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As Isaac Newton and many other ancient scholars said ...
I am a mere dwarf. If I have seen further, it is by standing on the shoulder of giants.
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Summary (English)
Human-Computer Interaction (HCI) is a domain within computer science research. How-
ever, Human-Computer Interaction has a different motivating spirit from the “mainstream”
computer science research domains such as machine learning, database, or algorithm.
These “mainstream” domains concern themselves to make computer more powerful, to
enable computer to achieve technical feats which previously could not be done. For ex-
ample, advances in database domain enables Google to search from its vast data within
a few seconds. On the other hand, Human-Computer Interaction concerns itself to make
computer more accessible to regular people.

One important characteristic of the modern computer is that it can show a moving
graphic and also plays a sound. Therefore, it is technically possible to show a sentient-
looking figure which speaks and shows non-verbal behaviors. This technology is called
“Embodied Conversational Agent” (ECA). The non-verbal behaviors themselves also have
practical benefits. For example, non-verbal behaviors help us to produce speech, to formu-
late our thoughts, and to communicate our feelings. By being able to produce and respond
properly to non-verbal behaviors, Embodied Conversational Agent enables human to in-
teract with a computer in a mode of communication which we have been using since our
species appeared on Earth: face to face communication.

Non-verbal behavior has many components, such as gaze directions, facial expressions,
or communicative gestures. These non-verbal behaviors are not random. For example, if
we say “the elevator is going up”, the gesture we probably perform is pointing upward.
This gesture makes the message clearer. From this example, it can be seen that proper non-
verbal behaviors serve useful functions. Therefore, having an Embodied Conversational
Agent (ECA) which can generate and perceive non-verbal behaviors properly is a desirable
goal. The focus of this dissertation is the generation of communicative gestures.

Generated communicative gestures have several desirable properties. The gestures
should be coherent with the speech, the generated gestures should connect with each
other smoothly, and the generated gestures should be diverse. Our focus is on the co-
herence property. We deal with two aspects of the coherence. The first aspect is the
coherence between the rhythm of the speech and the gesture timing. The second aspect is
the coherence between the speech semantics and the gesture shape.

There are many important developments in the past many years in this gesture gener-
ation problem. The first notable development is the shift toward machine learning. The
earliest techniques to generate gestures are rule-based. However, due to the eventual
complexity of the rules, researchers turn to machine learning. We also use machine learn-
ing in our work. The second notable development is the use of acoustic features (e.g.
fundamental frequency, intensity, etc.). These features are extracted from the voice. This
development is related to the use of machine learning, because machine learning enables
processing of complex data, which is difficult at a rule-based system. We also use acoustic
features extracted from the speech in our work. The third development is the recognition
of the many-to-many relationship of gestures. This means that for a particular speech,
there are many different compatible gestures. Some prior works use adversarial learning
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to achieve this many-to-many relationship. We recognize the many-to-many relationship
to a limited extent. The fourth development is the use of word embedding to represent
text. Word embedding is a class of techniques which maps words into vectors in such a
way that two similar words are mapped to two nearby vectors. The fifth and last develop-
ment we would like to highlight is the use of image schema to represent the semantics for
metaphoric gesture generation. Image schema is a recurrent pattern of reasoning which
maps one entity into another. For metaphoric gesture generation, it is to map an abstract
concept into a concrete object such that the object has a physical shape which can be
depicted in a gesture. As a part of our work, we develop a technique to compute the
embedding of image schemas.

We use a third party corpus called Gest-IS corpus for our work. The corpus consists of 9
dialogues of a dyad, a man and a woman, both of them are sitting, discussing various top-
ics in a face-to-face setting. The corpus comes with the transcripts and the annotations of
communicative or non-communicative gestures, the gesture types, and the gesture phases.
However, the corpus also comes with the videos of the conversations and the correspond-
ing audio files. The videos show the torso, hands, and face of the dyad. We use a third
party software called OpenFace to extract the eyebrow movements. This can be seen as
adding another annotation to the corpus. We also extract the acoustic features from the
conversation audio files. The acoustic feature extraction is done by using another third
party software called OpenSmile. On top of that, we also manually annotate the shape of
metaphoric gestures in this corpus. This is possible because the corpus already contains
the annotation of metaphoric gesture stroke timing and the videos showing the gesture
being performed. However, in order to do the annotation, we define first the annota-
tion scheme. This annotation scheme should be large enough to capture various gesture
shapes, but also compact enough such that it is practical enough to be encoded. After
we create the annotation scheme, we annotate the metaphoric gesture shapes accordingly.
Then, we calculate and analyze the statistics of the different dimensions of the gesture
shapes. We also calculate and analyze the statistics after breaking them down per image
schema.

We develop a model based on recurrent neural network model with attention mecha-
nism to predict the gesture timing. The problem is expressed as a time series prediction
problem where the input is a sequence of acoustic features of the speech and the output
is a sequence of gesture classes. The sequence of gesture classes represents the gesture
timing. The neural network is trained, validated, and tested with the data from the afore-
mentioned corpus. Besides that, we also develop an objective evaluation measure which
tolerates shift and dilation to some extent. This is done in the spirit of recognizing many-
to-many relationship between speech and gestures. We also experiment with including
eye brow movements which we extracted from the corpus for the prediction. We also
experiment with training and validating the model with the data of one speaker only and
testing the model on the data of the other speaker. Finally, we do a subjective experiment
to evaluate the naturalness, time consistency, and semantic consistency of the output of
the model.

In our another contribution, we make some improvements to Ravenet et al's algorithm
which compute gestures from a free-form text input via image schema. There are two im-
provements we make. The first improvement is replacing the word sense disambiguation
technique employed in the Ravenet et al's algorithm. The second improvement is that we
add more edge types as the permissible path for the WordNet graph traversal.

viii



For our last contribution, we develop a method to represent image schemas as vectors.
The method is based on BERT and SenseBERT word embedding techniques to convert
a free-form text into vectors. We also compute the corresponding image schemas from
the aforementioned free-form text input by using the improved Ravenet et al's algorithm.
Based on that, we measure the clustering behavior of the vectors which belong to the same
image schema. We then define the centroid of each cluster as the vector representation
of the image schema. However, with the image schemas being represented as vectors,
it also becomes possible to calculate the distances between them, which are a proxy of
similarities between different image schemas. Therefore, we also measure the distances
between different image schemas to find out which image schemas are close/similar to
each other. Finally, we display some visualizations to show the relative distances between
different image schemas.

Keywords : machine learning, neural network, gesture, recurrent neural network,
long short term memory, attention, word embedding, BERT, SenseBERT, cluster, image
schema
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Sommaire (Français)
L'Interaction Homme-Machine (« Human-Computer Interaction » ou HCI en anglais) est
un domaine de la recherche en informatique. Cependant, l'Interaction Homme-Machine
a un esprit de motivation différent des domaines de recherche en informatique “tradi-
tionnels” tels que l'apprentissage automatique, les bases de données ou les algorithmes.
Ces domaines « mainstream » se préoccupent eux-mêmes de rendre l'ordinateur plus puis-
sant, de permettre à l'ordinateur de réaliser des prouesses techniques qui n'étaient pas
réalisables auparavant. Par exemple, les progrès dans le domaine des bases de données
permettent à Google d'effectuer des recherches à partir de ses vastes données en quelques
secondes. D'autre part, l'Interaction Homme-Machine se préoccupe de rendre l'ordinateur
plus accessible aux gens ordinaires.

Une caractéristique importante de l'ordinateur moderne est qu'il peut afficher un graphique
en mouvement et jouer également un son. Par conséquent, il est techniquement possible
de montrer une figure apparemment sensible qui parle et montre des comportements non
verbaux. Cette technologie s'appelle l'Agent Conversationnel Animé (« Embodied Conver-
sational Agent » ou ECA en anglais). Les comportements non verbaux eux-mêmes ont
également des avantages pratiques. Par exemple, les comportements non verbaux nous
aident à produire la parole, à formuler nos pensées et à communiquer nos sentiments. En
étant capable de produire et de répondre correctement aux comportements non verbaux,
un Agent Conversationnel Animé permet à l'homme d'interagir avec un ordinateur dans
un mode de communication que nous utilisons depuis que notre espèce est apparue sur
Terre : la communication face à face.

Le comportement non verbal a de nombreuses composantes, telles que les directions
du regard, les expressions faciales ou les gestes communicatifs. Ces comportements non
verbaux ne sont pas aléatoires. Par exemple, si nous disons “l'ascenseur monte”, le geste
que nous effectuons probablement pointe vers le haut. Ce geste rend le message plus clair.
À partir de cet exemple, on peut voir que les comportements non verbaux appropriés
remplissent des fonctions utiles. Par conséquent, avoir un Agent Conversationnel Animé
capable de générer et de percevoir correctement des comportements non verbaux est un
objectif souhaitable. L'objet de cette thèse est la génération de gestes communicatifs.

Les gestes communicatifs générés ont plusieurs propriétés souhaitables. Les gestes
doivent être cohérents avec le discours, les gestes générés doivent se connecter les uns
aux autres en douceur et les gestes générés doivent être diversifiés. Nous nous intéressons
à la propriété de cohérence. Nous traitons deux aspects de la cohérence. Le premier aspect
est la cohérence entre le rythme de la parole et le chronométrage du geste. Le deuxième
aspect est la cohérence entre la sémantique de la parole et la forme du geste.

Il y a eu de nombreux développements importants au cours des dernières années dans
ce problème de génération de gestes. Le premier développement notable est le passage à
l'apprentissage automatique. Les premières techniques pour générer des gestes sont basées
sur des règles. Cependant, en raison de la complexité éventuelle des règles, les chercheurs
se tournent vers l'apprentissage automatique. Nous utilisons également l'apprentissage au-
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tomatique dans notre travail. La deuxième évolution notable est l'utilisation de caractéris-
tiques acoustiques (par exemple, fréquence fondamentale, intensité, etc.). Ces caractéris-
tiques sont extraites de la voix. Ce développement est lié à l'utilisation de l'apprentissage
automatique, car l'apprentissage automatique permet le traitement de données complexes,
ce qui est difficile dans un système basé sur des règles. Nous utilisons également des car-
actéristiques acoustiques extraites de la parole dans notre travail. Le troisième développe-
ment est la reconnaissance de la relation plusieurs-à-plusieurs des gestes. Cela signifie
que pour un discours particulier, il existe de nombreux gestes compatibles différents.
Certains travaux antérieurs utilisent l'apprentissage antagoniste pour réaliser cette rela-
tion plusieurs-à-plusieurs. Nous reconnaissons la relation plusieurs à plusieurs dans une
mesure limitée. Le quatrième développement est l'utilisation du plongement de mots pour
représenter le texte. Le plongement de mots est une classe de techniques qui mappent des
mots dans des vecteurs de telle manière que deux mots similaires sont mappés sur deux
vecteurs proches. Le cinquième et dernier développement que nous voudrions souligner
est l'utilisation du schéma d'image pour représenter la sémantique pour la génération de
gestes métaphoriques. Le schéma d'image est un schéma récurrent de raisonnement qui
associe une entité à une autre. Pour la génération de gestes métaphoriques, il s'agit de
mapper un concept abstrait dans un objet concret tel que l'objet ait une forme physique
qui peut être représentée dans un geste. Dans le cadre de notre travail, nous développons
une technique pour calculer le plongement de schémas d'images.

Nous utilisons un corpus tiers qui s'appelé corpus Gest-IS pour notre travail. Le corpus
se compose de 9 dialogues d'une dyade, un homme et une femme, tous deux assis, discu-
tant de divers sujets en face-à-face. Le corpus est accompagné des retranscriptions et des
annotations des gestes communicants ou non communicants, des types de gestes et des
phases gestuelles. Cependant, le corpus est également accompagné des vidéos des con-
versations et des fichiers audio correspondants. Les vidéos montrent le torse, les mains et
le visage de la dyade. Nous utilisons un logiciel tiers qui s'appelle OpenFace pour extraire
les mouvements des sourcils. Cela peut être vu comme l'ajout d'une autre annotation au
corpus. Nous extrayons également les caractéristiques acoustiques des fichiers audio de
conversation. L'extraction des caractéristiques acoustiques est effectuée à l'aide d'un autre
logiciel tiers qui s'appelle OpenSmile. En plus de cela, nous annotons également manuelle-
ment la forme des gestes métaphoriques dans ce corpus. Ceci est possible car le corpus
contient déjà l'annotation du chronométrage métaphorique des gestes et les vidéos mon-
trant le geste en cours d'exécution. Cependant, afin de faire l'annotation, nous définissons
d'abord le schéma d'annotation. Ce schéma d'annotation doit être suffisamment grand
pour capturer diverses formes de gestes, mais également suffisamment compact pour être
suffisamment pratique pour être encodé. Après avoir créé le schéma d'annotation, nous
annotons les formes de gestes métaphoriques en conséquence. Ensuite, nous calculons et
analysons les statistiques des différentes dimensions des formes gestuelles. Nous calculons
et analysons également les statistiques après les avoir décomposées par schéma d'image.

Nous développons un modèle basé sur un modèle de réseau neuronal récurrent avec
un mécanisme d'attention pour prédire le chronométrage des gestes. Le problème est ex-
primé sous la forme d'un problème de prédiction de séries chronologiques où l'entrée est
une séquence de caractéristiques acoustiques de la parole et la sortie est une séquence
de classes de gestes. La séquence de classes de gestes représente la synchronisation des
gestes. Le réseau de neurones est formé, validé et testé avec les données du corpus sus-
mentionné. En plus de cela, nous développons également une mesure d'évaluation ob-
jective qui tolère le décalage et la dilatation dans une certaine mesure. Ceci est fait dans
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l'esprit de reconnaître la relation plusieurs-à-plusieurs entre la parole et les gestes. Nous
expérimentons également l'inclusion des mouvements des sourcils que nous avons extraits
du corpus pour la prédiction. Nous expérimentons également l'entraînement et la valida-
tion du modèle avec les données d'un seul locuteur et testons le modèle sur les données de
l'autre locuteur. Enfin, nous réalisons une expérience subjective pour évaluer le caractère
naturel, la cohérence temporelle et la cohérence sémantique de la sortie du modèle.

Dans notre autre contribution, nous apportons quelques améliorations à l'algorithme
de Ravenet et al qui calcule les gestes à partir d'une entrée de texte de forme libre via
un schéma d'image. Nous apportons deux améliorations. La première amélioration con-
siste à remplacer la technique de désambiguïsation lexicale employée dans l'algorithme
de Ravenet et al. La deuxième amélioration est que nous ajoutons plus de types d'arêtes
comme chemin autorisé pour la traversée du graphe WordNet.

Pour notre dernière contribution, nous développons une méthode pour représenter
les schémas d'images sous forme de vecteurs. La méthode est basée sur les techniques
de plongement de mots BERT et SenseBERT pour convertir un texte de forme libre en
vecteurs. Nous calculons également les schémas d'image correspondants à partir de l'entrée
de texte de forme libre susmentionnée en utilisant l'algorithme amélioré de Ravenet et al.
Sur cette base, nous mesurons le comportement de partitionnement des vecteurs qui ap-
partiennent au même schéma d'image. Nous définissons ensuite le centroïde de chaque
cluster comme la représentation vectorielle du schéma d'image. Cependant, les schémas
d'images étant représentés sous forme de vecteurs, il devient également possible de cal-
culer les distances entre eux, qui sont un proxy des similitudes entre différents schémas
d'images. Par conséquent, nous mesurons également les distances entre différents sché-
mas d'images pour déterminer quels schémas d'images sont proches/similaires les uns aux
autres. Enfin, nous affichons quelques visualisations pour montrer les distances relatives
entre les différents schémas d'image.
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Abstract
“Embodied Conversational Agent” (ECA) are virtual agents endowed with the capacity
to communicate verbally and non-verbally. Non-verbal behavior has many components,
such as gaze directions, facial expressions, or communicative gestures. These non-verbal
behaviors are not random. For example, if we say “the elevator is going up”, the gesture
we probably perform is pointing upward. The focus of this dissertation is the generation
of communicative gestures for Embodied Conversational Agent.

We use a third party corpus called Gest-IS corpus for our work. The corpus comes with
the transcripts and the annotations of communicative or non-communicative gestures, the
gesture types, and the gesture phases. The corpus also has the videos of the conversations
and the corresponding conversation audio files. From those videos, we extract the eye-
brow movements. From the audio files, we extract the acoustic features. These eyebrow
movements and the acoustic features can be seen as additional annotations. On top of
that, we also manually annotate the shape of metaphoric gestures in this corpus. In order
to do the gesture shape annotation, we define first the annotation scheme. With that, we
annotate the metaphoric gesture shapes accordingly. We also calculate and analyze the
statistics of the different dimensions of the gesture shapes.

We develop a model based on recurrent neural network model with attention mecha-
nism to predict the gesture timing. Besides that, we also develop an objective evaluation
measure which tolerates shift and dilation to some extent. This is done in the spirit of rec-
ognizing many-to-many relationship between speech and gestures. We also experiment
with including eye brow movements which we extracted from the corpus for the predic-
tion. We also experiment with training and validating the model with the data of one
speaker only and testing the model on the data of the other speaker. Finally, we do a sub-
jective experiment to evaluate the naturalness, time consistency, and semantic consistency
of the output of the model.

In our another contribution, we make some improvements to Ravenet et al's algorithm
which compute gestures from a free-form text input via image schema. First, we replace
the word sense disambiguation technique employed in the Ravenet et al's algorithm. Sec-
ondly, we add more edge types for the WordNet graph traversal. For our last contribution,
we develop a method to represent image schemas as vectors. The method works by calcu-
lating the centroid of the clusters of the word embedding vectors. The word embedding
vectors themselves come from either BERT or SenseBERT word embedding techniques.
The centroid of the cluster is considered as the vector representation of the image schema.
With the image schemas represented as vectors, we also measure the relative distances
between the image schemas. These distances are a proxy of the similarities/differences
between the different image schemas.

Keywords: machine learning, neural network, gesture, recurrent neural network,
long short term memory, attention, word embedding, BERT, SenseBERT, cluster, image
schema

xv



Contents

1 Introduction 1
1.1 Human-Computer Interaction and Embodied Conversational Agent (ECA) . 1
1.2 Non-Verbal Communication . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Desired Properties of Generated Communicative Gestures . . . . . . . . . . 3

1.3.1 Match/Coherence With The Speech . . . . . . . . . . . . . . . . . . . 3
1.3.2 Smoothness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3.3 Diversity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.4 Important Developments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4.1 Machine Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4.2 Acoustic Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4.3 Body Joint Coordinates . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4.4 Gesture Movement Smoothing . . . . . . . . . . . . . . . . . . . . . 5
1.4.5 Many-To-Many Relationship of Gestures . . . . . . . . . . . . . . . . 5
1.4.6 Word Embedding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.4.7 Image Schema . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.4.8 Multimodal Machine Learning . . . . . . . . . . . . . . . . . . . . . . 6

1.5 Our Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.6 The Organization Of This Dissertation . . . . . . . . . . . . . . . . . . . . . 7

2 Background 9
2.1 Gesture Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Gesture Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3 Gesture Phases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.4 Eyebrow Movements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.5 Gesture Encoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.6 Image Schema . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.6.1 Image Schema and Gesture . . . . . . . . . . . . . . . . . . . . . . . 21
2.6.2 Image Schema Concordance in Different Modalities . . . . . . . . . . 22

2.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3 Related Work 25
3.1 Rule-Based System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.2 Pre-Neural-Network Semantics-Based System . . . . . . . . . . . . . . . . . 27
3.3 Pre-Neural-Network Acoustics-Based System . . . . . . . . . . . . . . . . . . 29
3.4 Recent Semantics-Based Neural-Net Techniques . . . . . . . . . . . . . . . . 30
3.5 Recent Acoustics-Based Neural-Net Techniques . . . . . . . . . . . . . . . . 30

xvi



CONTENTS

3.6 Semantics+Acoustics Based System . . . . . . . . . . . . . . . . . . . . . . . 32
3.7 Gesture Style . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.8 Iconic Gesture Shape . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.9 Existing Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.10 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4 GestIS Corpus 39
4.1 Communicative or Non-Communicative Gestures . . . . . . . . . . . . . . . 39
4.2 Gesture Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.3 Gesture Phases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.4 Gesture Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.5 Eyebrow Movement Extraction . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.6 Eyebrow Movement Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.7 Acoustic Features Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5 Prediction of Gesture Timing 49
5.1 Feature Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
5.2 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5.2.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
5.2.2 Model Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
5.2.3 Implementation details . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.3 Evaluation Measure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
5.4 Objective Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
5.5 Objective Experiment Results . . . . . . . . . . . . . . . . . . . . . . . . . . 60
5.6 Subjective Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
5.7 Subjective Experiment Results . . . . . . . . . . . . . . . . . . . . . . . . . . 62
5.8 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
5.9 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

6 Image Schema Computation and Embedding 69
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
6.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

6.2.1 WordNet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
6.3 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

6.3.1 Existing Image Schema Computation . . . . . . . . . . . . . . . . . . 70
6.3.2 Word Embedding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

6.4 The Limitations of the Ravenet et al's Algorithm . . . . . . . . . . . . . . . . 75
6.4.1 Limitation of Lesk Algorithm For Word Sense Disambiguation . . . . 76
6.4.2 Limitation of Hypernym-Only WordNet Graph Traversal . . . . . . . 77

6.5 Proposed Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
6.6 Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
6.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
6.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

xvii



CONTENTS

7 Gesture Shape Representation and Image Schema 99
7.1 Gesture Shape Representation . . . . . . . . . . . . . . . . . . . . . . . . . . 99
7.2 Overall Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
7.3 Statistics Pertaining To Gesture Shape and Image Schema . . . . . . . . . . 111
7.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

8 Conclusion 117
8.1 Contribution Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

8.1.1 Corpus Annotation and Analysis . . . . . . . . . . . . . . . . . . . . . 118
8.1.2 Prediction of Gesture Timing . . . . . . . . . . . . . . . . . . . . . . 118
8.1.3 Improvement of Ravenet et al. (2018a,b)'s Algorithm . . . . . . . . . 119
8.1.4 Representation of Image Schemas As Vectors . . . . . . . . . . . . . . 119

8.2 Limitations of Our Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
8.2.1 Prediction of Gesture Timing . . . . . . . . . . . . . . . . . . . . . . 120
8.2.2 Representation of Image Schemas As Vectors . . . . . . . . . . . . . . 120

8.3 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

Bibliography 131

xviii



List of Tables

2.1 The gesture types in Cienki (2008) . . . . . . . . . . . . . . . . . . . . . . . 23

4.1 The left hand gesture statistics of speaker A . . . . . . . . . . . . . . . . . . 42
4.2 The right hand gesture statistics of speaker A . . . . . . . . . . . . . . . . . 42
4.3 The left hand gesture statistics of speaker B . . . . . . . . . . . . . . . . . . 43
4.4 The right hand gesture statistics of speaker B . . . . . . . . . . . . . . . . . 43
4.5 The left hand ideational gesture stroke statistics of speaker A . . . . . . . . . 43
4.6 The right hand ideational gesture stroke statistics of speaker A . . . . . . . . 43
4.7 The left hand ideational gesture stroke statistics of speaker B . . . . . . . . . 44
4.8 The right hand ideational gesture stroke statistics of speaker B . . . . . . . . 44
4.9 The speaker A's eyebrow movement statistics. The combination of different

AUs indicate a union . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.10 The speaker B's eyebrow movement statistics. The combination of different

AUs indicate a union . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5.1 Symbols at Formulae 5.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
5.2 Exp 1: Random output result . . . . . . . . . . . . . . . . . . . . . . . . . . 57
5.3 Exp 2: Using neural network with the entire dataset . . . . . . . . . . . . . 57
5.4 Exp 2: Using neural network with the entire dataset Training and validation

reliability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
5.5 Exp 3: Ablation study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
5.6 Exp 4: Inclusion of eyebrow movements . . . . . . . . . . . . . . . . . . . . 58
5.7 Exp 4: Inclusion of eyebrow movements . . . . . . . . . . . . . . . . . . . . 59
5.8 Exp 5: Mel-frequency cepstral coefficients as input . . . . . . . . . . . . . . 59
5.9 Exp 5: Mel-frequency cepstral coefficients as input Training and validation

reliability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
5.10 Exp 6: Both Mel-frequency cepstral coefficients and prosody as input . . . . 59
5.11 Exp 6: Both Mel-frequency cepstral coefficients and prosody as input Trai-

ing and validation reliability . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
5.12 Exp 7: Trained with one speaker, tested on the other . . . . . . . . . . . . . 60
5.13 Subjective experiment questions (adapted from Kucherenko et al. (2019)) . 63
5.14 Subjective experiment results . . . . . . . . . . . . . . . . . . . . . . . . . . 63

6.1 The WordNet's supersenses . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
6.2 WordNet 3.0's sense count . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
6.3 WordNet 3.0's lexeme count. A lexeme may cover several part-of-speech types 71
6.4 F-score comparison of the word sense disambiguation techniques (Raganato

et al. (2017)) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
6.5 WordNet 3.0's unordered connected sense count . . . . . . . . . . . . . . . . 78
6.6 Image schema count and their proportion . . . . . . . . . . . . . . . . . . . 82

xix



LIST OF TABLES

6.7 Inertia measure with each vector is calculated by averaging from all words
in the phrase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

6.8 Inertia measure with each vector comes from the word where the image
schema comes from . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

6.9 F1 score with each vector is calculated by averaging from all words in the
phrase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

6.10 F1 score with each vector comes from the word where the image schema
comes from . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

6.11 Five closest pairs of image schemas in BERT with the centroid distance . . . 84
6.12 Five closest pairs of image schemas in SenseBERT with the centroid distance 84
6.13 Five closest pairs of image schemas in BERT with the confusion distance . . 84
6.14 Five closest pairs of image schemas in SenseBERT with the confusion distance 85

7.1 Our gesture shape representation on the hand shapes, both in our term and
the similar shape in the American Sign Language (ASL) . . . . . . . . . . . . 100

7.2 Our gesture shape representation on the movement type . . . . . . . . . . . 101
7.3 Our gesture shape representation on the movement direction . . . . . . . . 103
7.4 Our gesture shape representation on the movement count. “With Repeti-

tion” means that the movement is back-and-forth, like a pendulum . . . . . 103
7.5 Our gesture shape representation on the palm orientation . . . . . . . . . . 107
7.6 The starting hand shape counts. The non-integer numbers mean that the

shapes are different for the left hand and the right hand, where each of
them counts as 0.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

7.7 The ending hand shape counts. The non-integer numbers mean that the
shapes are different for the left hand and the right hand, where each of
them counts as 0.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

7.8 The starting palm orientation counts. The non-integer numbers mean that
the orientations are different for the left hand and the right hand, where
each of them counts as 0.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

7.9 The ending palm orientation counts. The non-integer numbers mean that
the orientations are different for the left hand and the right hand, where
each of them counts as 0.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

7.10 The movement type counts . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
7.11 The movement direction counts of the “linear” movement type (see Table

7.2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
7.12 The movement direction counts of the “waving” movement type (see Table

7.2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
7.13 The statistics of the movement count (i.e. one way or many) of the ’‘linear”

movement type (see Table 7.2) . . . . . . . . . . . . . . . . . . . . . . . . . 113
7.14 The counts of the samples with an image schema . . . . . . . . . . . . . . . 113
7.15 The ending hand shape counts of the “Object” image schema . . . . . . . . . 114
7.16 The ending hand shape counts of the “Whole” image schema. The non-

integer numbers mean that the hand shape are different for the left hand
and the right hand, where each of them counts as 0.5 . . . . . . . . . . . . . 114

7.17 The ending palm orientation counts of the “Object” image schema . . . . . . 114
7.18 The ending palm orientation counts of the “Whole” image schema . . . . . . 114
7.19 The movement direction counts of the “Object” image schema for the one-

way linear movements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

xx



LIST OF TABLES

7.20 The movement direction counts of the “Whole” image schema for the one-
way linear movements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

xxi



List of Figures

1.1 Motion capture from Ferstl et al. (2019). The actor's body is fitted with
sensors. The cameras behind the actors are parts of the Motion Capture tool 5

2.1 An example of a deictic gesture pointing at the reader . . . . . . . . . . . . 12
2.2 An example of an iconic gesture depicting the action of pressing a button .

In this scene, he is saying “pressing buttons on elevators”. . . . . . . . . . . 13
2.3 An example of a metaphoric gesture showing an upward movement . In

this scene, he is saying “that allows good ideas to rise to the surface”. . . . . 13
2.4 An example of a beat gesture showing up and down movements . In this

scene, he is saying “yes we can to justice and equality” while his right hand
(and also his head) is moving up and down a few times. . . . . . . . . . . . 14

2.5 An example of gesture phases from Bressem and Ladewig (2011) . . . . . . 15
2.6 An example of gesture phases from Graziano and Gullberg (2018) . . . . . . 15
2.7 Eyebrow movement Action Units (Bartlett et al. (2002)) . . . . . . . . . . . 16
2.8 Kipp et al. (2007)'s annotation scheme of the position (top and side view) . 18
2.9 Kipp et al. (2007)'s annotation scheme of the position (front view) . . . . . 18
2.10 McNeill (1992)'s gesture space . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.11 Calbris (2011)'s annotation scheme of the hand/finger shape . . . . . . . . . 20
2.12 He et al. (2018)'s example of metaphoric gesture (the left part, labelled

with “MP”). It can be seen here that the sophistication of the presentation
is thought as a concrete object which has the height property (e.g. a moun-
tain), as shown in the right part (labelled with “IC”) . . . . . . . . . . . . . 21

3.1 The architecture and the processing pipeline of BEAT (Cassell et al. (2004)) 26
3.2 The architecture and the processing pipeline of NVBG (Lee and Marsella

(2006)) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.3 The architecture and the processing pipeline of Cerebella (Lhommet and

Marsella (2013)) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.4 Kucherenko et al. (2020)'s technique . . . . . . . . . . . . . . . . . . . . . . 33
3.5 Kucherenko et al. (2020)'s ablation study result . . . . . . . . . . . . . . . . 34
3.6 Kucherenko et al. (2020)'s comparison of their technique against the base-

line system from Ginosar et al. (2019) . . . . . . . . . . . . . . . . . . . . . 34
3.7 Ahuja et al. (2020)'s technique . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.1 The screenshot of one of the dialogues. We call the speaker on the left side
as “Speaker A” and the speaker on the right side as “Speaker B” . . . . . . . 40

4.2 The screen shot of the gesture annotation as is displayed in ELAN. A_ an-
notation refers to the speaker A while B_ refers to speaker B. _LH_ refers to
the left hand while _RH_ refers to the right hand. . . . . . . . . . . . . . . . 40

4.3 OpenFace's facial landmark point tracking . . . . . . . . . . . . . . . . . . . 45

xxii



LIST OF FIGURES

4.4 OpenSmile's pipeline to extract F0. cWaveSource is the component to read
the WAV audio file and cCsvSink is the component to write the output into
a CSV file. cPitchAcf is the component which extracts the F0 . . . . . . . . . 47

5.1 The Neural Network Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
5.2 Alignment Example. Each cell is 100 ms long. Blue: “IdeationalStroke”

Yellow: “‘IdeationalOther” . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
5.3 Discontinuity Example. Each cell is 100 ms long. White: “NoGesture” Blue:

“IdeationalStroke” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
5.4 Insertion and Deletion Example. Each cell is 100 ms long. White: “NoGes-

ture” Yellow: “‘IdeationalOther” Blue: “IdeationalStroke” . . . . . . . . . . . 56
5.5 An example of a video frame in the subjective experiment . . . . . . . . . . 63
5.6 The naturalness boxplot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
5.7 The time-consistency boxplot . . . . . . . . . . . . . . . . . . . . . . . . . . 64
5.8 The semantic-consistency boxplot . . . . . . . . . . . . . . . . . . . . . . . . 65

6.1 WordNet's schema in Entity-Relationship diagram . . . . . . . . . . . . . . . 72
6.2 The “fill in the blank” training of BERT (Devlin et al. (2018)) . The network

learns to predict w4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
6.3 The schemas of the difference between BERT and SenseBERT (Levine et al.

(2020)). Unlike BERT, during the “fill in the blank” of SenseBERT, it tries
to predict the WordNet supersense as well (see Table 6.1). . . . . . . . . . . 76

6.4 An illustration of the notion of cluster purity. The different colors (i.e. red
and blue) represent different image schemas, the small solid circles rep-
resent vectors, the triangles represent the centroids, and the large hollow
circles represent classifications. The three wrongly classified vectors are
misclassified because they are closer to another centroid than to their own
centroid. The cluster is purer if there are less misclassified vectors. . . . . . 79

6.5 An illustration of the notion of cluster inertia. The different colors (i.e. red
and blue) represent different image schemas, the circles represent vectors,
the triangles represent the cluster centroids, the black rectangle represents
the global centroid, the red or blue lines represent the intra-cluster dis-
tances, and the black lines represent the inter-cluster distances. The inertia
score is higher if the black lines (i.e. the intra-cluster distances) are longer
than the red or blue lines (i.e. the intra-cluster distances) . . . . . . . . . . 80

6.6 An illustration of image schema distance. The different colors (i.e. red
and blue) represent different image schemas, the circles represent vectors,
the triangles represent the cluster centroids, and the orange dotted line
represents the distance between the two centroids. Two blue vectors are
nearer to the red centroid, and thus they are “confused”. On the distance
metric which uses the inter-centroid distance (Formula 6.3), the two image
schemas are closer to each other if the dotted orange line is shorter. On
the distance metric which uses the confusion (Formula 6.4), the two image
schemas are closer to each other if there are more “confused” vectors. . . . 81

6.7 The hierarchical clustering of image schemas in BERT and euclidean dis-
tance (between two vectors) with the centroid distance (between two im-
age schemas) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

6.8 The hierarchical clustering of image schemas in BERT and cosine distance
(between two vectors) with the centroid distance (between two image schemas) 86

xxiii



LIST OF FIGURES

6.9 The hierarchical clustering of image schemas in SenseBERT and euclidean
distance (between two vectors) with the centroid distance (between two
image schemas) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

6.10 The hierarchical clustering of image schemas in SenseBERT and cosine dis-
tance (between two vectors) with the centroid distance (between two image
schemas) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

6.11 The hierarchical clustering of image schemas in BERT and euclidean dis-
tance (between two vectors) with the confusion distance (between two im-
age schemas) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

6.12 The hierarchical clustering of image schemas in BERT and cosine distance
(between two vectors) with the confusion distance (between two image
schemas) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

6.13 The hierarchical clustering of image schemas in SenseBERT and euclidean
distance (between two vectors) with the confusion distance (between two
image schemas) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

6.14 The hierarchical clustering of image schemas in SenseBERT and cosine dis-
tance (between two vectors) with the confusion distance (between two im-
age schemas) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

6.15 The visualization of the EMPTY image schema (red) and everything else
(blue) in BERT and euclidean distance (between two vectors) . . . . . . . . 94

6.16 The visualization of the RIGHT image schema (red) and everything else
(blue) in SenseBERT and cosine distance (between two vectors) . . . . . . . 95

6.17 The visualization of the NEAR image schema (red) and everything else
(blue) in SenseBERT and euclidean distance (between two vectors) . . . . . 96

7.1 The hand shape “circle” (see Table 7.1) . . . . . . . . . . . . . . . . . . . . . 100
7.2 The hand shape “fist” (see Table 7.1) . . . . . . . . . . . . . . . . . . . . . . 101
7.3 The hand shape “open” (see Table 7.1) . . . . . . . . . . . . . . . . . . . . . 101
7.4 The hand shape “pinch” (see Table 7.1) . . . . . . . . . . . . . . . . . . . . . 101
7.5 The hand shape “point” (see Table 7.1) . . . . . . . . . . . . . . . . . . . . . 101
7.6 The hand shape “relax” (see Table 7.1) . . . . . . . . . . . . . . . . . . . . . 101
7.7 The hand shape “two” (see Table 7.1) . . . . . . . . . . . . . . . . . . . . . . 101
7.8 An example of the movement type “linear” (see Table 7.2) . . . . . . . . . . 102
7.9 An example of the movement type “circular” (see Table 7.2) . . . . . . . . . 102
7.10 An example of the movement type “waving” (see Table 7.2) . . . . . . . . . 103
7.11 The “inward”, “outward”, “upward”, and “downward” movement directions

(see Table 7.3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
7.12 The “frontward” and “backward” movement directions (see Table 7.3) . . . 104
7.13 The “wrist rotation” movement direction (see Table 7.3). In this movement

direction, the only movement is the wrist rotation . . . . . . . . . . . . . . . 105
7.14 The “horizontal” movement direction (see Table 7.3). In this movement,

the section of the arm between the elbow and the fingertips is moving left-
and-right only . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

7.15 The “vertical” movement direction (see Table 7.3). In this movement, the
hand is making a half-circle movement . . . . . . . . . . . . . . . . . . . . . 106

7.16 The “normal waving” movement direction (see Table 7.3). The movement is
like doing a normal hand-waving movement (like the gesture while we are
saying “good bye” to someone). This movement is done by elbow rotations . 106

xxiv



LIST OF FIGURES

7.17 The “backward” palm orientation (see Table 7.5) . . . . . . . . . . . . . . . 107
7.18 The “frontward” palm orientation (see Table 7.5) . . . . . . . . . . . . . . . 108
7.19 The “upward” palm orientation (see Table 7.5) . . . . . . . . . . . . . . . . 108
7.20 The “downward” palm orientation (see Table 7.5) . . . . . . . . . . . . . . . 109
7.21 The “inward” palm orientation (see Table 7.5) . . . . . . . . . . . . . . . . . 109
7.22 The “outward” palm orientation (see Table 7.5) . . . . . . . . . . . . . . . . 110

xxv



Chapter 1
Introduction

In this dissertation, we discuss our work about the generation of communicative gestures.
We open this chapter by explaining the wider context behind the problem of communica-
tive gesture generation. We start with the overview of Human-Computer Interaction and
Embodied Conversational Agent and the motivating spirit of the research in this domain.
After that, we explain the properties we desire from generated gestures and the important
developments in the gesture generation research. Finally, we explain our contributions
and we close this chapter with the organization of this dissertation.

1.1 Human-Computer Interaction and Embodied Conversational
Agent (ECA)

In the year 2021, communication can be done in so many ways. We can send an e-mail,
we can send an SMS, we can do a video call, we can do a phone call, and we can also
talk face to face. In the 1990s and early 2000s when internet was already widespread
but high-speed internet was not, mobile phones played a big part in our communication.
We called other people and sent SMS to other people. Meanwhile, for long messages, we
used e-mail. Turn the clock back several decades earlier to the mid-20th century, fixed-line
phones were already widespread, which enabled us to talk to someone faraway relatively
easily. However, written communication was still difficult. Telegram was widely-available
and was relatively fast, but it was quite expensive. Therefore, detailed written communi-
cation had to be done by a letter written on a paper. Turn the clock back by one century,
in the 19th century, the rising literacy among the common people and the provisioning
of relatively affordable postal services enabled regular people in faraway places to com-
municate with each other reliably with mails. However, before that, the only way regular
people could communicate with each other was by face to face communication. That
means, from the time our species appeared on Earth around 200,000 years ago until the
18th or the 19th century, the only way regular people could communicate with each other
was by a face to face talk. This is how most human communicate for much of the history
of our species.

Written communication appeared only a few thousand years ago when human in-
vented writing systems. However, writing media (e.g. paper, papyrus, etc.) only became
affordable and widely available several hundred years ago. Meanwhile, literacy itself only
became widespread in Europe and North America in the 18th and 19th century. In some
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parts of the world, widespread literacy became a reality only in the late 20th century. That
means, for most of our history as a species, written communication was either unavailable
or was restricted to the societal elites only.

Long distance spoken communication became technically possible when telephone was
invented in the late 19th century. However, telephones require an expensive communi-
cation infrastructure. In developed countries, fixed-line telephones became widespread
only around the mid-20th century. In many developing countries, it became a reality only
in the late 20th century. Thus, for many decades of the history of long-range spoken
communication, it was available only to the societal elites.

Human-Computer Interaction, as a research domain, has a different motivating spirit
from “mainstream” computer science research domains. Machine learning research is
done to enable computer to spot patterns from data. Database research is done to enable
computer to store and process a large amount of data efficiently. Algorithm research is
done to discover ways to solve fundamental computer science problems efficiently such
that the solution is general enough for all kinds of application. These “mainstream” com-
puter science research domains concern themselves with technical challenges. Their mo-
tivating spirit is to make computer more powerful, to enable computer to achieve feats
which previously could not be done. However, Human-Computer Interaction, as a re-
search domain does not aim to make computer more powerful. Instead, their motivating
spirit is to make computer more accessible to regular people.

The oldest way of using computer is through the command line. Many programs which
are meant to be used only by specialists are still primarily accessible through command
line. Command line can indeed be efficient at the hand of an expert. However, command
line is inaccessible by the non-experts. Later on, Graphical User Interface was created and
made computer more accessible to regular people. However, computer still can be made
more accessible.

Unlike the earlier media of communication, such as phone, SMS, telegram, or letter,
computer can show moving graphic (and also outputs sound). That means, it is technically
possible to show a seemingly-sentient figure which both speaks and display non-verbal
behaviors like eye gaze, gestures, and facial expressions (at least, in the 2-dimensional
form). Besides that, non-verbal behaviors also have practical benefits. Among others, non-
verbal behaviors help to produce speech, to formulate our thoughts, and to communicate
our feelings (Pelachaud (2009)). Effectively, this technology enables the user to interact
with a computer in a mode of communication which we have been using since our species
appeared on Earth: face to face communication. We call such technology “Embodied
Conversational Agent” (ECA). Precisely, Embodied Conversational Agent is a virtual agent
endowed with the capacity to communicate both verbally and non-verbally (Cassell et al.
(2004)).

1.2 Non-Verbal Communication

Non-verbal communication has many components, such as gaze directions, facial expres-
sions, or communicative gestures. These non-verbal behaviors are not random. For ex-
ample, during a conversation, we spend much of the time looking at the speaker or the
objects related to the speech. Facial expressions are another useful non-verbal behavior. A
speaker can use his facial expressions to convey the message more effectively. For exam-
ple, he can convey friendliness with a smile. Gestures are also useful communication tools.
For example, saying “the elevator is going up” while pointing above makes the message
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clearer. From these examples, it can be seen that proper non-verbal behaviors do serve
useful functions. Therefore, having an Embodied Conversational Agent (ECA) which can
generate and perceive non-verbal behaviors properly is a desirable goal. This is indeed an
active and broad research area. This dissertation focuses on the question of the generation
of communicative gestures.

1.3 Desired Properties of Generated Communicative Gestures

Researchers who work on communicative gesture generation have identified several prop-
erties which should be satisfied by generated gestures. However, these properties must
not be treated as the canonical list. Future researchers might identify new properties. Be-
sides that, simply satisfying all these properties cannot be considered as a guarantee that
a gesture generator is perfect.

1.3.1 Match/Coherence With The Speech

One component of the match/coherence is that the most prominent part of the gesture
should happen around the pitch accent of the speech (Wagner et al. (2014)). However, the
rhythm match is not the only thing which matters. The other component of the match is
that the gesture's shape should match the meaning conveyed by the speech. For example,
we can expect that the gesture accompanying an utterance “turn right” should indicate
the right direction.

It might be tempting to think that because it is possible to express ideas in detail by
writing alone (e.g. a book written by an expert writer), then verbal communication is
always more expressive than gesture, and therefore it is possible to “translate” speech into
gesture. However, in the natural speech like in a face to face talk, it is not always the
case. For example, in a face to face talk, we might simply say “go there” while pointing
to the right instead of specifically saying “go to the direction which is on my right side
from my point of view”. In this case, the information about the destination is conveyed by
the gesture; it cannot be inferred from the speech. Therefore, it is not always possible to
“translate” the speech into a gesture.

The notion of match is made even more complicated by the fact that gesture is different
from pantomime. We do not gesture all the time. Thus, it is possible to utter “turn right”
without doing any gesture.

1.3.2 Smoothness

We do many gestures. There are also times when we do not do gesture. However, the
transition between them should be smooth and seamless. Hasegawa et al. (2018) and
Kucherenko et al. (2019) explicitly take into account the movement smoothness in their
objective evaluation. Specifically, they measure the average jerk of the movement in their
objective study where jerk is the temporal differentiation of the acceleration.

1.3.3 Diversity

Gesture is idiosyncratic (McNeill (1992)), which practically means that there are many
possible gestures to accompany a certain utterance. For example, if the utterance is “turn
right”, then it is possible that the gesture is pointing to the right by using the right hand's
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thumb, or pointing to the right by using the left hand's index finger, or by both hands acting
as if turning steering wheel clockwise (i.e. the movement of turning a car to the right),
or by the head tilting to the right. It can be seen from this example that the relationship
between the speech and the gesture is many-to-many. Wu et al. (2021) measure the
distribution of the gesture output in their objective study to find out if the diversity is
comparable to the one in the ground truth.

1.4 Important Developments

In this section, we explain the important developments in the gesture generation problem.
We also mention the relevant landmark papers which open new lines of inquiry.

1.4.1 Machine Learning

The earliest techniques to automatically generate gestures are rule-based (see Section
3.1). Some of them have the rules set according to the knowledge from the literature
alone while some others also enrich their rules with findings from statistical analysis.
However, those rules eventually turn out to be complex, and therefore researchers turn to
machine-learning based techniques.

1.4.2 Acoustic Features

A beneficial side effect of the shift toward machine learning is that it becomes possible to
learn directly from the acoustic data. Among the rule-based systems, Cerebella (Lhommet
and Marsella (2013)) is the only one which takes the acoustic as an input. Even so, the
acoustic input is limited to a few discrete features. On the other hand, machine-learning
based techniques can learn from real-valued acoustic features (e.g. fundamental frequency
and intensity). This trend of learning from real-valued acoustic inputs was started by
Levine et al. (2010) and is still done in recent works. Many machine-learning-based tech-
niques rely on these inputs. One important supporting factor in this development is that
there are programs which can extract acoustic features, such as OpenSmile (Eyben et al.
(2010)). Besides that, these acoustic features are in the form of real-valued array. This is
the form of input which machine learning works with.

1.4.3 Body Joint Coordinates

Another side effect of the shift toward machine learning is the way the gesture is rep-
resented. The gesture representation also moves into the lower level. The gestures are
represented as 3-dimensional coordinates of the joints. Their movements are represented
as a time series of those three-dimensional joint coordinates. Thus, the gestures are rep-
resented as a three-dimensional array YN,3,T where T is the number of time-steps and N
is the number of joints. Thus, Yn,:,t are the three-dimensional coordinates of the joint n
at time-step t. This representation is practical for machine learning because this repre-
sentation is in the form of real-valued array, which is what machine learning works with.
Another supporting factor is that this data can be obtained by using a Motion Capture
(MoCap) tool (see Figure 1.1 for an example). However, the limitation is that this tool is
expensive and requires a special facility dedicated to it. Besides that, human actors/ac-
tresses are still needed to have their motion being captured. Thus, getting access to the
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Figure 1.1 – Motion capture from Ferstl et al. (2019). The actor's body is fitted with
sensors. The cameras behind the actors are parts of the Motion Capture tool

data is still a burden. Interestingly, Ginosar et al. (2019) circumvent this problem by work-
ing with two-dimensional data instead of three-dimensional data. The joint coordinates
are extracted from publicly accessible videos by using OpenPose (Cao et al. (2019)). This
approach is sensible because the output is to be played on a computer screen, which is
only two-dimensional. Habibie et al. (2021) extend this technique further by projecting
the three-dimensional coordinates from the two-dimensional coordinates.

1.4.4 Gesture Movement Smoothing

One problem which was discovered early is that it is not always obvious on how to ensure
the movement is smooth. Because of this, Levine et al. (2010) limit the choices of mo-
tion segment so that the resulting movement is smooth. Subsequently, Chiu and Marsella
(2014) and Bozkurt et al. (2016) solve this problem by automatically smoothen the tran-
sitions.

The movement of the gestures or between gestures should be smooth. However, the
way to satisfy this property is not always obvious. Levine et al. (2010), a relatively early
machine-learning-based gesture generator, have to constrain the choices of motion seg-
ment to ensure that the resulting movement is smooth. This limitation is solved by the
subsequent works. Chiu and Marsella (2014) and Bozkurt et al. (2016) subsequently solve
this problem by automatically smoothen the transitions.

1.4.5 Many-To-Many Relationship of Gestures

Gesture is idiosyncratic (McNeill (1992)), which practically means that there are many
possible gestures to accompany a certain utterance. Thus, the relationship between utter-
ances and gestures should be many-to-many. In a rule-based gesture generator, it can be
achieved by setting several possible gestures for each scenario and assigning probability
to each of those gestures. However, the recent gesture generators use neural network
to generate the gestures (see Sections 3.4, 3.5, and 3.6). Neural network is stochastic
during the learning process, but is deterministic after the learning process is completed.
Thus, if given the same input twice, the two outputs will be the same as well. Ginosar
et al. (2019) solve this problem by using adversarial learning. This is possible because
adversarial learning is stochastic even after the training.
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1.4.6 Word Embedding

A curious case of development is the use of word embedding (see Section 6.3.2) by Ahuja
and Morency (2019) to represent the text input. Word embedding represents a word
as a real-valued vector such that two similar words are mapped to two nearby vectors,
although different word embedding techniques have different notions on what it means
that two words are similar. Previously, the text input has to be processed first to get
various linguistic features. Besides that, real-valued vectors yielded by word embedding
techniques are convenient to use with machine learning. The use word embedding to
represent textual input is subsequently followed by Kucherenko et al. (2020).

1.4.7 Image Schema

An orthogonal but related development to the use of word embedding to represent the
textual input is the use of image schema (see Section 2.6) by Ravenet et al. (2018a,b) to
represent the semantics for metaphoric gesture generation. Image schema itself is a re-
current pattern of reasoning which maps one entity into another. Unlike word embedding
which represents the semantics as a vector, image schema represents the semantics as a
class. However, the context where Ravenet et al. (2018a,b) use image schema is not a
machine-learning-based system.

1.4.8 Multimodal Machine Learning

The last development we would like to highlight is the use of multimodal machine learning
by Kucherenko et al. (2020) to use both the acoustic features and the textual features as
inputs (see Section 3.6). Having both modalities as the inputs opens the possibilities
to exploit richer information from both modalities. However, their experiment results
suggest that simply having both modalities as inputs does not guarantee effective use of
both modalities. The way to effectively use both modalities is still an open problem.

1.5 Our Contributions

We extract additional data from the corpus, namely the acoustic features and eyebrow
movements. We also create a gesture shape annotation scheme and we show the statistics
of the gestures according to their shape.

We develop a model to predict gesture timing. This work is a step towards generating
gestures with the desired property that the gestures should match/be coherent with the
speech (see Section 1.3.1), especially toward generating gestures whose timing matches
the speech's rhythm. In this chapter, we also propose a measurement method for the
objective evaluation of the model. We also experiment with including eyebrow movements
in our data, which otherwise has only the annotations of hand gestures. Additionally, we
also do an experiment to find out if the model is generalizable.

We propose improvements to the existing image schema computation algorithm and
we also explain our proposed method to represent image schemas as embedding vectors.
This work is a step toward generating gestures with the desired property that the ges-
tures should match/be coherent with the speech (see Section 1.3.1), especially toward
generating gestures whose shape matches the speech's semantics. With the image schema
being representable as vectors, it also becomes possible to calculate the distance between
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them, which is a proxy of their difference. Based on those vectors representation, we mea-
sure the distances between different image schemas to find out which image schemas are
close/similar to each other.

1.6 The Organization Of This Dissertation

In Chapter 2, we explain the background concepts relevant to our work. In this chapter,
we introduce the fundamental concepts of gesture, about eyebrow movements, about the
representations of gestures, and about image schema.

In Chapter 3, we explain the prior works relevant to our work. In this chapter, we ex-
plain about various gesture generators: the rule-based ones, the pre-neural-network ones
which rely on the textual input, the pre-neural-network ones which rely on the acoustic
input, the recent ones which rely on the textual input, the recent ones which rely on the
acoustic input, and the ones which take both acoustic and textual inputs. Besides that, we
also discuss works about gesture style and prediction of gesture shape to depict a concrete
object. Finally, we close the chapter by explaining the existing limitations; the problems
which have not been solved by the existing works.

In Chapter 4, we explain our corpus, the data it contains, and the annotation it con-
tains. We also extract secondary features by using third party programs. For those sec-
ondary features, we explain our extraction process and the features we extract. We also
give the statistics of the features we extract.

In Chapter 5, we explain about our work on prediction of gesture timing.
In Chapter 6, we explain our work on improving the existing image schema compu-

tation algorithm and our work on the representation of image schemas as embedding
vectors.

In Chapter 7, we explain our gesture shape representation scheme. We apply this ges-
ture shape representation scheme to annotate our corpus. We also calculate the statistics
from our corpus, including the statistics of the gesture shapes related to the image schema.

Finally, in Chapter 8, we close this dissertation with the conclusion of our work.
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Chapter 2
Background

In this chapter, we introduce the key concepts we use in this work. We introduce the basic
concepts of gestures, its relationship with speech, its classification, and its phases. We
also introduce the eyebrow movements because they have one property which is similar
to hand gestures: the speech properties which “drive” the hand gestures also drive the
eyebrow movements. We also introduce the existing schemes of gesture encoding. To be
able to produce gesture automatically, it is necessary to represent the gesture, which in
turn necessitates an encoding scheme. Lastly, we introduce the concept of image schema
and its relationship with speech and gesture. Some gestures depict an abstract concept,
which cannot possibly have any physical shape. The abstract concept is “translated” into
a concrete object, which in turn can be depicted by gesture. This “translation” mechanism
is done through the image schema concept.

2.1 Gesture Overview

Kendon (1988) proposes an ordering of body movements for communicative purpose ac-
cording to its stand-alone expressiveness. Those movements, from the least stand-alone
expressive to the most stand-alone expressive are gesticulation, language-like gestures,
pantomimes, emblems, and sign languages. The more stand-alone expressive the move-
ment is, the less necessary the accompanying speech is. Gesticulation is meaningless
without the accompanying speech while sign languages are languages, which means they
can be understood by themselves. Besides that, the more stand-alone expressive it is,
the presence of language properties increases and the movements are also more formal-
ized/regulated. For example, sign languages are languages, with their own grammars and
vocabularies. McNeill (1992) calls this ordering as “Kendon's continuum”.

McNeill (1992) uses the term “gesture” to refer to the gesticulation in the Kendon's
continuum. In this sense, McNeill defines gestures as idiosyncratic and spontaneous move-
ment of hands and arms which accompany speech. This definition has several properties.
The first property is that it is idiosyncratic instead of formalized/regulated. That means,
there is no standard on how a gesture should be. Different persons can have different
gestures and the same person can use different gestures while uttering the same sentence.
A person does not need a special training to be able to do gestures effectively. The second
property is that it is spontaneous instead of being done deliberately. Wei (2006) finds that
people who are talking on the phone still do gesture. Iverson and Goldin-Meadow (1998)
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find that even people who are blind since being born still perform gestures, even when
the listener is also blind. The third property is that they accompany speech, which means
that they happen at the same time as speech and have no meaning without the accompa-
nying speech. It should be noted, however, not all definitions of gesture limit themselves
to hands and arms movement. Calbris (2011) defines communicative gesture as a visible
movement of any body part which someone makes in order to communicate. That means,
Calbris's definition allows any body parts, not only the hands and arms. Nevertheless, we
use McNeill's definition in our work.

McNeill (1992) states that gestures and speech are closely linked. Gestures only occur
during speech. They are also co-expressive, which means that gestures and speech express
the same or related meanings; they might convey the same meaning or convey comple-
mentary meanings, but they work in tandem. Someone might point to the right while
saying “the box is on the right”, in which case the pointing gesture conveys the location
information which is already conveyed by the speech. It is also possible to say “the box
is there” while pointing to the right, in which case the pointing gesture and the speech
convey a complementary information. The speech expressed that there is a box, but the
location of the box is specified only by the gesture. In this case, it is impossible to under-
stand the complete message without observing the gesture. McNeill also gives an example
of gestures being used to mark the start of a new topic (i.e., the speaker is changing the
conversation topic).

Gesture is also related to spoken language acquisition in children. Goodwyn et al.
(2000) find that gesturing helps the language acquisition in infants. Özçalı̧skan and
Goldin-Meadow (2005) find that children combine gesture and speech before they can
convey complex information in speech alone. Özçalı̧skan and Goldin-Meadow (2005) also
find that mixing gesture and speech in children signals that the children will soon be able
to construct multi-word sentences.

Relationship between gesture and speech can also be observed in aphasia: the impair-
ment of spoken language ability due to brain damage. In Broca's aphasia, the person's
ability to produce speech is impaired, but his language comprehension is normal. In
Wernicke's aphasia, the language comprehension is impaired. Someone with Wernicke's
aphasia can still speak, but his speech is incomprehensible by others. Feyereisen (1987);
Sekine and Rose (2013) find people with aphasia are more likely to use gestures in or-
der to compensate for their language inability. Interestingly, Sekine and Rose (2013) find
that different types of aphasia have different impact on the type of gestures being pro-
duced: people with Broca's aphasia are more likely to use iconic gestures while people
with Wernicke's aphasia are more likely to use metaphoric gestures.

Gesture and speech are also synchronous in terms of timing. The most prominent
and meaningful part of the gesture, which is called the stroke phase, often occur at the
same time as when the important words are being uttered (Loehr (2012)). These are all
possible because both gestures and speech are generated from a common process (Mc-
Neill (1992)). This relationship is important for this line of research because it opens the
possibility to infer the gestures from speech. It should be appreciated, however, the fact
that gestures may convey complementary information from the speech means that it is not
always possible to infer the gestures from the speech alone.
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2.2 Gesture Types

McNeill (1992) splits gestures into four types, namely iconic, metaphoric, deictic, iconic,
and beat. This classification is based on the information conveyed by the gesture.

1. Iconic gesture is a gesture where the hand(s) is/are depicting a concrete object or an
action. An example of iconic gesture is in Figure 2.2. The accompanying speech of
the gesture is “pressing buttons on elevators”. In this example, the hand movement
depicts the action of pressing an elevator button.

2. Metaphoric gesture is a gesture which depicts an abstract concept. An abstract con-
cept does not have a shape; therefore, the depicted shape comes from a concrete
object or action which the abstract idea is transformed into through a metaphor pro-
cess. An example of metaphorical gesture is in Figure 2.3. The accompanying speech
of that gesture is “that allows good ideas to rise to the surface”. In that picture, the
hands are doing an upward movement as a metaphor for ideas rising up. Idea is
an abstract object; therefore, it cannot move in a physical space. However, through
metaphor, idea is imagined as a concrete object which can move upward. Despite of
the names, the relationship between metaphoric gestures and metaphoric concepts
is not bijective. Saund et al. (2019) find that one metaphoric gesture can convey
multiple metaphoric concepts. They also find that a sequence of metaphoric gestures
can describe a metaphoric scene which is decomposed into multiple metaphoric con-
cepts.

3. Deictic gesture is a gesture which points to an object or location. An example of
deictic gesture is in Figure 2.1. The person in the poster is pointing at the reader and
the word “you” is highlighted. In this example, both the word “you” and the deictic
gesture refers to the same object: the reader of the poster. It should be noted that
the object or location being pointed does not have to be in the vicinity of the speaker.
For example, a gesture of a hand moving to the right side while accompanying an
utterance “there is a bedroom on the right” can also be a deictic gesture even if
the bedroom he is talking about is not physically on his right side. Instead, he is
imagining that he is inside the apartment, and the bedroom he is talking about is on
his right side.

4. Beat is a gesture which is performed by quick back and forth movements along with
the speech rhythm. It does not carry a meaning by itself. However, beat gestures
mark the discourse context, such as when the speaker is moving to a new topic. An
example of beat gesture is in Figure 2.4. He is saying “yes we can to justice and
equality” while his right hand is moving up and down. His right hand does not
symbolize any meaning, but the movement follows the rhythm of his speech.

Biancardi et al. (2017) call these semantic gestures (i.e. communicative gestures other
than beat) as “ideational gesture”. Although these gestures carry a meaning, they are not
meant to be unambiguous. These gestures cannot be interpreted without knowing what
the speaker is saying. It is useful to remember the Kendon's continuum (Kendon (1988)),
where body movements for communicative purpose are ordered from the least standalone
expressive to the most standalone expressive: gesticulation, language-like gestures, pan-
tomimes, emblems, and sign languages. Ideational gestures are part of the gesticulation
in the Kendon's continuum. That means, ideational gestures cannot stand alone, they
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Figure 2.1 – An example of a deictic gesture pointing at the reader a

ahttps://en.wikipedia.org/wiki/File:J._M._Flagg,_I_Want_You_for_U.S._Army_poster_(1917)
.jpg
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Figure 2.2 – An example of an iconic gesture depicting the action of pressing a button a.
In this scene, he is saying “pressing buttons on elevators”.

ahttps://www.youtube.com/watch?v=aMcKi1TS2Zs at time 02:01

Figure 2.3 – An example of a metaphoric gesture showing an upward movement a. In this
scene, he is saying “that allows good ideas to rise to the surface”.

ahttps://www.c-span.org/video/?419212-3/vice-president-al-gore-speaks-new-york-times-global-leaders-collective-meeting
at time 36:21
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Figure 2.4 – An example of a beat gesture showing up and down movements a. In this
scene, he is saying “yes we can to justice and equality” while his right hand (and also his
head) is moving up and down a few times.

ahttps://www.youtube.com/watch?v=Fe751kMBwms at time 11:36

have to be accompanied by speech. On the other hand, emblem and sign languages are
unambiguous; they do not need an accompanying speech.

The fact that gesture is not meant to be standalone also means that deciding the type of
the gesture requires the knowledge of the accompanying speech and the segment which
the gesture coincides. For example, a gesture of an index finger pointing upward is a
deictic gesture if the accompanying speech is “the ceiling is dirty” and the gesture coincides
with the word “ceiling” because the gesture points to the location of the ceiling, which is
above the speaker. On the other hand, the same gesture will be an iconic gesture if the
accompanying speech is “you can see a tower” and the gesture coincides with the word
“tower” because the gesture depicts the shape a tower, which is long and vertical. This
phenomenon that one gesture can have multiple meanings is called polysemy of gestures.

2.3 Gesture Phases

According to Kendon (1980), gestures are characterized by temporal phases, namely
preparation, pre-stroke-hold, stroke, post-stroke-hold, and retraction. The stroke phase
is mandatory while the other phases are optional.

1. Preparation is a phase where the hand moves from the rest position to the starting
location of the stroke.

2. Pre-stroke hold is a phase following the preparation where the hand is still.

3. Stroke is the phase which carries the meaning. This phase takes the greatest effort,
is relatively fast, and is well-articulated. Its timing coincides with the important part
of the speech, its shape is related to the meaning conveyed in the important part of
the speech, and it is performed at a prominent location.

4. Post-stroke hold is a phase following the stroke where the hand is still.

5. Retraction is a phase where the hand is brought to the rest position.
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Figure 2.5 – An example of gesture phases from Bressem and Ladewig (2011)

Figure 2.6 – An example of gesture phases from Graziano and Gullberg (2018)

An example of the phases can be seen in Figure 2.5. The gesture starts from the rest
position, which in this case the hands rest on the person's lap. Then in the preparation
phase, the left hand goes up to the head level. In this preparation phase, the left hand
moves to a prominent position: a position where the hand is very visible. Then the person
performs the stroke phase, which in this case is a downward movement. The stroke phase
is followed by a retraction phase, where the left hand returns to the rest position, which
in this case is on the person's lap.

Another example of the phases can be seen in Figure 2.6. In the preparation phase
(part A), the left hand moves to the position where the stroke will be performed. The
preparation phase is then followed by the stroke phase (part B and C) where the hand
moves down. The stroke phase is then followed by a post-stroke hold (part D and E),
where the hand is still at the position where the stroke ends.

Not all gestures are “standalone”. Successive gestures may co-articulate one from
another. That is, when multiple gestures are performed consecutively, the gesture phases
can be chained together. On the other hand, beat gestures do not have the same phases.
They are often produced with a back and forth movement (e.g. up-down or inward-
outward) and mark the speech rhythm.

2.4 Eyebrow Movements

Krahmer and Swerts (2007) state that beat gestures can also be performed by facial and
head movements. Specifically, they note that eyebrow movements can be related to beat
gestures. Just like a beat gesture creates a perception of emphasis, an eyebrow movement
or a head nod also has a similar effect. Similarly, just like a beat gesture creates a per-
ception that the spoken word is more prominent, a rapid eyebrow movement also has a
similar (albeit weaker) effect. In a study of professional Dutch newsreaders, Swerts and
Krahmer (2010) observe that eyebrow movements tend to accompany the pitch accent.
Yasinnik et al. (2004); Flecha-García (2007); Bolinger (1989); Ekman (1979) also observe
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Figure 2.7 – Eyebrow movement Action Units (Bartlett et al. (2002))

that pitch accents are accompanied by eyebrow movements. Eyebrow movements can be
encoded by using Facial Action Coding System (FACS) (Friesen and Ekman (1978)). FACS
divides a facial movement into the constituent movements. Each constituent movement
is called Action Unit (AU). There are three action units (AU) which represent eyebrow
movements, namely AU1 (inner brow raiser), AU2 (outer brow raiser), and AU4 (brow
lowerer) (Figure 2.7). The presence of either AU1 or AU2 represents rising eyebrow while
the presence of AU4 represents lowering eyebrow. These eyebrow movements can oc-
cur together as well. In Figure 2.7, we also provide the examples of AU1-AU2 together,
AU1-AU4 together, and AU1-AU2-AU4 together.

2.5 Gesture Encoding

There is no standard way to describe gesture shapes. However, several works discuss the
important features of gestures which can be used to encode gestures.

Efron (1941) consider the following to be the relevant spatio-temporal parameters of
gesture:

• The distance of the hand movement.

• The movement trajectory: sinuous, elliptical, angular, or straight.

• The movement direction.

• The body parts which are involved in the gesture. They can be one of the hands, both
hands, fingers, head. If the gesture is done with both hands, a remark on whether
they are doing a single gesture.

• The smoothness of the gesture.

Later, Lücking et al. (2016) and Kipp et al. (2007) also propose gesture encoding
schemes. Although these two are different works by different authors, their encoding
schemes are similar. Their encoding schemes are as following:
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• The start and end of stroke are the important parts to be encoded.

• The hand(s) which is/are used for the gesture. If the gesture is performed by both
hands, then the two hand movements can be either symmetrical where the two
hands are depicting a single entity or they can be asymmetrical where each hand
depicts different things. These encoding schemes only consider the hands.

• The movement trajectory; According to Lücking et al. (2016), the trajectory consists
of the path (e.g. line, arc, zigzag) and the orientation (away from body, up, left,
etc). Lücking et al also include “pointing” as a path. Kipp et al. (2007) only classify
the movement trajectory into straight or curved. Kipp et al also include the infor-
mation about the speed-related properties, such as its abruptness, smoothness, and
forcefulness.

• The starting and ending locations; Lücking et al. (2016) represent the locations by
using McNeill (1992)'s gesture space (Figure 2.10). The space is divided into zones
by concentric squares. The inner-most square is the “center-center”, the second-
inner-most square is “center”, the third-inner-most square is “periphery”, and the
outer-most square is “extreme periphery”. Both the “periphery” and “extreme pe-
riphery” are further divided into 8 quadrants: upper, upper left, left, lower left,
lower, lower right, right, and upper right. Kipp et al. (2007) represent the locations
with 7 possible values in the top-down axis, 4 possible values in the front-back axis,
5 possible values in the front-facing orientation, and 4 possible values in the arm
swivel (Figures 2.8 and 2.9).

• The hand shape; Both Lücking et al. (2016) and Kipp et al. (2007) use the American
Sign Language alphabets to encode the hand shapes. Kipp et al also mention that
HamNoSys inventory (Prillwitz et al. (1989)) can also be used to encode hand shape.
Lücking et al also include thumb-up as an additional hand shape. In an interesting
agreement, both of them find in their respective experiments that most of the time
only a few hand shapes are actually used.

Calbris (2011) proposes a different encoding schema. Calbris describes the gesture
with the following parameters:

• The body part(s) which do/does the gesture. These can be the hand(s) or the fin-
ger(s).

• The shape of the hands or the fingers while doing the gesture. Because this encoding
scheme recognizes both hand and finger gesture, it also recognizes both hand shape
and finger shape. Unlike Lücking et al or by Kipp et al who use the American Sign
Language alphabets to encode the hand shape, Calbris proposes her own list of the
shapes (Figure 2.11).

• The direction where the gesture is pointing. If the gesture is a flat-palm hand ges-
ture, then the direction is where the palm is pointing. In other cases, the direction
is where the hand or the finger is pointing.

• The direction of the hand or finger when the gesture is not a flat-palm gesture.

• The movement direction (e.g. upward, downward, etc.).

• The information about the handedness or “fingerness”: left only, right only, or both.
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Figure 2.8 – Kipp et al. (2007)'s annotation scheme of the position (top and side view)

Figure 2.9 – Kipp et al. (2007)'s annotation scheme of the position (front view)
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Figure 2.10 – McNeill (1992)'s gesture space

• The region where the the gesture is performed.

We can see that those encoding schemes, from Efron (1941), Lücking et al. (2016),
Kipp et al. (2007), and Calbris (2011) have some agreements. All of them take into
account the body parts which do the gesture. The movement trajectory is also taken
into account in all those encodings. The movement direction is taken into account either
directly or indirectly. In the encoding scheme of Lücking et al. (2016) and Kipp et al.
(2007), it can be inferred from the starting and the ending locations. However, in the
encoding schemes of Lücking et al. (2016) and Kipp et al. (2007), if the movement is so
small such that the hand does not move to another region, then the movement direction
information will also be lost.

However, we can also observe the difference. Both Efron (1941) and Kipp et al. (2007)
include the information about the smoothness or abruptness while Lücking et al. (2016)
and Calbris (2011) do not. Both Lücking et al. (2016) and Kipp et al. (2007) take only into
account the hands while both Efron (1941) and Calbris (2011) also take into account the
finger movements. Efron (1941) does not have the concept of hand shape while Lücking
et al. (2016), Kipp et al. (2007), and Calbris (2011) do. Because Calbris (2011) also
take into account the finger movement, the shape also includes “finger shape”. Calbris
(2011) is the only one which takes into account the direction where the hand is pointing.
Kipp et al. (2007) has a “weaker” version of this: their annotation indicates where the
wrist joint is pointing (see the radial orientations in Figure 2.8 from which the horizontal
direction can be inferred and Figure 2.9 from which the vertical direction can be inferred).

2.6 Image Schema

Johnson (2013) defines image schema as a recurrent pattern of reasoning where one
entity is mapped into another. For example, “culture” can be mapped into “container” by
thinking that some people belong to the same culture while some other people do not.
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Figure 2.11 – Calbris (2011)'s annotation scheme of the hand/finger shape
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Figure 2.12 – He et al. (2018)'s example of metaphoric gesture (the left part, labelled
with “MP”). It can be seen here that the sophistication of the presentation is thought as
a concrete object which has the height property (e.g. a mountain), as shown in the right
part (labelled with “IC”)

Therefore, culture shares the same property with a container that both of them have a
boundary.

Image schema is similar to the concept of conceptual metaphor from Lakoff and John-
son (1980) where human talks about one thing by using another object which has similar
properties. For example, in a metaphor “love is a journey”, “love” is imagined to consist of
the starting point, the destination, and the path which links both the starting point and the
destination. This phenomenon is also observed in our language. In English, we can say
“big idea” to mean an idea which has the potential to make a significant impact. However,
“big” itself is a property normally used for a concrete object. “Idea” is an abstract object,
and therefore it is neither big nor small. Therefore, “idea” has to be mentally mapped into
a concrete object which has a physical size.

This “metaphorizing” is relevant because the conceptualization hypothesis states that
the way human represents the world in their mind is constrained by the human's phys-
ical body Wilson and Golonka (2013), which means there is a need to map an abstract
entity into a concrete entity. Metaphor can even affect the physical body movement uncon-
sciously. Miles et al. (2010) find in their experiment that their participants lean forward
while thinking about future events. On the other hand, they lean backward while thinking
about past events.

Cienki (2013) suggests that this mapping mechanism is how human produces metaphoric
gesture. He et al. (2018) show an example where a person rises his hand to describe
the high level (of the quality/sophistication) of a presentation (see Figure 2.12). In this
case, through “metaphorizing”, the quality/sophistication of the presentation is thought
as something which has the height property (e.g. a mountain).

2.6.1 Image Schema and Gesture

Lücking et al. (2016) do an experiment where they ask the participants to perform ges-
tures to manifest various terms, including image-schema terms, by using arm and hand
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movements. The purpose of this experiment is to find out if the participants perform
similar gestures for the same stimulus.

The image-schema terms they use are taken from Mehler et al. (2015). Mehler et al
propose the following image schemas: “container”, “part-whole”, “link”, “center-periphery”,
“source-path-goal”, “front-back”, “up-down”, “left-right”, “contact”, “texture”, “near-far”.
Lücking et al also add other terms for their experiment. In total, there are 27 terms used in
the experiment: “matching”, “zoom-in”, “zoom-out”, “contains”, “whole”, “part”, “back”,
“center”, “collection”, “front”, “link”, “periphery”, “down”, “left”, “right”, “rotation”, “up”,
“source-path-goal”, “contact”, “far”, “near”, “texture”, “blockage”, “attraction”, “bad/dis-
like”, “equilibrium”, and “good/like”. It can be observed that each of the “part-whole”,
“center-periphery”, “front-back”, “up-down”, “left-right”, and “near-far” image schemas is
split into two stimulus terms.

Each participant is asked to manifest 5 or 6 stimulus terms. Therefore, each stimulus
term is manifested by 10 participants. Lücking et al find that the participants perform
similar gestures for some stimulus terms: “good”, “like”, “bad”, “dislike”, “equilibrium”,
“source-path-goal”, “left” and “right”. The stimulus terms of “good” and “like” are often
manifested by a thumb-up gesture. The stimulus terms of “bad” and “dislike” are often
manifested by a thumb-down gesture. These thumb-up and thumb-down gesture results
are expected because of their emblematic nature. For the stimulus term “equilibrium”, the
participants often manifest it by stretching out both their arms horizontally and swing-
ing them slightly, which imitates the motion of tightrope walking. For the stimulus term
“source-path-goal”, the manifested gesture often imitates the motion of moving an invis-
ible object through the space. For the stimulus term “left”, it is usually performed by the
left hand only. On the other hand, the stimulus term “right” is usually performed by the
right hand only.

2.6.2 Image Schema Concordance in Different Modalities

In this section, we describe Cienki (2008)'s experiments to investigate the concordance
of image schema in different modalities. The idea is to have the same “message” but in
different modalities, and then the participants are asked to label those “messages” with
the image schema. These image schema labels are then investigated for concordance
between the different modalities. Cienki (2008) does three experiments where he asks
the participants to label each stimulus with an image schema. The image schemas used
in the experiment are “container”, “cycle”, “force”, “object”, “surface”, and “path”. The
participant can also choose “other” if he or she feels that none of those predefined image
schemas suit the sample. Cienki creates his stimulus based on a set of video-recorded
conversation.

The videos are first classified according to their gesture type. Here, the gesture types
are “concrete referential” gesture, “abstract referential gesture”, or “other” gesture. Both
the “concrete referential” and the “abstract referential” gesture refers to an object, either
through its properties, its actions, or its location. The difference between the “concrete
referential” gesture and “abstract referential” gesture is on whether the gesture refers to
a concrete object or to an abstract idea. The “other” gesture does any other things, such
as representing an action (e.g. presenting or dismissing an idea) or discourse structuring
(e.g. counting, marking emphasis, etc.). The details about the gesture types are provided
in Table 2.1. However, most of the “concrete referential” gestures are pointing gestures, so
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Concrete Reference Abstract Reference Other
Objects Entities Actions

(e.g. a picture frame) (e.g. the framework of a theory) (e.g. dismissing, requesting,
swearing, hand clapping)

Properties Properties Emphasis
(e.g. the straight (e.g. honesty as (e.g. through beats)
edge of a ruler) straight and solid)

Behaviors and Actions Behaviors and Actions Structuring
(e.g. the rolling (e.g. the “rolling” (e.g. with

of a tire) development of a process counting gestures)
Relative location Relative location and Presenting
(e.g. the space relative time (an idea or argument)
behind oneself) (e.g. the past as

behind oneself)

Table 2.1 – The gesture types in Cienki (2008)

the videos with “concrete referential” gestures are excluded, leaving only the videos with
“abstract referential” or “other” gestures.

Each video gets its modalities modified, such that each video yields four stimuli with
different conditions:

1. With the video but neither the sound nor the transcript

2. With the video, the sound, and the transcript

3. With the sound and the transcript, but no video

4. With the transcript, but neither the video nor the sound

Each participant only labels one condition. There are 20 participants for each condition.
Cienki then measures the agreement of the image schema labels between the different
conditions. Because the different conditions are actually different set of modalities of the
same set of videos, the image schema labelling agreement can be seen as the consistency
of the likely image schema across different modalities.

In the first experiment, for each stimulus, Cienki counts the number of participants
who label the stimulus with the most frequently chosen image schema for each particular
stimulus, and then the distribution is calculated for each condition. For each condition, the
choices show higher likelihood than chance and there is a reliable agreement between the
four conditions. However, it should be noted that in this experiment, the most frequently
chosen gesture is for each stimulus. It does not guarantee that each of the four stimuli
which come from the same video have the same most-frequently-chosen image schema.
Indeed, on this, the agreement exists only between conditions 1 and 2 and between con-
ditions 3 and 4. For the agreement between conditions 1 and 2, the results are M=9.5
SD=3.23 and M=9.3 SD=2.69 respectively. For the agreement between conditions 3 and
4, the results are M=8.6 SD=2.49 for condition 3 and M=8.7 SD=2.47 for condition 4.
When the stimuli are split into those which are associated with “abstract referential” ges-
tures and those which are associated with “other” gestures, there is a greater agreement
among those with “abstract referential” gestures than among those with “other” gestures
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in conditions 1 and 2. In condition 1, the results are M=10.5 SD=3.28 and for the “ab-
stract referential” gestures and M=8.5 SD=2.91 for the “other” gestures. In condition 2,
the results are M=10 SD=2.74 for the “abstract referential” gestures and M=8.7 SD=2.56
for the “other” gestures.

In the second experiment, Cienki counts the number of image schemas chosen at least
once for each stimulus, and then the distribution is calculated for each condition and
for each gesture type (i.e. “abstract referential” or “other” gesture). The idea is that a
lower number of image schemas chosen at least once signifies a greater agreement among
the participants. Between the two gesture types, there is only a significant difference in
condition 2, where there is a higher agreement for the stimuli associated with “abstract
referential” gestures. The results are M=5.0 SD=1.05 for “abstract referential” gestures
and M=5.7 SD=0.81 for “other” gestures.

In the third experiment, Cienki counts the number of stimuli in which all six image
schemas and the “other” label are chosen at least once for each condition and for each
gesture type (i.e. “abstract referential” or “other” gesture). A lower number suggests
a higher agreement among the participants. In conditions 1 and 3, there is a higher
agreement for the “abstract referential” gestures. In condition 1, the results are 1 stimulus
for “abstract referential” gestures and 7 stimuli for “other” gestures. In condition 3, the
results are 3 stimuli for “abstract referential” gestures and 10 stimuli for “other” gestures.

Cienki concludes that gestures provide an easily accessible manifestations of image
schemas. The “easy” qualifier refers to the fact that gesture is observable by human eyes
compared to abstract thinking process in human's brain. Cienki also concludes that ges-
tures can depict/invoke different image schemas from the speech. This is related to our
explanation in Section 1.3.1 that speech and gesture can convey complementary informa-
tion.

2.7 Conclusion

In this chapter, we present the background on the gesture generation problem. We discuss
different definitions of communicative gestures, types of gestures, and phases of gestures.
We also discuss about the relationship between gestures and speech. The relationship be-
tween gestures and speech is the underlying reason which makes gesture prediction from
speech becomes plausible. Other than gestures, we also discuss about eyebrow move-
ments. We discuss about the representation of eyebrow movements and that eyebrow
movements are related to speech. It can therefore be seen that both eyebrow movements
and hand gestures are related to speech. We also discuss about how gestures can be repre-
sented. We discuss the principal works on the gesture representations and both their simi-
larities and differences. Lastly, we discuss about reasoning pattern called “image schema”.
We give a brief introduction about image schema and we discuss about its relationship
between image schema and metaphoric gesture, including the relevant experimental find-
ings. We also explain the experimental findings about the concordance of image schema
in different modalities.
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Chapter 3
Related Work

Existing gesture generators work by taking in the text or the acoustic as the input and
generate the gestures accordingly. It means that the systems assume that gestures can
be inferred according to the corresponding text or acoustic. However, according to Mc-
Neill (1992), gestures and speech are generated from a common process. McNeill also
states that in some cases gestures and speech complement each other instead of convey-
ing the same information. In this case, it is impossible to infer the gestures according
to the speech. It breaks the underlying assumption of existing gesture generators. Yet,
by simplifying the relationship between speech and gestures into that gestures can be
computed according to the speech, the problem of gesture generation becomes tractable
because speech can be easily observed, unlike the thinking process in human's brain. The
earliest gesture generators are rule based systems; i.e. they generate gestures according
to the set of rules gathered from the literatures. However, because of the complexity of
the rules, machine-learning based systems are developed so that the rules can be learned
automatically.

3.1 Rule-Based System

The earliest gesture generators are rule based systems; i.e. they generate gestures accord-
ing to statically defined set of rules. The rules come from literatures or a prior statistical
analysis. BEAT (Behavior Expression Animation Toolkit) by Cassell et al. (2004) is one
of the pioneers of these systems. BEAT takes the text as its input and then generates the
gestures accordingly. BEAT processes the text by parsing it and then marking where the
new topic starts. The identification of where the topic starts is done because Cassell et
al consider gesture to be less likely to happen when the topic just started. The parsing
is done so that verb phrase and noun phrase can be distinguished from each other. The
differentiation between verb phrase and noun phrase is important because BEAT has dif-
ferent sets of rules for actions (i.e. verb phrase) and object (i.e. noun phrase). There
is also a word tracker to decide if a word is newly encountered or has been seen earlier,
because Cassell et al consider that there should be some gestures when there is a new
word. Lastly, BEAT also checks for contrast between adjectives by using WordNet (Miller
(1995))'s synonym and antonym relationships because Cassell et al consider there should
be some gestures at the contrast. The architecture and the processing pipeline of BEAT
can be seen in Figure 3.1.
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Figure 3.1 – The architecture and the processing pipeline of BEAT (Cassell et al. (2004))

NVBG (Non-Verbal Behavior Generator), by Lee and Marsella (2006), is another ges-
ture generator. Unlike BEAT whose rules come only from literature, NVBG also contains
rules extracted from statistical analysis of non-verbal behaviors observed in conversation
videos. Unlike BEAT, NVBG also takes into account the conversation context. The con-
versation context consists of the “affect”, the “coping”, the “emphasis”, and the “turn”.
The “affect” is the affective state of the agent (e.g. joy, distress, etc.). The “coping” is
the coping strategy employed by the agent. The “emphasis” is the part of the text input
which should be emphasized. The “turn” is the turn-taking action which the agent should
take (i.e. “take”, “give”, or “keep”). The idea is that this conversation context affects
the non-verbal behavior. For example, McClave (2000) finds that head nods are signs
of affirmation or backchannel. Affirmation itself is related to the coping strategy while
backchannel is related to the turn taking. In another example, Ekman (1982) finds that
eyebrow movements are signs of emphasis. These conversational context parameters are
especially relevant because NVBG does not take the acoustic as input. It might be pos-
sible to infer some of the conversation context from the acoustic, but the acoustic is not
available as an input. The text input is parsed into phrases. These phrases and words,
along with the conversational context, are then mapped into pre-defined actions (e.g. in-
terjection, negation, affirmation, etc.) according to the aforementioned rules which are
extracted from literature and statistical analysis of conversation videos. Then, there is
another mapping from the action to the gesture from which the gesture is generated. The
architecture and the processing pipeline can be seen in Figure 3.2.

Cerebella, by Lhommet and Marsella (2013), is another gesture generator. Unlike
both BEAT and NVBG, Cerebella takes the acoustic as an input as well, on top of the text
input. However, the acoustic input is only limited to the word stress and the overall agi-
tation. The overall agitation is a class which indicates whether the voice is breathy, tense,
or modal (i.e. normal). The classification comes from the output of Scherer's classifier
(Scherer et al. (2013)). The inputs are then processed to obtain the communicative func-
tions. Similar to BEAT and NVBG, the text is parsed into phrases. There are five computa-
tions of communicative function, namely “emphasis analysis”, “emotion analysis”, “initial

26



3.2. PRE-NEURAL-NETWORK SEMANTICS-BASED SYSTEM

Figure 3.2 – The architecture and the processing pipeline of NVBG (Lee and Marsella
(2006))

lexical analysis”, “initial rhetorical analysis”, and “knowledge elaboration analysis”. The
“emphasis analysis” infers which words are being emphasized according to the acoustic's
word stress input. The “emotion analysis” decides the arousal level (high, medium, or
low) based on the acoustic's overall agitation. The “initial lexical analysis” works by map-
ping phrases/words into a set of pre-defined communicative functions by using WordNet
(Miller (1995)) and by classifying whether the noun refers to an abstract concept or a
concrete object. The abstract concept or concrete object classification is relevant because
metaphoric gestures are often used to represent abstract concepts. The “initial rhetori-
cal analysis” infers the rhetoric-related communicative functions (limited to comparison
and contrast only). The “knowledge elaboration analysis” is to combine the previously-
computed communicative functions. A part of its process is to resolve conflicts between
different communicative functions and semantic disambiguation. Each of the computed
communicative functions is mapped to a set of possible gestures. Having multiple possible
gestures for each communicative function allows the agent to perform more varieties of
gestures. The architecture and the processing pipeline can be seen in Figure 3.3.

The rule based systems have an inherent problem of the rule complexity. The rules
governing the relationship between speech and gestures are complex and are still being
studied. This problem led to the development of machine-learning based systems where
the relationship is automatically learned instead of being manually set by its creators.
Traditionally, the machine-learning based systems are categorized into either a semantic-
based system or an acoustic-based system. A semantic-based system computes the gesture
output according to the text input. An acoustic-based system computes the gesture output
according to the speech acoustic. However, this division also affects the type of the gen-
erated gestures because beat gestures are related to the speech acoustic while ideational
gestures are related to the semantics. That said, there is a recent work which tries to
use both the semantic and the acoustic. There are also recent works which address new
problems which were not addressed in rule-based systems.

3.2 Pre-Neural-Network Semantics-Based System

These systems extract semantic features from the text and then learn the relationship be-
tween those features with the gestures. Because they do not use the acoustic information,
naturally they do not generate beat gestures. Instead, they generate ideational gestures.
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Figure 3.3 – The architecture and the processing pipeline of Cerebella (Lhommet and
Marsella (2013))

Bergmann and Kopp (2009)'s technique generates iconic gestures by using Bayesian
decision network. The learned data comes from their experiment where they ask dyads
to converse. The conversation topics are giving directions and describing landmarks. The
system computes the gestures based on the referent features, the discourse context, and
the previous gesture. The reference features themselves are whether the gesture can be
decomposed, its symmetry (if exists), its main axis, its 3D position, and its shape type.
The discourse context features are the structure (introduction of the topic or the content
of the topic), whether it is private or shared, and the communicative goal. The gesture
information, however, is in the form of a vector of classes. For example, part of the
gesture information is the finger orientation whose possible values are up, down, left,
right, towards, and away.

Ishii et al. (2018)'s technique is based on Conditional Random Field to generate the
body motion based on the natural language analysis features. Those features are the
phrase lengths, word positions, bag of words, dialogue acts, parts of speech, and large-
scale thesaurus. The features are extracted beforehand. Similar to Bergmann's technique,
the motion is represented as a vector of classes. Ishii et al's technique, however, does not
model the temporal dependency because there is only one output vector for each sample.

Lhommet and Marsella (2014) propose a technique which generates metaphoric ges-
tures from communicative intention. Communicative intention by itself is obviously ab-
stract and wide ranging, so they limit it into three communicative intentions: depicting
a property of an element, adding or removing an element to a set, and contrasting the
property of two elements. These communicative intentions are then mapped to concrete
objects by using OpenCyc ontology 1, which are then mapped to gestures according to
a set of rules. The theory underlying this approach is image schema (Johnson (2013)),
which states that human reasons by mapping one entity into another (see Section 2.6).

1http://www.cyc.com
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Ravenet et al. (2018a,b) develop a technique which computes the shape of metaphoric
gestures according to a representation of the text. This is done by computing the image
schema from the text. A set of rules then decide the gesture shape according to the image
schema. Ravenet et al's technique works by firstly parsing the sentence to get the lemmas
and their parts of speech. Then, by using a simplified Lesk algorithm, it decides the actual
sense of the lemma. From the actual sense, then it traverses the WordNet sense graph
through the hypernym edges until it finds a sense which has been specified to belong to a
certain image schema. There are two rules in this rule-based technique, firstly the list of
image schemas and their corresponding WordNet senses, and secondly the gesture shape
for each image schema.

Ravenet et al's technique is innovative because it provides a way to compute the im-
age schema from the text. Unlike the technique of Lhommet and Marsella (2014), the
technique of Ravenet et al takes a free-form text. The likely existence of relationship be-
tween image schema and metaphoric gesture has been discussed in literature (see Section
2.6), but Ravenet et al's technique is able to automatically infer the image schema from a
free-form text input.

3.3 Pre-Neural-Network Acoustics-Based System

These models learn the body movement according to the speech acoustic. Because they
do not use the semantic information, they only generate beat gestures. A common fea-
ture among these techniques is that they express the problem as a sequence prediction
problem: the input is a sequence of acoustic features while the output is a sequence of
movement.

Levine et al. (2010), the pioneer of this approach, use Conditional Random Field to
model the sequential dependency. Levine et al use fundamental frequency, intensity, and
the lengths of each syllable as their input. This technique requires a motion library. How-
ever, the technique has a constraint such that the chosen consecutive motion segments
from the library must connect smoothly with each other. This constraint was resolved in
Chiu and Marsella (2014).

Chiu and Marsella (2014) use normalized amplitude quotient, peak slope, funda-
mental frequency, energy, energy slope, spectral stationarity, and the voice tenseness as
their input. They add Gaussian Process Latent Variable Models to ensure the movement's
smoothness. This addition enables the technique to generate smooth transition between
positions, and thus obviating the need of an extensive motion library to generate smooth
motions, and thus solving the problem at Levine et al. (2010). However, the technique
of Chiu and Marsella learns the mapping from prosody to motion in two steps, namely
mapping from prosody to discrete gesture annotations and mapping from the discrete ges-
ture annotations to the motion. Thus, the discrete gesture annotation is an information
bottleneck.

Bozkurt et al. (2016) use Hidden Semi-Markov Model to model the sequential depen-
dency with intensity, fundamental frequency, and confidence-to-pitch as input. Similar
to the technique of Chiu and Marsella, the technique of Bozkurt et al is not limited by
a motion library to generate smooth motions because the technique can automatically
smoothen the transitions. However, Bozkurt et al's technique internally does clustering of
the acoustic input and convert the acoustic input values into the cluster which the inputs
belong to. Effectively, it converts the real-valued inputs into a class. The technique does
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the same to the gesture. Effectively, it means there are information bottlenecks because
the real-valued acoustic and gesture information is compacted into classes.

3.4 Recent Semantics-Based Neural-Net Techniques

Ahuja and Morency (2019) develop a technique which predicts the body movement from
the text input. Fundamentally, this is achieved by creating a joint embedding of the text
and body movement in the same latent space.

The text itself is processed at the sentence level and is processed by using a word
embedding technique. The word embedding technique used is Word2Vec (Mikolov et al.
(2013)). Each word is represented as a vector by using Word2Vec, then they are chained
together into a sequence. The use of word embedding to represent semantic is innovative
because it represents the text as vectors. Vectors are convenient to use in machine-learning
based systems. Word-embedding vectors themselves are special because two such vectors,
if they are close to each other, then they are expected to have similar meanings (Jurafsky
and Martin (2000)). Thus, word embedding allows us to create a notion of how different
two words are. Before there is word embedding, we can say if two words are different,
but we cannot say whether the two words differ a little or a lot.

Ahuja and Morency (2019) represent the pose as the coordinates of the joints. These
joint coordinates are chained together to form a sequence to represent a movement.
Therefore, both the text and the body movement are represented as sequences. The
method to infer the movement from the text has three components. The first compo-
nent is that the pose representation is compacted into its latent representation by using
an autoencoder. The second component is that the sentence representation is mapped
into the vector space of the aforementioned latent representation of the pose. This second
component is the core idea of the method: that both the text and the body movement
are mapped to the same latent space. The third component is that the distance between
those two vectors is minimized, so effectively the representation at the latent vector space
becomes the joint embedding of both the text and the pose. Ahuja and Morency do both
objective and subjective evaluations to compare their method against Lin et al. (2018).
The objective evaluation is done by comparing the average position error, which is basi-
cally the average displacement of the joints from the ground truth. The method of Ahuja
and Morency performs better on the objective evaluation. For the subjective evaluation,
Ahuja and Morency ask the respondents “Which of the 2 generated animations is bet-
ter described by “<sentence>”?” where one animation is from the output of Lin et al.
(2018)and the other one is either from the output of Ahuja and Morency (2019) or from
the ground truth. The output from Ahuja and Morency's method is rated more favorable
than the output of Lin et al's method, but less favorable than ground truth.

In the gesture generation problem, the use of word embedding to represent the text
input opens a new line of techniques to represent the semantics in a way suitable for
machine learning. Representation learning itself is still an active research area, so there
can be new and better ways to extract the semantics from the text.

3.5 Recent Acoustics-Based Neural-Net Techniques

The recent acoustic-based systems, similar to the pre-neural-network ones, also express
the problem as a sequence prediction problem: a sequence of acoustic feature representa-
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tion as the input, a sequence of body movement representation as the output. However,
unlike the pre-neural-network techniques, the process in the new techniques does not
compact the acoustic feature values into a few classes only. Similarly, the movement is
also not compacted into only a certain number of possible movements.

Hasegawa et al. (2018) use Bi-Directional Long Short-Term Memory Hasegawa et al.
(2018) with Mel-Frequency Cepstral Coefficients as their input. Kucherenko et al. (2019)
extend the work of Hasegawa et al by compacting the representation of the motion by
using Denoising Autoencoder. They also experiment with other prosodic features, namely
the energy of the speech signal, the fundamental frequency contour logarithm, and its
derivative. They compare their results against the results of Hasegawa et al. In their
objective experiment, they find that their model's results have lower jerkiness than the
results of Hasegawa et al's model. Besides that, in their another objective experiment they
also find that the results of their model are more similar to the ground truth than the
results of Hasegawa et al's model in terms of average acceleration. Besides that, in their
subjective experiment, they find that the result of their model is perceived to be more
natural than the result of Hasegawa et al's model.

Ginosar et al. (2019) use UNet (Ronneberger et al. (2015)) with the timestep as one
of the dimensions to model the sequential dependency and use Mel-Frequency Cepstral
Coefficients as their input. They also add an adversarial learning component to so that
each possible input can have multiple correct output. They evaluate their model through
perceptive study and find that the adversarial learning component makes the resulting
agent's animation to be more similar to human’s gesturing style. The important contribu-
tion of this work is that the system learns a many-to-many relationship from speech into
movements. Previously, for each input, there is only one correct output. Besides that, once
the learning is done, the system would be deterministic: given the same input, the system
would yield the same output. On the other hand, the many-to-many relationship enables
a stochastic output. In the gesture generation problem, it enables the agent to say the
same thing twice, yet still produces different communicative gestures.

Ferstl et al. (2019) expand the use of adversarial learning further. They use multi-
ple discriminators to evaluate the generated motion according to several qualities: phase
structure, motion realism, intra-batch consistency, and displacement. They use funda-
mental frequency and Mel-Frequency Cepstral Coefficients as their input. Interestingly,
embedded within their model architecture, there is a phase classifier. The classifier takes
the three-dimensional velocities of 16 joints as inputs. The 16 joints correspond to the
joints of the arms, hands, and fingers. From the joints taken as the inputs, we can see that
these parameters attempt to capture the hand gesture. The classifier also takes the funda-
mental frequency as another input. The output of the phase classifiers are the phases. The
phases used are based on Kendon (1980)'s gesture phases. Specifically, the phases used by
Ferstl et al are “preparation”, “pre-hold”, “stroke”, “hold”, “independent hold”, “rest hold”,
“partial retract”, “retract”, and “none”. The purpose of the phase classifier is to enforce of
a realistic phase structure. For example, a preparation cannot be immediately followed by
a retraction.

It should be noted, however, although adversarial learning enables stochastic output,
it does not guarantee that the output will actually be diverse. Wu et al. (2021) develop a
technique based on Conditional Generative Adversarial Network to generate upper body
movement. They use the fundamental frequency, the intensity, and the first and second
derivatives of the fundamental frequency and the intensity. The technique has two vari-
ants: with an Unrolled Generative Adversarial Network and without one. The Unrolled
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Generative Adversarial Network is a method to increase the diversity of the output. In
their objective study, they find that the output distribution when they use the Unrolled
Generative Adversarial Network is more similar to the ground truth than when they do
not use it. However, in their subjective study where they ask the human participants to
rank the generated movements according to their naturalness, the system with the Un-
rolled Generative Adversarial Network performs similarly than the system without one.

3.6 Semantics+Acoustics Based System

Kucherenko et al. (2020) develop a technique to generate body movements based on both
the text and the acoustic of the speech. The text is represented by BERT (Devlin et al.
(2018)). Kucherenko et al use the log-power mel-spectogram to represent the acoustic,
following Ferstl and McDonnell (2018); Ginosar et al. (2019). The schema of the tech-
nique is in Figure 3.4. Kucherenko et al use a moving time window to define one sample.
Within each time window, which contains several frames, at each frame the text feature
and the audio feature are extracted, concatenated, and fed into a feed-forward neural
network layer. This layer acts as an encoder to reduce the dimensionality of the data.
The outputs of this layer are then concatenated to create a unified representation of the
entire input at that time window. This is then passed into many neural-network layers.
The model is also fed with the output of the previous time window to express the time-
dependency (i.e. the output of this time window is affected by the output of the previous
time window). They perform a subjective study for ablation purpose where, among others,
they remove either the audio input or the text input. The human respondents are shown
pairs of videos. In each pair, there is a video from the full model and there is another
video from the model whose one of the input modalities is removed. The respondents are
then asked four questions (Figure 3.5). When one of those input modalities is removed,
the respondents mark them worse than the full model in all the four questions. This is not
surprising, because when one of the input modalities is removed, then some information
(e.g. speech rhythm and the semantics) will no longer be available. However, surprisingly,
the outputs of the system without the text input is rated lower than the outputs of the sys-
tem without the audio input, even at the questions which are about the audio-related
properties, namely Q1 (In which video the character's movements most human-like?) and
Q4 (In which video are the character's voice and movement are more in sync?). Besides
that, in their other subjective study where they compare the performance of their system
against the system of Ginosar et al. (2019) which take only acoustic as the input, although
the system of Kucherenko et al performs better in both the human-likeness and on re-
flecting what the character says, it is notable that the performance difference is smaller
on “Q2: In which video do the character's movements most reflect what the character
says?” (Figure 3.6). This Q2 question is related to the semantics. Because the system of
Kucherenko et al takes both the audio and the text as inputs while the system of Ginosar
et al only takes the audio as input, the system of Kucherenko et al should perform much
better on the semantic quality. However, as can be seen in Figure 3.6 Q2, the preference
toward the system of Kucherenko et al against the system of Ginosar et al is only around
0.1 even though the system of Ginosar et al does not even take the text input. As a com-
parison, in Figure 3.6 Q1, which measures a speech rhythm related quality, the preference
toward the system of Kucherenko et al is around 0.25.

These results suggest that making use of both acoustics and text input effectively is
not a trivial problem. While using both modalities enable us to learn more information, it
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Figure 3.4 – Kucherenko et al. (2020)'s technique

does not guarantee that we will effectively learn more information. For example, it is not
certain if BERT is an ideal way to extract and represent the semantics from the text. Even
if an ideal embedding to represent the text is known, a more sophisticated technique to
combine both the acoustics and the text modalities might still be needed. Effective use of
both modalities, namely the acoustics and the text, is still an open problem.

3.7 Gesture Style

There are several works about gesture style. These works learn the gesture style of an
individual person and then they produce synthetic gestures with the style of a certain
person.

Neff et al. (2008) develop a system which takes a text as input and then generates a
gesture in the style of a specific person. The style is learned from data. The learning works
by firstly taking a video and its transcript and breaking the speech into phrases. Each
phrase is then classified into a semantic class. Meanwhile, the hand movement is broken
into its own “phrases” and each of them is classified into a gesture shape class. The style
of each person is defined as the probability that he performs a certain gesture shape given
the semantic class. For the generation, the system takes a text, breaks it into phrases,
gets the corresponding semantic class, and then chooses the corresponding gesture shape
class according to the aforementioned probability. In their subjective study, Neff et al run
an experiment with two persons being the gesture style template, and therefore there are
two possible styles. The experiment consists of two parts. In the first part, the participant
watches a video and is asked whose style is being used in the video. For this part, there
are roughly the same number of videos of either style. The participants answer correctly
69% of the time, which is above the chance. In the second part, one video for each style
is shown, and therefore there are two videos, and the user is asked to map the video to
the correct style. The participants answer correctly 88% of the time, which is above the
chance as well. These results suggest that Neff et al successfully produced the style.

Ahuja et al. (2020) also develop a system which generates gestures with the style of a
specific person. The system is based on a neural network generative model. They cast the
gesture generation problem as a style transfer problem. The style transfer technique was
initially applied for painting (Gatys et al. (2016)), but afterwards it is also applied at other
problems such as videos and speech (Ahuja et al. (2020)). In the style transfer problem, a
sample is decomposed into its content and its style. A synthetic sample is then generated
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Figure 3.5 – Kucherenko et al. (2020)'s ablation study result

Figure 3.6 – Kucherenko et al. (2020)'s comparison of their technique against the baseline
system from Ginosar et al. (2019)
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Figure 3.7 – Ahuja et al. (2020)'s technique

with the same content but a different style. The content and the style are learned from the
data instead of being explicitly defined. Specifically, the training samples are annotated
on which style they have: one sample has one style, but one style has many corresponding
samples. In the case of Ahuja et al. (2020), one person is one style. Therefore, effectively,
the de facto definition of style is the common properties of the different samples which
come from the same person. Unlike the system of Neff et al. (2008) which takes the text
as the input, the system of Ahuja et al takes the acoustic as the input. Unlike the system
of Neff et al, the system of Ahuja et al does not have a formula which explicitly defines
a style. The schema of Ahuja et al's technique is in Figure 3.7. In part a of the schema
(Mix-StAGE Training), where the learning part is shown, the Yp pose input is fed into
two encoders, Es

p which will extract the “style”, and Ec
p which will extract the “content”.

The matrix S will contain the learned style vectors. In part b of the schema (Mix-StAGE
Inference), Xa is the audio input and the S is the embedding/vector of the chosen style.
The value of the vector is obtained from the training. Ahuja et al conduct a subjective
study to test the style transfer capability. The human respondents are shown a pair of
videos: one video from the ground truth and the other one is generated by their system.
The two videos may or may not have the same style. There are four possible styles. The
respondent is asked whether the two videos have the same style. However, the percentage
of the correct answers is not very high, only around 20% , which is lower than chance. It
is possible that their style embedding is not enough to characterize each style. However,
this technique is still interesting, because it enables learning the style without creating an
explicit formula of what constitutes a style. Besides that, similar techniques have been
successfully applied for other problems, so it is possible that the future extensions of this
technique will perform better.

3.8 Iconic Gesture Shape

Nihei et al. (2019) use pre-trained VGG-16 neural network (Simonyan and Zisserman
(2014)) to statically learn iconic gestures from the images of the objects those gestures
represent. VGG-16 is a neural network model for object recognition in an image. This
neural network works by having many layers where different layers have different reso-
lutions. The early layers have high resolution with a lot of details of the image retained.
However, in the deeper layers, the details are eliminated and only the basic shape is re-
tained. Nihei et al feed images of concrete objects into the pre-trained VGG-16 network,
and then extract the underlying basic shapes of the objects from a deep layer of the net-
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work. These basic shapes can then be reproduced as iconic gestures. This technique is
innovative because although iconic gestures shows the simplified shape of the object, the
way to get the simplified shape was not known. However, this technique obtains the basic
shapes without any context. Iconic gestures are used for communication, so the shape
which is shown has to be relevant to the feature being spoken. This context is not taken
into account in the technique.

3.9 Existing Limitations

The existing works have various limitations and unexplored questions. We would like
to focus on some of those limitations and questions. The first limitation is that even
though there are works which attempt to generate gestures based on either the text, or
the acoustic, or both, there has not been a work which attempts to tell when to perform
beat gestures and when to perform ideational gestures. This is an important information.
When an ideational gesture is performed, it means the gesture is conveying a semantic
information. The gestures should depict the relevant semantic information, and therefore
the relevant information is from the text. On the other hand, when a beat gesture is per-
formed, it means the gesture is there to match the rhythm of the speech and the discourse
context (e.g. emphasis). In this case, the relevant information comes from the acoustic
features. This is the motivation why we work on the gesture timing prediction. We want
to know when ideational gestures are performed and when beat gestures are performed.
It should be noted, however, that the difference between ideational gestures and beat ges-
tures is not only about the form: a hand moving up and down might be beat gestures but
might also be an ideational gesture depicting an object moving up and down. The distinc-
tion must be made in the context of the accompanying speech. It should also be noted
that the categorization is actually not “pure”: a gesture can have both beat properties and
ideational properties at the same time, but we still can say that a certain gesture is more
beat or more ideational (McNeill (1992)). Therefore, the binary classification into beat
and ideational in this discussion is a simplification.

The second limitation we want to address is obtaining the ideational gesture shape,
especially metaphoric gesture. This gesture has to actually depict the abstract concept
being conveyed. The image schema concept which is used by Ravenet et al. (2018a,b) is
relevant for this. The image schema is derived from the semantics of the text. Although
image schema and its relationship with metaphoric gesture have been discussed in the
literature, it is not clear how to adapt them into a machine-learning based method. The
difficulty is that machine learning techniques take vectors as inputs, therefore the image
schema has to be converted into a vector first. However, it cannot be a random vector. A
simple solution is to represent the image schema as a one-hot representation, but one-hot
representation ignores the degree of difference between different image schemas. Newer
representation techniques, on the other hand, map the nominal objects to vectors in such a
way such that if two nominal objects are similar to each other, they will tend to be mapped
to two nearby vectors. Word embedding techniques also work according to that principle.
Thus, it is interesting to investigate how we can represent image schemas as vectors while
taking into account the similarity between them. This requires us to define that the notion
of image schema similarity. If we can map image schemas into vectors, then we will be
able to use image schema as an input of a machine learning model, which in turn can then
be used to learn gestures.
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The third limitation is the way the texts are represented by using word embedding
in the recent machine-learning based systems. Ahuja and Morency (2019) use Word2Vec
while Kucherenko et al. (2020) use BERT to represent the text. Although word embedding
works in such a way that the vector representations of two similar words will also be
likely close to each other, different word embedding models define the word similarity
differently. There are also other word embedding techniques other than Word2Vec and
BERT. It is interesting to investigate which word embedding technique is more suitable to
represent the text input for a gesture generation problem.

3.10 Conclusion

The earliest works on automatic gesture generation are rule-based systems. The rules
are extracted from literature or statistical analysis of some corpus. However, because of
the complexity of the rules, machine-learning based systems are developed. These systems
automatically extract the rules from the data. Some of these systems take only the acoustic
features as the inputs while some other take only the text as the input. The works which
use the acoustic features as the input tend to express the problem as a sequence prediction
problem where the input is a sequence of acoustic features and the output is a sequence of
gesture motion. The recent works which takes the text as the input use word embedding to
represent the text input. There is also a recent work which uses both the acoustic features
and the text as the inputs. There are also works which focus on style, namely generating
gestures with the style of a specific person. Recently, there is also a work on learning the
shape of iconic gestures based on the simplified shape of the object it represents.

Based on this state of the art, we identify three limitations and propose our research
questions accordingly. The first research question is that we want to predict the timing of
gestures, which means when to perform the ideational gestures and when to perform beat
gestures. The second question is that we want to obtain the shape of metaphoric gestures.
We will use the concept of image schema for this. The third question is that we want to
investigate which word embedding technique is more suitable to represent the text for
gesture generation problem.
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Chapter 4
GestIS Corpus

We use the Gest-IS English corpus by Saint-Amand (2018). The Gest-IS corpus contains
dialogues in English, Italian, and Bulgarian. However, we use only the English-language
dialogues. All information we write here is only about the English-language part of the
corpus. The speakers in the dialogues are university students of age between 22 and 26
years old. The dialogues themselves were recorded at the University of Edinburgh. The
corpus consists of 9 dialogues of a dyad, a man and a woman, both of them are sitting,
discussing various topics in a face-to-face setting. The total duration of the dialogues
which we use is around 50 minutes. In those dialogues, the speakers are talking about
the physical description of some places, the physical description of some people, scenes of
two-person interactions, and instructions to assemble a wooden toy. There is one video
(MOV format) per dialogue per speaker. In the video, both hands, the torso, and the
face of the speaker are visible. On the other hand, there is only one audio recording
per dialogue (WAV format), therefore the voices of the two speakers are mixed in the
same audio file. However, the two speakers rarely interject each other. An example of
the dialogue scene can be seen in Figure 4.1. The corpus has several layers of gesture
annotations: communicative or non-communicative gestures, the gesture types, and the
gesture phases. It should be noted that the annotations only take into account the hand
movements, which means at least one hand must do the gesture. There are separate
gesture annotations for the left hand and the right hand. The annotation was done by
using ELAN 1. The various annotations, as are displayed in ELAN can be seen Figure 4.2.
The corpus also has transcription timestamp. The transcription is for each word and there
are both starting and ending timestamps. On top of these readily available annotations,
we also extract the eyebrow movements from the video files and the acoustic features
from the audio files.

4.1 Communicative or Non-Communicative Gestures

The difference between communicative and non-communicative gestures is about whether
the gesture has a communicative role in the dialog. Communicative gestures are related
to the speech content or the rhythm of the speech. On the other hand, non-communicative
gestures are movements which have no relationship with the speech. Examples of non-
communicative gestures are scratching head or rubbing eyes. It should be noted that

1http://tla.mpi.nl/tools/tla-tools/elan/
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Figure 4.1 – The screenshot of one of the dialogues. We call the speaker on the left side as
“Speaker A” and the speaker on the right side as “Speaker B”

Figure 4.2 – The screen shot of the gesture annotation as is displayed in ELAN. A_ annota-
tion refers to the speaker A while B_ refers to speaker B. _LH_ refers to the left hand while
_RH_ refers to the right hand.

although the creator of this corpus calls these movements as non-communicative gestures,
what we call as “gesture” in our work refers exclusively to what this corpus calls “commu-
nicative gesture”.

4.2 Gesture Types

The gesture type annotation is based on the types as defined in McNeill (1992). This
annotation only exists for “communicative gesture” as is defined in section 4.1. In this
corpus, there are seven possible gesture types, namely iconic, metaphoric, concrete deixis,
abstract deixis, nomination deixis, beat, and emblem. Unlike the standard McNeill's ges-
ture classification, in this corpus the deictic is divided into three types, namely concrete
deixis, abstract deixis, and nomination deixis.

Concrete deixis is a gesture which points to a concrete object or a location which
exists in the vicinity of the speaker. For example, a gesture pointing to a nearby man
accompanying an utterance “I saw this man” is a concrete deixis gesture because the
gesture is pointing to an object which is in the vicinity of the speaker

Abstract deixis is a gesture which virtually points to an object or a location which does
not exist in the vicinity of the speaker. For example, a pointing gesture which points to-
ward nothing while accompanying an utterance “I saw this man” can be an abstract deixis
gesture because the gesture only virtually points to the man: the speaker is imagining that
the man he is talking about is in the direction he is pointing to. Similarly, a gesture of a
hand moving to the right side while accompanying an utterance “there is a bedroom on
the right” can also be an abstract deixis gesture because the bedroom he is talking about
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is not physically on his right side. Instead, he is imagining that he is inside the apartment,
and the bedroom he is talking about is on his right side.

Nomination deixis is a gesture where the index finger is extended to emphasize a word
or a phrase. This gesture does not point to an object or location, neither physically nor
virtually. An example of this is the gesture of an index finger pointing upward accompa-
nying the utterance “Tom is the man who can help us” and the gesture coincides with the
word “Tom”. This gesture serves to put the emphasis at the mention of Tom.

4.3 Gesture Phases

The gesture phase annotation is based on the phases as defined by Kendon (1980). This
annotation only exists for “communicative gesture” as is defined in section 4.1. In this cor-
pus, there are seven possible gesture phases, namely preparation, pre-stroke hold, stroke,
post-stroke hold, partial retraction, retraction, and recoil. It should be noted that in this
corpus, beat gestures have phases like ideational gestures.

For the stroke phase, there is a problem on how to disambiguate a stroke which con-
tains repetitive movement from multiple strokes. It should be remembered that multiple
gestures can indeed be chained together. The disambiguation is done according to the
movement uniformity. If the movements are symmetrical and uniform, then they belong
to the same stroke. If the movements are not uniform, then they are different strokes.
However, if the speed and movement direction change, then the slower one is a prepara-
tion of the next gesture while the rapid one is the stroke. For pointing gesture used as a
concrete deixis gesture, the stroke is defined as the act of extending the finger instead of
the act of holding the finger straight.

There is also a problem of disambiguating the hold phases. This is also because mul-
tiple gestures can be chained together. It is not always clear if a hold phase is a post-
stroke-hold (i.e. a hold following the previous stroke) or a pre-stroke hold (i.e. a hold
preceding the next stroke). In this case, the linguistic cues are used to disambiguate the
two. Pre-stroke holds are more likely to accompany discourse connectives, pronouns, and
temporal adverbial (e.g. “while” and “when”). Pre-stroke holds are also more likely to
happen during hesitation pauses. On the other hand, post-stroke holds are more likely to
happen during a fluent speech.

The phase annotation is done by a frame-by-frame analysis. This is done so that the
speed difference and the movement can be observed more clearly. For example, when the
hand is moving, it will appear blurred. On the other hand, when the hand is not moving,
it will appear clear. This difference can be used to mark the hold phases.

It can be seen that the ambiguity problem in the phase annotation comes from the fact
that consecutive gestures can be chained together. In the event of multiple movements
in the stroke, it would have to be decided whether those multiple movements actually
belong the one stroke. And in the event that there are two strokes with a hold in between,
it would have to be decided whether that hold is a post-stroke hold of the first gesture or
a pre-stroke hold of the second gesture.

4.4 Gesture Statistics

We count the number of each gesture type and we calculate their average duration (Ta-
bles 4.1, 4.2, 4.3, 4.4). We follow the segments given in the corpus (Figure 4.2). As in
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Gesture Segment Count Average Duration (second)
Beat 46 0.849

Metaphoric 55 1.501
Iconic 56 2.179

Concrete Deixis 6 1.367
Abstract Deixis 22 2.177

Nomination Deixis 1 0.960
Emblem 4 1.770

Table 4.1 – The left hand gesture statistics of speaker A

Gesture Segment Count Average Duration (second)
Beat 38 0.807

Metaphoric 43 1.236
Iconic 91 2.026

Concrete Deixis 18 1.753
Abstract Deixis 33 1.863

Nomination Deixis 1 0.520
Emblem 3 2.120

Table 4.2 – The right hand gesture statistics of speaker A

the corpus, we differentiate the left hand gestures and the right hand gestures. We also
differentiate the gestures according to the speaker.

We can observe in Tables 4.1, 4.2, 4.3, and 4.4 that beat gestures tend to be short. This
is probably caused by the fact that beat gestures have simpler shapes. Unlike ideational
gestures, beat gestures do not convey complex concept nor object. Surprisingly, the
metaphoric gestures tend to be shorter than iconic gestures even though both of them
can have complex shape. The metaphoric gestures are also more numerous. Probably this
is caused by the topic of the conversations which is more about physical objects. We also
observe that nomination deixis tend to be shorter than both the concrete deixis and ab-
stract deixis. This is probably because nomination deixis is more like a beat gesture than
a deixis gesture. Nomination deixis does not point to an object or location, but marks an
emphasis. In this respect nomination deixis is more like beat gestures than deixis gestures.
Indeed, we observe that the average duration of the nomination deixis are similar to the
average duration of beat.

We also count the number of the strokes of the ideational gestures and we calculate
their average duration (Tables 4.5, 4.6, 4.7, 4.8). It should be noted that the number of
the strokes can be less than the number of the corresponding gesture segments (Tables
4.1, 4.2, 4.3, 4.4) because a gesture can be interrupted, and thus preventing the stroke
from being executed. We also follow the stroke segments as given in the corpus (Figure
4.2). As in the corpus, we differentiate the left hand strokes and the right hand strokes.
We also differentiate the strokes according to the speaker.

We observe in Tables 4.5, 4.6, 4.7, and 4.8 that the average stroke duration of nomi-
nation deixis is shorter than the others. Iconic gesture strokes tend to be slightly longer
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Gesture Segment Count Average Duration (second)
Beat 93 1.008

Metaphoric 57 1.267
Iconic 69 2.005

Concrete Deixis 17 1.696
Abstract Deixis 82 1.608

Nomination Deixis 7 0.931
Emblem 2 2.220

Table 4.3 – The left hand gesture statistics of speaker B

Gesture Segment Count Average Duration (second)
Beat 42 1.027

Metaphoric 56 1.329
Iconic 69 2.009

Concrete Deixis 44 1.872
Abstract Deixis 37 1.666

Nomination Deixis 17 1.226
Emblem 2 2.180

Table 4.4 – The right hand gesture statistics of speaker B

Gesture Stroke Count Average Duration (second)
Metaphoric 47 0.467

Iconic 50 0.486
Concrete Deixis 6 0.420
Abstract Deixis 22 0.489

Nomination Deixis 1 0.280

Table 4.5 – The left hand ideational gesture stroke statistics of speaker A

Gesture Stroke Count Average Duration (second)
Metaphoric 39 0.414

Iconic 86 0.765
Concrete Deixis 16 0.380
Abstract Deixis 31 0.512

Nomination Deixis 1 0.240

Table 4.6 – The right hand ideational gesture stroke statistics of speaker A
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Gesture Stroke Count Average Duration (second)
Metaphoric 55 0.498

Iconic 66 0.695
Concrete Deixis 15 0.443
Abstract Deixis 74 0.555

Nomination Deixis 6 0.333

Table 4.7 – The left hand ideational gesture stroke statistics of speaker B

Gesture Stroke Count Average Duration (second)
Metaphoric 56 0.444

Iconic 67 0.596
Concrete Deixis 42 0.435
Abstract Deixis 33 0.559

Nomination Deixis 17 0.409

Table 4.8 – The right hand ideational gesture stroke statistics of speaker B

than the others, but the difference is not much. The ideational gesture strokes other than
the nomination deixis seem to have similar average durations.

4.5 Eyebrow Movement Extraction

We use OpenFace (Baltrusaitis et al. (2018)) to extract the eyebrow movements. OpenFace
extracts facial movements, encoded by using Facial Action Coding System (FACS) (Friesen
and Ekman (1978)). FACS divides a facial movement into the constituent movements.
Each constituent movement is called Action Unit (AU).

OpenFace works in two steps. Firstly, it detects the facial landmark points from the
video and track them. Secondly, OpenFace detects the Action Units's intensity and pres-
ence. The step of detecting and tracking the facial landmark points is performed by a
neural network model called Convolutional Experts Constrained Local Model (CE-CLM)
(Zadeh et al. (2017)). This first step is important because before detecting the Action
Units, it is necessary to locate the face itself and the facial landmarks. Those facial land-
marks can be seen as the dotted areas in Figure 4.3. The second step is then performed
by a Support Vector Machine based technique from Baltrušaitis et al. (2015) to detect the
presence and intensity of the Action Units.

OpenFace yields the presence and intensity of all the Action Units. Sometimes, some
Action Units are not present. This is expected. For example, when the eyebrow is not
visible, the eyebrow-related Action Units should be marked to be not present. There is
also a confidence rate which signifies how confident OpenFace is on its reading.

We apply a two-step filter to clean the data. The first step is eliminating those whose
confidence rate is below 0.85. Basically, we remove the readings which we are not sure
about. In the second step, we take the consecutive values where the Action Unit is always
present as one segment, and we eliminate the entire segment if their average intensity is
below 1. Basically, we remove the readings whose intensity is too low.
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Figure 4.3 – OpenFace's facial landmark point tracking
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AU01 AU02 AU04 Segment Count Average Duration (second)
X 7 7 8 1.835
7 X 7 8 0.355
7 7 X 7 1.606
X X 7 13 1.302
7 X X 14 0.983
X 7 X 15 1.728
X X X 19 1.465

Table 4.9 – The speaker A's eyebrow movement statistics. The combination of different
AUs indicate a union

AU01 AU02 AU04 Segment Count Average Duration (second)
X 7 7 8 2.140
7 X 7 8 2.275
7 7 X 8 15.580
X X 7 13 2.071
7 X X 15 9.427
X 7 X 13 10.262
X X X 18 7.951

Table 4.10 – The speaker B's eyebrow movement statistics. The combination of different
AUs indicate a union

There are three action units (AUs) which represent eyebrow movements, namely AU1
(inner brow raiser), AU2 (outer brow raiser), and AU4 (brow lowerer). The presence
of either AU1 or AU2 represents rising eyebrow while the presence of AU4 represents
lowering eyebrow.

4.6 Eyebrow Movement Statistics

The corpus does not have the eyebrow movement annotation. However, the corpus has
the conversation videos where the speaker's face is visible. The eyebrow movement in-
formation can therefore be extracted from those videos. These eyebrow movements are
represented by Action Units (AUs) 1, 2, and 4. We calculate the statistics of those Action
Units (Tables 4.9, 4.10). For this data, the notion of segment we use simply means a
continuous activation of the Action Unit in question. Several action units can be active
concurrently, therefore we present the statistics of the union of the activation of differ-
ent action units. Following the gesture statistics, we split the statistics according to the
speaker.

We observe in Tables4.9 and 4.10 that between speakers A and B, the number of seg-
ments are similar, but the average durations is much higher on speaker B. For speaker A,
we observe that the average duration of AU2 (outer eyebrow raiser) is much shorter than
AU1 or AU4. For speaker B, we observe that the average duration of AU4 (i.e. eyebrow
lowerer) is much longer than the average duration of AU1 or AU2. Interestingly, despite
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Figure 4.4 – OpenSmile's pipeline to extract F0. cWaveSource is the component to read
the WAV audio file and cCsvSink is the component to write the output into a CSV file.
cPitchAcf is the component which extracts the F0

of the relationship between beat gestures and eyebrow movements (see Section 2.4), we
do not find any concurrence of the eyebrow movements and beat hand gestures.

4.7 Acoustic Features Extraction

Although audio processing has a long history in computer science, audio data has to be
processed first to extract the useful features. We use OpenSmile (Eyben et al. (2010))
to extract those audio features. OpenSmile is used by creating a pipeline of component.
Each component takes certain features as the input and yields certain other features as the
output. There are also special components which read the audio file from the persistent
storage or write the extracted features as a file to the persistent storage. These components
can be chained together so that we can extract the features we want from the audio file.
For example, if we want to extract the pitch features, the component which reads the pitch
features need the output of the autocorrelation component. An example of such pipeline
is in Figure 4.4.

we use OpenSmile to extract the audio features with 100 milliseconds time-step. We
choose three prosody features, fundamental frequency (F0), F0 direction score, and in-
tensity, for their temporal relation with gestures (Loehr (2012); Cravotta et al. (2019)).
We also extract the Mel-frequency cepstral coefficients (MFCC), which for each time step
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is represented as a 13-dimensional vector. The Mel-frequency cepstral coefficients them-
selves have been successfully used to generate body movements from the speech accoustic
(Hasegawa et al. (2018); Kucherenko et al. (2019)).

4.8 Conclusion

Gest-IS corpus Saint-Amand (2018) contains face-to-face dialogues of a dyad. There are
separate videos of each speaker, but the audio recording is mixed. The corpus has sev-
eral gesture annotations. The first one is communicative or non-communicative gestures,
which tells whether the movement is for a communication purpose. The second one is the
gesture type, which is based on McNeill (1992)'s classification. The third one is the ges-
ture phase, which is based on the phase classification by Kendon (1980). The annotation
for the left hand and the right hand are separate. The corpus also includes the transcript
of the conversation.

We also calculate some statistical measures of the data. We calculate the number of
segments and the average duration of the gestures and the strokes. We separate the data
according to the hand and the speaker. We also calculate the eyebrow movement statis-
tics. The corpus does not include eyebrow movement in its annotation, but we extract it
ourselves. We calculate the number of segments and the average duration of the eyebrow
movements with different combinations of the Action Units.
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Chapter 5
Prediction of Gesture Timing

In this work, we attempt to tell when a virtual agent should perform different types of
gestures. In another word, we learn the gesture timing. This includes the timing of
when no gesture is performed. We distinguish beat gestures from ideational gestures.
Additionally, for the ideational gestures, we also distinguish the stroke phase from the
other phases.

This work can be seen as the bridge between the acoustics-based generators (see Sec-
tion 3.5) and the semantics-based generators (see Section 3.4) because beat gestures are
related to the speech's rhythm while ideational gestures are related to the speech's seman-
tics. Although it can be argued that a technique which learns the body movements from
both the text and the acoustics (see Section 3.6) also implicitly learns the timing, there is
also a benefit from separating the learning of the timing from the learning of the shape.
First, when the entire movements are generated together, it might not be clear which
segments are supposed to represent the semantics and which segments are supposed to
mark the rhythm or discourse context. Secondly, it also enables a different model which
computes the gesture shape, which can be developed separately, to be plugged in.

We also propose an objective evaluations metric based on a sequence comparison tech-
nique which tolerates shift and dilation to a certain extent. The underlying spirit is similar
to the other works which allow many-to-many relationships (e.g. Ginosar et al. (2019);
Ferstl et al. (2019); Wu et al. (2021)): for each input, there can be multiple correct out-
puts. However, our approach is more narrow: we only tolerate differences in the form of
shifts and dilations.

5.1 Feature Extraction

We use the Gest-IS English corpus (see Chapter 4). We divide the communicative gestures
into beat and ideational (i.e. everything other than beat). We distinguish beat gestures
from ideational gestures because ideational gestures convey a specific meaning while beat
gestures mark the speech rhythm and discourse context. Moreover, beat gestures tend to
appear at the start of the topic while ideational gestures (Cassell et al. (2001)) tend to
appear in the content of the topic where the new information is carried (Halliday (1973)).
We also divide the ideational gestures according to their phases into strokes and the other
phases because the stroke phase is known to be where the meaning is conveyed and is
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usually near the pitch accent (Kendon (1980)). Our usage of gesture phases as the classes
bears some similarity with Ferstl et al. (2019) (see Section 3.5).

As such, we classify the gestures into four classes:

• “NoGesture” refers to the instance when the person does not perform a gesture.

• “Beat” refers to the instance when the person does beat gesture.

• “IdeationalOther” refers to the instance when the person does a non-stroke phase
(e.g. preparation, retraction) of an ideational gesture.

• “IdeationalStroke” refers to the time when the person does the stroke phase of an
ideational gesture. Note that beat gestures have neither stroke nor non-stroke phase
(McNeill (1992)).

The model uses only the acoustic as the model input. We extract the fundamental
frequency (F0), the F0 direction score, intensity, and the Mel-frequency cepstral coeffi-
cients (MFCC) where each timestep is 100 ms. The extraction process is explained in
Section 4.7. We decompose the speech into utterances where an utterance is defined as a
sequence of words surrounded by pauses. One utterance is one sample. To define the ut-
terance boundaries, we use the concept of Inter-Pausal Unit (IPU) (Levitan and Hirschberg
(2011)): two consecutive utterances are separated by a silence of at least 200 milliseconds
long (Peshkov et al. (2013)).

We also extract eyebrow movements because we will also investigate if inclusion of
eyebrow movements helps to make the prediction better. We extract AU1 (inner brow
raiser), AU2 (outer brow raiser), and AU4 (brow lowerer). The extraction process is
explained in Section 4.6.

In our full dataset, we have 4161 time-steps of “NoGesture”s (34.07%), 1106 time-
steps of “Beat”s (9.06%), 4208 time-steps of “IdeationalOther”s (34.45%), 2739 time-
steps of “IdeationalStroke”s (22.42%). The duration of each time-step is 100 milliseconds.
In total, we have 798 samples.

5.2 Model

5.2.1 Problem Statement

Let X be the input and Y be the output. Both X and Y are sequences with the same
length. Onward, we will refer to their length as l. X is a sequence of vector. Let Xi

be the vector at timestep i, Xi is a 3-dimension vector of real numbers containing the
fundamental frequency (F0), the F0 direction score, and the intensity. Y is a sequence of
gesture class (Formulae 5.3 and 5.2).

Xi = (F 0, F 0 direction, intensity) ∈ R3, (5.1)

CLASSES = 〈“NoGesture′′, “Beat′′, “IdeationalOther′′, “IdeationalStroke′′〉 (5.2)

Yi ∈ CLASSES (5.3)
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Figure 5.1 – The Neural Network Model

5.2.2 Model Overview

We use recurrent neural network with attention mechanism (Bahdanau et al. (2014)) to
perform the prediction. The recurrent neural network with attention mechanism is an ex-
tension of the encoder-decoder model. The standard encoder-decoder model compresses
the entire information from the input sequence into a fixed-length vector at the last en-
coder node. The attention mechanism adds an attention map between the encoder and
the decoder. The map itself is a neuron matrix of the size l2. If wij is the weight in the
attention map at position 〈i, j〉, then wij represents the weight of the input at timestep i on
the output at timestep j. This neuron matrix enables focusing the “attention” toward some
specific input timesteps. If the input at timestep i is pertinent on the output of timestep j,
then the wij would be high. Those weights are learned during the training, similar to all
other weights in the network. Because this is a multi-class classification problem where
the output of each timestep belongs to one of the gesture classes (Formula 5.3 and 5.2),
we use a one-hot encoding to encode Yi. We present the schema of the model in Figure
5.1.

The model needs all the inputs to be of the same length. The model also needs all
the outputs to have the same length. However, our samples are natural utterances which
have different lengths. Thus, we pad those sequences to make them have the same length.
We pad the inputs with 0-vectors and we pad the outputs with the “suffix” auxiliary class.
Effectively, we modify Formula 5.2 by adding the “suffix” class. In our full dataset, after
we add the “suffix” class, the distribution of the data is as the following:

• NoGesture: 4161 time-steps (6.14%)

• Beat: 1106 time-steps (1.63%)
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• IdeationalOther: 4208 time-steps (6.20%)

• IdeationalStroke: 2739 time-steps (4.04%)

• Suffix (auxiliary class): 55616 time-steps (81.99%)

5.2.3 Implementation details

We implement the model by using the Zafarali 1's code as the template. The code itself is
written in Keras 2. We replace the input of the original code 3 with the input we describe
in Sub-Section 5.2.1 and the modification to make the samples to have the same length as
explained in Section 5.2.2. We use categorical cross-entropy as the loss function. Categor-
ical cross-entropy is a loss function which can be used for a classification problem where
there are multiple possible classes but every sample belongs to exactly one class. It works
by calculating the entropy of the probabilities of the different classes, and therefore the
loss is reduced when there is less uncertainty of the class which the sample belongs to. We
use Adam (Kingma and Ba (2014)) as the optimization method. Adam is an optimization
method where the learning rate changes between each parameter and also changes dur-
ing the training process. To deal with the class imbalance in the dataset, we assign low
weights to frequently-occurring classes and high weights to rarely-occurring classes.

5.3 Evaluation Measure

Our work uses encoder-decoder model. The prior works which also use encoder-decoder
model use domain specific measurements to evaluate the performance of their model.
Sutskever et al. (2014), the pioneer of the seq2seq formulation, use BiLingual Evaluation
Understudy (BLEU) to evaluate their language translator. Chorowski et al. (2015) use
phoneme error rate (PER) to evaluate their speech recognition model. Bahdanau et al.
(2016) use Character Error Rate (CER) and Word Error Rate (WER) to evaluate their
speech recognition model.

There is not always a gesture on every pitch accent. Moreover, gesture stroke may
precede the prominent speech part. To measure the error rate of our model, we need a
sequence comparison technique to quantify the similarity between the ground truth and
the prediction: this technique should tolerate shifts and dilations to some extent. Tolerat-
ing the shift means that the technique must tolerate to a certain extent that the matching
blocks can start or end at different times. Tolerating the dilation means that the technique
must tolerate to a certain extent that the matching blocks can have different lengths up
to a certain extent. Practically, it means that we tolerate if the predicted segment starts
or ends slightly earlier or slightly later than the ground truth. We also tolerate if the pre-
dicted segment is slightly shorter or longer than the ground truth. For example, in Figure
5.2, we see that the predicted “IdeationalStroke” starts 100 ms earlier and ends 100 ms
later than in the ground truth. The predicted “IdeationalStroke” is also 200 ms longer.

Dynamic Time Warping (Bellman and Kalaba (1959)) is a sequence comparison tech-
nique which tolerate shifts and dilations. However, this technique does not have a conti-
nuity constraint. That is, two consecutive elements which belong to the same class in a

1https://github.com/datalogue/keras-attention
2https://keras.io/
3Originally for date format translation (e.g. the input is “Saturday 9 May 2018” string and the output is

“2018-05-09” string)
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sequence might be matched against two non-consecutive elements in the other sequence.
Without the continuity constraint, we might end up with a match like in Figure 5.3. In that
figure, we can see that the “NoGesture” elements in the middle of the ground truth are
matched with the “NoGesture” elements in the prediction before and after the “Ideation-
alStroke”. However, a continuous “NoGesture” is different from a “IdeationalStroke” pre-
ceded and followed by “NoGesture”.

Thus, we propose a sequence comparison technique to quantify the similarity between
the ground truth and the prediction where a block of consecutive elements with the same
class is matched against a block of consecutive elements of that class. We use this tech-
nique to evaluate our result.

Our measurement technique uses the sequence comparison algorithm proposed by
Dermouche and Pelachaud (2016). It measures the city-block distance between a block
in the ground truth and a block in the prediction. This distance metric tolerates shift and
dilation up to a certain threshold. If the distance between the two blocks is below the
threshold, then they are considered to be aligned. The alignment formula is shown at
Formula 5.4. We define bps and bpe respectively as the start and the end of the prediction
block. Correspondingly, we define bts and bte respectively as the start and the end of the
ground truth block. We also define T as the distance threshold. We define the alignment
condition between the prediction block and ground truth block in Formula 5.4.

ALIGNED⇐⇒|bps − bts|+ |bpe − bte| ≤ T (5.4)

We measure the alignment based on how many blocks are aligned and we normalize it
against the lengths of those blocks and the frequency of that particular class. At its essence,
we try to find out for how many time-steps the prediction is aligned to the ground truth,
subject to the condition that consecutive time-steps in the ground truth which share the
same class must be matched to consecutive or the same time-steps in the prediction which
belong to that class as well. This is then normalized against the frequency of that class.

We also introduce the concept of “insertion” and “deletion”. A block which exists in
the prediction but has no match in the ground truth is considered to be “inserted”. This
is conceptually similar to false positive: we predict what actually does not happen. The
block exists in the prediction but it does not exist in the ground truth. Similarly, a block
which exists in the ground truth but has no match in the prediction is considered to be
“deleted”. This is similar to false negative: we fail to predict something which actually
happens. For example, in Figure 5.4, we observe an “inserted” “NoGesture” block and
a “deleted” “IdeationalOther” block. The precise definition of alignment, insertion, and
deletion score are at Formulae 5.5. The meaning of the symbols are furnished in Table
5.1. Basically, ac is the proportion of class c which is aligned, dc is the proportion of class
c which is deleted, and ic is the proportion of class c which is inserted.

The ideal alignment score is 1 while the ideal deletion and insertion score are 0. It
means everything is aligned and there is neither deleted nor inserted block. The insertion
score of class c can exceed 1 if we predict class c more frequently than it actually occurs.
On the other hand, the deletion score is always between 0 and 1. The deletion score
of class c is 1 when we fail to predict any of the block of that class. For the alignment
score, if the predictor is accurate but slightly overestimates the length of the block, then
the alignment score will be slightly higher than 1. On the other hand, if the predictor
is accurate but often slightly underestimates the length of the block, then the alignment
score will be slightly lower than 1.
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Symbol Meaning
n number of samples in the dataset
tc number of timesteps of class c in the dataset
pc proportion of class c in the dataset
l sample length (the same for all samples)
b.d deleted block
dc deletion score of class c
b.i inserted block
b.p predicted block
b.t ground truth block
ac alignment score of class c

Table 5.1 – Symbols at Formulae 5.5

pc =
tc

n× l

dc =
Σb.dlength(b.d)

n× l × p

ic =
Σb.ilength(b.i)

n× l × p

ac =
Σ(b.p,b.t).aligned(length(b.p) + length(b.t))

2× n× l × p

(5.5)

5.4 Objective Experiment

To evaluate our model, including the pertinence of the input variables, we perform 7 ob-
jective experiments. Experiment 1 is for obtaining the baseline performance by generating
random outputs according to the data distribution. Experiment 2 is for obtaining the per-
formance of the neural network. Experiment 3 is an ablation study to find out which
features are more pertinent. Experiment 4 is for finding out the effect of including eye-
brow movements on the “Beat” class. Experiment 5 is for finding out the whether using
Mel-frequency cepstral coefficients as the input features to infer the gesture class works
better. Experiment 6 is for finding out the effect of using both Mel-frequency cepstral co-

Figure 5.2 – Alignment Example. Each cell is 100 ms long.
Blue: “IdeationalStroke”
Yellow: “‘IdeationalOther”
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efficients and prosody features as the inputs. Experiment 7 is for finding out whether a
model trained with one speaker only is generalizable to the dialogue counterpart.

In Experiments 1, 2, 3, 4, 5, and 6, we break the full data set into training, validation,
and testing sets in exactly the same way. Thus, if a particular utterance goes to the testing
data set in one experiment, it also goes to the testing data set in the other experiments.
We mix all samples from all videos from both speakers and then we randomly split our
data with the proportion of 64% training data, 16% validation data, and 20% testing
data. This is chosen according to the common 80/20 rule. 80% of the data is for both
training and validation and 20% of the data is for testing. The 80% is then split again
80% × 80% = 64% for training and 80% × 20% = 16% for validation. Therefore, each of
the training, validation, and testing dataset contains a mix of samples from both speakers
and different dialogues. Experiment 7, by its nature, requires us to separate the dataset
into two halves, namely when the first person is speaking and when the second person
is speaking. We use 80% of the data from one speaker as the training data set, 20% of
the data from the same speaker as the validation data set, and 100% of the data from the
other speaker as the testing data set.

To make the results on the neural network models comparable, we expend equivalent
“effort” on the experiments where we train neural network models. We randomly vary the
encoder and decoder dimensions from 1 up to the number of features: 3 with prosody fea-
tures, 13 with Mel-frequency cepstrum features, 16 with both prosody and Mel-frequency
cepstral coefficient features. We run 25 trainings with 500 epochs, 25 trainings with 1000
epochs, and 5 training with 2000 epochs. Therefore, in total we have 55 models for each
problem. We choose the model with the best performance on the validation data set.
Specifically, we use the weighted average of “Beat Alignment”, “IdeationalStroke Align-
ment”, “IdeationalOther Alignment”, and “IdeationalOther Alignment” scores, but we set
a constraint that for each of them the score must be at least 0.05. The weights are based
on the frequency of those classes in the data set. A challenge we face is that the loss
function used in the training concerns only the matches at the same timestep, therefore
ignoring the possibilities of shifts or dilations, which means that the network is not com-
pletely optimized for our objective. Therefore, we have to rely on the stochasticity of the
neural network. This situation triggers a question on whether the performance we see
with the validation data set is a reliable proxy of what we will see when we use the testing
data set.

On top of doing the training-validation-testing protocol, we also investigate the relia-
bility of the training and the validation for each class. In the standard machine learning
protocol, we train the model several times with different parameters or configurations,
run each of the trained models on the validation data set, and choose the trained model
with a good performance on the validation data set. In the training phase, the weights in

Figure 5.3 – Discontinuity Example. Each cell is 100 ms long.
White: “NoGesture”
Blue: “IdeationalStroke”
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the network are automatically tuned so that the network learns the pattern of the training
data. This training phase is stochastic, therefore every training session yields a different
model. Because of the stochasticity, we do the training several times, and thus we get
several potential models. In the next phase, which is the validation phase, we validate
the models we get from the training against the validation dataset. This validation data
set is not used in the training. We choose the model which performs the best against the
validation dataset as the final choice. This protocol is based on two assumptions. The
first assumption is that in the training phase, the resulting models will learn the pattern
observed in the training data. Therefore, the learned models should perform better than
chance against similar datasets. This is especially relevant for our case because during the
training we optimize the networks against a loss function which compares the prediction
against the ground truth at the same time step while we evaluate our models on a different
metric which tolerates shift and dilation. The second assumption is that, when we choose
among the trained models in the validation phase, a better performance against the vali-
dation dataset is a reliable proxy on the performance on the testing data set. Therefore,
the performance of the models against the validation dataset should correlate with the
performance of the models on the testing dataset.

In Experiment 1 (random output), we generate random outputs according to the
probability distribution of the gesture classes, while completely ignoring the prosody in-
put. Specifically, we measure two sets of probabilities, namely the probabilities that a
sample is started by a particular class and the probabilities that a class follows another (or
the same) class. This is done because our data consists of sequences, where each element
affects the next element. We match this result against the output from our ground truth.
We do this 55 times and we measure the average of their performances. This can be seen
as an extremely simple predictor and thus can be seen as the baseline result.

In Experiment 2 (using neural network with the entire dataset), we build a neural
network model, and then we do the training, validation, and testing. We also measure the
training and validation reliability of the trained models.

In Experiment 3 (ablation study), we want to observe how the three different prosody
features (i.e. F0, F0 direction score, and intensity) affect the performance of the model.
In order to do that, we use the model used in Experiment 2, but we replace some or all of
the input features with random values. This way, we eliminate all information from those
features and we force the model to rely only on the remaining features.

In Experiment 4 (inclusion of eyebrow movements), we investigate whether inclu-
sion of eyebrow movements helps on predicting beat class. Eyebrow movements often
mark speech prosody and are aligned with pitch accent (Bolinger (1989); Ekman (1979)).
Therefore, we include the eyebrow movements in the “Beat” class and we compare the per-

Figure 5.4 – Insertion and Deletion Example. Each cell is 100 ms long.
White: “NoGesture”
Yellow: “‘IdeationalOther”
Blue: “IdeationalStroke”
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Class Alignment Insertion Deletion
Beat 0.009 0.936 0.990

IdeationalStroke 0.084 0.485 0.904
IdeationalOther 0.109 0.563 0.882

NoGesture 0.533 0.940 0.453

Table 5.2 – Exp 1: Random output result

Class Alignment Insertion Deletion
Beat 0.194 3.127 0.802

IdeationalStroke 0.507 0.485 0.582
IdeationalOther 0.304 0.226 0.671

NoGesture 0.567 0.554 0.398

Table 5.3 – Exp 2: Using neural network with the entire dataset

formance of the network when the data includes only hand movements (i.e. Experiment
2), when the data considers hand movements and upward eyebrow movements (AU1 or
AU2), and when the data considers hand movements and both upward and downward
eyebrow movements (AU1 or AU2 or AU4). We measure the alignment, insertion, and
deletion scores of the “Beat” class. We also measure the training and validation reliability.

In Experiment 5 (Mel-frequency cepstral coefficients as input), we use the Mel-
frequency cepstral coefficients instead of the three prosody features we use in Experiment
2 (i.e. F0, F0 direction score, and intensity) as the input features for our neural network.
We measure the performance and the training and validation reliability.

In Experiment 6 (both Mel-frequency cepstral coefficients and prosody as input),
we use both the Mel-frequency cepstral coefficients and the three prosody features we use
in Experiment 2 (i.e. F0, F0 direction score, and intensity) as the input features for our
neural network. We measure the performance and the training and validation reliability.

In Experiment 7 (trained with one speaker, tested on the other speaker), we train
the model with one speaker of the dyad in our corpus and test it on the other speaker, and
then we do the reverse. It should be noted that one speaker is a man and the other one is
a woman.

Alignment Score of ... Mean at Validation Data Mean at Testing Data Correlation
Beat 0.202 0.244 -0.037

IdeationalStroke 0.317 0.361 0.875
IdeationalOther 0.202 0.274 0.809

NoGesture 0.537 0.546 0.679

Table 5.4 – Exp 2: Using neural network with the entire dataset
Training and validation reliability
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All features are randomized
Class Alignment Insertion Deletion
Beat 0.040 0.643 0.929

IdeationalStroke 0.038 0.072 0.952
IdeationalOther 0.025 0.027 0.960

NoGesture 0.347 0.275 0.641
Using intensity only

Alignment Insertion Deletion
Beat 0.0 0.786 1.000

IdeationalStroke 0.077 0.063 0.922
IdeationalOther 0.039 0.040 0.936

NoGesture 0.376 0.298 0.589
Using F0 and the F0 direction score only
Class Alignment Insertion Deletion
Beat 0.175 2.444 0.802

IdeationalStroke 0.481 0.503 0.563
IdeationalOther 0.313 0.179 0.637

NoGesture 0.596 0.555 0.379
Using F0 only

Class Alignment Insertion Deletion
Beat 0.179 2.540 0.802

IdeationalStroke 0.521 0.515 0.553
IdeationalOther 0.273 0.155 0.664

NoGesture 0.577 0.570 0.393
Using F0 direction score only

Class Alignment Insertion Deletion
Beat 0.044 0.548 0.929

IdeationalStroke 0.024 0.083 0.965
IdeationalOther 0.019 0.013 0.969

NoGesture 0.379 0.311 0.630

Table 5.5 – Exp 3: Ablation study

Condition Alignment Insertion Deletion
Hand Only 0.194 3.127 0.802

With Upward 0.136076 1.037975 0.829114
Eyebrow Movement

With Upward/Downward 0.222 0.280 0.774
Eyebrow Movement

Table 5.6 – Exp 4: Inclusion of eyebrow movements
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Training and validation reliability of the “Beat” alignment score
Alignment Score of ... Mean at Validation Data Mean at Testing Data Correlation

Hand Only 0.202 0.2444 -0.037

With Upward 0.078 0.102 0.414
Eyebrow Movement

With Upward/Downward 0.226 0.219 0.925
Eyebrow Movement

Table 5.7 – Exp 4: Inclusion of eyebrow movements

Class Alignment Insertion Deletion
Beat 0.171 2.619 0.849

IdeationalStroke 0.166 0.977 0.855
IdeationalOther 0.362 0.538 0.652

NoGesture 0.440 0.789 0.551

Table 5.8 – Exp 5: Mel-frequency cepstral coefficients as input

Alignment Score of ... Mean at Validation Data Mean at Testing Data Correlation
Beat 0.060 0.084 -0.056

IdeationalStroke 0.248 0.256 0.405
IdeationalOther 0.283 0.340 0.502

NoGesture 0.452 0.467 0.204

Table 5.9 – Exp 5: Mel-frequency cepstral coefficients as input
Training and validation reliability

Class Alignment Insertion Deletion
Beat 0.000 2.429 1.000

IdeationalStroke 0.388 0.790 0.640
IdeationalOther 0.362 0.584 0.613

NoGesture 0.441 0.891 0.563

Table 5.10 – Exp 6: Both Mel-frequency cepstral coefficients and prosody as input

Alignment Score of ... Mean at Validation Data Mean at Testing Data Correlation
Beat 0.080 0.0745 0.025

IdeationalStroke 0.272 0.265 0.472
IdeationalOther 0.302 0.351 0.622

NoGesture 0.425 0.465 0.386

Table 5.11 – Exp 6: Both Mel-frequency cepstral coefficients and prosody as input
Traiing and validation reliability

59



CHAPTER 5 – PREDICTION OF GESTURE TIMING

Trained on the 1st speaker, tested on the 2nd speaker
Class Alignment Insertion Deletion
Beat 0.015 1.049 0.982

IdeationalStroke 0.506 1.142 0.559
IdeationalOther 0.367 0.359 0.575

NoGesture 0.517 0.441 0.459
Trained on the 2nd speaker, tested on the 1st speaker

Class Alignment Insertion Deletion
Beat 0.132 3.679 0.856

IdeationalStroke 0.396 0.846 0.650
IdeationalOther 0.217 0.221 0.746

NoGesture 0.538 0.589 0.424

Table 5.12 – Exp 7: Trained with one speaker, tested on the other

5.5 Objective Experiment Results

In the performance of the model which is trained and tested with the entire data (Exper-
iment 2, Table 5.3), we observe that the alignment scores outperform the random output
(Table 5.2) on all classes. However, the alignment score of the “NoGesture” class is only
slightly higher than the corresponding score of the random output. In the Table 5.4,
where we run all the trained models against the validation dataset and against the testing
dataset, we also observe that the mean alignment scores are indeed higher than the align-
ment scores of the random outputs. This suggests that the training process works because
the models yielded by the training process indeed learn the pattern of the data. However,
the correlation of the alignment scores on the validation dataset and testing dataset is
only -0.037 on the “Beat” class, which is close to zero. That means, the alignment score
of the “Beat” class at the validation phase is not a reliable proxy of its performance in
the testing dataset, which suggests that the validation process is unreliable for the “Beat”
class. However, for the other classes, we observe positive correlations between the align-
ment scores at the validation dataset and at the testing dataset, which suggests that the
validation process is reliable.

In the ablation study (Experiment 3), which we do to find out which features are
relevant to our gesture class prediction task, we replace some features with random values
to observe how the model performance is being affected. We start by replacing the entire
input with random values and use it on the trained model we use for Experiment 2 (Table
5.5, All features are randomized), we observe that all the alignment scores are lower than
the alignment scores of the random output result (Table 5.2), except for “Beat” which is
0.040, which only marginally outperforms the random output. Subsequently, when we
use the intensity alone (Table 5.5, Using intensity only), we find again that the model's
alignment scores fail to outperform the random output result. This result, however, does
not prove that intensity is unrelated to gesture timing. This result also does not prove
that it is impossible to learn the gesture timing from the intensity. Our model simply
happens to largely ignore the intensity feature, yet the model still can predict some classes
(as shown in Experiment 2 results). Finally, in the sub-experiment where we only use
the fundamental frequency (Table 5.5, Using F0 only), the alignment scores are similar to
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what we get when we use all prosody features (Table 5.2). This result suggests that the
fundamental frequency is tied and is very pertinent to the gesture timing.

In Experiment 4 where the eyebrow movements are counted as “Beat”, in the case
when we consider upward eye movements, we find that the alignment score for the
“Beat” class is slightly higher when we consider both the upward and the downward eye-
brow movements (Table 5.6). However, more importantly, when we consider the eyebrow
movements, the correlation between the alignment scores on the validation dataset and on
the testing dataset becomes positive (Table 5.7), which suggests that the validation process
becomes reliable. In fact, when the “Beat” includes both the upward and downward eye-
brow movements, the correlation score becomes 0.925, which is close to one (i.e. a perfect
correlation), which in turns suggests a highly reliable validation process. Besides that, the
mean alignment scores on the validation dataset and on the testing dataset when we use
both the upward and downward eyebrow movements (0.226 and 0.219 respectively) do
not decrease much from when we only use the hand (0.202 and 0.2444 respectively),
which suggests that the training reliability does not decrease.

In Experiment 5 where we use Mel-frequency cepstral coefficients instead of the prosody
features (Table 5.8), we find that the alignment scores of “Beat”, “IdeationalStroke”, and
“IdeationalOther” outperform the random output (Table 5.2). However, the alignment
score of “IdeationalStroke” is considerably lower than the output from the model trained
with prosody features (Experiment 2, Table 5.3). On the “Beat” class, the mean alignment
scores on the validation dataset and on the testing dataset (Table 5.9) are 0.060 and 0.084
respectively, which are higher than the random output (0.009), which suggests that the
training phase is still reliable. On the validation reliability, we however find that the cor-
relation between the alignment scores on the validation dataset and on the testing dataset
of the “Beat” class is only -0.056, which close to zero. However, the correlation scores are
positive on all other classes. This is similar to what we find when we use prosody features
(Experiment 2, Table 5.4), where the correlation score is close to zero on the “Beat” class
but is positive on all other classes.

In Experiment 6 where we use both the prosody features and Mel-frequency cep-
stral coefficients (Table 5.10), the alignment score of “IdeationalOther” is 0.362, which
is higher than we use prosody features only (Experiment 2, Table 5.3) but is the same
when we use Mel-frequency cepstral coefficients only (Table 5.8). Meanwhile the align-
ment score of the “Beat” falls to 0. Besides that, the correlation between the alignment
scores on the validation dataset and on the testing dataset on the “Beat” class is only
0.025 (Table 5.11), which is close to zero, which suggests that the validation process is
unreliable for the “Beat” class. This unreliable validation process on the “Beat” class is
similar to what we find in Experiments 2 and 5 (Tables 5.4 and 5.9). However, we find
that the mean alignment scores for “Beat” on the validation dataset and on the testing
dataset (Table 5.10) is also lower than when we use prosody features only (Experiment 2,
Table 5.4) or when we use Mel-frequency cepstral coefficients only (Experiment 5, Table
5.9), which suggest that even in the training phase alone, using both prosody features and
Mel-frequency cepstral coefficients lead to worse alignment score on the “Beat” class.

In Experiments 2, 5, and 6 we find that the mean alignment scores of the “Beat”,
“IdeationalStroke”, and “IdeationalOther” (Tables 5.4, 5.9, and 5.11) are higher than the
alignment scores of those classes in the random output (Table 5.2). These suggest that
the training processes are reliable on those classes, no matter whether we use the three
prosody features, the Mel-frequency cepstral coefficients, or both of them.
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In Experiment 7 we train the model with one speaker and test it on the other speaker of
the same interaction (Table 5.12). The idea behind this experiment is to find out whether
a model trained on one speaker can be used with his/her conversation counterpart. We
find that the alignment scores of the models outperform the random output (Table 5.2),
which suggests that the model can indeed be used on the conversation counterpart.

5.6 Subjective Experiment

In the subjective experiment, 31 respondents watched 12 videos online of a virtual agent
speaking and performing communicative gestures. Among the 31 respondents, 17 (55%)
are male, 13 (42%) are female, and 1 (3%) refuses to disclose the gender. On the respon-
dent breakdown by age, 6 (19%) are between 18-20 years old, 20 (65%) are between
21-30 years old, 2 (6%) are between 31-40 years old, and 3 (10%) are between 41-50
years old.

The 12 videos consist of 6 pairs. We extracted six speech segments from the Gest-
IS corpus (see Chapter 4). We replicated the gestures of the human speaker on a virtual
agent. Each pair of videos consists of the baseline and the output of the gesture generation
model. The baseline videos have their gesture timings decided by randomly shuffling the
gesture timing of the ground truth. In both baseline and model output videos, we retain
the gesture shapes from the ground truth. In both videos, the virtual agents have the same
appearance and speaking the same thing. We also use the original voice from the corpus.
Therefore, the differences in the video pairs are only in the timing of the gestures. The
animation of the agent contains only the arm gestures. There is no other animation (no
head motion, gaze, posture shift, etc.). Moreover, we blur the face of the agent because
having an agent with a still blank face might distract the respondents. The sequence of
the 12 videos is shuffled to avoid having video pairs shown consecutively. A frame of a
video is shown in Figure 5.5.

Our objective is to compare the respondent's perception differences between the videos
based on the output of the gesture generation model and the baseline videos. We compare
the naturalness, the time consistency, and the semantic consistency of the videos. For each
of those dimensions, we measure it by asking the respondents to answer three questions.
Each question asks the user to give a rating in likert scale from one to five. We sum the
respondent's scores on the three questions to get the score of the dimension we want to
measure. Therefore, for each dimension, the score ranges from 3 to 15 (inclusive of both
values). The questions are listed in Table 5.13. They are adapted from the subjective
study done by Kucherenko et al. (2019). We add one trick question for each video to
ensure that the respondents were actually paying attention. We find that in all the three
dimensions, namely naturalness, time consistency, and semantic consistency, the videos
created based on the output of the gesture generation model have a higher average score.
We also perform one-way ANOVA test to check the significance of the differences.

5.7 Subjective Experiment Results

In our subjective experiment, we measure the naturalness, the time consistency, and the
semantic consistency of the gestures and speech. We compare the perception by human
participants of the animation of the virtual agent where we manipulate the timing of
the gestures. It allows us to measure the impact of the timings generated by the neural
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Naturalness
How natural are the gestures?
How smooth are the gestures?

How appropriate are the gestures?
Time Consistency

How well does the gesture timing match the speech?
How well does the gesture speed match the speech?
How well does the gesture pace match the speech?

Semantic Consistency
How well do the gestures match the speech content?

How well do the gestures describe the speech content?
How much do the gestures help you understanding the speech content?

Table 5.13 – Subjective experiment questions (adapted from Kucherenko et al. (2019))

Random Output Mean Score Model Output Mean Score p-value
Naturalness 8.565 9.796 1.04× 10−5

Time Consistency 8.565 10.409 7.271× 10−9

Semantic Consistency 7.855 9.457 4.487× 10−6

Table 5.14 – Subjective experiment results

Figure 5.5 – An example of a video frame in the subjective experiment
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Figure 5.6 – The naturalness boxplot

Figure 5.7 – The time-consistency boxplot
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Figure 5.8 – The semantic-consistency boxplot

network model against random timings. The random timings act as the baselines. The
idea is similar to what we do in our objective evaluation (Experiments 1 and 2, Tables
5.2 and 5.3). We find that the videos whose timing come from the model are rated better
than the baseline in all the three measured qualities, and the differences are all significant
(p− value < 0.05). The results are furnished in Table 5.14. We also show the boxplots of
the three measured qualities (Figures 5.6, 5.7, 5.8).

5.8 Discussion

We observe in the performance of the random output (“Exp 1: Random output result”,
Table 5.2), different classes need classifier of different complexity. For example, the clas-
sifier of “Beat” (alignment score of 0.009) has to be more complex than the other classes
are. On the other hand, the “NoGesture” class, with the alignment score of 0.533, can
work with a classifier with a lower complexity, despite the fact that we select our samples
only when the person is speaking. The result of Experiment 1 might be caused by the data
imbalance. The “NoGesture” class is 50% larger than the “IdeationalStroke” class and is
almost 300% larger than the “Beat” class. The rarity of “Beat” might cause the prediction
to have a lower performance than it is for “NoGesture”. Besides that, our corpus is small,
with only 798 samples, which makes the training hard.

We observe that the performance of the model which is trained and tested with the
entire data outperforms the random output's alignment scores on most classes. The vali-
dation process is not reliable on the “Beat” class, but the trained models still yield align-
ment scores higher than the random output, which suggests that the training process
is still reliable. All these suggest that the three prosody features, namely fundamental
frequency, fundamental frequency direction score, and intensity enable prediction of the
gesture classes with a certain degree of reliability. However, as we have noted earlier

65



CHAPTER 5 – PREDICTION OF GESTURE TIMING

about Experiment 1, “Beat” is rare in our corpus, which makes the difficulty of predicting
it expected. This leads us to the question on whether we would be able to predict “Beat”
better if we have more data. Besides that, “Beat” gestures are not necessarily performed by
hands; they can also be performed by head or facial movements (Bolinger (1989); Ekman
(1979); Krahmer and Swerts (2004)). Indeed, in Experiment 4, we find that the vali-
dation reliability improves when we include the eyebrow movements (Table 5.7). These
results are in line with the previous findings (Bolinger (1989); Ekman (1979); Krahmer
and Swerts (2004)) which show that beat gestures can also be performed by eyebrow
movements. It should also be noted that in our data, there are far more beat gestures
done by eyebrow movements than by hands. There are around five times as many eye-
brow beat time steps as hand beat time steps (1106 time steps by hand only vs 5679 time
steps by eyebrow movements). Therefore, including eyebrow movements also increases
the amount of “Beat” data.

On the “IdeationalStroke” class, our predictor is able to surpass the random output
generator. This class encompasses the stroke of all communicative gestures except beat
gestures. The model is able to predict where a gesture stroke (other than beat) is aligned
with the acoustic features which we consider. This phase is well-studied in gesture lit-
erature as it carries the meaning of the gesture. This phase usually happens around or
slightly before the pitch accent (Wagner et al. (2014)). In our case, we have the inten-
sity, fundamental frequency, and fundamental frequency direction score features as our
input. These three prosody features participate in the characterization of the pitch accent.
We also find that our validation result is reliable, because the alignment scores on the
validation dataset and on the testing data set show a positive correlation.

On the “IdeationalOther” class the model yields an alignment score higher than the
random output, but the alignment score is still low. As a reminder, this class contains
all the gesture phases (e.g., preparation, hold, retraction) except the stroke phase for all
non-beat gestures. We can notice that, in all our experiments, we never obtain a good
alignment on this class. This class is made of different gesture phases that may not corre-
spond to the same prosodic profile. Their alignment may obey different synchronization
needs (Wagner et al. (2014)).

In the ablation study (Experiment 3), we replace some features with random values to
observe how the model performance is affected. We find that the alignment scores we get
when we use the fundamental frequency (F0) only are similar to what we get when we
use all prosody features. This result suggests that the fundamental frequency is tied and
is very pertinent to the gesture timing. This is in line with the findings that pitch accent
and gesture stroke timing are related (Wagner et al. (2014)).

In Experiment 5 where we use Mel-frequency cepstral coefficients instead of the prosody
features, we find that the performance is worse than when we use the model trained with
prosody features. One possible reason is because the Mel-frequency cepstral coefficients
are represented as a vector of 13 dimensions while the prosody features are represented as
a vector of 3 dimensions. The higher dimension makes the search space much larger, and
thus making the training slower as well. It should be noted that we train the models with
“equivalent effort” (i.e., the same number of epochs and the same number of trainings).
Besides that, the small corpus size is especially problematic if we want to learn a higher
dimensional data. Another possible reason is that the Mel-frequency cepstral coefficients
are indeed less informative about stroke timing than the prosody features. Indeed, it has
been reported in several studies that F0 are related to gesture stroke timing (Wagner et al.
(2014)).
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In Experiment 6 where we use both the prosody features and Mel-frequency cepstral
coefficients, we find that the performance is also worse than when we use model trained
with prosody features only. Although having both the Mel-frequency cepstral coefficients
input and the prosody input enable the neural network to learn more information, it also
makes the search space larger, which in turn makes the search slower.

In Experiment 2, 5 and 6, we observe that the validation reliabilities behave similarly:
the correlation score is close to zero on “Beat” but positive on other classes. It suggests
that simply replacing the input acoustic features does not fix the problem. However, in
Experiment 4 when we include eyebrow movements as “Beat”, we find that the validation
reliability of the “Beat” improves. In Experiment 2, 5 and 6, we notice that the mean align-
ment scores on the validation dataset and on the testing dataset of the “Beat”, “Ideation-
alStroke”, and “IdeationalOther” exceeds the alignment scores at the random output. It
suggests that the training processes are reliable on the “Beat”, “IdeationalStroke’, and
“IdeationalOther” classes.

In Experiment 7 where we train the model with one speaker and test it on the other
speaker of the same interaction, we find that the alignment scores of the models'outperform
the random output, which suggests that some generalizability exists even-though people
have different gesturing styles. These results may also be due to the fact that both speakers
are parts of the same interaction and conversation participants tend to automatically align
to each other; The alignment happens at various levels, such as phonology, syntax and
semantics (Menenti et al. (2012)), as well as gesture types (Wessler and Hansen (2017)).
These various alignments make the conversation itself successful (Garrod and Pickering
(2009)).

In our subjective experiment, we measure the naturalness, time consistency, and the
semantic consistency of the gestures and speech. We find that the timing from the model
outperforms the baseline in all measured qualities, and the differences are significant
(p − value < 0.05). It shows that overall the generated result is perceived better by
the human respondents along the three qualities. It also shows that gesture timing is
important to how well-perceived the gestures are by humans. We keep the gesture shapes
from the ground truth in both the output of our model and the baseline, we act only on
the timing of the gestures, yet the output of our model is perceived more favorably.

5.9 Conclusion

We develop a neural network model by using recurrent neural network with attention
mechanism to predict gesture timing according to the acoustic input. We use three prosody
features, namely fundamental frequency (F0), F0 direction score, and intensity. The model
successfully predicts the gesture timing. However, on the beat gestures, our validation pro-
cess is unreliable. This issue is solved when we count the eyebrow movements as another
form beat gestures. We also do an ablation study where we replace some of the three
features with random values to observe the impact on the model's performance. In the
ablation study, we find that the fundamental frequency is pertinent to the gesture timing
prediction. We also experiment with using the Mel-frequency cepstral coefficients (13 di-
mensions) instead of the aforementioned prosody features (3 dimensions) as the acoustic
input and with both the Mel-frequency cepstral coefficients and the three aforementioned
prosody features as the input. We find that we get the best performance when we use the
aforementioned three prosody features only. It suggests that keeping the model as simple
as possible is a good course of action, especially when we do not have much data. We also

67



CHAPTER 5 – PREDICTION OF GESTURE TIMING

try to train and validate on the data of one speaker and test it on his/her conversation's
counterpart, and we find that it indeed possible. Finally, we do a subjective experiment
where we compare the naturalness, the time consistency, and the semantic consistency of
the gesture-and-speech videos whose gesture timing is generated by the model, and we
compare them against the videos whose gesture timing is generated randomly. The videos
whose timing comes from the output of the model is judged favorably, by the participants
on the three measured parameters.
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Chapter 6
Image Schema Computation and
Embedding

In this chapter, we propose a method to provide a vector representation of image schema.
The proposed method is based on word embedding techniques. Based on these vector
representations, we also calculate the distances between those image schemas. These dis-
tances are proxy of similarities/differences between the different image schemas. Finally,
based on those distances, we show the image schemas which are close/similar to each
other.

6.1 Introduction

There are some studies which relate image schema to metaphoric gestures (see Section
2.6). However, those works are at “theoretical” level which concern themselves with the
presence of the relationship: the image schema is already known, and then they investi-
gate whether the image schema has any relationship with the metaphoric gestures. How-
ever, to actually apply this image schema notion in the gesture generation problem, we
need a way to extract the image schemas from the text. Ravenet et al. (2018a,b) solve
this problem by proposing a technique where they extract the image schemas by using
WordNet senses. Another relevant trend is the use of word embedding techniques to rep-
resent text (see Section 3.4) in the general applied machine learning problems. Word
embedding techniques have also been applied for gesture generation problems by using
machine learning (see Section 3.4 and 3.6). An interesting following question is whether
we can represent the image schema by using word embedding. However, word embed-
ding also has a property such that two words with similar meanings are mapped to two
vectors which are close to each other, which makes calculating the similarity/difference
between the two words possible. This is the spirit behind the work in this chapter: we
want to create vector representation of image schema, and with that we can quantify their
similarities/differences.

In this chapter, we give a brief overview of WordNet in Section 6.2. Then, in the
Related Work section, we explain the existing image schema computation technique by
Ravenet et al. (2018a,b) and we also explain about word embedding. Then, we discuss
about the limitations of the existing image schema computation technique and our pro-
posal to improve the technique in Section 6.4. After that, in the Section 6.5, we explain
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our method to get the embedding vectors for image schemas and how we can measure
the distance/similarity between different image schemas. After that, in the Section 6.6,
we show our experiments on obtaining the embedding vectors for the image schemas and
our experiments pertaining to the distance/similarity between different image schemas.
In the Section 6.7, we interpret the data from our experiments and what it implies for our
image schemas. Finally, we conclude this chapter in Section 6.8.

6.2 Background

6.2.1 WordNet

WordNet (Miller (1995)) is a lexical database of English. It is organized as a directed
graph. Each node is a “sense” (i.e. meaning), which is called “synset”. Each sense has
uniquely one part-of-speech tag (i.e. noun, verb, adjective, or adverb), but can have mul-
tiple lexemes associated with the sense. For example, a verb with the sense of being
cognizant or aware of a fact or a specific piece of information can be represented with
one of these lexemes: “know”, “cognize”, “cognise”. WordNet only keeps the lexeme;
therefore, the conjugation differences are eliminated. For example, “go”, “goes”, “went”,
and “gone” belong to the same lexeme. “Child” and “children” also belong to the same
lexeme. Similarly, “high” and “higher” also belong to the same lexeme. However, different
spellings of the same word are considered to be different lexemes. For example, “organize”
and “organise” are different lexemes. A combination of a lexeme and a part-of-speech-tag
can have multiple possible senses. For example, the noun “fan” has three possible senses:
a device for creating a current of air by movement of a surface/surfaces, an enthusiastic
devotee of sports, or an ardent follower and admirer. The senses are ordered from the
most common sense to the least common sense. Two senses might have an edge connect-
ing them. There are several edge types: “synonym”, “antonym”, “hypernym”, “hyponym”,
“meronym” (one is a part of another), “troponym” (i.e. manner of doing), and “entail-
ment”. The WordNet's schema can be seen in Figure 6.1. Each WordNet sense belongs to
uniquely one WordNet supersense, but one WordNet supersense can have many senses.
The list of the supersenses is furnished in Table 6.1. It should be noted that supersense is
a different property from sense. Sense is not related to supersense via the WordNet edges.
We also furnish the statistics of the senses and the lexemes in WordNet at Tables 6.2 and
6.3. It can be seen in the Table 6.2 that noun senses far outnumber all other senses. Inter-
estingly, there are also far more adjective senses than adverb senses, even though adjective
and adverb are strongly related in English. Similarly, in Table 6.3, we observe again that
the nouns far outnumber the rest. Similarly, the adjectives also outnumber the adverbs in
terms of lexeme count.

6.3 Related Work

6.3.1 Existing Image Schema Computation

There are prior works about image schema and metaphoric gestures (see Section 2.6).
However, those are concerned only on the theoretical underpinning, namely about pres-
ence of the relationship. On the other hand, to actually apply image schema for gesture
generation problem, we need a way to infer the image schema from a free-form text (i.e.
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Adjective Adverb Noun Verb
all all act body

pert animal change
ppl artifact cognition

attribute communication
body competition

cognition consumption
communication contact

event creation
feeling emotion
food Framestext

group motion
location perception
motive possession
object social
person stative

phenomenon weather
plant

possession
process
quantity
relation
shape
state

substance
time
Tops

Table 6.1 – The WordNet's supersenses

Type Count
Noun 82115
Verb 13767

Adjective 18156
Adverb 3621

Table 6.2 – WordNet 3.0's sense count

Type Count
Noun 117798
Verb 11529

Adjective 21479
Adverb 4481

All 147306

Table 6.3 – WordNet 3.0's lexeme count. A lexeme may cover several part-of-speech types
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Figure 6.1 – WordNet's schema in Entity-Relationship diagram

the content of the speech). Ravenet et al. (2018a,b) develop a technique to solve this
problem.

The technique of Ravenet et al works by first parsing the text to get the corresponding
parts of speech. This parsing is done by using the Stanford POS Tagger (Toutanova et al.
(2003)). Then, the technique gets the lexeme of the word. For example, “walk”, “walks”,
and “walked” will be converted into “walk”. Similarly, both “hand” and “hands” will be
converted into “hand”. It should be noted, however, gendered nouns exist but are rare
in English (e.g. “actor”-“actress”, “governor”-“governess”). These gendered nouns are
considered as different words. Then, based on the lexemes of the word (e.g. “walk”
for “walks”) and the part of speech (e.g. verb), the technique decides the correct sense
by using simplified Lesk algorithm (Lesk (1986)). The simplied Lesk agorithm works by
calculating the size of the intersection between the possible lexemes of each sense and the
lexemes in the rest of the sentence. The sense whose size of the intersection is the largest
is considered to be the correct sense. Once the correct sense is decided, then the WordNet
sense graph is traversed through the hypernym edges until it finds one of the “terminal
senses/nodes”. The traversal is done by a depth first search traversal. Ravenet et al's
algorithm has a mapping set by static rules which map a set of senses/nodes to an image
schema. Thus, the relationship between the image schema and the terminal senses/nodes
is one-to-many. The image schema is decided based on this terminal WordNet sense. If
there are multiple words with image schemas in a phrase, then we prioritize the word
which is tagged to have pitch accent. The pitch accent is relevant because the stroke often
happens at around the pitch accent (Kendon (2004)), and thus the gesture is more likely
to depict the word where the pitch accent is. Ravenet et al's algorithm is furnished in
Algorithm 1.
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1 split the sentence into phrases and the POS tags;
2 for phrase in all phrases do
3 for word and POS tag in the phrase do
4 if has pitch accent or is adjective or is adverb then
5 mark this word as priority
6 end
7 lexemes← getPossibleLexemes(word, POS_tag);
8 for lexeme in lexemes do
9 mostLikelySense← simplifiedLeskAlgorithm(lexeme, POS_tag);

10 //traverse the WordNet graph via hypernym edges;
imageSchemas+ =
getImageSchemaByTraversingWordNetGraph(mostLikelySense);

11 end
12 if has image schema then
13 chosenImageSchema = imageSchemas[0]
14 end
15 end
16 for word and POS tag in the phrase do
17 if priority word has image schema then
18 choose this image schema;
19 else if non priority word has image schema then
20 choose this image schema;
21 else
22 this phrase has no image schema;
23 end
24 end

Algorithm 1: Ravenet et al. (2018a,b)'s algorithm to compute image schema
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6.3.2 Word Embedding

One recent trend in natural language processing is the use of word embedding to represent
a word in the form of a vector. This vector representation can then be used in various
machine learning models for various problems. For example, when BERT (Devlin et al.
(2018)) is being proposed, it is tested on natural language understanding tasks, questions
answering tasks, and sentence continuation tasks.

Word embedding has a property that two words which have similar meanings have
their vector representations also close to each other. It should be noted, however, word
embedding is not a single technique, instead it is better seen as a class of techniques which
shares the same principle, but is implemented differently. Especially, different techniques
have different notions of similarity and how this similarity is translated into distance in
the vector space. The distance between the embedding vectors are calculated by using the
euclidean distance or the cosine distance.

Word2Vec (Mikolov et al. (2013)) is the pioneer of word embedding. It uses the notion
that two words are similar if they are surrounded by the same words. There are two
variants of Word2Vec. The first one is basically a neural network which does a “fill in the
blank” task. Given an n-gram whose middle word is hidden, the network is to guess the
hidden word. This is called “Continous Bag Of Words” (CBOW) approach. The second
variant is the reverse: given the middle word, the network is to guess the rest of the
n-gram. This is called “Skip-Gram” approach. The result of any of these approaches is
that, two words which are surrounded by similar words (in an n-gram) will have the
corresponding vectors also close to each other. Ahuja and Morency (2019) use Word2Vec
to represent the text in their machine learning system to predict body pose according to
the text input. Pouw et al. (2021) compare the Word2Vec cosine distance of the text and
the kinematic distance of the head tip, wrist, and head movement. The kinematic distance
is calculated by using Dynamic Time Warping. Interestingly, Pouw et al find a weak but
reliable relation between the Word2Vec distance and the kinematic distance.

GloVe (Pennington et al. (2014)) follows a similar notion. However, While Word2Vec
treats different n-grams as different samples, GloVe learns from the global data of co-
occurences. GloVe works by doing an optimization such that the distance between the two
corresponding vectors are minimized when their probabilities of co-occurence with other
words are similar. Effectively, it means two words are similar if they tend to co-occur with
similar words.

Both Word2Vec and Glove have “static” embedding. A word always has the same em-
bedding, no matter the context where it appears. However, one word can have different
meanings depending on the context. For example, “fan” can mean a follower or admirer
(e.g. “she is a fan of Justin Bieber”) or an instrument to displace air (e.g. “I need a fan
because my room is hot”). BERT (Devlin et al. (2018)) on the other hand, yields differ-
ent embeddings for the same word depending on the context. This is called “contextual
word embedding”. BERT training works in two ways. The first one is that it takes the
sentence as the input, with a few words being hidden, and then the network learns to re-
produce the same sentence including the hidden words. Here, the network learns to “fill
in the blank” (see Figure 6.2). The second one is that the network is given two sentences
(some words are hidden), and the network learns to re-produce the complete sentences
and to indicate whether the two sentences are consecutive. Here, the network learns if
the context of the two sentences are related. Thus, it can be seen that unlike Word2Vec
or GloVe which learn the word embedding in isolation, BERT learns the context together.
Consequently, the same word will have different corresponding vectors depending on the
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Figure 6.2 – The “fill in the blank” training of BERT (Devlin et al. (2018)) a. The network
learns to predict w4.

aThe schema is from https://towardsdatascience.com/bert-explained-state-of-the-art-language-model-for-nlp-f8b21a9b6270

sentence. Kucherenko et al. (2020) use BERT to represent the text in their machine learn-
ing system to generate body movements according to both the text and the acoustic of the
speech (see Section 3.6).

SenseBERT (Levine et al. (2020)) is an extension BERT by also taking into account
the similarities in WordNet in the training. Therefore, unlike BERT, SenseBERT explic-
itly works at the word sense level. Specifically, unlike BERT which learns the words only,
SenseBERT learns both the words and the corresponding supersenses. Therefore, it can
be said that SenseBERT consider two words to be more similar when they have the same
corresponding supersense. Levine et al show that SenseBERT outperforms BERT on both
SemEval word sense disambiguation tasks and “word in context” tasks. The schema de-
picting the difference between BERT and SenseBERT is available in Figure 6.3.

We can see from these works that word embedding can be used to represent text and
there are many variants of word embedding. Therefore, we have three research questions
we aim to address. The first one is how can we use word embedding to represent an
image schema as a vector. The second one is how do we compare the word embedding we
choose against the alternatives. However, if we have the image schema vectors, then the
distances between different image schemas also become computable, and thus it makes
sense to ask if certain image schemas are closer to each other. Therefore, in the third
research question, we want to investigate which image schemas are close to each other.

6.4 The Limitations of the Ravenet et al's Algorithm

In this section, we discuss the limitations of Ravenet et al's algorithm and our proposal on
how to address them. The first one is the limitation of the Lesk algorithm which Ravenet
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Figure 6.3 – The schemas of the difference between BERT and SenseBERT (Levine et al.
(2020)). Unlike BERT, during the “fill in the blank” of SenseBERT, it tries to predict the
WordNet supersense as well (see Table 6.1).

et al use in their algorithm (see Algorithm 1 Line 9) to disambiguate the word. In Section
6.4.1, we explain that some researchers compare the Lesk algorithm against other word
sense disambiguation techniques and find that a far simpler algorithm, namely always
choosing the WodNet's first sense, outperforms Lesk algorithm in several different exper-
iments. The second one is the limitation of the hypernym-only WordNet graph traversal
(see Algorithm 1 Line 10). In Section 6.4.2, we explain why using only the hypernym
edges is not sufficient and how we propose to address this issue.

6.4.1 Limitation of Lesk Algorithm For Word Sense Disambiguation

Ravenet et al. (2018a,b) use Lesk algorithm for word sense disambiguation in their im-
age schema computation technique. However, Lesk algorithm is not the only word sense
disambiguation techniques. Raganato et al. (2017) compare many such techniques. The
techniques include those which are based on machine learning, namely IMS (Zhong and
Ng (2010)), IMS+embeddings (Taghipour and Ng (2015b); Rothe and Schütze (2015);
Iacobacci et al. (2016)), Context2Vec (Melamud et al. (2016)), and also knowledge-based
techniques, namely Lesk (Lesk (1986)), UKB (Agirre and Soroa (2009); Agirre et al.
(2014)), and Babelfly (Moro et al. (2014)). The machine-learning based techniques are
trained on SemCor (Miller et al. (1994)) and OMSTI (Taghipour and Ng (2015a)) cor-
pora. Raganato et al also add two simple baseline techniques, namely Most Frequent
Sense (MFS) technique which always chooses the most common sense in the training cor-
pus and WordNet First Sense technique which always chooses the first WordNet sense.
It should be remembered that the first WordNet sense is the most common sense. Then,
Raganato et al compare those techniques in a uniform setting. They use the data from Sen-
seval (Edmonds and Cotton (2001); Snyder and Palmer (2004)) and SemEval (Pradhan
et al. (2007); Navigli et al. (2013); Moro and Navigli (2015)) corpora for testing. All the
data have the part-of-speech tagging done by using Stanford CoreNLP toolkit ( Manning
et al. (2014)). All the corpora include WordNet sense annotations. They use F-Measure to
quantify the performance of the Word Sense Disambiguation techniques. Interestingly, as
can be seen in Table 6.4, the WordNet first sense always beats or close to beat the F-Score
of all the knowledge-based techniques. In all cases, the WordNet first sense beats the
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Corpus Range of Machine Range of Knowledge Lesk MFS WordNet
Learning Techniques Based Techniques Algorithm 1st Sense

Senseval-2 70.8 - 73.3 50.6 - 67.0 50.6 66.5 66.8
Senseval-3 68.2 - 69.6 44.5 - 63.7 44.5 60.4 66.2
SemEval-07 58.5 - 61.5 32.0 - 56.7 32.0 52.3 55.2
SemEval-13 65.0 - 67.2 53.6 - 66.4 53.6 62.6 63.0
SemEval-15 64.2 - 71.7 51.0 - 70.3 51.0 64.2 67.8

Table 6.4 – F-score comparison of the word sense disambiguation techniques (Raganato
et al. (2017))

Lesk algorithm. Although WordNet first Sense is less powerful than the machine learning
techniques, the WordNet first Sense stands out for its remarkable “cost-effectiveness”. It
is also remarkably effective compared to the knowledge-based techniques despite being
extremely simple. Therefore, we propose to replace the use of Lesk algorithm with the far
simpler method of always using the WordNet's first sense.

6.4.2 Limitation of Hypernym-Only WordNet Graph Traversal

As can be seen in Algorithm 1 Line 10, the WordNet graph traversal in the original Ravenet
et al's algorithm is only done through the hypernym edges. However, WordNet has hyper-
nym edge for noun and verb senses only (Miller (1995)). Therefore, we need a new
method to traverse the WordNet graph. For adjective, we use the synonym relationship in-
stead (e.g. “essential” is a synonym of “important”). It should be noted, however, synonym
edge is bidirectional. x is a synonym of y if and only if y is a synonym of x. For adverb,
we get the corresponding adjective by using the “derived from adjective” edge (e.g. “im-
portantly” is derived from the adjective “important”), then we do as the aforementioned
treatment of adjectives. For verb, we also use the troponym edge. Troponym itself means
a manner of doing an action. For example, both “walk” and “fly” are troponyms of “move”.
It should be noted that for verb, hypernym and troponym are the inverse. x is a hypernym
of y if and only if y is a troponym of x. The algorithms are furnished in Algorithm 2. We
also present the statistics of about their connections in Table 6.5. It can be seen from the
number of the connections and the number of senses/nodes for each part of speech (Table
6.2) that the graph is very sparse: there are even less edges than nodes. It means, from
any given node, there are only a few other nodes we can reach.

6.5 Proposed Method

One thing we can easily see is that there are far more English words than there are image
schemas. For example, Ravenet et al. (2018a,b) list only 25 image schemas. Therefore,
many different words are necessarily mapped to the same image schema. Considering
that those which are mapped to the same image schema should have similar meanings,
then the corresponding vectors should also be close to each other, and thus they should
form a cluster. Therefore, to answer our first research question (i.e. how can we use
word embedding to represent image schema as vector?), we will use the centroid of the
word embedding vectors which belong to the same image schema as the embedding of the
image schema.
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1 function getAdjectiveImageSchema(Synset sense) {;
2 breadthF irstSearch(sense, allWordnetSenses, allSynonymEdges);
3 }
4 function getAdverbImageSchema(Synset sense) {;
5 adjectiveSense←

traverseOneHop(sense, allWordnetSenses, allDerivedFromAdjectiveEdges);
6 returngetAdjectiveImageSchema(adjectiveSense);
7 }
8 function getV erbImageSchema(Synset sense) {;
9 breadthF irstSearch(sense, allWordnetSenses, allHypernymEdges +

allT roponymEdges);
10 }
11 function getNounImageSchema(Synset sense) {;
12 breadthF irstSearch(sense, allWordnetSenses, allHypernymEdges);
13 }

Algorithm 2: The proposed computation of image schema

Type Count
Between nouns (hypernym) 75850

Between verbs (hypernym & troponym) 13238
Between adjectives (synonym) 10693

Table 6.5 – WordNet 3.0's unordered connected sense count

There are multiple word embedding techniques which can map a word into a vector
(see Section 6.3.2). BERT is a popular word embedding for a general purpose natural
language processing application and has been used in gesture generation problem as well
(Kucherenko et al. (2020), see Section 3.6), and thus BERT is a reasonable choice. How-
ever, considering that Ravenet et al. (2018a,b) use WordNet to map the words into image
schemas, a more suitable word embedding might be one which also takes into account the
WordNet similarity. SenseBERT is one such embedding technique. Therefore, we will try
both BERT and SenseBERT and we will compare their results.

The image schema tagging in Ravenet et al's algorithm is done per phrase (see Algo-
rithm 1 Line 2). A sentence is split into several phrases (noun phrase, verb phrase, etc.),
and then there is at most one image schema per phrase. However, we know from which
word the image schema comes from (see Algorithm 1 Line 8). Therefore, we try two vari-
ations of the way to get the vector: by averaging all words in the phrase, or by getting the
vector of the word where the image schema comes from.

There are two possible distance metrics to measure distance between two embedding
vectors, namely euclidean distance and cosine distance. Both distance metrics are often
used to measure distance between word embedding vectors. We will try both distance
metrics to find out if they yield different results.

Having two different word embedding techniques as the possible choices leads us to
our second research question: how do we compare the word embedding we choose against
the alternative? To answer this question, we will find out which word embedding method
gives a better clustering behavior. For that, we use two measures. The first one is cluster
purity and the second one is comparing the intra-cluster against the inter-cluster distances.
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Figure 6.4 – An illustration of the notion of cluster purity. The different colors (i.e. red
and blue) represent different image schemas, the small solid circles represent vectors, the
triangles represent the centroids, and the large hollow circles represent classifications.
The three wrongly classified vectors are misclassified because they are closer to another
centroid than to their own centroid. The cluster is purer if there are less misclassified
vectors.

A better clustering behavior yields purer clusters. That means, vectors which belong
to a certain image schema should be closer to the centroid of that image schema than to
any other centroids. Equivalently, vectors which do not belong to a certain image schema
should not have their closest centroid to be the centroid of that image schema. For that,
we do a “classification” by using the nearest cluster centroid. We “classify” each vector ac-
cording to the nearest centroid. If the nearest centroid is indeed the centroid of its image
schema, then we consider it as a correct classification, or else it is a wrong classification.
The illustration of this cluster purity notion is furnished in Figure 6.4. According to the
results of these classifications, we measure the F1 score of each class. This calculation is
done in one-vs-rest manner. That means, when we calculate the F1 score of “OBJECT”
image schema, we do a binary classification of “OBJECT” against all other image schemas.
After that, we get the multi-class F1 score from the weighted average of the F1 scores of
each class. The weight is proportional to the number of vectors in that image schema/-
cluster. This weighting is to take into account the fact that some image schemas are more
frequent than the others. In this measurement, a higher F1 score is better. The formula
is shown in Formula 6.1. In that formula, TP stands for the number of “True Positive”s,
FP stands for the number of “False Positive”s, and FN stands for the number of “False
Negative”s of the aforementioned classification. The |v∈IS||v| multiplier in the second line of
the formula is the weight of the class's F1 score.

The second measure is to compare the intra-cluster against the inter-cluster distances.
Basically, the distances within a cluster should be closer than the distance beyond one
cluster. For this, we calculate the inertia score (Formula 6.2). Specifically, we compare
the distance between the centroids of each image schema to the global centroid (i.e. the
center of all vectors) against the distance between each data point to its cluster centroid. If
the distance between each cluster centroid to the global centroid is large and the distance
between the individual vectors to their respective centroid is small, then the inertia score
will be high. The illustration of this metric is provided in Figure 6.5. In our measure, a
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Figure 6.5 – An illustration of the notion of cluster inertia. The different colors (i.e. red
and blue) represent different image schemas, the circles represent vectors, the triangles
represent the cluster centroids, the black rectangle represents the global centroid, the
red or blue lines represent the intra-cluster distances, and the black lines represent the
inter-cluster distances. The inertia score is higher if the black lines (i.e. the intra-cluster
distances) are longer than the red or blue lines (i.e. the intra-cluster distances)

higher inertia score signifies better clustering. We weight each clusters/image schemas
linearly to the number of vectors in that image schema to take into account the fact that
some image schemas are more frequent than the others.

F1IS =
TP

TP + FP+FN
2

F1 =
∑
IS

|v ∈ IS|
|v|

F1IS

(6.1)

inertia =
∑
IS

|v ∈ IS| × d(cIS , cglobal)∑
v∈IS d(v, cIS)

(6.2)

Once each image schema can be represented as a vector, then the notion of distance
becomes sensible. Previously, we have a notion of different image schemas, but we cannot
tell if some image schemas are closer or more similar to each other than to the others.
However, if each image schema is represented by a vector, then we can calculate the dis-
tance between them. This is to answer our third research question: which image schemas
are close to each other? We will measure their distances and also do a hierarchical cluster-
ing to show how similar image schemas can be merged. We use two measures to calculate
the distance between different image schemas.

In the first measure (Formula 6.3), we calculate the distance between their respective
centroids. If the two centroids are near, then the two image schemas are considered to be
similar.

In the second measure, we measure the confusion between the individual vectors of
each image schema (Formula 6.4). Specifically, given two image schemas IS1 and IS2, we
measure how many individual vectors belonging to image schema IS1 which are closer to
the centroid of IS2 and vice versa. The more numerous such vectors are (i.e. the more
“confused” the vectors are), the closer the two image schemas are. This is essentially the
inverse of the cluster purity measure. We normalize the number of the “confused” vectors
against the size of each image schema. Therefore, this confusion distance works at the
level of proportion. For example, if only 30% of IS1's vectors are closer to the centroid of
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Figure 6.6 – An illustration of image schema distance. The different colors (i.e. red
and blue) represent different image schemas, the circles represent vectors, the triangles
represent the cluster centroids, and the orange dotted line represents the distance between
the two centroids. Two blue vectors are nearer to the red centroid, and thus they are
“confused”. On the distance metric which uses the inter-centroid distance (Formula 6.3),
the two image schemas are closer to each other if the dotted orange line is shorter. On
the distance metric which uses the confusion (Formula 6.4), the two image schemas are
closer to each other if there are more “confused” vectors.

IS1 (than to the centroid of IS2) and only 40% of IS2's vectors are closer to the centroid
of IS2 (than to the centroid of IS1), then the confusion is (0.3 + 0.4)/2 = 0.35. The lower
the score, the closer the two image schemas are.

Both of those distance metrics are illustrated in Figure 6.6. The confusion-based metric
is essentially the inverse of the cluster purity measure. The main difference between those
two metrics is that the confusion distance takes into account the spread of the vectors. For
example, in Figure 6.6, the red cluster is more compact than the blue cluster. Two of the
blue vectors are actually closer to the red centroid than to the blue centroid.

dcentroid(IS1, IS2) = d(cIS1 , cIS2) (6.3)

dconfusion(IS1, IS2) =
1

2
(
|v | v ∈ IS1 ∧ d(v, cIS1 > d(v, cIS2))|

|v ∈ IS1|
+
|v | v ∈ IS2 ∧ d(v, cIS1 < d(v, cIS2))|

|v ∈ IS2|
)

(6.4)

6.6 Experiment

We use the Stanford Natural Language Inference (SNLI) (Bowman et al. (2015)) corpus as
the source of our sentences. This corpus has 652,505 sentences in English. First, we run
Ravenet et al's algorithm to extract the image schema from those sentences and we mark
the word where the image schema comes from. The image schema statistics is furnished
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Image Schema Count Proportion
ATTRACTION 1368 0.0997%

BACK 2104 0.153%
BIG 13863 1.010%

CONTAINER 11147 0.812%
CONTRAST 234 0.017%

DOWN 3284 0.239%
EMPTY 1659 0.121%

ENABLEMENT 7980 0.581%
FAR 8830 0.643%

FRONT 1459 0.106%
FULL 1011 0.074%

IN 143151 10.431%
INTERVAL 69848 5.090%
ITERATION 406 0.030%

LEFT 1534 0.112%
LINK 19387 1.413%

MERGING 6146 0.448%
NEAR 10203 0.743%

OBJECT 550542 40.116%
OUT 13594 0.991%

RIGHT 8469 0.617%
SMALL 3087 0.225%

SURFACE 5932 0.432%
UP 25226 1.838%

WHOLE 461918 33.658%

Table 6.6 – Image schema count and their proportion

at Table 6.6. After that, we run both BERT and SenseBERT to get the embedding of each
word.

In our first experiment, we measure the clusters'F1 score/purity (see Formula 6.1) and
inertia (see Formula 6.2) to compare BERT and SenseBERT on the resulting clustering
behavior. We permute through the options of cosine distance - euclidean distance and
embedding comes from the word - embedding is averaged through the phrase.

We furnish in Table 6.7 the inertia when we calculate the value of each vector as the
average BERT/SenseBERT embedding vector of all the words in the phrase. On the other
hand, in Table 6.8, we show the corresponding values if each vector is the BERT/Sense-
BERT embedding vector of the word where the image schema comes from.

Similarly, we furnish in Tables 6.9 and 6.10 the F1 score when we calculate the value
of each vector as the average BERT/SenseBERT embedding vector of all the words in the
phrase and when the value if each vector is the BERT/SenseBERT embedding vector of the
word where the image schema comes from.

In our second experiment, we want to find out which image schemas are close to each
other. However, we have already represented the image schemas as clusters. Therefore,
we measure the distances between their respective clusters as a proxy of similarities/d-
ifferences between the different image schemas. For this, we measure the inter-centroid
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By Euclidean Distance By Cosine Distance
BERT 0.047 0.072

SenseBERT 0.052 0.104

Table 6.7 – Inertia measure with each vector is calculated by averaging from all words in
the phrase

By Euclidean Distance By Cosine Distance
BERT 0.048 0.082

SenseBERT 0.078 0.158

Table 6.8 – Inertia measure with each vector comes from the word where the image
schema comes from

By Euclidean Distance By Cosine Distance
BERT 0.439 0.526

SenseBERT 0.613 0.609

Table 6.9 – F1 score with each vector is calculated by averaging from all words in the
phrase

By Euclidean Distance By Cosine Distance
BERT 0.627 0.619

SenseBERT 0.705 0.697

Table 6.10 – F1 score with each vector comes from the word where the image schema
comes from
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Closeness BERT / Euclidean BERT / Cosine
Rank Distance Distance

1 OBJECT-WHOLE OBJECT-WHOLE
2 LINK-OBJECT LINK-OBJECT
3 LINK-WHOLE LINK-WHOLE
4 ENABLEMENT-OBJECT ENABLEMENT-OBJECT
5 OBJECT-SURFACE OBJECT-SURFACE

Table 6.11 – Five closest pairs of image schemas in BERT with the centroid distance

Closeness SenseBERT / Euclidean SenseBERT / Cosine
Rank Distance Distance

1 OBJECT-WHOLE OBJECT-WHOLE
2 LINK-OBJECT LINK-OBJECT
3 ENABLEMENT-OBJECT LINK-WHOLE
4 LINK-WHOLE ENABLEMENT-OBJECT
5 OBJECT-SURFACE OBJECT-SURFACE

Table 6.12 – Five closest pairs of image schemas in SenseBERT with the centroid distance

distances (see Formula 6.3) and the confusion rates (see Formula 6.4). It is useful to
remember that the main difference between the inter-centroid distance metric and the
confusion metric is that the confusion metric takes into account the spread of the clus-
ter while the inter-centroid distance metric does not. We permute through the options
of BERT - SenseBERT and cosine distance - euclidean distance. We furnish the five clos-
est pairs of image schemas according to those parameters in Tables 6.11, 6.12, 6.13, and
6.14. We also show the hierarchical clusters of the image schemas according to the same
permutation of parameters. In this hierarchical clustering, we merge the closest pair of
image schemas at each step until there is only one remaining. The hierarchical clusters
are displayed in Figures 6.7, 6.8, 6.9, 6.10, 6.11, 6.12, 6.13, and 6.14

We also display the UMAP visualizations (McInnes et al. (2018)) of three cases, namely
EMPTY image schema in BERT and euclidean distance (Figure 6.15), RIGHT image schema
in SenseBERT and cosine distance (Figure 6.16), and NEAR image schema in SenseBERT
and euclidean distance (Figure 6.17). We choose them because according to the hierar-
chical clusters when we use the centroid distance, they are among the last to be merged,

Closeness BERT / Euclidean BERT / Cosine
Rank Distance Distance

1 OBJECT-WHOLE OBJECT-WHOLE
2 INTERVAL-UP LINK-OBJECT
3 LINK-OBJECT INTERVAL-UP
4 LINK-WHOLE LINK-WHOLE
5 ENABLEMENT-OBJECT BIG-UP

Table 6.13 – Five closest pairs of image schemas in BERT with the confusion distance
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Closeness SenseBERT / Euclidean SenseBERT / Cosine
Rank Distance Distance

1 OBJECT-WHOLE OBJECT-WHOLE
2 INTERVAL-UP INTERVAL-UP
3 BIG-DOWN BIG-DOWN
4 LINK-OBJECT LINK-OBJECT
5 BIG-UP BIG-UP

Table 6.14 – Five closest pairs of image schemas in SenseBERT with the confusion
distance

Figure 6.7 – The hierarchical clustering of image schemas in BERT and euclidean distance
(between two vectors) with the centroid distance (between two image schemas)
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Figure 6.8 – The hierarchical clustering of image schemas in BERT and cosine distance
(between two vectors) with the centroid distance (between two image schemas)
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Figure 6.9 – The hierarchical clustering of image schemas in SenseBERT and euclidean
distance (between two vectors) with the centroid distance (between two image schemas)
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Figure 6.10 – The hierarchical clustering of image schemas in SenseBERT and cosine dis-
tance (between two vectors) with the centroid distance (between two image schemas)
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Figure 6.11 – The hierarchical clustering of image schemas in BERT and euclidean distance
(between two vectors) with the confusion distance (between two image schemas)
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Figure 6.12 – The hierarchical clustering of image schemas in BERT and cosine distance
(between two vectors) with the confusion distance (between two image schemas)
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Figure 6.13 – The hierarchical clustering of image schemas in SenseBERT and euclidean
distance (between two vectors) with the confusion distance (between two image schemas)
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Figure 6.14 – The hierarchical clustering of image schemas in SenseBERT and cosine dis-
tance (between two vectors) with the confusion distance (between two image schemas)
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which suggest that they are a relative outlier among all the vectors. It should be noted
that due to the large number of the vectors, we cannot run the UMAP algorithm with our
entire data. Therefore, we sample the data to make the computation tractable.

6.7 Discussion

We can see from Tables 6.7, 6.8, 6.9, and 6.10, SenseBERT embeddings show a better
clustering behavior. It holds true whether we measure the clustering by using inertia or
by using F1 score. It also holds true whether we measure the distance by using euclidean
distance or by using cosine distance. It also holds true whether the vector values are
obtained by averaging the BERT/SenseBERT embedding vectors of all the words in the
phrase or by taking the BERT/SenseBERT embedding vector of the word which is tagged
with the image schema. This is likely caused by the fact that SenseBERT is explicitly
trained by using WordNet, which the image schema computation also uses. Therefore, if
we want to represent an image schema as a vector, SenseBERT is more suitable as the base
than BERT is. We can use the centroids of the clusters as the embedding vector for each
image schema.

We also observe in the same four tables that the inertias and the F1 scores are higher
when we take the vector values from only the word which is tagged with the image schema
instead of when we average all the words in the phrase. This is likely caused by the
fact that the rests of the phrase are quite similar across various image schemas, which
cause the differences between different image schemas (i.e. different clusters) become
less pronounced than when we take only the words which are tagged with the image
schemas.

We can see the lists of the closest pairs of image schemas in Tables 6.11, 6.12, 6.13, and
6.14. Interestingly, OBJECT-WHOLE is the closest pair in all cases. Besides that, we can
see in Table 6.6 that OBJECT and WHOLE together form a large majority of our vectors:
more than 70%. It suggests that both image schemas are too general and should be split
and refined further.

We can also see in Tables 6.11 and 6.12 that both BERT and SenseBERT give the
same top-five closest pairs (albeit in a slightly different order) when we use the centroid
distance to measure the distance between two image schemas. However, either OBJECT
or WHOLE (or both) appear in all those pairs of image schemas. We also know that the
centroids of OBJECT and WHOLE are close to each other. We also see in the dendrograms
of the hierarchical clusters when we use the centroid distance to measure the distance
between two image schemas (Figures 6.7, 6.8, 6.9, and 6.10) that OBJECT and WHOLE
are merged first, then other image schema is merged there one by one. It suggests that
both OBJECT and WHOLE are relatively in the center and other image schemas “‘radiate”
from there.

On the other hand, we see in Tables 6.13 and 6.14 where we use the confusion distance
that the top-five closest pairs are more diverse: not all of them include either OBJECT or
WHOLE. We find INTERVAL-UP, BIG-UP, and BIG-DOWN. The difference with the afore-
mentioned case when we use the centroid distance might be caused by the spread of the
vectors away from their respective centroid. The centroids of INTERVAL and UP are likely
to be not so near, but there are many of INTERVAL and UP vectors which are near to the
centroid of the other image schema. These results also suggest that, those pairs of image
schema are likely often “confused with each other” and probably they should be split and
refined further.
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Figure 6.15 – The visualization of the EMPTY image schema (red) and everything else
(blue) in BERT and euclidean distance (between two vectors)

94



6.7. DISCUSSION

Figure 6.16 – The visualization of the RIGHT image schema (red) and everything else
(blue) in SenseBERT and cosine distance (between two vectors)

95



CHAPTER 6 – IMAGE SCHEMA COMPUTATION AND EMBEDDING

Figure 6.17 – The visualization of the NEAR image schema (red) and everything else
(blue) in SenseBERT and euclidean distance (between two vectors)
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We also see in the dendrograms of the hierarchical clusters when we use the confusion
to measure the distance between two image schemas (Figures 6.11, 6.12, 6.13, and 6.14)
that there are many cases of image schemas other than OBJECT and WHOLE merged quite
early: INTERVAL-UP (Figures 6.11, 6.12, 6.13, and 6.14), BIG-DOWN (Figures 6.11, 6.12,
6.13, and 6.14), MERGING-FULL (Figure 6.12), and SURFACE-FRONT (Figures 6.13 and
6.14). These results are more diverse than when we use the centroid distance where
the hierarchical clusters show that the OBJECT and WHOLE are to be merged together
and then other image schemas are to be merged into the OBJECT-WHOLE cluster one
by one. The more diverse results when we use the confusion distance is likely because
the confusion distance takes into account the vectors which are far from their respective
centroid and there are many such vectors.

Finally, we show three UMAP visualizations: the EMPTY image schema when we use
BERT and euclidean distance (Figure 6.15), the RIGHT image schema when we use Sense-
BERT and cosine distance (Figure 6.16) and the NEAR image schema when we use Sense-
BERT and euclidean distance (Figure 6.17). In all the three cases, those image schemas
are among the last to be merged in their respective hierarchical clustering when we use
the centroid distance (Figure 6.7 for EMPTY, Figure 6.10 for RIGHT, and Figure 6.9 for
NEAR). The fact that they are among the last to be merged suggests that they are a relative
outlier, and indeed we see in the three UMAP visualizations that they are away from the
dense center.

Here we also give some examples on sentences and their image schemas:

• The men are fighting outside a deli. → “deli” is “WHOLE”

• Two kids in numbered jerseys wash their hands. → “hands” is “OBJECT”

• The woman's hands are empty. → “empty” is “EMPTY”

• A woman is talking on the phone while standing next to a dog. → “next” is “RIGHT”

6.8 Conclusion

Johnson (2013) proposes an abstract notion of image schema as a way to represent se-
mantics. Cienki (2013) proposes the notion that image schema is the way semantics is
represented in order to produce metaphoric gestures. Lücking et al. (2016); Cienki (2008)
do experiments to investigate the concordance between image schemas and observed ges-
tures. However, although their studies suggest that image schema are indeed relevant for
metaphoric gestures, it was not known yet how to extract the image schema from natural
communication. Ravenet et al. (2018a,b) propose an algorithm to solve that problem.
Ravenet et al's algorithm extract the image schema from a free-form text by using Word-
Net senses. However, Ravenet et al's algorithm does not give a notion of how similar two
different image schemas are: OBJECT, WHOLE, and EMPTY are simply different image
schemas. Besides that, recent machine learning techniques which take text as the input
(or one of the inputs) require that the text to be converted into vectors. In the wider ma-
chine learning world, this is done by using word embedding techniques to convert the text
into vectors. These word embedding techniques have a property that two similar words
are mapped into two vectors which are close to each other, but different word embedding
techniques have different notions on what makes two words to be similar. Incidentally,
with word embedding vectors, it is also possible to quantify how similar two words are,
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because the distance between the vectors is a proxy of the similarity between the words.
Our work has the purpose of representing image schemas as vectors.

We extract the vectors of the individual words in our corpus by using BERT and Sense-
BERT. We extract the image schemas by running Ravenet et al's algorithm. However, there
are far more words than image schemas, thus many words (with different word embed-
ding vectors) are necessarily mapped to the same image schema. However, because they
should have similar meanings, then they should be close to each other, which means the
embedding vectors which belong to the same image schema should form a cluster. We
investigate the clustering behavior when we use BERT and SenseBERT. We also find out
which pairs of image schemas are close to each other. Related to this closeness between
pairs of image schemas, we show the hierarchical clusters which signifies the relative dis-
tance between different image schemas.
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Chapter 7
Gesture Shape Representation and
Image Schema

In this chapter, we introduce our representation scheme of the gesture shapes. Our ob-
jective is to represent gesture shapes such that we can represent wide-enough variety of
meanings but is compact enough such that it can be practically encoded. This is similar
in principle to the works we discuss in Section 2.5. Specifically, we create the represen-
tations based on our observations of the metaphoric gestures used in the Gest-IS corpus
(Saint-Amand (2018), see Capter 4). After we describe the representation scheme in Sec-
tion 7.1, we discuss the general statistics of the gestures in Section 7.2. Finally, we relate
the gesture shapes and the image schemas (see Section 2.6 and Chapter 6) and we show
the statistics in Section 7.3.

7.1 Gesture Shape Representation

The recent neural-network based techniques (Hasegawa et al. (2018); Kucherenko et al.
(2019); Ferstl et al. (2019); Kucherenko et al. (2020); Ahuja and Morency (2019)) use 3D
coordinates of the joints to represent the gesture. They do not differentiate the hand ges-
tures from the more general body movement. This representation is practical for machine-
learning-based techniques because this representation is readily in the form of vector of
real numbers, which is what machine learning techniques work with. This representation
is also practical in a different way because this data can be extracted efficiently if both
Motion Capture instrument and actors are available. However, the motion capture instru-
ment is expensive. Besides that, the process is still laborious: the actors have to be fitted
with sensors, the instrument has to be configured, and the actors have to perform vari-
ous movements. Effectively, it makes obtaining the data an expensive endeavor. Ginosar
et al. (2019); Ahuja et al. (2020) circumvent this problem by working directly with 2D
data instead of 3D data. They extract the 2D skeletal key point data from videos by using
OpenPose (Cao et al. (2017)). OpenPose itself is a software for 2D pose estimation. Due
to the wide availability of videos (e.g. from video sharing websites), their data is cheaper
to obtain than the traditional method of using Motion Capture instrument. Because their
techniques work directly with 2D data, this technique also yields the 2D skeletal key points
as the output. This is not a problem because their outputs are 2D videos, and therefore 2D
skeletal key points are sufficient. Habibie et al. (2021), on the other hand, automatically
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Our Term Similar ASL Shape Picture
Circle O Figure 7.1
Fist S Figure 7.2

Open 5 Figure 7.3
Pinch Q Figure 7.4
Point 1 Figure 7.5
Relax C Figure 7.6
Two V Figure 7.7

Table 7.1 – Our gesture shape representation on the hand shapes, both in our term and
the similar shape in the American Sign Language (ASL)

Figure 7.1 – The hand shape “circle” (see Table 7.1)

infer the 3D key points from the 2D key points. Specifically, Habibie et al use Mehta et al.
(2020) to infer the body's 3D key points, Zhou et al. (2020) to infer the 3D key points of
the hands, and Garrido et al. (2016) to infer the facial 3D key points.

However, as we explain in Section 2.5, Efron (1941); Kipp et al. (2007); Lücking et al.
(2016); Calbris (2011) have different representations of gestures. These representations
are at a “higher level”. All of them encode the body parts which do the gesture, the trajec-
tory, and the movement direction. We also observe that several ideational gesture gener-
ation techniques also use a “higher-level representation” instead of the coordinates of the
joints. For example, Bergmann and Kopp (2009) represent the gesture by the “represen-
tation technique”, “handedness”, “handshape”, “palm orientation”, “finger orientation”,
“movement orientation”, and “movement”. Nihei et al. (2019) classify gesture forms into
“square”, “vertical rectangle”, “horizontal rectangle”, “circle”’, “vertical ellipse”, “horizon-
tal ellipse”, and “line shape”. Therefore, in the spirit of generating metaphoric gestures, we
also create a “higher-level representation” of gesture shapes. Our representation scheme
is inspired by the ones in Kipp et al. (2007) and Lücking et al. (2016). However, our
representation scheme is based on our observations in the Gest-IS corpus (Saint-Amand
(2018), see Chapter 4).

Our representation consists of the hand shape, the movement type, the movement
direction, the movement count (whether it is one way only or with repetition), and the
palm orientation. The list of the hand shapes is furnished in Table 7.1. Following Kipp
et al. (2007); Lücking et al. (2016) who use the American Sign Language notation, we
also furnish the similar shapes in the American Sign Language. The list of movement
types is furnished in Table 7.2. The list of movement directions is furnished in Table 7.3.
The movement count list is furnished in Table 7.4. Lastly, we furnish the palm orientation
list in Table 7.5. It should be noted that palm orientation is different from the movement
direction. Palm orientation is the direction where the palm is pointing to whereas the
movement direction is the direction where the hand is moving to.

Compared to the representation schemes of Kipp et al. (2007) and Lücking et al.
(2016), we recognize less hand shapes. This is deliberate because we create our anno-
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Figure 7.2 – The hand shape “fist” (see Table 7.1)

Figure 7.3 – The hand shape “open” (see Table 7.1)

Figure 7.4 – The hand shape “pinch” (see Table 7.1)

Figure 7.5 – The hand shape “point” (see Table 7.1)

Figure 7.6 – The hand shape “relax” (see Table 7.1)

Figure 7.7 – The hand shape “two” (see Table 7.1)

Name Picture
Linear Figure 7.8

Circular Figure 7.9
Waving Figure 7.10

Table 7.2 – Our gesture shape representation on the movement type
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Figure 7.8 – An example of the movement type “linear” (see Table 7.2)

Figure 7.9 – An example of the movement type “circular” (see Table 7.2)
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Figure 7.10 – An example of the movement type “waving” (see Table 7.2)

Direction Picture Applicable to movement type
Backward Figure 7.12 Linear
Frontward Figure 7.12 Linear

Upward Figure 7.11 Linear
Downward Figure 7.11 Linear

Inward Figure 7.11 Linear
Outward Figure 7.11 Linear
Vertical Figure 7.15 Circular

Wrist rotation Figure 7.13 Waving
Horizontal Figure 7.14 Waving

Normal waving Figure 7.16 Waving

Table 7.3 – Our gesture shape representation on the movement direction

Name Applicable to movement type
One Way Linear and Circular

With Repetition Linear and Circular

Table 7.4 – Our gesture shape representation on the movement count. “With Repetition”
means that the movement is back-and-forth, like a pendulum
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Figure 7.11 – The “inward”, “outward”, “upward”, and “downward” movement directions
(see Table 7.3)

Figure 7.12 – The “frontward” and “backward” movement directions (see Table 7.3)
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Figure 7.13 – The “wrist rotation” movement direction (see Table 7.3). In this movement
direction, the only movement is the wrist rotation

Figure 7.14 – The “horizontal” movement direction (see Table 7.3). In this movement, the
section of the arm between the elbow and the fingertips is moving left-and-right only
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Figure 7.15 – The “vertical” movement direction (see Table 7.3). In this movement, the
hand is making a half-circle movement

Figure 7.16 – The “normal waving” movement direction (see Table 7.3). The movement is
like doing a normal hand-waving movement (like the gesture while we are saying “good
bye” to someone). This movement is done by elbow rotations
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Orientation Picture
Backward Figure 7.17
Frontward Figure 7.18

Upward Figure 7.19
Downward Figure 7.20

Inward Figure 7.21
Outward Figure 7.22

Table 7.5 – Our gesture shape representation on the palm orientation

Figure 7.17 – The “backward” palm orientation (see Table 7.5)
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Figure 7.18 – The “frontward” palm orientation (see Table 7.5)

Figure 7.19 – The “upward” palm orientation (see Table 7.5)
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Figure 7.20 – The “downward” palm orientation (see Table 7.5)

Figure 7.21 – The “inward” palm orientation (see Table 7.5)
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Figure 7.22 – The “outward” palm orientation (see Table 7.5)

tation scheme based on what we observe in the Gest-IS corpus, and therefore we only rec-
ognize what we observe there. Besides that, we want a compact representation, therefore
we want to keep the scheme as “small” as possible. On the classification of the move-
ment type, our scheme, Kipp et al's scheme, and Lücking et al's scheme are different from
each other. Our scheme recognizes linear, circular, and waving movement types. Kipp et
al's scheme recognizes straight and curved movement types. Meanwhile, Lücking et al's
scheme recognizes line, arc, zigzag, and pointing movement types.

7.2 Overall Statistics

We extract the metaphoric gesture strokes from the Gest-IS corpus (Saint-Amand (2018),
see Chapter 4). In this section, we give the statistics pertaining to the shape of those
gestures.

In Tables 7.6 and 7.7 where we furnish the statistics about the starting and the ending
hand shapes, we observe in the two tables that the “Open” hand shape forms the majority,
despite the fact that these are metaphoric gestures. Thus, even metaphoric gestures, which
are supposed to convey abstract ideas, are mostly performed with a simple hand shape.
Interestingly, the second most common hand shape is “Relax”, which is also a simple hand
shape.

In Tables 7.8 and 7.9 where we furnish the starting and ending palm orientations, we
observe that the two most common palm orientations are “Downward” and “Inward”, but
they are not extremely numerous compared to the other palm orientations. It might be
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Starting Hand Shape (see Table 7.1) Count Proportion
Open 99 68.75%
Relax 20.5 14.236%
Fist 12.5 8.681%

Pinch 6 4.167%
Point 3 2.083%
Circle 2 1.389%
Two 1 0.694%

Table 7.6 – The starting hand shape counts. The non-integer numbers mean that the
shapes are different for the left hand and the right hand, where each of them counts as

0.5

Ending Hand Shape (see Table 7.1) Count Proportion
Open 110.5 76.736%
Relax 18.5 12.847%
Pinch 6 4.167%
Fist 3 2.083%

Point 3 2.083%
Circle 2 1.389%
Two 1 0.694%

Table 7.7 – The ending hand shape counts. The non-integer numbers mean that the
shapes are different for the left hand and the right hand, where each of them counts as

0.5

caused by the fact that the speakers in our corpus are sitting. Having the palms facing
inward or downwards and the hands are resting on the thighs is a comfortable resting po-
sition while sitting. Therefore, these orientations are probably “carried” when the gestures
are performed.

In Table 7.10 where we furnish the movement types, we observe that the “linear”
gestures are by far the most common. In Table 7.13, we find that the vast majority of
those “linear” gestures are one way. This is the simplest movement type. Interestingly, we
also saw earlier that the most common hand shapes are the simplest ones too. Thus, most
of the gestures are probably relatively simple.

In Table 7.11 where we furnish the movement direction of the “linear” gestures, the
most common one is “downward”. However, the “downward” movement does not greatly
outnumbers the others. This might be related to the fact that the most common palm
orientation is also “downward” (see Tables 7.8 and 7.9).

7.3 Statistics Pertaining To Gesture Shape and Image Schema

We extract the samples from our corpus in a way similar to when we predict gesture timing
(see Section 5.1): we split the samples according to the Inter-Pausal Unit. However, we
only take those with a metaphoric gesture. We run them through the algorithm to extract
the image schemas (see Sections 6.3.1 and 6.4). We only take the samples which have an
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Starting Palm Orientation (see Table 7.5) Count Proportion
Downward 54.5 37.847%

Inward 36 25%
Backward 30.5 21.181%
Frontward 17 11.806%

Upward 6 4.167%

Table 7.8 – The starting palm orientation counts. The non-integer numbers mean that the
orientations are different for the left hand and the right hand, where each of them counts

as 0.5

Ending Palm Orientation (see Table 7.5) Count Proportion
Downward 45 31.25 %

Inward 35 24.306%
Upward 31 21.528%

Frontward 18 12.5%
Backward 15 10.417%

Table 7.9 – The ending palm orientation counts. The non-integer numbers mean that the
orientations are different for the left hand and the right hand, where each of them counts

as 0.5

Movement Type (see Table 7.2) Count Proportion
Linear 133 92.361%
Waving 7 4.861%
Circular 4 2.778%

Table 7.10 – The movement type counts

Direction (see Table 7.3) Count Proportion
Downward 46 34.586%
Outward 29 21.805%

Frontward 20 15.038%
Upward 18 13.534%
Inward 16 12.03%

Backward 4 3.008%

Table 7.11 – The movement direction counts of the “linear” movement type (see Table
7.2)
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Direction (see Table 7.3) Count Proportion
Normal Waving 4 57.143%

Horizontal 2 28.571%
Wrist Rotation 1 14.286%

Table 7.12 – The movement direction counts of the “waving” movement type (see Table
7.2)

Type (see Table 7.4) Count Proportion
One Way 126 94.737%

Many 7 5.263%

Table 7.13 – The statistics of the movement count (i.e. one way or many) of the ’‘linear”
movement type (see Table 7.2)

image schema. The counts of the samples for each image schema are furnished in Table
7.14.

It can be seen in Table 7.14 that “Object” and “Whole” image schemas form the major-
ity. Therefore, we will investigate these two image schemas. We furnish the counts of the
ending hand shape and the ending palm orientation. For the movement, because we ob-
serve in the general statistics (see Tables 7.10 and 7.13) that one-way linear movements
form the majority, we will investigate the difference of the movement directions of the
one-way linear movements.

In Tables 7.15 and 7.16 where we show the ending hand shape counts of the “Object”
and “Whole” image schemas, it can be seen that “Open” is the most common hand shape.
This is similar to what we observe in the general case (see Table 7.7).

For the ending palm orientations of the “Object” and “Whole” image schemas, as we
show in Tables7.17 and 7.18, we find that in both image schemas “upward”, “downward”,
and “inward”. This is similar to what we find in the general case (see Table 7.9).

And finally, for the movement directions of the linear one-way movements, as we
furnish in Tables 7.19 and 7.20, in both “Object” and “Whole” image schemas, both down-
ward and outward movement directions are relatively numerous, but not by a large margin
compared to the others. This is similar to what we see in the general case (see Table 7.11).

Image Schema Count Proportion
Object 42 45.652%
Whole 31 33.696%

Big 7 7.609%
Merging 3 3.261%

Link 3 3.261%
Attraction 3 3.261%

Up 2 2.174%
Interval 1 1.087%

Table 7.14 – The counts of the samples with an image schema
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Ending Hand Shape (see Table 7.1) Count Proportion
Open 33 78.571%
Relax 6 14.286%
Circle 2 4.762%
Pinch 1 2.381%

Table 7.15 – The ending hand shape counts of the “Object” image schema

Ending Hand Shape (see Table 7.1) Count Proportion
Open 24.5 79.032%
Relax 3.5 11.290%
Pinch 2 6.452%
Point 1 3.226%

Table 7.16 – The ending hand shape counts of the “Whole” image schema. The
non-integer numbers mean that the hand shape are different for the left hand and the

right hand, where each of them counts as 0.5

Ending Palm Orientation (see Table 7.5) Count Proportion
Inward 15 35.714%

Downward 10 23.81%
Upward 8 19.048%

Frontward 6 14.286%
Backward 3 7.143%

Table 7.17 – The ending palm orientation counts of the “Object” image schema

Ending Palm Orientation (see Table 7.5) Count Proportion
Downward 11 35.484%

Upward 6 19.355%
Inward 6 19.355%

Backward 4 12.903%
Frontward 4 12.903%

Table 7.18 – The ending palm orientation counts of the “Whole” image schema

Direction (see Table 7.3) Count Proportion
Upward 8 23.529%

Downward 7 20.588%
Outward 7 20.588%

Frontward 6 17.647%
Inward 6 17.647%

Table 7.19 – The movement direction counts of the “Object” image schema for the
one-way linear movements
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Direction (see Table 7.3) Count Proportion
Downward 8 29.63%
Outward 7 25.926%

Frontward 5 18.519%
Inward 3 11.111%
Upward 3 11.111%

Backward 1 3.704%

Table 7.20 – The movement direction counts of the “Whole” image schema for the
one-way linear movements

We observe that these two image schemas have gesture shapes which are not only
similar to the overall statistics, but they are also similar to each other (i.e. “Object” and
“Whole”).

7.4 Conclusion

In this chapter, we define our gesture shape representation scheme. We are inspired by
the gesture representation scheme in Kipp et al. (2007) and Lücking et al. (2016), but
we create our scheme according to our observations in the Gest-IS corpus (Saint-Amand
(2018)). Our representation consists of the hand shape, the movement type, the move-
ment direction, the movement count (whether it is one way only or with repetition), and
the palm orientation.

We discuss in Section 7.2 the general statistics of the gesture shapes. We find that
most gestures are simple gestures, both in terms of the hand shape and in movement. It
might be related to the fact that our corpus contains natural conversations instead of a
staged performance (see Chapter 4). Interestingly, despite the fact that our representation
scheme, Kipp et al's representation scheme, and Lücking et al's representation scheme have
different classifications of the movement type, ultimately what we observe is that most of
the movements are linear/straight, which is recognized by all of the three schemes.

Finally, in Section 7.3 where we relate the gesture shapes and image schemas, we find
that “Object” and “Whole” account for most of the image schemas. The gesture shapes
of these two image schemas are similar to the overall statistics. Besides that, the gesture
shapes of these two image schemas are also similar to each other. It is probably related to
our finding in Section 6.7 that the image schemas “Object” and “Whole” are indeed similar
to each other.
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Chapter 8
Conclusion

Our work contributes toward the general problem of communicative gesture generation
for virtual agent.

In Chapters 4 and 7, we explain our corpus and the additional data extraction/annota-
tion we perform. We extract the acoustic features, eye brow movements, and metaphoric
gesture shapes. In order to annotate the metaphoric gesture shapes, we define our gesture
shape annotation scheme.

In Chapter 5, we explain our model to predict gesture timing. This work is a step
towards generating gestures with the desired property that the gestures should match/be
coherent with the speech (see Section 1.3.1), especially toward generating gestures whose
timing matches the speech's rhythm. Two important developments in this domain which
are reflected in our approach are the use of machine learning and the use of acoustic
features (see Sections 1.4.1 and 1.4.2).

In Chapter 6, we explain our proposal to improve the existing image schema compu-
tation algorithm and we also explain our proposed method to represent image schemas
as embedding vectors. This work is a step toward generating gestures with the desired
property that the gestures should match/be coherent with the speech (see Section 1.3.1),
especially toward generating gestures whose shape matches the speech's semantics. Three
important developments in this domain which are reflected in our approach are the use
of machine learning, word embedding, and image schema (see Sections 1.4.1, 1.4.6, and
1.4.7). To enable the generation of gestures whose shape matches the speech's semantics,
we have to encode the semantics. Image schema is one way to encode such semantics.
An interesting property of image schema is that its relevance is supported by prior works
which find the relationship between image schema and metaphoric gestures (see Section
2.6). However, neural network takes only vectors as its input. In order to solve this
problem, word embedding techniques have been developed and have been used to trans-
form texts into vectors. Therefore, we develop a method to transform image schemas into
embedding vectors.

In this closing chapter, we explain our contributions (Section 8.1) and their limitations
(Section 8.2). We also explain the potential future works and how they fit into the broader
context of the gesture generation problem (Section 8.3).
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8.1 Contribution Summary

In this section, we summarize our contributions. Our contributions are the corpus annota-
tion and analysis in Section 8.1.1, prediction of gesture timing in Section 8.1.2, improve-
ment of Ravenet et al. (2018a,b)'s algorithm in Section 8.1.3, and representation of image
schema as vectors in Section 8.1.4.

8.1.1 Corpus Annotation and Analysis

The Gest-IS corpus (Saint-Amand (2018)) we use comes with the transcripts and the an-
notations of communicative or non-communicative gestures, the gesture types, and the
gesture phases. It is, however, possible to extract additional data from the corpus. We ex-
tract the eyebrow movements, the acoustic features, and the metaphoric gesture shapes.

We use OpenFace (Baltrusaitis et al. (2018)) to extract the eyebrow movements. We
extract 3 Action Units (AUs) which represent the eyebrow movements: AU1 (inner brow
raiser), AU2 (outer brow raiser), and AU4 (brow lowerer). With these three AUs, we can
detect both rising and lowering eyebrow movements. This contribution can be found in
Section 4.5.

To extract the acoustic features, we use OpenSmile (Eyben et al. (2010)). We ex-
tract the audio features with 100 milliseconds time-step. We extract the fundamental
frequency (F0), the F0 direction score, the intensity, and the Mel-frequency cepstral coeffi-
cients (MFCC). We use these features in our work on the prediction of gesture timing (see
Chapter 5). This contribution can be found in Section 4.7.

To extract the metaphoric gesture shapes, we have to define the representation/anno-
tation scheme beforehand. Our scheme is inspired by the prior works on gesture encoding
(see Section 2.5), but we develop our scheme based on our observations in the corpus.
Our representation scheme is available in Section 7.1. After that, we analyze the statis-
tics of the different dimensions of the gesture shapes, including the breakdown of such
features for different image schemas. The analyses are available in Sections 7.2 and 7.3.

8.1.2 Prediction of Gesture Timing

We develop a neural network model by using recurrent neural network with attention
mechanism to predict gesture timing according to the acoustic input. Other than devel-
oping the model, we also develop an objective evaluation measure which tolerates shift
and dilation, we experiment with including eye brow movements in our data, and we
investigate whether the model is generalizable to the conversation partner.

Our model's approach of expressing the problem as a time series prediction problem
where the input is expressed as a sequence of acoustic features is similar to the approaches
used in the prior works which use acoustic features for gesture generation (see Sections
3.3 and 3.5). We use three prosody features, namely fundamental frequency (F0), F0 di-
rection score, and intensity. We also do a separate experiment with Mel-frequency cepstral
coefficients (MFCC). The use of these features is also similar to the prior works in which
use acoustic features for gesture generations (see Section 3.3 and 3.5). This contribution
is available in Section 5.2.2.

We develop an objective evaluation measure which tolerates shift and dilation up to
a certain extent. The underlying spirit is similar to the other works which allow many-
to-many relationships (e.g. Ginosar et al. (2019); Ferstl et al. (2019); Wu et al. (2021))
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which recognizes some diversity on the results (see Section 1.3.3): for each input, there
can be multiple correct output. However, our approach is more narrow: we only tolerate
differences in the form of shifts and dilations. This contribution is available in Section 5.3.

We do an experiment where we count the eyebrow movements as beat gestures. Our
corpus's gesture annotation only includes the hand gestures, which leads us into the ques-
tion of whether including eyebrow movements as beat gestures will yield better results. In-
deed, our validation process becomes more reliable for the beat gestures when we include
the eyebrow movements. Gestures and facial movements are traditionally considered as
separate problems in virtual agent. However, our finding suggest that these two problems
should probably be treated as different facets of the same problem. This contribution is
available in Sections 5.4 and 5.5, Experiment 4.

We also investigate whether our model is generalizable to the conversation partner.
Our corpus consists of conversations between the same pair of persons. Therefore, we do
an experiment to investigate whether a model trained on one speaker performs well when
tested on the data of the other speaker, and we find that the model indeed performs well.
This contribution is available in Section 5.4 and 5.5, Experiment 7.

8.1.3 Improvement of Ravenet et al. (2018a,b)'s Algorithm

We make two improvements on the Ravenet et al's algorithm (see Section 6.4).
The first improvement is replacing the Lesk algorithm which Ravenet et al use for

word sense disambiguation with the first WordNet sense. As a method, choosing the first
WordNet sense is very simple, yet Raganato et al. (2017) show that this method performs
remarkably well in word sense disambiguation tasks. It also consistently performs better
than Lesk algorithm in those tasks. This improvement is available in Section 6.4.1.

The second improvement we make is making use of more types of edge for the traver-
sal of WordNet graph. Ravenet et al's algorithm uses only the hypernym edges for the
WordNet graph traversal, but only noun and verb senses are connected through hypernym
edges. Thus, we use synonym edges for the traversal of adjective senses. Meanwhile, for
adverb, we get the corresponding adjective first, and then we treat this sense as if it were
an adjective sense. For verb, we also use the troponym edges. Troponym itself means the
manner of doing an action. This contribution is available in Section 6.4.2.

8.1.4 Representation of Image Schemas As Vectors

We develop a method to represent image schemas as vectors. With the image schemas
representable as vectors, the notion of distance between different image schemas, which
is a proxy of the differences between different image schemas, becomes sensible. There-
fore, we also calculate the distances between different image schemas. Both of these two
contributions are available in Section 6.5.

To represent the image schemas as vectors, first we extract the image schemas (in-
cluding which word the image schema is attached to) by using the improved version of
Ravenet et al's algorithm (see Section 6.4). Then, we get the word embedding by using
a word embedding model. We experiment with both BERT (Devlin et al. (2018)) and
SenseBERT (Levine et al. (2020)) word embedding models. However, because the words
which share the same image schema should express similar meanings, then they should
also be close to each other in the word embedding vector space. Therefore, in order to
observe whether there is a concordance between the image schemas and the word em-
bedding vectors, we observe whether the vectors which belong to the same image schema
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show a clustering behavior. We measure this clustering behavior. And then, we define the
centroids of those clusters as the embedding vectors of the image schema.

With the image schemas being representable as vectors, we are also able to calcu-
late the distances between different image schemas, which is a proxy of the differences
between different image schemas. We experiment with both the distances between the
cluster centroids and the confusion distances (i.e. proportionally, how many data points
are nearer to the other cluster's centroid). With their distances are known, we show which
image schemas are close/similar to each other with the hierarchical cluster of the image
schemas. Interestingly, we find that “OBJECT” and “WHOLE” image schemas are always
close to each other, even though we try different distance metrics.

8.2 Limitations of Our Work

In this section, we explain the limitations of our work. Mainly, we discuss the limitations in
the two contributions: prediction of gesture timing (see Section 8.1.2) and representation
of image schemas as vectors (see Section 8.1.4).

8.2.1 Prediction of Gesture Timing

The first limitation we have is the small size and the small variation in our data. Our data
has only conversations between the same dyad for the total duration of around 50 minutes.
Although we find that the model trained only on the data of one speaker can predict the
timing of the other speaker, we do not know if the model can work on strangers who are
not a party of this conversation. That is, we do not know if our model is generalizable
beyond the speakers of this conversation.

The second limitation is our strict distinction between ideational gestures and beat
gestures. However, the distinction between them is more like a degree of difference than
a binary distinction (McNeill (1992)). That is, it is possible that a gesture is both ideational
and beat at the same time. The strict distinction we use is a simplification.

The third limitation is that we do not have the information about the “frequency” of
the beat gestures. If in our data/prediction we find that t = 10 to t = 30 is marked with
beat, we do not know if it means one slow beat movement, several fast beat movements,
or many very-fast beat movements. This is because we treat beat as if it were without
phase.

The fourth limitation is that we treat hand gestures and facial movements separately.
As can be seen in Section 5.4 Experiment 4, our validation process becomes more reli-
able for the beat gestures when we include the eyebrow movements. Gestures and facial
movements are traditionally considered as separate problems in virtual agent research.
However, our finding suggest that these two problems should probably be treated as dif-
ferent facets of the same problem. Interestingly, a recent work from Habibie et al. (2021)
generate both gestures and facial movements together. This new paradigm introduced by
Habibie et al might be more suitable for this problem.

8.2.2 Representation of Image Schemas As Vectors

The first two limitations we would like to mention are the sources of our important infor-
mation: the source of the word embedding and the source of the image schema annota-
tion. We try both BERT and SenseBERT as the word embedding techniques and we find
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that that SenseBERT yields a better clustering behavior. However, representation learning
is an active research area, so there can be new embedding techniques which show a better
concordance with image schemas. On the source of image schema annotation, it comes
from the improved version of Ravenet et al's algorithm. As far as we are aware of, it is
the only known technique to extract image schemas from free-form texts. However, it is
possible that someone else comes up with a different annotation algorithm which might
give different results.

The third limitation we would like to highlight is that the similarity between the image
schemas are evaluated only through objective measurements. We do not do any subjective
study to measure the similarity between different image schemas.

The fourth limitation is the lack of portability to another language. Both BERT and
SenseBERT are only for English. Similarly, WordNet is only for English as well. There
might be word embedding models similar to BERT and SenseBERT for other languages,
there might also be a lexical database like WordNet for other languages, but we do not
know if the results would be the same with what we obtain.

The fifth limitation is that the method does not tell how to refine an image schema.
Although our method shows that image schemas “OBJECT” and “WHOLE” are similar to
each other, our method does not tell how to refine them.

8.3 Future Work

One grand objective we have not accomplished is the computation of ideational gesture
shape. We have proposed a method to solve the one of its sub-problems: how to represent
the semantics in a vector form in such a way that the two similar semantics are represented
by two nearby vectors. However, there are at least two other sub-problems which are not
yet addressed.

The first unaddressed sub-problem is how to represent the gesture shapes in such a
way that two gestures which convey similar semantics are represented by two nearby
vectors. For example, it is possible to do a gesture of pointing to the right by using the
thumb of the right hand, the index finger of the left hand, or even by all fingers of the
right hand. As a human, we might be able to intuitively recognize all of them as pointing
to the right. However, it is a challenge for computers to recognize that they are similar
gestures. The existing works which use machine learning represent the gestures simply by
the coordinates of the body joints (see Section 1.4.3). This representation is convenient
for machine learning because this representation is readily in the form of vector of real
numbers. Besides that, these joint coordinates can be extracted by using a Motion Capture
tool if both the tool and the actors are available. However, it is not clear how we can
go from this representation to be able to say that two gestures are similar. There are
also prior works which define their own representation of gesture shapes (see Section
2.5). These representations work on a “higher level”, such as the movement trajectory
or the hand shape. But it is still not clear how to create a notion that two gestures are
similar. If gesture X has the index finger of the right hand points to the right, gesture
Y has the index finger of the left hand points to the right, and gesture Z has the index
finger of the right hand points to the front, human might be able to intuitively notice
that both gestures X and Y are pointing to the right while gesture Z is pointing to the
front. Therefore, gesture X is more similar to gesture Y than to gesture Z. But it is
not clear how we can go from the representation into being able to make a notion of
the similarity. Word embedding was born from a similar problem in natural language
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processing. Eventually, one particularly successful approach is by creating a notion that
two words are similar if they are surrounded by similar words. Word2Vec, GloVe, and
BERT share such philosophy (see Section 6.3.2). However, it is not clear if that approach
can be used for gesture. Besides that, while there are many large and publicly-available
corpora for natural language processing, it is not the case for gesture.

The second unaddressed sub-problem follows the first one. Once we can represent
both the semantics and the gesture shape as vectors, we still have to construct a model/al-
gorithm to compute the gesture shape from the semantics. On this, it is worth remem-
bering what properties are desirable from generated gestures (see Section 1.3). The first
desired property is that the gestures should match the speech (see Section 1.3.1). This
sub-problem is indeed about the match with the speech. The second desired property is
that the movements should be smooth (see Section 1.3.2). In this context, this desired
property means the generated ideational gestures should have smooth transitions with
beat gestures. The transition to the phase when gesture is not performed should also be
smooth. All these mean that care should be taken to ensure that the entire movement
is smooth. The third desired property is that the gestures should be diverse (see Sec-
tion 1.3.3). For example, there are many ways to point to the right. In this context, it
means that care should be taken such that the model/algorithm is stochastic even after
the training.
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