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Summary (French) - Résumé

Introduction

Les pores nucléaires (NPCs) sont de grands complexes protéiques incrustés dans l'enveloppe nucléaire 

(EN) et constituent les canaux de transport contrôlant l'échange de protéines et d'ARNm entre le noyau 

et le cytoplasme. Ils sont constitués d'environ 30 nucléoporines différentes (Nups), chacune étant 

présente en plusieurs copies dans les NPCs. Les Nups présentes dans le canal central des NPCs 

contiennent des éléments désordonnés caractérisés par la présence de répétitions de phénylalanine-

glycine (FG), appelées FG-Nups. Les FG-Nups ont la capacité de former des hydrogels qui constituent 

une barrière sélective et perméable pour les cargaisons transportées à travers les NPCs. Les FG- et non-

FG-Nups peuvent également former des agrégats dans les cellules car elles sont séquestrées dans les 

granules de stress et dans divers agrégats pathologiques dans le noyau et dans le cytoplasme. Cela 

indique que les Nups ont une capacité intrinsèque à s'assembler de manière aberrante, ce qui suggère 

que des mécanismes de protection doivent exister pour empêcher ce phénomène dans la cellule. En 

effet, dans les embryons de drosophile, un excès de Nups solubles a été reporté. Dans les cellules, les 

Nups sont synthétisées sous forme de protéines cytosolubles. On ne sait pas encore comment l'équilibre 

entre les Nups solubles et leur assemblage localisé dans les NPCs est régulé. 

Les protéines apparentées au X fragile (FXR) (FXR1, FXR2 et Fragile X mental retardation protein 

(FMRP)) forment une famille de protéines de liaison à l'ARN présentant un degré élevé de similarité 

de séquence et de structure et jouant un rôle important dans la régulation de la traduction des protéines. 

La mise sous silence du gène FMR1 qui code pour la protéine FMRP conduit au syndrome de l'X fragile 

(SXF), la forme la plus courante de déficience intellectuelle humaine héréditaire dans le monde, pour 

laquelle il n'existe, à ce jour, aucune thérapie efficace.

Au cours de mon doctorat, j'ai identifié un rôle inattendu de la famille des protéines FXR et de la 

protéine motrice dynéine dans la régulation spatiale de la condensation des Nups.

Résultats

FXR1 interagit avec les Nups mais ne régule pas leur expression 

Des expériences d'immunoprécipitation (IP) avec la protéine GFP-FXR1 exprimée de manière 

stable dans les cellules HeLa suivies d'une analyse par spectrométrie de masse, ont identifié 

plusieurs Nups comme des interactants potentiels de FXR1. Les interactions de FXR1 avec 

Nup133 et Nup85 ont été confirmées par Western blot. Il est important de noter que FXR1 ne 

module pas le niveau d’expression des Nups puisque nous n'avons pas observé de changements 

de quantités de protéines et d'ARNm de plusieurs Nups lorsque FXR1 est déplété. Nous avons 
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également observé que FXR1 est localisé au niveau de l'enveloppe nucléaire (où résident les 

NPCs) et également occasionnellement dans de petits foci cytoplasmiques avec les Nups.

Dans l'ensemble, FXR1 interagit avec les Nups et peut se situer à la fois à l'enveloppe nucléaire 

et dans les foci cytoplasmiques contenant des Nups.

FXR1 inhibe la condensation aberrante des Nups cytoplasmiques et régule la 

morphologie nucléaire pendant la phase G1 du cycle cellulaire 

Pour évaluer la fonction biologique des interactions FXR1-Nup, nous avons inhibé l’expression 

du gène FXR1 en utilisant des oligonucléotides (siARN). La régulation négative de FXR1 

conduit à la formation de noyaux irréguliers ainsi qu'à une accumulation de plusieurs types de 

Nups dans le cytoplasme sous forme de granules irrégulières. Les deux phénotypes peuvent 

être corrigés par l'expression ectopique de la protéine GFP-FXR1. La régulation négative de 

FXR1 réduit également modérément la localisation de plusieurs Nups au niveau de l’EN. Afin 

de mieux caractériser l’effet de FXR1 sur la localisation des Nups, nous avons filmé nos 

cellules en direct. Ces essais ont révélé que les défauts de morphologie nucléaire et les granules 

de nucléoporines cytoplasmiques dans les cellules déficientes en FXR1 pouvaient être détectés 

au début de la phase G1. 

Afin de mieux comprendre la nature de ces granules, nous avons traité les cellules déficientes 

en FXR1 avec du 1,6-Hexanediol pour distinguer les hydrogels de Nups (qui peuvent être 

dissous par les hexanediols) et les fibres amyloïdes de Nups (qui sont résistantes aux 

hexanediols). Le 1,6-Hexanediol a conduit à la dispersion des granules cytoplasmiques de Nups 

observées lors de la régulation négative de FXR1. 

Ainsi, la perte de FXR1 induit des défauts de morphologie nucléaire et des agrégats de Nups 

inappropriés dans le cytoplasme au début de la phase G1.

FXR1 inhibe la formation d’agrégats de Nups par le transport dépendant des 

microtubules et de la dynéine  

Nous avons identifié la protéine motrice cytoplasmique dynéine et sa protéine adaptatrice 

BICD2 comme étant capables d’interagir avec la GFP-FXR1. Il est intéressant de noter que 

l’inhibition de la dynéine et de BICD2 ainsi que la dépolymérisation des microtubules 

conduisent également à l'accumulation des granules de Nups cytoplasmiques et à l'irrégularité 

morphologique du noyau.

Dans des expériences de vidéo en direct utilisant des lignées cellulaires rapporteurs GFP-Nup, 

les agrégats de Nups montrent un comportement dynamique avec des événements de fusion et 

de fission. Fait important, en l'absence de FXR1 ou de dynéine, les aggrégats de Nups sont 
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retenus dans le cytoplasme et ces événements de fusion/fission sont plus importants, tandis que 

dans les conditions contrôles, on observe un mouvement de ces granules vers l’EN et une fusion 

avec celle-ci. Ces observations suggèrent que le transport par le complexe FXR1-dynéine sur 

les microtubules peut diminuer les concentrations locales de Nups cytoplasmiques, empêchant 

ainsi leur assemblage aberrant en agrégats. 

Les anomalies de localisation des Nups peuvent être liées au syndrome de l'X 

fragile 

Tous les membres de la famille des protéines FXR partagent-ils des rôles analogues dans le 

contrôle spatial de la localisation des Nups ? Nous avons observé que FXR2 et FMRP peuvent 

également être localisées à l’EN. Il est intéressant de noter que la déplétion de chacun des trois 

membres de cette famille de protéines conduit à la même condensation cytoplasmique des Nups 

et à une morphologie nucléaire anormale dans les cellules HeLa. De même, différents modèles 

du syndrome de l'X fragile (fibroblastes primaires, iPSC et Fmr1 KO MEF) ont également 

montré une accumulation de granules cytoplasmiques de Nups. Cela suggère que les trois 

protéines FXR partagent ce rôle de régulation de la localisation des Nups. 

FXR1 régule l'exportation des protéines et la progression du cycle cellulaire  

Pour comprendre si la condensation ectopique des Nups au début de la phase G1 dans les 

cellules déficientes en FXR affecte la fonction des pores nucléaires, nous avons analysé les 

taux d'importation/exportation nucléocytoplasmique d'une GFP ectopique lors de l’absence de 

FXR1. Cette absence ne semble pas affecter l'importation nucléaire alors qu'elle impacte 

négativement le taux d'exportation uniquement au début de la phase G1.

En ce qui concerne la progression du cycle cellulaire, la régulation négative de FXR1 entraîne

une augmentation du pourcentage de cellules en phase S et une diminution du pourcentage de 

cellules en phase G1, ce qui suggère qu’en l’absence de FXR1, les cellules s'accumulent en 

phase S. 

En conclusion, ces données indiquent que l'absence de FXR1 entraîne des défauts d'exportation 

de protéines pendant la phase G1 et une perturbation de la progression du cycle cellulaire.

L'absence de RanBP2 annule la condensation cytoplasmique aberrante des 

Nups induite par l'inhibition de FXR1 

Des publications récentes suggèrent que la Nup RanBP2 est une Nup clé dans la biogenèse des 

NPC par la voie des Annulate lamellae. Nous avons cherché à savoir si FXR1 pouvait réguler 

spécifiquement les niveaux et/ou la localisation de RanBP2 et donc induire une condensation 

incorrecte des nucléoporines. Nous avons découvert que FXR1 et RanBP2 se régulent 
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mutuellement à la fois en matière s’expression mais également de localisation subcellulaire. Il 

est intéressant de noter que la déplétion de RanBP2 abolit la condensation aberrante des Nups

induite par régulation à la baisse de FXR1, la dynéine ou la dépolymérisation des microtubules. 

Discussion

Nos données suggèrent un modèle où les protéines FXR et la dynéine co-régulent la 

relocalisation d'un pool cytoplasmique de Nups vers l’EN au début de la phase G1. L'absence 

de protéines FXR ou l’inhibition du transport médié par dynéine conduisent à la formation de 

granules de Nups ectopiques non caractérisées auparavant. Nous supposons que la voie FXR-

dynéine régule le pool de nucléoporines solubles soit restant dans le cytoplasme après 

l'assemblage post-mitotique des NPCs, soit étant traduites en interphase précoce, ce qui est 

important pour les fonctions d'exportation, une forme nucléaire normale et pour la progression 

du cycle cellulaire. 

Les résultats précédents d’autres équipes sont conformes à notre modèle de dispersion des Nups 

par le complexe dynéine-FXR. Il a été démontré que FMRP forme un complexe avec la protéine 

motrice dynéine et avec sa protéine adaptatrice BICD2 dans les neurones. Nos données sont 

cohérentes avec ces résultats et montrent l'interaction de la dynéine et de BICD2 avec la 

protéine paralogue de FMRP, FXR1 dans des cellules cancéreuses humaines en culture. Des 

interactions moléculaires entre les Nups et les complexes dynéine-BICD2 ont également été 

démontrées lors de l'entrée en mitose. Nous supposons que la formation de ces complexes et 

leur transport disperseraient les Nups cytoplasmiques, inhibant ainsi leur agrégation

cytoplasmique. Il serait intéressant d'étudier si ces granules de Nups cytoplasmiques peuvent 

séquestrer d'autres protéines cohésives.

Nous n'avons pas observé d'augmentation de co-localisation de FXR1 endogène et des Nups 

en l'absence de dyneine/BICD2. Nous supposons que soit les trois composants sont nécessaires 

pour former les complexes de transport dans le cytoplasme, soit la formation du complexe 

FXR-Nups est transitoire et est nécessaire pour le transport des Nups solubles qui sont plus 

difficiles à visualiser dans le cytoplasme. Les granules cytoplasmiques de Nups que nous 

observons seraient le résultat de l'absence de ce mécanisme de transport et de l'augmentation 

locale des niveaux de Nups qui en résulte, entraînant la formation aberrante de granules de 

Nups plus grosses (faciles à visualiser) qui ne contiennent pas nécessairement FXR1.

Nous n'avons pu détecter aucun changement de quantité de protéines de plusieurs Nups 

analysées ou du niveau et de la stabilité de leurs ARNm. Cependant, étant donné que la 

régulation traductionnelle représente l'un des rôles les mieux étudiés de la famille des protéines 
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FXR, on ne peut pas formellement exclure que l'expression d'autres Nups ou facteurs associés 

aux Nups, encore à identifier, soit régulée par les protéines FXR.

Nos données suggèrent que la voie FXR-dynéine est importante pour le maintien de la forme 

du noyau au début de la phase G1. Nous pensons qu'un retard modéré dans l'exportation en G1 

pourrait (par un mécanisme inconnu) conduire à des défauts de morphologie nucléaire. 

Alternativement, la taille et la forme du noyau pourraient être liées aux rôles structurels établis 

des Nups, indépendamment de leurs fonctions dans le transport des protéines et de l'ARN. En 

effet, des changements de forme nucléaire dans des cellules déficientes en Nups ont été 

documentés dans divers organismes. Il est intéressant de noter qu’il a été démontré auparavant 

que les Nups étaient impliquées dans la progression G1/S en régulant l'exportation d'ARNm de 

gènes spécifiques, clés du cycle cellulaire. En outre, chez la levure, il a été reporté que la 

modulation des NPCs retardait leur entrée dans le cycle cellulaire des cellules filles. Une étude 

précédente sur les myoblastes a proposé un rôle pour FXR1 dans la progression du cycle 

cellulaire, la délétion de cette protéine entraînant une phase G1 plus longue, une phase S plus 

courte et une sortie mitotique prématurée. Nos résultats démontrent une phase G1 plus courte, 

des phases S plus longues et aucun défaut dans la progression mitotique en l'absence de FXR1, 

ce qui suggère une autre fonction de FXR1 dans les cellules cancéreuses. 

Il est intéressant de noter que des anomalies transitoires d'exportation des protéines ont été 

observées dans les cellules déficientes en FXR1, en particulier au début de la phase G1. Il est 

plausible que dans des conditions de stress ou dans les cellules à division rapide d'un embryon 

en développement, cette légère diminution du taux d'exportation de protéines affecte de 

manière significative l'homéostasie cellulaire et la division asymétrique. Une autre explication 

serait que les agrégats cytoplasmiques de Nups aient des effets cytotoxiques en séquestrant des 

facteurs encore inconnus, importants pour la forme du noyau et la progression du cycle 

cellulaire. 

Bien que des études futures soient nécessaires pour comprendre le mécanisme précis de l'axe 

FXR-dynein-Nup et le rôle de RanBP2 dans la condensation des Nups, nous pouvons supposer

que les défauts de ces voies perturbent de façon significative l'homéostasie cellulaire et 

contribuent à la pathologie du syndrome du X fragile. Collectivement, nos données démontrent 

un rôle inattendu des protéines FXR et de la dynéine dans la régulation spatiale des Nups 

solubles, et fournissent un exemple de mécanisme régulant la formation localisée de condensats 

protéiques.
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Summary (English)

Introduction

Nuclear pore complexes (NPCs) are large, multisubunit protein complexes spanning the nuclear 

envelope (NE) that constitute the transport channels controlling the exchange of proteins and mRNAs 

between the nucleus and the cytoplasm. They are built from roughly 30 different nucleoporins (Nups) 

each present in multiple copies in the NPCs. Nups in the central channel contain disordered elements 

characterized by the presence of phenylalanine-glycine (FG) repeats, the so-called FG-Nups. The FG-

Nups have the ability to phase separate into sieve-like hydrogels that constitute a selective and 

permeable barrier for transported cargos through the NPCs. The FG- and non-FG-Nups can also form 

condensates in cells as they are sequestered in the stress granules and in various pathological aggregates 

in the nucleus and in the cytoplasm. This indicates that Nups have an intrinsic capacity to aberrantly 

assemble, suggesting that protective mechanisms may exist to prevent it in the cell. Indeed, in 

Drosophila embryos a large excess of soluble Nups has been reported and in cells Nups are synthesized 

as soluble proteins in the cytoplasm. How the balance of soluble Nups and their localized assembly in 

NPCs is currently unknown. 

The Fragile X related (FXR) proteins (FXR1, FXR2 and Fragile X mental retardation protein (FMRP)) 

are a family of RNA-binding proteins displaying a high degree of sequence and structural similarity 

and playing important roles in regulating protein translation. Silencing of the FMR1 gene that encodes 

the FMRP protein leads to Fragile X syndrome (FXS), the most common form of inherited intellectual 

human disability worldwide, for which no efficient therapy exists to date.

During my PhD I identified an unexpected role for the FXR protein family and the motor protein dynein 

in the spatial regulation of Nup condensation.

Results

FXR1 interacts with Nups but does not regulate their levels 

Immunoprecipitation experiments (IPs) of stably expressed GFP-FXR1 protein in HeLa cells 

followed by mass spectrometry analysis identified several Nups as potential FXR1 interactors,

and FXR1 interactions with Nup133 and Nup85 were confirmed by Western blot. Importantly, 

FXR1 does not modulate Nups levels since we did not observe changes in protein and mRNA 

levels of several analyzed Nups upon depletion of FXR1. We also observed that FXR1 localizes 

to the NE (where NPCs reside) and also occasionally to small cytoplasmic foci labelled by 

Nups. Altogether, FXR1 interacts with Nups and can localize to both the NE and to cytoplasmic 

foci containing Nups.



Summary (English)

14

FXR1 inhibits aberrant condensation of cytoplasmic Nups and regulates nuclear 

morphology during G1 cell cycle phase 

To assess the biological function of the FXR1-Nup interaction, we silenced the FXR1 gene 

using siRNA oligonucleotides. Downregulation of FXR1 led to irregular nuclei together with 

an accumulation of several types of Nups in the cytoplasm in the form of irregular granules. 

Both phenotypes could be rescued by ectopic expression of GFP-FXR1. FXR1 downregulation 

also moderately reduced the NE localization of several Nups. To further characterize this effect 

of FXR1 in Nup localization, we carried out live video microscopy experiments. These assays 

revealed that nuclear morphology defects and cytoplasmic Nup granules in FXR1-deficient 

cells could be detected at the beginning of G1 phase.

In order to get insight regarding the nature of these granules, we treated FXR1 deficient cells 

with 1,6-Hexanediol to distinguish between Nup hydrogels (which can be dissolved by 

hexanediols) and Nup amyloid fibers (which are resistant to hexanediols). 1,6-Hexanediol led 

to the dispersion of the cytoplasmic Nup granules observed upon FXR1 downregulation. 

Thus, loss of FXR1 induces nuclear shape defects and inappropriate Nups condensates in the

cytoplasm in early G1 phase.

FXR1 inhibits Nup condensate formation by dynein-based microtubule-

dependent transport  

We identified cytoplasmic motor protein Dynein and its adaptor protein BICD2 as GFP-FXR1 

interactors. Interestingly, downregulation of both dynein and BICD2 and microtubule 

depolymerization also led to the accumulation of the cytoplasmic Nup granules and to the 

irregular nuclei. 

In live video experiments using GFP-Nup reporter cell lines, Nup aggregates showed dynamic 

behavior with both fusion and splitting events. Importantly, in the absence of FXR1 or dynein 

Nups granules were retained in the cytoplasm and these fusion/fission events were increased, 

while in control cells NE-directed movement of Nup granules and fusion with the NE were 

observed. These observations suggest that microtubule-based transport by the FXR1-dynein 

complex can decrease local concentrations of cytoplasmic Nups thereby preventing their 

assembly into condensates. 

Nup localization defects can be linked to FXS 

Do all members of the FXR protein family share analogous roles in the spatial control of Nup 

localization? We observed that FXR2 and FMRP can also localize at the NE. Interestingly, 

depletion of each of the three members of this protein family led to the condensation of 
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cytoplasmic Nups and to nuclear morphology defects in HeLa cells. Likewise, different FXS

models (primary fibroblasts, iPSC and Fmr1 KO MEFs) also displayed accumulation of 

cytoplasmic Nup granules. This suggests that the three FXR proteins share the role in regulating 

Nup localization. 

FXR1 regulates protein export and cell cycle progression  

To understand if ectopic Nup condensation during early G1 in FXR-deficient cells affects the 

function of the nuclear pores, we analyzed the rates of nucleocytoplasmic import/export of an 

ectopic GFP upon FXR1 downregulation. The absence of FXR1 did not affect nuclear import 

while it reduced the export rate solely in early G1.

Regarding cell cycle progression, downregulation of FXR1 led to an increased percentage of 

cells in S phase and a decreased percentage of cells in G1 phase, suggesting that upon FXR1 

downregulation cells accumulate in S phase. 

Together, these data indicate that the absence of FXR1 leads to protein export defects in G1 

and perturbation in cell cycle progression.

Absence of RanBP2 rescues FXR1 depletion induced aberrant cytoplasmic Nup 

condensation 

Recent publications suggest that the Nup RanBP2 is a key Nup in NPC biogenesis through the 

pathway of ALs. We investigated if FXR1 could specifically regulate RanBP2 levels and/or 

localization and therefore induce an incorrect Nup condensation. We found that FXR1 and 

RanBP2 regulate each other’s protein levels and subcellular localization. Interestingly, RanBP2 

depletion abolished the aberrant Nup condensation induced by FXR1 or dynein downregulation 

and microtubule depolymerization. 

Discussion

Our data suggest a model where FXR proteins and dynein regulate the localization of a 

cytoplasmic pool of Nups to the NE during early G1. Absence of FXR proteins or dynein-

mediated transport leads to the formation of previously uncharacterized ectopic Nup granules. 

We speculate that the FXR-dynein pathway regulates the pool of soluble Nups either remaining 

in the cytoplasm after postmitotic NPC assembly or being translated in early interphase, which 

is important for functions in nuclear export and shape and in cell cycle progression. 

Previous findings from other teams are in line with our model of FXR-dynein mediated Nup 

dispersal. FMRP was demonstrated to form a complex with the dynein motor and with the 

dynein adaptor protein BICD2 in neuronal cells. Our data are consistent with these findings 
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and show the interaction of dynein and BICD2 with the FMRP paralog protein FXR1 in 

cultured human cancer cells. Molecular interactions of Nups and dynein-BICD2 complexes 

were also reported during mitotic entry. We speculate that formation of FXR1-dynein-Nup 

complexes and their transport would disperse cytoplasmic Nups, thereby inhibiting formation 

of Nup-containing cytoplasmic condensates. It will be interesting to study if these cytoplasmic 

Nup granules can sequester any other cohesive proteins.

We did not observe an increase in co-localization of the endogenous FXR1 and Nups in the 

absence of dynein/BICD2. We predict that either all three components are needed to form the 

transport complexes in the cytoplasm or that the formation of the FXR-Nup complex is very 

transient and is needed for the transport of soluble Nups which are harder to visualize in the 

cytoplasm. The cytoplasmic Nup granules that we observe would be the result of the absence 

of this transport mechanism and the consequent local increase of Nups levels leading to 

aberrant formation of bigger (easy to visualize) Nup granules that do not necessarily contain 

FXR1.

We were unable to detect any changes in protein levels of several analyzed Nups or levels and 

stability of the Nups mRNAs. However, given that translational regulation represents one of 

the best-studied roles of the FXR protein family, it cannot be formally excluded that expression 

of other, yet to be identified Nups or Nup-associated factors, is regulated by FXR proteins.

Our data suggest that the FXR-dynein pathway is important for the maintenance of nuclear 

shape during early G1. We believe that a moderate delay in the export during G1 could (through 

an unknown mechanism) lead to nuclear morphology defects. Alternatively, the nuclear size 

and shape could be related to the established structural roles of Nups independent of their

functions in protein and RNA transport. Indeed, changes in nuclear shape in cells deficient for 

individual Nups have been documented in various organisms. Interestingly, Nups were 

previously implicated in G1/S progression by regulating export of specific mRNAs of key cell 

cycle genes. Furthermore, in yeast, modulation of NPCs has been reported to delay their cell 

cycle entry in the daughter cells. Previous study in myoblasts proposed the role of FXR1 in cell 

cycle progression, whereby deletion of this protein led to longer G1 phase, shorter S phase and 

premature mitotic exit. Our results demonstrate shorter G1, longer S phases and no defects in 

mitotic progression in the absence of FXR1, suggesting another unrelated function of FXR1 in 

cancer cells. 

Excitingly, transient defects in protein export were observed in FXR1-deficient cells 

specifically during early G1 cell cycle stage. It is plausible to predict that under stress 

conditions or in the fast dividing cells of a developing embryo, this small decrease in protein 
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export rate would significantly affect cellular homeostasis and asymmetric division. An 

alternative explanation is that CNGs exert cytotoxic effects by sequestering yet unknown 

factors important for nuclear shape and cell cycle progression. 

Our preliminary results indicate that RanBP2 is required for Nup condensation in cytoplasmic 

granules. We speculate that RanBP2 acts as a Nup granule fusing agent necessary to mix Nups 

in small granules that will be transported to the NE. Excessive Nup granule fusion (due to 

increased cytoplasmic Nup levels or increased RanBP2 levels) would lead to aberrant big 

cytoplasmic Nup granules difficult to transport and their accumulation in the cytoplasm.

While future studies are needed to understand the precise mechanism underlying FXR-dynein-

Nup axis and RanBP2’s role in Nup condensation, defects in these pathways are predicted to 

significantly perturb cellular homeostasis and may contribute to the pathology of FXS.

Collectively, our data demonstrate an unexpected role of FXR proteins and dynein in the spatial 

regulation of soluble Nups, and provide an example of a mechanism that regulates localized 

protein condensate formation.



18



List of abbreviations

19

List of abbreviations

AA Amino acid 

AD Alzheimer’s disease

AL Annulate lamellae

ALPC Annulate lamellar pore complex

ALS Amyotrophic lateral sclerosis 

BAF Barrier to autointegration factor

BICD2 Bicaudal D homologue 2

Bp  Base pair 

BSA Bovine serum albumin 

CDK Cyclin-dependent kinase 

CHD Cyclophilin homology domain

CHX Cycloheximide

CLEM Correlative Light Electron Microscopy

CNG Cytoplasmic nucleoporin granules

CRM1 Chromosomal region maintenance 1 protein

CyPN  Cytoplasmic accumulations of PML and nucleoporins

DAPI -Diamidino-2-phenylindole dihydrochloride 

DMEM Dulbecco’s modified Eagle Medium

DMSO Dimethyl sulfoxide

DNA Deoxyribonucleic acid 

EDTA Ethylenediaminetetraacetic acid 

EM Electron microscopy

ER Endoplasmic reticulum

FACS Fluorescence-activated cell sorting 

FG Phenylalanine-glycine 

FISH Fluorescent In Situ Hybridization

FMRP Fragile X Mental Retardation Protein

FRAP Fluorescence recovery after photobleaching 

FTD Frontotemporal dementia

FXPOI Fragile X-associated Fragile X-associated primary ovarian insufficiency

FXR Fragile X Related 
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FXR1 Fragile X Related Protein 1

FXR2 Fragile X Related Protein 2

FXTAS Fragile X-associated tremor/ataxia syndrome

FUS Fused in sarcoma

FXS Fragile X Syndrome

GDP Guanosine-5'-diphosphate

GFP Green fluorescent protein

GTP Guanosine-5'-triphosphate 

HC Heavy chain

HD Huntington’s disease

HeLa K Human cervix carcinoma cells, K stands for Kyoto 

HP1 Heterochromatin protein 1

IC Intermediate chain

IDR Intrinsically disordered region

IF  Immunofluorescence 

IgG Immunoglobulin G

INM Inner Nuclear Membrane

IP  Immunoprecipitation 

iPSC Induced pluripotent stem cell

IR Internal repeats

KH K homology domain

LAP2 Lamina associated protein 2

LBR Lamin B Receptor

LC Light chain

LE Long exposure

LINC Linker of nucleoskeleton and cytoskeleton

Live SR Super resolution module 

LTD Long-term depression

MEF Mouse embryonic fibroblast

MG132 Proteasome inhibitor 

mGluR Metabotropic glutamate receptor

mRNA messenger Ribonucleic acid

MTOC Microtubule-organizing center 

MW Molecular weight
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NE Nuclear envelope

NEBD Nuclear envelope breakdown

NES Nuclear export sequence

NLS Nuclear localization sequence

NoS Nucleolar targeting signal

NPC Nuclear pore complex

NTR Nuclear transport receptor

Nup Nucleoporin

ONM Outer Nuclear Membrane

PBS Phosphate buffered saline 

PFA Paraformaldehyde 

PLK1 Polo-like kinase 1

PML Promyelocytic leukemia protein

PNS Perinuclear space

p-Rb phospho-Retinoblastoma protein

PSD-95 Postsynaptic density protein 95

PTM Post-translational modification

qPCR Quantitative real-time polymerase chain reaction 

RAN Repeat-associated non-ATG

RanBP2 Ran-Binding Protein 2

RanGAP1 Ran GTPase-activating protein 1

RanGEF Ran guanine nucleotide exchange factor

Rb Retinoblastoma protein

RBP RNA-binding protein

RCC1 Regulator of chromosome condensation 1

RGG Arginine-glycine-glycine

RNA Ribonucleic acid 

RT Room temperature 

SD Standard deviation

SE Short exposure

SEM Standard Error of the Mean

SG Stress granule

siRNA Small interfering RNA

SSC Saline Sodium Citrate
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SUMO Small Ubiquitin-Like Modifier

TBS Tris-buffered saline 

U2OS U-2 Osteosarcoma

WB Western blotting 

WT Wild type
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1. General introduction

1.1.Organization of the nuclear envelope

Cellular compartmentalization has allowed eukaryotic cells to increase the efficiency and 

regulation of biochemical processes by concentrating the specific players to limited spaces 

termed organelles. The genomic material within the nucleus is separated from the rest of the 

cell by the nuclear envelope (NE) which has a intrincate organization (Figure 1) (Güttinger et 

al, 2009). The NE is a double lipid bilayer composed by the outer nuclear membrane (ONM) 

facing the cytoplasm and continuous with the endoplasmic reticulum (ER), and the inner 

nuclear membrane (INM) in the nuclear side separated by the 40-50 nm perinuclear space 

(PNS). The ONM has a very similar protein composition to the ER membrane and has 

associated ribosomes while the INM has its own set of around 60 different transmembrane 

proteins. These INM proteins (Lamina associated protein 2 (LAP2), Emerin, MAN1, and 

Lamin B Receptor (LBR) among others) vary between different cell types and link the NE with 

the nuclear lamina and chromatin. For example, LBR interacts with lamin B and binds 

chromatin through the heterochromatin protein 1 (HP1) while LAP2, Emerin, and MAN1 

interact with barrier to autointegration factor (BAF) which also binds chromatin (Holmer & 

Worman, 2001).

The nuclear lamina is a fibrillar network present in metazoans (15-20 nm thick in mammals)

and composed of A-type and B-type lamins which are type V intermediate filament proteins.

In mammalian somatic cells, lamin A and lamin C are the most abundant A-type lamins while 

Lamin B1 and LaminB2 are the main B-type lamins. The nuclear lamina provides structural 

support to the NE and also interacts with chromatin (Burke & Stewart, 2013). Indeed, changes 

in lamin levels or mutations in their sequence result in aberrant nuclear shape, a hallmark of 

laminopathies such as, the Hutchinson-Gilford progeria syndrome and the Emery-Dreifuss 

muscular dystrophy (Polychronidou & Großhans, 2011; Capell & Collins, 2006).

The NE is also stabilized by the linker of nucleoskeleton and cytoskeleton (LINC) complexes

than span both membranes and interact with the cytoskeleton in the cytoplasmic side and with 

the nuclear lamina in the nucleoplasmic side. LINC complexes consist of two sets of 

transmembrane proteins (nesprins are embedded in the ONM and SUN domain proteins in the 

INM) which interact in the PNS via specific domains and link both membranes of the NE. The 

LINC complex is implicated in signal mechanotransduction and nucleus positioning (Bouzid 

et al, 2019; Lee & Burke, 2018) (Figure 1).
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Figure 1 - Organization of the NE. The PNS separates the INM and the ONM. Lamin A/C and Lamin 
B polymers are located at the nucleoplasmic side of the INM forming the nuclear lamina. ONM proteins 
connect the NE with the cytoskeleton while the INM proteins link the NE to the lamina and chromatin. 
LBR interacts both with lamins and chromatin throug HP1. LAP2, emerin 
and MAN1 bind to lamins and interact with chromatin through BAF. SUN proteins present in the INM 
interact with nesprins located in the ONM, thereby forming the 
with the cytoskeleton (actin and intermediate filaments). The nuclear pore complexes form the channels 
through which the nucleocytoplasmic transport of proteins and RNAs occurs. Figure adapted from
(Güttinger, Laurell, and Kutay 2009).

1.2.The nucleocytoplasmic transport system

The exchange of proteins and mRNAs between the nucleus and the cytoplasm is driven by the 

Nuclear Pore Complexes (NPCs) which are located in the pores of the NE (Figure 1). Small 

molecules can passively diffuse through the NPCs while cargos bigger than 30-50 kDa or 5

nm in diameter need to be actively transported by Nuclear Transport Receptors (NTRs) (also 

called karyopherins, or importins and exportins), establishing the so-called permeability barrier

(Wente & Rout, 2010). The mechanism of active nuclear transport of cargos requires that they 

contain specific amino acid sequences, termed nuclear localization sequence (NLS) and nuclear 

export sequence (NESs) which are recognized by NTRs. The directionality of this transport is 

ensured by the nucleocytoplasmic gradient of the small GTPase Ran bound to GTP or GDP.
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Briefly, the importin-cargo dimer formed after NLS recognition traverses the central channel 

of the NPC and, once in the nucleoplasm, Ran-GTP (which is found in high concentration in 

the nucleoplasm compared to the cytoplasm) binds the importin causing the release of the 

cargo. Exportins together with Ran-GTP recognize the NES of cargo proteins in the nucleus 

and cross the NPC towards the cytoplasm where they are disassembled by Ran-GTP hydrolysis 

mediated by RanGAP1 (Ran GTPase-activating protein 1) which localizes to the cytoplasmic 

side of NPCs. Ran-GDP is then recycled to the nucleoplasm by its own importin. Back in the 

nucleoplasm, the chromosome bound Ran guanine nucleotide exchange factor (RanGEF also 

called Regulator of Chromosome Condensation 1 (RCC1)) catalyzes the RanGTP conversion.

This way, the two enzymes RCC1 and RanGAP1 maintain the nucleocytoplasmic Ran-

GTP/GDP gradient: RanGAP1 makes sure that low Ran-GTP and high Ran-GDP levels are 

maintained in the cytoplasm while RCC1 ensures the opposite levels in the nucleoplasm

(Figure 2) (Wente & Rout, 2010).

In addition to protein transport, dedicated NTRs exist for RNA export (Natalizio & Wente, 

2013).

Figure 2 - The nuclear transport cycles for NTRs and their cargos. The import cycle (left panel)
begins when an importin (light blue) recognizes the NLS of the cargo protein (dark green) and a dimer 
is formed. This dimer can cross the NPC central channel and, in the nuclear side, Ran-GTP (yellow)
binds the importin and dissociates the import dimer. The export cycle (right panel) starts when an 
exportin (light green) interacting with Ran-GTP recognizes a NES of a cargo protein (purple) in the 
nucleoplasm. The triple complex can traverse the NPC central channel and dissociates when RanGAP1 
(attached to the cytoplasmic NPC filaments and non-depicted in the figure) hydrolyzes Ran-GTP.
Figure adapted from (Wente & Rout, 2010) and created with BioRender.com.
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The transport capacity of NPCs is impressive, every second a single NPC can sustain a 

transport load of 100 MDa and rates of around 1000 translocations (Ribbeck & Görlich, 2001).

On average, an active transport event of a small cargo lasts a few milliseconds (Yang et al,

2004), although this time depends on each cargo. Bigger cargos need progressively more time 

and more NTRs (even if they increase the complex’s size) to cross the NPC, as it is the case of 

the 60S ribosomal subunit which requires several NTRs to be exported to the cytoplasm (Wild 

et al, 2010). Even when the cargo is not big, the translocation speed has been shown to depend 

on the NTR:cargo ratio; small cargos are transported significantly faster when bound to more 

NTRs (Ribbeck & Görlich, 2002).

Despite the efforts to study the biophysical mechanism of nuclear transport, it is still not 

completely understood. However, the properties of the central channel of the NPCs seem to 

have a key role in establishing the permeability barrier (Lemke, 2016).

1.3.Nucleoporins and NPCs

NPCs were first observed in 1949 by H. G. Callan as pores in the nuclear membrane in oocytes 

from Triturus cristatus and Xenopus laevis (Callan et al, 1949). After decades of study, we 

now know that NPCs are the biggest nonpolymeric protein complexes (60 MDa in yeast and 

120 MDa in vertebrates) that span the NE and are located where the INM and the ONM highly 

curve and fuse. They show a cylindrical shape broadly conserved throughout eukaryotes 

measuring 100-150 nm in diameter and 50-70 nm in thickness depending on the organism

(Hampoelz et al, 2019a; Beck & Hurt, 2017). These massive structures open up 50 nm-wide

transport ducts which are the only communication channels between the nucleus and the 

cytoplasm and facilitate the dynamic bidirectional transport of components with a wide range 

of molecular weights.

NPCs are built from roughly 30 different nucleoporins (Nups) that are arranged in several 

subcomplexes. Multiple copies of these subcomplexes assemble to sum up 500-1000 Nups per 

NPC following a highly organized eight-fold symmetry (Knockenhauer & Schwartz, 2016).

Regarding their function, Nups can be classified into three categories. First, transmembrane 

Nups anchor the NPC to the highly curved NE of the pore. In metazoan there are three known 

transmembrane Nups: POM121, ND1 and Nup210. Second, scaffold Nups which organize into 

stacked ring structures forming the channel that communicates the nucleoplasm and the 

cytoplasm. Third, disordered Nups containing several copies of phenylalanine-glycine (FG) 

repeats (the so-called FG-Nups) which localize to the central region of the scaffold channel 
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and are essential for the permeability barrier (Figure 3). It has been observed that the turnover 

and residence time at the NPC vary among different Nups; scaffold components show almost 

no turnover and are stably associated, while peripheral Nups only transiently interact with the 

NPC (Rabut et al, 2004).

Figure 3 - Organization of the human NPC. Scheme of the human NPC showing the structural 
elements and their conforming Nups. The cytoplasmic and nucleoplasmic rings are each composed of 
16 copies of the Nup107-160 complex organized in two rings of 8 complexes. The Nup ELYS is part 
of this complex only in the nucleocytoplasmic rings. Attached to cytoplasmic and nucleoplasmic rings,
on each side of the NPC there are the cytoplasmic filaments and the nuclear basket, respectively. The 
inner ring is composed of 32 copies of the Nup93 complex organized in 4 stacked rings of 8 complexes 
each. Transmembrane Nups are attached to the inner ring and anchor the NPC to the pore membrane. 
Attached to the inner ring, the Nup62 complexes fill in the central channel and form the permeability 
barrier of the NPC. Figure created with BioRender.com.

From a structural point of view, the NPC scaffold consists of three stacked rings known as the 

nucleoplasmic, the cytoplasmic and the inner rings (Grossman et al, 2012) which mediate the 
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association to the NE membrane. The first two rings (in the nuclear and the cytoplasmic side 

respectively) are formed by several copies of the Nup107-Nup160 complex (or Y-complex, 

which contains Nup107, Nup160, Nup133, Nup96, Nup43, Nup85, Nup37, Sec13 and Seh1, 

with the exception of ELYS which is only present in the nucleoplasmic ring). Each ring is 

actually formed by 16 copies of the complex organized in two concentric rings of 8 complexes

(Bui et al, 2013) and they are believed to play a role in maintaining the curvature of the NE at 

the pore. The inner ring consists of 32 copies of the Nup93 complex (which contain Nup93, 

Nup205, Nup188, Nup53 and Nup155) organized in four stacked rings (Kosinski et al, 2016).

Interacting with the inner ring, the transmembrane Nups anchor the scaffold of the NPC to the 

pore membrane.

In addition to the symmetric scaffold, the NPCs also consist of the nuclear basket and the 

cytoplasmic filaments which work as interaction platforms for transport complexes. 

Cytoplasmic filaments are long and unstructured polypeptides of Nup214 and Nup358 that 

facilitate the cargo-NPC interactions. The nuclear basket on the other hand, consists of eight 

extensions of Nup153, Nup50 and Tpr that emerge from the nucleoplasmic ring and converge 

into a distal ring. These extensions have roles in mRNA export (Frosst et al, 2002; Coyle et al,

2011) and in anchoring the NPC to the nuclear lamina (Smythe et al, 2000; Xie et al, 2016b).

Finally, multiple copies of the Nup62 complex (composed of Nup62, Nup58 and Nup54) form 

the permeability barrier while interacting with the inner ring through Nup93 and occupying the 

central channel of the NPC (Sachdev et al, 2012; Chug et al; Finlay et al, 1991). These Nups

belong to the FG-Nup family as they contain regions characterized by the presence of FG

repeats (Figure 4). One third of all NPC proteins are FG-Nups and they are present in the central 

channel but also extend into the nuclear and cytoplasmic compartments. Different types of FG 

repeats exist and they consist of up to 50 copies of small hydrophobic segments (FG, GLFG, 

FxFG, PxFG, or SxFG where L is leucine, P is proline, S is serine, and x is any residue) that 

intersperse long stretches of hydrophilic amino acids (between 20 and 70 residues) (Figure 4).

This combination of repeats results in flexible and intrinsically disordered regions without a 

fixed secondary structure (Frey et al, 2006; Denning et al, 2003), which extend towards the 

center of the NPC channel and form a meshwork of FG-repeats that offers multiple low-affinity 

and high-affinity interaction sites to NTRs. These multiple interactions provide the 

permeability barrier to the NPC; they allow the passive transit of small molecules while 

excluding macromolecules unless they are bound to NTRs that interact with FG-Nups and 

diffuse through the pore. 
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Figure 4 - Distribution FG repeats in human FG-Nups. The following types of FG repeats are 
depicted in an assortment of disordered human FG-Nups: FxFG (red), PxFG (green), SAFG (yellow), 
GLFG (blue) or FG (purple) where L is leucine, P is proline, S is serine, and x is any residue. Figure 
from (Lemke, 2016).

Despite many research efforts, our understanding of the molecular mechanism that determines 

the NPC permeability barrier remains limited and currently several hypothetical models exist 

that try to explain it (reviewed in Li, Goryaynov, and Yang 2016). The “Brownian/virtual 

gate/polymer brushes” model proposes that the FG-Nups sterically hinder the inert molecules 

brushing them away. Cargo-bound NTRs interact with FG-Nups filaments making them 

collapse and lowering the energy level of the barrier. The “selective phase/hydrogel” model

suggests that phenylalanines of FG-domains are crosslinked with one another and form a

cohesive meshwork or hydrogel that constitutes a selective and permeable barrier which only 

allows the passage of NTRs that can dissolve the crosslinks (Frey et al, 2006). Actually, this 

ability of the FG-Nups to form permeable hydrogels that bind to NTRs can also be reconstituted 

in vitro and is highly conserved through the evolution (Frey & Görlich, 2007). Furthermore, 

the “reduction of dimensionality” model suggests that FG-Nups collapse when interacting with 

NTRs allowing for a 2-dimensional movement rather than in a 3D Brownian movement of the 

NTR-cargo. Alternatively, the “forest/gate” model takes into account the different properties 
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of FG-Nups and proposes that peripheral FG-domains function as a repulsive gate and that 

cohesive FG-domains in the central channel act as the selective gate. It is important to mention 

that all these models are not mutually exclusive, meaning that probably hybrid solutions are 

employed in the cells depending on specific transport pathways and/or physiological context.

1.4.NPC assembly pathways

How is this gigantic NPC assembled? In higher eukaryotes which undergo open mitosis there 

are two main NPC assembly pathways operating in different stages of the cell cycle (Figure 5).

At the end of mitosis, when the NE is reassembled around the two daughter chromosome 

masses, NPCs rapidly reform following the so-called postmitotic NPC assembly pathway. 

During interphase, as the cells grow, new NPCs need to be embedded in the NE to assist the 

transport needs of the expanding nuclei following the so-called interphasic NPC assembly 

pathway. These two pathways show fundamentally distinct mechanisms to assemble the same 

complex which is probably due to the different conditions when they function (the presence or 

absence of pre-existing building blocks and enclosed NE) (reviewed in (Otsuka & Ellenberg, 

2018; Weberruss & Antonin, 2016)). A third way to efficiently increase the NPC number has

been described in cells with rapid cell cycles like germ, early embryonic and cancer cells. This 

pathway is based on the existence of cytoplasmic stacks of double membranes, termed 

Annulate lamellae (AL), which accommodate a high number of NPCs that can be inserted en

bloc into the expanding NE (reviewed in Kessel 1992).

In the following sections, these three NPC assembly pathways will be described in more detail.
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Figure 5 - NPC assembly during cell cycle. Two main NPC assembly pathways operate depending on 
the cell cycle stage; the postmitotic NPC assembly pathway during late anaphase and telophase and the 
interphase NPC assembly pathway during late telophase and along interphase.
A Postmitotic NPC assembly pathway (upper panel): at the beginning of mitosis, the NE breaks down 
and it is absorbed in a highly fenestrated ER (blue lines). Concomitantly, NPCs (orange) are 
disassembled and Nup subcomplexes are dispersed in the mitotic cytoplasm. During late-anaphase and 
early-telophase, the NE and NPCs reassemble on the surface of chromatin (blue gradient). The NE 
assembly is delayed in the chromosome regions facing the mitotic spindle (called ‘core’ region, yellow)
because of the high density of spindle microtubules (red lines). For the same reasons, NPC reassembly 
is restricted to the ‘non-core’ regions (green). 
B Interphasic NPC assembly pathway (bottom panel): in late-telophase and during the subsequent 
interphase, the nucleus expands and NPCs assemble de novo into the NE. 
Figure adapted from (Otsuka & Ellenberg, 2018).

1.4.1. Postmitotic NPC assembly pathway 

At the beginning of mitosis the spindle microtubules require the NE breakdown (NEBD) in 

order to access the condensed chromosomes which will be segregated. This process begins 

with the removal of the NE membranes from chromosomes and the disassembly of NPCs and 

A

B
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the nuclear lamina in prophase. NEBD is triggered by phosphorylation of several targets by 

mitotic kinases including cyclin-dependent kinase 1 (CDK1) and polo-like kinase 1 (PLK1) 

(reviewed in (Güttinger et al, 2009; Ungricht & Kutay, 2017). Concomitantly with NE 

disassembly, the bipolar mitotic spindle is formed. The minus end directed motor protein 

dynein is attached to NPCs and it contributes to centrosome separation by pulling on astral 

microtubules, while the kinesin-5 (EG5) pushes the chromosomes apart. Dynein recruitment to 

NPCs relies on two different pathways which involve the dynein cofactors bicaudal D 

homologue 2 (BICD2) in late G2 and NUDE/NUDEL-mitosin in prophase (Splinter et al, 2010; 

Bolhy et al, 2011). During prophase, dynein-dependent forces generate NE invaginations 

around the centrosomes promoting fenestrations (Salina et al, 2002; Beaudouin et al, 2002).

Phosphorylation of nuclear lamins and INM proteins leads to lamina disassembly and retraction 

of NE membranes into the ER which organizes in highly fenestrated sheets excluded from the 

spindle area (Figure 5). Nup98 phosphorylation by multiple kinases has been shown to be the 

first event of the dispersion of NPCs into stable Nup subcomplexes (Dultz et al, 2008) which 

are prevented from re-assembling the NPCs by interacting with importins (Harel et al, 2003).

After chromosome segregation, postmitotic dephosphorylation events allow the contacts 

between INM proteins, DNA and lamins which make the fenestrated ER to cover the periphery 

of the decondensing chromosome masses (called ‘non-core’ region). The NE reassembly is 

slower in the chromosome areas facing the spindle pole and the central spindle (‘core’ region) 

due to the high density of microtubules (Haraguchi et al, 2008; Liu et al, 2018). However, 

overall the NE reassembly is incredibly fast; it requires 2-4 min to reform around the daughter 

chromosomes and it occurs concomitantly with NPC reassembly. 

Postmitotic NPC reassembly is a well-documented stepwise process (Figure 6) (reviewed in 

(Otsuka & Ellenberg, 2018). It begins with the binding of the nuclear ring specific Nup ELYS

to chromatin in mid-anaphase which then recruits the Nup107-160 complex. The latter complex 

allows for the incorporation of transmembrane Nups (NDC1 and POM121) and Nup53. 

Subsequently, the inner ring components are recruited in the following order: Nup155, Nup205,

Nup188 and Nup93. These components set the ground for the subsequent addition of the Nup62 

complex, the cytoplasmic filaments and the nuclear basket. The reassembly of NPCs is limited 

to the NE surface because of the attachment of ELYS to chromosomes and the localized release

of Nups from the inhibitory importins (Franz et al, 2007; Harel et al, 2003; Rotem et al, 2009)

promoted by high RanGTP concentrations restricted by DNA bound RCC1 (Walther et al,

2003b).
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From a structural point of view, correlating live imaging with high-resolution electron 

tomography has allowed to observe that, first, small pre-pores of about half the size of mature 

NPCs are formed in small membrane fenestrations which then dilate (Otsuka et al, 2018). This 

suggests that reassembling NPCs take place on the pre-existing NE openings.

Postmitotic NPC assembly is a remarkably fast process which allows daughter nuclei to 

reestablish active nuclear import within 10 min after anaphase onset, although total reformation 

of the permeability barrier needs 2 hours to complete (Dultz et al, 2009).

1.4.2. Interphasic NPC assembly pathway 

The interphasic NPC assembly pathway starts already in late telophase and it doubles the 

number of NPCs during interphase to support the nucleocytoplasmic transport needs of the 

growing nuclei and the next cell division (Maul et al, 1971; Doucet et al, 2010). As opposed 

to the postmitotic pathway, the interphasic NPC assembly pathway takes places on an already 

closed NE, therefore the INM and ONM need to fuse to create the pore that will host the NPC. 

This membrane fusion step together with the fact that the Nup subcomplexes need to be 

produced are probably the reasons why this assembly is a much slower and sporadic process.

High-resolution imaging techniques have shed light on the assembly process (Figure 6). The

interphasic assembly begins with a dome shaped evagination of the INM which seems to be 

pushed by a visible mushroom-shaped density in locations where an 8-fold rotationally 

symmetric nuclear ring is already located. The evagination dilates and grows until it merges 

with the ONM (Otsuka et al, 2016). It has been suggested that Nups play a role in promoting 

and stabilizing the membrane curvature required in this fusion since Nup133, Nup53 and 

Nup153 have been shown to contain amphipathic helices that can bind and/or bend membranes

(Drin et al, 2007; Doucet et al, 2010; Vollmer et al, 2012, 2015). Moreover, the fact that Y-

complex shows similarity to protein complexes coating endocytic vesicles is in line with this 

reasoning (Devos et al, 2004; Brohawn et al, 2008).

Regarding the fusion between ONM and INM, the specific mediating factors are still unknown, 

although torsins have been proposed to play a role, because in their absence interphasic NPC 

assembly intermediates have been shown to accumulate (Rampello et al, 2020).

The underlying molecular mechanisms of the interphasic NPC assembly pathway are still 

poorly characterized although it is known that Nups are recruited in a different order as 

compared to the postmitotic pathway (Figure 6) (D’Angelo et al, 2006a; Dultz & Ellenberg, 

2010). Nup53, Nup153, POM121 as well as INM protein SUN1 seem to be recruited to the 

assembly site early and their membrane association has been shown to be required for the 
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assembly (Doucet et al, 2010; Vollmer et al, 2012, 2015; Talamas & Hetzer, 2011). Nup153

can further recruit the Nup107-Nup160 complex, while Nup53 interacts with the Nup93 and 

the Nup62 complexes attracting them to the assembling NPC. Only after these events, the 

cytoplasmic filament component Nup358 is recruited (Otsuka et al, 2016). Noteworthy, ELYS 

has been shown to be dispensable for the interphasic assembly while it is essential in the 

postmitotic pathway (Doucet et al, 2010; Vollmer et al, 2015).

Interestingly, the NPC spacing is kept homogeneous in the growing NE which points to a NPC 

distribution regulatory mechanism which must act concomitantly to their assembly (Maul et 

al, 1971; Otsuka et al, 2016).

Figure 6 – Postmitotic and interphasic NPC assembly pathways. NPC assembly takes place in two 
different stages of the cell cycle, at the end of mitosis (left) and during interphase (right). Postmitotic 
NPC assembly is initiated when ELYS binds the chromatin in early anaphase and recruits the Nup107-
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Nup160 complex of the nucleocytoplasmic rings. Soluble Nups sequestered by NTRs are released in 
the proximity of the DNA due to the RCC1 driven high Ran-GTP concentration, allowing them to be 
incorporated into the NPC. The resulting nucleocytoplasmic rings recruit transmembrane Nups (NDC1, 
POM121) which will drag the fenestrated ER membranes and will start to shrink and establish contacts 
with the chromatin. Then, Nup93, Nup98 and Nup62 are sequentially incorporated and the inner ring 
and the central channel are assembled. Finally, Nups that constitute the asymmetric structures, the 
cytoplasmic filaments and the nuclear basket, are recruited to form the mature NPC. During interphase, 
the NE is intact so the NPCs need to assemble de novo. At the beginning, an inside-out evagination of 
the INM takes place. The first Nups recruited to the region and probably needed for the membrane 
curvature are believed to be Nup153, Nup53 and POM21. This region already contains the nuclear ring 
structure underneath and the dome-shaped evagination grows and dilates until it fuses with the ONM. 
Additional Nups or subcomplexes are further recruited, although the sequence of the events is still 
unclear. Figure adapted from (Grossman et al, 2012; Otsuka & Ellenberg, 2018) and created with 
BioRender.com.

1.4.3. AL assembly pathway 

In quickly dividing cells interphase is too short for the slow interphasic pathway to double the 

NPC number. These cells make use of a third pathway relying on structures called AL to keep 

their NPC density constant while the cell grows. ALs are cytoplasmic stacks of membranes 

continuous with the ER embedded with pore complexes termed Annulate lamellae pore 

complexes (ALPCs). These complexes are morphologically comparable to NE NPCs although 

their context differs since they face the cytoplasm on both sides of the membrane and they do 

not establish contacts with lamins, chromatin nor INM proteins. Regarding protein 

composition, ALPCs appear alike NPCs although some specific Nups are not present (ELYS, 

POM121, Tpr) (Raghunayakula et al, 2015). ALs have been found in nearly all cell types but 

they are highly abundant in germ cells and early embryonic cells, and they have been suggested 

to function as a maternally given storage of NPCs for their rapid cell cycles. Certainly, this 

pathway does not depend on de novo NPC assembly what makes it optimal to support quick 

cell divisions in early embryogenesis. A recent study has proposed that in Drosophila 

blastoderm embryos, where interphase takes roughly 10 minutes, ALs are inserted en bloc into 

the NE thus feeding the expanding nuclei with membranes and pore complexes at the same 

time (Figure 7) (Hampoelz et al, 2016).

Indeed, Hampoelz and colleagues showed that ALPCs in this context consist of the symmetric 

scaffold and they suggest that it matures and acquires the cytoplasmic filaments, the nuclear 

basket and the Nup62 complex only after their incorporation into the NE. Surprisingly, the 

permeability barrier remains unperturbed while these pore complexes are introduced into the 

NE (Hampoelz et al, 2016).
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Figure 7 - Model of ALPC insertion. Hampoelz et al. propose that ER membrane stacks harboring 
immature pore complexes termed AL exist in the cytoplasm during early embryogenesis. ALs will get 
to the proximity of the NE and the region of the NE underlying the AL will open and retract. This way,
the AL double membrane will become the new local NE and the ALPCs will mature into NPCs in the 
expanding nucleus. Figure from (Weberruss & Antonin, 2016).

Given that ALPC biogenesis occurs in a very different context away from the interface between 

the nucleoplasm and the cytoplasm, their assembly probably follows a different mechanism as 

compared to the two canonical assembly pathways. Indeed, the same group has also studied 

the origin of ALPCs during Drosophila oogenesis and found that it relies on the formation of

various granules containing condensed Nups (Hampoelz et al, 2019b). In the maternal nurse 

cells of the Drosophila egg chamber Nup358 (also known as RanBP2) condenses and forms 

larger granules which are surrounded by nup358 mRNA (suggesting a localized translation 
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process that could promote condensation). At the same time, scaffold and FG-Nups condense 

into distinct granules in the oocyte. Nup358 granules travel towards the oocyte and interact 

with oocyte-specific granules in a microtubule dependent manner and near ER membranes. It 

has been suggested that AL biogenesis is inhibited in nurse cells by the high Ran-GDP 

cytoplasmic levels, which promotes formation of the importin-Nup complexes to keep the Nups 

in a soluble state and inhibit their condensation. On the contrary, the oocyte cytoplasm shows 

high levels of Ran-GTP, which is likely to promote condensation of FG-Nups and scaffold 

Nups into the oocyte-specific granules by inhibiting importins’ chaperoning role. Once the 

Nup358 granules travel to the cytoplasm of the oocyte, microtubule dynamics promote 

contacts, mixture and material transfer between the different types of Nup granules. This model

(Figure 8) proposes that after these granules interact, Nups are transferred to a neighboring ER 

membrane where AL-PCs assemble. Eventually, larger stacks with multiple membrane sheets 

form and can be used as a NPC storage in rapidly dividing cells during early embryogenesis. 

Figure 8 - ALPC biogenesis model in Drosophila melanogaster oocytes.
A A scheme of the Drosophila egg chamber: nurse cells (left chamber) and the oocyte (right chamber) 
form the germline and both are surrounded by follicle cells (not shown). In mid oogenesis, nurse cells 
show high concentration of cytoplasmic condensed Nup358 granules while the oocyte cytoplasm is rich 
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in oocyte-specific granules (containing condensed scaffold Nups and other FG-Nups), ALs, and, to a 
lesser extent, also Nup358 granules.
B Nurse cells contain condensed Nup358 granules decorated with Nup358 mRNA, which suggests 
localized translation and condensation events. The condensation of other types of Nups would be 
inhibited by the high Ran-GDP concentration of the cytoplasm in nurse cells where importins would 
keep them in a soluble state. On the contrary, the oocyte cytoplasm shows high levels of Ran-GTP, 
which is likely to promote FG-Nup and scaffold Nup condensation in oocyte-specific granules by 
avoiding importins’ chaperoning role. Nup358 granules travel to the oocyte where they interact with 
oocyte-specific granules in a microtubule dependent fashion and transfer their contents to ER sheets 
allowing ALPC assembly. During early embryogenesis, these ALPCs are inherited to the embryo where 
they feed the rapidly dividing nuclei with membranes and future NPCs.
Figure from (Hampoelz et al, 2019b).

1.5.Phase separation 

As mentioned before, FG-Nups contain intrinsically disordered regions (IDRs) meaning that 

they do not have a stable secondary nor tertiary structure. This feature makes them prone to 

phase separation and aggregation (Lemke, 2016; Schmidt & Görlich, 2016). Indeed, Nups have 

been found in several phases as amyloid fibers (Halfmann et al, 2012; Milles & Lemke, 2011),

hydrogels (Frey et al, 2006; Frey & Görlich, 2007) and liquid droplets (Hampoelz et al, 2019b).

1.5.1. Phase separation in cells 

Phase separation is understood as a physical process by which a supersaturated solution of 

components (as the cytoplasm can be) spontaneously separates into a concentrated phase and 

a diluted phase for a specific component or a selection of components. These two phases can 

coexist in a stable manner. Although this phenomenon has been long known and used in 

chemistry, its implication in cell biology and in the formation of membrane-less organelles 

(cellular compartments with specific components and functions that are not enclosed by lipid 

bilayers) has only started to be studied in the last two decades (reviewed in (Boeynaems et al,

2018). The role of phase separation in membrane-less organelle formation was first proposed 

in 2009 when Brangwynne and colleagues showed that P granules (a class of perinuclear 

granules in Caenorhabditis elegans germline containing specific RNAs and proteins) behave 

like liquid and their localization and enrichment is regulated by dissolution and condensation 

(Brangwynne et al, 2009). They described these liquid droplets as bodies with round 

appearance, deformable (they underwent fission and fusion) and constantly exchanging

components with the surrounding milieu. After this seminal discovery, many other granules 

have been described as supramolecular assemblies and membrane-less organelles governed by 
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the phase separation phenomenon; such as the nucleolus, Cajal bodies, nuclear speckles, stress 

granules (SG), P-bodies, germ granules and PML bodies which all play specific roles in cellular 

homeostasis (Boeynaems et al, 2018; Courchaine et al, 2016). From this point of view, 

macromolecules in the cell can be seen as components that transition between different material 

states, ranging from soluble to liquid, to hydrogel and to amyloid fibers depending on their 

behavior (further explained in Figure 9).

Figure 9 - Intracellular protein phases and the interactions that maintain them.
A Soluble proteins move freely in the cells (red arrow). Proteins with certain characteristics and under 
specific conditions undergo liquid-liquid phase separation and form liquid droplets. These droplets still 
show rapid protein diffusion (red arrow) and also exchange with soluble monomers outside the droplet 
(green arrows). In hydrogels, the diffusion rate of proteins within the droplet (small red arrows) and the 
exchange speed with the environment (small green arrows) are much slower. When proteins form 
amyloid fibrils, they show a static behavior and they do not go back to the surrounding milieu as soluble 
monomers.
B Proteins that phase separate are usually rich in hydrophobic and charged residues. Hydrophobic 
interactions are thought to be responsible for bringing proteins together, and electrostatic interactions 
additionally stabilize phase separation. Liquid droplet and hydrogels rely on these mentioned 
interactions. When the constituent proteins organize in cross beta-sheet structures they form amyloid 
fibrils.
Figure adapted from (H. Broder Schmidt and Görlich 2016).

These states can be distinguished by studying their constituents’ dynamic behavior. Liquid 

droplets for example can fuse and deform in response to flows (Brangwynne et al, 2009), and 

the quick rearrangement of their constituents and exchange with the environment can be 

observed by fluorescence recovery after photobleaching (FRAP) experiments (Hampoelz et al,
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2019b). By contrast, the fluorescence recovery speed is much lower in hydrogels which have 

a solid-like behavior (Schmidt & Görlich, 2015; Frey et al, 2006). Amyloids are structurally 

formed by cross-beta spines and can be detected in vitro or in histological sections using 

thioflavin-T which increases its fluorescence when bound to amyloid fibrils (Biancalana & 

Koide, 2010).

1.5.2. Factors regulating phase transition 

The factors controlling phase transitions include the intracellular concentration and distribution 

of the components, interaction multivalence among proteins and RNAs, molecular chaperones 

and post-translational modifications (PTMs), which will be discussed further in this chapter.

The ability of the components to form multivalent protein-protein, and protein-RNA 

interactions is crucial for phase separation (Feng et al, 2019). A protein is considered to be 

multivalent when it can establish simultaneous inter- or intra-molecular interactions with 

several partners or target sites. As a result of these interactions, proteins tend to form oligomers 

or polymers which are less soluble and more likely to undergo phase separation (demix). In 

this context, IDRs are ideal scaffolds to contain multiple short linear interacting motifs due to 

their unfolded and exposed nature. Proteins which are prone to phase separate very often 

contain IDRs, and indeed, concentrated solutions of different IDRs have been shown to 

spontaneously form hydrogels (Kato et al, 2012). IDRs are often enriched in uncharged polar 

amino acids, charged polar amino acids or aromatic amino acids, and they are often found in 

short motifs alternating charged sequences. 

Another factor regulating phase separation is the nucleic acid content. RNA has been shown to

have a nucleating role in membrane-less organelles and to promote phase separation of its 

RNA-binding proteins (RBPs) (Boeynaems et al, 2017; Kedersha et al, 2013; Van Treeck et 

al, 2018). For example, NEAT-1 non-coding RNA is required for para-speckle formation (Fox 

& Lamond, 2010) while free mRNA released from polysomes upon stress induction nucleates 

SGs (Kedersha et al, 2000). Moreover, the structure of RBPs themselves also contributes to 

phase separation because they are multivalent modular domain proteins (Lunde et al, 2007).

Indeed, many RBPs that demix into liquid states can be subsequently transformed into 

pathological amyloids (Harrison & Shorter, 2017; Lin et al, 2015; Shorter, 2019), which have 

been linked to many neurological disorders (Shin & Brangwynne, 2017).

PTMs play an important role in phase separation and several events of phosphorylation, 

methylation, acetylation, citrullination, N-acetylglucosaminylation, ribosylation,

SUMOylation and ubiquitylation have been shown to regulate the formation and disassembly 
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of condensates and to modulate their characteristics (Hofweber & Dormann, 2019; Snead &

Gladfelter, 2019; Owen & Shewmaker, 2019). PTMs can regulate the interactions between 

components to promote or reverse phase separation depending on the physiological context in 

order to adapt to cellular needs. The speed and reversibility of protein phosphorylation makes 

it ideal to influence phase transition in response to different conditions (Aumiller & Keating, 

2016). For example, the phase separation of the RBPs Fused in Sarcoma (FUS), TDP-43 and 

Tau (all known to be implicated in neurological diseases) is regulated by phosphorylation 

(Monahan et al, 2017; Wang et al, 2018). In the case of Tau protein (which misfolds and 

accumulates into neurofibrillary tangles in Alzheimer’s disease), phosphorylation promotes its 

phase separation (Ambadipudi et al, 2017) and N-acetylglucosaminylation, inhibits its 

aggregation (Yuzwa et al, 2012). Another example of N-acetylglucosaminylation was reported 

by Labokha and colleagues, who showed that this PTM drastically changed the permeability 

properties of a Nup98 hydrogel (Labokha et al, 2012). Additionally, the phase separation of 

the RBP Fragile X Mental Retardation Protein is promoted by phosphorylation and opposed 

by methylation (Tsang et al, 2019).

The cellular condensates are also regulated by molecular chaperones. Chaperones are proteins 

that consume energy to help in protein folding and to modulate protein-protein interactions.

Recently, the chaperone concept has been adopted by the phase separation field to refer to

proteins that regulate the material features and biomolecular condensates. For example, SG 

chaperones have been reported to be part of these condensates and regulate their dynamics and 

dissolution after stress release (Cherkasov et al, 2013). Another study described that

amyotrophic lateral sclerosis (ALS) misfolded SOD1 variants aggregate in SGs in human cells 

altering their behavior. Chaperone recruitment to these compartments inhibited the formation 

of these abnormal SGs and stimulated their disassembly when the stress ceased (Mateju et al,

2017). It has also been obser

phase transition of target RBPs and also solubilize fibrils of already phase separated target 

proteins (for example FUS in the case of -43 in the case of Importin 

(Springhower et al, 2020). Overall, chaperones function as guardians of proper phase 

transitions. 

1.5.3. Nups and phase separation 

One example of a large protein assembly consisting of IDR-containing proteins (the FG-Nups)

is the NPC (Knockenhauer & Schwartz, 2016; Sakuma & D’Angelo, 2017). In vertebrates the 

NPC contains 11 different FG-Nups (Figure 4), 13 MDa of FG-domain mass and 5000 FG 
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motifs (Ori et al, 2013). Interestingly, FG-domains do not follow the rules of traditional IDRs 

which usually have low hydrophobicity and high net charge that allow them to keep their 

unfolded state in solution (Uversky et al). Instead, FG-Nups are highly hydrophobic and 

contain very few charged amino acids (Schmidt & Görlich, 2016). For this reason, aliphatic 

alcohols like hexanediols are good solvents for FG-Nup condensates because they probably 

compete with the hydrophobic interactions between FG-repeats (Patel et al, 2007).

The cohesive interactions between different and the same types of FG-domains and also NTR-

cargo complexes are multivalent, and they are essential for the integrity of the permeability 

barrier (Frey & Görlich, 2007; Patel et al, 2007; Frey et al, 2006; Ader et al, 2010; Milles & 

Lemke, 2011). Indeed, it was shown that FG domains can form elastic and reversible hydrogels 

that mimic the permeability properties of NPCs (Labokha et al, 2012; Schmidt & Görlich, 

2015), and that this is due to the cross-linking of the FG-domains by interactions between

phenylalanines (Frey & Görlich, 2007). Importantly, it has been shown that this hydrogel 

formation is essential for survival in yeast (Frey et al, 2006). Of note, the cohesive abilities of 

FG-Nups allow not only for the formation of the permeability barrier but also for building the 

links with the structural scaffold elements of the NPC (Onischenko et al, 2017).

Nuclear magnetic resonance spectroscopy studies have allowed to identify another type of 

interactions within an Nsp1 yeast Nup hydrogel which involve the asparagine-rich linker 

sequences of different FG-Nups. These sequences form amyloid-like beta-sheets and they have 

been proposed to confer kinetic stability to the permeability barrier and to suppress the passive 

transport through NPCs (Ader et al, 2010). The observed amyloid-like beta-sheets are not likely 

to be similar to traditionally known amyloid fibrils that accumulate in several pathologies like 

Alzheimer’s disease, since amyloid-like Nup166 hydrogels are hexanediol-sensitive while 

amyloids are not (Schmidt & Görlich, 2015).

Nups can also form liquid-like condensates; they have been observed to form AL precursor 

liquid droplets (Hampoelz et al, 2019b) and also to be sequestered into SGs (Zhang et al, 2018)

and in various pathological aggregates in the nucleus and in the cytoplasm (Hutten & Dormann, 

2020; Li & Lagier-Tourenne, 2018). A fraction of cytoplasmic Nups was also identified in the 

promyelocytic leukemia protein (PML)-positive structures, the so-called CyPNs (cytoplasmic 

accumulations of PML and Nups), which could move along the microtubules to dock at the NE

(Jul-Larsen et al, 2009), although the cellular roles of the CyPNs remain to be understood. 

Altogether, the cited studies indicate that Nups have an intrinsic capacity to phase separate,

suggesting that regulatory mechanisms that control transitions may exist in the cell. Indeed,

Nups are synthesized as soluble proteins in the cytoplasm (Davis & Blobel, 1987) and in 
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Drosophila embryos a large excess of soluble Nups has been reported (Onischenko et al, 2004).

How the balance of soluble Nups is controlled, and which factors regulate the localized 

assembly of Nups is currently unknown. 

1.5.4. Nup mislocalization in neurological diseases 

Several neurodegenerative disorders have been associated with pathological aggregation of 

specific proteins, such as Amyotrophic lateral sclerosis (ALS), Frontotemporal dementia 

(FTD), Alzheimer’s disease (AD) and Huntington’s disease (HD) amongst others (Figure 10).

In the case of ALS and FTD patients, the RBP TDP-43 or FUS proteins accumulate and 

aggregate in the cytoplasm of neurons (Mackenzie et al, 2010). These two pathologies are

considered the same disease spectrum and can rely on the same molecular causes such as, for 

example, the hexanucleotide (G4C2) expansion in the C9ORF72 gene (DeJesus-Hernandez et 

al, 2011). Some FTD patients exhibit another type of cytoplasmic aggregates containing the 

microtubule-binding protein Tau in neurofibrillary tangles, a phenotype shared with AD 

patients (Bodea et al, 2016). HD is caused by a CAG trinucleotide expansion in the huntingtin 

gene which is expressed as a huntingtin protein with glutamine repeats (polyGln) that tends to 

aggregate in the cell (Jimenez-Sanchez et al, 2017).
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Figure 10 - Intracellular protein aggregates and nucleocytoplasmic transport defects in 
neurodegenerative diseases. Proteins that aggregate in their respective neurodegenerative diseases and 
subcellular locations are indicated in blue. Nucleocytoplasmic transport defects (impaired protein 
import or export) and related disorders are indicated in red. Neurodegenerative diseases in which 
nuclear mRNA accumulation has been observed are shown in green. Figure adapted from (Hutten & 
Dormann, 2020) and created with BioRender.com.

Studies during the last years have identified NPC alterations and disruption of 

nucleocytoplasmic transport as a new hallmark of these pathologies (Figure 10) (reviewed in 

N. Li and Lagier-Tourenne 2018; Hutten and Dormann 2020). The team of Jeffrey D. Rothstein 

reported these defects in several diseases. In the case of ALS, protein import assays displayed 

a decreased import rate in iPSC derived from patient neurons and the presence of RanGAP1 in 

the pathological cytoplasmic protein aggregates (Zhang et al, 2015). They also observed import 

and export defects, a leaky permeability barrier and aberrant Nup62 and RanGAP1 nuclear 

aggregation using induced pluripotent stem cell derived neurons from HD patients and a 

Drosophila model of HD (Grima et al, 2017). Similar observations were reported for AD; 
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pathological Tau cytoplasmic aggregates and fibrils were shown to directly interact with Nups

and affect NPC functioning causing nuclear leakiness and Ran mislocalization in AD brain 

tissue and in Tau-overexpressing transgenic mice (Eftekharzadeh et al, 2018). Another way of 

indirectly investigating the export defects is the analysis of the nucleocytoplasmic ratio of 

polyA-mRNA, although these experiments must be interpreted with caution since nuclear 

mRNA accumulation could be also caused by other defects. In this regard, several groups have 

observed an accumulation of nuclear polyA-mRNA in different neurodegenerative models, 

such as a transgenic ALS and FTD fly models (Freibaum et al, 2015), a Drosphila model of 

tauopathy overexpressing a Tau mutant (Cornelison et al, 2019), human cells transfected with 

fragments of mutant huntingtin and TDP-43 (Woerner et al, 2016) and HD patients and mouse 

models (Gasset-Rosa et al, 2017). It is important to keep in mind that, mechanistically, it is still 

unknown if the nucleocytoplasmic transport defects observed in these different 

neurodegenerative diseases are a cause or a consequence of the pathological protein 

aggregates/fibrils.

As mentioned above, import and export defects have often been observed simultaneously with 

mislocalization of NPC components and/or factors of the nucleocytoplasmic transport 

machinery (Table 1). Almost all different parts of the NPC and Nups belonging to different 

types (FG-Nups and non-FG-Nups) have been shown to be affected or mislocalized in different 

neurodegenerative disorders (Hutten & Dormann, 2020). It is still not known when these 

mislocalization events occur in the course of the diseases and if they are indeed responsible for

the import and export defects. It is also unclear what the origin of these mislocalized Nups is;

if they are extracted from pre-inserted NPCs at the NE or if they are newly made soluble Nups

utilized for the NPC turnover. Moreover, almost all NPC assembly studies have been carried 

out in actively proliferating cells, which constitute a very different context as compared to

quiescent populations like neurons, making the applicability of this knowledge very limited.



General introduction

46

Table 1 - Mislocalization of nucleocytoplasmic transport components in neurodegenerative 
diseases. The table shows Nups (in black) and other nucleocytoplasmic transport factors that are not 
part of the NPC (red) reported to be mislocalized in the cytoplasm (upper part) or the nucleus (lower 
part) relative to each neurodegenerative disease mentioned in the text (ALS/FTD, Tauopathies and HD).
Table adapted from (Hutten and Dormann 2020).

Concomitant with the non-functional nucleocytoplasmic transport and mislocalized Nups,

aberrant nuclear shape has also been reported in several of the above-mentioned 

neurodegenerative diseases, such as HD (Liu et al, 2015; Gasset-Rosa et al, 2017), AD

(Eftekharzadeh et al, 2018; Sheffield et al, 2006; Frost et al, 2016) or ALS/FTD (Paonessa et 

al, 2019; Gautam et al, 2019; Kinoshita et al, 2009; Chou et al, 2018). In many disease models

and in patient samples the NE looks irregular and displays “wrinkles”, invaginations or 

herniations. However, the implication of these defects in the diseases are not known; it is again 

unclear whether they are a cause or a consequence of the nuclear import and export 

deficiencies.

Interestingly, the aforementioned defects in nucleocytoplasmic transport, Nup localization and 

NE shape are also features shared by ageing cells (D’Angelo et al, 2009). D’Angelo and 

colleagues observed in ageing C. elegans that scaffold Nups do not turnover in differentiated 

cells and they are part of NPCs during the whole life of the cell. Moreover, they suggest that 

these long-lived Nups accumulate damage during aging and contribute to NE permeability 

defects making them leaky. 
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1.6.Fragile X Syndrome and Fragile X related proteins

1.6.1. Fragile X syndrome 

The Fragile X syndrome (FXS) is the most common form of inherited intellectual human 

disability worldwide, for which no efficient therapy exists to date (Santoro et al, 2012; De 

Vries et al, 1997; Mullard, 2015). It is caused by the inactivation of the fragile X mental 

retardation protein (FMRP) protein which is encoded by the FMR1 gene located at the X 

chromosome in the position Xq27.3. The 5’UTR of the gene contains CGG trinucleotide 

repeats which vary from 5 to 50 repeats in the normal population (Oberlé et al, 1991). When 

the CGG expansion exceeds 200 CGG units (known as “full mutation” or FXS) the repeat 

region and the promoter are hypermethylated and the FMR1 gene is transcriptionally silenced 

(Pieretti et al, 1991) leading to an absence of the encoded FMRP protein and the development 

of FXS (Verheij et al, 1993) (Figure 11). While carrying out metaphase spreads to observe the 

chromosomes, this hypermethylated region in the X chromosome appears as a constriction, 

which was traditionally used as a marker for diagnosis of this disease accordingly termed 

“Fragile X syndrome”. In the majority of cases, the syndrome is caused by the described 

hypermethylation and the silencing of the FMR1 gene, however missense mutations and 

deletions of the gene have also been reported to cause this syndrome (De Boulle et al, 1993; 

Myrick et al, 2014; Coffee et al, 2008).

When the CGG repeats amplify in the gene to a lesser extent (from 55 to 200 CGG repeats), 

they are known as ‘premutation’ and are associated with a risk for the fragile X-associated 

tremor/ataxia syndrome (FXTAS, a neurodegenerative disorder with intention tremor that

occurs mainly in old men with the premutation) and the fragile X-associated primary ovarian 

insufficiency (FXPOI, in which one out of five women have fertility problems early in life) 

(Patzlaff et al, 2018). The FMR1 gene with the premutation is transcribed to a higher extent 

than the wild type (WT) gene, although the FMRP protein levels are lower (Figure 11).

Recently, it was suggested that the repeat-associated non-ATG (RAN) translation of the gene 

results in a FMRpolyGlycine protein which is pathogenic and affects the NE architecture in 

neurons (Sellier et al, 2017).

Since this gene is located on the X chromosome, men are more affected by this disease than 

women (penetrance is almost 100% in males and 50% in females) because of the compensation 

of the second X chromosome and its random inactivation, having an estimated frequency of 

1/4000 and 1/7000 respectively (Santoro et al, 2012). Moreover, the CGG premutation repeats 
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of the 5’UTR of FMR1 gene have the tendency to expand through meiosis meaning that full 

mutations are observed in later generations.

Figure 11 - FMR1 gene expression patterns in normal, premutation and full-mutation individuals.
The 3’UTR region is indicated in blue, the CGG repeats are indicated in red and the coding region and 
proteins are indicated in green. Healthy individuals have less than 55 CGG repeats in the 5’UTR region 
of FMR1 gene, which leads to normal transcription of the gene and appropriate FMRP levels. In the 
premutation (55-200 CGG repeats), FRM1 mRNA levels are increased although FMRP protein levels 
are decreased. Individuals with the premutation are at risk to develop FXTAS and fragile X–related 
FXPOI. In the full mutation (more than 200 CGG repeats), the 5’UTR region is hypermethylated 
(yellow) and the gene is transcriptionally silenced. These individuals lack FMRP and develop FXS.
Figure adapted from (Hagerman & Hagerman, 2002) and created with BioRender.com.

FXS patients display various symptoms including a delay in cognitive development (such as 

language delay), a wide range of mental retardation from mild to severe, autism, anxiety, 

aggressiveness, spontaneous epileptic seizures, attention deficits, poor eye contact, hypotonia 

and coordination problems, macroorchidism in males, prominent ears, macrocephaly, long face 

with prominent jaw and forehead, hyperextensible joints and flat feet among others (Hagerman 

et al, 2009). Patients with mosaicism (related to the number of repeats or to the methylation) 

are more mildly affected because disease severity is related to the extent of the methylation and 

FMRP levels. At the cellular level, immature dendritic spines in neurons of FXS patients and 
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Fmr1 knockout mouse models have been reported (Comery et al, 1997; Kaufmann & Moser),

which have been postulated to cause the mental retardation phenotypes.

1.6.2. FXR protein genes and expression pattern 

FMRP belongs to the Fragile X related (FXR) protein family together with Fragile X related 

protein 1 and 2 (FXR1P and FXR2P) and they are RBPs displaying a high degree of structural 

and sequence similarity (sequence similarity of 60%) (Li & Zhao, 2014). FXR1 gene is located 

at chromosome 3q27 and FXR2 at chromosome 17p13.

As already mentioned, in humans, the FMR1 gene contains 5-50 CGG repeats in the 5’ UTR, 

however, this is not a conserved feature across species since they are not found in X. laevis 

(Siomi et al, 1995, 1) and in Drosophila melanogaster only 8 repeats are found (Ashley et al,

1993). Besides, CGG repeats are not present in 5’UTRs of FXR1 nor FXR2 genes.

Regarding the expression pattern, the three genes are expressed ubiquitously in fetal and adult 

tissues and are particularly high in brain and testis (De Diego Otero et al, 2002; Tamanini, 

1997; Agulhon et al, 1999; Devys et al, 1993). In the brain, FMRP, FXR1P, and FXR2P are 

co-expressed in the cytoplasm of neurons. FXR1 is especially highly expressed in skeletal and 

cardiac muscle tissue where FMRP levels are particularly low (De Diego Otero et al, 2002; 

Kirkpatrick et al, 1999; Tamanini, 2000; Khandjian, 1998; Bakker et al, 2000). During 

embryonic development, the three genes are differently expressed, FXR1’s expression being 

higher and earlier than its paralogues’. Moreover, the expression pattern of the FXR1P also 

changes over time; is cytoplasmic and nuclear in fetal brain while only cytoplasmic in adult 

neurons. These observations suggest that FXR1P has a specific function not shared by its 

paralogues (De Diego Otero et al, 2002) and it probably explains why Fxr1 knockout mice die 

shortly after birth in contrast to Fmr1 or Fxr2 knockout mice (Hoogeveen et al, 2002). Contrary 

to FXR1P, FXR2P levels in fetal brain are much lower than in adults. 

The fact that FXR1P and FXR2P are co-expressed with FMRP in neurons and they are still 

expressed in FXS patients indicates that they cannot completely compensate the absence of

FMRP.

FMR1 and FXR1 transcripts are known to undergo alternative splicing generating isoforms 

with molecular weights in the range of 70-80 kDa (Ashley et al, 1993; Verheij et al, 1993; 

Siomi et al, 1995; Kirkpatrick et al, 1999) (Figure 12). Contrary to FMR1, FXR1 gene’s 

alternative splicing is tissue-specific suggesting that different FXR1P isoforms could have 

different functions depending on the tissue (Kirkpatrick et al, 1999). Regarding subcellular 

localization, the three FXR proteins shuttle between nucleoplasm and cytoplasm. FXR2P and 
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some FXR1P isoforms also localize to the nucleolus because of their nucleolar targeting signal 

(NoS) which is absent in FMRP (Tamanini et al, 1999a; Tamanini, 2000). Altogether, this 

suggests that the three members of the FXR protein family play some specific functions. 

1.6.3. Animal models 

In order to understand the role of FXR proteins at the molecular, cellular and the behavioral 

level in a more physiological context, several animal models have been developed. Special 

efforts have been made to develop FXS animal models and study FMRP’s functions in several 

species due to its implication in disease, such as mouse, fruit fly and zebrafish (Tucker et al,

2004; Kooy et al, 1996; Drozd et al, 2018).

The Fmr1 KO mouse was created in 1994 by disrupting the Fmr1 exon 5 and initially 

characterized by the Dutch-Belgian Fragile X Consortium (Bakker & Reyniers, 1994). Since 

then, it has become the most used FXS mouse model and many laboratories continue to use it 

to study FMRP and FXS. Despite not being a genetically faithful model of the FXS, the Fmr1

knockout mouse also leads to the absence of FMRP. This mouse model does not reproduce the 

majority FXS physical characteristics but it displays macroorchidism, abnormal dendritic spine 

morphology and behavioral and cognitive defects (Kooy et al, 1996). Importantly, different 

studies over time have shown distinct and even contradictory behavioral, anxiety and cognition 

phenotypes in the knockout mouse model (Kazdoba et al, 2014). This could be due to genotypic 

differences between the KO mice and the FXS patients (deletion versus CGG expansion and 

hypermethylation), although it could also reflect the phenotypic heterogeneity of FXS patients. 

Indeed, FXS affected individuals show a wide range of cognitive defect symptoms. Fmr1 KO

mice are being used in pharmacological studies and proving to be a valid model since they 

mimic findings in FXS patient trials. 

In the case of Fxr2 KO mouse model, it did not show defects in the tissue level in brain or 

testis, where it is more highly expressed as compared to Fmr1. However, behavioral and 

cognitive tests showed that these mice had a similar phenotype to Fmr1 KO mice including the 

hyperactivity (Bontekoe, 2002).

Homozygous Fxr1 knockout mice have also been created and observed to die shortly after birth 

presumably because of cardiac muscle and lung failures (histochemical analysis showed altered 

muscle cellular architecture) (Mientjes, 2004). These results suggest that, unlike FXR2P and 

FMRP, FXR1P is an essential protein for development.

In Drosophila melanogaster only one homologue has been identified, known as dFMR1, which

facilitates FMR1 genetic studies. It shares high level of sequence homology with human FMR1,
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FXR1 and FXR2 genes (Drozd et al, 2018). Null dFMR1 fly mutants show defects in neuron 

morphology and synaptic function along with deficient long-term memory and abnormal 

behavior (decreased interest in courtship) (Dockendorff et al, 2002; Morales et al, 2002; 

Bolduc et al, 2008).

1.6.4. FXR proteins’ domain organization 

The three members of the FXR protein family share high homology in their amino acid 

sequence and in domain organization (Figure 12), especially in the N-terminal (86% identity 

between FMRP and FXR1P, and 70% identity between FMRP and FXR2P).

 

Figure 12 - FMR1 and FXR1 genes and FXR protein family. 
A FMR1 and FXR1 genes. Exons are depicted in blue and untranslated regions in brown. Black lines 
indicate introns and alternative splicing leading to 12 FMRP isoforms and 7 FXR1P isoforms. The CGG 
trinucleotide repeats which get expanded in FXS are indicated in the 5’UTR of FMR1 gene.
B FXR proteins. FMRP, FXR1P and FXR2P constitute the FXR protein family. They share high 
homology in the protein sequence of domains. They contain two Agenet domains (green) which can 
interact with methylated histones, a NLS and a NES (yellow) that allow the proteins to shuttle between 
nucleus and cytoplasm, three RNA binding domains (K homology domains in blue, KH, and arginine-
glycine rich domain in pink, RGG) and a nucleolar-targeting signal (NoS, in light brown). FXR proteins 
have been show to form homo and heterodimers through a dimerization region (black line). Figure 
adapted from (Santoro, Bray, and Warren 2012; Kirkpatrick, McIlwain, and Nelson 1999; Y. Li and 
Zhao 2014) and created with BioRender.com. 

FXR proteins possess a tandem Agenet domain in their N-terminal region which mediates the 

interaction with methylated histones (Adams-Cioaba et al, 2010; Alpatov et al, 2014; Maurer-

Stroh et al, 2003). FMRP binding to chromatin through this domain has been shown to be 
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required for the role of FMRP in DNA damage response (Alpatov et al, 2014). Moreover, it

has been reported that the tandem Agenet domain of FMRP interacts with the aggregation-

prone protein FUS, and interestingly, FMRP downregulation inhibits cytoplasmic FUS 

aggregation (He & Ge, 2017).

FXR proteins contain several conserved RNA-binding domains: two centrally located K 

homology domains (KH1 and KH2) and the arginine-glycine-glycine (RGG) box in the C-

terminal region. These domains have been extensively studied in FMRP and are known for a 

long time to allow for the binding and negative regulation of synaptic mRNAs (Brown et al,

2001; Darnell et al, 2011). Arginine methylation in the RGG box has been shown to regulate 

the affinity of FMRP to specific RNAs (Blackwell et al, 2010). A third KH domain (K0) has 

been identified in FMRP although its contribution remains to be studied (Myrick et al, 2015).

The three proteins of the family also contain NLS and NES that allow them to shuttle between 

the nucleus and the cytoplasm (Feng et al, 1997), the latter being their main localization at a 

steady state where they associate with ribosomes. The nuclear export of FXR proteins is 

dependent on CRM1 (Tamanini et al, 1999a). They also present a dimerization domain through 

which FXR protein hetero- and preferentially homo-dimers or multimers are formed (Siomi et 

al, 1996) (Tamanini et al, 1999b), however, the functional implications of these interactions 

are not yet understood. 

As already mentioned, FXR2P and some FXR1P isoforms contain a NoS sequence which 

mediates their nucleolar localization and its function remains to be investigated.

It has also been seen that the C-terminal region of mouse FMRP interacts with kinesins and has 

a role in dendritic transport (Dictenberg et al, 2008).

1.6.5. Functions of FXR proteins 

Because of its implication in FXS and related diseases, research on FXR proteins has mainly 

focused on FMRP, particularly on its role in neurons where it inhibits translation of transcripts

related to synaptic function (Santoro et al, 2012).

FMRP is an RNA binding protein that interacts with 4% of mRNAs in the mammalian brain.

In neurons, FMRP travels in ribonucleoprotein granules along dendrites in a kinesin- and 

dynein-dependent manner (Ling et al, 2004). Along this journey and in the postsynaptic spaces 

of dendrites, FMRP inhibits the translation of its bound mRNAs until proper synaptic signals 

are received. The lack of this spatial and temporal translational control exerted by FMRP and 

the subsequent excessive protein synthesis in the spines is thought to cause neuronal 

abnormalities and constitute the molecular basis of FXS (Chen & Joseph, 2015). Indeed, 



General introduction

53

FMRP’s implication in synaptic plasticity is well understood and this aspect is believed to 

explain the neurological symptoms developed by FXS patients. Synaptic plasticity is the 

capacity of neurons to change the strength of their pre-existing synaptic connections as a result 

of neural activity, and it is believed to be a key mechanism in memory and learning. Synaptic 

plasticity is in part mediated by group 1 metabotropic glutamate receptor (mGluR)-mediated 

long-term depression (LTD) which results in the weakening of the connection between two 

neurons. This LTD requires the local translation of postsynaptic dendritic mRNAs. According 

to the mGluR-based theory of FXS (Bear et al, 2004), FMRP is proposed to inhibit translation 

of proteins necessary for LTD until mGluR is activated and represses FMRP. This way, LTD 

is linked to mGluR activation and local protein translation. Fmr1 KO mice show exaggerated 

LTD uncoupled to mGluR stimulation and FXS patient neurons are insensitive to mGluR 

stimulation while healthy individuals respond with an increase in FMRP target protein 

synthesis. This constitutively active LTD and the incapability to specifically respond to 

synaptic stimuli are believed to explain mental retardation in FXS patients. In accordance with 

this theory, mGluR antagonists can rescue behavioral and dendritic defects in the several 

animal FXS models (de Vrij et al, 2008; Nakamoto et al, 2007), and mGluR pathway has been

targeted by several drugs in undergoing clinical trials (Erickson et al, 2017). 

In order to better understand the function of FMRP, several studies have aimed at identifying 

the critical mRNA targets. In vitro studies showed that the FMRP RGG domain binds to the

G-quadrupex (GQ) aptamer sequences while KH2 domain binds to the pseudoknot aptamers 

(Darnell, 2005; Darnell et al, 2001; Brown et al, 2001). However, cross-linking 

immunoprecipitation studies in mouse brain samples identified around 800 mRNAs encoding 

pre- and post-synaptic proteins and transcripts implicated in autism spectrum disorders as 

FMRP targets, but none of them contained an evident GQ or pseudoknot sequences (Darnell et 

al, 2011). Another study in HEK293T cells found around 6000 putative mRNA targets but their 

potential sequences recognized by FMRP are still under debate (Ascano et al, 2012). All in all, 

only a few target mRNAs have been validated by direct biochemical interaction experiments 

and the specific RNA sequences or secondary structures recognized by FMRP are not 

completely clear. 

Regarding the molecular function of FMRP on its target mRNAs, several studies have shown 

that FMRP plays a role as a translational repressor and several of its target mRNAs are 

overexpressed in Fmr1 KO mouse cells (Mazroui, 2002). Several different mechanisms of 

action of FMRP have been proposed in this context (reviewed in Chen and Joseph 2015). One 

of these mechanisms proposes that FMRP interacts with factors of the microRNA pathway
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such as Dicer, Argonaute2 and microRNAs to inhibit translation of its target mRNAs. Indeed, 

FMRP has been reported to inhibit translation of its target mRNA postsynaptic density protein 

95 (PSD-95) in postsynaptic regions of neurons in a phosphorylation dependent manner and 

making use of the microRNA pathway. Upon FMRP dephosphorylation induced by mGluR 

signaling, this inhibition is no longer maintained and PSD-95 is translated (Muddashetty et al,

2011). Another study describes FMRP as an inhibitor of translation initiation because of its 

capacity to recruit CYFP1 protein to mRNA which is known to bind the translation initiation 

factor eIF4E. This CYFP1-eIF4E interaction impedes the further assembly of the translation 

initiation complex eIF4F for which eIF4E is necessary (Napoli et al, 2008). A third mechanism 

by which FMRP has been proposed to repress translation is by directly blocking the action of 

the translating ribosome. This is based on studies showing that FMRP interacts with active 

polyribosomes (Stefani, 2004) and a study from Darnell and colleagues showing that FMRP 

stalls ribosomes in the elongation phase of translation (Darnell et al, 2011). In line with these 

ideas, cryoEM data reported that FMRP can locate in the space between the large and the small 

subunits of the ribosome in a way that could potentially inhibit the binding of tRNAs during 

the elongation process therefore stalling the ribosome (Chen et al, 2014). Furthermore, FMRP 

has also been shown to be part of SGs known for their role in suppressing translation and to 

assist their formation (Didiot et al, 2009).

However, FMRP has also been reported to act as a positive translational regulator of 

diacylglycerol kinase kappa, overexpression of which can rescue dendritic spine defects of 

Fmr1 KO neurons (Tabet et al, 2016).

Few years ago, a new function of FMRP in the nuclear compartment was discovered which 

makes use of the two Agenet tandem domains to interact with chromatin and regulate DNA 

damage repair (Alpatov et al, 2014).

It is important to highlight that the different aforementioned mechanisms are not mutually 

exclusive. It is likely that depending on different variables, such as the target transcript or the 

subcellular localization, FMRP’s translational regulation relies on different mechanisms.

Regarding the other two members of the FXR protein family, much less research has been 

carried out. FXR1P has also been shown to bind hundreds of mRNA transcripts and regulate 

translation (Ascano et al, 2012). Furthermore, it was suggested to regulate muscle development 

affecting cell cycle progression (Davidovic et al, 2013) and inflammatory processes (Garnon 

et al, 2005; Le Tonqueze et al, 2016). FXR1P has also been observed to have oncogenic activity 

in lung squamous cell carcinoma and colorectal cancer although the underlying molecular 

mechanism is still not understood (Comtesse et al, 2007; Qian et al, 2015; Jin et al, 2016). In 



General introduction

55

addition to its role in regulating mRNA translation, FXR1P has also been reported to promote 

cell proliferation in certain cancers by recruiting transcription factors to gene promoters (Fan 

et al, 2017). FXR2P is the least studied member of the FXR protein family. It is thought to 

have similar functions to FMRP due to their sequence homology, their similar expression 

pattern in brain and comparable behavioral phenotype of the knockout mice models 

(hyperactivity, memory defects, repetitive actions and reduced sleep). Indeed, Fmr1/Fxr2

double knockout mice displayed exaggerated behavioral and circadian phenotypes suggesting 

that these two proteins could cooperate in regulating cognitive processes (Spencer et al, 2006; 

Zhang et al, 2008).
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2. PART 1: Spatial control of nucleoporin condensation by Fragile 

X-related proteins

The work related to the first part of the results section is entitled “Spatial control of nucleoporin 

condensation by Fragile X-related proteins” and it has been published in The EMBO Journal

et al, 2020). I include the final manuscript which is the result of one round of 

major revision and a second round of minor revision. Main figures and legends have been 

properly positioned with the intention of facilitating readers’ comprehension. Expanded view 

and appendix figures and legends mentioned are located following the main text. ‘Material and 

methods’ part of the manuscript has been omitted in this chapter and its content has been 

included in the general ‘Materials and methodology’ section of the thesis (page 145).

2.1.Aims of the study

Background: NPCs are multisubunit protein complexes that drive the nucleocytoplasmic 

transport of proteins and RNAs. They are formed by multiple copies of 30 different Nups. One 

third of these Nups contain IDRs and are prone to phase separate, a phenomenon that can be 

observed in both healthy and pathological contexts. Given that Nups have an intrinsic capacity 

to aberrantly assemble, protective mechanisms to prevent the phase separation of newly 

synthesized Nups may exist in the cell. 

Previous results: This project was based on previous immunoprecipitation coupled to Mass 

Spectrometry data from the laboratory showing that FXR1 interacts with several Nups, and that 

Nups tend to form cytoplasmic granules in the absence of FXR1. Thus, the main aim of this 

project was to understand the functional link between FXR proteins and Nup.

Aim 1: To confirm the interaction between FXR1 and Nups.

Aim 2: To characterize the nature of the cytoplasmic Nups granules that formed upon the 

downregulation of FXR1. 

Aim 3: To study the mechanism by which FXR1 regulates Nups localization and to understand 

how cytoplasmic Nup granules are formed.
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Aim 4: To investigate if all members of FXR protein family regulate Nups localization, and if 

FXS cellular models display cytoplasmic Nups granules. 

Aim 5: To investigate the functional consequences of Nups mislocalization upon FXR1 

downregulation regarding protein import/export and cell cycle progression. 

2.2.Author’s contribution to the manuscript “Spatial control of nucleoporin 

condensation by Fragile X-related proteins”

In the EMBO Journal manuscript et al, 2020), each author contributed in the 

following manner:

Stephane Schmucker established and validated the GFP, GFP-FXR1 and 3xGFP-Nup85 cell 

lines which were used throughout the manuscript. Using these GFP and GFP-FXR1 cell lines, 

he carried out the immunoprecipitation coupled with mass spectrometry studies where the first 

interaction between FXR1 and Nups was observed. He showed that FXR1 does not regulate 

protein or mRNA levels of several Nups nor mitotic progression. Additionally, he identified 

and quantified the cytoplasmic Nup granules and irregular nuclei phenotypes upon FXR1

downregulation and he performed the live video experiments showing that both events were 

first detected at the beginning of G1 phase. He also performed the rescue experiments showing 

that cytoplasmic Nup granule formation and nuclear atypia are specific to FXR1 absence. 

Stephane showed that the ectopic Nup granule formation occurs in the absence of all FXR 

protein family members. He also helped writing the manuscript.

Katerina Jerabkova performed the experiments with FXS patient primary fibroblasts where 

the cytoplasmic Nup granule formation was also observed.

Inès Jmel Boyer performed the GFP-FXR1 immunoprecipitation experiments where the 

binding factor BICD2 was identified. She also characterized the cytoplasmic Nup granule and 

irregular nuclei phenotypes upon BICD2 downregulation.

Alessandro Berto performed immunofluorescence (IF) experiments to observe the NE

localization of the Fragile X protein family members.

Paolo Ronchi performed the electron microscopy sample preparation and image acquisition 

and processing.

Charlotte Kleiss helped with experiments throughout my whole PhD.

Laurent Guerard and Alexia Loyton performed the super resolution image acquisition and 

processing.
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Hervé Moine, Jean-Louis Mandel and Yannick Schwab helped designing the experiments.

Laura Pacini, Sebastien Jacquemont and Claudia Bagni prepared and provided human 

patient samples.

Izabela Sumara quantified the experiments from FXS patient primary fibroblasts. She also 

designed experiments, figures and wrote the manuscript, and she conceptually guided, 

supervised and coordinated the whole project.

I demonstrated the interaction between FXR1 and Nups and that FXR1 localized to the ONM. 

I also showed that Nup signal at the NE decreases upon FXR1 downregulation.

I characterized cytoplasmic Nup granule formation in early G1 phase by live video microscopy 

and I showed that these granules have condensate-like behavior (the fuse and split, and dissolve 

upon 1,6-Hexanediol treatment). I also showed the interaction between FXR1 and dynein 

complex, and observed that both, dynein downregulation and microtubule depolymerization, 

induce a significant increase in cytoplasmic Nup granules. I studied the dynamics Nup granules 

formed by microtubule depolymerization upon Dynein and FXR1 downregulation, and 

observed that granule fusion and fission events were more frequent in these two conditions 

than in the control situation. 

I confirmed the cytoplasmic Nup granule presence in different FXS models (FXS patient 

derived iPSC and FMRP KO MEFs). I also observed that cytoplasmic Nup granules have 

functional consequences in protein export and cell cycle progression. 

I observed that FXR1 downregulation does not affect the recruitment of nuclear lamina or INM 

proteins, and I showed that cytoplasmic Nup granules are distinct from ALs and SGs. I also 

showed that cytoplasmic Nup granules do not contain RNA, and that RNA is dispensable for 

their maintenance. I also helped writing the manuscript.

2.3.Manuscript title

Spatial control of nucleoporin condensation by Fragile X-related proteins

Arantxa Agote-Arán1,2,3,4,*, Stephane Schmucker1,2,3,4,*, Katerina Jerabkova1,2,3,4, Inès Jmel 

Boyer1,2,3,4, Alessandro Berto5,6,14, Laura Pacini7,15, Paolo Ronchi8, Charlotte Kleiss1,2,3,4,

Laurent Guerard9, Yannick Schwab8,10, Hervé Moine1,2,3,4, Jean-Louis Mandel1,2,3,4, Sebastien 

Jacquemont11,12, Claudia Bagni7,13 and Izabela Sumara1,2,3,4.

* These authors contributed equally to this work
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1 Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France.
2 Centre National de la Recherche Scientifique UMR 7104, Strasbourg, France.
3 Institut National de la Santé et de la Recherche Médicale U964, Strasbourg, France.
4 Université de Strasbourg, Strasbourg, France.
5 Institut Jacques Monod, CNRS UMR7592-Université Paris Diderot, Sorbonne Paris Cité, 

Paris, France.
6 Ecole Doctorale SDSV, Université Paris Sud, Orsay, France.
7 Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy.
8 European Molecular Biology Laboratory, Electron Microscopy Core Facility, Heidelberg, 

Germany.
9 Imaging Core Facility, Biozentrum, University of Basel, Klingelbergstrasse 50/70, 4056 

Basel, Switzerland.
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2.4.General summary and bullet points

Fragile X-related proteins and dynein inhibit ectopic phase separation of Nups in the cytoplasm

and facilitate their localization to the NE during G1 phase of the cell cycle.

Bullet points:

Fragile X-related (FXR) proteins and dynein regulate localization of cytoplasmic Nups

FXR-Dynein pathway downregulation induces aberrant cytoplasmic condensation of 

Nups

Cellular models of FXS accumulate aberrant cytoplasmic Nup condensates
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FXR-Dynein pathway regulates nuclear morphology and cell cycle progression

2.5.Abstract

Nucleoporins (Nups) build highly organized Nuclear Pore Complexes (NPCs) at the nuclear 

envelope (NE). Several Nups assemble into a sieve-like hydrogel within the central channel of 

the NPCs. In the cytoplasm, the soluble Nups exist, but how their assembly is restricted to the 

NE is currently unknown. Here we show that fragile X-related protein 1 (FXR1) can interact 

with several Nups and facilitate their localization to the NE during interphase through a 

microtubule-dependent mechanism. Downregulation of FXR1 or closely related orthologs 

FXR2 and fragile X mental retardation protein (FMRP) leads to the accumulation of 

cytoplasmic Nup condensates. Likewise, models of fragile X syndrome (FXS), characterized 

by a loss of FMRP, accumulate Nup granules. The Nup granules-containing cells show defects 

in protein export, nuclear morphology and cell cycle progression. Our results reveal an 

unexpected role for the FXR protein family in the spatial regulation of Nup condensation.
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2.6.Introduction

Formation of supramolecular assemblies and membrane-less organelles such as the nucleolus, 

Cajal bodies, nuclear speckles, stress granules (SG), P-bodies, germ granules and PML bodies 

are important for cellular homeostasis (Boeynaems et al, 2018). Among the factors controlling 

their formation and turnover is the presence of intrinsically disordered regions (IDRs) in protein 

components, their ability to form multivalent protein-protein, and protein-RNA interactions

(Feng et al, 2019) and proteins’ local concentration. Indeed, many RBPs have the ability to 

demix into liquid states (liquid droplets), which can be subsequently transformed into 

pathological amyloids both (Harrison & Shorter, 2017; Lin et al, 2015; Shorter, 2019) that have 

been linked to many neurological disorders (Shin & Brangwynne, 2017). One example of a 

large protein assembly consisting of IDR-containing proteins is the Nuclear Pore Complex 

(NPC), which plays an essential role in cellular homeostasis (Knockenhauer & Schwartz, 2016; 

Sakuma & D’Angelo, 2017).

NPCs are large, multisubunit protein complexes (Beck & Hurt, 2017; Hampoelz et al, 2019a)

spanning the nuclear envelope (NE) that constitute the transport channels controlling the 

exchange of proteins and mRNAs between the nucleus and the cytoplasm. They are built from 

roughly 30 different nucleoporins (Nups) each present in multiple copies in the NPCs. The 

ring-like NPC scaffold is embedded in the NE and shows highly organized eight-fold symmetry

(Knockenhauer & Schwartz, 2016). In contrast, the central channel of the NPC is formed from 

Nups containing disordered elements characterized by the presence of phenylalanine-glycine 

(FG) repeats, the so-called FG-Nups. The FG-Nups have the ability to phase separate into 

sieve-like hydrogels that constitute a selective and permeable barrier for diffusing molecules 

and transported cargos through the NPCs (Schmidt & Görlich, 2016). This ability of the FG-

Nups to form permeable hydrogels can also be reconstituted in vitro and is highly conserved 

through the evolution (Frey & Görlich, 2007; Frey et al, 2006; Schmidt & Görlich, 2015). The

cohesive abilities of FG-Nups allow not only for the formation of the permeability barrier but 

also for building the links with the structural scaffold elements of the NPC (Onischenko et al,

2017). The non-FG-Nups can also form condensates in cells as they are sequestered in the SGs

(Zhang et al, 2018) and in various pathological aggregates in the nucleus and in the cytoplasm

(Hutten & Dormann, 2020; Li & Lagier-Tourenne, 2018). A fraction of cytoplasmic Nups was 

also identified in the promyelocytic leukemia protein (PML)-positive structures, the so-called 

CyPNs (cytoplasmic accumulations of PML and Nups), which could move on microtubules to 

dock at the NE (Jul-Larsen et al, 2009), although the cellular roles of the CyPNs remain to be 
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understood. This indicates that Nups have an intrinsic capacity to aberrantly assemble, 

suggesting protective mechanisms may exist to prevent it in the cell. Indeed, in Drosophila 

embryos a large excess of soluble Nups has been reported (Onischenko et al, 2004) and in cells 

Nups are synthesized as soluble proteins in the cytoplasm (Davis & Blobel, 1987). How the 

balance of soluble Nups is controlled, and what factors regulate the localized assembly of Nups 

is currently unknown. 

The Fragile X related (FXR) proteins (FXR1, FXR2 and Fragile X mental retardation protein 

(FMRP)) are a family of RBPs displaying a high degree of sequence and structural similarity

and playing important roles in protein translation (Li & Zhao, 2014). Silencing of the FMR1

gene that encodes the FMRP protein (Santoro et al, 2012) leads to Fragile X syndrome (FXS), 

the most common form of inherited intellectual human disability worldwide, for which no 

efficient therapy exists to date (Mullard, 2015). For this reason, the role of FXR proteins has 

been mostly investigated in brain, in the context of neurodevelopmental disorders (Bagni & 

Zukin, 2019) and genome-wide association studies suggest the involvement of this family in a 

wide spectrum of mental illnesses (Guo et al, 2015; Khlghatyan et al, 2018).

More recent studies have linked FXR proteins to cancer progression, in particular FMRP and 

FXR1 were found overexpressed in different types of cancer (Lucá et al, 2013; Zalfa et al,

2017; Jin et al, 2016; Cao et al, 2019). Although many overlapping functions have been 

proposed for this protein family, different tissue, cellular and intracellular distributions of the 

FXR proteins, suggest that they might have, in addition to their canonical role as RNA binding 

proteins, independent functions (Darnell et al, 2009). Interestingly, the protein region 

containing the RGG box (arginine- and glycine-rich region) of FMRP has a low-complexity 

sequence composition and is unfolded and flexible (Ramos, 2003), implicating its role in the 

membrane-less assemblies. Here we identify an unexpected role for the FXR protein family 

and dynein in the spatial regulation of Nup condensation.
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2.7.Results

2.7.1. FXR1 protein localizes to the NE and interacts with Nups 

FXR1 co-localizes with various cytoplasmic protein-RNA assemblies, but it is also present in

the nuclear compartment in human cells (Oldenburg et al, 2014; Tamanini et al, 1999a). In 

search for possible cellular functions of FXR1 independent of its role in RNA binding, we 

performed immunoprecipitations (IPs) of stably expressed GFP-FXR1 protein and analyzed

the interacting partners by mass spectrometry. Of the interacting proteins, including the known 

FXR1 partners, FXR2 and FMRP, four Nups, Nup210, Nup188, Nup133 and Nup85, were 

detected specifically in GFP-FXR1 IPs (Dataset EV1). We confirmed the GFP-FXR1 

interaction with endogenous Nup133 and Nup85, which are components of the evolutionary 

conserved Nup107-160 NPC sub-complex also called the Y-complex (Fig 1A) (Beck & Hurt, 

2017; Knockenhauer & Schwartz, 2016). IP of stably expressed GFP-Nup85 also demonstrated 

an interaction with two endogenous FXR1 isoforms in HeLa cells (Fig 1B), and both Nup85 

and Nup133 co-immunoprecipitated with endogenous FXR1 in HEK293T cells (Fig 1C).

Both endogenous FXR1 and GFP-FXR1 localized to the NE (Fig 1D, E) and also occasionally 

to small cytoplasmic foci labelled by the monoclonal antibody mAb414, which recognizes a

panel of FG-Nups (Fig 1E). FXR1 localization to the NE and the cytoplasmic foci was 

abolished by treatment with FXR1 siRNA (Fig 1D), demonstrating antibody specificity. 

Treatment with Digitonin, which in contrast to permabilization protocol with the Triton and 

SDS can selectively permeabilize the plasma membrane while leaving the NE intact, revealed 

that FXR1 localized to the ONM (Fig 1F). We conclude that FXR1 interacts with Nups, and

can localize to both the ONM and to cytoplasmic foci containing Nups.
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Figure 1 - FXR1 protein localizes to the NE and interacts with NUPs. 

A Lysates of HeLa cells stably expressing GFP alone or GFP-FXR1 were subjected to IP using GFP-

Trap beads (GFP-IP), analyzed by Western blot and quantified (shown a mean value, *P < 0.05, **P < 

0.01; N = 3). 
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B Lysates of HeLa cells stably expressing GFP alone or 3xGFP-Nup85 were immunoprecipitated using 

GFP-Trap beads (GFP-IP), analyzed by Western blot and quantified (SE, short exposure, LE, long 

exposure) (shown a mean value, *P < 0.05; N = 3). 

C IP from HEK293T cell lysates using FXR1 antibody or IgG analyzed by Western blot. The arrow 

points to the heavy chain of IgG (IgG HC) (shown a mean value, *P < 0.05; N = 3). 

D HeLa cells were treated with indicated siRNAs, synchronized by double thymidine block, and 

released for 12 hours and analyzed by IF microscopy for the LBR to label the NE, and FXR1. 

E HeLa cells stably expressing GFP-FXR1 were analyzed by IF microscopy for GFP and mAb414,

which labels FG-Nups. The magnified framed regions are shown in the corresponding numbered panels. 

The arrowheads indicate NE and cytoplasmic localization of GFP-FXR1. 

F HeLa cells stably expressing GFP-Nup107 were synchronized by double thymidine block and 

released for 12 hours, permeabilized with Triton/SDS or digitonin for antibodies to access the nuclear 

and cytoplasmic or cytoplamsic side of the nucleus, respectively, and analyzed by IF microscopy.

-tailed 

Student’s T-test.

2.7.2. FXR1 inhibits aberrant assembly of cytoplasmic Nups 

To assess the biological function of the FXR1-Nup interactions, we treated cultured human 

cells with FXR1-specific siRNA oligonucleotides. Downregulation of FXR1 in HeLa cells led 

to an accumulation of FG-Nups in the cytoplasm in the form of irregular aggregate-like 

assemblies of various sizes (Fig. 2A, B; Fig EV1, Appendix Figure S1A, B, E, F, H) and in 

U2OS cells (Fig 2G, Appendix Figure S1J). These Nup assemblies were observed using two 

different siRNAs targeting FXR1 and could be rescued by stable ectopic expression of a form 

of GFP-FXR1 that is resistant to one of the siRNAs used (Fig 2B; Fig EV1). 

Downregulation of FXR1 led to the cytoplasmic retention and co-localization in granules of at 

least 10 Nups spanning several functional and structural NPC groups, including FG-Nups 

(Nup98, Nup214; and RanBP2); transmembrane Nups (Nup210 and POM121); Y-complex 

Nups (Nup133 and Nup85, stably expressed GFP-Nup133, stably expressed GFP-Nup85 and 

stably expressed GFP-Nup107) as well as Nup88 and NPC-associated the RanGTPase 

activating protein (RanGAP1) (Fig 2C; Appendix Figure S1A-H, Appendix Figure S2C, D). 

Absent from the Nup granules were the nuclear ring Nup ELYS and the inner nuclear basket

component Nup153, although their levels at the NE were both slightly reduced (Fig 2C; Fig 

Appendix Figure S1I, Appendix Figure S2B, C). FXR1 downregulation also moderately 

reduced the NE localization of FG-Nups, RanBP2 and stably expressed GFP-Nup107 in HeLa 
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cells (Fig 2D-F) and of FG-Nups in U2OS cells (Fig 2H, Appendix Figure S1J). Collectively, 

these data show that loss of FXR1 induces inappropriate assembly of Nups in the cytoplasm.

Figure 2 - FXR1 inhibits aberrant assembly of cytoplasmic Nups. 

A HeLa cells were treated with the indicated siRNAs, synchronized by double thymidine block and 

release for 12 hours and analyzed by IF microscopy. The magnified framed regions are shown in the 

corresponding numbered panels. 
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B HeLa cells stably expressing GFP, GFP-FXR1 WT and GFP-FXR1 mutated in the sequence 

recognized by FXR1 siRNA-1 (GFP-FXR1-MUT-siRNA1) were treated with the indicated siRNAs, 

synchronized by double thymidine block, released for 24 hours and then analyzed by IF microscopy. 

The percentage of cells with cytoplasmic Nup granules was quantified, 1000 cells were analyzed for 

each graph (mean ±SD, **P < 0.01; ***P < 0.001, N = 3). The corresponding representative pictures 

are shown in Figure EV1 and the corresponding Western blot analysis is shown in Figure 3B. 

C-F HeLa cells were treated with the indicated siRNAs, synchronized by double thymidine block, 

released for 12 hours and analyzed by IF microscopy. Nups present in different NPC subcomplexes are 

depicted in the color code corresponding to the NPC scheme shown on the right. Additional or 

complementary representative images and channels of cells depicted in (C) are shown in Appendix 

Figures S1 and S2B-D. Nuclear intensity of FG-Nups labelled by mAb414 (D), RanBP2 (E) and GFP-

Nup107 (F) was quantified. 1800 cells were analyzed for each graph (mean ±SD, *P < 0.05; **P < 

0.01; N = 3).

G, H Asynchronously proliferating U2OS cells were treated with the indicated siRNAs and analyzed

by IF microscopy. The percentage of cells with cytoplasmic Nup granules (G) was quantified and 

nuclear intensity of FG-Nups labelled by mAb414 (H) was quantified. 1600 cells were analyzed in (G)

and 2100 cells were analyzed in (H) (mean ±SD, *P < 0.05; *** P<0.001; N = 3).

-tailed 
Student’s T-test.

2.7.3. The FXR1 regulates nuclear morphology during G1 cell cycle phase 

We noticed that the Nup granules-containing cells often displayed strong nuclear atypia (Fig 

1D, 2A, C; Fig EV1, 2; Appendix Figure S1, S2). Interestingly, downregulation of FXR1 did 

not affect the recruitment of the nuclear lamina components LBR (Fig 1D), lamin A (Fig 

EV2A, B), lamin B1 (Fig EV2C, D) or emerin (Fig EV2E, F) to the NE in interphase or

telophase cells, while Lap2 recuitment was moderately increased upon FXR1 

downregulation (Fig EV2E, G). However, these lamina and INM components displayed 

irregular distribution along with the misshaped nuclear rim and intranuclear foci (Fig EV2A, 

C, E). Morever, the size of nucleus was moderately increased upon downregulation of FXR1 

(Fig EV2H). Defects in nuclear architecture including irregular and blebbed nuclei (Fig 3A) 

could be largely rescued by stable ectopic expression of the siRNA-resistant form of GFP-

FXR1 (Fig 3B, C; Fig EV1). 

Live video microscopy of HeLa cells stably expressing histone H2B labelled with mCherry

revealed that progression and timing through different mitotic stages or fidelity of chromosome 

segregation was not affected in the FXR1-deficient cells (Fig 3D-H). The nuclear morphology 
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defects in FXR1-deficient cells (Fig 3H, I) could first be detected approximately 30 min after 

the onset of chromosome segregation (Fig 3H, J), which strongly correlated with the onset of 

nuclear growth. Our data suggest that downregulation of FXR1 specifically affects cytoplasmic 

Nups and nuclear architecture during early G1. 
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Figure 3 - The FXR1 regulates nuclear morphology during G1 cell cycle phase.

A HeLa cells were treated with the indicated siRNAs, synchronized by double thymidine block, released 

for 24 hours and analyzed by IF microscopy. The magnified framed regions are shown in the 

corresponding numbered panels. Arrowheads point to nuclear blebs observed in FXR1-deficient cells.
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B, C HeLa cells stably expressing GFP, GFP-FXR1 WT and GFP-FXR1 mutated in the sequence 

recognized by FXR1 siRNA-1 (GFP-FXR1-MUT-siRNA1) were treated with the indicated siRNAs, 

synchronized by double thymidine block, released for 24 hours and analyzed by Western blot (B) and 

IF microscopy (C). The percentage of cells with irregular nuclei was quantified, 1000 cells were 

analyzed (mean ±SD, **P < 0.01, ***P < 0.001; N = 3). The corresponding representative pictures are 

shown in Figure EV1. 

D-J HeLa cells stably expressing the chromatin marker histone H2B labelled with mCherry were treated 

with indicated siRNAs, synchronized by double thymidine block, released for 12 hours and analyzed

by IF microscopy. Time from prophase till anaphase (D), from prophase till metaphase (E), from 

metaphase till anaphase (F) and from anaphase till chromatin decondensation (G) was quantified. The 

selected frames of the movies are depicted and time is shown in minutes (H). Arrowheads point to 

nuclear blebs appearing during nuclear expansion of FXR1-deficient cells. Percentage of daughter cells 

with irregular nuclei was quantified in (I) and time from anaphase till nuclear blebs was quantified in 

(J). 66 cells were analyzed (mean ±SD, ***P < 0.001; N = 3).

-tailed 
Student’s T-test.

2.7.4. FXR1 regulates cytoplasmic Nups during early interphase  

Our data so far suggest that FXR1 regulates cytoplasmic Nups and may facilitate localization 

of a very small pool of soluble Nups to the NE (Fig 2D-F, H). To date, two temporally and 

mechanistically distinct pathways of NPC assembly at the NE have been described during the 

cell cycle in higher eukaryotic cells (Weberruss & Antonin, 2016). In the postmitotic pathway,

ELYS initiates NPC assembly on segregated chromosomes, while during interphase, both

Nup153 and POM121 drive de novo assembly of NPCs into an enclosed NE (D’Angelo et al,

2006b; Doucet et al, 2010; Vollmer et al, 2015). ELYS assembled normally on segregating 

chromosomes in anaphase and on decondensing chromatin in telophase in FXR1-deficient cells 

(Appendix Figure S2A). In addition, we found that ELYS and Nup153 were not recruited to 

the cytoplasmic Nup granules whereas POM121 was (Fig 2C; Appendix Figure S2B-D). This 

suggests that FXR1 affects localization of most but not all cytoplasmic Nups.

To understand the precise timing of the FXR1-Nup pathway, we used live video microscopy 

of a reporter cell line stably expressing GFP-Nup107 (Fig 4A-D, Movie EV1-5). As expected, 

downregulation of FXR1 led to the accumulation of GFP-Nup107 in cytoplasmic granules (Fig 

4A-C; Movie EV2, 4, 5) with similar appearance and distribution to that observed in the fixed 

specimens and that had a tendency to fuse into bigger assemblies with time (Fig 4A, B; Movie 
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EV4, 5). In the control cells, smaller GFP-Nup107 granules were occasionally observed, which 

had a tendency to fuse with the NE (Fig 4A, B; Movie EV1, 3).

GFP-Nup107-positive granules in control and FXR1-deficient cells became detectable in the 

cytoplasm on average 44 and 35 min after chromosome segregation, respectively (Fig 4D, 

Movie EV1-5), which strongly correlated with the timing of the nuclear morphology defects in 

early G1 (Fig 3H, J) described earlier. 

We considered that this effect may be mediated by a modulation of Nups levels. The protein 

levels of Nup85, Nup93, Nup133 and Nup155 (Fig EV3A-C), and the mRNA levels of Nup85 

and Nup133 (Fig EV3D, E), as well as the known cell cycle-linked degradation of Nup85 (Fig 

EV3A, B) and Nup133 dephosphorylation, which occurs during mitotic exit (Fig EV3B), were 

unchanged upon depletion of FXR1. Consistent with the live video experiments, degradation 

of several mitotic factors in synchronized cells (Fig EV3A, B) was not affected by FXR1 

downregulation, suggesting that Nup localization defects are likely also not due to changes in 

mitotic progression and exit or misregulation of the levels of the analyzed Nups. However, it 

cannot be formally excluded that expression of other yet to be identified Nups or Nup-

associated factors is regulated by FXR1. Together, our results suggest that loss of FXR1 

regulates cytoplasmic Nups during early interphase but it remains to be understood if this Nup 

regulation occurs in the context of any specific NPC assembly pathway.
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Figure 4 - FXR1 regulates cytoplasmic Nups during early interphase.

A-D HeLa cells stably expressing GFP-Nup107 were treated with indicated siRNAs, synchronized by 

double thymidine block, released and analyzed by live video spinning disk confocal microscopy (A). 

The selected frames of the movies are depicted and time is shown in minutes. The onset of anaphase is 
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indicated. The magnified framed regions with time indicated in minutes are shown in (B). White 

arrowheads point to the cytoplasmic GFP-NUP107 granules appearing during nuclear expansion of 

control and FXR1-deficient cells, yellow arrowheads point to the fussion events of GFP-NUP107 

granules with NE in control cells. The percentage of cells with cytoplasmic GFP-Nup107 granules was 

quantified in (C). Time from anaphase till GFP-Nup107 cytoplasmic granule formation was quantified 

in (D). 57 cells were analyzed (mean ±SD, *P < 0.05; ns = non-significant; N = 3). 

A (B). Statistical significance was assessed by 
unpaired two-tailed Student’s T-test.

2.7.5. Nup granules are resistant to RNA degradation but sensitive to 1,6-Hexanediol  

The cytoplasmic Nup granules in FXR1-deficient cells could correspond to ALs, which are 

preassembled NPCs embedded in the ER membrane (Merisko, 1989), as suggested by co-

localization of various Nups in these assemblies. Indeed, cytoplasmic AL-NPCs can be inserted 

“en bloc” into an intact NE during embryogenesis in Drosophila (Hampoelz et al, 2016). A

closer analysis by superresolution microscopy revealed an amorphous organization of the Nup 

assemblies in the perinuclear area of FXR1-deficient cells relative to the more regular, round 

shape of the small cytoplasmic Nup foci observed in the control cells (Appendix Figure S3A). 

Moreover, we were unable to detect any AL-typical structures (characterized by parallel stacks 

of ER-membranes with embedded regularly spaced NPCs), in the FXR1-deficient cells by 

electron microscopy (EM) (Appendix Figure S3B), and no co-localization with the ER 

membranes could be observed (Appendix Figure S3C). Cytoplasmic Nups were also found to 

be recruited to assembling SGs upon induction of cellular stress (Zhang et al, 2018).

Consistently, our results demonstrated co-localization of the Nup RanBP2 with the markers of 

SGs, TIA-1 and G3BP1, in the control stress-induced cells (Appendix Figure S4A). However, 

TIA-1 and G3BP1 did not co-localize with the Nup granules in the FXR1-deficient cells

exposed to stress, and both the SGs and Nup granules present in these cells localized to different 

cytoplasmic compartments. We conclude that the Nup granules in FXR1-deficient cells are 

distinct from ALs and SGs. 

Given the established role of the FXR protein family in RNA-binding and the frequent role of 

RBPs in the formation and dynamics of membrane-less protein assemblies, we next analyzed

whether Nup granules contain any RNAs or could be linked to RNA-based processes. 

Hybridization with an RNA Fluorescent In Situ Hybridization (FISH) probe against Poly-A

revealed no difference in the percentage of nuclear mRNAs in the FXR1-deficient cells relative 

to control cells (Appendix Figure S4B, C), suggesting that the FXR1-Nup pathway is not 
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implicated in mRNA export to the cytoplasm. Additionally, no cytoplasmic enrichment of 

mRNAs could be observed in GFP-Nup107 granules in the FXR1-downregulated cells 

(Appendix Figure S4B, D). To test whether RNAs play a role in the maintenance or dynamics 

of the Nup granules in the cytoplasm, we treated permeabilized, FXR-downregulated cells with 

RNAse. This treatment failed to disrupt the Nup granules or change their shape and distribution 

relative to control cells (Appendix Figure S5A, B), suggesting that RNAs are dispensable for 

their maintenance and dynamics. 

Many components of protein assemblies formed by phase separation, including FG-Nups, are 

highly hydrophobic and contain very few charged amino acids (Schmidt & Görlich, 2016). For 

this reason, aliphatic alcohols like hexanediols are good solvents for FG-Nups because they 

probably compete with the hydrophobic interactions between FG-repeats (Patel et al, 2007).

Indeed, hexanediols are known to disrupt FG-hydrogels and the NPC permeability barrier, 

while FG-derived amyloid fibers are hexanediol resistant (Kroschwald et al, 2015; Ribbeck & 

Görlich, 2002). Thus, hexanediols can be used to distinguish between these two types of Nup 

condensates. Moreover, 1,6-Hexanediol treatment can also disperse the phase separated 

condensates formed of Nup358 and the Y-complex component Nup107 in Drosophila embryos 

(Hampoelz et al, 2019b) and SGs formed in HeLa cells exposed to stress (Fig 5A).

To understand if the cytoplasmic Nup granules have properties of phase separated condensates, 

we treated control and FXR1-deficient cells with 1,6-Hexanediol using the protocol established 

for SGs (Fig 5A). 1,6-Hexanediol treatment led to the dispersion of the small Nup foci present 

in control cells as well as the Nup granules observed upon FXR1 downregulation relative to 

the non-treated cells (Fig 5B, C). Collectively, we propose that the Nup granules represent 

previously unknown assemblies with the properties of protein condensates that accumulate in 

the absence of FXR1 in human cells.



PART 1: Results

76

Figure 5 - Cytoplasmic Nup granules are sensitive to 1,6-Hexanediol. 

A HeLa cells stably expressing GFP-Nup133 were synchronized by double thymidine block, released 

for 12 hours, treated or not with NaAsO2 to induce SG formation and with 1,6 Hexanediol, and analyzed

by IF microscopy. The magnified framed regions are shown in the corresponding numbered panels.

B, C HeLa cells stably expressing GFP-Nup133 were treated with the indicated siRNAs, synchronized 

by double thymidine block, released for 12 hours, treated with or without 1,6-Hexanediol and analyzed

by IF microscopy. The magnified framed regions are shown in the corresponding numbered panels. The 

percentage of cells with cytoplasmic GFP-Nup133 granules was quantified in (C), 3100 cells were 

analyzed (mean ±SD, **P < 0.01; ***P < 0.001; ****P < 0.0001; N = 3).
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-way ANOVA test 

with Sidak’s correction.

2.7.6. FXR1 inhibits Nup condensate formation by dynein-based microtubule-

dependent transport 

We next investigated the mechanism by which loss of FXR1 promotes the formation of Nup 

condensates. We noticed that the Nup granules were not scattered randomly in the cytoplasm 

but often formed a crescent-like shape around the microtubule-organizing centre (MTOC) 

suggesting a role for microtubules (Appendix Figure S6A). Indeed, we found that nocodazole-

mediated microtubule depolymerization also induced Nup granules (Appendix Figure S6B, C).

Notably, our earlier mass spectrometry analysis identified the cytoplasmic minus-end directed 

motor protein dynein heavy chain (HC) co-immunoprecipitating specifically with GFP-FXR1,

along with the Nups (Dataset EV1). We demonstrated an interaction of GFP-FXR1 with other 

components of the dynein complex, specifically dynein intermediate chain (IC) (which was 

visualized as a slower migrating band relative to the input lysate) and dynactin p150Glued (Fig 

6A). Downregulation of dynein HC by two independent siRNAs, which also depleted dynein 

IC as reported (Splinter et al, 2010) (Appendix Figure S6D), led to the accumulation of the 

cytoplasmic Nup granules (Fig 6B, C; Appendix Figure S6E), and to the irregular nuclei 

(Appendix Figure S6F) highly reminiscent of FXR1 depletion. 

Analysis of several known dynein adaptor proteins in a co-IP assay with GFP-FXR1 revealed 

an interaction with BICD2, but not Mitosin or HOOK3 (Fig 6D). Downregulation of BICD2 

by two independent siRNAs likewise led to accumulation of the cytoplasmic Nup granules (Fig 

6E, F). Our results suggest that FXR1, working together with the microtubule motor dynein-

BICD2 complex, inhibits formation of cytoplasmic Nup granules.
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Figure 6 - FXR1 works together with the dynein-BICD2 complex to inhibit cytoplasmic Nup 
granules formation.
A HeLa cells stably expressing GFP alone or GFP-FXR1 were immunoprecipitated using GFP-Trap 
beads (GFP-IP), analyzed by Western blot and quantified (mean, *P < 0.05; N = 3). 
B, C HeLa cells were treated with the indicated siRNAs, synchronized by double thymidine block, 
released for 12 hours and analyzed by IF microscopy. Images in (B) correspond to the numbered 
magnified framed regions indicated in the pictures shown in 
Appendix Figure S6E. Arrowheads indicate blebbed regions of nuclei. The percentage of interphasic 
cells with Nup granules was quantified (C), 900 cells were analyzed (mean ±SD, ***P < 0.001; N = 3). 
The corresponding Western blot analysis is shown in Appendix Figure S6D.
D Lysates of HeLa cells stably expressing GFP alone or GFP-FXR1 were subjected to IP using GFP-
Trap beads (GFP-IP), analyzed by Western blot and quantified (mean, *P < 0.05; **P < 0.01; N = 3).
E, F HeLa cells were treated with the indicated siRNAs, synchronized by double thymidine block and 
released for 12 hours and analyzed by IF microscopy for FXR1 and mAb414. The magnified framed 
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regions are shown in the corresponding numbered panels in (E). The percentage of cells with 
cytoplasmic Nup granules was quantified in (F), 2700 cells were analyzed (mean ±SD, ***P < 0.001; 
N = 3).

-tailed 
Student’s T-test (A, D) and one-way ANOVA test with Dunnett’s correction (C, F). 

Our earlier results in living GFP-Nup107 cells showed cytoplasmic Nup granule formation in 

early interphase, which occasionally fused with the NE in control cells but became bigger in 

FXR1-deficient cells (Fig 4A, B; Movie EV3, 4, 5). We also observed moderate decrease in 

Nup localization at the NE in FXR1-deficient cells (Fig 2D-F, H). These results suggest that at 

least a very small pool of the Nups is no longer incorporated into the NE during interphase. 

Interestingly, in Drosophila oocytes, precursor Nup granules were observed being incorporated 

into membranes forming the AL-specific NPCs (Hampoelz et al, 2019b). Thus, we considered 

that FXR1 together with the microtubule motor dynein-BICD2 complex may mediate the 

transport of small pool of cytoplasmic Nups to the NE during interphase of human cells. To 

test this, we first treated the cells stably expressing GFP-Nup133 with nocodazole to induce 

Nup granule formation in a reversible way (Fig 7A). Downregulation of FXR1 or dynein 

potentiated the effect of nocodazole and led to the increase in a number of cells with Nup 

granules relative to control (Fig 7A, B). Interestingly, following nocodazole wash-out, we 

observed a strong reduction of Nup granules in control cells while FXR1 and dynein 

downregulation did not reduce cytoplasmic Nup granules to the same extent under these 

conditions (Fig 7A, B). To corroborate these findings, we performed live video spinning disk

microscopy of cell lines stably expressing GFP-Nup107. Following nocodazole wash-out, we 

observed the dynamics of the Nup aggregates in control, FXR1- and dynein-downregulated 

cells (Fig 7C-E). GFP-Nup107-positive aggregates showed dynamic behavior and both fusion 

and splitting of the granules were observed under all conditions (Fig 7C-E) supporting the 

condensate properties of these Nup cytoplasmic granules. As expected from the results in fixed 

specimens (Fig 7A, B), the percentage of cells with fusion and fission events of GFP-Nup107 

granules was increased in FXR1- and dynein-downregulated cells (Fig 7D) but the frequency 

of these events per cell (2 to 3), observed in all cells positive for GFP-Nup107 granules did not

differ significantly (Fig 7E).
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Figure 7 - FXR1 regulates cytoplasmic Nups by dynein-based microtubule-dependent transport. 

A, B HeLa cells stably expressing GFP-Nup133 were treated with the indicated siRNAs, synchronized 

by double thymidine block, released for 12 hours, treated with nocodazole to induce granule formation 

and washed-out as indicated and analyzed by IF microscopy. The percentage of cells with cytoplasmic 

GFP-Nup133 granules was quantified in (B), 5200 cells were analyzed (mean ±SD, **P < 0.01; ***P 

< 0.001; N = 3).

C-E HeLa cells stably expressing GFP-Nup107 were treated with the indicated siRNAs, synchronized 

by double thymidine block, released for 12 hours, treated with nocodazole to induce granule formation 
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and washed-out as in (A) and analyzed by live video spinning disk confocal microscopy. The selected 

frames of the movies are depicted and time is shown in minutes. The magnified framed regions are 

depicted in the lower rows. White arrowheads point to individual GFP-Nup107-positive granules. 

Yellow arrowheads point to the granules undergoing fusion events. The percentage of cells with 

fusion/fission events of GFP-Nup107 granules was quantified in (D), 815 cells were analyzed (mean 

±SD, **P < 0.01; N = 3). The number of fusion/fission events per cell was quantified in (E), 815 cells 

were analyzed (mean ±SD; N = 3).

significance was assessed by unpaired one-way 

ANOVA test with Sidak’s (B) or Dunnet’s (D, E) correction. 

Interestingly in control cells, nocodazole wash-out led to NE-directed transport and fusion of 

GFP-Nup107-granules with the NE. In contrast, downregulation of FXR1 or dynein in 

nocodazole washed-out cells led to retention of the GFP-Nup107-granules in the cytoplasm. 

Under these conditions, the GFP-NUP107-granules were still mobile but little NE-directed 

movement was observed, and they continued to fuse and often increased in size (Fig 7C) 

consistent with the previous results in cells not treated with nocodazole (Fig 4A, B; Movies 

EV1-5). These observations suggest that microtubule-based transport by the FXR1-dynein 

complex can decrease local concentrations of cytoplasmic Nups thereby preventing their 

assembly into condensates. 

2.7.7. Nup localization defects can be linked to FXS 

Next, we analyzed whether all members of the FXR protein family share analogous roles in the 

spatial control of Nup self-assembly. Our data show that in addition to FXR1, FXR2 and FMRP 

can localize at the NE in HeLa cells (Fig EV4A) and in mouse myoblasts (Fig EV4B). 

Interestingly, depletion of each of the three members of this protein family led to the 

condensation of cytoplasmic Nups relative to control cells (Fig EV4C, D). Downregulation of 

all three FXR proteins also led to nuclear morphology defects (Fig EV4E). Simultaneous 

downregulation of all three FXR proteins did not further increase the penetrance of these

phenotypes (Fig EV4D, E), suggesting that FXR proteins together form a protein complex in 

human cells consistent with our mass spectrometry results (Dataset EV1). Interestingly, 

downregulation of FMRP and FXR1 led to more severe defects as compared to FXR2 (Fig 

EV4D, E). We speculate that higher protein sequence identity between FMRP and FXR1 (86%) 

(Hoogeveen et al, 2002) as compared to FMRP and FXR2 (70%), leads to sharing more 

common functions by these two family members.
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Since FMRP is silenced in FXS (Santoro et al, 2012), we asked if the Nup localization defects

are observed in cellular models of this disease. We stimulated FXS patient-derived fibroblasts 

which lack the FMRP protein (Fig 8A) to undergo synchronous mitotic exit and nuclear 

reformation. FXS fibroblasts displayed accumulation of cytoplasmic Nup granules relative to 

control fibroblasts (Fig 8B, C) and similar to those observed in HeLa cells, and structurally 

abnormal nuclei (Fig 8D). To corroborate these findings, we used human induced pluripotent 

stem cells (iPSCs) derived from an FXS patient (FXS-iPSCs) and the isogenic rescue cells 

(C1_2-iPSCs), where reactivation of the FMR1 locus is achieved by CRISPR-mediated 

excision of the expanded CGG-repeat from the 5’UTR of the FMR1 gene (Xie et al, 2016a).

In the FXS-iPSCs, accumulation of large Nup133-positive cytoplasmic condensates was 

observed (Fig 8E), which were reduced in the FMRP re-expressing cells, although they were 

still present (Fig 8E, F). Re-expressed FMRP in the reactivated cell line localized to both the 

NE and to the cytoplasmic perinuclear region, which often also contained Nup133 (Fig 8G).

We speculate that these perinuclear FMRP-Nup133 signals could represent assembly 

intermediates before Nup133 is properly transferred and inserted into the NE due to lower 

levels of FMRP protein re-expression in the rescue system (Xie et al, 2016a) which could result 

in a slowdown of the process and similar to the GFP-FXR1-Nups signals occasionally observed 

in HeLa cells (Fig 1E). 
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Figure 8 - Nup localization defects can be linked to FXS.

A-D Human FXS-patient derived fibroblasts (FXS-1, FXS-2) and control human fibroblasts were 

synchronized in early G1 by Monastrol release and analyzed by Western blot (A) and IF microscopy 

(B, D). The percentage of cells with cytoplasmic Nup granules was quantified in (C), 283 cells were 
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analyzed (mean ±SD, ***P < 0.001; N = 3). Examples of Nup localization defects are shown in (B) and 

examples of nuclear architecture defects are shown in (D). 

E-G Human iPSCs derived from a FXS patient (FXS-iPSC) and the isogenic rescue cells (C1_2-iPSC) 

were analyzed by IF microscopy (E, G). The percentage of cells with cytoplasmic Nup133 granules

was quantified in (F), 5500 cells were analyzed (mean ±SD, **P < 0.01; N = 3). Examples of co-

localization events of re-expressed FMRP and Nup133 are shown in (G). 

H, I Mouse Embryonic Fibroblasts (MEFs) derived from the Fmr1 knock-out (KO) mice and WT

controls were synchronized in early G1 by Monastrol release and analyzed by IF microscopy (H). The 

percentage of cells with cytoplasmic Nup granules was quantified in (I), 2400 cells were analyzed

(mean ±SD, *P < 0.05; N = 3).

-way ANOVA test 

with Sidak’s correction (C), paired two-tailed Student’s T-test (F) and unpaired two-tailed Student’s T-

test (I). 

Thus, the absence of human FMRP in primary cell lines and in iPSs cells leads to the 

accumulation of Nup granules as also seen in the cancer cell lines. 

To confirm these findings in an animal model of FXS, we used mouse embryonic fibroblasts 

(MEFs) derived from the Fmr1 knock-out (KO) mice. Fmr1 KO MEFs also displayed 

accumulation of perinuclear Nup granules relative to WT MEFs (Fig 8H, I). Taken together, 

our results demonstrate the presence of ectopic Nup assemblies in several cellular models of 

FXS. These defects may perturb cellular homeostasis and contribute to FXS pathology.

2.7.8. The FXR1 regulates protein export and cell cycle progression  

What could be the biological consequences of misregulation of the FXR proteins-dynein 

pathway and how could Nup assembly defects perturb cellular homeostasis? To understand if 

ectopic Nup condensation during early G1 in FXR-deficient cells affects the function of the 

nuclear pores, we measured the rates of nucleocytoplasmic transport of an ectopic 

import/export reporter plasmid XRGG-GFP that shuttles to the nucleus when induced with 

dexamethasone. FXR1 downregulation did not change the rates of nuclear import (Fig EV5A, 

B) relative to control cells, whereas downregulation of the Nup ELYS clearly demonstrated 

import defects in the same experiments, as expected (Fig EV5A, B). This indicates that, at least 

in the steady-state, nucleocytoplasmic import is largely unaffected by formation of Nup 

granules in FXR1-deficient cells. Interestingly, while the overall rate of protein export 

remained unchanged in FXR1-deficient cells relative to controls (Fig EV5C, D), FXR1 
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downregulation reduced the export rate solely in early G1 cells (time points 20 and 30 minutes) 

similar to ELYS (Fig EV5D; Fig 9A), suggesting that FXR1-downregulation mediated Nup 

defects may affect the function of nuclear pores specifically during this cell cycle stage. 

Consistent with the observed export defects in FXR1-deficient G1 cells, the nuclear export 

factor chromosomal region maintenance 1 (CRM1) protein was sequestered to Nup granules 

labeled with the mAb414 antibody and with GFP-Nup133 (Fig 9B).

These observations prompted us to test whether the FXR1-Nup pathway could also be 

important for cell cycle progression of cells in interphase. For this, we analyzed retinoblastoma 

(Rb) protein which is phosphorylated during G1/S phase transition (p-Rb) and is kept in this 

state until mitotic exit. Downregulation of FXR1 led to accumulation of cells with strong 

nuclear p-Rb signal (Fig 9C, D), suggesting perturbations in cell cycle progression. To 

elucidate if this accumulation was specific to any cell cycle phases, we analyzed p-Rb together

with EdU incorporation (S phase marker) or Cyclin B (G2 marker) in interphasic cells. 

Downregulation of FXR1 led to an increased percentage of cells positive for both p-Rb and

EdU signal (Fig 9E) but not for p-Rb and Cyclin B signal, (Fig 9F), suggesting that upon FXR1 

downregulation cells accumulate in S phase. Accordingly, the percentage of p-Rb negative 

cells (corresponding to G1 phase) was decreased in all cases. Together, these data indicate that 

the absence of FXR1 leads to protein export defects in G1 and perturbation in cell cycle 

progression.
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Figure 9 - FXR1 regulates G1 cell cycle progression. 

A HeLa cells were transfected with the import/export reporter plasmid XRGG-GFP, treated with the 

indicated siRNAs and synchronized in early G1 phase by Monastrol release. Dexamethasone was added 

for 3 hours to induce XRGG-GFP nuclear import. Following wash-out the nuclear export of XRGG-

GFP was analyzed by live video spinning disk confocal microscopy. The selected frames of the movies 
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are depicted in Figure EV5C. The percentage of cytoplasmic XRGG-GFP over time was quantified in 

Figure EV5D and quantifications of individual cells from the 20 and 30 minutes time points are depicted 

in (A), 199 cells were analyzed (mean ±SD, *P < 0.05; **P < 0.01; N = 3).

B HeLa cells stably expressing GFP-Nup133 were treated with the indicated siRNAs, synchronized by 

double thymidine block, released for 12 hours and analyzed by IF microscopy. The magnified framed 

regions are shown in the corresponding numbered panels.

C, D Asynchronously proliferating HeLa cells were treated with indicated siRNAs and analyzed by IF

microscopy (C). The percentage of p-Rb positive cells was quantified in (D), 2800 cells were analyzed

(mean ±SD, **P < 0.01; N = 3). 

E, F Asynchronously proliferating HeLa cells were treated with indicated siRNAs, incubated with EdU 

during 30min and analyzed by IF microscopy. The percentage of p-Rb and/or EdU positive cells was 

quantified in (E), 2100 cells were analyzed (mean ±SD, *P < 0.05; **P < 0.01; N = 3), and the 

percentage of p-Rb and/or cyclin B positive cells was quantified in (F), 3300 cells were analyzed (mean 

±SD, *P < 0.05; N = 3). 

G A hypothetical model how Fragile X-related proteins spatially regulate Nup condensation. FXR 

proteins (blue) interact with cytoplasmic soluble Nups (red circles) and dynein (green) and facilitate 

their localization to the NE during early G1. This function of FXR proteins inhibits formation of 

aberrant cytoplasmic Nup assemblies, the Cytoplasmic Nup Granules (CNGs), contributing to the 

equilibrium of NE-NPCs and driving the G1-specific protein export and maintenance of nuclear shape 

and cell cycle progression. Silencing of FXR proteins, for instance in FXS patients, leads to the 

accumulation of CNGs, nuclear atypia, protein export defects, and defects in cell cycle progression, 

which may contribute to the pathology of FXS.

-Wallis test with 

Dunn's correction (A), unpaired two-tailed Student’s T-test (D) and One-way ANOVA test with Sidak's 

correction (E, F). 
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2.7.9. Expanded View Figures  

Figure EV1 - FXR1 specifically controls cytoplasmic Nups and nuclear shape.
HeLa cells stably expressing GFP, GFP-FXR1 WT and GFP-FXR1 mutated in the sequence recognized 
by FXR1 siRNA-1 (GFP-FXR1-MUT-siRNA1) were treated with the indicated siRNAs, synchronized 
by double thymidine block and released for 24 hours and analyzed by IF microscopy for mAb414 
(related to Figures 2B, 3B, C
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Figure EV2 - FXR1 does not drive recruitment of lamina-associated proteins. 
A-H HeLa cells were treated with the indicated siRNAs, synchronized by double thymidine block and 
released for 9 (telophase) and 12 (interphase) hours and analyzed by IF microscopy. The nuclear 

intensity of Lamin A (B), Lamin B1 (D), Emerin (F) and Lap2 (G) was quantified. 2000 cells were 
analyzed (mean ±SD, *P < 0.05; ns = non-significant; N = 3). The nuclear area was quantified (H),
3300 cells were analyzed (mean ±SD, **P < 0.01; N = 5).

-sample two-tailed 
Student’s T-test. 



PART 1: Results

90

Figure EV3 - FXR1 does not regulate mitotic exit and protein levels of several Nups. 
A HeLa cells were treated with the indicated siRNAs, synchronized by double thymidine block and 
released for the indicated times (hours) and analyzed by Western blot. 
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B HeLa cells were treated with the indicated siRNAs, synchronized by Hesperadin release from mitotic 
arrest induced by Taxol and analyzed by Western blot. Arrows point to FXR1 isoforms, FXR2 and 
phosphorylated (P-Nup133) and unmodified form of Nup133, respectively. 
C HeLa cells were treated with the indicated siRNAs, synchronized by double thymidine block, released 
in interphase and analyzed by Western blot. Arrows point to FXR1 isoforms and FXR2 protein.
D, E HeLa cells were treated with the indicated siRNAs and mRNA levels of Nup85 (D) and Nup133 
(E) were analyzed by Quantitative Real-Time PCR (mean ±SD, ns = non-significant; N = 3).
Data information: Statistical significance was assessed by two-tailed Student’s T-test.
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Figure EV4 - FXR protein family members localize to NE and regulate cytoplasmic Nups. 
A, B HeLa cells (A) and mouse C2C12 myoblasts (B) were analyzed by IF microscopy for FXR1, 
FXR1+2 and FMRP. The magnified framed regions are shown in the corresponding numbered panels.
C-E HeLa cells were treated with the indicated siRNAs, synchronized by double thymidine block and 
released for 12 hours and analyzed by Western blot (SE – short exposure, LE – long exposure) (C) and 
IF microscopy (D, E). The percentage of cells with cytoplasmic Nup granules (D) and irregular nuclei 
(E) was quantified, 900 cells were analyzed (mean ±SD, *P < 0.05; **P < 0.01; ***P < 0.001; N = 3).
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Data information: Scale bars are Statistical significance was assessed by one-way ANOVA test 
with Dunnett’s correction (D, E). 

Figure EV5 - FXR1 protein does not regulate steady-state nucleocytoplasmic transport.
A, B HeLa cells were transfected with the import reporter plasmid XRGG-GFP, treated with the 
indicated siRNAs and synchronized in early G1 phase by Monastrol release. Dexamethasone-induced 
nuclear import of XRGG-GFP was analyzed by live video spinning disk confocal microscopy (A). The 
selected frames of the movies are depicted and time is shown in min. The increase in the percentage of 
nuclear XRGG-GFP over time was quantified in (B), 247 cells were analyzed (mean ±SEM, N = 3).
C, D HeLa cells were treated as in (A, B) and Dexamethasone was added for 3 hours to induce XRGG-
GFP nuclear import. Following wash-out the nuclear export of XRGG-GFP was analyzed by live video 
spinning disk confocal microscopy (C). The selected frames of the movies are depicted and time is 
shown in min. The increase in the percentage of cytoplasmic XRGG-GFP over time was quantified in 
(D), 199 cells were analyzed (mean ±SEM; N = 3).
The distribution of cells with cytoplasmic XRGG-GFP from the time points corresponding to early G1 
cell cycle stage (20 and 30 min) are depicted in Figure 9A.
Data information: Scale bars are 
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2.7.10. Expanded View Dataset 

Dataset EV1 – Selection of GFP-FXR1-interacting partners from mass spectrometry analysis.
HeLa cells expressing GFP alone or GFP-FXR1 were immunoprecipitated using agarose GFP-Trap A 
beads (GFP-IP) and analyzed by mass spectrometry. Sample loading and bead saturation was verified 
by Western blot. For each hit, the following parameters are depicted: accession (uniprot accession 
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peptides that are fo

(representing an arbitrary quantification calculated by integration of the coverage, the size of the protein 
and the PSM), #AAs (number of amino acids in the protein sequence), MW (predicted molecular weight 
in kDa) and PI (isoelectric point). The score was used to discriminate the hits in addition to the number 
of unique peptides, and hits were considered significant if three or more peptides were unique for the 
GFP-FXR1 IPs.
Note: the original dataset of the manuscript contains all raw data. Here, only relevant hits for this study 
are represented. 
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2.7.11. Appendix Figures 

Appendix Figure S1 - FXR1 inhibits aberrant assembly of cytoplasmic Nups. 
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A-I HeLa cells were treated with the indicated siRNAs, synchronized by double thymidine block and 
released for 12 hours and analyzed by IF microscopy. The magnified framed regions are shown in the 
corresponding numbered panels (related to Figure 2C).
J U2OS cells were treated with the indicated siRNAs and analyzed by IF microscopy for FG-Nups 
using mAb414 antibody. The magnified framed regions are shown in the corresponding numbered 
panels (related to Figure 2G, H).

Appendix Figure S2 - FXR1 inhibits aberrant assembly of cytoplasmic POM121 but not ELYS.
A-D HeLa cells (A, B, D) or HeLa cells stably expressing GFP-Nup107 (C) were treated with the 
indicated siRNAs, synchronized by double thymidine block and released for 9 (telophase) (A) and 12 
(early G1 phase) (B-D) hours and analyzed by IF microscopy. The magnified framed regions are shown 
in the corresponding numbered panels (related to Figure 2C).
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Appendix Figure S3 - The cytoplasmic Nup granules are distinct from ALs.
A HeLa cells were treated with the indicated siRNAs, synchronized by double thymidine block and 
released for 12 hours and analyzed by super-
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B HeLa cells were treated with the indicated siRNAs, synchronized by double thymidine block and 
released for 12 hours and analyzed by EM. The magnified framed regions are shown in the 

C HeLa cells were treated with indicated siRNAs, transfected with ER-RFP reporter for 24h, 
synchronized by double thymidine block and released for 12 hours and analyzed by IF microscopy. The 
magnified framed regions are shown in the corresponding numbered panels. Arrowheads point to the 
FG-Nup-
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Appendix Figure S4 - The cytoplasmic Nup granules are distinct from SGs and do not contain 
mRNAs.
A HeLa cells were treated with the indicated siRNAs, synchronized by double thymidine block and 
released for 12 hours, treated with or without the stress inducing factor NaAsO2 0.5 mM for 1 hour and 
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analyzed by IF microscopy for the SG markers G3BP1 and TIA-1 and the Nup RanBP2. The magnified 
framed regions are shown in the corresponding numbered panels.
B-D HeLa cells stably expressing GFP-Nup107 were treated with the indicated siRNAs, synchronized 
by double thymidine block and released for 12 hours, hybridized with the oligo d(T) mRNA FISH probe 
and analyzed by IF microscopy. The magnified framed regions are shown in the corresponding 
numbered panels in (B) and higher magnifications are shown in (D). Arrowheads point to GFP-Nup107-
positive cytoplasmic granules. The percentage of nuclear mRNA intensity was quantified in (C), 600 
cells were analyzed (mean ±SD, ns = non-significant; N = 3).
Data information: Scale b A, B D). Statistical significance was assessed by 
two-tailed unpaired Student’s T-test. 
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Appendix Figure S5 - RNAs are dispensable for maintenance and dynamics of the cytoplasmic 
Nup granules. 
A, B HeLa cells stably expressing GFP-Nup107 were treated with the indicated siRNAs, synchronized 
by double thymidine block and released for 12 hours, hybridized with the oligo d(T) mRNA FISH 
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probe, treated with or without RNaseA/T1 and/or digitonin permabilization for 5 min and analyzed by 
fluorescence microscopy. The magnified framed regions are shown in the corresponding numbered 
panels. The percentage of cells with GFP-Nup107-positive cytoplasmic granules was quantified in (B), 
8900 cells were analyzed (mean ±SD, *P < 0.05; **P < 0.01; N = 4)
Data information: Statistical significance was assessed by one-way ANOVA test with Sidak’s 
correction.

Appendix Figure S6 - FXR1 inhibits formation of the cytoplasmic Nup granules by dynein 
microtubule-dependent transport. 
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A HeLa cells were treated with the indicated siRNAs, synchronized by double thymidine block and 
released for 12 hours and analyzed by IF microscopy. Arrowheads point to the positions of the 
cytoplasmic Nup granules relative to MTOC.
B, C HeLa cells were synchronized by double thymidine block and released for 12 hours, treated with 
nocodazole 10 uM or solvent (DMSO) for 90 min and analyzed by IF microscopy. The magnified 
framed regions are shown in the corresponding numbered panels in (B). The percentage of cells with 
cytoplasmic Nup granules was quantified in (C), 2500 cells were analyzed (mean ±SD, ***P < 0.001; 
N = 3).
D-F HeLa cells were treated with the indicated siRNAs, synchronized by double thymidine block and 
released for 12 hours and analyzed by Western blot (D) and IF microscopy (E). The percentage of cells 
with irregular nuclei was quantified in (F), 900 cells were analyzed (mean ±SD, ***P < 0.001; N = 3).
Data information: Scale b Statistical significance was assessed by two-tailed unpaired 
Student’s T-test (C) and one-way ANOVA test with Dunnett’s correction (F). 
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2.8.Discussion

Collectively, our data suggest a model where FXR proteins and dynein regulate the localization 

of a cytoplasmic pool of Nups during early G1 (Fig 9G). Absence of FXR proteins or dynein-

mediated transport leads to the formation of previously uncharacterized ectopic Nup 

assemblies. We speculate that the FXR-dynein pathway regulates the pool of soluble Nups

either remaining in the cytoplasm after postmitotic NPC assembly or being translated in early 

interphase, which is important for functions in nuclear export and shape and in cell cycle 

progression. Defects in this pathway, as seen in cellular models of FXS, may therefore 

compromise cellular fitness and contribute to the pathology of this human disease.

Our analysis demonstrates that FXR proteins can facilitate dispersal of Nups and reversal of 

cytoplasmic Nup assemblies, which we propose to name Cytoplasmic Nup Granules (CNGs)

(Fig 9G). Consistent with this hypothesis, re-expressed FMRP in iPS cells (Fig 8G) and

occasionally GFP-FXR1 in cancer cells (Fig 1E) could co-localize in foci with a pool of 

cytoplasmic Nups often found in the proximity of the NE. FXR1 could also interact with Nups 

and rescue experiments with the siRNA resistant form of FXR1 could reverse the formation of 

CNGs in cancer cells (Fig 2B; Fig EV1). Finally, the CNGs fusion events observed in the live 

video experiments, resulted in increase of the CNGs’ size in the absence of FXR1 or dynein 

relative to control cells (Fig 7C). However, we did not observe an increase in co-localization 

of the endogenous FXR1 and Nups in the absence of dynein/BICD2 (Fig 6B, E). We predict 

that either all three components are needed to form the transport complexes in the cytoplasm 

or that the formation of the FXR-Nup complex is very transient and is needed for the transport

of soluble Nups which are harder to visualize in the cytoplasm. The CNGs that we observe 

would be the result of the absence of this transport mechanism and the consequent local 

increase of Nups levels leading to aberrant formation of bigger (easy to visualize) Nup granules 

that do not necessarily contain FXR1.

The CNGs formed in the absence of FXR proteins likely represent distinct structures from ALs 

based on our EM analysis (Appendix Figure S3B) and lack of direct contacts with the ER 

membranes (Appendix Figure S3C). However, it cannot be excluded that some membranes or 

lipid species are part of the CNGs due to the presence of the integral membrane proteins 

POM121 and Nup210, both components of the NPC at the NE, and the scaffold NPC 

components Nup133, Nup85 and Nyp107 in these structures. The CNGs formed in the absence 

of FXR proteins are also distinct from SGs (Appendix Figure S4A) previously shown to recruit 

Nups (Zhang et al, 2018) and cannot be directly linked to RNA-based processes (Appendix 
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Figure S4B-D, S5) at this point. We were unable to detect any changes in protein levels of 

several analyzed Nups (Fig EV3A-C) or levels and stability of the Nups mRNAs (Fig EV3D, 

E). However, given that translational regulation represents one of the best-studied roles of the 

FXR protein family (Darnell et al, 2009; Ascano et al, 2012), it cannot be formally excluded 

that expression of other, yet to be identified Nups or Nup-associated factors, is regulated by 

FXR proteins.

Our data suggest a model where FXR proteins interact with the cytoplasmic pool of the scaffold 

NPC components Nup85 and Nup133 and act to decrease their local concentration either by 

their microtubule-based, non-NE directed transport and/or by transferring their small pool 

towards the NE. Due to the cohesive ability of many Nups and the fact that the scaffold 

components can directly bind to the FG-Nups (Onischenko et al, 2017), it is therefore 

reasonable to predict that in the absence of the FXR proteins, the local cytoplasmic pools of 

Nup85 and Nup133 increase, and could result in the formation of cytoplasmic condensates 

containing many different NPC sub-complexes, which is consistent with our observations (Fig 

2; Appendix Figure S1, S2). It remains to be investigated why some Nups including ELYS and 

Nup153 could not be detected in CNGs and if this observation could be linked to their well-

established roles in the postmitotic (ELYS) (Doucet et al, 2010) and interphase (Nup153) 

(Vollmer et al, 2015) NPC assembly pathways. The condensate properties of the CNGs are 

supported by our results with the 1,6-Hexanediol treatment, which led to the dispersion of the 

Nup granules (Fig 5B, C) as well as the dynamic fusion and splitting events of CNGs observed 

in live video experiments with the GFP-Nup107 cell line (Fig 4A, B, 7C-E, Movie EV1-5).

What is the molecular engine for the FXR-mediated Nup dispersal? Interestingly, FMRP was 

demonstrated to form a complex with the dynein motor (Bianco et al, 2010; Ling et al, 2004)

and with the dynein adaptor protein BICD2 (Bianco et al, 2010) in neuronal cells. Our data are 

consistent with these findings and show the interaction of dynein and BICD2 with the FMRP 

paralog protein FXR1 (Fig 6A, D) in cultured human cancer cells. Molecular interactions of 

Nups and dynein-BICD2 complexes were also reported during mitotic entry (Bolhy et al, 2011; 

Splinter et al, 2010). Our model proposes that FXR proteins provide the molecular links 

between cytoplasmic Nups and the dynein-BICD2 complex during the G1 phase of the cell 

cycle, allowing for the Nups dispersal and the transfer of at least a small pool of scaffold Nups 

towards the NE. It is interesting that FXR proteins localize to the NE (Fig 1D-F; Fig EV4A, 

B), the predicted final destination of the cytoplasmic Nups. Our live video experiments are in 

line with the transport hypothesis and suggest that nocodazole-induced CNGs can indeed be 

transferred towards intact NE (Fig 7C) in an FXR1- and dynein-dependent manner. However, 
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the observed movement rate is slower than an expected motor dependent transport. We believe 

that the CNGs induced by microtubule depolymerization are not the natural substrate of dynein 

but the result of the aberrant fusion of small cytoplasmic Nup granules observed in untreated 

cells and which would be the physiological transport cargo. Alternatively, FMRP could interact 

with dynein and kinesins, as has been reported in literature (Ling et al, 2004), leading to a slow 

net movement of Nups towards the NE. We speculate that formation of FXR1-dynein-Nup 

complexes and their transport would disperse cytoplasmic Nups, thereby inhibiting formation 

of Nup-containing big cytoplasmic condensates. A similar function has been ascribed to the 

nuclear import receptors, which transfer proteins and RNAs to the nucleus across the NPCs. 

They were able to prevent aberrant phase separation of cytoplasmic membrane-less organelles 

present in several neurological diseases (Guo et al, 2019). Thus, nuclear import receptors can 

also play important chaperone-like functions by inhibiting aggregation of cargo proteins. For 

instance, protein FUS is mutated in amyotrophic lateral sclerosis (ALS) within its nuclear 

localization signal (NLS), which subsequently reduces its binding to the nuclear import 

receptor Transportin leading to cytoplasmic FUS accumulation favoring phase separation

(Dormann et al, 2010). Our work also demonstrates the importance of the regulation of 

localized protein demixing by preventing Nup accumulation in the wrong cellular compartment 

(cytoplasm). In the future, it would be interesting to study if the NLS signals present in the 

FXR proteins are important for their functions on Nups. It also remains to be investigated if, in 

contrast to SGs components (Appendix Figure S4A) (Zhang et al, 2018), CNGs can sequester 

any other cohesive proteins known to form membrane-less assemblies. For example Nups can 

be sequestered in various pathological fibrillary amyloids, which were implicated in 

neurodegenerative diseases (Hutten & Dormann, 2020; Li & Lagier-Tourenne, 2018) and in 

the CyPNs (Jul-Larsen et al, 2009), for which the cellular role remains unknown.

Our data suggest that the FXR-dynein pathway is important for the maintenance of nuclear 

shape during early G1. Downregulation of all members of the FXR family (Fig EV4E) and 

dynein (Appendix Figure S6F) led to strong defects in nuclear shape in human cancer cells and

nuclear atypia has been also observed in human primary fibroblasts derived from FXS patients

(Fig 8D). We believe that a moderate delay in the export during G1 could (through an unknown 

mechanism) lead to a small yet significant difference in the nuclear area and in nuclear 

morphology defects. Alternatively, the nuclear size and shape could be related to the 

established structural roles of Nups independent of their functions in protein and RNA transport 

(Grossman et al, 2012). Indeed, changes in nuclear shape in cells deficient for individual Nups 

have been documented in various organisms (Hetzer & Wente, 2009; Mitchell et al, 2010; 
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Onischenko et al, 2017; Ungricht et al, 2015). The first changes in nuclear morphology are 

observed during early G1, which correlate with the appearance of CNGs in the FXR1-deficient 

cells and may perturb the progression of the cell cycle through G1 and S phases. Interestingly, 

the components of the Y-complex were previously implicated in G1/S progression by 

regulating export of specific mRNAs of key cell cycle genes (Chakraborty et al, 2008).

Furthermore, in yeast, modulation of NPCs has been reported to delay their cell cycle entry in 

the daughter cells (Kumar et al, 2018). Previous study in myoblasts proposed the role of FXR1 

in cell cycle progression, whereby deletion of this protein led to longer G1 phase, shorter S 

phase and premature mitotic exit (Davidovic et al, 2013). Our results demonstrate shorter G1, 

longer S phases (Fig 9E, F) and no defects in mitotic progression (Fig 3D-H) in the absence of 

FXR1, suggesting another unrelated function of FXR1 in cancer cells. 

Our data do not show global changes in the rates of export and import (Fig EV5) under normal 

conditions, which is expected given the small reduction of NE-associated Nups observed in 

FXR1-downregulated cells (Fig 2D-F, H). Excitingly, transient defects in protein export were 

observed in FXR1-deficient cells specifically during early G1 cell cycle stage (Fig EV5D; Fig 

9A) and export factor CRM1 was sequestered to CNGs (Fig 9B). It is plausible to predict that 

under stress conditions or in the fast dividing cells of a developing embryo, this small decrease 

in protein export rate would significantly affect cellular homeostasis and asymmetric divisions. 

It is also possible that the export of CRM1-dependent G1-specific or more demanding cargos

through NPCs is regulated by the FXR-dynein pathway. An alternative and equally plausible 

explanation is that CNGs exert cytotoxic effects by sequestering yet unknown factors important 

for nuclear shape and cell cycle progression. 

While future studies are needed to understand the precise mechanism underlying cell cycle

control by the FXR-dynein axis, and if and how it is linked to the regulation of cytoplasmic 

Nups, defects in this pathway are predicted to significantly perturb cellular homeostasis and 

may contribute to the pathology of FXS, consistent with our observations in the cellular models 

of FXS (Fig 8). Collectively, our data demonstrate an unexpected role of FXR proteins and 

dynein in the spatial regulation of soluble Nups, and provide an example of a mechanism that 

regulates localized protein condensate formation.
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3. PART 2: Role of RanBP2 regulating nucleoporin condensation

The second part contains recent results on the role of the Nup called RanBP2 in the regulation 

of Nups condensation, which are not part of the EMBO Journal manuscript. They create a basis 

for a new future project and they already comprise key findings.

NOTE: The number of datapoints in some of the following experiments does not allow to 

perform statistical tests. All the data in this section should be considered as preliminary.

3.1.Introduction

Ran-Binding Protein 2 (RanBP2), also called Nup358, is a 358 kDa protein located in the 

cytoplasmic filaments of the NPC (Wu et al, 1995). It contains different domains implicated in 

binding to components of nucleocytoplasmic transport pathways and Small Ubiquitin-Like 

Modifier (SUMO) conjugation machinery (Figure 13). These components include: 1) an N-

terminal region including a leucine-rich domain which anchors RanBP2 to the NPC and has 

been implicated in microtubule binding (Joseph & Dasso, 2008), 2) a central region containing 

a zinc finger motif which interacts with the export receptor CRM1 (Singh et al, 1999), 3) four 

RanGTP binding domains distributed throughout the protein, 4) a kinesin and motor adaptor 

BICD2 binding domain between R2 and R3 (Cai et al, 2001; Splinter et al, 2010), 5) an IR 

domain (internal repeats) which accommodates the platform for complex formation with

SUMOylated RanGAP1 and Ubc9 and the SUMO E3 ligase core and 6) a cyclophilin 

homology domain (CHD). RanBP2 contains several FG and FxFG motifs which serve as low-

importins and exportins. It has a preference for the exportin CRM1

which can lead to the disassembly of CRM1-dependent export complexes (Ritterhoff et al,

2016).

RanBP2 is rarely observed free in the cell and it is mainly associated with SUMOylated 

RanGAP1 and the SUMO-conjugating enzyme Ubc9, forming a stable multi-subunit complex

(the RanBP2/RanGAP1*SUMO/Ubc9 complex) at the cytoplasmic filaments of the NPC

(Figure 13B) (Flotho & Werner, 2012). RanBP2-RanGAP1 interaction depends on 

SUMOylation of the C-terminal region of RanGAP1 (Matunis et al, 1996) and this 

modification requires the SUMO E2 conjugating enzyme Ubc9 which acts as a linker (Saitoh 

et al, 1997) (Figure 13B). In vertebrates, the RanBP2/RanGAP1*SUMO/Ubc9 complex 

contributes to the continuity of nucleocytoplasmic transport cycles because it acts as an export 
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receptor and Ran-GTP disassembly machinery. The Ran-GTP binding domains together with 

RanGAP1 promote the hydrolysis of Ran-GTP to dissociate export receptors from cargos and 

Ran-GTP, what allows the recycling of Ran-GDP and the release of the cargo in the cytoplasm

(Ritterhoff et al, 2016).

Conserved in all eukaryotes, another basic disassembly machinery exists which is not attached 

to the NPC but resides in the cytoplasm. This machinery is made up of soluble RanGAP1 and 

RanBP1, and they are also required for the disassembly of both trimeric export complexes and 

recycling import/Ran-GTP complexes (Bischoff et al, 1995; Floer & Blobel, 1999). The 

RanBP1 yeast homologue (Yrb1) is an essential gene in Saccharomyces cerevisiae although it 

is not in vertebrates (Nagai et al, 2011) due to compensation by RanBP2. In contrast, RanBP2 

is vital to vertebrates (Dawlaty et al, 2008) although not evolutionarily conserved. 

During mitosis the RanBP2/RanGAP1 SUMO/Ubc9 complex performs different functions: it 

is recruited to kinetochores only after microtubules have attached to these structures and it is 

required for the stability of kinetochore–microtubule attachments, spindle assembly and 

chromosome segregation (Salina et al, 2003; Joseph et al, 2004; Arnaoutov et al, 2005; 

Mossaid & Fahrenkrog, 2015). The recruitment of the RanBP2/RanGAP1 SUMO/Ubc9 

complex at kinetochores depends on CRM1, RanGTP, Importin- and the presence of the 

Nup107-160 complex on site (Zuccolo et al, 2007; Joseph et al, 2002; Roscioli et al, 2012).
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Figure 13 - RanBP2 protein and complex.
A Domain organization of RanBP2 protein. RanBP2 is a huge protein of 3224 amino acids and it 
contains several interacting domains: leucine-rich domain (green), four Ran binding domains (yellow, 
R1-4), a zinc finger domain (orange), an IR domain (red, internal repeats; characterized by two 50 
amino acid internal repeats IR1 and IR2), a cyclophilin homology domain (purple, CHD). RanBP2’s
E3 ligase region resides between R3 and R4, contains IR1 and IR2, and is natively unfolded. Vertical 
dashes denote FG and FxFG motifs. Upper numbers indicate amino acids.
B RanBP2 localizes to the cytoplasmic filaments of the NPC. It interacts with SUMOylated RanGAP1
(blue) and the SUMO E2 conjugating enzyme Ubc9 (light green) through its IR domain (which contains 
IR1, green and IR2, orange). RanBP2/RanGAP1 SUMO/Ubc9 complex is a multisubunit SUMO E3 
ligase. Two Ubc9 molecules (light green and light orange) are required for SUMOylation by the 
RanBP2 complex. 
Figure adapted from (Azuma & Dasso, 2002) (A) and (Ritterhoff et al, 2016) (B). 

As mentioned in the general introduction, a recent publication from Hampoelz et al. proposed 

a model for ALPC biogenesis in Drosophila oocytes (Figure 8) (Hampoelz et al, 2019b).

Briefly, they found that ALPC assembly relies on different granules containing condensed 

Nups which interact with each other. In the nurse cells of the Drosophila egg chamber, RanBP2

condenses and forms large granules decorated with RanBP2 mRNA on the surface (suggesting 

a localized translation and condensation events), while scaffold- and FG-Nups condense into 
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granules in the oocyte. RanBP2 granules travel to the oocyte where they encounter the oocyte-

specific granules. Microtubule dynamics promote the fusion of these two types of condensed 

Nup granules. They propose that these fused granules’ Nups are transferred to a neighboring 

ER membrane where ALPCs assemble. Eventually, larger stacks with multiple membrane 

sheets form ALs and can be used as a NPC storage in rapidly dividing cells during early 

embryogenesis.

These findings propose a controlled Nup condensation and microtubule-based transport as a 

mechanism to facilitate contacts between different Nups and their transfer to membranes to 

build pore complexes in Drosophila oocytes. In line with these results, a subpopulation of 

RanBP2 has been observed to localize to the cytoplasm away from the NPC and to interact 

with interphase microtubules contributing to their stability (Joseph & Dasso, 2008).

In the context of AL formation in Drosophila oocytes, the Nup RanBP2 seems to be a key 

player in driving the assembly of Nups in pore complexes, since the oocyte-specific granules 

alone do not lead to NPC assembly and the fusion of RanBP2 granules is required for this 

event. Although ALs seem to be restricted to cells with fast cell divisions that require a rapid

nuclear growth, it is plausible to think that differentiated cells use a similar Nup condensation 

and transport mechanism to bring Nups directly to the NE (instead of the ER) as a part of the 

interphasic NPC assembly pathway.

3.2. Aims of the study

In our manuscript et al, 2020), we proposed that FXR proteins act as molecular 

chaperones that regulate Nup condensation by promoting their dynein-based transport towards 

the NE, thereby inhibiting their accumulation and condensation into big granules in the 

cytoplasm. However, given that translational regulation is the main studied role of the FXR 

protein family (Ascano et al, 2012; Darnell et al, 2009), it cannot be formally excluded that 

these proteins regulate the expression of other yet to be identified Nups. As RanBP2 is a key 

Nup in ALPC biogenensis, we investigated if FXR1 could specifically regulate RanBP2 levels 

and/or localization and therefore induce an incorrect Nup condensation/localization.

Aim 1: To analyze if FXR1 interacts with RanBP2 and if regulates RanBP2 protein and/or 

mRNA levels.

Aim 2: To study if RanBP2 is required for cytoplasmic Nup condensation induced by FXR1 

depletion.
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Aim 3: To study if RanBP2 is required for cytoplasmic Nup condensation induced dynein 

depletion and/or microtubule depolymerization. 

Aim 4: To investigate if the formation of cytoplasmic Nup granules in early G1 depends on 

active protein translation.
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3.3. Results 

3.3.1. FXR1 interacts with RanBP2 and may regulate its proteins levels  

Given that RanBP2 is a key Nup in ALPC biogenensis, we investigated if FXR1 could 

specifically regulate RanBP2 levels and/or localization. To this end, we treated cultured HeLa 

cells with FXR1-specific siRNA oligonucleotide and analyzed RanBP2 protein levels by 

Western blot. RanBP2 protein levels were moderately increased upon FXR1 depletion in three 

different experiments (Figure 14A, B, C) while other Nup protein levels (Nup85 and Nup133) 

were unchanged (Figure 14A’, B’, C). RanBP2 signal was significantly decreased by treatment 

with two different RanBP2 siRNAs demonstrating antibody specificity (Figure 14A, B, C). 

Interestingly, FXR1 levels appeared slightly decreased upon RanBP2 downregulation (Figure 

14A, B, C). We considered that FXR1 effect on RanBP2 protein levels may be mediated by a 

modulation of RanBP2 mRNA levels, but qPCR analysis did not reveal changes upon FXR1 

downregulation (Figure 14D), while they were significantly decreased by two RanBP2 siRNAs 

as predicted.

We also analyzed if FXR1 interacts with RanBP2 protein as it does with other Nups (Nup85 

and Nup133) et al, 2020). IP of stably expressed GFP-FXR1 demonstrated an 

interaction with endogenous RanBP2 in HeLa cells (Figure 14E). In future, reverse GFP-IP 

experiments using a GFP-RanBP2 stable cell line and endogenous IPs against FXR and 

RanBP2 will be used to further verify this interaction.
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Figure 14 - FXR1 interacts with RanBP2 and regulates its proteins levels but not mRNA levels. 
A, B, C HeLa cells were treated with the indicated siRNAs, synchronized by double thymidine block 
and released for 12 hours. Whole cell extracts of three independent experiments (A, B and C) were
analyzed by Western blot.
D HeLa cells were treated with the indicated siRNAs, synchronized by double thymidine block and 
released for 12 hours. mRNA levels of RanBP2 were analyzed by qPCR (mean ±SD, *P < 0.05; **P < 
0.01, N = 3).
E Lysates of HeLa cells stably expressing GFP alone or GFP-FXR1 were subjected to IP using GFP-
Trap beads (GFP-IP), analyzed by Western blot.
Data information: Statistical significance was assessed by two-tailed one sample Student’s T-test (D).

To analyze the subcellular localization of RanBP2 upon FXR1 depletion we performed IF

experiments in HeLa cells. Downregulation of FXR1 led to an accumulation of RanBP2 



PART 2: Results

118

granules in the cytoplasm (Figure 15A, B) following the same pattern previously described for 

other Nups et al, 2020). Interestingly, FXR1 localization was also changed when 

RanBP2 was depleted using two different siRNAs and relative to control siRNA (Figure 15A, 

B). In the absence of RanBP2, FXR1 localized to discrete foci and was no longer enriched at

the NE. Collectively, these data show that FXR1 interacts with RanBP2 and loss of FXR1 or

RanBP2 affect each other’s localization and levels. FXR1 depletion induces a moderate

increase in RanBP2 levels and inappropriate assembly in the cytoplasm, while RanBP2 

depletion induces a mild FXR1 protein level decrease and its localization in discrete 

cytoplasmic foci. These results raise the possibility that a slight imbalance in RanBP2 protein 

levels caused by FXR1 depletion could induce an uncontrolled Nup condensation and/or Nup 

granule fusion in the cytoplasm. Whether the aberrant Nup condensation upon FXR1 depletion 

is mediated by this modest increase in RanBP2 concentration, by an impaired Nup transport 

towards the cytoplasm or by a combination of both events remains to be further characterized. 
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Figure 15 - FXR1 and RanBP2 affect each other’s localization upon depletion.
A HeLa cells were treated with the indicated siRNAs, synchronized by double thymidine block and 
released for 12 hours and analyzed by IF microscopy. The magnified framed regions are shown in the 
corresponding numbered panels in (B).
B Magnified regions corresponding to numbered panels in (A). Yellow arrowheads indicate 
cytoplasmic RanBP2 granules observed upon FXR1 depletion. White arrowheads indicate FXR1 
discrete foci formed upon RanBP2 depletion. 
Data information: Scale b N = 3.

3.3.2. RanBP2 is required for cytoplasmic Nup condensation into big granules induced 

by FXR1 depletion  

As previously shown, RanBP2 mislocalizes to cytoplasmic Nup granules in the absence of 

FXR1, and RanBP2 condensation has been proposed to be an initial step necessary for different 

Nup granule fusion during ALPC assembly (Hampoelz et al, 2019b). Do FXR1 depletion-

induced cytoplasmic Nup granules require RanBP2 for their formation? To answer this 

question, we downregulated FXR1 and/or RanBP2 in HeLa cells using specific 

oligonucleotides and analyzed Nup localization by IF. Consistent with our previous results,

FXR1 siRNA led to accumulation of big Nup granules in the cytoplasm relative to the control 

siRNA cells which displayed a dotty Nup staining in the same compartment (Figure 16A, B). 

These granules also contained SUMO1 protein, which can localize to the NE and shows a 

similar localization pattern to Nup staining. The SUMO signal likely corresponds to 

SUMOylated RanGAP1 as part of the RanBP2/RanGAP1/SUMO/Ubc9 complex, which 

appears to be present in both compartments, NE and cytoplasmic Nup granules. As expected, 

the dotty signal of SUMO1 at the NE is abolished by RanBP2 depletion. Strikingly, RanBP2 

downregulation combined with FXR1 siRNA treatment dramatically reduced the percentage 

of cells with big cytoplasmic Nup granules (Figure 16A, B). RanBP2 downregulation also 

reduced the number of cells with big cytoplasmic Nup granules in the control cells (Figure 

16A, B). These results suggest that RanBP2 protein and/or RanBP2 mRNA is required for

cytoplasmic Nup condensation into big granules in normal conditions as well as in the absence 

of FXR1. Given that Nup granules have the tendency to fuse upon FXR1 or dynein depletion

and that the small Nup granules are also dissolved by 1,6-Hexanediol (page 74), the big 

granules present in FXR1-deficient cells are likely to result from fusion events among small 

Nup granules which RanBP2 would be necessary for. In this scenario, RanBP2 could act as a 

Nup granule fusing or nucleating agent.
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Figure 16 - RanBP2 is required for the formation of big cytoplasmic Nup granules.
A, B HeLa cells were treated with the indicated siRNAs, synchronized by double thymidine block, 
released for 12 hours and analyzed by IF. The magnified framed regions are shown in the corresponding 
numbered panels. The percentage of cells with big cytoplasmic Nup granules was quantified in (B), 
3350 cells were analyzed (mean ±SD, **P < 0.01; ***P < 0.001; N = 3).
Data information: Scale bar is Statistical significance was assessed by two-tailed one sample 
Student’s T-test (B).
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3.3.3. Diversity of cytoplasmic Nup granules in human cancer cells 

Hampoelz et al postulated that ALPC biogenesis relies on the fusion of different types of Nup 

granules (Hampoelz et al, 2019b). They observed granules containing solely either FG-Nups, 

scaffold Nups or RanBP2, as well as these Nup subtypes together as a result of granule fusion 

events. We hypothesized that Nup granules present in human cells could also be an 

intermediate step in the interphasic NPC assembly pathway in human cells, and we wondered 

if Nup granules containing solely either Nup133 (scaffold Nup), Nup62 (FG-Nup) or RanBP2 

could be observed in HeLa cells. To this end, we treated HeLa cells with control, FXR1 and 

RanBP2 siRNAs and synchronized them in early G1 phase. Subsequently, we performed IF

microscopy against either Nup62 or Nup133 together with RanBP2 using a spinning disk

confocal microscope at 100x magnification with live super resolution module (Live SR).

Control siRNA treated cells showed the typical cytoplasmic Nup pattern in small dots. The vast 

majority of these small cytoplasmic granules contained both markers (Nup62 and RanBP2 or 

Nup133 and RanBP2), and very rarely we could observe granules that contained only Nup62, 

Nup133 or RanBP2 (Figure 17A, B). FXR1 siRNA treated cells also showed a similar

cytoplasmic small dot Nup pattern in addition to prevalent big granules which exclusively

contained both markers (Figure 17A, B). In this analysis, we were unable to identify any big 

Nup granules that contained only one Nup type. In the case of RanBP2 siRNA treated cells, 

the small cytoplasmic Nup granules were still observed and were negative for RanBP2 as 

expected (Figure 17A, B), although some double positive granules could be found, probably 

due to incomplete RanBP2 downregulation. As demonstrated above, these cells very rarely 

contained big cytoplasmic Nup granules.
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Figure 17 - FXR1 depletion induced big cytoplasmic Nup granules contain different Nups and 
require RanBP2 to be formed.
A, B HeLa cells were treated with the indicated siRNAs, synchronized by double thymidine block, 
released for 12 hours and analyzed by IF using a spinning disk confocal microscope at 100x 
magnification with live super resolution module. Cells were simultaneously stained for Nup62 (FG-
Nup) and RanBP2 (cytoplasmic filament Nup) (A), and Nup133 (scaffold Nup) and RanBP2 (B). The 
magnified framed regions are shown in the corresponding numbered panels.
Data information: Scale bar is 10

Similar results were obtained when treating HeLa cells in early G1 with the microtubule 

depolymerizing agent nocodazole, which induces big cytoplasmic Nup granule formation. 

Control DMSO-treated cells showed the cytoplasmic Nup pattern in small dots from which the 

majority contained both markers (Nup62 and RanBP2 or Nup133 and RanBP2). Only few 

granules contained only Nup62, Nup133 or RanBP2 (Figure 18A, B). Nocodazole treated cells

showed prevalently big Nup granules, which always contained both markers (Figure 18A, B). 

Some smaller granules present in nocodazole-treated cells were very rarely positive for a single 

marker. Also in this analysis, we were unable to find big Nup granules that contained only one 

Nup type.

These results are in line with the hypothesis that RanBP2 is a Nup granule fusing agent since 

very few Nup62- or Nup133-positive granules were devoid of it, and big Nup granules always 

contained RanBP2. Furthermore, big cytoplasmic Nup granules could not be observed upon 

RanBP2 depletion. To corroborate this idea, live video experiments of the stable GFP-Nup107 

cell line treated with Ctrl siRNA or RanBP2 siRNA could be used to study the behavior of the 

cytoplasmic small Nup granules upon nocodazole addition. It would also be interesting to 

analyze if the ratio of small Nup granules containing only Nup133 or Nup62 is increased upon 

RanBP2 depletion.
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Figure 18 - Microtubule depolymerization induced big cytoplasmic Nup granules contain 
different Nups.
A, B HeLa cells were synchronized by double thymidine block, released for 12 hours, treated with 
nocodazole 10 µM or vehicle (DMSO) for 1h 30 and analyzed by IF using a spinning disk confocal 
microscope at 100x magnification with live super resolution module. Cells were simultaneously stained 
for Nup62 (FG-Nup) and RanBP2 (cytoplasmic filament Nup) (A), and Nup133 (scaffold Nup) and 
RanBP2 (B). The magnified framed regions are shown in the corresponding numbered panels.
Data information: Scale bar is 10
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3.3.4. RanBP2 but not Nup133 or ELYS is required for the formation and/or 

maintenance of the FXR1-induced cytoplasmic Nup granules 

Is Nup granule fusion role restricted only to RanBP2 or can other Nup proteins also share this 

function? To address this question, we downregulated RanBP2, Nup133 or ELYS together with 

FXR1 to see if depletion of different Nups could also abolish big Nup granules in the absence

of FXR1. As previously reported, individual Nup133 or ELYS depletion in HeLa cells induced 

a strong cytoplasmic Nup accumulation (Figure 19A, B), which has been suggested to 

correspond to ALs (Franz et al, 2007; Walther et al, 2003a; Doucet et al, 2010). Unlike 

RanBP2, co-depletion of these Nups together with FXR1 did not reduce the percentage of cells 

with big cytoplasmic Nup granules, instead, this percentage was similar to the individual 

Nup133 or ELYS depletion condition (Figure 19A, B). Nevertheless, at this stage of analysis 

it cannot be ruled out that other yet to be identified Nups also share this Nup granule fusion 

function. Since RanBP2 belongs to the cytoplasmic filaments of the NPCs, it would be of 

special interest to analyze if depletion of Nups building the asymmetric NPC structures (for 

example Nup214 from the filaments and Nup153 from the nuclear basket) also abolished Nup 

fusion into big cytoplasmic granules in the absence of FXR1.

Interestingly, Nup133 or ELYS downregulation also affected FXR1 localization in a manner 

highly reminiscent of RanBP2 depletion (Figure 19A, B; Figure 15A, B). Upon Nup133 or 

ELYS downregulation, FXR1 no longer localized ubiquitously at the cytoplasm nor was 

enriched at the NE. Instead, it formed discrete cytoplasmic foci compared to control siRNA 

treated cells. This suggests that FXR1 localization somehow links to levels of different Nups.

In conclusion, RanBP2 protein and/or its mRNA is required for the formation and/or 

maintenance of big cytoplasmic Nup granules induced by FXR1 depletion, a function which is 

not shared by other Nups like Nup133 and ELYS. 
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Figure 19 - RanBP2 but not Nup133 or ELYS is required for FXR1 induced big cytoplasmic 
Nup granule formation and/or maintenance.
A, B HeLa cells were treated with the indicated siRNAs, synchronized by double thymidine block and 
released for 12 hours and analyzed by IF microscopy. The magnified framed regions are shown in the 
corresponding numbered panels. The percentage of cells with big cytoplasmic Nup granules was 
quantified in (B), 11500 cells were analyzed (mean ±SD, **P < 0.01; ***P < 0.001; N = 5).
Data information: Scale b Statistical significance was assessed by two-tailed two sample 
Student’s T-test (B).

3.3.5. RanBP2 is required for big cytoplasmic Nup granule accumulation induced by 

microtubule depolymerization or dynein downregulation 

Our earlier results showed that the presence of RanBP2 protein is required for Nup 

condensation into big cytoplasmic granules in the absence of FXR1. We asked if RanBP2 is 

specifically required for Nup granule fusion induced by absence of FXR1 or if it has a broader 

function in promoting any kind of cytoplasmic Nup granule fusion events. To answer this 
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question, we first induced the formation of big cytoplasmic Nup granules by depolymerizing 

microtubules with nocodazole in early G1 phase HeLa cells. As expected, nocodazole 

treatment induced a strong accumulation of big cytoplasmic Nup granules compared to cells 

treated with the vehicle (DMSO) (Figure 18A, B; Figure 20A, B). In nocodazole treated cells, 

accumulation of big cytoplasmic Nup granules in control and FXR1 siRNA treated cells was 

similar, while it was slightly enhanced in Nup133 or ELYS depleted cells. In contrast, the 

nocodazole-induced formation of big cytoplasmic Nup granules was dramatically reduced in 

RanBP2 downregulated cells almost to the levels observed in the DMSO-treated cells (Figure 

20A, B).

Our published data demonstrated that downregulation of dynein can induce big cytoplasmic 

Nup granules, probably due to inhibition of the transport of cytoplasmic Nups to the NE. For 

this reason, we depleted FXR1 or dynein HC together with RanBP2 in early G1 HeLa cells 

(Figure 20C, D). As expected, only dynein siRNA as well as FXR1 siRNA treated cells 

accumulated big cytoplasmic Nup granules compared to control siRNA treated cells, while 

RanBP2 siRNA alone reduced this phenotype. Dynein and FXR1 co-depletion also showed 

accumulation of big cytoplasmic Nup granules in contrast to control or RanBP2 depletion 

(Figure 20C, D). Strikingly, co-depletion of dynein and RanBP2 abolished accumulation of 

Nup granules (Figure 20C, D).

These data suggest that formation or maintenance of big cytoplasmic Nup granules upon 

disruption of microtubule-based transport (either by microtubule depolymerization or dynein 

depletion) require the presence of RanBP2 protein and/or mRNA.
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Figure 20 - RanBP2 depletion can reduce cytoplasmic Nup localization induced by microtubule 
depolymerization or dynein downregulation
A, B HeLa cells were treated with the indicated siRNAs, synchronized by double thymidine block, 
released for 12 hours, treated with DMSO or nocodazole 10 uM for 90 min and analyzed by IF (A). The 
magnified framed regions are shown in the corresponding numbered panels. The percentage of cells 
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with big cytoplasmic Nup granules was quantified in (B), 6100 cells were analyzed (mean ±SD,
**P<0.01; ****P < 0.0001; n.s. = non-significant; N = 4).
C, D HeLa cells were treated with the indicated siRNAs, synchronized by double thymidine block, 
released for 12 hours and analyzed by IF (C). The magnified framed regions are shown in the 
corresponding numbered panels. The percentage of cells with big cytoplasmic Nup granules was 
quantified in (D), 8100 cells were analyzed (mean ±SD, ****P < 0.0001; n.s. = non-significant; N = 5).
Data information: Scale b Statistical significance was assessed by two-tailed two sample 
Student’s T-test (B, D).

3.3.6. RanBP2 is required for the formation and/or maintenance of big cytoplasmic 

Nup granules induced by depletion of Nup133 or ELYS 

As shown by Hampoelz et al, AL formation in Drosophila oocytes relies on RanBP2 

condensation in a co-translational manner and its subsequent fusion with other condensed Nup 

granules. The resulting fused granules are transferred to neighboring ER membranes to 

constitute the ALs (Hampoelz et al, 2019b). Since we have previously observed that RanBP2 

depletion can abolish the formation and/or accumulation of big cytoplasmic Nup granules in 

cancer cells, we wondered if its absence could also affect AL biogenesis in these cells. To 

answer this question, we decided to induce AL formation by downregulating Nup133 or ELYS 

together with RanBP2 in HeLa cells. Indeed, as previously reported, individual depletions of 

Nup133 or ELYS in HeLa cells induced a strong cytoplasmic Nup accumulation (Figure 19A, 

B). Co-depletion of RanBP2 together with these Nups significantly reduced the percentage of 

cells with big cytoplasmic Nup granules. In contrast, the extent of cytoplasmic Nup granule 

formation was similar to the individual Nup133 or ELYS depletion when co-depleting these 

two proteins together (Figure 21A, B). These results indicate that RanBP2 is required for 

Nup133- or ELYS-depletion induced big cytoplasmic Nup granules in cancer cells, which 

likely correspond to Nup condensates formed prior to AL biogenensis or to mature ALs.

Correlative Light Electron Microscopy (CLEM) studies will be necessary to characterize these 

granules in detail and to distinguish between these two possibilities whereabout ribosome 

exclusion zones would be expected in the case of Nup condensates and stacked ER membranes 

with inserted pores should be detected in the case of mature ALs.
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Figure 21 - RanBP2 depletion can reduce cytoplasmic Nup localization induced by Nup133 or 
ELYS downregulation.
A, B HeLa cells were treated with the indicated siRNAs, synchronized by double thymidine block, 
released for 12 hours and analyzed by IF (A). The magnified framed regions are shown in the 
corresponding numbered panels. The percentage of cells with big cytoplasmic Nup granules was 
quantified in (B), 9700 cells were analyzed (mean ±SD, *P<0.05; ***P<0.001; ****P < 0.0001; n.s. = 
non-significant; N = 5).
Data information: Scale b Statistical significance was assessed by two-tailed two sample 
Student’s T-test (B).

3.3.7. Formation of big cytoplasmic Nup granules in early G1 does not depend on 

active protein translation 

Several Nup and importin mRNAs enriched on the surface of ALs were observed in Drosophila 

oocytes by Hampoelz and colleagues. The mRNA localization was lost upon translation 

inhibition, suggesting an ongoing translation of Nups in these compartments. Further to that, 

the authors suggested that simultaneous Nup translation may contribute to effective 

condensation into granules prior to AL assembly (Hampoelz et al, 2019b). We reasoned that a
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similar Nup translation and condensation processes could take place in early G1 in order to 

produce a newly translated pool of Nups necessary to “feed” the expanding nuclei with NPCs 

through the interphasic assembly pathway. This pool of newly made Nups could be transported 

in a dynein/FXR1/microtubule-mediated manner to the NE, and would tend to accumulate and 

fuse in the cytoplasm when these factors are missing. In order to test if the formation of big 

cytoplasmic granules in HeLa cells requires active protein translation, we designed the 

following experiment setup (Figure 22A). We synchronized HeLa cells by double thymidine 

block and release and we added translation inhibitors cycloheximide (CHX) and puromycin (or 

the vehicles DMSO and H2O respectively) 9h after the second thymidine release i.e. at the time 

when the synchronized population of cells reached anaphase and no more cyclin B needed to 

be produced for mitosis to proceed. 5h 30 after anaphase and while maintaining translation 

inhibitors in the media, nocodazole (or the vehicle DMSO) was added for 1h 30 to induce 

formation of big cytoplasmic Nup granules. Subsequently, cells were analyzed by IF and 

Western blot. As expected, low percentage of cells that were not treated with nocodazole 

showed cytoplasmic accumulation of big Nup granules (Figure 22B, C conditions 1-4). CHX

and H2O (conditions 2 and 3) seemed to moderately increase the accumulation of big Nup 

granules, although this results need to be confirmed by additional experimental replicates. As 

expected, microtubule depolymerization with nocodazole in cells where translation was not 

inhibited dramatically increased the percentage of cells that showed big cytoplasmic Nup 

granules up to 80% (Figure 22B, C conditions 5 and 7). Interestingly, translation inhibition 

with CHX and puromycin did not abolish the formation of big cytoplasmic Nup granules upon 

microtubule depolymerization (Figure 22B, C conditions 6 and 8). The inhibitory effect of 

CHX and puromycin on active translation was confirmed by Western blotting against FXR1 

and Cyclin D1 (Figure 22D conditions 2, 4, 6, 8), where both markers were decreased relative 

to the levels in cells treated with the respective vehicles DMSO and H2O (Figure 22D

conditions 1, 3, 5, 7). Based on the strong reduction in the protein levels of the G1 marker 

Cyclin D1, we presume that in the cells in which translation has been inhibited for 7h after 

anaphase, no new Nups have been produced and yet, big cytoplasmic granules could be induced 

upon microtubule depolymerization. These results suggest that ongoing translation is not 

required for the formation of big cytoplasmic Nup granules induced by nocodazole.

Furthermore, these data also indicate that a pool of Nups produced in the previous cell cycle 

have not been incorporated into the NE of the daughter nuclei through the postmitotic NPC 

assembly pathway. These Nups reside in the cytoplasm during early G1 phase and are 

presumably prone to granule formation. This pool of Nups in the cytoplasm may allow a 
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smooth transition from the postmitotic NPC assembly pathway to the interphasic pathway 

without relying on the translation of new Nups. In fact, this idea is in line with RanBP2 and 

Nup133 protein levels not being affected by translation inhibition during late mitosis and early 

G1 phase (Figure 22D conditions 2, 4, 6, 8 compared to conditions 1, 3, 5, 7).

Taken together our results suggest that RanBP2 is specifically required for Nup condensation 

into big granules in the cytoplasm of cultured cancer cells, an event which may not be 

dependent on active protein translation. 

Figure 22 – Big cytoplasmic Nup granule formation in early G1 does not rely on protein 
translation.
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A Scheme of the experimental setup. HeLa cells were seeded on glass coverslips, synchronized by 
double thymidine block and released for 9 hours. At this moment (when synchronized cells where in 
anaphase) translational inhibitors CHX and puromycin (and respective vehicles DMSO and H2O) where 
added to the media and cells where incubated for 5h 30. Subsequently, big cytoplasmic Nup granule 
formation was induced by adding nocodazole 10 uM to the media (or the vehicle DMSO) for 1h 30, 
while keeping the translational inhibitors in the media. At the end of the experiment cells were analyzed 
by IF and Western blot. 
B, C Cells were treated as in (A) and analyzed by IF (B). The magnified framed regions are shown in 
the corresponding numbered panels. The percentage of cells with big cytoplasmic Nup granules was 
quantified in (C), 2400 cells were analyzed (N = 1).
D Cells were treated as in (A) and analyzed by Western blot.
Data information: Scale b (B). Numbers 1- 8 were assigned to different conditions for easier 
understanding of the text (B, C, D).
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3.4. Discussion

The current model 

As it has already been described in the Part 1, small cytoplasmic Nup granules (observed as a 

dotty pattern) are a feature of human cancer cells in normal conditions and only around 20% 

of them show accumulation of bigger granules. Both, small and big granules display 

characteristics of liquid droplets since they split and fuse and they are dissolved upon 1,6-

Hexanediol treatment, suggesting that they are phase separated Nup entities. The percentage of 

cells with big cytoplasmic Nup granules is increased when challenging them with FXR1 

depletion or microtubule transport hindrance (by dynein depletion or microtubule 

depolymerization). These results, together with the fact that FXR1 interacts with dynein and 

Nups, prompted us to propose a hypothetical model in which Fragile X-related proteins interact

with cytoplasmic Nups and dynein facilitating their localization to the NE during early G1. 

This function of FXR proteins inhibits the accumulation of Nups in the cytoplasm and inhibits 

formation of aberrant cytoplasmic Nup granules (the big cytoplasmic Nup granules),

contributing to the equilibrium of NE-NPCs (model described in Part 1 and depicted in the 

Section 2.7.8, page 84, recently published in The EMBO Journal).

In the second part of the thesis we have identified RanBP2 as a new key player in the regulation 

of Nup condensation. Our results suggest a model where, in addition to FXR proteins and

microtubule dependent transport, RanBP2 regulates the localization and condensation of a 

cytoplasmic pool of Nups during early G1 phase (Figure 23). Under normal conditions, a pool 

of Nups synthesized in the previous cell cycle remains in the cytoplasm of early G1 cells, which

appears as intrinsically phase-separated small Nup granules. These small cytoplasmic Nup 

granules can be transported through microtubules towards the NE where they assemble into 

NPCs. FXR protein depletion or compromised transport leads to a deficient Nup granule 

transport and their subsequent accumulation in the cytoplasm tending to fuse and form aberrant 

big cytoplasmic Nup granules. Fusion among cytoplasmic Nups is promoted by RanBP2 which 

may act as a Nup ‘glue’. Upon RanBP2 depletion, fusion between cytoplasmic Nups is 

abolished and the formation of bigger granules is drastically reduced, even in the absence of

FXR proteins or microtubule-based transport (Figure 23).
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Figure 23 - Model on how RanBP2 regulates the condensation state of a cytoplasmic pool of Nups
during early G1 phase.
A hypothetical model on how RanBP2 regulates Nup condensation in early G1 phase of the cell cycle. 
A cytoplasmic pool of Nups exists during early G1 phase. Aberrant condensation of these Nups into 
big granules is induced by different stimuli that increase Nup local concentration, such as FXR 
depletion, inhibition of microtubule based transport (microtubule depolymerization or dynein 
downregulation) or depletion of some Nup (ELYS or Nup133). RanBP2 protein acts as a Nup fusion 
agent necessary for aberrant Nup granule formation. Thus, in the absence of RanBP2 big cytoplasmic 
Nup granules are not formed. Figure created with BioRender.com.

It is important to mention that in the Part 1 we have focused solely on the big granules and 

proposed to call them ‘cytoplasmic Nup granules, CNGs’. In view of the recent results which 

suggest that RanBP2 is necessary for the formation of the big granules but not the small ones, 

we find important to highlight this size difference. Therefore, we will hereinafter refer to small 

and big cytoplasmic Nup granules.

The second part of the thesis is focused on investigating the role of RanBP2 in the regulation 

of Nup condensation in cancer cells based on the recently published functions of RanBP2 in 

AL biogenesis during Drosophila oogenesis. A study by Hampoelz et al proposed that RanBP2
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is a key player that condenses into granules which are transported in a microtubule dependent 

manner to fuse with other Nup granules and form AL assembly platforms (Hampoelz et al,

2019b). Although this function of RanBP2 was described in a very specific context (oogenesis 

in Drosophila) and ALs seem to be restricted to cells with fast cell divisions that require a rapid 

nuclear growth, it could very well be that the interphasic NPC assembly pathway also makes 

use of a Nup condensation and transport mechanism to direct NPC assembly at the NE instead 

of the ER. Driven by these idea, we obtained some preliminary results which set the ground for 

a follow up project. 

Could FXR1 regulate RanBP2 translation?  

Hampoelz and colleagues observed that RanBP2 mRNA decorated RanBP2 granules in nurse 

cells in an active translation-dependent manner (Hampoelz et al, 2019b), which suggested a 

co-translational mechanism for formation of these granules. Given that translational regulation 

is the main described function of FXR proteins, it was tempting to speculate that FXR1 could 

modulate RanBP2 translation for correct RanBP2 granule formation. In fact, a recent study 

from Van Driesche and colleagues identified RanBP2 mRNA as an interactor of the FXR1 

paralogue FMRP in vivo by RNA:protein crosslinking and immunoprecipitation technique 

(Van Driesche et al, 2019), suggesting that FMRP could regulate RanBP2 translation. 

Following this reasoning, we first assessed if FXR1 regulates RanBP2 protein and/or mRNA 

levels. We observed that FXR1 downregulation does not affect RanBP2 mRNA levels although 

it can occasionally induce a mild increase in RanBP2 protein levels in HeLa cells (Figure 14). 

Furthermore, our Western blot results suggest that there may be a crosstalk between FXR1 and 

RanBP2 in terms of protein levels and subcellular localization in HeLa cells. FXR1 

downregulation induces a moderate increase in RanBP2 protein levels which localizes to big 

cytoplasmic granules; in turn, RanBP2 depletion induces a mild decrease in FXR1 protein 

levels and its localization in cytoplasmic foci away from the NE (Figure 14).

An increase in RanBP2 protein levels upon FXR1 depletion suggests that this Nup accumulates

in the cytoplasm upon FXR1 siRNA and attracts other Nups to this compartment. It would be 

interesting to overexpress RanBP2 in HeLa cells and to analyze whether its high protein levels 

are sufficient to induce formation of similar big cytoplasmic granules and if they also contain

other Nups. Furthermore, to understand whether putative regulation of RanBP2 protein levels

is a feature shared by all FXR proteins, it would be interesting to analyze if FXR2 and FMRP 

depletion also leads to higher RanBP2 levels. Similarly, RanBP2 protein levels could be 

analyzed in FXS patient-derived cells compared to healthy individuals.
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However, in our experiments in cancer cells the formation of big cytoplasmic Nup granules

does not depend on active translation since their formation can still be induced by acute 

microtubule depolymerization in the presence of translational inhibitors during early G1 phase 

(Figure 22). Therefore, occasional and rather moderate increase in RanBP2 protein levels upon

FXR1 depletion and dispensability of the active translation argue against translational 

regulation by FXR1 as the driving mechanism for big Nup granule formation in early G1 phase.

Interestingly, the fact that these experiments were carried out in synchronized populations 

where translation was inhibited for 7 hours after anaphase onset implies that there was no 

ongoing protein translation in these daughter cells and yet big cytoplasmic granules were 

formed (Figure 22). Thus, our data suggest that the cytoplasmic Nup granules may not be made 

of newly synthesized Nups and instead they might contain Nups produced in the previous cell 

cycle. These “older” Nups may remain in the cytoplasm without being inserted into the 

reforming NE during the postmitotic NPC assembly pathway acting in anaphase and telophase. 

This suggests that at this stage of the cell cycle the interphasic NPC assembly pathway would 

not entirely rely on the production of newly translated Nups and it would make use of the 

remaining pool of the cytoplasmic Nups. This pool of Nups could allow for a rapid initiation 

of the interphasic NPC assembly pathway and buffer the transition from the postmitotic 

assembly mode without requirement of energetically-demanding protein translation process.

RanBP2 could act as a Nup fusing agent 

We have investigated if RanBP2 is required for formation of big cytoplasmic Nup granules 

upon different stimuli such as FXR1 or dynein depletion, microtubule depolymerization and 

absence of specific Nups (Figure 16; Figure 20; Figure 21). RanBP2 depletion dramatically 

reduces the percentage of cells with these granules in all conditions as well as control situations, 

which suggests that RanBP2 is required for the formation or for maintenance of these granules.

From experiments presented in the Part 1, we know that Nup granules have the tendency to 

fuse and that the small Nup granules are also dissolved by 1,6-Hexanediol (section 2.7.5, page 

74), which prompt us to think that the big granules present in FXR1-deficient cells are likely 

to result from fusion events among small Nup granules. In this scenario, RanBP2 could act as 

a small granule fusion-promoting agent or as a solubilizing inhibitor. Our data in fixed cells do 

not allow to conclude if RanBP2 depletion abolishes big Nup granule formation or if it induces 

their fast disassembly. To distinguish between these two posibilities, live video experiments 

need to be performed to observe the behavior of stably expressed GFP-tagged Nups in living 

cells upon Nup granule induction by nocodazole in the presence and absence of RanBP2.
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We have performed some preliminary analysis in cancer cells to understand if they also contain 

distinct types of cytoplasmic granules where different populations of Nups are present (Figure 

17; Figure 18). This could indicate that cancer cells may also rely on a similar mechanism as 

Drosophila oocytes to form NPC assembly platforms. In our experiments, we combined 

RanBP2 staining with scaffold Nups or FG-Nups co-labeling, and we occasionally found small 

cytoplasmic granules with only one type of Nup although the big majority of small granules 

contained both markers. The big granules always contained both markers (Figure 17; Figure 

18). It will be interesting to test the remaining combination: to co-stain scaffold and FG-

granules other than RanBP2 (Nup133 and Nup62 for example) to analyze if majority of 

granules are double positive or if different subpopulations exist. This would clarify if RanBP2 

is the only ubiquitous Nup or if all Nups colocalize in the majority of big and small granules. 

Additionally, to study whether RanBP2 is indeed a Nup granule-fusing agent, it would be 

interesting to carry out the same stainings in RanBP2 depleted cells and to analyze the changes 

in the distribution of small granules; whether we see an accumulation of single Nup type 

granules or if they still contain different types of Nups. 

Is RanBP2 a specific Nup regulating Nup granule fusion? 

The role of RanBP2 in the Nup granule fusion or maintenance seems to be specific since 

depletion of other Nups including Nup133 and ELYS did not reduce formation of big 

cytoplasmic Nup granules but even increase it (Figure 19). However, ELYS and Nup133 are 

probably not the most relevant Nups in this context since they have been shown to play 

important roles in NPC assembly pathways (Franz et al, 2007; Doucet et al, 2010; Walther et 

al, 2003a) and their depletion has been proposed to induce ALs. Therefore, more Nups should 

be tested for this Nup-fusion function and especially Nups belonging to the asymmetric NPC 

structures (such as Nup153 and Nup214 which belong to the nuclear basket and cytoplasmic 

filaments, respectively) as RanBP2 itself is the main component of the cytoplasmic filaments. 

In this regard, several studies in which single Nups were depleted such as Nup133 (Walther et 

al, 2003a), ELYS (Doucet et al, 2010), Nup107 (Doucet et al, 2010; Boehmer et al, 2002) and 

Nup88 (Hutten & Kehlenbach, 2006) have reported the formation of big cytoplasmic granules 

in a qualitative manner. However, a precise quantitative analysis should be performed to study 

the role of all Nups in the regulation of Nup condensation. 

Furthermore, to confirm the direct and specific role of RanBP2 in this process and to dissect 

which domains are implicated in Nup granule fusion, rescue experiments with overexpression 

of different RanPB2 constructs should be performed in RanBP2 depleted cells.



PART 2: Discussion

140

How could RanBP2 promote the fusion of Nup granules? 

How could RanBP2 promote the fusion of Nup granules? RanBP2 has been proposed to 

function as a platform to recruit import receptors and increase their local concentrations (Wälde 

et al, 2012; Hutten et al, 2008, 2009). Moreover, RanBP2 is the biggest Nup and contains 

several FG repeats scattered all along its protein sequence (Figure 4; Figure 13A) which confer 

the ability to establish cohesive interactions with other Nups. In fact, FG-Nups have been 

shown to stabilize each other and also scaffold Nups during yeast NPC assembly (Onischenko 

et al, 2017) and RanBP2 condensates have been proposed to act as a NPC assembly platforms 

in Drosophila oogenesis (Hampoelz et al, 2019b). Furthermore, RanBP2 contains several 

domains which interact with importins (Importin for example) and exportins (such as CRM1)

(Figure 13), and both types of NTRs have been shown to be implicated in regulating Nup 

is a well-known Nup chaperone which interacts with them keeping

them in a soluble state (Walther et al, 2003b), while CRM1 seems to have opposite functions 

since depletion of the Drosophila CRM1 homologue ‘embargoed’ abolished RanBP2 

condensation (Hampoelz et al, 2019b). Therefore, due to its large size, high content of FG-

repeats, presence of the chaperone-like interacting domains, RanBP2 could concentrate several 

Nup-regulating factors in space and drive their condensation/fusion.

Another possibility is that RanBP2 regulates Nup condensation/fusion through its SUMO E3 

ligase activity (Pichler et al, 2002). In fact, several studies have shown that SUMOylation is

implicated in phase separation; SUMO has been shown to modulate the composition of in vitro

and in cellulo condensates (Banani et al, 2016), eIF4A2 SUMOylation in response to arsenite 

correlates with its localization to SGs (Jongjitwimol et al, 2016) and PML SUMOylation 

contributes to the formation of PML nuclear bodies (Li et al, 2017; Shen et al, 2006).

Importantly, several components of the SUMO pathway localize to the NPC: the E3 ligase 

RanBP2 and SUMO conjugating enzyme Ubc9 localize to the cytoplasmic filaments (Pichler 

et al, 2002) and the SUMO proteases SENP1 and SENP2 localize to the nuclear basket (Chow 

et al, 2012). The localization of SUMO E3 ligases and proteases at the NPC links these 

complexes to several biological functions (Palancade & Doye, 2008), suggesting there could 

also be a functional link between SUMOylation and Nups’ condensation and/or NPC assembly.

Indeed, several Nups are known to be SUMOylated (Folz et al, 2019) and SENP1 and SENP2 

depletion has been shown to promote Nup mislocalization in cytoplasmic foci (Chow et al,

2014) highly reminiscent of the big cytoplasmic granules observed upon FXR1

downregulation. Furthermore, an NPC quality control mechanism involving SUMO has been 
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proposed in budding yeast, which relies on Ulp1 SUMO protease (SENP1 and SENP1 

homologue) as a sensor of NPC integrity and the SUMO target Hek2 as a repressor of NPC 

biogenesis (Rouvière et al, 2018). Moreover, SUMOylation of FMRP has been shown to be 

essential to allow for its dissociation from dendritic mRNA granules and to promote spine 

elimination and maturation in neurons (Khayachi et al, 2018). Altogether, RanBP2 could link 

SUMO-regulated processes and Nup fusion regulation. To explore this hypothesis, it would be 

interesting to test whether interference with different SUMOylation steps could affect Nup 

condensation. For this purpose, nocodazole-induced Nup condensation could be analyzed in 

HeLa cells upon the following treatments: SUMO conjugating enzyme Ubc9 depletion with 

siRNA, SUMOylation inhibition with SUMO activating enzyme 1 specific inhibitor ML-792 

(He et al, 2017) and RanBP2 depletion with siRNA together with overexpression of the wild-

type and SUMO-ligase deficient versions of RanBP2.

It is important to mention that the aforementioned mechanisms through which RanBP2 could 

promote Nup granule fusion are not mutually exclusive; RanBP2 could act as a platform to 

recruit several proteins due to its big size and multiple FG repeats, such as Nups, chaperones

and SUMO related proteins, and modulate them through SUMOylation of different relevant 

targets. 

What could be the implications of RanBP2’s function as a Nup nucleating agent? 

As we have observed, RanBP2 depletion abolished formation of big Nup granules, even under 

conditions such as FXR1 or dynein downregulation or microtubule depolymerization. As 

described in the Part 1, we had observed that upon FXR1 downregulation, big cytoplasmic Nup 

granule formation correlates with irregular nuclear shape (section 2.7.3, page 68), transient 

protein export defects and altered cell cycle progression (section 2.7.8, page 84). To study if 

these defects are related to FXR1 functions in regulating Nup condensation and not to other 

unrelated roles, it would be interesting to analyze if FXR1 and RanBP2 co-depletion could 

rescue these phenotypes. However, it needs to be taken into account that RanBP2 has been 

reported to have roles in proper mitotic progression (Dawlaty et al, 2008; Salina et al, 2003; 

Arnaoutov et al, 2005) and in nuclear import of specific targets (Wälde et al, 2012; Hutten et 

al, 2009, 2008) but not in general import (Salina et al, 2003) or export of proteins (Ritterhoff 

et al, 2016), complicating the design and interpretation of these experiments. Regarding the 

nuclear architecture, in our experiments in human cancer cells we already observed that 

RanBP2 depletion alone induces irregular nuclei probably due to its mitotic functions, and

accordingly FXR1 and RanBP2 co-depleted cells also show irregular nuclei.
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Regarding NPC assembly, it would be interesting to study if the role of RanBP2 as a Nup 

granule fusing agent is required for proper NPC formation. Salina and colleagues performed 

indirect IF and EM studies in RanBP2-depleted HeLa cells revealing that there was little or no 

change in the levels or localization of multiple Nups to the NE (Salina et al, 2003). However, 

these experiments were not quantitative and have not been performed in synchronized cells, 

suggesting that these conclusions should be interpreted cautiously. Dedicated quantitative 

experiments in cell populations synchronized in late mitosis, early G1 and G2 will be needed 

in order to understand the specific role of RanBP2 in the different NPC assembly pathways.

Finally, it is important to study if RanBP2 depletion could also revert Nup mislocalization and 

or nucleocytoplasmic defects in diseases known to display Nups recruitment to phase separated 

compartments, such as ALS, FTD and HD (Table 1; (Zhang et al, 2015; Grima et al, 2017; 

Eftekharzadeh et al, 2018). To this end, Nup localization and nucleocytoplasmic transport upon 

RanBP2 depletion could be studied in primary cells from patients suffering from these 

disorders or animal models of the diseases. Also, aggregation prone proteins characteristic of 

these diseases such as FUS, Tau or TDP-43, could be overexpressed in HeLa cells in the 

presence or absence of RanBP2 to observe the aggregate formation and/or Nup recruitment to 

these compartments. In this context, RanBP2 could emerge as a new target for diseases in 

which Nups are known to be mislocalized in phase-separated aggregates. However, given the 

multiple interactions of RanBP2 protein and its importance in basic processes such as cell 

division and nucleocytoplasmic trafficking, the development of RanBP2-based therapeutics to 

counteract formation of Nup-containing cellular aggregates may very likely encounter 

limitations. In fact, it has been shown that conditional ablation of RanBP2 in mouse 

motoneurons phenocopies prominent pathophysiological ALS traits, such as hindlimb 

paralysis, weight loss, respiratory distress and disruption of nucleocytoplasmic partitioning of 

NTRs; which culminate in premature death (Cho et al, 2017). Moreover, neurological diseases

caused by RanBP2 mutations have also been found (Neilson et al, 2009; Denier et al, 2014).

While more studies are necessary to understand the precise mechanism by which RanBP2 

regulates Nup condensation and fusion, this pathway is likely to contribute to localized 

assembly of NPCs, nucleocytoplasmic trafficking and therefore cellular homeostasis.

Collectively, our data identify a new factor implicated in the spatial regulation of Nups and 

opens exciting avenues for the further understanding of the regulation of this important protein 

family. 
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4. Conclusions

My PhD work was focused on studying the relationship between FXR proteins and Nups, a 

project that had been initiated by the former post-doc in the team Stephane Schmucker. Mass 

spectrometry data previously obtained by Stephane identified several Nups as potential FXR1 

interactors in HeLa cells. He observed that FXR1 localizes to the NE and also occasionally to 

small cytoplasmic foci labelled by Nups. Despite FXR1 downregulation did not affect Nup 

mRNA levels, it led to an increase in the percentage of cells with irregular nuclei and an 

accumulation of big cytoplasmic Nup granules. Importantly, both aspects could be rescued by 

ectopic expression of GFP-FXR1 indicating that FXR1 specifically regulates Nup localization 

and nuclear shape. At this point, I took over the project and based on these results, we decided 

to further characterize the nature of these big cytoplasmic Nup granules, the physiological 

relevance of FXR1-Nups interaction and its potential implication in FXS.

We first confirmed the FXR1-Nup interaction by performing IP followed by Western blot 

experiments. We also observed that FXR1 depletion, in addition to Nup granule formation, 

leads to a moderate reduction of Nups at the NE. Live video experiments with different GFP-

Nup reporter cell lines showed that irregular nuclei and Nup mislocalization could be first 

observed in early G1 phase of the cell cycle. These results indicate that FXR1 is required for 

proper Nup localization and nuclear morphology in early G1 phase.

Subsequently, we aimed at further understanding the nature of these Nup granules. Absence of 

ER markers and G3BP1 or TIA1 failed to identify the granules as ALs or SGs, respectively. 

However, 1,6-Hexanediol led to the dispersion of small and big cytoplasmic Nup granules 

indicating that they were made of Nups in a condensate-like state. 

In an attempt to understand the underlying mechanism, we identified dynein and its adaptor 

protein BICD2 as FXR1 interactors. Their absence or microtubule depolymerization also lead 

to accumulation of big cytoplasmic Nup granules and to the irregular nuclei in HeLa cells, 

suggesting that transport hindrance leads to Nup granule formation. Live video analysis of Nup 

granules induced by microtubule depolymerization confirmed their condensate behavior, since 

they showed fusion and splitting events. These events increased in the absence of FXR1 or 

dynein. In sum, our observations suggest that microtubule-based transport by the FXR1-dynein 

complex can decrease local concentrations of cytoplasmic Nups thereby preventing their 

assembly into condensates.
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Our results also showed that all members of the FXR protein family share roles in regulating 

Nup localization since FXR2 or FMRP depletion also lead to the condensation of cytoplasmic 

Nups and to nuclear morphology defects in HeLa cells. Similarly, different FXS models 

(primary fibroblasts, iPSC and Fmr1 KO MEFs) also displayed accumulation of cytoplasmic 

Nup granules. 

Exploring the physiological consequences of Nup mislocalization upon FXR1 depletion, we 

found that nuclear import was not affected while export was transiently reduced in early G1 

phase. We also observed that downregulation of FXR1 led to an increased percentage of cells 

in S phase and a decreased percentage of cells in G1 phase, suggesting that upon FXR1 

downregulation cell cycle progression is perturbed and cells accumulate in S phase 

Finally, we identified RanBP2 as a key Nup in regulating condensation of cytoplasmic Nups 

given that RanBP2 depletion abolished the aberrant Nup condensation induced by FXR1 or 

dynein downregulation or microtubule depolymerization. 

Collectively, our data demonstrate an unexpected role of FXR proteins and dynein in the 

regulation of Nup condensation in the cytoplasm of human cells. Future studies will be needed 

to understand the precise mechanism by which FXR proteins and microtubule mediated 

transport regulate Nup localization and also if and how defects in this pathway contribute to 

the pathology of FXS.

While the Nup field has achieved big advances in understanding the NPC assembly pathways, 

very little is known about Nup biogenesis, trajectory and regulation before their incorporation 

into NPCs. This study brings new findings in the regulation of Nup solubility and transport in 

human cells, and highlights the need to study these steps in more detail since their 

misregulation can have implications in human disease. 
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5. Materials and methodology

5.1. Cell lines and medium 

All cell lines were cultured at 37 °C in 5% CO2 humidified incubator. I used several different 

cell lines of human origin and cultured them as indicated below.

- HeLa Kyoto and derived stable cell lines (GFP, GFP-FXR1, 3xGFP-NUP85, GFP-

NUP107, 3xGFP-mNup133) were cultured in Dulbecco’s modified Eagle Medium 

(DMEM) (4.5 g/L glucose, with GLUTAMAX-I) supplemented with 10% FCS, 1% 

Penicillin, 1% Streptomycin. 

- Human primary fibroblasts were cultured in DMEM (4.5 g/L glucose) supplemented

with 10% FCS and Gentami .

- Three independent mouse embryonic fibroblast (MEFs) cell lines from control and 

three MEFs from Fmr1 knockout mice were cultured in DMEM (4.5 g/L glucose) 

supplemented with 10% FCS, 1% Penicillin and 1% Streptomycin.

- HEK293T cells were cultured asynchronously in Dulbecco’s modified Eagle Medium 

(DMEM) (1 g/L glucose) supplemented with 10% FCS and 1% Penicillin and 1% 

Streptomycin.

- U2OS (human U-2 osteosarcoma) cells were cultured asynchronously in DMEM (4.5

g/L glucose, with GLUTAMAX-I) supplemented with 10% FCS, 1% Penicillin and 1% 

Streptomycin.

- Mouse myoblasts (C2C12) were cultured asynchronously in DMEM (1 g/L glucose) 

supplemented with 20% FCS and gentamicin. 

- Human iPSCs derived from a FXS patient (FXS-iPSCs) and the isogenic rescue cells 

(C1_2-iPSCs) were grown asynchronously as indicated by (Xie et al, 2016a).

5.2. Cell seeding

Cells were trypsinized, counted in a Neubauer chamber (5-10 squares) and the concentration 

was calculated. For IF experiments cells were seeded on 11 or 18 mm glass coverslips (Menzel-

Glaser) in 12- or 24-well tissue culture plates at a density 15 000 or 25 000 cells per well

respectively. For live video experiments cells were seeded on 35/10 mm 4 compartment glass 

bottom dishes (Greiner Bio-One, 627871) at a density 20 000 cells per compartment.
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5.3. Cell cycle synchronizations

- Double Thymidine block and release: cells were synchronized by two-times addition 

hours. Cells were washed out after each Thymidine 

addition three times with warm medium to allow for synchronous progression through 

cell cycle. Cells were analyzed at desired time points after the release from the second 

thymidine block. 

- Synchronization with taxol and artificial mitotic exit: cells were treated with Taxol 

(paclitaxel) for 16 hours which inhibits microtubule depolymerization and mitotic 

spindle formation arresting the cells in G2/M transition. Cells were subsequently 

released from the mitotic block by additio .

- Monastrol release: cells were synchronized in mitosis with 100 M Monastrol (Sigma, 

M8515) for 16 hours that inhibits the kinesin Eg5 which is necessary to maintain 

spindle bipolarity. Then, cells were washed five times with warm medium and released 

into fresh medium for 2 hours.

5.4. Immunofluorescence (IF) microscopy and sample preparation

- Standard IF protocol: this protocol was used for experiments with human fibroblasts 

and MEFs and experiments with nocodazole or 1,6-Hexanediol treatments. Cells were 

fixed with 4% paraformaldehyde (PFA, Electron Microscopy Sciences 15710) for 17 

min, washed 3 times in Phosphate buffered saline (PBS) and permeabilized with 0.5% 

NP-40 in PBS for 5 min. Cells were then washed 3 times with PBS-T and blocked in 

3% BSA (Millipore, 160069) in PBS-T for 1 hour at RT or overnight at 4 °C. Cells 

were incubated with primary antibodies for 90 min in blocking buffer, washed 3 times 

in PBS-T for 10 min and incubated with secondary antibodies for 1 hour. Cells were 

washed 3 times in PBS-T for 10 min and mounted as previously described. 

- Nup staining IF protocol: at the end of the experiments cells were washed twice with 

PBS and fixed for 10 min with 1% PFA in PBS at RT. The coverslips were rinsed two 

times with PBS and permeabilized with 0.1% Triton X-100 (Sigma, T8787) and 0.02% 

SDS (Euromedex, EU0660) in PBS for 5 min at RT, washed two times with PBS and 

blocked in blocking buffer 3% BSA/PBS-T (0.01% Triton X-100) overnight at 4 °C.

Coverslips were subsequently incubated with primary antibodies in blocking buffer for 

1 hour at RT, washed three times for 5 min with blocking buffer and incubated with 

secondary antibodies in blocking buffer for 30 min at RT in the dark. After incubation, 
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coverslips were washed three times for 5 min with blocking buffer, incubated with 0.1% 

Triton X-100 and 0.02% SDS in PBS for 1 min and post-fixed for 10 min with 1% PFA 

in PBS at RT. Then coverslips were washed in PBS and mounted on glass slides using 

Mowiol (Calbiochem) or Prolong Gold reagent (Invitrogen) with 0.75 µg/µl DAPI and 

imaged with a 100X, 63X or 40X objectives using Zeiss epifluorescence microscope or 

confocal microscope Leica Spinning Disk Andor/Yokogawa.

- For digitonin permeabilization experiments, cells with treated as indicated in the 

standard IF protocol but permeabilized with 0.003% digitonin (Sigma, D-141) in PBS 

for 5 min and subsequent steps were performed without detergent. 

- To induce formation of the cytoplasmic Nup aggregates by microtubule 

depolymerization, cells were incubated with 10 M nocodazole (Sigma-Aldrich M-

1404) or vehicle (DMSO, 1:330 dilution) in culture media for 90 min at 37 °C.

Subsequently, nocodazole was washed five times in warm media, and 1 hour after 

washout IF protocol for Nups was performed as previously described. 

- For 1,6-Hexanediol experiments, coverslips were previously coated during 1 hour 

with fibronectin 2 ug/mL (Sigma, F1141) and collagen 20 ug/mL (Millipore, 08115) in 

PBS at 37 °C. Subsequently, coverslips were rinsed three times with PBS before 

seeding cells. At the end of the experiment, cells were incubated in 10% 1,6-Hexanediol 

(Sigma, 88571) in medium for 70 seconds, washed once with PBS and the standard IF

protocol was performed as previously described.

- For translational inhibition experiments, HeLa K cells were seeded on glass 

coverslips, synchronized by double thymidine block and released from the second G1/S 

arrest. Cells were observed every hour on a table top microscope to follow cell

progression through mitosis. 9 hours after release, when cells had reached anaphase 

(and no mote Cyclin B needed to be translated for mitosis to progress), translational 

inhibitors cycloheximide (CHX, 100 µg/mL, Sigma-Aldrich C4859) or the vehicle 

(DMSO, 1:1000 dilution), puromycin (200 µg/mL, Gibco A1113803) or the vehicle 

(H20, 1:50 dilution) were added to the media. Cells were further incubated for 5 hours

30 to allow translational inhibitors to act and subsequently big cytoplasmic Nup 

granules were induced by the addition of nocodazole 10 µM or the vehicle (DMSO, 

1:330 dilution) while keeping the translational inhibitors in the media. Cells were 
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further incubated for 90 min before IF protocol for Nups was performed as previously 

described.

- Super-resolution microscopy was performed using API OMX “Blaze” with GE 

DeltaVision OMX stand and analyzed with DeltaVision OMX softWoRx. Cells were 

grown on #1.5 High Precision Coverslips, fixed, permeabilized and stained according 

to the Nup staining IF protocol (see above). Coverslips were mounted onto the 

microscope slides with Vectashield (Vector Laboratories, H1000) mounting medium 

(soft setting) and sealed with a nail polish.

5.5. EdU incorporation assay 

HeLa K cells were plated on 11 mm glass coverslips (Menzel-Glaser) in 24-well tissue culture 

plates. At the end of the experiments cells were incubated with 10 M EdU (Lumiprobe, 20540)

for 30 min at 37 °C, washed once with PBS and fixed for 10 min with 4% PFA in PBS at RT.

Subsequently, the coverslips were incubated in 100 mM Tris HC                                                              

l 100 mM pH 7.5 for 5 min at room temperature (RT) and permeabilized with 0.1% Triton X-

100 and 0.02% SDS in PBS for 5 min at RT. The coverslips were rinsed three times with PBS 

and the click reaction was performed in freshly prepared label mix (Sufo-Cy3-Azide 8 M

(Lumiprobe, B1330), CuSO4 2 mM, ascorbic acid 20 mg/mL (Sigma, A4544) in PBS) for 30 

min at RT. Coverslips were subsequently washed three times for 5 min with PBS. 

When combining EdU incorporation assay with p-Rb staining, after incubation with EdU the 

immunostaining was performed as for Nup staining (with the difference that post-fixation was 

carried out in 4% PFA instead of 1% PFA) and then the click reaction was performed as 

described previously. 

5.6. Poly A RNA Fluorescent In Situ Hybridization (FISH) 

HeLa K GFP-Nup107 cells were plated on 11 mm glass coverslips in 24-well tissue culture 

plates. At the end of the experiments cells were washed once with PBS and fixed for 10 min 

with 4% PFA in PBS at RT. Subsequently, cells were incubated with 100% cold methanol at 

-20 °C for 10 min. The coverslips were incubated with 70% ethanol at 4 °C overnight. 

Coverslips were incubated in 1M Tris-HCl pH 8 for 5 min at RT before proceeding to 

hybridization for 3 hours at 37 °C in hybridization buffer (2x SSC (Saline Sodium Citrate 

buffer), 1 mg/mL yeast tRNA, 0.005% BSA, 10% dextran sulfate, 25% formamide, 1 ng/uL 

oligo(dT30) fluorescent probes fused to Atto-565 or Atto-488 (Sigma)) protected from light. 
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After hybridization, cells were washed once with 4x SSC, and 2 times with 2x SSC. Coverslips 

were mounted and imaged as indicated previously. 

For RNase treatment experiments, cells were washed 3 times with PBS and permeabilized with 

or without RNase A/T1 (0.2 mg/mL, 500 u/mL) in 0.003% digitonin PBS for 5 min, before 

performing the FISH protocol as described previously. All buffers were DEPC treated before 

use. 

5.7. Live video microscopy 

For live-cell microscopy, HeLa cells stably expressing indicated proteins tagged with GFP or 

mCherry, were grown on 35/10 mm glass bottom four compartment dishes (Greiner Bio-One, 

627871). Before filming, cells were treated with SiR-DNA or SiR-tubulin (Spirochrome)

probes following manufacturer’s instructions when indicated. Live-cell microscopy was 

carried out using 63X objective of Leica CSU-W1 spinning disk or Nikon PFS spinning disk

confocal microscopes.

- For Nup cytoplasmic granule formation assay, HeLa cells stably expressing GFP-

Nup107 were treated with indicated siRNAs, synchronized by double thymidine block, 

released for 8 hours and analyzed by live video spinning disk confocal microscopy for 

7 hours. Z-stacks (10 m range, 0.5 m step) were acquired every 5 minutes and movies 

were made with maximum intensity projection images for every time point shown at 

speed 7 frames per second.

- For protein import assay, HeLa cells were treated with the indicated siRNAs for 72 

hours and transfected with the reporter plasmid XRGG-GFP (kindly provided by Jan 

M. van Deursen) (Hamada et al, 2011; Love et al, 1998) 30 hours before filming. Cells 

were synchronized in early G1 phase by 100 M Monastrol arrest for 16 hours and 

released for 4 hours. Cells were incubated with full media with SiR-DNA 1:2000 and 

Verapamil 1:1000 for 2 hours before filming. Then SiR-DNA and verapamil were 

washed out with media 2 times and cells were incubated in media with 1.25 M

dexamethasone. Dexametahsone-induced nuclear import of XRGG-GFP was recorded 

by live video spinning disk confocal microscopy for 25 min (1 acquisition every 30 

seconds). 

- For protein export assay, HeLa cells were treated as described for protein import 

assay and media with 0.25 M dexamethasone, SiR-DNA 1:2000 and Verapamil 

1:1000 was added for 3 hours to induce XRGG-GFP nuclear import. Then 
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dexamethasone was washed out by washing 2 times with HEPES pH 7.5 and 3 times 

with full media. After washes media with SiR-DNA 1:2000 and Verapamil 1:1000 was 

added and the nuclear export of XRGG-GFP was recorded by live video spinning disk 

confocal microscopy for 2 hours (1 acquisition every 10 min).

- For Nup granules’ dynamics assays, HeLa cells stably expressing GFP-Nup107 were 

treated with the indicated siRNAs for 72 hours and synchronized in early G1 phase by 

100 M Monastrol arrest for 16 hours and released for 2 hours. Microtubule 

depolymerization and Nup granule formation was induced by 10 M nocodazole 

addition for 1.5 hours. To observe the behavior of cytoplasmic Nup granules upon 

microtubule repolymerization five nocodazole washes with warm media were 

performed during image acquisition and Nups were recorded by live video spinning 

disk confocal microscopy for 90 min (1 acquisition every minute).

5.8. Microscopy and image analysis

Image quantification analysis was performed using ImageJ, CellProfiler or Metamorph 

software.

- For IP followed by Western blot image quantifications protein of interest signal was 

normalized to GFP or IgG light chain signal (GFP-IP and endogenous IP respectively). 

In all cases the same area was used for intensity quantification and background values 

were substracted. 

- For nuclear protein intensity and nuclear area quantifications, I generated a 

pipeline in CellProfiler software that automatically recognizes cell nuclei based on the 

DAPI fluorescent image. To this end, I enhanced the edges using the Prewit edge-

finding method which establishes object edges at those points where the gradient of the 

image is maximum. This way nuclei were identified and their area and nuclear mean 

intensity of desired channels among other parameters were measured. In the end, the 

program exported parameters’ measurements to an Excel file. 

- Quantifications of percentage of cells with big cytoplasmic Nup granules and 

irregular nuclei were carried out by eye, as well as mitotic stage timing quantifications. 

- For protein import and export experiment quantification, nuclear and cytoplasmic 

areas were drawn manually in Fiji using SiR-DNA and GFP channels respectively, and 

GFP raw intensities were quantified. From these data the % of cytoplasmic or nuclear 
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signal was calculated and finally delta percentage for each compartment relative to time 

0 was calculated.

- For poly A mRNA FISH experiment quantification, nuclear and cytoplasmic areas 

were drawn manually in Fiji using DAPI and oligo(dT) channels respectively, and 

fluorescent oligo(dT) raw intensities were quantified. From these data the % of nuclear 

signal was calculated.

5.9. Experimental design, data acquisition, analysis, and statistics

At least three independent biological replicates were performed for each experiment and image 

quantifications were carried out in a blinded manner. Curves and graphs were made using 

GraphPad Prism and Adobe illustrator softwares. Models were created using BioRender.com.

All data was verified for normal distribution using Shapiro-Wilk test. Normal data was 

analyzed using two sample two-tailed T-test or one-sample two-tailed T-test (two-group 

comparison or folds increase relative to the control, respectively) or One-way ANOVA with

Dunnett's or Sidak’s correction, in case of multiple group analysis. For non-normally 

distributed data, Mann-Whitney’s or non-parametric one-way ANOVA (Kruskal-wallis test 

with Dunn's correction) tests were done respectively. Data from the human iPSCs derived from 

a FXS patient (FXS-iPSCs) and the isogenic rescue cells (C1_2-iPSCs) were analyzed using 

paired T-test. Error bars represent Standard Deviation (SD) except for live video experiments 

where bars represent Standard Error of the Mean (SEM). In all cases, significance was *p < 

0.05; **P < 0.01; ***P < 0.001, ****P < 0.0001. Details for each graph are listed in figure 

legends.

5.10. Plasmid and siRNA transfections

Lipofectamine 2000 (Invitrogen) was used to deliver XRGG plasmid (kindly provided by Jan 

M. van Deursen) (Hamada et al, 2011; Love et al, 1998) according to the manufacturer’s 

instructions. Oligofectamine (Invitrogen) was used to deliver siRNAs for gene knockdown 

according to the manufacturer’s instructions at a final concentration of 40-100 nM siRNA.

When transfecting two different siRNAs simultaneously, the concentration of each one was 

divided by two to maintain a constant concentration of total siRNA in all conditions. The 

following siRNA oligonucleotides were used: 
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For ER observation experiments, cells were incubated with CellLight ER-RFP BacMam 2.0 

(ThermoFischer, C10591) for 24h before following the manufacturer’s instructions. 

5.11. Quantitative Real-Time PCR

RNA of cultured cells was isolated using TRIzol reagent (Sigma) according to manufacturer’s 

instructions. Reverse transcription was performed with random hexamer or oligodT primers 

using the SuperScript III First Strand cDNA Synthesis kit (Invitrogen). SYBR Green (Roche

Diagnostics) based Real-time PCR was carried out on the LightCycler 480 (Roche Diagnostics) 

using gene specific primer pairs:

siRNA oligonucleotide Sequence Manufacturer

siGENOME Non-
targeting individual 

siRNA-2 (Ctrl siRNA)

5’-UAAGGCUAUGAAGAGAUAC-3’ Dharmacon

BICD2 siRNA-1 5’-GGA GCU GUC ACA CUA CAU G-3’ Eurogentec

BICD2 siRNA-2 5’-GGU GGA CUA UGA GGC UAU C-3’ Eurogentec

Dynein HC siRNA-1 5’-CGUACUCCCGUGAUUGAUG-3’ Eurogentec

Dynein HC siRNA-2 5’-GGAUCAAACAUGACGGAAU-3’ Eurogentec

ELYS siRNA 5’-AUU AUC UAC AUA AUU GCU CUU TT-3’ Eurogentec

FMRP 5’-AAAGCUAUGUGACUGAUGA-3’ Dharmacon

FXR1 siRNA-1 5’-AAACGGAAUCUGAGCGUAA-3’ Dharmacon

FXR1 siRNA-2 5’-CCAUACAGCUUACUUGAUA-3’ Dharmacon

FXR2 5’-CGACAAGGCUGGAUAUAGC-3’ Dharmacon

Nup133 siRNA 5’-GUCGAUGACCAGCUGACCA-3’ Eurogentec

RanBP2 siRNA-1 5’-GGACAGUGGGAUUGUAGUGdTdT-3’ Eurogentec

RanBP2 siRNA-2 5’-CACAGACAAAGCCGUUGAAdTdT-3’ Eurogentec
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5.12. Primers and molecular cloning

Cloning was performed using New England Biolabs (NEB) restriction enzymes, Taq 

polymerase (NEB) or Fusion High-Fidelity DNA polymerase (Thermo Scientific) according to 

the manufacturers’ instructions. To clone GFP-FXR1, FXR1 was amplified from HeLa total 

cDNAs with primers 5’- ttattaCTCGAGCCATGGCGGAGCTGACGGTGGAGG-3’ 

(forward) and 5’- tattatGAATTCTTATGAAACACCATTCAGGACTGC-3’ (reverse). FXR1 

cDNA was cloned into the pEGFPC1 vector using EcoRI/XhoI restriction enzymes. To obtain 

the plasmid used in rescue experiment expressing GFP-FXR1-MUT-siRNA1, primers 5’-

CTTTCCGTTCGCTCTCTGTCTCAGAGGGGTTAGACAGCTCAGAATTTG-3’ (forward) 

and 5’- TGAGACAGAGAGCGAACGGAAAGACGAGCTGAGTGATTGGTCATTGGC-3’ 

(reverse) to mutate pEGFPC1-FXR1 vector in the region targeted by the FXR1 siRNA1. The 

pEGFPC1-NUP85 was kindly provided by Valérie Doye. For live video microscopy 

experiements, cDNAs were cloned into a pVITRO-blasticidin vector (Invivogen). mCherry-

H2B was amplified with primers 5’-

AATAATGCTAGCATGCCAGAGCCAGCGAAGTCTGC-3’ (forward) and 5’-

TAATAATCTAGATTACTTGTACAGCTCGTCCATGC-3’ (reverse). cDNA was cloned 

into the pVITRO in the multi cloning site 1 using NheI/XbaI restriction enzymes. GFP-NUP85 

was amplified with primers 5’-

aataatGCTAGCGCCATCATGGTGAGCAAGGGCGAGGAGCTG-3’ (forward) and 5’-

Target gene
Forward /
Reverse

Sequence

GAPDH Forward 5’-ACCCAGAAGACTGTGGATGG-3’

GAPDH Reverse 5’-TTCTAGACGGCAGGTCAGGT-3’

Nup85 Forward 5’-GACTGAACAAGTTCGCAGCA-3’

Nup85 Reverse 5’-TCAGTCGGTCACTGAGCATC-3’

Nup133 Forward 5’- TGGAGCATGAGGAGCAAGTC-3’

Nup133 Reverse 5’-ACTTGTTGCCGTCCATGGAA-3’

PO Forward 5’-GTGATGTGCAGCTGATCAAGACT-3’

PO Reverse 5’-GATGACCAGCCCAAAGGAGA-3’

RanBP2 Forward 5’-CAGGAAGCTCAAAAATCTCAGACA-3’

RanBP2 Reverse 5’- GAGCCCTGTGCTACTTCCAA-3’
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tattatGCTAGCTCAGGAACCTTCCAGTGAGCCTTCTC-3’ (reverse). cDNA was cloned 

into the pVITRO in the multi cloning site 2 using the NheI restriction enzyme. DNA 

purifications were performed using commercial kits from Macherey-Nagel according to the 

manufacturer’s instructions.

5.13. Generation or acquisition of stable cell lines 

Hela cells were transfected with pVITRO or pEGFPC1-derived constructs using Lipofectamine 

2000 according to manufacturer’s instructions. Transfected cells were selected for 2-3 weeks 

in medium supplemented by antibiotics, either G418 (400 µg/ml) or blasticidin (5 µg/ml). 

Transgene-expressing clones were then isolated by FACS (FACS ARIA, BD Biosciences). 

Expression was validated by Western blot and IF analysis. GFP-NUP107 stable cell line was 

purchased from CLS cell bank. HeLa Kyoto cells stably expressing 3xGFP-mNup133 were 

kindly provided by Valérie Doye.

5.14. Western blotting 

To isolate proteins, cells were scraped from the culture dish, pellete

and washed twice with PBS. HeLa cell extracts were prepared using lysis buffer (50 mM Tris 

HCl pH 7.5, 150 mM NaCl, 1% Triton X-100, 1 mM EDTA 0.25% Sodium Deoxycholate, 

1mM PMSF, protease inhibitor cocktail Complete). Cells were lysed on ice by mechanical 

disruption with a needle (26G brown) or by pipetting 10 times up and down. After, samples 

were centrifuged at 10 000 g for 30 minutes at 

a protein concentration was measured using Bradford assay (BioRad, 500-0006) in 1 mL 

cuvettes. Samples were boiled 15 minutes at 96 °C in Laemmli -Mercaptoethanol 

(BioRad, 1610747), resolved on 10% polyacrylamide gels or pre-cast 4-12% Bis-Tris gradient 

gels (Thermo Scientific, NW04120BOX) or pre-cast NuPAGE™ 3-8% Tris-Acetate gradient

Gels (Thermo Scientific, EA0378BOX) and transferred to a PVDF (polyvinylidene difluoride)

membrane (Millipore, IPFL00010) using semi-dry transfer unit (Amersham) or wet transfer 

modules (Mini Blot Module, Invitrogen, B1000).

Membranes were blocked in 5% non-fat milk powder resuspended in TBS-T (Tris-buffered 

saline-T: 25mM Tris-HCl, pH 7.5, 150mM NaCl 0.05% Tween) for 1 hour at RT or overnight 

at 4 °C, followed by incubation with antibodies diluted in TBS-T. TBS-T was used for washing 

the membranes. Membranes were developed with Luminata Forte Western HRP substrate 
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(Millipore, WBLUF0500) or ECL Western Blotting substrate (Thermo Scientific, 32209)

chemiluminescent substrate (Thermo Scientific).

5.15. Immunoprecipitations (IPs)

- For GFP-IP experiments, cell extracts from HeLa K stably expressing GFP, GFP-

FXR1, 3xGFP-Nup85 from six to seven 10cm dishes per cell line were prepared as 

indicated in the Western blotting section. For GFP IP, GFP-fused proteins were 

immunoprecipitated using GFP-Trap A agarose or magnetic beads (Chromotek, gta-20

and gtma-20). Beads were washed 3 times under rotation for 10 minutes with 0.5 mL 

washing buffer (10 mM Tris HCl pH 7.5, 150 mM NaCl, 0.5 mM EDTA, protease 

inhibitor cocktail) and then incubated with cell extracts for 90 minutes

constant rotation to allow interaction with GFP constructs. Before elution, beads were 

washed 3 times under rotation for 10 minutes with 1 mL washing buffer 0.1% Tween-

20, boiled at 96 °C in Laemmli SDS sample buffer for 15 minutes and subjected to 

SDS-PAGE followed by Western blotting.

- For endogenous IP experiments, protein G sepharose 4 Fast Flow beads (GE 

Healthcare Life Sciences) were washed three times for 1 minute in washing buffer (Tris 

HCl 50 mM pH 7.5, NaCl 150 mM, EDTA 1 mM, protease inhibitor cocktail). FXR1 

protein from HEK293T cell extracts from six 10 cm dishes were incubated with the 

beads and FXR1 antibody or rabbit IgG (1.5 µL per mg of protein) for 3 hours at 4 °C

under constant rotation. Before elution, beads were washed 7 times with 1 mL of 

washing buffer 0.1% Tween-20 (2 quick washes, 3 long washes of 30 minutes under 

constant rotation, and 2 quick washes), boiled in Laemmli SDS sample buffer and 

subjected to SDS-PAGE followed by Western blotting.

5.16. Electron microscopy

HeLa cells stably expressing 3xGFP-Nup85 were grown on carbon-coated sapphire disks and 

synchronized by double thymidine block and 12 hour release. After synchronization, cells were 

high pressure frozen (HPM010, AbraFluid) and freeze substituted with 0.1% Uranyl acetate in 

acetone for 15 hours. The temperature was then raised to - 45 °C at 5 °C /hour and cells were 

further incubated for 5 hours. After rinsing in acetone, the samples were finally embedded in 

Lowicryl HM20 (Polysciences Inc.). Thick sections (300nm) were cut from the UV-

polymerized resin block and picked up on carbon coated mesh grids. After post-staining, 2D 
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montages and tilt series of the areas of interest were acquired using a FEI TECNAI F30 TEM. 

Tomograms were reconstructed using the software package IMOD (Kremer et al, 1996).

5.17. Antibodies

The following antibodies were used:

Antibody
Host 

specie
IF 

Dilution
WB 

Dilution 
Manufacturer Reference

-tubulin Mouse 1:4000 1:20000 Sigma T5169

-BICD2 Rabbit 1:250 1:1000 Sigma HPA023013
Cyclin B1

clone GSN1
Mouse / 1:2000 Santa Cruz sc-245

-Cyclin A Rabbit / 1:1000 Santa Cruz sc-751

-CRM1 Rabbit 1:250 / Novus NB100-79802
-Cyclin D1

(M-20)
Rabbit / 1:1000 Santa Cruz sc-718

-Dynein IC Mouse 1:500 / Merck MAB1618

-ELYS Rabbit 1:250 / Bethyl A300-166A

-Emerin Rabbit 1:1000 / Abcam ab40688 
-FG-Nups

(mAb414)
Mouse 1:4000 / Abcam ab24609

-FMRP Mouse 1:250 1:1000
IGBMC antibody facility 

(clone 1C3)
-FMRP Rabbit 1:250 1:1000 Abcam ab17722

-FXR1+2 Mouse 1:1000 1:1000
IGBMC antibody facility

(clone 2B12)
-FXR1 Rabbit 1:800 1:1000 Sigma HPA018246

-FXR1 Mouse 1:800 1:1000 Millipore 03-176

-GAPDH Rabbit / 1:20000 Sigma G9545

-GAPDH Mouse / 1:20000 Genetex gtx627408

GFP Rabbit / 1:20000 Abcam ab290

-G3BP1 Rabbit 1:500 / Genetex GTX112191

-LaminA Rabbit 1:500 / Sigma L1293 

-Lamin B1 Rabbit 1:500 / Abcam ab16048

-Lap2 Mouse 1:500 / BD biosciences 611000

-LBR Rabbit 1:500 / Abcam ab35535

-Nup85 Rabbit 1:100 / Bethyl A303-977A

-Nup98 Rabbit 1:100 / Cell Signalling 2598S
-Nup133
(E-6)

Mouse / 1:1000 Santa Cruz sc-37673

-Nup133 Rat 1:250 / Kindly provided by Valérie Doye
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-Nup153 Rabbit 1:500 1:1000 Abcam ab84872
-

Pericentrin-1
(NUP85)

(D-4)

Mouse / 1:1000
Santa Cruz

sc-376111

-PLK1 Mouse / 1:1000 Santa cruz sc-17783

-POM121 Rabbit 1:200 / Genetex GTX102128 

-p-Rb Rabbit 1:1600 / Cell Signaling 8516

p-62
Guinea 

pig
1:500 1:1000 Interchim GP62-C

-p150glued Mouse 1:1000 / BD biosciences 610473

-RanBP2 Goat 1:2000 / Kindly provided by Frauke Melchior

-RanBP2 Rabbit 1:2000 Abcam ab64276

-RanGAP1 Mouse 1:250 / Cell Signalling 2365

-SUMO1 Rabbit 1:500 / Cell signaling 4930
-TIA-1
(G-3)

Mouse 1:500 / Santa Cruz sc-166247
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Arantxa AGOTE ARÁN

Spatial control of nucleoporin condensation 
by Fragile X-related proteins

Résumé

Les nucléoporines (Nups) construisent des complexes de pores nucléaires (NPC) hautement organisés 

au niveau de l'enveloppe nucléaire (NE). Dans le cytoplasme, les Nups solubles existent, mais on ignore 

pour l'instant comment leur assemblage se limite à la NE. Nous montrons ici que la protéine 1 liée au 

X fragile (FXR1) peut interagir avec plusieurs Nups et faciliter leur localisation vers NE pendant 

l'interphase par un mécanisme dépendant des microtubules. La régulation négative de la FXR1 ou des 

paralogues FXR2 et la protéine de retard mental du X fragile (FMRP) conduit à l'accumulation de 

condensats de Nups cytoplasmiques. De même, les modèles du syndrome du X fragile (SXF), 

caractérisés par une perte de FMRP, accumulent des granules de Nups. Les cellules contenant des 

granules de Nups présentent des défauts dans l'exportation des protéines, la morphologie nucléaire et la 

progression du cycle cellulaire. Ces résultats révèlent un rôle inattendu pour la famille des protéines 

FXR dans la régulation spatiale de la condensation des Nups.

Mots clé: FXR1 ; dynéine, syndrome de l'X fragile ; nucléoporines ; séparation de phases

 

 

Summary

Nucleoporins (Nups) build highly organized Nuclear Pore Complexes (NPCs) at the nuclear envelope 

(NE). Several Nups assemble into a sieve-like hydrogel within the central channel of the NPCs. In the 

cytoplasm, the soluble Nups exist, but how their assembly is restricted to the NE is currently unknown. 

Here we show that Fragile X-related protein 1 (FXR1) can interact with several Nups and facilitate their 

localization to the NE during interphase through a microtubule-dependent mechanism. Downregulation 

of FXR1 or closely related paralogs FXR2 and Fragile X mental retardation protein (FMRP) leads to 

the accumulation of cytoplasmic Nup condensates. Likewise, models of Fragile X syndrome (FXS), 

characterized by a loss of FMRP, accumulate Nup granules. The Nup granules-containing cells show 

defects in protein export, nuclear morphology and cell cycle progression. These results reveal an 

unexpected role for the FXR protein family in the spatial regulation of Nup condensation.

Key words: FXR1; dynein; fragile X syndrome; nucleoporins; phase separation


