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Abstract

Upcoming cosmological surveys such as Euclid, aim at providing measurements of cosmological observables coming from the Large Scale Structure of the universe with an unprecedented precision. This should help in uncovering the mysteries of modern cosmology, like the origin of the accelerated expansion of the universe and the value of the total neutrino mass. However, to take advantage of such precise measurements, we must control and understand the systematics linked to the different steps of the statistical analyses which are exploited to extract cosmological parameters from the observables. In particular, the theoretical modeling and the covariance matrix of our observables are the most important ingredient of the likelihood function, that is central in the statistical estimation of cosmological parameters. This thesis aims at studying the potential biases on cosmological parameter estimation, coming from a poor modeling of either of these ingredients of the likelihood, in the preparation of the Euclid survey. After setting the general context of precision cosmology and introducing the key theoretical and technical concepts exploited in this thesis, I will present the results of the two analyses that I conducted.

A first part of this thesis is dedicated to a study of the biases on the estimation of cosmological parameter posteriors, with the matter power spectrum. In particular I focus on effects induced by: the estimation of the covariance matrix with a finite number of mocks, the non-Gaussian covariance arising from non-linear clustering on small scales and the theoretical modeling of the non-linear power spectrum. As one of the major goals of Euclid is to provide a stringent constraint on the total neutrino mass, I dedicate a particular attention to this parameter, by performing the analysis with state-of-the-art N-body simulations that include massive neutrinos.

The second analysis presented in this thesis aims to quantify the effect of the non-Gaussian covariance coming from the correlations between modes inside and outside the survey, called the Super-Sample Covariance (SSC). By forecasting the cosmological constraints coming from a Euclid-like analysis, combining photometric galaxy clustering and weak lensing, I show that SSC accounts for a non-negligible part of the total error budget on cosmological parameters. In addition I present a new method to account for the survey footprint in the computation of SSC.
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Introduction

Since the emergence of a relativistic theory of gravitation, we now dispose of a proper theoretical framework to study the universe as a whole. Within such context, a constant interplay between theory and observations led to the construction of the standard model of cosmology, ΛCDM. While this model provides the best-fit to all cosmological probes, open questions still remain unanswered. In particular, the physical mechanism at the origin of the acceleration of the expansion of the universe, the so-called dark energy, is attributed to the cosmological constant Λ, for which we don't have a satisfactory physical interpretation yet. This motivates the search for possible extensions to ΛCDM, such as modifications of general relativity. In addition, we have recently discovered the presence of tensions in the measurement of several cosmological parameters. As these tensions appear in the framework of ΛCDM, they represent a supplementary motivation to look for physics beyond the standard model. The observation of the Large Scale Structure (LSS) of the universe is a powerful tool to explore such questions. Indeed, this structure is the result of the evolution of primordial energy-density fluctuations up to today, through the clustering of matter caused by gravity. The analysis of the statistical distribution of matter traced by galaxies, called galaxy clustering, already provides tight constraints on cosmological parameters, with for example the confirmation of the accelerated expansion of the universe thanks the baryon acoustic peak. Such features are observed in the 2-points statistic of the density field: the 2-point correlation function, or its Fourier counterpart, the power spectrum. The full shape of this observable keeps characteristic imprints of the physical processes in play during the formation of structures, thus making it a probe of choice to constrain cosmological models.

A lot of theoretical developments have been made to propose alternative models to ΛCDM, which can be analysed with the LSS. However, highly precise measurement of cosmological parameters, predicted by such models, are required in order to disentangle them from ΛCDM. Upcoming cosmological surveys such as Euclid are designed to overcome this precision challenge. By simultaneously resorting to photometric and spectroscopic techniques, Euclid aims at accurately measuring both the shape and the position of galaxies over a wide range of redshift, covering 15 000 deg 2 of the sky. This will provide stringent cosmological constraints thanks to the combination of galaxy clustering with weak lensing, allowing to directly probe the underlying distribution of dark matter up to very small scales.

A fundamental question which could be answered thanks to such precise measurements, lies at the frontier of cosmology and particle physics: what is the value of the total neutrino mass ? While particle physics experiments still struggle to answer this question, probes of the LSS of the universe, such as galaxy clustering and weak lensing,
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are sensitive to the total neutrino mass. One of the major objectives of the Euclid mission is thus to precisely measure this parameter.

However, to benefit from the precise estimation of the LSS observables that Euclid will provide, it is of paramount importance to control systematic errors on the estimation of cosmological parameters at the percent level. In particular, the statistical methods often used for the inference of cosmological parameters are not free from biases. The statistical quantity of interest in this process is the likelihood, a function used to quantify the probability of a data-set for a given theoretical model. The elaboration of this function thus requires an accurate theoretical modeling of the considered data-set, but also a covariance matrix, accounting for the errors and correlations in the data. If either of these two ingredients of the likelihood are inaccurately describing the data, the resulting estimation of cosmological parameters and their errors can suffer from strong biases.

Although this is generally true for any cosmological analysis, the main difficulty with LSS probes comes from the fact that the evolution of the matter density field on small scales is non-linear. This complicates the modeling of the statistics of the density field, such as the power spectrum, in particular when accounting for massive neutrinos. Furthermore, on large scales matter clustering is linear, so that the Gaussian nature of the initial density perturbation field is maintained, but non-linear clustering on small scales generates significant non-Gaussian features. The covariance matrix of the power spectrum receives contribution from these non-Gaussianities. They are usually divided in two terms: the pure non-Gaussian covariance, coming from the non-linear matter clustering on small scale (often called the connected non-Gaussian term) and the Super-Sample Covariance (SSC), coming from the mixing of Fourier modes of the density field inside and outside the window of observation.

On one hand, a poor theoretical modeling of the power spectrum translates into sever biases on the estimated value of cosmological parameters. On the other hand, neglecting the non-Gaussian terms of the covariance leads to an underestimation of cosmological parameter errors. A way to accurately estimate the covariance matrix relies on the use of large samples of cosmological simulations. A low sample size can however result in a noisy estimate of the covariance and particularly of its inverse, which directly enters in the likelihood, ultimately polluting cosmological constraints.

We could restrict our analyses to linear scales to avoid these issues, but we won't be exploiting the full potential of Euclid data. An important work of preparation is thus needed to understand and reduce the aforementioned biases. This thesis presents a compilation of analyses which were conducted in this purpose.

In chapter 1, I will overview the current status of observational cosmology, by presenting the elaboration of the standard cosmological model and a summary of the theoretical description of the LSS of the universe. I will finish by setting the context of precision cosmology within which the Euclid satellite has been designed.

In chapter 2, I will present the methods of estimation of different quantities, that I used in this thesis. First, the estimation of the power spectrum of a discrete density field in a simulation box, then the statistical estimation of cosmological parameters
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and finally the estimation of the covariance matrix of the power spectrum.

Chapter 3 will be dedicated to an analysis of the biases on cosmological constraints coming from galaxy clustering. To study the full shape of cosmological parameter posteriors, I performed Monte Carlo Markov Chains, based on the real space matter power spectrum of N-body simulations. A particular attention will be given to the estimation of the total neutrino mass. First, I studied the biases coming from noisy estimates of the covariance matrix and test several methods to reduce them. Then, I quantified the impact of the connected non-Gaussian covariance of the power spectrum on cosmological constraints. Finally, I performed a comparison between several non-linear prescriptions for the matter power spectrum, in the presence of massive neutrinos. This allowed me to quantify the biases in each prescription, at the level of cosmological parameters.

Chapter 4 will focus on the impact of SSC on future photometric galaxy surveys such as Euclid. This has been done by performing a Fisher forecast of Euclid cosmological constraints including SSC1 , on a combined analysis of photometric galaxy clustering, weak lensing and their cross-correlation. The contribution from SSC has been computed analytically and includes the effect of the survey footprint. The impact of such effect in the computation of SSC has been quantified at the level of parameter constraints and will be discussed in this chapter.

State of the art in observational cosmology

We can date the emergence of cosmology as a predictive science with the establishment of Albert Einstein's theory of General Relativity in 1915. More than 100 years later, scientists all around the world are gathering and discussing in the aim of building giant telescopes and satellites, to observe the universe in its finest details. How did we get from a compact equation on a black board, to sending a space telescope which will collect an astonishing amount of data about the universe ? And more importantly, why are we doing this ? I will answer these questions in the present chapter.

The current status of our knowledge about the universe, as well as some of the open questions that cosmologists try to answer today will be presented. This will give the theoretical key concepts, necessary to understand the analyses I will present in this thesis and set the context in which they have been conducted.

In section 1.1, I will present the theoretical and observational bases that led to the construction of the standard model of cosmology, ΛCDM. Then, I will explain in section 1.2, how we can study and constrain the physical parameters describing the evolution of the universe, with its Large Scale Structure. Finally, in section 1.3, I will discuss the main challenges that cosmologists are facing today and how precise cosmological measurements of the Large Scale Structure should help in taking up these challenges, thanks to the upcoming Euclid survey.

The standard cosmological model

Many theoretical developments and observational discoveries have led to the formulation of the standard model of cosmology, the so-called ΛCDM model. In this section I will expose the theoretical bases with which this model could be constructed and how all subsequent cosmological observations confirmed the ΛCDM paradigm. I also dedicate a particular focus on the role of massive neutrinos in this cosmological context.

Theoretical bases

General relativity

As stated in the introduction of this chapter, one of the two pillars of modern cosmology is the theory of General Relativity [START_REF] Einstein | The Field Equations of Gravitation[END_REF]. It is general in the sens that it applies to all reference frames, including accelerated ones. Or in other words, the 1. State of the art in observational cosmology -1.1. The standard cosmological model theory is invariant under a general change of coordinates. This idea led Einstein to think about gravity, not as a universal and instantaneous force like Isaac Newton's picture, but rather as a consequence of a change of coordinate. He expressed this in the equivalence principle, stating that, in a small enough region of space-time, the laws of freely-falling particles in a gravitational field are equivalent to those in a uniformly accelerated reference frame. This principle implies strong consequences, notably on the very conceptualisation of space and time. While Newton pictured them as the absolute frame in which massive objects were interacting through the gravitational force, Einstein understood that gravitation is in fact the consequence of the geometrical deformation of space-time itself, in the presence of massive objects.

The theory can be compacted within the famous Einstein's field equations

R µν - 1 2 R g µν -Λg µν = 8πGT µν , (1.1)
where we employ Einstein's sum notation with the indices running from 0 to 3 (one time dimension and 3 spatial dimensions) and natural units, with the speed of light c = 1. The left hand side represents the geometry of space-time, where the Ricci tensor R µν and the Ricci scalar R gives information about its 4D curvature and g µν is the metric tensor accounting for its geometrical description. The energy-momentum tensor T µν , in the right hand side, represents all the species contributing to the energy content of the universe and G is Newton's gravitational constant. Finally, Λ is the cosmological constant and can be put on either side of the equation, depending on its interpretation, that I will discuss later on.

In [START_REF] Wheeler | Geons, black holes, and quantum foam: A life in physics[END_REF], John Wheeler summarises Eq. (1.1) in the following words: "Space-time tells matter how to move, matter tells space-time how to curve". This was accurately verified many times since 1915. First by precisely predicting the advance of Mercury's perihelion and the deflection of light around the sun [START_REF] Dyson | A Determination of the Deflection of Light by the Sun's Gravitational Field, from Observations Made at the Total Eclipse of May 29, 1919[END_REF][START_REF] Einstein | The Field Equations of Gravitation[END_REF]and 1919respectively. Then, in 2015, with the first direct measurement of another prediction of general relativity, that are gravitational waves [START_REF] Abbott | Observation of Gravitational Waves from a Binary Black Hole Merger[END_REF].

Applied to the universe, this theory is fantastically powerful. It means that by observing its content we can understand the evolution of the universe, and conversely, by observing how it evolves, we can guess its content. However, given the high dimensionality and complexity of the field equations, a metric g µν has to be assumed in order to solve it.

The cosmological principle

The second pillar of modern cosmology is the cosmological principle. It states that the distribution of matter in the universe is homogeneous (invariance by translation) and isotropic (invariance by rotation) on large scales. In other words, the universe looks exactly the same when observed from any position and still looks exactly the same in all directions around these positions. The homogeneity assumption actually comes from the Copernician principle, stating that there is no privileged position in the 1. State of the art in observational cosmology -1.1. The standard cosmological model universe. It could be further extended to isotropy, which was then observed on large scales, for example in the temperature map of the Cosmic Microwave Background (CMB).

Between the 1920's and the 1930's, A. Friedmann, G. Lemaître, H.P. Robertson and A.G. Walker (FLRW) independently found the most general metric satisfying the cosmological principle. The FLRW metric has for infinitesimal space-time separation ds, the line element ds 2 = g µν dx µ dx ν = dt 2a(t ) 2 dχ 2 + S 2 k (χ)(dθ 2 + sin 2 θdφ 2 ) .

(1.2)

where (χ, θ, φ) are spherical coordinates. Two degrees of freedom emerges from this metric. The first one is a constant, the spatial curvature k. For homogeneity and isotropy to hold, it has only three possible values : 1, 0 and -1, depending on these values the universe has different geometries and we have the following expressions for the function S k (χ):

   S 1 (χ) = sin χ, Spherical closed universe, S 0 (χ) = χ,
Flat Euclidean universe , S -1 (χ) = sinh χ, Hyperbolic open universe.

(1.3)

The second degree of freedom is the time-dependent scale factor a(t ). The presence of this factor separating space and time denotes the existence of a unique cosmic time t for the universe. This separation points to a preferred reference frame to describe the universe, the comoving reference frame, which is the one attached to particles that are freely falling in the mean gravitational field of the universe (they follow its global flow). The comoving coordinates are then related to physical or proper coordinates through the scale factor, which expresses the expansion or contraction of the universe and depend only on t (because of the cosmological principle). The next section will be dedicated to the implications of a dynamic universe.

Kinematic of an expanding universe

In 1929 Edwin Hubble made observations of distant galaxies and found a linear relation between the velocity of these galaxies and their distance from the earth [START_REF] Hubble | A relation between distance and radial velocity among extragalactic nebulae[END_REF], c.f figure 1.1. This is the first observational evidence for the expansion of the universe.

To estimate the relative velocity of observed galaxies, Hubble used the relativistic Doppler-Fizeau effect relating the relative velocity v of a galaxy and the shift z in the wavelength of the photons it emits .4) where λ e and λ o are respectively the wavelength of the photon when it is emitted and observed, and the speed of light c, which is explicitly shown here. If the source Taken from [START_REF] Hubble | A relation between distance and radial velocity among extragalactic nebulae[END_REF] is moving away λ e is red-shifted (z > 0) and if it is getting closer λ e is blue-shifted (z < 0). But in the framework of General Relativity, an expanding universe doesn't mean that the galaxies are actually moving away from each other, but rather that the space between them is expanding, and by consequence so does the wavelength of the photons emitted by those galaxies. In other words the physical separation r is time dependent but the comoving separation x is not, it is scaled with time by the scale factor, as r(t ) = a(t )x.

z ≡ λ o -λ e λ e ≈ v c , ( 1 
(1.5)

If we take the time derivative of Eq. (1.5) and substitute x, we obtain the Hubble law1 u(t ) = ṙ(t ) = ȧ(t )x = H (t )r(t ), (1.6) where u(t ) is called the Hubble flow and H (t ) ≡ ȧ(t )/a(t ) is the expansion rate of the universe. The Hubble constant H 0 is defined as the value of H (t ) today (t = t 0 ). The value of the Hubble constant is usually written as H 0 = 100h kms -1 Mpc -1 , where h expresses the uncertainty on the value of H 0 . The first measure by Hubble gave H 0 = 500 km s -1 Mpc -1 . Due to large measure uncertainties at that time, this is approximately 7 times larger than the most recent measurements. However, a tension still exists on the actual value of H 0 , measured either with late-time probes, such as cepheids or with early-time probes, such as the CMB. This tension will be addressed in section 1.3.1.

Interpreting the systematic spectral shift of galaxies as being cosmological allows

1. State of the art in observational cosmology -1.1. The standard cosmological model to probe the universe on cosmological scales. As the wavelengths of photons are stretched by the expansion of space, we can relate the wavelength of a photon emitted at time t e and the wavelength observed today at time t 0 , to the scale factor and show that λ o λ e = 1 + z = a 0 a(t ) .

(1.7)

The above equation is fundamental, because with it we can derive two important relations : the redshift-time relation and the redshift-distance relation. The former is easily obtained by differentiating Eq. (1.7) and using the definition of the expansion rate dt dz = -

1 (1 + z)H (t )
.

(1.8)

The redshift of a galaxy is then an indicator of the epoch at which we are observing it. The latter relation is obtained by considering the radial (dθ = dφ = 0) comoving interval, followed by a photon (ds = 0) in the FLRW metric, and using Eq. (1.8) to substitute time with redshift

a(t = t 0 )χ ≡ D c (z) = z 0 dz H (z) , (1.9)
where D c (z) is the comoving distance.

We see with these two relations that the estimation of cosmological distances and times depends on the form of the function H (z), that we don't know a priori. Here we have only explored the kinematic of the universe. We know that it is expanding, and we approximately know by how much today. But this doesn't tell us why it is expanding and how it was expanding before. We thus need to explore the dynamic of the universe.

Dynamic of an expanding universe

In order to understand the expansion of the universe, we must now focus on its energetic content, described in the right hand side of Eq. 1.1, by the energy-momentum tensor T µν .

Dynamic of an expanding universe

Assuming that all the energetic content of the universe can be described as perfect fluids (i.e. without shear), the energy-momentum tensor of a homogeneous and isotropic universe yields .10) where ρ and p respectively denotes the density and pressure of the cosmic fluids. By injecting the FLRW metric and the above expression of the energy-momentum 1. State of the art in observational cosmology -1.1. The standard cosmological model tensor in Eq. (1.1), Friedmann found, in 1922, the system of equations describing the evolution of the scale factor [START_REF] Friedmann | On the Curvature of space[END_REF],

T µν =      ρ 0 0 0 0 -p 0 0 0 0 -p 0 0 0 0 -p      , ( 1 
H 2 + k a 2 = 8πG 3 i ρ i , (1.11) 2 ä a + H 2 + k a 2 = -8πG i p i .
(1.12)

The index i denotes the different cosmic fluids, which could be radiation (r), matter (m), neutrinos (ν) or cosmological constant (Λ). Note that here I consider the cosmological constant as one of the fluids, by defining

ρ Λ = -p Λ ≡ Λ/8πG. (1.13)
This is equivalent to considering the cosmological constant term in Eq. 1.1, to be on the right hand side, i.e. part of the energy-momentum tensor. I'll comeback to this discussion thereafter, when discussing the different species populating the universe. By combining the two Friedmann equations one can derive the equivalent of the continuity equation for each cosmic species ρi + 3 ȧ

a ρ i + p i = 0, (1.14) 
which expresses the conservation of the energy-momentum tensor2 . It is convenient to parametrise the equation of state (relation between density and pressure) of each fluid with w i = p i /ρ i , so that Eq. (1.14) can be written as ρi ρ i = -3(1 + w i ) ȧ a .

(1.15)

It shows that depending on its equation of state, the energy density of each cosmic fluid evolves differently with respect to cosmic time. To get this evolution we solve Eq. (1.15) and use Eq. (1.7) to relate it to the redshift, yielding

ρ i (z) = ρ i ,0 (1 + z) 3(1+w i ) , (1.16)
where the subscript 0 indicates the present time.

We can now insert Eq. (1.16) in the first Friedmann equation to get the expression of the expansion rate H (z). But first, let's rewrite it in a more convenient way, by defining the critical density of the universe as

ρ c ≡ 3H 2 8πG .
(1.17)

1. State of the art in observational cosmology -1.1. The standard cosmological model From Eq. 1.11, we can see that this is the density for which the spatial curvature is null. By further defining the reduced energy density of cosmic fluids as Ω i = ρ i /ρ c and the reduced curvature density as Ω k = -k/a 2 H 2 , Eq 1.11 simply writes

i Ω i + Ω k = 1.
(1.18)

Finally, combining Eq. (1.16) and (1.18), we can write the expansion rate in terms of the present values of the reduced densities

H (z) 2 = H 2 0 i Ω i ,0 (1 + z) 3(1+w i ) + Ω k,0 (1 + z) 2 .
(1.19)

Note that, for now we mainly focused on the first Friedmann equation, but the second one is equally important, as it incorporates the second time derivative of the scale factor, i.e. the acceleration or deceleration of the expansion of the universe. By combining Eq. (1.11) and (1.12) we get the Raychaudhuri equation (1.20) This equation tells us that the only way to get an accelerated expansion (i.e. ä > 0), would be to have a dominant cosmic fluid with a negative pressure p < -ρ/3. Like the cosmological constant for example (c.f. Eq. (1.13)).

ä a = - 4πG 3 i ρ i + 3 i p i .

Cosmic inventory

Eq. (1. 19) and (1.20) explicitly show that the fate of the universe, whether it is expanding or collapsing and whether this phenomenon is accelerated or decelerated, depends on the cosmic fluids which compose the universe. Let's then draw a list of the possible fluids to consider.

• Radiation, denoted by the index r. Ω r takes into account any kind of relativistic fluid. Mainly photons, it could also be mass-less neutrinos (more on that in section 1.1.5). From statistical physics we obtain an equation of state w r = 1/3 =⇒ ρ r ∝ (1 + z) 4 .

• Collision-less matter (sometimes called dust), denoted by the index m. Ω m takes into account any kind of non-relativistic matter, that is baryonic matter Ω b (matter made of standard model particles) and non-standard matter. Indeed, there are strong observational evidences that our universe contains a large amount of matter that we can't see because it interacts only through gravity, hence named Dark Matter. Moreover, as it is non-relativistic, it is referred to as Cold Dark Matter (CDM, Ω cdm ). A more detailed discussion on this subject can be found in section 1.1.4. Non-relativistic matter (i.e. with a negligible thermal velocity with respect to its mass) can be considered as pressure-less, so that w m = 0 =⇒ ρ m ∝ (1 + z) 3 .

1. State of the art in observational cosmology -1.1. The standard cosmological model

• The cosmological constant, denoted by the index Λ, Ω Λ takes into account the contribution of the cosmological constant. In order to describe the universe, at the beginning, Einstein imagined a universe filled only with dust and found that it implies a non-static universe. But at this time, the idea of a non-static universe was not satisfying for him, so he added to his equations the cosmological constant Λ in order to counterbalance gravity and keep the universe static. When Hubble put in evidence the apparent expansion of the universe, Einstein withdrew the cosmological constant from his equations and qualified it as "its biggest blunder". But Λ was re-integrated in Eq. 1.1, after the discovery of the acceleration of the expansion of the universe in 1998 with the observation of type Ia Supernovae (more on that in section 1.1.4). The cosmological constant Λ is the standard model's interpretation of this acceleration (and also the best fit to current data), but we call Dark Energy any kind of physical mechanism leading to an accelerated expansion phase of the universe. Any cosmic fluid having an equation of state w < -1/3 could produce this acceleration. With Eq. (1.13), the cosmological constant can be interpreted as a fluid with w Λ = -1 =⇒ ρ Λ = const.

• Curvature, denoted by the index k. Ω k takes into account the effect of the spatial curvature on the expansion of the universe. As it is proportional to a -2 it can be seen as a cosmic fluid with

w k = -1/3 =⇒ ρ k ∝ (1 + z) 2 .
Figure 1.2.: Evolution of the reduced density of radiation, matter and Λ, with the scale factor. Taken from [START_REF] Dodelson | Modern Cosmology[END_REF] 1. State of the art in observational cosmology -1.1. The standard cosmological model

The analysis of the CMB anisotropies and the baryon acoustic peak, which will be discussed in the next section, gives us the value of the cosmological parameters today (Aghanim et al., 2020b):

            
H 0 = 67.66 ± 0.42 km Mpc -1 s -1 Ω r h 2 = (2.4729 ± 0.0022) × 10 -5 Ω m = 0.3111 ± 0.0056 (Ω b h 2 = 0.02242 ± 0.00014 and Ω cdm h 2 = 0.11933 ± 0.00091) Ω Λ = 0.6889 ± 0.0056 Ω k = -0.0007 ± 0.0019 (Flat universe). This is the standard model of cosmology, ΛCDM : A homogeneous, isotropic and flat universe containing CDM and with an accelerated expansion due to Λ. With these values we can trace back the evolution of each fluid in the past. This is shown in figure 1.2. We can see that the universe went through different domination era: first dominated by radiation, then by matter and today by the cosmological constant. These periods were separated by times of equivalence between the different species, that we shall see are important to understand cosmological observables.

The next section will be dedicated to the most important observational evidences, all pointing toward the standard model of cosmology.

Observational bases : toward the ΛCDM model

Big Bang Nucleosynthesis

If the universe is in expansion, as shown by Hubble's observation, it means that it was smaller before. This led physicists to think that the universe has a finite age and that it was born from a singularity in space-time, in a Big Bang. If the mass/energy is conserved over time, the universe should have been tremendously dense and hot in its early times. In the first moment, the energy scale was larger than the limit of 13 TeV, above which the standard model of particle physics have not been tested (yet). What happened between the Big Bang and the time where this limit was crossed, can only be speculated.

As the universe cools down, standard forces decouple3 from one another and particles start interacting in a way we can understand. While the mechanism at the origin of the creation of leptons and baryons is still not completely understood, the formation of the first atomic nuclei, only a few seconds after the Big Bang, is one of the most precise prediction of the standard model. This process is called the Big Bang Nucleosynthesis (BBN).

In its early stages, the universe was dominated by radiation (c.f. figure 1.2) and for a temperature of the order of 1 MeV (∼ 1s after the Big Bang), the interaction cross-section between photons and baryons was so high that protons and neutrons could not bind to form nuclei. A few hundreds of seconds later, the temperature 1. State of the art in observational cosmology -1.1. The standard cosmological model decreased below 0.1 MeV, allowing the formation of deuterium ( 2 H), which through a chain reaction, mainly resulted in the formation of helium nuclei4 ( 4 He).

First introduced by [START_REF] Alpher | The Origin of Chemical Elements[END_REF], the detail modeling of BBN was later improved [START_REF] Pisanti | PArthENoPE: Public Algorithm Evaluating the Nucleosynthesis of Primordial Elements[END_REF] to give a precise prediction of the abundance of light nuclei, depending on a single free parameter, η the baryon-to-photon ratio. By measuring today's abundance of 2 H and 4 He, we can infer the value of η by comparing with BBN's prediction. Consequently we can measure the density of baryons today with great precision5 : Ω b h 2 = 0.02268 ± 0.00038.

The correct prediction of light elements abundance with BBN, is one of the pillar of modern observational cosmology, as it confirmed the idea of a hot early universe, possibly born from a Big Bang. The second fundamental observation which settled this model is the one of the CMB.

Cosmic Microwave Background

After BBN, the primordial universe is still a very hot and dense plasma, in which free electrons and nuclei cannot bind to form atoms, due to the relentless Compton and Thompson scatterings between electrons and photons. Because of these interactions, baryonic matter and radiation form a strongly coupled fluid in equilibrium, preventing photons from escaping.

Although we assume the universe to be homogeneous and isotropic on large scales, a process called cosmic inflation, is supposed to be at the origin of tiny primordial perturbations in the energy density field6 . Through gravitational interaction, these primordial over densities in the tightly coupled photon-baryon fluid are growing. But due to photon's radiative pressure counterbalancing gravity, this fluid is oscillating, like a sound wave propagating in the fluid.

As the universe expands the global density decreases and the photon's mean free path increases, up to a critical point where they can propagate freely, meaning that they decouple from matter. The consequence of this transition from an opaque to a transparent universe, is an isotropic emission of photons that we call the Cosmic Microwave Background (CMB). Moreover the oscillations in the photon-baryon fluid is stopped because of the decoupling, imprinting the shape of the Baryon Acoustic Oscillations (BAO) in the CMB.

The emission of an isotropic sea of photons was first predicted in 1948, by the same team of physicists who introduced BBN [START_REF] Alpher | The Origin of Chemical Elements[END_REF][START_REF] Gamow | The Origin of Elements and the Separation of Galaxies[END_REF] . They estimated that the temperature of the CMB had cooled down, due to the expansion, to around 5 K. In 1964, A. Penzias and R. Wilson accidentally detected an isotropic and constant microwave radiation with a temperature of 3.5 ± 1K (Penzias and Wilson, 1. State of the art in observational cosmology -1.1. The standard cosmological model 1965). Today, thanks to the successive COBE, WMAP and Planck space missions, the existence of the CMB is beyond doubt and is yet another proof of the expansion of the universe.

At first order, in every directions all CMB photons have the same temperature of T γ ≈ 2.73 K . This low temperature is the result of the expansion of the universe between the time of their emission and today, causing a redshift of the CMB photons z ≈ 1100 (approximately 380 000 years after the Big Bang). By decomposing the fluctuations around the mean temperature (figure 1.3) into spherical harmonics, one can get the angular temperature power spectrum7 (figure 1.4), which shows the amplitude of these fluctuations for a given multipole l (a large l means a small angle of observation). The oscillations featured in figure 1.4 are the imprints of the BAO at the time of the decoupling. The position and the size of these so-called acoustic peaks are sensitive to the value of cosmological parameters (see [START_REF] Hu | Lecture Notes on CMB Theory: From Nucleosynthesis to Recombination[END_REF], for more details). The most recent cosmological constraints obtained from the analysis of the CMB with Planck (Aghanim et al., 2020b) are the following for the combination of temperature, polarisation and CMB-lensing:

       H 0 = 67.36 ± 0.54 km Mpc -1 s -1 Ω m = 0.3153 ± 0.0073 (Ω b h 2 = 0.02237 ± 0.00014 and Ω cdm h 2 = 0.1200 ± 0.0012) Ω Λ = 0.6847 ± 0.0073 Ω k = -0.0106 ± 0.0065.
In particular, the ratio Ω b /Ω m is very well constrained, giving a baryon density in good agreement with BBN, confirming that baryonic matter only accounts for 5% of the critical density. Furthermore, a dominant contribution from the cosmological constant of about 70% was found, thus implying a positive acceleration of the expansion of the universe. As the total matter density is measured to be around 30% of the Taken from Aghanim et al. (2020b).

critical density, 25% should be non-baryonic matter. Note that the CMB alone does not measure a null spatial curvature, but a slightly negative one.

Cold Dark Matter

Many observational puzzles, on the scales of galaxies and clusters, can be solved by the addition of a so-called Dark Matter (DM) component on top of the standard baryonic matter:

• The observation of the galaxy velocity dispersion inside the Coma cluster, by F. Zwicky [START_REF] Zwicky | Die Rotverschiebung von extragalaktischen Nebeln[END_REF], indicated a larger mass than the one traced by galaxies luminosity.

• The spiral galaxies rotation curves observed by V. Rubin [START_REF] Rubin | Rotation of the Andromeda Nebula from a Spectroscopic Survey of Emission Regions[END_REF], is also incompatible with the distribution of luminous matter, along the disk. Additional, non-luminous matter, surrounding galaxies in the form of haloes, can explain the observed trend.

• The comparison of the mass mapping of galaxy clusters done through X-ray, with the one done thanks to strong lensing, is also a quite visual evidence for the presence of matter, non-interacting with standard matter. Figure 1.5 shows an example of such observation in the Bullet cluster [START_REF] Clowe | A Direct Empirical Proof of the Existence of Dark Matter[END_REF], resulting from the collision of two clusters. The fact that two separate mass distributions are observed after the collision, demonstrates the non-interactive nature of a large part of the mass probed by lensing.

Another convincing hint regarding the existence of DM, can be found on cosmological scales. The CMB is the first image that we have of the matter fluctuations 380 ), was of the order 10 -5 . However, we will see in section 1.2.2 that in the matter dominated era (which started at z ∼ 3600), matter fluctuations grow as a, so that they cannot reach final density fluctuations of order 1, leading to the formation of the cosmic structures we observe today.

To solve this problem, we must add another matter component which is not coupled to standard particles, or at least very weakly, so that it decoupled long before the baryonic matter. Such cosmic fluid is thus capable of forming early gravitational potential wells, independently of baryons, before photon decoupling. In this way, once the baryons are decoupled from radiations, they fall into these potential wells, increasing the density fluctuations enough for structures to be formed at later times.

Finally, the initial velocity dispersion of dark matter should affect structure formation in different ways. If DM decoupled from radiation as relativistic particles, we call it Hot Dark Matter (HDM) and Cold Dark Matter (CDM) otherwise. Due to a high velocity dispersion, even at late times, HDM results in the formation of large scale density fluctuations, progressively giving birth to small scale structures, that is a top-down hierarchy. Conversely, CDM density fluctuations quickly grows on small scales, to form structures on larger scales later on, that is a bottom-up hierarchy. A thorough comparison between numerical simulations and observations, privilege the paradigm of a bottom-up structure formation and thus of CDM. Cosmological probes, like CMB, BAO (see below) and BBN (by precisely measuring the density of baryons), estimate CDM to account for ∼ 85% of the total amount of matter in the universe.

While several scenarios have been investigated (Weakly Interactive Massive Particles or WIMPs, primordial black holes, alternative theories of gravity...), the nature of DM 1. State of the art in observational cosmology -1.1. The standard cosmological model is still unknown. Generally, standard cosmological analyses, as the ones presented in this thesis, are not sensitive to the precise nature of CDM. We then consider it as a non-relativistic, pressure-less cosmic fluid, only interacting through gravity.

Baryon acoustic peak

After photon decoupling, the propagation of the acoustic wave in the photon-baryon fluid was stopped. This sound wave had the time to propagate up to a certain distance, called the comoving sound horizon. CDM then fell into the potential wells created by this overdensity of baryonic matter, at this specific scale. It means that it exists a characteristic scale in the universe at which we can observe a slightly larger formation of structures. The baryon acoustic peak (or BAO peak), has been detected for the first time by [START_REF] Eisenstein | Detection of the Baryon Acoustic Peak in the Large-Scale Correlation Function of SDSS Luminous Red Galaxies[END_REF], in the galaxy 2-points correlation function. This statistical quantity represents the excess probability of finding pairs of galaxies separated by a given distance, compared to a completely random uniform distribution. In figure 1.6 we can see an excess of probability at a distance of about 100 h/Mpc, corresponding to the BAO peak. We qualify this scale as a standard ruler. The position of the peak depends on the fiducial cosmological model, one has to assume to measure the correlation function. This is the Alcock-Paczynski effect (I will further discuss this in section 2.1.3). Precisely measuring the position of the BAO peaks then allows a geometrical test in a given cosmological model, leading to constraints on the reduced energy densities. The most recent results of the eBOSS collaboration [START_REF] Alam | Completed SDSS-IV extended Baryon Oscillation Spectroscopic Survey: Cosmological implications from two decades of spectroscopic surveys at the Apache Point Observatory[END_REF], gives a value of the cosmological constant energy density, in a 1. State of the art in observational cosmology -1.1. The standard cosmological model flat universe, of Ω Λ = 0.701 ± 0.016. As we will see just below, this is a proof that the expansion of the universe is accelerating.

Type Ia supernovae

Considering a universe only filled with matter Friedmann's equations tell us that the expansion of the universe should at some point start to decelerate, due to gravity, forcing massive object to be attracted to each other. In a (very) simplified view, if you throw a rock upward, it should decelerate close to its maximum height and ultimately fall back in your hand. In 1998, two independent teams observed that the rock was actually accelerating [START_REF] Perlmutter | Measurements of Ω and Λ from 42 High-Redshift Supernovae[END_REF][START_REF] Riess | Observational Evidence from Supernovae for an Accelerating Universe and a Cos-Bibliography mological Constant[END_REF]. This discovery was made thanks to a specific type of supernovae (type Ia supernovae, SN-Ia), for which we know their absolute luminosity. SN-Ia are thus called standard candles. By comparing their (almost) standard luminosity with the one observed on 1. State of the art in observational cosmology -1.1. The standard cosmological model earth, one can infer their luminosity distance

d L = L 4πF , (1.21)
where L is the absolute luminosity of the SN-Ia and F is the flux measured by the observer.

In the limit of small redshift, this distance can be expressed as [START_REF] Perlmutter | Measuring cosmology with supernovae[END_REF] 

d L ≈ c z H 0 1 + 1 -q 0 2 z , (1.22)
where q 0 is a second order term of the Taylor expansion of the scale factor, representing the deceleration of the expansion of the universe. It is related to the reduced energy densities and the equation of state parameters, in the following expression

q 0 = 1 2 i Ω i ,0 (1 + 3w i ). (1.23)
Thus by measuring the redshift of the galaxies hosting SN-Ia, it can be compared to d L in a Hubble-diagram, to derive constraints on the deceleration parameter. Moreover it constrains the amount of cosmic fluids driving the value of q 0 . This is shown in figure 1.7, where we can see that the best-fit to the data (assuming a flat universe, Ω k = 0) indicates a universe dominated by a cosmological constant Λ with an equation of state parameter w Λ = -1. This measurement is the first proof of the acceleration of the expansion of the universe, which gave their 2011 Nobel Prize to A. Riess, S. Perlmutter and B. Schmidt.

Today's most stringent SN-Ia constraint, on the reduced density of Λ, in a flat universe, is Ω Λ = 0.702 ± 0.022, using the Pantheon sample [START_REF] Scolnic | The Complete Light-curve Sample of Spectroscopically Confirmed SNe Ia from Pan-STARRS1 and Cosmological Constraints from the Combined Pantheon Sample[END_REF].

The concordance model

Today, all the cosmological probes presented above are consistent with the ΛCDM model. In figure 1.8, we can see the that constraints coming from CMB, BAO and SN-Ia indicates that the universe is flat (Ω k = 0) and filled with around 30% of matter and 70% of cosmological constant. Note that the flatness of the universe cannot be confirmed with any of these probes alone, but a combination of them (especially CMB+BAO) gives a Ω k consistent with 0. For the combination of CMB+BAO+SN-Ia, [START_REF] Alam | Completed SDSS-IV extended Baryon Oscillation Spectroscopic Survey: Cosmological implications from two decades of spectroscopic surveys at the Apache Point Observatory[END_REF] report the following value

Ω Λ = 0.6891 ± 0.0057 Ω k = -0.0001 ± 0.0018 =⇒ Ω m = 1 -Ω Λ .
In addition, both CMB and BBN measure a reduced density of baryonic matter of about 5%, so that the rest of the 30% of matter is attributed to CDM.

The equation of state parameter of the fluid causing the acceleration of the expan- Though accounting for the acceleration of the expansion with Λ seems to be the best fit to current data, a satisfactory theoretical interpretation of the cosmological constant has still not been found. Thus, beyond ΛCDM models are explored in order to find a suitable physical mechanism for the accelerated explanation, that fits the data. But highly precise measurement of the free parameters of these models are 1. State of the art in observational cosmology -1.1. The standard cosmological model required to discriminate them from ΛCDM. This is the main challenge for modern cosmology. A further motivation for alternative models, is the search for a resolution of the tensions in recent measurement of H 0 and the amplitude of density fluctuations. This will be discussed in section 1.3.1.

Another fundamental question could be answered thanks to the uprising precision of cosmological measurements: what is the mass of neutrinos ?

Massive neutrinos in the standard model

So far I have not discussed the behaviour of neutrinos, which are among the most intriguing particles of the standard model of particle physics. Many open questions exist about neutrinos: what is their real nature (Dirac or Majorana) ? why can't we see right-handed neutrinos ? what is their mass ? I will particularly focus on this last question. There is no way that such peculiar particles haven't got an interesting role to play in cosmology, which can help in answering this question. This section is mainly based on the review of [START_REF] Lesgourgues | Massive neutrinos and cosmology[END_REF].

Massive neutrinos in particle physics

Neutrinos are neutral fundamental particles which interactions are described by the standard model of particle physics. Wolfang Pauli theorised them in 1930, to solve the problem of non-conservation of energy in β-decays. They have been later discovered by Frederick Reines and Clyde Cowan in 1956. Neutrinos are part of the lepton family along with the electron, the muon, and the tau, and also have 3 flavours : the electronic neutrino ν e , the muonic neutrino ν µ and the tauic neutrino ν τ . The LEP experiment has measured the number of neutrino flavours to be N ν = 2.994 ± 0.0128 [START_REF] Zyla | Review of Particle Physics[END_REF]. These particles only interact through weak interaction, therefore they have a very small cross section σ. For example, the interaction cross section of the reaction ν e + n → p + e -for a 2 MeV electronic neutrino in water, is σ(ν e + n → p + e -) ∼ 10 -44 cm -2 . This gives a mean free path of λ ∼ 1600 light years. Finally the Standard Model predicts that neutrinos are mass-less particles.

In 1957, Bruno Pontecorvo guessed that neutrinos could oscillate between there different flavour states, implying a non-zero mass. These oscillations should be the consequence of a mixing between the flavour states (interaction eigenstates) and the mass states through a unitary matrix U, in the same way that quarks coupling with the W ± boson are mixed through the CKM matrix. To illustrate this let's take the example of only two neutrinos, ν e and ν µ . The two mass states are labeled by an index i = 1, 2 and the mixing takes the form

ν e ν µ = U ν 1 ν 2 , (1.24)
1. State of the art in observational cosmology -1.1. The standard cosmological model where U can be parametrised by a rotation angle θ, so that

ν e ν µ = cos θ sin θ -sin θ cos θ ν 1 ν 2 .
(1.25)

If we consider the mass states as solutions of the Shrödinger equation (the mass states are also called propagation eigenstates) their evolution is determined by a time evolution operator, and we can compute their probability of oscillation when they propagate on a distance L, for example from ν e to ν µ

P (ν e → ν µ ; L) = sin 2 2θ sin 2 ∆m 2 12 4E L , (1.26)
where ∆m 2 12 = m 2 1m 2 2 , and E is the energy of the neutrino. Thus we have two theoretical parameters ∆m 2 12 and θ and two experimental ones L and E . If we can measure the flavour at the source and at the detector, separated by a known distance L, and if we know the energy of the neutrino flux, it is possible to measure the two theoretical parameters. The formulation for three neutrinos (pdg_20) is a bit more complicated as it requires three angles θ i j and three ∆m 2 i j , but the idea is the same. This oscillation process has been observed many times from different neutrino sources (by different experiments) : sun (Super Kamiokande, SNO), atmosphere (Super Kamiokande), nuclear reactors (KamLAND, Data Bay) and accelerators (LSND, T2K). Here are the combined results of the squared mass differences from [START_REF] Esteban | The fate of hints: updated global analysis of three-flavor neutrino oscillations[END_REF] ∆m 2 21 = (7.39 +0.21 -0.2 ) × 10 -5 eV 2 and ∆m 2 32 = (2.454 +0.029 -0.031 ) × 10 -3 eV 2 .

(1.27)

However with this kind of experiments we don't have information about the absolute mass scale, thus there are two possible hierarchies, which are shown in figure 1.10. Other particle physics experiments are trying to measure the absolute mass scale through simple (Troitzk, Mainz, KATRIN) or neutrinoless double (Nemo/SuperNemo) β-decay, where they actually measure an effective mass m β or m ββ which is a combination of the three masses and angle's sinus and cosinus. The most recent bounds coming from particle physics on the sum of the three neutrino mass

M ν ≡ i m ν,i , are 0.056(0.095) eV M ν 1 eV, (1.28)
where the upper bound comes from the minimum allowed total mass9 for the Normal (Inverted) hierarchy, and the lower bound comes from the KATRIN tritium β-decay experiment [START_REF] Aker | Improved Upper Limit on the Neutrino Mass from a Direct Kinematic Method by KATRIN[END_REF]. 

Massive neutrinos in cosmology

Like photons, neutrinos decoupled from matter in the early universe, leading to a relic sea of cosmic neutrinos that we call the Cosmic neutrino Background (CνB). The interaction rate of neutrinos with the primordial plasma was much smaller than the one of photons, because they have a very weak cross section and interact only through weak interaction. Thus, the neutrino decoupling happened way before the emission of the CMB, a few seconds after the Big Bang, when the universe had a temperature of about 1 MeV. In this way, neutrino's temperature evolved completely independently from the photons which were still coupled to matter. By assuming that the global entropy of the universe is conserved and that the decoupling is instantaneous, one can show that the neutrino and photon background temperatures are always related through [START_REF] Lesgourgues | Massive neutrinos and cosmology[END_REF])

T ν = T γ 4 11 1/3
, (1.29) so that we find the neutrino background temperature to be T 0 ν ≈ 1.95 K ≈ 1.68×10 -4 eV today, for T 0 γ = 2.73 K . From the current bounds on M ν ≡ m ν , we see that neutrinos have at most a mass of the eV order. This very low mass indicates that, as the universe cooled down due to the expansion, they went from a relativistic state in the early universe, when T ν m ν to a non-relativistic state, when T ν m ν . In the approximation of an instantaneous neutrino decoupling, the form of their momentum distribution is preserved and it is easy to compute their energy density ρ ν in both states [START_REF] Lesgourgues | Massive neutrinos and cosmology[END_REF] since we can always relate it to the photon one thanks to Eq. (1.29). In the first case they behave as radiation and their energy density is

ρ ν (T ν m ν ) = 7π 2 120 4 11 4/3 T 4 γ , (1.30)
1. State of the art in observational cosmology -1.2. The Large Scale Structure of the universe and in the second case they behave as non-relativistic matter, so that

ρ ν (T ν m ν ) = m ν n ν = m ν 6ζ(3) 11π 2 T 3 γ , (1.31)
where n ν is the neutrino number density and ζ is the Riemann function (ζ(3) ≈ 1.202). Therefore, the reduced neutrino density when they are non-relativistic only depends on the total neutrino mass10 

Ω ν ≡ 8πG 3H 2 ρ ν = M ν 93.14h 2 eV . (1.32)
For a total neutrino mass of 1 eV, we have Ω ν h 2 ≈ 0.01, which is not negligible (see the value of Ω b h 2 at the end section 1.1.3 for comparison).

A relation between the neutrino mass and the redshift z nr at which the transition occurred, can be found be equating m ν with the average momentum, approximated as 〈p〉 ≈ 3T nr ν = (1 + z nr )3T 0 ν , by using Eq. (1.29) again, we find

(1 + z nr ) = 1980 m ν 1 eV . (1.33)
The fact that neutrinos can have different behaviors at the time of the photons decoupling, have an impact on the shape of the CMB temperature power spectrum. I will not enter in the details of the effects on the CMB (see [START_REF] Lesgourgues | Massive neutrinos and cosmology[END_REF]), but will simply give an intuitive explanation. If neutrinos were already nonrelativistic at the decoupling, it would strongly affect the shape of the CMB angular power spectrum in a non-trivial way [START_REF] Dodelson | Cold + hot dark matter and the cosmic microwave background[END_REF]. But these effects are not observed, so we can safely affirm that neutrinos were still relativistic at the time of the CMB emission, i.e for z = 1100. Thanks to Eq. (1.33) we can have a constraint on M ν , by considering that all three neutrino masses are degenerate : M ν 1.67 eV. Even for a less than 1 eV total neutrino mass, the CMB temperature power spectrum is affected (though indirectly) and leads to tighter constraints. But this simple discussion, already gives a sens of how powerful cosmology can be to constrain the total neutrino mass.

I will extend the description of massive neutrinos behaviour at the level of linear perturbations, in section 1.2.3 and discuss the current constraints on M ν coming from different cosmological probes, in section 1.3.3

The Large Scale Structure of the universe

As we have seen above, when describing the temperature map of the CMB, the universe is not completely homogeneous and isotropic on all scales. In fact, this is obvious when we look at the sky, we can see stars, galaxies, clusters of galaxies and empty 1. State of the art in observational cosmology -1.2. The Large Scale Structure of the universe spaces between these structures, this is the Large Scale Structure (LSS) of the universe.

It is even possible to quantify the scale below which the universe that we observe today (z ∼ 0.3) is anisotropic, to be ∼ 150 Mpc [START_REF] Marinoni | The scale of cosmic isotropy[END_REF].

The formation of cosmic structures can be described by the so-called Perturbation Theory (PT). It postulates that the LSS is a consequence of the evolution of small primordial perturbations of the gravitational potential11 , on top of the homogeneous and isotropic background, described by Friedmann equations. These perturbations led to the formation of over and under-densities of matter.

Today's most popular assumption of the origin of matter density fluctuations is the model of inflation. Without entering the details, inflation is a physical mechanism generating a sudden and extreme accelerated expansion phase, which inflated primordial quantum fluctuations arising from the vaccum, in the very first moment of the universe. It sets the initial conditions of the density contrast field, defined as .34) where ρ(x, t ) is the matter density at any given comoving location x and cosmic time t and ρ(t ) is the mean matter density of the universe. In this section, I will show how useful it is to adopt a statistical description of the field δ and describe its evolution across cosmic time through linear perturbation theory. I will dedicate a particular focus on the role of massive neutrinos in this context. Finally I will expose how the study of the clustering of matter, traced by luminous objects such as galaxies, can be a powerful tool to extract cosmological information. The two main references that have been used for this section are [START_REF] Bernardeau | Large-Scale Structure of the Universe and Cosmological Perturbation Theory[END_REF] and [START_REF] Lesgourgues | Massive neutrinos and cosmology[END_REF].

δ(x, t ) ≡ ρ(x, t ) -ρ(t ) ρ(t ) , ( 1 

Cosmological statistics

In order to relate theory to observations we need to characterize the perturbation field δ that we observe at a given time. This would require the full knowledge of the field δ(x, t ) at each position and time. Such deterministic description is very difficult, if not impossible, for several reasons. First, there is an infinity of position x for which we need to specify the value of the field. Second, we don't have the full information on the initial conditions (primordial fluctuations). And third, we simply cannot follow the evolution of a single cosmological structure, because the time on which we are observing it is much shorter than the time scale on which it evolves12 . That is why we need a statistical description of the matter perturbations.

The density contrast δ(x) can be seen as a random variable for a stochastic process of which our universe is a single realization. We can make the analogy with statistical 1. State of the art in observational cosmology -1.2. The Large Scale Structure of the universe mechanics, where to describe a gas we don't focus on the position and velocity of each particles but on their probability distribution function. Thus, in order to characterize the matter perturbation field, we need to find the n-point Probability Distribution Function (PDF) of the density contrast (δ i ≡ δ(x i )) (1.35) which is completely determined by its moments, defined as

P(δ 1 , δ 2 , ... , δ n )dδ 1 dδ 2 ... dδ n ,
〈δ 1 δ 2 ... δ n 〉 = dδ 1 dδ 2 ... dδ n P(δ 1 , δ 2 , ... , δ n )δ 1 δ 2 ... δ n ,
(1.36)

As we are now describing the universe in terms of its inhomegeneities, the invariance by translation and rotation of the universe, postulated with the cosmological principle, cannot hold. We rather assume that the stochastic field δ is statistically homogeneous and isotropic. Meaning that all the moments of P are invariant under translation and rotation.

2-points statistics

The first moment 〈δ(x)〉 is zero by definition of the density contrast. The second moment 〈δ(x)δ(x

)〉 = 〈δ(x)δ(x + r)〉 ≡ ξ(r) = ξ(r ), (1.37)
is the 2-points correlation function ξ(r ). The second and third equalities respectively stem from statistical homogeneity and isotropy It can also be useful to express δ(x) in Fourier space, adopting the following convention for Fourier transforms

δ(k) = 1 (2π) 3 δ(x)e -i k.x d 3 x.
(1.38)

Because δ(x) is real, the complex random variable δ(k) obeys the following relation

δ(k) = δ * (-k).
(1.39)

The first moment 〈δ(k)〉 is still zero, and the second moment is then (1.40) where P (k) is the power spectrum, defined as the Fourier transform of the 2-points 1. State of the art in observational cosmology -1.2. The Large Scale Structure of the universe correlation function. The Dirac delta δ D (k + k ) expresses the statistical invariance by translation. It shows the main advantage of the Fourier space, allowing different Fourier modes to be uncorrelated. In addition, it only depends on the norm of k, thanks to statistical isotropy. One can always relate a mode to a scale of observation λ with k = 2π/λ. Alternatively, one can define the angular power spectrum C ( ), as the projection of P (k) in spherical harmonic space. This quantity is useful to express the correlation of the density field projected on a sphere, as in the case of the CMB. I will be extensively use the C ( ) statistics in chapter 4 and refer to appendix A for a formal definition.

〈δ(k)δ(k )〉 = d 3 x (2π) 3 d 3 r (2π) 3 ξ(r )e -i x•(k+k ) e -i k •r = δ D (k + k ) d 3 r (2π) 3 ξ(r )e -i k •r ≡ δ D (k + k )P (k),
From the above definition one can relate the 1-point variance13 of the density field to the 2-points statistics P (k) and ξ(r ) through

〈δ 2 〉 = σ 2 = ξ(0) = d 3 kP (k).
(1.41)

Due to the Cold nature of DM, forming structures on small scales, this integral diverges.

We usually apply a spherical top-hat convolution to the density field

W (kR) = 3 (kR) 3 [sin(kR) -kR cos(kR)] ,
(1.42)

which smooth the density field on spheres of radius R. It is standard practice to set R = 8 Mpc/h, to define the variance of the density field in spheres of 8 Mpc/h

σ 2 8 = d 3 kP (k)W 2 (k × 8) = 4π k 2 dkP (k)|W (k × 8)| 2 . (1.43)
This is a fundamental cosmological parameter, considered as the normalisation of the power spectrum, directly related to the initial conditions set by inflation, as we will see later on.

In general a random field could have any PDF. The most widely considered paradigm is that the perturbation field is Gaussian in the initial conditions. This assumption holds on the fact that inflation generates primordial perturbations which are Gaussian. Moreover, in the linear regime the modes evolve independently, so that the fluctuations keep their Gaussian distribution with time. The PDF of the random field δ(x) can then be written as a N -variate Gaussian distribution (1.44) where C i j = 〈δ i δ j 〉 is the covariance matrix. In such case, Wick's theorem [START_REF] Bernardeau | Large-Scale Structure of the Universe and Cosmological Perturbation Theory[END_REF] implies that moments of order higher than 2 are completely specified by moments of order 1 and 2. This means that a Gaussian density field is completely determined by the two-point correlation function. As any linear combination of Gaussian variables still has a Gaussian distribution, one can prove that in Fourier 1. State of the art in observational cosmology -1.2. The Large Scale Structure of the universe space the distribution of δ(k) is still Gaussian14 . The perturbation field in Fourier space is then completely determined by its variance, the power spectrum P (k).

P(δ 1 , δ 2 , ... , δ N ) = 1 (2π) N /2 |C| 1/2 exp - 1 2 N i , j δ i (C -1 ) i j δ j ,

Higher order statistics

As it will be discussed in several sections of this thesis, assuming the density field as Gaussian has limitations. There are two types of possible non-Gaussianities in the PDF of δ:

• primordial non-Gaussianities, already present in the initial conditions. They are predicted by certain models of inflation. The earliness of such non-Gaussinities offers the possibility to observe them both in the CMB and the LSS. But so far, primordial non-Gaussianities have not been detected in either case. See Celoria and Matarrese (2020) for a review.

• As long as δ is evolving linearly with time, the different Fourier modes are independent. Thus, if the initial field is Gaussian, it stays Gaussian in the linear regime. But, at low redshift (z 2) structures start to form from high density regions on small scales, with σ 2 (R) ∼ 1. The different Fourier modes start to couple, δ enters a non-linear regime. The fact that modes are no longer independent implies that the field is no longer Gaussian. It is these late-time non-Gaussianities which will be of interest for me.

In the general case, all the moments of the n-point PDF of δ can be decomposed, following the cluster expansion [START_REF] Bernardeau | Large-Scale Structure of the Universe and Cosmological Perturbation Theory[END_REF], into moments of lower orders. For example, the two and three-points moments can be expressed as

〈δ 1 δ 2 〉 = 〈δ 1 〉〈δ 2 〉 + 〈δ 1 δ 2 〉 c , (1.45) 〈δ 1 δ 2 δ 3 〉 = 〈δ 1 〉〈δ 2 〉〈δ 3 〉 + 〈δ 1 δ 2 〉 c 〈δ 3 〉 + 〈δ 1 δ 3 〉 c 〈δ 2 〉 + 〈δ 2 δ 3 〉 c 〈δ 1 〉 + 〈δ 1 δ 2 δ 3 〉 c , (1.46)
where the subscript c denotes the cumulent moment or connected part, with 〈δ〉 c = 〈δ〉. Note that from the definition of δ, all 〈δ i 〉 = 0. Given this decomposition, we see that the connected part brings additional information with respect to the non-connected part, which is a combination of lower order cumulents. This is the definition of the n-point correlation function

ξ n (x 1 , x 2 , ...x n ) = 〈δ 1 δ 2 ...δ n 〉 c .
(1.47)

It can also be applied in Fourier space to define the 3 and 4-point polyspectrum

〈δ(k 1 )δ(k 2 )δ(k 3 )〉 c = δ D (k 1 + k 2 + k 3 )B (k 1 , k 2 ), (1.48)
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〈δ(k 1 )δ(k 2 )δ(k 3 )δ(k 4 )〉 c = δ D (k 1 + k 2 + k 3 + k 4 )T (k 1 , k 2 , k 3 ), (1.49)
which are respectively called bispectrum B (k 1 , k 2 ) and trispectrum T (k 1 , k 2 , k 3 ). Again, the Dirac delta, is a consequence of statistical homogeneity. As said above, Wick's theorem states that for a Gaussian field, all higher-order than 2 cumulents are vanishing. This means that higher-order statistics such as the bispectrum and the trispectrum encapsulate the non-Gaussian information of the density field. As it will be shown in section 2.3, the covariance matrix (i.e. the matrix of errors and correlations) of the power spectrum receives contributions from the trispectrum in the case of a non-Gaussian density field.

Linear perturbation theory

Now that I have described the statistical framework allowing the construction of the cosmological observable that is the power spectrum, I will expose the main predictions of perturbation theory, in the linear regime.

In order to describe the evolution of matter perturbations we use the approximation of a pressure-less fluid in a Newtonian framework15 . Since we live in an expanding universe, we use comoving coordinates x, related to physical coordinates r through the scale factor : r = a(t )x. As it was done for Eq. (1.6), one can take the derivative of this relation with respect to time ṙ = ȧx + v.

(1.50)

Note that this time ẋ is considered to be non-zero due to the peculiar motion of particles (or galaxies), with respect to a comoving observer. The motion of a particle in a perturbed universe then results from the addition of a peculiar velocity v ≡ a ẋ on top of the Hubble flow ȧx.

The equations describing the evolution of the matter density contrast δ(x, t ), in comoving coordinate, with respect to cosmic time, are the continuity equation (mass conservation)

∂δ ∂t + 1 a ∇ • [(1 + δ)v] = 0, (1.51)
and the Euler equation (momentum conservation)

∂v ∂t + H v + 1 a (v • ∇)v = - ∇Φ a , (1.52)
sourced by the Newtonian gravitational potential Φ, given by solving the Poisson equation ∇ 2 Φ = 4πG ρa 2 δ.

(1.53)

By taking the gradient of Eq. (1.52) and substituting ∇ 2 Φ with Eq. (1.53), the evolution 1. State of the art in observational cosmology -1.2. The Large Scale Structure of the universe of the perturbed matter density and velocity is described by the set of two equations

∂δ ∂t + 1 a θ = -∇ • (δv) (1.54) a ∂θ ∂t + aH θ + 4πG ρa 2 δ = -[∇ • (v • ∇)v] (1.55)
where θ ≡ ∇ • v. These two equations are non-linear and coupled in δ and v in the right hand side. By neglecting the non-linear terms on the right hand side of both equations, we can combine them to get the final equation for the density contrast in the linear regime δ + 2H δ -4πG ρδ = 0.

(1.56)

It can be re-written using the definition of the reduced matter density Ω m , yielding

δ + 2H δ - 3 2 H 2 Ω m δ = 0. (1.57)
This equation shows that the evolution of the density field is sourced by the matter density Ω m H 2 ∝ ρ m and slowed down by the friction term 2H , expressing the expansion. This shows that the linear evolution of perturbations depends on cosmological parameters.

Linear solution for the growth factor

The structure of equation (1.56) allows a decomposition of the density contrast in a time and spatial contribution, δ(x, t ) = D(t ) (x) , where D(t ) is the linear growth factor. The solution of this second order differential equation is a combination of two independent solution, a growing mode D (+) (t ) and a decaying mode D (-) (t )

δ(x, t ) = [D + (t )A + D -(t )B ] (x), (1.58)
where (A, B ) ∈ R 2 are set by the initial conditions. For a ΛCDM universe (neglecting radiation, but with a possible non-zero spatial curvature), [START_REF] Heath | The growth of density perturbations in zero pressure Friedmann-Lemaître universes[END_REF] showed that the decaying mode is proportional to H (t ). This allows to use the "variation of the constant" method to find the growing mode, yielding

D + (t ) ∝ H (t ) dt a(t )H (t ) , (1.59)
which shows the explicit dependence of the linear growth factor with the expansion rate.

For an Einstein-de Sitter universe, with only matter Ω m = 1, the solutions are simplified to

D (+) (a) ∝ a D (-) (a) ∝ a -3/2 . (1.60)
As it decreases with cosmic time, the decaying mode can be neglected. Matter density 1. State of the art in observational cosmology -1.2. The Large Scale Structure of the universe fluctuations are thus growing with the scale factor. For a radiation dominated universe (Ω m = 0) the growth factor is D(a) ∝ ln a, fluctuations stay almost constant with time.

Shape of the linear power spectrum

From the definition of the power spectrum we have that P (k) ∝ 〈|δ(k)| 2 〉, showing that in the linear regime, the time evolution of P (k) is completely described by the linear growth factor squared D 2 (t ). But to have the shape of the linear power spectrum at any time, we need the initial conditions. Inflation predicts that the initial power spectrum of scalar metric perturbations (which can be seen as the gravitational potential power spectrum) has the form

P Φ (k) = A s k n s -4 , (1.61)
where A s is the amplitude of scalar perturbations and n s is the spectral tilt, defining the slope. Taking the Poisson equation in Fourier space

-k 2 Φ(k) = 4πG ρa 2 δ(k), (1.62)
we have that k 4 P Φ (k) ∝ P (k), yielding the following form for the power spectrum of density perturbations, at the end of inflation

P ini (k) = A s k n s . (1.63)
While the value of A s is not predicted by inflation, n s is supposed to be close to one, so that the dimension-less gravitational power spectrum k 3 P Φ (k), is said to be scale independent. In other word, there are no preferred energy scales. Latest constraints from the CMB (Aghanim et al., 2020b) gives ln 10 10 A s = 3.044 ± 0.014 and n s = 0.9649 ± 0.0042. The physics describing the interactions between baryons and photons from the end of inflation to the decoupling, can be encapsulated in the transfer function, defined as

T (k) ≡ δ(k, z = 0) δ(k, z → ∞) δ(0, z = 0) δ(0, z → ∞) , (1.64)
where z → ∞ denotes the end of inflation. This function, only dependent on k, is a direct mapping of the density contrast, from the initial conditions to today. Note that by construction T (k) = 1 for k = 0. The full shape of the linear matter power spectrum at any redshift is then

P (k, z) = A s k n s D 2 (z)T 2 (k).
(1.65)

The main difficulty is to compute the transfer function. While analytical expressions have been investigated [START_REF] Eisenstein | Baryonic features in the matter transfer function[END_REF], it is common practice today to resort to Boltzmann codes like CLASS [START_REF] Blas | The Cosmic Linear Anisotropy Solving System (CLASS). Part II: Approximation schemes[END_REF], which accurately solve the evolution equations of perturbations. (Aghanim et al., 2020b).

The linear power spectrum at z = 0 and z = 1 is shown in figure 1.11, where we can see at low k (i.e. on large scales) the initial power law shape, and at larger k (i.e. small scales) a decreasing spectrum, with wiggles around k ∼ 0.1 h/Mpc, corresponding to the BAO. It thus exhibits a maximum.

To explain this shape I have to introduce the notion of particle horizon. It is the maximum physical distance d H , that a photon could have travelled between an initial time t i and a time t , given by

d H (t ) = a(t ) t t i cdt a(t )
.

(1.66)

Two objects separated by a distance greater than the particle horizon are not causally connected.

Let's consider a perturbation of the matter field of physical scale λ. To know the time dependence of both λ(t ) and d H (t ), we have to solve the first Friedmann equation to get the evolution of the scale factor with time. We have that a(t ) ∝ t 1/2 For a radiation dominated universe a(t ) ∝ t 2/3 For a matter dominated universe.

(1.67)

We can then compute the integral in Eq. (1.66) and find that in both cases d H ∝ t . As the physical size λ(t ) of a perturbation evolves at the same pace as the scale factor, we see that in both types of universe, a perturbation that is initially on a scale larger than the horizon will always enter this horizon at some time.

We saw before that the growth of matter fluctuations (inside the horizon) was δ ∝ ln a For a radiation dominated universe δ ∝ a For a matter dominated universe.

(1.68)

1. State of the art in observational cosmology -1.2. The Large Scale Structure of the universe However, the notion of horizon is a relativistic concept, which cannot be treated in the Newtonian approximation. Rather than re-deriving the evolution equations of perturbations in a relativistic framework, I will give an intuitive hint [START_REF] Dijkstra | The Mass Power Spectrum P (k). Lecture on Cosmological Perturbations[END_REF]. In general relativity, the perturbations of the gravitational field are treated by perturbing the metric. For scales larger than the horizon these metric perturbations stay constant, because there is not enough time for information to propagate from one extremity to the other. In the Newtonian approximation, the equation corresponding to the evolution of the metric perturbations is the Poisson equation, which in Fourier space is : -k 2 Φ k = 4πG ρa 2 δ(k). If we want Φ to be independent of time, then ρa 2 δ(k) has to be time independent. This implies that δ(k) ∝ a 2 For a radiation dominated universe δ(k) ∝ a For a matter dominated universe.

(1.69)

If we define k eq as the mode corresponding to a scale λ eq of the size of the horizon at the time of equivalence between radiation and matter (Ω r = Ω m ) :

• The scales larger than λ eq (k < k eq ), entered the horizon during matter domination. They have grown first as a 2 and then as a. These scales have kept the power law form of the primordial power spectrum.

• The scales smaller than λ eq (k > k eq ), entered the horizon during radiation domination. They have grown first as a 2 and then their evolution froze when they entered the horizon, implying a damping of these scales relatively to the ones larger than λ eq .

Therefore, there is a differential growth of perturbations with respect to their size, responsible for the shape of the power spectrum, with a maximum for k = k eq .

Figure 1.11 shows how powerful the power spectrum is as a cosmological observable, since it keeps tracks of all the evolution of matter perturbations. I will show the explicit dependence of the matter spectrum on cosmological parameters in section 1.2.4. But first, I dedicate the next section to the effect of massive neutrinos on the LSS.

Massive neutrinos in the Large Scale Structure

Given the sensitivity of the power spectrum observed above, we can guess that it will keep an imprint of the non-relativistic transition of neutrinos. Indeed, when neutrinos are relativistic they behave as a radiation component, so they don't fall in the gravitational potential wells generated by CDM. Oppositely, as non-relativistic particles they do contribute to the gravitational clustering in the same way as CDM, because they interact almost only through gravitation with the other particles. However, unlike CDM, neutrinos decoupled when they were still relativistic, so that they kept a high thermal velocity, decreasing with temperature. As long as neutrinos are relativistic, they travel at the speed of light. When they become non-relativistic, their 1. State of the art in observational cosmology -1.2. The Large Scale Structure of the universe mean thermal velocity is (1.70) This gives rise to a causal horizon, that is defined in the same way as the particle horizon in Eq. (1.66), but with v th instead of c. This horizon determines the scale on which neutrinos can free-stream, we call it the free-streaming scale/length λ FS .

v th = 〈p〉 m ν ≈ 3T ν m ν ≈ 150(1 + z) 1 eV m ν km s -1 .
For λ < λ FS , the effective pressure of neutrinos due to their thermal velocity prevents them from clustering on those scales, on the other hand they cannot escape from potential wells at a scale larger than λ FS . The free-streaming length and the associated wave-mode are expressed as

             k FS (t ) = 4πG ρ(t )a 2 (t ) v 2 th (t ) λ FS (t ) = 2π v th (t ) H (t ) 2 3 . 
(1.71)

When neutrinos are relativistic, they propagate at the speed of light, so λ FS grows as the particle horizon. But after the transition, as their velocity decays with time, λ FS decreases relatively to the particle horizon, so that the comoving free-streaming length reaches a maximum value λ nr at the time of the transition. The associated minimum comoving wave-mode k nr writes

k nr ≈ 0.018 Ω m m ν 1 eV h/Mpc. (1.72)
Therefore, we expect to see an effect on the power spectrum around k nr :

• k < k nr : these scales are never affected by free-streaming and neutrinos behave as CDM. The power spectrum is unchanged.

• k > k nr : the free-streaming prevents neutrinos to cluster on those scales, causing a relative damping of the power spectrum on small scales relatively to large ones.

We can see this in a more formal way by taking a look at the equations ruling the evolution of the matter perturbations in the linear regime. Because of their large thermal velocity and the absence of microscopic interactions, massive neutrinos generate an anisotropic stress in the energy momentum tensor [START_REF] Lesgourgues | Massive neutrinos and cosmology[END_REF], so that they cannot be strictly considered as a perfect fluid. However, [START_REF] Shoji | Massive Neutrinos in Cosmology: Analytic Solutions and Fluid Approximation[END_REF] showed that the fluid approximation holds for light neutrinos and long after the redshift of the non-relativistic transition, z nr . We can thus examine the evolution of matter perturbations by considering the perturbations of the two fluids: CDM+baryons δ cb and massive neutrinos δ ν .

For CDM+baryons, the fluid equations are the same as in Eq. (1.54) Eq. (1.55), that I 1. State of the art in observational cosmology -1.2. The Large Scale Structure of the universe recall here in the linear regime

         ∂δ cb ∂t + θ cb a = 0 a ∂θ cb ∂t + aH θ cb = -∇ 2 Φ.
(1.73)

For massive neutrinos, we have the same set of equations, but with an additional term in the Euler equations

         ∂δ ν ∂t + θ ν a = 0 a ∂θ ν ∂t + aH θ ν = v 2 th ∇ 2 δ ν -∇ 2 Φ.
(1.74)

This additional term in v 2 th could be interpreted as a pressure counter-force, due to the propagation of sound-waves in the fluid, with a sound speed v th . However, soundwaves cannot propagate in a collision-less fluid, so that v th is only an effective sound speed. This pressure term should actually be interpreted as an effect of free-streaming. The effective sound speed in the CDM+baryons fluid can be neglected on the scales we are interested in (k < 10 h/Mpc).

The two systems of equations are coupled through Φ which is still given by the Poisson equation, taking into account the total matter mean density ρm = ρcb + ρν and the total density contrast δ m = ( ρmρ m )/ ρm . If we define the neutrino density fraction as f ν ≡ ρ ν /ρ m , the Poisson equation then writes

∇ 2 Φ = 4πG a 2 ρm (1 -f ν )δ cb + f ν δ ν .
(1.75)

For k < k nr (large scales), neutrinos behave as CDM, i.e δ ν = δ cb , so the right hand side of Eq. (1.75) only depends on the full CDM perturbation. However, for k > k nr (small scales), δ ν = 0 because of the free-streaming, so the Poisson equation becomes (1.76) showing the suppression factor due to the presence of massive neutrinos. Figure 1.12 exhibits the effect on the linear matter power spectrum, for fixed Ω m h 2 and Ω b h 2 . On the left panel, we can see the damping of P (k), by comparing the red and the green curves. The fact that P (k) is enhanced on small scales for the neutrinoless universe (black dashed curve), is due to the fact that, for a fixed Ω m , removing neutrinos will lead to a smaller amount of radiation and then an earlier radiationmatter equivalence. Also, we can see on the right panel that the more massive the neutrinos are, the more important the damping is. It could be quite counter intuitive because the gravitational clustering is stronger for larger masses. But if neutrinos are heavier, the non-relativistic transition is happening earlier and the small scales 1. State of the art in observational cosmology -1.2. The Large Scale Structure of the universe fluctuations have more time to be damped.

∇ 2 Φ = 4πG a 2 ρm (1 -f ν )δ cb ,
Figure 1.12.: Left: Linear matter power spectrum for a universe without neutrinos (black dashed line), with mass-less neutrinos (red plain line) and with massive neutrinos (green dashed line), for f ν = 0.1 (M ν = 1 eV). Right: Ratio between mass-less neutrino power spectrum and massive neutrino power spectrum, for different M ν . From top to bottom the mass is increasing. Taken from [START_REF] Lesgourgues | Massive neutrinos and cosmology[END_REF].

Galaxy clustering as a probe of the Large Scale Structure

In the previous sections, we saw that the matter power spectrum presents several features in its shape, that are imprints of the different physical processes in play in the LSS. This statistic is thus a formidable mine of information allowing to constrain cosmological parameters. As the major component of the matter density field is invisible CDM, a possible way of measuring the power spectrum is to trace it via the visible structures formed through the clustering of matter, namely galaxies. In this section I discuss the main aspects of one of the major probe of the LSS, that is galaxy clustering.

Cosmological dependence of the power spectrum

Figure 1.13 shows how the shape of the linear matter power spectrum is influenced by the 6 cosmological parameters of a flat-ΛCDM models with massive neutrinos: Ω cdm h 2 , Ω b h 2 , h = 0.67, M ν , n s and A s . Each of these parameters have a specific effect on the power spectrum. By varying Ω cdm h 2 and keeping Ω b h 2 fixed, it is actually the total amount of matter Ω m h 2 which changes, thus delaying or advancing the time of the radiation-matter 1. State of the art in observational cosmology -1.2. The Large Scale Structure of the universe equality, and consequently moving k eq . The influence of Ω b h 2 is mainly visible on scales k > k eq . For low Ω b h 2 , the oscillations in the baryon-photon fluid are damped, thus smoothing the BAO wiggles and allowing a larger clustering on those scales. As h is the parameter controlling the expansion rate of the universe, which dilutes the matter perturbations, the overall amplitude of the power spectrum is decreased for higher values h. Note that this dependency is less important for higher redshifts. We already discussed above the effect of M ν , damping the power spectrum on small scales. The two parameters of the primordial power spectrum n s and A s , respectively set the slope and the amplitude of P (k). This illustrates how one can estimate cosmological parameters, by comparing theoretical predictions of the P (k) with the one observed in the LSS. However, we can 
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Figure 1.13.: Linear matter power spectrum computed with CLASS for z = 0 and z = 1, when varying the value of cosmological parameters. Each panel shows the effect of a specific parameter, while the others are fixed to the following values: Ω cdm h 2 = 0.1195, Ω b h 2 = 0.0224, h = 0.67, M ν = 0 eV, n s = 0.96 and A s = 2.1265 × 10 -9 . Note that when varying Ω b h 2 and M ν , the total matter density Ω m h 2 is kept fixed, by changing the value of Ω cdm h 2 accordingly. The more the color of the line is intense, the higher is the value of the parameter.

1. State of the art in observational cosmology -1.2. The Large Scale Structure of the universe see that some parameters have similar or opposite effects, they are degenerated. For example, h and A s both control the overall amplitude. But the dependence of h with z, help in breaking this degeneracy, by considering the power spectrum at several redshifts. Still, another important degeneracy appears on small scales, between M ν and A s . Without the knowledge of the normalisation of the power spectrum set by A s , or equivalently σ 8 , a precise measurement of M ν is difficult. This will be discussed in more details in section 1.3.3. While this discussion was done in the simple case of the real space, linear matter power spectrum, actual galaxy clustering analyses are more complicated than that.

Non-linear evolution of the density field

On large scales, the linear regime is sufficient to describe the evolution of the density field. But on small scales, high density regions give rise to gravitationally bound structures. When the matter density contrast is high enough, the CDM field tends to collapse to form dark matter haloes, which will subsequently cluster the surrounding baryonic matter to form galaxies inside the haloes. The formation of these cosmic structures is non-linear and in that case, the non-linear terms, coupled in δ and v, in the continuity and Euler equations (see Eq. (1.54) and (1.55)) are non negligible.

In the non-linear regime, writing the system of equations in Fourier space [START_REF] Bernardeau | Large-Scale Structure of the Universe and Cosmological Perturbation Theory[END_REF] allows to see that the evolution of the different modes are coupled 16 , so that the general solutions are uneasy to find. The standard way of proceeding is to expand δ and θ perturbatively and to solve the system order by order. However, this approach is only valid in the weakly non-linear regime, where δ is low enough to consider a perturbative expansion. Other approaches like Halofit [START_REF] Smith | Stable clustering, the halo model and nonlinear cosmological power spectra[END_REF] are followed, by mixing numerical and analytical tools to predict the non-linear part of the power spectrum.

It is generally a complex task to find a non-linear prescription which is accurate up to large k, so that galaxy clustering analyses are usually subject to a scale-cut, restricting the power spectrum (or other statistics) to the scales that are well modeled (k 0.2 h/Mpc). However these scales encapsulate valuable information about the LSS. In addition, small scales are less subject to cosmic variance, responsible for large errors on the measurements of density statistics, due to the low number of available wavemodes on large scales. The modeling of the non-linear power spectrum, is a major challenge for galaxy clustering. In section 3.3, I will present and compare different non-linear prescriptions and gauge their ability to provide unbiased constraints on cosmological parameters, especially on the neutrino mass.

To illustrate the above discussion, figure 1.14 shows how non-linear clustering enhances the power spectrum on small scales. As density perturbations grow with time, non-linearities are more important at low redshift. Halofit.
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Redshift Space Distorsions

The radial position of galaxies in the sky are estimated thanks to the measurement of their redshift, caused by the expansion of the universe. However, as shown by Eq. 1.50, the time derivative of the physical coordinate of a galaxy has two contributions: the hubble flow at the origin of the cosmological redshift and the proper motion of the galaxy with respect to a comoving observer. This peculiar velocity affects the measurement of redshifts through the Doppler-Fizeau effect. If a galaxy has a radial peculiar velocity directed toward the observer, the photons it emits are blue-shifted, and red-shifted in the opposite case. Thus, considering that the measured redshift only comes from the Hubble flow, leads to a distorted estimation of the radial distance to the galaxy. This well known effect is called the Redshift Space Distorsions (RSD).

While RSD can be considered as a pollution, they can actually bring valuable information about structure formation. Indeed, the continuity equation, Eq. (1.14) tells us that the time evolution of the density contrast δ is related to the divergence of the velocity field θ. In the linear regime, it writes δ = -θ/a.

( Through this equation, it was shown by [START_REF] Kaiser | Clustering in real space and in redshift space[END_REF], that the density field observed in redshift space (i.e. reconstructed from the redshift including the contribution from peculiar velocities) is related to the real space density field, as follows in Fourier space

δ (s) (k) = δ(k)(1 + f µ 2 ), (1.80)
where δ (s) is the redshift space density contrast and µ is the cosine of the angle between a Fourier mode k and the observer's line-of-sight. We usually denote this effect as the Kaiser boost as it enhances the amplitude of the power spectrum on linear scales, due to the coherent velocity flow toward over-densities. The measurement of f through the Kaiser boost is known to be a test of general relativity, as its values at different redshift depend on the theory of gravity that is considered. Actually, as we don't know the normalisation of the power spectrum σ 8 , it is degenerated with f . In the end, the parameter which is measured is the product f σ 8 (z) [START_REF] Percival | Testing cosmological structure formation using redshift-space distortions[END_REF] and it is compared to theoretical predictions by assuming the value of σ 8 from the CMB, which measures A s . RSD analyses are now a standard practice in the field of galaxy clustering [START_REF] Alam | Completed SDSS-IV extended Baryon Oscillation Spectroscopic Survey: Cosmological implications from two decades of spectroscopic surveys at the Apache Point Observatory[END_REF], especially with spectroscopic data which provides the most precise measurement of galaxy redshifts.

Again, Eq. (1.80) is only valid in the linear regime, i.e. on large scales. On small scales (k 0.1 h/Mpc), the effect of RSD becomes non-linear and is thus harder to predict. Non-linear RSD are usually modeled with a Gaussian dispersion of the velocity field [START_REF] Peacock | Reconstructing the linear power spectrum of cosmological mass fluctuations[END_REF] or with perturbation theory [START_REF] Taruya | Baryon Acoustic Oscillations in 2D: Modeling Redshift-space Power Spectrum from Perturbation Theory[END_REF].

The galaxy bias

The aim of galaxy clustering is to measure the clustering of the underlying matter field, traced by galaxies. But galaxies are the result of the collapse of baryonic matter in the most over-dense regions of the universe (dark matter haloes). Therefore, the distribution of galaxies gives a biased view of the matter field, since they trace only the high density regions of the LSS.

The most simple model for the galaxy bias is a linear relation between the galaxy density contrast to the matter one

δ g = b L δ m ,
(1.81)

1. State of the art in observational cosmology -1.2. The Large Scale Structure of the universe where b L is the linear bias, g stands for galaxy and m for matter. Although this model is sufficient to describe the large scales, the non-linear formation of structures on small scales calls for a more sophisticated relation between matter and galaxies.

To describe the galaxy bias in a general way, we can write [START_REF] Desjacques | Large-scale galaxy bias[END_REF])

δ g (x, t ) = O b O O(x, t ), (1.82)
where O are operators, or statistical fields, which describe properties of the galaxies' environment on which their density can depend and the factors b O are constant numbers. For example, in the linear bias model, the expansion is truncated at the first order and we have b O = b L and O(x, t ) = δ m (x, t ). [START_REF] Desjacques | Large-scale galaxy bias[END_REF] gives an exhaustive review of the different ways of modeling the galaxy bias through this expansion.

As the value of the constant factors b O are not predicted by theory, they are free nuisance parameters, that have to be varied along with cosmological parameters. Cosmological constraints are usually considered after the marginalisation over nuisance parameters (more on that in section 2.2).

N-body simulations

The modeling of the non-linear evolution of the density field, RSD and the galaxy bias, involves non-linear physics which is difficult to predict analytically. Thus, numerical simulations are fundamental tools to test the validity of these models.

The idea is to generate an initial distribution of particles and then to evaluate their respective positions and velocities at each time step. In the case of cosmological N-body simulations, CDM collision-less particles are usually considered, so that they interact only through gravitation. This is in contrast to collisional simulations (also called hydrodynamical simulations), which allow momentum exchange between particles, and are required to study astrophysical processes such as star or galaxy formation. As hydrodynamical simulations are especially important to understand structure formation at very small scales (k > 1 h/Mpc), this will not be the focus of this thesis.

N-body simulations' initial conditions are generally generated at large redshift (z ∼ 100) for a given cosmology, and then evolved down to z = 0. This allows to take snapshots of the density and velocity field at different cosmic times. Once the matter field (i.e. the CDM particles) is evolved, one can assign haloes to groups of close-by particles, generally through a Friend-of-Friend (FoF) algorithm. The second step is to populate these CDM haloes with galaxies with a Halo Occupation Distribution (HOD). This is a highly non-trivial step, as it requires knowledge about galaxy formation which involve non-linear baryonic processes. At this point, hydrodynamical simulations are used to devise accurate HOD. Finally, as the velocity field is also stored at each snapshot, one can reconstruct the density, halo or galaxy field in redshift space to study RSD.

At first, N-body simulations did not account for the effect of massive neutrinos 1. State of the art in observational cosmology -1.3. Challenges for precision cosmology in the evolution of CDM perturbations. Now that cosmological surveys are precise enough to be sensitive to this effect and even possibly measure the total neutrino mass, a lot of effort have been made to incorporate massive neutrinos in N-body simulations. Several approach were considered with different degrees of complexity: at the background level only [START_REF] Agarwal | Planck 2018 results. I. Overview and the cosmological legacy of Planck[END_REF], at the linear level as a source for the non-linear gravitational potential driving the evolution of CDM [START_REF] Brandbyge | Grid Based Linear Neutrino Perturbations in Cosmological N-body Simulations[END_REF], and explicitly including neutrino particles with an initial thermal velocity [START_REF] Viel | The effect of neutrinos on the matter distribution as probed by the Intergalactic Medium[END_REF].

In chapter 3, I will extensively make use of a set of N-body simulations which were generated following this last approach, namely the Dark Energy and Massive Neutrino Universes (DEMNUni). I will give more details about these simulations in section 3.1.1.

Challenges for precision cosmology

By comparing Hubble's 1929 measurement of the expansion rate of the universe with the CMB temperature map measured by the Planck satellite, it is obvious that in less than a century, cosmology has now entered the realm of precision.

Such precision revealed mild tensions on the estimation of cosmological parameters coming from different data-set. Resolving these tensions motivates, in the same time, a refined control of systematic uncertainties and the exploration of alternative models to ΛCDM, which could also give a satisfactory explanation to the acceleration of the expansion of the universe.

Furthermore, where particle physics experiments are still struggling to measure the total neutrino mass, cosmological analyses have become precise enough to provide stringent constraints on this parameter. Pushing even further the precision in cosmology, could finally enable the determination of the absolute neutrino mass scale.

It is in this context that the Euclid survey has been designed. While the analysis of the CMB temperature map has reached a high level of maturity in the control of theoretical and observational systematics, to profit from the large increase of statistical power that Euclid will result in, a lot of work still needs to be done to accurately estimate cosmological parameters from the observation of the LSS.

In this section, without entering deeply in the details of the aforementioned aspects, I want to set the context in which the present thesis was conducted.

Cosmological tensions

Although the ΛCDM model provides the best-fit to data coming from a variety of cosmological probes, it recently appeared that the estimation of some cosmological parameters coming from different data-set were in tension.

• A larger than 4σ tension is observed between the measurement of the Hubble constant H 0 , coming from early and late universe probes. • A ∼ 3σ tension is observed for the parameter S 8 ≡ σ 8 Ω m /0.3. This parameter, well measured by weak lensing, represents the amplitude of matter clustering today and can also be related to the f σ 8 parameter measured in RSD analyses.

In addition, as the CMB probes the initial amplitude of perturbations (A s ), by assuming a cosmological model, one can extrapolate the value of σ 8 today. Lowz probes (weak lensing and RSD) converge toward a S 8 value around 0.75, while CMB gives a higher value, around 0.85. This tension can be seen in the right panel of figure 1.15. It is worth noticing that for S 8 , the statistical significance of the tension is less important than for H 0 . In addition, latest data from the Dark Energy Survey (DES) year-3 survey, tend to reduce it [START_REF] Abbott | Dark Energy Survey Year 3 Results: Cosmological Constraints from Galaxy Clustering and Weak Lensing[END_REF]. Increasing the precision of cosmological measurements with a better statistics and control of systematic errors would allow to confirm whether these tensions are statistically significant. In the mean time, as they appear in the framework of ΛCDM, those cosmological tensions could be a hint for new physics beyond the standard model. Di [START_REF] Valentino | Snowmass2021 -Letter of interest cosmology intertwined II: The hubble constant tension[END_REF] and Di Valentino et al. (2021a) provides a nice summary on this issue.
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Beyond the standard model

In addition to the cosmological tensions that were discussed above, the lack of a satisfactory theoretical explanation for the current acceleration phase of the expansion of the universe, motivated the emergence of a variety of alternative theories to ΛCDM. [START_REF] Amendola | Cosmology and fundamental physics with the Euclid satellite[END_REF] provides a detailed review on this subject. Such theoretical developments are generally presented as divided into two approaches.

• The physical mechanism at the origin of the accelerated expansion, referred to as Dark Energy, is characterised by an equation of state parameter w < -1/3. The presence of an additional cosmic fluid in the energy-momentum tensor (right hand side of Eq. (1.1)), with such equation of state induces an acceleration expansion. The simplest candidate usually considered is a time-evolving scalar field φ, characterised by its potential V (φ). In contrast with the cosmological constant, this type of models [START_REF] Caldwell | Cosmological imprint of an energy component with general equation of state[END_REF], called quintessence (and further extensions), result in a time-dependent equation of state parameter w(t ).

• Rather than adding cosmic fluids in the energy-momentum tensor, one can consider modifications of the left hand side of Eq. (1.1). This class of theories are called modified gravity, as they assume modifications of the geometrical behaviour of the universe, with respect to general relativity. However, such theories have to be consistent with observations on the scale of the solar system, where general relativity is tightly constrained. For this, screening mechanisms [START_REF] Vainshtein | To the problem of nonvanishing gravitation mass[END_REF] have to be assumed, to allow modifications of general relativity in low-density regions, that vanish in regions where the density is comparable to the one of the solar system.

A unified theoretical framework, called the Effective Field Theory of Dark Energy, have been developed to describe these two classes of models both at the background and the perturbations level [START_REF] Gubitosi | The Effective Field Theory of Dark Energy[END_REF]. This formalism allows to draw a list of possible models for Dark Energy, all described by a unique set of free parameters, that can be measured with observations to discriminate between the different models.

Finally, a practical way of accounting for deviations from ΛCDM, is a phenomenological parametrisation of the time dependence of the dark energy equation of state. The most popular one is the Chevalier-Polarski-Linder (CPL) parametrisation [START_REF] Chevallier | Accelerating Universes with Scaling Dark Matter[END_REF][START_REF] Linder | Cosmic growth history and expansion history[END_REF], in which the dark energy equation of state parameter

w DE writes w DE (a) = w 0 + w a (1 -a), (1.83)
where a is the scale factor and w 0 and w a are free parameters. In the case of ΛCDM we have (w 0 , w a ) = (-1, 0), but so far, no deviations from these values have been measured. Note that this kind of phenomenological model, only describes Dark Energy at the background level and does not account for perturbations.

1. State of the art in observational cosmology -1.3. Challenges for precision cosmology

Cosmological measurement of the total neutrino mass

In section 1.1.5 and 1.2.3 we have seen that massive neutrinos influence the background evolution of the universe and more importantly cosmic structures formation.

Although, due to their small mass, their effects are not dominant, with the rise of precision of cosmological data we are facing, they are non negligible. This has two consequences. First, massive neutrinos must be accounted for in the analyses of present and future data, in order to avoid biases in the estimation of other cosmological parameters, such as the Dark Energy equation of state parameter [START_REF] Hannestad | Neutrino masses and the dark energy equation of state -Relaxing the cosmological neutrino mass bound[END_REF]. Second, precisely detecting massive neutrinos effects on cosmological observables, could result in constraints on the neutrino masses. I recall here the current bounds on the total neutrino mass M ν , coming from particle physics experiments (see section 1.1.5) 0.056(0.095) eV i m i 1 eV.

(1.84)

We will see in this section (mainly based on Lattanzi and Gerbino ( 2018)) that current cosmological data significantly tighten the upper bound. All bounds on M ν given hereafter refer to a 95% confidence level.

Total neutrino mass constraints with the CMB

Even though M ν < 1 eV, implies that all neutrinos were still relativistic at the time of emission of the CMB, the temperature power spectrum is sensitive to the neutrino mass. This is mainly due to background effects and to the influence of massive neutrinos on the lensing of CMB photons (see Archidiacono et al., 2017, for details). Thanks to the precision of current CMB measurements and to the fact that CMB physics is mainly driven by linear perturbation theory, this cosmological probe provides the most stringent bound on M ν when considering a single data-set. With the latest result from Planck (Aghanim et al., 2020b), the combination of temperature and polarisation power spectra results in M ν < 0.26 eV and M ν < 0.24 eV, without and with lensing respectively. In the rest of this section I refer to temperature and polarisation data from Planck as T&P.

Total neutrino mass constraints with the LSS

As exposed in section 1.2.3, the LSS keeps a significant imprint of massive neutrinos as it probes a later period of the universe than the CMB, when neutrinos are nonrelativistic.

Let's first consider the case of the BAO peak. This probe provides a geometrical test of the background expansion of the universe and should therefore not be sensitive to the free-streaming of massive neutrinos. However, BAO results in tight constraints on Ω m and H 0 (when combined with BBN) that have different degeneracy angles than the CMB. When combined together, degeneracies on those parameters are reduced, which further constrains the total neutrino mass [START_REF] Lattanzi | Status of neutrino properties and future prospects -Cosmological and astrophysical constraints[END_REF]. The 1. State of the art in observational cosmology -1.3. Challenges for precision cosmology combination of T&P with BOSS BAO data yields (Aghanim et al., 2020b) M ν < 0.13 eV and M ν < 0.12 eV, without and with CMB-lensing respectively. Due to the characteristic damping of matter density fluctuations on small scales, caused by neutrino free-streaming, the full shape of the galaxy power spectrum (or the 2-points correlation function) should be the most receptive observable to changes in M ν . However, on small scales it suffers from the still imperfect modeling of nonlinearities. In addition, strong degeneracies between M ν , the galaxy bias b and the amplitude of the power spectrum A s (or equivalently σ 8 ), prevent the full shape analysis from constraining M ν , without adding CMB data. As a result, current measurement of the galaxy power spectrum, combined with T&P, leads to a loosened bound compared to BAO+T&P constraints. Ivanov et al. (2020a) report the following result obtained with the BOSS DR12 data-set: M ν < 0.12 eV for T&P+BAO and M ν < 0.16 eV for T&P+power spectrum full shape, both including CMB-lensing. However, they argue that with future galaxy surveys such as Euclid, the full-shape information should be more powerful than the BAO to constrain M ν [START_REF] Chudaykin | Measuring neutrino masses with large-scale structure: Euclid forecast with controlled theoretical error[END_REF].

The LSS observable giving the best constraint on M ν is the 1D Lyman-α forest power spectrum18 . Because they probe high redshifts (2 z 4), Lyman-α forests are less prone to non-linear clustering and can therefore take advantage of smaller-scales than galaxy clustering. Palanque-Delabrouille et al. ( 2020) report a constraint of M ν < 0.71 eV for Lyman-α power spectrum alone. Combined with T&P this gives M ν < 0.1 eV and by further adding CMB-lensing and BAO, they find M ν < 0.09 eV. This last bound is close to the limit given by oscillation experiments in the inverted hierarchy. However, they argue that with a prior taking into account oscillation constraints (i.e. M ν > 0.05 eV), the bound they find would be relaxed.

Finally the last constraint I will consider is the one including weak lensing data coming from DES. As discussed in section 1.3.1, CMB and weak lensing data are in mild tension regarding the measurement of S 8 , which is related to the amplitude of clustering. Planck data prefer a higher value of S 8 than DES, that is a larger clustering amplitude. As increasing M ν has the opposite effect (it damps clustering), weak lensing data have a tendency to prefer higher neutrino masses. In the recent DES year-3 results [START_REF] Abbott | Dark Energy Survey Year 3 Results: Cosmological Constraints from Galaxy Clustering and Weak Lensing[END_REF], they report a constraint of M ν < 0.43 eV, when combined with T&P.

Note that for all the reported constraints, a degenerate hierarchy (i.e. all three neutrinos have the same mass) was assumed. Although, taking a lower bound as a prior, corresponding to the inverted or normal hierarchy can mildly affect the constraint, it is impossible to individually measure each neutrino mass with cosmological data. See [START_REF] Archidiacono | What will it take to measure individual neutrino mass states using cosmology?[END_REF] for an interesting discussion on this topic.

To conclude, it is worth mentioning that recent analyses have demonstrated a significant increase of the constraining power on M ν , when considering additional 1. State of the art in observational cosmology -1.3. Challenges for precision cosmology probes such as cluster counts, cosmic voids [START_REF] Bayer | Detecting neutrino mass by combining matter clustering, halos, and voids[END_REF] or higher order statistics [START_REF] Hahn | Constraining M ν with the bispectrum. Part II. The information content of the galaxy bispectrum monopole[END_REF][START_REF] Hahn | Constraining M ν with the bispectrum. Part I. Breaking parameter degeneracies[END_REF]. The observation of the epoch of reionisation with the 21cm hydrogen line [START_REF] Mao | How accurately can 21 cm tomography constrain cosmology?[END_REF], is also a very promising technique which could further improve the cosmological measurement of the total neutrino mass [START_REF] Lattanzi | Status of neutrino properties and future prospects -Cosmological and astrophysical constraints[END_REF][START_REF] Villaescusa-Navarro | Weighing neutrinos with cosmic neutral hydrogen[END_REF].

Probe combination

As we saw above, the combination of multiple cosmological probes allows to significantly tighten cosmological constraints, in particular by breaking degeneracies between cosmological parameters. Probe combination can refer to a joint analysis of several independent (for example CMB+BAO+SN-Ia, Suzuki et al. ( 2012)) or correlated probes (for example galaxy clustering and weak lensing, van Uitert et al. ( 2018)). One can go even further, by defining observables which are a cross-correlation of different fields. A well known example of this, is the galaxy-galaxy lensing, which is the crosscorrelation of the position of galaxies with the weak lensing signal extracted from their shape.

The specific case of the 3x2-points analysis

In a nutshell, the lensing effect is the deviation of a photon's geodesic due the presence of mass between the source and the observer, resulting in distortions of the source's image. Weak lensing refers to the global lensing experienced by photons emitted from galaxies and travelling through the LSS, caused by the inhomogeneous total matter (visible and non-visible) distribution in the universe. It is denoted as weak because of the relatively small intensity of the effect on the individual shape of galaxies. However, the overall effect on a large sample of galaxies can be observed in the distortions of their ellipticities (cosmic shear), resulting in a coherent alignment of galaxy orientations. This alignment can be measured statistically as a correlation between galaxy shapes.

Cosmic shear thus provides a direct measurement of Ω m and σ 8 . The 3x2-points analysis consists in a joint analysis of 3 different 2-points statistics: galaxy clustering, weak lensing and their cross-correlation, galaxy-galaxy lensing. As the study of weak lensing requires the use of photometric data to observe the shape of galaxies, the cross-correlation has to be done with photometric galaxy clustering. This combination enables a large reduction of systematic errors coming from the uncertainty on nuisance parameters, in particular on the galaxy bias [START_REF] Tutusaus | Euclid: The importance of galaxy clustering and weak lensing cross-correlations within the photometric Euclid survey[END_REF]. The 3x2-points analysis is now a standard practice for present photometric surveys such as DES [START_REF] Abbott | Dark Energy Survey Year 3 Results: Cosmological Constraints from Galaxy Clustering and Weak Lensing[END_REF] and the Kilo Degree Survey (KiDS Joachimi et al., 2021), and will be for future ones like Euclid and the Legacy Survey of Space and Time (LSST). The results presented in section 4.2 have been obtained in this framework.

The rising precision of cosmological parameters measurement will not only come from the improvement of observational techniques, but also from the combination 1. State of the art in observational cosmology -1.3. Challenges for precision cosmology and cross-correlation of probes. The 3×2-points analysis is a perfect example, and it can be extended to other observables such as CMB-lensing, allowing a 6×2-points analysis [START_REF] Abbott | Dark Energy Survey Year 1 Results: Joint Analysis of Galaxy Clustering, Galaxy Lensing, and CMB Lensing Two-point Functions[END_REF]. Moreover, the fact that almost all survey collaborations are organising dedicated working groups on the correlation of LSS and CMB probes, shows the central role that probe combination is playing in the context of precision cosmology.

The main challenge this practice reveals, is the modeling of the covariance between all these probes. Indeed, it is of paramount importance, in this context, to accurately take into account the correlation between different data-sets. However, it is not always easy to predict it analytically, even in the simple case of Gaussian field. For example, the correlation between spectroscopic galaxy clustering and weak lensing is not straightforward to compute, as it involves respectively a 3D (P (k)) and a 2D (C ( )) statistics [START_REF] Camera | Optimized angular power spectra for spectroscopic galaxy surveys[END_REF][START_REF] Passaglia | Cross-correlating 2D and 3D galaxy surveys[END_REF]. An alternative to analytic predictions, is the estimation of the covariance with simulations (c.f. section 2.3.2). However, the number of correlated data points is greatly increased in the framework of a combined probe analysis, thus requiring to increase the number of simulations to have an unbiased estimate of the covariance. This issue will be extensively discussed in chapter 2 and 3.

The Euclid survey

In order to take up the challenges discussed above, future galaxy surveys will have to push cosmological precision even further. For this, the statistical power can be increased by enlarging the survey area and the redshift range. This allows, in addition, to probe the evolution of the LSS of the universe on a wide period of time. As mentioned above, probe combination is now central in cosmological analysis, so it should be taken into account when designing future galaxy surveys. The ESA (European Space Agency) Euclid mission was devised to address all these aspects [START_REF] Laureijs | Euclid Definition Study Report[END_REF].

General description

Euclid is a cosmology dedicated space telescope, expected to be launched in 2022, to the L2 Lagrange point, for a lifetime of about 6 years. One of Euclid's main specificity is that it integrates two different instruments, enabling both spectroscopic and photometric observations of galaxies. This will allow Euclid to provide cosmological information through the two main probes of the LSS: galaxy clustering and weak lensing.

The visible imager (VIS) instrument is designed to take photometric images in the visible wavelenght range λ ∈ [550 -900] nm, divided into three wide band filters R, I, Z. The aim of this instrument is to measure the shape of 30 galaxies per arcmin 2 , with a resolution of 0.1 arcseconds and a photometric redshift precision of 0.05(1+z). The photometric sample should contain around a billion galaxies in the redshift range z ∈ [0.001, 2.5], with which a weak lensing analysis will be performed.
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The Near Infrared Spectrometer and Photometer (NISP) instrument serves, as its name indicates, both for spectroscopy (NISP-S) and photometry (NISP-P) in the near infrared, with wavelength ranges of λ ∈ [1100,2000] nm and λ ∈ [900, 2000] nm, respectively. The NISP-S is a slitless spectrograph conceived to detect the Hα emission lines in the spectrum of galaxies, for an estimation of their redshift with a precision of 0.001(1 + z). The spectroscopic sample should result in a catalog of around 50 million of galaxies in the redshift range z ∈ [0.9, 1.8], allowing to perform spectroscopic galaxy clustering analyses, in particular measurements of the BAO and RSD on the whole redshift range. Thanks to its Y, J and H filters, the NISP-P will complement the VIS for the estimation of the redshifts of the photometric sample. This will permit to use this sample for galaxy clustering and ultimately perform a 3x2-points analysis.

The Euclid survey will consist in a wide and deep survey. The wide field consists in an observed are of 15 000 deg 2 , for a magnitude going down to 24.5 for the VIS and 24 for the NISP. This will be the core of the mission for the weak lensing and galaxy clustering signals. The deep field will cover 40 deg 2 of the sky (divided in 3 different regions) down to a magnitude of 26. It will mainly be used to calibrate the data from the wide survey and also to observe high-redshift quasars and active galactic nuclei.

The major scientific objectives of the Euclid mission are [START_REF] Laureijs | Euclid Definition Study Report[END_REF]:

• Measuring the dark energy equation of state parameters w 0 and w a with a less than 2% and 10% error respectively.

• Testing the validity of general relativity at the 2% level, by measuring the growth rate with RSD on a large range of redshift.

• Measuring the total neutrino mass M ν with a better precision than 0.03 eV.

• Testing the inflation models by measuring the spectral index n s at the percent level and the amplitude of primordial non-Gaussianities with a less than 20% error.

While the main probes of Euclid are spectroscopic and photometric galaxy clustering, weak lensing and their cross-correlation, the constraining power of other additional probes are considered: higher-order statistics [START_REF] Oddo | Cosmological parameters from the likelihood analysis of the galaxy power spectrum and bispectrum in real space[END_REF], galaxy clusters [START_REF] Adam | Euclid preparation III. Galaxy cluster detection in the wide photometric survey, performance and algorithm selection[END_REF], cosmic voids [START_REF] Hamaus | Euclid: Forecasts from redshift-space distortions and the Alcock-Paczynski test with cosmic voids[END_REF], CMB cross-correlation [START_REF] Ilić | Eucl i d preparation: XV. Forecasting cosmological constraints for the Eucl i d and CMB joint analysis[END_REF], angular redshift fluctuations [START_REF] Legrand | High resolution tomography for galaxy spectroscopic surveys with Angular Redshift Fluctuations[END_REF]...

Preparation of Euclid analyses

In comparison with present galaxy surveys, like eBOSS (spectroscopic sample of 1 million galaxies for a 5000 deg 2 are) or DES (photometric sample of 300 million galaxies for a 5000 deg 2 area), Euclid will achieve an unprecedented statistical precision. To be able to take profit of this performance, the systematic uncertainties must be controlled with great precision and accuracy.

Thus, a large part of the work necessary to the successful completion of the Euclid mission (or any cosmological survey) lies in preparing the upcoming analyses, by 1. State of the art in observational cosmology -1.3. Challenges for precision cosmology identifying and evaluating the most important biases present throughout the analysis pipeline. For this, batteries of tests are performed on simulated data, new methods are developed to overcome the identified biases, the performances of the survey are forecasted, etc... The present thesis falls within this context. A significant portion of the uncertainty on the estimation of cosmological parameters can come from instrumental systematics, such as line misidentification for spectroscopic redshifts [START_REF] Addison | The Impact of Line Misidentification on Cosmological Constraints from Euclid and other Spectroscopic Galaxy Surveys[END_REF]. But in this thesis, I will focus on the systematics coming from the modeling of the observables (restricted to 2-points statistics) and their covariance. In the next chapter, I will present how cosmological parameters are statistically extracted from observables and how the different steps of this process can bias the final cosmological constraints.

Cosmological estimations

In the previous chapter, we saw how cosmology evolved from its theoretical foundations, with GR, to the construction of the concordance model, ΛCDM, thanks to a constant interplay between theory and observations. But how does this interplay actually operate ?

Observations have to be compared to theoretical predictions, to asses the validity of a given model. But, it is not trivial to go from the observation of the CMB temperature map or the galaxy field, to the estimated value and errors of the cosmological parameters of a given model. To do so, we adopt the point of view of statistics, by considering our observables and model parameters as random variables. In consequence, we need to define estimators for the statistical quantities related to these random variables. This chapter will be dedicated to the description of the different steps of this process and identify the associated biases, focusing on galaxy clustering and particularly on the 3D power spectrum, P (k).

The first step is to estimate the observable from which we want to extract some cosmological information. In my case, it will be the 2-points statistic of the density field, i.e. the correlation function, in Fourier space. Then, from this estimated observable, one wants to compare it with theory, by varying all the parameters of the model, to find the values which best-fit the data, along with errors associated to this value. To do so we need to resort to statistical inference methods.

To operate these methods, a fundamental statistical object has to be built: the Likelihood. It expresses the probability that a given experiment would get the data it did, given a theory [START_REF] Dodelson | Modern Cosmology[END_REF]. From this sentence, we already understand that two building blocks of the likelihood are the data measurements and the theoretical prediction. The key element, relating these two blocks, is the covariance matrix, describing the errors and correlations in the data. We will see in this chapter that the estimation of covariance for cosmological probes is a complicated task, revealing biases and systematics.

In section 2.1, I will show how to estimate the power spectrum of a distribution of particles in a periodic simulation box, through two methods: the brute-force most accurate one and the more practical one, involving Fast Fourier Transform (FFT). Then in section 2.2, I will present the general principle of statistical inference methods for cosmological constraints, focusing on Monte-Carlo Markov Chains, goodness-offit test and Fisher forecasts. Section 2.3 will be dedicated to the description of the power spectrum covariance matrix, the biases linked to its estimation and the different methods to overcome them.
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Estimation of the power spectrum in a periodic box

From the definition of the power spectrum in Eq. (1.40), we see that to estimate this 2points statistic we need first, to estimate the 3D density field in Fourier space, δ(k), at each mode k. As the Fourier transform of the density field consists in a sum over all the particles/galaxies for each mode, the brute force method, called the direct summation, is not workable in practice given the large amount of points usually present in a data sample or an N-Body simulation.

An alternative is to resort to FFTs, which require the density field to be interpolated on a regular grid. While this approach offers the possibility to estimate the power spectrum for large samples of points in a reasonable amount of time, it comes with a few disadvantages, notably the generation of aliasing.

In this section, I will first show how to estimate the power spectrum with the exact approach of direct summation. Then, I will expose the different systematics present in the FFT estimation of the P (k) and show how to control them. Finally, for completeness, I will discuss a couple of observational related effects on the estimation of the power spectrum, which are not present in the framework of periodic boxes.

Direct summation

Assuming a periodic box of volume V = L 3 , the power spectrum actually receives power only from modes that are multiple of the fundamental frequency of the box k F = 2π/L. The definition of the power spectrum in Eq. (1.40), then rewrites

〈δ(k n )δ * (k m )〉 = δ K nm P (k n ) k 3 F , with |k n | = k n = nk F (2.1)
where δ K is the Kronecker delta and n ∈ N * . As the box is populated with a discrete distribution of N p points with mass m and positions x i , the density ρ(x) and density contrast δ(x) are expressed as the discrete sums:

ρ(x) = m N p i =0 δ D (x -x i ), (2.2) δ(x) = -1 + 1 n N p i =0 δ D (x -x i ), (2.3)
where δ D is the Dirac distribution and n the mean density of points. Therefore, the Fourier transform of δ(x) is given by

δ(k n ) = 1 (2π) 3 1 n N p i =0 e -i k n •x i -δ K n0 .
(2.4)
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As we are interested in modes k n = 0, we have that

〈δ(k n )δ * (k m )〉 = 1 (2π) 6 1 n2 i , j e -i k n •x i e i k m •x j .
(2.5)

This sum can be divided in two terms, one for i = j and one for i = j . The first one expresses the correlation between two different particles and can therefore be identified as the 2-points correlation function. The second one represents the correlation of each point with itself and is called the shot-noise. It is a consequence of the discretisation of the field and is equal to the power spectrum of a completely random discrete distribution of points, i.e. a Poisson distribution. Eq. (2.5) can therefore be rewritten as

〈δ(k n )δ * (k m )〉 = δ K nm k 3 F P (k n ) + 1 (2π) 3 n . (2.6)
Finally an estimator of the 3D power spectrum is

P (k n ) ≡ k 3 F |δ(k n )| 2 - 1 N p , (2.7)
with which we retrieve the true power spectrum through an ensemble average

P (k n ) = 〈 P (k n )〉.
In the following I will drop the n subscript.

In practice, we need to choose the modes k for which we want to estimate the power spectrum. For simplicity, I choose a cubical grid with a step ∆k = k F , a minimum k min = k F in each of the three dimensions and an arbitrary maximum k max = N k ∆k, where N k is the number of modes in one direction. Assuming statistical isotropy we can recover the monopole power spectrum by averaging the 3D power spectrum, over spherical shells on the grid. For shells of width ∆k and centered on |k| = nk F , with n an integer, the estimator writes

P (k) = 1 M k k<|k|<k+∆k P (k), (2.8)
where M k is the number of 3D modes in a shell. Figure 2.1 shows a sketched representation of this process in 2D. We can see that when the shell average is performed on the grid, the mean is slightly shifted with respect to the center, because the modes are not centered in the shells but on the grid nodes. This means that we are not estimating the power spectrum exactly on the multiples of k F . One advantage of the direct summation is that it is possible to compute the power spectrum at any give mode, while FFTs are constrained to be defined on a grid. In principle, the direct summation then allows to choose to estimate the power spectrum on modes exactly centered on the shells. If the 3D power spectrum is indeed isotropic, the monopole contains all the information. However, if this is not the case it can be decomposed on the basis of Legendre 2. Cosmological estimations -2.1. Estimation of the power spectrum in a periodic box polynomials in the following way

P (k) = 2 + 1 2 dµ P (k)L (µ), (2.9)
where µ is the cosine of the angle between a Fourier mode and the line-of-sight. The multipoles of the power spectrum can then be estimated through a sum weighted by anisotropic factors. Note that because δ(x) is a real field, we have δ * (k) = δ(-k), so that the power spectrum is an even function, P (-k) = P (k). The consequence is that, only the even multipoles of the expansion are non vanishing. In standard analyses of spectroscopic surveys (de Mattia et al., 2021, for example), the quadrupole and hexadecapole ( = 2 and = 4) are used to extract the anisotropic information coming from RSD.

While the direct summation has the advantage of being exact and not necessarily constrained by a grid, this estimator can become impracticable. Indeed, the computational time scales as N p × N 3 k in the case of modes distributed on a grid.
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Fast Fourier Transform

The use of FFTs requires the sample of particles to be interpolated on a grid, as the one showed in figure 2.1. While the computational time is reduced to a scaling of N 3 k × log N 3 k , the sampling of the grid comes with few systematics that need to be controlled. To begin with, the sampling theorem states that a signal cannot be properly sampled with a sampling frequency k s , smaller than twice the maximum frequency of the signal. In other words, for a grid step a and sampling frequency k s = 2π/a, the maximum accessible frequency is k max = k s /2 = π/a ≡ k Ny , and is called the Nyquist frequency/mode. Consequently, a first limitation will be the finesse of the grid, which is characterised by the number of grid cells N G = aL, that the simulation box of length L, counts in one direction. The thinner is the grid, the larger is k Ny , but of course, the longer it takes to interpolate the particles. For the FFT estimation of the power spectrum I am using the public code Nbodykit [START_REF] Hand | nbodykit: an open-source, massively parallel toolkit for large-scale structure[END_REF].

Assigning particles on a grid

Once a grid size is chosen, the interpolation is basically a convolution of the density field with a Mass Assignment Scheme (MAS) W (x), centered on the particle position and normalized as d

3 x/(2π) 3 W (x) = 1. The interpolated field writes δ(x) ≡ d 3 x (2π) 3 W (x -x )δ(x ), (2.10) 
In the case of a continuous field. Given the expression of the density field in Eq. ( 2.3) and the normalization of the MAS, the interpolated field on the grid points x G j , writes

δ(x G j ) = 1 (2π) 3 n N p i =0 W (x G j -x i ) -1.
(2.11)

The simplest MAS one can think of is a top-hat function giving a weight of 1 to the closest grid node and 0 to other nodes. Often called Nearest Grid Point (NGP), this weighting function attributes the total weight of a particle to only one grid point and is thus of order n = 1. Higher order MAS attribute the contribution from a particle to n > 1 grid points. Here are the expressions of the first four orders of interpolation usually considered [START_REF] Sefusatti | Accurate Estimators of Correlation Functions in Fourier Space[END_REF], expressed as a function of the distance between a particle and the grid nodes s ≡ x/a, in 1D:

• Nearest Grid Point (NGP):

W (1) (s) =    1 for |s| < 1 2 0 otherwise (2.12)
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• Cloud-In-Cell (CIC):

W (2) (s) =    1 -|s| for |s| < 1 2 0 otherwise
(2.13)

• Triangular Shaped Cloud (TSC):

W (3) (s) =            3 4 -s 2 for |s| < 1 2 1 2 3 2 -|s| 2 for 1 2 ≤ |s| < 3 2 0 otherwise (2.14)
• Piecewise Cubic Spline (TSC):

W (4) (s) =            1 6 4 -6s 2 + 3|s| 3 for 0 ≤ |s| < 1 1 2 3 2 -|s| 2 for 1 ≤ |s| < 2 0 otherwise (2.15)
Note that any order n of interpolation is simply a top-hat function convoluted (n -1) time with itself. Because the Fourier transform of a top-hat is a cardinal sin (sinc(x) = sin(x)/x) and the Fourier transform of a convolution is a product, the n-th interpolation order in Fourier space is

W (n) (k) = sinc(πk/k s ) n .
(2.16)

All the MAS are given in 1D here, but the generalization to 3D is straightforward as they are assumed to be separable in each of the 3 directions, such that

W (x) = W (n) (x/a)W (n) (y/a)W (n) (z/a),
(2.17) and the same applies for Fourier space.

All the considered MAS are shown in figure 2.2, in real and Fourier space. As the order increases, the MAS in real space is broader, thus sharper in Fourier space. Because the particle's assignment acts as a convolution in real space (see Eq. (2.10)), it will affect the power spectrum as a multiplicative filter

P (k) = P (k)W (k).
(2.18)

This effect can simply be compensated for with a division by W (k). Figure 2.3 shows the power spectrum estimated through FFTs, from particles in a periodic box 1 , with 2. Cosmological estimations -2.1. Estimation of the power spectrum in a periodic box 2. Cosmological estimations -2.1. Estimation of the power spectrum in a periodic box the three highest order of interpolation, compensated or not for the effect of the MAS. We can see the sharp cut-off at high k due to the interpolation on the grid, acting as a low-pass filter. When this cut-off is compensated, we retrieve the reference power spectrum which is estimated on a finer grid. However, there is still an excess of power near k Ny , which is due to the aliasing effect that I mentioned in the introduction. I will show in the next paragraph how aliasing is generated and present a method to reduce its effect.

Aliasing and interlacing

To go from the continuous field in Eq. (2.10), to the field sampled on the grid in Eq. (2.11), δ(x) is multiplied by a Dirac comb, defined as

X(x) = n δ D (x -an), (2.19)
where n is a vector of integer (i , j , k) ∈ Z 3 . The sampled field on the grid is then

δ(x G j ) = δ(x)X(x).
(2.20)

One can show that the Fourier transform of a Dirac comb is a Dirac comb, and because it is a periodic function, it can be expressed in terms of Fourier series, as

X(k) = 1 k 3 F n δ K k-nk s . (2.21)
Given that a product in real space is a convolution in Fourier space and taking advantage of the periodicity in real space, the sampled field in Fourier space writes

δG (k) = k 3 F k X(k ) δ(k -k ) = n δ(k -nk s ) = n δ(k -nk s )W (k -nk s ).
(2.22)

For n = (0, 0, 0), we retrieve the interpolated field δ(k) = δ(k)W (k), which can be divided by the MAS to compensate for the cut-off. The other terms are replicas of the field, shifted by multiples of the sampling frequency. These are the aliases which appear in the power spectrum in the following way

P G (k) = n |W (k -nk s )| 2 P (|k -nk s |) + 1 (2π) 3 n . (2.23)
To visualise the effect of aliasing, let's ignore the effect of the MAS for the moment, and apply aliasing to a 1D power spectrum. In figure 2.4, I show a theoretical 1D power spectrum with and without the contributions of its first two aliases (n = 1 and 2). We From Eq. (2.23), we see that W (k) acts as a weight on the alias contributions. In consequence the choice of the MAS is oriented towards the one with the sharpest cut-off at high k. We saw above, from figure 2.2 and 2.3 that the cut-off is greater when the order of interpolation increases. Then, with the PCS, the sampled field is less affected by aliasing than with the CIC, but it increases the computational time.

A technique to partially suppress aliasing, presented in [START_REF] Sefusatti | Accurate Estimators of Correlation Functions in Fourier Space[END_REF], is based on the superposition of two grids, shifted from one another by half the grid step. The expression of the second grid is similar to Eq. (2.20) and writes

δ(x G 2 j ) = δ(x)X(x + a/2),
(2.24)
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where a = (a, a, a). The Fourier transform shift theorem says that, the translation of the grid in real space translates to a phase shift in Fourier space. Hence, Eq. (2.22), for the shifted grid, rewrites

δG 2 (k) = k 3 F k e -i k •a/2 X(k ) δ(k -k ) = k e -i k •a/2 n δ K k -nk s δ(k -k ) = k e -i π(i + j +k) δ(k -nk s ) = k (-1) (i + j +k) δ(k -nk s ).
(2.25)

The interlacing of the two grids in a linear combination yields

δG (k) = 1 2 n 1 + (-1) i + j +k δ(k -nk s )W (k -nk s ).
(2.26)

In this way, the aliases are suppressed for all the odd combinations of (i , j , k), in particular the most important contributions, corresponding to (i + j + k) = 1. This method is very powerful as it suppresses half of the aliases and only requires the interpolation of the particles on a second grid. In addition, the correction is applied at the level of the field, such that any statistics estimated from the interlaced field is almost alias free. For example, [START_REF] Sefusatti | Accurate Estimators of Correlation Functions in Fourier Space[END_REF] discusses the intake of interlacing for the bispectrum. In figure 2.5, I show the effect of interlacing on a power spectrum estimated on a grid with N G = 128, for CIC and PCS. When using the CIC interpolation, we see a small excess of power around k Ny , even when the interlacing is applied. This is because the CIC in Fourier space is not sharp enough. When considering the PCS with the interlacing, the aliasing is negligible, and the power spectrum estimated on a grid with N G = 128, is similar to the reference one, estimated with N G = 512, even close to k Ny .

Additional systematics with survey data

In the case of a periodic box the story would end here. But the real data we get from spectroscopic or photometric surveys are not as simple as a collection of points, for which we know exactly their cartesian position, in a cube with periodic boundary conditions. Here I will briefly discuss two systematics present in the case of realistic survey data.

Survey window function

The situation of a periodic box effectively corresponds to the case where we would be able to observe all the galaxies present in the universe. However, a survey follows an observational strategy and is thus limited to a radial and angular selection window. In 2. Cosmological estimations -2.1. Estimation of the power spectrum in a periodic box real space this simply translates as a multiplication of the density field with a window function W(x), such that the observed density field is

δ obs (x) = δ(x)W(x).
(2.27)

For the estimation of the 2-points correlation function, the effect of the window function can be removed with the help of a catalogue containing a random distribution of point2 inside the window [START_REF] Davis | A Survey of galaxy redshifts. 5. The Two point position and velocity correlations[END_REF][START_REF] Landy | Bias and variance of angular correlation functions[END_REF]. However, this is not sufficient for the estimation of the power spectrum, as the multiplication in real space becomes a convolution in Fourier space, yielding this expression for the observed power spectrum

P obs (k) = d 3 k P (k )|W(k -k )| 2 , (2.28)
where W(k) is the Fourier transform of the window function and |W(k)| 2 its power spectrum. This convolution generates a mixing between the modes close to the mode corresponding to the survey size. Because of this, the main advantage of the Fourier space with respect to real space, which is the independence of each Fourier modes, is partially lost. For a narrow window function in real space, its power spectrum will be broad and the mode mixing will involve modes far from each other. On the contrary for an infinitely large window, its Fourier counter-part will be close to a Dirac delta and thus the mixing will be negligible. Figure 2.6 shows the power spectrum estimated for a survey with a cone geometry, with a radial extension in the redshift range 0.93 < z < 1.1 and a narrow angular aperture of 10 deg 2 . We see that the convolution reduces the power spectrum on large scales and is negligible far from the fundamental frequency of the survey. Because a de-convolution is usually a complex process, to be able to compare the measured, convoluted, power spectrum with a theoretical prediction, the standard approach consists in a convolution of the theory with the window function power spectrum estimated from a random catalogue.
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Alcock-Paczynski effect

The information we get from a cosmological survey is a 3D map of the galaxy distribution, around the observer. Thus we have access to the angular position of galaxies in the sky and their redshift. But the actual radial comoving distance of the galaxies are not measured, they have to be deduced from their redshift, assuming a fiducial cosmology, as shown by Eq. (1.9). The translation from the survey coordinates to cartesian coordinates (needed to estimate the power spectrum) is therefore subject to 2. Cosmological estimations -2.2. Statistical methods for cosmological parameter inference a systematic distortion effect if the chosen fiducial cosmology is far from the true one, and is called the Alcock-Paczynski (AP) effect [START_REF] Alcock | An evolution free test for non-zero cosmological constant[END_REF].

As mentioned in section 1.1.4, this effect can be used to constrain background cosmology if a standard ruler is provided. The AP effect on the 2-points correlation function in real or Fourier space is a standard analysis for spectroscopic galaxy clustering survey [START_REF] Alam | Completed SDSS-IV extended Baryon Oscillation Spectroscopic Survey: Cosmological implications from two decades of spectroscopic surveys at the Apache Point Observatory[END_REF]. It can also be applied to a stack of cosmic voids considered as a standard sphere [START_REF] Lavaux | Precision cosmography with stacked voids[END_REF][START_REF] Mao | Cosmic Voids in the SDSS DR12 BOSS Galaxy Sample: The Alcock-Paczynski Test[END_REF].

From another perspective, the AP effect can be bypassed thanks to a choice of observable which does not require the conversion from redshift to distances. This is the case for the angular correlation function, w(θ), and the angular power spectrum, C ( ). These observables are estimated from the projection on the sphere, of the density field contained in a shell with a certain redshift width. For a single redshift shell, the radial correlation information is lost, but it can be retrieved by cross-correlating different shells. Though the AP effect is avoided, its advantages cannot be exploited with this kind of observables. That is why w(θ) and C analyses are usually performed for photometric survey [START_REF] Abbott | Dark Energy Survey Year 3 Results: Cosmological Constraints from Galaxy Clustering and Weak Lensing[END_REF], for which the precision on the redshift is too low to extract viable information from the AP effect.

Cosmological estimations -2.Statistical methods for cosmological parameter inference

For the work presented in this thesis I used these three statistical inference methods in different contexts. After an introduction to the basic concepts of parameter inference, I will present each of them.

Parameter inference

A random vector x of length n, defined on the set of all possible outcomes Ω, is drawn from a multivariate probability density function (PDF) f (x). We usually write

x ∼ f (x),
(2.29) with a f (x) being normalised such that

Ω d n x f (x) = 1.
(2.30)

The probability, P (x) that a realisation of x lies in the interval [a, b] ∈ Ω, is expressed through its PDF as

P (x) = b a d n x f (x).
(2.31)

Probabilities are defined following the three Kolmogorov axioms 1. A probability is positive, P (x) > 0, ∀x 2. The sum of the probability of all possible realisations of x is Ω P (x) = 1. This is equivalent for continuous probability to Eq. (2.30).

3. For two mutually exclusive events x 1 and x 2 , the probability that one or the other appear is P (x 1 ∪ x 2 ) = P (x 1 ) + P (x 2 ).

A PDF can be completely defined through its moments m n , with

m n = d n x [x ⊗ x ⊗ x ... ⊗ x] f (x). (2.32)
where ⊗ is the tensor product. The moment of order n is then a tensor of rank n. The first moment is the mean vector µ and the second moment is the covariance matrix C. The covariance matrix is actually the second central moment, defined as

C = d n x (x -µ)(x -µ) T f (x).
(2.33)

Let's consider an observable X as a random variable drawn from a PDF which depends on the parameters θ of a model M (θ). This means that we cannot access the true value of X and θ, but we need to deal with estimators, dubbed X and θ. If the estimators we construct are unbiased, we should retrieve the true values by taking the expectation value of the estimated quantity such that 〈 X〉 = X and 〈 θ〉 = θ. The 2. Cosmological estimations -2.2. Statistical methods for cosmological parameter inference previous section was dedicated to the derivation of an unbiased estimator of X, in the case of the power spectrum P (k). For a specific realisation of X, i.e. a data-set x, we can define its probability distribution, given the parameters θ of the model. It is called the likelihood of the data, L(x|M (θ)). This definition implies that the data must be considered as fixed and θ can be varied to maximize the likelihood in order to find the set of parameters θ bf which, in the framework of the chosen model, gives the highest probability of finding x. This process can be used as an estimator of θ, such that θ = θ bf , and is called the maximum likelihood estimator (MLE).

A standard assumption for 2-points statistics, like the power spectrum, is that they are distributed according to a N -multivariate Gausssian distribution, which only depends on its two first moments. The first moment, the mean µ = µ(θ), corresponds to the theoretical prediction of the considered observable. The second moment, the covariance C, is usually assumed to be independent from cosmology, i.e. on θ. The likelihood can then be written as

L(x|M (θ)) = 1 (2π) N /2 |C| 1/2 e -χ 2 /2 , (2.34) with χ 2 ≡ (x -µ(θ) T C -1 (x -µ(θ), (2.35)
which follows a χ 2 distribution, only for Gaussian distributed data, and if µ and C are the correct mean and covariance for the data (see the section 6.4 of [START_REF] Sellentin | Statistical Inference in Cosmology[END_REF] for a nice discussion on this). These assumptions could and should be questioned [START_REF] Carron | On the assumption of Gaussianity for cosmological two-point statistics and parameter dependent covariance matrices[END_REF][START_REF] Sellentin | On the insufficiency of arbitrarily precise covariance matrices: non-Gaussian weak lensing likelihoods[END_REF][START_REF] Upham | Sufficiency of a Gaussian power spectrum likelihood for accurate cosmology from upcoming weak lensing surveys[END_REF], because depending on the their level of validity they could bias the estimation of parameters.

Frequentist and Bayesian statistics

We usually oppose Bayesian to frequentist statistics in their interpretation of probabilities. As the name suggests frequentist statistics consider probabilities as the frequency of an events occurring for a repeated experiment. For an event A, appearing n A times in an experiment repeated N times, the probability of A is defined as

P (A) = lim N →∞ n A N .
(2.36)

The Bayesian point of view can be seen as closer to the everyday life, because a probability is interpreted as a degree of belief that a certain event will occur. This degree of belief is evaluated while taking into account some a priori knowledge about the event.

From these two different definitions of statistics, which both fulfill the Kolmogorov axioms, the interpretation of what model parameters and data are, varies from one school to another. On the frequentist side, data are a random realisation of a repeatable process which is described by a model with fixed parameters. In that sense the data-set 2. Cosmological estimations -2.2. Statistical methods for cosmological parameter inference can vary but not the parameters. On the Bayesian side, it's the opposite, the data-set is the only realisation and cannot be repeated, so parameters have to be described as random variable with an underlying distribution. This distribution then represents the degree of belief that a parameter has a given value. In that case, it is the data which is fixed. I will not go in the details of the comparison between Bayesian and frequentist philosophy, but rather give references which have thoroughly discussed the question such as [START_REF] Abroe | Frequentist estimation of cosmological parameters from the MAXIMA-1 cosmic microwave background anisotropy data[END_REF], [START_REF] Yeche | Prospects for Dark Energy Evolution: a Frequentist Multi-Probe Approach[END_REF], Trotta (2017), and [START_REF] Padilla | Cosmological parameter inference with Bayesian statistics[END_REF].

Because the universe is a realisation of an experiment which cannot be repeated, we can understand that Bayesian inference is the preferred choice for cosmology. But, it doesn't mean that the frequentist point of view is forbidden. Many studies have (re-)analyzed cosmological data in the frequentist approach and compared with the Bayesian results [START_REF] Abroe | Frequentist estimation of cosmological parameters from the MAXIMA-1 cosmic microwave background anisotropy data[END_REF][START_REF] Henrot-Versillé | Agnostic cosmology in the CAMEL framework[END_REF][START_REF] Henrot-Versillé | Improved constraint on the primordial gravitationalwave density using recent cosmological data and its impact on cosmic string models[END_REF][START_REF] Palanque-Delabrouille | Hints, neutrino bounds and WDM constraints from SDSS DR14 Lyman-α and Planck full-survey data[END_REF][START_REF] Yeche | Prospects for Dark Energy Evolution: a Frequentist Multi-Probe Approach[END_REF]. Both approaches usually end in similar results. However, some advantages are granted when choosing one or the other, which result from the two following remarks4 .

• As mentioned above, a primordial aspect of Bayesian inference is the prior knowledge on the targeted parameters. Beside the fact that having an a priori on the result can, in principle, bias the conclusion of an analysis, it is not trivial to choose a well-defined prior distribution. This is one of the main caveat inherent to Bayesian inference [START_REF] Trotta | Bayesian Methods in Cosmology[END_REF], which is not present in the frequentist approach. On the other hand, it can be seen as an advantage, for example to combine results from previous experiments. I will develop on the use and the choice of priors later on.

• A criticism which is commonly made toward frenquentist inference, and particularly relevant for cosmology, is the impossibility to derive marginalised constraints on a specific parameter (or a subset of parameter). Indeed, as the parameters are considered to be fixed in this approach, the integration of the multivariate distribution of parameters over a certain number of these parameters is a non-sense. Thus, the treatment of nuisance parameters such as the matter-galaxy bias is more challenging for frequentist parameter estimation [START_REF] Abroe | Frequentist estimation of cosmological parameters from the MAXIMA-1 cosmic microwave background anisotropy data[END_REF][START_REF] Yeche | Prospects for Dark Energy Evolution: a Frequentist Multi-Probe Approach[END_REF]. More details on marginalisation will be given thereafter.

Bayesian inference

After this discussion on frequentist and Bayesian approaches, let's dive in the problematic of Bayesian inference. The subject is sometimes introduced through the Bayes theorem. Actually, this theorem simply follows from the definition of conditional probabilities. Consider two probable events A and B . The probability that A and B occur is 

P (A ∩ B ) = P (A)P (B |A), ( 2 
P (θ, M |X) = P (X|θ, M )P (θ, M ) P (X) , (2.39)
which is purely Bayesian, in the sense that θ is attributed a probability distribution. P (θ, M |X) is the posterior distribution of parameters given the data. This is the distribution we aim to estimate in practice. We associate its maximum to the best-fit and its spread to the error. P (X|θ, M ) is the likelihood of the data, that I defined in section 2.2.1. P (θ, M ) is the prior, that is the distribution of θ representing our knowledge prior to the analysis of the current data-set X. P (X) is called the Bayesian evidence and acts as a normalisation factor, so that it can be computed as

P (X) = d n θP (X|θ, M )P (θ).
(2.40)

Because the evidence only depends on the data, it does not affect parameter estimation and it is not necessary to compute it for that purpose. However, it can be used to compare different models and find which best fits the data-set [START_REF] Vazquez | A Bayesian study of the primordial power spectrum from a novel closed universe model[END_REF] or even to quantify a tension between several data-sets [START_REF] Lemos | Assessing tension metrics with dark energy survey and Planck data[END_REF]. Once a model is chosen, we can set the form of the likelihood and the priors. Then, we could in principle compute the posterior on a discrete grid in parameter space. However, this would be highly inefficient, especially for high dimensions, as we would sample rather useless regions of low probability density of the posterior. A Monte-Carlo Markov Chain (MCMC) is a smarter technique for this problem.

Monte-Carlo Markov Chains

MCMC is not a Bayesian process per se. It is a method used to sample a parameter space through a Monte-Carlo sampling which follows the evolution of a Markov Chain. However interpreting its outcome through the eyes of Bayesian inference is very efficient.

General principle of a MCMC

One way to estimate P (θ, M |X) is to design a stochastic process which, by a random walk in the parameter space, will directly sample points from a distribution π(θ) equal 2. Cosmological estimations -2.2. Statistical methods for cosmological parameter inference (up to a normalization constant) to the posterior distribution. To this end we have to construct the process in a way that each jump from one point to another will only have the memory of the immediately precedent point, that is what we call a Markov Chain.

In a more formal way, the transition from the point θ i to θ i +1 is completely defined by the transition probability function p(θ i +1 |θ i ). To be sure that the points will be sampled from the posterior, the transition probability has to respect the detailed balance equation defined in the following way: for a distribution π(θ) and a transition probability function p(θ|θ ) such that

p(θ |θ)π(θ) = p(θ|θ )π(θ ), (2.41)
π is a stationary distribution. It means that if θ is drawn from π, then so will θ . It can be shown by integrating both side of Eq. (2.41) over θ

p(θ |θ)π(θ)dθ = π(θ ) p(θ|θ )dθ = π(θ ).
(2.42)

The probability of θ , computed by integrating over all possible values of θ (drawn from π) with the associate transition probability (left hand side of Eq. (2.42)), is equal to π(θ ). Remark that Eq. (2.41) is a particular case of the Bayes formula, which expresses the idea of an equilibrium between probabilities, just like a chemical or a thermodynamic equilibrium. The stationary distribution is also called the equilibrium distribution of the Markov chain. By sampling the distribution π(θ) proportional to P (θ, M |X) we can recover the quantities that are of interest for us like the maximum, the mean, the variance or the covariance of the parameters. The proportionality is sufficient for parameter estimation, and the normalisation can be estimated a posteriori from the resulting chain. Now we just need to find a transition probability function which fulfill our conditions.

The Metropolis-Hasting algorithm

The Metropolis -Hastings algorithm [START_REF] Hastings | Monte Carlo Sampling Methods Using Markov Chains and Their Applications[END_REF][START_REF] Metropolis | The Monte Carlo Method[END_REF] provides a simple set of steps that ensures a well-defined transition probability between the points of the chain. First we have to choose a proposal distribution q(θ |θ) which will propose a new candidate set of parameters θ to the chain, knowing the current one. It could be any distribution we want, but some choices are better than others (as will be discussed after). After initializing the chain with a random set θ 0 , we follow these steps for every iteration i :

• Generate a candidate θ from q(θ |θ i ) • Compute the acceptance ratio α(θ , θ i ) = π(θ )q(θ i |θ ) π(θ i )q(θ |θ i ) • If α ≥ 1, accept the candidate : θ = θ i +1
Else, accept with a probability α :

2. Cosmological estimations -2.2. Statistical methods for cosmological parameter inference -Draw a random uniform number between 0 and 1 : u ∼ U(0,1)

-If α ≥ u, accept the candidate : θ i +1 = θ Else, reject the candidate : θ i +1 = θ i
To see why this prescription will lead to a transition probability that respects the detailed balance equation, let's write the acceptance ratio as a well-defined probability

α(θ , θ) = min 1, π(θ )q(θ|θ ) π(θ)q(θ |θ) , (2.43)
and say that we accept a candidate with the probability α. The transition probability function is then the probability to propose a value and the probability to accept it. It can be expressed as p(θ |θ) = q(θ |θ)α(θ , θ).

(2.44)

Then we multiply Eq .(2.44) by the denominator of the second argument of the min function, yielding

π(θ)q(θ |θ)α(θ , θ) = min π(θ)q(θ |θ), π(θ )q(θ|θ ) .
(2.45)

We do the same thing while exchanging θ and θ. As exchanging the two arguments of the min function does not change anything, we have that

π(θ)q(θ |θ)α(θ , θ) = π(θ )q(θ|θ )α(θ, θ ).
(2.46)

Finally, using Eq. (2.44) we get the detailed balance equation Eq. (2.41).

Note that in the case of a uniform prior, we have π(θ) ∝ P (θ, M |X) ∝ P (X |θ, M ), so that α directly depends on the ratio of the likelihoods. Moreover, we usually choose a symmetric proposal distribution (q(θ |θ) = q(θ|θ )), like a normal or a uniform distribution for example. In this way, the expression of the acceptance ratio is simplified as follows

α(θ , θ) = π(θ )q(θ|θ ) π(θ)q(θ |θ) = P (X |θ , M ) P (X |θ, M ) . (2.47)
This expresses the fact that by preferentially choosing high acceptance ratios, we are maximizing the likelihood and thus sampling the regions of interest in parameter space. In the end, we can interpret the density of points as the probability density and compute a histogram to have an estimate of the posterior.

As MCMC has become the standard technique for cosmological parameter estimation, many softwares have nice implementations of this method, with embedded versions of Boltzmann codes like CLASS and CAMB. Among them, the two mostly used ones are CosmoMC [START_REF] Lewis | Cosmological parameters from CMB and other data: A Monte Carlo approach[END_REF], based on CAMB) and MontePython [START_REF] Audren | Conservative Constraints on Early Cosmology: an illustration of the Monte Python cosmological parameter inference code[END_REF] and [START_REF] Brinckmann | MontePython 3: boosted MCMC sampler and other features[END_REF], based on CLASS) and I chose to work with the latter for my work. Despite the fact that MontePython proposes different algorithm, like nested-sampling [START_REF] Skilling | Nested sampling for general Bayesian computation[END_REF] for example, I sticked to the standard Metropolis-Hastings (see Trotta (2017) for a description of several existing algorithm).

Cosmological estimations -2.Statistical methods for cosmological parameter inference

Chain convergence

A fundamental issue with MCMC is that of the chain's convergence. The recipe described above should, in principle, lead to convergence, but it is hard to know a priori the necessary number of steps needed to converge. A certain number of rules, indications and tests can help in achieving optimal convergence. I will outline some of them in this paragraph (for more details see [START_REF] Brinckmann | MontePython 3: boosted MCMC sampler and other features[END_REF][START_REF] Dunkley | Fast and reliable mcmc for cosmological parameter estimation[END_REF][START_REF] Gelman | Efficient Metropolis jumping rules[END_REF][START_REF] Henrot-Versillé | Agnostic cosmology in the CAMEL framework[END_REF][START_REF] Padilla | Cosmological parameter inference with Bayesian statistics[END_REF][START_REF] Trotta | Bayesian Methods in Cosmology[END_REF].

A first issue to deal with, is the size of the jumps made in parameter space. If the jump size ∆θ is too small, the chain can be trapped in a local maximum. Conversely, if it is too large, the new proposed parameters will hardly be accepted because of a too small acceptance ratio. We see that the proposal distribution needs to be wisely chosen and tuned so that the chain runs in ideal conditions. For its simplicity and its symmetry, a Gaussian distribution is usually preferred, centered on the new proposition θ and with covariance C. In order to be well adjusted to the targeted posterior, the covariance matrix of the proposal should be close to the covariance of θ. In addition, a general rule of thumb indicates that the acceptance rate of the chain (the number of steps over the number of accepted propositions) should be around ∼ 0.25 for the number of parameters usually varied in cosmological analyses [START_REF] Dunkley | Fast and reliable mcmc for cosmological parameter estimation[END_REF][START_REF] Gelman | Efficient Metropolis jumping rules[END_REF]. To that end, C is multiplied by a jumping parameter c = j 2 /N , where j is the jumping factor, optimally fixed to 2.4, and N is the number of varied parameters.

A question naturally comes in mind from the above recipe: How can we take C to be the covariance of parameters, when this is the quantity we want to ultimately estimate ? The method which is generally followed consists in running a chain with a first approximated guess for the covariance and then take the posterior covariance of the resulting chain as the proposal covariance for a new chain. Because it can take weeks to run an MCMC, improvements to the base Metropolis-Hasting algorithm can be made, in order to periodically update the proposal covariance matrix during a run. This feature is implemented in MontePython, in addition to an update of the jumping factor j , preventing the necessity to run a preparation chain for a good guess of C.

In addition to the starting covariance matrix, a first set of parameter θ 0 must be chosen to initialise the chain. From θ 0 to the region of high probability density, the chain goes through a phase of burn-in. This phase should be removed from the output as it is not representative of the posterior. In MontePython, the criteria is to remove all points for which χ 2 < χ 2 min + 6. If θ 0 is close to the maximum of the posterior, the burn-in phase may not exist.

A fundamental property of MCMC, which is very useful in practice, is its ergodicity, allowing to equivalently perform time and ensemble integrals. In this way, to have a large sample, it is possible to run several chains in parallel. Nevertheless, we need to check that the chains are indeed ergodic. For that purpose the Gelman-Rubin test [START_REF] Gelman | Inference from Iterative Simulation Using Multiple Sequences[END_REF] is used. It consists in estimating the R factor, representing the ratio between the internal variance of a chain and the cross variance between the 2. Cosmological estimations -2.2. Statistical methods for cosmological parameter inference different chains. If the two are similar, ergodicity is reached, and R ∼ 1. For the MCMC I ran, I chose to validate the chains for R -1 < 0.01. From the above discussion, MCMC seems to be a kind of a cooking recipe for estimating cosmological parameters. Although, it is based on solid statistical principles, the convergence of MCMC must be handled with care. Like a cooking recipe, it takes a few trials before having an optimal sampling set-up.

Marginalisation

Now that we have estimated the full posterior P (θ, M |X), we are interested in the marginal posterior distribution of a specific parameter or a subspace. The marginalisation over m parameters writes

P (θ 1 , ..., θ i , M |X) = d m θP (θ i +1 ...θ n , M |X).
(2.48)

One of the advantages of MCMC is that this integral is implicitly performed, when computing the histograms from the chain, for one or more parameters. It acts as a projection to the parameter subspace.

Nonetheless, one has to be cautious when marginalising over a non-Gaussian distribution. Because of a non-symmetric shape of the posterior, the projection can lead to a different 1D distribution of the parameter, compared to the one obtained with a frequentist based technique, like a profile-likelihood6 . This is called a volume effect [START_REF] Henrot-Versillé | Agnostic cosmology in the CAMEL framework[END_REF] and is represented in figure 2.7. It is one of the main source of discrepancy between Bayesian and frequentist based parameter estimation. See [START_REF] Couchot | Relieving tensions related to the lensing of the cosmic microwave background temperature power spectra[END_REF] for an example of such disagreement, with the reionisation parameter τ, in a re-analysis of Planck data with profile-likelihoods.

Choice of priors

Looking back at Eq. (2.39), it is obvious that priors take an important role in Bayesian inference in general and in MCMC. They need to be treated with great care as they can largely influence the result of parameter estimation. To avoid this issue, we could think of a choice of prior which is the most uninformative one, like a uniform distribution with a very large range. However, the prior can be chosen to be uniform in a certain basis of parameter θ, but through a non-linear transformation to obtain a new basis θ, the prior will not be uniform anymore.

Another effect showing that even flat priors are not neutral, is the concentration of measure phenomenon [START_REF] Trotta | Bayesian Methods in Cosmology[END_REF]. For a N -dimensional parameter space, a flat prior in all direction correspond to a N -dimensional hypercube. However, one can show that with such priors the samples will actually concentrate on a N -dimensional 2. Cosmological estimations -2.2. Statistical methods for cosmological parameter inference hypersphere of mean radius 〈r 〉 = N /3. As stated in [START_REF] Trotta | Bayesian Methods in Cosmology[END_REF], a flat prior is far from harmless.

We see that the choice of priors is then a sensible point in parameter estimation. Generally, two kinds of priors are considered :

• Physical prior: It means a wide flat prior, which is not based on a previous experiment, but on physical/model motivations only. For example if we had to estimate parameters in a flat-ΛCDM model, we would have to impose 0 < Ω m < 1.

Or to estimate the neutrino mass, we need M ν > 0.

• Prior from previous experiment: This is at the base of Bayesian inference. By taking the posterior of a past experiment as the prior for the current one, we update the knowledge on the model. It can also be seen as a way of fixing parameters that have already been estimated by other experiments or probes. For example it is common to see a tight Gaussian prior on ω b coming from BBN 2. Cosmological estimations -2.2. Statistical methods for cosmological parameter inference in galaxy clustering analyses (Ivanov et al., 2020b).

It is primordial to test the influence of the chosen priors on the result of the parameter estimation, by trying different distributions and ranges.

Goodness-of-fit test

To test whether the considered model with the best-fit value of θ = θ bf is a good fit to the data X, we use the scalar quantity χ 2 , as defined in Eq. (2.35). The maximum of the likelihood therefore corresponds to the minimum of the χ 2 .

To perform the test we first need to compute

χ2 = X -µ(θ bf ) T Ĉ-1 X -µ(θ bf ) , (2.49)
which should follow a χ 2 distribution with n dof = N b -N p degrees of freedom, with N b the number of data points and N p the number of parameters. Note the presence of a "ˆ" on the χ 2 and the covariance matrix, which denotes that these are estimators. The quantity estimated in Eq. (2.49) is drawn from a true χ 2 distribution if Ĉ is a good estimate of the true covariance matrix7 (Sellentin and Heavens, 2016a). I will come back to this in section 3.2.2. As a rule of thumb, we can asses whether we find a "good" χ 2 if χ2 ∼ n dof . This is because the χ 2 distribution peaks around n dof . But because of random noise it can be slightly shifted. So we need a more quantitative test to validate the fit. We can compare χ2 to a χ 2 with a certain probability 1 -α to be drawn, defined as

1 -α = χ 2 1-α (n dof ) 0 dχ 2 χ 2 (n dof ).
(2.50) α, called the significance of the test, is then the probability to draw a χ2 larger than χ 2 1-α . So, χ2 > χ 2 1-α means that if the model is a good hypothesis, the data we have are a very unlikely realisation due to a large random noise, it is then reasonable to reject the model. If this is not the case, we cannot reject the model. The choice of α is arbitrary, but if it is too low, χ 2 1-α is very large and the test never rejects any model, so it is generally set to 0.05 or 0.01. Figure 2.8 shows an illustration of that test.

Fisher forecasts

In the preparation of an experiment, it can be interesting to have a quick method to forecast its constraining power. In this way, we can test different experimental settings for different theoretical models to optimise the result of the experiment. A widely used technique for cosmological survey is based on the Fisher information matrix [START_REF] Tegmark | Karhunen-Loeve eigenvalue problems in cosmology: How should we tackle large data sets?[END_REF]. In a Bayesian approach, the Fisher matrix is defined as follows8 

F αβ ≡ - ∂ 2 L ∂θ α ∂θ β θ bf .
(2.51)

The Fisher matrix describes the shape of the likelihood around its maximum, thus an estimation of the covariance of parameters around their best-fit value. For a Gaussian likelihood with mean µ and covariance C, Eq. (2.51) yields

F αβ = 1 2 Tr ∂C ∂θ α C -1 ∂C ∂θ β + i , j ∂µ i ∂θ α C -1 ∂µ j ∂θ β .
(2.52)

As we generally neglect the dependence of the covariance with respect to model parameters, the first term vanishes. Following the Cramer-Rao inequality

F -1 αβ ≤ Φ αβ , (2.53)
the inverse of the Fisher matrix gives the most optimistic estimation of the parameter covariance matrix Φ. In the assumption of a Gaussian posterior, we have then derived the distribution of parameters around its maximum.

In practice, we identify µ as the mock data vector that we will get from our survey. It can be a theoretical prediction or estimated from simulations. The Fisher matrix can then be easily computed from the derivatives of the data vector around a fiducial 2. Cosmological estimations -2.3. The covariance matrix cosmology. They are calculated by varying the input parameters for the theoretical prediction (coming from CLASS or CAMB for example) or with a set of simulations with different cosmologies [START_REF] Bayer | Detecting neutrino mass by combining matter clustering, halos, and voids[END_REF]. Because this process is quite fast (of the order of an hour or less depending on the setting), it is possible to test a variety of cosmological model, covariance modeling and estimation, theoretical and instrumental systematics and more...

Once the Fisher matrix is estimated, the forecasted marginalised error on a parameter θ α is obtained as σα = (F -1 ) αα .

(2.54) Also, by removing specific rows and columns of F, we can effectively fix some parameters and thus get the unmarginalised constraint on θ α

σU α = 1/F αα .
(2.55)

Despite its simplicity and rapidity, one of the main limitation of the Fisher formalism lies in the assumption of a Gaussian distribution of the parameters. Depending on the choice of observables, some cosmological or nuisance parameters can have strong non-Gaussian features in their distribution, so that the estimation of errors and correlations through the Fisher matrix is biased [START_REF] Wolz | On the Validity of Cosmological Fisher Matrix Forecasts[END_REF]. However, for a forecast it is still interesting to have a rough idea of how the constraints evolve with changes in the experimental and analysis set-up, in order to optimize it, without having to run long MCMC. For example, in Euclid Collaboration: [START_REF] Blanchard | Euclid preparation. VII. Forecast validation for Euclid cosmological probes[END_REF], the Fisher matrix formalism was used to forecast the performance of Euclid in the case of various models and data combination.

The covariance matrix

A fundamental piece of the Likelihood, necessary for any of the aforementioned statistical method, is the covariance matrix C, defined for an observable O, as

C i j ≡ 〈O i O j 〉 -〈O i 〉〈O j 〉.
(2.56) It represents the errors and correlations in the data, that are transmitted to the parameters we aim to estimate, therefore it has a great influence in the process of parameter estimation.

When experiments can be repeated many times, as it is the case in Particle Physics for example, the covariance can be estimated directly from the large number of realisations of the data. But, unfortunately for cosmologists, the universe is not a reproducible experiment. Hence, the covariance matrix of cosmological observables must be predicted. It will inevitably depend on the model in which the prediction is made.

The theoretical prediction of the covariance matrix is not an easy task as it generally involves high-order statistics to be computed. An alternative is to resort to numerical 2. Cosmological estimations -2.3. The covariance matrix simulations and to generate a large number of them. This approach, for example, facilitates the evaluation of the correlation between multiple probes. But beside the fact that such simulations have to be well designed to reproduce the observed data, we also need a large number of them without which the estimation of the covariance is biased.

From this brief discussion, it is obvious that the problem of covariance for parameter estimation is central in cosmology. This can be seen by the invested effort on the topic, from cosmological survey collaborations [START_REF] Friedrich | Dark Energy Survey Year 3 Results: Covariance Modelling and its Impact on Parameter Estimation and Quality of Fit[END_REF][START_REF] Fumagalli | Euclid: Effect of sample covariance on the number counts of galaxy clusters[END_REF][START_REF] Joachimi | KiDS-1000 methodology: Modelling and inference for joint weak gravitational lensing and spectroscopic galaxy clustering analysis[END_REF][START_REF] Percival | The Clustering of Galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: Including covariance matrix errors[END_REF]. It is also a very rich and interesting field, where a lot of theoretical [START_REF] Lacasa | Covariance of the galaxy angular power spectrum with the halo model[END_REF][START_REF] Sugiyama | Perturbation theory approach to predict the covariance matrices of the galaxy power spectrum and bispectrum in redshift space[END_REF]Wadekar and Scoccimarro, 2020) and numerical [START_REF] Agrawal | Generating Log-normal Mock Catalog of Galaxies in Redshift Space[END_REF][START_REF] Avila | HALO-GEN: A tool for fast generation of mock halo catalogues[END_REF][START_REF] Baratta | High-precision Monte-Carlo modelling of galaxy distribution[END_REF][START_REF] Monaco | Pinocchio: pinpointing orbit-crossing collapsed hierarchical objects in a linear density field[END_REF] innovations have emerged recently.

In this section, I will focus on the covariance of the power spectrum and on the bias present in its estimation through simulations.

Covariance of the power spectrum

Let's consider the estimator of the shell-averaged power spectrum derived in section 2.1.1 (see Eq. (2.8)), that I recast here in the continuous limit9 

P (k i ) = k i d 3 k M k i |δ(k)| 2 , (2.57)
where k i denotes the i -th spherical bin of width ∆k = k F . Each of these spherical bins of volume V s (k i ) = 4πk 2 i ∆k contains a number of independent Fourier modes

M k i = V s (k i )/k 3 F /2,
where k 3 F corresponds to the fundamental volume of a mode in Fourier space. The division by 2 in M k i comes from the fact that δ(x) is a real field (not complex, c.f. Eq. (1.39)).

From the definition of the covariance matrix in Eq. (2.56), [START_REF] Scoccimarro | Power spectrum correlations induced by nonlinear clustering[END_REF] expresse the covariance of the power spectrum in the following way

C (k i , k j ) = P 2 (k i ) M k i δ K i j + k 3 F T (k i , k j ) = C G (k i ) +C NG (k i , k j ), (2.58)
where T (k i , k j ) is the bin-averaged trispectrum and writes

T (k i , k j ) = k i d 3 k 1 V s (k i ) k j d 3 k 2 V s (k j ) T (k 1 , -k 1 , k 2 , -k 2 ). (2.59)
Because of the presence of this averaged fourth-order statistics in the second term, we can split Eq. (2.58) into a Gaussian (G) and a non-Gaussian (NG) term. C G is only present on the diagonal of the matrix, expressing the fact that, in the linear regime (k 0.1 h/Mpc, at z = 0), when the density field is still Gaussian, the different Fourier 2. Cosmological estimations -2.3. The covariance matrix modes are evolving independently. However, at larger k, the non-linear evolution of the density field mixes the different Fourier modes, giving rise to a non-diagonal term in the covariance, taking the form of C NG . In this regime the power spectrum scales as k -1 , so that C G ∝ k -4 quickly drops down. Though the trispectrum is more difficult to estimate, [START_REF] Scoccimarro | Power spectrum correlations induced by nonlinear clustering[END_REF] approximate it through Perturbation Theory (PT) and report that C NG starts to dominate the diagonal for k 0.2 h/Mpc, in a ΛCDM model, at z = 0 and for a box of length L = 1 Gpc/h10 . By factorising (2.58) such that

C (k i , k j ) = k 3 F 2P 2 (k i ) V s (k i ) + T (k i , k j ) , (2.60)
we can understand the dependence of the covariance with the volume of the survey, or the box of volume V = (2π) 3 /k 3 F in our case, and the volume of the shells V s (k i ). Both terms are inversely proportional to V , confirming the natural intuition that the covariance can be reduced by increasing the observed volume. However, only the Gaussian term depends on V s (k i ) and can be reduced by increasing the bin size, and thus the number of modes averaged in each shell. The non-Gaussian term is then independent on the binning and strictly originates from non-linear clustering.

Note that because I considered the power spectrum as estimated in a periodic box, the estimator in Eq. (2.57) is lacking the convolution with the survey window function (c.f Eq. (2.28)). The expression of the covariance in Eq. (2.58) is thus lacking an additional non-Gaussian term representing the non-linear correlation of modes inside the survey, with modes on wavelength larger than the survey size11 . This term is usually refereed to as Super Sample Covariance or SSC. I will not consider it for now, by restricting my analysis to the frame of periodic simulation boxes. But it will receive a specific attention in chapter 4.

Though approximating the density field as Gaussian and neglecting C NG is viable in the linear regime, non-linear scales carry interesting information about structure formation [START_REF] Lange | Five-percent measurements of the growth rate from simulation-based modelling of redshift-space clustering in BOSS LOWZ[END_REF][START_REF] Salcedo | Exploiting Non-linear Scales in Galaxy-Galaxy Lensing and Galaxy Clustering: A Forecast for the Dark Energy Survey[END_REF]. But it cannot be properly exploited in the Gaussian approximation. One of the main challenge of galaxy clustering analyses is then the estimation of the trispectrum term.

Estimation of the covariance with mock simulations

On the purely analytical side, the task of estimating the trispectrum contribution is highly complex and requires the use of PT and the halo-model to account for galaxy bias, RSD, shot-noise, survey footprint and so on [START_REF] Lacasa | Covariance of the galaxy angular power spectrum with the halo model[END_REF][START_REF] Sugiyama | Perturbation theory approach to predict the covariance matrices of the galaxy power spectrum and bispectrum in redshift space[END_REF]Wadekar and Scoccimarro, 2020). But this modeling induces additional free parameters that need to be set. In addition, while PT can give good predictions of 2. Cosmological estimations -2.3. The covariance matrix the non-Gaussian covariance on mildly non-linear scales (k ∼ 0.3 h/Mpc), it breaks down in the fully non-linear regime (k 0.6 h/Mpc), where non-linearities cannot be treated perturbatively anymore. Numerical simulations, on the other hand, offer the possibility to explore the covariance in this regime [START_REF] Blot | Matter power spectrum covariance matrix from the DEUS-PUR ΛCDM simulations: mass resolution and non-Gaussian errors[END_REF], provided that a sufficient number of them is available. Indeed, as we shall see in this section, a low sample size induces biases in the estimated covariance and more specifically in its inverse. It is important to stress that both the analytical and numerical approaches have their advantages and having the two allows for comparison and calibration, when advancement is made in the former or the latter approach.

Once all the needed ingredients (Halo finder, Halo Occupation Distribution, RSD, survey footprint...) are introduced in the simulations, one can simply estimate the sampled covariance (i.e. estimated from a sample of simulations), with the standard estimator12 

Ĉi j = 1 1 -N m N m n P (n) (k i ) -P (k i ) P (n) (k j ) -P (k j ) ,
(2.61)

where P (n) (k i ) is the n-th realisation of the power spectrum, among a total of N m . This is an unbiased estimator of the covariance, in the case where the mean P (k i ) is not known a priori13 and is estimated from the same simulations with

P (k i ) = 1 N m N m n P (n) (k i ).
(2.62)

Assuming Gaussian distributed data, one can show that the variance of this covariance estimator is

V [ Ĉi j ] = Ĉ 2 i j + Ĉii Ĉ j j N m -1 .
(2.63)

Bias in the precision matrix

The statistical quantity involved in parameter estimation is actually the precision matrix Ψ ≡ C -1 . An obvious estimator for Ψ is then the inverse of the estimated covariance matrix, Ψ = Ĉ-1 . However the inverse of an unbiased estimator is not guaranteed to be unbiased. To check this, we need to know how the covariance matrix is distributed. For Gaussian distributed data, one can show that the covariance matrix follows a Wishart distribution, so that its inverse follows an inverse Wishart distribution [START_REF] Wishart | The Generalised Product Moment Distribution in Samples from a Normal Multivariate Population[END_REF]. It is then possible to compute the expectation value of the precision matrix estimator, which yields [START_REF] Anderson | An Introduction to Multivariate Statistical Analysis[END_REF])

〈 Ψ〉 = N m -1 N m -N b -2 Ψ, (2.64)
where N b is the number of data points (or k bins here). It follows that an unbiased estimator of the precision matrix writes

ΨU = N m -N b -2 N m -1 Ĉ-1 .
(2.65)

As it was first introduced in a cosmological context by [START_REF] Hartlap | Why your model parameter confidences might be too optimistic: Unbiased estimation of the inverse covariance matrix[END_REF], this correcting factor is usually called the Hartlap factor. We see from Eq. (2.64) that the bias constrains the precision matrix to be estimated with at least N m > N b + 2 and that, even with this condition satisfied, a low N m with respect to N b leads to a large bias. Because it is larger than 1, it means that due to a low sample size, the precision matrix is overestimated, i.e. the covariance is effectively underestimated. The main consequence for parameter inference is an underestimation of parameter errors. In addition, Sellentin and Heavens (2016a) showed that the χ2 (see Eq. (2.49)) estimated using the precision matrices from Ψ and ΨU follow distributions which are respectively more flared and more peaked than a true χ 2 distribution. I will show these two effects in a realistic parameter estimation setting in section 3.2.2.

Noise in the precision matrix

Even with an unbiased precision matrix estimator, a small number of realizations leads to a noisy estimate of Ψ. Consider that the estimated precision matrix Ψ can be decomposed in its true value Ψ and the error (or noise) on the truth ∆Ψ, such as Ψ = Ψ + ∆Ψ. Because it originates from a poor sampling of the precision matrix, we call it sampling noise. For Gaussian distributed data, the covariance of Ψ can be expressed as [START_REF] Taylor | Putting the Precision in Precision Cosmology: How accurate should your data covariance matrix be?[END_REF])

〈∆Ψ i j ∆Ψ kl 〉 = AΨ i j Ψ kl + B (Ψ i k Ψ j l + Ψ i l Ψ j k ),
(2.66)

with

A = 2 (N m -N b -1)(N m -N b -4) , B = N m -N b -2 (N m -N b -1)(N m -N b -4) .
(2.67)

In addition to the noise present in the data vector, ∆Ψ also propagates to the parameter posteriors. Using equation (2.66) in the Fisher formalism, several authors have studied how a noisy precision matrix influences the estimation of cosmological parameters, in the case of Gaussian posteriors [START_REF] Dodelson | The Effect of Covariance Estimator Error on Cosmological Parameter Constraints[END_REF][START_REF] Percival | The Clustering of Galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: Including covariance matrix errors[END_REF][START_REF] Taylor | Estimating Cosmological Parameter Covariance[END_REF][START_REF] Taylor | Putting the Precision in Precision Cosmology: How accurate should your data covariance matrix be?[END_REF]. They found that it adds random noise both to the shape and the position of the posterior's maximum. In particular, [START_REF] Dodelson | The Effect of Covariance Estimator Error on Cosmological Parameter Constraints[END_REF] showed that θ bf suffers from a stochastic shift depending on N m , N b and N p , the number of varied parameters. The variance of this shift on a parameter θ α is proportional to the true parameter variance and writes

σ 2 (θ bf α ) = B (N b -N p )Φ αα , (2.68)
where Φ is the true covariance matrix of the parameters. We see that the number of parameters is thus restricted to N p < N b and that Eq. (3.13) diverges for N m ≤ N b + 4.

To account for this additional variance, [START_REF] Percival | The Clustering of Galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: Including covariance matrix errors[END_REF] proposed a corrective factor

m 1 = 1 + B (N b -N p ) 1 + A + B (N p + 1) , (2.69)
which should be directly multiplied to Φ when quoting error-bars. This factor accounts for two effects induced by a poor estimation of the precision matrix. The numerator corresponds to the inflation of the errors by the addition of the variance of Eq. (3.13), while the denominator accounts for a bias in the estimation of the posterior's width.

In a critical case where A and B are non negligible (i.e. N m ∼ N b ), the first effect dominates for N b N p , while the second dominates for N b ∼ N p . In most cases, for cosmological analyses, the number of varied parameter is smaller than the number of data points. It means that the main effect coming from sampling noise is the stochastic shift of the posterior's maximum. Although we want to minimize these effects as much as possible, presenting the estimated parameter covariance Φ, without multiplying by m 1 would not be representative of the actual uncertainty on θ bf .

However, as reported in section 4.1 of Wadekar et al. (2020), blindly inflating parameter's error-bars by m 1 has caveats that should be kept in mind when quoting error-bars. First, the resulting corrected covariance matrix is unbiased on average but not for constraints obtained from a single realization of the precision matrix. Second, if one is interested not only in the confidence regions of the estimated parameters but also in its best-fit values, m 1 does not correct for the stochastic dispersion in equation (3.13) as it cannot be predicted. Indeed, it only inflates the error-bars so that, on average, the best-fit lies in it. A last caveat to keep in mind is that the predictions for these additional variance and bias, are only derived for Gaussian distributed parameters.

To have an idea of the impact that a poor estimation of the precision matrix has on parameter estimation, I show in figure 2.9 the evolution of the Hartlap and m 1 corrective factor, with respect to N b and for different N m . I also show the maximum mode k max , corresponding to N b , in the case of a k-cut power spectrum analysis. While the Hartlap factor is always smaller than one (i.e. the bias is always larger than one), we see that m 1 changes sign for N b > 10, confirming what was discussed above: for large N b with respect to N p , m 1 is dominated by the best-fit stochastic shift. For the scales usually probed in that kind of analysis (k 0.25 h/Mpc), and for N m < 100, both Hartlap and m 1 effects are non-negligible. For example, to estimate N p = 4 parameters by fitting N b = 30 k band-powers, with a covariance matrix estimated from N m = 45 mocks, the amplitude of the precision matrix needs to be reduced by ∼ 70% and the estimated errors on the parameters should be enlarged by ∼ 50%. For N m = 500 and more, both effects are largely reduced.

While generating 500 simulations can already be challenging, cosmological analyses of present surveys already involve a number of bins and fitted parameters much larger than what was presented here. Indeed, the combination of multiple probes largely increases the size of the data vector and the set of nuisance parameters to vary. As an example, the full DES Year-3 3x2-points analysis [START_REF] Abbott | Dark Energy Survey Year 3 Results: Cosmological Constraints from Galaxy Clustering and Weak Lensing[END_REF] had 531 2. Cosmological estimations -2.3. The covariance matrix data points to fit, for 29 parameters (7 cosmological and 22 nuisance) to vary. The needed number of simulations, for a reasonably low sampling noise effect can thus quickly grow for the upcoming surveys' larger data-sets. In Sellentin and Heavens (2016b) 2. Cosmological estimations -2.3. The covariance matrix the needed number of simulations to keep the additional sampling noise error down to 1%, is N m = 2900, when varying all ΛCDM parameters and 10 nuisance parameters, i.e N p = 16.

Methods for an optimal estimation of the precision matrix

From the discussion above, it is evident that only resorting to CPU-time consuming N-Body simulations, to estimate our covariance matrices will lead to a bottleneck. In addition, standard cosmological analyses has so far neglected the dependence of the covariance matrix with the model. With the targeted precision of future cosmological surveys, this effect could potentially become non-negligible. This means that large number of simulations should be generated for a variety of models to be tested, which further reduces the bottleneck.

In the recent years, a vast amount of literature has been devoted to develop alternative approaches to the problem of covariance estimation. Here is a sampled list of the most considered approaches.

• Internal estimators. To bypass the task of generating large sets of simulations, one can estimate the covariance directly from the data, thanks to resampling techniques such as jack-knife or bootstrap [START_REF] Escoffier | Jackknife resampling technique on mocks: an alternative method for covariance matrix estimation[END_REF][START_REF] Friedrich | Performance of internal Covariance Estimators for Cosmic Shear Correlation Functions[END_REF]. The two major advantages of this approach is that the covariance is independent from the model and it automatically accounts for all observational systematics inherent to the data. However it has been shown that internal estimators generally overpredict the covariance when compared to external ones [START_REF] Friedrich | Performance of internal Covariance Estimators for Cosmic Shear Correlation Functions[END_REF][START_REF] Norberg | Statistical Analysis of Galaxy Surveys -I. Robust error estimation for 2-point clustering statistics[END_REF].

• Data compression. One way to consider the problem is to take it the other way around. Sampling noise induced effects depend on the ratio N m /N b (and also on N p ), so if increasing N m is difficult, then we can consider decreasing N b . Through smart linear or non-linear projections of the data-set to subspaces, the length of the data vector can be greatly reduced [START_REF] Heavens | Massive data compression for parameter-dependent covariance matrices[END_REF][START_REF] Tegmark | Karhunen-Loeve eigenvalue problems in cosmology: How should we tackle large data sets?[END_REF]. For example, Philcox et al. ( 2021) recently proposed a method to reduce the dimensionality of a cosmological data-set and showed that they could compress a 96-bins data-vector to only 12 coefficients to fit, thus lowering the needed number of simulations down to ∼ 100 mocks.

• Alternative covariance estimators. Another possibility is to tackle the problem at the roots, i.e. the estimator. Different alternatives have been proposed to estimate the covariance (hence the precision) matrix with fewer mocks. These methods include tapering estimators [START_REF] Paz | Improving the precision matrix for precision cosmology[END_REF], which downweights the elements with a low signal-to-noise ratio, and linear [START_REF] Pope | Shrinkage Estimation of the Power Spectrum Covariance Matrix[END_REF] or non-linear [START_REF] Joachimi | Non-linear shrinkage estimation of large-scale structure covariance[END_REF] shrinkage estimators, which damp the amplitude of extreme eigenvalues. Other estimators have been derived

2. Cosmological estimations -2.3. The covariance matrix through expansions of the precision matrix [START_REF] Friedrich | Precision matrix expansion -efficient use of numerical simulations in estimating errors on cosmological parameters[END_REF] and allow to incorporate theoretical knowledge about the targeted covariance matrix.

• Fast approximate mock generation. Finally a pragmatic approach is to develop numerical or semi-analytical methods to generate a large number of mocks, approaching the accuracy of N-body simulations, in a short time. Among the existing methods, some are similar to N-body simulations but with a linearly approximated evolution of the particle's position to reduce the time steps [START_REF] Izard | ICE-COLA: Towards fast and accurate synthetic galaxy catalogues optimizing a quasi N -body method[END_REF][START_REF] Monaco | An accurate tool for the fast generation of dark matter halo catalogs[END_REF][START_REF] Monaco | Pinocchio: pinpointing orbit-crossing collapsed hierarchical objects in a linear density field[END_REF], others, based on Lagrangian PT and calibrated on N-body simulations [START_REF] Avila | HALO-GEN: A tool for fast generation of mock halo catalogues[END_REF][START_REF] Kitaura | Modelling Baryon Acoustic Oscillations with Perturbation Theory and Stochastic Halo Biasing[END_REF], are much faster. A third way, to be both fast and free from any N-body calibration, consists in generating a particle distribution by targeting a given power spectrum and PDF of the density field. The assumption behind this idea is that the covariance matrix should only depend on these two quantities. One can choose an analytical model for the PDF, but they are generally limited to Gaussian [START_REF] Grieb | Gaussian covariance matrices for anisotropic galaxy clustering measurements[END_REF] or Log-Normal [START_REF] Agrawal | Generating Log-normal Mock Catalog of Galaxies in Redshift Space[END_REF] PDF. [START_REF] Baratta | High-precision Monte-Carlo modelling of galaxy distribution[END_REF] developed a method along these lines, called Covmos, and improved it (Baratta et al., in prep.) to target any arbitrary density field PDF and also account for RSD. I will give more detail on Covmos in section 3.1.2, as I will extensively use it for the analysis presented in the next chapter.

One has to keep in mind that, although the aim of these methods is to estimate covariance matrices without having to run N-body simulations, they are still necessary for calibration and validation of the aforementioned methods [START_REF] Blot | Comparing approximate methods for mock catalogues and covariance matrices II: Power spectrum multipoles[END_REF][START_REF] Colavincenzo | Comparing approximate methods for mock catalogues and covariance matrices -III: bispectrum[END_REF][START_REF] Lippich | Comparing approximate methods for mock catalogues and covariance matrices -I. Correlation function[END_REF].

Optimal parameter inference with the power spectrum including massive neutrinos

Finally measuring the total mass of neutrino species is one of the major goals of future cosmological surveys such as Euclid. It would in the same time, shed light on one of the biggest unknown of the standard model of particle physics, and help understanding the properties and the behaviour of neutrinos in a cosmological context. While neutrino oscillation experiments achieved high precision measurement on the neutrino squared mass differences, it is almost certain today, that the information on the absolute scale of the mass will stem from cosmological analyses. In chapter 1, I discussed the effects of massive neutrinos in cosmology at different epochs, and how we could use these effects to measure the total neutrino mass, in particular with galaxy clustering, through the imprints of free streaming neutrinos left on the power spectrum.

To measure a significant signature of massive neutrinos on the power spectrum, we need to probe small scales, where the evolution of the density field is non-linear. The modeling of this part of the power spectrum is thus difficult, and several approaches are considered. To asses the validity of these models, we usually confront them to N-body simulations, which encapsulates the non-linear evolution of the density field, down to very small scales (k > 1 h/Mpc). However, due to the peculiar behaviour of cosmological neutrinos, it is not straightforward to account for this warm cosmic fluid in cosmological simulations, in addition to the CDM fluid. Thanks to recent developments [START_REF] Adamek | Relativistic N-body simulations with massive neutrinos[END_REF][START_REF] Partmann | Fast simulations of cosmic large-scale structure with massive neutrinos[END_REF][START_REF] Viel | The effect of neutrinos on the matter distribution as probed by the Intergalactic Medium[END_REF][START_REF] Zennaro | How to add massive neutrinos to your ΛCDM simulation -extending cosmology rescaling algorithms[END_REF][START_REF] Zennaro | Initial Conditions for Accurate N-Body Simulations of Massive Neutrino Cosmologies[END_REF], state-of-the art N-body simulations, such as the DEMNUni [START_REF] Carbone | DEMNUni: ISW, Rees-Sciama, and weak-lensing in the presence of massive neutrinos[END_REF][START_REF] Castorina | DEMNUni: The clustering of large-scale structures in the presence of massive neutrinos[END_REF], now include an accurate treatment of massive neutrinos. This offers an avenue to compare models to the simulations, in order to understand the role of massive neutrinos in the LSS of the universe.

On the side of models based on fitting-functions, derived from the halo-model, like

Halofit [START_REF] Smith | Stable clustering, the halo model and nonlinear cosmological power spectra[END_REF] or HMcode [START_REF] Mead | An accurate halo model for fitting non-linear cosmological power spectra and baryonic feedback models[END_REF], state-of-the-art simulations are used to regularly update the calibration of such fitting-functions [START_REF] Mead | HMcode-2020: Improved modelling of non-linear cosmological power spectra with baryonic feedback[END_REF][START_REF] Mead | Accurate halo-model matter power spectra with dark energy, massive neutrinos and modified gravitational forces[END_REF][START_REF] Smith | Precision modelling of the matter power spectrum in a Planck-like Universe[END_REF][START_REF] Takahashi | Revising the Halofit Model for the Nonlinear Matter Power Spectrum[END_REF], and they now include a specific treatment of massive neutrinos in non-linear structure formation [START_REF] Bird | Massive Neutrinos and the Non-linear Matter Power Spectrum[END_REF][START_REF] Mead | HMcode-2020: Improved modelling of non-linear cosmological power spectra with baryonic feedback[END_REF][START_REF] Mead | Accurate halo-model matter power spectra with dark energy, massive neutrinos and modified gravitational forces[END_REF]. On the side of purely analytic prediction of the power spectrum, on mildly non-linear scales (k ∼ 0.2 -0.4 h/Mpc), a perturbative approach needs to be followed [START_REF] Bernardeau | Large-Scale Structure of the Universe and Cosmological Perturbation Theory[END_REF][START_REF] Crocce | MPTbreeze: A fast renormalized perturbative scheme[END_REF][START_REF] Taruya | RegPT: Direct and fast calculation of regularized cosmological power spectrum at two-loop order[END_REF], but the inclusion of the neutrino fluid at the non-linear level with Perturbation Theory 3. Optimal parameter inference with the power spectrum including massive neutrinos (PT), is for now quite laborious [START_REF] Blas | Structure formation with massive neutrinos: going beyond linear theory[END_REF][START_REF] Senatore | The Effective Field Theory of Large-Scale Structure in the presence of Massive Neutrinos[END_REF].

In the mean time, some authors have claimed that a linear treatment of neutrino perturbations is sufficient to accurately describe the CDM and the total matter power spectrum, even on mildly non-linear scales [START_REF] Bayer | Detecting neutrino mass by combining matter clustering, halos, and voids[END_REF][START_REF] Castorina | DEMNUni: The clustering of large-scale structures in the presence of massive neutrinos[END_REF]. However, this needs to be verified not only at the level of a power spectrum comparison, but also at the level of parameter estimation, where the response of a model to changes in the cosmological parameters is deeply probed. Such parameter estimation challenges for different models are usual [START_REF] Chen | Redshift-Space Distortions in Lagrangian Perturbation Theory[END_REF][START_REF] Nishimichi | Blinded challenge for precision cosmology with large-scale structure: results from effective field theory for the redshift-space galaxy power spectrum[END_REF][START_REF] Osato | Perturbation theory challenge for cosmological parameters estimation: Matter power spectrum in real space[END_REF][START_REF] Safi | Sensitivity of Cosmological Parameter Estimation to Nonlinear Prescription from Galaxy Clustering[END_REF], but they rarely include the neutrino mass. This is one of the aims of the analysis presented in this chapter, that I will realise by fitting the power spectrum from the DEMNUni simulations with different non-linear prescriptions, through a MCMC analysis.

For such likelihood analyses, we saw in the previous chapter that, apart from the model, another important ingredient is the covariance matrix. If we want to probe non-linear scales to improve the cosmological constraints, it is therefore essential to consider the non-Gaussian contributions to the covariance which arise at these scales, in order to estimate realistic error-bars for those constraints. As discussed in section 2.3.2, when the covariance is estimated from simulations, sampling noise due to a limited number of simulations propagates to parameter posteriors [START_REF] Dodelson | The Effect of Covariance Estimator Error on Cosmological Parameter Constraints[END_REF][START_REF] Percival | The Clustering of Galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: Including covariance matrix errors[END_REF]Sellentin and Heavens, 2016a,b;[START_REF] Taylor | Estimating Cosmological Parameter Covariance[END_REF][START_REF] Taylor | Putting the Precision in Precision Cosmology: How accurate should your data covariance matrix be?[END_REF]. So, in addition to the modeling of non-linearities, we must insure the validity of the covariance matrix. In section 2.3.3, I described several advancements which have been made in the design of new methods for covariance estimation. It is then interesting to test the reliability of such methods, again at the level of parameter estimation. In this chapter, I will focus on two approaches: the estimation of the covariance with an alternative estimator, namely NERCOME (Nonparametric Eigenvalue Regularised Covariance Matrix Estimator, Joachimi (2017)) and the fast generation of approximate mocks with Covmos (Baratta et al., in prep. 2020).

This kind of analysis must be realised in the framework of MCMC, to have access to both the full shape of the posterior and the position of its maximum. Indeed, thanks to the exhaustive information given by MCMC, compared to the Fisher matrix for example, we can analyse one of the most important effect of sampling noise, which is the dispersion on the position of the best-fit. In addition, the resulting posterior can be non-Gaussian, especially when varying the neutrino mass1 , which is not something accounted for in sampling noise corrections, like m 1 [START_REF] Percival | The Clustering of Galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: Including covariance matrix errors[END_REF].

The analysis presented in that chapter, aims at studying the reliability of all the ingredients of the likelihood, all the way down to parameter estimation, to identify and quantify potential biases in the posterior. It is primordial to control and understand these biases, if we want to precisely and accurately measure effects as small as those induced by massive neutrinos, especially given the great precision targeted by future surveys. In addition, it is interesting to add complexity step by step, to really 3. Optimal parameter inference with the power spectrum including massive neutrinos -3.1. Simulations and covariance understand what is going on at each step. For a power spectrum analysis, the first step would be the matter power spectrum in real space in a periodic box. This is the most favorable frame of work, without any RSD, galaxy bias, nuisance parameters or survey window function. In this way systematics can be studied independently.

In section 3.1, I will present the simulations and the methods for covariance estimation that I used for this study, namely the DEMNUni-Cov simulations, the Covmos method and the NERCOME estimator. Then in section 3.2, I will show how to reduce sampling noise effects on parameter estimation with Covmos and NERCOME, in order to account for non-Gaussian covariance coming from the trispectrum. Finally, section 3.3 will be dedicated to a comparison of different modeling of the non-linear power spectrum in the presence of massive neutrinos. I want to stress that a large part of the work presented in this chapter was done in tight collaboration with Philippe Baratta, former PhD student in CPPM and main developer of the Covmos method.

Simulations and covariance

In this section I describe the simulations I used to perform the analysis presented in this chapter, as well as the tools for covariance estimation that I tested.

The DEMNUni-Cov simulations

General description

For this work I will use a set of 100 N-body simulations, called the DEMNUni-Cov, separated in two cosmologies, with and without massive neutrinos. These simulations are part of the DEMNUni simulations project [START_REF] Carbone | DEMNUni: ISW, Rees-Sciama, and weak-lensing in the presence of massive neutrinos[END_REF][START_REF] Castorina | DEMNUni: The clustering of large-scale structures in the presence of massive neutrinos[END_REF]. They have been ran with the tree particle mesh-smoothed particle hydrodynamics GADGET3 which has been modified following [START_REF] Viel | The effect of neutrinos on the matter distribution as probed by the Intergalactic Medium[END_REF], to account for massive neutrinos. The initial conditions are set at z = 99, following a method specific to massive neutrino simulations, described in [START_REF] Zennaro | Initial Conditions for Accurate N-Body Simulations of Massive Neutrino Cosmologies[END_REF]. The boxes of comoving length L = 1000 Mpc/h contain 1024 3 Cold Dark Matter (CDM) particles, with additional 1024 3 neutrino particles for the massive neutrino cosmology. The particles' distribution have been evolved down to z = 0 and 5 snapshots have been taken at precisely z = 0, 0.48551, 1.05352, 1.45825 and 2.05053. For simplicity we will quote these redshifts as z = 0, 0.5, 1, 1.5 and 2. The DEMNUni-Cov are separated in two sets of 50 realisations, corresponding to two flat-ΛCDM cosmologies, one with mass-less neutrinos, labeled 0ν and one with a total neutrino mass of M ν ≡ m ν = 0.16 eV, labeled 16ν. The neutrinos mass eigenstates are considered to be degenerate, so that M ν = 3m ν . The cosmological parameters were chosen according to the 2013 Planck In the two cosmologies Ω b and Ω m = Ω b + Ω cdm + Ω ν are kept fixed, while Ω cdm and Ω ν vary, according to Ω ν = M ν /(93.14 h 2 ), so that Ω cdm = 0.27 and 0.2662 for 0ν and 16ν respectively.

Power spectrum and covariance

I estimate the DEMNUni-Cov power spectra with Nbodykit, in real space and directly on the CDM particle field, even for the cosmology with massive neutrino particles. This means that I estimate the P cb (k) and not the P m (k), where cb stands for CDM+baryon and m stands for total matter (CDM+baryons+neutrinos). This choice is encouraged by the results of [START_REF] Castorina | DEMNUni: The clustering of large-scale structures in the presence of massive neutrinos[END_REF] and [START_REF] Vagnozzi | Bias due to neutrinos must not uncorrect'd go[END_REF], who showed that the definition of the halo bias should be made with respect to the CDM+baryons rather than the total matter distribution.

Regarding the details of the power spectrum estimation, the particles are interpolated on a 1024 3 grid with a fourth order mass assignment scheme (Piecewise Cubic Spline, or PCS), so that the k range, going from the fundamental mode k F to the Nyquist mode k Ny is [8.10 -3 , 3.2] h/Mpc. I switch on the interlacing [START_REF] Sefusatti | Accurate Estimators of Correlation Functions in Fourier Space[END_REF], to reduce the aliasing. The contribution of the mass assignment scheme is compensated for. The shot-noise level P shot = L/N p ∼ 1 [Mpc/h] 3 , is low compared to the amplitude of the power spectrum, so I neglect it in the analysis.

Figure 3.1 displays the DEMNUni-Cov power spectra as well as the mean on the 50 realisations, for the two cosmologies, at the five redshifts. For comparison, the linear prediction from CLASS is also shown, only for the two extreme redshifts and the 0ν cosmology (for clarity of the plot). We can see that the evolution of the particles in the N-body simulation is highly non-linear, as the DEMNUni-Cov power spectra significantly exceed the linear prediction for k > 0.1 h/Mpc and k > 0.3 h/Mpc at z = 0 and z = 2 respectively. I will present a more complete study of the non-linear power spectrum and the different ways of modeling it in section 3.3, but this remark will help us in understanding the shape of the covariance. In the bottom panel, we can see the well known effect of massive neutrinos, which damps the amplitude of the power spectrum on small scales. Note that the difference between the two cosmologies is significant for k > 0.1 h/Mpc, where the amplitude of the damping is larger than the dispersion over the 50 realisations.

Using the standard covariance estimator (c.f. Eq. (2.61)) and with the 50 DEMNUni-Cov power spectra of the 16ν cosmology, I estimated the covariance matrix, dubbed ĈD (where the "D" stands for DEMNUni). In figure 3 with the Gaussian prediction (c.f. Eq. 2.58), computed from the mean power spectrum. We can see the variance excess, carried by the trispectrum, with respect to the Gaussian approximation, for k > 0.2 h/Mpc and k > 0.9 h/Mpc at z = 0 and z = 2 respectively. This reflects the non-linear evolution of the density field that was observed above, which generates non-Gaussian moments like the trispectrum, especially at low redshift. Furthermore, we can observe large fluctuations at all scales due to the low number of available simulations. To have an idea of the amplitude of this noise, I recall that the variance on the covariance matrix elements, assuming a Gaussian distribution of the power spectrum, is C ii For the diagonal, the relative error, V [C i i ]/C i i , only depends on N m and is equal to 2/(N m -1) ∼ 20%. Figure 3.3 exhibits the non-linear correlation between the different modes of the power spectrum, in the form of the correlation matrix

V [ Ĉi j ] = Ĉ 2 i j + Ĉii Ĉ j j N m -1 . ( 3 
[Mpc/h] 6 D ii , N m = 50 G ii = P 2 (k)/N k 10 2 10 1 10 0 k [Mpc/h] 1 100 0 100 200 C D ii C G ii 1 [%] z = 0 z = 2
ρ i j = Ĉ D i j / Ĉ D i i Ĉ D j j .
Similarly to what we observed on the diagonal, the non-Gaussianities (i.e. the non-diagonal elements) appear at lower k at z = 0 than at z = 2, because of the stronger nonlinearities at low redshift. Actually, at z = 2 and for k < 0.4 h/Mpc, the correlations are close to zero and consistent with noise, while significant positive correlations are present at z = 0 for k > 0.2 h/Mpc.

On the bottom panel we can see the relative error on the covariance matrix. For k < 0.2 h/Mpc at z = 0 and k < 0.4 h/Mpc at z = 2, the relative error can be larger than 100%. This happens because on these scales, the non-diagonal elements tend to zero. In this regime, the diagonal dominates the covariance matrix, so that noisy non-diagonal elements will not highly impact parameter estimation. However, on mildly non-linear scales, where C i j starts to be non negligible, the relative noise is close to 50%. On these scales, the non-diagonal elements will have an impact on parameter estimation. Their noise will then be transferred to parameter posteriors (c.f section 2.3.2).

We saw that the covariance estimated from the DEMNUni-Cov simulations largely deviates from the Gaussian approximation. This is due to the presence of the trispectrum contribution in the covariance (C NG , in Eq. (2.58)) on non-linear scales, which increases the variance and correlates the Fourier modes. We can expect that parameters estimated using theses scales, will present underestimated error-bars if we use the Gaussian approximation only, and not the full non-Gaussian covariance. However, as discussed in section 2.3.2, the noise present in the estimated covariance will surely influence the posterior distribution of parameters.

3. Optimal parameter inference with the power spectrum including massive neutrinos -3.1. Simulations and covariance

Correlation between snapshots

Because we are dealing with snapshots of simulations boxes, the different redshifts of a given realisation of the DEMNUni-Cov will be highly correlated. Indeed, for a specific simulation among the 50, the snapshots are simply photos of the same box, taken at different cosmic times, showing the density field evolved from one specific set of initial conditions. This correlation is exposed in figure 3.4, where we can see the correlation coefficient between the power spectrum estimated at z i and z j with respect to k. The correlation is higher for pairs of high redshifts and at large scales, because in the linear regime the power spectrum simply evolves in amplitude through the linear growth factor D(z). In contrast, the non-linear evolution on smaller scales reduces the correlation between redshifts. For example for the redshift pair (1.5, 2), the correlation coefficient is close to one up to k = 0.3 h/Mpc, while for (0, 0.5), at the same scale, it drops to 0.85. The correlation is also less important for distant redshifts, because the non-linearities had more time to reduce it. This means that to simultaneously fit the power spectrum at several redshifts, snapshots at different redshifts have to be selected from different realisations to avoid these unrealistic correlations. For example, I could choose the realisation number 01 for z = 0, number 02 for z = 0.5, 03 for z = 1, and so on. As the different realisations are independent, in this case the different redshifts are uncorrelated, so I can impose the covariance matrix blocks, corresponding to cross-redshift elements, to be 0. This is also not truly realistic, because in the case of real data the different redshift bins are on the same light-cone and are thus correlated. But this solution, at least permit to invert the covariance matrix, while it would not be possible in the presence of correlations close to 100%.
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Fast mock generation with Covmos

Covmos (Baratta et al., in prep. 2020) is a semi-analytic Monte-Carlo based method, designed to generate random non-Gaussian fields, which can then be sampled to produce catalogues of CDM particles, haloes or galaxies. The aim of such method is to produce a large number of these catalogues in a short amount of time. This allows a better estimate of the covariance matrix than what we saw in the previous section, where only N m = 50 simulations were used.

To accurately account for the Gaussian and non-Gaussian terms of the covariance, the main idea behind Covmos is to impose a target P (k) and 1-point Probability Distribution Function (PDF) of the density field δ(x), to the mocks that are generated. In section 2.3.1, we saw that the covariance of the power spectrum mainly depends on the power spectrum itself and the trispectrum (see Eq. (2.58)), so by imposing only the power spectrum we would loose the non-Gaussian information. Therefore, by also imposing the 1-point PDF, it becomes possible to recover all the cumulent moments of the 1-point PDF and thus the fourth order one, which is related to the trispectrum

T (k 1 , k 2 , k 3 ) as 〈δ 4 (x)〉 c = d 3 k 1 d 3 k 2 d 3 k 3 T (k 1 , k 2 , k 3 ). (3.2)
The main assumption of the method is that, if the trispectrum averaged on the total Fourier space (which is Eq. (3.2)) is imposed, then we should be able to recover the non-Gaussian part of the power spectrum covariance, that is the shell averaged trispectrum (c.f 2.3.1).

In practice, a Gaussian density field ν(x) is generated following a specific power spectrum2 . Then, the whole method consists in finding the right non-linear local mapping L such that L[ν(x)] ≡ δ(x),

(3.3)
where δ(x) is the non-Gaussian density field that we want to generate, following the input power spectrum and 1-point PDF. As the pipeline to find and apply this transformation makes an extensive use of FFTs, the initial Gaussian field has to be generated on a grid, characterised by its number of cells N G in each direction. Once the non-Gaussian density field is obtained for a realisation, a catalogue is created through a discrete Poisson sampling, assigning positions to particles in each cell, by applying a tri-linear interpolation of the density field δ(x). For this last step, a mean density ρ has to be set and will determine the expected number of object in each cell, expressed as

N = ρv(1 + δ), (3.4) where v = V /N 3 G is the volume of a cell.
A great advantage of Covmos is that the input 1-point PDF and P (k) can be completely arbitrary. One can simply estimate these quantities from N-body simulations, or even directly from the data and feed them to the algorithm. For the present analysis,

3. Optimal parameter inference with the power spectrum including massive neutrinos -3.1. Simulations and covariance I will use Covmos catalogues that are copies of the DEMNUni-Cov (i.e. the target P (k) and PDF are the ones estimated from the DEMNUni-Cov). For more details on the method, see [START_REF] Baratta | High-precision Monte-Carlo modelling of galaxy distribution[END_REF] for a first application with a theoretical power spectrum and an analytic log-normal PDF, and Baratta et al. (in prep.) for a validation of the method at the level of the covariance matrix, against the DEMNUni-Cov simulations.

Nevertheless, I want to highlight some aspects of the methods that are relevant to understand the choices made for this analysis • For full coherence of the pipeline, the two inputs have to be consistent with one another. More specifically, the variance estimated from the input power spectrum (c.f. Eq. (1.41)) must match the variance of the PDF. On one hand, the latter is defined by the grid on which it is estimated. The grid acts as a smoothing on a scale related to its step-size. We can think of that as in the way we define the σ 8 parameter (c.f. Eq. (1.43)). On the other hand, we saw in section 2.1.2 that to estimate the power spectrum of a given distribution of particles in a reasonable amount of time, we must resort to FFTs. This process requires the distribution of particles to be interpolated on a grid, with a given mass assignment scheme (MAS). The power spectrum is usually compensated for the effect of the MAS, acting as a low-pass filter, so that it looses the information of the grid. In order for the variance of the two targets to match, the power spectrum needs to be filtered in the same way as the PDF. In the present case, the targets are both coming from DEMNUni-Cov. So if they are estimated with the same MAS, their variance will match, as long as the power spectrum is not compensated for the effect of the MAS3 . In consequence, this introduces a cut-off on high k (see figure 2.3), which remains in the power spectra of Covmos catalogues.

• One can show that a discrete sampling of a field defined on a grid, acts as a convolution of this field, with the interpolation scheme which is used for the sampling. This means that the Poisson sampling needed to produce the Covmos catalogues of particles, adds a second low-pass filter on the power spectrum. It also cuts-off the power on scales comparable to the grid size.

I will show, later on, how these two filters affect the shape of the covariance matrix and thus the range of validity of the method.

For the present analysis, 10 000 Covmos catalogues, for the 5 redshifts, have been generated on a grid with N G = 512 and L = 1000 Mpc/h, taking as target the DEMNUni-Cov power spectrum and PDF in the 16ν cosmology. The mean density has been set to 10% of the DEMNUni-Cov mean density, so that the power spectra can be estimated in a reasonable amount of time. With that density the expected number of object in each catalogue is 1 × 10 8 . To have an idea of the potential of the method, the full pipeline took approximately 24 hours to run on a 28-nodes HPC cluster. Let's first consider the diagonal elements, presented in figure 3.5. The first thing we can observe is that, due to the large increase in N m , the noise in the covariance estimated from the Covmos mocks is largely reduced. The relative error on the diagonal is equal to 2/(N m -1) ∼ 1.4%, while it is around 20% in the DEMNUni-Cov case. Regarding the range of validity of Covmos, we see that it is able to reproduce the DEMNUni-Cov estimation in the 1σ limit, up to k = 0.4 h/Mpc at z = 0, outperforming the Gaussian approximation which largely deviates for k > 0.2 h/Mpc. At z = 2, where non-Gaussianities are less important, the Covmos estimation goes above the 1σ limit before the Gaussian one, at k = 0.6 h/Mpc. This happens because of the cut-off at large k, inherent to the method, which is also observed in the z = 0 case. This cut-off is a combined effect of the two filtering effects discussed above. The range of validity of Covmos could be extended by choosing a finer grid, but because I will not push the fit of the power spectrum above k = 0.3 h/Mpc, I will keep on with the N G = 512 grid.

The non-diagonal elements are displayed in the form of the correlation matrix in the top panel of figure 3.6. We can recognise the same correlations between Fourier modes as in the DEMNUni-Cov case (c.f. figure 3.3), but with less noise.

On the middle panel we can see the deviation of the Covmos covariance with respect to the DEMNUni-Cov one. It seems that Covmos slightly overestimates some of the nondiagonal elements up to 2σ, at z = 0, between k = 0.1 h/Mpc and k = 0.4 h/Mpc. This has already been noticed in Baratta et al. (in prep.). Except for that, at both redshifts and for the range of scales considered here, the deviation stays within 1σ. For higher k, the covariance is not valid, due to the same cut-off as discussed previously.

Finally, in the bottom panel we see that as for the diagonal, the noise is highly reduced by the large number of simulations. In the region dominated by the offdiagonal elements (i.e. k > 0.1 h/Mpc at z = 0), the relative error tends to 0%. Still, in the regions where the diagonal dominates the matrix (i.e. k < 0.1 h/Mpc at z = 0 and all k at z = 2), we find a relative error between 20% and 100% or more. But as stated in the previous section, this is not worth worrying, because these are elements which will not highly contribute to parameter estimation.

In section 3.2.4, I will study the reliability of Covmos in a cosmological parameter estimation, with the DEMNUni-Cov power spectrum. 3. Optimal parameter inference with the power spectrum including massive neutrinos -3.1. Simulations and covariance
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Non-linear shrinkage covariance estimator with NERCOME

The NERCOME (Non-parametric Eigenvalue Regularised Covariance Matrix Estimator) algorithm was first proposed by [START_REF] Lam | Nonparametric eigenvalue-regularized precision or covariance matrix estimator[END_REF] and then applied in a cosmological context by [START_REF] Joachimi | Non-linear shrinkage estimation of large-scale structure covariance[END_REF]. This estimator is designed to reduce the bias and the variance present in an estimated precision matrix, which propagates to parameter estimation (see section 2.3.2).

The NERCOME algorithm can be decomposed in 3 steps. Let's consider a set of N m realisations of the data vector X of size N b , from which we want to estimate the covariance.

1. Divide the set of realizations in two subsets of size s and N ms respectively.

2. Apply the standard estimator to each subset to obtain the covariance matrices Ŝi , with i = 1 or 2. Decompose them in the form Ŝi = U i D i U T i , with U the matrix of eigenvectors and D the diagonal matrix of eigenvalues.

Estimate the covariance matrix as

ĈN ≡ U 1 diag(U T 1 Ŝ2 U 1 )U T 1 , (3.5) 
and average ĈN over N c different random compositions of the subsets and a fixed split-position s.

In the original version of the algorithm the operation is repeated for different s to find the optimal split, but here, following Joachimi (2017), I will keep a fixed s = (2/3)N m and N c = 500. An insight to understand Eq. (3.5), is that taking the diagonal of U T 1 Ŝ2 U 1 , which mixes two matrices estimated from independent data sets, will shrink both large and small eigenvalues to avoid singular values4 , so that ĈN is always positive definite. This is shown in Figure 3.7, where we can see the spectrum of eigenvalues for covariance matrices estimated with both the standard estimator and NERCOME. In the case of the standard estimator, for low N m compared to N b , small eigenvalues vanish for N m ≤ N b + 2, corresponding to the limit given by the Hartlap bias (see section 2.3.2).

Following [START_REF] Joachimi | Non-linear shrinkage estimation of large-scale structure covariance[END_REF], we can test the efficiency of NERCOME in reducing the bias and the variance in the estimated precision matrix, by considering the signal-to-noise ratio (SNR), defined as Ψ, by performing an average of the SNR over a certain number of realisation of the precision matrix, and to divide by the SNR computed with the true precision matrix, such that

SNR ≡ i , j P (k i )Ψ i j P (k j ). ( 3 
〈 ŜNR〉 SNR = N m -1 N m -N b -2 . (3.7)
In the same way, one can show that

〈 ŜNR -〈 ŜNR 2 〉〉 SNR = 2(N m -1) N m -N b -4(N m -N b -2) (3.8)
is equivalent to the variance of the estimated precision matrix [START_REF] Taylor | Estimating Cosmological Parameter Covariance[END_REF]. Thanks to the 10 000 Covmos catalogues that I presented in the previous section, I can compute Eq. (3.7) and (3.8) for several N m and compare the result between the standard and NERCOME estimator.

For the data vector in Eq. (3.6), I took the mean power spectrum over the 10 000 realisations and cut it to N b = 40. I assumed the precision matrix estimated with the 10 000 mocks to be the true one and I averaged over 10 realisations of Ψ for each N m . The result is displayed in figure 3.8. Looking at the bias on the precision matrix (top panel), the prediction is well within the error-bars for the standard estimator, and diverges for N m < N b + 2. We see that for these N m , NERCOME is able to produce a non-singular covariance matrix, which however shows a slight bias, lower than 1. For larger N m , the bias is compatible with 0. In the case of the variance of the precision matrix (bottom panel), the standard estimator is also well in agreement with the prediction. Like for the bias, NERCOME largely reduces the variance in the precision matrix, especially at low N m . For N m > 100, NERCOME results in a variance close to the standard estimator, but systematically lower. These results are in agreement with [START_REF] Joachimi | Non-linear shrinkage estimation of large-scale structure covariance[END_REF], which however used a Jack-Knife technique to produce several realisations of the precision matrix. I will test the reliability of a covariance matrix estimated with NERCOME at the level of parameter 3. Optimal parameter inference with the power spectrum including massive neutrinos -3.2. Covariance effects on cosmological parameter estimation estimation in the next section.

Covariance effects on cosmological parameter estimation

In this section I will study how the covariance matrix influences the shape of the cosmological parameters posterior distribution, by an MCMC analysis with the DEMNUni-Cov power spectrum. First I will explicitly show how sampling noise affects the best-fit and error of the estimated parameters. Then I will test the performance of NERCOME in reducing the effect of sampling noise and the reliability of the covariance matrix estimated with Covmos mocks. Once that I have an unbiased and precise estimation of the covariance matrix, I will study the impact of the non-Gaussian contribution to the covariance on parameter estimation. As stated in the introduction, I am also interested in the constraints we can get on the neutrino mass in this context, so the whole analysis will be done in the 16ν cosmology.

Note that as I want to quantify the effect of the covariance on both the best-fit and the error on the parameters, I choose to perform an MCMC analysis rather than a Fisher forecast, to access the full shape of the posterior distribution.

Methodology

By making the assumption that the power spectrum follows a multivariate Gaussian distribution, the Likelihood has the following form

-log L( P (k)|θ) = 1 2 [ P (k) -P (k; θ)] T C -1 [ P (k) -P (k; θ)] ≡ 1 2 χ 2 , ( 3.9) 
where P (k) is the data vector containing the DEMNUni-Cov power spectra at the 5 redshifts, θ is the set of free cosmological parameters that are varied, P (k; θ) is the theoretical prediction depending on the cosmological parameters, and C is the covariance matrix.

To simultaneously fit the power spectrum at the 5 redshifts of DEMNUni-Cov, I chose to select different realisations for each redshift in order to avoid correlations between the different redshifts, as discussed in section 3.1.1. As a consequence, the χ 2 (z i ) at the different redshifts are uncorrelated and the full χ 2 can be expressed as

χ 2 = n z =5 i =0
χ 2 (z i ).

(3.10)

Thus when the covariance used for parameter inference is the DEMNUni-Cov one, it can only be estimated with the 45 remaining realisations.

The MCMCs are performed in the range k min = k F ≈ 0.01 h/Mpc to k max (which will be varied), with a step ∆k = k F ≈ 0.01 h/Mpc. The cosmological parameters that are varied are: the reduced baryon and CDM densities Ω b and Ω cdm , the h ≡ H 0 /100 and the single neutrino mass m ν6 . The priors on these parameters are chosen to be broad and uniform. They are listed in table 3.1 along with their fiducial values.

I use the so-called "TakaBird" version of Halofit [START_REF] Smith | Stable clustering, the halo model and nonlinear cosmological power spectra[END_REF] for the theoretical prediction on the non-linear power spectrum, as it incorporates both the treatment of massive neutrinos developed by [START_REF] Bird | Massive Neutrinos and the Non-linear Matter Power Spectrum[END_REF] and the revised fitting-formulae by [START_REF] Takahashi | Revising the Halofit Model for the Nonlinear Matter Power Spectrum[END_REF]. Throughout this section, I keep this choice of model, but a comparative study of different non-linear power spectrum models will be presented in section 3.3.

I recall that the DEMNUni-Cov power spectra are estimated on the CDM field only (without accounting for the neutrino particles), so I consider the theoretical prediction for the CDM+baryons power spectrum, dubbed P HF cb (k). I use the CLASS software (Blas et al., 2011, version 2.9) to compute the theoretical prediction of the power spectrum and the MontePython software (Brinckmann and Lesgourgues, 2019, version 3.3.0) to run the MCMC and to produce the plots for the posterior densities. I assert the convergence of the chains with a Gelman-Rubin criterion : R -1 < 0.01 (c.f. section 2.2.2).

To analyse the resulting constraints on cosmological parameters it is useful to define the following scalar quantities from the parameter covariance matrix Φ:

• The Figure of Merit (FoM) is defined as FoM ≡ 1 det Φ . (3.11)
It is proportional to the hyper-volume delimited by the 2σ contours in the full parameter space. The higher is the FoM, the tighter are the constraints.

• The Figure of Bias (FoB) is defined as

FoB ≡ δθ T Φ-1 δθ 1/2 , (3.12)
where δθ = θθ is the difference between the best-fit and the fiducial value 3. Optimal parameter inference with the power spectrum including massive neutrinos -3.2. Covariance effects on cosmological parameter estimation of the parameters. The FoB squared represents a generalized ∆χ 2 for all the parameters. So its value should be compared to the value of ∆χ 2 in the case of N p parameters, corresponding to the 68.3%, 95.5% and 99.7% confidence intervals, which are respectively 4.72, 9.72 and 16.25 for N p = 4.

While the FoM indicates how precise are the cosmological constraints, the FoB informs about their accuracy.

Parameter inference with a high sampling noise

In this section I will explicitly show the effect of sampling noise in the precision matrix, on the χ 2 and on the inference of cosmological parameters. For this I will use the DEMNUni-Cov covariance matrix estimated from N m = 45 mocks.

Goodness-of-fit test with the χ 2

First, I test whether the Halofit prediction computed with the fiducial values of cosmological parameters of the 16ν simulation provides a good-fit to the data, with a goodness-of-fit test (c.f. section 2.2.3). Undertaking this test for different k max , indicates the maximum k up to which the model can be trusted, with a significance α = 0.01 I compare the result when considering the Gaussian (C G ) and the DEMNUni-Cov [16,39]. For larger N b , the inversion of the covariance matrix is numerically unstable. Figure 3.9 displays the result of the test with respect to k max . We can see that with the Gaussian covariance, we cannot trust the model for k max > 0.2 h/Mpc. For the DEMNUni-Cov covariance, the test can hardly be interpreted, as the precision matrix is highly biased. Without the Hartlap correction, the bias in the precision matrix estimator is so high that it gives a large χ2 , always superior to χ 2 1-α . If we account for the Hartlap bias by multiplying the precision matrix by a factor (N m -N b -2)/(N m -1) (c.f Eq. (2.65)), the χ2 is then reduced by this factor, as if we were artificially increasing the errors on our data. The model is then always compatible within the error-bars. Sellentin and Heavens (2016a) showed that these two extreme results can be explained by the fact that the χ2 estimated with a Hartlap-biased precision matrix is drawn from a distribution more flared than a true χ 2 distribution. On the contrary when it is corrected for the Hartlap bias, the distribution is sharper. 

Parameter estimation

To understand how sampling noise translates to parameter constraints, I performed MCMCs in the set-up described in section 3.2.1 and in the same k max range as above. 

= 1 + B (N b -N p ) / 1 + A + B (N p + 1)
factor, mainly accounting for the stochastic shift of the best-fit caused by sampling noise (c.f. section 2.3.2). For reference I show the results obtained with the Gaussian covariance. The resulting constraints are presented in terms of the relative difference with the input cosmology, δ(θ) ≡ θ/θ -1, and the χ 2 divided by the number of degrees of freedom n dof = N b -N p .

As the Gaussian covariance is noise-free, the fluctuations in the constraints that we see while varying the k max are only due to the noise present in the data vector. Hence, it can serve as a reference to observe the noise in the covariance. For k max ∼ 0.1 h/Mpc, the variance of the power spectrum is important, leading to biases larger than 1σ in the estimated parameters, especially for h and Ω cdm . The error-bars decreases and the best-fit shifts toward the true cosmology with increasing k max . But, as discussed above, for k max > 0.2 h/Mpc, Halofit cannot be trusted, leading to a systematic bias in the estimation of all the parameters. The χ 2 /ndof is stable and close to 1 for C G , which, following a rule of thumb, indicates a good-fit.

Looking at the constraints obtained with the DEMNUni-Cov covariance, we observe larger fluctuations through the k max range, compared to the Gaussian case. This is due to the noise in the precision matrix, which is estimated with a low N m . Without the Hartlap correction, as expected the error-bars are well underestimated, in comparison with C G . As we saw above, the χ 2 is underestimated (by a factor 2 or more compared to C G ).

When correcting for the Hartlap bias, the best-fit doesn't change but the error-bars are getting bigger. By further inflating the errors by m 1 , we can gauge the effect of the noise in Ψ, transferred to the cosmological parameters, which is not accounted for 3. Optimal parameter inference with the power spectrum including massive neutrinos -3.2. Covariance effects on cosmological parameter estimation by the Hartlap factor. This huge error-bar accounts for the stochastic fluctuations in the position of the best-fit that I discussed in section 2.3.2, and that is observed here along the k max range. Additionally, the χ 2 /ndof is shifted away from 1, toward lower values as k max increases, similarly to what was observed in figure 3.9. In Figure 3.11, I expose the FoM computed from the above constraints. Again, we clearly see the overestimation of the FoM when the Hartlap bias is not accounted for. For k max < 0.15 h/Mpc, the Hartlap factor seems sufficient to recover the FoM obtained with the Gaussian covariance, which can considered as a reference at these scales. But, as we can see in figure 3.10, the best-fits present biases larger than 1σ on those scales, especially Ω b and m ν . This is illustrated by the decrease of the FoM caused by the m 1 factor, which accounts for this bias. Furthermore, notice that with both corrections, the FoM decreases as the k max is getting close to the limit N k = N m -2. In that case the Hartlap bias and sampling noise are so high that we loose constraining power as we increase the amount of information in the fit.

I have explicitly shown the effect of the Hartlap bias on parameter inference, and how the sampling noise present in the precision matrix can drastically impact the constraints on cosmological parameters. In the next sections I will show how NERCOME and Covmos can mitigate these two effects.

Reduction of sampling noise with NERCOME

The aim of this section is to test whether NERCOME can reduce the effect of sampling noise in the precision matrix, while resulting in unbiased cosmological constraints.

For this, I will make use of Covmos to elaborate a particular analysis set-up, that I call the the covmos_halofit mock data-set. First, I will describe this set-up, then I will test the reliability of NERCOME.

The covmos_halofit mock data-set

In order to isolate the effects coming from sampling noise, it would be better if the parameter inference was not affected by biases due to the modeling of the non-linear power spectrum, or to the fact that the covariance matrix is not perfectly describing the data7 . To overcome these issues, in this section, I chose the data vector to be the Covmos power spectrum cloned from the Halofit prediction computed in the 16ν cosmology. This means that the target power spectrum for Covmos is not the DEMNUni-Cov one, but a theoretical one predicted with Halofit. However the target PDF is still coming from DEMNUni-Cov.

In addition, the Covmos pipeline is stopped just before the generation of the particle catalogues, so that the power spectra are directly estimated from the density field on the grid. For clarity I call these power spectra the "grid-P (k)", while the ones estimated 3. Optimal parameter inference with the power spectrum including massive neutrinos -3.2. Covariance effects on cosmological parameter estimation from the catalogues of particles are called the "catalogue-P (k)". I make this choice of data-set, dubbed covmos_halofit, for three reasons:

• The bias in the constraints due to the non-linear power spectrum model is reduced, because the input P (k) for Covmos is the same as the one used for the model.

• By considering the grid-P (k), the additional filtering due to Poisson sampling, that I discussed in section 3.1.2, is avoided. Thus, I have a larger range of validity for the power spectrum. The grid-P (k) still suffers from the effect of the first filter8 . But, as it is an effect internal to the method, it can be predicted and applied to the Halofit prediction, to achieve the best agreement possible between the data-vector and the theoretical prediction.

• Because in this setting I use Covmos grid-P (k) for both the data and the covariance, I am sure to have in hand the exact covariance associated to the data-vector, at any scale.

Without the final step to create the catalogues, the process is much faster and allows to generate even more simulated power spectra. Here, I used a set of N m = 100 000 grid-P (k) per redshift, in the 16ν cosmology, simulated on a grid with N G = 512. Actually, 100 000 + 1 realisations have been generated per redshift, one for the data vector and 100 000 for the covariance matrix. Given the large number of realisation, the latter can be considered as the true covariance. Figure 3.12 presents one realisation of this set of power spectra, compared to

Halofit. We can see that once the predicted filter is applied to Halofit, it matches the mock data within 1σ up to k ∼ 0.3 h/Mpc and k ∼ 1 h/Mpc at z = 0 and z = 2 respectively. The reasons of the disagreement above these scales are related to details of the Covmos method which are not relevant for this analysis (c.f. Baratta et al. (in prep.)).

To further check the reliability of the covmos_halofit data set, I perform a goodnessof-fit test comparing the covmos_halofit data-set to the filtered Halofit, for the 5 redshifts all together and with the covariance matrix estimated from 100 000 realisations. The result of this test is shown in figure 3.13. It exhibits a good-fit between data and model, for the whole k max range: [0.1, 0.275] h/Mpc. Finally, I estimate the cosmological parameters from the covmos_halofit data set, at different k max , using the the covariance matrix estimated from 100 000 realisations. The result is displayed in figure 3.14. As seen before, for k max = 0.1 h/Mpc, the power spectrum is subject to a large variance, so that the deviation of m ν and Ω b is larger than 1σ. For larger k max , the fiducial cosmology is retrieved at 1σ for all parameters, except Ω b , which is slightly overestimated, but still within 2σ. The χ 2 /n dof is close to one 1, for all k max .

Thereafter, the result of this fit will serve as a reference to test the performance of the standard and NERCOME covariance estimator, as it results from using what can be considered as the true covariance.
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Performance of NERCOME for parameter inference

A way to estimate the dispersion of the best-fit and error of cosmological parameters due to sampling noise, is to run several fits on the same data vector for different realisations of the precision matrix. For this, the 100 000 covmos_halofit power spectra are divided into 100 different subsets, each containing either N m = 45 or N m = 1000 realisations. The covariance matrix is estimated on each of these subsets, with the standard estimator and NERCOME.

Then, I perform 100 MCMCs of the power spectrum for a fixed k max = 0.2 h/Mpc (corresponding to N b = 30), with the 4 different estimations of the covariance matrix: standard estimator, corrected for the Hartlap bias, with N m = 45 and N m = 1000 (dubbed S45 and S1000) and NERCOME with N m = 45 and N m = 1000 (dubbed N45 and N1000).

To assure the quality of the MCMC for all the fits, I select them to have an acceptance rate larger than 0.2 and a Gelman-Rubin parameter R -1 < 0.01. I get 82, 92, 86 and 90 selected fits, for S45, S1000, N45 and N1000 respectively. Finally, I have access to the distribution of best-fits and errors for the 4 fitted cosmological parameters in the 4 cases.

In figure 3.15, we can examine the distribution of the best-fit for S45, S1000, N45 and N1000, compared to the best-fit obtained using the true covariance, estimated with N m = 100 000. Table 3.2 gathers the statistics of these distributions. In addition, we can compare this dispersion with the prediction given by Dodelson and Schneider 3. Optimal parameter inference with the power spectrum including massive neutrinos -3.2. Covariance effects on cosmological parameter estimation (2013) and presented in section 2.3.2, that I recall to be

σ 2 (θ bf α ) = B (N b -N p )Φ αα , (3.13)
where Φ is the true parameter covariance matrix (i.e obtained with the true precision matrix). The prediction is reported in table 3.2 and is represented on figure 3.15 by a Gaussian centered on the true parameter best-fit and with a standard deviation

σ = B (N b -N p )Φ αα .
Looking at the N m = 45 case first (top panel of figure 3.15), we see that the dispersion of the best-fit is of the same order of magnitude than the true error, for both S45 and N45. It is around 130% and 70% of the true error, respectively. This means that NERCOME reduces the best-fit dispersion by ∼ 40 to 50% depending on the parameter. This dispersion is stochastic, so the best-fit should not deviate from the truth in a preferred direction. I checked this for S45 and found that indeed, the mean of the best-fit distribution have a smaller than 0.1σ deviation with respect to the truth. For N45 the average deviation can go up to 0.6σ for Ω b , but it is hard to conclude that the covariance estimator induces a bias in the estimation of the best-fit, given the low number of fits ( 100).

In the case of N m = 1000 (bottom panel of figure 3.15), the best-fit dispersion is largely reduced by the increase in N m and is around 19% and 17% of the true error for S1000 and N1000 respectively. Although by eye the two distributions look very similar, NERCOME still reduces the best-fit dispersion by ∼10% for all parameters.

Again, I checked that there was no systematic bias on the position of the best-fit and found a deviation of the mean best-fit from the truth, smaller than 0.1σ, for both S1000 and N1000.

Finally, note that for S45 and S1000, the prediction of the dispersion on the best-fit from [START_REF] Dodelson | The Effect of Covariance Estimator Error on Cosmological Parameter Constraints[END_REF] is in good agreement with the result of this experiment. This can be seen approximately by eye, looking at the histograms (c.f. figure 3.15) or in table 3.2. Small deviations could be due to non-Gaussian features in the likelihood of the power spectrum.

After analysing the effect of sampling noise on the best-fit, let's focus on the variance of each parameter, estimated from the shape of the posterior. Figure 3.16 shows the distribution of the variance, σ 2 θ , for S45, S1000, N45 and N1000, compared to the variance estimated using the true covariance. The statistics of these distributions are exposed in table 3.3. The variance on the variance of cosmological parameters, was predicted by [START_REF] Taylor | Putting the Precision in Precision Cosmology: How accurate should your data covariance matrix be?[END_REF] in the Fisher matrix formalism and writes

σ 2 (Φ αα ) = 2 N m -N b -4 Φ 2 αα . (3.14)
The prediction is reported in table 3.3 and is represented on figure 3.16 by a Gaussian centered on the true parameter variance (i.e. Φ αα ) and with a standard deviation σ = 2/(N m -N b -4)Φ αα .

In the S45 case, the relative dispersion of the parameter variances with respect to the 3. Optimal parameter inference with the power spectrum including massive neutrinos -3.2. Covariance effects on cosmological parameter estimation 3. Optimal parameter inference with the power spectrum including massive neutrinos -3.2. Covariance effects on cosmological parameter estimation 

Var θ bf /σ θ,Truth [%] Ω b Ω cdm h m ν B (N b -N p ) [%] Standard, N m =
〈θ bf 〉 -θ Truth /σ θ,Truth Ω b Ω cdm h m ν Standard, N m = 45 < |0.1| < |0.1| < |0.1| -0.14 NERCOME, N m = 45 0.60 0.37 -0.26 < |0.1| Standard, N m = 1000 < |0.1| < |0.1| < |0.1| < |0.1| NERCOME, N m = 1000 < |0.1| < |0.1| < |0.1| < |0.1|
Table 3.2.: Summary of statistics on the best-fit of each cosmological parameter, over all selected fits. The first row presents the dispersion of the best-fit relatively to the error estimated with the true covariance. In addition the last column correspond to the prediction from [START_REF] Dodelson | The Effect of Covariance Estimator Error on Cosmological Parameter Constraints[END_REF].

The second row presents the reduction of the best-fit variance thanks to NERCOME. The third row presents the deviation of the averaged best-fit over all selected fits, with respect to the one estimated with the true covariance. This is expressed in fraction of the true error on the parameter.

true variance is around 25% for all cosmological parameters. We can see in table 3.3 that the prediction is about two times larger than the estimation, but I will comeback to this point thereafter.

In the case of N45, I estimate that NERCOME reduces the variance on the variance by 30%. However, an overestimation of the parameter variances, is observed in that case.

Indeed, for N m = 45, when using a covariance matrix estimated with NERCOME, the variance is larger than the truth by about 60% for Ω b and 30% for the other parameters.

A similar bias, is also present when using the standard estimator and is around 10 to 20% for Ω b , Ω cdm and h while it is only 3% for m ν . Such bias was studied by [START_REF] Percival | The Clustering of Galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: Including covariance matrix errors[END_REF] and incorporated in the m 1 correction, as the denominator (c.f. section 2.3.2). Still in the fisher matrix formalism, they predicted that the variance of a parameter estimated from the width of the posterior is biased, such that

〈 σ2 θ 〉 = 1 + A + B (N p + 1) σ 2 θ . (3.15)
For N m = 45, the prediction is around 40%, which is quite large with respect to the what is observed in this experiment. This disagreement will also be discussed afterwards. When increasing N m to 1000, the relative dispersion of the parameter variances with respect to the true variance is largely reduced and is close to 3% for all parameters, which is close from the prediction of [START_REF] Taylor | Putting the Precision in Precision Cosmology: How accurate should your data covariance matrix be?[END_REF]. Still, NERCOME results in ∼ 20% lower dispersion of the variance in that case. With this number of simulation, the bias with respect to the true variance is negligible for both estimators and is in agreement with the prediction from [START_REF] Percival | The Clustering of Galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: Including covariance matrix errors[END_REF].

From the above study on the distribution of the variance of parameters, we saw that for N m = 45, both the prediction of the variance on the variance [START_REF] Taylor | Putting the Precision in Precision Cosmology: How accurate should your data covariance matrix be?[END_REF] and the bias on the variance [START_REF] Percival | The Clustering of Galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: Including covariance matrix errors[END_REF] were in disagreement with my results. I recall that these predictions were derived under the assumption of Gaussian likelihood and posteriors. As stated in the introduction of this chapter, the fact that I am varying the neutrino mass could produce a non-Gaussian posterior. This is indeed the case, as shown in figure 3.17, that exhibits the 2D and 1D marginalised posteriors resulting from one of the MCMCs, in the S45 case. The neutrino mass is peaking near 3. Optimal parameter inference with the power spectrum including massive neutrinos -3.2. Covariance effects on cosmological parameter estimation the diagonal of the parameter covariance matrix) relatively to the variance estimated with the true covariance. In addition the last column correspond to the prediction from [START_REF] Taylor | Putting the Precision in Precision Cosmology: How accurate should your data covariance matrix be?[END_REF]. The second row presents the reduction of the variance on the variance thanks to NERCOME. The third row presents the relative difference between the averaged variance over all selected fits, with respect to the true variance. In addition the last column correspond to the prediction from [START_REF] Percival | The Clustering of Galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: Including covariance matrix errors[END_REF] the m ν = 0 prior bound, resulting in a sliced Gaussian on one side of the posterior, which also slightly affects the Ω b -Ω cdm parameter plan.

Var σ 2 θ /σ 2 θ,Truth [%] Ω b Ω cdm h m ν 2/(N m -N b -4) [%] Standard, N m =
In total, for S45 and N45 I find respectively 13 and 1 similar cases of non-Gaussian posteriors 9 and 0 for both S1000 and N1000. To check whether the disagreement between predictions and estimations of both the variance and the bias on the variance of cosmological parameters, comes from the non-Gaussianity of the posterior, I removed the non-Gaussian posteriors from the sample and recomputed the statistics of the distributions. However, it only mildly affected the estimation of both the variance on the variance and the bias on the variance, still resulting in the same disagreement with the predictions.

A possible reason for this disagreement could be that the likelihood of the power spectrum is not Gaussian. Indeed, we usually assume that it is the case but, as shown 3. Optimal parameter inference with the power spectrum including massive neutrinos -3.2. Covariance effects on cosmological parameter estimation by [START_REF] Blot | Matter power spectrum covariance matrix from the DEUS-PUR ΛCDM simulations: mass resolution and non-Gaussian errors[END_REF] for example, the distribution of the power spectrum shows deviations from Gaussianity, especially at low k. While these deviations should be small, on average they could impact the distribution of cosmological parameter errors and explain the disagreement between the prediction of [START_REF] Taylor | Putting the Precision in Precision Cosmology: How accurate should your data covariance matrix be?[END_REF] and [START_REF] Percival | The Clustering of Galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: Including covariance matrix errors[END_REF], and the results presented here. This is still to be explored.

In conclusion, we saw that NERCOME reduces the variance of the stochastic shift of the best-fit, due to sampling noise, which is the dominant effect at low N m . But, with this covariance estimator, the errors on the fitted parameters are systematically overestimated. This bias is still low enough compared to the gain in the reduction of the best-fit dispersion. Therefore, NERCOME is a handy tool to reduce sampling noise effects when N m is low compared to N b and N p , with a negligible computing cost compared to the standard estimator. Furthermore, it does not require any knowledge about the targeted covariance matrix. This analysis also allowed to compare the various effects of sampling noise, estimated from the distribution of best-fits and errors, with the predictions given in [START_REF] Dodelson | The Effect of Covariance Estimator Error on Cosmological Parameter Constraints[END_REF], [START_REF] Taylor | Putting the Precision in Precision Cosmology: How accurate should your data covariance matrix be?[END_REF] and [START_REF] Percival | The Clustering of Galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: Including covariance matrix errors[END_REF]. While the dispersion on the best-fit is in good agreement with the prediction, the variance on the variance and the bias on the variance are not. This puts in perspective the assumptions made to derive these predictions, especially the Gaussianity of the likelihood. Still, it has to be kept in mind that the statistics considered for this comparison were derived from a rather low sample of fits, 100. A larger sample would be needed to reach a firm conclusion.

After studying the reliability of NERCOME for parameter estimation, the next section presents a validation test for covariance matrices estimated from Covmos mock catalogs.

Reduction of sampling noise with Covmos

Thanks to the efficiency of Covmos to produce a high number of mock realisations, the effect of sampling noise in the precision matrix can be reduced to a negligible contribution. However, it is not guaranteed that the method results in an unbiased covariance. Indeed, we saw in section 3.1.2 that Covmos overpredicts non-diagonal elements of the covariance at low redshift, in the range k = [0.1, 0.3] h/Mpc. It is therefore important to asses whether these deviations, in the Covmos covariance with respect to the accurate (but noisy) DEMNUni-Cov covariance, bias the estimation of cosmological parameters.

Due to the large influence of sampling noise (c.f. section 3.2.2), it is difficult to compare the results of the parameter estimation obtained with the DEMNUni-Cov covariance to Covmos. Another point of comparison can be the NERCOME estimate of the DEMNUni-Cov covariance, which should be less subject to sampling noise effects. While we saw in the previous section that NERCOME covariances give unbiased estimations of the best-fit, the method have a tendency to overpredicts the errors. It is necessary to keep this in mind for the following comparison.
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Because I want to test the capability of Covmos to provide an unbiased parameter estimation in a realistic case, the fits are carried out on the DEMNUni-Cov power spectrum (not on the covmos_halofit ones, as in the previous section). In consequence, for this analysis, the reference values of cosmological parameters are the fiducial ones. To isolate the effect of the covariance, I do not consider k max > 0.2 h/Mpc, because above this k the model can't be trusted (c.f. section 3.2.2). The Covmos covariance matrix I use is the one presented in section 3.1.2, i.e. estimated from N m = 10 000 catalogue-P (k)10 , which have been cloned from the DEMNUni-Cov simulations. Finally, to account for the intrinsic noise in the data vector, the fits are done for three different data vectors (each containing the power spectrum at the five redshifts):

DEMNUni-Cov01-05, DEMNUni-Cov06-10 and DEMNUni-Cov46-50. The numbers correspond to the identification of the simulations. For example, the DEMNUni-Cov01-05 data vector contains the simulation 01 for z = 0, 02 for z = 0.5, 03 for z = 1 and so on. When the covariance is estimated from the DEMNUni-Cov simulations, I only use the 45 remaining simulations.

Figure 3.18 displays the outcome of the parameter estimation for k max between 0.1 h/Mpc and 0.2 h/Mpc. To understand this rather busy figure, I summarise the relevant information in the following points:

• Some points features asymmetric error-bars, indicating that the posteriors are not Gaussian, especially at low k. This is mostly due to the fact that, in some cases the estimation of m ν is compatible with 0, forcing the posterior to be cut at the low boundary of the prior on this parameter.

• At k max = 0.1 h/Mpc, for all parameters, and covariances, the scatter on the best-fit, for the different data-sets is larger than for higher k max . This comes from the intrinsic variance of the power spectrum which is larger on large scales and is also reflected in the parameter error-bars which, are larger for this scale cut.

• On the left panel, corresponding to the standard DEMNUni-Cov covariance, we can see a large scatter of the best-fit across the k max range. The same applies for the χ 2 . This indicates that with such covariance, we can potentially have an estimation of cosmological parameters which greatly deviates from the truth, by more than 3σ in some cases. It was expected and already observed in section 3.2.2.

• In contrast, by looking at the middle panel, the DEMNUni-Cov covariance estimated with NERCOME, exhibits more stable constraints with respect to k max , thanks to the diminution of the best-fit scattering observed in the previous section. However, in some cases we see a systematic deviation from the fiducial cosmology, larger than 1σ. This is present especially in the case of the DEMNUni-Cov06-10 data-set, which does not agree with the two others, especially for Ω cdm , h and m ν . This disagreement mainly comes from residual sampling noise in the NERCOME estimate of the DEMNUni-Cov covariance matrix. For The top rows show the relative difference with respect to the fiducial cosmology for each parameter and the bottom row the χ 2 /n dof .

3. Optimal parameter inference with the power spectrum including massive neutrinos -3. what regards the χ 2 /n dof , it tends to be lower than 1 for DEMNUni-Cov01-05 and 46-50, which are the realisations giving the best parameter estimation. This is a hint that a χ2 estimated with a NERCOME covariance does not actually follow a χ 2 distribution. Indeed, nothing tells us that it is the case.

• Finally, on the right panel, when the parameters are estimated, using the Covmos covariance matrix, the best-fits are generally more centered on the fiducial values. This can be seen especially in the case of the DEMNUni-Cov06-10 data vector. Considering all the data-sets, the Covmos covariance gives a close to 1σ agreement for all parameters in the k max range [0.15, 0.2] h/Mpc. In addition, the χ 2 /n dof is stable and close to 1 on all cases.

After studying the bias in the best-fit, let's focus on the errors. In figure 3.19, I present the FoM with respect to k max , for all the considered cases. The following points summarise the important information in this figure :   • As expected, the FoM increases with k max , because the number of available modes in the power spectrum increases.

• Similarly to the best-fit, the FoM is scattered along the k max range in the case 3. Optimal parameter inference with the power spectrum including massive neutrinos -3.2. Covariance effects on cosmological parameter estimation of the standard DEMNUni-Cov covariance. This dispersion is lessen for the two other covariances.

• In the case of the standard and NERCOME estimation of the DEMNUni-Cov covariance, the FoM also presents a dispersion among the three data vectors, which is less important for Covmos. This is a combined effect of both changing the data and the covariance for the first two cases11 , while the Covmos covariance is fixed.

• Despite this dispersion, the standard DEMNUni-Cov covariance generally results in a higher FoM than in the case of Covmos, while NERCOME gives a slightly lower FoM for k max > 0.15 h/Mpc.

To complete the analysis on the errors, in figure 3.20, I compare the errors on each parameter obtained with the DEMNUni-Cov covariance for the two estimators, with the errors obtained with Covmos. Because in some cases, the errors are not symmetric, I take the mean between the upper and lower bound. 3. Optimal parameter inference with the power spectrum including massive neutrinos -3.2. Covariance effects on cosmological parameter estimation

As expected from the above discussion on the FoM, we see that the errors obtained with the standard DEMNUni-Cov covariance are systematically lower than in the case of Covmos.

For Ω b , Ω cdm and h, the relative difference is between 10 and 30% depending on the k max , while for m ν it goes down to almost 40% at k max = 0.13 h/Mpc. With NERCOME, the errors are closer to Covmos. When looking at the FoM (c.f. figure 3.19), we observed larger overall errors (i.e. lower FoM) for NERCOME than for Covmos, at k max > 0.15 h/Mpc. While here, it seems to be the case for Ω b and h, it is not for Ω cdm and m ν . So we cannot conclude that NERCOME covariance leads to significantly larger errors than Covmos.

I recall that in the previous section, for N m = 45, we observed an averaged bias in the estimation of parameter errors, in the case of NERCOME, which is between 30 and 60%. So, from the above observation that NERCOME and Covmos result in similar errors, and assuming that the aforementioned bias of NERCOME remains the same here, it means that Covmos also leads in overestimated errors, by at least 30%.

To recap, we learnt from the above study that Covmos can produce a covariance matrix which leads to a less than 1σ bias on the best-fit of cosmological parameters. However, the errors we get with this method seem to be overestimated. It can be related to what was observed in section 3.1.2, where we saw that the Covmos covariance matrix has larger non-diagonal elements than expected. This could hardly be quantified at the level of the parameter estimation, because the points of comparison available were either the standard DEMNUni-Cov covariance, which is highly affected by sampling noise, or the NERCOME estimate, which gives overestimated error-bars, still with a large scatter. A larger set of N-body simulations is needed to have a precise reference, in order to accurately quantify the bias on cosmological parameter errors in the case of

Covmos.

In any case, it remains that thanks to Covmos it is possible to completely erase the effects of sampling noise, at the cost of a negligible computing time compared to N-body simulations. Note that, such noise effects are way more important at low N m , especially for the best-fit, than the bias in the errors obtained with Covmos. Thus, in the following I will keep on with the Covmos covariance.

Impact of the trispectrum contribution to the covariance on cosmological constraints

Now that I have tested the validity of the full non-Gaussian covariance, estimated with Covmos, I can quantify the impact of the trispectrum contribution (i.e. the non-Gaussian term C NG in Eq. (2.58)) on cosmological constraints. We saw in section 3.1.1 and 3.1.2 that this contribution has two effects on the covariance: it increases the variance on non-linear scales, with respect to the Gaussian approximation and it produces positive correlations between Fourier modes. This could potentially degrade cosmological constraints. The question is then: by how much ?

To answer this question, I run parameter constraints through MCMCs, using either the theoretical Gaussian covariance covariance, or the full non-Gaussian covariance 12 3. Optimal parameter inference with the power spectrum including massive neutrinos -3.2. Covariance effects on cosmological parameter estimation estimated with Covmos. In addition, I also compare the results obtained when only the diagonal contribution of the non-Gaussian covariance is included. In this way it is possible to asses which part of the covariance has the greatest influence on cosmological constraints. I use the same fitting methodology as before, with the DEMNUni-Cov46-50 data-set in the 16ν cosmology, for the k max range [0.1, 0.2] h/Mpc.

Figure 3.21 displays the constraints on each parameter compared to the fiducial cosmology, along with the χ 2 /n dof . As seen before, there is a large deviation from the fiducial cosmology at k max = 0.1 h/Mpc, especially for h and Ω cdm , because of the large variance on the power spectrum at low k. Above k max = 0.1 h/Mpc, the fiducial cosmology is rarely outside the 1σ region, except for k max > 0.2 h/Mpc, where the non-linear power spectrum modeling starts to fail.

Both the best-fit and errors are very similar for the Gaussian and diagonal non-Gaussian covariance, at all k max . When adding the non-diagonal elements to the non-Gaussian covariance, we can see small deviations in the best-fit with respect to the two other cases, especially for Ω cdm and m ν , at k max ∼ 0.2h/Mpc. These deviations slightly moves the best-fit away from the fiducial cosmology. However, it is compensated by the increase in the error-bars.

This can be observed in figure 3.22, where the FoB for the full covariance shows a lower overall bias compared to the two other covariances, at all k max . In particular, the full covariance always results in a less than 1σ bias for k max < 0.18 h/Mpc. Generally, for all three covariances, the FoB stays inside the 2σ confidence interval, except for k max > 0.2 h/Mpc, where it goes above 3σ.

Looking at the FoM in figure 3.23, we see that while the diagonal non-Gaussian elements only mildly impact the constraints compared to the Gaussian covariance, with a ∼ 10% reduction of the FoM, the full non-Gaussian covariance has a significant effect. For this last case, the damping of the FoM with respect to the Gaussian covariance, increases with k max and goes from 20 to 60%.

The increase in the marginalised errors, when accounting for the non-Gaussian covariance, is shown for each individual parameter, in figure 3.24. Again, it confirms that non-Gaussian diagonal elements has a negligible influence on parameter errors for the scales probed in this analysis. The most impacted parameters by the nondiagonal elements are Ω cdm and h, showing an error enhancement going from 10 to 50%, when increasing the k max . The errors on the two other parameters present a maximum relative difference, with respect to the Gaussian case, of 10 and 20% for m ν and Ω b respectively.

Finally, the shape of the 2D and 1D marginalised posteriors are displayed in figure 3.25, for k max = 0.19 h/Mpc. The strong correlation between Ω cdm and h exhibited in that figure, could explain why these are the two most impacted parameters by the non-Gaussian covariance.

To conclude, I found that the non-Gaussian covariance brought by the trispectrum has a non-negligible impact on cosmological constraints derived with the matter power spectrum, on a range of scale going up to k max = 0. 3. Optimal parameter inference with the power spectrum including massive neutrinos -3.2. Covariance effects on cosmological parameter estimation showed that the main actors for this, are the correlations between Fourier modes, carried by the non-diagonal elements of the covariance. However, one has to keep in mind a few things with regard to this analysis. First, as seen in section 3.2.4, parameter errors obtained when using a Covmos covariance matrix, can be overestimated by 30%. So, this result should be compared to other similar analyses, using different approaches for the prediction of the covariance. Second, this analysis was realised on the real space matter power spectrum. The inclusion of RSD and galaxy bias could mitigate this result. For example, Wadekar et al. (2020) found that the effect of non-Gaussian covariance on parameter errors could be absorbed by the marginalisation over nuisance parameters, such as the galaxy bias. Finally, while it is interesting to have a feeling of the impact of the non-Gaussian covariance, purely coming from the non-linear clustering of matter, I neglected another source of non-Gaussian covariance, that is SSC. Indeed it would be interesting to compare the relative contribution of these sources of covariance, to the total error budget of cosmological parameters. In the mean time, [START_REF] Li | Galaxy power-spectrum responses and redshift-space super-sample effect[END_REF] showed that SSC doesn't have a significant repercussion on cosmological constraints, derived from the redshift space galaxy power spectrum.
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Power spectrum non-linear modeling challenge with massive neutrinos

If we want to achieve unbiased estimation of cosmological parameters through likelihood analyses, all parts of the likelihood have to be thoroughly controlled. While the previous section was dedicated to the covariance matrix of the power spectrum, here I will focus on the model which is fitted to the data. As stated in the introduction, I am interested in comparing different non-linear prescriptions for the matter power spectrum, to the DEMNUni-Cov simulations, in order to asses their accuracy, especially in a massive neutrino cosmology. Note that throughout this section, I fix the covariance matrix to be the Covmos one, estimated with 10 000 catalogues.

First, I will present the different non-linear prescriptions I have chosen to compare. Then I will study the difference in the power spectrum predictions, for the fiducial cosmology, with respect to DEMNUni-Cov. Finally, I perform a MCMC analysis with the DEMNUni-Cov to quantify the bias of each model, at the level of the estimated parameters.

Choice of non-linear prescriptions

Many prescriptions for modeling the non-linear part of the power spectrum have been developed over the years, with different approaches. One is based on the result of N-body simulations, which accurately describe the non-linear evolution of the density field. To avoid time consuming runs of simulations for every cosmological parameter values, one can design functions with free parameters depending on the shape of the power spectrum, that can be fitted to a limited set of N-body simulations. The most popular model based on this approach is Halofit [START_REF] Smith | Stable clustering, the halo model and nonlinear cosmological power spectra[END_REF]. Another similar model, with a different type of fitting function is HMcode [START_REF] Mead | An accurate halo model for fitting non-linear cosmological power spectra and baryonic feedback models[END_REF]. These are the two first models I will consider.

Such methods can be criticised because of their empirical approach and their reliance on simulations. It is thus interesting to compare with a parallel approach, which consists in a purely analytic prediction of the mildly non-linear power spectrum, based on PT. For this prescription, I will consider the publicly available code, RegPT [START_REF] Taruya | RegPT: Direct and fast calculation of regularized cosmological power spectrum at two-loop order[END_REF].

Empirical fitting-formula with Halofit

Halofit is one of the most widely employed prescription to model the non-linear power spectrum, for both weak lensing and galaxy clustering analyses. First presented in [START_REF] Smith | Stable clustering, the halo model and nonlinear cosmological power spectra[END_REF], it is based on an empirical approach to design formula with free parameters, describing the shape of the power spectrum in the quasi-linear and non-linear regimes. These free parameters are then fitted to large sets of N-body simulations with varying cosmologies.

The Halofit fitting-formulae were derived following the approach of the halomodel [START_REF] Ma | Deriving the Nonlinear Cosmological Power Spectrum and Bispectrum from Analytic Dark Matter Halo Profiles and Mass Functions[END_REF][START_REF] Peacock | Halo occupation numbers and galaxy bias[END_REF][START_REF] Seljak | Analytic model for galaxy and dark matter clustering[END_REF], in which the density 3. Optimal parameter inference with the power spectrum including massive neutrinos -3.3. Power spectrum non-linear modeling challenge with massive neutrinos field is described by the interaction of virialised dark matter haloes. In this framework, the power spectrum is decomposed into two contribution: the gravitational interaction of haloes with each other on large scales and the non-linear clustering of dark matter inside the haloes on small scales. By defining the dimensionless power spectrum as

∆ 2 (k) ≡ V (2π) 3 4πk 3 P (k), (3.16)
where V is a volume normalisation, the non-linear power spectrum can then be decomposed in two terms

∆ 2 NL (k) = ∆ 2 Q (k) + ∆ 2 H (k).
(3.17)

∆ Q corresponds to the large scale, quasi-linear clustering of haloes and ∆ H to the nonlinear clustering of dark matter inside the haloes. These two terms are also usually referred to as the 2-halo and 1-halo term, respectively. Following [START_REF] Peacock | Halo occupation numbers and galaxy bias[END_REF], the first term in Eq. (3.17) could be considered as the purely linear power spectrum, ∆ 2 L (k). But in order to allow for the 1-halo term to dominate on small scales, [START_REF] Smith | Stable clustering, the halo model and nonlinear cosmological power spectra[END_REF] chose to apply a cut to ∆ 2 Q (k), to suppress its contribution on non-linear scales. This result in the following fitting formula

∆ 2 Q (k) = ∆ 2 L (k) [1 + ∆ 2 L (k)] β n 1 + α n ∆ 2 L (k) e -f (y) , (3.18) 
where α n and β n are free parameters to be fitted to simulations, f (y) = y/4 + y 2 /8 and y ≡ k/k σ , with k σ the non-linear wavemode at which the variance of the density field is unity.

In the halo-model, the 1-halo term is given by

P H = 1 ρ2 (2π) 3 dM n(M )| ρ(k, M )| 2 , ( 3.19) 
which depends on the halo-mass function n(M )dM and the Fourier transform of the halo density profiles ρ(k, M ). It means that on scales smaller than a halo typical size, the power spectrum follows the shape of the halo density profiles, weighted by their distribution with respect to their mass. However on larger scales, where the internal structure of haloes is not probed, this term should only correspond to the self interaction of a point with itself. Thus ∆ 2 H (k) can be modeled as a Poisson shot-noise term on large scales, progressively reduced on small scales by the filtering effects of halo profiles and the halo-mass function. For Halofit, [START_REF] Smith | Stable clustering, the halo model and nonlinear cosmological power spectra[END_REF] chose the following function to describe this behaviour

∆ 2 H (k) = ∆ 2 H (k) 1 + µ n y -1 + ν n y -2 , with ∆ 2 H (k) = a n y 3 1 + b n y + c n y 3-γ n , ( 3.20) 
where (a n , b n , c n , γ n , µ n , ν n ) are free parameters to be fitted to N-body simulations.
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Once the values of all the free parameters have been fitted to N-body simulations,

Halofit can output a non-linear power spectrum, given an input linear power spectrum on a wide range cosmological parameters values. However, in the first version of Halofit the reference N-body simulations did not include massive neutrinos.

This issue was investigated by [START_REF] Bird | Massive Neutrinos and the Non-linear Matter Power Spectrum[END_REF], who found that massive neutrinos could significantly impact the Halofit prescription, especially in the strongly nonlinear regime (k ∼ 1 h/Mpc). Thus, they provided an improved version of the fittingfunctions, accounting for these effects. Subsequent to this improvement, [START_REF] Takahashi | Revising the Halofit Model for the Nonlinear Matter Power Spectrum[END_REF] released an new version of Halofit, where the fitting-functions were calibrated on higher resolution N-body simulations, to enlarge the range of validity of the prescription to even smaller scales, k ∼ 30 h/Mpc.

Both of these improvements have been implemented in CLASS, and I will use this so called "TakaBird" version of Halofit for the comparison presented in this section.

Physically motivated fitting-formula with HMcode

A usual criticism made toward the Halofit prescription, is the fact that the fittingformula described above are empirical. HMcode (first presented in [START_REF] Mead | An accurate halo model for fitting non-linear cosmological power spectra and baryonic feedback models[END_REF] consists in a similar approach, but introduces physically motivated parameters in the halo-model to be fitted to N-body simulations. In addition, they included free parameters describing the baryonic effects arising at really small scales (k > 10 h/Mpc), that are then fitted to hydrodynamical simulations. While I will not consider these effects here13 , it is still interesting to compare the widely used Halofit prescription, with this more physically motivated approach.

An updated version of HMcode, presented in [START_REF] Mead | Accurate halo-model matter power spectra with dark energy, massive neutrinos and modified gravitational forces[END_REF], includes massive neutrino effects on the power spectrum, but only at the linear level. This means that they did not considered non-linear neutrino clustering on scales similar to the size of haloes. They showed that this improved the accuracy of the prediction on mildly nonlinear scales (k ∼ 0.1 -0.6h/Mpc), especially for low neutrino masses. This version of

HMcode has recently been implemented in CLASS.

A third version of the model was released in [START_REF] Mead | HMcode-2020: Improved modelling of non-linear cosmological power spectra with baryonic feedback[END_REF], in which they further improved the treatment of massive neutrinos, at the level of halo formation, resulting in a better agreement on wavemodes k > 1 h/Mpc. While this gain could be significant for weak lensing analyses, galaxy clustering is usually restricted to lower k, due to non-linear RSD and galaxy bias effects. In addition, this version has not yet been implemented in CLASS, so I will stick to the previous one in this analysis.

Regularised perturbation theory with RegPT

In parallel to hybrid methods, depending on N-body simulations, such as Halofit and HMcode, one can also try to describe the evolution of the matter density contrast field 3. Optimal parameter inference with the power spectrum including massive neutrinos -3.3. Power spectrum non-linear modeling challenge with massive neutrinos in a purely analytical way. The only approach physicists know to describe non-linear physics is through perturbation theory (PT).

In cosmological standard PT [START_REF] Bernardeau | Large-Scale Structure of the Universe and Cosmological Perturbation Theory[END_REF], the δ(k) field is expended in a power series of the linear field as,

δ(k, z) = n D n (z)δ (n) (k) ≡ n δ n , (3.21) 
where D(z) is the linear growth factor. The δ (n) correspond to the different orders in the linear field expansion and are expressed in integrals over n Fourier modes of n-th order kernels mixing the modes, thus characterising the mode-coupling arising in the non-linear regime.

From the definition of the power spectrum, we can write

〈(δ 1 + δ 2 + δ 3 + ...)(δ 1 + δ 2 + δ 3 + ...)〉 = P (k)δ D (k + k ). (3.22)
The non-linear power spectrum can then be expressed as the linear order term P 11 (k) = P L (k), plus some higher-order corrections as

P NL (k) = P L (k) + P 1-loop (k) + P 2-loop (k) + ..., (3.23) 
where the loops refer to a Feynman diagram interpretation of the power expansion of P L (k).

To improve the convergence of these high-order terms, [START_REF] Taruya | RegPT: Direct and fast calculation of regularized cosmological power spectrum at two-loop order[END_REF] proposed a reorganisation of standard PT, which results in a better performance on mildly nonlinear scales. This is the so-called regularised PT, that was implemented in the public code RegPT, with a fast computation method to predict the non-linear power spectrum up-to 2-loops. It can then be applied to MCMC analyses, involving numerous evaluation of the non-linear power spectrum in cosmological parameter space. This approach have been widely followed for standard galaxy clustering analyses [START_REF] De Mattia | The Completed SDSS-IV extended Baryon Oscillation Spectroscopic Survey: measurement of the BAO and growth rate of structure of the emission line galaxy sample from the anisotropic power spectrum between redshift 0.6 and 1.1[END_REF].

However, the standard perturbative approach should be modified in the presence of massive neutrinos. Indeed, neutrino free streaming induces a scale dependence on the growth factor (c.f. section 1.2.3), that invalidates the usual perturbative schemes which are based on the factorisation of time evolution in the PT kernels (the so-called Einstein-de Sitter approximation). Thus, following [START_REF] Castorina | DEMNUni: The clustering of large-scale structures in the presence of massive neutrinos[END_REF], I give as an input of RegPT, the linear CDM+baryons power spectrum, so that massive neutrinos are only treated at the linear level. In addition, at any redshift, the input must be given as a "fake z = 0". Indeed, to predict the non-linear power spectrum with RegPT at any given redshift, one has to give the linear power spectrum at z = 0 in input and the code internally rescales the power spectrum with the linear growth factor, to output it at the requested redshift. But, this internal redshift rescaling is done without accounting for the scale dependence of the growth factor, induced by massive neutrinos. To avoid this problem, one can trick RegPT, by giving as input the linear power spectrum at the desired 3. Optimal parameter inference with the power spectrum including massive neutrinos -3.3. Power spectrum non-linear modeling challenge with massive neutrinos redshift and with the right linear growth factor, but ask to output the power spectrum at z = 0, to ensure that the code does not make any internal rescaling with the wrong linear growth factor. While progress has recently been made toward a proper non-linear treatment of massive neutrinos in PT [START_REF] Blas | Structure formation with massive neutrinos: going beyond linear theory[END_REF][START_REF] Senatore | The Effective Field Theory of Large-Scale Structure in the presence of Massive Neutrinos[END_REF], it has been shown that in this case the power spectrum differs by only a few percents from the case of a linear treatment of neutrinos. It is therefore interesting to test whether this approximation can bias the estimation of cosmological parameters. Above these scales, we can see different behaviours depending on the non-linear prescription. Halofit and HMcode are able to reproduce the non-linear DEMNUni-Cov power spectrum up to k ∼ 1 h/Mpc at the 5% level, for all redshifts. However, we can see some oscillations in the k range [0.1, 0.4] h/Mpc, exposing the difficulty of both models to accurately predict the BAO wiggles in the power spectrum, especially at low redshift. While at low redshift Halofit is slightly closer to DEMNUni-Cov than HMcode, this tendency is inverted for z > 1.

Comparison for the fiducial cosmology

With RegPT, the non-linearities are overestimated for z = 0, so that the agreement with DEMNUni-Cov is surprisingly worse than the linear prediction for, k between 0.05 and 0.1 h/Mpc. I checked that this also happens in the DEMNUni-Cov mass-less neutrino cosmology, so that it can't be an effect of a wrong treatment of massive neutrinos. For z = 0.5, the agreement is within 3% up to the critical wave-mode for which PT breaks down, that is k ∼ 0.2 h/Mpc. For z between 1 and 2, the relative difference is always lower than 1% up to k between 0.25 and 0.35 h/Mpc.

To further test the validity of the considered models, I perform a goodness-offit test with the χ2 estimated at the fiducial cosmology and for k max in the range [0.1, 0.275] h/Mpc. In order to precisely isolate the effect of non-linearities for each redshift, the test is done independently for the 5 redshifts and repeated for the 50 DEMNUni-Cov realisations. In figure 3.27, I show the percentage of times the model is rejected, over the 50 realisations, with respect to k max .

As expected, the linear prediction is always rejected for high k max at all redshifts. Again, this gives an indication of the scale at which non-linearities start to be important. For all redshifts and k max the rejection rate of Halofit stays below 50%. At high k max it goes from 50% to less than 10% for z between 0 and 1.5, and then slightly increases for z = 2.

In the case of HMcode, the model is rejected more than 50% of the time for k max > 0.15 h/Mpc at z = 0 and k max > 0.2 h/Mpc at z = 0.5. For larger redshifts, it stays below 10% and even goes down to 0% for z = 2. (purple). The grey shaded areas denote a 10% and 50% rejection rate.

3. Optimal parameter inference with the power spectrum including massive neutrinos -3.3. Power spectrum non-linear modeling challenge with massive neutrinos For RegPT, above a critical wave-mode depending on the redshift, the rejection rate of the model shows a steep increase up to 100%. Below this critical mode, the model is almost never rejected. In particular, the rejection rate is below 10% up-to k max = 0.275 h/Mpc for z between 1 and 2. While these tests cannot be taken as a quantitative measure of the biases in the considered non-linear prescriptions, they give an idea of their performance and confirm what we have seen before, at the level of the power spectrum. Halofit performs better at low redshift than HMcode and RegPT. In particular, at z = 0, RegPT and HMcode seems to be strongly biased on mildly non-linear scales. While this bias is reduced for RegPT at z = 0.5, HMcode is still in poor agreement with the N-body results.

For larger redshifts, the non-linear part of the power spectrum is fairly well predicted with all prescriptions, up to k max ∼ 0.25 h/Mpc, with however a slight disagreement for Halofit at z = 2.

In the next section I will evaluate the bias on each fitted parameter for the three models.

Parameter estimation

Given the poor agreement of RegPT and HMcode with the DEMNUni-Cov power spectrum, at z = 0, we can already guess that the parameter estimation with these two models will be highly biased. Almost as biased as with the linear prediction. In order not to pollute the parameter estimation with this redshift, I choose to discard it in the following and to only fit the power spectrum at z = 0.5, 1, 1.5 and 2.

To have a precise estimation of the bias on cosmological constraints coming from the power spectrum modeling, I perform the fit on the averaged power spectrum over the different DEMNUni-Cov realisations. However, for the same reasons discussed in section 3.1.1, the 4 fitted redshifts must be taken from independent realisations. From the set of 50 realisations, I can form 4 sets of 12 realisations each, and average the power spectrum on each of these sets at the 4 different redshifts. In this way the data vector is composed of 4 independent redshifts and the off-diagonal blocks of the covariance matrix corresponding to redshift correlations can be neglected.

Even though I run the fit on an averaged power spectrum over 12 realisations, the covariance matrix has the amplitude corresponding to the variance over 1 realisation. This means that the absolute size of the parameter error-bars is not representative of the noise present in the data-vector. The same applies for the χ 2 . However, the error-bars can still be considered to quantify the amplitude of the bias on the best-fit with respect to the fiducial cosmology.

Regarding the set of fitted cosmological parameters, I decide to vary ω b ≡ Ω b h 2 , ω cdm ≡ Ω cdm h 2 , rather than Ω b and Ω cdm , which are correlated with h. Although, this choice doesn't affect the parameter estimation, it allows to isolate the biases for each parameters when visualising the constraints. For example, if for some reason the estimation of h is biased, so will Ω b and Ω cdm , while ω b and ω cdm could be unbiased. The priors on the varied parameters are shown in table 3.4.

3. Optimal parameter inference with the power spectrum including massive neutrinos -3. The parameters estimated with the linear prediction start deviating by more than 1σ from the fiducial cosmology, for k max > 0.13 h/Mpc. Looking at the ω b and ω cdm panels, we see that with RegPT, these parameters are estimated with a smaller than 1σ bias, up to k max = 0.23 h/Mpc. With Halofit and HMcode, ω b is slightly underestimated compared to RegPT. This might be due to the poor accuracy with which these prescriptions predict the BAO wiggles. Nevertheless, ω cdm is well estimated for the whole k max range.

For h and m ν , the results are more worrying. With HMcode, while the bias on m ν is small up to the highest k max , it is huge (> 2σ) for h, even at low k max , where the linear prediction still gives reasonable constraints. On the side of RegPT, h is recovered within 1σ up to k max = 0.21 h/Mpc, but m ν is systematically underestimated by ∼ 1σ up to a k max = 0.25 h/Mpc, above which m ν is then overestimated. Halofit is the only prescription which shows a less than 1σ bias on the 4 parameters up to k max = 0.2 h/Mpc. Still, this model systematically underestimates h and overestimates m ν .

We can also note that the error bars on m ν obtained with RegPT are significantly smaller than with the other models. This can also be seen by looking at the FoM in figure 3.29, which is larger with RegPT at all k max . The consequence is that, even if the best-fit values seem to be closer to the fiducial values with RegPT, the smaller error-bars result in a larger overall FoB, as can be seen in figure 3.30. Halofit and HMcode have a similar FoM and FoB. Figure 3.31 exposes the shape of the posteriors for k max = 0.19 h/Mpc and the biases on each parameter for this k max are reported in table 3.5. This perfectly puts in evidence the main results of this parameter estimation: 1) RegPT gives an accurate estimation of all parameters except m ν which is underestimated, 2) HMcode gives an accurate estimation of all parameters, except h which exhibits a more than 2.5σ positive bias, 3) Halofit results in an unbiased constraint of the matter density parameters, but the estimated values of h and m ν are biased by ∼ 0.9σ.

It is interesting to note that the orientation of the ellipses are slightly different comparing RegPT and the two other models. In particular, with RegPT the correlation in the parameter plans (h, ω b ) and (h, m ν ) are less important than for Halofit and HMcode. This might be the reason why RegPT results in smaller error bars.

To better understand what is happening, I show in figure 3.32 the best-fit and fiducial Model 3. Optimal parameter inference with the power spectrum including massive neutrinos -3.3. Power spectrum non-linear modeling challenge with massive neutrinos power spectrum compared to the mean on the 50 DEMNUni-Cov. It seems that for HMcode and RegPT, the main source of bias comes from z = 0.5, while for Halofit it comes from z = 1.5 and z = 2.

δ(ω b )/σ ω b δ(ω cdm )/σ ω cdm δ(h)/σ h δ(m ν )/σ m ν Halofit -0.
In the case of HMcode the best-fit value of h is higher than the fiducial, so that the overall amplitude of the power spectrum is reduced, to be closer to DEMNUni-Cov. As the influence of h decreases for high z (c.f. figure 1.13), the redshifts larger than 0.5 still result in good fits. Note that the change in amplitude of the power spectrum could also be tuned by varying the neutrino mass, as shown by the orientation of ellipses in the plan of these two parameters (c.f. figure 3.31). This means that the large bias found on h with HMcode, might come from a poor treatment of massive neutrino effects with this prescription. If this is true, it is surprising to see that this effect is completely transferred on h, resulting in a 2.6σ bias on this parameter.

For RegPT, in the fiducial cosmology, the power spectrum has a slightly lower amplitude than DEMNUni-Cov on mildly non-linear scales. I checked that there is a similar lack of amplitude on these scales in the mass-less neutrino DEMNUni-Cov simulations, so that it cannot be due to a poor treatment of massive neutrinos in the case of RegPT. Still this lack of amplitude is compensated by reducing the neutrino mass, thus resulting in a systematic underestimation of m ν with RegPT.

In conclusion this comparison revealed different biases in the non-linear models that were considered. These biases mainly concerns h and m ν . In addition, we saw that using RegPT leads to a smaller error on m ν than with the other models.

However, further investigations are needed to understand these results. First, it could be interesting to perform the parameter estimation with the DEMNUni-Cov mass-less neutrino cosmology, fixing m ν to 0. This would help in understanding the biases found on h in the case of Halofit and HMcode. Furthermore, running the fits without z = 0.5, could tell us whether it is indeed this redshift which biases the estimation of m ν with RegPT. Moreover, I performed the MCMC on the DEMNUni-Cov power spectrum averaged on 12 realisations and used a covariance matrix which is not representative of this average, but rather of a single realisation. A more rigorous way of doing this analysis would be to run the fits on the multiple realisations of the DEMNUni-Cov power spectrum and to look at the distribution of the estimated best-fits and errors.

For what regards the models, additional tests could be done. In particular, includ- 3. Optimal parameter inference with the power spectrum including massive neutrinos -3.4. Summary of results and conclusions power spectrum on mildly non-linear scales, this point should be kept in mind14 .

Concerning RegPT, more work is needed before concluding that the bias obtained on m ν comes from the lack of a non-linear treatment of massive neutrinos in PT.

Finally, a new approach to model the non-linear power spectrum with PT has received a lot of attention recently, that is the Effective Field Theory of LSS. It has been implemented in different public codes, such as CLASS_PT [START_REF] Chudaykin | Nonlinear perturbation theory extension of the Boltzmann code CLASS[END_REF] to provide a fast computation of the power spectrum, required for the evaluation of the likelihood in a MCMC. Other popular methods to model non-linear scales are based on emulators of the power spectrum from N-body simulations [START_REF] Knabenhans | Euclid preparation: II. The EuclidEmulator -A tool to compute the cosmology dependence of the nonlinear matter power spectrum[END_REF]. It would be interesting to include such prescriptions in the analysis presented above.

Summary of results and conclusions

To prepare the data analyses of future galaxy surveys such as Euclid, it is important to study, with simulated data, the different biases present in the statistical methods commonly used for the inference of cosmological parameters. This was the aim of this chapter, where I particularly focused on the modeling of the real space, non-linear matter power spectrum and the estimation of its covariance matrix. In this section I will summarise the results found in section 3.2 and 3.3. Section 3.2 was dedicated to two aspects of the covariance matrix: the biases coming from its estimation with mocks and the impact of the non-Gaussian covariance on parameter estimation. The first aspect of this study consisted in testing the reliability of two different methods to reduce the effects of a noisy precision matrix.

• The first method, NERCOME [START_REF] Joachimi | Non-linear shrinkage estimation of large-scale structure covariance[END_REF], is an alternative estimator of covariance, based on non-linear shrinkage. I found that, in the case of a low number of mocks, this estimator substantially reduces the dispersion on the best-fit of cosmological parameters. However, this comes with a non-negligible and systematic increase in their errors. In addition, I was able to compare the predictions of the known effects of sampling noise, with the distribution of best-fits and errors estimated from 100 fits of the power spectrum. While the stochastic shift of the best-fit is in good agreement with the prediction of [START_REF] Dodelson | The Effect of Covariance Estimator Error on Cosmological Parameter Constraints[END_REF], the variance and the bias on the errors seems to be lower than the prediction from [START_REF] Taylor | Putting the Precision in Precision Cosmology: How accurate should your data covariance matrix be?[END_REF] and [START_REF] Percival | The Clustering of Galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: Including covariance matrix errors[END_REF] respectively.

• The second method, Covmos [START_REF] Baratta | A new Monte Carlo approach for galaxy clustering analysis[END_REF]Baratta et al., in prep. 2020), aims at estimating the covariance matrix from approximated mocks, that can be produced in a short amount of time. The rapidity of the method allows to generate enough mocks for sampling noise effects to be negligible. However, the accuracy of the resulting covariance matrix must be assessed at the level of parameter estimation. I found that such covariance resulted in an unbiased 3. Optimal parameter inference with the power spectrum including massive neutrinos -3.4. Summary of results and conclusions estimation of cosmological parameters best-fit, with however an overestimation of their errors, comparable to what was found for NERCOME.

The second aspect of this study consisted in comparing the cosmological constraints obtained when assuming a Gaussian covariance or using Covmos's estimate. Where, the latter includes non-Gaussian contributions coming from non-linear matter clustering. I found that this non-Gaussian covariance has a non-negligible impact on parameters error, especially for Ω cdm and h, while m ν and Ω b are only mildly affected. Furthermore, I could identify that the origin of such effect is mainly driven by the off-diagonal terms of the covariance matrix. The impact of another non-Gaussian covariance term, that is SSC, will be investigated in the next chapter. In section 3.3, the attention was directed toward the biases in the modeling of the non-linear matter power spectrum when accounting for massive neutrinos. I considered three non-linear prescriptions and compared them with the DEMNUni-Cov simulations. This comparison was done both at the level of the power spectrum and the estimated cosmological parameters. Two models, Halofit and HMcode, are based on fitting-functions calibrated with N-body simulations and the third one on regularised PT, namely RegPT.

I found that all models were accurately recovering the fiducial values of the simulations for the matter density parameters, ω b and ω cdm . However, the estimation of h and m ν was found to be significantly biased. In the case of Halofit the bias is around 0.9σ for both parameters. For HMcode the neutrino mass estimation is unbiased, but h exhibits a more than 2.5σ deviation from the fiducial value. With RegPT, the bias is rather on m ν , which is underestimated by 1.2σ, while h is accurately recovered. As discussed at the end of section 3.3, this study necessitates additional tests in order to reach firm conclusions on the validity of the non-linear models considered.

To finally conclude on the results presented in this chapter, we saw that if we want to constrain cosmological models using non-linear scales, we will need to go beyond the approximation of a Gaussian covariance for the power spectrum. For this, the estimation of the covariance matrix from mocks can be done with methods such as NERCOME and Covmos, which are promising. However, further investigations of these methods are required to understand the origin of their inherent biases. Additionally, the choice of the non-linear model for the power spectrum must be considered with care, especially if we want to finally measure the total neutrino mass with the precise galaxy clustering data that future surveys will provide.

Although it is interesting to study all these biases in the simple case of the real-space matter power spectrum, to really prepare for the data analysis of Euclid, this kind of work has to be refined to be closer from the actual data we will get. Indeed we need to account for various effects, inherent to galaxy clustering, that will affect both the power spectrum and its covariance. These effects include the galaxy bias, RSD, survey window function and observational systematics.

Impact of Super Sample covariance on future photometric galaxy surveys

An observational limitation that cosmologists will never be able to overcome, is the fact that any cosmological survey can only observe a fraction of the sky which is cut in the radial and angular directions. Owing to this limitation, it is impossible to know whether we live in a large over or under-density of the universe and thus, whether the true amplitude of the density fluctuations is smaller or larger than what we observe. This generates an additional uncertainty on all probes of the Large Scale Structure (LSS), because they depend on this amplitude. This additional covariance, known as Super Sample Covariance (SSC), comes from the non-linear correlation between largescale, linear super-survey modes and small-scale, non-linear modes of the density contrast field.

In chapter 3, I studied the impact of the non-Gaussian covariance of the power spectrum on cosmological parameter estimation (see section 3.2.5). But there, the simulation boxes had periodic boundary conditions, in that sense I was not affected by the finite survey limitation. The non-Gaussian covariance I was considering stems from higher order correlations between modes inside the survey, while SSC comes from correlations between inside and outside survey modes.

First discovered for cluster counts by [START_REF] Hu | Sample Variance Considerations for Cluster Surveys[END_REF], a vast amount of literature has been devoted to SSC recently (Barreira et al. (2018a,b), [START_REF] Chan | Bispectrum Supersample Covariance[END_REF], [START_REF] Lacasa | Covariance of the galaxy angular power spectrum with the halo model[END_REF], [START_REF] Lacasa | Super-sample covariance approximations and partial sky coverage[END_REF], [START_REF] Li | Galaxy power-spectrum responses and redshift-space super-sample effect[END_REF], [START_REF] Takada | Power Spectrum Super-Sample Covariance[END_REF], Takada and[START_REF] Takada | Joint analysis of cluster number counts and weak lensing power spectrum to correct for the super-sample covariance[END_REF][START_REF] Takahashi | An optimal survey geometry of weak lensing survey: minimizing super-sample covariance[END_REF]). Although it has been found to have a small impact on spectroscopic galaxy clustering [START_REF] Li | Galaxy power-spectrum responses and redshift-space super-sample effect[END_REF], it is well known to largely affect cosmological constraints coming from clusters [START_REF] Hu | Sample Variance Considerations for Cluster Surveys[END_REF], weak lensing [START_REF] Barreira | Complete super-sample lensing covariance in the response approach[END_REF], or photometric galaxy clustering [START_REF] Lacasa | The impact of braiding covariance and in-survey covariance on nextgeneration galaxy surveys[END_REF]. For a survey like Euclid, aiming at taking advantage of the cross-correlation of such photometric probes [START_REF] Tutusaus | Euclid: The importance of galaxy clustering and weak lensing cross-correlations within the photometric Euclid survey[END_REF], it will be primordial to account for SSC in the analysis, to avoid a large underestimation of cosmological parameter errors. A way to predict by how much cosmological constraints will be degraded by SSC is to perform a Fisher matrix analysis. The first aim of this chapter is then to study the impact of SSC on cosmological constraints for future photometric surveys, in the context of the so called 3x2-points analysis, combining photometric galaxy clustering, weak lensing and their cross-correlation.

Based on a simple approximation, on the response of the observable to the change in the background density, called the S i j approximation, [START_REF] Lacasa | Fast and easy super-sample covariance of large scale structure observables[END_REF] 4. Impact of Super Sample covariance on future photometric galaxy surveys -4.1.

Super Sample Covariance with the S i j approximation developed a method to compute the SSC term for the auto and cross-correlation of any angular power spectra, C ( ). It is thus very well suited for the analysis of photometric surveys. One major advantage of this method is that SSC can be fully computed analytically, so that all the issues related to sampling noise we discussed in section 3.2 vanish. Along with their publication they released a public version of their code, PySSC.

The first version of PySSC was only considering SSC with a simple assumption of a full-sky coverage, rescaled by the effective fraction of the sky which is observed. Given the origin of SSC, it seems natural to think that taking the actual angular footprint of the survey into account could change the predictions. The second aim of this chapter is to study the impact of a survey angular mask on SSC compared to the full-sky approximation.

In section 4.1, I will describe how SSC can be analytically computed for the C ( ) of different probes in a full-sky, partial-sky and flat-sky survey geometry, and compare these three methods. Section 4.2 will be dedicated to a Fisher forecast including SSC for future photometric surveys, and the impact of the survey geometry through SSC, reporting the results from Gouyou [START_REF] Gouyou Beauchamps | Impact of survey geometry and super-sample covariance on future photometric galaxy surveys[END_REF]. Finally, I will conclude in section 4.3.

I want to stress that the work presented in this chapter was done in tight collaboration with all the authors of Gouyou [START_REF] Gouyou Beauchamps | Impact of survey geometry and super-sample covariance on future photometric galaxy surveys[END_REF].

Super Sample Covariance with the S i j approximation

The effect of SSC on cosmological parameter estimation was first discovered for cluster counts in [START_REF] Hu | Sample Variance Considerations for Cluster Surveys[END_REF], where they called it sample-variance. Following this discovery, [START_REF] Takada | Power Spectrum Super-Sample Covariance[END_REF] derived the expressions for the SSC in the case of the power spectrum and found that it was the dominant contribution to the full covariance. Figure 4.1 clearly shows this result, where the ratio of the total SSC component to the Gaussian component of the covariance is larger than 1 for k > 0.1 h/Mpc, and always larger than, or similar, to the trispectrum term (here noted T 0) coming from non-linear correlations inside the survey. These results were derived in the halo-model formalism, but from the large amount of papers on SSC existing in the literature, different approaches were developed. In this section I will focus on the derivation of the SSC term, following [START_REF] Lacasa | Fast and easy super-sample covariance of large scale structure observables[END_REF]. In a first part, I will derive the basic equations considering observables projected along the line-of-sight. Then I will detail the SSC term assuming three different sky coverage: full-sky, partial-sky and flat-sky. Finally, I will compare these three cases to assess their range of validity in term of redshift and survey area. 

The S i j approximation

As stated in the introduction, SSC arises from matter density fluctuations on wavelengths larger than the size of the survey. Because of these large scale modes the estimation of the background density inside the survey ρ b , will be biased with respect to the mean density of the universe ρ. We can then define the background density contrast inside the survey as window function W( n), the background density contrast can be expressed as

δ b ≡ ρ b - ρ ρ . ( 4 
δ b (z) = 1 Ω S d 2 nW( n)δ(r (z) n, z), (4.2)
where r (z) is the comoving distance, Ω S is the solid angle subtended by the survey and δ is the matter density contrast without any boundaries. 

σ 2 (z 1 , z 2 ) = 〈δ b (z 1 )δ b (z 2 )〉 (4.3) = d 3 k (2π) 3 W (k, z 1 ) W * (k, z 2 ) P (k|z 1,2 ), (4.4)
with W(k) being the Fourier transform of W(x). This quantity is at the basis of SSC and we can see that it strongly depends on the form of the window function. In the next section, I will give explicit expressions for σ 2 (z 1 , z 2 ) in the specific cases of flat-sky, full-sky and partial-sky. Let's consider two observables O 1 and O 2 , taken at redshift z 1 and z 2 . As we want to 4. Impact of Super Sample covariance on future photometric galaxy surveys -4.1. Super Sample Covariance with the S i j approximation focus on projected quantities, we can write them as the integral over the line-of-sight of their density, respectively o 1 and o 2 : O i = dV o i , where dV = r 2 (z) dr dz dz is the comoving volume per steradian and r (z) the comoving distance. The SSC for these observables is then given by [START_REF] Lacasa | Fast and easy super-sample covariance of large scale structure observables[END_REF]:

Cov SSC (O 1 ,O 2 ) = dV 1 dV 2 ∂o 1 ∂δ b (z 1 ) ∂o 2 ∂δ b (z 2 ) σ 2 (z 1 , z 2 ) , (4.5)
where the quantity ∂o 1 /∂δ b (z 1 ) is the non-linear response of the observable to the background shift δ b . As it is a fundamental quantity for SSC and encapsulate some non-trivial and interesting physics, I will come back to it in more detail later on. We take O 1 (respectively O 2 ) to be the angular power spectrum C AB i j ( ) (respectively C C D kl ( )) cross-correlating two LSS probes A and B (respectively C and D) -typically, galaxy clustering and galaxy shear. Each spectra is measured for a redshift bin pair (respectively i j and k l ) and it can be expressed, using the Limber approximation as

C AB i j ( ) = dV W A i (z)W B j (z)P AB (k |z) , (4.6) 
where P AB (k |z) is the 3D power spectrum at k ≡ ( + 1/2)/r (z) and W A i (z) is the kernel of the observable A corresponding to the redshift bin i . A derivation of the C ( ) in the Limber approximation can be found in appendix A. Then, from Eq. (4.6), it follows that ∂o 1 ∂δ b (z 1 ) = W A i (z 1 )W B j (z 1 )

∂P AB ∂δ b (k |z 1 ) (4.7)
and respectively for o 2 . To simplify Eq. ( 4.3) it is assumed that the response of P AB (k |z 1 ) to a change in the background density varies slowly inside the redshift bin compared to σ 2 (z 1 , z 2 ). This is the approximation at the core of this method, called the S i j approximation. In this way, the responses can be approximated as their bin-averaged values

∂P AB ∂δ b (z) = dV W A i (z)W B j (z) ∂P AB /∂δ b (k |z) I AB (i , j ) , ( 4.8) 
with I AB (i , j ) ≡ dV W A i (z)W B j (z) and taken out of the integral. Hence, Eq. (4.5) rewrites

Cov SSC (C AB i j ( ),C C D kl ( )) ∂P AB ∂δ b (z 1 ) ∂P C D ∂δ b (z 2 ) × dV 1 dV 2 W A i (z 1 )W B j (z 1 )W C k (z 2 )W D l (z 2 ) σ 2 (z 1 , z 2 ) .
(4.9)

By defining R AB (k) to be the effective relative response of the considered power spectrum, we have 

∂P AB ∂δ b (k) ≡ R AB (k) P AB (k) . ( 4 
(z) × I AB (i , j ) = dV W A i (z)W B j (z) ∂P AB /∂δ b (k |z) = dV W A i (z)W B j (z) R AB (k ) P AB (k , z) ≡ R AB C AB i j ( ) .
(4.11)

Finally, the matrix S A,B ;C ,D i , j ;k,l is defined as the dimensionless volume-averaged covariance of the background matter density contrast, by

S A,B ;C ,D i , j ;k,l ≡ dV 1 dV 2 W A i (z 1 )W B j (z 1 ) I AB i , j W C k (z 2 )W D l (z 2 ) I C D (k, l ) σ 2 (z 1 , z 2 ) , (4.12)
and the covariance rewrites as:

Cov SSC C AB i j ( ),C C D kl ( ) ≈ R AB C AB i j ( ) × R C D C C D kl ( ) × S A,B ;C ,D i , j ;k,l .
(4.13)

In a nutshell, to compute the SSC of the auto and cross C ( ) of two probes A and B from Eq. (4.13), we need :

• The measured or predicted C ( ).

• The relative response R . This is the core of SSC as it is the quantity describing how the observables vary with a change in the background density δ b . Note that the main assumption allowing to derive the above equations is that the response should vary slowly with redshift compared to σ 2 (z 1 , z 2 ). Regarding the scale dependence of the response, [START_REF] Takada | Power Spectrum Super-Sample Covariance[END_REF] found that on large scales, corresponding to k < 1 h/Mpc, the matter power spectrum has a constant relative response R(k) = 68/21. This is shown in figure 4.3. Furthermore, [START_REF] Lacasa | Fast and easy super-sample covariance of large scale structure observables[END_REF] investigated the scale dependence of the relative response R of the angular galaxy power spectrum, including two other terms which stem from the transition from matter to galaxies. They also found an almost constant response up to = 2000. This will be recalled in section 4.2.1, but note that for the Fisher forecast which will be presented later on, I will assume a constant relative response with for both photometric galaxy clustering and weak lensing. These approximations on the response should be questioned and tested against more accurate treatments, but this is left for future work.

• The S matrix, which gives its name to the approximation. This is the element computed by PySSC. It is an integral over the volume, of the probe's kernel multiplied by the covariance of δ b . The form of the kernels depend on the probes considered and I will detail their expressions for photometric galaxy clustering and weak lensing in section 4.2.1. Regarding σ 2 (z 1 , z 2 ), as mentioned 4. Impact of Super Sample covariance on future photometric galaxy surveys -4.1. Super Sample Covariance with the S i j approximation

Full-sky

From appendix B.1, we have that the covariance of the density background in full-sky is σ 2 full-sky (z 1 , z 2 ) = 1 2π 2 k 2 dk j 0 (kr (z 1 )) j 0 (kr (z 2 ))P m (k|z 1,2 ), (4.14)

where j 0 is the spherical Bessel function. Given that the angular matter power spectrum can be written as (c.f appendix A)

C m z 1,2 ( ) = 2 π k 2 dk P m (k|z 1,2 ) j (kr 1 ) j (kr 2 ) , (4.15) 
I can write σ 2 full-sky as its monopole:

σ 2 full-sky = 1 4π C m z 1,2 ( = 0) . (4.16)
By injecting this expression in Eq. ( 4.12), it yields

S A,B ;C ,D i , j ;k,l = 1 4π C X ,Y ( = 0) , (4.17) 
where C X ,Y ( = 0) is the angular power spectrum of the non-physical field1 

X ( n) = dV W A i (z)W B j (z) δ m (r n) dV W A i (z)W B j (z) , (4.18) so that C X ,Y ( = 0) = dV 1 dV 2 k 2 dk W A i (z 1 )W B j (z 1 ) W A i (z 1 )W B j (z 1 ) W C k (z 2 )W D l (z 2 ) W C k (z 2 )W D l (z 2 ) × P m (k|z 1,2 ) j 0 (kr 1 ) j 0 (kr 2 ) . (4.19)
The exquisite sensitivity of upcoming photometric surveys will lead to a shot-noise small enough for the SSC to be an important source of error on cosmological parameters. In particular, considering a full-sky SSC as outlined above, will not be sufficient anymore and the SSC associated with the limited size of the survey will need to be considered. Up until now, the partial coverage has been accounted for with the simple option of rescaling the full-sky covariance by a factor f -1 SKY , where f SKY ≡ Ω S /4π is the fraction of the sky covered by the survey

Partial-sky

The impact of the mask on the C ( ) of the CMB has been extensively studied, we can therefore build on previous work on pseudo-C ( ) methods (like [START_REF] Hivon | MASTER of the CMB Anisotropy Power Spectrum: A Fast Method for Statistical Analysis of Large and Complex CMB Data Sets[END_REF], to extend the S i j approximation to partial-sky. From appendix B.2 the covariance of the density background in partial-sky is (4.20) where C W ( )) is the angular power spectrum of the survey footprint. Note that as the monopole of the mask is C W (0) = 4π f 2 SKY , Eq. (4.20) rewrites

σ 2 part-sky (z 1 , z 2 ) = 1 Ω 2 S (2 + 1)C W ( )C m z 1,2 ( ),
σ 2 part-sky (z 1 , z 2 ) = σ 2 full-sky (z 1 , z 2 ) + 1 Ω 2 S ≥1 (2 + 1)C W ( )C m z 1,2 ( ), (4.21)
where the full-sky density background covariance of Eq. ( 4.14) appears to be the first term of the partial-sky sum.

As for the full-sky case, we can see the S i j kl matrix as a C ( ) of a non-physical field X , whose kernel is the product of the kernels W A W B . Here, however, multipoles other than the monopole will contribute to the SSC:

S A,B,C ,D i , j ,k,l = 1 Ω 2 S (2 + 1)C X ,Y ( )C W ( ) . (4.22)
It is interesting to note that we can retrieve the f SKY approximation from Eq. (4.20). Indeed, assuming that the matter power spectrum is scale independent, i.e. C m ( ) = C m (0), we have

σ 2 part-sky (z 1 , z 2 ) = σ 2 full-sky × 1 f 2 SKY (2 + 1) 4π C W ( ) = σ 2 full-sky (z 1 , z 2 ) f SKY , (4.23)
where we used the fact that (2 + 1) 4π C W ( ) = f SKY . We can see the limit of this simple f SKY rescaling, as we know that the assumption of a constant power spectrum is not reliable.

The numerical computation of Eq. (4.22) requires to find a maximum up to which we need to perform the sum for a given accuracy. To find this max , we use the fact that the variance of a projected field is given by the sum over its C ( ) such that

〈W 2 〉 = (2 + 1) 4π C W ( ). (4.24)
This sum is computed for C W ( ), as this is the term which dominates Eq. (4.22) on 4. Impact of Super Sample covariance on future photometric galaxy surveys -4.1. Super Sample Covariance with the S i j approximation large . In this way, max will be the smallest for which we have convergence of the mask's variance, i.e f SKY , with an arbitrary precision that is chosen to be 5%. In the next section I will show the C ( ) and max for different masks.

Flat-sky

Another example of approximation used in the literature to simplify the computationallyexpensive estimation of SSC is the flat-sky approximation. Let's consider a cylindrical survey window function of radius θ S , delineating a survey solid angle Ω S = 2π(1 -cos θ S ) πθ 2 S in the flat-sky case. As we are considering cylinders, the redshift kernels are top-hat functions of width δr (z). In that case, the S i , j matrix can be simplified to [START_REF] Hu | Sample Variance Considerations for Cluster Surveys[END_REF][START_REF] Lima | Photometric Redshift Requirements for Self-Calibration of Cluster Dark Energy Studies[END_REF])

S i , j = 1 2π 2 k ⊥ dk ⊥ 4 J 1 (k ⊥ θ S r 1 ) k ⊥ θ S r 1 J 1 (k ⊥ θ S r 2 ) k ⊥ θ S r 2 × dk j 0 k δr 1 2 j 0 k δr 2 2 cos k (r 1 -r 2 ) P m k | z 1,2 ,
(4.25)

The wave-vector k = (k ∥ , k ⊥ ) is split into its components parallel and perpendicular to the line-of-sight. Here, J 1 is the Bessel function of the first kind and order one, and j 0 the spherical Bessel function of the first kind and order zero. This approximation, very efficient computationally compared to the more complete partial-sky approach, will be the third and final one considered in this work. I will use it as a point of comparison only, as it is limited to the case of top-hat kernels.

Method comparison

In this section, we compare the S i j matrices obtained using the three different methods outlined in the previous section and implemented in PySSC.

I consider the S i j matrices obtained for arbitrary top-hat redshift kernels with the full-sky computation (Eq. (4.17)) rescaled by f -1 SKY , the partial-sky computation (Eq. (4.22)) and with the flat-sky approximation (Eq. (4.25)). First I will perform the comparison for circular survey footprints with areas of 1 deg 2 , 5 deg 2 to 15 000 deg 2 , as well as for 10, top-hat, non-overlapping, redshift bins, with centers ranging from z = 0.2 to z = 1.8. Then I will focus on the largest area and consider overlapping redshift bins with similar centers.

Survey area

In figure 4.4 I show the C ( ) of the three considered masks, computed with healpix [START_REF] Gorski | HEALPix -a Framework for High Resolution Discretization, and Fast Analysis of Data Distributed on the Sphere[END_REF] up to = 2N side . We see oscillating features appearing at larger as the survey area decreases. Because of this, the max is larger for smaller area, with max = 243, 218, 8 for 1 deg 2 , 5 deg 2 and 15 000 deg 2 respectively. The computational time is then larger for smaller areas in the case of partial-sky, as can be seen in per matrix element (see Eq. (4.17)). Furthermore, only one computation is necessary, since it is then rescaled by f -1 SKY for each survey area. The flat-sky is longer than the full-sky because it requires two integrals, one on k ⊥ and one on k ∥ . As for full-sky, the computational time does not depend on the survey area. Note that for a 15 000 deg 2 survey, similar to the expected Euclid footprint, the partial-sky method is faster than flat-sky.

Figure 4.5 shows the comparison of the diagonal of the S i j matrices computed with the three methods, for the three areas. First, we can see that for all methods and areas the variance is decreasing with redshift, because of the non-linear nature of SSC. Another general observation, which illustrates well the effect of SSC, is that the overall order of magnitude of S i i decreases when the area increases, from S i i ∼ 0.1 at 1 deg 2 , to S i i ∼ 10 -5 -10 -6 at 15 000 deg 2 . We can have a physical interpretation of these orders of magnitudes, by making the rough approximation that S i i ∼ δ 2 b . This means that δ b ∼ 0.3 for a 1 deg 2 survey and δ b ∼ 10 -3 for a 15 000 deg 2 survey. So the mean density of surveys with 1 deg 2 and 15 000 deg 2 area, have a 30% and 0.1% off-set with respect to the mean density of the universe.
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For 1 deg 2 , the area is small enough to approximate the sky as flat, so that the flatsky approximation is close to the more complete partial-sky computation. This is especially true at high redshift where the sky is further away from the observer and thus flatter. The full-sky approximation, however, largely overestimates the variance, in particular at low redshift, where SSC is more important. Increasing the size of the survey to 5 deg 2 , we see that the approximation of a flat-sky is already failing, as it underestimates the S i i by an almost constant 80%. On the other hand, the full-sky approach gets closer to partial-sky, with still an overestimation at low redshift, where full-sky is between 2.8 and 1.2 times larger for z between 0.35 and 0.6. On larger redshift they agree very well. For a more realistic survey, with an area of 15 000 deg 2 the flat-sky approximation is, as we could expect, completely irrelevant and results in a null SSC contribution. The full-sky approach still overestimates the low redshift part of S i i by a factor 1.6 at z = 0.35 and agrees well with partial-sky at higher redshift, with however a ∼ 5% shift up, which was not present at these redshifts for 5 deg 2 .

A general trend that we can observe from figure 4.5, is that the larger is the area, the 4. Impact of Super Sample covariance on future photometric galaxy surveys -4.1. Super Sample Covariance with the S i j approximation larger is SSC at low z relatively to high z. It can be seen by comparing the partial-sky S i i in the three cases, where the low z part of the curve is going up as the area increases, getting closer to the full-sky. This can be interpreted by the fact that for a small solid angle in the sky, the relative difference in volume between high and low redshift is smaller than for a large solid angle in the sky. And a smaller volume, necessarily means a larger SSC. For example, in the case of flat-sky, where the survey is assumed to be a cylinder, the comoving volume covered by the survey is the same at low and high redshift, therefore the amplitude of SSC at the two extrema is similar. Except for the fact that a low redshift means more non-linearities.

After analysing the diagonal of the S i j matrix, I focus on the off-diagonal terms. To do so, I present in figure 4.6 the full structure of the matrix for all areas and approaches. The full-sky approach results in the same structure for all areas as it is only computed once and rescaled for each area. It displays strong anti-correlation, especially for neighbouring redshift bins. The partial-sky approach however, exhibits positive correlations for directly neighbouring bins, and anti-correlations for distant ones, in the case of small areas. For the widest survey, we retrieve the structure of the full-sky matrix, with only anti-correlations. The flat-sky approximation is mixed for the smallest survey. At low redshift it has only anti-correlations and for z 0.7 the correlation turns positive for directly neighbouring bins. At 5 deg 2 the flat-sky approach results in anti-correlations only, though smaller than for full-sky. Finally for 15 000 deg 2 the flat-sky approximation fails completely and results in a null matrix, as observed for the diagonal.

To recap, we saw that: 1) for full-sky or wide surveys SSC shows up in anti-correlations between redshift bins, 2) for small surveys the correlations are positive for directly neighbouring redshift bins while the rest of the matrix is negative, and 3) the flatsky is a good approximation for the smallest area and at high redshift, but fails for wider survey, we will therefore not consider this approach anymore for the rest of this chapter.

Redshift overlap

In a realistic survey setup, redshift bins usually present some slight overlap between them and this can increase the correlations. Here I will study the S i j matrices obtained in full-sky and partial-sky with the 15 000 deg 2 circular mask, but for three different redshift distribution n(z): without overlap, with overlap and with more overlap. These three n(z) can be seen in figure 4.7, where I simply increased the width of the bin while keeping the same centers. In the middle panel, the bins are only overlapping with their closest neighbours and on the right panel they also overlap with their second closest neighbours.

The resulting S i j matrices for the three n(z) in full-sky and partial-sky, are displayed in figure 4.8, as well as the relative difference between the two. When redshift bins are non-overlapping, as seen before, SSC results in anti-correlations only and the full-sky approximation over-predicts all elements by ∼ 25%. For overlapping redshift bins, the anti-correlations turn positive for the pair of bins which are overlapping, for both full-sky and partial-sky. The exception is for the low redshift part of the full-sky matrix which remains negative. With a stronger overlap the partial-sky matrix also turns positive for the elements corresponding to the second closest neighbouring bins. However, the full-sky ones stay negative, though slightly reduced. So, for a realistic treatment of the mask, SSC gives positive correlations for overlapping redshift bins and negative for non-overlapping ones. But the full-sky approximation seems to be less sensitive to this effect. As shown by the structure of the matrices' relative difference in the case of overlapping bins, it is not evident to interpret the effect of the different approaches on SSC and subsequently on parameter constraints, when making the comparison at the level of the matrices only. That it is why I will rather consider the signal-to-noise ratio as a point of comparison in the next sections. Indeed, this quantity summarises the effect of positive and negative correlations in order to have a better idea of the overall impact of SSC on the observables.

In this section, I reviewed the method, mainly developed by [START_REF] Lacasa | Fast and easy super-sample covariance of large scale structure observables[END_REF], to analytically compute SSC for the auto and cross-correlation of angular spectra, which will be among the major probes of Euclid. I also presented a novel approach to account for survey geometry in SSC, which has first been developed in Gouyou [START_REF] Gouyou Beauchamps | Impact of survey geometry and super-sample covariance on future photometric galaxy surveys[END_REF], and compared it to existing approximations such as full-sky and flat-sky. In the next section, I want to gauge the impact of SSC on parameter constraints for a 3x2-points analysis.
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Fisher forecasts for 3x2-points analysis including SSC

Section 4.1.1 and 4.1.2 gave a detailed presentation of a method enabling the analytical computation of SSC for cross-correlated angular power spectra. Thanks to this method, implemented in the public code PySSC, I can now perform a Fisher forecast for the cosmological constraints obtained using photometric galaxy clustering (GCph), weak lensing (WL) and their cross-correlation (XC, also called galaxy-galaxy lensing, GGL). This type of probe combination is usually called a 3x2-points analysis, as it combines three different 2-points statistics and has recently become a standard cosmological analysis in photometric surveys, for example in the DES collaboration [START_REF] Abbott | Dark Energy Survey Year 3 Results: Cosmological Constraints from Galaxy Clustering and Weak Lensing[END_REF].

In the first part of this section I will present the details and set-up I used to perform the Fisher forecast. Then, in a second part I will show the results of this forecast accounting or not for SSC, using the simple full-sky approximation. Finally in a third section, I will carry out again the same forecast, but this time using the partial-sky approach, to gauge the impact of survey geometry in SSC, on parameter constraints.

Methods for galaxy survey forecasts

In order to forecast the different constraining power of galaxy surveys depending on the covariance considered, I follow for the most part the forecast recipe presented in Euclid Collaboration: [START_REF] Blanchard | Euclid preparation. VII. Forecast validation for Euclid cosmological probes[END_REF] (hereafter EC-B2020). I consider a Fisher matrix formalism and make use of the CosmoSIS public code [START_REF] Zuntz | CosmoSIS: Modular cosmological parameter estimation[END_REF] to compute all relevant quantities2 , except for the S i j kl matrix which is computed with PySSC. In this section, I review the main aspects of the forecast and refer the reader to EC-B2020 for the remaining details.

Observables recipe

In these forecasts, I examine the constraining power of three cosmological probes: WL, GCph and their cross-correlation XC. I refer to the full combination with GCph + WL + XC. I consider the tomographically-binned projected angular power spectra as observables, C AB i j ( ), where i , j label redshift pairs of tomographic bins and A and B to the probes (WL or GCph). The angular spectra have been presented in Eq. (4.6) and detailed in appendix A, using the Limber approximation. I use the same formalism for WL, GCph, and the XC terms. The main difference between the different probes appears through the different kernels, W A i (z), used in the projection from the power spectrum of matter perturbations, P m to the spherical harmonic-space observable. The matter power spectrum P m (k) entering Eq. (4.6) is the non-linear one, modeled with Halofit in its revised version by [START_REF] Takahashi | Revising the Halofit Model for the Nonlinear Matter Power Spectrum[END_REF].
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For the redshift distribution of galaxies I follow EC-B2020 in considering 10 tomographic redshift bins with the same number of galaxies in each bin. I assume a true underlying redshift distribution given by

n true (z) ∝ z z 0 2 exp - z z 0 3/2 , ( 4.26) 
where z 0 = 0.9/ 2. The photometric redshift distributions is then computed in each one of the bins by a convolution of the true distribution with a sum of two Gaussian distributions: one for the main dispersion of photometric redshift estimates and another one for the outliers. I refer the reader to EC-B2020 for the details on this convolution. I further assume a galaxy number density of 30 galaxies/arcmin 2 . The WL power spectrum is obtained from the observed ellipticity of galaxies which can be expressed as = γ + I , (4.27)

where γ is the cosmic shear induced by the lensing of photons and I is the main source of astrophysical systematic, that is the intrinsic alignment (IA) of galaxies. IA may originate from tidal processes during the formation of galaxies and can't be removed from the observed ellipticity of galaxies. Hence, it must be taken into account in the modeling of WL. The full WL kernel is then expressed as a sum of two kernels W γ (z) and W IA (z) corresponding to cosmic shear and IA respectively

W WL (z) = W γ (z) + W IA (z).
(4.28)

The computation of these kernels are not trivial and the modeling of IA is a very rich field of astrophysics, but I will not give much details on this as this is not the core of my work, and follow the choices made in EC-B2020. In particular, the computation of the cosmic shear power spectrum makes use of the properties of the spherical Bessel functions under the flat-sky3 and Limber approximations [START_REF] Kilbinger | Precision calculations of the cosmic shear power spectrum projection[END_REF][START_REF] Kitching | The limits of cosmic shear[END_REF][START_REF] Taylor | Testing the cosmic shear spatially-flat universe approximation with generalized lensing and shear spectra[END_REF]. The model chosen for IA is the so-called extended non-linear alignment (eNLA) model, detailed in EC-B2020. Furthermore, reduced shear and magnification effects are ignored [START_REF] Deshpande | Euclid: The reduced shear approximation and magnification bias for Stage IV cosmic shear experiments[END_REF].

The cosmic shear kernel is an integral over z of the normalised redshift distribution of galaxies n(z) with some cosmological dependent pre-factor. It writes

W γ i (z) = 3 2 H 0 c 2 Ω m,0 1 + z r (z) z max z dn i (z ) 1 - r (z) r (z ) , (4.29)
where i denotes the i -th redshift bin and z max is the maximum redshift considered for the galaxy distribution. To model the contribution from IA it is assumed that they 4. Impact of Super Sample covariance on future photometric galaxy surveys -4.2.

Fisher forecasts for 3x2-points analysis including SSC are caused by a change in galaxy ellipticities that is linear in the density field. In this case, the density-intrinsic and intrinsic-intrinsic three-dimensional power spectra, P mI and P II , can be expressed as linear functions of the density power spectrum, with P mI = -A(z)P m , and P II = [-A(z)] 2 P m . I follow EC-B2020 in parameterising A as

A(z) = A IA C IA Ω m F IA (z) D(z) , ( 4.30) 
where C IA = 0.0134 is a normalisation constant, D(z) is the linear growth factor, and A IA controls the amplitude of the IA contribution. In the eNLA model, the redshift dependence is further modeled as

F IA = (1 + z) η IA 〈L|L〉 (z) L * (z) β IA , (4.31)
where 〈L|L〉 (z)/L * (z) is the ratio between the mean source luminosity and the characteristic scale of the luminosity function [START_REF] Bridle | Dark energy constraints from cosmic shear power spectra: impact of intrinsic alignments on photometric redshift requirements[END_REF][START_REF] Hirata | Intrinsic galaxy alignments from the 2SLAQ and SDSS surveys: luminosity and redshift scalings and implications for weak lensing surveys[END_REF], η IA and β IA are two extra parameters of the IA model. The IA kernel can then be written as

W IA i (z) = -A(z) n i (z) r 2 (z) c H (z) . (4.32)
Following EC-B2020, I consider the following fiducial values for the IA nuisance parameters: {A IA , η IA , β IA } = {1.72, -0.41, 2.17}. With respect to GCph, one of the primary sources of uncertainty is the relation between the galaxy distribution and the underlying matter distribution, that is the galaxy bias. I consider a linear galaxy bias where the galaxy distribution δ g is proportional to the matter distribution δ m , δ g (z) = b(z)δ m (z) , (4.33)

and the galaxy bias b only depends on the redshift. Note that a linear galaxy bias is sufficiently accurate to analyse large scales (DES Collaboration: [START_REF] Abbott | Dark Energy Survey Year 3 Results: Cosmological Constraints from Galaxy Clustering and Weak Lensing[END_REF], while non-linear galaxy bias models are needed for the very small scales (see e.g [START_REF] Desjacques | Large-scale galaxy bias[END_REF][START_REF] Sanchez | The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: Cosmological implications of the configuration-space clustering wedges[END_REF]. For simplicity and in order not to mix the impact of SSC with a non-linear galaxy bias modelling, I use the linear galaxy bias approximation in this analysis. In more detail, and according to the approach used in EC-B2020, I consider a linear galaxy bias with a constant amplitude in each redshift bin, that is (4.34) where z i and z i +1 stand for the boundaries of the i -th redshift bin. I choose a fiducial for the 10 galaxy bias nuisance parameters given by b i = 1 + zi , where zi is the mean redshift value of each redshift bin in true redshift. The GCph kernel can then simply be written as Figure 4.9 shows the shape of the kernels for GCph and WL. While the GCph kernels have the same shape as the n i (z) of each redshift bin, there are two interesting observations we can make from the shape of the WL ones. First, we can clearly see the contribution of IA which damps the cosmic shear kernels. It reduces the amplitude of the WL power spectra by removing the "false" correlation (i.e. correlation which does not come from lensing) coming from the intrinsic alignment of galaxies. Second, the kernels extend all along the line-of-sight up to the maximum redshift of the corresponding bin. This visually expresses the fact that the ellipticities of the source galaxies, originating from the lensing of light rays, are a consequence of the presence of matter all along the way between the observer and the sources. I showed in section 4.1.3 that the overlap between redshift bins impacts the structure of SSC. We will see thereafter that this complete overlap of the (i + 1)-th bin on the i -th produces strong correlations in the WL part of the S i j kl matrix.

b(z i ≤ z < z i +1 ) = b i ,
W GC i (z) = b i n i (z) r 2 (z) H (z) c . ( 4 

Covariance

For the full analysis, taking into account the correlations between GCph and WL, I consider both a Gaussian covariance alone and its combination with SSC. The Gaussian covariance, accounting for all correlations between angular scales, redshift 4. Impact of Super Sample covariance on future photometric galaxy surveys -4.2.

Fisher forecasts for 3x2-points analysis including SSC combinations, and different observables, can be expressed as: (4.36) where A, B,C , D stand for WL and GCph, i , j , k, l run over all tomographic bins, δ K represents the Kronecker delta of and , and ∆ stands for the width of the multipole bins. ∆ is assumed to be large enough so that the f SKY approximation for the Gaussian covariance is valid, as shown by [START_REF] Hivon | MASTER of the CMB Anisotropy Power Spectrum: A Fast Method for Statistical Analysis of Large and Complex CMB Data Sets[END_REF]. The noise terms N AB i j ( ) are given by σ 2 δ K i j / ni for WL (which is also called the shape-noise), where σ 2 is the variance of observed ellipticities, and δ K i j / ni for GCph (which is the shot-noise), where ni is the mean galaxy number density for the considered redshift bin. Following the survey specifications in EC-B2020, I fix ni = 30 galaxies/arcmin 2 and σ = 0.3. Finally, I assume that the Poisson errors on WL and GCph are uncorrelated, yielding a null noise for XC. Note here, from the presence of δ K in Eq. (4.36), that like for the 3D power spectrum P (k), the Gaussian covariance of C ( ) is diagonal in , which is not the case for SSC.

Cov G C AB i j ( ),C C D kl ( ) = δ K (2 + 1) f SKY ∆ C AC i k ( ) + N AC i k ( ) C B D j l ( ) + N B D j l ( ) + C AD i l ( ) + N AD i l ( ) C BC j k ( ) + N BC j k ( ) ,
As summarised at the end of section 4.1.1 to compute the SSC matrix, we need:

• The C AB i j ( ), which are computed with CosmoSIS.

• The S i j kl matrix which is computed with PySSC. The computation of the matrix requires the matter power spectrum P m (k) (see Eq. (4.19) for example). As SSC is supposed to originate from fluctuations on wavelength larger than the survey typical size (i.e. large scales where the perturbations evolve linearly), I consider the matter power spectrum entering the computation of SSC to be the linear one. In PySSC, this allows to compute the power spectrum only once at z = 0 and to rescale it with the linear growth factor D(z). I tested the hypothesis that the linear power spectrum is sufficient for the computation of SSC in appendix C, and found it to be correct.

• The relative response R . As discussed in section 4.1.1, the relative response is found to be almost scale independent on large scales [START_REF] Takada | Power Spectrum Super-Sample Covariance[END_REF]. Given these results and in particular following Lacasa and Grain (2019), I approximate the relative response of GCph and WL to be R = 4. This is a rough approximation which allows to quickly estimate the impact of SSC on parameter constraints in a Fisher analysis. But a more rigorous treatment of the response will be necessary in the future, especially for multipoles > 2000.
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Binning

I consider the optimistic scenario presented in EC-B2020 concerning the multipole cuts used in the analysis. That is, I include multipoles ranging from = 10 to = 5000 for WL and multipoles ranging from = 10 to = 3000 for GCph and the XC terms, both logarithmically spaced with a number of multipoles, n = 40. I consider this optimistic case, entering deeply into the non-linear regime, to study the impact of SSC, where it is more relevant. In the end, for n z = 10 photometric bins, the different data vectors have the following lengths:

• n z (n z -1) 2 + n z n = 55 × 40 for WL or GCph only, because C AA i j ( ) = C AA j i ( ), • 2 n z (n z -1) 2 + n z + n 2 z n = 210 × 40 for GCph+WL+XC, because C AB i j ( ) = C AB j i ( ).
Beside the fact that I include SSC in the covariance, another main difference with EC-B2020 is that I will also consider GCph alone. The reason why it was not the case in EC-B2020 is related to the modeling of the galaxy bias which is used. Indeed, for simplicity a linear bias is considered but we know that for the chosen max , nonlinear models are usually required. These non-linear models require more nuisance parameters to be varied along with cosmological ones, and more varied parameters means lesser constraints. This means that considering max = 3000 with a linear galaxy bias model for GCph alone should give unrealistically good constraints. However, here I am not interested in forecasting the realistic constraining power from GCph, but in gauging the relative impact coming from SSC, i.e. the difference between forecasts with and without SSC.

Cosmological model

Regarding the cosmological model used in this analysis, a spatially flat Universe with CDM and dark energy is considered. I use the standard CPL parameterisation for the dark energy equation of state [START_REF] Chevallier | Accelerating Universes with Scaling Dark Matter[END_REF]:

w(z) = w 0 + w a z 1 + z . (4.37)
In addition to the w 0 and w a parameters describing dark energy, the cosmological model is described by the total matter density today, Ω m , the dimensionless Hubble constant, h, the baryon density today, Ω b , the slope of the primordial power spectrum, n s , and the root-mean-square (RMS) of matter fluctuations on spheres of 8 h -1 Mpc radius, σ 8 . I consider the following set as fiducial values for our cosmological parameters: 

θ cosmo = {Ω m , Ω b , w 0 ,

Derived forecast quantities

To gauge the impact of SSC on the survey's forecasted statistical power, I will use two metrics. First, the signal-to-noise ratio (SNR) of the angular power spectrum of a given probe, which quantifies the strength of detection of the angular power spectrum in a model-independent way

(S/N ) 2 = i , j ,k,l , C AB i j ( ) Cov C AB i j ( ),C C D kl ( ) -1 C C D kl ( ), (4.41) 
where Cov is the covariance matrix of the power spectrum, which can be either the Gaussian only, Cov G , or the total covariance, consisting of the sum of the Gaussian and SSC contributions: Cov Tot = Cov G + Cov SSC .

To quantify the impact on cosmological constraints, we use a second metric, the Fisher matrix (see 2.2.4 for details)

F α,β = i , j ,k,l , ∂C AB i j ( ) ∂θ α Cov C AB i j ( ),C C D kl ( ) -1 C C D kl ( ) ∂θ β , ( 4.42) 
where θ α and θ β are two model parameters. From the Fisher matrix we can derive several quantities to quantify the constraints on cosmological parameters :

• The marginalised error on a given parameter θ α is given by

σ α = F -1 α,α . (4.43)
This expression implies that all the other parameters are marginalised over, meaning that their variation is taken into account when estimating the error.

• Instead, one could consider the unmarginalised error

σ U α = 1/F α,α , (4.44)
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Fisher forecasts for 3x2-points analysis including SSC which is like effectively fixing the other parameters to their fiducial values. We will see in section 4.2.3 that this distinction is important to understand how the difference in SNR between full-sky and partial-sky translates to the Fisher forecast.

• By considering the marginalised Fisher submatrix, F w 0 ,w a , of the Dark Energy parameter plane (w 0 , w a ), we can define the Dark Energy This quantity is proportional to the inverse of the area delimited by the 2σ contour in the marginalised 2-parameters plane.

Results in the full-sky approximation

The results presented in this section have been validated through a code comparison with Davide Sciotti, PhD student part of the Euclid collaboration. This section contains non-public Euclid Consortium results that have not yet been endorsed by the Euclid Consortium.

Covariance matrix and signal-to-noise ratio

Before going straight to the results of the forecasts and the impact of SSC on cosmological constraints, let's observe the S i j kl and covariance matrix to be able to fully interpret the final results. In figure 4.10, I show the GCph+WL+XC S i j kl matrix, which has been flattened from a 4D to a 2D matrix to see the correlation between C ( ) for all bin pairs. The matrix is divided in three blocks: the WL part on the bottom left, the XC part on the middle and GCph on the top right. We see on the top panel of the figure that some elements are equal to zero in the XC and GCph part. This is due to the fact that some bins are too distant from each other, so the overlap between the kernels is very faint causing these elements of the matrix to drop below the precision of PySSC

This never happens for WL, because as discussed above the kernels are always fully overlapped.

To see more clearly the structure of the matrix, I removed the zeros in the bottom panel. To understand the structure of the matrix, I again refer to the shape of the kernels. The WL block has only positive correlations because of the complete overlap between the different kernels, and as seen in section 4.1.3, overlap means positive correlation. For the XC and GCph part, the matrix elements are positive for neighbouring bins and negative for distant ones.

Figure 4.11, represents the total covariance matrix which will be used for the forecasts including SSC. We retrieve the same structure as the S i j kl matrix, with on top the diagonal lines, corresponding to the Gaussian part. We can see that SSC fills the off diagonal terms with values comparable to the Gaussian covariance, at all scales. This already shows how important the contribution from SSC to the total covariance is.
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To understand how the impact of SSC on the angular power spectra evolves with scale, I show in figure 4.12 the SNR (c.f. Eq. (4.41)) with respect to max , computed for all probes, with and without SSC. First, we see that GCph dominates the signal with respect to WL, in both Gaussian and Gaussian+SSC cases, so that the GCph+WL+XC SNR is very close to the GCph one, though always higher. SSC is reducing the SNR for all probes at every scales and because SSC is a non-linear effect the reduction is enhanced at higher max . On the bottom panel we can see that the SNR damping from Instead of focusing on the comparison of the specific constraining power of each probe, that is well thoroughly discussed in EC-B2020 and [START_REF] Tutusaus | Euclid: The importance of galaxy clustering and weak lensing cross-correlations within the photometric Euclid survey[END_REF], I will rather concentrate on the effect of SSC. The ratio of cosmological parameter errors obtained with and without SSC can be seen on the bottom panel of figure 4.13. The most impacted cosmological parameters are the ones related to the amplitude of the power spectrum, namely Ω m , σ 8 , w 0 , and w a . This is due to the fact that the effect of SSC appears on the amplitude of the power spectrum through the change in the background density δ b . WL seems to be the most impacted probe with for example 100% and 160% error increase for σ 8 and Ω m . This was anticipated from the discussion on the SNR above. The GCph+WL+XC is also strongly affected with an inflation of errors between 40% and 65% for the dark energy parameters and σ 8 , and almost 100% for Ω m . GCph however is less impacted, with a maximum of the error increase of about 13% for the dark energy parameters. The dark energy FoM is decreased by 14%, 57% and 53% for GCph, WL and GCph+WL+XC respectively.

In figure 4.14 we can see the contour plot comparing the ellipses of the cosmological parameters for GCph+WL+XC when accounting or not for SSC. We see again that 4. Impact of Super Sample covariance on future photometric galaxy surveys -4.2.

Fisher forecasts for 3x2-points analysis including SSC more than half of the parameters are significantly affected by SSC, while the ellipses corresponding to n s , h and Ω b are almost unchanged. The complete contour plots for the constraints obtained with GCph, WL and GCph+WL+XC, including all nuisance parameters, are in appendix E. The IA parameters are found to be negligibly affected by SSC, conversely to the galaxy bias.

To conclude, I found that SSC has a significant contribution to the total error budget of cosmological parameters in the case of a 3x2-points analysis. Indeed the dark energy FoM is found to be decreased by 50% due to SSC. This study evidences that SSC should not be neglected in the upcoming Euclid data analyses, in order to have an unbiased estimation of cosmological errors.

The main points which should be investigated in the future, concerns the treatment of the relative response of the observables, R , that is fundamental for SSC. On one hand, the approximation at the core of the computation of SSC with PySSC, is that 4. Impact of Super Sample covariance on future photometric galaxy surveys -4.2.

Fisher forecasts for 3x2-points analysis including SSC the response varies slowly inside the redshift bins, compared to the variance of the background density σ 2 (z 1 , z 2 ). While this should hold for GCph, which has narrow redshift bins, it could be a problem for WL, where the width of the bins can cover a large range of redshift, on which the response can have significant variations. On the other hand, R was assumed to be constant in . Although on large scales, this approximation is supported by several analyses [START_REF] Lacasa | Fast and easy super-sample covariance of large scale structure observables[END_REF][START_REF] Takada | Power Spectrum Super-Sample Covariance[END_REF], it might important to account for the scale dependence of the response for multipoles > 2000. This could be done analytically with a simple model where the scale dependence is linear in , as presented in [START_REF] Lacasa | Fast and easy super-sample covariance of large scale structure observables[END_REF]. A more rigorous approach, which has been followed in [START_REF] Barreira | Complete super-sample lensing covariance in the response approach[END_REF], is to calibrate the response through dedicated simulations.

Impact of the survey footprint

While in the previous section I performed the analysis by considering the full-sky approximation for SSC, in the present section I quantify the effect of the survey angular mask on SSC by running the same Fisher forecast, considering the partial-sky method to compute the S i j kl matrix. However, I still treat the Gaussian covariance in the full-sky approximation to isolate the effect on SSC. I focus on varying the survey masks (and f SKY ) for the partial-sky (and full-sky) computation of the SSC in order to assess the impact of survey geometry on parameter inference. First, I vary the size of the survey, then I consider different mask geometries for a fixed survey area. In order to simplify the notation, I denote the full-sky and partial-sky computation as fsky and psky, respectively.

4. Impact of Super Sample covariance on future photometric galaxy surveys -4.2.

Fisher forecasts for 3x2-points analysis including SSC To understand how these results translate in terms of parameter constraints, I perform a Fisher forecast as presented in section 4.2.1. Table 4.3 gathers the values of the dark energy FoM for all probes, considering the total Gaussian+SSC covariance in fsky and psky, for survey areas of 5 and 15 000 deg 2 . For low survey areas, the fsky approximation underestimates the FoM, especially for WL and GCph+WL+XC, which are the most impacted by SSC. However, for the largest survey area, the difference between fsky and psky is almost negligible.

To further understand these results, I present in figure 4.16, 4.17 and 4.18 the marginalised and unmarginalised constraints on all cosmological parameters and survey area between 5 deg 2 and 15 000 deg 2 . In these figures, I consider the Gaussian+SSC covariance using the psky derivation or the fsky approximation, for different probes. In the unmarginalised case, the error bars resulting from using the fsky approximation or the psky computation follow the same evolution with the survey area as the SNR. That is, for all probes, when the fsky approximation leads to an overestimated SNR, it also results in underestimated error bars on cosmological parameters, and conversely. Interestingly, when marginalising on all the varied parameters, that are cosmological and nuisance parameters, these results change. For GCph (see figure 4.16), the difference between fsky and psky is largely reduced, giving a relative difference between 1 and -2% for all cosmological parameters and survey area. For WL (figure 4.17), the marginalisation has an opposite effect and the error is overestimated with fsky, especially for the smallest surveys, going up to 50% increase for Ω m , 35% for σ 8 and 20% for w 0 , in the case of a 5 deg 2 survey. The relative difference is below 10% for surveys 4. Impact of Super Sample covariance on future photometric galaxy surveys -4.2.

Fisher forecasts for 3x2-points analysis including SSC : Forecast errors on cosmological parameters, for the Gaussian+SSC covariance, using different area of circular masks for GCph. The relative difference in % between fsky and psky for each cosmological parameter is shown. The plain lines corresponds to the constraints when marginalizing on all parameters (cosmological and nuisance) and the dashed lines when there is no marginalisation.

larger than 100 deg 2 , and goes close to zero for the largest areas. For GCph+WL+XC, figure 4.18, the situation is the same as in the case of WL with a smaller amplitude of the relative difference for Ω m , σ 8 and w 0 . However, w a shows a small underestimation of its error, ∼ -2%, on intermediate survey areas. Again, the most impacted parameters are the most sensitive to SSC, i.e. the ones controlling the amplitude of the power spectrum. Overall, we see that, for the marginalised constraints, the complete treatment of the mask in the derivation of the SSC is not necessary for large survey areas, representative of upcoming stage-IV cosmological surveys. However, marginalising has an important effect on the impact of SSC. Despite the fact that the SNR resulting from the fsky or psky computations largely differ, especially for GCph and GCph+WL+XC, the difference is seemingly absorbed in the nuisance parameters through marginalisation. In contrast, with WL, when marginalising, the difference is transferred to the cosmological parameters.

To confirm this interpretation, let's look at the forecasted errors on all nuisance parameters, that are the ten constant galaxy biases b i and the three intrinsic alignment parameters A IA , η IA and β IA , when accounting for the SSC with fsky or psky. The results are shown in figure 4.19 for GCph+WL+XC. The galaxy biases are showing different constraints depending on the SSC recipe, with a maximum negative relative difference 4. Impact of Super Sample covariance on future photometric galaxy surveys -4.2.

Fisher forecasts for 3x2-points analysis including SSC GCph + WL + XC between -2 and -5% for all b i , except for b 2 which goes down to -10%. This is due to the fact that the simple model used for the galaxy bias is just an amplitude factor on the power spectrum, mimicking the effect of the SSC. On the other hand, the errors on the intrinsic alignment parameters do not change regardless of the recipe used. I observe the same behaviour for GCph and WL alone. Interestingly, Wadekar et al. (2020) found a similar effect of the marginalisation when accounting for the full non-Gaussian covariance in a spectroscopic GC analysis.

The above results can be summarised in two important points. First, the SNR is a misleading metric to quantify the impact of a correct psky treatment of the SSC, on marginalised errors. Second, even if the difference on marginalised cosmological constraints is close to zero between the fsky and psky approaches for large survey areas, for unmarginalised constraints the difference can be of the order of 10%. Since the difference can be absorbed by the nuisance parameters, accounting for the full geometry of the mask when computing the SSC will be essential when tight priors on nuisance parameters are included in the analysis.

Survey geometry

Now, I study the impact of the two different SSC recipes with respect to the geometry of the survey. I consider a survey with an area of 15 000 deg 2 and three different geometries: A single circular patch (such as the one used in the previous paragraph), dubbed 1 pole, two separated circular patches, dubbed 2 poles, and a survey with a geometry close to future stage-IV surveys such as Euclid, where the galactic and zodiacal plans have been removed. These three masks are represented in a Mollweide view in figure 4.20. I perform a Fisher forecast in the same setting as described in section 4.2.1 for the three masks considered. The resulting marginalised and unmarginalised constraints in the psky and fsky cases for GCph+WL+XC are presented in figure 4.21. For the marginalised constraints (figure 4.21a), as already seen in the previous section, the relative difference between fsky and psky is close to zero for the simplest mask geometry. Increasing the complexity of the mask geometry leads to larger discrepancies between the two approaches, which however remain smaller than or close to 1% for all cosmological parameters. In figure 4.21b, we can see the same effect discussed in the previous section: the relative difference is larger for unmarginalised constraints. Additionally, regarding the impact of the geometry, we observe the same trend as in the marginalised constraints: the difference increases with the complexity of the mask. For the most complex stage-IV mask, the fsky approximation underestimates the error by almost 10% for w 0 , w a , and 15% for σ 8 , in contrast to a 5% difference observed with the 1 pole mask. Similar results are obtained with GCph and WL alone.

Therefore, for large, stage-IV-like survey areas, the marginalised errors do not depend strongly on the mask geometry. However, this result will not hold when adding tight priors on nuisance parameters, which is equivalent to the unmarginalised errors case.

Overall, these results show that, for wide photometric surveys, such as Euclid, a complete treatment of the angular mask geometry when estimating SSC is not crucial, and the full-sky approximation is sufficient. However, as also reported in Wadekar et al. (2020), the marginalisation over the nuisance parameters can absorb the effect of non-Gaussian covariance and if tight priors are applied to these parameters, the effect of the mask could no longer be negligible. 

Summary of results and conclusions

Observing the universe in its entirety is an unattainable dream, even with the widest survey possible. Because of this, our observations of the LSS of the universe will always be subject to SSC. This non-Gaussian covariance affecting all probes of the LSS, arises from the correlation between density fluctuations on wavelengths larger than the survey typical size and small non-linear scales.

Several works have shown that SSC can have a large impact on cosmological constraints coming from a variety of standard cosmological probes (Barreira et al., 2018a;[START_REF] Hu | Sample Variance Considerations for Cluster Surveys[END_REF][START_REF] Lacasa | The impact of braiding covariance and in-survey covariance on nextgeneration galaxy surveys[END_REF]. For a survey such as KiDS-1000 for example, SSC was found to be the dominant contribution to non-Gaussian covariance [START_REF] Joachimi | KiDS-1000 methodology: Modelling and inference for joint weak gravitational lensing and spectroscopic galaxy clustering analysis[END_REF]. It is therefore interesting to quantify its impact on upcoming stage-IV survey like Euclid.

However, most works focused on describing the SSC using the approximation of flat-sky (Krause et al., 2017;Krause and Eifler, 2017) or full-sky [START_REF] Lacasa | Fast and easy super-sample covariance of large scale structure observables[END_REF][START_REF] Lacasa | Combining cluster number counts and galaxy clustering[END_REF]. A few more recent works (Barreira et al., 2018a;[START_REF] Friedrich | Dark Energy Survey Year 3 Results: Covariance Modelling and its Impact on Parameter Estimation and Quality of Fit[END_REF][START_REF] Lacasa | Super-sample covariance approximations and partial sky coverage[END_REF] have studied the more realistic case of a survey mask. While the effect of the mask has been extensively studied for Gaussian covariance, especially for CMB analyses [START_REF] Efstathiou | Myths and truths concerning estimation of power spectra: the case for a hybrid estimator[END_REF][START_REF] Hivon | MASTER of the CMB Anisotropy Power Spectrum: A Fast Method for Statistical Analysis of Large and Complex CMB Data Sets[END_REF], there was no detailed study of whether accounting for it in the computation of SSC is necessary for future surveys.

In this chapter I studied both of these questions:

• What is the impact of SSC for future photometric surveys like Euclid ?

• Is it crucial to account for the survey mask to model SSC ?

To answer these questions, I first presented an approach, developed in [START_REF] Lacasa | Fast and easy super-sample covariance of large scale structure observables[END_REF], to analytically compute the SSC of projected observables. Then I compared the already existing flat-sky and full-sky approximations with a novel method to account for partial-sky. This comparison showed that the flat-sky approximation gives a satisfying estimate of SSC-induced correlations between redshift bins only for survey areas smaller than 5 deg 2 , and specifically for z > 1. On the other hand, the full-sky approach can recover the partial-sky SSC for wide surveys larger than 15 000 deg 2 with a 10% precision. By carrying out a Fisher forecast, following the previous forecast effort of Euclid by EC-B2020, I was able to answer the first question. SSC has a large impact on cosmological constraints coming from a photometric 3x2-points analysis, and especially from weak lensing. In particular, I found the dark energy figure of merit to be reduced by more than 50% for the full 3x2-points combination and for weak lensing alone, whereas for galaxy clustering it appears to be reduced by only 13%. I also observed a large increase of the error due to SSC for Ω m and σ 8 of the order of 100%.

Then, I tried to tackle the second question with another Fisher analysis, this time accounting for the survey mask and varying its size and geometry. For both marginalised and unmarginalised constraints, the full-sky approximation performs better as we

Conclusions and perspectives

In the recent years, the analysis of the Large Scale Structure (LSS) of the universe has been shown to provide a great constraining power on cosmological parameters, that helped in the elaboration of the standard model of cosmology. It is thus interesting to address the major issues at stake in modern cosmology, such as finding the nature of dark energy or measuring the total neutrino mass, in the framework of the LSS. However, to reach the full potential of cosmological probes such as the clustering and weak lensing of galaxies, the statistic and the precision of galaxy surveys must be increased at a level equivalent to the measure of the CMB temperature power spectrum, which is perhaps the most spectacularly precise cosmological measure that was realised up to now. This is the aim of the Euclid mission.

To make full use of the forthcoming Euclid data, the biases present in the likelihood analyses used to infer cosmological parameters must be thoroughly studied. This is particularly true for the extraction of cosmological information from non-linear scales, which is crucial to understand structure formation and constraining cosmological models. In this thesis, I addressed the issue of the optimal inference of cosmological parameters with 2-points statistics, by focusing on two aspects inherent to these observables, that are their modeling on non-linear scales and the estimation of their covariance matrix.

In chapter 3, I conducted MCMC analyses to study both of these aspects at the level of cosmological parameters posterior distribution, estimated from the real space matter power spectrum of N-body simulations. A particular attention was dedicated to the estimation of the total neutrino mass. First I tested two methods to reduce the impact of sampling noise in a covariance matrix estimated from simulated data, on the best-fit and error of cosmological parameters. The non-linear shrinkage covariance estimator NERCOME, was found to mitigate the stochastic shift in the best-fit, which is the most important effect of sampling noise, at the cost of a systematic increase of the estimated error. The approach of Covmos to generate approximate mocks allows to produce such a large sample of simulated data in a short amount of time, that sampling noise effects are reduced to a negligible impact. While I found cosmological constraints obtained with a Covmos covariance to result in accurate best-fit estimations, the errors seem to be overestimated by approximately the same amount as in the case of NERCOME. Then, I was able to quantify the impact on the cosmological constraints, of the non-Gaussian covariance arising from non-linear matter clustering on small scales. I found that it is significant on scales corresponding to k ∼ 0.2 h/Mpc, for Ω cdm and h, but not for Ω b and m ν . Finally, I quantified the biases coming from the modeling of the non-linear matter power spectrum, in the estimation of cosmological parameters and especially on the neutrino mass. I refer to section 3.4 for a more detailed summary of the results and conclusions of this chapter.

In chapter 4, I studied, with a Fisher forecast, the impact of Super Sample Covariance (SSC) on cosmological constraints coming from photometric galaxy clustering and weak lensing, which are among the main probes of Euclid. SSC was found to severely reduce the dark energy figure of merit, in particular in the case of weak lensing. Furthermore, I presented a new analytical prediction of the SSC accounting for the survey footprint and studied its effects on cosmological constraints. This last analysis resulted in a publication, Gouyou [START_REF] Gouyou Beauchamps | Impact of survey geometry and super-sample covariance on future photometric galaxy surveys[END_REF]. I refer to section 4.3 for a more detailed summary of the results and conclusions of this chapter.

The kind of analyses presented in this thesis is important for the preparation of Euclid, but they need to be further refined. In particular the study carried out in chapter 3 should be extended to the redshift space galaxy power spectrum, which is what galaxy surveys actually measure. In addition, more systematics affecting both the model and the covariance should be accounted for, such as the survey window function and observational systematics. For what regards the results of chapter 4, a more rigorous treatment of the response of the observables to changes in the background density is necessary if we want to accurately account for SSC in the upcoming Euclid data analyses. In addition, although Fisher forecasts are useful for the first tests, using MCMC allows to access the full shape of the posteriors and to observe potential biases in the best-fit. It would be interesting to re-consider the impact of SSC in this framework.

Another effect which could bias parameter inference is the assumption that the likelihood of the power spectrum (and generally 2-points statistics) is Gaussian. Indeed, it is well known that the likelihood is not Gaussian at small k [START_REF] Blot | Matter power spectrum covariance matrix from the DEUS-PUR ΛCDM simulations: mass resolution and non-Gaussian errors[END_REF][START_REF] Takahashi | SIMULATIONS OF BARYON ACOUSTIC OSCILLATIONS. II. COVARIANCE MATRIX OF THE MATTER POWER SPECTRUM[END_REF]. Although this effect should be small, with the expected precision of Euclid cosmological constraints, it could matter. In collaboration with Philippe Baratta, we started to investigate the non-Gaussianity of the likelihood of 2-points statistics, in the context of a Euclid key-project. Furthermore, we aim at testing the dependence of the covariance matrix with cosmology, and how it affects the estimation of cosmological parameters.

As last words, in addition to the promising cosmological discoveries that Euclid will allow, the precision with which the analyses are required to be conducted, pushes us to understand our observables and methods in the finest details. Hence, very rich scientific discussions and knowledge stem from the preparation of Euclid analyses.

A. The angular power spectrum C ( ) -A.2. Definition of the angular power spectrum C ( ) (CMB-lensing) and so on. For the analysis performed in chapter 4, the expression of the kernels used for photometric galaxy clustering and weak lensing are detailed in section 4.2.1. Note that the radial coordinate r can be related to the redshift z and the extension in redshift of the kernel define a redshift bin i z . The kernel is then denoted by W A i z (z) and can have several shapes such as top-hat, Gaussian, Dirac delta, or more complicated ones.

The resulting 2D field δA , representing two probes A and B (for example photometric galaxy clustering and cosmic shear) taken in two different redshift bins i z and j z , characterised by their redshift kernels W A i z (z) and W B i z (z). In the same way as we define the 3D power spectrum P (k) (see Eq. (1.40)), the angular power spectrum C AB i z j z ( ) is expressed through the variance of the coefficients of the spherical harmonics expansion 〈a A i z , m (a B j z , m ) * 〉 ≡ C AB i z j z ( )δ K δ K mm . (A.9)

Using the properties of the spherical harmonics, the development of Eq. (A.9) yields 〈a A i z , m (a B j z , m ) * 〉 = (4π) 2 ∞ 0 dz 1 dz 2 W A i z (z 1 )W B j z (z 2 ) ∞ 0 dkk 2 P AB (k|z 1 , z 2 ) j (kr (z 1 )) j (kr (z 2 )) where W(k) is the Fourier transform of W(x). We can split the survey window function in its radial and angular part as W(x) = W r (z)W( n). I will not consider the radial part because it simply specifies the redshift binning and it is effectively taken into account by the the bounds on the redshift integrals.

In the following I focus on the cases of a curved-sky with, first a full-sky coverage and second a partial-sky coverage thus taking into account the geometry of the survey mask. These calculations are based on [START_REF] Lacasa | Super-sample covariance approximations and partial sky coverage[END_REF].

B.1. Full-sky

For a full-sky coverage we have that W( n) = 1, so that its Fourier transform is simply 

B.2. Partial-sky

For a partially masked survey, the density background covariance can be expressed as [START_REF] Lacasa | Super-sample covariance approximations and partial sky coverage[END_REF] σ 2 part-sky (z 1 , z 2 ) = 

D. Anti-correlation and Fisher information

In this appendix I show how anti-correlations increases Fisher information. Let's consider two correlated measure x 1 and x 2 , with a correlation coefficient ρ, following a bi-dimensional Gaussian distribution with variance σ 2 = 1 and mean µ. The loglikelihood is then

L = - 1 2 (x 1 -µ, x 2 -µ) 1 ρ ρ 1 -1 x 1 -µ x 2 -µ . (D.1)
The maximum of this function gives us the Maximum Likelihood Estimator of µ, which is μ =

x 1 + x 2 2 . (D.2)
To find the variance of this estimator we can compute the Fisher matrix defined here for only one parameter µ, as

F = - ∂ 2 L ∂µ 2 . (D.
3)

The variance of μ is then

σ 2 [ μ] = F -1 = 1 + ρ 2 . (D.4)
This shows that for ρ < 0 the variance of the estimator is smaller than for ρ ≥ 0.

E. Complete contour plots for the SSC Fisher forecast

In this appendix, I present the contour plots comparing the ellipses of the cosmological and nuisance parameters, when accounting or not for SSC. The three plots correspond to constraints obtained for GCph alone (figure E.1), WL alone (figure E.2) and GCph+WL+XC (figure E.3). We can see that regarding the nuisance parameters, the galaxy bias is significantly affected by SSC, while the IA parameters are not.

Résumé en Français

Depuis l'émergence d'une théorie relativiste de la gravitation, nous disposons d'un cadre théorique favorable à l'étude de l'univers dans son ensemble. Dans ce contexte, une interaction constante entre théorie et observation a permis l'élaboration du modèle standard de la cosmologie, ΛCDM. Bien que ce modèle soit en parfait accord avec toutes les données cosmologiques, des questions restent sans réponses. En particulier, le mécanisme physique à l'origine de l'expansion accélérée de l'univers, appelé énergie sombre, est attribué à la constante cosmologique Λ, pour laquelle nous n'avons pas encore d'interprétation physique satisfaisante. Cela motive la recherche d'extensions possibles au modèle ΛCDM, telles que des modifications de la relativité générale. De plus, la récente découverte de tensions dans la mesure de plusieurs paramètres cosmologiques, apparaissant dans le cadre du modèle ΛCDM, est une motivation supplémentaire pour la recherche de nouvelle physique au-delà du modèle standard. L'observation de la structure à grande échelle de l'univers est un outil puissant pour explorer ces questions. En effet, cette structure est le résultat de l'évolution de fluctuations primordiales dans le champs de densité de l'univers, par l'amassement de la matière causée par la gravité. L'analyse de la distribution statistique de la matière tracé par les galaxies, appelé galaxy clustering1 , permet de fortement contraindre les paramètres cosmologiques. Par exemple, la détermination précise de la position du pic acoustique baryonique a permis de confirmer l'accélération de l'expansion de l'univers. Ce pic caractéristique est observé dans la statistique à 2 points du champ de densité : la fonction de corrélation à 2 points ou dans l'espace de Fourier, le spectre de puissance. Toute la forme de cette observable garde une empreinte des différents processus physique en jeu durant la formation des structures. Cela en fait une sonde de choix pour contraindre les modèles cosmologiques.

Beaucoup de travaux théoriques ont mené à l'élaboration de modèles cosmologiques alternatifs à ΛCDM, qui peuvent être testé par l'observation de la structure à grande échelle. Cependant, les paramètres libres de ces modèles doivent être mesurés avec une très grande précision afin de pouvoir différencier les modèles entre eux. Les futurs relevés de galaxies comme Euclid sont conçus pour relever ce défis de précision. Grâce à des observations du ciel à la fois spectroscopiques et photométriques, le télescope spatial Euclid pourra précisément mesurer la forme et la position de dizaine de millions de galaxies sur une large bande de redshift 2 et une surface d'environ 15 000 deg 2 dans le ciel. Ceci permettra de combiner le galaxy clustering avec le weak lensing 3 , qui sonde la distribution de matière noire sous-jacente au champ de galaxies, jusqu'à des très petites échelles.

Une question fondamentale qui pourra être étudier grâce à des mesures aussi précises, se trouve à la frontière entre cosmologie et physique des particules : quelle est la valeur de la masse totale des neutrinos ? Là où les expériences de physique des particules ont encore du mal à répondre à cette question, les sondes de la structure à grande échelle, comme le galaxy clustering et le weak lensing, sont sensible à la masse totale des neutrinos. Un des principaux objectifs de la mission Euclid est d'apporter une mesure précise de ce paramètre.

Cependant, pour profiter de la précision sans précédent des observations d'Euclid, il est important de contrôler au niveau du pourcent, les erreurs systématiques sur l'estimation des paramètres cosmologiques. En particulier, les méthodes statistiques utilisés pour l'inférence des paramètres cosmologiques ne sont pas exemptes de biais. La quantité statistique jouant le rôle central dans ce processus est la fonction de likelihood4 , qui quantifie la probabilité d'apparition d'un jeu de donnée dans le cadre d'un modèle théorique donné. La construction de cette fonction requiert donc une modélisation théorique fidèle du jeu de donné considéré, ainsi qu'une matrice de covariance prenant en compte les erreurs et les corrélations dans les données. Si l'un ou l'autre de ces ingrédients de la likelihood ne décrit pas correctement les données, l'estimation des paramètres cosmologiques et de leurs erreurs peut être fortement biaisée.

La principale difficulté avec les sondes de la structure à grande échelle vient du fait que l'évolution du champ de densité de matière devient non-linéaire aux petites échelles. Cela rend compliqué la modélisation des statistiques du champ de densité, comme le spectre de puissance. De plus, aux grandes échelles le clustering de la matière est linéaire, ce qui maintient la statistique gaussienne des perturbations initiales de densité, mais le clustering non-linéaire aux petites échelles génère des statistiques non-Gaussiennes. La matrice de covariance du spectre de puissance reçoit des contributions de ces non-gaussianitées. Elles sont généralement divisées en deux termes : la covariance non-gaussienne provenant du clustering non-linéaire aux petites échelles (souvent appelé le terme non-gaussien connecté) et la covariance super relevé (ou SSC pour Super Sample Covariance) provenant du couplage entre des échelles de fluctuations de densité supérieur et inférieur à la taille de la fenêtre d'observation. D'une part, une mauvaise modélisation du spectre de puissance mène à d'important biais sur la valeur estimée des paramètres cosmologiques. D'autre part, si les termes non-gaussiens de la matrice de covariance ne sont pas pris en compte, les erreurs sur les paramètres cosmologique sont sous-estimées. Une manière d'estimer tous les termes de la matrice de covariance repose sur l'utilisation de grand jeux de simulations cosmologiques. Cependant, un faible nombre de simulations entraîne une estimation bruitée de la matrice de covariance et plus particulièrement de son inverse, qui entre directement dans la likelihood. Ce bruit fini par se transmettre dans les contraintes E. Complete contour plots for the SSC Fisher forecast cosmologiques.

Nous pourrions restreindre nos analyses aux échelle linéaires pour éviter ces problèmes, mais nous n'exploiterions pas le plein potentiel des données d'Euclid. Un important travail de préparation est donc nécessaire pour comprendre et réduire ces biais. Cette thèse présente une compilation d'analyses qui ont été menées dans ce but.

État de l'art de la cosmologie observationnelle

On peut dater l'émergence de la cosmologie en tant que science prédictive avec l'élaboration de la théorie de la relativité générale d'Albert Einstein en 1915. Plus de 100 ans plus tard, les scientifiques du monde entier se réunissent et discutent dans le but de construire des télescopes et des satellites géants, afin d'observer l'univers dans ses moindres détails. Comment sommes-nous passés d'une équation compacte sur un tableau noir à l'envoi d'un télescope spatial qui collectera une quantité impressionnante de données sur l'univers ? Et surtout, pourquoi faisons-nous cela ? Le but de ce premier chapitre est de donner des éléments de réponse à ces questions.

La cosmologie moderne repose sur deux piliers théoriques fondamentaux : la théorie de la relativité générale et le principe cosmologique.

• La relativité générale est une théorie décrivant les phénomènes gravitationnels comme une conséquence de changements de coordonnées d'un référentiel à un autre. Cette interprétation de la gravité a pour conséquence de considérer l'espace-temps comme un champs courbe qui peut être déformé par la présence d'objet massifs. La gravitation est donc une conséquence de la déformation de l'espace-temps.

• Le principe cosmologique est l'hypothèse que l'univers est homogène et isotrope à grande échelle. En d'autres termes : il n'y a pas de direction ni de position privilégiée dans l'univers. C'est ce principe fondamental qui permet d'appliquer la relativité générale dans un contexte cosmologique : la description de l'univers dans son ensemble.

Bien que le principe cosmologique contraigne l'univers à être homogène et isotrope spatialement, rien n'empêche de laisser un paramètre libre, dépendant du temps, qui définit la taille de l'univers : le facteur d'échelle. C'est durant la première moitié du XX ème siècle que Edwin Hubble et Georges Lemaître découvrirent que ce facteur d'échelle augmente au cours du temps : l'univers est en expansion. Ils aboutirent à cette conclusion en mesurant la vitesse de récession des galaxies proches, mesurées grâce à une observable fondamentale de la cosmologie le décalage vers le rouge (ou redshift) de la lumière émise par les galaxies. En associant la relativité générale avec le principe cosmologique il est possible de dériver les équations de Friedmann qui décrivent les causes de cette expansion, sa cinématique.

La grande puissance de la relativité générale, et par conséquence des équations de Friedmann, est qu'elles permettent de mesurer le contenue énergétique de l'univers en observant son évolution et sa géométrie. C'est donc par l'observation de notre univers proche et lointain qu'au cours du siècle précédent il a été possible de construire un modèle cosmologique cohérent au sein du cadre théorique précédemment décrit. Les observations qui ont permis l'élaboration du modèle cosmologique standard sont les suivantes.

• L'observation de l'abondance des éléments primordiaux de notre univers (principalement l'hydrogène et l'hélium) à permit de mettre en évidence les mécanismes physiques à l'origine de la nucléosynthèse primordiale.

• La détection du fonds diffus cosmologique (ou CMB pour Cosmic Microwave Background en anglais) a confirmée l'idée d'un univers en expansion né d'un Big Bang chaud.

• L'hypothèse de la présence d'une grande densité de matière sombre froide (ou CDM pour Cold Dark Matter en anglais) n'interagissant que gravitationnellement a été formulé à la suite de différentes observations astrophysiques, notamment celle de la vitesse de rotation des galaxies.

• Finalement l'observation de la luminosité apparente des supernovae de type IA (ou SNIA) a mis en évidence l'accélération récente de l'expansion de l'univers. Dans le cadre du modèle standard de la cosmologie, la cause de cette accélération est attribuée à la constante cosmologique Λ. Cela a pu être confirmé par des tests géométriques, grâce à la détection du pic d'oscillation baryonique (ou BAO pour Baryonic Acoustique Oscillations en anglais) dans la distribution des galaxies dans l'univers.

L'univers est donc aujourd'hui décrit dans le cadre du modèle ΛCDM. Un univers en expansion accélérée due à la constante cosmologique Λ et principalement rempli de CDM. Les observations mentionnées ci-dessus ont permis de mesurer la densité énergétique de ces différents composants : 68% de Λ, 27% de CDM et 5% de matière baryonique (i.e. matière ordinaire). Bien que ce modèle soit en parfait accord avec les observations, l'interprétation physique de la constante cosmologique est encore insatisfaisante, si bien que l'on nomme énergie sombre tous mécanismes pouvant générer une accélération de l'expansion de l'univers. De plus, la matière sombre n'a encore jamais été directement détectée. Par conséquent 95% du contenu énergétique de l'univers est pour le moment incompris.

Bien que nous postulions que le principe cosmologique est valable à grande échelle, l'univers n'est pas complètement homogène et isotrope à petite échelle. En fait, cela est évident lorsque nous regardons le ciel, nous pouvons voir des étoiles, des galaxies, des amas de galaxies et des espaces vides entre ces structures, c'est la structure à grande échelle de l'univers.

La formation de ces structures cosmiques peut être décrite par la théorie des perturbations. Celle-ci suppose que la structure à grande échelle est une conséquence de l'évolution de petites perturbations primordiales du potentiel gravitationnel, en plus d'un fond homogène et isotrope, décrit par les équations de Friedmann. Ces perturbations ont conduit à la formation de sur-et sous-densités de matière.

En adoptant une description statistique des perturbations du champs de densité de la matière il est possible de définir des observables, comme le spectre de puissance de la matière, qui renferme énormément d'information cosmologique. Entre autres, cette observable est sensible à la masse totale des neutrinos, dû au fait que ces particules possèdent une grande dispersion de vitesse qui leur permet de s'échapper des puits de potentiel gravitationnels aux petites échelles. Par conséquent, les neutrinos massifs ne participent pas à la formation des structures à ces échelles. Cet effet laisse une empreinte caractéristique sur la forme du spectre de puissance. Cela permet de poser des contraintes fortes sur la masse des neutrinos, qui reste un paramètre encore inconnu du modèle standard de la physique des particules.

Le spectre de puissance est une formidable mine d'informations permettant de contraindre les paramètres cosmologiques. Comme la composante majeure du champ de densité de matière est la CDM qui est invisible, une façon possible de mesurer le spectre de puissance est de le tracer via les structures visibles formées par l'amassement de la matière, à savoir les galaxies. On parle alors de galaxy clustering, qui sera la principale sonde cosmologique considérée dans cette thèse.

Lorsque l'on compare la mesure du taux d'expansion de l'univers réalisée par Hubble en 1929 avec la carte de température du CMB mesurée par le satellite Planck, il est évident qu'en moins d'un siècle, la cosmologie est entrée dans le domaine de la précision.

Une telle précision a révélé de légères tensions sur l'estimation des paramètres cosmologiques provenant de différents jeux de données. La résolution de ces tensions motive, dans le même temps, un contrôle affiné des incertitudes systématiques et l'exploration de modèles alternatifs à ΛCDM, qui pourraient également donner une explication satisfaisante à l'accélération de l'expansion de l'univers. En outre, là où les expériences de physique des particules peinent encore à mesurer la masse totale des neutrinos, les analyses cosmologiques sont devenues suffisamment précises pour fournir des contraintes strictes sur ce paramètre. En poussant encore plus loin la précision des mesures cosmologiques, nous pourrions enfin déterminer l'échelle absolue de la masse des neutrinos, et c'est dans ce contexte que le relevé de galaxies Euclid a été conçue.

Alors que l'analyse de la carte de température du CMB a atteint un haut niveau de maturité dans le contrôle des systématiques théoriques et observationnelles, pour profiter de la grande augmentation de la puissance statistique qu'Euclid entraînera, beaucoup de travail reste à faire pour estimer avec précision les paramètres cosmologiques à partir de l'observation de la structure à grande échelle.

Estimations cosmologiques

Dans le chapitre 1, j'ai montré comment la cosmologie a évolué depuis ses fondements théoriques, avec la relativité générale, jusqu'à la construction du modèle de concordance, ΛCDM, grâce à une interaction constante entre théorie et observations. Mais comment cette interaction fonctionne-t-elle réellement ?

Les observations doivent être comparées aux prédictions théoriques, pour évaluer la validité d'un modèle donné. Mais, il n'est pas trivial de passer de l'observation de la carte de température du CMB ou du champ de galaxies, à la valeur estimée et aux erreurs des paramètres cosmologiques d'un modèle donné. Pour ce faire, nous adoptons le point de vue de la statistique, en considérant nos observables et les paramètres du modèle comme des variables aléatoires. Ce chapitre se consacre à la description des différentes étapes de ce processus et à l'identification des biais associés, en se concentrant sur le galaxy clustering et en particulier sur le spectre de puissance de la matière.

La première étape consiste à estimer l'observable dont nous voulons extraire des informations cosmologiques. Dans mon cas, il s'agit de la statistique à 2 points du champ de densité, c'est-à-dire de la fonction de corrélation dans l'espace de Fourier. Je présente deux méthodes possibles pour réaliser cela. La première est la méthode de sommation directe qui, bien qu'exact, demande un temps de calcul trop important pour être appliqué à des jeux de données réalistes. La seconde requiert l'usage de transformées de Fourier numériques rapides, ce qui introduit différents effets sur le spectre de puissance (filtrage, repliement de spectre. . . ) qu'il est nécessaire de corriger.

Ensuite, à partir de cette observable estimée, nous voulons la comparer à sa prédiction théorique, en faisant varier tous les paramètres du modèle, pour trouver les valeurs qui correspondent le mieux aux données, ainsi que les erreurs associées à cette valeur. Pour cela, il faut recourir à des méthodes d'inférence statistique.

Pour exploiter ces méthodes, il est nécessaire de construire un objet statistique fondamental : la fonction de vraisemblance. Elle exprime la probabilité qu'une expérience donnée obtienne les données qu'elle a obtenues, compte tenu d'une théorie [START_REF] Dodelson | Modern Cosmology[END_REF]. À partir de cette phrase, nous comprenons déjà que les deux éléments constitutifs de la vraisemblance sont les données et la prédiction théorique. L'élément clé, qui relie ces deux blocs, est la matrice de covariance, qui décrit les erreurs et les corrélations dans les données. Dans ce chapitre je montre que l'estimation de la covariance pour les sondes cosmologiques est une tâche compliquée, révélant des biais et des erreurs systématiques. Ces biais seront étudiés dans le chapitre 3.

Estimation optimal des paramètres cosmologiques avec le spectre de puissance

Afin de préparer les analyses de données des futurs grands relevés de galaxies comme Euclid, Il est important d'étudier, avec des données simulées, les différents biais présents dans les méthodes statistiques couramment utilisées pour l'inférence des paramètres cosmologiques. Cela a été le but du chapitre 3, dans lequel je me suis particulièrement concentré sur la modélisation du spectre de puissance non-linéaire dans l'espace réel5 et sur l'estimation de sa matrice de covariance.

Pour cela, j'ai effectué des estimations de paramètres à l'aide de Chaines de Markov Monte Carlo (Monte Carlo Markov Chains en anglais, ou MCMC), sur le spectre de puissance estimé à partir des simulations à N-corps DEMNUni-Cov6 , qui incluent des neutrinos massifs dans la simulation de l'évolution du champ de densité de matière sombre. Une attention particulière a été portée sur l'estimation de la masse des neutrinos dans ce contexte.

La première partie de ce chapitre a été dédiée à deux aspects de la matrice de covariance : les biais provenant de son estimation avec des simulations et l'impact de la covariance non-gaussienne sur les contraintes cosmologiques. Le premier aspect de cette étude a consisté en un test de deux méthodes visant à réduire les effets du bruit dans la matrice de précision.

• Le première méthode, NERCOME [START_REF] Joachimi | Non-linear shrinkage estimation of large-scale structure covariance[END_REF], est un estimateur alternatif de la covariance. J'ai montré que, dans le cas où le nombre de simulations utilisés pour estimer la covariance est faible, cet estimateur permet de réduire de manière significative la dispersion sur la meilleur estimation (ou best-fit) des paramètres cosmologiques. Toutefois, cela s'accompagne d'une augmentation non négligeable et systématique de leurs erreurs. De plus, j'ai pu comparer les prédictions des effets connus du bruit d'échantillonnage dans la matrice de covariance, avec la distribution des best-fits et des erreurs estimées à partir de 100 fits du spectre de puissance. Bien que la dispersion stochastique du best-fit soit en bon accord avec la prédiction de Dodelson and Schneider (2013), la variance et le biais sur les erreurs semblent être plus faibles que la prédiction de [START_REF] Taylor | Putting the Precision in Precision Cosmology: How accurate should your data covariance matrix be?[END_REF][START_REF] Percival | The Clustering of Galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: Including covariance matrix errors[END_REF], respectivement.

• La seconde méthode, Covmos [START_REF] Baratta | A new Monte Carlo approach for galaxy clustering analysis[END_REF]Baratta et al., in prep. 2020), vise à estimer la matrice de covariance à partir de simulations approximées, qui peuvent être générées en très peu de temps (10 000 simulations en moins de 24h). La rapidité de cette méthode permet de produire un nombre de simulations suffisamment important pour que le bruit d'échantillonnage de la matrice de covariance soit négligeable. Cependant, il était aussi important de tester la fidélité avec laquelle cette méthode peut reproduire la covariance réelle des données, au niveau des paramètres cosmologiques. J'ai pu montrer qu'en utilisant une matrice de covariance estimée à partir des simulations Covmos le best-fit des paramètres cosmologiques est non-biaisé. Leurs erreurs sont toutefois surestimées de la même manière qu'avec NERCOME.

Le deuxième aspect de cette étude consistait à comparer les contraintes cosmologiques obtenues en supposant une covariance gaussienne ou en utilisant la covariance estimée avec Covmos. Cette dernière inclue les contributions non-gaussiennes provenant du clustering non-linéaire aux petites échelles. J'ai constaté que cette covariance non gaussienne a un impact non négligeable sur l'erreur des paramètres, en particulier pour Ω cdm et h, tandis que m ν et Ω b ne sont que légèrement affectés. En outre, j'ai pu identifier que l'origine de cet effet est principalement due aux termes hors-diagonale de la matrice de covariance.

Dans la deuxième partie de ce chapitre, l'attention a été portée sur les biais dans la modélisation du spectre de puissance non-linéaire de la matière, en présence de neutrinos massifs. J'ai considéré trois modèles non-linéaire pour les comparer aux simulations DEMNUni-Cov. Cette comparaison a été faite à la fois au niveau du spectre de puissance et des paramètres cosmologiques estimés. Deux de ces modèles, Halofit et HMcode, sont basés sur des fonctions d'ajustement calibrées sur des simulations à N-corps et le troisième, RegPT, est une prédiction analytique basée sur la théorie des perturbations non-linéaire.

J'ai pu montrer que pour les 3 modèles les valeurs des paramètres cosmologiques fiducielles des simulations étaient bien retrouvées dans le cas des paramètres de densité de matière baryonique et sombre, ω b and ω cdm . Cependant, l'estimation de h et m ν s'est avérée être significativement biaisée. Dans le cas de Halofit le biais est autour de 0.9σ pour ces deux paramètres. Pour HMcode, l'estimation de la masse des neutrinos n'est pas biaisée, mais h présente un écart de plus de 2.5σ par rapport à la valeur fiducielle. Avec RegPT, c'est m ν qui est sous-estimé de 1.2σ, tandis que h est correctement estimé. Cette étude nécessite néanmoins des tests supplémentaires afin d'arriver à des conclusions fermes sur la validité des modèles non linéaires considérés.

Pour conclure sur les résultats présentés dans ce chapitre, nous avons vu que si nous voulons contraindre les modèles cosmologiques en utilisant les échelles nonlinéaires, nous devrons aller au-delà de l'approximation d'une covariance gaussienne pour le spectre de puissance. Pour cela, l'estimation de la matrice de covariance avec des simulations peut être faite avec des méthodes comme Covmos et NERCOME, qui sont prometteuses. Cependant, des études supplémentaires de ces méthodes sont nécessaires pour comprendre l'origine de leurs biais inhérents. En outre, le choix du modèle non-linéaire pour le spectre de puissance doit être considéré avec soin, surtout si nous voulons enfin mesurer la masse totale des neutrinos par le galaxy clustering.

Bien qu'il soit intéressant d'étudier tous ces biais dans le cas simple du spectre de puissance de la matière dans l'espace réel, afin de se préparer à l'analyse des données d'Euclid, ce type de travail doit être affiné pour être plus proche des données réelles. En effet, il devrait être tenu compte de divers effets, inhérents au galaxy clustering, qui affecteront à la fois le spectre de puissance et sa covariance. Ces effets incluent le biais des galaxies, les RSD, la fonction fenêtre du relevé et les systématiques observationnelles.

Impact de la covariance super-relevé pour les futurs relevés photometriques de galaxies L'observation de l'univers dans son intégralité est un rêve inaccessible, même avec le sondage le plus large possible. Pour cette raison, nos observations de la structure à grande échelle de l'univers seront toujours sujettes à la covariance super relevé (ou SSC). Cette covariance non gaussienne, qui affecte toutes les sondes de la structure à grande échelle, provient de la corrélation entre les fluctuations de densité sur des longueurs d'onde plus grandes que la taille typique du relevé et les petites échelles non linéaires.

Plusieurs travaux ont montré que la SSC peut avoir un impact important sur les contraintes cosmologiques provenant de différentes sondes (Barreira et al., 2018a ;[START_REF] Hu | Sample Variance Considerations for Cluster Surveys[END_REF][START_REF] Lacasa | The impact of braiding covariance and in-survey covariance on nextgeneration galaxy surveys[END_REF]. Pour un sondage tel que KiDS-1000 par exemple, il a été constaté que la SSC était la contribution dominante à la covariance nongaussienne [START_REF] Joachimi | KiDS-1000 methodology: Modelling and inference for joint weak gravitational lensing and spectroscopic galaxy clustering analysis[END_REF]. Il est donc intéressant de quantifier son impact sur les prochains grands relevés de galaxies comme Euclid.

Cependant, la plupart des travaux se sont concentrés sur la description de la SSC en utilisant l'approximation de ciel plat7 (Krause et al., 2017 ;Krause et Eifler, 2017) ou du ciel plein8 [START_REF] Lacasa | Fast and easy super-sample covariance of large scale structure observables[END_REF][START_REF] Lacasa | Combining cluster number counts and galaxy clustering[END_REF]. Quelques travaux plus récents (Barreira et al., 2018a ;[START_REF] Friedrich | Dark Energy Survey Year 3 Results: Covariance Modelling and its Impact on Parameter Estimation and Quality of Fit[END_REF][START_REF] Lacasa | Super-sample covariance approximations and partial sky coverage[END_REF] ont étudié le cas plus réaliste d'un relevé avec un masque (une fenêtre d'observation). Alors que l'effet du masque a été largement étudié pour la covariance gaussienne, notamment pour les analyses du CMB [START_REF] Efstathiou | Myths and truths concerning estimation of power spectra: the case for a hybrid estimator[END_REF][START_REF] Hivon | MASTER of the CMB Anisotropy Power Spectrum: A Fast Method for Statistical Analysis of Large and Complex CMB Data Sets[END_REF], il n'y a pas eu d'étude détaillée pour savoir si sa prise en compte dans le calcul de la SSC est nécessaire pour les futurs relevés.

Dans ce chapitre j'ai étudié ces deux questions :

• Quel est l'impact de la SSC pour les futurs relevés photométriques de galaxies comme Euclid ?

• Est-il important de prendre en compte la forme de la fenêtre d'observation dans la modélisation de la SSC ?

Pour répondre à ces questions, j'ai d'abord présenté une approche, développée dans [START_REF] Lacasa | Fast and easy super-sample covariance of large scale structure observables[END_REF], pour calculer analytiquement la SSC dans le cas d'observables projetées. Ensuite, j'ai comparé les approximations de ciel plat et de ciel plein avec une nouvelle méthode permettant de prendre en compte le masque du sondage. Cette comparaison a montré que l'approximation de ciel plat donne une estimation satisfaisante des corrélations induites par la SSC, uniquement pour des relevés avec une surface inférieures à 5 deg 2 , et spécifiquement pour z > 1. D'autre part, l'approximation de ciel plein donne une estimation de la SSC semblable au cas où le masque est pris en compte, à 10% prés, pour des relevés de plus de 15 000 deg 2 À l'aide d'une analyse de Fisher, inspiré d'un précédent travail de la collaboration Euclid (Euclid Collaboration: [START_REF] Blanchard | Euclid preparation. VII. Forecast validation for Euclid cosmological probes[END_REF], j'ai pu répondre à la première question. La SSC à un impact important sur les contraintes cosmologiques dans le cas d'une analyse combinant le galaxy clustering photometrique, le weak lensing et leur corrélation croisée. En particulier, j'ai trouvé que les erreurs sur les paramètres d'énergie sombre w 0 et w a sont 50% plus grandes quand la SSC est prise en compte. J'ai également observé une augmentation de l'erreur, due à la SSC, pour Ω cdm et σ 8 de l'ordre de 100%.

J'ai ensuite abordé la deuxième question avec une nouvelle analyse de Fisher, cette fois-ci en prenant en compte le masque et en variant sa taille et sa géométrie. La différence entre les contraintes cosmologiques obtenues avec l'approximation de ciel plein ou l'approche de ciel partiel est de mois de 10% pour un relevé de 15 000 deg 2 . Cependant, pour des relevés avec une petite surface la différence entre ciel plein et ciel partiel est plus grande, particulièrement dans le cas du weak lensing ou elle est de 50%. En comparant des relevés ayant tous une aire de 15 000 deg 2 mais des géométries différentes, j'ai trouvé que plus la forme du masque est compliquée, plus la différence entre ciel plein et ciel partiel est grande. Dans le cas de contraintes marginalisées cette différence est négligeable. Mais à l'inverse, pour des contraintes non-marginalisées, la différence peut être entre 5 et 10% pour certains paramètres, notamment w a .

Enfin, la réponse que j'ai trouvée à la deuxième question est que, si l'on considère l'erreur marginalisée obtenue pour un relevé d'une superficie supérieure à 1000 deg 2 , l'approximation de ciel plein est suffisante. En revanche, l'effet du masque du relevé dans la SSC n'est pas négligeable dans le cas de contraintes non-marginalisées. Cela signifie que si des des priors serrés sont appliqués aux paramètres de nuisance, en particulier ceux qui affectent l'amplitude du spectre de puissance comme le biais des galaxies, l'approche de ciel partiel devrait être considérée. Cette méthode sera rendue publique, et elle pourra être utilisée pour d'autres analyses afin de correctement prendre en compte la SSC pour n'importe quel relevé.

Conclusions et perspectives

Les analyses présentées dans cette thèse sont importantes dans le cadre de la préparation de la mission Euclid, mais elles doivent être affinées. En particulier, l'étude menée dans le chapitre 3 pourrait être étendu au cas du spectre de puissance des galaxies dans l'espace des redshifts, qui est l'observable mesurée par les relevés de galaxies. En outre, il convient de tenir compte d'autres facteurs systématiques affectant à la fois le modèle et la covariance, tels que la fonction fenêtre du relevé et les systématiques observationnelles.

En ce qui concerne les résultats du chapitre 4, un traitement plus rigoureux de la réponse des observables aux changements de la densité de fond δ b est nécessaire si nous voulons tenir compte avec précision de la SSC dans les prochaines analyses des données Euclid. De plus, bien que les prévisions avec la matrice de Fisher soient utiles pour des premiers tests, l'utilisation de MCMC permet d'accéder à la forme complète des posteriors et d'observer les biais potentiels dans le best-fit. Il serait intéressant de reconsidérer l'impact de la SSC dans ce cadre.

Un autre effet qui pourrait biaiser l'inférence des paramètres est l'hypothèse selon laquelle la likelihood du spectre de puissance (et généralement des statistiques à 2 points) est gaussienne. En effet, il est bien connu que la likelihod n'est pas gaussienne aux grandes échelles [START_REF] Blot | Matter power spectrum covariance matrix from the DEUS-PUR ΛCDM simulations: mass resolution and non-Gaussian errors[END_REF][START_REF] Takahashi | SIMULATIONS OF BARYON ACOUSTIC OSCILLATIONS. II. COVARIANCE MATRIX OF THE MATTER POWER SPECTRUM[END_REF]. Bien que cet effet devrait être faible, avec la précision attendue des contraintes cosmologiques d'Euclid, il pourrait être important. En collaboration avec Philippe Baratta, nous avons commencé à étudier la non-gaussianité de la likelihood des statistiques à 2 points, dans le contexte d'un Key Project Euclid. De plus, nous cherchons à tester la dépendance de la matrice de covariance avec la cosmologie, et comment cela affecte l'estimation des paramètres cosmologiques.

En conclusion, outre les découvertes cosmologiques prometteuses que la mission Euclid permettra, la précision avec laquelle les analyses doivent être menées nous pousse à comprendre nos observables et nos méthodes dans les moindres détails. Ainsi, des discussions et des connaissances scientifiques très riches découlent de la préparation des analyses d'Euclid.
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  Figure 1.1.: Hubble's 1929 observations represented in a velocity-distance graph.Taken from[START_REF] Hubble | A relation between distance and radial velocity among extragalactic nebulae[END_REF] 
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 1 Figure 1.3.: Map of the fluctuations of the CMB with respect to T γ . Taken from Aghanim et al. (2020a).
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  Figure 1.4.: Angular power spectrum of the temperature fluctuations of the CMB. Taken from Aghanim et al. (2020b).
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  Figure 1.5.: Composite image of the Bullet cluster. The colors show the distribution of mass, either traced by strong lensing (in blue) or by X-ray observations (in red). Credits: NASA/ESA HST composite image by Clowe et al. (2006)

Figure 1

 1 Figure 1.6.: Galaxy 2-points correlation function of the eBOSS DR16 luminous red galaxy sample. Taken from Bautista et al. (2020)
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 1 Figure 1.7.: Hubble diagram from distant type Ia supernovae. Top panel shows the apparent magnitude (an indicator of the distance) with respect to the redshift. The lines show the prediction for different energy contents of the universe (Ω m , Ω Λ ). Bottom panel represents the residual between theory and observation. Taken from Riess et al. (1998).
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  State of the art in observational cosmology -1.1. The standard cosmological model sion, is constrained to be around -1 with all probes, as shown in figure1.9. For the combination of CMB+BAO+SN-Ia,[START_REF] Alam | Completed SDSS-IV extended Baryon Oscillation Spectroscopic Survey: Cosmological implications from two decades of spectroscopic surveys at the Apache Point Observatory[END_REF] report a value of w = -1.026 ± 0.036 (fixing Ω k = 0), thus consistent with a cosmological constant.
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 1 Figure 1.8.: Cosmological constraints on Ω m , Ω Λ and Ω k in a non-flat ΛCDM cosmological model. The colors correspond the constraints coming from different probes: CMB (temperature and polarisation), SN-Ia and BAO. The black dashed line in the left panel represent a flat universe. Taken from Alam et al. (2021).
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 1 Figure 1.9.: Cosmological constraints on the dark energy equation of state parameter w, in a flat-wCDM cosmological model. Taken from Alam et al. (2021).
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  Figure 1.10.: The two possible mass hierarchy for the neutrinos, the normal and the inverted hierarchy.
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 1 Figure 1.14.: Non-linear (plain lines) and linear (dashed) matter power spectrum at 3 different redshifts. The non-linear power spectrum is computed with

Figure 1 .

 1 Figure 1.15.: Left: Comparison of constraints on H 0 coming from early or late universe probes. Taken from Di Valentino et al. (2021b). Right: Comparison of constraints on S 8 coming from CMB or cosmic shear and galaxy clustering. Taken from Di Valentino et al. (2021a).

Figure 2

 2 Figure 2.1.: Sketch in 2D, showing the shell average of Fourier modes to compute the monopole power spectrum. The red circles are the shell limits, the plain blue are circles with radius being the mean modulus in each shell and the dashed blue show the center of the shells.

Figure 2

 2 Figure 2.2.: Shape of the first 4 orders of MAS in real space (left) as a function of the distance to a grid node (x/a, here noted x/H ) and Fourier space (right) as a function of fractions of the Nyquist frequency. Taken from Sefusatti et al. (2016).

Figure 2

 2 Figure 2.3.: Power spectrum estimated with FFTs, using the CIC (plain lines), TSC (dashed lines) and PCS (dotted lines) MAS. The blue (orange) lines represent the power spectrum before (after) compensating for the effect of the MAS. For the interpolation, the periodic box, of period L = 1000 Mpc/h, has been divided into N G = 128 cells in each dimension. The dash-dotted line is a reference power spectrum, estimated on a finer grid with N G = 512

2.Figure 2

 2 Figure 2.4.: Simplified view of the effect of aliasing on the power spectrum. The plain blue line shows the power spectrum without any alias contribution (or estimated on a very fine grid), the grey dotted lines represent the first two positive alias contributions and the orange dashed line is the power spectrum with the contribution of these aliases.

Figure 2

 2 Figure 2.5.: Ratio between power spectra estimated in different settings with N G = 128 and the reference power spectrum with N G = 512. The blue lines show the power spectrum estimated with CIC and the orange line with PCS, without and with interlacing in plain and dashed line respectively.

  Figure 2.6.: Observed power spectrum for a survey with a narrow cone geometry of 10 deg 2 . The black dashed line is the true power spectrum and the red line is the observed power spectrum corresponding to Eq. (2.28), averaged on 240 realisations. Taken from Rota (2014).

Figure 2

 2 Figure 2.7.: Example of volume effects in the projection of a 2D posterior. The blue line shows the marginalised posterior and the red line the profile likelihood. Taken from Henrot-Versillé et al. (2016).

Figure 2

 2 Figure 2.8.: Illustration of a χ 2 test with significance α = 0.05 and for n dof = 150. The blue vertical line shows the value of χ 2 1-α and the filled region is the probability α to draw a χ 2 larger than χ 2 1-α .

Figure 2

 2 Figure 2.9.: Top: Evolution of the Hartlap factor with N b for different N m . The k max axis on the bottom shows the maximum mode we reach if we consider all k bins, up to N b , linearly spaced by ∆k = k F , for a box with L = 1 Gpc/h. Bottom: Same for m 1 , with N p = 4.

3.

  Optimal parameter inference with the power spectrum including massive neutrinos -3.1. Simulations and covariance results Ade et al. (2014), with Ω m = 0.32, Ω b = 0.05, h = 0.67, A s = 1.1265 × 10 -9 , n s = 0.96.

Figure 3

 3 Figure3.1.: Top: The DEMNUni-Cov power spectra, for the five snapshots and the two cosmologies. The shaded regions are the 50 realisations and the lines are the means on these realisations. The plain and dashed lines corresponds to the 0ν and 16ν cosmology respectively. The black dotted line stands for the linear prediction in the 0ν cosmology. The black dashed line is the shot-noise level for the 1024 3 CDM particles. Bottom: Ratio between the mean power spectrum of the massive neutrino cosmology over the massless one. The grey area represents the dispersion over the 50 realisations at z = 0.

Figure 3

 3 Figure 3.2.: Top: Diagonal of the power spectrum covariance matrix in the 16ν cosmology, at z = 0 (blue) and z = 2 (purple). The plain lines are the variance estimated from the 50 realisations and the dashed line is the Gaussian prediction. The shaded area represent the error in the approximation of Gaussian distributed data. Bottom: Relative difference between the estimated variance and the Gaussian prediction.

Figure 3

 3 Figure 3.3.: Top: Estimated power spectrum correlation matrix from DEMNUni-Cov, at z = 0 (left) and z = 2 (right). Bottom: Relative error on the covariance matrix, computed with Eq. (2.63).

Figure 3

 3 Figure 3.4.: Estimated correlation coefficient from the 50 DEMNUni-Cov power spectra, for each pair of redshift.

Figure

  the power spectrum covariance estimated with Covmos mocks, focusing 3. Optimal parameter inference with the power spectrum including massive neutrinos -3.1. Simulations and covariance respectively on the diagonal and off-diagonal elements, compared to the Gaussian and DEMNUni-Cov covariances.

Figure 3

 3 Figure 3.5.: Diagonal of the power spectrum covariance matrix at z = 0 (top) and z = 2 (bottom) in the 16ν cosmology. Top: the black dots represents the DEMNUni-Cov covariance, with the associated error-bars in the Gaussian approximation, computed from Eq. (2.63). The blue and orange lines are the Covmos with N m = 10 000 and the approximated Gaussian covariance respectively. Bottom: Relative difference between the DEMNUni-Cov covariance and the two others. The grey shaded area corresponds to the error-bars of the upper panel.

Figure 3

 3 Figure 3.6.: Full covariance matrix of the power spectrum at z = 0 (left) and z = 2 (right), estimated from N m = 10 000 Covmos catalogues, in the 16ν cosmology. Top: correlation matrix. Middle: difference between DEMNUni-Cov and Covmos covariance matrix, normalised by their errors in the Gaussian approximation, computed from Eq. (3.1). This represents the deviation of Covmos with respect to DEMNUni-Cov, in number of σ. Bottom: Relative error on each element of the Covmos matrix.

. 6 )Figure 3

 63 Figure 3.7.: Spectrum of eigenvalues of the power spectrum covariance matrix, estimated with N m Covmos mocks, with a data vector of size N b = 60. The colors correspond to different N m . The NERCOME estimation is shown in plain lines and the standard estimation in dashed lines.

  Figure 3.8.: Bias (top panel, Eq. (3.7)) and variance (bottom panel, Eq. (3.8)) in a precision matrices estimated with N m mocks, for N b = 40. The blue and orange dots respectively correspond to the standard and NERCOME estimator. The black line represents the prediction of the two quantity, for Gaussian distributed data. the vertical dashed grey line indicates the Hartlap limit N m ≤ N b + 2.

(

  ĈD ) covariances. As in the Gaussian case we deal with an analytic covariance, the inversion of the matrix is not impacted by the number of modes per redshift, so I chose a range of k max = [0.1, 0.275] h/Mpc corresponding to N b = [16, 44]. However, when estimated from simulations, the precision matrix is constrained to be estimated with N m > N b + 2. To keep the same wave-mode binning, in the DEMNUni-Cov case the k max range is restrained to [0.1, 0.25] h/Mpc, corresponding to N b =

3.

  Figure 3.9.: Goodness-of-fit test of the model, with significance α = 0.01, for the 5 redshifts all together. This plot shows the difference between the value of χ 2 corresponding to a probability of 1 -α for a χ 2 distribution with N b degrees of freedom and the χ 2 estimated at the 16ν cosmology with Halofit. If the difference is negative the model is rejected. The test is performed for the Gaussian covariance in black, the DEMNUni-Cov in purple and the DEMNUni-Cov with Hartlap correction in blue.

Figure 3 .

 3 Figure 3.10 shows the result of the parameter inference with the DEMNUni-Cov covariance, corrected or not for the Hartlap bias. I also show the error-bars inflated by the m 1= 1 + B (N b -N p ) / 1 + A + B (N p + 1)factor, mainly accounting for the stochastic shift of the best-fit caused by sampling noise (c.f. section 2.3.2). For reference I show the results obtained with the Gaussian covariance. The resulting constraints are presented in terms of the relative difference with the input cosmology, δ(θ) ≡ θ/θ -1, and the χ 2 divided by the number of degrees of freedom n dof = N b -N p .As the Gaussian covariance is noise-free, the fluctuations in the constraints that we see while varying the k max are only due to the noise present in the data vector. Hence,

3.Figure 3 Figure 3

 33 Figure 3.10.: Parameter constraints in the 16ν cosmology, with different covariance matrices: analytic Gaussian approximation (black), estimated with 45 DEMNUni-Cov without the Hartlap correction (purple), with the Hartlap correction (blue) and with m 1 factor (green). The four top panels represent the relative difference with the input cosmology for each free parameter. The bottom panel shows the χ 2 over n dof .

Figure 3 .Figure 3

 33 Figure 3.12.: One realisation of the covmos_halofit power spectrum (black dots) compared to Halofit with (orange line) and without filtering (blue line), at z = and z = 2. Top: Power spectrum. Bottom: Relative difference between covmos_halofit and Halofit. The grey shaded area represent the error on the power spectrum computed with 100 000 realisations of the covmos_halofit power spectrum.

3.Figure 3

 3 Figure 3.14.: Parameter constraints in the 16ν cosmology, with the covmos_halofit power spectra the covariance estimated from N m = 100 000 mocks. The four top panels represent the relative difference with the input cosmology for each free parameter. The bottom panel shows the χ 2 over n dof .

Figure 3

 3 Figure 3.15.: Distribution of the best-fit, over ∼ 100 fits, for each cosmological parameters. Each fit have been run with a different realisation of the covariance matrix, estimated with 45 (top) or 1000 (bottom) mocks, using either the standard estimator (blue) or NERCOME (orange). The red line and area show the best-fit and error estimated with the true covariance matrix. The dashed black curve gives the prediction from Dodelson and Schneider (2013). The dotted black line indicates the fiducial cosmology.

Figure 3

 3 Figure 3.16.: Distribution of the variance, over 100 fits, for each cosmological parameters. Each fit have been run with a different realisation of the covariance matrix, estimated with 45 (top) or 1000 (bottom) mocks, using either the standard estimator (blue) or NERCOME (orange). The red line shows the variance estimated with the true covariance matrix. The dashed black curve gives the prediction from Taylor et al. (2013).

3.Figure 3

 3 Figure 3.17.: 2D and 1D marginalised posterior for one fit among the 82 fits in the S45 case. For the 2D posteriors, the 68.3% and 95.5% confidence regions are shown. The black square and dashed lines show the fiducial cosmology.

3.Figure 3

 3 Figure 3.18.: Parameter constraint with respect to k max , for 3 different sets of DEMNUni-Cov realisations: DEMNUni-Cov01-05 in blue, DEMNUni-Cov06-10 in orange, DEMNUni-Cov46-50 in green. The three columns correspond to the covariance matrix which was used in the fits: standard DEMNUni-Cov covariance with N m = 45 and corrected for the Hartlap bias (left), NERCOME demcov covariance with N m = 45 (middle) and standard Covmos covariance with N m = 10 000 (right).

Figure 3 .

 3 Figure 3.19.: The top panel shows the FoM for 3 different data-sets of DEMNUni-Cov realisations. The bottom panel shows the ratio of the FoM obtained with the standard (left) and NERCOME (middle) estimation of the DEMNUni-Cov covariance, to the FoM obtained with Covmos (right).

Figure 3

 3 Figure 3.20.: Relative difference in %, of the errors on each parameter, obtained obtained with the DEMNUni-Cov covariance for the standard estimator (blue) and NERCOME (orange), with respect to Covmos. More precisely, the quantity on the y-axis is δ(σ θ ) ≡ σ θ /σ Covmos θ -1 [%]. The shaded regions correspond to the dispersion on the three data-sets (DEMNUni-Cov01-05, 06-10 and 46-50) and the lines represent the mean.
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 33 Figure3.21 displays the constraints on each parameter compared to the fiducial cosmology, along with the χ 2 /n dof . As seen before, there is a large deviation from the fiducial cosmology at k max = 0.1 h/Mpc, especially for h and Ω cdm , because of the large variance on the power spectrum at low k. Above k max = 0.1 h/Mpc, the fiducial cosmology is rarely outside the 1σ region, except for k max > 0.2 h/Mpc, where the non-linear power spectrum modeling starts to fail.Both the best-fit and errors are very similar for the Gaussian and diagonal non-Gaussian covariance, at all k max . When adding the non-diagonal elements to the non-Gaussian covariance, we can see small deviations in the best-fit with respect to the two other cases, especially for Ω cdm and m ν , at k max ∼ 0.2h/Mpc. These deviations slightly moves the best-fit away from the fiducial cosmology. However, it is compensated by the increase in the error-bars.This can be observed in figure3.22, where the FoB for the full covariance shows a lower overall bias compared to the two other covariances, at all k max . In particular, the full covariance always results in a less than 1σ bias for k max < 0.18 h/Mpc. Generally, for all three covariances, the FoB stays inside the 2σ confidence interval, except for k max > 0.2 h/Mpc, where it goes above 3σ.Looking at the FoM in figure3.23, we see that while the diagonal non-Gaussian elements only mildly impact the constraints compared to the Gaussian covariance, with a ∼ 10% reduction of the FoM, the full non-Gaussian covariance has a significant effect. For this last case, the damping of the FoM with respect to the Gaussian covariance, increases with k max and goes from 20 to 60%.The increase in the marginalised errors, when accounting for the non-Gaussian covariance, is shown for each individual parameter, in figure3.24. Again, it confirms that non-Gaussian diagonal elements has a negligible influence on parameter errors for the scales probed in this analysis. The most impacted parameters by the nondiagonal elements are Ω cdm and h, showing an error enhancement going from 10 to 50%, when increasing the k max . The errors on the two other parameters present a maximum relative difference, with respect to the Gaussian case, of 10 and 20% for m ν and Ω b respectively.Finally, the shape of the 2D and 1D marginalised posteriors are displayed in figure 3.25, for k max = 0.19 h/Mpc. The strong correlation between Ω cdm and h exhibited in that figure, could explain why these are the two most impacted parameters by the non-Gaussian covariance.To conclude, I found that the non-Gaussian covariance brought by the trispectrum has a non-negligible impact on cosmological constraints derived with the matter power spectrum, on a range of scale going up to k max = 0.2 h/Mpc. Additionally, I
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 333 Figure 3.23.: FoM obtained with the Gaussian covariance (black), the diagonal (green) and full (red) non-Gaussian covariance estimated with 10 000 Covmos mocks. The top panel exhibits the FoM for the three covariances. The bottom panel represents the relative difference with respect to the Gaussian covariance case.

Figure 3 .

 3 Figure 3.26 displays a comparison of the mean DEMNUni-Cov power spectrum with the different predictions evaluated at the fiducial cosmology. The large deviation of the linear prediction with respect to the DEMNUni-Cov power spectrum, puts in evidence the scale at which the non-linearities kick-in, for all redshifts: around k = 0.09 h/Mpc and k = 0.15 h/Mpc at z = 0 and z = 2 respectively.Above these scales, we can see different behaviours depending on the non-linear
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 33 Figure 3.26.: Relative difference, between the theoretical prediction computed at the 16ν fiducial cosmology and the mean power spectrum on the 50 DEMNUni-Cov. The colors correspond to the different predictions : linear (red), Halofit (blue), HMcode (green) and RegPT (purple). The grey area represents the error on the mean, i.e. Var[P (k)]/50, where the variance is estimated with Covmos. Each panel represents a redshift between 0 and 2.

3.Figure 3

 3 Figure 3.28.: Parameter constraints with respect to k max , for the power spectrum averaged on 12 DEMNUni-Cov realisations, at z = 0.5, 1, 1.5 and 2. The four panels represent the relative difference with the fiducial cosmology for each parameter. The colors correspond to the different models : linear (red), Halofit (blue), HMcode (green) and RegPT (purple).
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 333 Figure 3.29.: FoM with respect to k max .

  ing in the comparison the[START_REF] Takahashi | Revising the Halofit Model for the Nonlinear Matter Power Spectrum[END_REF] version of Halofit, without the corrections from[START_REF] Bird | Massive Neutrinos and the Non-linear Matter Power Spectrum[END_REF], could be interesting. Indeed, using this vanilla version of Halofit,[START_REF] Castorina | DEMNUni: The clustering of large-scale structures in the presence of massive neutrinos[END_REF] reports a better agreement with N-body simulations than with Bird's correction, at the level of the power spectrum. The very recent release of a new version of HMcode[START_REF] Mead | HMcode-2020: Improved modelling of non-linear cosmological power spectra with baryonic feedback[END_REF], with a supposedly better treatment of massive neutrinos, could solve the strong bias observed on h. Still, the checks mentioned above should be considered in priority. It is also worth noticing that both Halofit and HMcode are based on N-body simulations, which were not designed with the exact same treatment of massive neutrinos than the one considered for the DEMNUni-Cov. While these differences should not impact significantly the 3. Optimal parameter inference with the power spectrum including massive neutrinos -3.3. Power spectrum non-linear modeling challenge with massive neutrinos

Figure 3 .

 3 Figure 3.32.: Relative difference, between the theoretical prediction in the case of Halofit (blue), HMcode (green) and RegPT (purple), and the mean power spectrum on the 50 DEMNUni-Cov. The plain lines correspond to the bestfit cosmology for k max = 0.19 h/Mpc (black vertical line) and the dashed line to the fiducial one. The grey area represents the error on the mean, i.e. Var[P (k)]/50, where the variance is estimated with Covmos. Each panel represents a redshift between 0.5 and 2.

4.

  Figure 4.1.: Ratio between the different non-Gaussian terms and Gaussian covariance of the power spectrum, for a survey with a volume of 1 [Gpc/h] 3 at z = 0, in a ΛCDM cosmology. The non-Gaussian terms have been computed in the halo-model formalism. The black line shows the total contribution from SSC, which is divided in the Halo Sample Variance term (HSV in blue) and the Beat Coupling term (BC in green), respectively dominating on fully non-linear and weakly non-linear scales. The red line represents the contribution from the trispectrum arising from higher order correlations between modes inside the survey. Figure taken from Takada and Hu (2013).

. 1 )

 1 Let me consider a survey with a window function W(x), split into its radial and angular part such that W(x) = W r (z)W( n), where n is the unit vector carried by the line-ofsight. Taken at a given redshift, thus considering only the angular part of the survey 4. Impact of Super Sample covariance on future photometric galaxy surveys -4.1.Super Sample Covariance with the S i j approximationx

Figure 4

 4 Figure 4.2.: Sketch representing the shift of the background density of the survey δ b with respect to the true background density, due to a density fluctuation on a wavelength larger than the size of the survey.

  Figure 4.2 shows a sketched representation of this. If the survey is limited to the observation of an overdensity, where the density fluctuations are stronger, δ b > 0, and conversely for an under-density, δ b < 0. By definition, on average 〈δ b 〉 = 0 but its variance 〈δ 2 b 〉 = 0 is the origin of SSC. From Eq. (4.2) we can write the covariance of δ b in Fourier space

Figure 4

 4 Figure 4.5.: Comparison of the diagonal of the S i j matrices computed in full-sky (blue), partial-sky (orange) and flat-sky (green), for the three circular masks of 1 deg 2 (top left), 5 deg 2 (top right) and 15 000 deg 2 (bottom).In each subfigure the top panel shows the diagonal of S i j and the bottom panel shows the ratio to the partial-sky diagonal S i j .

4.Figure 4

 4 Figure 4.7.: Normalised, top-hat, redshift kernels with a different amount of overlap between the bins.

Figure 4

 4 Figure4.9.: Kernels for the computation of the angular power spectra, using Eq. (4.6), for the ten photometric redshift bins. The top panel is for GCph and the bottom one for WL, with the cosmic shear only kernel in dashed lines and the total including IA in plain lines.

  Figure of Merit asFoM w 0 ,w a = det(F w 0 ,w a ).(4.45)

Figure 4 .

 4 Figure 4.10.: S i j kl matrix for GCph+WL+XC. It represents the correlations coming from SSC between C AB i j ( ) and C CD kl ( ). The top panel shows the full matrix and the bottom one shows the same matrix but with the elements equal to zero removed. The blue color bar represents the negative correlations and the red the positive correlations.

4.Figure 4

 4 Figure 4.12.: Comparison of SNR with respect to max for the Gaussian (blue) and Gaussian+SSC (orange) covariance, in the case of the three considered probes, GCph+WL+XC in plain lines, GCph in dashed lines and WL in dotted lines. The top panel shows the SNR and the bottom panel the relative difference with and without SSC.

Figure 4 .

 4 Figure 4.13.: Result of the Fisher forecast for a full-sky SSC. The top panel shows the relative 1σ marginalised errors on all cosmological parameters for Gaussian (hatched bars) and Gaussian+SSC (plain bars) for GCph in orange, WL in blue and GCph+WL+XC in green. The bottom panel shows the relative difference between the constraints obtained with Gaussian+SSC and Gaussian covariance matrix.

Figure 4 .

 4 Figure 4.14.: Triangle plot for the cosmological constraints obtained withGCph+WL+XC when using the Gaussian or Gaussian+SSC covariance matrix. The 68% and 95% confidence levels are represented

  Figure 4.16.: Forecast errors on cosmological parameters, for the Gaussian+SSC co-variance, using different area of circular masks for GCph. The relative difference in % between fsky and psky for each cosmological parameter is shown. The plain lines corresponds to the constraints when marginalizing on all parameters (cosmological and nuisance) and the dashed lines when there is no marginalisation.

Figure 4 .Figure 4

 44 Figure 4.18.: Same as figure 4.16 but for GCph+WL+XC

4.Figure 4

 4 Figure 4.20.: Mollweide view of the three masks considered. They all have an area of 15 000 deg 2 , corresponding to f SKY = 0.364. The yellow area is the observable region.

4.

  Figure 4.21.: Forecast errors on cosmological parameters for different survey footprint with a 15 000 deg 2 area, for GCph+WL+XC, when marginalising (a) or not (b). Top: Relative error in % for each cosmological parameter. The filled coloured bars represent the constraints obtained with the psky derivation, using a circular mask (blue), a mask divided in 2 circles (orange) and a stage-IV-like mask (green). The hatched empty bars are the ones obtained in the fsky approximation. Bottom: Relative difference between the fsky and the psky standard deviation for each mask geometry.

  i z (θ, φ)Y m (θ, φ) * . (A.6)They can be equivalently defined in Fourier space by using the Rayleigh plan wave expansione i k•x = 4π ∞ =0 m=-i j (kr )Y m (θ, φ)Y m (θ k , φ k ) * , (A.7)where θ k and φ k are the angular coordinates of the wave mode k of norm k, and the j (kr ) are the spherical Bessel functions. This translates Eq. (A.6θ k , φ k )Y m (θ k , φ k ) * j (kr )

  m (θ k , φ k ) * Y m (θ -k , φ -k ), (A.10)B. Expressions of the density background covariance for SSCIn this appendix I will detail the derivation of the expression for the density background covariance σ 2 (z 1 , z 2 ), introduced in section 4.1.1. For a survey with an arbitrary window function W(x) we haveσ 2 (z 1 , z 2 ) = d 3 k (2π) 3 W (k,z 1 ) W * (k, z 2 ) P (k|z 12 ), (B.1)

W

  (k, z) = d 2 n e -i k.x (B.2) = d 2 n (cos k.xi sin k.x) . (B.3) The integral over the sin being odd, it gives W(k, z) = d 2 n cos kr (zspherical Bessel function j 0 (kr (z)), where r (z) is the comoving distance. Finally, Eq. B.1 rewrites σ 2 full-sky (z 1 , z 2 ) = 1 2π 2 k 2 dk j 0 (kr (z 1 )) j 0 (kr (z 2 ))P m (k|z 12 ). (B.6) B. Expressions of the density background covariance for SSC -B.2. Partial-sky

  z 2 ) is the masked angular power spectrum. From pseudo-C method, first developed for CMB analysis in[START_REF] Hivon | MASTER of the CMB Anisotropy Power Spectrum: A Fast Method for Statistical Analysis of Large and Complex CMB Data Sets[END_REF], we can show where C (W) is the angular power spectrum of the survey footprint, and C m is the (un-masked) matter angular power spectrum. From Eq. B.7 and Eq. B.8, we have that σ 2 part-sky (z 1 , z 2 )

Figure

  Figure C.1.: SNR for GCph+WL+XC, computed with total Gaussian+SSC covariance matrix, where for the SSC part it is computed either using the linear or the Halofit power spectrum. Top: SNR for linear in orange and Halofit in blue. Bottom: relative difference between the two.

Figure

  Figure C.2.: Relative difference between the S i j kl matrices computed with the linear or Halofit power spectrum, for GCph+WL+XC, in the full-sky approximation. 200
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  .37) 2. Cosmological estimations -2.2. Statistical methods for cosmological parameter inference which is the product of the probability of A and the conditional probability of B , given that A has occurred. If we are interested in the probability of observing both, it doesn't matter whether A or B appear first. So we have the symmetry relation 5 : P (A ∩ B ) = P (B ∩ A). Then, we have the Bayes theorem

	P (A|B ) =	P (B |A)P (A) P (B )	.	(2.38)
	Identifying A as the parameters θ of a model M and B as a data-set X, Eq. (2.38) writes

Table 3

 3 

	45	24.86	28.70	28.80	20.27	42.64
	NERCOME, N m = 45	17.35	18.17	18.80	14.74	
	Standard, N m = 1000	3.58	3.76	3.73	4.30	4.55
	NERCOME, N m = 1000	2.64	3.00	3.00	2.71	
	Var σ 2 θ,N /Var σ 2 θ,S -1 [%]	Ω b	Ω cdm	h	m ν	
	N m = 45	-30.24	-36.68	-34.72	-27.27	
	N m = 1000	-26.34	-20.18	-20.09	-36.97	
	〈σ 2 θ 〉/σ 2 θ,Truth -1 [%]	Ω b	Ω cdm	h	m ν	A + B (N p + 1) [%]
	Standard, N m = 45	18.14	11.10	13.60	3.13	43.51
	NERCOME, N m = 45	57.84	33.03	33.81	32.36	
	Standard, N m = 1000	2.21	-0.74	-0.28	-1.93	0.52
	NERCOME, N m = 1000	3.32	0.48	0.76	-0.96	

.3.: Summary of statistics on the variance of each cosmological parameter, over all selected fits. The first row presents the dispersion of the variance (i.e.

  2. Covariance effects on cosmological parameter estimation

			D , standard, N m = 45	01-05	D , NERCOME, N m = 45 06-10	46-50 C , standard, N m = 10 000
	FoM	10 10							
	FoM [ FoM C C ]							
		0.10	0.15 k max [h/Mpc]	0.20	0.10	0.15 k max [h/Mpc]	0.20	0.10	0.15 k max [h/Mpc]	0.20

  3. Power spectrum non-linear modeling challenge with massive neutrinos Following this set-up, I run a MCMC for each model, for k max in the range [0.1, 0.275] h/Mpc. The resulting constraints are presented in figure 3.28.

	θ	Priors	Fiducial value
	ω b	[0.01, 0.06]	0.0224
	ω cdm	[0.01, 0.8]	0.1195
	h	[0.3, 1.5]	0.67
	m ν [eV]	[0, 1]	0.0533
	Table 3.4.: Uniform priors for cosmological parameters and fiducial values for the 16ν
	cosmology.		

  .10) 4. Impact of Super Sample covariance on future photometric galaxy surveys -4.1.Super Sample Covariance with the S i j approximation

	Then, from Eq. (4.8)
	∂P AB
	∂δ b

  table 4.1. The full-sky has the shortest computational time as it only needs one redshift integral 4. Impact of Super Sample covariance on future photometric galaxy surveys -4.1. Super Sample Covariance with the S i j approximation Figure 4.4.: Angular power spectrum of the three masks, computed with healpix. The dashed lines are the max up to which the sum in Eq. (4.22) is computed.

		10 1	1 deg 2	5 deg 2		15 000 deg 2
		10 3				
	( )	10 5				
	C	10 7				
		10 9				
	10 11				
		0	50	100	150	200	250
			Survey area [deg 2 ] Full-sky Partial-sky Flat-sky
			1, f SKY = 2.42 10 -5	6 s	2635 s	165 s
			5, f SKY = 1.21 10 -4	6 s	2371 s	167 s
			15 000, f SKY = 0.36	6 s	75 s	166 s
	Table 4.1.: Computational time of the S i j matrix for the three methods and each survey
		area, on a single process. The full-sky method does not depend on survey
		area as the matrix is just rescaled by f -1 SKY .	

  w a , h, n s , σ 8 } Impact of Super Sample covariance on future photometric galaxy surveys -4.2. Fisher forecasts for 3x2-points analysis including SSC and fix the sum of neutrino masses to m ν = 0.06 eV, with one massive neutrino and two massless neutrinos.In addition to the seven cosmological parameters θ cosmo , the galaxy biase nuisance varied for GCph and WL respectively. Their fiducial values had already been defined in the previous paragraph. The total set of varied parameters θ = θ cosmo + θ nuisance , will therefore count 17, 10 or 20 parameters when considering the analysis for GCph only, WL only or GCph+WL+XC, respectively.

	4. parameters	
	θ GC nuisance = {b i }, for i in 1, ..., 10,	(4.39)
	and IA nuisance parameters	
	θ WL nuisance = {A IA , η IA , β IA },	(4.40)
	will also be	
	= {0.32, 0.05, -1.0, 0.0, 0.67, 0.96, 0.816} ,	(4.38)

Table 4 .

 4 The 68% and 95% confidence levels are represented 4. Impact of Super Sample covariance on future photometric galaxy surveys -4.2. 2.: Result of the Fisher forecast for a full-sky SSC. This table reports the relative 1σ marginalised errors on all cosmological parameters and the dark energy FoM for Gaussian and Gaussian+SSC, as well as the relative difference between the two, for GCph, WL and GCph+WL+XC.

		Fisher forecasts for 3x2-points analysis including SSC
	σ/θ fid [%]	Ω m	Ω b	w 0	w a	h	n s	σ 8	FoM w 0 ,w a
	GCph, Gaussian	3.16	5.27	9.35 33.76 3.48 0.51 0.65 103.71
	GCph, Gaussian+SSC	3.44	5.45 10.64 37.84 3.54 0.52 0.72 89.55
	G+SSC/G -1 [%]	8.96	3.41 13.69 12.10 1.68 3.02 10.84 -13.65
	WL, Gaussian	3.61	47.74 14.03 47.11 20.87 3.20 1.42 43.12
	WL, Gaussian+SSC	9.34	47.77 21.31 52.78 22.21 3.21 2.81 18.47
	G+SSC/G [%]	158.71 0.07 51.90 12.05 6.44 0.21 97.40 -57.16
	GCph + WL + XC, Gaussian	0.62	4.68	2.74 10.21 2.04 0.39 0.23 1038.13
	GCph + WL + XC, Gaussian+SSC	1.18	4.82	4.45 14.32 2.10 0.41 0.38 490.60
	G+SSC/G [%]	90.34	2.97 62.30 40.25 3.34 5.96 64.75 -52.74

Table 4 .

 4 3.: Dark Energy Figure of Merit for all three probes when considering the total Gaussian+SSC covariance in fsky and psky. The results are shown for the lowest and largest survey area.survey of 5 deg 2 , the fsky approximation underestimates by less than 10% the SNR with respect to the more accurate psky computation. For larger surveys, fsky systematically overestimates the SNR, with a maximum of 20% for a 100 deg 2 survey and a minimum of 5% for a 15 000 deg 2 survey. For GCph+WL+XC the behaviour of the SNR is similar to the GCph only case, since the GCph dominates the signal with respect to WL. For these two probes fsky leads to an overestimate of the SNR regardless of the survey area. The relative difference is maximum, with a 60% overestimate, for small surveys between 5 and 100 deg 2 and reaches a minimum of ∼ 7% for 15 000 deg 2 , close to the WL case.

	Probe	Survey area [deg 2 ] Gaussian + fsky SSC Gaussian + psky SSC fsky/psky -1 [%]
	WL	5	0.009	0.012	-30.87
		15 000	26.329	26.335	-0.02
	GCph	5	0.029	0.029	-1.56
		15 000	88.636	88.455	0.20
	GCph+WL+XC	5	0.150	0.166	-9.58
		15 000	454.590	460.510	1.30

This chapter contains non-public Euclid Consortium results that have not yet been endorsed by the Euclid Consortium.

Actually we should call it Lemaître law, as it is Georges Lemaître who derived Eq. (1.6)[START_REF] Lemaitre | Un Univers homogene de masse constante et de rayon croissant rendant compte de la vitesse radiale des nebuleuses extra-galactiques[END_REF] two years before Hubble's observations.

The continuity equation could equivalently derived by equating the covariant derivative of T µν with 0.

At such high energy scale, the electromagnetic, strong and weak interactions are thought to be one unified interaction.

BBN is also responsible for the creation of lithium ( 7 Li), but cannot explain the abundance of heavier elements, which were later generated through stellar formation.

See section 3.3 ofIvanov et al. (2020b) for a list of reference on this measurement

Although the existence of a primordial inflationnary phase of the universe is still in debate, the tiny inhomogeneities it is supposed to generate, should be at the origin of the formation of the large scale structure of the universe we observe today. This will be discussed in section 1.2

The notion of power spectrum and correlation function is presented in section 1.2.1

This does not exclude the existence of sterile neutrinos, only interacting through non-standard interactions.

These values are obtained by assuming that the lightest neutrino in each hierarchy is mass-less.

This is true in the case of three degenerates masses. However, by comparing the values of the squared mass differences given in section I.3 with T 0 ν = 1.68 × 10 -4 eV, we know that at least two neutrinos are non relativistic today. If the third one is still relativistic its contribution to Ω ν is negligible, so that Eq. (1.32) is still valid in the non-degenerate case.

In a relativistic framework, we actually talk about perturbations of the metric, thus perturbations of the curvature of space-time

Quote from[START_REF] Bernardeau | Large-Scale Structure of the Universe and Cosmological Perturbation Theory[END_REF] : "[...] what we observe through our past light cone is different objects at different times of their evolution, therefore testing the evolution of structure must be done statistically."

That is the second moment of the 1-point PDFsgb P(δ)dδ

Indeed, a Fourier transformation is just a change of basis through a linear combination of the field in configuration space.

It is also possible, and more accurate, to describe the evolution of the perturbations in a relativistic framework. See for example[START_REF] Dodelson | Modern Cosmology[END_REF]. But for simplicity, and as it is not required for this thesis, the Newtonian case is sufficient.

As discussed in section 1.2.1, this mode coupling generates non-Gaussianities in the density field.

The growth rate is actually defined as the logarithmic time derivative of the growth factor D(t ), but δ is directly proportional to D.

In a few words, the Lyman-α forest is the feature observed in the spectrum of a distant quasar, corresponding to the absorption of the light it emits, by the neutral hydrogen present between the quasar and the observer. Because the absorption lines are more or less redshifted depending on the distance to the hydrogen clouds, the spectrum of the quasar looks like a forest of Lyman-α absorption lines. This forest probes the density of neutral hydrogen along the line-of-sight.

This cosmological simulation have been generated with the Covmos method, which will be presented in section ??. The details of the simulation does not matter for my purpose here.

This distribution needs to be generated with a very large density to have a negligible shot-noise in the random catalogue.

2.2. Statistical methods for cosmological parameter inferenceOnce a model for the universe is built, we want to extract the value of the parameters of that model, from the data we have. However, the true values of the parameters cannot be reached because any measurement is tarnished by errors. In addition, a data sample is not representative of a whole population (in our case the universe).Consequently, this uncertainty on the model parameters has to be estimated. A natural path for this is through statistical inference. By considering the universe, and thus all the observables stemming from it, as random variables 3 , we can draw statistical conclusions on the models we build. From a Bayesian point of view, we can also think of the model parameters as random variables, with a certain probability distribution. The estimation of this distribution would allow to access its maximum and spread, i.e. the best-fit value and error. This can be done through a sampling process called Monte-Carlo Markov Chain (MCMC). Because it is always possible to find a best-fit, it is important to know whether the model is actually a good-fit to the data. The χ 2 is an appropriate quantity as it confronts data and theory while taking into account errors and correlations in the data. Another interesting statistical object which is widely used in cosmology is the Fisher matrix. By considering hypothetical data-sets, representing observations from future surveys, the Fisher matrix formalism allows us to quickly forecast the ability of such surveys to constrain the parameters of a specific model.3 This point of view is well motivated in light of the theory of inflation, which supposes the structure of the universe to rise from random quantum fluctuations of the inflaton field.

Again, a lot of criticisms can be made toward one or the other philosophy, but I focus here on the ones that are the most relevant to me.

Conditional probabilities however, are not symmetric. This is stated by Bayes theorem

As said earlier, in the frequentist approach we cannot marginalise. It is only possible to fix the other parameters to have 1D distributions. So a 1D marginalised posterior and a profile-likelihood are not supposed to represent the same thing.

More specifically, if Ĉ-1 is a good estimate of the precision matrix.

See Sellentin et al. (2014) for a discussion about the frequentist and Bayesian definition of the Fisher matrix.

For simplicity I consider that the shot-noise term has already been subtracted.

They report a 1% increase only, but they recall that the relative amplitude of C G with respect to C NG depends on the width of the shells.

See Takada and Hu (2013) for a full derivation taking into account the survey window function for the power spectrum covariance

I focus on the power spectrum here, but this estimator applies to any set of realisation of an observable X

Otherwise the factor 1/(1 -N m ) is simply 1/N m

Because the neutrino mass cannot be negative, if the estimated m ν is small, the prior bound at 0 can influence the shape of the posterior to a non-Gaussian distribution.

This power spectrum is designed to follow the targeted one, once the right transformations are applied.

If they are theoretical inputs, the PDF is in any case defined on the initial grid, but the power spectrum must be filtered by hand, with a Gaussian filter for example.

This shrinkage is said to be non-linear because it shrinks different eigenvalues by different amounts.See[START_REF] Pope | Shrinkage Estimation of the Power Spectrum Covariance Matrix[END_REF] for a reference on linear shrinkage.

A precision matrix estimated from the inverse of a Wishart distributed covariance matrix, which is assumed to be the case for the power spectrum. See section 2.3.2.

As stated in section 3.1.1 the 16ν cosmology assumes a degenerate mass hierarchy, so that it makes no difference to fit for M ν or m ν .

Here I'm not talking about the precision, but the accuracy of the covariance matrix. We saw in section 3.1.2 that with Covmos simulations we can achieve a precise estimation of the covariance but not perfectly accurate on all scales

This filter is mandatory for the coherence of Covmos (c.f. secion 3.1.2)

I assume a posterior to be non-Gaussian, if the marginalised lower 2σ bound is equal to the lower 3σ bound for m ν . It simply indicates that the marginalised posterior of m ν is close to the lower bound of the prior.

Not grid-P (k) cloned from Halofit, as in the previous section

For a selection of 5 DEMNUni-Cov realisations going to the data vector, the covariance is estimated on the remaining 45 simulations. So, when the data vector is changed, the covariance also changes.

I recall that here the SSC term is not included. I refer to chapter 4 for a dedicated study of SSC in the

Accounting for baryonic effects is particularly important for weak lensing analyses, where much smaller scales are probed compared to galaxy clustering.

There is an interesting discussion on this subject in the appendix B of[START_REF] Mead | HMcode-2020: Improved modelling of non-linear cosmological power spectra with baryonic feedback[END_REF].

The definition of this quantity is mainly for simplification purposes in the notation and the numerical implementation.

Impact of Super Sample covariance on future photometric galaxy surveys -4.1. Super Sample Covariance with the S i j approximation

These quantities computed with CosmoSIS have been validated against other code in EC-B2020.

Here the flat-sky approximation refers to an approximation for the computation of the C ( ), not to the approximation for SSC presented in section

4.1.2. It consists on replacing the expansion in spherical harmonics by an expansion in Fourier modes. This approximation is valid when we work with distant objects in a patch of the sky.

En français, l'amassement des galaxies.

En français, le décalage vers le rouge.

En français, le lentillage gravitationnel.

En français, la fonction de vraisemblance.

Contrairement au spectre de puissance dans l'espace des redshifts, qui est affecté par les distorsion dans l'espace des redshifts ou RSD.

Dark Energy and Massive Neutrinos Universe, ou en français, Univers avec de l'énergie sombre et des neutrinos massifs.

Flat-sky 

Full-sky 

Remerciements

4. Impact of Super Sample covariance on future photometric galaxy surveys -4.1.

Super Sample Covariance with the S i j approximation before, its expression depends on the assumption made on the survey geometry, to which the next section is dedicated. Finally, note that in Eq. (4.12), the S matrix has four redshift indices (i , j , k, l ), as it describes the covariance between all auto and cross-C ( ), i.e. Cov SSC C AB i j ( ),C C D kl ( ) . But for simple cases I will sometime consider only the covariance between auto-C ( ), i.e. Cov SSC C A A i i ( ),C B B j j ( ) . In the first case the S matrix will be denoted by S i j kl and in the second case by S i j .

Accounting for the survey footprint in SSC

From the definition of the S i j kl matrix in Eq (4.12), we see that we need the expression of the density background covariance σ 2 (z 1 , z 2 ). As stated in the previous section, σ 2 (z 1 , z 2 ) strongly depends on the form of the survey window function W. The radial part corresponds to the redshift binning and is implicitly taken into account by the bounds of the redshift integrals (c.f. Eq. (4.5), for example). We are then interested in the angular part, i.e. the impact of the footprint, or mask, on SSC. In this section I will show the expression of the S i j kl matrix for a full-sky and partial-sky coverage in the case of a curved sky, as well as the commonly used flat-sky approximation. GCph goes from ∼ 0% at low max , to 55% for the highest max . On the other hand, WL is more heavily impacted at low max , going from a 25% to a 65% damping of the SNR due to SSC. The GCph+WL+XC combination is then mixed between the two individual probes, closer from WL at low max and from GCph at high max .

The fact that SSC impacts WL more strongly than the other probes is due to the presence of anti-correlations in the S i j kl for GCph and GCph+WL+XC. Indeed, anticorrelations tend to increase the SNR. Therefore the anti-correlations mitigate the decrease in signal caused by the diagonal and positive off-diagonal elements, for GCph and GCph+WL+XC. This can be understood with a simple example shown in appendix D, in terms of the Fisher matrix. Because of this, we expect the cosmological constraints obtained with WL to be more impacted by SSC than the other probes.

Fisher forecast

Before running the forecasts in the Gaussian+SSC case, the results in the Gaussian case have been checked to be in accordance with EC-B2020. In figure 4.13, I show the resulting forecasted errors for the three probes and the two covariances. These values are also reported in table 4.2 as well as the dark energy Figure of Merit. First, looking at the relative error of each cosmological parameters, it appears that GCph gives better constraints than WL for all parameters whether we use the Gaussian or Gaussian+SSC covariance. As explained in section 4.2.1, this is because we consider a linear galaxy bias model for GCph, that results in unrealistically good constraints at this max . The full combination of probes results in an overall improvement of the constraints for all 4. Impact of Super Sample covariance on future photometric galaxy surveys -4.2.

Fisher forecasts for 3x2-points analysis including SSC

Survey Area

For the psky computation, I consider a circular mask with a f SKY corresponding to an area ranging from 5 to 15 000 deg 2 , and rescale the full-sky SSC by f SKY . First, I look at how the SNR of the angular power spectrum of WL, GCph, and GCph+WL+XC, evolve with the size of the survey. As stated in section 4.1.3, for overlapping redshift bins, the structure of the S i j kl matrix is more complex. So, to interpret the impact of fsky and psky on our observables, it is better to compare their SNR. Figure 4.15 displays the SNR for the psky derivation, the fsky approximation, and the Gaussian covariance case. We see that all probes are significantly affected by the SSC regardless of the size of the survey. However, the relative difference between fsky and psky depends on the probe considered and the survey area. For WL, and for a small area for WL (dotted lines), GCph (dashed lines) and GCph+WL+XC (plain line). The f SKY approximation is shown in blue while the partial sky computation which accounts for the mask is shown in red, the Gaussian case is also shown in green. Bottom: relative difference in % between the blue and the red lines, that is the errors resulting from the use of the fsky approximation.

4. Impact of Super Sample covariance on future photometric galaxy surveys -4.3. Summary of results and conclusions increase the survey area. This approximation shows a less than 10% relative difference on cosmological errors with respect to the partial-sky approach, for a 15 000 deg 2 survey. However, for small surveys the difference between full-sky and partial-sky can reach 50% in the case of weak lensing. Comparing surveys with area of 15 000 deg 2 but different footprints, it was found that the more complex the mask geometry, the larger the difference between full-sky and partial-sky. For the marginalised constraints this difference is negligible as it is always sub-percent. For unmarginalised errors, however, the difference should not be neglected because for some parameters, including w a , it ranges from 5% for the simplest mask to 10% for the most complex one.

Finally the answer I found to the second question is that, considering the marginalised error obtained for a survey with an area larger than 1000 deg 2 , the full-sky approximation is sufficient. But if tight priors are applied on nuisance parameters, especially ones affecting the amplitude of the power spectrum like the galaxy bias, the effect of the survey footprint in SSC is not negligible. As the partial-sky method used for this analysis will be made public, it can be used for further analyses to accurately account for SSC in any cosmological survey.

As future perspectives for this work, the assumptions made on the redshift and scale dependence of the relative response of the observables R , deserve further investigations.

Appendices

A. The angular power spectrum

C ( )

In this appendix I will detail the derivation of the 2D, angular power spectrum C ( ), of a 3D field δ(x). I will also present the Limber approximation which is commonly used to simplify the numerical evaluation of the C ( ).

A.1. Projection of a 3D field on the basis of spherical harmonics

The basis elements of the spherical harmonics space are defined with the associated Legendre polynomials of first kind P m as

with the multipole ∈ N, the azimutal parameter -< m < , the angles θ ∈ [0, π] and φ ∈ [0, 2π]. The P m are related to the basis of Legendre polynomials P (x), through

where x ∈ [-1, 1]. Considering the orthogonality of Legendre polynomials, we have the equivalent property for the spherical harmonics

To express the 3D field δ(x) on this 2D basis, we first need to project the field on the sphere with the following integral δ(θ, φ) = ∞ 0 dr W (r )δ(x ↔ (r, θ, φ)).

(A.4)

The radial weighing function W (r ), called the kernel, is fundamental as it incorporates all the physics of the projected quantity. The expression of the kernel W A (r ) is characteristic of the tracer/probe A of the 3D density field which is considered.

A can correspond to galaxy clustering, cosmic shear, convergence map of the CMB A. The angular power spectrum C ( ) -A.3. Limber approximation where used the fact that 〈δ A (k, z 1 )(δ B (k , z 2 )) * 〉 = P AB (k|z 1 , z 2 )δ D (k + k ). Hence, we have

∞ 0 dkk 2 P AB (k|z 1 , z 2 ) j (kr (z 1 )) j (kr (z 2 )).

(A.11) The numerical evaluation of this 3D integral is time consuming, especially considering the fact that it should be performed at each step of a MCMC for example. This is in particular due to the oscillating behaviour of the Bessel functions. Several approaches can be followed to reformulate Eq. (A.11) [START_REF] Campagne | Angpow: a software for the fast computation of accurate tomographic power spectra[END_REF][START_REF] Gebhardt | Fast and accurate computation of projected two-point functions[END_REF]. In this thesis, I only consider the widely used Limber approximation (see LoVerde and Afshordi, 2008, for a detailed derivation) .

A.3. Limber approximation

The Limber approximation can be thought of as the assumption that P (k) varies slowly compared to the oscillations of the Bessel functions, so that it can be taken only at the peaks of the j :

(A.12) P AB (k |z 1 , z 2 ) can then be taken out of the integral over k and we have .13) Eq. (A.11) can then be approximated as

This approximation is only valid for high multipoles (typically > 30). Note that in chapter 4, I adopt a different convention for the integrals over the redshift by considering the element of integration dV = r 2 (z) dr dz dz, which is the comoving volume per steradian.

C. Sufficiency of the linear power spectrum for SSC

In this appendix I show that the linear power spectrum is sufficient to compute the SSC, by comparing the S i j kl matrix (c.f. Eq. (4.12)) and the signal-to-noise ratio (SNR, c.f. Eq. (4.41)) computed either with the linear power spectrum or with the Halofit power spectrum. Because I want to test this in the context of the Fisher forecast analysis presented in section 4.2, I use the same setting, described in section 4.2.1. I perform the test for the probe combination GCph+WL+XC.

In figure C.2 I show the relative difference between the S i j kl matrices computed either with the linear power spectrum or with the Halofit one, for GCph+WL+XC, in the full-sky approximation. The difference between the two matrices is globally close to 0%, except for some small parts of the matrix. As these outliers are few in number, it should not cause a big difference in the end.

To be sure that the small differences seen in figure C.2, would not impact cosmological constraints, I computed the SNR which shows how the observables are impacted by the covariance. Figure C.1 presents the SNR with respect to max , for the Gaus-sian+SSC covariance matrix, where the SSC part has been computed using the two S i j kl matrices that I discussed above. The relative difference between the two is always smaller than 0.2%. There is a slight increase from ∼0.1% to 0.16% between the smallest and largest max .

From this very small difference both in the S i j kl matrix and the SNR, I conclude that the hypothesis that the linear power spectrum is sufficient to compute SSC, is correct.

Note that this is not a rigorous test. Indeed I simply replaced the linear power spectrum by the non-linear one. But then, the non-linear P (k, z = 0) is still rescaled with the linear growth factor D(z), to vary to redshift in the integrals. This is obviously a wrong approximation. By doing this, the non-linearities present at z = 0 will be the same at higher redshift, because D(z) only changes the overall amplitude of the power spectrum. So, I actually overestimate the non-linear part of the power spectrum for z > 0. However, even with an overestimated non-linear power spectrum, the differences at the level of the S i j kl matrix and the SNR are negligible. Still, it could be interesting to perform this test in a more rigorous way. GCph : Gaussian GCph : Gaussian+SSC GCph+WL+XC : Gaussian GCph+WL+XC : Gaussian+SSC