003). 

The popularity of the ARIMA model stems from its statistical characteristics throughout the 

model-building phase (Box and Jenkins, 1970). One of the basic assumptions of the ARIMA 

technique, and hence of traditional prediction methodologies, is that the time series under 

consideration is the result of linear processes (Zhang, 2003). The ARIMA model implies that 

future values are linearly related to present and previous time series values. Nevertheless, 

because real-world processes are complicated and frequently dynamic and non-linear (Zhang 

et al.,1998), traditional techniques may be insufficient if the time series exhibits non-linear 

behavior (Zhang, 2003). 

Many nonlinear models have been presented as alternate techniques to solve the problem of 

nonlinearity, with artificial neural networks (ANNs) being one of the most frequent and 

essential approaches. The capacity of neural networks to model nonlinearly is its primary 

benefit. ANN models can approximate a nonlinear process of any complexity (Hornik et 

al.,1989). Given these characteristics, it is not unexpected that ANNs have piqued the interest 

of time series forecasters (Zhang, 2003). 

3. Hybrid model 

The arguments illustrating the necessity for hybrid model are highlighted in this section.  

First, it is sometimes difficult in practice to determine if a time series under investigation is 

created by a linear or nonlinear underlying mechanism, or whether one technique is more 

efficient than the other. As a result, forecasters have difficulties in determining the appropriate 
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technique for their specific scenarios. Several models are often tested, and the one that 

produces the most accurate results is chosen (Zhang, 2003). 

Second, time series in the actual world are rarely pure linear or nonlinear. They frequently 

include both linear and nonlinear patterns. If this is the case, neither ARIMA nor ANNs can 

be used to model and predict time series since the ARIMA model cannot handle nonlinear 

correlations and the neural network model cannot handle both linear and nonlinear patterns 

equally effectively. As a result, by merging ARIMA and ANN models, complicated 

autocorrelation structures in data may be more precisely represented (Zahng, 2003). 

Third, it is nearly widely acknowledged in the forecasting literature that no single technique is 

superior in any case (Jenkins, 1982; Makridakis et al., 1982; Chatfield, 1988). This is largely 

due to the fact that a real-world situation is always dynamic, and different patterns cannot be 

described equally effectively by a single model (Khandelwal et al., 2015). 

For example, in the literature of time series forecasting with neural networks, most studies 

(Sharda et al., 1990; Tang et al., 1991; Tang et al., 1993; Zhang et al., 2001; Hwang et al., 

2001) evaluate the efficiency of the ANN model using the ARIMA models as a reference. 

Many studies, show that combining multiple distinct models may often increase forecasting 

accuracy over the individual model without the requirement to select the "best" model 

(Newbold and Granger, 1974; Makridakis et al., 1982; Clemen, 1989; Makridakis et al., 

1993). As a result, combining several models can improve the capacity to capture various data 

patterns and improve performance predicting. Using a hybrid model or integrating different 

models to increase forecasting accuracy has become widespread practice (Makridakis et al., 

1982). In forecasting, the primary principle behind model combination is to use each model's 

distinct feature to catch diverse patterns in the data (Zhang, 2003). 
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4. Methodology  

4.1. Hybrid model 

As previously stated, neither ARIMA nor ANN are universally applicable to all forms of time 

series. This is due to the fact that all real-world time series contain both linear and nonlinear 

correlation patterns between observations. 

The traditional approach of the hybrid ARIMA–ANN model introduced by Zhang, (2003) 

considers that time series can be decomposed as the sum of a linear component and a 

nonlinear component. Then, 

                                                                                                                                     (9) 

Where Lt denotes the linear component and Nt denotes the nonlinear component to be 

estimated.  

The ARIMA model is used in the first stage to fit the linear component and, as a consequence, 

to produce the prediction value denoted as   
    Over-fitting, which is more closely associated 

with neural network models, can be eased by first fitting the ARIMA model to the data 

(Zhang, 2003). 

The residual at time t can be obtained by comparing the real value (Yt) with the predicted 

value (  
 ). That is, 

                                                                                                                                     (10) 

Because the residuals dataset after ARIMA fitting contains only nonlinear components, it can 

be appropriately simulated using an ANN. 

 

With n  input nodes, the ANN for residuals has the following form: 

                             ………………………………………………………… (12) 
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Where f  is a nonlinear function determined by the neural network and    is the random error. 

If (  
 ) is the forecast of this ANN, then the ultimate hybrid forecast at time t is obtained as: 

       
     

  ……………………………………………………………………………... (13) 

The proposed methodology in this chapter for forecasting the content of Chl-a as a 

eutrophication indicator in North lagoon of Tunis consists in the development of a hybrid 

model that combines a SARIMA model for the seasonal and linear characteristics of the Chl-a 

time series and a NARX model as a neural network method for the nonlinear characteristics of 

the time series. 

For Chl-a forecasting, the SARIMA (2,0,2)(2,0,2)12 model, which was shown to be the most 

appropriate in the previous chapter, is utilized primarily. The residuals of the SARIMA 

model, along with Secchi depth and dissolved oxygen data, are then simulated using the 

NARX neural network to capture the time series' nonlinearity. 

Chapter II in section (3.3.1) and Chapter III in section (6) provide the followed methodology 

in developing the NARX network and the SARIMA (2,0,2)(2,0,2)12 model, respectively. 

After being satisfied with the performances of the two models separately, we can then 

combine the two approaches to obtain the performed forecasts (Fig. 67). 
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STEP 1. Establishment of Chlorophyll-a concentrations data in the North Lagoon of Tunis 

 
 

Analysis of the physico-chemical and biological characteristics of the 

North Lagoon of Tunis 

Monthly Chlorophyll-a and physico-chemical collected data 

from the North Lagoon of Tunis 

STEP 2. Prediction of the monthly collected Chlorophyll-a data in the North Lagoon of 

Tunis using the SARIMA model 

  

Application of the Seasonal Autoregressive Integrated Moving 

Average (SARIMA) 

Estimation of the monthly Chlorophyll-a content in the North 

Lagoon of Tunis 

STEP 3. Improvement of the prediction accuracy by considering the non-linearity of the 

residual from the SARIMA model using the NARX network model 

 

 

Application of the non linear Neural Network 

with Exogenous Input (NARX) 

Improvement of the prediction accuracy 

Figure 67. Research framework.   
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4.2. Performances measures  

Several criteria have been examined in order to generate reliable results for generating 

predictions and evaluating the performance of the proposed model. The ultimate goal is to 

ensure that the best model is chosen.  

The estimation of generalization error has been calculated using three performance indexes: 

the standard correlation coefficient (R), the mean square error (MSE) and the coefficient of 

determination (R
2
). Section (3.2) in Chapter II presents these performance metrics and their 

calculations.  It is well recognized, that when comparing and selecting an appropriate model 

from a large number of options, it is advisable to employ as few mathematical measurements 

as possible [4]. 

In this chapter, all NARX modeling were performed using the MATLAB software 

MATLAB® software (version 9.3.0.948333 (R2017b), The Mathworks, MA, USA).  

The modeling of the SARIMA model was performed using Econometrics toolbox in the 

MATLAB software MATLAB® software (version 7860349 (R2020b), The Mathworks, MA, 

USA). 

5. Results and discussion 

A SARIMA (2,0,2)(2,0,2)12 has been found to be the most parsimonious among all SARIMA 

models tested on the historical Chl-a data in the North Lagoon of Tunis, according to the AIC 

and BIC, also, judged by the residual analysis.  

The neural network model used is a NARX network as also employed by Benihabib et al. 

(2017) and yu et al. (2019) in developing hybrid approaches. 

Table 11 gives the forecasting results for the Chl-a concentrations in the lagoon using the 

different approaches. Results show that applying NARX alone can improve the forecasting 

accuracy over the SARIMA model. Nevertheless, it seems that the performance of the NARX 
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decreases, especially during the last 5 years of the study period, at some points of high values 

of Chl-a. 

 Figure 68 gives the actual vs. simulated values with individual models of NARX and 

SARIMA as well as the combined model. 

This may suggest that neither the neural network nor the SARIMA model captures all of the 

specificities in the data. 

Table 13. Forecasting comparison for Chlorophyll-a concentrations using the different 

modeling approaches. 

 

 MSE R R
2
 

NARX network 0.31 0.79 0.62 

SARIMA model 0.37 0.72 0.52 

Hybrid model 0.24 0.82 0.67 

 

The results of the hybrid model show that by combining two models together, the overall 

forecasting errors can be significantly reduced compared with the SARIMA model and 

NARX network.  

 

Figure 68. Time series plot between observed and simulated values of Chlorophyll-a 

concentrations using SARIMA, NARX and hybrid approach in the North Lagoon of 

Tunis. 
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Our findings demonstrated that the overall forecasting capability is improved when using the 

hybrid model. The comparison between the actual values and the forecast value using the 

hybrid model is given in figure 69.  

 

Figure 69. Observed and modeled Chlorophyll-a variations using the hybrid model in 

the North Lagoon of Tunis. 

 

Results show that for short-term forecasting (1 month), both NARX network and hybrid 

models have much better accuracy than the SARIMA model. The hybrid model seems to 

predict relatively better the high concentrations values of the Chl-a than the NARX network, 

especially in approximately the five last years of the study period. 

The forecasting of the Chl-a content one month ahead gave a value about 0.54 µg L-1, which 

was close to the observed value (0.50 µg L-1). The values are similar and reflect the relative 

usual Chl-a content of monthly variation in the lagoon, which means that this method is an 

effective one and can be used in the ecosystem under study. 
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6. Station 5 

As in the previous chapters of this manuscript, for comparison, the hybrid approach was 

performed on Chl-a historical data of Station 5. Briefly, the results of the combined technique 

are presented in this section. 

The predicting results for Chl-a concentrations in Station 5 using the various methods are 

shown in table 12. 

Table 14. Forecasting comparison for Chlorophyll-a concentrations in Station 5 using 

the different modeling approaches. 

 

 MSE R R
2
 

NARX network 0.40 0.73 0.53 

SARIMA model 0.44 0.66 0.45 

Hybrid model 0.32 0.78 0.60 

 

The results suggest that using NARX instead of the SARIMA model improves predicting 

accuracy. In comparison to the SARIMA model and the NARX network, the hybrid model's 

findings demonstrate that by combining two models, total forecasting errors may be 

considerably decreased. 

Figure 70 gives the observed vs. simulated values with individual models of NARX and 

SARIMA as well as the hybrid technique. The hybrid model appears to predict high Chl-a 

concentrations better than the NARX network and SARIMA. 

The results of the hybrid technique are satisfactory indicating that this approach is successful 

and applicable to the environment under investigation. 
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Figure 70. Time series plot between actual and forecasted values of Chlorophyll-a 

concentrations in Station 5 using SARIMA, NARX and hybrid approach. 
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7. Conclusion 

Obtaining reliable predictions of a time series is an essential but challenging task. The 

accuracy of time series forecasting is critical for many decision processes, thus research to 

increase the efficiency of forecasting models has never stopped. The ARIMA model has 

become one of the most widely used forecasting techniques in both research and application. 

With their nonlinear modeling capabilities, artificial neural networks have lately demonstrated 

their potential in time series forecasting applications (Zhang, 2003). Despite the fact that both 

ARIMA and ANN are flexible in simulating a variety of problems, none is the optimal model 

for every forecasting case (Zhang, 2003).  

As such, in this last chapter, we have proposed a hybrid forecasting method that applies 

SARIMA and NARX separately to model linear and nonlinear components, respectively of 

the Chl-a levels in the North Lagoon of Tunis and at Station 5 of the studied ecosystem. To 

the best of our knowledge, it is the first time that such approach is done in the mentioned 

lagoon. 

Regarding the objective of the study to forecast the Chl-a concentrations with highest 

performance, various accuracy measurements have been tested. Comparing the three models 

using mathematic measurements (MSE, R and R
2
), the hybrid model showed better skills in 

forecasting Chl-a, both at Station 5 and in the lagoon, than SARIMA model and NARX 

network. 

SARIMA demonstrated some weakness in forecasting Chl-a fluctuations, especially for 

extreme values (minimum and maximum values) while the hybrid model has improved the 

forecasting accuracy in these points. The performances of the hybrid model and the NARX 

are relatively close with an improvement when using the combined method.  

This combined approach could enable executives and managers in charge of the ecosystem to 

accurately estimate the monthly Chl-a concentrations as an eutrophication indicator in the 
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North Lagoon of Tunis. In addition, this integrated method might allow ecosystem executives 

and managers to properly predict monthly Chl-a concentrations in Station 5, the most affected 

area of the lagoon by the eutrophication. 

This approach could be also applied to other natural ecosystems to estimate any key 

parameter, (such as nutrients) to evaluate the eutrophication level.  
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Conclusion and Perspectives 

Problematic  

Recently, several factors have posed an increasing threat to the health of marine and coastal 

ecosystems. Natural and anthropogenic pressures, in addition to the effects of climate change, 

are posing serious risks to marine and coastal environments, affecting biological, chemical, 

and physical processes (Furlan et al., 2017). 

Because Mediterranean coastal lagoon ecosystems are highly populated, they have been 

particularly vulnerable to human eutrophication in recent decades, owing mostly to 

urbanization (Zaldívar et al., 2008a; Souchu et al., 2010). Accordingly, ecological 

disturbances have been reported in different Mediterranean lagoons, estuaries and coastal 

water bodies, and also, all around the world (Sfriso et al., 2003; Heisler et al., 2008; Thornber 

et al., 2008). Among others, the North Lagoon of Tunis, subject of the present study. In fact, 

the North Lagoon of Tunis is one of the most important lagoons in Tunisia, which has 

experienced a critical ecological state mainly due to urban development. 

Considering this, the ecological stability of the North Lagoon of Tunis makes it of significant 

socio-economic and ecological values. Multiples services are provided in this ecosystem, such 

as in tourism (water sports), in fisheries, and in the conservation of sea birds. Thus, it is 

necessary to improve our understanding of the eutrophication process and of the interactions 

among the water quality parameters in the lagoon, to adopt sustainable management 

strategies. In this study work, different forecasting approaches on the short and long term 

have been performed to evaluate the trophic state in the North Lagoon of Tunis considering 

the Chl-a as an eutrophication indicator. 

In addition to the well-known Box and Jenkins approach, data-driven predictive models in the 

recent Machine Learning (ML) techniques were employed to predict Chl-a levels in the North 

https://www-sciencedirect-com.ezproxy.univ-perp.fr/science/article/pii/S1385110113000178#bb0150
https://www-sciencedirect-com.ezproxy.univ-perp.fr/science/article/pii/S1385110113000178#bb0075
https://www-sciencedirect-com.ezproxy.univ-perp.fr/science/article/pii/S1385110113000178#bb0175
https://www-sciencedirect-com.ezproxy.univ-perp.fr/science/article/pii/S1385110113000178#bb0175
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Lagoon of Tunis. To do so, a continuous monthly, approximately, three decades long, time 

series measurements (1989-2018) of seven physico-chemical parameters (water temperature, 

salinity, Secchi depth, dissolved oxygen, total phosphorus, total nitrogen and pH) and Chl-a 

were used. To the best of our knowledge, it is the first time that such approaches are done, 

especially, in the North Lagoon of Tunis.  

Defining underlying patterns in the time series in preparation for modeling work 

In the first chapter, a presentation of the study area and the spatio-temporal and seasonal 

variation of the parameters are performed. 

In order to determine the most appropriate algorithm, the pre-processing of the data, as it was 

done in the first chapter, is an essential step to capture any underlying specificities such as 

spatial, temporal, seasonal, linear or nonlinear. Indeed, before doing any complex modeling, 

these specificities must be identified and taken into account. 

Among the environmental and biological data, dissolved oxygen, total phosphorus and 

salinity concentrations with Chl-a values were most affected by seasonal variations.  

In general, most parameters showed that the water quality in the North Lagoon was strongly 

influenced by the freshwater inflow from the Gulf of Tunis. 

The results in this chapter confirmed the good functioning of the restoration project held in 

the North Lagoon of Tunis more than thirty years ago, based on the water circulation in the 

ecosystem. Indeed, it revealed that the coastal water was significantly influenced by 

freshwater input from the gulf of Tunis. However, given the fragility of this ecosystem, it 

remains highly influenced in particular at Station 5. The temporal variability is relatively 

similar among the Stations except for Station 5 (the furthest from the sea). 

This environment must remain under surveillance and the biotic and abiotic components must 

be monitored regularly in the years to come. Knowing this, predictive modeling seems to be 
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an effective and realistic technique for monitoring the North Lagoon of Tunis and anticipating 

any potential deterioration. 

It is important to mention that after studying the data in this chapter, it seemed heterogenic 

and nonlinear, which is expected in natural ecosystems. Considering this, using machine 

learning (ML) techniques seemed the most accurate methodologies to use. Indeed, ML has the 

most suitable approaches to handle this kind of data. 

Machine Learning based approaches  

The approach proposed in the second chapter, takes into account these specificities previously 

mentioned, and is based on a combination of ML methods, using firstly the random forest 

technique (RF) and secondly the nonlinear autoregressive with external inputs neural network 

algorithm (NARX) to predict and forecast on a short time scale the Chl-a concentrations in 

the North Lagoon of Tunis, as an indicator of eutrophication. 

In order to be able to optimize the working time and reduce the cost, it is very important to 

limit the number of parameters to be measured. Therefore, in this study, it is of a big interest 

to select the specific variables that are most related to the Chl-a concentrations. 

To do so, several input scenarios were tested, and the best one was derived from the Random 

Forest technique (R
2
=0.62, MSE= 0.28), that showed that Secchi depth and dissolved oxygen 

are the two most important variables that condition the Chl-a variation in the studied 

ecosystem. Secchi depth and dissolved oxygen are appropriate variables that are very easy to 

measure without the need for additional laboratory analysis. These results can contribute in 

reducing the number of controlled parameters and thus save time and money.  

Historical data of those two most important parameters, were used in addition to the Chl-a to 

predict one time step ahead (one month) the concentration of the eutrophication indicator, 

using another ML technique, which is the neural network with external inputs (NARX).  
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The developed NARX was able to predict the dynamics of Chl-a concentrations using a 

minimum of variables. The external inputs of NARX are the variables that contribute most to 

the variation of Chl-a according to the RF model (Secchi depth and dissolved oxygen). 

Our results show that the eutrophication phenomenon could be modeled using the NARX 

technique and some extreme values were successfully estimated.  

The developed NARX has an R= 0.79 and an MSE= 0.31. This proves that the predictions of 

our approach are sufficiently robust. 

However, the results obtained from simulating the same approaches on the historical data of 

the Station 5 (the area the most affected by the eutrophication in the lagoon), presented a 

slight decrease in the performance of the models (R= 0.73). This can be due to the 

accentuated heterogeneity in this area of the lagoon. Nevertheless, RF and NARX models 

have great potential in modeling complex and heterogeneous systems, such as eutrophication 

in coastal lagoons.  

This combined approach showed satisfactory performances. A good correlation was observed 

between the measured and predicted values. Machine Learning or Artificial Intelligence 

modeling is a promising and useful tool that optimizes monitoring techniques by identifying 

essential key variables and even Stations (thereby permitting cost and time reduction) and 

forecasts water quality variables with acceptable accuracy. 

Box and Jenkins Methodology 

The third chapter deals with the prediction of Chl-a as an indicator of eutrophication in the 

North Lagoon of Tunis, using the famous technique of Box and Jenkins (1967). 

Long-term prediction model of Chl-a concentrations was developed using a seasonal 

autoregressive integrated moving average (SARIMA) method.  

The SARIMA (2,0,2)(2,0,2)12 model was the model with the best performance, with the 

lowest AIC and BIC, among a set of candidate ones.  
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The performance of the model was analyzed by comparing with actual data from our last 

observations and verifying the results of the residuals. The residuals were found to be 

uncorrelated and relatively normally distributed. 

The forecast results are quite satisfactory (AIC= 628.91; BIC= 666.78; R
2
=0.52) since the 

forecast period seems to reproduce relatively well the normal monthly Chl-a content in the 

lagoon. 

For comparison, SARIMA technique was performed on Station 5 historical data. The results 

of the SARIMA (1,1,0)(0,1,0)12 presented the best accuracy. However, The performance of 

the SARIMA (1,1,0)(0,1,0)12 realized in Station 5 showed a small decline in comparison of 

the SARIMA (2,0,2)(2,0,2)12 performed with the data of the lagoon. This might be owing to 

the lagoon's parameters of a big heterogeneity in this location.  

Hybrid technique 

In the previous chapters, SARIMA and NARX models individually, gave good results in 

predicting the linear and non-linear components of the Chl-a content in the North Lagoon of 

Tunis, respectively. 

However, real problems generally have both linear and non-linear characteristics, and 

previous research has attempted to explain the variability of real problems by combining two 

methods. 

In the last chapter, a novel hybrid linear-nonlinear methodology combining SARIMA and 

NARX network was implemented. The combined model led to an improvement and good 

performance in the result. The proposed hybrid model for the Chl-a parameter in the North 

Lagoon of Tunis showed an excellent coefficient of correlation R= 0.82.  

The proposed hybrid model in this study has great potential to replace traditional models for 

predicting quality parameters and to boost monitoring operations.  
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The same combined technique was performed in historical data of Station 5 and presented the 

best forecasting results in comparison with NARX and SARIMA simulated in this area of the 

lagoon.  

The study contribution 

This study emphasizes the importance of predictive modeling in preventing and inhibiting 

eutrophication and therefore minimizing contamination in sensitive coastal ecosystem. 

The North Lagoon of Tunis is presently a fully artificial environment as a result of human 

involvement, and ecological monitoring is required to ensure the proper ecological 

functioning of this ecosystem located in the heart of the metropolitan zone. 

The capacity to automatically monitor water quality is extremely beneficial, particularly in 

sensitive regions where, there is a high risk of possible contamination incidents, and there are 

major socioeconomic activities that necessitate preventative intervention. To the best of our 

knowledge, no automated equipment exists that correctly measures Chl-a in real time. 

Chl-a measurements must be performed in the laboratory which entails significant delay and 

expense (Jimeno-Sáez et al., 2020). 

The modeling techniques described in this work for analyzing and forecasting the 

eutrophication problem in the North Lagoon of Tunis are especially beneficial for ecologists 

and environmentalists, as they will be able to anticipate water pollution levels and take 

required precautionary actions ahead of time. Also, these techniques can identify important 

parameters for enabling both selective physical/chemical monitoring and quick water quality 

assessment of the Tunis North Lagoon. 

The developed models can be used to (1) estimate Chl-a concentrations when the real value is 

unavailable, (2) simulate alternative water quality scenarios over extreme ranges of input and 

output parameters, and (3) save money and time by eliminating sample cruises and laboratory 

testing wherever possible. 
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Recommendations and perspectives 

Even though forecasting in a short time scale is very interesting in taking quick adequate 

decisions with more accurate results, it also represents the limitation of this study.  

Further work on the algorithms, should be done to try to forecast on a long-time period in the 

future, with more accurate performances, using especially the hybrid technique. 

As recommendations for further research, many scenarios can be performed using these 

models. From the most optimistic to the most pessimistic, by implementing the adequate 

values of the Chl-a or any other key parameter that can describe eutrophication process in 

natural ecosystems.  

In order to improve the accuracy of the models we would suggest, adding more data either by 

simulation (in interpolating the available data), or ideally by performing daily or weekly 

measurements, at least for the most important parameters (Chl-a, dissolved oxygen, nutrients), 

maybe not at all the Stations but at a minimum at the two Stations 2 (in the north area of the 

lagoon) and 5 (at the south area of the lagoon and the furthest from the sea).  

Station 4 is the shallowest area of the lagoon. For this reason, it is also preferable to continue 

monitoring in Station 4 in addition to Station 5. The exchanges between the atmosphere and 

the water are very enhanced due to the low depth of the ecosystem in Station 4.  For instance, 

high temperatures usually lead to a decrease in the dissolved oxygen level in natural 

ecosystems.  

The findings verified the significance and use of intelligent ML modeling as a quick, simple, 

and cost-effective technique.  

Finally, it is worth noting that these types of techniques are often utilized to forecast the 

progression of the world's largest crisis such as the Coronavirus pandemic. 
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Résumé du projet de thèse en Français 

À l'échelle mondiale, les zones côtières sont gravement touchées par les activités 

anthropiques, ce qui fait de l'eutrophisation des écosystèmes côtiers un problème mondial, en 

particulier dans les lagunes (Nixon, 1995 ; Cloern, 2001). 

L'augmentation des apports en nutriments, renforcée par l'urbanisation, l'agriculture ou 

l'industrie, conduit à une réponse complexe directe et/ou indirecte des écosystèmes naturels 

(Schramm, 1999 ; Viaroli et al., 2008), notamment des crises anoxiques, des proliférations 

d'algues toxiques, voire une perte d'espèces, et plus largement, la détérioration des fonctions 

des écosystèmes et des services qu'ils fournissent (Cloern, 2001 ; Zaldivar et al., 2008 a, b). 

Les lagunes côtières méditerranéennes ont été exposées à l'eutrophisation anthropique depuis 

des décennies et font partie des systèmes les plus vulnérables à de telles pressions (Viaroli et 

al., 2005 ; Zaldívar et al., 2008 ; Souchu et al., 2010). Elles sont influencées par des côtes 

densément peuplées, en particulier pendant l’été, lorsque la Méditerranée devient la principale 

destination du tourisme mondial (Vogiatzakis et al., 2006). En plus de cette pression urbaine, 

l'export limité des eaux de ces écosystèmes vers la mer les rendent particulièrement 

vulnérables à l'eutrophisation (de Jonge and Elliott, 2001 ; Newton et al., 2014). Plusieurs 

études ont été menées dans les lagunes côtières méditerranéennes pour évaluer le niveau 

d'eutrophisation. García-Ayllón (2017), a déclaré que la lagune de Mar Menor, située à l'est 

de la région de Murcie en Espagne, a subi un processus d'anthropisation intense au cours des 

cinq dernières décennies. L'un des principaux indicateurs de cela était la croissance 

exponentielle de la population d'une nouvelle espèce de méduse atteignant plus de 100 

millions d'individus chaque été (Robledano et al., 2011). La lagune de Thau est un autre cas 

particulièrement intéressant pour l'étude de l'eutrophisation des lagunes côtières 

méditerranéennes. C'est une lagune située sur la côte méditerranéenne française qui est 

célèbre pour ses activités traditionnelles de conchyliculture. Cette lagune a été soumise à une 

eutrophisation conduisant à des événements anoxiques majeurs associés à des mortalités 

massives de stocks de mollusques et crustacés (Derolez et al., 2020). On peut aussi citer le 

complexe lagunaire Palavasien, qui est un rassemblement de huit lagunes le long de la côte 

méditerranéenne française, qui a subi une eutrophisation intensive pendant quatre décennies 

principalement liée au sur-enrichissement en éléments nutritifs des rejets continus des eaux 

usées (Leruste et al., 2016). La lagune de Ghar El Melh fournit un bon exemple pour l'étude 

du processus d'eutrophisation dans les lagunes côtières méditerranéennes. Selon Shili et al. 

(2002), la lagune a connu plusieurs crises dystrophiques au cours de la période allant de 1994 
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jusqu'à 1996. En plus, Turki et al. (2007) ont signalé la prolifération d'espèces d'algues 

nuisibles dans la lagune, telles que Kryptoperidinium foliaceum, Prorocentrum micans et 

Anabaena sp. 

En vue de tout ça, la Lagune Nord de Tunis, une lagune sud méditerranéenne située au nord 

de la Tunisie (Fig. 1), fournit un bon exemple pour le diagnostic et l'étude de l'eutrophisation 

dans les écosystèmes côtiers méditerranéens. En effet, la Lagune Nord de Tunis est l'une des 

lagunes les plus importantes de Tunisie, qui a connu un état écologique critique 

essentiellement dû au développement urbain (Harbridge et al., 1976; Zaouali et Baetten, 1984; 

Zaouali et Baetten 1985). En effet, les changements radicaux et très apparents affectant la 

biodiversité ont révélé la gravité du problème écologique de ce milieu lagunaire poussant 

ainsi l’homme à intervenir afin d’améliorer une telle situation critique. Plusieurs études sur le 

milieu ont mené à la mise en place d’un projet d’assainissement qui a pu être concrétisé sous 

la direction de la Société Al Buhaira de développement et d'investissement en 1985.   

 

Fig 1. Localisation de la zone d'étude 

Les changements et les modifications observés à la suite de ce projet de restauration sont 

marqués par une nette amélioration de la qualité des eaux du Lac et de la biodiversité (Ben 

Maiz, 1997 ; Shili, 2008). La Lagune Nord de Tunis est un milieu très productif en Tunisie. 

C'est une zone importante notamment pour les oiseaux migrateurs. Cette lagune a été nommée 

zone humide d'importance internationale (site Ramsar) en 2013. 

Dans ce meme contexte, la mesure de la chlorophylle-a (Chl-a) est utilisée comme indicateur 

de la biomasse phytoplanctonique présente dans l’eau et donc du degré d’eutrophisation du 

milieu. C’est le pigment le plus important chez les organismes photosynthétiques aérobies du 
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règne végétal (Tian et al., 2017). Des niveaux élevés de Chl-a pourraient être interprétés 

comme indicateur de proliférations d’algues, ce qui a des effets importants sur les processus 

physiques, chimiques et biologiques d'une lagune. Les Cyanotoxines générées par les 

cyanobactéries dans l'eau des lagunes pourraient présenter un risque pour la santé humaine 

(Watzin et al., 2006 ; Mc Quaidet et al., 2011 ; Kalaji et al., 2016). Dans le cas où la 

concentration en cyanotoxines dans un écosystème donné n'est pas disponible, la Chl-a est 

également largement acceptée comme mesure indirecte de la densité des cyanobactéries 

(Wheeler et al., 2012). Par conséquent, il est essentiel de contrôler les concentrations en Chl-a 

pour fournir des informations concernant le degré d'eutrophisation d'un écosystème naturel 

donné.  

La possibilité de surveiller d'une manière automatique la qualité de l'eau, avec les modèles 

prédictifs, est très utile, en particulier dans les zones sensibles où (1) la menace d'épisodes 

potentiels de pollution est élevée et (2) des activités socio-économiques pertinentes, qui 

nécessitent des actions préventives, sont réalisées. Cependant, pour autant que l'on sache, il 

n'y a pas de dispositif automatique qui mesure avec précision la Chl-a en temps réel. Les 

mesures de Chl-a doivent être effectuées en laboratoire, ce qui signifie des taches longues à 

réaliser avec des coûts élevés (Jimeno-Sáez et al., 2020). Pour éviter de tels désagréments, la 

plupart des écologistes se sont récemment mis à diverse techniques de modélisation.  

Le monde change à un rythme sans précédent, ce qui rend la recherche sur les écosystèmes de 

plus en plus complexe et de nombreuses nouvelles questions émergent chaque jour (Griitzner, 

1996). Certaines approches standard telles que le travail de terrain ou les expérimentations en 

laboratoires seules, ne sont plus suffisantes pour la description précise et complète des 

écosystèmes complexes (Griitzner, 1996). Depuis longtemps, l'écologie a reconnu la nécessité 

de travailler avec les mathématiques, les statistiques et les disciplines d'informatiques (Otto 

and Day, 2007). Cette approche interdisciplinaire est élégamment soulignée dans certains des 

articles les plus importants et les plus cités, écrits par les pionniers de l'écologie, tels que 

Fisher, Preston et MacArthur qui ont utilisé des approches mathématiques pour expliquer et 

analyser les observations écologiques (Fisher et al., 1943 ; Mac Arthur, 1967). Les disciplines 

de l'écologie mathématique et théorique sont devenues un outil à utiliser pour les écologistes. 

Selon Codling and Dumbrell (2012), sans ces nouvelles disciplines de l'écologie, la collecte 

de données est une tâche futile et dénuée de sens.  

Un modèle efficace relie les données à des questions écologiques, et fournit une part 

suffisante de compréhension ou de prévisions, là où la perception d'un écologiste est à elle 

seule insuffisante (Kompare et al., 1994). En termes de développement de modèles 
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écologiques, il existe généralement deux approches : (1) Physique (ou conceptuelle) et (2) 

basée sur les données (Babovic, 2005 ; He et al., 2014 ; Zhang et al., 2016). Les approches de 

modélisation de la qualité de l'eau fondées sur la physique sont capables de simuler les 

processus physiques internes du système aquatique, mais nécessitent des informations 

détaillées qui ne sont pas facilement accessibles (Dogan et al., 2009). De plus, de nombreux 

modèles physiques portant sur la qualité de l'eau prennent du temps à être compiler (Singh et 

al., 2009). Alors que les modèles basés sur les données sont plus simples à mettre en œuvre, 

pas si complexes et ils évitent le besoin de connaissances spécialisées des processus physiques 

(Bowden et al., 2006).  Ces modèles sont populaires et couramment utilisés pour modéliser 

des processus naturels complexes, principalement dans la modélisation prédictive, car la 

prédiction du futur est considérée par beaucoup comme l'objectif ultime en écologie (Peters 

1991). Malgré le nombre d'études qui se sont concentrées sur ce processus d'eutrophisation 

dans les écosystèmes aquatiques naturels (ex. Delbaere and Nieto-Serradilla, 2004 ; García 

Pintado et al., 2007), il y a encore relativement peu de travaux réalisés pour mettre en place 

une approche d'alerte proactive, pour identifier et prévenir les problèmes potentiels en avance, 

notamment à l'échelle méditerranéenne.  

Dans la modélisation prédictive, différentes approches statistiques ont été utilisées basée sur 

les analyses de régression. Cependant, ces méthodes de traitement de données appliquent 

généralement une relation linéaire pour simplifier des problèmes complexes, ce qui conduit à 

des résultats insatisfaisants car ils ne sont pas suffisamment efficaces pour traiter des relations 

non linéaires compliquées entre les variables impliquées (Su et al., 2015). Une méthodologie 

productive et rentable sur l'estimation de l'eutrophisation avec des approches avancées, 

efficaces et robustes est nécessaire pour atteindre l'objectif d'une prédiction proche de la 

réalité (Tiyasha et al., 2020), et surmonter les limitations évoquées précédemment.  

Les algorithmes d'apprentissage automatique (Machine Learning ou ML) se sont révélés plus 

efficaces, que les approches traditionnelles de traitement des données pour déterminer la 

qualité de l'eau (Abba et al., 2017), car ils sont très bien adaptés pour traiter des fonctions non 

linéaires et complexes. Des études antérieures ont confirmé la supériorité de ML sur les 

approches traditionnelles dans la modélisation des paramètres de la qualité de l'eau (Juntunen 

et al., 2012 ; Charulatha et al., 2017). 

Les principales techniques de modélisation prédictives utilisées dans cette étude, pour prédire 

les concentrations de la Chl-a, en tant qu'indicateur de l'eutrophisation, dans la Lagune Nord 

de Tunis, sont brièvement décrites, ainsi que les résultats obtenus.    
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Dans ce projet de thèse, le premier chapitre a été consacré à la présentation du milieu d'étude 

et à la caractérisation spatio-temporelle et saisonnière des paramètres physico-chimiques dans 

la Lagune Nord de Tunis. En effet, l'eutrophisation des lagunes côtières est un phénomène 

complexe en raison de la grande variabilité des conditions spatiales et temporelles (Coelho et 

al., 2015).  

Pour se faire, nous avons utilisé une série chronologique mensuelle de janvier 1989 jusqu'à 

avril 2018 (environ trois décennies) pour chaque variable (Chlorophylle-a, profondeur, Azote 

total, Phosphore total, pH, salinité, oxygène dissous et température).   

Les travaux de terrain, les analyses en laboratoire, l'étude bibliographique ainsi que la 

contribution de la Société Al Buhaira de développement et d'investissement, nous ont permis 

de reconstituer ces séries chronologiques. Ces paramètres ont été échantillonnés à cinq 

Stations représentatives de la lagune (Fig. 2), mises en place selon le modèle hydrodynamique 

réalisé pour le projet de restauration évoqué un peu plus haut. 

 

Fig 2. Les Stations d'échantillonnage (1-5). Les flèches à l'intérieur de la lagune 

représentent le système de circulation unidirectionnelle de l'eau à l'entrée et à la sortie 

du milieu. 

 

La représentation spatio-temporelle et saisonnière de ces variables nous ont permis de 

conclure que :  

La température de l'eau augmente progressivement à mesure que la température de l'air 

ambiant augmente, mais nous n'avons pas signalé d'augmentation brutale, ce qui confirme 

l'absence de pollution thermique dans la zone d'étude. En effet, la lagune étudiée a fait l'objet 

d'une pollution thermique causée par les rejets de la Société Tunisienne de l'Electricité et du 

Gaz (STEG) avant le projet d'assainissement (Ben Maiz, 1992).  
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La salinité dépend de la position du lieu d'échantillonnage, la partie nord de la lagune est 

caractérisée par une concentration de salinité plus faible que la partie sud. En effet, les eaux 

marines du golfe de Tunis entrent dans la lagune par la partie nord. La stratégie de circulation 

de l'eau permet son chargement en nutriments et en matières en suspension pendant son temps 

de séjour dans la lagune, ce qui contribue à l'augmentation de la salinité dans la partie sud. De 

plus, dans la partie sud, l'évaporation est plus intense (faible profondeur), car, lors de la 

réalisation du projet de restauration, les travaux de dragage ont principalement concerné la 

partie nord de la lagune.  

La teneur en salinité dépend également de la saison, en raison de l'influence des précipitations 

notamment aux Stations proches des zones où l'eau de pluie est évacuée (Stations 1,2 and 3). 

Les valeurs de pH enregistrées ne dépassent pas les normes selon APHA (1999) et qui sont de 

nature basique (pH>7). 

L'oxygène dissous est un paramètre essentiel dans le maintien de la vie aquatique, tels que les 

phénomènes de dégradation de la matière organique et la photosynthèse. 

Dans la Lagune Nord de Tunis, les teneurs en oxygène dissous sont plus élevées du côté nord, 

où les eaux marines du golfe de Tunis entrent, plutôt que du côté sud, où les eaux relativement 

peu profondes sont chargée en nutriments ce qui réduit la teneur en oxygène dissous.  

Concernant la composante biologique et les nutriments, certaines valeurs relativement élevées 

de la concentration en Chl-a, ainsi qu'en azote total et phosphore total, peuvent indiquer un 

état d'eutrophisation dans certaines zones de la lagune, en particulier dans la partie sud. 

Parmi les données environnementales et biologiques, l'oxygène dissous, les concentrations de 

phosphore total, les concentrations de salinité et les valeurs de la Chl-a ont été les plus 

affectées par les variations saisonnières. Les valeurs les plus élevées ont été enregistrées pour 

la salinité, le phosphore total et l'azote total pendant la saison estivale (ou sèche). Au 

printemps, la Chl-a, suivi de l'oxygène dissous ont montré des valeurs élevées.  

En général, la plupart des paramètres présentent une variation spatiale et saisonnière 

significative. Aussi, ils ont montré que les eaux dans la Lagune Nord de Tunis étaient 

fortement influencées par l'apport d'eau marine du golfe de Tunis. 

D'une manière générale, la qualité physico-chimique de l'eau concorde assez bien avec 

l'amélioration marquée de l'état d'eutrophisation de la Lagune Nord de Tunis. Cependant, 
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compte tenu de la fragilité de cet écosystème, il reste très influencé notamment par les 

conditions climatiques qui ont un effet direct sur la température, la Chl-a et la salinité. 

Cet environnement doit rester sous surveillance et les composantes biotiques et abiotiques 

doivent être contrôlées régulièrement dans les années à venir. 

Sachant cela, la modélisation prédictive semble être une technique appropriée pour garder la 

Lagune Nord de Tunis sous surveillance.   

Afin de déterminer l'algorithme le plus approprié, le prétraitement des données comme cela a 

été fait dans le premier chapitre, est une étape essentielle pour capturer toutes spécificités 

cachées comme spatiales, temporelles, saisonnières, linéaires ou non linéaires. En effet, avant 

de se lancer dans la modélisation un peu complexe, il faut identifier et prendre en compte ces 

spécificités. Zhang et Qi (2005), ont créé un modèle prédictif qui tient compte de la 

saisonnalité, en soulignant la nécessité d'un prétraitement approprié des données pour tenir 

compte des fluctuations saisonnières ou des tendances de la série temporelle. 

L'approche proposée dans le second chapitre, tiens compte de ces spécificités précédemment 

évoquées, et repose sur une combinaison de méthodes ML, utilisant en premier lieu la 

technique des forêts aléatoires (Random Forest ou RF) et en second lieu l'algorithme relatif 

aux réseaux artificiels de neurones appelé réseau de neurones autorégressif non linéaire avec 

des entrées externes (Nonlinear autoregressive with external inputs neural network ou NARX) 

pour prédire et prévoir les concentrations de la Chl-a dans la Lagune Nord de Tunis, en tant 

qu'indicateur d'eutrophisation. 

Le NARX fait partie des algorithmes des réseaux artificiels de neurones (Artificial Neural 

Networks ou ANNs) qui sont très utilisés dans la modélisation prédictive.  

Les ANNs imitent les processus d'apprentissage de l'être humain (le fonctionnement du 

cerveau), à travers la formation et le calibrage du réseau. Cette capacité fait des ANNs des 

outils précieux pour étudier des scénarios complexes non-linéaires, difficiles à décrire avec les 

méthodes conventionnelles (Daliakopoulos et al., 2005 ; Samarasinghe, 2006).  

La capacité à saisir la dynamique du système et les non-linéarités rendent les ANNs 

exceptionnellement adéquats pour l'étude des systèmes naturels qui présentent généralement 

des variabilités spatio-temporelles distinctes (ASCE, 2000). Les algorithmes des ANNs ont 

également été appliquées à la dynamique de la Chl-a, car sa concentration s'agit de l'un des 

facteurs de représentation de la biomasse algale, et ont été considérées comme l'une des 

approches proactives d'alerte précoce pour prévenir l'apparition de certains épisodes de 
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proliférations d'algues (eutrophisation). Li et al. (2017) et Yi et al. (2018) ont appliqué 

différents types d'ANNs pour estimer la concentration de la Chl-a dans 27 lacs en Chine et 

dans une rivière en Corée, respectivement. Tian et al. (2017) ont utilisé un ANN pour prédire 

les concentrations de la Chl-a dans un réservoir d'estuaire en Chine orientale.  

Il existe également de nombreuses classifications dans les ANNs, tels que les réseaux de 

propagation arrière (back-propagation networks), les réseaux de fonction de base radiale 

(Radial Basis Function networks) et les réseaux de Hopfield (Hopfield networks).  

La propagation arrière est un algorithme d'apprentissage couramment utilisé dans les 

applications des ANNs. Le NARX est un réseau neuronal artificiel dynamique, formant un 

groupe important de réseaux neuronaux non linéaires à propagation arrière. Le NARX nous 

permet de prévoir le contenu de la Chl-a dans l'écosystème à court terme en se basant sur les 

données antérieures de la Chl-a, ainsi des entrées externes (autres variables en relation avec la 

Chl-a).   

Pour pouvoir optimiser le temps de travail et réduire le cout, il est très important de limiter le 

nombre de paramètres à mesurer. C'est pourquoi, dans cette étude, il est très important de 

sélectionner les variables spécifiques qui sont les plus liées à la concentration de la Chl-a.  

Pour se faire, la technique de ML appelée RF est une approche efficace. RF est une technique 

qui présente plusieurs avantages (Beriman, 2001). RF peut être formée sur de petits ensembles 

de données et également sur un grand nombre de variables prédictives, en choisissant parmi 

eux les plus utiles dans le cadre du champ d'application donnée (Park et al., 2015). Les 

prévisions de RF sont également très fiables car elles proviennent d'une moyenne d'ensemble 

de plusieurs forets simples, ce qui permet d'éviter le problème de sur-ajustement typique de 

nombreuses techniques de régression non linéaire (Huang et al., 2015).  

Le modèle RF a été comparé à une régression linéaire multivariée (Multivariate Linear 

Regression ou MVLR) et a montré plus d'efficacité.  

Le RF a été appliquée dans de nombreuses études. Béjaoui et al. (2016) ont étudié avec le 

modèle RF les variables prédictives les plus importantes pour la variation de la Chl-a dans la 

lagune de Bizerte située au nord de la Tunisie. Dans une autre étude plus récente, Béjaoui et 

al. (2018), ont utilisé le modèle RF pour étudier la dynamique du plancton dans la lagune de 

Ghar El Melh, située au nord de la côte méditerranéenne tunisienne. 

Les objectifs de ce second chapitre sont les suivants: (1) sélectionner les variables spécifiques 

les plus liées à la production de la Chl-a en utilisant le modèle RF dans la Lagune Nord de 
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Tunis, pour se faire, plusieurs scénarios ont été testés (2) de développer un modèle prédictif 

pour estimer et prévoir avec une longueur d'avance la concentration de la Chl-a en utilisant le 

NARX et (3) pour valider la performance du modèle prédictif dans l'estimation de la 

concentration de la Chl-a pour la Lagune Nord de Tunis. 

Pour s'assurer de la bonne sélection des variables les plus importantes à la variation de la Chl-

a, plusieurs scénarios de NARX avec différentes combinaisons de variables (inputs) ont été 

examinés : sans sélection, sélection des trois variables les plus importantes selon le modèle 

RF, sélection des deux variables les plus importantes selon le modèle RF, et sélection des trois 

variables significativement corrélées à la Chl-a selon MVLR.  

Le scénario avec les deux variables les plus importantes selon le modèle RF a été le plus 

performant. 

RF a montré que la profondeur de Secchi ainsi que l'oxygène dissous sont essentiellement les 

principaux contributeurs à la variation de la Chl-a. Ces résultats concordent bien avec ceux 

issues d'autres études menées sur les lagunes côtières méditerranéennes. 

Afin de réduire le coût de la surveillance in situ de l'environnement aquatique, outre le gain de 

temps, il est très important de réduire le nombre de variables lors de la modélisation 

prédictive. La profondeur et l'oxygène dissous sont des variables appropriées très faciles à 

mesurer, sans nécessiter d'analyses supplémentaires en laboratoire. 

Le NARX développé a été capable de bien prédire la dynamique de la concentration de la 

Chl-a en utilisant un minimum de variables. Les entrées externes du NARX sont les variables 

qui contribuent le plus à la variation de la Chl-a selon le modèle RF (la profondeur et 

l'oxygène dissous). 

On peut utiliser ce modèle, surtout lorsque les données sur la Chl-a ne sont pas disponibles. 

Nos résultats montrent que le phénomène de l'eutrophisation a pu être modélisé en utilisant la 

technique du NARX et, certaines valeurs extrêmes ont été estimées avec succès.  

La performance du NARX a été testée par des indices mathématiques. L'erreur quadratique 

moyenne (Mean Squared Error ou MSE) est une mesure caractérisant la « précision » d'un 

modèle donné. Elle peut être sensible aux valeurs aberrantes et elle est mieux utilisée en 

conjonction avec d'autres métriques pour évaluer un modèle donné lorsque des valeurs 

aberrantes sont présentes. Si le MSE est proche de 0, cela indique une approximation très 

proche des valeurs réelles.  
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La précision de la prédiction R représente le degré de corrélation entre les valeurs de 

prédiction et les valeurs observées, et une valeur R élevée proche de 1 signifie que la 

prédiction est proche de la valeur observée. 

En outre, la fonction d'auto-corrélation des erreurs (the error autocorrelation function) et la 

fonction d'inter-corrélation des erreurs et des entrées (the input error cross correlation 

function) ont également été vérifiées pour évaluer la performance du NARX. La fonction 

d'auto-corrélation des erreurs décrit comment les erreurs de prédiction sont liées dans le 

temps. Pour un modèle de prédiction parfait, la différence entre les deux erreurs doit être 

suffisamment faible pour être statistiquement non significative. Cela signifie que les erreurs 

de prévision ne sont pas du tout corrélées. Cela indique que les valeurs de l'auto-corrélation 

des erreurs devraient se situer pour la plupart dans un certain intervalle de confiance, par 

exemple 95% (Xu et al., 2019). La fonction d'inter-corrélation des erreurs et des entrées 

indique comment les erreurs sont corrélées avec les séries temporelles d'entrée. Pour un 

modèle de prédiction parfait, toutes les corrélations doivent être nulles (dans un certain 

intervalle de confiance, par exemple 95%), sauf celle située au zéro décalage ou « zero lag » 

(Markova, 2019). 

Le NARX réalisé a un R= 0.79 et un MSE= 0.31. Ce qui prouve que les prédictions de notre 

approche sont suffisamment robustes.  

Il est important de mentionner que malgré la quantité importante de données observées 

(environ trois décennies) utilisées pour le développement du NARX, celui-ci a un temps de 

compilation très court. 

Dans un contexte plus large sur les études qui portent sur les lagunes côtières et autres 

écosystèmes côtiers, notre approche pourrait être utilisée pour évaluer et prévoir le processus 

d'eutrophisation de ces milieux naturels et aider à la prise de décision des autorités civiles, 

ainsi que des ingénieurs, économistes, investisseurs et autres parties intéressées. 

Le troisième chapitre porte sur la prédiction de la Chl-a en tant qu'indicateur de 

l'eutrophisation sur le long terme dans la Lagune Nord de Tunis, en utilisant la technique de 

Box et Jenkins (1967).  Box et Jenkins, est une procédure itérative complexe, qui produit un 

modèle de moyenne mobile intégrée autorégressive, qui s'ajuste aux facteurs saisonniers et 

tendanciels (Gaynor and Kirkpatrick, 1994).  La méthode est appropriée pour les séries 

chronologiques de moyenne à longue durée, au moins 50 observations sont nécessaires (Wei, 

1990).  
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La méthode de Box et Jenkins a été sélectionné basée sur : 1) sa capacité à traiter des 

situations complexes ; 2) son adaptabilité dans le traitement de données de séries 

chronologiques dépendantes ; 3) ses processus mathématiques et statistiques avancés ; 4) sa 

fonctionnalité en matière d'analyse d'incertitude ; et 5) la simplicité de sa mise en œuvre. 

Les méthodologies de Box et Jenkins produisent souvent les modèles de prévision les plus 

précis pour tout ensemble de données (Gaynor and Kirkpatrick, 1994).  Ces méthodes 

permettent également une approche plus systématique de la construction, de l'analyse et de la 

prévision des modèles de séries chronologiques. Le test comparatif d'Armstrong (Armstrong, 

1985) sur le classement des méthodes d'extrapolation (du rang le plus élevé "1" au rang le 

plus bas "5") en termes de coût, de compréhensibilité et de précision des prévisions, tant à 

court terme qu'à long terme a classé la méthode de Box et Jenkins comme 1,5 pour la 

précision des prévisions à court terme et 2 pour la précision des prévisions à long terme. En 

général, les méthodologies Box et Jenkins utilisent les observations les plus récentes comme 

valeurs de départ, puis analysent les erreurs de prévisions récentes afin de déterminer les 

ajustements appropriés pour les périodes futures. En faisant cela, elles permettent des 

ajustements efficaces des niveaux d'erreur et fournissent une imitation plus souple d'une 

tendance complexe particulière ou de la saisonnalité. Les modèles de Box et Jenkins sont 

capables de traiter les données de séries chronologiques dépendantes qui ne sont pas 

considérées comme adaptées à d'autres méthodes. Par exemple, un modèle de régression 

repose sur l'hypothèse standard que le terme d'erreur doit être statistiquement indépendant. En 

réalité, de nombreuses données liées au temps sont dépendantes ou corrélées entre elles (Lu et 

al., 2008), en d'autres mots, non Stationnaires. L'approche de Box et Jenkins, part de 

l'hypothèse que le processus qui a généré la série chronologique peut être approximé en 

utilisant un modèle ARMA s'il est Stationnaire ou un modèle ARIMA s'il est non Stationnaire 

(Lu et al., 2008).  

Le modèle ARIMA est utilisé dans diverses études, pour la prévision des niveaux d'eau du lac 

Malawi (Makwinja et al., 2017), pour la prévision de la salinité de l'eau dans la baie 

d'Apalachicola en Floride (Sun et Koch, 2001), pour la prévision du dioxyde de soufre à 

Téhéran (Hassanzadeh et al., 2009). Chen et al. (2015) ont développé un modèle ARIMA 

pour prédire les concentrations quotidiennes de la Chl-a dans le lac Taihu en Chine et ont 

démontré son efficacité par rapport à une régression linéaire multivariée. 

Le modèle saisonnier, autorégressif, à moyenne mobile intégrée (SARIMA) est composé du 

modèle ARIMA, incluant la composante saisonnière des données de la série chronologique. 
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SARIMA est très fréquemment utilisé pour les séries chronologiques mensuelles qui 

présentent un schéma saisonnier (Prista et al., 2011). La Chl-a est un paramètre connu pour 

être lié à la température (Tizro et al., 2014), qui a des caractéristiques saisonnières. Pour cette 

raison, un modèle SARIMA est mis en place pour traiter les caractéristiques des variations 

saisonnières, ce qui améliore la précision des prévisions.  

Dans ce troisième chapitre, nous avons utilisé le modèle SARIMA pour prévoir les valeurs 

futures de la Chl-a dans la Lagune Nord de Tunis comme indicateur d'eutrophisation. Ce 

modèle a été appliqué avec une série temporelle d'environ trois décennies. Différents modèles 

SARIMA (p, d, q)(P, D, Q)S ont été mis en place. 

Le modèle choisi, un SARIMA (2,0,2)(2,0,2)12 avec les AIC et BIC (calcul de la perte 

d'information) les plus bas a été utilisé pour les prévisions. 

La performance du modèle a été analysée en comparant avec les données relatives aux 

dernières observations, et en vérifiant les résultats des résidus. Le diagnostic des résidus a 

indiqué qu'ils sont non corrélés et relativement normalement distribués. 

Les résultats des prévisions sont assez satisfaisants puisque la période de prévision semble 

reproduire relativement bien le contenu mensuel normal de la Chl-a dans la lagune. 

Malgré le fait que la Lagune Nord de Tunis ait été classée comme zone humide d'importance 

internationale (site Ramsar), compte tenu de son histoire et de son importance, cet écosystème 

reste fragile.  

Le modèle SARIMA appliqué aux données historiques de la Chl-a ou à tout autre paramètre 

clé, pourrait être un outil important pour fournir des informations avec une longueur d'avance 

qui orientent les interventions de prévention et de contrôle de l'écosystème. 

Par rapport au lissage exponentiel (Moving Average) et au modèle de régression linéaire 

multivariée (MVLR), il a été déterminé que la technique de Box et Jenkins était supérieure 

(Jeong et al., 2014).  

Par rapport au modèle MVLR et à la machine à vecteur de soutien (Support Vector Machine 

ou SVM), les techniques ANNs se sont révélées supérieures (Jeong et al., 2014). 

Dans les chapitres précédents, le modèle SARIMA (Seasonal Autoregressive integrated 

moving average) et le modèle NARX (artificial neural network) ont donné de bons résultats 

dans la prévision du contenu de la Chl-a, dans la Lagune Nord de Tunis, comme indicateur 
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d'eutrophisation, en traitant les caractéristiques linéaires et non-linéaires de la série 

chronologique, respectivement.  

Cependant, les problèmes réels ont généralement des caractéristiques à la fois linéaires et non 

linéaires, et des recherches antérieures ont tenté d'expliquer la variabilité des problèmes réels 

en combinant deux méthodes (Chen et al., 2007). 

En effet, les lagunes côtières sont soumises à de fréquentes perturbations et fluctuations 

environnementales (évaporation, précipitations, ...), en plus de la relation étroite avec la 

température et la dépendance des saisons. C'est pourquoi le modèle hybride est devenu une 

pratique courante pour améliorer la précision des prévisions. 

Le quatrième chapitre porte sur une récente technique de prédiction hybride pour la prévision 

du contenu de la Chl-a dans la Lagune Nord de Tunis en combinant le modèle SARIMA 

(approche linéaire) et le modèle NARX (approche non linéaire). 

Ce chapitre a été réalisé en trois étapes : (1) établissement des données de concentrations de la 

Chl-a dans la Lagune Nord de Tunis ; (2) prévision de la variation mensuelle de la Chl-a en 

utilisant l'approche linéaire (modèle SARIMA) ; et (3) amélioration de la précision des 

prévisions en considérant la non-linéarité des résidus du modèle SARIMA en utilisant le 

modèle NARX.  

Des recherches antérieures ont tenté d'améliorer la précision des prédictions des valeurs 

futures en combinant des approches linéaires et non linéaires. Qin et al. (2017) ont prédit la 

possibilité d'occurrence et les tendances futures de la marée rouge dans différentes zones 

côtières grâce à un modèle hybride qui combinait ARIMA et le Deep Belief Network (DBN). 

Garcia Nieto et al. (2013) ont prédit la présence de cyanotoxines dans le réservoir de Trasona 

(nord de l'Espagne) grâce à un modèle de prévision hybride qui combinait la régression du 

vecteur de soutien avec des algorithmes génétiques. Shafaei et al. (2016) ont utilisé un modèle 

hybride qui combinait SARIMA et ANN pour la prévision des précipitations à Nahavand, en 

Iran. 

En comparant le modèle hybride (SARIMA-NARX) réalisé dans ce quatrième chapitre, avec 

la technique SARIMA ou encore NARX mises en place dans les chapitres précédents, en 

utilisant des mesures mathématiques, le modèle hybride a montré de meilleures compétences 

(R= 0.82; R
2
=0.67 ; MSE= 0.24).  
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SARIMA n'a pas obtenu de bons résultats dans la prévision des fluctuations de la Chl-a, en 

particulier des valeurs minimales et maximales, alors que le modèle hybride a amélioré la 

précision des prévisions sur ces points. Les performances du modèle hybride et du NARX 

sont relativement proches, avec une amélioration lors de l'utilisation de la méthode combinée.   

Cette approche combinée pourrait permettre aux cadres et gestionnaires en charge de 

l'écosystème, d'estimer avec précision les concentrations mensuelles de la Chl-a comme 

indicateur d'eutrophisation dans la Lagune Nord de Tunis. Cette approche pourrait également 

être appliquée à d'autres écosystèmes naturels pour estimer tout paramètre clé (comme les 

nutriments, l'oxygène dissous, la salinité, le carbone, …) permettant d'évaluer le niveau 

d'eutrophisation.  

Pour comparaison, dans chaque chapitre, nous avons simulé les mêmes approches sur les 

données historiques de la Station 5 (la plus affectée par l'eutrophisation). 

Le RF et le NARX simulés dans le chapitre II, ont montré une petite baisse de performance 

lors de leurs simulations pour la Station 5, mais qui restent quand même assez performants 

(RF, R
2
= 0.54; NARX, R=0.73). Ce qui peut être du à la grande hétérogénéité des données 

dans cette zone de la lagune. Le modèle RF a montré que le phosphore total et la salinité suivi 

de l'azote total sont les paramètres qui sont les plus liées à la variation de la Chl-a dans la 

Station 5. 

Le SARIMA (1,1,0) (0,1,0) 12 simulé pour la Station 5 a montré la meilleure performance 

parmi les SARIMA testés.  

Le modèle hybride développé pour la Station 5 a montré de meilleures résultats en 

comparaison avec le NARX et le SARIMA (1,1,0) (0,1,0) 12 simulé dans cette zone de la 

lagune (R= 0.78). 

Les approches de modélisation décrites dans cette étude pour l'analyse et la prédiction du 

problème de l'eutrophisation dans la Lagune Nord de Tunis sont particulièrement utiles aux 

écologistes et aux environnementalistes, car elles leur permettront de prévoir les niveaux de 

pollution des eaux et de prendre à l'avance les mesures de précaution nécessaires. 

Ces techniques ont la capacité d'identifier des paramètres importants pour permettre à la fois 

une surveillance physico-chimique sélective et une évaluation rapide et moins couteuse de la 

qualité de l'eau de la Lagune Nord de Tunis. 
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Les modèles développés peuvent être utilisés pour (1) estimer les concentrations de la Chl-a 

lorsque la valeur réelle n'est pas disponible et pour (2) simuler différents scénarios de la 

qualité de l'eau pour des valeurs extrêmes de paramètres clés et (3) réduire le coût et gagner 

du temps qu'en effectuant des travaux de terrain et des analyses en laboratoire que si 

nécessaire. 

Même si la prévision à court terme est très intéressante pour prendre des décisions rapides et 

adéquates avec des résultats plus précis, elle représente aussi les limites de cette étude. Des 

travaux supplémentaires sur les algorithmes devraient être effectués pour essayer de faire des 

prévisions sur de longues périodes à l'avenir avec des performances plus précises, notamment 

avec la technique hybride.  

En guise de recommandations pour la poursuite des recherches, de nombreux scénarios 

peuvent être réalisés à l'aide de ces modèles. Du plus optimiste au plus pessimiste, en mettant 

en place les valeurs extrêmes de la Chl-a ou de tout autre paramètre clé pouvant décrire le 

processus d'eutrophisation des écosystèmes naturels.  

Lors de l'utilisation de la technique d'analyse de la variance (ANOVA) ou encore RF, les deux 

modèles ont considéré que la variation spatiale, semblait ne pas être significatif dans la 

variation de la Chl-a et des paramètres physico-chimiques dans la Lagune Nord de Tunis. 

Pour cette raison, on peut recommander également, de reconsidérer l'emplacement des cinq 

Stations dans la lagune. L'utilisation des techniques de ML peut aider à choisir d'autres zones 

dans l'écosystème étudié, qui seraient plus significatives dans le contrôle de la qualité de l'eau. 

D'après nos résultats (ANOVA et RF), il semblerait que moins de Stations peuvent être plus 

efficaces dans le contrôle de la qualité de l'eau, ce qui signifie gain de temps et d'argent. 

Afin d'améliorer la précision des modèles, nous suggérons aussi d'ajouter plus de données, 

soit par simulation (en interpolant les données disponibles), soit idéalement en effectuant des 

mesures quotidiennes ou hebdomadaires, au moins pour les paramètres les plus importants 

(Chl-a, oxygène dissous, nutriments), peut-être pas à toutes les Stations mais au minimum à la 

Station 2 (dans la zone nord de la lagune) et la Station 5 (dans la zone sud de la lagune et la 

plus éloignée de la mer).  

Pour finir, il convient de mentionner que ce type d'approche est extrêmement utilisé pour 

prévoir l'évolution de la plus grande crise sanitaire connue par le monde entier (la pandémie 

de coronavirus).
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