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La Nature est un temple où de vivants piliers
Laissent parfois sortir de confuses paroles ;
L’homme y passe à travers des forêts de symboles
Qui l’observent avec des regards familiers.

Comme de longs échos qui de loin se confondent
Dans une ténébreuse et profonde unité,
Vaste comme la nuit et comme la clarté,
Les parfums, les couleurs et les sons se répondent.

Il est des parfums frais comme des chairs d’enfants,
Doux comme les hautbois, verts comme les prairies,
- Et d’autres, corrompus, riches et triomphants,

Ayant l’expansion des choses infinies,
Comme l’ambre, le musc, le benjoin et l’encens,
Qui chantent les transports de l’esprit et des sens.

Charles Baudelaire, "Correspondances"





Abstract xi

Adaptive biasing algorithms: mathematical analysis and applications in
molecular dynamics

Abstract

This thesis is dedicated to the study of adaptive biasing algorithms for molecular dynamics simulations,
from both theoretical and numerical perspectives. The goal of molecular dynamics is to obtain macro-
scopic informations about a system of particles, given its microscopic description. Adaptive biasing
algorithms are powerful tools in molecular dynamics, especially when one needs to compute a system’s
free energy. We will mainly focus on the Adaptive Biasing Force algorithm, whose key idea is to bias the
interaction force between the particles in order to enhance the sampling of the system’s configuration
space. In particular, we will study its robustness in the case of non-conservative interaction forces. We
will then proceed to design an enhanced sampling algorithm in the scope of alchemical transitions, where
the system’s evolution from an initial state to a final state is indexed by a parameter λ in [0, 1]. Such
transitions are often used in pharmacology, as they allow the estimation of several free energies, such
as the binding free energy of a ligand with a receptor, or even the solvation free energy of a compound
in solvent. When coupled to the λ–dynamics method, which deals with the dynamic evolution of the
parameter λ, the Orthogonal Space Random Walk (OSRW) sampling method may permit a better and
quicker sampling of the configuration space. Drawing inspiration from this algorithm, we will implement
an adaptive biasing method coupled to the λ–dynamics, and compare it with the original OSRW algo-
rithm. This work led to the implementation of a new interface between the Tinker-HP program and the
Collective Variables module software.

Keywords: molecular dynamics, diffusion process, adaptive biasing algorithm, functional inequality,
free energy, alchemical transition

Résumé

L’objet de cette thèse porte sur l’étude tant théorique que numérique de méthodes de biais adaptatifs
pour la dynamique moléculaire. Etant donnée une description microscopique d’un système de particules,
le but de la dynamique moléculaire est d’en déduire des informations macroscopiques. Les méthodes
de biais adaptatifs se révèlent être un outil efficace, notamment lorsqu’il est question de déterminer
l’énergie libre d’un système. Nous accorderons une attention toute particulière à la méthode de l’Adaptive
Biasing Force, dont le principe est de biaiser la force d’interaction entre les particules afin d’accélérer
l’échantillonnage de l’espace des configurations. En particulier, nous étudierons sa robustesse dans le cas
où les forces d’interaction s’avèrent être non-conservatives. Nous procéderons ensuite à la construction
d’un algorithme d’accélération d’échantillonnage dans le cadre de transitions alchimiques, où l’évolution
du système d’un état initial à un état final prédéfinis est indexée par un paramètre λ compris entre
0 et 1. De telles transitions s’avèrent utiles en pharmacologie, leur étude permettant de déterminer
différentes énergies libres, telles que l’énergie libre de liaison d’un ligand avec un récepteur donné ou bien
encore l’énergie libre de solvatation d’une molécule ou d’un ion dans un solvant. Couplée à la méthode
de la λ-dynamique, qui traite l’évolution dynamique du paramètre λ, la méthode d’échantillonnage de
l’Orthogonal Space Random Walk (OSRW) pourrait permettre une accélération de l’échantillonnage des
configurations. En s’inspirant de cette dernière, nous implémenterons une méthode de biais adaptatif
couplée à une méthode de λ-dynamique, que nous comparerons à la méthode de l’OSRW originelle. Ce
travail d’implémentation permettra la mise en place d’une nouvelle interface entre le logiciel Tinker-HP
et le module Collective Variables.

Mots clés : dynamique moléculaire, processus de diffusion, méthode de biais adaptatif, inégalité fonc-
tionnelle, énergie libre, transitions alchimique

Laboratoire Jacques-Louis Lions
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Résumé succinct en français

Contexte et motivations – Le présent mémoire s’articule autour de questions propres à
la dynamique moléculaire. Le but de la dynamique moléculaire est d’étudier l’évolution de
systèmes microscopiques ayant un grand nombre de particules (qui peuvent être des atomes, des
molécules, ou encore même des protéines), afin d’en déduire diverses propriétés macroscopiques,
comme par exemple l’énergie ou la température. Lier une description microscopique de la matière
à sa description macroscopique repose sur des principes de mécanique statistique : un résultat
classique nous dit qu’à l’équilibre thermodynamique, les positions des particules sont distribuées
selon la mesure de Boltzmann-Gibbs µ ∝ exp(−βV ), où V est l’énergie potentielle du système,
et β est le bêta thermodynamique. À partir de cette distribution, de nombreuses propriétés
macroscopiques peuvent être obtenues. Être capable d’échantillonner la mesure µ, à savoir
être capable d’obtenir numériquement des positions distribuées selon µ, est un problème clef en
dynamique moléculaire. Pour ce faire, on peut utiliser la dynamique de Langevin suramortie,
où les positions du système sont représentées par un processus stochastique (Xt)t≥0 satisfaisant
l’équation différentielle stochastique suivante:

dXt = −∇V (Xt)dt+
√

2β−1dWt,

où (Wt)t≥0 est un mouvement Brownien classique, et F = −∇V est la force d’interaction entre
les particules. S’écrivant comme le gradient d’une énergie potentielle, F est dite conservative.
Un tel processus a de bonnes propriétés théoriques, mais est difficile à utiliser en pratique. En
effet, le système obtenu est dit métastable : les particules peuvent se retrouver coincées dans des
puits d’énergie potentielle et prendre beaucoup de temps à s’en échapper [56]. Le coût à fournir
pour atteindre l’équilibre et échantillonner la mesure µ est alors trop important. Afin d’éviter
la métastabilité, une idée est de considérer une coordonnée de réaction, à savoir une fonction
ξ des positions représentant le système de manière simplifiée. Étant donnée cette coordonnée
de réaction, on peut alors considérer la méthode de l’Adaptive Biasing Force (ABF) [39], qui
consiste à biaiser la force F dans la direction de ξ, à l’aide d’un biais s’adaptant à chaque pas de
temps, et montrer la convergence en temps long de l’algorithme [57]. On peut aussi s’intéresser
à une variante, la méthode de la Projected Adaptive Biasing Force (PABF) [2]. Une propriété
intéressante de ces méthodes est celle de l’histogramme plat : le profil de l’énergie potentielle
est lissé dans la direction de ξ, il n’y a plus de métastabilité, et l’équilibre thermodynamique est
atteint bien plus rapidement.

La première partie de cette thèse est dédiée à l’étude des algorithmes ABF et PABF lorsque
la force d’interaction F n’est plus conservative. En effet, certains modèles d’approximation des
forces d’interaction induisent une violation de la conservation de l’énergie mécanique du système
Hamiltonien considéré, une conséquence directe étant que la force ne peut plus s’écrire comme le
gradient d’une énergie. Il faut alors s’assurer qu’utiliser les algorithmes ABF et PABF a toujours
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10 Résumé succinct en français

du sens, étant donné que la majeure partie des preuves de convergence (convergence de la loi du
processus considéré vers une mesure d’équilibre, convergence du biais adaptatif vers un biais sta-
tionnaire) repose sur le fait que la force F est conservative. Plus précisément, l’on doit s’assurer
que (i) il existe une mesure et un biais stationnaires vers lesquels converger, et (ii) la propriété
de l’histogramme plat est bien vérifiée. Le cas échéant, il reste à quantifier l’erreur commise lors
des différents calculs de référence à l’aide de la nouvelle méthode. Le travail effectué au cours
de cette thèse afin d’amener des réponses à ces questions est désormais disponible en tant que
preprint, à la page arXiv:2102.09957.

Une question, encore ouverte aujourd’hui, se pose : quel est le choix optimal de la coordon-
née de réaction ξ? La seconde partie de cette thèse cherche à y répondre, et ce dans un cadre
bien particulier, celui des transformations dites alchimiques. Une telle transformation consiste,
à l’aide d’une coordonnée de réaction λ ∈ [0, 1], à amener le système étudié d’un état initial
λ = 0 à un état final λ = 1, en passant par des états intermédiaires λ ∈]0, 1[ n’ayant a priori pas
de sens physiquement. Étudier les transformations alchimiques s’avère utile dans de nombreux
cas de figure, où l’on cherche à établir la différence d’énergie libre ∆0→1A = A(1) − A(0) du
système considéré entre l’état initial et l’état final. C’est le cas par exemple de la transformation
d’un ligand L1 en un ligand L2, qui permet alors de déterminer lequel est le plus à même de
se lier à un récepteur cible. La λ-dynamique introduite par C. L. Brooks, III [49], fait partie
des nombreuses méthodes existantes pour estimer ces différences d’énergie libre : la coordonnée
λ est alors considérée comme une variable dynamique additionnelle. La méthode de la λ dy-
namique présente des avantages vis-à-vis des autres méthodes, plus classiques. Néanmoins, elle
n’est pas sans limitation, la coordonnée λ n’étant a priori pas capable de capturer la métasta-
bilité du système. Il est donc nécessaire, dans le cadre de transitions alchimiques, d’associer à la
λ-dynamique une méthode d’accélération d’échantillonnage, dans la même ligne que la méthode
ABF. Dans cette optique, W. Yang [87, 88, 66, 89] propose dans plusieurs de ses travaux un
choix de coordonnée de réaction ainsi qu’un algorithme qui amèneraient à une exploration plus
rapide et efficace de l’espace des configurations d’un système. Cependant, cette méthode reste à
ce jour ni reproductible, ni mathématiquement validée. En collaboration avec Louis Lagardère
(Laboratoire de Chimie Théorique, Sorbonne Université, France) et Jérôme Hénin (Laboratoire
de Biochimie Théorique, Institut de Biologie Physico-Chimique, CNRS, France), nous implé-
mentons une méthode reproductible permettant de valider –ou invalider– ce choix de coordonnée
de réaction, tout en s’assurant de sa cohérence mathématique. Ce travail est par ailleurs à
l’origine d’une nouvelle interface entre deux logiciels de dynamique moléculaire, Tinker-HP [52]
et Colvars, ce qui élargit conséquemment le champ des possibles en termes de simulations.

Structure – La première partie de ce manuscrit consiste en une introduction générale de la
dynamique moléculaire, et est composée de quatre chapitres. Le Chapitre 1 présente brièvement
les concepts essentiels de la mécanique statistique : on y rappelera la nécessité d’une description
probabiliste des systèmes à l’échelle microscopique, les équations du mouvement dans un tel
cas de figure, les différents ensembles thermodynamiques dans lesquels travailler, ainsi que les
potentiels thermodynamiques usuels d’intérêt, dont l’entropie et l’énergie libre de Helmholtz. Le
Chapitre 2 est dédié à la dynamique moléculaire en elle-même : on y présentera l’approximation
de Born-Oppenheimer, sans laquelle la majeure partie des simulations ne serait possible, les po-
tentiels interatomiques usuels ainsi que les différentes conditions au bord utilisées en dynamique
moléculaire. Les dynamiques de Langevin et de Langevin suramortie seront présentées en détails,
et l’on abordera rapidement les schémas numériques les plus connus utilisés pour leur discréti-
sation. Le Chapitre 3 quant à lui présentera plus en détail les motivations de cette thèse, à
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savoir le calcul de différences d’énergie libre à l’aide d’algorithmes d’échantillonage. Le con-
cept de métastabilité et de coordonnée de réaction mentionnés plus haut y seront abordés de
manière exhaustive. Les méthodes d’échantillonage accéléré utilisant le concept de coordonnée
de réaction afin d’éviter la métastabilité d’un système seront ensuite abordées. On portera une
attention particulière aux méthodes de biais adaptatifs telles que la métadynamique, la méthode
de l’Adaptive Biasing Potential, ainsi que la méthode de l’Adaptive Biasing Force (ABF) sus-
mentionnée. On évoquera la première motivation de cette thèse, à savoir l’étude de la méthode
ABF dans le cas de forces d’interaction non conservatives. On procèdera alors à la présentation
des méthodes classiques de calculs de différences d’énergie libre, afin de se focaliser sur l’une
d’elles, la λ-dynamique, que nous introduirons succinctement, un chapitre entier y étant par la
suite dédié. Enfin, nous terminerons avec la seconde motivation de cette thèse, qui revient à
étudier la méthode d’échantillonage de l’Orthogonal Space Random Walk (OSRW) proposée par
Wei Yang, qui repose sur un choix particulier de coordonnée de réaction. Enfin, le Chapitre 4
détaillera les contributions de cette thèse ainsi que l’organisation précise du présent manuscrit.

La deuxième partie de ce manuscrit se focalise sur l’étude de la méthode de l’Adaptive Biasing
Force dans le cas de forces non conservatives, et peut être lue de manière quasi-indépendante du
reste de ce corpus. On y rappellera succinctement des concepts déjà introduits en partie I, pour
ensuite présenter les résultats, et procéder à la démonstrations de ces derniers.

Enfin, la troisième et dernière partie regroupe les efforts produits à ce jour dans le cadre
de l’étude et l’implémentation des méthodes de la λ-dynamique et de l’OSRW dans le logiciel
Tinker-HP et le module Collective Variables. La méthode de l’OSRW sera introduite en détails,
et nous en présenterons ses limitations théoriques, avant de motiver le besoin d’implémenter la
λ-dynamique. On présentera au préalable le logiciel Tinker-HP ainsi que le module Collective
variable, aussi dit Colvars, afin de définir la nouvelle interface mise en place permettant à ces deux
programmes de communiquer dans le cadre de la λ-dynamique. Par la suite, la λ-dynamique,
déjà abordée rapidement au Chapitre 3, sera présentée de manière exhaustive, et l’on détaillera
une de ses applications clefs en pharmacologie. L’implémentation de cette méthode, prélimi-
naire à celle de la méthode de l’OSRW, appelle à utiliser de nouveaux potentiels d’interaction,
dits softcores, dans le code du programme Tinker-HP, que l’on présentera en détails pour deux
types d’interactions. La λ-dynamique permettant le calcul de différences d’énergie libre dans le
cadre de transitions alchimiques, nous présenterons des résultats numériques que l’on compar-
era à des différences d’énergie libre de référence. Enfin, nous procéderons à la présentation de
l’implémentation de la méthode OSRW, pour conclure sur les problèmes soulevés lors de cette
dernière, qui à ce jour, restent ouverts.

Des annexes s’ajoutent à ce corpus afin d’en faciliter la lecture. L’annexe B consiste en de très
brefs rappels de mécanique analytique: y est rappelé le passage de la mécanique Newtonienne à la
mécanique Hamiltonienne, ainsi que le concept de coordonnées et de forces étendues, nécessaires
à la bonne compréhension de l’étude de la λ-dynamique et de la méthode de l’OSRW présentée en
partie III. L’annexe A quant à elle, est dédiée aux processus de diffusion, et peut être consultée en
amont de la lecture de la partie II de ce manuscrit. On y rappelle, entre autres, les définitions de
processus de Markov, de générateur infinitésimal, de mesure invariante et d’équation de Fokker-
Planck, d’hypoellipticité ainsi que de diffusion. L’annexe C contient tous les calculs exhaustifs
de gradients, nécessaires à l’implémentation des méthodes de λ–dynamics et d’OSRW, afin de
faciliter la lecture de la partie III.
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Constants and conventions

Fundamental physical constants

me 9.10938356× 10−31 kg electron mass

e 1.60217662× 10−19 C elementary charge

NA 6.02214076× 1023 mol−1 Avogadro’s number

kB 1.38064852× 10−23 m2.kg.s−2.K−1 Boltzmann constant

ε0 8.8541878128(13)× 10−12 F.m−1 vacuum permittivity

Notations

• Physical systems

. N is the number of particles, d denotes the space dimension.

. D ⊂ RdN denotes the configuration space.

. T ∗ ×D denotes the state space.

. q can denote either the position or the charge of a particle. In the latter case, the position
is denoted by r.

. p denotes the momentum of a particle.

. M is the mass matrix of a given system.

• Diffusion processes, invariant measures

. λ(dq) denotes the Lebesgue measure on the configuration space D.

13
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. β = (kBT )
−1 is the thermodynamic beta, with T being the absolute temperature of the

system.

. µβ ∝ exp(−βH) is the density of the canonical measure of a system with Hamiltonian H.

. µ ∝ exp(−βV ) is the density of Boltzmann-Gibbs measure of a system with potential
energy V .

. (Xt)t≥0 with any capital letter other than W will denote a stochastic process.

. (Wt)t≥0 denotes a standard Brownian motion of dimension to be specified.

• Enhanced sampling methods

. ξ is the standard notation for a generic transition coordinate.

. λ denotes the order parameter of an alchemical transition.

. A (resp. G) is the Helmholtz (resp. Gibbs) free energy of the system.

. F denotes the local mean force of a system.

. F denotes the interaction force of a system. If F = −∇U where U is an energy, then F is
said to be conservative.

• Set of functions Let Ω ⊂ RdN be a Borel set.

. C∞0 (Ω) denotes the set of infinitely differentiable functions with compact support on Ω.

. Ck(Ω), with k ∈ N∗ denotes the set of k-differentiable functions on Ω. C0(Ω) denotes the
set of continuous functions.

. For any p in [1,+∞], Lp(Ω) denotes the Lebesgue space of order p, L∞(Ω) being the space
of essentially bounded functions. The norm of a function f in Lp(Ω) is defined as:

‖f‖Lp(Ω) = ‖f‖p :=


(∫
Ω
|f |p

) 1
p

if p ∈ [1,+∞[,

inf {M ≥ 0 | |f(x)| ≤M for almost every x} if p = +∞

.

. For any p ∈ [1,+∞] and k ∈ N∗, we define the Sobolev space

W k,p(Ω) := {f ∈ Lp(Ω) |Dαf ∈ Lp(Ω), ∀|α| ≤ k}

endowed with the norm:

‖f‖Wk,p(Ω) = ‖f‖k,p :=



∑
|α|≤k

‖Dαf‖p

 1
p

if p ∈ [1,+∞[,

max
|α|≤k

‖Dαf‖∞ if p = +∞

.

We will mainly work with the H1(Ω) = W 1,2(Ω) space.
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. H1
0 (Ω) denotes the closure of the space C∞0 (Ω) with respect to the Sobolev norm ‖ · ‖H1 .
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Nous devons donc envisager l’état présent de l’univers comme l’effet de
son état antérieur et comme la cause de celui qui va suivre. Une
intelligence qui, pour un instant donné, connaîtrait toutes les forces
dont la nature est animée et la situation respective des êtres qui la
composent, si d’ailleurs elle était assez vaste pour soumettre ces données
à l’analyse, embrasserait dans la même formule les mouvements des plus
grands corps de l’univers et ceux du plus léger atome ; rien ne serait
incertain pour elle, et l’avenir, comme le passé, serait présent à ses yeux.

Pierre-Simon Laplace
Essai philosophique sur les probabilités,

Oeuvres, Gauthier, Villars, 1886, vol. VII, 1, pp. 6-7.

Part I

General introduction
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Introductive foreword

Context and motivations – The present dissertation is centred around problems related to
molecular dynamics. The goal of molecular dynamics is to study the evolution of microscopic
systems composed of a great number of particles (be they atoms, molecules, or even proteins),
in order to obtain macroscopic informations about it, such as the energy or the temperature. To
relate a microscopic description of matter to its macroscopic description relies on the principles
of statistical mechanics. One may use a classical result, which is that at thermodynamical
equilibrium, the particles’ positions are distributed according to the Boltzmann-Gibbs measure
µ ∝ exp(−βV ), where V is the potential energy of the system, and β is the thermodynamic beta.
Given this distribution, one may obtain many macroscopic properties. Sampling the measure µ,
in others words, being able to numerically obtain positions distributed according to µ, is a key
problem in molecular dynamics. To do this, one may use overdamped Langevin dynamics, where
the position vector of the system is represented by a stochastic process (Xt)t≥0 which satisfies
the following stochastic differential equation:

dXt = −∇V (Xt)dt+
√

2β−1dWt,

where (Wt)t≥0 is a standard Brownian motion, and F = −∇V is the interaction force between
the particles. As the force F is written as the gradient of a potential energy, it is said to be
conservative. Such a process has good theoretical properties, but it is difficult to use it in prac-
tice. Indeed, the obtained system is said to be metastable: the particles may remain trapped
in energy wells and take a lot of time to free themselves [56]. Waiting to reach equilibrium and
sampling the measure µ is thus too costly. In order to avoid metastability, one idea may be to
consider a reaction coordinate, namely a mapping ξ of the positions, representing the system
in a simplified manner. Given this reaction coordinate, one may then use the Adaptive Biasing
Force (ABF) method [39], which consists of biasing the interaction force F in the direction of
ξ with an adaptive bias, and show the long-time convergence of the algorithm [57]. One may
also consider a variation of ABF, namely the Projected Adaptive Biasing Force (PABF) method
[2]. An interesting property of both methods is that of the flat histogram: the potential energy
profile is flattened in the direction of ξ, avoiding metastability in this direction, and convergence
to thermodynamic equilibrium is accelerated.

The first goal of this thesis is the study of the ABF and PABF algorithm in the case where
the interaction force F is no longer conservative. Indeed, some models used to approximate
interaction forces may lead to a violation of the mechanical energy of the Hamiltonian system
considered. A direct consequence being that the force can no longer be written as the gradient of
an energy. One then needs to ensure that using the ABF and PABF methods is still relevant, as
most of the long-time convergence proofs (convergence of the law of the process to an equilibrium
measure, convergence of the adaptive bias to a stationary bias) rely on the fact that the force F is
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conservative. To be more precise, one has to ensure that (i) there exists a stationary measure and
stationary bias towards which one can converge, and (ii) the flat histogram property is verified.
If so, one then has to quantify the error commited while estimating the quantities of interest
using the new algorithm. The work done during this thesis in order to answer such questions is
now available as a preprint, at the page arXiv:2102.09957.

A question still open to this day arises: what is the optimal choice for the reaction coordinate
ξ? The second goal of this dissertation is to provide an answer to this issue, in a very specific
case, that of alchemical transitions. Such a transition, given a reaction coordinate λ ∈ [0, 1],
consists of bringing the system at hand from an initial state λ = 0 to a final state λ = 1, while
visiting temporary states λ ∈ (0, 1) which are allowed to not make sense physically. Studying
alchemical transitions proves to be useful in many cases, when one needs to estimate the free
energy difference ∆0→1A = A(1)−A(0) of a system between the initial state and the final state.
It is the case for example when a ligand L1 is transformed in a ligand L2, so that one may deter-
mine which ligand between L1 and L2 is more prone to bind with a target receptor. Introduced
by C. L. Brooks, III [49] and colleagues, λ–dynamics is among several already existing methods
designed for the computation of free energy differences. The key idea behind λ dynamics is to
consider the coordinate λ as an additional dynamical variable. The method of λ–dynamics offers
some advantages compared to the more classical methods. However, λ–dynamics is not without
limitations, as the coordinate λ is a priori not designed to capture the system’s metastability.
This motivates the need to associate an accelerated sampling method to λ–dynamics, such as
the ABF method. In this scope, W. Yang [87, 88, 66, 89] suggests using a new choice of reaction
coordinate, coupled to a sampling method that is to this day not easily reproducible, nor math-
ematically validated. In collaboration with Louis Lagardère (Laboratoire de Chimie Théorique,
Sorbonne Université, France) and Jérôme Hénin (Laboratoire de Biochimie Théorique, Institut
de Biologie Physico-Chimique, CNRS, France), we set on implementing a reproducible method
which would validate –or invalidate– this choice of reaction coordinate, while ensuring its math-
ematical coherence. This work has moreover led to the creation of a new interface between two
molecular dynamics softwares, Tinker-HP [52] and the Collective Variables module, which widen
the field of possibilities in term of simulations.

Structure – The first part of this dissertation is a general introduction to the thesis’ objectives,
and is composed of four chapters. Chapter 1 briefly introduces the essential concepts of statistical
mechanics: we will motivate the need to use a probabilistic description of physical systems at
the microscopic scale, recall the equations of motion used in this scope, introduce the different
thermodynamical ensemble one may work with, and eventually define the usual thermodynami-
cal potentials, among which the entropy and the Helmholtz free energy. Chapter 2 is dedicated
to molecular dynamics in itself: we will present the Born-Oppenheimer approximation without
which most simulations would not be possible, the usual interatomic potentials along with the
different kinds of boundary conditions used in molecular dynamics simulations. Langevin and
overdamped Langevin dynamics will be introduced in details, and we will quickly review some
numerical schemes used to discretise said dynamics. In Chapter 3 we will thoroughly introduce
the main motivation for this thesis, namely the computation of free energy differences with sam-
pling algorithms. The aforementioned concepts of metastability and of reaction coordinate will
be carefully defined. The accelerated sampling algorithms relying on a reaction coordinate to
by-pass metastability will then be introduced. We will pay special attention to adaptive biasing
methods such as Metadynamics, the Adaptive Biasing Potential or the Adaptive Biasing Force
mentionned above. We will present the first motivation of this thesis, namely the study of the
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ABF method in the case where the interaction force is no longer conservative. We will then
proceed to introduce the methods used to compute free energy differences, before focusing on
one of them, called λ–dynamics. Said method will be briefly presented, as a whole chapter will
be dedicated to its study later on. Eventually, we will sketch the second motivation of this the-
sis, which is to study the so-called Orthogonal Space Random Walk (OSRW) sampling method,
introduced by Wei Yang and colleages, whose design relies on the choice of a particular reaction
coordinate. To finish, Chapter 4 will detail carefully the main contributions of this dissertation,
along with its structure.

The second part of this corpus focuses on the study of the Adaptive Biasing Force algorithm
in the non-conservative case. It consists of the single Chapter 5, which is written to be read in-
dependently. We will briefly recall some concepts already presented in part I, and then proceed
to introduce the results and the associated proofs.

Eventually, the third and last part gathers all of the work related to the study and implemen-
tation of λ–dynamics and the OSRW method in the Tinker-HP and Collective Variables module
softwares. It consists of the single Chapter 6. The OSRW method will be introduced in details
and we will list its theoretical limitations, before motivating the need for an implementation
of λ–dynamics. We will beforehand present the Tinker-HP software along with the Collective
Variables module –also called Colvars–, in order to define the new interface put in place between
both codes. We will later on exhaustively introduce λ–dynamics, which would have already
been quickly presented in Chapter 3, and detail one of its key applications in drug design. The
implementation of this method, which is prior to that of OSRW, requires the implementation
of new interaction potentials, called softcores, into the Tinker-HP software. We will detail two
kinds of softcores potentials, one for the van der Waals interactions, the other for electrostatic
interactions. As λ–dynamics allows for the computation of free energy differences in the case of
alchemical transitions, we will present some numerical results that will be compared to reference
free energy differences. Finally, we will discuss the implementation of the OSRW method, to
conclude on the issues that are arose doing so, and which are to this day open problems.

Several annexes are added to this corpus in order to facilitate its reading. Annex B consists
of small reminders on analytical mechanics: we will briefly detail the transition from Newtonian
mechanics to Hamiltonian mechanics, and introduce the notion of extended coordinates and forces
which prove to be essential for the study of λ–dynamics and the OSRW method presented in part
II. Annex A is dedicated to a brief introduction to diffusion processes and can be read before
part II. Among other things, will be recalled the concepts of a Markov process, the infinitesimal
generator, invariant measures, Fokker-Planck equation, hypoellipticity and diffusion. Annex C
contains all of the exhaustive computations of derivatives needed for the implementation of both
λ–dynamics and the OSRW method, in order to ease the reading of part III.
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Chapter 1
A quick introduction to statistical
physics

Giving sense to the invisible drives us from the moment we are born. What is this world that
surrounds us? Where does heat come from? Where do illnesses come from? How come certain
phenomena governing Nature cannot be grasped by our own physical perception? Struggling to
answer such questions gave birth to many conceptions of the world: some remained the norm for
centuries, others stirred violent controversy. To name but a few, one can cite the pre-socratic
notion of indivisible atoms developed by Leucippus and Democritus around 440 to 430 BC, which
considered matter as being composed of indivisible entities called atoms. Neglected at first, our
world now revolves around it. Another example, now an obsolete theory, is that of the triad of
alchemy, or Tria prima, defined by Paracelsus in 1533 in his Opus paragranum. It attempted to
explain natural phenomena, especially physiological ones, via the links between Suflur, Salt and
Mercury, and is now considered to be the starting point of modern occidental chemistry. One
could also mention Black and Lavoisier’s mid-eighteen century caloric theory, where heat was
wrongly considered to be a fluid, and which eventually led to the foundation of classical thermo-
dynamics. All of these theories interacted with the others, by either building bridges between
ideas or raising walls against arguments. Eventually, the efforts of many led us into the 21st
century viewing our world through the lens of yet another paradigm: that of modern statistical
physics. In this chapter, we will present its key concepts.

1.1 A matter of scales
When it comes to describing physical systems, different scales come into play for both space and
time measurements [43]. The macroscopic scale is the scale we are most at ease with: lengths
are measured in meters, time in seconds, and our human eye can grasp the number of individ-
uals in a given domain up to hundreds of people. In the microscopic scale, typical lengths are
of the order of the Angström (1Å= 10−10m), and times are of the order of the femtosecond
(10−15s). This difference of scales applies for every physical quantities, such as energies, which
are expressed in Joules at the macroscopic scale and in electron-volts at the microscopic scale,
with 1eV= 1.6 × 10−19 J [15]. A good way to visualise the gap between both scales is to look
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at the number of units (electrons, atoms, molecules or ions, depending on the system at hand)
in a given portion –more precisely, a mole– of matter. It is given by the Avogadro’s number
NA ' 6.02214076× 1023 mol−1. As an example [15], in a 1mm3 solid, if one considers the inter-
atomic distances to be of the order of the Angström, there would be around

(
10−3 m/10−10 m

)3 =
1021 atoms. In comparison, on July, 2021, the estimated Earth’s population is around 7.795×109

human beings. One can also consider timescales: for an ideal gas at atmospheric pressure and
room temperature, the mean time between molecular collisions is of the order 10−9s [4], whereas
heating up a pan of water from room temperature to boiling temperature can take several min-
utes.

As a consequence, being able to connect different scale regimes can prove to be difficult.
Indeed, each scale is described using observable variables, and there is a priori no reason for said
variables to be observable at other scales [43]. One can consider the example of the molecular
scale, where the motion of the electrons are often considered to be negligible. At the macro-
scopic scale, as we shall see further on, the temperature of a given object cannot be expressed
analytically as a function of the atoms’ positions. Even though several other regimes of scale
exist, such as the subnuclear scale (where quarks, the components of protons and electrons, be-
come visible) or the mesoscopic scale (where cellular structures such as membranes of the order
of the nanometer are visible), we will only concentrate on the microscopic and macroscopic scales.

We will consider physical systems composed of N particles, be they atoms, molecules, or
ions. The size of the system will refer to the number N of particles. Examples of macroscopic
information one can get on the system are the temperature T , the volume V , the pressure P ,
the work W or even the internal energy U . These quantities are defined using the tools of
thermodynamics, a phenomenological theory used to describe the macroscopic evolution of large
physical systems. It relies on the concept of equilibrium: a physical system will tend to remain
in a stationary state, called thermal equilibrium. A perturbed system will consequently try to
reach thermal equilibrium after a certain relaxation time. Thermodynamic variables, such as the
ones listed above, can be divided into two categories:

. an intensive variable X is independent of the size of the system. It means that its value,
in an homogeneous system, does not depend on where the measure has been made. The
temperature is an example of an intensive variable (the boiling temperature of water does
not change with the amount of water considered), along with the pressure, or even the
colour of the system.

. an extensive variable X depends on the size of the system, and is proportional to it. For
two given systems S1 and S2, one has:

X(S1 ∪ S2) = X(S1) +X(S2).

Direct examples of extensive variables are the mass, the volume or the amount of substance
of a system.

The intensive property indicates that the atoms of the system are not impacted by the surface
[43], whereas the extensive property is linked to the fact that atoms can interact with their sur-
roundings only within a certain range. The fixed value of one of these macroscopic quantities,
say the temperature, defines a macrostate. A macrostate is realised by several possible config-
urations of the system at the microscopic scale, called microstates. Characterising a microstate
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depends on the nature of the system considered. In the scope of classical mechanics, a microstate
is composed of the dynamical variables needed to describe the particles’ motion: the positions
and momenta. As for quantum systems, they will be overlooked in this text. Establishing the
laws between the microscopic components of a given system in order to obtain macroscopic in-
formations about it, such as its energy, its pressure or its tempetature, is the goal of statistical
mechanics.

1.2 The equations of motion at the microscopic scale

Let us consider a system of N particles with position vector q = (qi)i∈J1,NK ∈ D ⊂ R3N and
momentum vector p = (pi)i∈J1,NK ∈ R3N . The space D is called the configuration space. We
define the phase space T ∗D = D × R3N which is the space where the couple (q, p) evolves.
From the standpoint of classical mechanics, one can obtain the evolution of the i-th particle by
applying Newton’s second law:

dpi

dt
= Fi, and

dqi

dt
= m−1i pi,

where Fi is the force acting on the i-th particle and mi its mass. This equation yields the
trajectory in time of the particle, and is entirely deterministic [21]. Another deterministic manner
to describe the motion of a particle is to use the Hamiltonian equations of motion. In the
Hamiltonian formalism, the energy of the system is given by the Hamiltonian function

H(q, p) = Ekin(p) + V (q), (1.1)

where Ekin(p) = 1
2p
>M−1p is the kinetic energy of the particles, M = diag (m1Id, . . . ,mNId)

the mass matrix of the system, and V (q) is the potential energy. The potential energy V is
assumed to be sufficiently smooth, namely, V ∈ C2(D).

Given this energy function, one can obtain the equations of motion as follows:

∂H

∂qi
= −dpi

dt
and

∂H

∂pi
=

dqi

dt
, ∀i ∈ J1, NK, (1.2)

which yields the trajectory (qt, pt)t≥t0 of the particles in the phase space. Starting from an initial
point (q0, p0), one can define the Hamiltonian flow map φt, namely the mapping φt : T ∗D → T ∗D
such that for each time t ≥ 0, φt(q0, p0) = (qt, pt). We refer to the Annex B for further details
on how to establish the Hamiltonian equations of motion (1.2) from the classical, Newtonian
equations.

Remark 1. Note that both kinetic and potential energies could depend on both the momenta and
positions. We will exclude this case and focus only on Hamiltonians of the previous form (1.1),
which are called separable.

Solving (1.2) requires solving 6N equations, 3N on the positions q and 3N on the momenta
p. Since N is usually of the order of NA, it is impossible to properly follow the evolution of each
particle at each time t ! Fortunately, as discussed above, macroscopic quantities of interest are
realised by several possible configurations (q, p) of the system. This justifies the use of statistics
to describe the common, collective behaviour of our N particles.



26 CHAPTER 1. A quick introduction to statistical physics

1.3 The ergodic hypothesis
We are interested in physical observables, namely, smooth and bounded functions of the mi-
crostates (or more generally, degrees of freedom of the system) ϕ ∈ C∞0 (D × R3N ). As the
observation time T > 0 at our macroscopic scale is larger than the usual microscopic timespans,
a measurement of the observable ϕ corresponds to its trajectorial average ϕ̄T :

ϕ̄T :=
1

T

∫ T

0

ϕ(qt, pt) dt. (1.3)

For a given observable ϕ ∈ C∞0 (D × R3N ), one can infer that for large observation times T ,
i.e when T → +∞, the average ϕ̄T converges towards a limit ϕ̄, which can be interpreted as
the equilibrium value of the observable. In order to establish this limit ϕ̄, we introduce the
probability to find the particles at a given position of the phase space, at equilibrium. This
requires to define a measure µ on the phase space, whose density with respect to the Lebesgue
measure λ will also be denoted by µ, so that the probability can be written as

µ(q, p) dqdp = µ
(

(qi)i∈J1,NK , (pi)i∈J1,NK

) N∏
i=1

dqidpi.

One can then define the statistical average, or thermodynamic average of the observable ϕ with
respect to the measure µ:

Eµ [ϕ] =

∫
T ∗D

ϕ(q, p)µ(q, p) dqdp. (1.4)

We will now assume the ergodic hypothesis:

Assumption 1. At thermodynamic equilibrium, the trajectorial average of a given ob-
servable is equal to its statistical average. In other words:

lim
T→+∞

ϕ̄T = ϕ̄ = Eµ [ϕ] . (1.5)

Remark 2. The ergodic hypothesis is a fundamental assumption in statistical mechanics. It is
based on the fact that the Hamiltonian flow φt is ergodic with respect to measure µ(dqdp) :=
µ(q, p)dqdp on the Euclidean space T ∗D. Let us consider a measurable space (X ,B), a measure
ν on X and a family of measurable functions (φt)t≥0 from X to itself such that φ0 = Id and for
all t, s ≥ 0, φt ◦φs = φt+s. The family (φt)t≥0 is said to be ergodic with respect to ν if, and only
if,

∀B ∈ B, ∀t ≥ 0, φ−1t (B) = B, then either ν(B) = 0 or ν(B) = 1.

For a nice introduction to the history of the ergodic hypothesis we refer to Calvin C. Moore’s
perspective paper[68], and we refer to [22] for a more mathematical standpoint.

Remark 3. Along with the statistical average Eµ[ϕ] of the observable ϕ ∈ C∞0 (T ∗D), one may
also be interested in its fluctuations Eµ[ϕ2]− (Eµ[ϕ])

2.

1.4 Different thermodynamic ensembles
Now that the ergodic hypothesis is assumed, one needs to properly define the measure µ on the
phase space. Putting constraints on the system, such as fixing the number of particles N , the
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volume V or the pressure P , amounts to introducing a certain probability space, or statistical
ensemble, on which to define the measure µ. For this reason, the chosen fixed constraints along
with the associated probability distribution µ, define what we call a thermodynamic ensemble.
This yields the existence of several, different probability measures, which depend on the system’s
constraints. We give an exhaustive list of the different possible thermodynamic ensembles, and
refer to [56, Section 1.2.3] for their proper mathematical derivation.

The microcanonical ensemble (NVE)

Here we consider that our system is completely isolated : it cannot exchange particles with the
environment, and its energy is constant. As a consequence, the number of particles N , the
volume V and the energy E are fixed, aso that one can define a thermodynamic ensemble called
the microcanonical ensemble, often denoted by (NVE). The corresponding probability measure
µ ≡ µE is the normalized, uniform probability measure on the set of phase points of constant
energy E:

ΣE := {(q, p) ∈ T ∗D |H(q, p) = E} .

In other words:

µE(dqdp) = Z−1µE δH(q,p)−E(dqdp), ZµE =

∫
ΣE

H(q, p)dqdp = E

∫
ΣE

dqdp, (1.6)

where the measure δH(q,p)−E(dqdp) is obtained as follows. Let us consider the set of configura-
tions whose energy is higher than E up to the small fluctuation ∆E:

I∆E := {(q, p) ∈ T ∗D |E ≤ H(q, p) ≤ E +∆E} ,

endowed with a uniform measure µ̃∆E such that, for all test function ϕ,

µ̃∆E(ϕ) =

∫
I∆E

ϕ(q, p)µ∆E
(dqdp) =

1

∆E

∫
I∆E

ϕ(q, p)dqdp.

Then, as ∆E → 0, one recovers a measure δH(q,p)−E(dqdp) supported on ΣE , such that:∫
ΣE

ϕ(q, p)δH(q,p)−E(dqdp) = lim
∆E↘0

1

∆E

∫
I∆E

ϕ(q, p)dqdp.

1.4.1 The canonical ensemble (NVT)

One may also consider a system which is in contact with a thermal bath, or thermostat. In
this case, the system still canot exchange particles with the environment so that N remains
fixed. On the other hand, the energy now fluctuates, and it is the absolute temperature T that
is constant. The associated thermodynamic ensemble is the canonical ensemble (NVT). One
defines the canonical measure µβ as follows:

µβ(dqdp) = Z−1µβ e
−βH(q,p)dqdp, Zµβ =

∫
T ∗D

e−βH(q,p)dqdp, (1.7)

where β = 1
kBT

is the thermodynamic beta and kB is the Botlzmann constant. The normalisation
constant Zµβ is called the partition function, and plays a key role in defining thermodynamic
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quantities such as the internal energy, the entropy, the free energy or even the heat capacity of
the system.

Now, recalling the expression (1.1) of the separable Hamiltonian, one can rewrite the canon-
ical measure so that the position and momentum vectors are now independent random variables:

µβ(dqdp) = µ(dq)× ν(dp), (1.8)

where

ν(dp) :=

(
β

2π

)3N/2 N∏
i=1

1

m
3/2
i

e−
β
2 p
>M−1pdp,

and

µ(dq) := Z−1µ e−βV (q)dq, Zµ =

∫
D
e−βV (q)dq, (1.9)

is the Boltzmann-Gibbs measure. We will later on be interested in sampling the measure µβ , i.e, in
numerically obtaining positions and momenta (q, p) distributed according to µβ . A pleasant asset
of the decomposition (1.8) is that positions and momenta can be sampled independently, the
momenta being easily sampled. One then only needs to focus on sampling the Boltzmann-Gibbs
measure.

1.4.2 The grand canonical ensemble (µVT)

Systems can also be open, and exchange particles and energy with a reservoir. One way to treat
this case is to consider an isolated system composed of the target system S1, assumed to be
small compared to the much bigger reservoir S2. If we denote by N1 (resp. N2), T1 (resp. T2),
E1 (resp. E2), and µ1 (resp. µ2) the number of particles, absolute temperature, energy and
chemical potential of the system S1 (resp. S2) then the constraints can be read as:

. Thermal equilibrium is reached, so that temperatures and chemical potentials are fixed.
The temperature T and chemical potential µ of the whole system S satisfy T = T1 = T2
and µ = µ1 = µ2.

. The total energy E and number of particles N of the whole system are conserved, i.e
N = N1 +N2 and E = E1 + E2.

This thermodynamic ensemble is called the grand canonical ensemble, denoted by (µVT). The
associated measure, along with the Hamiltonian H1 of the small system S1, change with the
number of particles N1, so that one can write the so-called grand canonical distribution:

µGC(dp,dq;N1) := Z−1GCe
−β(H1(q,p;N1−µN1)dqdp,

where

ZGC =

N∑
N1=0

e−β(H1(q,p;N1)−µN1)

is the grand canonical partition function.
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1.4.3 Other thermodynamic ensembles

Another thermodynamic ensemble is the isobaric-isothermal ensemble, denoted by (NPT), as it
applies to systems under constant pressure P , temperature T and number of particles N . In
which case, the associated measure is given as follows:

µNPT (dqdp) := Z−1NPT e
−β(H(q,p)+PV (q,p))dqdp,

where H is the Hamiltonian of the system and V its volume.

One can also define the isoenthalpic-isobaric ensemble, denoted by (NPH), where H is the
enthalpy of the system, to be defined in Table 1.1. In this case, the enthalpy –which can be seen
as analogous to the energy– and the pressure, are constant. The (NPH) ensemble has not been
covered extensively by the literature, and we refer to the two papers [79] and [78] of J. R. Ray
and his co-authors on the subject.

1.5 State functions and thermodynamic potentials

1.5.1 Definition and the example of entropy

An important notion in thermodynamics is that of state functions, which relate several state
quantities at equilibrium, independently of the path chosen by the system to reach its current
state. For example, work and heat are not state functions, as they depend on the thermody-
namic path. On the other hand, the pressure P , the volume V , the temperature T , the number
of particles N or the chemical potential µ are classical state functions. Their expressions and the
relationships between each others can be found in [21], and we will here focus on a less intuitive
state function, which is the entropy of the system.

The entropy is an extensive function of state which quantifies the degree of disorder of a given
system. If the system undergoes a reversible transformation, the variation of entropy dS can be
expressed as the ratio between the produced heat δQ and the absolute temperature T :

dS =
δQ

T
,

in other words, the entropy tends to capture the energy loss of the system. If one is working within
the microcanonical ensemble and if Ω denotes the number of accessible microscopic configurations
for a given macroscopic state, then the entropy can be rewritten according to the Boltzmann
law:

S = kB lnΩ.

If one works in the canonical ensemble (NVT), as we will further on, one can define as in [56]
the statistical entropy, for a given measure µ of density π on the phase space:

G(µ) := −
∫
T ∗D

ln(π(q, p))π(q, p)dqdp. (1.10)

The statistical entropy, just like the entropy S, quantifies the degree of disorder of the system.
It allows us to visualise how a thermodynamic ensemble (more precisely, its associated measure)
should be the measure which yields the most disordered macrostate possible matching with
given data [56]. We will see in Section 1.5.3 that the statistical entropy can be seen, in a way,



30 CHAPTER 1. A quick introduction to statistical physics

as the entropy of the system in the formalism of statistical mechanics. One can show that the
canonical measure µβ is the unique minimizer of G under the constraint that the average energy

H̄ =

∫
T ∗D

H(q, p)dqdp is constant.

1.5.2 Thermodynamic potentials

Among state functions, one can identify thermodynamic potentials, which allow to predict the
evolution of the system and deduce several of its physical properties. These thermodynamic
potentials depend on the ensemble in which one is working: to each thermodynamic ensemble
one can associate a thermodynamic potential. Let us list them here and refer to [21, 15] for their
proper derivation.

Potential Notation Differential Ensemble

Internal energy U(S, V,N) dU = TdS − PdV + µdN Microcanonical

Helmholtz free energy A(N,V, T ) or F (N,V, T ),
A = U − TS dA = −SdT − PdV + µdN Canonical

Grand potential φG(µ, V, T ),
φG = U − TS − µN dφG = −PdV − SdT −Ndµ Grand canonical

Enthalpy H(P, S,N),
H = U + PV

dH = TdS + V dP ∅

Gibbs free energy
or free enthalpy

G(N,P, T ),
G = A+ PV = H − TS dG = −SdT + V dP + µdN Isothermal-isobaric

Table 1.1 – Different thermodynamic potentials.

1.5.3 Free energy

The only thermodynamic potential we will focus on here is the free energy of a given system
in the canonical (NVT) ensemble. As written above, the free energy is expressed in terms of
thermodynamic variables as A = U−TS, but one may be interested into obtaining an alternative
definition of the free energy within the formalism of statistical mechanics. To do so, we interpret
the internal energy as the average energy with respect to the canonical measure:

Eµβ [H] :=

∫
T ∗D

H(q, p)µβ(dqdp) = Z−1µβ

∫
T ∗D

H(q, p)e−βH(q,p)dqdp.
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Recall that the statistical entropy given by (1.10) reads:

G(µβ) = −
∫
T ∗D

ln

(
e−βH(q,p)

Zµβ

)
e−βH(q,p)

Zµβ
dqdp

= −Z−1µβ

∫
T ∗D

(
−βH(q, p)− ln(Zµβ )

)
e−βH(q,p) dqdp

= βEµβ [H]− ln(Zµβ ).

This yields, if one attempts to mimic the thermodynamic expression:

Eµβ [H]− TG(µβ) = Eµβ [H]

(
1− 1

kB

)
+ T ln(Zµβ ).

This does not satisfies us, as we wish to obtain a quantity which does not depend on the internal
energy in the right-hand term. Now, if one defines the microcanonical entropy to be kBG(µβ),
then:

Eµβ [H]− kBTG(µβ) = −β−1 ln(Zµβ ),

and one defines the Helmholtz free energy as the logarithm of the partition function:

A = −β−1 lnZµB .

The (Helmholtz) free energy is a key quantity for chemists and physicists, and computing free
energy differences will be one of the main motivations of this thesis. We will state the several
uses of the free energy in Section 3.4.1 and the different manners of computing it in Sections 3.4.2
and 3.4.3.
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Chapter 2
A quick introduction to molecular
dynamics

Now that we are endowed with the tools of statistical physics, we may look at ways of numerically
predict the trajectories of a given microscopic system. Such is the motive of molecular dynamics
(MD), a term that encompasses the numerical methods used to simulate the time evolution of
interacting particles, under the assumption that atoms are classical particles.

Molecular dynamics traces back to the birth of modern computers in the early 1950s, where
the first in silico experiments were designed. Seminal works include Metropolis, Rosenbluth,
and Teller’s work on the MANIAC I computer of the Los Alamos National laboratory [64]. The
authors succeeded into obtaining proper macroscopic informations such as equations of state, by
considering the molecules to be individual particles and using a modified Monte-Carlo scheme
to compute trajectories. We refer to the perspective paper of E. J. Maginn and J. R. Elliott [61]
for a complete review of the early days of Molecular Dynamics. The pace at which computer
efficiency has evolved during the last decades has led to a broad range of applications for MD
simulations. Starting in the 1970s, protein folding could now be simulated accurately, only twenty
years after the first runs on the MANIAC I machine. Molecular dynamics is consequently a fast-
paced field of study, and we will present its key notions in the current chapter. In Section 2.1 we
introduce the Born-Oppenheimer approximation used in typical MD simulations, describe the
different kinds of interaction potentials available along with the possible boundary conditions
one can use. We then proceed to present the Langevin and overdamped Langevin dynamics in
Section 2.2 used to sample the canonical measure (1.7), along with their different discretisation
schemes.

2.1 Settings

2.1.1 The Born-Oppenheimer approximation

Most molecular dynamics simulations rely on the Born-Oppenheimer approximation, which
proves to be useful for the quantum analysis of atoms and molecules. It assumes that one can
treat the motion of nuclei and electrons separately. Let us quickly sketch the main idea behing the
Born-Oppenheimer approximation, by considering the molecular Hamiltonian representing the
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energy of the nuclei and electrons of a given molecule. Let us denote by Q = (Q1, . . . ,QN) ∈ R3N

(resp. q = (q1, . . . ,qn) ∈ R3n) and P = (P1, . . . ,PN) ∈ R3N (resp. p = (p1, . . . ,pn) ∈ R3n)
the positions and momenta of the N nuclei (resp. n electrons) of the molecule. The molecular
Hamiltonian is given by:

H(Q,P ; q, p) = EkinN (P ) + Ekinn (p) + VNN (Q) + Vee(q) + VeN (Q, q),

where

• EkinN (P ) =

N∑
i=1

Pi
2

2Mi
is the kinetic energy of the nuclei,

• Ekinn (p) =

n∑
i=1

pi
2

2me
is the kinetic energy of the electrons,

• VNN (Q) =
∑
i,j
i<j

ZiZje
2

4πε0|Qi −Qj|
is the potential energy resulting of Coulombic nucleus-nucleus

repulsion,

• Vee(q) =
∑
i,j
i<j

e2

4πε0|qi − qj|
is the potential energy resulting of Coulombic electron-electron

repulsion,

• VeN (Q, q) = −
N∑
i=1

n∑
j=1

Zie
2

4πε0|Qi − qj|
is the potential energy resulting Coulombic electron-

nuclei attraction,

with Mi being the mass of the i-th nuclei, me the electron rest mass (namely, the mass of a
stationary electron), Zi the atomic mass of the i-th nucleus, ε0 the vacuum permittivity and e
the elementary charge.

Now, one wishes to solve the time-independent Schrödinger equation:

H(Q,P ; q, p)ψ(Q, q) = Eψ(Q, q),

where ψ(Q, q) is an eigenfunction of the molecular Hamiltonian associated to the (energy) eigen-
value E.

This is where the Born-Oppenheimer approximation comes into play: as the electrons are
much lighter than the nuclei, the electrons can be considered to follow the nuclei motion
adiabatically, meaning that they will be dragged by the nuclei without requiring a finite
relaxation time. As a consequence, one can decompose the wavefunction ψ(Q, q) using a
separation of variables, so that:

ψ(Q, q) = ψe(Q, q)ψN (Q),

where ψe(q,Q) is the electron wavefunction for a fixed nuclear configurationQ, and ψN (Q)
is the nuclear wavefunction.
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The idea is then to consider the clamped Hamiltonian describing the energy of the electrons for
a fixed nuclear configuration Q:

Helec(Q; q, p) = Ekinn (p) + VNN (Q) + Vee(q) + VeN (q,Q)

' Ekinn (p) + Vee(q) + VeN (q,Q),

where the nucleus-nucleus potential energy VNN can be neglected, as here Q is only a parameter,
making VNN (Q) a term that simply shifts the eigenvalues by a constant. One can then determine
the electronic wavefunction by solving:

Helec(Q; q, p)ψe(Q, q) = Ee(Q)ψe(Q, q).

Eventually, the nuclear wavefunction can be recovered by solving:(
EkinN (P ) + Ee(Q) + VNN (Q)

)
ψN (Q) = EψN (Q).

All simulations in this thesis will be done within the Born-Oppenheimer approximation.

2.1.2 Interaction potentials

Now that the Born-Oppenheimer approximation is made, we will from now on only consider the
nuclei’s motion. We are interested in interactions between neutrally charged particles such as
atoms, molecules and even proteins. Particles are assumed to be rigid spheres interacting with
each others via interaction potentials, or force fields. Depending on the choice of the force field,
one can simulate from 104 to 1012 atoms, over period of times of the order of the picosecond,
sometimes even of the nanosecond. When the potentials are empirical, i.e based on a man-
made model, one can run simulations for up to 1012 atoms, to the cost of accuracy. Indeed,
one would like to model the interactions as precisely as possible without relying on empirical
models: this is the goal of ab initio molecular dynamics. With ab initio force fields, which take
into consideration the quantum description of the interactions, the number of atoms accessible
to simulation decreases greatly. Nevertheless, a recent breakthrough [44] reached the number of
108 atoms using machine learning. In this thesis, we will overlook ab initio potentials and focus
only on empirical force fields. As an example, we recall here the expression of the Lennard-Jones
potential, which is often used to describe short-ranged interactions in classical models. The
Lennard-Jones potential describes the soft, attractive interactions of atoms or molecules, such
as the van der Waals interactions. It is defined as follows:

VLJ(r) := 4ε

[(σ
r

)12
−
(σ
r

)6]
,

where r is the distance between two particles, ε is the depth of the potential well, and σ is such
that when r = σ, VLJ(r) = 0. The Lennard-Jones potential admits one minima at r = r∗ = 2

1
6σ

so that one can rewrite:

VLJ(r) = 4ε

[(
r∗

2
1
6 r

)12

−
(
r∗

2
1
6 r

)6
]
,
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i.e

VLJ(r) = 4ε

[
1

4

(
r∗

r

)12

− 1

2

(
r∗

r

)6
]
.

In other words,

VLJ(r) = ε

[(
r∗

r

)12

− 2

(
r∗

r

)6
]
. (2.1)

Remark 4.

. Note that the Lennard-Jones potential (2.1) is singular. Nevertheless, as stated in Sec-
tion 1.2, theoretical interaction potentials are taken to be at least in C2(D).

. Several other empirical potentials exist, and we will discuss a generic model for the van der
Waals interactions later on in Section 6.4.

2.1.3 Boundary conditions
We will work only with isolated systems. In this case, several choices of boundary conditions can
be used for numerical simulations. We will restrict ourselves to the following two.

. The periodic boundary conditions are often used. In this case, particles interact with their
physical neighbours, but also with their periodic images.

. As we shall see later on in Sections 6.4 and 6.5, one may apply reflecting boundary condi-
tions when the system, or part of it, is constrained to a given region of the configuration
space.
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Figure 2.1 – Boundary conditions: the center cell is the reference cell were the real atoms live.
The other cells are replicas obtained by translations of the reference cell, and the light-coloured
atoms are the periodic images of the bright-coloured atoms.

2.2 Sampling the canonical measure

From now on, we will work within the canonical (NVT) ensemble. We will consider
a system of N particles of positions q = (qi)i∈J1,NK ∈ D ⊂ RdN and momenta p =

(pi)i∈J1,NK ∈ RdN , where d is the space dimension. Let us recall that the space D is the
configuration space and that we denote the phase space by T ∗D = D × R3N .

We consider, as stated in Section 1.2, a separable Hamiltonian as given in (1.1):

H(q, p) =
1

2
p>M−1p+ V (q),

where we assume that the potential energy V is sufficiently smooth, namely, V ∈ C2(D). The
associated measure, as said in section 1.4.1 is the canonical measure µβ ∝ e−βH given by (1.7).
We know that under the ergodic hypothesis, one can approach statistical averages of the form
(1.4) by computing trajectorial averages of the form (1.3) for any observable ϕ ∈ C∞b (T ∗D) using
equality (1.5). As a consequence, one would like to be able to sample the canonical measure in
order to compute thermodynamic averages Eµβ [ϕ] for any observable ϕ ∈ C∞b (T ∗D). In order to
do so, one can use Langevin or overdamped Langevin dynamics. These models are both given by
continuous diffusion processes: we refer to the Annex A for the definition and basic properties
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of Markov processes, along with a quick recap of diffusion processes.

2.2.1 Langevin dynamics

Langevin dynamics is a stochastic process (qt, pt)t≥0 modelling the evolution in time of particles
subject to friction and dissipation. It is a Hamiltonian system coupled with a reservoir of constant
temperature T [56], thermed a thermostat (not to be confused with a thermostat in the sense of
classical physics). The process (qt, pt)t≥0 satisfies the following stochastic differential equations:

 dqt = ∇pH(qt, pt)dt,

dpt = −∇qH(qt, pt)dt− γ(qt)∇pH(qt, pt)dt+ σ(qt)dWt ,
(2.2)

where (Wt)t≥0 is a standard 3N -dimensional Brownian motion, σ and γ are functions with
values inM3N (R), with γ being positive definite and σ being symetric. In the scalar case, both
parameters are assumed to be positive. The energy brought into the system by the fluctuation
term σ(qt)dWt is dissipated by the friction term −γ(qt)∇pH(qt, pt)dt. In most simulations, γ
and σ are taken to be constants. In any case, these quantities satisfy the following fluctuation-
dissipation condition:

σσ> =
2γ

β
, (2.3)

where β :=
1

kBT
.

When H is separable, one can rewrite the dynamics as: dqt = M−1ptdt,

dpt = −∇V (qt)dt− γ(qt)M
−1ptdt+ σ(qt)dWt.

The infinitesimal generator L of the dynamics (2.2) reads:

L = {·, H}+ β−1eβHdivp
(
γe−βH∇p·

)
,

where {· , H} denotes the Poisson bracket against the Hamiltonian H. For all test function ϕ,
one has:

{ϕ,H} = ∇pH · ∇qϕ−∇qH · ∇pϕ.

One can then show [56, Section 2.2.3] that:

(i) Langevin dynamics (2.2) is reversible with respect to the canonical measure up to momenta
reversal. Indeed, since the kinetic energy is symmetric, the momentum reversal S(q, p) :=
(q,−p) leaves µβ invariant. One consequently has for any pair of test functions ϕ, ϕ̃:∫

T ∗D
ϕLϕ̃dµβ =

∫
T ∗D

ϕ̃ ◦ SL (ϕ ◦ S) dµβ .

(ii) The canonical measure µβ is an invariant measure for the Langevin dynamics, namely, for
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all test function ϕ: ∫
T ∗D
Lϕdµβ = 0.

(iii) The operator L satisfies the parabolic Hörmander condition (A.5), and is by consequence
hypoelliptic.

One may show that a consequence of (ii) and (iii) is that the process (qt, pt)t≥0 is ergodic with
respect to the canonical measure, see [56, Section 2.2.3.1]. In other words, for any initial condition
(q0, p0), for any observable ϕ ∈ C∞b (T ∗D):

lim
T→+∞

1

T

∫ T

0

ϕ(qt, pt) dt =

∫
T ∗D

ϕdµβ , almost surely.

2.2.2 Overdamped Langevin dynamics
A much simpler dynamics also used to sample the canonical measure, or more precisely, the
Boltzmann-Gibbs measure, is overdamped Langevin dynamics. It is the limit of Langevin dy-
namics as the friction γ goes to +∞. In this overdamped limit, the friction forces become predom-
inant, and one deals with a system with null average acceleration. Indeed, if one defines ε := γ−1,
Langevin dynamics with position and momentum vectors given by (qεt , p

ε
t ) := (qt/ε, pt/ε) reads:

dqεt = 1
εM
−1pεtdt,

dpεt = − 1
ε∇V (qεt )dt− 1

ε2M
−1pεtdt+

√
2β−1

ε2 dWt ,

and one can infer that when ε � 1, there is a separation of timescales for the positions and
momenta, as the momenta (pεt )t≥0 will thermalise faster than the positions (qεt )t≥0. As a conse-
quence, in the limit γ → +∞, momenta will be thermalised and the dynamics is then reduced to
the positions. This leads us to define overdamped Langevin dynamics, the derivation of which
can be found in details in [71, Chapter 6] and [56, Section 2.2.4]:

dqt = −∇V (qt)dt+
√

2β−1dWt, (2.4)

where (Wt)t≥0 is a 3N -dimensional Brownian motion.

Remark 5. Langevin dynamics (2.2), where γ < +∞, is often called underdamped Langevin
dynamics, or kinetic Langevin dynamics.

The infinitesimal generator L of the dynamics (2.4) reads:

L = −∇V · ∇+ β−1∆,

and one can show that:

(i) The overdamped Langevin dynamics is reversible with respect to the Boltzmann-Gibbs
measure µ ∝ e−βV given by equation (1.9). One consequently has for any pair of test
functions ϕ, ϕ̃: ∫

D
ϕLϕ̃dµ =

∫
D
ϕ̃Lϕdµ.
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Note that here, reversibility is a notion from probability theory, which is not to be confused
with the momentum reversibility property mentioned earlier in the previous Section.

(ii) The Boltzmann-Gibbs measure µ is an invariant measure for the overdamped Langevin
dynamics, namely, for all test functions ϕ:∫

D
Lϕdµ = 0.

(iii) The operator L satisfies the parabolic Hörmander condition (A.5), and is by consequence
hypoelliptic (to be more precise, it is even elliptic).

As in the previous section, (ii) and (iii) yields the ergodicity of the process with respect to the
measure µ.

Remark 6. Another way to study pathwise ergodicity is to look at the density πt of law of the
process. One can show that it satisfies the following Fokker-Planck equation:

∂tπt = L∗πt, (2.5)

where L∗ is the adjoint of the operator L with respect to the L2(dq)-scalar product. The Boltzmann-
Gibbs measure µ is a stationary solution of (2.5). Provided ∂t − L∗L satisfies a parabolic Hör-
mander condition, i.e is hypoelliptic, then the ergodicity of the process (2.4) holds.

2.2.3 Numerical schemes
Knowing that both Langevin and overdamped Langevin dynamics are ergodic with respect to
the canonical measure and Boltzmann-Gibbs measure respectively, one may wish to discretise
them. Let us give a quick overview of how to do so. We denote by h the timestep, and we denote
by qn (resp. pn) the position (resp. momentum) at time tn = nh, with n a positive integer.

2.2.3.1 Overdamped Langevin dynamics: Euler-Maruyama scheme

There exists a simple way to discretise the overdamped Langevin dynamics, which is to use the
classical Euler-Mayurama scheme [56]:

qn+1 = qn − h∇V (qn) +
√

2β−1hGn,

where Gn is a 3N -dimensional vector whose components are independent Gaussian random
variables.

2.2.3.2 Langevin dynamics: SPV and BBK schemes

Langevin dynamics is more intricate to discretise, as it is the superposition of an Hamiltonian
system with a stochastic process on the momenta. A key idea when discretising stochastic
differential equations of the form

dXt = A(Xt)dt+B(Xt)dWt,
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where (Xt)t≥0, A and B are of dimension m and (Wt)t≥0 is a m-dimensional Brownian motion
(m ∈ N∗), is to establish a decomposition of the right-hand term’s vector field into the sum of
independant and exactly solvable parts. Each part can thus be discretised exactly, and one re-
covers the discretisation of the differential equation by combining the updates of each parts [54].
The resulting schemes are called splitting schemes, as decomposing the vector field amounts to
decomposing the dynamics’ infinitesimal generator as the sum of several differential operators.
Splitting schemes are privileged schemes for the Langevin dynamics, as it can be shown that
they are high-order methods [54, Section 2.4]. Let us list three well-known schemes:

. Stochastic Position Verlet – [SPV]
This method is obtained by re-writing the dynamics as:

d

(
q
p

)
=

(
M−1p

0

)
dt+

(
0

−∇V (q)dt− γpdt+ σM
1
2 dW

)
which leads to the following Stochastic Position Verlet scheme:

qn+ 1
2

= qn + h
2M

−1pn

pn+1 = e−γhpn − η∇V (qn) +
√
β−1(1− e−2γh)Gn

qn+1 = qn+ 1
2

+ h
2M

−1pn+1 ,

where Gn is a vector of 3N independent and identically distributed random variables, fol-
lowing a centered Gaussian law N (0, 1) and η := (1− e−γh)/γ. Note that lim

γ→+∞
η = 0 so

that this scheme is not suitable for the discretization of the overdamped Langevin dynamics.

. Brünger-Brooks-Karplus – [BBK]
Rewriting (2.2) as:

d

(
q
p

)
=

(
M−1p

0

)
dt+

(
0

−∇V (q)

)
dt+

(
0

−γpdt+ σM
1
2 dW

)
(2.6)

leads to the following Brünger-Brooks-Karplus scheme

pn+ 1
2

= (1−γh)
2 pn − h

2∇V (qn) + 1
2

√
2β−1γhM

1
2Gn

qn+1 = qn + hM−1pn+ 1
2

pn+1 =
(

1 + γh
2

)−1 (
pn+ 1

2
− h

2∇V (qn+1) + 1
2

√
2β−1γhM

1
2 G̃n

)
,

where Gn and G̃n are two 3N -dimensional and independent vectors following a cen-
tered Gaussian law N (0, 1). The next step’s Gaussian random variable will be given by
Gn+1 = G̃n.

. Other schemes
The decomposition (2.6) allows us to define several other schemes of the same family:
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among them, BAOAB is the most reknowned scheme, and we refer to [54, Section 7.3.1]
for an exhaustive list of similar schemes and their definition.

Remark 7. Note that the discretisation of the stochastic process (qt, pt)t≥0 defines a Markov
chain (qn, pn)n∈N, which we assume to still be ergodic with respect to an invariant measure µh.
In which case, the distance between the measure µh and the target measure µ is of the order h.
This yields a timestep-dependent error, called bias, in computing canonical averages against µ.
Some algorithms relying the Metropolis-Hasting strategy can be used to get rid of such errors [54,
Chapter 7],[56, Algorithms 2.9 and 2.11].



Chapter 3
Free energy calculations and
sampling methods

The aims of molecular dynamics simulations are numerous, such as determining statistical aver-
ages of observables given by (1.4), or thermodynamic properties of the system at hand. Among
them is the computation of the free energy, defined in Section 1.5.3. More precisely, the key
quantity of interest is often the free energy difference of the system ∆A between two different
equilibrium states. In order to estimate ∆A, one would need to be able to sample either the
canonical measure µβ or the Boltzmann-Gibbs measure µ both introduced in Section 1.4.1. By
enabling us to sample one of those two measures, Langevin and overdamped Langevin dynam-
ics allow for a proper sampling of the configuration space, and consequently would permit the
computation of such free energy differences. However, one difficulty arises, that of metastability :
due to the inherent nature of the system and of the target measure, the system may remain
trapped in certain regions of the phase space, and one would have to wait for an unreasonable
period of time in order to see the system explore the rest of the phase space. The sampling of
the equilibrium measure by both dynamics is thus considerably slowed down. One consequently
needs to build numerical methods bypassing metastability and enhancing the sampling of the
phase space. A key idea used in this scope is to rely on a reaction coordinate, namely a good
mapping of the state of the system, in a sense to be precised further on. Such mapping may
then be used by an algorithm specifically designed to by-pass metastability, and one may even-
tually evaluate the taget free energy difference ∆A. This chapter is dedicated to such algorithms.

In this chapter, we first properly define the notion of metastability in Section 3.1 and intro-
duce in Section 3.2 the concept of reaction coordinate. We will distinguish two kinds of reaction
coordinates, depending on the kind of transition considered for our system, which can be either
conformational or alchemical. We will eventually review the question of how to properly choose
a reaction coordinate. We then introduce in Section 3.3 the existing algorithms used to avoid
metastability and enhance the sampling of the canonical measure. We put the emphasis on
the Adaptive Biasing Force method and motivate the first problem to be treated in this thesis,
namely its robustness in the case where the interaction force between the system’s components
is not conservative. We then focus on alchemical transitions and introduce in Section 3.4 the
motivation behind computing free energy differences in such a setting, and proceed to list the
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available methods used in this scope. Among these methods, we will focus on the λ–dynamics
method and review its limitations. Eventually, we introduce the concept of the Orthogonal Space
Random Walk (OSRW) sampling algorithm whose goal is to bypass the λ–dynamics method’s
inherent issues. We then describe the second problem of this thesis, which was to build a proper,
reproducible sampling algorithm competing with the OSRW method.

From now on, we will work under the following assumption:

Assumption 2. The dynamics of the system is given by overdamped Langevin dynamics
(2.4) on D ⊂ RdN where d is the space dimension and N the number of particles.

3.1 What is metastability?

3.1.1 Definition and examples
A system is said to be metastable when it may remain trapped in specific regions of the phase
space, called metastable regions, for a very long period of time, before moving elsewhere. The
overdamped Langevin dynamics we are working with is widely used, and known to be metastable.
A first explanation is that the potential energy V has several local minima, and the system’s
components remain in potential wells for a great amount of time before jumping the energetic
barrier and reaching another potential well, as shown in Figure 6.3.

Figure 3.1 – Contour plot (left) of the potential given by the 2-dimensional potential V (x, y) =
1
6 (4(1− x2 − y2)2 + 2(x2 − 2)2 +

(
(x+ y)2 − 1

)2
+
(
(x− y)2 − 1

)2
), and projected trajectory on

x (right).

Metastability is commonly observed in biophysical and chemical phenomena. We list here
two classical examples.

• Example 1: configurational isomerism – Two molecules are stereoisomers when they
have the same formula and bonds, but their functional groups are in different orientations in the
three-dimensional space. A classical example are the isomers of the 1,2-dichloroethene molecule
C2H2Cl2: the cis-isomer of the molecule is the conformation where the functional groups (i.e the
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chlorine and hydrogen atoms, separately) are on the same side of a plane including the double
bond, whereas the trans-isomer is the conformation where they are on opposing sides.

Figure 3.2 – cis-isomer of the 1,2-dichloroethene molecule.

Figure 3.3 – trans-isomer of the 1,2-dichloroethene molecule.

Here, the system’s components are the atoms, and to each configurational isomer is associated
a local minimum of the system’s potential energy. As a consequence, the system is metastable,
and observing the change of configuration is considered a rare event. Let us illustrate it with the
cis-trans isomers of the azobenzene C12H10N2 molecule, which can undergo a change of configu-
ration upon irradiation with light. In the dark, the molecule tends to be in the short cis-isomer
configuration, and when irradiated, it undergoes a transition towards the longer trans-isomer
configuration, which is thermally favoured [37].

Figure 3.4 – Energy landscapes for a configurational transition of the azobenzene molecule from
the cis-isomer configuration (in red) to the trans-isomer configuration (in blue). The two energy
surfaces corresponds to the ground state S0 and the first excited (singlet) state S1 of the molecule.
The molecule first needs to reach either the first excited state S1 (or even the second S2) to relax
into either the cis or the trans configuration. The transition configuration is shown at the conical
intersection CI, and the cyan region indicates the region of the excited energy landscape S1 where
the probability of configurational change is higher than 0.1. Source: [85]
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• Example 2: protein folding – Other examples of metastability arise in the context of
protein folding. A protein is a biomolecule composed of one or several amino acids chains, which
can have many different configurations in the three-dimensional space. A protein can be unfolded,
in which case its amino acids chains will be fully “uncoiled”, but will not be stable. An unfolded
protein will eventually fold itself, depending on the interactions between the amino acids and
the environment. According to the kind of amino acids composing its chains, the protein will
either curl up around itself, avoiding contact between its core and the environment, or fold into
an alternative configuration which allows higher interactions with the protein’s surroundings. A
classical hypothesis is that one can view the protein’s journey, from an unfolded state to one
of its curled-up, folded states, as an energy minimization problem, where the protein’s energy
landscape is shaped as a funnel. Eventual potential wells can be located at the walls of the
funnel, and the energy landscapes thus have several local minima. The global minimum of the
energy landscape then corresponds to the protein’s native structure, i.e the properly assembled
and functional form of the protein which is stabilized by several weak-interactions including the
formation of hydrogen bonds and van der Waals interactions, whereas local minima correspond
to denaturated configurations.

Figure 3.5 – Schematic representation of a funnel-shaped energy landscape. Source: [77]

Remark 8. Another explanation for the metastability of a system is the presence of entropic
barriers. We refer to [56, Section 1.3.3.2] for a proper discussion on entropic and energetic
barriers. For the sake of simplicity, and since our goal is here to give a hint on what metastability
is, we will only talk of energetic wells, keeping in mind that doing so is reductive.

In a probabilistic setting metastability is linked to the multimodality of the Boltzmann-Gibbs
measure µ given by equation (1.9): the probability density function of µ has several local maxima
(or modes), which coincide with the local minima of the potential energy V . Consequently, high
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probability regions corresponds to potential wells and low probability regions correspond to
energy peaks.

3.1.2 Quantifying metastability

3.1.2.1 Convergence of averages and convergence of the law

Metastability has a direct impact on a system’s rate of convergence towards the equilibrium. In
particular, given an observable ϕ, one may be interested into quantifying the rate of convergence,
called the mixing time, of the following limit:

lim
T→+∞

1

T

∫ T

0

ϕ(qt) dt = Eµ [ϕ] , (3.1)

where the trajectorial average of the observable ϕ converges to its statistical mean Eµ[ϕ]. One
may also be interested in the rate of convergence, called relaxation time, of the law of the process
(Xt)t≥0 to the Boltzmann-Gibbs measure µ. Such convergence can be expressed as follows: for
any continuous and bounded test function ϕ,

lim
T→+∞

E[ϕ(XT )] = Eµ [ϕ] . (3.2)

When the system is metastable, both convergences (3.1) and (3.2) are expected to be slowed
down. In others words, metastability can be quantified by substantially long mixing time and
relaxation times.

Note that both properties (3.1) and (3.2) are referred to as ergodicity properties. The long-
time convergence of trajectorial averages (3.1) is often obtained after the long-time convergence
of the law consider at the convergence of the law of the considered process. Here, we focus on
overdamped Langevin dynamics (2.4). Its infinitesimal generator is given by:

L = −∇V · ∇+ β−1∆,

and if we denote by πt the probability density of the law of the process, as mentioned in Section
A.4, it satisfies the following Fokker-Planck equation:

∂tπt = L∗πt,

where L∗f = div
(
∇V · f + β−1∇ f

)
is the adjoint of the infinitesimal generator. Quantifying

metastability then amounts to quantifying the rate of convergence of (3.2), i.e the rate of
convergence of the density πt towards the Boltzmann-Gibbs distribution µ ∝ exp(−βV ). In
order to quantify this convergence propertly, let us introduce the key notions of relative entropy,
Fisher information and logarithmic Sobolev inequality.

Remark 9. There exist other approaches tothe quantification of metastability. Among them, one
relies on the concept of quasi-stationary distributions and another one on the Eyring-Kramers
formula. We refer to [55, Section 3] and [16] for proper definitions and mathematical proofs.

3.1.2.2 Relative entropy and logarithmic Sobolev inequality

For ν, µ two probability measures on the same space E, we will denote by ν � µ the absolute
continuity of ν with respect to µ. Now consider the relative entropy of ν with respect to µ:
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H(ν|µ) =


∫
E

ln

(
dν

dµ

)
dν if ν � µ,

+∞ otherwise.

We recall the Csiszár-Kullback inequality:

‖ν − µ‖TV ≤
√

2H(ν|µ) , (3.3)

where ‖ · ‖TV stands for the total variation norm. Let us recall that for two probability measures
ν and µ on a probability space (Ω,F), the total variation norm is given by:

‖ν − µ‖TV := 2 sup
A∈F
|ν(A)− µ(A)|.

In particular, while the relative entropy is not a distance (it lacks the symmetry property), its
convergence to zero implies the convergence in total variation norm of ν towards µ.

Similarly, let us define the Fisher information: for ν � µ,

I(ν|µ) =

∫
E

∣∣∣∣∇ ln

(
dν

dµ

)∣∣∣∣2 dν.

The probability measure µ is said to satisfy a Logarithmic Sobolev Inequality LSI(ρ) of
constant ρ > 0 if:

∀ν � µ, H(ν|µ) ≤ 1

2ρ
I(ν|µ).

From [70], if µ satisfies a log-Sobolev inequality with constant ρ > 0, then it also satisfies the
so-called Talagrand inequality T (ρ) with constant ρ > 0:

∀ν � µ, W 2
2 (ν, µ) ≤ 2

ρ
H(ν|µ), (3.4)

whereW2(ν, µ) is the Wasserstein distance with quadratic cost between the probability measures
ν and µ. More precisely, if ν and µ are defined on a general Riemannian manifold Ω:

W 2
2 (ν, µ) = inf

π∈Π(ν,µ)

∫
Ω×Ω

ω(x, y)2 dπ(x, y),

where ω is the geodesic distance on Ω, and Π(ν, µ) is the set of coupling probability measures,
i.e probability measures on Ω×Ω whose marginals are ν and µ respectively. Note that since the
content of the integral is positive in any case, the quantityW 2

2 (ν, µ) is well defined. In particular,
it is finite provided the measures ν and µ have a second-order moment.

From now on, we will slightly abuse notations and write I(ν|µ), H(ν|µ) or W2(ν|µ) both in
the case where ν and µ are probability measures, or probability density functions. The density of
the Boltzmann-Gibbs measure is thus denoted by µ. Now, let us assume µ satisfies a logarithmic
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Sobolev inequality of constant ρ. Denote by πt the density of the law of the process (2.4), which
satisfies the Fokker-Planck equation (2.5) rewritten as follows:

∂tπt = L∗πt
= div

(
∇V πt + β−1∇πt

)
= div

(
ββ−1∇V e−βV eβV πt + β−1∇πte−βV eβV

)
= β−1div

(
eβV

(
∇πte−βV − πt∇e−βV

))
= β−1div

(
e−βV

(
∇πte−βV − πt∇e−βV

)
(e−βV )2

)
,

so that
∂tπt = β−1div

(
µ∇

(
πt
µ

))
.

Let us then consider the time-derivative of the relative entropy of the law πt with respect to the
Boltzmann-Gibbs measure µ:

∂tH (πt |µ) = ∂t

∫
D

[
ln

(
πt
µ

)
πt

]
=

∫
D

[
∂t ln

(
πt
µ

)
πt + ln

(
πt
µ

)
∂tπt

]
=

∫
D
∂tπt +

∫
D

[
ln

(
πt
µ

)
β−1div

(
µ∇

(
πt
µ

))]
.

Since
∫
D
πt = 1, and since the configuration space is compact, one has:

∂tH (πt |µ) = −β−1
∫
D

[
µ∇

(
πt
µ

)
· ∇ ln

(
πt
µ

)]
= −β−1

∫
D

[
µ

πt
∇
(
πt
µ

)
· ∇ ln

(
πt
µ

)
πt

]
= −β−1

∫
D

[
|∇ ln

(
πt
µ

)
|2 πt

]
,

hence
∂tH (πt |µ) = −β−1I (πt |µ) . (3.5)

A direct consequence of (3.5) is that since µ satisfies LSI(ρ), one has

∂tH (πt |µ) ≤ −2β−1ρH (πt |µ) ,

and one can conclude using Gronwall’s lemma, that for all t ≥ 0, and for any initial condition
π0:

H (πt |µ) ≤ H (π0 |µ) e−2β
−1ρ t.

The Csiszár-Kullback inequality (3.3) then yields for all t ≥ 0:

‖πt − µ‖TV ≤
√

2H (πt |µ) ≤
√

2H (π0 |µ)e−β
−1ρt.
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One can then conclude that the density πt converges exponentially fast in the long-time limit
towards the density of the Boltzmann-Gibbs measure µ in L1-norm with rate β−1ρ. The expo-
nential rate allows us to quantify metastability: for a fixed temperature T (and hence a fixed
β), the smaller the logarithmic Sobolev constant ρ is, the greater the metastability [56, Section
2.3.2.1].

3.1.2.3 Properties and criteria for logarithmic Sobolev inequalities

Since logarithmic Sobolev inequalities are a key tool for quantifying the metastability of a given
process, one may be interested in establishing if a given stationary measure of the Boltzmann-
Gibbs form, i.e µ ∝ e−βV , satisfies a logarithmic Sobolev inequality. Let us first list an interesting
property:

Property 1. If µ =

N∏
n=1

µn and each measure µn(q)dq satisfies LSI(ρn) with ρn > 0 then

µ satisfies LSI(ρ) with ρ = min{ρn |n ∈ J1, NK}.

Now, let us state two criteria for a measure π∞ to satisfy a logarithmic Sobolev inequality
[56].

Proposition 1 (Bakry-Emery criterion). Let V : RdN → R be an α-convex function,
namely a function such that for some α > 0,

∀x, y ∈ RdN , y>∇2V (x)y ≤ α|y|2,

where ∇2V denotes the Hessian matrix of V . The measure π∞ ∝ e−V then satisfies a
LSI(ρ) with ρ ≥ α.

Proposition 2 (Holley-Strook criterion). Let V be a function such that the measure
π∞ ∝ e−V satisfies a LSI(ρ) with ρ > 0. Consider a bounded function Ṽ . Then, the
measure π̃∞ ∝ e−(V−Ṽ ) satisfies LSI(ρ̃) with

ρ̃ ≥ ρeinf(Ṽ )−sup(Ṽ ).

3.2 Transition coordinates: configurational and alchemical
cases

Metastability is a major obstacle in MD simulations. Now that we know it can be quantified,
we wish to answer the question: how does one avoid metastability? Is there a way to reduce
metastability? Many algorithms have been designed in order to do so. Among them, some rely
on the concept of transition coordinates, or reaction coordinates, or collective variables. Most of
the time the three denominations are used without distinction, even though the terms do not
have the same meaning depending on the system at hand. Transition coordinates, often denoted
by ξ, are mappings designed to provide a coarse-grained information on the system’s state. Let
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us take the example 1 in Section 3.1.1 of configurational isomerism. The two possible configu-
rations of the 1, 2-dichloroethane molecule are the two cis-trans isomers of Figures 3.2 and 3.5.
To each isomer corresponds a potential well, and one can grasp that the change of configuration
solely relies on the fact that the dihedral angle between the double-bound and the chlorine atoms
changes, as shown in Figure 3.6. In a simulation, the change of dihedral angle would be the only
slow motion of the molecule’s dynamics: a good idea is thus to consider the reaction coordinate
ξ which maps the position q onto the corresponding dihedral angle.

Figure 3.6 – Representation of the energy landscape of the 1, 2-dichloroethane molecule Source:
http: // chemcollective. org/ chem/ entropy/ reactcoord. php

A transition coordinate can be very different depending on the system considered: it can be
the dihedral angle of a molecule, the signed distance to a hypersurface of D, or, in the case of
proteins or small biomolecules, it can also be the root-mean-square deviation of atomic positions,
namely the average distance between the protein’s backbone atoms.

Choosing a transition coordinate is inherent to the kind of transition one wishes to study.
Indeed, as said above, one aim of MD simulations is to compute free energy differences between
two equilibrium states. One has the intuition that a transition coordinate might be able to
properly characterise the transition of the system from a given initial state to a target final state.
Let us list the two different kinds of possible transitions, and how one defines the free energy
difference in each case.

3.2.1 Conformational transitions

In conformational transitions, the system is characterised by its Hamiltonian H given by (1.1).
In this case, the term reaction coordinate is preferred, and one considers ξ to be a geometric
function of the positions: it can be a dihedral angle, a distance, and so on. Namely, a reaction
coordinate is a mapping of the microstates built to capture the slow components of the dynamics.
It is a mapping of the form

ξ : D ⊂ RdN →M, (3.6)

whereM is a manifold of lesser dimension m� dN . If for example ξ is the dihedral angle of a
molecule thenM = T, whereas if it is the signed distance to a hypersurface of D, thenM = R.

http://chemcollective.org/chem/entropy/reactcoord.php


52 CHAPTER 3. Free energy calculations and sampling methods

In any case, ξ(q) ∈M is the macroscopic state of a microscopic state (q, p) ∈ T ∗D. The reaction
coordinate ξ then gives a foliation of the configuration space:

D =
⊔
z∈M

Σz =
⊔
z∈M
{q ∈ D|ξ(q) = z}.

We assume that the submanifolds (Σz)z∈M are simply connected. Now, denoting by σΣz
the

measure on Σz induced by the Lebesgue measure on D, one can define the measure δξ(q)−z(dq)
by

δξ(q)−z(dq) =
1√

detG(q)
σΣz

(dq),

where G = (∇ξ)>∇ξ, in other words,

Gi,j = ∇ξi · ∇ξj , for all (i, j) ∈ J1,mK2. (3.7)

We make the assumption that ξ is such that detG > 0, which is equivalent to rank (∇ξ) = m,
with ∇ξ denoting the Jacobian matrix of the mapping ξ, i.e ∇ξ = (∂iξj)(i,j)∈J1,dNK×J1,mK. Note
that in any case, ξ will be assumed to be differentiable throughout this thesis. Furthermore, we
assume that

sup
i∈J1,mK

∣∣∣∣∣∣
m∑
j=1

G−1i,j (q)∇ξj(q)

∣∣∣∣∣∣ < +∞, ∀q ∈ D.

This allows us to define the marginal distribution µξ of the Boltzmann-Gibbs measure with
respect to ξ:

µξ(dz) = ξ?µ(dq) =

(
Z−1µ

∫
Σz

e−βV (q) δξ(q)−z(dq)

)
dz, (3.8)

where Zµ is given in (1.9). The notation ξ?µ(dq) indicates that µξ is the image of µ by ξ.

Assuming V and ξ are such that ZΣz
:=

∫
Σz

e−βV (q) δξ(q)−z(dq) < +∞, the free energy A of

the system is then the log-density of the marginal distribution:

e−βA(z)dz = µξ(dz),

in other words:

A(z) = −β−1 ln

(
Z−1µ

∫
Σz

e−βV (q) δξ(q)−z(dq)

)
∀z ∈M. (3.9)

If one considers two end states z0 and z1 inM, the free energy difference is given by

∆0→1A = A(z1)−A(z0) = −β−1 ln


∫
Σz1

e−βV (q) δξ(q)−z1(dq)∫
Σz0

e−βV (q) δξ(q)−z0(dq)
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and one can interpret the above quantity as the relative likelihood of states in the final set Σ1

compared to states in the initial set Σ0.

The mapping z 7→ A(z) is called the potential of mean force: indeed, its gradient ∇A is often
called the mean force, as it can be seen as an average force applied to the system for constant
values of ξ. One has the following result [56, Lemma 3.9]:

∇A(z) =

∫
Σz

F dµξ(·|z), (3.10)

where µξ(dq | z) is the Boltzmann-Gibbs measure conditioned to a fixed value z of the reaction
coordinate ξ, and F is the local mean force, which is the vector with components (Fi)i∈J1,mK
given by:

Fi =

m∑
j=1

G−1i,j∇ξj · ∇V − β
−1div

 m∑
j=1

G−1i,j∇ξj

 ,

where G−1i,j denotes the (i, j)-component of the inverse of the matrix G defined above.

Remark 10. All of the above reasoning also applies to Langevin dynamics, with the free energy
of the system defined as

e−βA(z)dz = µξβ(dz),

where µξβ(dz) is the marginal distribution of the canonical measure µβ given by (1.7),

µξβ(dz) = ξ?µβ(dq) =

(
Z−1µβ

∫
Σz×RdN

e−βH(q,p) δξ(q)−z(dq) dp

)
dz.

3.2.2 Alchemical transitions

An alchemical transition is a chemical reaction where the system evolves from an initial state
(reactant state) A towards a final state (product state) B, and during which the nature of the
system’s components may be changed. For example, one may be interested in changing the
nature of a molecule’s atom or add/remove components to/from a chemical compound. Such
transitions are indexed by an external parameter λ, independent of the microstate (q, p). As
a consequence, the transition coordinate is not a geometric mapping of the microstate q ∈ D:
the coupling parameter λ is a scalar transition coordinate whose values are between 0 and 1,
λ = 0 characterising the initial state and λ = 1 the final state. Note that intermediate states,
characterised by intermediate values λ ∈ (0, 1) are allowed to not make sense physically:
alchemical transitions are purely numerical transitions. Classical examples of alchemical
transitions (or reactions) include the solvation of a chemical moiety (an ion, a molecule or a
protein) in a box of solvent, the docking of a protein unto a given receptor, or the gradual
modification of physical constants such as the intensity of a magnetic field applied to a spins
system or the constants in empirical forces (such as ε and σ in the Lennard-Jones potential
(2.1)).

The scalar transition coordinate λ can be seen as a classical reaction coordinate provided one
considers the extended sytem of extended microstate x = (q, p;λ) ∈ T ∗D × [0, 1]. The reaction
coordinate is then ξ(x) = λ. To each value of λ ∈ (0, 1) corresponds an extended Hamiltonian
H(., .;λ) which characterises the system. Working within the canonical ensemble, the canonical
measure according to which the microstates will be distributed is given by:
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µβ,λ(dqdp) := Z−1λ e−βH(q,p;λ)dqdp, Zλ =

∫
T ∗D

e−βH(q,p;λ)dqdp.

Implicitly, the measures (µβ,λ)λ∈[0,1] are defined at fixed β = (kBT )
−1 i.e, at fixed absolute

temperature. The logical thermodynamic ensemble to work with is thus the isobaric-isothermal
ensemble (NPT ). As a consequence, the natural energy to consider is the Gibbs free energy or
free enthalpy G defined in Section 1.5.2. We wish to work with the Helmholtz free energy A of
the canonical ensemble (NV T ) . Let us show that under certain assumptions, one can assume
the two free energies to be somewhat equal. In classical mechanics, the Hemholtz free energy is
given by

A(λ) = −β−1 ln(Zλ), Zλ = c

∫
T ∗D

e−βH(q,p;λ)dqdp, (3.11)

where c = (N !hdN )−1, with h denoting the Planck’s constant [40, Equation 6c]. The Gibbs
free energy is given by

G(λ) = −β−1 ln(Zλ), Zλ = c

∫ ∫
T ∗D

e−βH(q,p;λ)−βPV dqdpdV,

where P is the pressure, and V is the volume of the system, which should not be confused with
the system’s potential energy [23]. Let us recall the relationship between the two free energies:

G(λ) = A(λ) + PV.

One then has :

dA(λ)

dλ
=

∫
T ∗D

∂λHe
−βH(q,p;λ)dqdp∫

T ∗D
e−βH(q,p;λ)dqdp

= Eµβ,λ [∂λH]

dG(λ)

dλ
=

∫ ∫
T ∗D

∂λHe
−βH(q,p;λ)−βPV dqdpdV∫ ∫

T ∗D
e−βH(q,p;λ)−βPV dqdpdV

= Eµ(NPT ),λ
[∂λH]

where µ(NPT ),λ ∝ exp (−βH(q, p;λ)− βPV ) is the equilibrium measure associated to the (NPT)
ensemble. The free energy (resp. free enthalpy) difference between the initial state A and the
final state B is then:

∆0→1A(V, T ) = A(1)−A(0) = −β−1 ln

(
Z1

Z0

)
= −β−1 ln

∫
T ∗D

e−βH(q,p;1)dqdp∫
T ∗D

e−βH(q,p;0)dqdp

i.e ∆0→1A(V, T ) =

∫ 1

0

Eµβ,λ [∂λH] dλ
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and

∆0→1G(P, T ) = G(1)−G(0) = −β−1 ln

(
Z1

Z0

)
= −β−1 ln

∫ ∫
T ∗D

e−βH(q,p;1)−βPV dqdpdV∫ ∫
T ∗D

e−βH(q,p;0)−βPV dqdpdV

i.e ∆0→1G(P, T ) =

∫ 1

0

Eµ(NPT ),λ
[∂λH] dλ.

Remark 11. We shall keep in mind the following notation, that is often found in the MD
literature: for a given thermodynamic ensemble, i.e for a given probability measure on the phase
space ν,

Eν [ · ] = 〈 · 〉ν .

As said above, the free enthalpy difference ∆0→1G can be naturally computed in the scope of
a simulation run with constant pressure and temperature. Nonetheless, it is possible to calculate
it with a simulation done in the canonical ensemble (NVT) [33]. By denoting P and V (resp.
PB and VB) the pressure and volume of the initial state A (resp. final state B), one has [33,
Equation (3.139)]:

∆0→1G(P ) = ∆0→1A(V )−
∫ PB

P

(VB(p)− V ) dp.

The correction is approximated by

−
∫ PB

P

(VB(p)− V ) dp = −1

2
(PB − P )∆V =

(∆V )2

2κV

where ∆V is the volume variation at constant pressure P , and κ is the isothermal compressibility
constant. This term is usually small, even negligible. For example, adding a water molecule in a
water box of constant volume V containing 1000 water molecules will produce a pressure variation
of around 22 bar, and a Helmholtz free energy correction only of the order of −1 kJ.mol−1 [33].
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We will from now make the following assumption:

Assumption 3.

1. The extended Hamiltonian is separable, so that the equilibrium measure is of the
Boltzmann-Gibbs form:

µλ(dq) =
e−βV (q;λ)∫
D
e−βV (q;λ)dq

dq.

i.e µλ(dq) is the marginal distribution of the canonical distribution µβ,λ with respect
to the momenta.

2. We work within the approximation

∆0→1A(V, T ) ≈ ∆0→1G(P, T )

and dA(λ)
dλ = Eµλ [∂λH] = Eµλ [∂λV ].

3. The free energy difference between the initial and final states is given by

∆0→1A = −β−1 ln

∫
D
e−βV (q;1)dq∫

D
e−βV (q;0)dq

3.2.3 Choosing the reaction coordinate

Except for the alchemical case where λ is a simple, scalar transition coordinate, designing a good
reaction coordinate is a difficult problem, and one often relies on chemical intuition. Nonethe-
less, recent works have attempted to tackle the question of automatic learning of the reaction
coordinate. We refer to [32],[29] and [81] for more insight on collective variables learning.

3.3 Enhanced sampling methods

Let us recall our main problem: the overdamped Langevin dynamics that we wish to use in
order to sample the Boltzmann-Gibbs measure (1.9) is metastable. We thus need to build
numerical methods to avoid metastability and enhance the sampling of the phase space. Among
the available methods designed in this scope, we can distinguish between two classes of algorithms:
those which use transition coordinates, and those which do not. Let us focus on the former. The
key idea of algorithms using a transition coordinate ξ to bypass metastability is to manipulate
either the interaction force between the system’s components, or the potential energy, by adding
a bias depending on ξ. Let us give a quick list of these methods. For the following subsections,
we will consider the more general case of configurational transitions and denote by ξ the reaction
coordinate.
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3.3.1 Umbrella sampling

Umbrella sampling (US) is a widely used method first introduced by G. M. Torrie and J. P. Valleau
in 1977 [86]. The main idea of US is to fix some values (zi)i∈J1,KK of the transition coordinate
ξ. It can either be applied to the configurational transitions (in which case (zi)i∈J1,KK ∈ MK)
or to alchemical transitions (in which case (zi)i∈J1,KK = (λi)i∈J1,KK ∈ [0, 1]K). Doing so, one
sets K independent windows in which to run simulations: for each value zi one obtains an
independent trajectory of the system. Now, the idea is to bias the potential energy V of the
original Hamiltonian (1.1) with a different bias for each window. In the i-th window, one
considers the biased potential energy:

Ui(q) := V (q) + Ṽi(q),

where Ṽi is an harmonic potential of constant k:

Ṽi(q) =
k

2
(ξ(q)− zi)2 .

Our goal is to obtain the unbiased free energy A ◦ ξ of the system, defined by equation (3.9):
we thus need the unbiased stationary distribution πξi (z)dz of the reaction coordinate for the
i-th window. The corresponding biased distribution of the reaction coordinate is given by the
following density [46]: for all z ∈M,

π̃ξi (z) =

∫
Σz

e−β(V (q)+Ṽi◦ξ(q)) δξ(q)−z(dq)∫
D
e−β(V (q)+Ṽi◦ξ(q)) dq

= e−βṼi(z)

∫
Σz

e−βV (q) δξ(q)−z(dq)∫
D
e−β(V (q)+Ṽi◦ξ(q)) dq

so that

πξi (z) =

∫
Σz

e−βV (q)δξ(q)−z(dq)∫
D
e−βV (q) dq

= π̃ξi (z)e
βṼi(z)

∫
D
e−β(V (q)+Ṽi◦ξ(q)) dq∫
D
e−βV (q) dq

.

Hence
πξi (z) = π̃ξi (z)e

βṼi(z)Eµ
[
e−βṼi◦ξ

]
, (3.12)

and the unbiased free energy for the i-th window may be written as follows:

Ai(z) = −β−1 ln
(
π̃ξi (z)

)
− Ṽi(z)− β−1 ln

(
Eµ
[
e−βṼi◦ξ

])
.

In order to obtain the free energy on the whole reaction coordinate space, one needs to compute
the energy Fi := β−1 ln

(
Eµ
[
e−βṼi◦ξ

])
for each i ∈ J1,KK. One has:

e−βFi = Eµ
[
e−βṼi◦ξ

]
=

∫
D
e−βṼi◦ξ(q) µ(dq),

where µξ is the global, unbiased distribution given by (3.8). The quantity Fi is the free energy
associated to the introduction of the i-th window potential Ṽi, and cannot be determined by
direct sampling. There exists several methods such as the Weighted Histogram Analysis method,
presented in Section 3.4.2 or Umbrella Integration are used to tackle this problem. This high-
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lights the fact that the windows need to be built such that the distributions
(
πξi

)
i∈J1,KK

should

sufficiently overlap with each other [56, Section 2.4.1.4].

Figure 3.7 – Scheme of the umbrella sampling method: the free energy profile A ◦ ξ (thick solid
curve) is represented. The contributions of the free energies (Ai)i∈J1,KK are represented by the
dashed curves. The notation P bi stands for the biased distribution for the i-th window, in other
words, P bi ≡ π

ξ
i . Source:[46]

Note that there is an inherent issue with the Umbrella Sampling method: it cannot a priori
avoid metastability. Indeed, the choice of the values (zi)i∈J1,KK of the transition coordinate ξ
is done ahead of the simulation, without prior knowledge of the energy landscape, as shown in
Figure 3.8 below.

Figure 3.8 – An example of metastability for the Umbrella Sampling method. A level set of an
energy is shown here, along with a discretisation of the intervall [0, 1] in which the parameter λ
evolves. The bin containing the two red dots has two separate configuration regions to sample.
As the dynamics is restrained to the bin, it will not be able to escape the region to visit the
other, leading to metastability.
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3.3.2 Adaptive biasing methods

The key idea behind the umbrella sampling method is that of biasing the potential energy of the
system. In the same manner, one may consider another class of enhanced sampling algorithms,
which rely on adaptive biases to modify the dynamics in a single, non-equilibrium trajectory of
the system.

3.3.2.1 Importance sampling and flat histogram property

The adaptive biasing methods to be defined below are importance sampling techniques. The goal
of importance sampling is to modify the dynamics so that the new stationary measure is easier
to sample than the reference target measure (in our case, it is the Boltzmann-Gibbs measure µ
given by (1.9)). Let us sketch the main idea of importance sampling, by considering overdamped
Langevin dynamics (2.4) with modified potential V (q) + Ṽ (q), where V is the potential energy
of the original system and Ṽ a biasing potential:

dqt = −∇
(
V + Ṽ

)
(qt)dt+

√
2β−1dWt.

This modified dynamics is ergodic with respect to the new stationary measure:

µ̃(dq) = Z−1µ̃ e−β(V+Ṽ )(q) dq, Zµ̃ =

∫
D
e−β(V+Ṽ )(q) dq.

Now, consider an observable ϕ ∈ C∞0 (D). Provided one has simulated a trajectory of the system
using the modified potential V + Ṽ , one can calculate:

∫
D
ϕµ(dq) =

∫
D
ϕe−βV (q) dq∫
D
e−βV (q) dq

=

∫
D
ϕeβṼ (q)e−β(V (q)+Ṽ (q)) dq∫
D
eβṼ (q)e−β(V (q)+Ṽ (q)) dq

i.e

∫
D
ϕµ(dq) =

∫
D
ϕeβṼ (q)µ̃(dq)∫
D
eβṼ (q)µ̃(dq)

.

Importance sampling highlights the need to build methods which sample nice measures. As
a first intuition, one might think of using a reaction coordinate ξ as in (3.6) to capture the slow
movements of the dynamics, and to bias the dynamics in the direction of ξ. Given a reaction
coordinate ξ, the free energy of the system can be rewritten as:

A(z) = −β−1 ln

(
Z−1µ

∫
Σz

e−βV (q) δξ(q)−z(dq)

)
∀z ∈M. (3.13)

Let us now consider the following modified overdamped Langevin dynamics, where a constant
bias, equal to the free energy A of the system, is added to the potential energy:

dqt = −∇ (V −A ◦ ξ) (qt)dt+
√

2β−1dWt, (3.14)



60 CHAPTER 3. Free energy calculations and sampling methods

where (Wt)t≥0 is a standard dN -dimensional Brownian motion. The stationary distribution of
the modified dynamics (3.14) is given by the measure

µA(dq) = Z−1µA e
−β(V−A◦ξ)(q) dq, ZµA =

∫
D
e−β(V−A◦ξ)(q)dq.

One can check that the image of µA by ξ is the uniform measure, up to a normalisation constant.
Indeed,

µξA(dz) := ξ?µA(dq) =

(
Z−1µA

∫
Σz

e−β(V (q)−A◦ξ(q)) δξ(q)−z(dq)

)
dz

=

(
Z−1µA e

βA(z)

∫
Σz

e−βV (q) δξ(q)−z(dq)

)
dz

=
(
Z−1µAZµe

βA(z)e−βA(z)
)

dz, since A is given by (3.13)

=
(
Z−1µAZµ

)
dz,

and providedM is compact, or A is restricted to a compact domain of RdN , one has that Z−1µAZµ
is finite, and that µξA is the uniform distribution, namely µξA := ξ∗µA = λ(M)−11M, with λ(M)
being the Lebesgue measure onM. Since, contrary to the reference measure ξ ∗ µ, the uniform
measure is no longer multimodal, we expect a faster sampling of the phase space, provided ξ
is well chosen so that µA is less multimodal than µ. In other words, the dynamics (3.14) will
asymptotically reach a flat histogram property in the direction of the reaction coordinate ξ: the
exploration of M by (ξ(qt))t≥0 is faster for dynamics (3.14) than for overdamped Langevin
dynamics (2.4).

Although this change of potential can accelerate the phase space sampling, the free-energy
A is a priori unknown. The main idea to avoid this issue will be to approximate on-the-fly
either A or its derivative with respect to the reaction coordinate, ∇A. Let us here introduce
the Metadynamics, Adaptive Biasing Potential, Adaptive Biasing Force and Projected Adaptive
Biasing Force methods, which are all designed with the goal of satisfying the flat histogram
property in mind. These methods all use an adaptive bias Bt, which depends on the reaction
coordinate, to modify either the potential energy or the interaction force of the system. When the
bias Bt modifies the potential energy, one considers overdamped Langevin dynamics (2.4) with
a drift term equal to −∇ (V (qt)−Bt ◦ ξ(qt)), whereas if the bias modifies the interaction force,
the drift term is equal to −∇V (qt)+Bt ◦ξ(qt). The bias Bt can be defined using either the law of
the process considered, in which case the process is an approximation of an interacting particles
system, or the (un-)weighted occupation measure, in which case one works with a self-interacting
diffusion process. We choose to present the methods as they have been introduced historically;
as a consequence, the bias may be defined differently in the three following sections. Nonetheless,
let us keep in mind that both definitions of the bias are acceptable for each algorithm.
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3.3.2.2 Metadynamics

Metadynamics, or MetaD, is a sampling method introduced by A. Laio and M. Parrinello in
2002 [53]. It relies on the idea of biasing the potential energy V of the system with an history-
dependent bias Bt, which can be written as the sum of Gaussian potentials added along the
reaction coordinate space. The considered dynamics is thus given by:

dqt = −∇ (V (qt)−Bt ◦ ξ(qt)) dt+
√

2β−1dWt.

Here, the reaction coordinate ξ has K components, in other words ξ(q) = (ξ1(q), . . . , ξK(q)) for
all q ∈ D. Let us insist on notations: while Umbrella Sampling considered K independent copies
of the system in order to obtain K trajectories, metadynamics considers only one trajectory, with
a decomposition of ξ into K components. The repulsive Gaussian potentials added throughout
the simulation to the potential energy are centered on the already explored points of the reaction
coordinate space.

Figure 3.9 – Scheme of the metadynamics method. The left upper corner represents the unbiased
system: the energy landscape has two minima, and the system is metastable. The right upper
corner represents the first application of a Gaussian potential bias: the energy landscape is
transformed unto the gray dashed landscape. The right lower corner represents the moment
where, after several deposition times, the system can escape the first metastable region. The left
lower corner represents the long-time limit where all metastable regions have been filled and the
free energy landscape has been flattened in the direction of ξ. The solid gray line yields a rough
approximation of the negative of the unbiased free energy A ◦ ξ. (Source of diagram:[18])

Let us denote by τ the deposition time of the repulsive Gaussian potentials. At time t, the
biasing potential may be written:

Bt ◦ ξ(qt) =

bt/τc∑
n=1

ωG e

−

K∑
k=1

(ξk(qt)− zk(nτ))
2

2σ2
k , (3.15)
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where σk is the preassigned width of the Gaussian potential associated to the k-th reaction
coordinate ξk, and zk(nτ) ∈M is the selected value of ξk(qt), at time t = nτ .

The goal of metadynamics is to discourage the exploration of states already visited by the
dynamics. It also provides an immediate estimation of the free energy surface. Indeed, Gaussian
potentials are most likely to be added at local minima of the total free energy surface. In the
long-time limit, one would like for the bias potential to converge towards the negative free energy
associated to the reaction coordinate ξ [59], namely:

lim
t→+∞

Bt ◦ ξ = −A ◦ ξ + C,

where C is a constant. There are nonetheless two inherent problems to metadynamics as pre-
sented above:

(i) A common issue with sampling methods using collective variables is that the reaction
coordinate has to be chosen beforehand. Metadynamics is no exception.

(ii) The estimation of the free energy is known not to properly converge in the long-time limit,
as the height ωG in (3.15) is constant. As a consequence, the free energy potential obtained
with the biasing potential will tend to oscillate around the true value of the unbiased free
energy. Furthermore, the risk of pushing the dynamics towards irrelevant sampling regions
is not null.

Problem (i) is inherent to the structure of metadynamics, but problem (ii) is not: in order
to tackle the latter, A. Barducci, G. Bussi and M. Parrinello have built in 2008 a variation
of metadynamics, the Well-Tempered Metadynamics (WTMetaD) method [6]. The idea is to
re-write (3.15) as:

Bt ◦ ξ(qt) =

bt/τc∑
n=1

ωG(nτ) e

−

K∑
k=1

(ξk(qt)− zk(nτ))2

2σ2
k , (3.16)

where

ωG(nτ) = ω0e
−
Bnτ (z(nτ))

kB∆T

is now an history-dependent height. Here, z(nτ) = (z1(nτ), . . . , zK(nτ)) and ∆T is a tunable
parameter. Using (3.16) allows the dynamics, in the long-time limit, to spend more time in
regions where smaller Gaussians are used, in other words, around the deepest wells of the energy
surface. One indeed has on D [6] :

lim
t→+∞

Bt ◦ ξ = − ∆T

T +∆T
A ◦ ξ + C,

where C is a constant, and T is the absolute temperature of the system. When ∆T = 0
one recovers classical molecular dynamics, whereas the limit ∆T → +∞ amounts to using the
classical MetaD method. We refer to [6] for a proper construction of the WTMetaD algorithm.
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3.3.2.3 Adaptive Biasing Potential method

Let us consider the overdamped Langevin dynamics (2.4) with initial condition q0 = q ∈ D.
Since the process is ergodic, the empirical distribution

µ̄t :=
1

t

∫ t

0

δqs ds

converges in distribution almost surely towards µ in the long-time limit [7]. The main idea behind
the Adaptive Biasing Potential method (ABP) was originally sketched in 2006 by S. Marsili and
colleagues [62]. It consists of biasing the potential energy V with an adaptive bias in the direction
of the reaction coordinate (3.6).The biased potential energy at time t > 0 is:

Ut(q) = V (q)−Bt ◦ ξ(q), ∀q ∈ D.

The dynamics of the ABP method is given by:

dqt = −∇ (V −Bt ◦ ξ) (qt)dt+
√

2β−1dWt

π̄t =
π̄0 +

∫ t
0
e−βBs◦ξ(qs) ds

1 +
∫ t
0
e−βBs◦ξ(qs) ds

Bt(z) = −β−1 ln

(∫
D
K(z, ξ(q))π̄t(dq)

)
, ∀z ∈M

(3.17)

where (Wt)t≥0 is standard dN -dimensional Brownian motion, and K : M ×M → R∗+ is a
smooth kernel such that

∫
MK(z, z̃) dz = 1 for all z̃ ∈ M, which allows for Bt to be in C∞(M)

for each time t > 0, and for π̄t to have a density. We endow the dynamics with arbitrary and
deterministic initial conditions q0 = q ∈ D, π̄0 ∈ P(D) (the set of Borel probability distributions
on D, endowed with the usual topology of weak convergence of probability distributions) and
B0 ∈ C∞(M). The unknowns of the dynamics (3.17) are the positions (qt)t≥0, the weighted
empirical distribution π̄t at each time t, and the adaptive bias Bt ◦ ξ at each time t.

The question of the convergence of the method has first been treated by M. Benaïm and
C.-E. Bréhier in 2016 [7] with the following toy model: the configuration space D is given by
D = Tm × Tn−m, i.e each configuration q can be decomposed as q = (x, y), and the reaction
coordinate is such that ξ(x, y) = x ∈ Tm. In which case, one can show that:

(i) Almost surely, the empirical distribution converges in the long-time limit towards the
Boltzmann-Gibbs measure in P(Tn) [7, Theorem 1.1].

(ii) Consider the stationary bias B∞ ◦ ξ defined as follows:

B∞(z) = −β−1 ln

(∫
Tn
K(z, ξ(q))µ(dq)

)
, ∀z ∈ Tm.

Almost surely, the adaptive bias Bt ◦ ξ converges in the long-time limit towards the sta-
tionary bias B∞ ◦ ξ in Ck(Tm) for all k ∈ N [7, Corollary 1.2].

(iii) The stationary bias B∞ is an approximation of the free energy A of the unbiased system
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as defined in (3.9), and one may notice that

e−βB∞(z) =

∫
Tm

K(z, z̃)e−βA(z̃) dz̃, ∀z ∈ Tm,

so that, provided the kernel K is built suitably, the bias Bt ◦ ξ will almost surely converge
in the long-time limit to the unbiased free energy A.

(iv) The flat histogram property is satisfied, namely the image by ξ of the distribution πt :=
1
t

∫ t
0
δ(Xs,Ys) ds converges almost surely to the uniform distribution in P(Tm).

Of course one may consider a more generic setting, with a reaction coordinate ξ given as in
(3.6), and a more generic configuration space D. We refer to the extensive work of M. Benaïm
and C.-E. Bréhier [8] where the well-posedness of the dynamics and long-time convergence of
the method is studied thoroughly and for different configuration spaces, diffusion processes and
reaction coordinates.

Remark 12. As stated beforehand, the bias Bt can be defined either using the reweighted occu-
pation measure π̄t defined in (3.17) (or the non-weighted measure π̄0 +

∫ t
0
e−βBs◦ξ(qs) ds for that

matter), or the law πt of the process. In the latter case, the ABP method is given as follows [56,
Section 5.1.1]:  dqt = −∇ (V −Bt ◦ ξ) (qt)dt+

√
2β−1dWt

dBt(z)

dt
= −β−1 ln(πξt (z)), ∀z ∈M,

where πξt is the image of the law πt by the reaction coordinate ξ (with a slight abuse of notations
where probability density functions and measures are not distinguished). Namely,

πξt (z) =

∫
Σz

πt(q)δξ(q)−zdq ∀z ∈M,

the measure δξ(q)−z(dq) being given by equation (3.2.1).

3.3.2.4 Adaptive Biasing Force method

Contrary to the ABP method, Adaptive Biasing Force method [24, 39] uses an adaptive bias that
is built so that it approaches in the long-time limit the gradient of the free energy ∇A instead of
looking directly for the free energy A. In order to do so, one does not bias the potential energy
V , but the interaction force F = −∇V . This is motivated by the fact that the free energy A can
be rewritten as (3.10):

∇A(z) =

∫
Σz

F (q) dµξ(dq|z),

where F is the local mean force defined in Section 3.2.1. The ABF algorithm is given by:

{
dqt = (−∇V (qt) +Bt ◦ ξ(qt))∇ξ(qt) dt+

√
2β−1dWt

Bt(z) = E[F (qt) | ξ(qt) = z] ∀z ∈M,
. (3.18)
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Namely, the bias Bt is given by

Bt(z) = E[F (qt) | ξ(qt) = z] =

∫
Σz

F (q)πξt (dq|z) ∀z ∈M,

where πξt (·|z) is the conditional measure at a fixed value ξ(q) = z of the reaction coordinate,
obtained from the instantaneous law of the process πt.

Now, one can check that µA is a fixed point of the Fokker-Planck equation associated to the
process. In other words, if q0 ∼ µA, then qt ∼ µA for all t > 0 and (qt)t>0 is exactly the diffusion
(3.14).

Starting from another initial distribution, using entropy estimates and functional inequali-
ties as defined in Section 3.1.2.2, it has been proven in [57], under mild assumptions, that this
fixed point is in fact an attractor of the dynamics, in the sense that Bt converges to ∇A in the
long-time limit, and the law of qt converges to µA. Furthermore, the flat histogram property is
satisfied.

Of course, the ABF method can be defined with a self-interacting process, as done in C.-E.
Bréhier, M. Bénaïm and P. Monmarché’s work [9]. Choosing to introduce the ABF method with
a process which approximates a system of N interacting particles (i.e to define the bias with the
instantaneous law of the process as in (3.18)) is a purely arbitrary choice, as the theoretical study
of the algorithm proved to be easier in this case. We refer to [57] for a detailed construction of
the former ABF method and for the long-time convergence proofs, along with the very complete
review [58, Part 4, page 777] on adaptive importance sampling methods. We also refer to [58,
Remark 4.4] and [56, Section 5.1.1.5] for discussions on which method to use between the ABP
or ABF methods.

Remark 13.

. In some cases M is not bounded, for example when ξ is a distance. If so, an additional
confining potential W ◦ ξ is needed in the drift [57].

. As discussed in [57], the algorithm (3.18) can be modified in order to obtain a diffusive
behaviour for the law of ξ(Xt). Additional terms depending on ξ are added to obtain the
following variant:{

dXt =
(
−∇V +Bt ◦ ξ −∇W ◦ ξ + β−1∇ ln(|∇ξ|−2)

)
|∇ξ|−2(Xt) dt+

√
2β−1|∇ξ|−1(Xt)dWt

Bt(z) = E[F (Xt) | ξ(Xt) = z], ∀z ∈M.

In this case the long-time convergence of Bt towards ∇A is stronger than in the case of
(3.18), in that it requires fewer hypotheses.

3.3.2.5 Projected Adaptive Biasing Force method

We might also consider a variant of the ABF method, namely the Projected Adaptive Biasing
Force (PABF) algorithm, introduced by H. Alrachid and T. Lelièvre in 2015 [2]: dXt = (−∇V (Xt) +Bt (ξ(Xt))∇ξ(Xt)) dt+

√
2β−1dWt

Bt = PL2(λ) (Gt)
Gt(z) = E[F (Xt) | ξ(Xt) = z] ∀z ∈M,

(3.19)
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where PL2(λ)(f) stands for the Helmholtz projection with respect to the Lebesgue measure λ of
a vector field f on an open bounded set M ⊂ RdN with Lipschitz boundary ∂M [3]. In other
words, it is the gradient of the minimizer on {g ∈ H1(M),

∫
M gdx = 0} of

g 7→
∫
M
|f(x)−∇g(x)|2dx .

More generally, if ν is a continuous positive measure on M, the Helmholtz projection with re-
spect to ν is the minimizer on {g ∈ H1(M),

∫
M gdx = 0} of g 7→

∫
M |f(x)−∇g(x)|2ν(dx).

The long-time convergence of bias Bt and of the dynamics’ (3.19) law πt has been shown in [2,
Theorem 1], but for a version of the algorithm where the classical Helmholtz projection in L2(λ)

is replaced by the Helmholtz projection in the weighted space L2(πξt ). This choice of projection
is motivated in [2] by some cancellations in the computations of the proofs. Nevertheless, as
already noted in [2], the classical Helmholtz projection is used in practice. Showing the long-
time convergence of the PABF algorithm with classical Hemlholtz projection (3.19) is one of the
problems solved in the scope of this thesis.

3.3.2.6 The non-conservative case

For both the ABF and PABF method, the interaction force F = −∇V is the gradient of a
potential energy. It is said to be conservative: if the system were completely Hamiltonian, the
system’s mechanical energy (i.e the sum of the potential and kinetic energies) would be conserved
throughout time. Most empirical force fields are built to be conservative. Nonetheless, as stated
in Section 2.1.2, one would wish to use force fields closer to reality. For this reasons, many MD
simulations resort to ab initio force fields. It has been shown [74, 69, 20] that some ab initio
approximations could lead to hysteresis, namely, a violation of the conservation of energy, making
the interaction force a priori non conservative. In this case, one is interested in knowing if, by
controlling the error made on the force −∇V , one can deduce an estimation of the error made
on the system’s free energy. The robustness of a diffusion’s invariant measure with respect to
the perturbation of its drift is a classical problem, but note that in the ABF case, the adaptive
procedure makes the question more subtle. Moreover, the convergence of the ABF method in
such a context cannot be deduced from the aforementionned convergence analysis. Establishing
the well-posedness of both the ABF and PABF algorithms along with their long-time convergence
in the scope of non-conservative forces is also one of the problems that will be tackled in this
thesis.

3.4 Free energy differences in the alchemical setting

We have shown that metastability could be avoided using various enhanced sampling methods
such as the Adaptive Biasing Force method. A common goal of the methods introduced above
is to compute the free energy of the system associated to a given transition coordinate, and
more specifically free energy differences, as presented in Section 3.2. The methods presented in
Section 3.3 have all been introduced using a reaction coordinate ξ, in other words, in the scope
of configurational sampling. Nevertheless, the motivations for calculating free energy differences
appear clearer when considering alchemical transitions. Let us give two examples of why free
energy differences are key quantities to target.
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3.4.1 Motivation
3.4.1.1 Ligand binding affinity

An important problem in biochemistry is to determine the binding affinity of a complex called
ligand with a target complex called receptor. The receptor can either be a protein or a nucleic
acid. The nature of this binding is usually functional: it can for example allow the transmission
of a signal, the triggering of catalysis, or even modulate enzymatic activity. A ligand which
provokes a physiological reaction when binding with a receptor is an agonist ligand: morphine,
which binds with the µ–opioid receptor OP3 is an example of agonist ligand. On the contrary,
a ligand which blocks the activity of a receptor after binding with it is an antagonit ligand:
beta-blockers are a common example of antagonist ligands. The binding is usually reversible,
and is a result of non-covalent interactions between the ligand and receptor, like van der Waals
interactions, ionic interactions or hydrogen bonding. The force resulting from the interaction
between the two entities is defined by the dissociation constant, often called affinity (constant).
The greater the interaction forces are between the ligand and the receptor, the greater the affinity
is. A strong affinity can be explained by a strong occupation of the receptor by the ligand.
A ligand with strong affinity with a given receptor can impact the latter in a non-negligible
manner, especially when the energy resulting from the binding is sufficiently large to cause a
conformational transition of the receptor. Such configurational change can impact the habitual
operation of an ionic channel or of an enzyme linked to the receptor. Evaluating the affinity of a
ligand with a receptor is consequently of great importance, especially in drug design. Note that
in the scope of pharmacology, the potency of a given drug, namely the required concentration of
the drug to induce a physiological response of given intensity, is not directly linked to the drug’s
affinity.

There exist different manners to determine affinity. The first is to consider the dissociation
constant Kd (or pKd = −log(Kd)), which corresponds to the reaction constant of the dissociation
between the ligand and receptor. The second is to establish the necessary concentration in order
for the ligand to bind with 50% of the receptor: it is given by the inhibition constant Ki.
Indirectly, affinity can be evaluated by putting ligands in competition, where one evaluates the
half maximal inhibitory concentration IC50, namely, the required ligand concentration to replace
50% of the reference ligand’s concentration. The concentrations Kd and IC50 are linked via the
Cheng-Prusov equation, whose expression depends on the kind of receptor and ligands considered.
The binding of an agonist ligand with its receptor can be evaluated with two quantities: its
efficacy, i.e the intensity of the induced physiological response to the binding, or its half maximal
effective concentration EC50, i.e the required concentration to trigger a physiological reponse
whose intensity is half of the maximal response. All of these quantities can be determined by
computing the (Gibbs) free energy difference ∆G between the initial state where the ligand-
receptor complex is dissociated and the final state where the ligand is bound to the receptor.
Most of the time ∆G is used to determine the dissociation constant Ki, from which one deduces
the value of the Kd constant and indirectly, the value of the IC50 constant.

Ligand-competition is a key experiment to lead numerically in the case of alchemical tran-
sitions, as it determines which ligand, among a prechosen set of ligands, is the most likely to
bind to a given receptor. Figure 3.10 is an example of ligand-competition between two ligands
(L8 and L9) for a given receptor (FKBP-12). In Section 6.3.2 we will introduce how the binding
affinity of a ligand-receptor complex can be evaluated.
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Figure 3.10 – FK506 binding-proteins, or FKBP, are immunophilins interacting with the immuno-
suppressive drugs FK506 and rapamycin. These receptor proteins are present in all eukaryotes
and can induce diverse cellular functions [48]. On the left is the thermodynamic cycle of ligand
binding between the FKBP-12 and ligands L8 and L9. On the right are the L8 and L9 ligands
representations. Source: GENESIS Tutorial 15.1, https://www.r-ccs.riken.jp/labs/cbrt/

3.4.1.2 Solvation free energy

Solvation is the process of dissolution of a given compound, called the solute, into a liquid,
called the solvent, the resulting mixture being called a solution. In the case where the solvent is
water, solvation if often refered to as hydration. Solutes can either be ions, neutral molecules, or
even proteins. Understanding the behaviour of molecules or proteins in solvents is fundamental
in industrial chemistry and biochemistry. As an example, protein folding is greatly influenced
by the protein’s hydration in water: the hydrophobic effect, which is the tendency of nonpolar
moieties to aggregate and exclude water molecules, is a driving force in protein folding. Indeed,
some of the protein’s sequences may combine hydrophobic (i.e, non-polar) and hydrophilic (i.e,
polar) regions. A direct consequence is the hydrophobic effet, as hydrophobic regions will tend
to aggregate and repell water molecules, strongly influencing the protein’s folding [19].

Just as in the ligand binding processes, a solvation process will lead solvent and solute
molecules to be reorganised into solvation complexes. Interactions between solute and solvent
include bond formation, hydrogen bonding, van der Waals forces and electrostatic forces. De-
pending on the strenght of the overall interaction force, one can deduce many properties of the
solute, such as solubility, reactivity or even colour. As a consequence, the free energy difference
between the initial state where the solute is not dissolved in the solvent, and the final state where
the solute has been maximally dissolved, is a key quantity to study when it comes to solvation
processes. In Section 6.4.5, we will conduct a computation of an ion’s solvation free energy.

3.4.2 Available methods

As shown above, the study of a chemical system and of its thermodynamical properties leads to
computing free energy differences. Free energy differences allow us to consider many problems,
such as the formation of cavities in water, the solvation properties of molecules and ions, the
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relative reaction rate between two reactants, or even the structure and stability of a ligand-
receptor complex. Let us restrict ourselves to the alchemical case, where the system evolves from
and initial state 0 to a final state 1, and list the different tools available to compute the free
energy difference ∆(0→1)A.

3.4.2.1 Free Energy Perturbation

The Free Energy Perturbation (FEP) is a method first introduced by R. W. Zwanzig in 1954 [90].
It is one of the most classical methods used to compute free energy differences in the alchemical
setting. The FEP method yields:

∆(0→1)A = A1 −A0 = −β−1 ln
〈
e−β(H1−H0)

〉
0

where A0 and H0 (resp. A1 and H1) is the free energy and Hamiltonian of the system at the
initial state 0 (resp. final state 1). The notation 〈 · 〉0 denotes the ensemble average with respect
to the measure µ0(dqdp) ∝ exp(−βH0(q, p))dqdp.

Indeed, if one considers the partition functions of the initial state,

Z0 =

∫
D×RdN

e−βH0(q,p)dqdp,

and of the final state,

Z1 =

∫
D×RdN

e−βH1(q,p)dqdp,

since
∆(0→1)A = A1 −A0 = −β−1 ln(Z1) + β−1 ln(Z0) = −β−1 ln

Z1

Z0
, (3.20)

one has:

∆(0→1)A = β−1 ln


∫
D×RdN

e−βH1(q,p)dqdp∫
D×RdN

e−βH0(q,p)dqdp



= β−1 ln


∫
D×RdN

e−β(H1−H0)(q,p)e−βH0(q,p)dqdp∫
D×RdN

e−βH0dqdp


= −β−1 ln

〈
e−β(H1−H0

〉
0
.

3.4.2.2 Thermodynamic Integration

Another way to approach free energy differences is via thermodynamic integration (TI). Ther-
modynamic integration uses the fact that the system considered is extended: along with the
microstate (q, p) ∈ T ∗D, we consider a coupling parameter λ ∈ [0, 1] so that the system’s total
energy is given by an extended Hamiltonian H(q, p;λ). The partition function then becomes:

Zλ =

∫
D×RdN

e−βH(q,p;λ)dqdp.
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And the Helmholtz free energy derivative with respect to λ reads:

∂A

∂λ
= −β−1 ∂

∂λ
lnZλ = −β−1 1

Zλ

∂Zλ
∂λ

=

∫
D×RdN

∂H(q, p;λ)

∂λ

e−βH(q,p;λ)∫
D×RdN

e−βH(q,p;λ)dqdp

dqdp

=

〈
∂H(q, p;λ)

∂λ

〉
λ

where 〈 · 〉λ denotes the ensemble average with respect to the measure µβ,λ(dqdp) ∝ exp(−βH(q, p;λ))dqdp.
Then one has:

∆(0→1)A = A1 −A0 =

∫ 1

0

〈
∂H(q, p;λ)

∂λ

〉
λ

dλ.

3.4.2.3 Wheighted Histogram Analysis method

The Wheighted Histogram Analysis method (WHAM) is a method commonly used in order to
deduce free energy differences in post-processing of an Umbrella Sampling simulation. It was
first introduced by S. Kumar and his colleagues in 1992 [51]. Let us keep the notation of
Section 3.3.1: as said in the aforementioned section, the constant Fi is the free energy associated
to the introduction of a bias in the i-th window. Provided one can estimate the quantities
(Fi)i∈J1,KK, one will be able to determine the total free energy difference ∆(0→1)A between the
initial and final state of the system, by summing the free energy differences associated to the
windows:

∆(0→1)A =

K−1∑
i=1

(Fi+1 − Fi) .

The WHAM method provides a way to this. Its first step is to build a density estimator µ̂ξ(z)
of the marginal distribution µξ of the Boltzmann-Gibbs measure with respect to ξ, namely

µξ(dz) := ξ?µ(dq) =

(
Z−1µ

∫
Σz

e−βV (q) δξ(q)−z(dq)

)
dz.

The estimator is given by:

µ̂ξ(z) =

K∑
i=1

πξi (z)×
Nie

−β(Ṽi(z)−Fi)∑K
j=1Nje

−β(Ṽj(z)−Fj)
,

where Nk represents the number of data collected in the k-th window to sample the biased
distribution density πξk.

From equation (3.12), the unbiased distribution πξi of the i-th windows is given by:

πξi (z) = π̃ξi (z)e
βṼi(z)e−βFi ,
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so that one has:

µ̂ξ(dz) =

K∑
i=1

Niπ̃
ξ
i (z)∑K

j=1Nje
−β(Ṽj(z)−Fj)

. (3.21)

And the free energies (Fi)i∈J1,KK are then computed using the optimal estimation [84]:

Fj = Eµ
[
e−βṼi◦ξ

]
=

∫
M
e−βṼi(z) µξ(z) dz. (3.22)

Equations (3.21) and (3.22) are solved self-consistently, which is usually done via an iteration
procedure: we refer to [84] for further details on the WHAM method.

3.4.2.4 Bennett Acceptance Ratio method

The Bennett Acceptance Ratio method is a method introduced by C. H. Bennett in 1976 [10].
It is used to compute free energy differences relying on the ratio of partition functions as in
equation (3.20):

∆(0→1)A = −β−1 ln
Z1

Z0
.

Indeed, computing the direct partition function defining the free energy A as in (3.9) is usually
impossible, whereas the ratio Q(0→1) := Z1/Z0 happens to be much simpler to determine. First,
let us notice that for a given weighting function W of the positions, one has:

Z1

Z0
=
Z1

Z0

∫
D
W (q)e−β(V1+V0)(q) dq∫

D
W (q)e−β(V1+V0)(q) dq

=

∫
D
e−βV1(q) dq∫

D
W (q)e−βV0(q) e−βV1(q) dq

·

∫
D
W (q)e−βV1(q) e−βV0(q) dq∫

D
e−βV0(q) dq

i.e

Q(0→1) =

〈
We−βV1

〉
0

〈We−βV0 〉1
,

where the notation 〈 · 〉0 (resp. 〈 · 〉1) denotes the ensemble average with respect to the measure
µ0(dq) ∝ exp(−βV0(q)) dq (resp. µ1(dq) ∝ exp(−βV1(q)) dq). Note that this would require to
sample both ensembles µ0 and µ1, i.e to run two distinct simulations. It is nonetheless possible
to compute Q(0→1) with a single simulation. Indeed, by choosing W as

W = exp (βmin(V0, V1)) ,

one gets that:

Q(0→1) =
〈M (β(V1 − V0)) 〉0
〈M (β(V0 − V1)) 〉1

, (3.23)

where M(x) = min(1, exp(−x)) is the Metropolis function. Now, by running a single Monte-
Carlo simulation with an extra trial move which switches the potentials every fixed number of
steps, one gets a sampling in a mixed ensemble, and there is no need to samples both ensembles
µ0 and µ1 anymore.

However, the use of equation (3.23) as an estimator of the ratio Q(0→1) has several limations.
In fact, both acceptance probabilities 〈M (β(V1 − V0)) 〉0 and 〈M (β(V0 − V1)) 〉1 should be large
enough to be determined with proper statistical accuracy in a single, reasonably short Monte-
Carlo simulation. If one acceptance probability is significantly smaller than the other, one can
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increase it by shifting the origin of one of the two potentials with an arbitrary constant. If both
are too small, this means that there is not enough overlap between the two potentials V0 and
V1, and one might consider intermediate potentials and intermediate ratios to compute Q(0→1).
These problems led to the optimisation of a ratio estimator, where the origin of one of the
potentials is shifted by a constant C > 0, and the weight function is given by the Fermi-Dirac
function

f(x) =
1

1 + eβx
, ∀x ∈ R.

The optimised ratio is given as follows:

Q(0→1) =
〈 f(V1 − V0 − C) 〉0
〈 f(V0 − V1 + C) 〉1

e−C ,

and we refer to C. H. Benett’s work [10, Part IIb] for its proper derivation.

3.4.3 λ–dynamics and Orthogonal Space RandomWalk sampling meth-
ods

3.4.3.1 λ–dynamics

The usual methods used to compute free energy differences sometimes can be burdensome, es-
pecially when the system is metastable. In 1996, X. Kong and C. L. Brooks III pointed out that
the FEP method could yield different results depending on the initial condition considered [49].
As for US, in some cases like the study of the transition of the α-helix into the 310-helix, the
calculations strongly differ from the experimental data [82]. To tackle this problem in the scope
of alchemical transitions, X. Kong, C. L. Brooks and colleagues [49, 34, 47] designed λ–dynamics,
whose key idea is to treat the transition coordinate λ (which is initially a simple scalar coordinate
evolving continuously between 0 and 1) as a fictitious particle of fictitious mass m > 0. As a
consequence, one can now consider the extended microstate (q, p;λ,Λ) ∈ T ∗D× [0, 1]×R, where
Λ = mλ̇ is the fictitious particle momenta and λ̇ is the time-derivative. One then works with the
following extended Hamiltonian:

Hext(q, p;λ) = Exk (p) + Eλk (Λ) + Vext(q;λ), (3.24)

where Exk is the kinetic energy which depends solely on the atomic coordinates, Eλk (Λ) = 1
2m
−1Λ2

is the kinetic energy of the coordinate λ and Vext(q;λ) is the potential energy of the system.
Historically, it was given as follows:

Vext(q;λ) = (1− f(λ))V0(q) + f(λ)V1(q) (3.25)

where V0 (resp. V1) is the potential energy of the initial (resp. final), unextended state, and f is
a function in C1([0, 1],R). The simplest choice for f is f(λ) = λ for all λ ∈ [0, 1], in which case
the free energy difference between state λ = 0 and λ = 1 is then given by the FEP method:

∆(0→1)A = A1 −A0 = −β−1 ln
〈
e−βλ(V1−V0)

〉
0
.

Remark 14. One notices that if the fluctuation of the potential energy ∆(0→1)V = V1 − V0 is
large, then basic statistical estimators of ∆(0→1)A will suffer from high variance, leading to slow
convergence.

Let us now consider a more general potential energy Vext(q;λ) for the extended Hamiltonian.
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Since both equilibrium states λ = 0 and λ = 1 can be connected by different thermodynamic
paths [49], one may consider a fixed discretisation of the path, given by the set of coordinates
λλλ = (λi)i∈J1,nK ∈ [0, 1] such that:{

λ1 = 0 et λn = 1
λi ∈ (0, 1), ∀i ∈ J2, n− 1K.

Note that the choice of the discretisation λλλ = (λi)i∈J1,nK ∈ [0, 1] has a strong impact on the
speed of the configuration space sampling. Numerically, one launches a simulation and counts
how many times the system visits the cells [λi, λi+1[ in order to evaluate ensemble averages and
compute the free energy values (A(λi))i∈J1,nK. Eventually, the total free energy difference is
obtained from:

∆0→1A =

n−1∑
i=0

A(λi+1)−A(λi) = −β−1
n−1∑
i=0

ln

∫
D
e−βHext(q,p;λi+1)dqdp∫
D
e−βHext(q,p;λi)dqdp

.

In other words, the Hamiltonian being separable:

∆0→1A =

n−1∑
i=0

A(λi+1)−A(λi) = −β−1
n−1∑
i=0

ln

∫
D
e−βVext(q;λi+1)dq∫
D
e−βVext(q;λi)dq

.

By allowing the collective variable to evolve dynamically, the λ–dynamics method enlarges
the size of the sampled space, and in the manner of US, one may also bias the dynamics in order
to enhance the configuration space sampling. The multidimensional approach of λ–dynamics is
an asset in relatively complex problems: it has been used for the efficient determination of ligand
binding affinity by putting ligands in competition for a given receptor[34, 49]. In order to remain
concise, we will detail the inherent features of λ–dynamics and its applications in Section 6.3.
Now, let us highlight several issues that will be answered in the scope of this thesis.

Problem 1 – Note that the TI method would yield a free energy difference given by

∆0→1A = −β−1 ln

∫
D
e−βVext(q;1)dq∫

D
e−βVext(q;0)dq

=

∫ 1

0

〈 ∂λV ( . ;λ) 〉λ dλ, (3.26)

where 〈 · 〉λ denotes the ensemble average with respect to the measure µλ(dq) ∝ exp(−βVext(q;λ))dq.
The expression (3.26) motivates the need to obtain a sufficiently smooth profile of the poten-
tial of mean force (PMF) ∇A(λ), built with the different values of the PMF (∇A(λi))i∈J1,nK =

(〈 ∂λVext( . ;λi) 〉λ)
i∈J1,nK [83]. However in some cases, the system numerically explodes: adding

or subtracting a particle in the system can generate a singularity, and the force ∇A(λ) can
explode when the collective variable λ reaches the end states 0 or 1.

A typical example is the solvation of an ion in a box of solvent, when one starts from the
initial state“A: the ion is located at the middle of the box and does not interact with any of the
solvent molecules”, to gradually reach the final state “B: the ion is fully interacting with the



74 CHAPTER 3. Free energy calculations and sampling methods

neighbouring solvent molecules”. In this specific case, the extended potential energy Vext(q;λ)
given by equation (3.25) is naive. As a matter of fact, the potential energy (3.25) does not
make the difference between the short-range and long-range interactions: the van der Waals and
electrostatics forces are lit up simultaneously as λ evolves between 0 and 1. If in the initial
configuration solvent molecules would happen to be too close to the ion, the repulsive term of
the van der Waals interactions would make the system explode. Consequently one would greatly
benefit from using a more intricate extended potential. The idea is to use softcore potentials,
whose goal is to obtain finite pair-interaction energies, while insuring that we obtain a sufficiently
smooth PMF profile [36, 12, 83]. One can then modify the extended Hamiltonian (3.24) by
replacing the potential energy (3.25) with a potential whose dependency in λ is non-linear.
We will introduce in detail the concept of softcore potentials in Section 6.4, with the goal of
numerically implementing an efficient λ–dynamics in the Tinker-HP and Collective Variables
module.

Problem 2 – Just as for the US method, the thermodynamic path λλλ is chosen ahead of the
simulation. As a consequence, there is no reason whatsoever for the parameter λ to be able to
capture the slow movement of the system and avoid metastability! To overcome this issue and
to enhance the sampling of the phase space, one may bias the dynamics in the direction of the
variable λ, as in the US method, and play with the values of the fictitious mass mλ. In the
scope of the numerical implementation of the λ–dynamics, we used the Adaptive Biasing Force
method introduced in Section 3.3.2.4 to enhance the sampling of the phase space. Furthermore,
around the end states λ = 0 and λ = 1, one may encounter substantial numerical errors. The
FEP method bypasses this issue, but it is not the case for the λ–dynamics method: this led us
to consider several options for the boundary conditions, as we will discuss in Sections 6.4 and
6.5.

3.4.3.2 The Orthogonal Space Random Walk method

λ–dynamics is an efficient method to compute free energy differences in the alchemical setting,
but as said above, it is not perfect. In this section, we introduce one of the possible reasons
why metastability is not avoided by the λ–dynamics, and present a possible way of resolving this
issue. Let us briefly consider both conformational and alchemical transitions, where the system
evolves from an initial state Γ0 to a final state Γ1 via the evolution of a transition coordinate ξ.
The free energy difference computed with thermodynamic integration then reads:

∆AΓ0→Γ1
=

∫ ξ=z1

ξ=z0

dA

dξ

∣∣∣∣
z

dz

=

∫ ξ=z1

ξ=z0

〈
dVext

dξ
−RT d ln |J |

dξ

〉
z

dz,

where |J | is the Jacobian matrix associated to the parameter ξ and

Fξ :=
dVext

dξ
−RT d ln |J |

dξ
(3.27)

is the generalized force applied to ξ. Note that in the alchemical case, ξ ≡ λ is a scalar quantity,
and consequently one has |J | = 0 and Fξ = dVext

dξ .
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A key problem of thermodynamic integration is the choice of the thermodynamic path between
the two end states. One needs to sample all the intermediate values of ξ between its initial value
z0 and final value z1 in order to properly sample the values φ of the generalized force Fξ.
This choice, as said in the previous section, is prior to the simulation, and a priori does not
avoid metastability, leading to high computation times. Furthermore, the computation of Fξ is
intrinsically linked to the relaxation of the system after each move of the order parameter ξ:
the generalized force sometimes has difficulties reaching the expected region for a given value of
ξ. This is the Hamiltonian lagging phenomena [72]. An idea, suggested by Wei Yang and his
colleagues [87, 88, 66, 89] is to use another order parameter h(., ξ) being coupled to the evolution
of ξ, and designed to capture the metastability in the space orthogonal to that of ξ. Then, an
enhanced sampling method, called the Orthogonal Space Random Walk (OSRW) method, is used
to reduce metastability in both the ξ and h(., ξ)-spaces. A natural choice for the function h(., ξ)
is the generalized force Fξ as defined in (3.27). To our knowledge, the OSRW method has led
to few applications and is not easily reproducible.

In Section 6.1, we detail the original construction of the OSRW method. We will then discuss
its limitations and proceed to motivate our intuition to rely on the choice of reaction coordinate
h(q, λ) suggested in [87, 88, 66, 89] and [1] in order to perform alchemical simulations using
an enhanced sampling method such as the Adaptive Biasing Force method, which is known to
be robust [57]. In order to test our hypothesis, we implemented the Adaptive Biasing Force
algorithm and λ–dynamics in the Tinker-HP software for alchemical transitions. Doing so will
allow us to obtain a two-dimensional free energy profile, which to our knowledge is new.
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Chapter 4
Contributions of the thesis

This thesis is structured into two parts. Each part is dedicated to a specific problem, that we
will quickly present.

Study of the robustness of the Adaptive Biasing Force method
with non-conservative forces
The Adaptive Biasing Force (ABF) and Projected Adaptive Biasing Force (PABF) algorithms
introduced in Section 3.3.2 are importance sampling methods. They are known to enhance the
sampling of a given system’s configuration space, provided the interaction force F between the
particles is conservative, namely it can be written as the gradient of a potential energy V . Let
us recall the dynamics given by the ABF method:{

dqt = (−∇V (qt) +Bt ◦ ξ(qt))∇ξ(qt) dt+
√

2β−1dWt

Bt(z) = E[F (qt) | ξ(qt) = z] ∀z ∈M ,
(4.1)

where the adaptive Bt is given by

Bt(z) = E[F (qt) | ξ(qt) = z] =

∫
Σz

F (q)πξt (dq|z) ∀z ∈M,

whith πξt (·|z) being the conditional measure at a fixed value ξ(q) = z of the reaction coordinate,
obtained from the instantaneous law πt of the process (qt)t≥0. The Fokker-Planck equation
satisfied by the law is the following:

∂tπt = β−1∆πt +∇ · (∇V · πt) .

One can check that the measure µA ∝ exp (−β(V −A ◦ ξ)) is a fixed point of the above equation.
In other words, if q0 ∼ µA, then qt ∼ µA for all t > 0 and (qt)t>0 is exactly the diffusion (3.14).

For any given initial distribution and under mild assumptions, it has been shown [57], using
entropy estimates and functional inequalities that:

(1) The relative entropy H(πt|µA) of the law πt with respect to µA converges exponentially

77
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fast in the long-time limit.

(2) The adaptive bias Bt converges in the long-time limit to the gradient of the system’s free
energy ∇A.

(3) The flat histogram property is satisfied: the relative entropy H(πξt |λ) of the density πξt
(namely, the law of (ξ(qt))t≥0) with respect to the Lebesgue measure converges exponen-
tially fast in the long-time limit. In other words, the energy profile is flattened in the
direction of the reaction coordinate ξ.

One may wonder if these above results still hold for the following Projected Adaptive Biasing
Force algorithm: dXt = (−∇V (Xt) +Bt (ξ(Xt))∇ξ(Xt)) dt+

√
2β−1dWt

Bt = PL2(λ) (Gt)
Gt(z) = E[F (Xt) | ξ(Xt) = z] ∀z ∈M,

(4.2)

where PL2(λ)(f) stands for the Helmholtz projection with respect to the Lebesgue measure λ.
In 2015, H. Alrachid an T. Lelièvre [2] answered positively by proving (1)–(3). However, the
algorithm considered was but a variant of the above algorithm, where the bias Bt is defined with
the Helmholtz projection in the weighted space L2(πξt ) instead of the Helmholtz projection in
the L2(λ) space. This was motivated by some cancellations in the computations of the proofs.
Nevertheless, as already noted in [2], the classical Helmholtz projection is used in practice. As a
consequence, a first question arises:

Open problem: Can one prove (1)–(3) for the classical PABF method (4.2)?

As mentioned in Section 3.3.2.6, some force field models can lead to hysteresis, namely, there
is a violation of the conservation of the Hamiltonian system’s energy, and the interaction force F
is a priori no longer conservative. Using the ABF and PABF algorithms in this case may be an
issue, as most of the aforementioned proofs rely on the fact that F can be written as a gradient.
Before using either one of the two methods, the following problems should be solved:

Open problem: In case one considers either dynamics (4.1) or (4.2) with a generic,
possibly non-conservative interaction force F :

(i) Does the flat histogram property hold?

(ii) Is there a stationary measure for the Fokker-Planck equation satisfied by the law
of the process? Does the law of the process converge in the long-time limit to said
stationary measure?

(iii) Does there exist a stationary bias, to which the adaptive bias converges in the
long-time limit?

(iv) If the non-conservative force F is a perturbation of a reference conservative force
−∇V , can one bound the error made while estimating the free energy of the system
and the error made while estimating an observable’s canonical mean with the error
made in the force fields?
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In Part II we will provide answers to the above questions. Chapter 5 stems from the paper
entitled "The Adaptive Biasing Force algorithm with non-conservative force and related topics",
which has been submitted and is currently available as a preprint on the page arXiv:2102.09957.
Results are explicitly presented in Section 5.2, and the proofs can be found in Section 5.3 for
the flat histogram property, Section 5.4 for the existence of a stationary measure and stationary
bias, and Section 5.5 for the long-time convergence of both algorithms.

Study of the Orthogonal Space RandomWalk sampling method
in the case of alchemical transitions

The ABF method relies on a reaction coordinate ξ, but the optimal choice of said reaction
coordinate is still an open problem to this day. As pointed out in Section 3.2 and 3.4, choosing
the right reaction coordinate will allow us to determine free energy differences, which are key
quantities in biochemistry and pharmacology. In the second part of this thesis, we intend to
address the question of choosing a transition coordinate in a very specific case, that of alchemical
transitions, introduced in Section 3.2.2. Let us recall that during an alchemical transition, the
system’s evolution from an initial state λ = 0 towards a final state λ = 1 is indexed by a parameter
λ ∈ [0, 1]. An example of alchemical transitions is the transformation of a ligand L1 into another
ligand L2: this allows to determine which one of the two is more prone to link itself with a target
receptor. When a system undergoes an alchemical transition, the key quantity to estimate is
the free energy difference ∆(0→1)A = A1 − A0. Several methods are available to do so, as seen
in Section 3.4.2. Among them is the λ–dynamics method, which allows for the parameter λ to
evolve dynamically, enhancing the sampling in the λ-space. However, there is no reason for the
λ–dynamics method to avoid metastability. Furthermore, some metastability may remain hidden
in the space orthogonal to the λ–space. In several papers Wei Yang (Florida State University)
and colleagues [87, 88, 66, 89] suggested the use of another order parameter h(., λ) being coupled
to the evolution of λ, and designed to capture the metastability in the space orthogonal to that
of λ. Then, an enhanced sampling method, called the Orthogonal Space Random Walk (OSRW)
method, is used to reduce metastability in both the λ and h(., λ)-spaces. A natural choice for
the function h(., λ) is the generalized force Fλ as defined in (3.27). Note that as presented
in Section 3.4.3.2, the OSRW method can also be used for conformational transitions. To our
knowledge, the OSRW method has led to few applications and is not easily reproducible. One
idea would then be to implement an alternative algorithm, say the ABF method, relying on the
OSRW choice of reaction coordinate, and compare it to the original method. One would then
need to answer the following questions:

The ABF method relies on a reaction coordinate ξ, but the optimal choice of said reaction
coordinate is still an open problem to this day. As pointed out in Section 3.2 and 3.4, choos-
ing the right reaction coordinate will allow us to determine free energy differences, which are
key quantities in biochemistry and pharmacology. In the second part of this thesis, we intend to
apprehend the question of choosing a transition coordinate in a very specific case, that of alchem-
ical transitions, introduced in Section 3.2.2. Let us recall that during an alchemical transition,
the system’s evolution from an initial state λ = 0 towards a final state λ = 1 is indexed by a
parameter λ ∈ [0, 1]. An example of alchemical transitions is the transformation of a ligand L1

into another ligand L2: this allows to determine which one of the two is more prone to link itself
with a target receptor. When a system undergoes an alchemical transition, the key quantity to
estimate is the free energy difference ∆(0→1)A = A1−A0. Several methods are available to do so,
as seen in Section 3.4.2. Among them is the λ–dynamics method, which allows for the parameter
λ to evolve dynamically, enhancing the sampling in the λ-space. However, there is no reason for
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the λ–dynamics method to avoid metastability. Furthermore, some metastability may remain
hidden in the space orthogonal to the λ–space. In several papers Wei Yang (Florida State Uni-
versity) and colleagues [87, 88, 66, 89] suggested the use of another order parameter h(q, λ) being
coupled to the evolution of λ, and designed to capture the metastability in the space orthogonal
to that of λ. Then, an enhanced sampling method, called the Orthogonal Space Random Walk
(OSRW) method, is used to reduce metastability in both the λ and h(q, λ)-spaces. A natural
choice for the function h(q, λ) is the generalized force Fλ as defined in (3.27). Note that as
presented in Section 3.4.3.2, the OSRW method can also be used for conformational transitions.
To our knowledge, the OSRW method has led to few applications and is not easily reproducible.
One idea would then be to implement an alternative algorithm, say the ABF method, relying
on the OSRW choice of reaction coordinate, and compare it to the original method. One would
then need to answer the following questions: »»»> 9be8a9c708503eb6529abdd994c0c9295f6ffdfe

Open problem:

(i) Is the Adaptive Biasing Force method (3.18) applied with the reaction coordinate
(λ, Fλ) successful in enhancing the sampling in both the λ space and its orthogonal
space?

(ii) Is (λ, Fλ) the optimal choice of reaction coordinate, or is the use of two coupled
coordinates generally more efficient?

Part III is dedicated to the study of the Orthogonal Space Random Walk method. More
precisely, we present a possible implementation of the OSRW method. We first recall the theo-
retical background of the λ–dynamics, its eventual applications in the alchemical setting along
with its eventual limitations in Section 6.3, which will lead to the introduction of the concept of
softcore potentials. Section 6.4 is dedicated to the implementation of softcore potentials in the
Tinker-HP software, along with the implementation of the λ–dynamics in the Tinker-HP and
Collective Variables module codes. This laid the foundations of a proxy between both softwares,
expanding the field of possibilities for MD simulations. Eventually, we present our first numerical
results in Section 6.4.5, where we test the efficiency of the implemented λ–dynamics to compute
free energy differences for several toy models. Then, we proceed in Section 6.5 to compare the
OSRW method with the two-dimensional ABF method: we will first present the implementation
of the method in the Tinker-HP and Collective Variables module codes, and discuss the numer-
ical challenges faced doing so. To finish, we will discuss how said challenges could be overcome,
what remains to be done up to today, and present the future of the OSRW method.



Et ainsi on comprend ce qu’il y a de vivant, de précaire aussi,
dans nos connaissances et on évite de tomber dans le
dogmatisme, qui est quelque peu décourageant comme toute
chose définitive et morte.

Paul Langevin,
La valeur éducative de l’histoire des sciences, (1926)

Part II

Robustness of the Adaptive
Biasing Force method with
non-conservative forces and

related topics
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Chapter 5
Robustness of the Adaptive
Biasing Force algorithm

with T. Lelièvre and P. Monmarché

The following chapter stems from the paper untitled "The Adaptive Biasing Force algorithm with
non-conservative force and related topics", which has been submitted and is currently available
as a preprint on the page arXiv:2102.09957. Some of its paragraphs may be redundant, as some
content has already been introduced in the general introduction. For the sake of clarity, and to
allow for this chapter to be read independently of the rest of this corpus, we decided to keep
them as it is. If one already went through the introductory chapters 1, 2 and 3, we suggest a
quick diagonal reading of Section 5.1, where we introduce the notations used throughout this
paper.

We here propose a study of the Adaptive Biasing Force method’s robustness under generic
(possibly non-conservative) forces. We first ensure the flat histogram property is satisfied in all
cases. We then introduce a fixed point problem yielding the existence of a stationary state for
both the Adaptive Biasing Force and Projected Adapted Biasing Force algorithms, relying on
generic bounds on the invariant probability measures of homogeneous diffusions. Using classical
entropy techniques, we prove the exponential convergence of both biasing force and law as time
goes to infinity, for both the Adaptive Biasing Force and the Projected Adaptive Biasing Force
methods.

5.1 Introduction

After presenting in Sections 5.1.1, 5.1.2 and 5.1.3 the motivation and well-known results on
the Adaptive Biasing Force (ABF) method applied to the overdamped Langevin dynamics with
conservative forces, we present in Section 5.1.4 the dynamics we are interested in, namely the
ABF method applied to the overdamped Langevin dynamics with non-conservative forces.

83
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5.1.1 Setting

Let us work within the so-called canonical ensemble (or NVT ensemble), where a system of
N particles is contained in a fixed volume V, and is in contact with a thermostat of constant
temperature T . Denote by q = (q1, . . . , qN ) ∈ D the positions, p = (p1, . . . , pN ) ∈ RdN the
momenta, and (m1, . . . ,mN ) ∈ RN the masses of the particles, where D is the configuration
space and d ∈ {1, 2, 3} is the space dimension. Usually, D is an open subset of RdN (or TdN ,
where the dN -dimensional torus is viewed as the cube [0, 1]dN with opposite sides identified,
in other words, TdN = RdN/ZdN ). Interactions between particles are taken into account via
a potential function V : D → R, so that the system’s total energy is given by the following
Hamiltonian:

H(q, p) = V (q) +
1

2
p>M−1p,

with M = diag(m1Id, . . . ,mNId) being the mass matrix. Since this Hamiltonian is separable,
the positions and the momenta are independent variables in the canonical ensemble, namely
under the probability distribution Z−1e−βH(q,p) dqdp where β = 1/(kBT ), with kB being the
Boltzmann constant, and Z =

∫
D×RdN e

−βH(q,p) dqdp is the normalization constant, or partition
function. The momenta p being distributed according to a Gaussian measure, the main issue
resides in sampling the positions q, which are distributed according to the Boltzmann-Gibbs
measure:

µ(dq) = Z−1µ e−βV (q)dq, Zµ =

∫
D
e−βV (q) dq.

Thermodynamic properties are obtained by averaging functions of the microstate q which are
called observables. Given an observable ψ, one would like to compute the following thermody-
namic quantity:

Eµ[ψ] =

∫
D
ψ dµ.

One of the simplest dynamics to sample the Boltzmann-Gibbs measure is the overdamped Langevin
dynamics:

dXt = −∇V (Xt) dt+
√

2β−1dWt, (5.1)

where (Wt)t≥0 is a dN -dimensional standard Brownian motion, and −∇V : D → RdN is the
interaction force. Notice that here, the interaction force is conservative, namely it is the gradient
of a function (here, minus the gradient of the potential energy V ). Under reasonable assumptions
on the potential V (see [57] for more details), the process (Xt)t≥0 is ergodic with respect to µ.
In other words, for any observable ψ ∈ C∞0 (D), the average over a trajectory of the process
converges to the canonical average:

lim
τ→+∞

1

τ

∫ τ

0

ψ(Xt) dt = Eµ[ψ]. (5.2)

5.1.2 Metastability, reaction coordinate and free-energy profiles

Computing thermodynamic averages can be troublesome, as microscopic and macroscopic time-
scales can violently differ. Typical microscopic phenomena occur on timescales of the order of
10−15s, while macroscopic ones can take up to 1 h [58]. Furthermore, N needs to be sufficiently
large so that the targeted macroscopic phenomena can emerge from the collective, microscopic
behaviour of the system.

Such timescales differences are linked to the system’s metastability : low-energy regions of the
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configuration space are separated by either high-energy or high-entropy barriers. These regions
are called metastable: the process (5.1) remains trapped in a metastable region and occasionally
jumps to another one after a long period of time. From a probabilistic point of view, metastability
is linked to the multimodality of the measure µ: likely regions are separated by low probability
regions. The exploration of the state space by the process and the convergence of the trajectorial
averages (5.2) can thus take a considerably long time.

One way of avoiding metastability is to capture some slow components of the dynamics
(Xt)t≥0. To do so, we consider transition coordinates (also called reaction coordinates or collec-
tive variables), namely mappings ξ : D → M, where M is a manifold of dimension m � dN .
Transition coordinates are designed to provide a coarse-grained information on the system’s state
(for example, the dihedral angle of a molecule, in which caseM = T, or the signed distance to
a hypersurface of D, in which caseM = R). In other words, ξ(x) ∈M is the macroscopic state
of a microscopic state x ∈ D. Designing a good reaction coordinate is a difficult problem, that
will not be discussed further in the present work.

Decomposing
D =

⊔
z∈M

Σz =
⊔
z∈M
{q ∈ D|ξ(q) = z},

and denoting by σΣz
the measure on Σz induced by the Lebesgue measure on D, one can define

the measure δξ(q)−z(dq) by

δξ(q)−z(dq) =
1√

detG(q)
σΣz

(dq),

where G = (∇ξ)>∇ξ, in other words,

Gi,j = ∇ξi · ∇ξj , for all (i, j) ∈ J1,mK2.

The free energy associated to ξ is then expressed as follows: for every z ∈M,

A(z) = − 1

β
ln(ZΣz

), ZΣz
=

∫
Σz

e−βV (q)δξ(q)−z(dq), (5.3)

assuming V and ξ are such that ZΣz
< +∞. As can be seen using the co-area formula [57], this

definition ensures that the image of µ by ξ is given by

ξ?µ (dz) =
e−βA(z)dz∫
M
e−βA(u)du

. (5.4)

5.1.3 The Adaptive Biasing Force method

Introducing a reaction coordinate allows us to construct a less metastable dynamics, the idea
being to substitute the potential V in (5.1) for a biased potential V −A◦ξ. The new equilibrium
measure is then

µA(dq) = Z−1µA e
−β(V−A◦ξ)(q) dq, (5.5)

where ZµA =
∫
D e
−β(V−A◦ξ)(q)dq. Given the expression (5.4), the image of µA by ξ is the

uniform measure: ξ?µA = λ(M)−11M, with λ(M) being the Lebesgue measure ofM (which is
here assumed to be compact). Since, contrary to the initial probability measure ξ?µ, the uniform
measure is no longer multimodal, we expect a faster sampling of the phase space, provided ξ is
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well chosen so that µA is less multimodal than µ.
Although this change of potential can accelerate the phase space sampling, the free-energy

A is a priori unknown. The main idea to get round this issue will be to approximate on the fly
A , or ∇A, its derivative with respect to the reaction coordinate. To do so, we will consider the
Adaptive Biasing Force (ABF) algorithm [24, 39]:

{
dXt = (−∇V (Xt) +Bt (ξ(Xt))∇ξ(Xt)) dt+

√
2β−1dWt

Bt(z) = E[F (Xt) | ξ(Xt) = z] ∀z ∈M,
(5.6)

where −∇V is the conservative interaction force, and F is the so-called local mean force,
which is the vector with components (Fi)i∈J1,mK given by:

Fi =

m∑
j=1

G−1i,j∇ξj · ∇V − β
−1div

 m∑
j=1

G−1i,j∇ξj

 ,

where G−1i,j denotes the (i, j)-component of the inverse of the matrix G defined above. This
process is motivated by the fact that the aforementioned free energy satisfies:

∇A(z) = E[F (X)|ξ(X) = z], ∀z ∈M if X ∼ µA ,

so that µA is a fixed point of the Fokker-Planck equation associated to the process. In other
words, if X0 ∼ µA, then Xt ∼ µA for all t > 0 and (Xt)t>0 is exactly the diffusion (5.1) with
the biased potential V −A ◦ ξ.

Starting from another initial distribution, using entropy estimates and functionnal inequal-
ities, it has been proven in [57], under mild assumptions, that this fixed point is in fact an
attractor of the dynamics, in the sense that Bt converges to ∇A in the long-time limit, and the
law of Xt converges to µA.

Remark 15.

. In some cases M is not bounded, for example when ξ is a distance. If so, an additional
confining potential W ◦ ξ is needed in the drift [57].

. As discussed in [57], the algorithm (5.6) can be modified in order to obtain a diffusive
behaviour for the law of ξ(Xt). Additional terms depending on ξ are added to obtain the
following variant:{

dXt =
(
−∇V +Bt ◦ ξ −∇W ◦ ξ + β−1∇ ln(|∇ξ|−2)

)
|∇ξ|−2(Xt) dt+

√
2β−1|∇ξ|−1(Xt)dWt

Bt(z) = E[F (Xt) | ξ(Xt) = z], ∀z ∈M.

In this case the long-time convergence of Bt towards ∇A is stronger than in the case of
(5.6), in that it requires fewer hypotheses.

We might also consider a variant of the ABF method, namely the Projected Adaptive Biasing
Force (PABF) algorithm, introduced in [2]:
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 dXt = (−∇V (Xt) +Bt (ξ(Xt))∇ξ(Xt)) dt+
√

2β−1dWt

Bt = PL2(λ) (Gt)
Gt(z) = E[F (Xt) | ξ(Xt) = z] ∀z ∈M,

where PL2(λ)(f) stands for the Helmholtz projection with respect to the Lebesgue measure λ
of a vector field f on an open bounded setM⊂ RdN with Lipschitz boundary ∂M [3]. In other
words, it is the gradient of the minimizer on {g ∈ H1(M),

∫
M gdx = 0} of

g 7→
∫
M
|f(x)−∇g(x)|2dx .

More generally, if ν is a continuous positive measure onM, the Helmholtz projection with respect
to ν is the minimizer on {g ∈ H1(M),

∫
M gdx = 0} of g 7→

∫
M |f(x)−∇g(x)|2ν(dx).

5.1.4 The non-conservative case
From now on, we only consider periodic boundary conditions and reaction coordinates that are
Euclidean coordinates of the system, namely D = Tn = Rn/Zn for some n ∈ N∗, M = Tm for
m ∈ N∗ such that m 6 n and ξ(x, y) = x, where we decompose (x, y) ∈ D with x ∈ Tm and
y ∈ Tn−m. This latter restriction may seem quite narrow: nevertheless, it is the generic case
used for alchemical reactions [49]. Besides, more general reaction coordinates can be reduced to
this setting by adding extended variables [31]. Here, such restriction is made only for the sake of
clarity: most arguments could be extended (at the price of heavier computations) to the general
case ξ(x, y) ∈M.

We are interested in the case where the force in (5.1) is not necessarily conservative, namely
is not the gradient of some potential energy V . There are several motivations for this approach,
one of them being that the numerical computation of conservative forces −∇V sometimes relies
on approximations which make the force a priori not conservative, in particular in the context
of ab initio molecular dynamics, see e.g. [74, 69, 20]. In this case, one is interested in knowing
if, by controlling the error made on the force −∇V , one can deduce an estimation of the error
made on the system’s free energy. The robustness of a diffusion’s invariant measure with respect
to the perturbation of its drift is a classical problem (see e.g. Section 5.4.3), but note that in the
ABF case, the adaptive procedure makes the question more subtle. Moreover, the convergence
of the ABF method in such a context cannot be deduced from the aforementionned convergence
analysis. We consequently consider the ABF algorithm in the case where −∇V is replaced by a
general force field F ∈ C1(D,Rn) that we rewrite as F(x, y) = (F1(x, y),F2(x, y)) ∈ Rm×Rn−m.
The local mean force is simply F = −F1, and the corresponding process is thus, for all t ≥ 0:
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{
dXt = F1(Xt, Yt)dt+Bt(Xt)dt+

√
2β−1dW 1

t

dYt = F2(Xt, Yt)dt+
√

2β−1dW 2
t

(5.7)

where W = (W 1,W 2) is a standard Brownian motion on Tm × Tn−m, and, given the
average mean force

Gt(x) = −E[F1(Xt, Yt) |Xt = x ], ∀t ≥ 0,∀x ∈ Tm,

one has for all t ≥ 0 and x ∈ Tm, in the case of the ABF method,

Bt(x) = Gt(x),

or, in the case of the PABF method,

Bt(x) = PL2(λ)(Gt)(x) := ∇Ht(x).

In either case, denoting by πt the law of Zt = (Xt, Yt) and πξt (x) =
∫
Tn−m πt(x, y)dy the

density of Xt = ξ(Zt), then

Gt(x) =

∫
Tn−m

−F1(x, y)
πt(x, y)

πξt (x)
dy,

so that πt is a weak solution of the Fokker-Planck equation associated to (5.7), that is
∂tπt = β−1∆πt −∇ · (F πt)−∇x · (Bt πt)

Bt =

{
Gt in the ABF case
∇Ht = PL2(λ)(Gt) in the PABF case

Gt(x) =
∫
Tn−m −F1(x, y)πt(x,y)

πξt (x)
dy ∀x ∈ Tm.

(5.8)

For a given initial condition π0, the existence of the process and the proof that it admits a
density with respect to the Lebesgue measure, being a strong solution of (5.8), can be established
by fixed point arguments or by the convergence of an interacting particles system [45]. We will
not address this question here. As a consequence, we would like to emphasize that our arguments
will be partially formal, in the sense that we work under the assumption that a density πt that
solves (5.8) exists and is sufficiently regular so that the algebraic computations in the proofs are
valid.

Let us emphasize that the bias Bt in (5.8) (i.e. either Gt or ∇Ht = PL2(λ)(Gt)) depends on
πt, which makes (5.8) a non-linear PDE.

Remark 16. In the conservative case, where F = −∇V , and µ ∝ e−βV , up to an additive
constant, the free energy A is characterized by either one of these properties:

1. ξ?µ ∝ e−βA (distribution of the reaction coordinate at equilibrium).

2. ∇A = E[∇1V (Z)|ξ(Z) = · ] with Z ∼ µ (average local mean force at equilibrium).

3. ∇A = E[∇1V (Z)|ξ(Z) = · ] with Z ∼ µA (fixed point of the ABF algorithm).

In the non-conservative case, there is no reason for these various definitions to coincide. Besides,
x 7→ E[−F1(Z)|ξ(Z) = x ] is a priori not a gradient. Denoting by µF the invariant measure of the
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non-biased, out-of-equilibrium dynamics ∂tπt = β−1∆πt −∇ · (Fπt), we are then led to consider
the (in general different) functions H1, H2 and H3 given, up to an additive constant, by

1. ξ?µF ∝ e−βH1 .

2. ∇H2 = PL2(λ) (E[−F1(Z)|ξ(Z) = · ]) with Z ∼ µF .

3. ∇H3 = PL2(λ) (E[−F1(Z)|ξ(Z) = · ]) with Z ∼ πF∞ an equilibrium of the (P)ABF algorithm.

In other words, in the non-conservative case, an equilibrium of an adaptive algorithm yields an
alternative generalization of the notion of free energy that does not coincide in general with the
log-density of the law of the reaction coordinates at (unbiased) equilibrium, and whose gradient
is not in general the average local mean force at (unbiased) equilibrium.

Outline of this paper. Section 5.2 introduces several preliminary notions, before stating the
main results. Section 5.3 focuses on the law πξt of the process (Xt)t≥0 = (ξ(Zt))t≥0. More pre-
cisely, we show that πξt satisfies a particular Fokker-Planck equation, which differs depending on
the method considered, and that πξt converges in the long-time limit to the Lebesgue measure λ.
Section 5.4 then states several results on the invariant measure of a generic diffusion, in order
to adress the issue of the existence of both stationary measure and stationary biais to equation
(5.8), and later handles the robustness of the conservative equilibrium to non-conservative per-
turbations. Eventually, Section 5.5 is devoted to the long-time convergence of both the ABF
and PABF methods, in the conservative case, with a force F = −∇V (generalizing in particular
results from [2]), and in the non-conservative case, with a generic force F .

5.2 Main results

Before stating the main results of this paper, we encourage the reading of Section 3.1.2.2,
where we recall the definitions of the relative entropy of two measures along with several
functional inequalities.

5.2.1 Precise statements of the results

In all this section, πt satisfies (5.8). First of all, let us consider the equation satisfied by the
density πξt in the general case where F is either conservative or non-conservative.

Lemma 1. The density πξt satisfies the following Fokker-Planck equation:

∂tπ
ξ
t = β−1∆πξt −∇ ·

(
(Bt −Gt)πξt

)
. (5.9)
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Proof. Take a test function ϕ ∈ C∞(Tm). Then, using an integration by parts,

d

dt

∫
Tm

ϕπξt =
d

dt

∫
Tn
ϕ(x)πt(x, y)dxdy

=

∫
Tn

(
β−1∆xϕ(x) + (F1(x, y) +Bt(x))∇xϕ(x)

)
πt(dx, dy)

=

∫
Tm

(
β−1∆xϕ(x)πξt (x) +

(∫
Tn−m

F1(x, y)
πt(x, y)

πξt (x)
dy +Bt(x)πξt (x)

)
∇xϕ(x)

)
dx

=

∫
Tm

(
β−1∆xϕ+ (Bt −Gt)∇xϕ

)
πξt .

Remark that in [2, Proposition 2], the Helmoltz projection is done in L2(πξt ), so that ∇ ·
((Bt−Gt)πξt ) = 0 and one ends up with the heat equation. Here, we get the heat equation in the
ABF case (Bt = Gt) and, in the PABF case (Bt = PL2(λ)(Gt)), an additional time-dependent
divergence-free drift.

Remark 17. Since the density πξt , as well as constants, satisfies the Fokker-Planck equation (5.9)
which preserves positivity, provided there exists mξ

0 > 0 such that πξ0 ≥ mξ
0, one can show that

πξt ≥ mξ
0 for all t ≥ 0 on the torus Tm. Note that if πξ0 was to be zero at some points or not

sufficiently smooth, the conditional mean G0 given in (5.8) might not be well defined.

In view of Remark 17, from now on, assume the following:

Assumption 4. The initial condition π0 admits a smooth density with respect to the
Lebesgue measure, such that πξ0 is positive.

As a consequence, the conditional means Gt are well defined for all t ≥ 0, along with the
entropy H(π0 |λ), which is ensured to be finite. Furthermore, πξ0 belongs to L2(Tm).

Both the ABF and PABF algorithms are designed in order to ensure that all the values of the
transition coordinate have been visited. In other words, the density of ξ(Xt, Yt) should converge
to a flat histogram, namely the Lebesgue measure λ. In the conservative case, this is known
to hold in both the ABF case [56] and the PABF case [2]. We now extend the flat histogram
property to the general –possibly non-conservative– case.

Proposition 3. For both the ABF and PABF algorithm, under Assumption 4, πξt con-
verges towards the Lebesgue measure as t→∞. More precisely, for all t ≥ 0:

H(πξt |λ) 6 e−8β
−1π2tH(πξ0|λ) .

Furthermore, the entropic convergence of the density can be strengthened to an L∞ one, that
will prove useful in the rest of the study:

Proposition 4. For both the ABF and PABF algorithm, under Assumption 4, there
exists C > 0 such that for all initial distribution πξ0 ∈ L2(Tm), for all t ≥ 1:

‖πξt − 1‖∞ 6 Ce−4β
−1π2t‖πξ0 − 1‖2 .
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As detailed in [57, 2], in the conservative case F = −∇V , π∞ = µA is a stationary state
of (5.8). In the non-conservative case, the existence of such a stationary state may be unclear,
and this issue will be treated in Theorem 1 below, which will pe proved in Section 5.4.2. For
now, let us consider the following assumption:

Assumption 5. The interaction force F is in C1(Tn,Rn), and we denote by M > 0 a
constant such that for all y ∈ Tn−m, x 7→ F1(x, y) is M -Lipschitz.

Theorem 1. For both the ABF and PABF algorithms, under Assumption 5, there exists
a couple of stationary measure and bias

(
πF∞, B

F
∞
)
to (5.8), such that πF∞ ∈ C0(Tn) is

stricly positive. As a consequence,

(i) πF∞ satisfies a log-Sobolev inequality for some constant R > 0,

(ii) the conditional density y 7→ πF∞,x(y) := πF∞(x, y)/πF,ξ∞ (x) satisfies a log-Sobolev
inequality for some constant ρ > 0, for all x ∈ Tm.

Remark 18. Note that there is no reason whatsoever for πF∞ to be the same in both the ABF
and PABF case. Nevertheless, as shown in Proposition 3, πξ∞ ≡ 1 in all cases.

Remark 19. An important remark is that, at small temperatures (i.e. β � 1), the optimal
log-Sobolev constant of a probability measure with density proportional to exp(βW ) for some W ,
roughly scales like exp(βdW ) where dW is the so-called critical depth of W [63] (the critical depth
is the highest energy barrier to overcome in order to reach a global minimum of W ). If the
transition coordinate is well-chosen, the metastability in the orthogonal space should be small,
meaning that for all x ∈ Tm the critical depth of W (x, ·) should be small with respect to the
critical depth of W . As a consequence, as a function of β, ρ is expected to be much larger than
the log-Sobolev constant of µ ∝ e−βV , which is the convergence rate to equilibrium of the original
(unbiased) dynamics (5.1).

The following result deals with the robustness of the conservative equilibrium to non-conservative
perturbations, and will be proved in Section 5.4.3.

Proposition 5. For the PABF algorithm, under Assumption 4 and Assumption 5, for
all V ∈ C2(Tn) and p ≥ 1, there exists KV > 0 and Kp > 0 such that the following holds.
Denote by A the free energy associated to V (see equation (5.3) for the definition of A).
For all F ∈ C1(Tn) satisfying ‖F +∇V ‖∞ ≤ 1, for all equilibrium measure πF∞ of (5.8),
considering the corresponding bias ∇HF∞, one has

‖∇A−∇HF∞‖Lp(Tm) ≤ KVKp‖F +∇V ‖∞ ,

and, for all ψ ∈ L∞(Tn), considering

Îψ :=

∫
Tn ψ(x, y)e−βH

F
∞(x)πF∞(x, y)dxdy∫

Tn e
−βHF∞(x)πF∞(x, y)dxdy

,

one has ∣∣∣∣∫
Tn
ψdµ− Îψ

∣∣∣∣ ≤ KV ‖ψ‖∞ ‖F +∇V ‖∞ .
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The first point of Proposition 5 states that, if the error on the forces ∇V is small, then the
bias of the free energy estimation is small. The second point states that similarly, the bias on the
computations of averages with respect to µ is small if the error on the forces is small. Indeed, in
practice, in order to compute averages with respect to the initial target law µ from the biased
trajectory, two strategies are available: either standard importance sampling re-weighting, or
estimation of the conditional expectations given ξ(X,Y ) = x and then average with respect to
exp(−HF (x)). In both cases, if −∇V is replaced by F due to some numerical errors and the
process converges in large time towards an equilibrium πF∞, then a quantity of the form

∫
Tn ψdµ

is approximated by an estimator that converges in large time towards the quantity Îψ defined in
Proposition 5.

Finally, we turn to the long-time convergence of the density πt on the whole space. The first
theorem concerns the classical, conservative case, whereas the second concerns the general case,
where the force F can be non conservative. These will respectively be proved in sections 5.5.2
and 5.5.3.

Theorem 2. Let us consider (πt, Bt) solution of (5.8) for either the ABF or PABF
algorithm, under Assumption 4 and Assumption 5. Let us suppose moreover that F =
−∇V , with V ∈ C2(Tn). Then, there exists K > 0 such that, for all ε > 0 and for all
t ≥ 0:

H (πt|µA) ≤ K
(

1 +
1

ε2

)
e−(Λ−ε)t,

with µA being given by (5.5), Λ =
(
8π2 ∧ 2ρ

)
β−1 in the ABF case, Λ =

(
4π2 ∧ 2ρ

)
β−1 in

the PABF case, and ρ is the log-Sobolev constant of the conditional density y 7→ µA,x(y) :=

µA(x, y)/µξA(x). Furthermore, (5.8) consequently admits a unique stationary state: using
the notations of Theorem 1,

(
π−∇V∞ , B−∇V∞

)
= (µA,∇A).

This extends [57, Theorem 1], which is restricted to the ABF algorithm with m = 1. Besides,
for the PABF algorithm, [2, Theorem 1] is a similar convergence result but for a variant of
the algorithm where the classical Helmholtz projection in L2(λ) is replaced by the Helmholtz
projection in the weighted space L2(πξt ). This variant is motivated in [2] by some cancellations
in the computations of the proofs. Nevertheless, as already noted in [2], the classical Helmholtz
projection is used in practice. Theorem 2 in the PABF case is thus a new result which fills a gap
between the existing theoretical convergence results and the practical algorithm.

Remark 20. For t > 0, applying Theorem 2 with ε = 1/t yields

H (πt|µA) ≤ Ke1(1 + t2)e−Λt.

The next results address the general –possibly non-conservative– case, and as such are new.
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Theorem 3. Let us consider (πt, Bt) solution of (5.8) for either the ABF or PABF
algorithm, under Assumption 4 and Assumption 5. Let πF∞, R, ρ be a stationary measure
for (5.8) and the two associated constants, as introduced in Theorem 1. Suppose moreover
that Mβ < 2ρ. Then there exists K ≥ 0 such that, for all t ≥ 0:

H
(
πt|πF∞

)
≤ Ke−Λt,

with Λ = 2R(1 − Mβ
2ρ )β−1. As a consequence, the dynamics (5.8) admits a unique sta-

tionary state.

Eventually, one has the following result, which will be proved in Section 5.5.4.

Corollary 1. Under the settings of either Theorem 2 or 3, there exists a unique stationary
state

(
πF∞, B

F
∞
)
for the dynamics (5.8). Furthermore, there exists K ≥ 0 such that for

all t ≥ 0, ∫
Tm
|Bt −BF∞|2dx ≤ Ke−Λt,

where Λ is given by either Theorem 2 (where F = −∇V ) or 3 (where F is general).

Remark 21. A direct consequence of the Csizàr-Kullback inequality (3.3) combined with either
Theorem 2 or Theorem 3 is that for all t ≥ 0

‖πt − πF∞‖TV ≤
√

2Ke−
1
2Λt,

where K,Λ ≥ 0 are given by either Theorem 2 (where F = −∇V ) or 3 (where F is general).

Theorem 3 shows the exponential convergence to a unique stationary state for the ABF and
PABF algorithms even for non-conservative forces. Notice that the rate of convergence obtained
in Theorem 2 for conservative forces is better than the rate of convergence in Theorem 3. It
would be interesting to further investigate the sharpness of these rates.

The rest of this paper is devoted to the proofs of the results stated in this section. From
now on, and without loss of generality, we will assume that β = 1. Note that the assumption
of Theorem 3 now becomes M < 2ρ. An adequate change of variable to then deduce the
results for β 6= 1 is: t̃ = β−1t, F̃(x, y) = βF(x, y), W̃ 1(x) = βW 1(x), W̃ 2(y) = βW 2(y), and
π̃t(x, y) = πt(x, y), for all t ≥ 0 and for all (x, y) ∈ Tn.

5.3 Law of the transition coordinate
After proving in Section 5.3.1 the long-time entropic convergence of the density πξt towards the
Lebesgue measure λ, we prove in Section 5.3.2 its long-time L∞-convergence, by relying on a
Nash inequality on the n-dimensional torus and on the proof of [5, Theorem 6.3.1].

5.3.1 Proof of Proposition 3
Proof. One has:

d

dt
H(πξt |λ) =

d

dt

∫
Tm

πξt lnπξt .
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Considering Ltµ = ∇ · (∇µ− (Bt −Gt)µ):

d

dt

∫
Tm

πξt =

∫
Tm
Ltπξt = 0.

One gets, using integration by parts,

d

dt
H(πξt |λ) =

∫
Tm

ln(πξt )Ltπ
ξ
t +

∫
Tm
Ltπξt

= −
∫
Tm

|∇πξt |2

πξt
+

∫
Tm

(Bt −Gt)∇πξt

= −
∫
Tm

|∇πξt |2

πξt
(since ∇ · (Bt −Gt) = 0)

= −
∫
Tm

∣∣∣∣∣∇ ln

(
πξt
λ

)∣∣∣∣∣
2

πξt

= −I(πξt |λ). (5.10)

Since the Lebesgue measure λ satisfies a log-Sobolev inequality of constant 4π2 [5, Proposition
5.7.5(ii)], we have:

∂tH(πξt |λ) ≤ −2(4π2)H(πξt |λ),

which concludes the proof of Proposition 3, denoting by πξ∞ ≡ λ the long-time limit of πξt .

5.3.2 Proof of Proposition 4

We first state a Nash inequality on the n-dimensional torus.

Lemma 2. For all n ∈ N∗, there exists a = a(n) > 0 such that for all functions u ∈
H1(Tn):

‖u‖22 ≤ 2‖u‖21 + a‖∇u‖
2n
n+2

2 ‖u‖
4

n+2

1 . (5.11)

Proof. Let us recall that Tn = Rn/Zn. We consider L2(Tn) equipped with the inner product
〈u, v〉 :=

∫
Tn u(x)v̄(x) dx. The sequence {e2πikx}k∈Zn is an orthonormal basis of L2(Tn). Now

given a function u ∈ L2(Tn) and its Fourier coefficients

ck =

∫
Tn
u(x)e−2πikx dx, ∀k ∈ Zn,

denoting by k = (k1, . . . , kn) a vector in Zn, and |k| =
√∑n

j=1 |kj |2, the Parseval identity yields

‖u‖22 =
∑
k∈Zn

|ck|2 , ‖∇u‖22 =
∑
k∈Zn

|k|2 |ck|2.
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Let ρ > 0 to be fixed later on. One has, considering ‖k‖∞ = max
j∈J1,nK

{|kj |}:

‖u‖22 =
∑
k∈Zn

|ck|2 =
∑
‖k‖∞≤ρ

|ck|2 +
∑
‖k‖∞>ρ

|ck|2

≤
∑
‖k‖∞≤ρ

|ck|2 +
1

ρ2

∑
‖k‖∞>ρ

‖k‖2∞|ck|2

≤
∑
‖k‖∞≤ρ

|ck|2 +
1

ρ2

∑
‖k‖∞>ρ

|k|2|ck|2

≤
∑
‖k‖∞≤ρ

|ck|2 +
1

ρ2
‖∇u‖22.

And: ∑
‖k‖∞≤ρ

|ck|2 =
∑
‖k‖∞≤ρ

∣∣∣∣∫
Tn
u(x)e−2πikx dx

∣∣∣∣2 ≤ ‖u‖21 ∑
‖k‖∞≤ρ

1 ≤ (2ρ+ 1)n‖u‖21.

Consequently:

‖u‖22 ≤ 3n(ρ ∨ 1)n‖u‖21 +
1

ρ2
‖∇u‖22. (5.12)

We now distinguish between two cases:

(i) If 3n‖u‖21 ≤ ‖∇u‖22, by choosing

ρ = 3−
n
n+2
‖∇u‖

2
n+2

2

‖u‖
2

n+2

1

≥ 1,

inequality (5.12) yields:

‖u‖22 ≤ 3n3−
n2

n+2 ‖∇u‖
2n
n+2

2 ‖u‖
4

n+2

1 + 3
2n
n+2 ‖∇u‖

2n
n+2

2 ‖u‖
4

n+2

1

= 2 · 3
2n
n+2 ‖∇u‖

2n
n+2

2 ‖u‖
4

n+2

1 . (5.13)

(ii) If 3n‖u‖21 ≥ ‖∇u‖22, one wishes to rely on the Poincaré-Wirtinger inequality on the torus Tn.
The optimal Poincaré constant in H1

0 (Tn) being equal to λ−11 , where λ1 = 4π2 is the
first non trivial eigenvalue of the negative Laplacian −∆, one can consider the following
Poincaré-Wirtinger inequality:

‖u− ū‖22 ≤
1

4π2
‖∇u‖22, ∀u ∈ H1(Tn), (5.14)
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where ū =

∫
Tn
u(x) dx. One consequently gets:

‖u‖22 ≤ 2ū2 + 2‖u− ū‖22

≤ 2‖u‖21 + 2
1

4π2
‖∇u‖22

= 2‖u‖21 +
1

2π2
‖∇u‖

2n
n+2

2 ‖∇u‖
4

n+2

2

≤ 2‖u‖21 +
1

2π2
3

2n
n+2 ‖∇u‖

2n
n+2

2 ‖u‖
4

n+2

1 . (5.15)

Combining (5.13) and (5.15), one obtains:

‖u‖22 ≤ 2‖u‖21 + 3
2n
n+2

(
1

2π2
∨ 2

)
‖∇u‖

2n
n+2

2 ‖∇u‖
4

n+2

1

which yields (5.11), with a = 2 · 3
2n
n+2 .

We are now in position to prove Proposition 4.

Proof of Proposition 4. We will rely on the idea of the proof of [5, Theorem 6.3.1]. Let us start
with two preliminary results. Let ϕ ∈ C∞(Tm) be a test function and consider:

∀z ∈ Tm, ϕt(z) = Ez[ϕ(Zt)] = E[ϕ(Zt) |Z0 = z],

where (Zt)t≥0 satisfies the following dynamics:

dZt = (Bt −Gt) (Zt)dt+
√

2dWt,

where (Wt)t≥0 is a n-dimensional Brownian motion and ∇ · (Bt −Gt) = 0. Let νZ be the
invariant measure of this dynamics, L = (Bt −Gt) · ∇ + ∆ its infinitesimal generator, and
L∗ = −∇ · (Bt −Gt) +∆ its adjoint in L2(νZ). Using Itô calculus, ϕt satisfies:

ϕ0 = ϕ, ∂tϕt = ∆ϕt + (Bt −Gt) · ∇ϕt (5.16)

which is equivalent to

ϕ0 = ϕ, ∂tϕt = ∆ϕt +∇ · ((Bt −Gt)ϕt) .

Given the result of Lemma 1, πξt − 1 satisfies:

∂t

(
πξt − 1

)
= ∆

(
πξt − 1

)
−∇ ·

(
(Bt −Gt)(πξt − 1)

)
. (5.17)

For a fixed t > 0, one as, for all 0 ≤ s ≤ t:

d

ds

∫
Tn
ϕt−s

(
πξs − 1

)
= −

∫
Tn
Lϕt−s

(
πξs − 1

)
+

∫
Tn
ϕt−sL∗

(
πξs − 1

)
= 0.

Integrating between s = 0 and s = t yields∫
Tm

ϕt(π
ξ
0 − 1) =

∫
Tm

ϕ(πξt − 1), ∀t ≥ 0. (5.18)
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Second, for all t ≥ 0,
‖ϕt‖1 ≤ ‖ϕ‖1. (5.19)

Indeed, one has on the torus Tm:

‖ϕt‖1 ≤
∫
Tm

ψ(t, z) dz

where, for all t ≥ 0 and z ∈ Tn, ψ(t, z) = E[ |ϕ(Zt)| |Z0 = z ] ≥ 0 satisfies (5.16) with initial
condition ψ(0, .) = |ϕ(.)| ≥ 0 on Tm. Integrating by parts and using that ∇ · (Bt −Gt) = 0 one
can check that d

dt

∫
Tm ψ = 0, so that:∫

Tm
ψ(t, z) dz =

∫
Tm

ψ(0, z) dz = ‖ϕ‖1, ∀t ≥ 0,

hence the result.

Step 1: Now let us show that there exists C > 0 such that, for all t > 0,

‖ϕt‖22 ≤
(
Ct−m2 + 2

)
‖ϕ‖21.

To do so, consider for all t ≥ 0,

Λ(t) =

∫
Tm
|ϕt|2.

Since ∇ · (Bt −Gt) = 0 one can show from (5.16) that:

Λ′(t) = −2

∫
Tm
|∇ϕt|2.

Knowing that ‖ϕt‖1 ≤ ‖ϕ‖1 for all time t ≥ 0, we use the inequality (5.11) given by Lemma 2
to obtain:

Λ(t) ≤ 2‖ϕ‖21 + a

[
−1

2
Λ′(t)

] m
m+2

‖ϕ‖
4

m+2

1 .

Consider for all t ≥ 0, g(t) = Λ(t) − 2α, where α = ‖ϕ‖21. By construction, g is decreasing on
R+. We distinguish between three cases:

(i) Assume that g(0) ≤ 0. In this case, g(t) ≤ 0 for all t ≥ 0 and, for all t ≥ 0:

‖ϕt‖22 ≤ 2‖ϕ‖21.

(ii) Assume that g(t) > 0 for all t ≥ 0. Then:

g(t) ≤ aα
2

m+2

[
−1

2
g′(t)

] m
m+2

⇔ g(t)
m+2
m ≤ −1

2
a
m+2
m α

2
m g′(t)

⇔ g′(t) ≤ −2 · a−
m+2
m α−

2
m g(t)

m+2
m

⇔ g′(t)g(t)−
m+2
m ≤ −2 · a−

m+2
m α−

2
m

⇔ −m
2

d

dt

(
g(t)−

2
m

)
≤ −2 · a−

m+2
m α−

2
m

⇔ d

dt

(
g(t)−

2
m

)
≥ 4

m
· a−

m+2
m α−

2
m .
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Integrating between 0 and t yields:

g(t)−
2
m ≥ g(0)−

2
m +

4

m
· a−

m+2
m α−

2
m t⇔ g(t)

2
m ≤ 1

g(0)−
2
m + 4

m · a
−m+2

m α−
2
m t

⇔ g(t)
1
m ≤ 1(

g(0)−
2
m + 4

m · a
−m+2

m α−
2
m t
) 1

2

⇒ g(t)
1
m ≤ 1(

4
m · a

−m+2
m α−

2
m t
) 1

2

⇔ g(t) ≤ 2−ma
m+2

2 m
m
2 αt−

m
2 .

Eventually for all t ≥ 0:
‖ϕt‖22 ≤

(
Ct−m2 + 2

)
‖ϕ‖21

with C = 2−ma
m+2

2 m
m
2 > 0.

(iii) Assume that g(0) > 0 and let us assume that t∗ > 0 is the smallest time t such that
g(t∗) ≤ 0. In this case, using the above reasonings, one obtains:

a) For all t ≥ t∗, g(t) ≤ g(t∗) < 0 and thus

‖ϕt‖22 ≤ 2‖ϕ‖21.

b) For all t ∈ [0, t∗[, g(t) > 0 and thus:

‖ϕt‖22 ≤
(
Ct−m2 + 2

)
‖ϕ‖21.

Hence, for all t ≥ 0, ‖ϕt‖22 ≤
(
Ct−m2 + 2

)
‖ϕ‖21.

Step 2: Now, for all t ≥ 0, equation (5.18) yields:∣∣∣∣∫
Tm

ϕ
(
πξt − 1

)∣∣∣∣2 =

∣∣∣∣∫
Tm

ϕt

(
πξ0 − 1

)∣∣∣∣2 .
Hence, for all t ≥ 0:∣∣∣∣∫

Tm
ϕ
(
πξt − 1

)∣∣∣∣2 ≤ ‖ϕt‖22‖πξ0 − 1‖22

≤
(
Ct−

m
2 + 2

)
‖ϕ‖21‖π

ξ
0 − 1‖22 (using Inequality (5.19))

Since this is true for any function ϕ ∈ L1(Tm), by duality, for all t ≥ 0:

‖πξt − 1‖∞ ≤
√(
Ct−m2 + 2

)
‖πξ0 − 1‖2. (5.20)

Step 3: Considering the equation satisfied by πξt given in Lemma 1, with initial condition πξs
with s ≥ 0, and using inequality (5.20) over the time interval [s, s+1], there exists K = K(m) > 0
such that:

‖πξs+1 − 1‖∞ ≤ K‖πξs − 1‖2.
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Denote by H1
0 (Tn) the closure of the space C∞0 (Tn) of indefinitely differentiable functions with

compact support, with respect to the Sobolev norm ‖ · ‖H1 . Using the same reasoning as in the
proof of Proposition 3, since

∫
Tm(πξt − 1) = 0, (πξt − 1) belongs in H1

0 (Tn), and, using equation
(5.17) and the Poincaré-Wirtinger inequality (5.14), one has:

‖πξt − 1‖2 ≤ ‖πξ0 − 1‖2e−4π
2t, ∀t ≥ 0. (5.21)

Eventually, for all t ≥ 1:

‖πξt − 1‖∞ ≤ K‖πξt−1 − 1‖2 ≤ Ke−4π
2(t−1)‖πξ0 − 1‖2,

which concludes the proof with C = Ke4π2

.

Remark 22. Note that one could use the maximum principle for times t ∈ [0, 1] in order to
replace the right-hand term ‖πξ0−1‖2 by the L∞-norm ‖πξ0−1‖∞. Indeed, since by Assumption 4,
πξ0 is continuous on Tm, one has a uniform bound on πξ0 − 1. Nevertheless, considering an
L2-bound highlights the fact that the uniform bound at time 0 is not essential to the proof of
Proposition 4, which could be useful for possible generalizations to non-bounded state space cases.

5.4 Existence of a stationary measure
In Section 5.4.1 we state and prove preliminary estimates on the invariant probability measures
of homogeneous diffusions. We then proceed in Section 5.4.2 to prove Theorem 1, which gives
the existence of a stationary state to (5.8) in the general case, where the force F can be non-
conservative. Eventually, one can find in Section 5.4.3 the proof of Proposition 5 where one
establishes bounds on the bias of the free energy estimation and on the bias on the computations
of averages with respect to µ.

5.4.1 Preliminary estimates for homogeneous diffusions

The next section is concerned with the sensitivity of the equilibrium measure of a diffusion with
respect to its drift, when this drift is in Lp for some p. Consider the following process on Tn,
with n ≥ 1:

dXt = a(Xt)dt+
√

2dWt (5.22)

with (Wt)t≥0 a classical n-dimensional Brownian motion on the torus Tn and a ∈ Lp(Tn,Rn)
for p > 2 with p > n. We refer to [50] for a probabilistic study of this SDE (existence, strong
Markov and Feller properties, existence and Hölder continuity of the transition kernel, etc.). In
the following we take a PDE point of view, namely we are interested in the existence, uniqueness
and properties of a solution ν in H1(Tn) such that

∫
Tn ν(x) dx = 1 of the following equation:

∀ϕ ∈ H1(Tn),

∫
Tn

(a(z) · ∇ϕ(z)ν(z)−∇ϕ(z) · ∇ν(z)) dz = 0 . (5.23)

This implies in particular that
∫
Tn(Lϕ)ν = 0 for all ϕ ∈ C2(Tn) with L being the generator

of (5.22).

Remark 23. Note that the Sobolev embedding H1 ↪→ Lq for some q such that 1
q >

1
2 −

1
n and the

assumption that p > n ensure that the integrals in (5.23) are well defined for all ν, ϕ in H1(Tn)
and all a ∈ Lp(Tn,Rn).
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Proposition 6. Let M > 0 and p > n > 1 with p > 2. There exists C > 0 which depends
solely on M,p and n, such that the following holds. For all a ∈ Lp(Tn,Rn) such that
‖a‖Lp(Tn) 6M , there exists a unique probability density νa ∈ H1(Tn) that solves (5.23),
and which is such that

‖νa‖∞ + ‖1/νa‖∞ + ‖νa‖H1(Tn) 6 C .

Moreover, if νb is the solution of (5.23) with a replaced by b ∈ Lp(Tn,Rn) with ‖b‖Lp(Tn) 6
M , then

‖νa − νb‖L2(Tn) ≤ C‖a− b‖L2(Tn).

Remark 24. In the case of a gradient drift a = −∇A, the invariant measure νa is explicit: for
all z ∈ Tn,

νa(z) =
1

ZA
e−A(z), ZA =

∫
Tn
e−A(z) dz,

and the L∞-bound of Proposition 6 amounts to the continuous injection given by Morrey’s in-
equality [17, Theorem IX.12],

W 1,p(Tn) ↪→ L∞(Tn), ∀p > n. (5.24)

Indeed, if A ∈ W 1,p(Tn), then A ∈ L∞(Tn) and νa is bounded from above and below (and
conversely if νa is bounded above and below then A is bounded). In particular, since this injection
is false for p 6 n, we see that the condition p > n is necessary in Proposition 6 .

Proof. Step 1: First assume that a ∈ C∞(Tn,Rn). By [25, Theorem 5.11], there exists a Markov
process (X̃t)t≥0 on Rn whose transition probability density is given by the fundamental solution
of the equation ∂tf̃t = −div

(
af̃t −∇f̃t

)
, where a is seen as a 1-periodic function on Rn. Note

that by [26, Theorem 0.5 and Condition 0.24.A1], the density f̃t is strictly positive and depends
continuously on the initial condition. Moreover, [25, Theorems 11.4 and 11.5] yield that (X̃t)t≥0
solves the stochastic differential equation (5.22) on Rn. Now, consider (Xt)t>0 the image of
(X̃t)t>0 by the canonical projection from Rn to Tn. Since a is periodic, (Xt)t>0 solves (5.22)
as an equation on Tn, and thus, using Itô’s formula, it is a Markov process (the proof is the
same as [25, Theorems 11.5] in Rn). Denote by (Pt)t>0 the associated Markov semigroup on
L∞(Tn). The positivity and continuity in the initial condition of f̃t implies that, for all t > 0,
there exists rt > 0 such that for all x ∈ Tn and all Borel set A of Tn, Px(Xt ∈ A) > rtλ(A),
namely the process satisfies a uniform Doeblin condition. In particular, for a fixed t > 0, the
Markov chain with transition operator Pt is recurrent and irreducible and thus, by [65, Theorem
10.0.1], it admits a unique invariant measure νa. Now, for s > 0, (νaPs)Pt = (νaPt)Ps = νaPs,
which means that νaPs is an invariant measure for Pt. Hence by uniqueness, νaPs = νa for all
s > 0. In other words, νa is the unique invariant measure for the semigroup (Pt)t≥0.

Now, let ϕ ∈ C2(Tn). Denoting by L = a · ∇ + ∆ the infinitesimal generator of (5.22) and
using Itô’s formula, one gets for all t ≥ 0

0 = νa (Pt(ϕ)− ϕ) =

∫ t

0

νaPsLϕds = t νa(Lϕ) .
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In other words, νa is a solution of the weak equation

∀ϕ ∈ C2(Tn), νa(Lϕ) = 0. (5.25)

By elliptic regularity (e.g. [42] applied to νa seen as a periodic measure on Rn), νa has then a
C∞ density (that we still denote by νa) and, integrating by parts, we can write (5.25) as∫

Tn
(a(z) · ∇ϕ(z)νa(z)−∇ϕ(z) · ∇νa(z)) dz = 0

for all ϕ ∈ C2(Tn) and thus, by density, for all ϕ ∈ H1(Tn). This is (5.23).
Define ν̃a on Rn by ν̃a(x + k) = νa(x) for all k ∈ Zn and x ∈ Tn (seen as [0, 1]n). It is such

that
∀ϕ ∈ H1(Rn),

∫
Rn

(a(z) · ∇ϕ(z)ν̃a(z)−∇ϕ(z) · ∇ν̃a(z)) dz = 0 ,

where, again, a is seen as a 1-periodic function. Since p > n, using the notations of [14] and
applying the Harnack inequality [14, Corollary 1.7.2], with the operator LIn,a,0 (In being the
identity matrix of size n) and the domain Ω = [−1, 2]n which stricly contains [0, 1]n, we get that
there exists C1 > 0 depending only on M , p and n such that:

sup
z∈[0,1]n

ν̃a(z) ≤ C1 inf
z∈[0,1]n

ν̃a(z).

Using that
∫
Tn
νa = 1, this implies that

1 6 sup
z∈Tn

νa 6 C1 inf
z∈Tn

νa 6 C1 . (5.26)

Taking ϕ = νa in (5.23) and using the Cauchy-Schwarz inequality yields∫
Tn
|∇νa|2 =

∫
Tn
a · ∇νaνa 6 ‖νa‖∞‖a‖L2(Tn)‖∇νa‖L2(Tn),

hence ‖∇νa‖L2(Tn) 6 MC1. Consequently, using the Poincaré-Wirtinger inequality (5.14),
‖νa‖H1(Tn) 6 C2 for some C2 > 0 that depends only on M,p, n.

Step 2: Now we consider a ∈ Lp(Tn,Rn), with ‖a‖Lp(Tn) ≤ M , and proceed to prove the
existence of a solution νa to equation (5.23). Let (ak)k∈N be a sequence of C∞ functions that
converges to a in Lp(Tn) and such that ‖ak‖Lp(Tn) 6 M for all k ∈ N. Let (νak)k∈N be the
associated solutions of (5.23) given in Step 1. From Step 1, (νak)k∈N is bounded in H1(Tn),
and thus we can consider a subsequence that converges weakly in H1 and strongly in L2 to some
νa ∈ H1(Tn). The weak convergence in H1 implies that νa solves (5.23) and ‖νa‖H1(Tn) 6 C2.
The L2-convergence implies that νa is a probability density.

Step 3: Let us now consider any solution and establish bounds similar to the previous step
and a Poincaré inequality. For a ∈ Lp(Tn,Rn), let νa ∈ H1(Tn) be any probability density
solution of (5.23). Using again [14, Corollary 1.7.2] and the fact that the mass of νa is 1, we
get that 1/C1 6 νa 6 C1 with the same constant C1. From this, as in Step 1, we also get that
‖νa‖H1(Tn) 6 C2, with the same constant C2. The Poincaré-Wirtinger inequality (5.14), together
with the lower and upper bounds on νa classically yields a Poincaré inequality for νa. Indeed,
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for any ϕ ∈ H1(νa),
∫
Tn ϕνa is the minimizer in R of c 7→

∫
Tn(ϕ− c)2νa, so that∫

Tn

(
ϕ−

∫
Tn
ϕνa

)2

νa 6
∫
Tn

(
ϕ−

∫
Tn
ϕ

)2

νa 6 C1

∫
Tn

(
ϕ−

∫
Tn
ϕ

)2

6
C1

4π2

∫
Tn
|∇ϕ|2

6
C2

1

4π2

∫
Tn
|∇ϕ|2νa . (5.27)

Step 4: We now proceed to the proof of the last part of the proposition, from which the
uniqueness of νa immediately follows. Let a, b ∈ Lp(Tn,Rn) with Lp norms less than M and
νa, νb ∈ H1(Tn) be probability densities solutions of (5.23) (with respective drift a and b). From
the L∞-bounds on νa, 1/νa, νb and 1/νb obtained in Step 3, we get that νb/νa and (νb/νa)2 are
in H1(Tn). Applying (5.23) for b with ϕ = νb/νa as a test function,

0 =

∫
Tn

(
b · ∇

(
νb
νa

)
νb −∇

(
νb
νa

)
· ∇νb

)
=

∫
Tn

(
b · ∇

(
νb
νa

)
νb −∇

(
νb
νa

)
· ∇
(
νb
νa
νa

))
=

∫
Tn

(
b · ∇

(
νb
νa

)
νb −

∣∣∣∣∇( νbνa
)∣∣∣∣2 νa − 1

2
∇

((
νb
νa

)2
)
· ∇νa

)

=

∫
Tn

(
b · ∇

(
νb
νa

)
νb −

∣∣∣∣∇( νbνa
)∣∣∣∣2 νa − 1

2
a · ∇

((
νb
νa

)2
)
νa

)

=

∫
Tn

(
b · ∇

(
νb
νa

)
νb −

∣∣∣∣∇( νbνa
)∣∣∣∣2 νa − a · ∇( νbνa

)
νb

)

where the last term of the above equality stems from (5.23) with drift a and test function
ϕ = (νb/νa)2/2. As a consequence, using the Cauchy-Schwarz’s inequality and the uniform
bounds on νa and νb, one gets:∥∥∥∥∇( νbνa

)∥∥∥∥2
L2(νa)

=

∫
Tn

(b− a) · ∇
(
νb
νa

)
νb 6 C2

1‖b− a‖L2(Tn)

∥∥∥∥∇( νbνa
)∥∥∥∥

L2(νa)

,

i.e ∥∥∥∥∇( νbνa
)∥∥∥∥

L2(νa)

≤ C2
1‖b− a‖L2(Tn). (5.28)

Now, since

‖νb − νa‖2L2(Tn) ≤ ‖νa‖∞
∫
Tn

∣∣∣∣ νbνa − 1

∣∣∣∣2 νa ≤ C1

∥∥∥∥ νbνa − 1

∥∥∥∥2
L2(νa)

,
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using the Poincaré inequality (5.27) with ϕ = νb/νa (so that
∫
Tn ϕνa = 1) yields:

‖νb − νa‖2L2(Tn) ≤
C3

1

4π2

∥∥∥∥∇( νbνa
)∥∥∥∥2

L2(νa)

≤ C7
1

4π2
‖b− a‖2L2(Tn) (using (5.28)).

Hence

‖νb − νa‖L2(Tn) 6
C

7
2
1

2π
‖b− a‖L2(Tn) .

In the particular case a = b, we get that there is only one probability density ν ∈ H1(Tn) that
solves (5.23).

5.4.2 Proof of Theorem 1

Proof. Let us recall that one can assume, without loss of generality, that β = 1 (see the change
of variables at the begining of Section 5.5). From now on, let us fix p = n + 1. Consider P+

the set of probability densities on Tn that are lower bounded by a positive constant. Given a
probability measure π ∈ P+, let

Gπ(x) =

∫
Tn−m

−F1(x, y)
π(x, y)

πξ(x)
dy, ∀x ∈ Tm,

where πξ(.) =

∫
Tn−m

π(., y) dy. In the ABF case, set Bπ = Gπ and, in the PABF case, consider

the Helmholtz projection
Bπ = ∇Hπ = PL2(λ)(Gπ).

In both cases, given [3, Lemma 15.13], for all p ≥ 2, there exists a constant c∗ > 0 such that,

‖Bπ‖Lp(Tm) 6 c∗‖Gπ‖Lp(Tm) 6 c∗‖F‖∞, (5.29)

in other words, for every π ∈ P+, Bπ belongs to the Lp ball E = {f ∈ Lp(Tm), ‖f‖Lp(Tm) ≤
c∗‖F‖∞}. In return, given B ∈ E, consider the infinitesimal generator LB = (F +B) · ∇ + ∆
and denote by πB its invariant measure, such as given in Proposition 6 (in particular πB ∈ P+).
Composing these two steps, we obtain an application from E to itself,

T : E −→ E
f 7−→ Bπf

.

The link with Theorem 1 is that a probability measure π is a stationary state for the non-linear
dynamics (5.8) if and only if the associated bias Bπ is a fixed point of T . Proving Theorem 1
is thus equivalent to prove that T admits a fixed point. This will be established thanks to
the Schauder’s fixed point theorem [28, Part 9.2.2 Theorem 3]. One thus have to prove that
T is continuous on (E, ‖ · ‖Lp(Tm)) and that the family T (E) := {T (B), B ∈ E} has compact
closure in Lp. We have already seen that T (E) ⊂ E, which is a bounded subset of Lp. From
the Fréchet-Kolmogorov theorem [17, Theorem IV.25], compactness follows from the following
condition :

sup
z∈Rn,|z|6δ

sup
f∈T (E)

‖τzf − f‖Lp(Tm) −→
δ→0

0, (5.30)
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where τz is the translation operator, namely τzf(x) = f(x+ z) for all x ∈ Tm.
Let us recall that from Proposition 6 there exists a constant C > 0 such that for all B ∈ E,

‖πB‖H1(Tn) + ‖πB‖∞ + ‖1/πB‖∞ 6 C (5.31)

and for all B1, B2 ∈ E,

‖πB1
− πB2

‖L2(Tn) ≤ C‖B1 −B2‖L2(Tm) . (5.32)

Continuity of T . Let B1, B2 ∈ E and to alleviate notations, denote by π1 = πB1 , π2 = πB2 the
associated invariant measures. In both the ABF and PABF cases, using the same arguments as
in (5.29) one gets:

‖T (B1)− T (B2)‖Lp(Tm) 6 c∗‖Gπ1
−Gπ2

‖Lp(Tm).

Moreover, relying on inequalities (5.31) and (5.32), one has, for all x ∈ Tm,

|Gπ1
(x)−Gπ2

(x)| ≤ ‖F‖∞
∫
Tn−m

∣∣∣∣∣π1(x, y)

πξ1(x)
− π2(x, y)

πξ2(x)

∣∣∣∣∣ dy

≤ ‖F‖∞
∫
Tn−m

|π1(x, y)− π2(x, y)|
πξ1(x)

+
π2(x, y)|πξ1(x)− πξ2(x)|

πξ1(x)πξ2(x)
dy

≤ ‖F‖∞C3

∫
Tn−m

|π1(x, y)− π2(x, y)|+ |πξ1(x)− πξ2(x)|dy

≤ 2‖F‖∞C3

∫
Tn−m

|π1(x, y)− π2(x, y)|dy

≤ 2‖F‖∞C3‖π1 − π2‖L2(Tn)

≤ 2‖F‖∞C4‖B1 −B2‖L2(Tm) .

As a consequence, since p ≥ 2, by Sobolev embedding,

‖T (B1)− T (B2)‖Lp(Tm) ≤ c∗‖Gπ1
−Gπ2

‖Lp(Tm) ≤ 2c∗‖F‖∞C4‖B1 −B2‖Lp(Tm) ,

which proves that T is a Lipschitz function on (E, ‖ · ‖Lp(Tm)).

Remark 25. In the particular case where ‖F‖∞ is small enough so that 2c∗‖F‖∞C4 < 1, we
directly get that T is a contraction of the Lp-norm, which yields the existence and uniqueness of
a fixed-point.

Compactness. Fix B ∈ E and let π = πB to alleviate notations. For z ∈ Rm, τz commutes
with the Helmholtz projection so that, using [3, Lemma 15.13],

‖τzPL2(λ)(Gπ)− PL2(λ)(Gπ)‖Lp(Tm) = ‖PL2(λ)(τzGπ −Gπ)‖Lp(Tm) ≤ c∗‖τzGπ −Gπ‖Lp(Tm) .

Hence, in both the ABF and PABF cases, for all z ∈ Rm,

‖τzT (B)− T (B)‖Lp(Tm) ≤ c∗‖τzGπ −Gπ‖Lp(Tm) .

Now, for all x ∈ Tm and z ∈ Rm, using the same argument as in the proof of the continuity of
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T ,

|Gπ(x+ z)−Gπ(x)| =
∣∣∣∣∫

Tn−m
−F1(x+ z, y)

π(x+ z, y)

πξ(x+ z)
dy −

∫
Tn−m

−F1(x, y)
π(x, y)

πξ(x)
dy

∣∣∣∣
≤
∣∣∣∣∫

Tn−m
(−F1(x+ z, y) + F1(x, y))

π(x+ z, y)

πξ(x+ z)
dy

∣∣∣∣
+

∣∣∣∣∫
Tn−m

−F1(x, y)

(
π(x+ z, y)

πξ(x+ z)
− π(x, y)

πξ(x)

)
dy

∣∣∣∣
≤ |z|‖∇F‖∞ + ‖F‖∞

∫
Tn−m

∣∣∣∣π(x+ z, y)

πξ(x+ z)
− π(x, y)

πξ(x)

∣∣∣∣ dy

≤ |z|‖∇F‖∞ + 2‖F‖∞C3

∫
Tn−m

|π(x+ z, y)− π(x, y)|dy

≤ |z|‖∇F‖∞ + 2‖F‖∞C3‖τzπ − π‖L2(Tn),

where C stems from (5.31) and (5.32). To bound the last term, write∫
Tn
|π(x+ z, y)− π(x, y)|2dxdy =

∫
Tn

∣∣∣∣∫ 1

0

z · ∇xπ(x+ sz, y)ds

∣∣∣∣2 dxdy

≤
∫ 1

0

∫
Tn
|z|2|∇xπ(x+ sz, y)|2dxdyds

= |z|2‖∇xπ‖22
≤ |z|2‖∇π‖22 .

As a conclusion, using (5.31):

‖τzGπ −Gπ‖Lp(Tn) ≤ |z|
(
‖∇F‖∞ + 2‖F‖∞C4

)
,

so that (5.30) holds.
Consequently, there exists an equilibrium measure πF∞ which is continuous and positive, along

with an associated bias BF∞. By Proposition 6, one has positive upper and lower bounds on πF∞
and, relying on the Holley-Stroock perturbation result [5, Proposition 5.1.6], πF∞ satisfies LSI(R)
for some R > 0 and the conditional densities y 7→ πF∞,x(y) := πF∞(x, y)/πF,ξ∞ (x) satisfy LSI(ρ)
with some ρ > 0 uniform with respect to x ∈ Tm.

5.4.3 Proof of Proposition 5
Let us conclude Section 5.4 with the proof of Proposition 5.

Proof. Let us consider the PABF algorithm. Again, without loss of generality, we suppose that
β = 1. Fix V ∈ C2(Tn), and define

F = {(F , πF∞) ∈ C1(Tn,Rn)× P(Tn) | ‖F +∇V ‖∞ ≤ 1, πF∞ stationary state for (5.8)}.

In particular, for (F , πF∞) ∈ F, πF∞ is the invariant measure of the diffusion (5.22) on Tn with
drift a = F +∇(HF ◦ ξ). Moreover,

‖F +∇V ‖∞ ≤ 1⇒ ‖F‖∞ ≤ 1 + ‖∇V ‖∞
⇒ ‖GF‖∞ ≤ 1 + ‖∇V ‖∞.
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By [3, Lemma 15.13], for all p ≥ 2, there exists c∗ > 0 such that

‖∇HF‖Lp(Tm) ≤ c∗‖GF‖Lp(Tm) ≤ c∗ (1 + ‖∇V ‖∞) ,

which yields, by Minkowski’s inequality, for all p ≥ 2

‖F +∇(HF ◦ ξ)‖Lp(Tn) ≤ (c∗ + 1) (1 + ‖∇V ‖∞) . (5.33)

Note on the other hand, that for all p ≥ 2

‖ − ∇V +∇(HF ◦ ξ)‖Lp(Tn) ≤ (1 + c∗)‖∇V ‖∞ + c∗. (5.34)

Denote by νF the invariant measure of the diffusion (5.22) on Tn with drift a = −∇V +∇(HF◦ξ),
in other words

νF (x, y) =
1

ZνF
e−V (x,y)+HF (x) , ZνF =

∫
Tn
e−V (u,v)+HF (u)dudv .

In the rest of the proof (F , πF∞) ∈ F is fixed and we are careful to give bounds which are uniform
over F. Besides, to alleviate notations, we simply denote by π = πF∞, ν = νF , H = HF and
G = GF .

Given the bounds (5.33) and (5.34), one can apply Proposition 6 with a drift a equal to
either F +∇(HF ◦ ξ) or −∇V +∇(HF ◦ ξ), which are both bounded in Lp(Tn) for all p ≥ 1 as
shown above. As a consequence, there exists a constant C > 0 such that for all (F , π) ∈ F,

‖ν‖∞ + ‖1/ν‖∞ + ‖ν‖H1(Tn) + ‖π‖∞ + ‖1/π‖∞ + ‖π‖H1(Tn) ≤ C,

and
‖π − ν‖L2(Tn) 6 C‖F +∇V ‖L2(Tn) 6 C‖F +∇V ‖∞ . (5.35)

Notice that ν has the same conditional laws (given x) than the Gibbs measure µ, so that

∇A(x) =

∫
Tn−m ∇xV (x, y)e−V (x,y)dy∫

Tn−m e
−V (x,y)dy

=

∫
Tn−m

∇xV (x, y)
ν(x, y)

νξ(x)
dy .

As a consequence,

|∇A(x)−G(x)| =
∣∣∣∣∫

Tn−m
∇xV (x, y)

ν(x, y)

νξ(x)
dy +

∫
Tn−m

F1(x, y)
π(x, y)

πξ(x)
dy

∣∣∣∣
≤ ‖F +∇V ‖∞ + ‖∇V ‖∞

∫
Tn−m

∣∣∣∣ν(x, y)

νξ(x)
− π(x, y)

πξ(x)

∣∣∣∣dy.
Using the same argument as in the proof of the continuity of T in Theorem 1 and (5.35),∫

Tn−m

∣∣∣∣ν(x, y)

νξ(x)
− π(x, y)

πξ(x)

∣∣∣∣dy ≤ 2C3

∫
Tn−m

|ν(x, y)− π(x, y)|dy

≤ 2C3‖ν − π‖L2(Tn)

≤ 2C4‖F +∇V ‖∞ .
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We have thus obtained that, uniformly over F,

‖∇A−G‖Lp(Tm) ≤ (1 + 2‖∇V ‖∞C4)‖F +∇V ‖∞ .

Which, given [3, Lemma 15.13], yields the following:

‖∇A−∇H‖Lp(Tm) = ‖PL2(λ) (∇A−G) ‖Lp(Tm) ≤ c∗‖∇A−G‖Lp(Tm) ≤ KV ‖F+∇V ‖∞. (5.36)

with KV = c∗(1 + 2‖∇V ‖∞C4). This concludes the proof of the first point of Proposition 5.
Concerning the second point, first note that

Îψ =

∫
Tn ψ(x, y)e−H(x)π(x, y)dxdy∫

Tn e
−H(x)π(x, y)dxdy

=

∫
Tn ψ(x, y)e−H(x)π(x, y)dxdy∫

Tm e
−H(x)dx

,

where we used Proposition 3 to see that since π is a stationary state of (5.8), πξ is necessarily
the uniform measure on Tm. Notice that this expression is unchanged if H is replaced by H + c
for some constant c > 0. As a consequence, for the remainder of the proof and without loss of
generality, we suppose that H is normalised so that

∫
Tm e

−H = 1.

Using that ∫
Tn
ψdµ =

Zν
Zµ

∫
Tn
ψe−H◦ξdν ,

we are led to ∣∣∣∣∫
Tn
ψdµ− Îψ

∣∣∣∣ =

∣∣∣∣ZνZµ
∫
Tn
ψe−H◦ξdν −

∫
Tn
ψe−H◦ξdπ

∣∣∣∣
≤
∥∥ψe−H◦ξ∥∥∞(∣∣∣∣ZνZµ − 1

∣∣∣∣+ ‖ν − π‖L1(Tn)

)
≤
∥∥ψe−H◦ξ∥∥∞(∣∣∣∣ZνZµ − 1

∣∣∣∣+ ‖ν − π‖L2(Tn)

)
. (5.37)

Besides,
Zν
Zµ

=

∫
Tn e

−(V (x,y)−H(x))dxdy∫
Tn e

−V (x,y)dxdy
=

∫
Tm e

−(A(x)−H(x))dx∫
Tm e

−A(x)dx
.

Again, this expression is unchanged if A is replaced by A+ c for some constant c > 0. In the
remaining of the proof and without loss of generality, we suppose that A is normalized so that∫
Tm A−H = 0, keeping in mind that exp(−A) 6= 1. As a consequence, by the Poincaré-Wirtinger
inequality [28, Part 5.8.1 Theorem 1], there exists a constant K̄ > 0 (that depends only on m
and p) such that:

‖A−H‖Lp(Tm) ≤ K̄‖∇A−∇H‖Lp(Tm).

Thus, using (5.36):

‖A−H‖W 1,p(Tm) = ‖A−H‖Lp(Tm) + ‖∇A−∇H‖Lp(Tm)

≤ (K̄ + 1)KV ‖F +∇V ‖∞.

Now, (5.24) yields the existence of K > 0 such that ‖A−H‖∞ ≤ K‖A−H‖W 1,p(Tm), hence

‖A−H‖∞ ≤ K̃V ‖F +∇V ‖∞,
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where K̃V := K(K̄ + 1)KV = K(K̄ + 1)c∗(1 + 2‖∇V ‖∞C4). Then, using that |ea − 1| 6 |a|e|a|
for all a ∈ R, for all x ∈ Tm,

|e−A(x)+H(x) − 1| 6 K̃V ‖F +∇V ‖∞eK̃V ‖F+∇V ‖∞ ,

so that, using the fact that
∫
Tm

e−H = 1,

∣∣∣∣ZνZµ − 1

∣∣∣∣ =

∣∣∣∣∣
∫
Tm e

−A+H∫
Tm e

−A − 1

∣∣∣∣∣ 6
∣∣∫

Tm e
−A+H − 1

∣∣+
∣∣∫

Tm e
−A − 1

∣∣∫
Tm e

−A

6

∫
Tm
∣∣e−A+H − 1

∣∣+
∫
Tm e

−H |e−A+H − 1|∫
Tm e

−H−|H−A|

6 2K̃V ‖F +∇V ‖∞e2K̃V ‖F+∇V ‖∞

≤ 2K̃V ‖F +∇V ‖∞e2K̃V .

Combining this with (5.35) in (5.37), we have obtained that∣∣∣∣∫
Tn
ψdµ− Îψ

∣∣∣∣ 6
∥∥ψe−H◦ξ∥∥∞∫

Tm e
−H

(
2K̃V e

2K̃V + C
)
‖F +∇V ‖∞

6

∥∥ψe−A◦ξ∥∥∞∫
Tm e

−A e2K̃V ‖F+∇V ‖∞
(

2K̃V e
2K̃V + C

)
‖F +∇V ‖∞

6
‖ψ‖∞

∥∥e−A∥∥∞∫
Tm e

−A e2K̃V
(

2KV e
2K̃V + C

)
‖F +∇V ‖∞ ,

which yields the conclusion.

5.5 Long-time convergence

In Section 5.5.1 one can find the proof of intermediate results that will prove useful for the proofs
of Theorem 2, Theorem 3, and Corollary 1. Said proofs can respectively be found in Section 5.5.2,
Section 5.5.3 and Section 5.5.4.

In all this section, to alleviate notations, we will denote by π∞ (dropping the F superscript) a
stationary measure given by Theorem 1. First and foremost, let us introduce the concept of total
entropy and its macroscopic-microscopic decomposition. We define the total entropy as:

E(t) = H(πt|π∞).

In the same manner, the entropy between the marginals in x ∈ Tm (called macroscopic entropy
henceforth) is given by:

EM (t) = H(πξt |πξ∞).

Note that accordingly, one can define the macroscopic Fisher information:

IM (t) = I(πξt |πξ∞).
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The entropy between the conditional measures at a given x ∈ Tm (called local entropy in the
following) is:

em(t, x) = H(πt,x|π∞,x),

where πt,x(.) =
πt(x, .)

πξt (x)
and π∞,x(.) =

π∞(x, .)

πξ∞(x)
. Now, let us introduce the so-called microscopic

entropy :

Em(t) =

∫
Tm

em(t, x)πξt (x)dx.

One has for all t ≥ 0, E(t) = Em(t) + EM (t) (see [57, Lemma 1]).

Note that we have the following bound on the microscopic entropy:

Em(t) =

∫
Tm

em(t, x)πξt (x) dx =

∫
Tm
H(πt,x|π∞,x)πξt (x) dx

≤ 1

2ρ

∫
Tm

I(πt,x|π∞,x)πξt (x) dx (using Theorem 1 (ii)).

Since ∇y ln

(
πt,x
π∞,x

)
= ∇y ln

(
πt
π∞

)
, this leads to

Em(t) ≤ 1

2ρ

∫
Tn

∣∣∣∣∇y ln

(
πt
π∞

)∣∣∣∣2 πt. (5.38)

5.5.1 Intermediate results

The proofs of both Theorems 2 and 3 will rely on the following intermediate results. As-
sumptions 4 and 5 are enforced. Here, F can be either conservative (F = −∇V ) or not, and
(π∞, B∞, G∞) denotes a stationary state of (5.8), with R, ρ the corresponding constants given
by Theorem 1.

Lemma 3 (Bound on Gt(x)−G∞(x)). For all t ≥ 0 and x ∈ Tm:

|Gt(x)−G∞(x)| ≤M
√

2

ρ
em(t, x).

Proof. Note that, given Theorem 1 (ii), since π∞,x satisfies a log-Sobolev inequality with con-
stant ρ > 0, it also satisfies a Talagrand inequality with constant ρ. Now, let x ∈ Tm and
νx ∈ Π(πt,x, π∞,x) be a coupling measure. Then, one has:

Gt(x)−G∞(x) =

∫
Tn−m

(−F1(x, y) + F1(x, y′)) νx(dy,dy′)

≤M
∫
Tn−m

|y − y′| νx(dy,dy′) (by Assumption 5)

≤M
(∫

Tn−m
|y − y′|2 νx(dy,dy′)

) 1
2

.
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Taking the infinimum over Π(πt,x, π∞,x) yields:

Gt(x)−G∞(x) ≤MW2(πt,x, π∞,x)

≤M
√

2

ρ
H(πt,x|π∞,x) (by the Talagrand inequality (3.4)).

This yields the conclusion, since H(πt,x|π∞,x) = em(t, x).

Lemma 4 (Total entropy). One has,

dE

dt
= −

∫
Tn
|∇ ln

(
πt
π∞

)
|2 πt +

∫
Tn

(Bt −B∞) (x) · ∇x ln

(
πt
π∞

)
πt.

Proof. If Lt denotes the infinitesimal generator of (5.7) and L′t its formal adjoint in L2(Tn) then
the Fokker-Planck equation (5.8) can be rewritten as follows:

∂tπt = L′t(πt).

Denote by L∞ = F ·∇+B∞ ·∇x+∆ the infinitesimal generator associated to the stationary
state (π∞, B∞). One has:

dE

dt
=

∫
Tn
∂tπt +

∫
Tn
∂tπt ln

(
πt
π∞

)
=

∫
Tn
L′t(πt) ln

(
πt
π∞

)
(since

∫
Tn
∂tπt = 0)

=

∫
Tn
Lt
(

ln

(
πt
π∞

))
πt

=

∫
Tn

(L∞ + Lt − L∞)

(
ln

(
πt
π∞

))
πt

i.e

dE

dt
=

∫
Tn
L∞

(
ln

(
πt
π∞

))
πt +

∫
Tn

(Lt − L∞)

(
ln

(
πt
π∞

))
πt.

Since L∞ is the infinitesimal generator of a diffusion, it follows that, for any given functions a
and f :

L∞(a(f)) = a′(f)L∞(f) + a”(f)|∇f |2,

as mentioned in [67, Part 2.3]. Applying this with a(.) = ln(.) and f =
πt
π∞

we respectively

obtain: ∫
Tn
L∞

(
ln

(
πt
π∞

))
πt =

∫
Tn

(
π∞
πt
· L∞

(
πt
π∞

)
−
(
π∞
πt

)2

·
∣∣∣∣∇ πt
π∞

∣∣∣∣2
)
πt
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∫
Tn
L∞

(
ln

(
πt
π∞

))
πt =

∫
Tn
L∞

(
πt
π∞

)
π∞ −

∫
Tn

∣∣∣∣∇ ln

(
πt
π∞

)∣∣∣∣2 πt
= −

∫
Tn

∣∣∣∣∇ ln

(
πt
π∞

)∣∣∣∣2 πt (since π∞ is invariant for L∞)

and ∫
Tn

(Lt − L∞)

(
ln

(
πt
π∞

))
πt =

∫
Tn

(Bt −B∞) · ∇x ln

(
πt
π∞

)
πt,

which concludes the proof.

5.5.2 Proof of Theorem 2

Let us prove the convergence of the ABF and PABF algorithms in the conservative case, namely
when F = −∇V . In that case π∞ = µA is invariant by (5.8) (recall µA is given by (5.5)), with
a corresponding G∞ = ∇A, so that B∞ = ∇A in both the ABF and PABF case.

Lemma 5. In the conservative case (F = −∇V and π∞ = µA), for all t ≥ 0 and x ∈ Tm:

Gt(x)−∇A(x) =

∫
Tn−m

∇x ln

(
πt(x, y)

π∞(x, y)

)
πt(x, y)

πξt (x)
dy −∇x ln

(
πξt (x)

πξ∞(x)

)
.

Proof. Knowing that πξ∞ = 1, one has, for a fixed x in Tm:∫
Tn−m

∇x ln

(
πt
π∞

)
πt

πξt
dy −∇x ln

(
πξt

πξ∞

)

=

∫
Tn−m

∇xπt
πt
· πt
πξt

dy −
∫
Tn−m

∇xπ∞
π∞

· πt
πξt

dy − ∇xπ
ξ
t

πξt
+ ∂x ln(1)

=
∇xπξt
πξt

−
∫
Tn−m

∇xπ∞
π∞

· πt
πξt

dy − ∇xπ
ξ
t

πξt

= −
∫
Tn−m

∇x (−V (x, y) +A(x)) · πt
πξt

dy

=

∫
Tn−m

∇xV (x, y) · πt
πξt

dy −
∫
Tn−m

∇A(x) · πt
πξt

dy

= Gt(x)−∇A(x).

In the following proofs, an integral over Tn is with respect to (x, y) ∈ Tm×Tn−m, an integral
over Tm is with respect to x ∈ Tm, and an integral over Tn−m is with respect to y ∈ Tn−m.

Proof of Theorem 2.
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Step 1: Since for all t ≥ 0, E(t) = Em(t) + EM (t), using (5.10) and Lemma 4, one has:

dEm
dt

= −
∫
Tn

∣∣∣∣∇ ln

(
πt
π∞

)∣∣∣∣2 πt +

∫
Tn

(Bt −∇A) · ∇x ln

(
πt
π∞

)
πt +

∫
Tm

∣∣∣∣∣∇x ln

(
πξt

πξ∞

)∣∣∣∣∣
2

πξt

= −
∫
Tn

∣∣∣∣∇ ln

(
πt
π∞

)∣∣∣∣2 πt +

∫
Tn

(Gt −∇A) · ∇x ln

(
πt
π∞

)
πt +

∫
Tm

∣∣∣∣∣∇x ln

(
πξt

πξ∞

)∣∣∣∣∣
2

πξt + Jt

where
Jt :=

∫
Tn

(Bt −Gt) · ∇x ln

(
πt
π∞

)
πt.

Now, using Lemma 5, one gets:

dEm
dt

= −
∫
Tn

∣∣∣∣∇ ln

(
πt
π∞

)∣∣∣∣2 πt +

∫
Tn

∫
Tn−m

∇x ln

(
πt
π∞

)
πt

πξt
dy · ∇x ln

(
πt
π∞

)
πt

−
∫
Tn
∇x ln

(
πξt

πξ∞

)
· ∇x ln

(
πt
π∞

)
πt +

∫
Tm

∣∣∣∣∣∇x ln

(
πξt

πξ∞

)∣∣∣∣∣
2

πξt + Jt.

On the one hand, using Cauchy-Schwarz’s inequality, the first terms in the right-hand side can
be bounded as follows:∫
Tn

∫
Tn−m

∇x ln

(
πt
π∞

)
πt

πξt
dy · ∇x ln

(
πt
π∞

)
πt =

∫
Tm

∣∣∣∣∫
Tn−m

∇x ln

(
πt
π∞

)
πt

∣∣∣∣2 1

πξt

=

∫
Tm

∣∣∣∣∫
Tn−m

∇x ln

(
πt
π∞

)
π

1
2
t · π

1
2
t dy

∣∣∣∣2 1

πξt

≤
∫
Tm

(∫
Tn−m

∣∣∣∣∇x ln

(
πt
π∞

)∣∣∣∣2 πt dy

)(∫
Tn−m

πt dy

)
1

πξt

≤
∫
Tn

∣∣∣∣∇x ln

(
πt
π∞

)∣∣∣∣2 πt.
On the other hand, factorising the two next terms in the right-hand side, and using again
Lemma 5 gives:

−
∫
Tn
∇x ln

(
πξt

πξ∞

)
· ∇x ln

(
πt
π∞

)
πt +

∫
Tm

∣∣∣∣∣∇x ln

(
πξt

πξ∞

)∣∣∣∣∣
2

πξt

=

∫
Tm
∇x ln

(
πξt

πξ∞

)
·

(
∇x ln

(
πξt

πξ∞

)
−
∫
Tn−m

∇x ln

(
πt
π∞

)
πt

πξt

)
πξt

=

∫
Tm
∇x ln

(
πξt

πξ∞

)
(∇A−Gt)πξt .
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Using once again the Cauchy-Schwarz’s inequality, one gets:

dEm
dt
≤ −

∫
Tn

∣∣∣∣∇y ln

(
πt
π∞

)∣∣∣∣2 πt +

(∫
Tm
|∇A−Gt|2 πξt

) 1
2

∫
Tm

∣∣∣∣∣∇x ln

(
πξt

πξ∞

)∣∣∣∣∣
2

πξt

 1
2

+ Jt.

Eventually, recalling that
∫
Tm |∇x ln

(
πξt
πξ∞

)
|2πξt = IM (t) and relying on (5.38) and Lemma 3,

one has, for all ε > 0 and all t ≥ 0:

dEm
dt
≤ −2ρEm(t) +M

√
2

ρ

√
Em(t)

√
IM (t) + Jt

≤ −2ρEm(t) + 2
√
ερEm(t)

√
M2

2ρ2ε
IM (t) + Jt

≤ −(2− ε)ρEm(t) +
M2

2ρ2ε
IM (t) + Jt. (5.39)

Step 2: In order to set the idea of the proof, let us first treat the case of the ABF algorithm,
where one simply has Jt = 0 for all t ≥ 0. Inequality (5.39) yields, for all ε > 0 and all t ≥ 0:

dEm
dt
≤ −(2− ε)ρEm(t) +

M2

2ρ2ε
IM (t),

and using Gronwall’s lemma, one has, for all ε > 0 for all t ≥ 0, :

Em(t) ≤ Em(0)e−(2−ε)ρt +
M2

2ρ2ε

∫ t

0

IM (s)e−(2−ε)ρ(t−s) ds.

Remark 26. Note that in the ABF case [57, Lemma 12] or the PABF case with a Helmholtz
projection done with respect to the marginal density πξt [2, Corollary 1], one has the exponential
convergence towards zero of the macroscopic Fisher information IM (t). This is not the case when
one considers the classical Helmholtz projection with respect to the Lebesgue measure: indeed, the
density πξt does not satisfy the heat equation anymore, but an elliptic equation (5.9) with a null-
divergence drift. Having no additional information about the regularity of the drift, one cannot
prove the convergence of IM (t) towards zero in the long-time limit as done in [2, 57].

By Proposition 3, for all t ≥ 0, EM (t) ≤ EM (0)e−8π
2t. Since IM (t) = −E′M (t), one gets:

0 ≤ F (t) :=

∫ ∞
t

IM (s) ds ≤ EM (t) ≤ EM (0)e−8π
2t, ∀t ≥ 0. (5.40)

Consequently, relying on (5.40) one has, for all ε > 0, for all t ≥ 0:∫ t

0

IM (s)e−(2−ε)ρ(t−s) ds = −e−(2−ε)ρt
∫ t

0

F ′(s)e(2−ε)ρs ds

= e−(2−ε)ρt
(∫ t

0

F (s)(2− ε)ρe(2−ε)ρs ds−
[
F (s)e(2−ε)ρs

]t
0

)
≤ e−(2−ε)ρt

(
(2− ε)ρEM (0)

∫ t

0

e−(8π
2−(2−ε)ρ)s ds− F (t)e(2−ε)ρt + F (0)

)
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i.e∫ t

0

IM (s)e−(2−ε)ρ(t−s) ds ≤ e−(2−ε)ρt
(

(2− ε)ρEM (0)

∫ t

0

e−(8π
2−(2−ε)ρ)s ds− F (t)e(2−ε)ρt + EM (0)

)
≤ EM (0)e−(2−ε)ρt

(
(2− ε)ρ

∫ t

0

e−(8π
2−(2−ε)ρ)s ds+ 1

)
We distinguish between two case:

(i) If 8π2 = (2− ε)ρ, one gets:∫ t

0

IM (s)e−(2−ε)ρ(t−s) ds ≤ EM (0)e−8π
2t
(
8π2 t+ 1

)
.

Since for all δ > 0 and all t ≥ 0, one has t ≤ e−1

δ eδt, choosing δ = ε yields, for all t ≥ 0:∫ t

0

IM (s)e−(2−ε)ρ(t−s) ds ≤ EM (0)

(
8π2

e ε
∨ 1

)
e−(8π

2−ε)t.

(ii) If 8π2 6= (2− ε)ρ, one gets, in all cases (8π2 > (2− ε)ρ or 8π2 < (2− ε)ρ):∫ t

0

IM (s)e−(2−ε)ρ(t−s) ds ≤ EM (0)

(
(2− ε)ρ

|8π2 − (2− ε)ρ|
∨ 1

)
e−(8π

2∧(2−ε)ρ)t.

Which yields,

Em(t) ≤ Em(0)e−(2−ε)ρt +
M2

2ρ2ε

∫ t

0

IM (s)e−(2−ε)ρ(t−s) ds

≤
(
Em(0) ∨ M2

2ρ2ε
EM (0)

(
8π2

eε
∨ (2− ε)ρ
|8π2 − (2− ε)ρ|

∨ 1

))
e−((8π

2−ε)∧(2−ε)ρ)t.

Conclusion: for the ABF algorithm, we have obtained that for all ε > 0, there exists K =
K(ε) > 0 such that for all t ≥ 0,

Em(t) ≤ Ke−((8π2∧2ρ)−ε)t,

where K =

(
Em(0) ∨ M

2

2ρε
EM (0)

(
8π2ρ

eε
∨ (2ρ− ε)
|8π2 − (2ρ− ε)|

∨ 1

))
.

Step 3: Let us now concentrate on the PABF case, and let us prove an upper bound on Jt. For
t ≥ 0, recall the notation ∇Ht := PL2(λ)(Gt), so that Bt = ∇Ht. Similarly, let us introduce, for
all t ≥ 0,

∇H̃t := PL2(πξt )
(Gt).

Recall that PL2(ν)(f) stands for the Helmholtz projection of a vector field f with respect to the
measure ν. In the conservative case one has π∞ ∝ e−V+A, so that G∞ = ∇A. Since G∞ is a
gradient, one has:

∇H∞ = PL2(λ)(G∞) = ∇A = PL2(πξ∞)(G∞) = ∇H̃∞.

On the contrary, there is no reason for ∇Ht and ∇H̃t to be equal at a fixed time t > 0. Let us
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decompose

Jt =

∫
Tn

(∇Ht −∇H̃t) · ∇x ln

(
πt
π∞

)
πt +

∫
Tn

(∇H̃t −Gt) · ∇x ln

(
πt
π∞

)
πt.

As proven in [2, Lemma 6], relying on the fact that since ∇x ln (π∞) = −∇ (V −A), πξ∞ ≡ 1 and
∇H̃t = PL2(πξt )

(Gt), one can show that the last right-hand term is negative. One consequently
has:∫
Tn

(∇Ht −∇H̃t)∇x ln

(
πt
π∞

)
πt =

∫
Tn

(∇Ht −∇H̃t) · ∇x ln(πt)πt −
∫
Tn

(∇Ht −∇H̃t) · ∇x ln(π∞)πt

=

∫
Tm

(∇Ht −∇H̃t) · ∇xπξt −
∫
Tn

(∇Ht −∇H̃t) · ∇x ln(π∞)πt

=

∫
Tm

(∇Ht −∇H̃t) ·

(
∇xπξt
πξt

πξt − 0× πξt

)
−
∫
Tn

(∇Ht −∇H̃t) · ∇x ln(π∞)πt

=

∫
Tm

(∇Ht −∇H̃t) · ∇x ln

(
πξt

πξ∞

)
πξt −

∫
Tn

(∇Ht −∇H̃t) · ∇x ln(π∞)πt.

Hence, in the PABF case,

Jt ≤
∫
Tm

(∇Ht −∇H̃t)∇x ln

(
πξt

πξ∞

)
πξt −

∫
Tn

(∇Ht −∇H̃t)∇x ln(π∞)πt

=

∫
Tm

(∇Ht −∇H̃t)∇x ln

(
πξt

πξ∞

)
πξt −

∫
Tm

(∇Ht −∇H̃t)(∇A−Gt)πξt

≤
(∫

Tm
|∇Ht −∇H̃t|2 πξt

) 1
2


∫

Tm

∣∣∣∣∣∇x ln

(
πξt

πξ∞

)∣∣∣∣∣
2

πξt

 1
2

+

(∫
Tm
|∇A−Gt|2 πξt

) 1
2


≤
(∫

Tm
|∇Ht −∇H̃t|2 πξt

) 1
2
(√

IM (t) +M

√
2

ρ

√
Em(t)

)
. (5.41)

Step 4: We will now consider times such that t ≥ 1. Since ∇H̃t = PL2(πξt )
(Gt), one has:∫

Tm
|∇Ht −Gt|2πξt =

∫
Tm
|∇H̃t −Gt|2πξt +

∫
Tm
|∇H̃t −∇Ht|2πξt ,
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which yields:∫
Tm
|∇Ht −∇H̃t|2 πξt =

∫
Tm
|∇Ht −Gt|2πξt −

∫
Tm
|∇H̃t −Gt|2πξt

≤ ‖πξt ‖∞
∫
Tm
|∇Ht −Gt|2 −

∫
Tm
|∇H̃t −Gt|2πξt

≤ ‖πξt ‖∞
∫
Tm
|∇H̃t −Gt|2 −

∫
Tm
|∇H̃t −Gt|2πξt

≤ ‖πξt ‖∞
(∥∥∥1/πξt

∥∥∥
∞
− 1
)∫

Tm
|∇H̃t −Gt|2πξt

≤ ‖πξt ‖∞
(∥∥∥1/πξt

∥∥∥
∞
− 1
)∫

Tm
|Gt|2πξt

in other words, ∫
Tm
|∇Ht −∇H̃t|2 πξt ≤ ‖π

ξ
t ‖∞

(∥∥∥1/πξt

∥∥∥
∞
− 1
)
M2,

where we used that, under Assumption 5, ‖Gt‖∞ ≤ ‖∇xV ‖∞ ≤ M . Now, from Proposition 4,
there exists C ≥ 0 such that, for all t ≥ 1:

‖πξt ‖∞ ≤ 1 + Ce−4π
2t and ‖1/πξt ‖∞ ≤ 1 + Ce−4π

2t.

This yields the existence of a constant C̃ > 0 such that, for all t ≥ 1:(∫
Tm
|∇Ht −∇H̃t|2 πξt

) 1
2

≤ C̃e−2π
2t,

and, for all ε > 0, for all t ≥ 1:

Jt ≤ C̃e−2π
2t

(√
IM (t) +M

√
2

ρ

√
Em(t)

)
≤ C̃e−2π

2t

(√
IM (t) + 2

√
M2

2ρ2ε

√
ερEm(t)

)

≤ ερEm(t) + IM (t) +

(
C̃2

4
+
M2C̃2

2ρ2ε

)
e−4π

2t.

Hence one gets:

dEm
dt
≤ −(2− 2ε)ρEm(t) +K1IM (t) +K2e

−4π2t, ∀t ≥ 1,

with

K1 = K1(ε) = 1 +
M2

2ρ2ε
, K2 = K2(ε) =

C̃2

4
+
M2C̃2

2ρ2ε
.

From now on, let us fix ε ∈ (0, 1) and denote by rε := 2(1 − ε). Using Gronwall’s lemma
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yields, for all t ≥ 1:

Em(t) ≤ Em(1)erερ e−rερt +

∫ t

1

(
K1IM (s)e−rερ(t−s) +K2e

−4π2s−rερ(t−s)
)

ds.

• Let us first consider, for all t ≥ 1, I1 := K1

∫ t

1

IM (s)e−rερ(t−s). As done in Step 2, relying on

(5.40), one has, for all t ≥ 1:

I1 = −K1e
−rερt

∫ t

1

F ′(s)erερs ds

= K1e
−rερt

(
rερ

∫ t

1

F (s)erεs ds− F (t)erερt + F (1)erερ
)

≤ K1EM (0)e−rερt
(
rερ

∫ t

1

e−(8π
2−rε)s ds+ e−(8π

2−rερ)
)
.

We distinguish between two cases:

(i) If 8π2 = rερ, one gets, for all t ≥ 1:

I1 ≤ K1EM (0)e−8π
2t
(
8π2 (t− 1) + 1

)
and, since (t− 1) ≤ e−1−δ

δ eδt for all δ > 0, considering δ = ε, one gets that, for all t ≥ 1:

I1 ≤ K1EM (0)e−8π
2t

(
8π2 e

−1−ε

ε
eεt + 1

)
≤ K1EM (0)

(
8π2 e

−1−ε

ε
∨ 1

)
e−(8π

2−ε)t.

(ii) If 8π2 6= rερ, one gets, for all t ≥ 1:

I1 ≤ K1EM (0)

(
rερ

|8π2 − rερ|
∨ e−(8π

2−rερ)
)
e−(8π

2∧rερ)t.

In any case one has, for all t ≥ 1

I1 ≤ K1e
−((8π2−ε)∧rερ)t,

where K1 = K1(ε) =

(
1 +

M2

2ρ2ε

)
EM (0)

(
8π2 e

−1−ε

ε
∨ rερ

|8π2 − rερ|
∨ e−(8π

2−rερ) ∨ 1

)
> 0.

• Now consider, for all t ≥ 1, I2 := K2

∫ t

1

e−4π
2s−rερ(t−s) ds. We distinguish between two cases:

(i) If rερ 6= 4π2 then, for all t ≥ 1:

K2

∫ t

1

e−4π
2s−rερ(t−s) ds ≤ K2

|4π2 − rερ|
e−(4π2∧rερ)t.
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(ii) If rερ = 4π2 then, for all t ≥ 1:

K2

∫ t

1

e−4π
2s−rερ(t−s) ds = K2e

−4π2t(t− 1),

and, since (t− 1) ≤ e−1−δ

δ eδt for all δ > 0, considering δ = ε, one gets that, for all t ≥ 1:

K2

∫ t

1

e−4π
2s−rερ(t−s) ds ≤ K2

e−1−ε

ε
e−(4π2−ε)t.

In any case one has, for all t ≥ 1:

I2 ≤ K2e
−((4π2−ε)∧rερ)t,

where K2 = K2(ε) =

(
C̃2

4
+
M2C̃2

2ρ2ε

)(
1

|4π2 − rερ|
∨ e
−1−ε

ε

)
> 0.

Hence, recalling that rε = 2(1− ε) one gets that for all ε > 0, for all t ≥ 1,

Em(t) ≤ Em(1)erερ e−rερt +K1e
−((8π2−ε)∧rερ)t +K2e

−((4π2−ε)∧rερ)t

≤ K3e
−((4π2∧2ρ)−ε)t,

for some K3 = K3(ε) =
(
Em(1)e2ρ−ε ∨ K̃1 ∨ K̃2

)
> 0, where

K̃1 =

(
1 +

M2

ρε

)
EM (0)

(
16π2ρ e−(1+

ε
2ρ )

ε
∨ (2ρ− ε)
|8π2 − (2ρ− ε)|

∨ e−(8π
2−(2ρ−ε)) ∨ 1

)

K̃2 =

(
C̃2

4
+
M2C̃2

ρε

)(
1

|4π2 − (2ρ− ε)|
∨ 2ρe−(1+

ε
2ρ )

ε

) .

Step 5: It remains to treat the case where t ∈ [0, 1]. We have:(∫
Tm
|∇Ht −∇H̃t|2 πξt

) 1
2

≤ ‖πξt ‖
1
2

L2(Tm)‖∇Ht −∇H̃t‖L4(Tm), ∀t ∈ [0, 1].

From (5.21), there exists C2 > 0 such that for all t ∈ [0, 1], ‖πξt ‖
1
2

L2(Tm) ≤ C2, and, using [3,
Lemma 15.13], there exists C4 > 0 such that for all t ∈ [0, 1],

‖∇Ht‖L4(Tm) ≤ C4‖Gt‖L4(Tm) ≤ C4‖F‖∞ ≤ C4‖∇V ‖∞ <∞.

Similarly, one has ‖∇H̃t‖L4(Tm) ≤ C4‖∇V ‖∞. Hence inequality (5.41) becomes, for all ε > 0
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and for all t ∈ [0, 1]:

Jt ≤ 2C2C4‖∇V ‖∞
(√

IM (t) +M

√
2

ρ

√
Em(t)

)
≤ 2C2C4‖∇V ‖∞

(√
IM (t) +

√
2M2

ερ2

√
ερEm(t)

)

≤ ερEm(t) + IM (t) + (C2C4‖∇V ‖∞)2
(

1 +
2M2

ερ2

)
.

It yields, from inequality (5.39), for all ε > 0 and for all t ∈ [0, 1[:

dEm
dt
≤ −rερEm(t) +K1IM (t) +K2,

with

K1 = K1(ε) = 1 +
M2

2ερ2
, K2 = K2(ε) = (C2C4‖∇V ‖∞)2

(
1 +

2M2

ερ2

)
.

The Gronwall’s lemma yields, for all ε > 0 and for all t ∈ [0, 1[:

Em(t) ≤ Em(0)e−rερt +K1

∫ t

0

IM (s)e−rερ(t−s) ds+K2

∫ t

0

e−rερ(t−s) ds,

i.e

Em(t) ≤ Em(0) +K1e
0

∫ ∞
0

IM (s) ds+
K2

rερ

(
1− e−rερt

)
≤ Em(0) +K1EM (0) +

K2

rερ
,

where we used (5.40). Hence, for all ε > 0 and for all t ∈ [0, 1[

Em(t)e((4π
2∧2ρ)−ε) ≤

(
Em(0) +K1EM (0) +

K2

rερ

)
e((4π

2∧2ρ)−ε) < +∞.

Conclusion: for the PABF algorithm, we have obtained that for all ε > 0, there exists C =
C(ε) > 0 such that, for all t ≥ 0,

Em(t) ≤ Ce−((4π2∧2ρ)−ε)t.

Recall that by Proposition 3, EM (t) ≤ EM (0)e−8π
2t for all t ≥ 0. The decomposition E(t) =

Em(t) + EM (t) concludes the proof.

5.5.3 Proof of Theorem 3

Let us prove Theorem 3.
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Proof. Using Lemma 4 one gets:

dE

dt
= −

∫
Tn

∣∣∣∣∇ ln

(
πt
π∞

)∣∣∣∣2 πt +

∫
Tn

(Bt −B) · ∇x ln

(
πt
π∞

)
πt

≤ −
∫
Tn

∣∣∣∣∇ ln

(
πt
π∞

)∣∣∣∣2 πt +

(∫
Tm
|Bt −B|2 πξt

) 1
2

(∫
Tn

∣∣∣∣∇x ln

(
πt
π∞

)∣∣∣∣2 πt
) 1

2

. (5.42)

Step 1: Let us first consider t ≥ 1. In the PABF case, since an orthogonal projection contracts
the corresponding norm, for all t ≥ 1:∫

Tm
|∇Ht −∇H∞|2πξt ≤ ‖π

ξ
t ‖∞

∫
Tm
|∇Ht −∇H∞|2

≤ ‖πξt ‖∞
∫
Tm
|Gt −G∞|2

≤ ‖πξt ‖∞‖1/π
ξ
t ‖∞

∫
Tm
|Gt −G∞|2πξt

≤
(

1 + Ce−4π
2t
)∫

Tm
|Gt −G∞|2πξt ,

for some C > 0 according to Proposition 4. Together with Lemma 3 and the microscopic log-
Sobolev inequality (5.38), we have thus obtained for all t ≥ 1, in both the ABF case (where
Bt = Gt and B∞ = G∞) and PABF case (where Bt = ∇Ht and B∞ = ∇H∞),(∫

Tm
|Bt −B∞|2πξt

) 1
2

≤
√

1 + Ce−4π2tM

√
2

ρ

√
Em(t),

in other words,

(∫
Tm
|Bt −B∞|2πξt

) 1
2

≤
√

1 + Ce−4π2tM

√
2

ρ

1√
2ρ

(∫
Tn

∣∣∣∣∇y ln

(
πt
π∞

)∣∣∣∣2 πt
) 1

2

.

As a consequence,

dE

dt
≤ −

∫
Tn

∣∣∣∣∇ ln

(
πt
π∞

)∣∣∣∣2 πt +
M

ρ

√
1 + Ce−4π2t

(∫
Tn

∣∣∣∣∇y ln

(
πt
π∞

)∣∣∣∣2 πt
) 1

2
(∫

Tn

∣∣∣∣∇x ln

(
πt
π∞

)∣∣∣∣2 πt
) 1

2

≤
(
−1 +

M

2ρ
+ C ′e−2π

2t

)∫
Tn
|∇ ln

(
πt
π∞

)
|2 πt .

with C ′ = M
√
C/(2ρ). Since we assumed M < 2ρ, there exists t0 ≥ 1 such that for all t ≥ t0,

the right hand side is negative:

−1 +
M

2ρ
+ C ′e−2π

2t := −α(t) ≤ 0, ∀t ≥ t0.

And, given the logarithmic-Sobolec inequality of constant R > 0 satisfied by π∞:

dE

dt
≤ −2α(t)RE(t) ∀t ≥ t0.
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Hence by Gronwall’s lemma, for all t ≥ t0:

E(t) ≤ E(t0) exp

(
−2R

∫ t

t0

α(s)ds

)
= E(t0) exp

(
−2R

(
1− M

2ρ

)
(t− t0) +

C ′R

2π2

)
Step 2: As for times t ∈ [0, t0], as in the third step of the proof of Theorem 2, there exists
C2 > 0 and C4 > 0 such that for all t ∈ [0, t0]:(∫

Tm
|Bt −B∞|2 πξt

) 1
2

≤
√
‖πξt ‖2‖Bt −B∞‖4 ≤ 2C2C4‖F‖∞.

Inequality (5.42) becomes, for all t ∈ [0, t0]:

dE(t)

dt
≤ −

∫
Tn

∣∣∣∣∇ ln

(
πt
π∞

)∣∣∣∣2 πt + 2C2C4‖F‖∞

(∫
Tn

∣∣∣∣∇x ln

(
πt
π∞

)∣∣∣∣2 πt
) 1

2

≤ C2
2C

2
4‖F‖2∞.

Hence, for all t ∈ [0, t0]

E(t) ≤ E(0) + (C2C4‖F‖∞)
2
t,

and
E(t)e2R(1−M2ρ )t ≤

(
E(0) + (C2C4‖F‖∞)

2
t0

)
e2R(1−M2ρ )t0

which concludes the proof, relying on the same argument as in the proof of Theorem 2.

5.5.4 Proof of Corollary 1
Proof. Similarly to the previous proofs, using Lemma 3 and Proposition 4, there exists C > 0
such that, for all t ≥ 1: ∫

Tm
|Gt −G∞|2dx ≤ ‖1/πξt ‖∞

∫
Tm
|Gt −G|2πξt

≤ (1 + Ce−4π
2t)

2M

ρ
Em(t)

≤ (1 + Ce−4π
2t)

2M

ρ
Ke−Λt,

where we used either Theorem 2 or 3. For t ∈ [0, 1], we simply bound∫
Tm
|Gt −G|2dx ≤ 2 ‖F‖2∞ .

This concludes the ABF case, for which Bt = Gt and B∞ = G∞. Besides, the L2-norm is
decreased by the Helmholtz projection, which concludes the PABF case.

5.6 What remains to be done
In this Chapter, we proved the long-time convergence of the ABF and PABF methods in the case
of non-conservative forces. Both methods are adaptive biasing algorithms: so is the Adaptive
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Biasing Potential method introduced in Section 3.3.2. With our current notations, one may ask
the following question.

Would the following Adaptive Biasing Potential method: dqt = −∇ (V −Bt ◦ ξ) (qt)dt+
√

2β−1dWt

dBt(z)

dt
= −β−1 ln(πξt (z)), ∀z ∈M

,

still be robust if the interaction force F = −∇V were to be replaced by a generic, a priori
non-conservative force?

Furthermore, all three algorithms were designed relying on the overdamped Langevin dynam-
ics (2.4) rather than on the Langevin dynamics (2.2), as it is known to be susbstantially easier
to study. This motivates the need to provide answers to the following open problem.

Can the Adaptive Biasing Force method be used in practice with the Langevin dynamics?
In the case of a conservative interaction force F = −∇V , does the algorithm converge?
If so, how about its behaviour in the case of non-conservative forces?



Plût à Dieu que ce fût un usage reçû, & que j’eusse des amis qui me
rendissent ce dernier devoir, qui, dis-je, convertissent un jour mes os
secs, & épuisés par de longs travaux, en cette substance diaphane, que
la plus longue suite de siecles ne sauroit altérer, & qui conserve sa
couleur générique, non la verdure des végétaux, mais cependant la
couleur de lait du tremblant narcisse ; ce qui pourroit être exécuté en
peu d’heures, &c.

Johann Joachim Becher, cité dans CENDRES,
Encyclopédie, ou dictionnaire raisonné des sciences, des arts et des

métiers eds. Denis Diderot and Jean le Rond d’Alembert
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Chapter 6
Study of the OSRW sampling
method in the case of alchemical
transitions

with J. Hénin, L. Lagardère, P. Monmarché and J.-P. Piquemal

Whenever a system undergoes a transition, be it configurational or alchemical, one can define
its associated free energy A, which depends on the transition coordinate ξ at hand, as given in
(3.9) and (3.11). One can then determine the free energy difference between the initial and final
state of the transition. Free energy differences are key quantities used to deduce thermodynamic
properties of chemical and biological systems. Many free energy calculation methods have been
developed in the scope of molecular dynamics, in order to calculate hydration free energies of
small molecules and ions, ligand binding affinities, protein stability or even pKa predictions, as
shown in Section 3.4. However, the currently available methods are limited, in the sense that
they cannot a priori bypass the system’s inherent metastability. This chapter is dedicated to
the study of a particular method, called the Orthogonal Space Random Walk (OSRW) sampling
method, in the scope of alchemical transitions. The OSRW method has two distinct steps: (1)
first, it relies on the λ–dynamics method, presented in Section 3.4.3, to model the system’s
transition from an initial to a final state; (2) second, it uses an enhanced sampling method with
a particular choice of reaction coordinates. Step (2) distinguishes the OSRW method from the
other well-known enhanced sampling methods. Unfortunately, the OSRW method has to this day
not been properly reproduced and tested. In this chapter, we will attempt to build an alternative
algorithm to the historical OSRW method.

In Section 6.1, we will first highlight the limitations of the available free energy differences
computation methods, taking the FEP and TI methods as an example. We then give a general
definition of the OSRW method: we expose its potential limitations to motivate our intuition to
rely on the choice of reaction coordinate suggested in [87, 88, 66, 89] and [1], and to use it with the
ABF method, which we have shown to be robust. In order to implement our alternative algorithm

125
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to the OSRW method, we need tools to follow steps (1) and (2): we introduce in Section 6.2 the
Tinker-HP package and Collective Variables module. We will introduce in Section 6.2.3 our first
implementation result, which was to establish a working proxy between the two programs. We
then focus on the case of alchemical transitions. We will present in section 6.3, the λ–dynamics
method, which has proved to be a powerful tool for ligand binding computations, as we will
show in Section 6.3.2. Estimating a ligand’s affinity for a given receptor is a long-term goal
which motivates the work done in this chapter. However, the classical λ–dynamics method has
shown some limitations: we shall state them in Section 6.3.3 and present how we could tackle
them. Afterwards, we proceed to detail how we implemented the λ–dynamics in the Tinker-HP
package and the Collective Variables Module in Section 6.4. This led us to implement softcore
potentials, allowing for new kinds of potential functions to be used in the Tinker-HP software.
We will distinguish between the treatment of van der Waals and electrostatic interactions in
Sections 6.4.2 and 6.4.3. Eventually, Section 6.4.5 will be dedicated to the numerical results: we
will compare free energy differences obtained with the newly implemented λ–dynamics method to
free energy differences computed with the Bennett Acceptance Ratio (BAR) method. Section 6.5
is dedicated to the step (2) of the OSRW method, namely the use of the a special pair of reaction
coordinates with an ABF method. We first describe the equations of motion of the system at
hand in Section 6.5.1 and present how the Tinker-HP and Colvars softwares treat the propagation
of the special reaction coordinates in Section 6.5.2. We eventually proceed to the first attempts
made to implement the OSRW method in Section 6.5.3: we will give insights into what has been
done up until now, the challenges we are currently facing, and how we intend to solve them.

N! In this chapter, in order to avoid any misunderstanding, we use a slight change
of notations: unless otherwise stated, r = (x1, x2, x3) ∈ R3 is the notation used for a
position, p for a momentum, and q for a charge. Considering a potential V which depends
on the distance r > 0 between two atoms, we will denote by ∂rV = ∂V

∂r
its derivative

with respect to the distance r, and denote by ∇V =
(
∂rV × x1

r , ∂rV ×
x2

r , ∂rV ×
x3

r

)>
its Cartesian gradient.

6.1 What is the OSRW method?

6.1.1 Limitations of free energy differences computation methods

Let us consider a transition that is either alchemical or conformational. In both cases, the
system’s evolution between the initial state Γ0 and the final state Γ1 is indexed by an order
parameter ξ which evolves from its initial value z0 to its final value z1. In the alchemical case, ξ is
a mapping of the extended coordinates (r, λ) where r = (ri)i∈J1,NK is the position of the system’s
N particles, with N ∈ N∗, and λ is a scalar variable between 0 and 1: namely, ξ(r, λ) = λ, z0 = 0
and z1 = 1. On the other hand, in the conformational case, ξ is a reaction coordinate, in other
words, a low dimensional function of the positions r. Given the transition coordinate ξ, one can
define the Helmholtz free energy A of the system and compute its difference between the two
end states, namely,

∆Γ0→Γ1
A = A(z1)−A(z0). (6.1)

Several methods are available to calculate the free energy difference (6.1), such as the Free
Energy Perturbation (FEP) method and the Thermodynamic Integration (TI) method. The free
energy difference between the initial state Γ0 and the final state Γ1 computed with the FEP
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methods is given as follows:

∆GΓ0→Γ1
= −β−1 ln 〈exp(−βλ∆0→1V (r))〉0 , (6.2)

where∆0→1V (r) = V1(r)−V0(r) is the potential energy fluctuation (V1 and V0 being the potential
energy of the final and initial state respectively), β = 1/kBT is the thermodynamic beta, and
T is the absolute temperature of the system, which is considered constant. The notation 〈 · 〉
denotes the average against the Boltzmann-Gibbs distribution µ0 ∝ exp(−βV0). One notices
that if the fluctuation of the potential energy ∆0→1V is large, then basic statistical estimators
of (6.2) will suffer from a high variance, leading to a slow convergence. The calculation of the
free energy difference can consequently take too much time. Furthermore, it has been pointed
out that in certain cases, the FEP method could lead to different results depending on the initial
condition considered [49].

On the other hand, for either the conformational or alchemical case, the free energy difference
computed with thermodynamic integration then reads:

∆GΓ0→Γ1
=

∫ ξ=z1

ξ=z0

dG

dξ

∣∣∣∣
z

dz

=

∫ ξ=z1

ξ=z0

〈
dVext

dξ
−RT d ln |J |

dξ

〉
z

dz,

where |J | is the Jacobian matrix associated to the parameter ξ and

Fξ :=
dVext

dξ
−RT d ln |J |

dξ

is the generalized force applied on ξ. Note that in the alchemical case, ξ ≡ λ is a scalar quantity,
and consequently one has ln |J | = 0 and Fξ = dVext

dξ .
A key problem of thermodynamic integration is the choice of the thermodynamic path between
the two end states. One needs to sample all the intermediate values of ξ between its initial value
z0 and final value z1 in order to properly sample the values φ of the generalized force Fξ. This
choice, which is prior to the simulation, sometimes does not avoid metastability, and the system
may remain trapped in potential wells, leading to high computation times. Furthermore, the
computation of Fξ is intrinsically linked to the relaxation of the system after each move of the
order parameter ξ: the generalized force sometimes has difficulties reaching the expected region
for a given value of ξ. This is the Hamiltonian lagging phenomena [72].

As hinted above, there are inherent limitations to the methods used to compute free energy
differences, the most important being that metastability in the direction of the reaction coordi-
nate ξ is oftentimes inevitable. As a consequence, one may wish to enhance the sampling of ξ:
there are many intuitive ways to do so. One idea to avoid the sampling issues of the FEP method
would be to consider ξ as a collective variable, namely a fictitious particle, of fictitious mass mξ:
this is the idea of the λ–dynamics, introduced by X. Kong, and C. L. Brooks III in 1996 [49,
34, 47]. The λ–dynamics method has led to efficient free energy differences calculations, from
ion solvation free energies to protein-ligand binding affinity. Nevertheless, there is a priori no
reasons for the reaction coordinate ξ to capture all of the slow movements of the system and
avoid all metastability. Indeed, the space orthogonal to the reaction coordinate space might still
contain metastable regions. If this is the case, there is to this day no obvious way to enhance the
sampling in said orthogonal space. This motivates the need to define an explicit coordinate that
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describes fluctuations in the orthogonal space. An idea, suggested by Wei Yang and co-workers
is to use another order parameter h(., ξ) which is coupled to the evolution of ξ and designed
to capture the metastability in the space orthogonal to that of ξ. Then, an enhanced sampling
method, called the Orthogonal Space Random Walk (OSRW) method, is used to reduce metasta-
bility in both the ξ and h(., ξ)-spaces. However, to our knowledge, such method has led to few
applications and is not easily reproducible.

6.1.2 Definition of the OSRW method

6.1.2.1 Adding a second reaction coordinate

The general question of designing good reaction coordinates has always drawn a high interest,
in particular with recent advances in machine learning, see Section 3.2.3. In our case, we do not
discuss the choice of the initial reaction coordinate ξ, which is supposed to be the coordinate
of interest, and we are only interested in the additional coordinates h(., ξ) used to enhance the
sampling of the initial one (the auxiliary variables are a priori not meant to contribute to a low-
dimensional description of the system, and the free energy associated to them is only estimated
as an intermediary step within the adaptive algorithms). As a consequence, one considers the
reaction coordinate given by ξ̃(r, ξ) := (ξ(r), h(r, ξ)). In this context, it has been argued [87, 88]
that a good candidate for h(., ξ) (at least in the context of alchemical transformations) is the
local mean force Fξ associated to ξ, which is the vector with components (Fi)i∈J1,mK given by:

Fi =

m∑
j=1

G−1i,j∇ξj · ∇V − β
−1div

 m∑
j=1

G−1i,j∇ξj

 ,

where G−1i,j denotes the (i, j)-component of the inverse of the Gram matrix G defined by
G = (∇ξ)>∇ξ, as in Section 3.2.1.

This has the advantage to give a systematic possibility of auxiliary variable, independently
from the particular system or reaction coordinate. Moreover, along with the arguments of [87,
Equation 3], let us remark the following. Denote by Ã(z, φ) the free energy associated to the
extended reaction coordinate ξ̃ = (ξ, Fξ), so that at equilibrium ξ̃(x) is distributed according
to the Gibbs law associated to Ã. Then, considering a system x at equilibrium, a standard
computation shows that

∇zA(z) = E (Fξ(x)|ξ(x) = z) =

∫
φe−βÃ(z,φ)dφ∫
e−βÃ(z,φ)dφ

.

In other words, knowing Ã, the gradient ∇zA, and hence A, can be recovered with an exact
deterministic integration.

6.1.2.2 Possible limitations

In the literature, the term Orthogonal Space Random Walk refers not only to the choice of Fξ as
an auxiliary variable, but also to some specific adaptive algorithms designed for this particular
choice of extended reaction coordinate, involving this deterministic integration. Recall that the
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extended Hamiltonian of the system is of the form:

Hext(r,p; ξ, Fξ) = Ek + Vext(r; ξ, Fξ),

where Ek is the total kinetic energy of the extended system, and Vext is the modified potential
energy. The idea is then to adaptively bias the extended potential energy Vext(r; ξ, Fξ): let us
quickly sketch it, keeping in mind the construction of other adaptive biasing methods as exposed
in Section 3.3.2. The process considered is given by (rt; ξt, Fξ,t)t≥0 and at each time t ≥ 0, one
adds two biases ft and gt so that the potential energy becomes:

Vext(rt; ξt, Fξ,t) + ft(ξt) + gt(ξt, Fξ,t),

with ft being designed to converge in the long-time limit towards the gradient of the free energy
A0 associated to the unbiased potential energy Vext, and gt being designed to converge in the
long-time limit towards the gradient of the free energy A1 associated with the potential energy
Vext − A0 ◦ ξ. The bias gt can either be defined with metadynamics [88], which is known to
not converge, or in a recursive manner [60, 80]. In the latter case, gt is updated as follows: for
a given value z of the collective variable ξ, one first determines the derivative δφgt(z, φ) for all
values φ of the second collective variable Fξ:

δφgt(z, φ) = E
[
F̃z(rt) |Fξ,t = φ

]
,

which is the conditional mean of the local mean force F̃z(rt) associated to the reaction coordinate
r 7→ Fξ(r) with ξ = z being fixed. One then has

gt(z, φ) =

∫ φ

∞
δφgt(z, φ̃) dφ̃+ Cgt(z),

where the expression of Cgt depends on gt and is given by [60, Equation 5]. The bias gt conse-
quently needs to be differentiable: however, the above construction does not guarantee it. As
such, the definition of the biases ft and gt does not seem to ensure the proper long-time con-
vergence and well-posedness of the dynamics at hand. As a consequence, these specific adaptive
schemes vary from one reference to the other (all called OSRW), and their motivation is not
always clear. For this reason, in the remainder of this chapter, the name OSRW only refers to
the choice of coordinate ξ̃ = (ξ, Fξ) (possibly with an extended auxiliary variable). This choice
can then be used with any standard sampling algorithm, such as those available in the Colvars
module, whose consistency has been abundantly analysed, both empirically and theoretically.
One of our initial motivations was to understand whether the specific schemes considered in pre-
vious works on OSRW were important or if only the choice of the auxiliary variable mattered. A
second question is the following: in the presence of orthogonal metastability, one can expect that
many choices of auxiliary coordinates enhance the orthogonal sampling (at the cost of increasing
the dimension of the free energy to estimate). Hence, we would like in the near future to compare
the choice Fξ to other possibilities.

As a conclusion of this section, we can now introduce –with general notations– the specific
scheme that is the main subject of the present work. We only consider alchemical transformations,
in which case Fξ = ∂λVλ. Moreover, in order to avoid the cumbersome computation of high-
order derivatives and to increase the smoothness of the free energy, and hence to reduce the
variance of its estimation, we use an extended variable φ (only for the auxiliary OSRW coordinate
reaction, since the initial reaction coordinate is simply (r, λ) 7→ λ, which is already a Cartesian
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coordinate on the state). In other words, the state is x = (r, λ, φ), the energy is U(x) =
Vλ(q) + κ(φ− ∂λVλ(q))2 for some κ > 0 and the extended reaction coordinate is ξ2(x) = (λ, φ).

6.2 The Tinker-HP and Collective Variables module soft-
wares

6.2.1 Tinker-HP

The Tinker software is a general, modular package for molecular mechanics and molecular dynam-
ics, jointly developped by the Jay Ponder Lab (Department of Chemistry, Washington University
in St. Louis, Missouri), the Pengyu Ren Lab (Department of Biomedical Engineering University
of Texas in Austin, Texas) and by Jean-Philip Piquemal’s research team (Laboratoire de Chimie
Théorique, Department of Chemistry, Sorbonne University, Paris). Introduced in the 1990s, it is
currently released as version 8 [76], and is mostly written in standard Fortran 95 with OpenMP
extensions. Tinker supports a wide range of force fields models including the CHARMM, OPLS,
AMBER99 or AMOEBA models. Several options are available when it comes to modelise water.
One of the main purposes of the Tinker program is to provide a framework for implementing al-
ready existing potential energy functions, and designing new ones. As such, Tinker distinguishes
two kind of potential energy terms: the intramolecular and intermolecular terms. Intramolecular
energy terms include all energetic terms related to simple motions such as bond stretching or
torsional rotation, along with bond potentials. Intermolecular energy terms can be divided into
two subclasses. The first one describes the repulsion-dispersion and van der Waals interactions,
and there are currently five different van der Waals functional forms available. Among them,
we will focus only on the Lennard-Jones 6-12 potential. The second subclass, which is the most
complex, describes Coulombic or electrostatic interactions. We shall quickly review the Ewald
summation method used in the Tinker code in Section 6.4.3.1. We refer to [76] for more insight
on the treatment of potential energy terms in the Tinker software.

The canonical Tinker8 software has two other branches: the Tinker-HP code is designed to use
MPI-parallel distributed memory supercomputers, whereas the Tinker-OpenMM code is designed
to use graphical processing units (GPUs). Tinker-OpenMM’s code is based on both the original,
canonical Tinker code, and on the OpenMM library: it offers a 200-fold acceleration compared to
a regular single core CPU computation, which leads to accurate free energy simulations [52]. We
will here focus on the Tinker-HP code, whose main goal is to build a massively parallel version of
the Tinker program, in order to obtain a 1000-fold and more speedup of computations. Tinker-
HP remains consistent with the Tinker and Tinker-OpenMM codes, while allowing simulations
to be run on clusters and on multicore desktop stations. The key asset of the Tinker-HP is that
it relies on a strong mathematical background. We refer to [52] for more details on the first
version of the code, released in 2017.

The Tinker suite runs on Linux, macOS and Windows, and all of its source code is available on
Github (https://github.com/TinkerTools). All of the informations on Tinker-HP is available
at http://tinker-hp.ip2ct.upmc.fr/.

6.2.2 The Collective Variables module

As shown in Section 3.2, transition coordinates, or collective variables are key tools to avoid
metastability in a MD simulation. In order to do so, one uses an adaptive biasing method as
introduced in Section 3.3, which heavily relies on the collective variable at hand. Implementing
an enhanced sampling method using a collective variable can turn out to be costly, as one needs

https://github.com/TinkerTools
http://tinker-hp.ip2ct.upmc.fr/
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to implement all of the variable functions as well. The Collective Variable module (shortened
as "Colvars") introduced by J. Hénin and G. Fiorin in 2013 [30] intends to solve this problem.
Colvars is a portable software, written in C++, which allows the design of new collective variables
from pre-existing ones in order to combine them with any chosen adaptive biasing algorithm. The
module, first implemented within NAMD [73, 11] has been interfaced with the LAMMPS1 and
GROMACS2 molecular dynamics codes along with the VMD molecular visualisation program3.
There is a wide set of functionals available to be used as collective variables in the Colvars module.
Each defined collective variable ξ can be coupled to an extended degree of freedom φ, which will
then be treated as an extended coordinate of the system at hand. The available collective
variables can be divided into six different classes, and we refer to [30] for an exhaustive review.
Along with the collective variable functionals, several sampling algorithms are implemented in
the module, such as the Metadynamics method, or the Adaptive Biasing Force method, which is
at the core of this thesis.

The Collective Variable Module code is available on Github at the following adress: https:
//colvars.github.io/.

6.2.3 The Tinker-HP–Colvars interface
Up to now, there was no possibility for the Tinker code to rely on the Colvars module to
run MD simulations using collective variables. One of the first work done in order to test
the OSRW method was to establish an interface between the two softwares. In order to in-
terface the Colvars module to the Tinker-HP code, one needs to derive a new class from the
colvarproxy class 4. The colvarproxy.h file declares the class dealing with the objects needed
for any interface. The colvarproxy class contains multiple classes which are designed for spe-
cific tasks. For example, the colvarproxy_atoms class is dedicated to the pre-processing of
atomic data, the colvarproxy_io class includes methods for input/output processing, and the
colvarproxy_system class includes methods to access the simulation system and obtain infor-
mations about it, including the periodic boundary conditions, the integrator and the force fields
that are being used. Until now, the Colvars code was interfaced with three other MD codes:
LAMMPS, NAMD and VMD, with the colvarpoxy_lammps, colvarpoxy_namd and colvar-
poxy_vmd classes respectively. In the same manner, a colvarpoxy_Tinker-HP class has been
generated in order to handle the communication between the two codes: at each time step of the
MD simulation, the interface is called. One could of course think of establishing communication
between the two codes only every n timesteps, n ∈ N∗ in order to use multi-time-step integration.

1https://www.lammps.org/
2https://www.gromacs.org/
3https://www.ks.uiuc.edu/Research/vmd/
4See https://colvars.github.io/doxygen/html/index.html for details on the Colvars module’s classes.

https://colvars.github.io/
https://colvars.github.io/
https://www.lammps.org/
https://www.gromacs.org/
https://www.ks.uiuc.edu/Research/vmd/
https://colvars.github.io/doxygen/html/index.html
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Figure 6.1 – Simple scheme of the communication between the Tinker-HP and Colvars module
codes. The interface is responsible for communicating system information at each time step of
the MD simulation run by Tinker-HP.

6.3 What is λ–dynamics?

We will from now on work only with alchemical transitions, where, let us recall, the system’s
transition from an initial state to a final state is indexed by a scalar collective variable λ in
[0, 1]. We refer to Section 3.2.2 for reminders on alchemical transitions. We furthermore assume
Assumption 3 of Section 3.2.2 is satisfied.

6.3.1 Some reminders on λ–dynamics

Let us recall the definition of the λ–dynamics method, briefly introduced in Section 3.4.3.1. In
order to compute free energy differences in the case of alchemical transition, X. Kong and C. L.
Brooks III introduced in 1996 the λ–dynamics method [49]. The key idea of λ–dynamics is to
treat the collective variable (i.e, the transition coordinate) λ as a fictitious particle of fictitious
mass mλ > 0. As a consequence, one can now consider the extended microstate (r,p;λ,Λ) ∈
T ∗D × [0, 1] × R, where Λ = mλλ̇ is the fictitious particle momenta and λ̇ its time-derivative.
One then work with the extended Hamiltonian given by equation (3.24):

Hext(r,p;λ,Λ) = Er
k(p) + Eλk (Λ) + Vext(r;λ),

where Exk is the kinetic energy depending solely on the atomic coordinates, Eλk (λ) = 1
2mλλ̇

2 is
the kinetic energy of the coordinate λ and Vext(r;λ) is the potential energy of the system. The
dynamics of the extended system is then given by:

drt = M−1ptdt
dpt = −∇Vext(rt;λt)dt− γ1M−1ptdt+ σ1dWp

t

dλt = m−1λ Λtdt
dΛt = −∂λVext(rt;λt)dt− γ2m−1λ Λtdt+ σ2dWλ

t

(6.3)
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where (Wp
t )t≥0 (resp. (Wλ

t )t≥0) is a dN -dimensional (resp. 1-dimensional) Brownian motion,
M is the mass matrix of N original particles, and the pairs of positive constants (γ1, σ1) and
(γ2, σ2) satisfy the fluctuation-dissipation condition (2.3).

6.3.2 A classical application: ligand binding affinity

Before making a first attempt at implementing the λ–dynamics, let us present one of its key
applications, that of ligand binding. As highlighted in Section 3.4.1, estimating a given ligand’s
binding affinity with a receptor is a central problem in pharmacology, and should be one of the
long-term tests that our implementation of the λ–dynamics and OSRW methods would undergo.
We consequently wish to compare the binding affinities of two ligands L1 and L2 with the same
receptor R: we put the two ligands in competition. Namely, it compares the binding free energy
differences ∆GbindL1

(resp. ∆GbindL2
) of the ligand L1 (resp. L2) with the receptor R, by estimating

:

∆Li→Lj
(
∆Gbind

)
= ∆GbindLj −∆G

bind
Li = ∆RLi→RLjG

prot −∆Li→LjG
solv, i, j ∈ {1, 2}, (6.4)

where ∆RLi→RLjG
prot is the binding free energy difference of the complexes RLi and RLj , and

∆Li→LjG
solv is the solvation free energy differences of the ligands Li and Lj . The free energy

differences ∆RLi→RLjG
prot and ∆Li→LjG

solv are habitually determined with an alchemical tran-
sition, where the ligand Li is transformed in the ligand Lj , using λ–dynamics. The initial state
λ = 0 thus corresponds to the ligand Li, and the final state λ = 1 to the ligand Lj . In Figure 6.2,
it is the ligand L1 which is transfomed into the ligand L2. We will denote by ∆L1→L2G the free
energy difference associated to our alchemical transition, where the ligands are either solvated
along with the receptor, or bound to the receptor. The extended potential energy in this simple
case is given by

Vext(r, λ) = (1− λ)V0(r) + λV1(r), (6.5)

where V0 (resp. V1) is the initial (resp. final) potential, where the ligand corresponds to L1

(resp. L2.)

L2 +R

∆Gbind
L2

L2R

L1 +R

∆Gbind
L1

L1R

∆Gsolv
L1→L2

∆Gprot
L1R→L2R

BoundedSolvent

Figure 6.2 – Thermodynamic circle of the binding free energy comparison for two ligands L1 and
L2 with a given receptor R (here, i = 1, j = 2).

By discretising the interval [0, 1] with a discretisation step δλ whose value is under 2 kcal.mol−1,
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one obtains via the FEP method:

∆L1→L2
G = ∆λ=0→λ=1G := ∆0→1G = −β−1

1∑
λ=0

ln
〈
e−β(H(r,p:λ+δλ)−H(r,p;λ))

〉
λ

= −β−1
1∑

λ=0

ln


∫
D×RdN

e−βδλ(V1−V0)e−βH(r,p;λ)drdp∫
D×RdN

e−βH(r,p;λ) drdp


However, such a computation may quickly become demanding as the number of ligands put in
competition increases, which is a very common situation in drug design. Indeed, one then needs
to compare the ligand Li to all the other ligands Lj , j 6= i, and run simulations for each discrete
value of λ and for each pair (Li, Lj)i 6=j . Using the λ–dynamics method reduces simulation costs,
making the target free energy available in just one simulation.

One may also rely on the Generalized Ensemble Thermodynamic Integration method intro-
duced by Bitetti, Putzer et al.[13], which uses TI instead of the FEP method.

In the case where L ∈ N∗ ligands are considered, we intend to estimate each binding free
energy difference∆

(
∆Li→LjG

bind
)
of the ligand pairs (Li, Lj)i,j∈J1,LK, i 6=j . Given equation (6.4),

one needs to compute the differences ∆RLi→RLjG
prot and ∆Li→LjG

solv, with the help of the
λ–dynamics. The idea is to consider a set of collective variables λλλ := (λi)i∈J1,LK ∈ [0, 1], so that
λi scales the potential energy term associated to the ligand Li for i ∈ J1, LK. The extended
Hamiltonian is given by

Hext ((R, rrr), (P, ppp);λλλ) = Erk + Eλk + Vext(R,xxx,λλλ),

where R (resp. P) stands for the Cartesian coordinates (resp. momenta) of the environment,
xxx = {xi}i∈J1,LK stands for the Cartesian coordinates of the ligands (Li)i∈J1,LK, Erk and Eλk are the
kinetic energies of the particles and collective variable respectively. As for the potential energy
Vext(R,xxx,λλλ), it is given by:

Vext(R,xxx,λλλ) =

L∑
i=1

λi (Vi(R, xi)− Fi) + Venv(R), (6.6)

where Venv is the potential energy associated to the environment, and Vi is the potential energy
associated to the ligand Li. The biasing potential Fi associated to the ligand Li is used to focus
the sampling of a specific region of the phase space [47].

Now, denote by Pi the probability that the system is found in the state where the ligand Li
is predominant, for i ∈ J1, LK, namely if Pi := P (λi = 1, λj = 0, ∀j ∈ J1, LK\{i}). The relative
affinity of ligands Li and Lj is then given by:

∆
(
∆Li→LjG

bind
)

= −β−1 ln

(
P (λj = 1, λk = 0, ∀k ∈ J1, LK\{j})
P (λi = 1, λk = 0, ∀k ∈ J1, LK\{i})

)
= −β−1 ln

(
Pj
Pi

)
. (6.7)

The ratio Pj
Pi

is determined by estimating the time period during which the collective variables λi
and λj are greater than a given cutoff λ∗ ∈ [0, 1]. Typically, λ∗ ∈ [0.8, 0.9] [47]. Note however that
the dependency of the relative affinity ∆

(
∆Li→LjG

bind
)
to the cutoff λ∗ will depend on the free

energy profile associated to λi and λj . X. Kong, C. L. Brooks III and colleagues have shown that
the λ–dynamics led to a fast selection of the optimal ligand L among a set of competing ligands
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for a given receptor [34, 49]. Knight and Brooks [47] observed that if the ligands (Li)i∈J1,LK have
a relative affinity (6.7) under 2 kcal.mol−1, then the competition is balanced, and the end state
λi = 1 is correctly sampled for all i ∈ J1, LK. On the other hand, a ligand Lk whose relative
affinity with other ligands is greater than 3 kcal.mol−1 will be ruled out the competition by
λ–dynamics, since the end state λk = 1 will never be sampled, in less than several picoseconds.

Remark 27.

. Note that the computational cost increases with the number of ligands L, and by consequence
with the number of collective variables considered. One thus needs to couple the use of λ–
dynamics with robust enhanced sampling methods.

. Until then, λ–dynamics has been used to put ligands in competition for a single binding
site on the target receptor. Putting the ligands in competition for several binding sites on
the target receptor would introduce λ–dynamics as a competitive method for the structure-
activity relationship (SAR) analysis of a given molecule. Knowing the SAR of a molecule
enables the determination of the moiety responsible for the biological activity of a molecule
after its docking with a receptor. In 2017, R. L. Hayes and collaborators introduced Multisite
λ–dynamics method [38], which showed promising results in tackling this question.

. According to Knight and Brooks [47] there exist two ways to incorporate the molecular
topology 5 in the case of alchemical transitions: either each ligand Li, i ∈ J1, LK is trans-
formed in a single, hybrid reference ligand L∗ which is allowed to not make sense physically
( single hybrid representation), in which case the topology of L∗ should be determined, or
each ligand Li is transformed in another ligand Lj for i 6= j (multiple topology represen-
tation), in which case one needs to determine the topology of each ligand explicitely.

There are many other possible applications of the λ–dynamics method, including pKa pre-
diction, the study of pH-dependent protein folding and protein mutations. We refer to [47] for
historical insights on the λ–dynamics’ possible applications.

6.3.3 Limitations of the current λ–dynamics

Historically, the extended potential energy was given as in equation (6.5), its alternative expres-
sion for ligand binding competition being given by (6.6). Such potential proved to be limited, as
highlighted in Paragraph 3.4.3.1, which we recall here. We first note that the TI method would
yield a free energy difference given by

∆0→1A = −β−1 ln

∫
D
e−βVext(r;1)dr∫

D
e−βVext(r;0)dr

=

∫ 1

0

〈 ∂λV ( . ;λ) 〉λ dλ,

where 〈 · 〉λ denotes the ensemble average with respect to the measure µλ(dr) ∝ exp(−βVext(r;λ))dr.
This expression motivates the need to obtain a sufficiently smooth profile of the potential
of mean force (PMF) ∇A(λ), built with the different values of the PMF (∇A(λi))i∈J1,nK =

(〈 ∂λVext( . ;λi) 〉λ)
i∈J1,nK [83]. However in some cases, the system numerically explodes, namely,

the simulation is stopped before the end because of an explosion of the system’s energy: adding or
5By molecular topology we mean the representaion of a given molecule’s topology, where the molecule is

composed of K atoms A1, . . . , AK . If we assume that for each pair of atoms (Ai, Aj)i 6=j , it is possibe to know all
the bonds between the two atoms, then the topology of the molecule can be determined [35].
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subtracting a particle in the system can generate a singularity, and the force ∇A(λ) can explode
when the collective variable λ reaches the end states 0 or 1.

A typical example is the solvation of an ion in a box of solvent, when one starts from the
initial state "A: the ion is located at the middle of the box and do not interact with any of the
solvent molecules", to gradually reach the final state "B: the ion is fully interacting with the
neighbouring solvent molecules". In this specific case, the extended potential energy Vext(r;λ)
given by equation (3.25) is naive. As a matter of fact, the potential energy (3.25) does not
make the difference between the short-range and long-range interactions: the van der Waals
and electrostatics forces are lit up simultaneously as λ evolves between 0 and 1. If in the initial
configuration solvent molecules would happen to be too close to the ion, the repulsive term of the
van der Waals interactions would make the system to explode. Consequently one would greatly
benefit of using a more intricate extended potential.

The idea is then to use softcore potentials, whose goal is to obtain finite pair-interaction
energies, while insuring that we obtain a sufficiently smooth PMF profile [36, 12, 83]. One can
then modify the extended Hamiltonian (3.24) by replacing the potential energy (3.25) with a
potential whose dependency in λ is non-linear. Namely, the extended Hamiltonian would then
become:

Vext(r;λ) := VSC−vdW (r;λ) + VSC−e(r, q;λ), (6.8)

where VSC−vdW is the softcore potential term for van der Waals interactions, depending on
both the positions of the particles and on λ, whereas VSC−e(r, q;λ) is the softcore potential term
for electrostatic interactions, depending on the positions and charges of the particles, along with
λ. The associated extended Hamiltonian then reads:

Hext(r,p;λ) = Exk (p) + Eλk (λ) + VSC−vdW (r;λ) + VSC−e(r, q;λ). (6.9)

Of course, if one couples the λ–dynamics to a given enhanced sapling method, one can also
add biases to the extended Hamiltonian (6.9): this will be treated in a second phase dedicated to
the implementation of the OSRW sampling method. For now, the following section is dedicated
to the implementation of the λ–dynamics in the Tinker-HP and Colvars module codes, with the
use of softcore potentials.
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Figure 6.3 – The main idea behind the use of softcore potentials is to gradually light up the
van der Waals and electrostatic interactions between the solute and the solvent. Here, a sodium
cation is immersed in a cubic box of water. In order to determine its hydration free energy, one
wishes to make the system go from an initial state λ = 0, where the ion does not exist (left
upper corner) to a final state λ = 1, where the ion is fully interacting with the surrounding water
molecules (left lower corner). To do so, one relies on λ–dynamics and softcore potentials, and
the interactions between the ion and its surrounding are slowly lit up, so that the ion does not
brutally interacts with the solvent, avoiding numerical instability.
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6.4 Implementation of the λ–dynamics with softcore poten-
tials

6.4.1 Foreword

In order to implement the λ–dynamics in the Tinker-HP and Colvars module codes, one first need
to treat the limitations of too simple, "hardcore" potentials like (6.5). We proceed to implement
softcore potentials –also shortly called softcores– to treat the van der Waals and electrostatic
interactions. In practice, softcores are built using the classical potentials’ expressions. We will
in this chapter rely on the softcores suggested by Beutler et al. in [12] and Steinbrecher et al. in
[83] for both interactions. In order to do so, we will consider the theoretical, generic potential
suggested by T. Halgren in 1992 [36] for the van der Waals interactions, and modify it in order to
obtain a softcore potential. As for electrostatic interactions, we will use a softcore potential built
on the Particle Mesh Ewald method. However, before doing anything, one must first decide how
to treat the interactions during the λ–dynamics. Indeed, in the code, the softcore modification
of the Lennard-Jones potential’s repulsive term will be sufficiently weakened for low values of λ
and allow oppositely charged particles to come close to each other. This will lead to numerical
instabilities, which can be prevented in several manners [83]. We will focus on the simplest one,
which is the one step method : the van der Waals and electrostatic interactions are simultaneously
modified by introducing softcores for both Halgren and electrostatic potential energies.

6.4.1.1 Treatment of the collective variable λ

In order to use a one-step method, one needs to find a way to treat the dynamical collective
variable λ, which evolves in [0, 1]. We will define two collective variables: λe := λe(λ) (resp.
λv := λv(λ)) which will light up electrostatic (resp. van der Waals) interactions. We will
use two parameters be and bv, whose values are necessarily between 0 and 1, and such that
0 < be ≤ bv ≤ 1. The values of be and bv will be set by the user in the input .key file of the
simulation. We then will define λe(λ) and λv(λ) as follows:

for λ ∈ [0, 1],



λv(λ) =


1

bv
λ if λ ∈ [0, bv]

1 else
,

λe(λ) =


1

1− be
λ− be

1− be
if λ ∈ [be, 1],

0 else

The variables λe, λv and the parameters be and bv are declared in the mutant module of the
Tinker code. The collective variable λ is a dynamical variable that will be treated by both the
Tinker and Colvars codes. The definition of the functions λe and λv depending on λ is done
in the def_lambdadyn subroutine of the routine mutate in the Tinker code. The default values
of be and bv is be = bv = 0.5, so that the van der Waals interactions are first entirely lit up,
before switching the electrostatic interactions on. Of course, one can light up the electrostatic
interactions before the van der Waals interactions are fully lit up: the user can choose the values
of be and bv, which are then written as inputs in the .key simulation file.
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6.4.1.2 Extended potential and list of needed derivatives

Given the equations of motion (6.3), one will need to also implement the softcores’ gradient
and derivative with respect to λ. In the prospect of implementing the OSRW method, one also
needs to obtain the force acting on the potential mean force Fλ(.) := ∂λVext(., λ) which itself
is acting on λ. As a consequence, we shall also derive expressions for the Cartesian gradient
∇Fλ = ∇∂λVext(., λ) along with the derivative ∂λFλ = ∂2λλVext(., λ). Given the new extended
potential (6.8), we will decompose the second collective variable Fλ needed in the OSRW method
into two terms. First notice that

∂Vext
∂λ

=
∂VSC−e
∂λ

+
∂VSC−vdW

∂λ
=
∂VSC−e
∂λe

dλe
dλ

+
∂VSC−vdW

∂λv

dλv
dλ

.

Hence the following decomposition:

Fλ :=
∂Vext
∂λ

= Fe + Fvdw,

where Fe :=
∂VSC−e
∂λe

dλe
dλ

and Fvdw =
∂VSC−vdW

∂λv

dλv
dλ

.

N! The following potentials will depend on the distance r between the positions ri and rj of
two particles.

6.4.2 Softcores for van der Waals interactions

6.4.2.1 The Halgren potential

Definition – The r−6 term of the Lennard-Jones potential (2.1) is physically sensible, and
theoretically justified. The r−12 term on the other hand, has no proper theoretical justification,
and its primary utility is to facilitate computations. Many other models exist for the van der
Waals interactions. Among them, one can distinguish the generic potential suggested by T.
Halgren [36], which allows to treat a rare gas, and has the following expression:

Vhal(r) = ε

(
1 + δ
r
r∗ + δ

)n−m(
1 + γ(
r
r∗

)m
+ γ
− 2

)

where r is the distance between two atoms and ε is the energy associated to the interaction
between the pair of atom considered, at their minimal separation distance r∗. The buffer pa-
rameters (n,m) ∈ N∗ ×N∗, (γ, δ) ∈ R+ ×R+ are to be chosen by the user. We will from now on
use the following form for the Halgren potential energy :

Vhal(ρ) = ε

(
1 + δ

ρ+ δ

)n−m(
1 + γ

ρm + γ
− 2

)
, (6.10)

where ρ :=
r

r∗
and

dρ

dr
=

1

r∗
.

Remark 28. The buffered 14-7 Halgren potential, which corresponds to the set of parameters
n = 14,m = 7, δ = 0.07 and γ = 0.12, has been implemented in Tinker-HP to treat van der
Waals interactions in the implementation of the AMOEBA force field model [52, Section 4.2].
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Note that the values n = 12,m = 6 and γ = δ = 0 yield the classical Lennard-Jones potential:

VLJ(ρ) = ε
1

ρ6

(
1

ρ6
− 2

)
= ε

(
1

ρ12
− 2

ρ6

)
.

Figure 6.4 – Two classical choices of parameters for the Halgren potential: the buffer 14-7
potential (right) obtained with n = 14,m = 7, δ = 0.07 and γ = 0.12 and the Lennard-Jones
potential (left) obtained with n = 12,m = 6 and γ = δ = 0. Values for ε and σ where taken for
nonpolar hydrogen, and are given in [75, Table 2].

As we do not work with the AMOEBA force field model, but with the AMBER99 model, we
will run simulations with values of the Halgren potential’s parameters set to n = 12,m = 6 and
γ = δ = 0. In order to implement λ–dynamics, we will need the analytical expressions of the
Halgren potential’s space derivative, namely dVhal/dρ and d2Vhal/dρ

2, the derivation of which
being done in Section C.1 of Annex C.

6.4.2.2 Generic softcore

Definition – Now, for a given value of λ in [0, 1], one can determine the value of the collec-
tive variable λv = λv(λ), and consider the following, generic softcore potential, similar to that
suggested by T. Steinbrecher and co-workers [83]:

VSC−hal(r, λv) = λtvVhal(g(r, λv)),

where
g(r, λv) :=

(
α(1− λv)sσk + rk

) 1
k , avec s, t, k ∈ N∗, α, σ ∈ R+.

With σ such that
σ2

1
6 = r∗.

If one considers ρ = r
r∗ as done in the Tinker code, the softcore potential then becomes:
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VSC−hal(ρ, λv) = λtvVhal(g(ρ, λv)), (6.11)

and the softcore function to implement in Tinker then becomes:

g(ρ, λv) := r∗
(
α2−

k
6 (1− λv)s + ρk

) 1
k

, avec s, t, k ∈ N∗, α, σ ∈ R+. (6.12)

In Tinker, we choose to define the constant αLJ as αLJ := α2−
k
6 , the parameter α being

already defined in the code for the buffered 14-7 Halgren potential. The parameters that will be

chosen by the user are α, s, t and k. We shall keep in mind that
dρ

dr
=

1

r∗
. The softcore potential

(6.11) and the softcore function (6.12) will be implented in the elambdalj1c subroutine of the
elj1 routine of the Tinker code.

Choice of the parameters – The AMBER force field uses the set of parameters s = t = 1
and k = 6 [83]. Let us first notice that fixing all the parameters equal to one is no good, as it will
inevitably lead the system to explode (which we latter on confirmed runing test simulations), as
shown in the following plot:

Figure 6.5 – Softcore function and associated modified Lennard-Jones potential with s = t =
k = 1 and α = 1, for λ between 0 and 0.99. Initial value of the softcore potential for λ = 0.99 is
4× 1024.

We refer to the discussion of T. Steinbrecher and his colleagues on the optimal values of α and
k provided s = t = 1 [83] and point out that T. Beutler et al. suggest that other values of s and
t can be chosen [12]. As such, we concluded that the set α = 0.5, s = 2, t = 1 and k = 6 was a
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good set of parameters to start with.

Figure 6.6 – Softcore function and associated modified Lennard-Jones potential with s = 2, t = 1,
k = 6 and α = 1, for λ between 0 and 0.99. Initial value of the softcore potential for λ = 0.99 is
1.6× 109.
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Figure 6.7 – Softcore function and associated modified Lennard-Jones potential with s = 2, t = 1,
k = 6 and α = 1, for λ between 0 and 0.6.

6.4.2.3 Useful derivatives

In the case where a softcore potential is used for van der Waals interactions, one would need the
analytical expression of the space derivatives, the derivatives with respect to λ and the cross-
derivatives of said potential. The derivation of these expressions may be found in Section C.2 of
Annex C. All of the needed derivatives will be directly implented in the elambdalj1c subroutine
of the elj1 routine of the Tinker code.

6.4.3 Softcores for electrostatic interactions

6.4.3.1 Particle Mesh Ewald

The total electrostatic potential energy of a system of N particles is given by:

Ve(r, q) =
1

4πε0

∑
i<j

qiqj
|ri − rj|

, (6.13)

where ε0 is the vacuum permittivity. If N is not too large and finite, the electrostatic potential
energy (6.13) can be evaluated as such. Hoewever, in practice, the use of periodic boundary
conditions as introduced in Section 2.1.3 implies that there is an infinity of periodic replicas for
each particle: the potential (6.13) does not converge and one has to rely on numerical tricks to
compute electrostatic interactions. The Ewald summation method [41] is used in this scope to
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compute long-range interactions for periodic systems. It relies on the following equality:

∀r ∈ R∗+,
1

r
=

erfc
(√

η

2 r
)

r
+

erf
(√

η

2 r
)

r
,

where the error function erf and its complement erfc are given by

erf(x) =
2√
π

∫ x

0

e−t
2

dt, and erfc(x) = 1− erf(x) =
2√
π

∫ +∞

x

e−t
2

dt, ∀x ∈ R+.

Now, the first righ-hand term is singular when the distance r goes to 0, but converges towards
0 as r goes to +∞. On the other hand, the second righ-hand term converges towards

√
η/π as

r goes to 0, but has a long tail when r goes to +∞.

This decomposition of the inverse of the position leads to the division of the energy into two
parts:

Ve(r, q) =
1

4πε0

∑
i<j

qiqj
erfc

(√
η|ri−rj|

2

)
|ri − rj|

+
∑
i<j

qiqj
erf
(√

η|ri−rj|
2

)
|ri − rj|

+


The first part is a short-range term calculated in the real space and can be evaluated directly,
whereas the second is a long-range term calculated in the Fourier space. When compared to
direct summation of pair interactions, the Ewald summation method yields a faster convergence
of the energy. Several algorithms have been designed to scale with a smaller power of N than
the regular Ewald summation method. The Particle Mesh Ewald (PME) method [27] is one of
them, and its computational cost is relatively low compared to the Ewald method. Electrostatic
interactions will be treated with the PME method in the Tinker code. More precisely, the PME
method is implemented in the in the echarge1c subroutine of the echarge1 routine. Let us
quickly review its concept.

Let us denote by (q1, . . . , qN ) the ponctual charges of the N particules, and denote by
(r1, . . . , rN) their positions. Denote by U the unit cell of the periodic system (see Figure 2.1).
In the unit cell, the charges satisfy the following condition:

q1 + . . .+ qN = 0.

One has that U = Vect (a1,a2,a3), where the vectors (ai)i∈J1,3K are a priori not orthogonal.
Now, consider (ai

∗)i∈J1,3K the reciprocal conjugate vectors of the cell vectors (ai)i∈J1,3K, defined
as:

a1
∗ = 2π

a2 ∧ a3
a1 · (a2 ∧ a3)

, a2
∗ = 2π

a3 ∧ a1
a2 · (a3 ∧ a1)

, a3
∗ = 2π

a1 ∧ a2
a3 · (a1 ∧ a2)

,

and let N = {n = n1a1 + n2a2 + n3a3, |n1, n2, n3 ∈ N, all non-negative}. The ponctual charge
qi interacts with the others charges in the unit cell (qj)j 6=i along with their periodic images of
positions {rj+n}n∈N , but it also interacts with its own periodic images of positions {ri+n}n∈N .
Let M = {m = m1a1

∗ + m2a2
∗ + m3a3

∗, |m1,m2,m3 ∈ N, all non-negative} be the ensemble
of the reciprocal mesh vectors. Each ponctual charge qi has fractional coordinates (si1, s

i
2, s

i
3)

which are defined as follows:
sik = ak

∗ · ri, ∀k ∈ J1, 3K.

Eventually, define M the set of the so-called "masked" pairs (i, j) ∈ J1, NK2 for which the
nonimaged, nonbond interactions are not taken into account. The total electrostatic energy of
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the unit cell U is then given by:

EUe =
1

2

∑
n∈N
n6=0

∑
i,j
i 6=j

qiqj
|ri − rj + n|

.

The infinite sum over N is conditionally convergent: depending on the convergence of n ∈
N towards +∞ (i.e, on the convergence of each ni towards +∞), the limit may differ. The
series is consequently not absolutely convergent. The Ewald summation method is then used to
decompose the energy EUe into three absolutely convergent parts [27]:

- a direct term Edir, also called real part, evaluated in the real, Cartesian space.

- a reciprocal term Erec, evaluated in the Fourier space.

- and a correction term Ecorr, evaluated in the real space.

Let us give their expressions. One first need to define the structure factor :

S(m) =

N∑
j=1

qje
2πi(m·rj) =

N∑
j=1

qje
2πi(m1s

j
1+m2s

j
2+m3s

j
3), ∀m ∈M.

We then have
EUe = Edir + Erec + Ecorr

with

Edir(r, q) =
1

2

∑
n∈N
n6=0

N∑
i,j=1
i6=j

(i,j)/∈M

qiqj
erfc(βe|rj − ri + n|
|rj − ri + n|

Erec(r, q) =
1

2πvol(U)

∑
m∈M
m 6=0

S(m)S(−m)

|m|2
e
−π

2|m|2

β2e , vol(U) = a1 · (a2 ∧ a3)

Ecorr(r, q) = −1

2

∑
(i,j)∈M

qiqj
erf (βe|ri − rj|)
|ri − rj|

− 1

β

N∑
i=1

q2i ,

the parameter βe being fixed before the simulation. One can then define the following inter-
action forces

• the direct force −∇Edir(r, q),

• the reciprocal force −∇Erec(r, q),

• and the correction force −∇Ecorr(r, q),

where, for an energy E, ∇ designates its Cartesian gradient, namely,

∇E = (∂rE(r) · ∂xr, ∂rE(r) · ∂yr, ∂rE(r) · ∂zr)> .
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6.4.3.2 First attempt: "hardcore" potentials

As a first step, one may modify the electrostatic potential in a very simple way. Let us consider
what will be called a hardcore potential energy:

VHC−e(r, q;λe) = Vdir(r;λe) + (1− λe)V 0
rec(r, q) + λeV

1
rec(r, q) + Vcorr(r, q;λe), (6.14)

where V 0
rec(r, q) (resp. V 1

rec(r, q)) is the reciprocal electrostatic energy at the initial state
λe = 0 (resp. at the final state λe = 1). Consequently, one has:

∂VHC−e
∂λe

=
∂Vdir
∂λe

+ V 1
rec(r, q)− V 0

rec(r, q) +
∂Vcorr
∂λe

.

In the Tinker code, for a fixed value of the collective variable λ (and hence of λe), one updates
the charges (qi)i∈J1,NK by scaling them with λe. Hence the following expressions:

Vdir(r, q;λe) =
1

2

∑
n∈N
n6=0

N∑
i,j=1
i 6=j

(i,j)/∈M

(λe)
2
qiqj

erfc(βe|rj − ri) + n|
|rj − ri + n|

= (λe)
2
Edir(r, q),

Vcorr(r, q;λ) = −1

2

∑
(i,j)∈M

(λe)
2
qiqj

erf (βe|ri − rj|)
|ri − rj|

− 1

βe

N∑
i=1

(λe)
2
q2i = (λe)

2
Ecorr(r, q).

In the end:

VHC−e(r, q;λe) = Vdir(r;λe) + (1− λe)V 0
rec(r, q) + λeV

1
rec(r, q) + Vself (r, q;λe)

= (λe)
2
Edir(r, q) + (1− λe)E0

rec(r, q) + λeE
1
rec(r, q)

+ (λe)
2
Ecorr(r, q)

which yields

∂VHC−e
∂λe

= 2λe (Edir(r, q) + Ecorr(r, q)) + E1
rec(r, q)− E0

rec(r, q),

along with

∂VHC−e
∂λ

=
∂Ve
∂λe

dλe
dλ

= 2λe
dλe
dλ

(Edir(r, q) + Ecorr(r, q)) +
(
E1
rec(r, q)− E0

rec(r, q)
) dλe

dλ
.

In order to implement the OSRW method, we will also need the following double derivative:
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∂VHC−e
∂r∂λ

=
∂Ve
∂λ∂r

=
dλe
dλ

(
2λe(

∂Edir(r, q)

∂r
+
∂Ecorr(r, q)

∂r
) + (

∂E1
rec(r, q)

∂r
− ∂E0

rec(r, q)

∂r
)

)
,

so that one has, for all i ∈ {1, 2, 3}:

∂

∂xi
Fe(r, q;λe) :=

∂

∂xi

∂VHC−e
∂λ

=
∂Ve
∂r∂λ

dr

dxi
.

Furthermore, we will need the following derivative

∂

∂λe
Fe(r, q;λe) = 2 (Edir(r, q) + Ecorr(r, q)) .

The hardcore electrostatic potential was part of our first attempt at implementing the λ–
dynamics. Combined with the softcore potential (6.11) for the van der Waals interaction, it
showed already promising results, as we shall see further on. Hardcore potentials proved to
be sufficient to obtain proper free energy differences in the context of a classical λ–dynamics.
However, the introduction of the Fλ dynamical collective variable in the code needed for the
OSRW method led to numerical instabilities. Many simulations were stopped before the end-
time, as the energy of the system skyrocketed. Such instabilities could be explained by the fact
that the extended variable φ, introduced later on in Section 6.5 whose evolution is coupled to
that of Fλ cannot quickly follow the movements of λ, which is reflected when trespassing the
boundaries 0 and 1. As a consequence, important forces have to be applied on Fλ, leading to an
constant increase of the system’s energy. An idea to tackle these instabilities would be to handle
the electrostatic interactions with better care, especially for small distances. As a consequence,
a second attempt has been made to incorporate softcore potentials for electrostatic interactions,
in the manner of Section 6.4.2.

6.4.3.3 Second attempt: proper softcore potential

We will introduce a softcore for the electrostatic interactions, based on the suggestion of W.
Yang, P. Ren, M. J. Schnieders and colleagues [80] along with the work of T. Steinbrecher et
al. [83]. Only the real part and correction term of the PME potential will be modified. Let us
consider two atoms, i and j. During the alchemical transitions, there can be three possibilities:
either both atoms are being mutated, namely, they are being transformed, or only one of them
is mutated, or none of them is mutated. Let us denote by r = |ri − rj| the distance between the
two atoms. We will consider the following modified electrostatic potential:

V ijSC−e(r, λe) = V ijdir(r, λe) + V ijcorr(r, λe) + (1− λe)E0
rec(r) + λeE

1
rec(r) (6.15)

where

V ijdir(r, λe) =

 λ2te Ereal(f(r, λe)) if i and j are mutated
λteEreal(f(r, λe)) if i or j is mutated, but not the other
Ereal(r) if none are mutated
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and

V ijcorr(r, λe) =

 λ2te Ecorr(f(r, λe)) if i and j are mutated
λteEcorr(f(r, λe)) if i or j is mutated, but not the other
Ecorr(r) if none are mutated,

where

f(r, λe) = (αe(1− λe)s + ru)
1
u , (6.16)

is the softcore function, with αe ∈ R+
∗ and s ∈ N∗ being tunable parameters.

As said beforehand, one is interested into implemeting the derivative:

∂V ijSC−e(r, λ)

∂λ
=
∂V ijSC−e(r, λe)

∂λe

dλe
dλ

=

(
∂V ijdir(r, λe)

∂λe
+
∂V ijcorr(r, λe)

∂λe
+ E1

rec(r)− E0
rec(r)

)
dλe
dλ

and the Cartesian gradient:

∇V ijSC−e(r, λe) = ∇V ijdir(f(r, λe)) +∇V ijcorr(f(r, λe)) + (1− λe)∇E0
rec(r) + λe∇E1

rec(r).
(6.17)

We will also compute the following double derivatives, which will be needed for the OSRW
implementation:

∂2V ijSC−e(r, λ)

∂λ2
=
∂2V ijSC−e(r, λe)

∂λ2e

(
dλe
dλ

)2

(6.18)

∇

(
∂V ijSC−e(r, λ)

∂λ

)
=

dλe
dλ

(
∇
∂V ijdir(r, λe)

∂λe
+∇∂V

ij
corr(r, λe)

∂λe

+ ∇E1
rec(r)−∇E0

rec(r)
)
. (6.19)

In practice, in order to compute the Cartesian gradient, we will need to compute derivatives
with respect to r. The derivation the softcore potential’s derivatives may be found in Section C.3
of annex C. All of these expressions have been implemented in the Tinker-HP code in the elamb-
dareal1c subroutine of the echarge1 routine. The parameter αe, s, t and u are declared in the
mutant module, and their values need to be written by the user in the input simulation .key
file.
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Choice of the parameters Several works [12, 80] suggest the use of t = 1 and s = u = 2.
As for the value of the constant αe, it has been shown to be dependent of the parameter αLJ of
the van der Waals softcore (6.11): in [83], free energy calculations were done with values of αLJ
varying from 0.2 to 0.5 and αe from 1.5 to 5, in order to determine the best parameter setting.
From the above derivatives, one knows that the softcore f(r, λe) is not allowed to be null for any
value of λe. If λe = 1, one notices that

f(r, 1) = r,

so that a cutoff is necessary to avoid the singularity at r = 0. For values of λ in [0, 1), the sin-
gularity is avoided. Provided the parameters s and u are set to 2, T. C. Beutler and colleagues
[12] view αe as the square root of a critical radisu r0, namely αe = r20 so that the interaction
stop growing for distances lesser than r0(1−λ). As a consequence, values of αe between 0.6 and
1.6 would give values of r0 between 0.77 and 1.26 Å. Standard parameter values are still to be
determined: simulations will be run with several values of αe, with s and u being usually set to 2.
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Figure 6.8 – Softcore function and associated modified direct potential energy with s = u = 2
and αe = 0.6, for λ between 0 and 0.99.

Figure 6.9 – Softcore function and associated modified direct potential energy with s = u = 2
and αe = 1, for λ between 0 and 0.99.
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Figure 6.10 – Softcore function and associated modified direct potential energy with s = u = 2
and αe = 1.6, for λ between 0 and 0.99.

Figure 6.11 – Softcore function and associated modified direct potential energy with s = 2, u = 6
and αe = 1.6, for λ between 0 and 0.99.
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Figure 6.12 – Softcore function and associated modified direct potential energy with s = u = 2
and αe = 5, for λ between 0 and 0.99.

6.4.4 Tinker-HP – Colvars interface: first update
Let us quickly recap how a simulation using the λ–dynamics method is treated by the Tinker-HP–
Colvars interface. At a given time t, Tinker-HP has a value for λ (lambda), and can define the
corresponding λe(λ) (elambda) and λv(λ) (vlambda) in the subroutine def_lambdadyn. Tinker-
HP then propagates the dynamics for one timestep dt, and calculates the force ∂λVext = Fλ
(delambda) applied on λ. At the end of the timestep, the interface routines get_alch_lambda and
get_delambda send the value of λ and Fλ respectively to the Colvars module. The colvars module
defines its own collective variable λc (alch_lambda) which here corresponds to λ, along with the
force applied on it, Fλc (alch_Flambda) which here corresponds to Fλ. Colvars then propagates
λc according to the Langevin dynamics (6.3) over one timestep, using leapfrog integration. If
λc(λ) 6= λ, which is not our case here, Colvars then computes the corresponding λ = λ−1c (λc(λ)),
along with corresponding Fλ = Fλc × λ′c(λ). The interface routines set_alch_lambda and ap-
ply_force_lambda then send the new values of λ and of Fλ to Tinker-HP as initial values of λ
and Fλ at time t+ dt.
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Figure 6.13 – Scheme of the communication between the Tinker-HP and Colvars module codes
when running a simulation with the λ–dynamics method.

6.4.5 First numerical results
6.4.5.1 On the mass of the collective variable λ

First, one needs to treat the matter of the fictitious mass mλ of the collective variable λ.

Parametrising the mass in Colvars – In order for the Colvars module to launch a proper
extended dynamics, we will need to tune the following parameters:

. extendedLagrangian, is a boolean with default value set to off. It allows the addition
of a degree of freedom by considering the collective variable to be coupled to a fictitious
particle via a harmonic spring.

. extendedFluctuation, σ, is a real number in the collective variable’s unit. It defines the
spring constant by setting the deviation between the collective variable and the fictitious
particle induced by the thermal fluctuations of the system. This constant is computed
internally and is given by kBT

σ2 . The units of σ depends on the collective variable at hand.

. extendedTimeConstant, τ , is a real, non-negative number with default value set to 200 fs.
It defines the oscillation period of the harmonic oscillator composed of the spring and the
fictitious particle. Note that the period should be significatively higher than the timestep,
so that the equations of motion for the particle are correctly integrated. The inertial mass
of the particle coupled to the collective variable is then given by:

mλ = kBT
( τ

2πσ

)2
.

. extendedTemp, is a real, non-negative number with default value set to the thermostat’s
temperature, in Kelvins. It defines the temperature used to compute the coupling force
constant given by kBT

σ2 . This temperature can also be the target temperature for the
extended Langevin dynamics.
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. extendedLangevinDamping, γ, is a real, non-negative number with default value set to 1.0
ps−1. It defines the damping factor γ of the extended Langevin dynamics. If the damping
is not 0, the collective variable follows a Langevin dynamics only one collective variable
λ, of momenta Λ, looking at the the Langevin dynamics (6.3) at temperature T fixed by
extendedTemp. Using the damping can prove to be useful when using the ABF method,
where the collective variable can heat up rapidly out of equilibirum. γ should be reasonably
small, otherwise the friction term in the Langevin dynamics would slow down the phase
space sampling.

Dimensional analysis – One may ask what is the dimension mλ. The stifness k of the spring
which links the collective variable λ to the fictitious particle of mass mλ has the dimension of an
energy divided by the dimension of λ squared, as λ is a generalised coordinate (cf. Section B.2.3
of Annex B). Note that the ficitious particle has the same dimension as λ. If one denotes by
U the collective variable unit compatible with SI units (which is not the case in the Collective
variable module code in general), then one gets [k] = M.L2U−2T−2. Now, let us determine the
dimension of the fluctuation parameter σ:

[k] =
[kB ] [T ]

[σ2]
=
ML2T−2Θ−1 ×Θ

[σ2]
=
ML2T−2

[σ2]
= M.L2U−2T−2,

which yields

[σ] = U.

In conclusion, the dimension of the parameter σ changes with the nature of λ: the collective
variable can well be a distance, an angle, or even without dimension, as in our case. If there is
only one collective variable λ, of momenta Λ, looking at the Langevin dynamics (6.3) one notes
that:

[λt] =
[
m−1λ

]
× [Λt]× [dt] , et [Λt] = [−∇V (λt)]× [dt] .

Since −∇Vext is a generalized force (cf. Section B.2.3 of Annex B), one has that [−∇V (λt)] =
ML2U−1T−2. Eventually:

[Λt] = ML2U−1T−2T = ML2U−1T−1,

and
[λ] =

[
m−1λ

]
×ML2U−1T−1T,

so that

[mλ] = ML2U−2. (6.20)

A direct consequence of the expression (6.20) is that there is no easy way to infer the physical
nature of the mass mλ, except from the case where λ is a distance.

Characteristic mass – Given a collective variable λ, how does one chooses its mass before
runing a simulation with the λ–dynamics method? One might think of fixing as order of magni-
tude the mass of the heaviest atom in the system, the length of the simulation box along with
the maximum value of λ. In the toy case of a box of water of length L = 18.643, the heaviest
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atom is the oxygen atom, and its molar mass is of mO = 15.999 amu. The characteristic mass
Mcar of the collective variable would then be:

Mcar = (15.995 amu)× (18.643 )
2

=
(
15.995 g.mol−1

)
×
(
18.643× 10−10m

)2
=

(
15.995× 10−3 kg

6.022× 1023

)
×
(
18.643× 10−10m

)2
=
(
2.656× 10−26 kg

)
× 3.476× 102 × 10−20m2

= 9.232× 10−44 kg ·m2

and the associated frequency would be

νcar =
1

2π

√
k

Mcar
=

1

2π

√
kBT

Mcar

1

2π

√
1.38× 10−23 × 300

9.232× 10−44
=

1

2π

√
4.484× 10× 1021

=
1

2π

√
4.484× 1011

= 3.370× 1010 s−1,

where we approximated kb ' 1.38× 10−23m2.kg.s−2.K−1. Since

kBT

(2π)2
'= 1.049× 10−22,

if one sets σ = 1U, then
mλ = 1.049× 10−22 × τ2.

And, in order to get mλ = Mcar one needs to take

τ '
√

Mcar

1.049× 10−22
'
√

9.232

1.049
× 10−44 × 1022

'
√

8.801× 10−22

' 2.967× 10−11 s

' 2.967× 104 fs.

Of course, one can toy with other parameters rather than just τ in order to set the mass mλ.
In practice, we noticed using parameters that gave a mass of the order ofMcar led to a systematic
explostion of the system. As a consequence, our simulations were run with an extended time
constant set to τ = 300fs, a fluctuation constant of σ = 1 (so that mλ ' 9.438 × 10−48kg.m2 is
significantly smaller than Mcar) and a Langevin damping γ = 200 ps−1.

6.4.5.2 On the boundary conditions

In our first runs of λ–dynamics simulations, we observed that the collective variable often went
outside the intervall [0, 1]. One explanation is that λ may cross one of the boundaries λ∗ ∈ {0, 1}
with a speed so large the reflecting boundary conditions implemented in the Colvars code are
not sufficient to bring λ back in [0, 1], as shown in Figure 6.14. Indeed, if λ is at a distance d of
the boundary λ∗ then the Colvars code will consider the new collective variable that is located
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at λ∗ ± 2d: as soon as d > 1, the reflecting boundary conditions fails. In order to bypass this
issue, we added an artificial safeguard in the subroutine def_lambdadyn: if λ is below λ∗ = 0
(resp. above λ∗ = 1), λe = λv = 0 (resp. λe = λv = 0) and the force acting on λ is set to
0. Such safeguard works well combined with reflecting boundary conditions in the case of our
classical λ–dynamics (with both softcores for van der Waals and electrostatic interactions and
for softcores for van der Waals interactions coupled with hardcore electrostatic interactions).
However, as we will see further on, as soon as one wishes to implement the OSRW method, one
will need a new kind of boundary conditions.

Figure 6.14 – Exemple where λ∗ = 1. The first particle (left) is not correctly reflected and goes
outside of the boundaries, whereas the second particle (right) is corectly refected.

6.4.5.3 Free energy profiles

All simulations were run on the Laboratoire Jacques-Louis Lions’ hpc2 calculator. The hpc2
calculator is a Altix UV 2000 computer which contains 32 CPUs Intel Xeon 64 bits EvyBridge
E4650 of 10 cores each.

• Softcore potential for van der Waals interactions, hardcore potential for elec-
trostatic interactions ("softhard" case)– We first tested the λ–dynamics with a softcore
potential for the van der Waals interactions as in equation (6.11), along with a hardcore potential
for electrostatic interactions as in (6.14). The softcore parameters of expression (6.12) where
set to sca= α = 0.5, scs= s = 2, sct= t = 1 and sck= k = 6. Two toy models were considered:
the hydration of a water molecule and of a sodium cation in a water box of 18.643 Å length, with
the Amber99 force field parameters. First, dynamics where run in the NVE ensemble in order
to check energy conservation: hysteresis, namely the violation of the energy conservation, would
mean our implementation was somewhat faulty. This ensured the derivatives expression to be
properly implemented. We then ran simulations in order to obtain the hydration free energies
of both the water molecule and sodium cation. Simulations were run in the NVT ensemble at a
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temperature of 300K, over 2ns, with a timestep of 1fs.

Figure 6.15 – Hydration of a sodium cation. Potential Mean Force profile (up) and bin count
(down) obtained for several values of the bound be and bv. The free energy difference ∆0→1A
(in kcal.mol−1) between final and initial state is printed on the PMF plots.
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Figure 6.16 – Hydration of a water molecule. Potential Mean Force profile (up) and bin count
(down) obtained for several values of the bound be and bv. The free energy difference ∆0→1A
(in kcal.mol−1) between final and initial state is printed on the PMF plots.
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In order to compare the Potential Mean Force obtained for a given system, we relied on the
BAR method introduced in Section 3.4.2: we discretised [0, 1] with a step ∆λ = 0.05, in order to
obtain 21 values (λi)i∈J0,20K for the collective variable λ. To each value λi corresponds a value of
λiv (resp. λie) and of λv (resp. λe). Depending on the chosen bounds be and bv, the discretisation
steps ∆λv and ∆λe of the λv and λe intervalls may differ, as shown in Figure 6.17.

Figure 6.17 – Given a discretisation of the intervall [0, 1], and the values of be and bv, the
discretisation of the λv and λe may differ. When be = bv = 0.5 (up) one has 10 discrete values of
λv and 10 discrete values of λe. When be = 0.3 and bv = 0.8 (down), one has 17 discrete values
of λv and 15 discrete values of λe.

For each value λi (and consequently for each corresponding pair (λiv, λ
i
e)), a 2 ns simulation

was run in the NVT ensemble with the Tinker-HP program: note that since here λ does not
evolve dynamically, there is no communication needed with the Colvars module. The BAR
method implemented in the Tinker code was then used to compute the free energy Ai of the i-th
simulation. Afterwards, the free energy difference ∆Ai = Ai+1−Ai of the window [λi, λi+1] was
evaluated for every i ∈ J0, 20K. The Potential Mean Force is then recovered by linear interpolation
on each window with a Python script. Obtaining the free energy profile of the whole transition
from λ = 0 to λ = 1, and hence the free energy difference ∆0→1A = A(λ = 1) − A(λ = 0) then
takes 2 × 21 ns. We ran simulations for both the hydration of a water molecule and a sodium
cation, and obtained the following results:
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Test ∆0→1A (kcal.mol−1)
λ–dynamics

∆0→1A (kcal.mol−1)
BAR method Absolute error (kcal.mol−1) Relative error

Na+ -82.466 -83.4669 ∼ 1.0009 ∼-1.2%

H2O -6.28523 -6.3218 0.03657 -0.6%

Table 6.1 – Hydration free energies for the cation Na+ and a water molecule, obtained from
λ–dynamics and BAR method. The softcore potential (6.11) was used for van der Waals inter-
actions and the hardcore potential (6.14) was used for electrostatic interactions.

Figure 6.18 – Potential Mean Force profiles obtained for the hydration of a sodium cation (up),
and of a water molecule (down). The red profiles are obtained with 2 ns λ–dynamics simula-
tions, whereas the blue profiles are obtained with 42 ns BAR simulations. Free energy differences
∆0→1A (in kcal.mol−1) between final and initial state are printed. The softcore potential (6.11)
was used for van der Waals interactions and the hardcore potential (6.14) was used for electro-
static interactions.

Observations:

(O1) We first notice that the free energy difference computed by the implemented λ–
dynamics in 2 ns is close to the free energy difference computed with the BAR
method in 42 ns for both toy models: the gain in computation time when using
the λ–dynamics with a softcore potential for the van der Waals interactions and
hardcore potential for electrostatic interactions is significant.
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(O2) The way the λ–dynamics is implemented does not allow the simultaneous lighting
up of van der Waals and electrostatic interactions: the nearest to 0 the bound be
and the nearest to 1 the bound bv is, the poorest the sampling. Note that the
hydration of the sodium cation is more sensible to the change in bounds than the
hydration of a water molecule, as electrostatic interactions between the cation and
the surrounding water molecules are non-negligible. The choice of be = bv = 0.5 is
to this day the safest to obtain satisfying free energy profiles.

(O3) Overall, histograms show that the the dynamics does not visit the intervall [0, 1]
equally, the van der Waals interactions being sampled more than the electrostatic
interactions, hence the need to use softcore potentials for the former: this motivates
the use of softcore potentials for electrostatic interactions.

Softcore potentials for both van der Waals and electrostatic interactions ("softsoft"
case)– As a consequence, we consequently ran simulations with softcore potentials for both
kind of interactions. The setup remained the same. Preliminary simulations were run in the
NVE ensemble to check if the softcore derivatives were correct. Simulations were then run in
the NVT ensemble at a temperature of 300 K, over 2 ns, with a timestep of 1 fs. We focused on
the hydration of the sodium cation. The parameters of the van der Waals softcore (6.12) where
always set to sca= 0.5, scs= 2, sct= 1 and sck= 6. A first test was to set the parameters
of the softcore (6.16) to fsca= αe = 0, fscs= s = 2 and fsck= u = 2, so that on would
get f(r, λe) = r and the classical, hardcore potential (6.14) for electrostatic interactions. We
compared the PMF obtained with this set of parameters with the PMF obtained formerly with
only a softcore potential for the van der Waals interactions: a different PMF would have meant
our implementation was somehow faulty.
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Figure 6.19 – Coinciding Potential Mean Force profiles for two simulations, one the "softsoft" case
(where the softcore potential (6.11) was used for van der Waals interactions and the hardcore
potential (6.14) was used for electrostatic interactions) the other in the "softhard" case (where
the softcore potential (6.11) was used for van der Waals interactions and the softcore potential
(6.15) was used for electrostatic interactions). The free energy difference ∆0→1A (in kcal.mol−1)
between final and initial state is printed.

Choosing the values of the parameters fsca, fscs and fsck proved to be difficult, and we
relied on values suggested in [12] for first simulations. We ran simulations for several values of
fsca and fsck with fscs= s being set to 2, and with bounds be = bv = 0.5 in order to compare
the PMF profiles along with the associated bin counts:
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Figure 6.20 – Potential Mean Force profiles for the hydration of a sodium cation, with fixed
bounds be = bv = 0.5 and parameter fscs= s set to 2. The free energy difference ∆0→1A
(in kcal.mol−1) between final and initial state is printed. The softcore potential (6.11) was
used for van der Waals interactions and the softcore potential (6.15) was used for electrostatic
interactions.
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Figure 6.21 – Bin counts for the hydration of a sodium cation, with fixed bounds be = bv = 0.5
and parameter fscs= s set to 2.

We then arbitrarily choose the softcore parameters fsca= αe = 0, fscs= s = 2 and
fsck= u = 2, in order to compare the obtained free energy difference with a reference one
computed with the BAR method, in the same manner as above. Bounds were set to be = bv = 0.5.
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Test ∆0→1A (kcal.mol−1)
λ–dynamics

∆0→1A (kcal.mol−1)
BAR method Absolute error (kcal.mol−1) Relative error

Na+ -82.7096 -83.3879 ∼ 0.6783 ∼-0.008%

Table 6.2 – Solvation free energies for the cation Na+ obtained from λ–dynamics and BAR
method. Softcore potentials were used for both van der Waals and electrostatic interactions.

Figure 6.22 – Potential Mean Force profiles obtained for the hydration of a sodium cation. The
red profiles are obtained for 2ns λ–dynamics simulation, whereas the blue profiles are obtained
for 42 ns BAR simulations. Free energy differences ∆0→1A (in kcal.mol−1) between final and
initial state are printed. Softcore potentials were used for both van der Waals and electrostatic
interactions.

Observations:

(O4) One first notices that adding a softcore potential for the electrostatic interactions
does seem to meliorate the computation of the free energy difference ∆0→1A. One
should of course run simulations for other systems, like the hydration of a water
molecule, as done previously.

(O5) There nonetheless does not seem to be improvement regarding the sampling of the
electrostatic region: for be = bv = 0.5, the parameter λ tends to spend more time
in [0, 0.5] as in the "softhard" case. The expected effect of "smoothening" the
PMF profile at λ = 0.5 with the addition of a softcore potential for electrostatic
interaction is not observed.

Observation (O5) led us to run a simulation with different values for the bounds be and bv,
in order to compare the obtained PMF and bin counts to the ones obtained with be = bv = 0.5.
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Figure 6.23 – Potential Mean Force profiles and bin counts for the hydration of a sodium cation,
with parameter fscs= s set to 2, and either be = bv = 0.5 (right) or be = 0.4, bv = 0.7 (right).
The free energy difference ∆0→1A (in kcal.mol−1) between final and initial state is printed.

Observations:

(O6) Changing the values of the bounds be and bv does seem to have an effect around
λ = 0.5. Hoewever, it does not seem to signigicantly impact the sampling of the
electrostatic region.

Conclusions The implementation of softcore potentials for van der Waals and electrostatic
interactions allow for a fast computation of free energy differences, at least for the hydration
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of a sodium cation and of a water molecule. The use of combined softcore potentials for both
interactions instead of a softcore potential for only van der Waals interactions does not seem
to have much impact on the computation efficiency. However, several questions still need to be
answered before drawing any conclusions:

(Q0) Is the mass mλ we have chosen for our simulations adequate? Would using a mass
of the order of Mcar –provided the system does not explode– more appropriate in
order to properly sample the electrostatic region?

(Q1) Were the parameters of the electrostatic softcore potential (6.15) the optimal choice
of parameters?

(Q2) The use of softcore potentials combined to the λ–dynamics is promising to compute
precise free energy differences, compared to the BAR method: can one estimate the
gain in computation time?

until then, we can still conclude that one may opt for any of the two options, and still obtain
a proper PMF profile in a sensibly short time.

6.5 Implementation of the OSRW method

6.5.1 Equations of motion

Now that the λ–dynamics has been implemented in the Tinker-HP code, let us sketch how one
would design an adaptive biasing method in the manner of the OSRW method. Let us recall that
we are interested in the two variables (λ, Fλ), where Fλ = −∂λV (r, λ) is the force acting on the
variable λ. Thanks to the communication between the Tinker-HP and Colvars module codes,
one now can make λ evolve dynamically. As shown in Figure 6.13, in a simulation run with
the λ–dynamics, Colvars uses Fλ to propagate λ dynamically. However, Fλ is now a dynamical
variable that one will have to propagate. To do so, one has to evaluate the force F ∗ acting on Fλ.
This requires to compute F ∗(r, λ) = ∂

∂Fλ
Hext(r,p;λ), where Hext is the extended Hamiltonian

of the system, to be precised further down. Problem is, this computation is too difficult. One
idea to bypass this issue is to apply and extended Adaptive Biasing Force method for the time-
evolution of Fλ. In which case, we couple the variable Fλ to a classical extended coordinate φ
using a spring of constant k. The extended Hamiltonian then becomes:

Hext(r,p;λ, φ) = Ekin(p;λ) + Uext(r, λ, φ)

where the extended potential is now

Uext(r, λ, φ) = Vext(r;λ) +
1

2
kφ (Fλ(r)− φ)

2
,

with Vext given by (6.8). The force Fφ acting on φ is easily computable:

Fφ := −∇
(

1

2
kφ (Fλ(r)− φ)

2

)
= −kφ (Fλ(r)− φ)∇ (Fλ(r)− φ)

= −kφ (Fλ(r)− φ)∇Fλ(r).
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Note that the initial extended Hamiltonian is Ekin(p, λ) + Vext(r, λ), where λ is an extended
coordinate, which is linked to a fictitious particle λ̃ of mass mλ, with the constraint that
both are constantly equal. This is not the same idea we use while dealing with the variable
Fλ, which is not an extended Cartesian coordinate, but a classical collective variable, linked
to an extended variable φ of mass mφ via a spring of constant kφ. It is the variable φ that
is represented by a fictitious particle φ̃ in the same way as λ. not Fλ. As a consequence,
the extended Hamiltonian Hext(q, p;λ, φ) will lead to 6N equations of motion treated by the
Tinker-HP code, and 2 additional equations of motion treated by Colvars. One has:

r̈ = −M−1∇Uext
λ̈ = −m−1λ ∂λUext
φ̈ = −m−1φ ∂φUext

.

Where, since: Uext(r, λ, φ) = Vext(r, λ) + 1
2kφ (Fλ(r)− φ)

2:

∂λUext(r, λ, φ) = ∂λVext(r, λ) + k (Fλ(r)− φ) ∂λFλ(r)

∇Uext(r, λ, φ) = ∇Vext(r, λ) + k (Fλ(r)− φ)∇rFλ(r),

hence the need to know both values of ∂λFλ = ∂2
V

∂λ2
and ∇Fλ = ∇∂λV .

In practice, for a given time t, we first set the Cartesian derivatives of the force Fλ to zero.
We then proceed to compute the forces and the Cartesian derivatives of the force Fλ. Let us
recall the expression of ∇Fλ :

∇Fλ = ∇ (−∂λV (r, λ)) = −∇ (∂λVe(r, λ) + ∂λVv(r, λ))

= −∇∂λVe(r, λ)−∇∂λVv(r, λ).

Now, given the value F ∗
t−∆t

of the force acting on Fλ at the previous timestep, one locally
updates the total force acting on the system as follows:

∇Ht
ext(r,p;λ, φ) = ∇Ht−dt

ext (r,p;λ, φ) + F ∗t−dt ×∇F t−dtλ (r, λ).
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6.5.2 Tinker-HP – Colvars interface: second update

Treating the variable Fλ as a dynamical variable led to several additions to the Tinker-HP–
Colvars interface: let us quickly summarise them.

Figure 6.24 – Scheme of the communication between the Tinker-HP and Colvars module codes
when running a simulation with the λ–dynamics method where both λ and Fλ evolve dynamically.

At a given time t, the Tinker-HP code does not only have a value of the variables λ and
Fλ, but also have one of the derivative ∂λFλ (delambda) and the gradient ∇Fλ (dxdelambda).
These values will be sent to Colvars in order to obtain that of the extended Hamiltonian at
time t: similarly to the routines get_alch_lambda and get_alch_Flambda, interface routines
have been introduced to do so. After having defined its internal variable λc(λ) with the received
alchemical λ (and the corresponding force Fλc), Colvars will propagate λc and the variable φ
coupled to Fλc according to a Langevin dynamics, using leapfrog integration. The new values of
λ and Fλ will be sent to the Tinker-HP program, which will then proceed to run the dynamics
at time t+ dt. Note that since λ and Fλ are now both dynamical, the Colvars module can apply
harmonic potentials to both variables, along with using an Adaptive Biasing Force method.

6.5.3 Numerical results: what is done and what remains to be done

Implementing the OSRW method in the Tinker-HP code has proved to be trickier than expected.
We ran simulations within the same framework as in Section 6.4.5: temperature was set to 300
K, simulations were run over 2 ns with a timestep of 1 fs, and the simulation box’s length was
of 18.643 Å. We will here sketch the approach that has been adopted, the issues we faced and
how we intend to solve them. Let us recall that by "OSRW", one here means that the reaction
coordinate considered is given by (λ, Fλ), which both evolve dynamically.
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6.5.3.1 OSRW with "softhard" λ–dynamics: inherent instabilities

We first ran simulations with a softcore potential for the van der Waal interactions only. Quick
simulations were run in the NVE ensemble to check if double derivatives related to the dynamical
evolution of Fλ were properly implemented: adding a harmonic potential on the variable λ, with
strong spring force and centered in 0.7 was needed in order to observe energy conservation.
Indeed, in practice, as the λ–dynamics start with λ = 1, values of the collective variable λ tends
to be above the upper value 1, leading to explosion. Such a value for the harmonic potential’s
center was motivated by [87, Figure B, p.3] and [88, Figure 3 (a)].

We then came back to the NVT ensemble. However, first attempts to run simulations with
dynamical (λ, Fλ) variables where met with quasi-instantaneous explosion of the system. One
idea would be to change the boundary conditions required by the Colvars module for the prop-
agation of both variables. We consequently switched from reflecting boundary conditions as
introduced in Section 6.4.5 to the following ones:

1
2kup(λ− λmax)2, λ > λmax

1
2klow(λ− λmin)2, λ < λmin

0 else.

.

Namely, if λ is above a maximum value λmax (resp. below a minimum value λmin) set by
the user, an harmonic potential of center λmax (resp. λmin) with constant kup (resp. klow)
will be applied to λ. In practice, λmax and λmin are set up with the keywords UpperWall
and LowerWall, and the constants kup and klow with the keywords UpperWallConstant and
LowerWallConstant.

However, this change of boundary conditions did not have the expected impact on the sta-
bility of our simulations. Since these preliminary tests were run with our first implemented
λ–dynamics, which used a softcore potential only for the van der Waals interactions, we decided
to implement a softcore potential for electrostatic interactions, in the hope that this will prevent
instabilities around λ = 1. Yet, an additional explanation could be that when λ goes outside of
the interval [0, 1], the force Fλ applied on λ is immediately set to 0 by the Tinker-HP code. This
will lead the extended coordinate φ coupled to Fλ by Colvars to behave badly, quickly leading
the system to explode. The question is then: how does one "mollify" the fall of Fλ to 0?

One idea would be to make everything go to 0 when λ approaches the boundary values 0
and 1. Another is to consider two different variables to treat λ: one "alchemical", which is the
λ treated by the Tinker code, and another "dynamical" that is treated by the Colvars code.
Right now, those are the same: at a given time step, Tinker gives the value of λ (which is then
"alchemical") to Colvars, Colvars makes λ evolves dynamically (so that it is then "dynamical")
and sends it back to Tinker for the next timestep. But one could change the expression of the
dynamical variable, that we denote by λc, motivating the notation already used in Section 6.4.4
and 6.5.2. The dynamical variable λc treated by Colvars is now a function of the alchemical
variable λ sent by Tinker, and defined on the whole R space. We opt for the following dynamical
variable:

λc(λ) :=
1

π
arccos (1− 2λ) ,

so that:
λ =

1− cos (πλc)

2
if λc ∈ [0, 1], and 0 or 1 otherwise.
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We will color any quantity computed by Tinker in purple, and any quantity computed in Colvars
in teal. Colvars will then consider the force that is applied not to λ, but to the dynamical λc,
defined as:

Fλc :=
∂Vext(r, λ)

∂λ
· dλ

dλc
,

with
dλ

dλc
=
π

2
sin (πλc) if λc ∈ [0, 1], and 0 otherwise.

In order to make λc and Fλc evolve dynamically, the Colvars code also needs the force applied
on Fλc . We will consequently need:

∇Fλc = ∇
(
∂Vext(r, λ)

∂λ
· dλ

dλc

)
= ∇Fλ

dλ

dλc

∂Fλc
∂λc

=
∂

∂λc

(
∂Vext(r, λ)

∂λ
· dλ

dλc

)
=
∂2Vext(r, λ)

∂λ2
·
(

dλ

dλc

)2

.

The PMF generated by the Colvars code will give the free energy derivative with respect to
λc:

dA

dλc
=

〈
∂Hext

∂λc

〉
, (6.21)

One may want to use thermodynamic integration to obtain the more conventional PMF Ã
with respect to the alchemical λ of Tinker:

dÃ

dλ
=

dA

dλc
· dλc

dλ
,

with
dλc
dλ

=
1

π

1√
λ(1− λ)

. (6.22)

Note that as λ goes towards 0 or 1, (6.22) goes towards +∞. Therefore one will be quickly
facing the issue of multiplying +∞ by 0. As such, it would be better to:

(A) Run a classical λ–dynamics, obtain the PMF (6.21) with respect to the dynamical
λc.

(B) Run a BAR test with several fixed values of the alchemical λ in order to build a
(intermediary) PMF with respect to the alchemical λ, that we will denote by dÃ

dλ .

(C) Bring together the PMF of the λ–dynamics simulation of step (A) with respect to
the alchemical λ:

dAMBAR

dλc
=

dÃ

dλ

dλ

dλc

which is much easier and avoids singularities.

This would allow for a direct comparison of A(λc) and AMBAR(λc), which are two estimators
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of the same quantity. Note however that this would imply for the user to post-treat several
simulations. Proper python scripts should be made accessible in order to ease these steps.

Notes on the biasing of Fλ – All of the above is necessary for the extended dynamics on Fλ
if we need a 2d free energy surface on λc and Fλ. This can be avoided by applying a different
type of bias on Fλ, either metadynamics, or a constant bias V b(Fλ). This may be sufficient
to enhance the sampling of the orthogonal space. Then to reconstruct the unbiased derivative
dAMBAR

dλc
, we need the 2d-histogram ρ(λc, Fλ) of the (Step A) simulation (with or without a bias

along λc).
Then the unbiased free energy derivative is the reweighted conditional average:

dA

dλc
= −

∫
Fλ e

+βV b(Fλ) ρ(λc, Fλ) dFλ∫
e+βV b(Fλ) ρ(λc, Fλ) dFλ

Note that biasing along λc does not bias conditional averages on λc (this property is used in
ABF).

The definition of λc as a function of the alchemical λ in the Colvars module has not been
implemented yet, as one hopes the use of sotcore potentials for both van der Waals and electro-
static interactions would resolve the issue of system explosion. For now, λc(λ) ≡ λ in the Colvars
code, and as such, the following question is yet to be answered:

(Q3) Is the implementation of λc as a function of λ in the Colvars module necessary to
treat the system’s inherent instability due to the strong oscillations of Fλ?

6.5.3.2 OSRW with "softsoft" λ–dynamics

Before attempting to implement λc in the Colvars module, we started to confront the use of
a softcore potential for electrostatic interactions in the OSRW method. We first ran simula-
tions in the NVE ensemble to check for energy conservation. The energy is conserved provided
an harmonic potential is applied on λ, with strong spring force and center in 0.7: without it,
the system explodes. In order to apply a harmonic spring to the collective variable Fλ, one
first needs to identify its behaviour: we generated a 2d histogram of (λ, Fλ) by runing a simu-
lation over 0.1 ns with timestep of 1 fs in the NVE ensemble, for the solvation of a sodium cation.
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Figure 6.25 – Histogram of (λ, Fλ) with λ–dynamics run with softcore potentials for van der
Waals and electrostatic interactions, and harmonic potential on λ centered in 0.7.

One can make out that a good harmonic potential to apply on Fλ if λ is restricted to 0.7
would have a center of around 180. However, until now, doing so does not ensure the energy
conservation. One should consequently:



174 CHAPTER 6. Study of the OSRW sampling method in the case of alchemical transitions

(Q4) Ensure the softcore derivatives needed for the dynamical evolution of the collective
variable Fλ are correctly implemented in the Tinker-HP code.

(Q5) If question (Q1) is answered, and if the energy if still not conserved in a NVE
simulation, on should try to apply an adequate harmonic potential on Fλ.

(Q6) If solution to (Q2) still fails to ensure energy conservation, then one may proceed
to the implementation of λc as a function of λ in the Colvars module, given by
(6.5.3.1).

Provided tackling (Q1)–(Q3) solves the issue of energy conservation for an OSRW simulation,
one may then attempt to tackle our final open problem:

(Q7) Can one apply the Adaptive Biasing Force method on both coordinates (λ, Fλ)? Is
our algorithm as efficient as the original OSRW algorithm suggested by W. Yang
and colleagues?

(Q8) Is it also more efficient than the BAR method? If so, can one estimate the gain in
computation time compared to the BAR method, and compared to our implemented
λ–dynamics method?

Work is in progress to answer questions (Q0)–(Q8), and one may hope that the implemen-
tation of the λ–dynamics, along with the use of the ABF method with the reaction coordinate
(λ, Fλ), will enable the computation of alchemical free energies in a fast, efficient and robust
manner. If this proves to be the case, the resulting method would allow the user to obtain a 2d
free energy profile, providing new insights on the system at hand. One may then wish to test the
implemented OSRW method on greater systems, with the long-term goal of estimating a ligand’s
affinity with a given receptor.



Appendix A
Notes on stochastic processes

A.1 Markov processes

A Markov process is a family (Xt)t≥0 of random variables on a given probability space (Ω,F ,P)

with values in a set E equipped with a σ–field E . We assume the measurable space (E, E) to
be satisfying the measure decomposition theorem: given a measure µ on (E × E, E ⊗ E), if µx
denotes its projection on the first coordinate x, then one has the following decomposition:

µ(dx, dy) = κ(x, dy)µx(dx),

for some kernel κ [5]. The measure decomposition theorem will be crucial in our case. Indeed, as
said in Section 1.4.1, one can decompose the canonical measure as the product of two measures,
as done in equation (1.8). Such decomposition will prove to be the key to ease the study of
many algorithms used in the scope of molecular dynamics. The process (Xt)t≥0 starting from
the initial point x ∈ E is said to be Markovian if it satisfies the Markov property :

[M1] If one denotes by {Ft}t≥0 := {σ(Xs | s ≤ t)}t≥0 the natural filtration of (Xt)t≥0,
then, for all A ∈ E , for all s < t:

P(Xt ∈ A | Fs) = P(Xt ∈ A |Xs).

A.2 Markov semigroups

There exists a natural semigroup associated to the Markov process (Xt)t≥0. Before defining it,
let us first consider a family of operators (Pt)t≥0 defined on real-valued measurable functions f
satisfying the following conditions:

[SG1] For every t ≥ 0, Pt is a linear operator which maps the set B of bounded measurable
functions defined on (E, E), onto itself.
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[SG2] P0 = Id

[SG3] Pt(1) = 1 where 1(x) = 1, ∀x ∈ E.

[SG4] If f ≥ 0 then Ptf ≥ 0.

[SG5] For all t, s ≥ 0, Pt+s = Pt ◦ Ps.

[SG6] There exists an invariant measure, namely a positive, σ-finite measure µ on (E, E)
such that for all measurable function f : E → R which is bounded and positive, for
every t ≥ 0, one has: ∫

E

Ptf dµ =

∫
E

f dµ.

Furthermore, (Pt)t≥0 is continuous at t = 0, in other words, for every f ∈ L2(µ),

lim
t→0

Ptf = f.

[SG7] For every 1 ≤ p < +∞, the family of operators (Pt)t≥0 can be extended as bounded
(i.e contraction) operators on the Lp(µ) space.

A semigroup (Pt)t≥0 satisfying properties [SG1–SG7] is called a Markov semigroup. The
natural, Markov semigroup associated to the Markov process (Xt)t≥0 is defined as:

∀t ≥ 0, ∀x ∈ E, Ptf(x) := Ex [ f(Xt) ] = E [ f(Xt) |X0 = x ] ,

where E is taken with respect to the Wiener measure associated to (Wt)t≥0, f is a test function
usually taken to be either bounded or measurable and positive.
Any Markov semigroup can be represented by the probability kernels of the Markov process
(Xt)t≥0. The family (pt)t≥0 are probability kernels if:

(i) For all x ∈ E, for all t ≥ 0, pt(x, .) is a probability measure.

(ii) For all set A ∈ E , t 7→ pt(x,A) is measurable.

The probability pt(x, .) is consequently the distribution at time t ≥ 0 of the process (Xt)t≥0
starting in point x ∈ E. Under the assumption that the space (E, E) is nice enough, the associated
Markov semigroup satisfies, for any bounded measurable function f on E:

∀t ≥, ∀x ∈ E, Ptf(x) =

∫
E

f(y) pt(x, dy).

Provided the density kernels have densities with respect to the Lebesgue measure (or any other
measure) λ, which we will also denote by (pt)t≥0, one has for any bounded measurable function
f on E:

∀t ≥, ∀x ∈ E, Ptf(x) =

∫
E

f(y) pt(x, y)dλ(y).
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The invariant measure µ is said to be reversible with respect to the semigroup (Pt)t≥0 if, for
all functions f, g ∈ L2(µ), and all t ≥ 0,∫

E

fPtg dµ =

∫
E

gPtf dµ. (A.1)

A direct consequence of (A.1) is that the densities of the probability kernels (pt)t≥0 are symmetric
on E × E. The semigroup (Pt)t≥0 is thus said to be symmetric with respect to µ.

A.3 Infinitesimal generator

Since the semigroup (Pt)t≥0 is by construction a contraction semigroup, one can apply the Hille-
Yosida theorem [5, Annex A.1]: there exists a dense linear subset D of L2(µ), where µ is the
invariant measure given in [SG6], called the domain of the semigroup, on which the derivative

lim
t→0

1

t
(Ptf − f) :=

dPt
dt

∣∣∣∣
t=0

,

exists for all f ∈ D and is in L2(µ).

The infinitesimal generator L of domain D(L) = D of the associated Markov process (Xt)t≥0
is then defined as:

L : D −→ L2(µ)

f 7−→ dPt
dt

∣∣∣∣
t=0

The infinitesimal generator L is symmetric with respect to µ if, for all f, g ∈ D(L),∫
E

fLg dµ =

∫
E

gLf dµ.

One can show that the semigroup (Pt)t≥0 satisfies the heat equation with respect to L: for every
t ≥ 0,

∂tPt = LPt = PtL. (A.2)

A.4 Fokker-Planck-Kolmogorov equation

Since the semigroup (Pt)t≥0 can be represented by probability kernels, we rewrite the two for-
mulations of equation (A.2) using the density of the kernels. The equation

∂tPt = LPt

yields that for all x ∈ E, for all t ≥ 0, ∂tpt(x, y) = Lxpt(x, y)

p0(x, y)dλ(y) = δx

,
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where Lx represents the action of L on the variable x. We usually prefer to use the dual
formulation of this equation, namely ∂tPt = PtL: for all x ∈ E, for all t > 0,

∂tpt(x, y) = L∗pt(x, y), (A.3)

with p0(x, .) as initial density, and where L∗ is the adjoint of the operator L with respect to
the Lebesgue measure λ (or any reference measure):∫

E

fLg dλ =

∫
E

gL∗f dλ.

The equation (A.3) is called the Fokker-Planck equation.

Remark 29. Let us denote by (P ∗t )t≥0 the adjoint of the semigroup (Pt)t≥0. In both cases, the
actions of the operators (Pt)t≥0 and (P ∗t )t≥0 yield solutions of an initial value problem. This
motivates the use of the notations etL = Pt and etL

∗
= P ∗t .

A.5 Hypoellipticity
Provided the operator ∂t − L∗ is hypoelliptic, the solution to the Fokker-Planck equation (A.3)
πt is smooth and bounded, irrespective of the initial condition [5, Section 1.12]. An operator A
is said to be hypoelliptic if for any solution π of the equation Aπ = f for a given f , then

f ∈ H loc
s ⇒ π ∈ H loc

s+ε, ∀ε > 0,

where H loc
s denotes the local Sobolev space of order s ∈ N. Hypoellipticity is given by the

following Hörmander theorem: [5, Proposition 1.12.1]

Theorem 4. Consider the following differential operator

L = a0 · ∇+

N∑
i=1

(ai · ∇)
>

(ai · ∇) , (A.4)

where the (ai)i∈J1,NK are smooth vector field in Rd, and > denotes the adjoint with respect
to the L2(λ)–scalar product. Consider the following family of vector fields:

V0 := span {ai | i ∈ J0, NK} ,
Vn+1 := span {Vn ∪ { [v, ai] | v ∈ Vn, i ∈ J1, NK}} , ∀n ∈ J0, NK,

where for two smooth vector fields X,Y in Rd one has:

[X,Y ] = ∇Y ·X −∇X · Y.

If the following parabolic Hörmander condition

∃k∗ ∈ J0, NK, Vk∗ = Rd, (A.5)

is satisfied, then the operator L is hypoelliptic.
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Remark 30. When considering differential operators of the form ∂t −L where L is of the form
(A.4), one needs to consider a0 = −a0 + ∂t and ai = −ai for all i ∈ J1, NK. The parabolic Hör-
mander condition is verified this time with the set V0 := span {ai | i ∈ J1, NK}, and the definition
of the sets (Vk)k∈J1,N+1K do not change. As a consequence, the term a0 no longer intervene in
the parabolic Hörmander condition.

A.6 Diffusion processes

A (time-homogeneous) diffusion process on Rd starting from x ∈ Rd is a process (Xt)t≥0 satisfying
the following stochastic differential equation:{

dXt = b(Xt)dt+ σ(Xt) dWt

X0 = x,
(A.6)

where (Wt)t≥0 is standard d–dimensional Brownian motion, b is a vector, σ a d× d matrix. We
assume b and σ to be smooth functions with bounded derivatives.
The associated infinitesimal generator is :

L =

d∑
i=1

bi∂i +
1

2

d∑
i,j=1

ai,j∂
2
ij ,

where a = σσ>.
Assume (A.6) admits a strong solution, and that there exists an invariant measure µ whose
density π satisfying 0 = L∗π is positive and smooth. Provided the infinitesimal generator L
satisfies the Hörmander parabolic condition (A.5), then:

(i) The (Xt)t≥0 is irreducible, namely, for any Borel set A such that λ(A) > 0, for λ-almost
all x0 ∈ Rd, for all t > 0,

Pt1Ax0 > 0.

In other words, the process can reach any subset of Rd with positive probability, whatever
the time and initial condition considered.

(ii) The process is ergodic: for any observable ϕ ∈ C∞0 (Rd), its trajectorial average converge in
the long-time limit towards its statistical mean:

lim
T→+∞

∫ T

0

ϕ(Xt) dt = Eµ [ϕ] .

(iii) The invariant measure µ is unique.

[5] .



180 APPENDIX A. Notes on stochastic processes



Appendix B
Some notions in analytical
mechanics

Classical (or Newtonian) mechanics rely on a vectorial description of physical systems. Its
foundations are based on the concept of mass points, where we assume one can describe a given
physical system’s constituents with a mass and a point in an Euclidean space. This description
implies working with vector quantities of motion such as the velocity, the acceleration, forces, as
well as momentum. But one could be interested in working with scalar quantities of motions such
as the system’s kinetic energy, a particle’s moment of inertia and so on. Such is the purpose of
analytical mechanics, which by construction allows a far more general description of complicated
physical systems.

B.1 Some reminders of classical mechanics

From now on, we will denote by ϕ̇ the time derivative of any quantity ϕ, and quantities written
in bold should be seen as vectorial.

Let us consider a system of N mass points (Xi,mi)i∈J1,NK whereXi is a point in the Euclidean
space R3 equipped with the orthogonal basis (e1, e2, e3), and mi is its mass. For all i in J1, NK,
the point Xi will be described by its coordinates (xi, yi, zi) in the inertial Cartesian axis system
Oxyz. We will denote by ri the vector ~OXi, and by vi = ṙi the velocity of the point i. By ∇ri

we denote the vector (∂xi , ∂yi , ∂zi)
>.

B.1.1 Newton’s second law

Classical mechanics rely on the d’Alembert principle, also called Newton’s second law :

Fi =
d

dt
(mivi) , (B.1)

which states that the net force on the point i is equal to the time derivative of the point’s momen-
tum mivi. To facilitate the reading of the following sections, and avoid any misunderstanding,
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we will for now prevent ourselves from using the notation p for the momentum.

For a system of N particles, one would need to solve 3N equations, as one needs to project
(B.1) against the three Cartesian axis.

B.1.2 Work and kinetic energy

Let us consider a mass point (X,m) in space, of mass m, position r and velocity v = ṙ. Let us
consider two positions r and r̃. The energy produced along a displacement (or deformation) of
the mass point when a force F is applied is called the work Wr→r̃ of the force F. One has:

Wr→r̃ =

∫ r̃

r

F · dr = Ec(r̃)− Ec(r),

where Ec(r) = 1
2mv is the kinetic energy of the mass point at position r.

Now let us consider our system of N mass points (Xi,mi)i∈J1,NK. The net force Fi applied
to the i–th mass point is the sum of external forces applied to the point and interaction forces
with the other mass points. Hence:

Fi = Fexti +
∑
j 6=i

Fji,

where Fji = −Fij is the interaction force that the mass point j applies to the mass point i.

If the point i moves by an elementary displacement dri then the elementary work of the force
Fi is given by

dwi = Fexti · dri +
∑
j 6=i

Fji · dri = d

(
1

2
miv

2
i

)
,

where vi stands for the norm ‖vi‖. Hence the total elementary work of the system is given by:

dW =

N∑
i=1

dwi =

n∑
i=1

d

(
1

2
miv

2
i

)
= d

n∑
i=1

(
1

2
miv

2
i

)
and one can conclude that the kinetic energy Ec of the whole system is equal to the sum of the
kinetic energies

(
Eic
)
i∈J1,NK of the N mass points.

B.1.3 Conservative forces

A conservative system is a physical system in which the work W done by a force F between
two positions r and r̃ is independant of the chosen path, is reversible, and is equal to the difference
between the initial and final value of a given energy. Let us work within such a system.
A direct consequence is that the force Fi applied on the mass point i can be written as the
derivative of a potential energy Vi:

Fi = −∇riVi.
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Just like the kinetic energy, if Vi denotes the potential energy from which the force Fi derives
from, then the potential energy of the total system V can be written as the following sum:

V =

N∑
i=1

Vi,

and Fi = −∇V .
Note that the elementary work done by the force Fi along an elementary displacement dri is
equal to

dwi = Fi · dri = −∇riVi · dri = −dVi,

hence the total work of the system between two positions r and r̃ is given by:

Wr→r̃ =

N∑
i=1

∫ r̃

r

dwi = −
N∑
i=1

∫ r̃

r

dVi =

N∑
i=1

(Vi(r̃)− Vi(r)) = V (r̃)− V (r).

B.2 Foundations of analytical mechanics

B.2.1 Relationship between potential and kinetic energies

We have, starting from vectorial quantities in classical mechanics, constructed scalar quantities:
the system’s total potential and kinetic energies. Let us establish a nice relationship between
those. By Newton’s second law,

Fi =
d

dt
(mivi) = −∇riVi

and since

∇vi
Ec =

N∑
j=1

∇vi
Ejc =

N∑
j=1

∇vi

(
1

2
mjv

2
j

)

∇vi
Ec =

N∑
j=1

mjvj ,

one gets:

−∇riV =
d

dt
∇vi

Ec. (B.2)

Note that the quantities involved in equality (B.2) involves only scalar quantities: it is a refor-
mulation of Newton’s second law and lays the foundation of analytical mechanics.

B.2.2 Lagrangian

We will now define a function of both position r and speed v = ṙ, called the Lagrangian, using
both potential and kinetic energies:

L(r,v) = Ec(v)− V (r).
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Given equation (B.2), one can write the generalised Lagrangian equation:

∇rL =
d

dt
∇vL, (B.3)

in other words, for a given mass point i ∈ J1, NK:

∂L
∂xi

=
d

dt

∂L
∂ẋi

,
∂L
∂yi

=
d

dt

∂L
∂ẏi

, and
∂L
∂zi

=
d

dt

∂L
∂żi

.

B.2.3 Constraints, degrees of freedom and generalised coordinates

Now, for a given system ofN particle, if all of the mass point’s Cartesian coordinates {(xi, yi, zi)}i∈J1,NK
are independent, in regard of equation (B.3), one has to solve 3N equations. Most of the time
however, some coordinates are not independent and are linked by equations called mecanical
constraints. There are two kind of constraints:

(i) holonomic constraints, which are algebraic equations of the form

f(r1, . . . , rN; t) = 0.

If the equation is time-dependent then the constraint is rheonomic, whereas if it is not,
it is called scleronomic.

(ii) non-holonomic constraints, which stands for every constraint that is not holonomic.
Among them are the semi-holonomic constraints, which depend on both positions and
velocities and are of the form

g(r1, . . . , rN; ṙ1, . . . , ˙rN; t).

In the case of semi-holonomic constraints, the method of Lagrange multipliers can be applied to
incorporate the constraints to the equations of motion. Assume one has K semi-holonomics con-
straints (gk)k∈J1,KK. Then it can be shown, with a slight abuse of notations, that the Lagrangian
of the extended system can be written as:

L(r,v;λ, t) = L(r,v; t) +

K∑
k=1

λk(t)gk(r1, . . . , rN; t),

where λk is the Lagrange multiplier associated to the k-th semi-holonomic constraint.

We will from now on work only with holonomic constraints, and define the number of de-
grees of freedom g, which is the number of independent coordinates. Provided there exists a
finite number l of constraints, one would have g = 3N − l.

Let us assume our system has g = 3N − l degrees of freedom. We will reorganise the
coordinates and renumerate them so that the g first coordinates are independent, the l remaining
coordinates being linked by constraints. We ditch the classical set of Cartesian coordinates

{(x1, y1, z1), . . . , (xN , yN , zN )}
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for the following set of coordinates:

{q1, . . . , qg; qg+1, . . . , qg+l} ,

where 
q1 = q1(q1, 0, . . . , 0; t)
...
qg = qg(0, . . . , 0, qg; t)

and


qg+1 = qg+1(q1, . . . , qg; t)
...
qg+l = q3N = qg+l(q1, . . . , qg; t)

.

By construction, one can get rid of the l coordinates (qg+1, . . . , qg+l) and work only with the so-
called generalised coordinates (q1, . . . , qg). These new, independant coordinate consitute a ba-
sis in which one can rewrite the positions (ri)i∈J1,NK of the N mass points as ri = ri(q1, . . . , qg; t)

for all i ∈ J1, NK. Note that generalised coordinates are not bound to be Cartesian coordinates.
One can work with angles, lengths, and so on.

Remark 31. As a consequence, one can rewrite, for the i-th particle:

(i) The velocity vi as:

vi =
d

dt
ri =

g∑
k=1

∂ri
∂qk

q̇k +
∂ri
∂t
.

(ii) The total differencial of the position as:

dri =

g∑
k=1

∂ri
∂qk

dqk +
∂ri
∂t

dt.

(iii) The virtual displacement of the particle i provided there is no virtual variation of the time
variable as:

δri =

g∑
k=1

∂ri
∂qk

δqk.

Remark 32. Having non-holonomic constraints does not ensure a reduction of the number of
degrees of freedom! Indeed, each given holonomic constraint allows a rewritting of the dependent
coordinates as a function of the generalised coordinate. It is a priori not the case for non-
holonomic constraint, where positions and velocities can be linked.

Example 1. A classical example is the pendulum of length L in R2. The position of the pendulum
is given by r = (x, y)>, and the angle between the pendulum and the Oy axis is denoted by θ. One
has ‖r‖2 = x2 + y2 = L2, and the number of degrees of freedom is g = 2− 1 = 1. The generalised
coordinate to consider is consequently θ, and one can rewrite x = R sin(θ), y = R sin(θ).

From now on, we will assume the system has g degrees of freedom and we will denote by
(q1, . . . , qg) the associated generalised coordinate. The vector space defined by the generalised
coordinates is called the configuration space. The state space, or phase space, is the space
of all points (q, p) ∈ R2g which characterise all of the system’s possible states.
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B.2.4 Conjugate momentum

When working with Cartesian coordinates, one had mv = ∇rEc. A logical thing to do is to
define a similar object for generalised coordinates. The generalised momentum, or conjugate
momentum pk of the generalised coordinate qk, k ∈ J1, gK is given by:

pk =
∂Ec
∂qk

, ∀k ∈ J1, gK. (B.4)

B.2.5 Generalised forces

Provided the system is at static equilibrium, the virtual work δW of the applied force F is null
for all virtual displacements δr. Let us write this statement in the terms of classical mechanics:

δW =

N∑
i=1

Fi · δri = 0.

Now, for all i ∈ J1, NK one has ri = ri(q1, . . . , qg) and :

δri =
∂ri
∂q1

δq1 + . . .+
∂ri
∂qg

δqg,

so that:

δW =

N∑
i=1

Fi ·

(
g∑
k=1

∂ri
∂qk

δqk

)
=

g∑
k=1

(
N∑
i=1

Fi ·
∂ri
∂qk

)
δqk.

We consequently define Fk the force applied on the generalised coordinate qk, k ∈ J1, gK as:

Fk =

N∑
i=1

Fi ·
∂ri
∂qk

.

In case the system is conservative, one has Fi = −∇riV , for all i ∈ J1, NK, where V is the
system’s total potential energy. This yields, for k ∈ J1, gK:

Fk =

N∑
i=1

Fi ·
∂ri
∂qk

= −
N∑
i=1

∇riV ·
∂ri
∂qk

= −
N∑
i=1

∇riVi ·
∂ri
∂qk

= −
N∑
i=1

(
∂Vi
∂xi

∂xi
∂qk

e1 +
∂Vi
∂yi

∂yi
∂qk

e2 +
∂Vi
∂zi

∂zi
∂qk

e3

)

= −
N∑
i=1

∂Vi
∂qk

= − ∂

∂qk

(
N∑
i=1

Vi

)

hence
Fk = − ∂V

∂qk
.



B.2. Foundations of analytical mechanics 187

B.2.6 Hamiltonian

Let us rewrite the Lagrangian L as L(q,p; t) where q = (q1, . . . , qg) and q̇ = (q̇1, . . . , ˙qN ):

L(q, q̇; t) = Ec(q̇)− V (q)

From the generalised Lagrangian equation (B.3), one can express the conjugate momentum of
the k-th generalised coordinate as follows:

ṗk =
∂L
∂qk

. (B.5)

Equation (B.5) is a direct rewriting of the d’Alembert principle when pk has the dimension
of a momentum, whereas it is a rewriting of the angular momentum theorem when pk has the
dimension of an angular momentum.

Now, provided the Lagrangian L is time-independent, using (B.5), one can write its total
differential as follows:

dL =
∂L
∂qk

dqk +
∂L
∂q̇k

dq̇k

=

g∑
k=1

ṗkdqk +
∂L
∂q̇k

dq̇k.

Recall that equation (B.4) can be rewritten as pk =
∂L
∂q̇k

, which yields

dL =

g∑
k=1

ṗkdqk + pkdq̇k.

Now, since d (pkq̇k) = dpkq̇k + pkdq̇k:

dL =

g∑
k=1

ṗkdqk +

g∑
k=1

d (pkq̇k)−
g∑
k=1

dpkq̇k

i.e

d

(
L −

g∑
k=1

pkq̇k

)
=

g∑
k=1

ṗkdqk −
g∑
k=1

dpkq̇k.

This implies that
d

dt

(
L −

g∑
k=1

pkq̇k

)
= 0, and the quantity

(
L −

g∑
k=1

pkq̇k

)
is consequently an

invariant of the system. This leads us to define the Hamiltonian of the system:

H(q, q̇; t) =

g∑
k=1

pkq̇k − L(q, q̇; t). (B.6)
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Let us rewrite the equations of motion by considering the following differential:

dH =

g∑
k=1

(
∂H

∂qk
dqk +

∂H

∂pk
dpk

)
+
∂H

∂t
dt.

H being defined by (B.6), one also has:

dH =

g∑
k=1

(dpkq̇k + pkdq̇k)− dL(q, q̇; t)

=

g∑
k=1

(dpkq̇k + pkdq̇k)−
g∑
k=1

(
∂L
∂qk

dqk +
∂L
∂q̇k

dq̇k

)
− ∂L
∂t

dt

=

g∑
k=1

(dpkq̇k + pkdq̇k − ṗkdqk − pkdq̇k)− ∂L
∂t

dt,

where we used equations (B.4) and (B.5). Hence:

dH =

g∑
k=1

(−ṗkdqk + pkdq̇k)− ∂L
∂t

dt,

which yields the so-called Hamiltonian equations of motion:

∂H

∂qk
= −ṗk and

∂H

∂pk
= q̇k.



Appendix C
Derivatives for the implementation
of λ–dynamics and the OSRW
method

C.1 Halgren potential

In the following section, the Lennard-Jones potential will be used as a reference to check our
computations. We will rely on

dVLJ(ρ)

dρ
= ε

(
− 12

ρ13
+

12

ρ7

)
= 12ε

(
1

ρ7
− 1

ρ13

)
,

and
d2VLJ(ρ)

dρ2
= 12ε

(
13

ρ14
− 7

ρ8

)
.

Note that we have d2VLJ (r)
dr2 = 1

(r∗)2
d2VvdW (ρ)

dρ2 .

Derivatives of the Halgren potential – We will need to implement the space derivative of
the Halgren potential (6.10). One has

Vhal(ρ) = ε(1 + δ)n−m (ρ+ δ)
m−n

(1− γ − 2ρm) (ρm + γ)
−1

i.e
Vhal(ρ) = ε(1 + δ)n−mf(ρ)g(ρ)

with

• f(ρ) = (ρ+ δ)
m−n and df(ρ)

dρ = (m− n) (ρ+ δ)
m−n−1

• g(ρ) =
(1− γ − 2ρm)

(ρm + γ)
and

dg

dρ
= −mρm−1 (γ + 1)

(ρm + γ)
2 .
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This yields

dVhal(ρ)

dρ
= ε(1 + δ)n−m

[
df(ρ)

dρ
g(ρ) + f(ρ)

dg(ρ)

dρ

]
= ε(1 + δ)n−m

[
(m− n) (ρ+ δ)

m−n−1 (1− γ − 2ρm)

(ρm + γ)
−mρm−1 (γ + 1)

(ρm + γ)
2 (ρ+ δ)

m−n

]

i.e

dVhal(ρ)

dρ
= ε(1 + δ)n−m

(ρ+ δ)
m−n

(ρm + γ)

[
(m− n)

(1− γ − 2ρm)

(ρ+ δ)
−m(γ + 1)

ρm−1

(ρm + γ)

]
.

We will also need its second space derivative. Let us consider

h0(ρ) :=
(ρ+ δ)

m−n

(ρm + γ)

h1(ρ) := (m− n)
(1− γ − 2ρm)

(ρ+ δ)

h2(ρ) := mρm−1
(γ + 1)

(ρm + γ)

so that:

dVhal(ρ)

dρ
= ε(1 + δ)n−mh0(ρ) [h1(ρ)− h2(ρ)] ,

and

d2Vhal(ρ)

dρ2
= ε(1 + δ)n−m

(
dh0(ρ)

dρ
[h1(ρ)− h2(ρ)] + h0(ρ)

[
dh1(ρ)

dρ
− dh2(ρ)

dρ

])
, (C.1)

the derivatives of h0, h1 and h2 being given by:

dh0(ρ)

dρ
=

(ρ+ δ)
m−n

(ρm + γ)
2

[
(m− n)

(ρm + δ)

(ρ+ δ)
−mρm−1

]
dh1(ρ)

dρ
= (m− n)

(
2(1−m)ρm − 2mδρm−1 + (γ − 1)

)
(ρ+ δ)

2

and
dh2(ρ)

dρ
= m(γ + 1)

(
γ(m− 1)ρm−2 − ρ2m−2

)
(ρm + γ)

2 .

Verification – These analytical expressions have been verified with the computer algebra
program Mathematica. We can additionally check if our derivatives are sound by comparing it
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with the Lennard-Jones potential. One has:

dVLJ(ρ)

dρ
= ε

ρ−6

ρ6

(
−6

(
1− 2ρ6

)
ρ

− 6
ρ5

ρ6

)

= ε
1

ρ12

(
12ρ5 − 12

ρ

)
= 12ε

(
1

ρ7
− 1

ρ13

)
.

Furthermore, 

h0(ρ) = 1
ρ12 ,

dh0(ρ)
dρ = − 12

ρ13

h1(ρ) = − 6
ρ + 12ρ5, dh1(ρ)

dρ = 6
ρ2 + 12× 5ρ4

h2(ρ) = 6
ρ ,

dh2(ρ)
dρ = − 6

ρ2

and one then has:

d2VLJ(ρ)

dρ2
= ε

(
−12

ρ13

)[
−6

ρ
+ 12ρ5 − 6

ρ

]
+ ε

1

ρ12

[
6

ρ2
+ 12× 5ρ4 +

6

ρ2

]
= ε

[
12× 12

ρ14
− 12× 12

ρ8
+

12

ρ14
+

12× 5

ρ8

]
= 12ε

(
13

ρ14
− 7

ρ8

)
.

C.2 Softcore potential for van der Waals interactions
Let us now derive the expression of the generic softcore potential (6.11) derivatives, that will be
needed for the implementation of the λ–dynamics.

Spatial derivatives – One has

∂

∂ρ
g(ρ, λv) =

1

k
kρk−1r∗

(
α2−

k
6 (1− λv)s + ρk

) 1
k−1

i.e

∂

∂ρ
g(ρ, λv) = ρk−1 (r∗)

k
g(r, λv)

1−k.

This yields that:

∂VSC−hal(ρ, λv)

∂ρ
= λtv

∂g(ρ, λv)

∂ρ

dVhal
dρ

(g(ρ, λv))

.
∂VSC−hal(r, λv)

∂r
=

dρ

dr

∂VSC−hal(ρ, λv)

∂ρ
=

1

r∗
λtv
∂g(ρ, λv)

∂ρ

dVhal
dρ

(g(ρ, λv)).
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Derivatives with respect to λv – One has

∂

∂λv
g(ρ, λv) = − s

k
α2−

k
6 (1− λv)s−1(r∗)kg(ρ, λv)

1−k.

and

∂2

∂λ2v
g(ρ, λv) =

s(s− 1)

k
α2−

k
6 (1− λv)s−2(r∗)kg(ρ, λv)

1−k

+ (1− k)
( s
k
α2−

k
6 (1− λv)s−1(r∗)k

)2
g(ρ, λv)

1−2k.

One consequently has:

Fv(q, λ) :=
∂VSC−hal(ρ, λv)

∂λv
= tλt−1v Vhal(g(ρ, λv)) + λtv

∂Vhal(g(ρ, λv))

∂λv

= tλt−1v Vhal(g(ρ, λv)) + λtv
∂g(ρ, λv)

∂λv

dVhal
dρ

(g(ρ, λv)),

and

∂

∂λv
Fv(q, λ) =

∂2VSC−hal(ρ, λv)

∂λ2v

= t(t− 1)λt−2v Vhal(g(ρ, λv)) + 2tλt−1v

∂g(ρ, λv)

∂λv

dVhal
dρ

(g(ρ, λv))

+ λtv

[
∂2g(ρ, λv)

∂λ2v

dVhal
dρ

(g(ρ, λv)) +

(
∂g(ρ, λv)

∂λv

)2
d2Vhal

dρ2
(g(ρ, λv))

]
.

Let us recall that
d2Vhal

dρ2
is given by (C.1).

Cross derivatives – One has:

∂2

∂ρ∂λv
g(ρ, λv) =

∂2

∂λv∂ρ
g(ρ, λv) = −s(1− k)

k
α2−

k
6 (1− λv)s−1ρk−1(r∗)2kg(ρ, λv)

1−2k.

So that:
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∂2VSC−hal
∂ρ∂λ

=
∂2VSC−hal
∂λ∂ρ

=
∂

∂λ

(
λtv
∂g(ρ, λv)

∂ρ

dVhal
dρ

(g(ρ, λv))

)
=

dλe
dλ

∂

∂λe

(
λtv
∂g(ρ, λv)

∂ρ

dVhal
dρ

(g(ρ, λv))

)
=

dλe
dλ

(
tλt−1v

∂g(ρ, λv)

∂ρ

dVhal
dρ

(g(ρ, λv))

+λtv

(
∂2g(ρ, λv)

∂ρ∂λv

dVhal
dρ

(g(ρ, λv)) +
∂g(ρ, λv)

∂ρ
· ∂g(ρ, λv)

∂λv

d2Vhal
dρ2

(g(ρ, λv))

))
.

All of these expressions have been implemented in the Tinker-HP code in the elambdalj1c
subroutine of the elj1 routine. The parameter α, s, t and k are declared in the mutant module,
and their values need to be written by the user in the input simulation .key file.

Potential derivatives – Eventually, one gets:

∂VSC−hal(r, λv)

∂xi
=

dr

dxi

1

r∗
∂VSC−hal(ρ, λv)

∂ρ
, ∀i ∈ J1, 3K.

∂VSC−hal(r, λv)

∂λ
=

dλv
dλ

∂VSC−hal(r, λv)

∂λv
.

and

∂Fv(r, λv)

∂xi
=

dr

dxi

1

r∗
∂2VSC−hal
∂ρ∂λ

C.3 Softcore potential for electrostatic interactions
Softcore derivatives – One has that:

∂f(r, λe)

∂r
= r (αe(1− λe)sru)

1
u−1 = rf(r, λe)

1−u

∂f(r, λe)

∂λe
= − s

u
αe(1− λe)s−1f(r, λe)

1−u.

∂2f(r, λe)

∂r∂λe
= − s

u
αe(1− λe)s−1(1− u)

∂f(r, λe)

∂r
f(r, λe)

−u

=
s(u− 1)

u
αe(1− λe)s−1rf(r, λe)

1−2u,
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and

∂2f(r, λe)

∂λ2e
=

s(s− 1)

u
αe(1− λe)s−2f(r, λe)

1−u − s

u
αe(1− λe)s−1(1− u)

∂f(r, λe)

∂λe
f(r, λe)

−u

i.e

∂2f(r, λe)

∂λ2e
=

s(s− 1)

u
αe(1− λe)s−2f(r, λe)

1−u + (1− u)
( s
u
αe(1− λe)s−1

)2
f(r, λe)

1−2u.

Potential derivatives – In practice, the energy term Vcorr(r, λe) is not directly implemented,
and is treated by the Tinker-HP code simultaneously with the direct energy term Vdir(r, λe),
so that one only needs to properly modify the real part of the electrostatic energy to take the
softcore into account. In order to implement (6.17), (6.19) and (6.18), one needs to compute
the derivatives of Vdir(r, λe). Given two atoms labelled i and j, we distinguish between the three
cases:

(1) The two atoms i and k are mutated – In which case

V ijdir(f(r, λe)) = λ2te Ereal(f(r, λe))

and :

∂V ijdir(f(r, λe))

∂r
= λ2te

∂f(r, λe)

∂r

dEreal(f(r, λe))

dr

∂V ijdir(f(r, λe))

∂λe
= 2tλ2t−1e Ereal(f(r, λe)) + λ2te

∂f(r, λe)

∂λe

dEreal(f(r, λe))

dr

∂2V ijdir(f(r, λe))

∂r∂λe
= 2tλ2t−1e

∂f(r, λe)

∂r

dEreal(f(r, λe))

dr

+ λ2te

(
∂2f(r, λe)

∂r∂λe

dEreal(f(r, λe))

dr
+
∂f(r, λe)

∂λe

∂f(r, λe)

∂r

d2Ereal(f(r, λe))

dr2

)

∂2V ijdir(f(r, λe))

∂λ2e
= 2t(2t− 1)λ2t−2e Ereal(f(r, λe)) + 4tλ2t−1e

∂f(r, λe)

∂λe

dEreal(f(r, λe))

dr

+ λ2te

(
∂2f(r, λe)

∂λ2e

dEreal(f(r, λe))

dr
+

(
∂f(r, λe)

∂λe

)2
d2Ereal(f(r, λe))

dr2

)
.
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(2) Only one of the two atoms i and k is mutated – In which case

V ijdir(f(r, λe)) = λteEreal(f(r, λe))

and :

∂V ijdir(f(r, λe))

∂r
= λte

∂f(r, λe)

∂r

dEreal(f(r, λe))

dr

∂V ijdir(f(r, λe))

∂λe
= tλt−1e Ereal(f(r, λe)) + λte

∂f(r, λe)

∂λe

dEreal(f(r, λe))

dr

∂2V ijdir(f(r, λe))

∂r∂λe
= tλt−1e

∂f(r, λe)

∂r

dEreal(f(r, λe))

dr

+ λte

(
∂2f(r, λe)

∂r∂λe

dEreal(f(r, λe))

dr
+
∂f(r, λe)

∂λe

∂f(r, λe)

∂r

d2Ereal(f(r, λe))

dr2

)

∂2V ijdir(f(r, λe))

∂λ2e
= t(t− 1)λt−2e Ereal(f(r, λe)) + 2tλt−1e

∂f(r, λe)

∂λe

dEreal(f(r, λe))

dr

+ λte

(
∂2f(r, λe)

∂λ2e

dEreal(f(r, λe))

dr
+

(
∂f(r, λe)

∂λe

)2
d2Ereal(f(r, λe))

dr2

)
.

(3) None of the atoms i and k are mutated – In which case

V ijdir(r, λe) = Vdir(r) = Ereal(r)

and :

∂V ijdir(r, λe)

∂r
=

dEreal(f(r, λe))

dr

∂V ijdir(r, λe)

∂λe
=
∂2Vdir(r, λe)

∂r∂λe
=
∂2Vdir(r, λe)

∂λ2e
= 0.
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Adaptive biasing algorithms: mathematical analysis and applications in
molecular dynamics

Abstract

This thesis is dedicated to the study of adaptive biasing algorithms for molecular dynamics simulations,
from both theoretical and numerical perspectives. The goal of molecular dynamics is to obtain macro-
scopic informations about a system of particles, given its microscopic description. Adaptive biasing
algorithms are powerful tools in molecular dynamics, especially when one needs to compute a system’s
free energy. We will mainly focus on the Adaptive Biasing Force algorithm, whose key idea is to bias the
interaction force between the particles in order to enhance the sampling of the system’s configuration
space. In particular, we will study its robustness in the case of non-conservative interaction forces. We
will then proceed to design an enhanced sampling algorithm in the scope of alchemical transitions, where
the system’s evolution from an initial state to a final state is indexed by a parameter λ in [0, 1]. Such
transitions are often used in pharmacology, as they allow the estimation of several free energies, such
as the binding free energy of a ligand with a receptor, or even the solvation free energy of a compound
in solvent. When coupled to the λ–dynamics method, which deals with the dynamic evolution of the
parameter λ, the Orthogonal Space Random Walk (OSRW) sampling method may permit a better and
quicker sampling of the configuration space. Drawing inspiration from this algorithm, we will implement
an adaptive biasing method coupled to the λ–dynamics, and compare it with the original OSRW algo-
rithm. This work led to the implementation of a new interface between the Tinker-HP program and the
Collective Variables module software.

Keywords: molecular dynamics, diffusion process, adaptive biasing algorithm, functional inequality,
free energy, alchemical transition

Résumé

L’objet de cette thèse porte sur l’étude tant théorique que numérique de méthodes de biais adaptatifs
pour la dynamique moléculaire. Etant donnée une description microscopique d’un système de particules,
le but de la dynamique moléculaire est d’en déduire des informations macroscopiques. Les méthodes
de biais adaptatifs se révèlent être un outil efficace, notamment lorsqu’il est question de déterminer
l’énergie libre d’un système. Nous accorderons une attention toute particulière à la méthode de l’Adaptive
Biasing Force, dont le principe est de biaiser la force d’interaction entre les particules afin d’accélérer
l’échantillonnage de l’espace des configurations. En particulier, nous étudierons sa robustesse dans le cas
où les forces d’interaction s’avèrent être non-conservatives. Nous procéderons ensuite à la construction
d’un algorithme d’accélération d’échantillonnage dans le cadre de transitions alchimiques, où l’évolution
du système d’un état initial à un état final prédéfinis est indexée par un paramètre λ compris entre
0 et 1. De telles transitions s’avèrent utiles en pharmacologie, leur étude permettant de déterminer
différentes énergies libres, telles que l’énergie libre de liaison d’un ligand avec un récepteur donné ou bien
encore l’énergie libre de solvatation d’une molécule ou d’un ion dans un solvant. Couplée à la méthode
de la λ-dynamique, qui traite l’évolution dynamique du paramètre λ, la méthode d’échantillonnage de
l’Orthogonal Space Random Walk (OSRW) pourrait permettre une accélération de l’échantillonnage des
configurations. En s’inspirant de cette dernière, nous implémenterons une méthode de biais adaptatif
couplée à une méthode de λ-dynamique, que nous comparerons à la méthode de l’OSRW originelle. Ce
travail d’implémentation permettra la mise en place d’une nouvelle interface entre le logiciel Tinker-HP
et le module Collective Variables.

Mots clés : dynamique moléculaire, processus de diffusion, méthode de biais adaptatif, inégalité fonc-
tionnelle, énergie libre, transitions alchimique

Laboratoire Jacques-Louis Lions
Sorbonne Université – Campus Pierre et Marie Curie – 4 place Jussieu – 75005 Paris – France
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