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THÈSE dirigée par :
M. Nicolas THOME , Professeur, Conservatoire national des arts et métiers

Jury
M. Greg MORI
Professeur, Simon Fraser University et directeur scientifique, Borealis AI Rapporteur
M. Patrick PEREZ
Directeur scientifique Valeo AI Rapporteur
M. Patrick GALLINARI
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tâche de rédaction d’articles scientifiques. Un grand merci pour tout le temps passé (soir et week-end
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Pour finir, je tiens à remercier mes parents, mon épouse pour leur soutien et patience durant ces

3 années très chargées, avec une pensée pour le petit Louis qui est venu au monde 1 mois avant ma

soutenance de thèse.
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Abstract

This thesis tackles the subject of spatio-temporal forecasting with deep learning, which is the task of

forecasting complex phenomena represented by time series or videos, involving both complex temporal

dynamics and strong spatial correlations. This is of crucial importance for many industrial applications,

such as climate, healthcare or finance. The motivating application at Electricity de France (EDF) is

short-term solar energy forecasting with fisheye images. Despite the great successes of deep learning

in computer vision and natural language processing, pure data-driven methods still struggle in the

task of physical process extrapolation, especially in data-scarce contexts and for non-stationary time

series that can present sharp variations. We explore two main research directions for improving deep

forecasting methods by injecting external physical knowledge. The first direction concerns the role of

the training loss function. Instead of using the largely dominant mean squared error (MSE), we show

that differentiable shape and temporal criteria, typically used as evaluation metrics in applications,

can be leveraged to improve the performances of existing models. We address both the deterministic

context with the proposed DILATE loss function and the probabilistic context, for which we aim

at describing the predictive distribution with a small set of diverse and accurate scenarios, with our

proposed STRIPE model. Our second direction is to augment incomplete physical models with deep

data-driven networks for accurate forecasting. For video prediction, we introduce the PhyDNet model

that disentangles PDE (partial differential equations) dynamics from residual information necessary for

prediction, such as texture or details. We further propose a learning framework (APHYNITY) that

ensures a principled and unique linear decomposition between physical and data-driven components

under mild assumptions, leading to better forecasting performances and parameter identification. We

validate our contributions on many synthetic and real-world datasets, and on the solar energy dataset

at EDF.

Keywords : deep learning, machine learning, spatio-temporal forecasting, solar energy forecasting.
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10.5.2 Modèle APHYNITY pour la coopération optimale entre physique et apprentissage
profond . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
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1.1. SPATIO-TEMPORAL FORECASTING

1.1 Spatio-temporal forecasting

Figure 1.1: Spatio-temporal forecasting applications include time series forecasting, physical systems
extrapolation, forecasting phenomena with visual data, generic video prediction, etc.

1.1.1 General context: perception vs extrapolation

I
n this thesis, we tackle the problem of spatio-temporal forecasting, which is the task of forecasting
complex phenomena represented by time series or videos, involving both complex temporal dynamics
and strong spatial correlations. Advances in this field could lead to immediate and possibly large

impacts in the society. A wide range of sensitive applications heavily rely on accurate forecasts of
uncertain events with potentially sharp variations for making decisions (see Figure 1.1). In weather
and climate science, better anticipating floods, hurricanes, earthquakes or other extreme events could
help taking emergency measures on time and save lives. In medicine, predicting the evolution of a
disease is a particularly actual topic. In retail and business, accurately predicting the demand for a
product is fundamental for stock management and profit maximization. For industrial applications,
failure prediction is an important issue for maintenance.

We address spatio-temporal forecasting from a machine learning point of view, i.e. by leveraging
training data for solving the task. Machine Learning (ML) is a subfield of Artificial Intelligence (AI)
that is appealing for solving complex problems. Bolstered by the recent advances in computer hardware
and the exponential growth of available data, ML has witnessed a renewed interest in the last decade
from both academic and industrial actors. At the ImageNet competition in 2012, which consists in
classifying images between 1000 categories, the deep neural network of Krizhevsky et al. [127] has
for the first time outperformed traditional methods by a large margin. Given enough training data,
Deep Learning (DL) can automatically learn meaningful representations useful for downstream tasks,
replacing the manual feature extraction necessary in traditional ML algorithms. Since, Deep Learning
has shown impressive results in many practical applications (see Figure 1.2), such as object detection
[27], image segmentation [172], natural language understanding [61], or human speech recognition [2].
Combined with reinforcement learning, DL has led to super-human performance on many board games,
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1.1. SPATIO-TEMPORAL FORECASTING

e.g. at the game of Go with alphaGo [230].

Figure 1.2: The main Artificial Intelligence and Deep learning successful applications include tasks
linked to perception, such as computer vision, speech, language, reinforcement learning and games.

However, the successes of AI in these tasks are essentially linked to perception and not directly
transferable to spatio-temporal forecasting. Modelling and extrapolating complex physical dynamics,
such those arising in climate sciences, seems still beyond the scope of pure ML methods. The
extrapolation task we address is quite different by nature from perception: future is inherently
stochastic and multimodal, i.e. multiple outcomes may happen from the same context situation.
Moreover, the volume of available data for learning complex dynamical systems such as in climate is
by several orders of magnitude not sufficient still nowadays [224]. Many extreme events appear very
scarcely in datasets and are thus highly challenging to learn from data.

1.1.2 Incorporating prior knowledge in machine learning models

To overcome these issues, injecting prior physical knowledge about the system is a key aspect for
accurate extrapolation. This is an old question in machine learning that yet remains widely open. We
illustrate in Figure 1.3 the main classes of methods for spatio-temporal forecasting.

On the right side of Figure 1.3, the traditional Model-Based (MB) approaches require a deep
mathematical or physical understanding of the underlying phenomena. For time series, classical state
space models (SSMs) [106, 21] explicitly exploit the trend and seasonality patterns. For physical
processes, physicists attempt to model the dynamics with first principles, conservation laws or other
empirical behaviours. This physical knowledge can often be formulated through ordinary or partial
differential equations (ODE/PDE) with known coefficients. With data available for the initial and
boundary conditions, forecasting is performed with numerical simulation solvers. This is the classical
setting in many engineering fields, such as in mechanics (where systems are described by Newtonian
mechanics) or in computational fluid dynamics (with the Navier-Stockes equations), and the numerical
analysis solvers are well theoretically grounded.

However, this class of methods is limited in the case of incomplete physical models. Models can be
considered incomplete in two situations. In the first case, the complexity of the phenomenon prevents

3
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Figure 1.3: Data vs. prior knowledge contexts. On the left, Machine Learning (ML) and particularly
Deep Learning can extrapolate dynamical systems with no prior information after training on a large
dataset. On the right, traditional Model-Based (MB) approaches assume a full physical knowledge
of the system and predict the future with numerical simulation from a set of initial and boundary
conditions. In-between, with some data and a possibly incomplete knowledge, the ML/MB coupling is
a very active and promising research direction that we explore in this thesis.

from deriving an exhaustive analytical description of the system. For example when modelling climate
change, many complex interactions governing the state of the atmosphere are not modelled. The
complete set of input variables of the system may also be unknown, e.g. when forecasting financial
markets or human interactions. In the second case, certain approximations are made to make the
complete equations numerically tractable. For example, the Schrödinger equation that governs the
wave function of a quantum-mechanical system is not exactly solvable in many non-trivial situations.
Solutions are typically computed by approximate numerical schemes and with several simplifying
assumptions, e.g. the Born-Oppenheimer approximation. For computational time issues, the equations
can also be solved on rather coarse meshes, which can prevent from capturing certain phenomena,
e.g. the turbulence behaviour in computational fluid dynamics.

On the other side of the spectrum, Machine Learning (ML) represents a more prior-agnostic
approach. Given a large amount of training data, deep learning has encountered impressive successes
in automatically learning complex relationships without any prior knowledge, and has become state-of-
the-art for many forecasting tasks, such as generic video prediction [277]. However, as discussed above,
deep learning is still limited for modelling highly complex dynamics of natural phenomena such as
climate; although more and more data is collected about the atmosphere with in-situ or remote sensing,
it is still largely largely insufficient for matching the complexity of the task. Moreover, deep neural
networks lack the physical plausibility required in several domains and cannot properly extrapolate to
new conditions.

In-between, there exists a category of hybrid methods that combine MB approaches and data.
Historically, data assimilation techniques [50, 18] leverage data to correct the predictions of physical
models in presence of noisy observations. This includes the popular Kalman filter [116], particle
filter [192] or 4D-Var [52] that have achieved great successes for many smoothing/filtering/forecasting
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applications, for example for tracking objects in videos [191]. Data assimilation still constitutes the
state-of-the-art paradigm for weather forecasting.

Revisiting the ML/MB cooperation with modern deep learning is an emerging research topic
motivating a great interest in many communities, attested by the soaring number of publications and
workshops in top ML conferences1. Physics can be leveraged in the training process of ML models,
either as a soft constraint in the loss function [201, 231] or as hard constraints in the neural network
topology [57, 174]. From the ML point of view, these physical constraints lead to more interpretable ML
models compliant to physical laws that remain robust in case of noisy data. This typically results in an
increased data efficiency and better extrapolation performances beyond the training domain. Another
particularly appealing direction concerns identifying and discovering physical systems: data-driven
models can learn the unknown coefficients or parts in parameterized PDEs [214, 155], and discover
new physical connections from data [54].

In this thesis, we explore this category of hybrid methods and our contributions are targetted
towards the following question:

How to properly exploit prior physical knowledge to improve Machine Learning forecasting models?

We focus on two particular directions: injecting prior knowledge in the training objective (part I)
and designing augmented MB/ML neural architectures in the case of incomplete physical models (part
II).

1.1.3 Industrial application at EDF: solar energy forecasting with fisheye images

At Electricité de France (EDF), the industrial use-case motivating this thesis is solar irradiance
forecasting. With the increasing share of intermittent renewable energy sources such as solar or wind,
accurately forecasting the electricity production and its possibly sharp variations is of great importance
since the the consumption-production balance must be satisfied at every timestep. The possible data
sources for this task are illustrated in Figure 1.4. Numerical weather forecasts are commonly used for
predicting solar energy for long-term horizons up to a few days, with a typical temporal scale of 1 hour
and a spatial scale of approximately 10 km. For shorter term horizons, satellite images offer forecasts
up to a few hours, at a 15 min temporal granularity and a 1 to 5km spatial scale. However the spatial
and temporal granularity of these two techniques are too coarse to precisely forecast the photovoltaic
(PV) energy production of a given plant for very short horizons (< 20min).

To this end, images of the sky from ground-based fisheye cameras have been increasingly investigated
in recent years [87, 43, 42, 164, 223]. Coupled with ground truth solar irradiance measurements from
pyranometers, fisheye images offer an hemispheric view of the sky enabling to anticipate the evolution
of the cloud cover responsible for the electric production variations. A database of several million
annotated fisheye images has been collected by EDF R&D. Estimating the irradiance corresponding
to a given fisheye image is a favorable perception task for the application of deep learning. We have
confirmed at the beginning of this thesis [136] that deep learning indeed provides a large improvement
gap over traditional machine learning methods for this estimation task.

1For example, the two workshops ”Machine learning and the physical sciences” and ”Tackling climate change with
machine learning” at NeurIPS 2019 gathered together more than 200 papers, and even more at NeurIPS 2020.
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Figure 1.4: The different data sources for forecasting solar energy.

On the contrary, predicting future fisheye images for anticipating the PV production is a much more
challenging extrapolation task: clouds are deformable objects with complex stochastic behaviour (that
can appear or evaporate), several layers with different speeds and directions may be simultaneously
present, and the fisheye camera distortion exacerbates the difficulty. In this context, even recent
state-of-the-art deep learning algorihms struggle to properly extrapolate the cloud motion. We describe
this use-case with more details in Chapter 8.

1.2 Scientific challenges

We present here the main scientific challenges, highlighted by our industrial application, that we
address in this thesis.

1.2.1 Multistep forecasting of non-stationary dynamics

We address the problem of forecasting complex dynamical systems with non-stationary dynamics,
i.e. with possible sharp variations. We are interested in describing the distribution of possible futures
with a small set of predicted trajectories. In this context, pure data-driven methods are still limited.
Paletta et al. [184] compared the performances of mainstream convolutional and recurrent neural
networks for solar irradiance forecasting at a 10 minutes horizon. They show (see Figure 1.5) that Deep
Learning (DL) predictions struggle to match the ground truth (black curve). Two main drawbacks can
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be observed: (1) DL predictions smoothen the shape of the sharp drop of solar irradiance in B, and (2)
the predictions are late, for example do not anticipate the drop in B2.

Figure 1.5: Limitations of standard Deep Learning models for 10-min ahead solar irradiance forecasting
with fisheye images. Prior-agnostic Deep Learning models trained with the mean squared error do not
capture the correct shape of the ground truth nor its exact temporal localization (they are temporally
aligned with the smart persistence). Figure taken from Paletta et al. [184].

This solar energy forecasting problem illustrates a non-stationary forecasting context, with possible
abrupt variations that need to be anticipated on time. This also occurs in many other important
applications, e.g. predicting future traffic flows, stocks markets, etc. Traditional time series forecasting
methods, often relying on stationarity assumptions, are not adapted for this context, and pure data-
driven models struggle as well. One of the reasons is the mismatch existing between the evaluation
metrics typically used to assess predictions in practice (that take into account shape and temporal
errors) and the dominantly used training loss for deep models (the mean squared error).

The main scientific challenges raised by this use-case are the following:

• How to design differentiable metrics for assessing the correctness of shape and the temporal
localization of future trajectories?

• How to efficiently describe the uncertainty by providing to the decision makers a small set of
possible scenarios reflecting the shape and temporal diversity of future trajectories? In particular,
how to structure the diversity of future trajectories according to shape and temporal criteria?

2Predictions are temporally aligned with the smart persistence, which corresponds to copying the current value for the
future time horizon.
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1.2.2 Exploiting incomplete prior physical knowledge in machine learning models

The majority of existing works for combining machine learning and physics assume a complete
physical knowledge about the system in the training process [58, 201]. In contrast to this mainstream
direction, we investigate in this thesis how to leverage incomplete physical models, i.e. models that
are insufficient for totally describing the dynamics. We have seen that physical models are coarse
representations of the reality in many situations, e.g. in physics, climate, robotics, finance, etc.

In the solar forecasting energy example, the dynamics of clouds can be described from fluid mechanics
principles. However, an exhaustive physical description is mainly out of reach since the dynamics
of atmosphere is governed by many complex and interacting physical phenomena (e.g. formation,
evaporation of clouds, turbulence). Moreover, even a complete physical model becomes insufficient in
case of missing input information, i.e. when the true state of the system (appearing in the dynamical
equations) is not fully observed. In our case, we do not have a full observation about the state of the
atmosphere above the PV station: we only dispose of fisheye images and we do not use information
about the wind speed, the altitude of clouds and we cannot resolve if there exists several cloud layers
that mask one another.

Another exacerbating difficulty is the non-observability of the prior dynamical model, i.e. when
the physical model does not apply directly in the input space. For example common laws of motion
for tracking clouds in fisheye images, e.g. a simple advection model, suppose that the clouds have
been correctly identified and segmented and that a linear translation of clouds translates in a linear
translation in the image, which is not the case because of the circular distortion of the fisheye objective.

So far, exploiting incomplete physical models has been explored by very few works [153, 216, 168].
This problem poses many technical challenges from several points of view:

• Neural network architecture: how to design deep architectures with hard or soft physical
constraints?

• Training: how to efficiently train these models? From a theoretical point of view, can we provide
guarantees on the quality of the ML/MB decomposition (existence, uniqueness)?

1.3 Contributions and outline

In this thesis, we address the two aforementioned scientific challenges for spatio-temporal forecasting.
For multistep and non-stationary time series forecasting in deterministic and probabilistic contexts,
we propose to incorporate differentiable shape and temporal features in the training scheme of deep
forecasting models (part I of the thesis). For exploiting physical knowledge in deep architectures in
incomplete-knowledge settings, we introduce a disentangling architecture and explore the theoretical
properties of the resulting ML/MB decomposition (thesis part II). Finally, we apply our proposed ideas
to the solar irradiance forecasting problem (thesis part III).

Part I: Differentiable shape and time criteria for deterministic and probabilistic forecasting

In non-stationary contexts occurring in many industrial applications, current deep learning fore-
casting methods are often inadequate to properly predict sharp variations. The literature is mainly
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focused on new neural network architectures to improve forecasts. In contrast, the choice of the training
loss function is rarely questioned. The large majority of methods are trained with the proxy Mean
Squared Error (MSE) or variants that lead to non-sharp predictions. Besides, current state-of-the-art
probabilistic forecasting methods are also ill-adapted for representing the shape and temporal variability
of future scenarios. In this part, we propose to design training objectives that account for the shape
and temporal localization of predictions.

Our contributions to tackle the first scientific challenge are the following:

• For training deep forecasting models, we introduce in Chapter 3 differentiable shape and temporal
criteria inspired by evaluation metrics commonly used in applications. We propose an unifying
view of these criteria both in terms of dissimilarities (loss functions) and similarities (positive
semi-definite kernels). We insist on their efficient computation and differentiability, which allows
to use them in deep learning pipelines.

• For deterministic forecasting, we introduce in Chapter 4 the DILATE training loss function that
combines a shape and a temporal dissimilarity to accurately predict sharp events with precise
temporal localization. We show that training with DILATE loss instead of the MSE leads to
better results at test time on several non-stationary benchmarks for generic and state-of-the-art
architectures.

• For probabilistic forecasting, we present in Chapter 5 the STRIPE model that provides a set
of diverse and accurate possible future trajectories. The diversity is structured with shape
and temporal positive semi-definite kernels embedded in a determinantal point process (DPP)
mechanism. We show that our method leads to predictions with a better quality/diversity tradeoff
than competing diversifying mechanisms.

Part II: Physically-informed forecasting with incomplete knowledge

To advance towards the exploitation of incomplete physical knowledge in deep forecasting models,
we first introduce in this part a new ML/MB deep architecture dedicated to video prediction, for which
the physical laws are often not directly applicable at the pixel level. We further delve deeper into the
ML/MB decomposition and we propose a new learning framework with uniqueness guarantees.

Our contributions to tackle the second scientific challenge are the following:

• In Chapter 6, we propose a new deep architecture called PhyDNet dedicated to video prediction
in non-observable prior contexts. PhyDNet learns physical dynamics parameterized by a general
class of PDEs. Since the physical laws may not directly apply at the pixel level in videos, we
complement the physical model with a data-driven model in charge of learning the residual
information necessary for accurate prediction, such as appearance, texture, details. We show that
PhyDNet reaches very good performances on several video prediction benchmarks, from a strong
(linear translation for the Moving MNist dataset) to a weak prior physical knowledge (modelling
general human motion for Human 3.6 dataset).

• In Chapter 7, we concentrate on the ML/MB decomposition problem and the optimal cooperation
between physical and data-driven models. We introduce a principled learning framework, called
APHYNITY, for forecasting complex physical systems with incomplete knowledge. Inspired
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by the least-action principle, APHYNITY minimizes the norm of the data-driven complement
under the constraint of perfect prediction of the augmented model, which leads to a unique
decomposition under mild assumptions (Chebychev set). We show on several challenging physical
dynamics that APHYNITY ensures better forecasting and parameter identification performances
than MB or ML models alone, and that competing ML/MB hybrid methods.

Part III: Application to solar irradiance forecasting

Finally, we apply the methodological contributions of this thesis to the solar irradiance forecasting
problem at EDF.

• In Chapter 8, we present the industrial solar irradiance forecasting problem in more details and
review the existing literature for solving it. We also propose a first deep learning model for
estimating and forecasting solar irradiance.

• In Chapter 9, we apply the methodological contributions of this thesis to this problem. We
propose an adaptation of the introduced PhyDNet architecture to perform physically-constrained
prediction. We also evaluate the DILATE loss and the APHYNITY framework on this problem
and discuss future improvement directions.

Before delving in the core of the thesis, we present in Chapter 2 on overview of the basics of machine
learning and the related works on spatio-temporal forecasting and physically-constrained machine learn-
ing. Finally, in Chapter 10, we summarize our work and propose appealing perspectives for future works.
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Bézenac∗, Nicolas Thome and Patrick Gallinari. ”Augmenting Physical Models
with Deep Networks for Complex Dynamics Forecasting”, In International Conference
on Learning Representations (ICLR 2021, oral presentation), Journal of Statistical
Mechanics: Theory and Experiments (JSTAT 2021).

7
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Chapter abstract

In this Chapter, we first present the basic concepts of machine learning and deep learning targeted
to the problem of time series forecasting (Section 2.1). Then we present an historical view of
spatio-temporal forecasting, from the traditional to the more recent deep approaches for deterministic
and probabilistic forecasting (Section 2.2). We make a focus on the training and testing metrics, on
the specific challenges of video prediction and on the question of diversity in probabilistic forecasting.
Finally, we introduce the concepts of physics-based machine learning (Section 2.3). We comment the
existing strategies for regularizing machine learning with physical knowledge, at the training loss and
at the architectural level. We also review the question of physical system identification with machine
learning and discuss the few recent works for augmenting incomplete physical models.
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2.1 Machine Learning

2.1.1 Background

D
eep Learning belongs to the broader category of statistical machine learning. In the supervised
learning context, the goal is to estimate the optimal mapping Y = f(X) between inputs X
and outputs Y, given a training dataset of N labelled examples {(Xi, Yi)}N

i=1 ∈ (X × Y)N .
The inputs are represented by the attribute (or feature) vectors Xi ∈ Rd, and the target Yi can be a
categorical variable Yi ∈ {0, 1, ..., K} for classification tasks or a real variable Yi ∈ Rk for regression
tasks. We illustrate in Figure 2.1 the supervised machine learning framework in the case of time series
forecasting.

Figure 2.1: Supervised machine learning framework for time series forecasting.

Learning framework The classifier or regressor function f is optimized over an hypothesis class H of
functions. Examples of classes include the linear models, the kernel methods, or the neural networks.
This class should be carefully chosen for the task, guided by the bias-variance tradeoff [16]. The class
H should be sufficiently expressive for modelling the solution of the problem; on the contrary, a too
large model capacity reduces the bias but favors the overfitting phenomenon on the training set.

Once the class H is defined, we want to select the function f that best fits the training data, while
generalizing correctly to unseen input data coming from the same distribution. Training the model
consists in minimizing the risk R(f) that measures the disagreement between the predictions and the
ground truth labels with a loss function ℓ : X × Y → R+:

R(f) := E(X,Y )∼D ℓ(f(X), Y ) (2.1)

f∗ = argminf∈H R(f). (2.2)

In practice, the joint distribution D over X × Y is unknown, therefore we minimize the empirical risk
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defined with the training samples:

Rn(f) := 1
n

N∑︂
i=1

ℓ(f(Xi), Yi). (2.3)

Training loss functions In the context of binary classification (Y = {0, 1}), a common loss function is
the binary cross-entropy:

ℓ(f(X), Y ) = −[Y log f(X) + (1 − Y ) log(1 − f(X))]. (2.4)

For regression problems such that found in time series or video prediction, the most common loss
function is the mean squared error (MSE), corresponding to the L2 loss averaged over input-output
pairs:

ℓ(f(X), Y ) = ∥f(X) − Y ∥2
2. (2.5)

Monostep vs. multistep forecasts For time series forecasting, the loss function ℓ can either applied to
compare monostep or multistep forecasts. Monostep forecasting methods compute a one-step ahead
prediction ŷT +1 given past values (y1, · · · , yT ), which is compared to the ground truth future y∗

T +1:
ℓ(ŷT +1, y∗

T +1). In contrast, multistep forecasts compute the loss on multiple predicted timesteps:
ℓ((ŷt)T +1:T +H , (y∗)T +1:T +H). The mean squared error (MSE), dominantly used in applications, is
separable, i.e. the multistep loss is the sum of the loss for all individual timesteps. In this thesis, we
study dedicated loss functions for multistep forecasting, that are non separable, for explicitly imposing
a desired behaviour based on the whole predicted dynamic’s trajectory.

Regularization Machine learning models are optimized to predict the labels of the training set.
However, a model that perfectly predicts those labels does not necessarily generalize well to unseen
data. With high capacity models such as deep neural networks, the risk is to learn the training set by
heart and represent a too complex function; this phenomemon is called overfitting.

To overcome this issue, a common strategy is to add a regularization term Ω to the training objective
for penalizing the complexity of the model:

min
f∈H

Rn(f) + Ω(f). (2.6)

From a Bayesian point of view, many regularizers correspond to certain prior distributions over the
model parameters. The most popular choices include the L2 and L1 weight normalization. As we will
dicuss in Section 2.3, normalization is a possible way to leverage physical priors in a model.

2.1.2 Deep neural networks

Neural networks are based on the simple artificial neuron modelling proposed by MCulloch and
Pitts [167] and have been explored from the 1980’s [142]. Standard feedforward neural networks
are composed of a succession of mathematical functions called layers that progressively transform
the inputs X to the outputs Y through a sequence of intermediate representations hl called hidden
states. A typical dense (or fully-connected) layer consists in a linear combination of the inputs followed
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by a nonlinear activation ϕ: hl+1 = ϕ(Wlhl + bl) for the lth layer. The typical nonlinearities are
traditionally the sigmoid, hyperbolic tangent or the Rectified Linear Unit (ReLU) x ↦→ max(0, x).

Neural networks are trained using gradient descent algorithms, such as the basic Stochastic Gradient
Descent (SGD) [20] or variants with momentum like AdaDelta [68] or Adam [118]. The gradient of the
loss with respect to the model’s parameters is computed by the backpropagation method [142]. Thus
all applied operations in the model should be differentiable, in particular the loss function. We will see
in this thesis that the choice of a differentiable loss function is a key aspect for imposing a desired
behaviour.

Deep Learning has become popular since the victory of the AlexNet model [127] at the ImageNet
competition in 2012. The main revolution of Deep Learning relies in the depth of the neural networks. By
stacking many layers, the network progressively learns more and more complex feature representations
of the input, from the low-level concepts (such as color or contours) to the most semantics concepts
(such as the recognition of a particular object) necessary for image classification.

Figure 2.2: Common layers used in deep learning models. Shared parameters are shown with the same
color. Figure taken from Battaglia et al. [10].

The choice of the neural network architecture is a critical aspect for solving a task. We illustrate in
Figure 2.2 the three main kinds of layers. The Multi-Layer Perceptron (MLP) [212], only composed of
fully-connected layers, is the most generic architecture but at the expense of a number of parameters
exponentially growing with the number of layers, making it not amenable for many applications. Other
architectures encode specific inductive biases on data. For example, convolutional neural networks [142]
encodes spatial equivariance, i.e. the response of a classifier should be independent to the particular
location of objects in the image, by sharing a convolutional filter for all spatial positions. Likewise,
recurrent neural networks encode translation equivariance for processing sequential data by reusing
the same weight in time. More recent architecture also encode other kinds of inductive biases: graph
neural networks [9] encode permutation invariance among a set of items, and the recent Transformer
architecture [255] implements an attention mechanism over neighbouring positions.

When investigating deeper and deeper architectures, researchers have been faced with training
issues like the vanishing gradient problem, i.e. the gradient of the loss can become very small after
backpropagating through a large number of layers. To overcome this problem, He et al. [101] has
proposed the residual neural networks (ResNets) by adding skip connections between a block of standard
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layers:
xl+1 = F(xl) + xl, (2.7)

where xl is the hidden state after the lth block and F denotes a nonlinear function (e.g. a series of
convolutions and nonlinear activations). These ”identity shortcuts” allow a direct flow of the gradient
and have significantly improved the training of very deep networks, leading to new state-of-the-art
performances on ImageNet. Pursuing this idea, the densely connected networks (DenseNets) of Huang
et al. [105], connecting all layers together within a block with skip connections, have further improved
the performances.

Difference between traditional ML and DL The main differences between traditional Machine Learn-
ing (ML) and Deep Learning (DL) are illustrated in Figure 2.3 for the case of solar irradiance forecasting
with fisheye images. The traditional ML pipeline (from the existing method at EDF [87]) is composed
of several steps with manual intervention: camera calibration for compensating the fisheye distortion,
projection of the input images on a plane at a given altitude, optical flow estimation, image warping
for computing the future frame, future image segmentation with handcrafted features and thresholds,
and finally prediction of the future irradiance with a traditional regressor (e.g. linear regression). Many
of these steps require expert manual intervention. On the other side, the Deep Learning approach
directly learns the image to irradiance mapping on raw fisheye images and automatically derives the
appropriate intermediate concepts.

In fact, the difficulty of the task has shifted from the handcrafted feature engineering of traditional
ML methods to the manual neural network architecture design of DL that encodes appropriate inductive
biases or behaviours.

Figure 2.3: Traditional Machine Learning vs. Deep Learning for forecasting solar irradiance with
fisheye images.
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2.2 Spatio-temporal forecasting

In this Section, we review the main existing machine learning approaches for spatio-temporal
forecasting, from the traditional statistical time series forecasting to the most recent deep learning
methods.

2.2.1 Context and notations

As discussed in Introduction (Chapter 1), we are interested in forecasting spatio-temporal processes
driven by some underlying physical phenomenon. We consider dynamical systems formalized through
a differential equation of the form:

dXt

dt
= F (Xt). (2.8)

The state of the system Xt represent the variables whose knowledge at time t0 is sufficient, in
combination with the evolution function F , for describing the phenomenon for each time t > t0. The
state Xt can be either be parameterized by:

• a d-dimensional vector, i.e. we have Xt ∈ Rd for every t. In that case, equation 2.8 is an ordinary
differential equation (ODE);

• a d-dimensional vector field over a spatial domain Ω ⊂ Rk, with k ∈ {2, 3}, i.e. Xt(x) ∈ Rd for
every (t, x) ∈ [0, T ] × Ω. If the description in Eq 2.8 involves spatial derivatives of the state, it
corresponds to a partial differential equation (PDE).

Many phenomena occurring in physics, biology, computer vision, finance follow a general equation
of the form 2.8.

To solve the differential equation 2.8 numerically, the most common approach is to discretize
the phenomenon into a sequence (x1, x2, · · · , xT ) and approximate the time derivative with finite
differences. The simplest numerical scheme is the forward Euler method:

xn+1 = xn + ∆t F (xn), (2.9)

where ∆t is a fixed step size. We will see that this approximation scheme has strong connections with
residual neural networks (Section 2.3.1). More complex numerical schemes exist with lower truncation
errors, e.g. Runge-Kutta [24].

For predicting a dynamical system of the form 2.8, two main modelling approaches exist:

• parameterize the relationship between future time steps and context time steps: (ŷT +1, . . . , ŷT +H) =
gθ(x1, . . . , xT ) with parameters θ. The function gθ can represent a traditional time series fore-
casting model like an autoregressive model [21] or a deep neural network.

• parameterize the derivative function Fθ and integrate the ODE/PDE with a numerical solver.
This is the typical case of numerical simulation with a physical model Fθ. The function Fθ can
also be a deep neural network approximating the dynamics, as done by the Neural ODEs [33]
presented in Section 2.3.1.
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2.2.2 Model-Based forecasting methods

As discussed in Chapter 1, the traditional modelling paradigm in physics is to derive analytical
laws of motion from first principles and integrate the equations with numerical simulation. These
models are often expressed as ordinary or partial differential equations (ODEs/PDEs). This arises in a
multitude of scientific fields, such as Newtonian mechanics, fluid dynamics or quantum mechanics. For
example, we will consider in this thesis the wave equations:

∂2w

∂t2 − c2∆w + k
∂w

∂t
= 0,

where k is the damping coefficient and c the celerity of the wave.

For time series forecasting, traditional Model-Based methods rely on linear state space models
(SSMs) [70, 106], which provide a principled framework for modelling known temporal patterns.
SSMs include the popular integrated autoregressive moving-average model (ARIMA) and Exponential
Smoothing. SSMs assume linear dynamics with structural components (e.g. level, trend, seasonality),
which makes forecasting robust and interpretable. However, the model selection procedure can be
tedious and these methods often exploit strong statistical (e.g. i.i.d. additive Gaussian noise) and
structural assumptions on data (e.g. stationarity or stationarity after differentiation) that are not
satisfied for many real-world time series that can present abrupt changes of distribution. Moreover,
SSMs are fitted independently on each time series, and thus cannot learn patterns between sets of
similar series.

Regarding video prediction, traditional methods focus on predicting the motion field with optical
flow, rather than predicting future frames at the pixels level. The seminal works of Lucas-Kanade [160]
and Horn-Schunk [103] rely on the brightness consistency constraint, which assumes that the intensity
value of a pixel remains constant between two frames. In its linearized form, this constraint can be
expressed as a PDE:

∂I

∂t
(t, x) = −w(t, x) · ∇I(t, x). (2.10)

Again, this PDE corresponds to an incomplete model, since the brightness constancy assumption is
violated in many situations, e.g. in presence of occlusions, illumination changes, specular reflexions.

2.2.3 Deep learning forecasting methods

Artificial neural networks were first explored in the 1990’s for time series forecasting with Multi-
Layer Perceptrons (MLPs) [29, 143, 242] and Recurrent Neural Networks (RNNs) [48, 128]. At that
time, most of these architectures were limited to a single hidden layer and trained with one-step targets,
restricting their applicability to simple problems.

With the advances in computer hardware and modern training techniques of the deep learning
era, neural networks have become appealing for time series forecasting due to their automatic feature
extraction, the ability to capture complex nonlinear temporal patterns and the ease to incorporate
exogenous variables.
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Figure 2.4: A recurrent neural network. Figure taken from Goodfellow [94].

2.2.3.1 Recurrent Neural Networks (RNNs)

RNNs denote a family of architectures dedicated to handling sequential data such as text, speech
or time series. Illustrated in Figure 2.4, RNNs implement a discrete time dynamical system, where a
hidden variable ht ∈ Rd, serving as a memory of the system, is recurrently updated across time. A
basic RNN formulation can be written as:

ht = F (W ht−1 + U xt + b) (2.11)

ot = V ht, (2.12)

where U and W are weight matrices, b is a bias and F an activation function (e.g. tanh). The output
ot at time t, obtained by a projection of the latent state with a weight matrix V, is compared to the
ground truth target yt with a loss function L. Crucially, the weights of the RNN are identical for all
timesteps (as shown in Figure 2.4). Contrary to more general MLPs, weight sharing in RNNs enables
to encode time equivariance and to process sequences of arbitrary lengths. Deep recurrent neural
networks can be build by stacking RNN cells.

RNNs are trained by backpropagation through time [175], i.e. by propagating the gradient of the
loss function in the unfolded computational graph (see Figure 2.4). A major drawback of the vanilla
formulation in Eq 2.11 is that the vanshing / exploding gradients when processing long sequences [188].
It prevents the network from memorizing long-term information in the current latent state. To address
this limitation and model long-term dependencies, Hochreiter et al. [102] introduced the Long-Short
Term Memory (LSTM) networks which have an additional memory cell ct controlled by a learned input
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Figure 2.5: Sequence To Sequence model. Figure adapted from Goodfellow [94].

gate it and forget gate ft:

it = σ(Wih ht−1 + Wix xt + bi)
ft = σ(Wfh ht−1 + Wfx xt + bf )
ct = ft ⊙ ct−1 + it ⊙ tanh(Wgh ht−1 + Wgx xt + bg)
ot = σ(Woh ht−1 + Wox xt + bo)
ht = ot ⊙ tanh(ct).

LSTM networks and their variants such as the Gated Recurrent Unit (GRU) [39], have become a
reference for many sequential tasks. Shi et al. [281] proposed the ConvLSTM adaptation for video
prediction, by replacing all the full-connected operations of the LSTM by convolutions. The ConvLSTM
was adopted in many subsequent studies [77, 112, 282] and is at the basis of the most recent video
prediction algorithms such as PredRNN [268, 266], Memory in Memory [269] or MotionRNN [277].

2.2.3.2 Sequence To Sequence models

For mapping a variable-length sequence to another variable-length sequence, Cho et al. [39]
and Sutskever et al. [240] proposed the Sequence To sequence (Seq2Seq) architecture. The input
sequence (x1, · · · , xnx) is processed by an encoder RNN that provides a fixed-size context vector C
summarizing the sequence, typically defined as the last hidden state of the RNN. This context vector
is used for initializing the decoder which is another RNN producing the predictions (y1, · · · , yny )
one step at a time. In a Seq2Seq model, both RNNs are trained jointly to maximize the likelihood
p(y1, · · · , yny |x1, · · · , xnx) averaged over all the input/output sequences of the training set.

When generating predictions, the RNN decoder is rolled forwards by recursively feeding back its
own predictions as inputs for the next timesteps. Seq2Seq models can be trained with teacher forcing,
consisting in feeding the true targets as inputs to the RNN (that are known at training time) instead
of the prediction from the last timestep. A popular curriculum often used in practice to mitigate the
train/test discrepancy is scheduled sampling [14] that randomly chooses to use true values or model
predictions as inputs, with a sampling probability to use model predictions increasing over time to
gradually converge towards test-time conditions.

Seq2Seq architectures with RNNs are at the basis of many successful models [80, 202, 131]. Salinas et
al. [219] proposed DeepAR, a Seq2Seq model which estimates the parameters of a Gaussian distribution
for the next timestep. Rangapuram et al. [202] revisit the traditional state space models (SSMs) by
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parameterizing them with deep recurrent networks. To limit error accumulation due to autoregressive
predictions, some models directly predict all future values at once, often with a MLP decoder [275].

RNN forecasting can be improved with the attention mechanism, introduced by Bahdanau et al. [7]
for machine translation [198, 133, 76]. Attention consists in learning which part of the input sequence is
the most relevant for predicting a given timestep. More precisely, the context vector C is replaced with
a combination of the hidden states from past timesteps weighted by their learned attention weights.

2.2.3.3 Beyond recurrent architectures

Training RNNs with backpropagation through time is expensive since it requires sequential oper-
ations that cannot be parallelized. Researchers have explored alternative architectures than RNNs.
Following the success of the Wavenet model for audio processing [253], temporal convolution networks
(TCNs) [19, 36] use causal dilated 1D-convolutions, that exponentially increase the receptive field
with additional layers and respect the temporal causality. In addition, TCNs can be easily trained in
parallel.

Recently, a line of works has questioned the convolutional or recurrent layers used in most architec-
tures, showing that fully-connected layers arranged in a careful way can outperform other methods.
For example, pure attention-based models have revealed better than LSTMs for capturing long-range
relationships. The Transformer architecture of Vaswani et al. [255], only composed of self-attention
and fully-connected layers, avoids the recurrent structure and provides a direct access to any previous
timestep. Several works have proposed adaptations of the Transformer for time series forecasting [?
300]. In particular, the Informer model of Zhou et al. [300] is able to extend the predictions to a
long-term horizon with less degradation than competing methods.

Another example is the NBeats forecasting architecture [183] shown in Figure 2.6 that has recently
shown state-of-the-art performances for deterministic forecasting. NBeats is composed of stacks of
fully-connected layers, each block outputting a forecast for the following block and a backcast that
removes the part of the signal that is well-explained by the current block. Partial forecasts from each
block are finally combined into the global forecast.

2.2.4 Training and evaluation metrics for time series forecasting

Current research on time series forecasting mainly focuses on new architecture design (the predictive
model fθ in the blue box in Figure 2.1) and the question of the training loss (yellow box in Figure 2.1)
is often overlooked. The Mean Squared Error (MSE) in Eq 2.5, Mean Absolute Error (MAE) and its
variants (SMAPE, etc) are predominantly used as proxies for training models. In practice, forecasts
are evaluated with application-specific metrics, often reflecting the shape and temporal localization
of future trajectories. However, their non-differentiability makes them unsuitable for training deep
models. For characterizing shape, the Dynamic Time Warping (DTW) algorithm [217, 110, 298],
originally introduced for speech recognition, computes the similarity between time series after temporal
alignment. DTW is particularly popular for time series classification [110] or clustering [31] and has
been recently explored for time series forecasting [55]. Another shape metric is the ramp score [79, 252]
that assesses the detection of ramping events in wind and solar energy forecasting. Timing errors can
be characterized among other ways by the Temporal Distortion Index (TDI) [83, 252], or by computing
detection scores (precision, recall, Hausdorff distance) after change point detection [249].
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Figure 2.6: The NBeats model for deterministic forecasting [183].

Recently, some attempts have been made to train deep neural networks based on alternatives to
MSE, especially based on smooth approximations of DTW [55, 171, 1, 256, 17], in particular the soft
DTW [55] that we will detail in Chapter 4.

In this thesis, we intend to bridge the gap between these common evaluation metrics and the
training losses used in practice. We explore how to efficiently combine explicit shape and temporal
differentiable criteria at training time, regardless of the training architecture. We will review the most
related works in more details in Chapter 3.

2.2.5 Particular challenges in video prediction

Videos are a particular form of multivariate time series, and all the time series forecasting methods
presented above could in principle be directly applied to videos by forecasting the dynamics of individual
pixels. However this approach neglects the keys properties of images: the spatial coherence between
neighboring pixels and the semantics of the scene. Specific architectures dedicated to video prediction
were explored [268, 266, 269, 267, 277], often based on variants of the seminal ConvLSTM [229].

Moreover, extrapolating high-dimensional signals such as images at the pixel level is extremely
challenging. To constrain this generation problem, several methods rather use domain-specific knowledge
such as predicting geometric transformations between frames [77, 112, 283], estimating the optical flow
[190, 161, 152? , 148] or exploiting the semantics of the scene [12]. This is very effective for short-term
prediction, but degrades quickly when the video content evolves, where more complex models and
memory about dynamics are required.
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Disentanglement Another line of work consists in disentangling independent factors of variations in
order to apply the prediction model on lower-dimensional representations. The typical decomposition
criteria are as content/motion [258, 144] or deterministic/stochastic [60]. We illustrate in Figure 2.7
an example of decomposition from the DPPAE model [104]: the moving objects are extracted and
their individual motion estimated separately to provide the final prediction. In specific contexts, the
prediction space can be structured using additional information, e.g. with human pose [259, 262] or
key points [173].

Figure 2.7: Disentanglement approach for video prediction. In this Moving MNIST example, the
DPPAE model [104] decomposes the two digits and predicts their dynamics separately.

We provide a more detailed review of existing deep video prediction methods in Chapter 6.

2.2.6 Diversity in probabilistic forecasting

Many critical applications require forecasts associated with uncertainty to make relevant decisions.
Probabilistic forecasting consists in estimating the predictive distribution of future values given an
input sequence. Two main categories of methods exist for probabilistic forecasting. The first class of
methods directly characterizes the predictive distribution. This includes estimating the variance of
predictions (e.g. with Monte Carlo dropout [84]), estimating the quantiles [275, 86, 274] or modelling
this distribution by a parametric distribution, e.g. a Gaussian for the DeepAR algorithm [219]).

In this thesis, we focus on a second class of probabilistic methods that propose to describe the
predictive distribution with a set of plausible scenarios reflecting the uncertainty of future behaviour.
This class includes ensemble methods [233] and generative models, which produce diverse forecasts
by sampling multiple latent variables from a prior distribution. The most popular generative models
are conditional variational autoencoders (cVAEs) [292], conditional generative adversarial networks
(cGANs) [124], and normalizing flows [203, 59]). For further diversifying forecasts, several repulsive
schemes were studied such as the variety loss [97, 244] that consists in optimizing the best sample, or
entropy regularization [63, 263] that encourages a uniform distribution.

However the aforementioned methods are limited for representing the diversity of future behaviour
with a limited number of scenarios, as discussed in Chapter 1. Standard generative models sample
points belonging to the dominant mode, e.g. by sampling multiple forecasts at test time from a standard
Gaussian prior, and do not provide control over the diversity of predictions.

Determinantal Point Processes (DPP) To improve this unstructured mechanism, prior works
[292, 293] introduced proposal neural networks for generating the latent variables that are trained with
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a diversity objective based on Determinantal Point Processes (DPPs).

DPPs are appealing probabilistic models for describing the diversity of a set of items Y = {y1, ..., yN }.
A DPP is a probability distribution over all subsets of Y that assigns the following probability to a
random subset Y:

PK(Y = Y ) = det(KY )∑︁
Y ′⊆Y det(K′

Y ) = det(KY )
det(K + I) , (2.13)

where K is a positive semi-definite (PSD) kernel and KA denotes its restriction to the elements indexed
by A.

We illustrate the behaviour of DPPs in Figure 2.8 for sampling random points in the plane. When
we draw points randomly according to a uniform distribution, some regions may become more densely
populated than other. In contrast, when sampling from a DPP distribution with a Gaussian kernel,
points are farther from one another and better spread on to the plane.

Figure 2.8: Random points sampled in the plane from a uniform distribution vs a determinantal point
process (DPP) distribution. Figure taken from Kulesza and Taskar [130].

DPPs offer efficient algorithms for sequentially sampling diverse items or maximizing the diversity
of a set with a given sampling budget. Importantly, the choice of the kernel enables to incorporate
prior structural knowledge on the targeted diversity. As such, DPPs have been successfully applied in
various contexts, e.g. document summarization [92], recommendation systems [90], image generation
[71] and diverse trajectory forecasting [292].

In this thesis, we design specific shape and temporal PSD kernels for imposing our structured
diversity. We further describe the most related works for probabilistic forecasting in Chapter 5.

2.3 Physics-informed machine learning

As discussed in Chapter 1, pure data-driven machine learning methods struggle to extrapolate
complex dynamical systems, and often overfit on the training set. Incorporating prior knowledge about
the system is an appealing way to regularize the training process. In this Section, we review the main
existing approaches for combining machine learning with physical knowledge (called ML/MB, gray-box,
or hybrid modelling in the literature).
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Figure 2.9: Left: a residual neural network [101] defines a discrete sequence of layers from the input to
the output. Right: a Neural ODE [33] solves an ODE starting from the input for evolving the hidden
state. Figure taken from [33].

2.3.1 Continuous time models

Continuous-time models, consisting in modelling the rate of change F of an ODE with a neural
network, were first explored from the 1980’s [45, 93, 294]. More recently, researchers have drawn tight
connections between dynamical systems and deep (residual) neural networks [273, 158, 302, 33]. The
residual bloc of a ResNet [101]

ht+1 = ht + ∆t F (ht, θ) (2.14)

can be interpreted as the forward Euler discretization of the dynamical system

dh(t)
dt

= F (h(t), θ). (2.15)

Mainstream recurrent neural networks also have a continuous-time ODE counterpart. The vanilla RNN
ht = F (Wht−1 + Uxt + b) in Eq 2.11 is the Euler discretization of the following ODE:

∂h
∂t

(t, x) = F (Wh(t) + Ux(t) + b) − h(t). (2.16)

We derive the associated ODE formulation for the LSTM [102] and the Gated Recurrent Unit (GRU)
[39] in Appendix II, which makes our ODE assumptions for forecasting (Eq 2.8) quite general.

Since, many other successful deep architectures have been linked to numerical schemes for ODEs
[159, 75] and new architectures were proposed and analyzed with the rich dynamical system theory
[99, 215, 197, 30, 8], e.g. with the notions of stability or reversibility.

The Neural ODEs (or ODE networks) of Chen et al. [33] consider the continuous-time limit in
residual networks. Instead of a discrete sequence of layers (or timesteps in a RNN), the evolution of the
hidden state in the network is supposed to follow an ODE. This leads to a continuous transformation
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Figure 2.10: Modelling dynamical systems with Neural ODEs. From an initial condition zt0 inferred by
an encoder network, the latent trajectory is computed by solving the dynamical model Fθ (parameterized
by a neural network) by a differentiable ODE solver. Figure taken from [33].

of the hidden state as shown in Figure 2.9. Neural ODEs are trained with the adjoint sensitivity
method [194], which consists in solving a backward ODE instead of backpropagating through the
operations of the solver1. Many extensions and analyses of Neural ODEs were subsequently proposed
[69, 5, 165, 111, 297, 286] and have shown great successes in several tasks such as generative models
with normalizing flows [95] or modelling continuous-time data [213, 100].

For predicting dynamical systems, the advantages of the continuous-time modelling of Neural ODEs
are twofold. First, Neural ODEs can accommodate any ODE solver, in particular adaptive solvers that
automatically adapt the number of iterations in function of the complexity of the dynamics to reach a
given accuracy. Second, Neural ODEs can seamlessly handle irregularly-sampled temporal data, which
arises in many applications (e.g. medical records) or in case of missing data.

Neural ODEs provide a generative approach for modelling dynamical systems. As illustrated in
Figure 2.10, time series are represented by a latent trajectory z(t) governed by a dynamical function

Fθ parameterized by a neural network: ∂z(t)
∂t = Fθ(z(t)). The latent trajectory is computed by solving

the ODE with a differentiable ODE solver from an initial condition zt0 (which is known or estimated
via an encoder network on an input trajectory). The solution can be evaluated for any time point in
the observation range [t0, tN ] (interpolation) or in the future [tN ; ∞[ (extrapolation). The dynamical
model Fθ is trained by reconstructing the trajectories of a training dataset.

Although Neural ODEs offer a principled way to model dynamical systems with deep networks
in continuous-time, the dynamical model Fθ is still a pure data-driven component and suffers from
the main drawbacks as pure ML methods, i.e. overfitting in data-scarce contexts and lack of physical
plausibility. In this thesis, we explore how to structure the function F with prior physical knowledge.

2.3.2 Physically-constrained machine learning

In recent years, many researchers have explored how to incorporate physical knowledge into ML
models to regularize learning and improve performances. A first solution, made popular by the Physics-

1This ensures a lower memory footprint for Neural ODEs: intermediate network activations do not need to be stored
during the forward pass since they can be recomputed on the fly by solving the backward ODE.
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Figure 2.11: Physics-Informed Neural Networks (PINN) for solving the heat equation.

Informed Neural Networks (PINNs) of Raissi et al. [199], is to add a physical regularization term in the
loss function. Illustrated in Figure 2.11 for solving the heat equation, PINNs are composed of a neural
network for predicting the solution û(x, t) at a given spatio-temporal location. Partial derivatives are
computed during the forward pass by automatic differentiation to form the PDE residual. The total
loss function is the sum of the data fidelity term and the adequacy to the PDE constraint and boundary
conditions. PINNs are very easy to implement in standard deep learning libraries such as TensorFlow
or PyTorch.

In their initial form, PINNs need to be retrained for each new set of the parameters of the PDE. In
order to learn a class of PDEs, Sirignano et al. [231] propose to add the PDE parameters as inputs of
the physics-informed neural network, and the neural operator approaches propose to directly learn the
solution operator of a parametric class of PDEs [149, 157, 150, 265]. However, this class of methods
only impose soft constraints, i.e. the physical laws are not strictly guaranteed to be respected.

Other works investigate introducing hard physical constraints in the network architectures. Daw et
al. [57] propose a monotonicity-preserving architecture for modelling lake temperature along depth,
by adapting the LSTM with additional variables playing the role of positive increments. Mohan et
al. [174] impose the divergence-free constraint of incompressible flows by parameterizing the flow as
the curl of a learned scalar potential.

For modelling fluids, De Bezenac et al. [58] propose a hybrid ML/MB architecture that explicitly
exploits the advection-diffusion PDE:

∂I

∂t
+ (w.∇)I = D∇2I. (2.17)

Given a sequence of past images, their deep architecture estimates the flow field w and the diffusion
coefficient D, which are used in a warping scheme implementing the closed-formed solution of the
PDE. The model is learned end-to-end for predicting the next frame, without any supervision for the
physical parameters. The authors successfully apply this model to predict Sea Surface Temperature
(SST) maps.

Physical systems are often studied through the conservation of energy, which is encoded in a
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Figure 2.12: Hybrid ML/MB architecture of De Bezenac et al. [58] for predicting Sea Surface Tempera-
ture with the advection-diffusion PDE.

principled way through Hamiltonian dynamics. Greydanus et al. [96] introduce the Hamiltonian Neural
Networks to learn physical systems respecting the conservation of energy. With q the position of a
set of particles and q their momentum, the Hamiltonian H(q, p) representing the total energy of the
systems, obeys the following equations:

dq
dt

= ∂H
∂p ,

dp
dt

= −∂H
∂q . (2.18)

HNNs learn the Hamiltonian with a NN and take in-graph gradients to impose the Hamiltonian
dynamics. They show in experiments that it better conserves energy than baselines.

Many of the ML/MB approaches described so far are tailored for specific applications, e.g. fluid
dynamics [58], molecular dynamics [38], quantum mechanics [225], robotics [162], and are thus not
applicable to other domains. Moreover, they often rely on a complete knowledge of the physical
equations, and further assume that these equations directly apply in the input space (observed prior as
defined in Chapter 1). In this thesis, we explore general augmentation strategies that can be applied to
all levels of prior knowledge, from the more general prior to the most application-specific equations.
We also tackle the case of the unobserved prior by learning representations spaces in which the physical
laws apply.

2.3.3 Identifying and discovering physical systems

Beyond forecasting physical systems, researchers have also explored machine learning for system
identification, which consists in estimating the unknown parameters in parameterized physical equa-
tions. A basic example is estimating the length of a damped pendulum from observed trajectories.
Automatically identifying and discovering physical laws from observations is a long-standing goal for
physicists, with many applications in control [117] or robotics [162]. Many approaches use symbolic
regression to search the space of possible mathematical functions, using evolutionary algorithms [222],
sparse regression on dictionaries of potential differentiable terms [23, 214, 221], or graph neural networks
[54].
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Figure 2.13: Hamiltonian Neural Networks of Greydanus et al. [96].

Several architectures attempt to predict and identify the PDE governing physical systems [155, 201],
such as the the PDE-Net architecture of Long et al. [155, 154]. As shown in Figure 2.14, the basic bloc
composing PDE-Net (the δt-bloc) is a residual module implementing one forward Euler discretization
step. For solving the PDE ∂u

∂t = F (u, ∂u
∂x , ∂u

∂y , · · · ), the authors use convolutional filters that are
constrained to approximate each spatial differential term (we give details about these constrained
convolutions in Appendix D.1.22. Then a symbolic neural network identifies the nonlinear relationships
between the spatial derivatives to form the nonlinear function F of the PDE. A skip connection finally
provides the prediction of the next timestep û(t+δt) = û(t)+δtF̂ . The complete PDE-Net architecture
is composed of several δt-blocs concatenated in time for long-term prediction.

In this thesis, we take inspiration from the PDE-Net architecture for imposing physical dynamics,
and we take a step further by assuming incomplete physical models and by modelling the residual
dynamics for accurate prediction. We also show that a careful training scheme leads to a better
identification of the physical parameters than simplified physical model alone.

2They show that the flexibility of learned differential filters boost performances compared to handcrafted filters, an
observation that has been noted for other discretization schemes learned from data.

30



2.3. PHYSICS-INFORMED MACHINE LEARNING

Figure 2.14: The basis δt block composing the PDE-Net architecture implements on step of forward
Euler integration. Constrained convolutional filters estimate each spatial derivative term, that are
combined by a symbolic network that estimates the dynamical function F . Finally a skip connection
provides the solution for the next timestep. Figure taken from [154].

2.3.4 Augmented physical models

There exists an abundant literature on statistical methods for calibrating and predicting physical
systems in presence of model inadequacy, often expressed in a Bayesian framework; a review of these
methods can be found in [193]. In data assimilation techniques, like the Kalman filter [116], the
particle filter [192] or 4D-var [52], the predictions errors are modelled probabilistically with random
variables reflecting the noise assumption. A correction step using observed data is performed after
each prediction step for filtering the noise. Similar residual correction procedures are commonly used
in robotics and optimal control [34, 146]. However, these sequential (two-stage) procedures prevent the
cooperation between prediction and correction. Besides, in model-based reinforcement learning, model
deficiencies are typically handled by considering only short-term rollouts [108] or by model predictive
control [178] consisting in replanning frequently to mitigate error propagation.

In this thesis, we take inspiration from data assimilation ideas to augment incomplete physical
models with residual terms. However, in contrast to data assimilation, our residual terms are not
assumed to correspond to be a stochastic residual, i.e. noise, but to a systematic unmodelled part of
the dynamics that we learned from data. Moreover, we derive a principled training scheme for making
the prediction and correction steps cooperate.

The idea of augmenting physical models with neural networks (gray-box or hybrid modelling) is not
new: in the 1990’s, the works [196, 245, 206] use neural networks to estimate the unknown parameters
of physical models that are difficult to model from first principles, and a classification of the possible
augmentation strategies (serial, parallel, modular) was dressed [245]. The challenge of proper ML/MB
cooperation was already raised as a limitation of gray-box approaches but not addressed. Moreover
these methods were evaluated on specific applications with a residual targeted to the form of the
equation.

In the last few years, there has been a growing interest in deep augmented models that combine
physical priors with deep networks [153, 216, 168]. Several ML/MB cooperation schemes with deep
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networks were studied in [264, 168]. Again, these approaches do not address the issues of uniqueness of
the decomposition or of proper cooperation for correct parameter identification. They are also mostly
dedicated to the fully-observable case, whereas we also tackle the non-observable prior context in this
thesis. We further detail the literature on augmented physical models in Chapter 7.
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Part I

Differentiable shape and time criteria for
deterministic and probabilistic forecasting

Abstract

In this part, we tackle the multistep deep time series forecasting problem, in the challenging
context of non-stationary series that can present sharp variations. In deep learning, the
mainstream research direction concerns developing new neural forecasting architectures.
In contrast, the choice of the training loss function is rarely questioned: the surrogate
mean squared error (MSE) is used in the vast majority of cases. We propose here to
leverage shape and temporal criteria in the training objective. We introduce differentiable
similarities and dissimilarities for characterizing shape accuracy and temporal localization
error (Chapter 3). We leverage these criteria by introducing two approaches dedicated
to deterministic and probabilistic forecasting: we introduce the DILATE loss function
for deterministic forecasting that ensures both sharp predictions with accurate temporal
localization (Chapter 4), and the STRIPE model for probabilistic forecasting with shape
and temporal diversity (Chapter 5). We validate our claims with extensive experiments on
synthetic and real-world datasets.
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Differentiable shape and temporal criteria
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Chapter abstract

In this Chapter, we highlight the limitations of the Mean Squared Error (MSE) loss function
dominantly used for time series forecasting. As an alternative, we propose to leverage shape and
temporal features at training time. We introduce differentiable similarities and dissimilarities for
characterizing shape accuracy and temporal localization error. We characterize the shape with the
Dynamic Time Warping (DTW) [217] algorithm and the temporal error with the Temporal Distortion
Index (TDI) [83]. We provide an unified view of these criteria by formulating them in terms of
dissimilarities (loss functions) and similarities (positive semi-definite kernels). We also insist on
their differentiability and efficient computation. The work described in this Chapter is based on the
following publication:

• Vincent Le Guen and Nicolas Thome. ”Deep Time Series Forecasting with Shape and Temporal
Criteria”. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022.
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3.1 Introduction

True predictive distribution deep stoch. model [292]

(a) Deterministic forecasting (b) Probabilistic forecasting

Figure 3.1: MSE limitations in deterministic and probabilistic forecasting. (a) For deterministic
forecasting, the three predictions (1,2,3) have the same MSE with respect to the target (in black).
However, one would like to favour prediction 2 (correct shape, slight delay) and 3 (correct timing,
inaccurate amplitude) over prediction 1 (which is not very informative). (b) For probabilistic forecasting,
state-of-the-art methods trained with variants of the MSE (e.g. [292, 203]) loose the ability to produce
sharp forecasts (in orange) compared to the ground truth future trajectories (in green).

T
ime series forecasting consists in analyzing historical signal correlations to anticipate future
behaviour. As discussed in Chapter 2, traditional approaches include linear autoregressive
methods [21] or state space models [70], which are simple yet mathematically grounded and

benefit from interpretability. They often exploit prior knowledge based on stationarity, e.g. by leveraging
trend or seasonality to constrain forecasting.

These grounding assumptions are often violated in many real-world time series that are non-
stationary and can present sharp variations such as sudden drops or changes of regime. Long-term
multi-step forecasting in this context is particularly challenging and arises in a wide range of important
application fields, e.g. analyzing traffic flows [147, 234], medical records [32], predicting sharp variations
in financial markets [64] or in renewable energy production [252, 89, 138], etc.

We are interested in forecasting multi-step future trajectories with potentially sharp variations
in the deterministic and probabilistic cases. Deep neural networks are an appealing solution for this
problem [291, 198, 133, 219, 183, 300], due to their automatic feature extraction and complex nonlinear
time dependencies modelling. However, the verification criteria typically used in applications are not
used at training time because they are mostly not differentiable. We may cite for instance the ramp
score [252] for assessing the detection of sharp ramping events, or the Time Distortion Index (TDI)
[83] for assessing the time delay of a particular predicted event.

Instead, the huge majority of methods optimize at training time the Mean Squared Error (MSE)
or its variants (MAE, quantile loss, etc) as a proxy loss function. However, the MSE has important
drawbacks in our non-stationary context, as also noted by several other works [252, 257, 284]. This is
illustrated in Figure 3.1. Figure 3.1 (a) shows three deterministic predictions, which have the same
MSE loss compared to the target step function (in black). Thus, the MSE does not support predictions
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(2) and (3) over prediction (1), although they clearly are more adequate for regulation purposes because
they do anticipate the drop to come, although with a slight delay (2) or with a slightly inaccurate
amplitude (3). For probabilistic forecasting (Figure 3.1 (b)), current state-of-the art probabilistic
methods trained with variants of the MSE tend to produce blurry predictions that do not match the
sharp steps of the true futures (in green).

We intend to bridge this train/test criterion gap by incorporating shape and temporal features at
training time. In this Chapter, we introduce shape and temporal criteria for training deep forecasting
models. We characterize the shape of times series with the Dynamic Time Warping (DTW) [217]
algorithm and the temporal shift with the Temporal Distortion Index (TDI) [83]. We provide an
unified view of these criteria by formulating them both as dissimilarities (loss functions) and similarities
(positive semi-definite kernels). Importantly, we insist on their differentiability, which makes them
amenable to gradient-based optimization, and on their efficient computation.

3.2 Shape (dis)similarity

3.2.1 Background: Dynamic Time Warping

To assess the shape similarity between two time series, the popular Dynamic Time Warping (DTW)
method [217] seeks a minimal cost alignment for handling time distortions. Given two d-dimensional
time series y ∈ Rd×n and z ∈ Rd×m of lengths n and m, DTW looks for an optimal warping path
represented by a binary matrix A ⊂ {0, 1}n×m where Aij = 1 if yi is associated to zj and 0 otherwise.
The set of admissible warping paths An,m is composed of paths connecting the endpoints (1, 1) to
(n, m) with the following authorized moves →, ↓, ↘. The cost of warping path A is the sum of the
costs along the alignment ; this cost can be written as the scalar product ⟨A, ∆(y, z)⟩, where ∆(y, z) is
a n × m pairwise dissimilarity matrix whose general term is typically chosen an the Euclidean distance
∆(y, z)ij = ∥yi − zj∥2

2. DTW computes the minimal cost warping path:

DTW∆(y, z) := min
A∈An,m

⟨A, ∆(y, z)⟩ . (3.1)

Although the cardinality of An,m increases exponentially in min(n, m) 1, DTW and the optimal
path A∗ can be computed efficiently in O(nm) by dynamic programming. However, a major limitation
of DTW is its non-diffentiability, which prevents its integration in neural network pipelines trained
with gradient-based optimization.

3.2.1.1 Smooth DTW shape dissimilarity

For handling the non-differentiability of DTW, Cuturi and Blondel [55] introduced the soft-
DTW by replacing the hard-minimum operator by a smooth minimum with the log-sum-exp trick
minγ(a1, ..., an) = −γ log(

∑︁n
i exp(−ai/γ)):

DTW∆
γ (y, z) := −γ log

⎛⎝ ∑︂
A∈An,m

e−⟨A,∆(y,z)⟩/γ

⎞⎠ , (3.2)

1|An,m| is equal to the Delannoy number Delannoy(n, m) which grows exponentially in min(n, m)
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Figure 3.2: Dynamic Time Warping (DTW) seeks a path of minimal alignment cost (in red) in the
pairwise cost matrix between the two time series.

where γ > 0 is a smoothing parameter (when γ → 0, this converges to the true DTW).

DTW∆
γ as defined in Eq 3.2 is differentiable with respect to ∆ (and with respect to both series y

and z by chain’s rule, provided a differentiable cost function ∆).

We can interpret this relaxed DTW version by considering, instead of the unique optimal path A∗,
a Gibbs distribution over possible paths:

pγ(A; ∆) = 1
Z

e−⟨A,∆(y,z)⟩/γ . (3.3)

The soft-DTW is then the negative log-partition of this distribution: DTW∆
γ (y, z) := −γ log Z.

Since DTW∆
γ (y, z) can take negative values and is not minimized for y = z, Mensch and Blondel

[171] normalized the soft-DTW to make it a true divergence. We found experimentally that this does
not improve performances and is heavier computationally (see Appendix B.2).

3.2.1.2 Shape similarity kernel

Based on the soft-DTW shape dissimilarity defined in Eq 3.2, we define a shape similarity kernel as
follows:

Kshape(y, z) = e− DTW∆
γ (y,z)/γ . (3.4)

We experiment with the following choices of kernels ∆ij = ∆(y, z)ij :
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• Half-Gaussian: ∆ij = ∥yi − zj∥2
2 + log(2 − e−∥yi−zj∥2

2)

• L1: ∆ij = |yi − zj | (for d = 1)

• Euclidean: ∆ij = ∥yi − zj∥2
2.

Kshape was proven to be positive semi-definite (PSD) for the half-Gaussian2 and the L1 kernels [56, 17]
and is conjectured to be PSD for the Euclidean kernel [17]. Experimentally we observed that these
three cost matrices lead to similar behaviour.

3.3 Temporal (dis)similarity

Quantifying the temporal similarity between two time series consists in analyzing the time delays
between matched patterns detected in both series. As discussed in introduction, it of great importance
for many applications to anticipate sharp variations.

3.3.1 Smooth temporal distortion index

A common temporal similarity is the Temporal Distortion Index (TDI) [83, 252]. The TDI computes
the approximate area included between the optimal path A∗ and the first diagonal, characterizing the
presence of temporal distortion. A generalized version of the TDI, that we proposed in [137], can be
written:

TDI∆,Ωdissim(y, z) := ⟨A∗, Ωdissim⟩ , (3.5)

where A∗ = arg min
A∈An,m

⟨A, ∆(y, z)⟩ is the DTW optimal path and Ωdissim ∈ Rn×m is a matrix penalizing

the association between yi and zj for i ̸= j. We typically choose a quadratic penalization Ωdissim(i, j) ∝
(i − j)2, but other variants can encode prior knowledge and penalize more heavily late than early
predictions, and vice-versa.

The TDI dissimilarity defined in Eq 3.5 is however non-differentiable, since the optimal path A∗ is
not differentiable with respect to ∆. We handle this problem by defining a relaxed optimal path A∗

γ as

the gradient of DTW∆
γ :

A∗
γ := ∇∆DTW∆

γ (y, z) = 1
Z

∑︂
A∈An,m

A e−⟨A,∆(y,z)⟩/γ . (3.6)

The expression in Eq 3.6 results from a direct computation from Eq. 3.2. Notice that this soft optimal
path corresponds to the expected path A∗

γ = Epγ(·;∆)[A] under the Gibbs distribution in Eq 3.3. Note
also that A∗

γ becomes a soft assignment, i.e. A∗
γ(i, j) represents the probability for a path to contain

the cell (i, j). An illustration of soft optimal paths with the influence of γ is given in Figure 4.6.

We can now define a differentiable version of the TDI:

TDI∆,Ωdissim
γ (y, z) :=

⟨︂
A∗

γ , Ωdissim
⟩︂

= 1
Z

∑︂
A∈An,m

⟨A, Ωdissim⟩ e
− ⟨A,∆(y,z)⟩

γ , (3.7)

2We denote this kernel ”half-Gaussian” since the corresponding k kernel defined in the proof (Appendix A.1) equals

k(yi, zj) = e−∆(yi,zj ) =
(︂

1
2 e−∥yi−zj ∥2

)
)︂

×
(︂

1 − 1
2 e−∥yi−zj ∥2

)︂−1
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which corresponds to the expected value of the TDI under the Gibbs distribution.

3.3.2 Temporal similarity kernel

Based on the temporal dissimilarity in Eq 3.7 and the shape similarity kernel in Eq. 3.4, we can
define a time similarity as follows:

Ktime(y, z) := e−DTW∆
γ (y,z)/γ × TDI∆,Ωsim

γ (y, z), (3.8)

where in this case, we use a similarity matrix Ωsim favoring pairs of time series with low temporal
distortion, i.e. with an optimal path near the main diagonal. We typically choose a pointwise inverse
of Ωdissim: Ωsim(i, j) = 1

(i−j)2+1 . We prove that Ktime defines a valid PSD temporal kernel (proof in

Appendix A.1).

The following table provides an overview of the shape and temporal criteria introduced in this work:

criterion differentiable loss PSD similarity kernel

shape DTW∆
γ (y, z) e− DTW∆

γ (y,z)/γ

time TDI∆,Ωdissim
γ (y, z) e−DTW∆

γ (y,z)/γ × TDI∆,Ωsim
γ (y, z)

3.3.3 Efficient forward and backward computation

The direct computation of the shape loss DTW∆
γ (Eq 3.2) and the temporal loss TDI∆,Ωdissim

γ

(Eq 3.7) is intractable, due to the exponential growth of cardinal of An,m. We provide a careful
implementation of the forward and backward passes in order to make learning efficient.

Shape loss: Regarding DTW∆
γ , we rely on [55] to efficiently compute the forward pass with a variant

of the Bellmann dynamic programming approach [13]. For the backward pass, we implement the
recursion proposed in [55] in a custom Pytorch loss. This implementation is much more efficient than
relying on vanilla auto-differentiation, since it reuses intermediate results from the forward pass.

Temporal loss: For TDI∆,Ωdissim
γ , note that the bottleneck for the forward pass in Eq 3.7 is to compute

A∗
γ = ∇∆DTW∆

γ (y, z), which we implement as explained for the DTW∆
γ backward pass. Regarding

TDI∆,Ωdissim
γ backward pass, we need to compute the Hessian ∇2DTW∆

γ (y, z). We use the method
proposed in [171], based on a dynamic programming implementation that we embed in a custom
Pytorch loss. Again, our back-prop implementation allows a significant speed-up compared to standard
auto-differentiation. The resulting time complexity of both shape and temporal losses for forward and
backward is O(nm).

Custom backward implementation speedup: We compare in Figure 3.3 the computational time
between the standard PyTorch auto-differentiation mechanism and our custom backward pass imple-
mentation for calculating DTW∆

γ + TDI∆,Ωdissim
γ (we will call this quantity the DILATE loss in the
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Figure 3.3: Speedup of the custom forward and backward implementation of the DILATE loss introduced
in Chapter 4.

next Chapter). We plot the speedup of our implementation with respect to the prediction length H
(averaged over 10 random target/prediction tuples). We notice the increasing speedup with respect to
H: speedup of × 20 for 20 steps ahead and up to × 35 for 100 steps ahead predictions.

3.4 Conclusion

To tackle the multi-step and stationary time series forecasting problem, we question the widely-used
MSE training loss that lead to non-sharp predictions. We instead propose to leverage shape and
temporal features at training time. In this Chapter, we have introduced differentiable similarities and
dissimilarities for characterizing shape accuracy and temporal localization error. Shape is characterized
with the Dynamic Time Warping (DTW) [217] algorithm and the temporal error with the Temporal
Distortion Index (TDI) [83]. We have provided an unified view of these criteria by formulating them
in terms of dissimilarities (loss functions) and similarities (positive semi-definite kernels). We have
insisted on their differentiability and efficient computation.

In subsequent Chapters, we provide two implementations for time series forecasting: the DILATE
loss function for deterministic forecasting that ensures both sharp predictions with accurate temporal
localization (Chapter 4), and the STRIPE model for probabilistic forecasting with shape and temporal
diversity (Chapter 5).
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Distortion loss with shape and time
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Chapter abstract

In this Chapter, we propose a new differentiable loss function, called DILATE, for training deep
multi-step time series forecasting models, in a deterministic context. The DILATE loss builds on
the shape and temporal dissimilarities introduced in the previous Chapter. DILATE combines two
terms for precise shape and temporal localization of non-stationary signals with sudden changes.
The DILATE loss is differentiable, enabling to train any deep forecasting model with gradient-based
optimization. We also introduce a variant of DILATE, which provides a smooth generalization of
temporally-constrained Dynamic Time Warping (DTW). Extensive experiments on synthetic and
real-world datasets show that DILATE is equivalent to the standard MSE loss when evaluated on
MSE, and much better when evaluated on several shape and timing metrics. Besides, DILATE
improves the performances of state-of-the-art forecasting algorithms trained with the MSE. The work
described in this Chapter is based on the following publications:

• Vincent Le Guen and Nicolas Thome. ”Shape and Time Distortion Loss for Training Deep
Time Series Forecasting Models”. In Advances in Neural Information Processing Systems
(NeurIPS 2020).

• Vincent Le Guen and Nicolas Thome. ”Deep Time Series Forecasting with Shape and Temporal
Criteria”. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022.
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4.1. INTRODUCTION

4.1 Introduction

(a) Non informative prediction (b) Correct shape, time delay (c) Correct time, inaccurate shape

Figure 4.1: Limitation of the Euclidean (MSE) loss: when predicting a sudden change (target blue
step function), the 3 predictions (a), (b) and (c) have similar MSE but very different forecasting skills.
In contrast, the DILATE loss proposed in this work, which disentangles shape and temporal decay
terms, supports predictions (b) and (c) over prediction (a) that does not capture the sharp change of
regime.

A
s discussed in the previous Chapter, the Mean Squared Error (MSE) is inadequate in the context
of non-stationary time series with sudden variations, as illustrated in Figure 4.1. Here, the
target ground truth prediction is a step function (in blue), and we present three predictions,

shown in Figure 4.1 (a), (b), and (c), which have a similar MSE loss compared to the target, but
very different forecasting skills. Prediction (a) is not adequate for regulation purposes since it doesn’t
capture the sharp drop to come. Predictions (b) and (c) much better reflect the change of regime
since the sharp drop is indeed anticipated, although with a slight delay (b) or with a slight inaccurate
amplitude (c).

This Chapter introduces DILATE (DIstortion Loss including shApe and TimE), a new objective
function for training deep neural networks in the context of multi-step and non-stationary time series
forecasting. DILATE explicitly disentangles into two terms the penalization related to the shape and
the temporal localization errors of change detection. The behaviour of DILATE is shown in Figure 4.1:
whereas the values of our proposed shape and temporal losses are large in Figure 4.1 (a), the shape
(resp. temporal) term is small in Figure 4.1 (b) (resp. Figure 4.1 (c)). DILATE combines shape and
temporal terms, and is consequently able to output a much smaller DILATE loss for predictions (b)
and (c) than for (a), as expected.

We first present the DILATE loss in section 4.2. We also introduce a variant of DILATE, which
provides a smooth generalization of temporally-constrained Dynamic Time Warping (DTW) metrics [217,
110]. Experiments carried out on several synthetic and real non-stationary datasets reveal that models
trained with DILATE significantly outperform models trained with the MSE loss function when
evaluated with shape and temporal distortion metrics, while DILATE maintains very good performance
when evaluated with MSE. Finally, we show that DILATE can be used with various network architectures
and can outperform on shape and time metrics state-of-the-art models specifically designed for multi-step
and non-stationary forecasting.

44



4.2. TRAINING DEEP NEURAL NETWORKS WITH
DILATE

Figure 4.2: Overview of the DILATE loss: LDILATE for training deterministic deep time series fore-
casting models is composed of two terms: Lshape based on the soft DTW and Ltime that penalizes the
temporal distortions visible on the soft optimal path. The overall loss LDILATE is differentiable, and
we provide an efficient implementation of its forward and backward passes.

4.2 Training Deep Neural Networks with DILATE

Given an input sequence x1:T = (x1, . . . , xT ) ∈ Rp×T , the deterministic multi-step time series
forecasting problem consists in predicting a H-steps future trajectory ŷ = (ŷT +1, . . . , ŷT +H) ∈ Rd×H .
As an alternative to the MSE, we introduce here the DIstortion Loss with shApe and TimE (DILATE)
for training any deterministic deep multi-step forecasting model. Crucially, the DILATE loss needs to
be differentiable in order to train models with gradient-based optimization.

The DILATE objective function, which compares the prediction ŷ = (ŷT +1, . . . , ŷT +H) with the
actual ground truth future trajectory y∗ = (y∗

T +1, . . . , y∗
T +H), is composed of two terms balanced by

the hyperparameter α ∈ [0, 1]:

LDILATE(ŷ, y∗) = α Lshape(ŷ, y∗) + (1 − α) Ltime(ŷ, y∗) (4.1)

= α DTW∆
γ (ŷ, y∗) + (1 − α) TDI∆,Ωdissim

γ (ŷ, y∗). (4.2)

The computational graph of the DILATE loss is illustrated in Figure 4.2. We use for the shape
term Lshape the smooth shape dissimilarity DTW∆

γ defined in Eq 3.2 and for the temporal term Ltime

the time dissimilarity TDI∆,Ωdissim
γ defined in Eq 3.7.

Tangled DILATE variant A variant of our approach to combine shape and temporal penalization
would be to incorporate a temporal term inside our smooth Lshape function in Eq 3.2, leading to a
tangled version LDILATEt :

LDILATEt(ŷi, y∗
i ) := −γ log

⎛⎝ ∑︂
A∈Aτ,τ

exp
(︃

−⟨A,α∆(ŷi,y∗
i )+(1−α)Ω⟩
γ

)︃⎞⎠ . (4.3)

We can notice that Eq 4.3 reduces to minimizing ⟨A, α∆(ŷi, y∗
i ) + (1 − α)Ω⟩ when γ → 0+. In
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this case, LDILATEt can recover DTW variants studied in the literature to bias the computation based
on penalizing sequence misalignment, by designing specific Ω matrices:

Sakoe-Chiba DTW
band constraint [217]

Ω(i, j) =
{︄

+∞ if |i − j| > T

0 otherwise

Weighted DTW [110] Ω(i, j) = f(|i − j|) for f increasing function

LDILATEt in Eq 4.3 enables to train deep neural networks with a smooth loss combining shape
and temporal criteria. However, LDILATEt presents limited capacities for disentangling the shape and
temporal errors, since the optimal path is computed from both shape and temporal terms, i.e. there is
no guarantee to recover the true optimal alignment path because of the temporal penalization inside
the cost matrix. In contrast, our LDILATE loss in Eq 4.1 separates the loss into two shape and temporal
components, the temporal penalization being applied to the optimal unconstrained DTW path.

Discussion on most related works We review here the most related works that attempt to train deep
forecasting models with alternatives to the MSE. For exploiting the shape of future trajectories, recent
works have explored smooth approximations of Dynamic Time Warping (DTW) [55, 171, 1, 256, 17].
Cuturi and Blondel have proposed the soft-DTW [55], which is differentiable loss function that can
be computed by dynamic programming with a quadratic complexity. They have shown convincing
experiments on time series classification, clustering under the DTW geometry and early experiments
on time series forecasting. The soft-DTW was further normalized to ensure a non-negative divergence
[17]. However, since DTW is by design invariant to elastic distortions, it completely ignores the
temporal localization of the changes. A differentiable timing error loss function based on DTW on
the event (binary) space was proposed in [208] ; however it is only applicable for predicting binary
time series. Some works explored the use of adversarial losses for time series [289, 279], which can be
seen as an implicit way of enforcing semantic criteria learned from data. However, it gives a weaker
and non-interpretable control on shape and time criteria and brings additional adversarial training
difficulties.

4.3 Experiments

In this section, we evaluate the relevance of DILATE, both quantitatively and qualitatively, compared
to generic as well as recent state-of-the-art models trained with the MSE. We also provide an in-depth
analysis of the DILATE loss properties.

4.3.1 Datasets

We carry out experiments on 5 synthetic and real-world datasets from various domains to illustrate
the broad applicability of our methods. For each dataset, the task is to predict the H-steps ahead
future trajectory given a T -steps context window:

• Synthetic-det (T = 20, H = 20): deterministic dataset consisting in predicting sudden changes
(step functions) based on an input signal composed of two peaks. This controlled setup was
designed to measure precisely the shape and time errors of predictions. We generate 500 times
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series for train, 500 for validation and 500 for test, with 40 time steps each: the first 20 are
the inputs, the last 20 are the targets to forecast. In each series, the input range is composed
of 2 peaks of random temporal position i1 and i2 and random amplitude j1 and j2 between 0
and 1, and the target range is composed of a step of amplitude j2 − j1 and stochastic position
i2 + (i2 − i1) + randint(−3, 3). All time series are corrupted by an additive Gaussian white noise
of variance 0.01.

• ECG5000 (T = 84, H = 56): this dataset comes from the UCR Time Series Classification Archive
[35], and is composed of 5000 electrocardiograms (ECG) (500 for training, 4500 for testing) of
length 140. We take the first 84 time steps (60 %) as input and predict the last 56 steps (40 %)
of each time series (same setup as in [55]).

• Traffic (T = 168, H = 24): this dataset is composed of road occupancy rates (between 0 and 1)
from the California Department of Transportation (48 months from 2015-2016) measured every 1h.
We work on the first univariate series of length 17544 (with the same 60/20/20 train/valid/test
split as in [133]), and we train models to predict the 24 future points given the past 168 points
(past week)

• Electricity (T = 168, H = 24): this dataset consists in hourly electricity consumption mea-
surements (kWh) from 370 customers.

• ETTh1 [300] (T = 96, H = 96): dataset of hourly Electricity Transformer Temperature measure-
ments, which is an important indicator for electricity grids. This dataset enables to assess the
generalization of our approach on much longer term predictions.

4.3.2 Implementation details

Metrics To evaluate the benefits of our proposed DILATE training loss, we compare it against the
widely used Euclidean (MSE) loss, and the soft-DTW introduced in [55, 171]. We use the following
multi-step prediction metrics: MSE, DTW (shape), TDI (temporal). To consolidate the evaluation, we
also consider two additional (non differentiable) metrics for assessing shape and time. For shape, we
compute the ramp score [252]. For time, we compute the Hausdorff distance between a set of detected
change points in the target signal T ∗ and in the predicted signal T̂ :

Hausdorff(T ∗, T̂ ) := max(max
t̂∈T̂

min
t∗∈T ∗

|t̂ − t∗|, max
t∗∈T ∗

min
t̂∈T̂

|t̂ − t∗|), (4.4)

which corresponds to the largest possible distance between a change point and its prediction. Additional
details about these external metrics are given in Appendix B.1.

Neural networks architectures: For the generic neural network architectures, we use a fully connected
network (1 layer of 128 neurons), which does not make any assumption on data structure, and a more
specialized Seq2Seq model [240] with Gated Recurrent Units (GRU) [39] with 1 layer of 128 units.
Each model is trained with PyTorch for a max number of 1000 epochs with Early Stopping with the
ADAM optimizer. The smoothing parameter γ of DTW and TDI is set to 10−2.
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Table 4.1: DILATE forecasting results on generic MLP and RNN architectures, averaged over 10 runs
(mean ± standard deviation). Metrics are scaled for readability. For each experiment, best method(s)
(Student t-test) in bold.

Fully connected network (MLP) Recurrent neural network (Seq2Seq)

Dataset
Eval

Train
MSE DTW∆

γ [55] DILATE (ours) MSE DTW∆
γ [55] DILATE (ours)

MSE (x1000) 16.5 ± 1.4 48.2 ± 4.0 16.7± 1.8 11.0 ± 1.7 23.1 ± 4.5 12.1 ± 1.3
Synthetic DTW (x10) 38.6 ± 1.28 27.3 ± 1.37 32.1 ± 5.33 24.6 ± 1.20 22.7 ± 3.55 23.1 ± 2.44

TDI (x10) 15.3 ± 1.39 26.9 ± 4.16 13.8 ± 0.71 17.2 ± 1.22 20.0 ± 3.72 14.8 ± 1.29
Ramp (x10) 5.21 ± 0.10 2.04 ± 0.23 3.41 ± 0.29 5.80 ± 0.10 4.27 ± 0.8 4.99 ± 0.46
Hausdorff (x1) 4.04 ± 0.28 4.71 ± 0.50 3.71 ± 0.12 2.87 ± 0.13 3.45 ± 0.32 2.70 ± 0.17

MSE (x100) 31.5 ± 1.39 70.9 ± 37.2 37.2 ± 3.59 21.2 ± 2.24 75.1 ± 6.30 30.3 ± 4.10
ECG DTW (x10) 19.5 ± 0.16 18.4 ± 0.75 17.7 ± 0.43 17.8 ± 1.62 17.1 ± 0.65 16.1 ± 0.16

TDI (x10) 7.58 ± 0.19 17.9 ± 0.7 7.21 ± 0.89 8.27 ± 1.03 27.2 ± 11.1 6.59 ± 0.79
Ramp (x1) 4.9 ± 0.1 5.1 ± 0.3 5.0 ± 0.1 4.84 ± 0.24 4.79 ± 0.37 4.80 ± 0.25
Hausdorff (x1) 4.1 ± 0.1 6.3 ± 0.6 4.7 ± 0.3 4.32 ± 0.51 6.16 ± 0.85 4.23 ± 0.41

MSE (x1000) 6.58 ± 0.11 25.2 ± 2.3 19.3 ± 0.80 8.90 ± 1.1 22.2 ± 2.6 10.0 ± 2.6
Traffic DTW (x100) 25.2 ± 0.17 23.4 ± 5.40 23.1 ± 0.41 24.6 ± 1.85 22.6 ± 1.34 23.0 ± 1.62

TDI (x100) 24.8 ± 1.1 27.4 ± 5.01 16.7 ± 0.51 15.4 ± 2.25 22.3 ± 3.66 14.4± 1.58
Ramp (x10) 6.18 ± 0.1 5.59 ± 0.1 5.6 ± 0.1 6.29 ± 0.32 5.78 ± 0.41 5.93 ± 0.24
Hausdorff (x1) 1.99 ± 0.2 1.91 ± 0.3 1.94 ± 0.2 2.16 ± 0.38 2.29 ± 0.33 2.13 ± 0.51

DILATE hyperparameters: the hyperparameter α balancing Lshape and Ltime is determined on a
validation set to get comparable DTW shape performance than the DTW∆

γ trained model: α = 0.5 for
Synthetic and ECG5000, and 0.8 for Traffic, Electricity and ETTh1. The DTW smoothing parameter
γ is fixed to 10−2, as further discussed in section 4.3.5.

Our code implementing DILATE is available on line from: https://github.com/vincent-leguen/
DILATE.

4.3.3 DILATE performances on generic architectures

To demonstrate the broad applicability of our approach, we first perform multi-step forecasting
with two generic neural network architectures: a fully connected network (1 layer , which does not
make any assumption on data structure, and a more specialized Seq2Seq model with 1 layer of 128
Gated Recurrent Units (GRU). We perform a Student t-test with significance level 0.05 to highlight
the best(s) method(s) in each experiment (averaged over 10 runs). Overall results are presented in
Table 4.1.

Comparison to MSE training loss: DILATE outperforms MSE when evaluated on shape (DTW) in
all experiments, with significant differences on 5/6 experiments. When evaluated on time (TDI),
DILATE also performs better in all experiments (significant differences on 3/6 tests). Finally, DILATE
is equivalent to MSE when evaluated on MSE on 3/6 experiments.

Comparison to DTW∆
γ training loss: When evaluated on shape (DTW), DILATE performs similarly

to DTW∆
γ (2 significant improvements, 1 significant drop and 3 equivalent performances). For time
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Figure 4.3: Qualitative prediction results with the DILATE loss. For each dataset, the MSE training
loss leads to non-sharp predictions, whereas the soft-DTW loss can predict sharp variations but has no
control over their temporal localization. In contrast, the DILATE loss produces sharp predictions with
accurate temporal localization.

(TDI) and MSE evaluations, DILATE is significantly better than DTW∆
γ in all experiments, as expected.

We can notice that the ramp score (resp. the Haussdorff distance) provides the same trends than
the shape metric DTW (resp. the time metric TDI). It reinforces our conclusions and shows that
DILATE indeed improves shape and temporal accuracy beyond the metrics being optimized.

We display a few qualitative examples for Synthetic, ECG5000 and Traffic datasets in Figure 4.3
(other examples are provided in Appendix B.3). We see that MSE training leads to predictions that
are non-sharp, making them inadequate in presence of drops or sharp spikes. DTW∆

γ leads to very
sharp predictions in shape, but with a possibly large temporal misalignment. In contrast, our DILATE
loss predicts series that have both a correct shape and precise temporal localization.
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Table 4.2: DILATE forecasting results on state-of-the-art architectures N-Beats [183] and Informer
[300]. Evaluation metrics are scaled for readability. Results are averaged over 10 runs, best(s) method(s)
in bold (Student t-test).

Dataset Model MSE DTW Ramp TDI Hausdorff DILATE

Synthetic N-Beats [183] MSE 13.6 ± 0.5 24.9 ± 0.6 5.9 ± 0.1 13.8 ± 1.1 2.8 ± 0.1 19.3 ± 0.5
N-Beats [183] DILATE 13.3 ± 0.7 23.4 ± 0.8 4.8 ± 0.4 14.4 ± 1.3 2.7 ± 0.5 18.9 ± 0.8

Informer [300] MSE 10.4 ± 0.3 20.1 ± 1.1 4.3 ± 0.3 13.1 ± 0.9 2.5 ± 0.1 16.6 ± 0.8
Informer [300] DILATE 11.8 ± 0.7 18.5 ± 1.2 2.4 ± 0.3 11.6 ± 0.9 2.4 ± 0.9 15.1 ± 0.7

Electricity N-Beats [183] MSE 24.8 ± 0.4 15.6 ± 0.2 13.3 ± 0.3 4.6 ± 0.1 2.6 ± 0.3 13.4 ± 0.2
N-Beats [183] DILATE 25.8 ± 0.9 15.5 ± 0.2 13.3 ± 0.3 4.4 ± 0.2 3.1 ± 0.5 13.2 ± 0.2

Informer [300] MSE 38.1 ± 2.1 18.9 ± 0.6 13.2 ± 0.2 6.5 ± 0.3 2.1 ± 0.2 16.4 ± 0.5
Informer [300] DILATE 37.8 ± 0.8 18.5 ± 0.3 12.9 ± 0.2 5.7 ± 0.2 1.9 ± 0.1 15.9 ± 0.3

ETTH1 N-Beats [183] MSE 32.5 ± 1.4 3.9 ± 0.2 13.3 ± 2.0 21.6 ± 4.3 5.7 ± 0.7 7.4 ± 1.0
N-Beats [183] DILATE 26.0 ± 2.8 2.9 ± 0.1 4.6 ± 0.6 11.4 ± 1.7 6.4 ± 1.0 4.6 ± 0.4

Informer [300] MSE 28.2 ± 2.6 4.3 ± 0.3 5.8 ± 0.1 21.6 ± 3.3 6.6 ± 1.9 7.8 ± 0.9
Informer [300] DILATE 32.5 ± 3.8 3.2 ± 0.3 4.5 ± 0.3 19.1 ± 1.9 6.4 ± 1.0 6.4 ± 0.6

4.3.4 DILATE performances with state-of-the-art models

Beyond generic forecasting architectures, we show that DILATE can also improve the performances
of state-of-the-art deep architectures. We experiment here with two recent and competitive models:
N-Beats [183] and Informer [300]. Results in Table 4.2 are consistent with those in Table 4.1: models
trained with DILATE improve over MSE in shape (in DTW and ramp score for 6/6 experiments) and
time (in TDI for 5/6 and Hausdorff for 4/6 experiments) and are equivalent to MSE when evaluated
in MSE (equivalent or better for 3/6 experiments). We provide qualitative predictions of N-Beats on
Electricity in Figure 4.4 and ETTh1 in Figure 4.5. It again confirms that training with DILATE
leads to much sharper predictions with a better temporal localization than training with the MSE.

4.3.5 DILATE loss analysis

Influence of α We analyze in Figure 4.6 (a) the influence of the tradeoff parameter α when training
a Seq2Seq model on the Synthetic-det dataset. When α = 1, LDILATE reduces to DTW∆

γ , with an
accurate shape but a large temporal error. When α −→ 0, we only minimize Ltime without any shape
constraint. Both MSE and shape errors explode in this case, illustrating the fact that Ltime is only
meaningful in conjunction with Lshape. Both the MSE and DILATE error curves present a U-shape ;
in this case, α = 0.5 seems an acceptable tradeoff for the Synthetic-det dataset.

Influence of γ We analyse the influence of the DTW∆
γ smoothing parameter γ in Figure 4.6. We show

in Figure 4.6 (c) the assignment probabilities of the DTW∆
γ path between the two test time series from

Figure 3.2, the true DTW path being depicted in red. When γ increases, the DTW∆
γ path is more

uncertain and becomes multimodal. When γ → 0, the soft DTW converges toward the true DTW.
However, we see in Figure 4.6 (b) that for small γ values, optimizing DTW∆

γ becomes more difficult,
resulting in higher test error and higher variance (on Synthetic-det). We fixed γ = 10−2 in all our
experiments, which yields a good tradeoff between an accurate soft optimal path and a low test error.
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N-Beats [183] MSE N-Beats [183] DILATE

Figure 4.4: Qualitative forecasting results comparing the N-Beats model [183] trained with MSE and
the DILATE loss on the Electricity dataset.

N-Beats [183] MSE N-Beats [183] DILATE

Figure 4.5: Qualitative forecasting results comparing the N-Beats model [183] trained with MSE and
the DILATE loss on the ETTH1 dataset.
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(a) Influence of α (b) Influence of γ

(c) Influence of γ on the soft-DTW optimal path (true path in red)

Figure 4.6: DILATE loss analysis. The shaded areas represent ± std computed over 10 runs.

4.4 Conclusion

In this Chapter, we have introduced DILATE, a new differentiable loss function for training deep
multi-step time series forecasting models. DILATE combines two terms for precise shape and temporal
localization of non-stationary signals with sudden changes. We showed that DILATE is comparable
to the standard MSE loss when evaluated on MSE, and far better when evaluated on several shape
and timing metrics. DILATE compares favourably on shape and timing to state-of-the-art forecasting
algorithms trained with the MSE.
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Probabilistic forecasting with shape and
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Chapter abstract

In this Chapter, we address the non-stationary time series forecasting problem in the probabilistic
setting. To describe the predictive distribution, our goal is to provide a limited set of diverse and
accurate scenarios in terms of shape and temporal localization. We introduce the STRIPE forecasting
model for representing structured diversity based on shape and time features, ensuring both probable
predictions while being sharp and accurate. STRIPE is a forecasting model which outputs multiple
predictions by sampling latent variables. STRIPE is equipped with a diversification mechanism
relying on determinantal point processes (DPP). Structured diversity is enforced with two shape and
temporal semi-definite kernels. We use the two shape and time kernel of Chapter 3, that we prove
to be valid PSD kernels, for enforcing structured diversity. Experiments carried out on synthetic
datasets show that STRIPE significantly outperforms baseline methods for representing diversity,
while maintaining accuracy of the forecasting model. Finally, experiments on real datasets illustrate
that STRIPE is able to outperform state-of-the-art probabilistic forecasting approaches in the best
sample prediction. The work described in this Chapter is based on the following publications:
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• [140]: Vincent Le Guen and Nicolas Thome. ”Probabilistic Time Series Forecasting with
Structured Shape and Temporal Diversity”. In Advances in Neural Information Processing
Systems (NeurIPS 2020).

• [141]: Vincent Le Guen and Nicolas Thome. ”Deep Time Series Forecasting with Shape and
Temporal Criteria”. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022.

Notation: we describe the STRIPE++ model from the publication [141] that we rename STRIPE
in this Chapter. It is an improvement over the STRIPE model published in [140].

5.1 Introduction

(a) True predictive distribution (b) DILATE [137] (c) deep stoch model [292] (d) STRIPE (ours)

Figure 5.1: Probabilistic time series forecasting: recent advances include the DILATE loss [137] for
enabling sharp predictions (b), but are inadequate for producing diverse forecasts. On the other hand,
probabilistic forecasting approaches based on generative models [292, 203] loose the ability to generate
sharp forecasts (c). The proposed STRIPE model (d) produces both sharp and diverse future forecasts,
matching the ground truth distribution (a).

I
n many applications, producing deterministic forecasts, i.e. a single future trajectory, is not sufficient
for decision makers, who need information about the forecast’s uncertainty. Probabilistic forecasting
consists in modelling the conditional predictive distribution of future trajectories given past values.

In this work, our goal is to describe this predictive distribution with a small set (e.g. N = 10) of
plausible and diverse predictions. This is a different goal than estimating the variance of the predictions
or the quantiles of the distribution. Focusing on the non-stationary context with possible sharp
variations, the targeted set of predictions should reflect the shape and temporal diversity of the true
future trajectories. Our motivation is illustrated in the example of the blue input in Figure 5.1 (a): we
aim at performing predictions covering the full distribution of future trajectories, whose samples are
shown in green.

State-of-the-art methods for time series forecasting currently rely on deep neural networks, which
exhibit strong abilities in modelling complex nonlinear dependencies between variables and time.
Recently, increasing attempts have been made for improving architectures for accurate predictions
[133, 226? , 183, 139] or for making predictions sharper, e.g. by explicitly modelling dynamics [33, 69,
213, 82], or by designing specific loss functions addressing the drawbacks of blurred prediction with
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MSE training [55, 208, 137, 256] (e.g. with DILATE). Although Figure 5.1 (b) shows that DILATE
produces sharp and realistic forecasts, its deterministic nature leads to to a single trajectory prediction
without uncertainty quantification.

Probabilistic methods targeting for producing a diverse set of predictions include generative models
[292, 124, 203] that produce multiple trajectories by sampling from a latent space. These approaches
are commonly trained using MSE or variants, and consequently often loose the ability to represent
sharp predictions, as shown in Figure 5.1 (c) for [292]. These generative models also lack an explicit
structure to control the type of diversity in the latent space.

In this Chapter, we introduce the STRIPE model for including Shape and Time diverRsIty in
Probabilistic forEcasting. As shown in Figure 5.1 (d), this enables to produce sharp and diverse
forecasts, which fit well the ground truth distribution of trajectories in Figure 5.1 (a). STRIPE is a
predictive model equipped with a diversification mechanism based on determinantal point processes
(DPP). The diversity of predictions is structured with the two shape and temporal semi-definite kernels
defined in Chapter 3, and we design explicit schemes to control the quality vs. diversity tradeoff.

We conduct experiments on synthetic datasets to evaluate the ability of STRIPE to match the
ground truth trajectory distribution. We show that STRIPE significantly outperforms baseline methods
for representing diversity, while maintaining the accuracy of the forecasting model. Experiments on
real datasets further show that STRIPE is able to outperform state-of-the-art probabilistic forecasting
approaches when evaluating the best sample (i.e. diversity), while being equivalent based on its mean
prediction (i.e. quality).

5.2 Related work

In the Section, we pursue the review from Chapter 2 on spatio-temporal forecasting and insist on
the most related works for probabilistic forecasting and for imposing structured diversity.

Probabilistic forecasting For describing the conditional distribution of future values given an input
sequence, a first class of deterministic methods add variance estimation with Monte Carlo dropout
[301, 134] or predict the quantiles of this distribution [275, 86, 274] by minimizing the pinball loss
[122, 211] or the continuous ranked probability score (CRPS) [91]. Other probabilistic methods try
to approximate the predictive distribution, explicitly with a parametric distribution (e.g. Gaussian
for DeepAR [219] and variants [202, 218]), or implicitly with a generative model with latent variables
(e.g. with conditional variational autoencoders (cVAEs) [292], conditional generative adversarial
networks (cGANs) [124], normalizing flows [203]). However, these methods lack the ability to produce
sharp forecasts by minimizing variants of the MSE (pinball loss, gaussian maximum likelihood), at the
exception of cGANs - but which suffer from mode collapse that limits predictive diversity. Moreover,
these generative models are generally represented by unstructured distributions in the latent space
(e.g. Gaussian), which do not allow to have an explicit control on the targeted diversity.

Structured diversity for prediction For diversifying forecasts, several repulsive schemes were studied
such as the variety loss [97, 244] that consists in optimizing the best sample, or entropy regularization
[63, 263] that encourages a uniform distribution. Besides, generative models, such as variational
autoencoders (VAE) [119], are widely used for producing multiple predictions through sampling from
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Figure 5.2: Overview of the STRIPE model: STRIPE builds on a forecasting architecture trained with
a quality loss Lquality enforcing sharp predictions. The latent state is disentangled into a deterministic
part h from the encoder and two stochastic codes zs and zt that account for the shape and time
variations. First step (Figure upper part), we train the predictor with a quality loss, the stochastic
codes are sampled from a posterior network. Second step (bottom), we diversify the predictions with
two STRIPE shape and time proposal networks trained with a DPP diversity loss (keeping the encoder
and decoder frozen).

a latent space. However latent states are typically sampled at test time from a standard Gaussian
prior distribution, resulting in an unstructured diversity. To improve this unstructured mechanism,
prior works [292, 293] introduced proposal neural networks for generating the latent variables that are
trained with a diversity objective.

As discussed in Chapter 2, determinantal point processes (DPPs) are an appealing mathematical
solution for characterizing the diversity of a set of items. Efficient algorithms maximizing the diversity
of a set of items with a given sampling budget. GDPP [71] proposed by Elfeki et al. is based on
matching generated and true sample diversity by aligning the corresponding DPP kernels, and thus
limits their use in datasets where the full distribution of possible outcomes is accessible. In contrast,
our probabilistic forecasting approach is applicable in realistic scenarios where only a single future
trajectory is available for each training sample. Yuan and Kitani [292] train their proposal neural
networks with a DPP diversity loss. Although we share with [292] the goal to use DPP as diversification
mechanism for future trajectories, the main limitation in [292] is to use the MSE loss for training
the predictor and the MSE kernel for diversification, leading to blurred prediction, as illustrated in
Figure 5.1 (c). In contrast, we design specific shape and time DPP kernels and we show the necessity
to decouple the criteria used for quality and diversity.
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5.3 Probabilistic forecasting with structured diversity

We consider the multi-step and non-stationary time series forecasting problem in the probabilistic
case. Given an input sequence x1:T = (x1, . . . , xT ) ∈ Rp×T , we aim at describing the conditional
predictive distribution of future trajectories with a set of N future trajectories {ŷ(i)}i=1..N ∈ Rd×H

(corresponding to diverse scenarii sampled from the true future distribution ŷ(i) ∼ p(·|x1:T )).
We introduce the STRIPE framework (Shape and Time diverRsIty in Probabilistic forEcasting), that

extends STRIPE [140]. Depicted in Figure 5.2, STRIPE builds upon a general multi-step forecasting
pipeline: the input time series x1:T is fed into an encoder that summarizes the input into a latent
vector h. This context vector h is then transformed by a decoder into a future trajectory.

The key idea of STRIPE is to augment the deterministic latent state h with stochastic diversifying
variables zs (resp. zt) meant to capture the shape (resp. temporal) variations of the future time series.
We distinguish two phases for training the overall model: (i) we train the predictor with a quality loss
and (ii) we train the diversifying STRIPE mechanism with a DPP diversity loss (with the weights of
the predictor frozen). For both of these steps, we detail now how the diversifying variables are sampled.

5.3.1 Training the predictor with a quality loss

For training the predictor (upper part in Figure 5.2) with possibly multiple admissible futures as
supervision, we take inspiration from the probabilistic U-Net [123] and introduce a posterior network
from which to sample the diversifying variables z∗

s and z∗
t (which represent the shape and temporal

variant attached to a particular future y∗). The posterior net outputs the parameters µ∗
s and σ∗

s of a
Gaussian distribution N (µ∗

s, σ∗
s) for parameterizing the shape posterior distribution q(zs|x, y∗) (and

similarly for the temporal posterior distribution).

To train this generative model (encoder, decoder and posterior networks), we resort to variational
inference [119] and maximize the evidence lower bound (ELBO) of the log-likelihood, or equivalently,
minimize the following prediction loss over all training examples:

Lprediction(ŷ, y∗) = Lquality(ŷ, y∗) + KL (q(zs|x, y∗) || p(zs)) + KL (q(zt|x, y∗) || p(zt)) . (5.1)

In our non-stationary context, we choose the DILATE loss for Lquality, in order to guarantee sharp
predictions with accurate temporal localization. The Kullback-Leibler (KL) losses enforce that the
shape posterior distribution q(zs|x, y∗) matches a prior distribution p(zs) (we use a Gaussian prior
N (0, I), which is a common choice in variational inference).

5.3.2 Training the STRIPE diversification mechanism

For including structured shape and temporal diversity (lower part in Figure 5.2), we introduce two
proposal neural networks STRIPEshape and STRIPEtime that aim to produce a set of Ns shape latent
codes

{︁
zi

s

}︁
i=1..Ns

∈ Rk (resp. Nt time codes
{︁
zi

t

}︁
i=1..Nt

∈ Rk) dedicated to generate diverse trajectories
in terms of shape (resp. time).

When training STRIPEshape (the description for STRIPEtime is similar), we concatenate h with
the posterior time latent code µ∗

t and the Ns shape latent codes zi
s provided by STRIPEshape, which
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leads to Ns future trajectories ŷi = Decoder
(︁
(h, zi

s, µ∗
t )
)︁
, i = 1..Ns

1. The shape diversity of this set of
Ns trajectories is then enforced by a shape diversity loss that we describe below.

DPP diversity loss: We resort to determinantal point processes (DPP) for their appealing properties
for maximizing the diversity of a set of items Y = {y1, ..., yN } given a fixed sampling budget N and
for structuring diversity via the choice of the DPP kernel. Following [292], we minimize the negative
expected cardinality of a random subset Y from the DPP:

Ldiversity(Y; K) = −EY ∼DPP(K)|Y | (5.2)

= −Tr(I − (K + I)−1). (5.3)

Intuitively, a larger expected cardinality means a more diverse sampled set according to kernel K.
This loss is differentiable and can be computed in closed form.

Quality regularizer in the DPP: When training the shape and time proposal networks with the
diversity loss, we do not have control over the quality of predictions, which can deteriorate to improve
diversity. To address this, we introduce a quality regularization term in the DPP kernels. Crucially, we
decouple the criteria used for quality (DILATE) and diversity (shape or time). Kshape maximizes the
shape (DTW) diversity, while maintaining a globally low DILATE loss (thus playing on the temporal
localization to ensure a good tradeoff). This contrasts with [292] which uses the same MSE criterion
for both quality and diversity (see Figure 5.4 (b) for a detailed analysis). In practice, we introduce
a quality vector q = (q1, . . . , qNs) between the prediction ŷi and the ground truth y∗ 2. We choose
qi = µ(1 − DILATE(ŷi, y∗)), where µ > 0 is a hyperparameter to tune the influence of the quality
regularization. The modified shape kernel becomes (and similarly for the time kernel):

K̃shape = Diag(q) Kshape Diag(q). (5.4)

This decomposition enables to sample sets of items of both high quality and diversity:

PK̃(Y = Y ) ∝
(︄∏︂

i∈Y

q2
i

)︄
det(KY ). (5.5)

We then train STRIPEshape by applying the shape kernel K̃shape (Eq 5.4) to the set of Ns shape
future trajectories Ldiversity(ŷ1, . . . , ŷNs ; K̃shape) and STRIPEtime by applying the time kernel K̃time

to the set of Nt time future trajectories Ldiversity(ŷ1, . . . , ŷNt ; K̃time).

1If there exists multiple futures as supervision, we repeat this operation for each posterior latent code µ∗,j
t (it

corresponds to consider each tuple (x1:T , y∗,j) as a separate training example).
2If there are multiple futures as supervision, we again consider each tuple (input sequence, possible future) as a

separate training example.
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5.3.3 Diverse trajectory generation at test time

At test time, the posterior network is discarded and we only rely on the trained encoder, STRIPEshape,
STRIPEtime proposal networks and decoder to generate future predictions. More precisely, we combine

the shape and temporal proposals
{︁
zi

s

}︁
i=1..Ns

and
{︂

zj
t

}︂
j=1..Nt

to obtain Ns × Nt predictions ŷi,j =

Decoder((h, zi
s, zj

t )).

5.4 Experiments

We firstly assess the ability of STRIPE to capture the full predictive distribution of future trajectories.
To do so, we need for evaluation the ground truth set of admissible futures for a given input; we
construct here the Synthetic-prob dataset designed for this purpose. Secondly, on a more realistic
setting where we only know one future for each input, we evaluate STRIPE on the Traffic and
Electricity datasets with the best (resp. the mean) sample metrics as a proxy for diversity (resp.
quality). We describe the implementation details and neural network architectures (encoder, decoder,
posterior net and STRIPE proposal network) in Appendix C.1.

5.4.1 Full predictive distribution evaluation on Synthetic-prob

Dataset: In this Chapter, we build the Synthetic-prob (T = 20, H = 20) dataset with multiple
admissible futures for each input series. This is a variant of Synthetic-det used in Chapter 4 where
for each input series, we generate 10 different future series of length 20 by adding noise on the step
amplitude and localization. A sample from this dataset can be observed in Figure 5.1 (a). The dataset
is composed of 100 × 10 = 1000 time series for each train/valid/test split.

Metrics: To assess the discrepancy between the predicted and true distributions of futures trajectories,
we define the two following measures Hquality(ℓ) and Hdiversity(ℓ) (ℓ = DTW, TDI or DILATE in our
experiments):

Hquality(ℓ) := Ex∈DtestEŷ

[︄
inf

y∈F (x)
ℓ(ŷ, y)

]︄
(5.6)

Hdiversity(ℓ) := Ex∈DtestEy∈F (x)

[︃
inf
ŷ

ℓ(ŷ, y)
]︃

. (5.7)

Hquality penalizes forecasts ŷ that are far away from a ground truth future of x denoted y ∈ F (x)
(similarly to the precision concept in pattern recognition) whereas Hdiversity penalizes when a true
future is not covered by a forecast (similarly to recall). As a tradeoff balancing quality and diversity,
we compute the F1 score defined in Eq 5.8:

F1 score = 2 Hquality(ℓ) · Hdiversity(ℓ)
Hquality(ℓ) + Hdiversity(ℓ) . (5.8)

In addition, we also use the continuous ranked probability score (CRPS) which is a standard proper
scoring rule [91] for assessing probabilistic forecasts [86]. Intuitively, the CRPS is the pinball loss
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Table 5.1: STRIPE forecasting results on the Synthetic-prob dataset with multiple futures, averaged
over 5 runs (mean ± std). Best equivalent methods (Student t-test) shown in bold. Metrics are scaled
(MSE × 1000, DILATE ×100, CRPS × 1000).

Hquality(·) (↓) Hdiversity(·) (↓) F1 score (↓) CRPS (↓)

Methods DTW TDI DILATE DTW TDI DILATE DTW TDI DILATE

cVAE DILATE 11.7 ± 1.5 9.4 ± 2.2 14.2 ± 1.5 18.8 ± 1.3 48.6 ± 2.2 33.9 ± 3.9 14.4 15.7 20.0 62.2 ± 4.2
variety loss [244] DILATE 15.6 ± 3.4 10.2 ± 1.1 16.8 ± 0.9 22.7 ± 4.1 37.7 ± 4.9 30.8 ± 1.0 18.5 16.1 21.7 62.6 ± 3.0
Entropy reg. [63] DILATE 13.8 ± 3.1 8.8 ± 2.2 15.0 ± 1.6 20.4 ± 2.8 42.0 ± 7.8 32.6 ± 2.3 16.5 14.5 20.5 62.4 ± 3.9

Diverse DPP [292] DILATE 12.9 ± 1.2 9.8 ± 2.1 15.1 ± 1.5 18.6 ± 1.6 42.8 ± 10.1 31.3 ± 5.7 15.2 15.9 20.4 60.7 ± 1.6
GDPP [71] DILATE 14.8 ± 2.9 11.7 ± 8.4 14.4 ± 2.1 20.8 ± 2.4 25.2 ± 7.2 23.9 ± 4.5 17.3 15.9 17.9 63.4 ± 6.4

STRIPE 13.5 ± 0.5 9.2 ± 0.5 15.0 ± 0.3 12.9 ± 0.3 16.3 ± 1.2 17.9 ± 0.6 13.2 11.7 16.3 48.6 ± 0.6

integrated over all quantile levels. A key property is that the CRPS attains its minimum when the
predicted future distribution equals the true future distribution, making this metric particularly adapted
to our context.

Forecasting results: We compare in Table 5.1 our method to 4 recent competing diversification mecha-
nisms (variety loss [244], entropy regularisation [63], diverse DPP [292] and GDPP [71]) based on a con-
ditional variational autoencoder (cVAE) backbone trained with DILATE. We observe that STRIPE ob-
tains the global best performances by improving diversity by a large amount (Hdiversity(DILATE)=17.9)
compared to the backbone cVAE DILATE (Hdiversity(DILATE)=33.9) and to other diversification
schemes (the best competitor GDPP [71] attains Hdiversity(DILATE)=23.9). This highlights the rele-
vance of the structured shape and time diversity. We can also notice that, in contrast to competing
diversification schemes that improve diversity at the cost of a loss in quality, STRIPE maintains high
quality predictions. STRIPE is only beaten in Hquality(DILATE) by GDPP [71], but this method is
significantly worse than STRIPE in diversity, and GDPP requires full future distribution supervision,
which it not applicable in real datasets (see section 5.4.2). All in all, the F1 scores summarize the
quality vs. diversity tradeoffs, and STRIPE gets the best F1 DILATE score. Moreover, STRIPE
outperforms all other methods with the CRPS metric, indicating that the predicted future trajectory
distribution is closer to the ground truth one.

5.4.2 State-of-the-art comparison on real-world datasets

We evaluate here the performances of STRIPE on the two challenging real-world datasets Traffic
and Electricity commonly used as benchmarks in the time series forecasting literature [290, 219, 133,
202, 137, 226] and described in Chapter 4. Contrary to the Synthetic-prob dataset, we only dispose
of one future trajectory sample y∗

T +1:T +τ for each input series x1:T . In this case, the metric Hquality

(resp. Hdiversity) defined in section 5.4.1 reduces to the mean sample (resp. best sample), which are
common for evaluating stochastic forecasting models [6, 82].

Results in Table 5.2 reveal that STRIPE outperforms all other baselines in the best sample
(evaluated in MSE or DILATE). Our method even outperforms in the best sample the state-of-the-art
N-Beats algorithm [183] (either trained with MSE or DILATE), which is dedicated to producing high
quality deterministic forecasts. In terms of quality (evaluation with the mean sample), STRIPE gets
the best (or equivalently best) results in all cases. This contrasts to competing diversification methods,
e.g. Diverse DPP [292], that deteriorate quality to improve diversity. Finally we notice that STRIPE is
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Table 5.2: Probabilistic forecasting results on the Traffic and Electricity datasets, averaged over
5 runs (mean ± std). Metrics are scaled for readability. Best equivalent method(s) (Student t-test)
shown in bold.

Traffic Electricity

MSE DILATE MSE DILATE

Method mean best mean best mean best mean best

Nbeats [183] MSE - 7.8 ± 0.3 - 22.1 ± 0.8 - 24.8 ± 0.4 - 20.2 ± 0.3
Nbeats [183] DILATE - 17.1 ± 0.8 - 17.8 ± 0.3 - 25.8 ± 0.9 - 19.9 ± 0.5

Deep AR [219] 15.1 ± 1.7 6.6 ± 0.7 30.3 ± 1.9 16.9 ± 0.6 67.6 ± 5.1 25.6 ± 0.4 59.8 ± 5.2 17.2 ± 0.3
cVAE DILATE 10.0 ± 1.7 8.8 ± 1.6 19.1 ± 1.2 17.0 ± 1.1 28.9 ± 0.8 27.8 ± 0.8 24.6 ± 1.4 22.4 ± 1.3

Variety loss [244] 9.8 ± 0.8 7.9 ± 0.8 18.9 ± 1.4 15.9 ± 1.2 29.4 ± 1.0 27.7 ± 1.0 24.7 ± 1.1 21.6 ± 1.0
Entropy regul. [63] 11.4 ± 1.3 10.3 ± 1.4 19.1 ± 1.4 16.8 ± 1.3 34.4 ± 4.1 32.9 ± 3.8 29.8 ± 3.6 25.6 ± 3.1
Diverse DPP [292] 11.2 ± 1.8 6.9 ± 1.0 20.5 ± 1.0 14.7 ± 1.0 31.5 ± 0.8 25.8 ± 1.3 26.6 ± 1.0 19.4 ± 1.0

STRIPE 10.0 ± 0.2 6.7 ± 0.3 19.0 ± 0.2 14.1 ± 0.3 29.5 ± 0.3 23.6 ± 0.4 24.1 ± 0.2 17.3 ± 0.4

(a) Traffic (b) Electricity

Figure 5.3: STRIPE qualitative predictions on datasets Traffic (a) and Electricity (b).

consistently better in diversity and quality than the state-of-the art probabilistic deep AR method
[219].

We display a few qualitative forecasting examples of STRIPE on Figure 5.3. We observe that
STRIPE predictions are both sharp and accurate: both the shape diversity (amplitude of the peaks)
and temporal diversity match the ground truth future.

5.4.2.1 STRIPE analysis: quality-diversity cooperation

We analyze here the quality-diversity tradeoff with respect to the number N of sampled future
trajectories. In Figure 5.4 (a) we represent the evolution of performances when N increases from 5 to 100
on the synthetic-prob dataset. As expected, the normalized DILATE diversity Hdiversity(5)/Hdiversity(N)
(higher is better) increases with N for both STRIPE and deepAR models [219]. However we remark
that STRIPE does not deteriorate normalized quality (which even increases slightly), in contrast to
deepAR which does not have control over the targeted diversity. This again confirms the relevance of
our approach that effectively combines an adequate quality loss function and a structured diversity
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mechanism.

We also highlight the importance to separate the criteria for enforcing quality and diversity. In
Figure 5.4, we represent 50 predictions from the models Diverse DPP DILATE [292] and STRIPE in
the plane (DTW,TDI). Diverse DPP DILATE [292] uses a DPP diversity loss based on the DILATE
kernel, which is the same than for quality. We clearly see that the two objectives conflict: this model
increases the DILATE diversity (by increasing the variance in the shape (DTW) or the time TDI)
components) but a lot of these predictions have a high DILATE loss (worse quality). In contrast,
STRIPE predictions are diverse in DTW and TDI, and maintain an overall low DILATE loss. STRIPE
succeeds in recovering a set of good tradeoffs between shape and time leading a low DILATE loss.

(a) (b)

Figure 5.4: STRIPE analysis: (a) Influence of the number N of trajectories on quality (higher is
better) and diversity for the Synthetic-prob dataset. (b) Scatterplot of 50 predictions in the plane
(DTW,TDI), comparing STRIPE v.s. Diverse DPP DILATE [292].

5.5 Conclusion

In this Chapter, we have presented STRIPE, a probabilistic time series forecasting method that
introduces structured shape and temporal diversity based on determinantal point processes. Diversity
is controlled via two proposed differentiable positive semi-definite kernels for shape and time and
exploits a forecasting model with a disentangled latent space. Experiments on synthetic and real-world
datasets confirm that STRIPE leads to more diverse forecasts without sacrificing on quality. Ablation
studies also reveal the crucial importance to decouple the criteria used for quality and diversity.
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Part II

Physics-informed forecasting with
incomplete knowledge

Abstract

In this part, we are interested in designing Machine Learning (ML) / Model-Based (MB) aug-
mented models by leveraging incomplete physical knowledge formalized through ODE/PDE.
Since physical laws are often not directly applicable at the pixel level nor be sufficient for
predicting the whole content of future images in generic videos, we propose to learn a latent
space where we suppose that physical dynamics apply. We introduce the PhyDNet model
(Chapter 6), which is a two-branch recurrent neural network. One branch is responsible for
modelling the physical dynamics while the other branch captures the complementary infor-
mation required for accurate prediction. We show that PhyDNet reaches state-of-the-art
performances on several video prediction benchmarks. Going further, we concentrate on
the ML/MB decomposition problem discussed in Chapter 1, which is ill-posed and admits
an infinity of solutions. We introduce a principled learning framework, called APHYNITY
(Chapter 7). Inspired by the least-action principle, APHYNITY minimizes the norm of
the data-driven complement under the constraint of perfect prediction of the augmented
model. We provide a theoretical analysis of the decomposition and show that we can ensure
existence and uniqueness decomposition guarantees, under mild conditions. We show on
several challenging physical dynamics that APHYNITY ensures better forecasting and
parameter identification performances than MB or ML models alone, and that competing
MB/ML hybrid methods.
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Chapter 6

Disentangling physical from residual
dynamics for video prediction
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Chapter abstract

In this Chapter, we address the video prediction problem with deep learning. To constrain the
challenging generation of high-dimensional images at the pixel level, we propose to incorporate physical
knowledge described by partial differential equations (PDEs). However, since physics is too restrictive
for describing the full visual content of generic videos, we introduce in this Chapter PhyDNet,
a two-branch deep architecture, which disentangles PDE dynamics from unknown complementary
information. The physical branch is composed of a new recurrent physical cell (PhyCell), inspired from
data assimilation techniques, that performs PDE-constrained prediction in latent space. Extensive
experiments conducted on four various datasets show the very good performances reached by PhyDNet.
Ablation studies also highlight the important gain brought out by both disentanglement and PDE-
constrained prediction. Finally, we show that PhyDNet presents interesting features for dealing with
missing data and long-term forecasting.
The work described in this Chapter is based on the following publication:
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• [139]: Vincent Le Guen and Nicolas Thome. ”Disentangling Physical Dynamics from Unknown
Factors for Unsupervised Video Prediction”. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR 2020).

6.1 Introduction

V
ideo forecasting consists in predicting the future content of a video conditioned on previous
frames. This is of crucial importance in various contexts, such as weather forecasting [281],
autonomous driving [132], reinforcement learning [181], robotics [77], or action recognition

[152]. In this work, we focus on unsupervised video prediction, where the absence of semantic labels to
drive predictions exacerbates the challenges of the task. In this context, a key problem is to design
video prediction methods able to represent the complex dynamics underlying raw data.

State-of-the-art methods for training such complex dynamical models currently rely on deep
learning, with specific architectural choices based on 2D/3D convolutional [166, 261] or recurrent
neural networks [268, 266, 269]. To improve predictions, recent methods use adversarial training
[166, 261, 132], stochastic models [28, 173, 82], constraint predictions by using geometric knowledge
[77, 112, 283] or by disentangling factors of variation [258, 250, 60, 104].

Another appealing way to model the video dynamics is to exploit prior physical knowledge,
e.g. formalized by partial differential equations (PDEs) [58, 227]. Recently, interesting connections
between residual networks and PDEs have been drawn [273, 158, 33], enabling to design physically-
constrained machine learning frameworks [200, 58, 227, 214]. These approaches are very successful for
modelling physical systems, when the underlying dynamics is well described by the physical equations
in the input space [200, 214, 155]. However, such assumption is rarely fulfilled in the pixel space for
predicting generalist videos.

In this work, we introduce PhyDNet, a deep model dedicated to perform accurate future frame
predictions from generalist videos. In such a context, physical laws do not apply in the input pixel
space; the goal of PhyDNet is to learn a semantic latent space H in which they do, and are disentangled
from other factors of variation required to perform future prediction. Prediction results of PhyDNet
when trained on Moving MNIST [236] are shown in Figure 6.1. The left branch represents the physical
dynamics in H; when decoded in the image space, we can see that the corresponding features encode
approximate segmentation masks predicting digit positions on subsequent frames. On the other hand,
the right branch extracts residual information required for prediction, here the precise appearance of
the two digits. Combining both representations eventually makes accurate prediction successful.

Our contributions to the unsupervised video prediction problem with PhyDNet can be summarized
as follows:

• We introduce a global sequence to sequence two-branch deep model (section 6.3.1) dedicated to
jointly learn the latent space H and to disentangle physical dynamics from residual information,
the latter being modeled by a data-driven (ConvLSTM [281]) method.

• Physical dynamics is modelled by a new recurrent physical cell, PhyCell (section 6.3.2), discretizing
a broad class of PDEs in H. PhyCell is based on a prediction-correction paradigm inspired
from the data assimilation community [3], enabling robust training with missing data and for
long-term forecasting.
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Figure 6.1: PhyDNet is a deep model mapping an input video into a latent space H, from which future
frame prediction can be accurately performed. PhyDNet learns H in an unsupervised manner, such
that physical dynamics and unknown factors necessary for prediction, e.g. appearance, details, texture,
are disentangled.

• Experiments (section 6.4) reveal that PhyDNet outperforms state-of-the-art methods on four
generalist datasets: this is, as far as we know, the first physically-constrained model able to show
such capabilities. We highlight the importance of both disentanglement and physical prediction
for optimal performances.

6.2 Related work

We review here related multi-step video prediction approaches dedicated to long-term forecasting.
We also focus on unsupervised training, i.e. only using input video data and without manual supervision
based on semantic labels.

Deep neural networks have recently achieved state-of-the-art performances for data-driven video
prediction. Seminal works include the application of sequence to sequence LSTM or Convolutional
variants [236, 281], adopted in many studies [77, 156, 282]. Further works explore different architectural
designs based on Recurrent Neural Networks (RNNs) [268, 266, 182, 269, 267] and 2D/3D ConvNets
[166, 261, 204, 25]. Dedicated loss functions [55, 137] and Generative Adversarial Networks (GANs)
have been investigated for sharper predictions [166, 261, 132]. However, the problem of conditioning
GANs with prior information, such as physical models, remains an open question.

To constrain the challenging generation of high dimensional images at the pixel level, several
methods rather use domain-specific knowledge such as predicting geometric transformations between
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frames [77, 112, 283], estimating the optical flow [190, 161, 152? , 148] or exploiting the semantics of
the scene [12]. This is very effective for short-term prediction, but degrades quickly when the video
content evolves, where more complex models and memory about dynamics are required.

Another line of work consists in disentangling independent factors of variations in order to apply the
prediction model on lower-dimensional representations. A few approaches explicitly model interactions
between objects inferred from an observed scene [73, 125, 285]. Relational reasoning, often implemented
with graphs [9, 120, 220, 187, 254], can account for basic physical laws, e.g. drift, gravity, spring
[272, 278, 176]. However, these methods are object-centric, only evaluate on controlled settings and are
not suited for general real-world video forecasting. Other disentangling approaches factorize the video
into independent components [258, 250, 60, 104, 85]. Several disentanglement criteria are used, such as
content/motion [258, 144] or deterministic/stochastic [60]. In specific contexts, the prediction space
can be structured using additional information, e.g. with human pose [259, 262] or key points [173],
which imposes a severe overhead on the annotation budget. In this work, we share with these works
the motivation to use disentangled representations, but we disentangle incomplete physical dynamics
from residual information required for prediction.

Deep Kalman filters To handle unobserved phenomena, state space models, in particular the Kalman
filter [116], have been recently integrated with deep learning, by modelling dynamics in learned latent
space [126, 271, 98, 81, 11]. The Kalman variational autoencoder [81] separates state estimation in
videos from dynamics with a linear gaussian state space model. The Recurrent Kalman Network [11]
uses a factorized high dimensional latent space in which the linear Kalman updates are simplified and
don’t require computationally-heavy covariance matrix inversions. These methods inspired by the data
assimilation community [3, 18] have advantages in missing data or long-term forecasting contexts due
to their mechanisms decoupling latent dynamics and input assimilation. However, they assume simple
latent dynamics (linear) and don’t include any physical prior.

6.3 PhyDNet model for video forecasting

We introduce PhyDNet, a model dedicated to video prediction, which leverages physical knowledge
on dynamics, and disentangles it from other unknown factors of variations necessary for accurate
forecasting. To achieve this goal, we introduce a disentangling architecture (section 6.3.1), and a new
physically-constrained recurrent cell (section 6.3.2).

Problem statement: As discussed in introduction, physical laws do not apply at the pixel level for
general video prediction tasks. However, we assume that there exists a conceptual latent space H
in which physical dynamics and residual factors are linearly disentangled. Formally, let us denote as
u = u(t, x) the frame of a video sequence at time t, for spatial coordinates x = (x, y). h(t, x) ∈ H is
the latent representation of the video up to time t, which decomposes as h = hp + hr, where hp (resp.
hr) represents the physical (resp. residual) component of the disentanglement. The video evolution in
the latent space H is thus governed by the following partial differential equation (PDE):

∂h(t, x)
∂t

= ∂hp

∂t
+ ∂hr

∂t
:=Mp(hp, u) + Mr(hr, u). (6.1)
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(a) PhyDNet disentangling cell (b) Global Seq2Seq architecture

Figure 6.2: Proposed PhyDNet deep model for video forecasting. (a) The core of PhyDNet is a
recurrent block projecting input images ut into a latent space H, where two recurrent neural networks
disentangle physical dynamics (PhyCell, section 6.3.2) from residual information (ConvLSTM). Learned
physical hp

t+1 and residual hr
t+1 representations are summed before decoding to predict the future

image ût+1. (b) Unfolded in time, PhyDNet forms a sequence to sequence (seq2seq) architecture suited
for multi-step video prediction. Dotted arrows mean that predictions are reinjected as next input only
for the ConvLSTM branch, and not for PhyCell, as explained in section 6.3.3.

Mp(hp, u) and Mr(hr, u) represent physical and residual dynamics in the latent space H.

6.3.1 PhyDNet disentangling architecture

The main goal of PhyDNet is to learn the mapping from input sequences to a latent space which
approximates the disentangling properties formalized in Eq 9.5.

To reach this objective, we introduce a recurrent bloc which is shown in Figure 6.2 (a). A video
frame ut at time t is mapped by a deep convolutional encoder E into a latent space representing the
targeted space H. E(ut) is then used as input for two parallel recurrent neural networks, incorporating
this spatial representation into a dynamical model.

The left branch in Figure 6.2 (a) models the latent representation hp fulfilling the physical part of

the PDE in Eq (9.5), i.e. ∂hp(t,x)
∂t = Mp(hp, u). This PDE is modeled by our recurrent physical cell

described in section 6.3.2, PhyCell, which leads to the computation of hp
t+1 from E(ut) and hp

t . From
the machine learning perspective, PhyCell leverages physical constraints to limit the number of model
parameters, regularizes training and improves generalization.

The right branch in Figure 6.2 (a) models the latent representation hr fulfilling the residual part

of the PDE in Eq 9.5, i.e. ∂hr(t,x)
∂t = Mr(hr, u). Inspired by wavelet decomposition [163] and recent

semi-supervised works [209], this part of the PDE corresponds to unknown phenomena, which do not
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correspond to any prior model, and is therefore entirely learned from data. We use a generic recurrent
neural network for this task, e.g. ConvLSTM [281] for videos, which computes hr

t+1 from E(ut) and hr
t .

ht+1 = hp
t+1 + hr

t+1 is the combined representation processed by a deep decoder D to forecast the
image ût+1.

Figure 6.2 (b) shows the ”unfolded” PhyDNet. An input video u1:T = (u1, ..., uT ) ∈ RT ×n×m×c with
spatial size n × m an d c channels is projected into H by the encoder E and processed by the recurrent
block unfolded in time. This forms a Sequence To Sequence architecture [240] suited for multi-step
prediction, outputting H future frame predictions ûT +1:T +H . Encoder, decoder and recurrent block
parameters are all trained end-to-end, meaning that PhyDNet learns itself without supervision the
latent space H in which physics and residual factors are disentangled.

6.3.2 PhyCell: a deep recurrent physical model

PhyCell is a new physical cell, whose dynamics is governed by the PDE response function
Mp(hp, u)1:

Mp(h, u) := Φ(h) + C(h, u), (6.2)

where Φ(h) is a physical predictor modelling only the latent dynamics and C(h, u) is a correction term
modelling the interactions between latent state and input data.

Physical predictor: Φ(h) in Eq (6.2) is modeled as follows:

Φ(h(t, x)) =
∑︂

i,j:i+j≤q

ci,j
∂i+jh
∂xi∂yj

(t, x). (6.3)

Φ(h(t, x)) in Eq 9.2 combines the spatial derivatives with coefficients ci,j up to a certain differential
order q. This generic class of linear PDEs subsumes a wide range of classical physical models, e.g. the
heat equation, the wave equations, the advection-diffusion equations.

Correction: C(h, u) in Eq 6.2 takes the following form:

C(h, u) :=K(t, x) ⊙ [E(u(t, x))−(h(t, x)+Φ(h(t, x))] . (6.4)

Eq 6.4 computes the difference between the latent state after physical motion h(t, x) + Φ(h(t, x)) and
the embedded new observed input E(u(t, x)). K(t, x) is a gating factor, where ⊙ is the Hadamard
product.

6.3.2.1 Discrete PhyCell

We discretize the continuous time PDE in Eq 6.2 with the standard forward Euler numerical scheme
[158], leading to the discrete time PhyCell (derivation in Appendix D.1.1):

ht+1 = (1 − Kt) ⊙ (ht + Φ(ht)) + Kt ⊙ E(ut). (6.5)

1In the sequel, we drop the index p in hp for the sake of simplicity
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Figure 6.3: PhyCell recurrent cell implements a two-steps scheme: physical prediction with convolutions
for approximating and combining spatial derivatives (Eq D.5 and Eq 9.2), and input assimilation as a
correction of latent physical dynamics driven by observed data (Eq D.6). During training, the filter
moment loss in red (Eq D.1.2) enforces the convolutional filters to approximate the desired differential
operators.

Depicted in Figure 6.3, PhyCell is an atomic recurrent cell for building physically-constrained RNNs.
In our experiments, we use one layer of PhyCell but one can also easily stack several PhyCell layers to
build more complex models, as done for stacked RNNs [268, 266, 269]. To gain insight into PhyCell in
Eq (6.5), we write the equivalent two-steps form:⎧⎨⎩h̃t+1 = ht + Φ(ht) Prediction

ht+1 = h̃t+1 + Kt ⊙
(︂
E(ut) − h̃t+1

)︂
. Correction

(6.6)

(6.7)

The prediction step in Eq D.5 is a physically-constrained motion in the latent space, computing
the intermediate representation h̃t+1. Eq D.6 is a correction step incorporating input data. This
prediction-correction formulation is reminiscent of the way to combine numerical models with observed
data in the data assimilation community [3, 18], e.g. with the Kalman filter [116]. We show in section
6.3.3 that this decoupling between prediction and correction can be leveraged to robustly train our
model in long-term forecasting and missing data contexts. Kt can be interpreted as the Kalman gain
controlling the trade-off between both steps.

6.3.2.2 PhyCell implementation

We now specify how the physical predictor Φ in Eq D.5 and the correction Kalman gain Kt in Eq
D.6 are implemented.
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Physical predictor: We implement Φ using a convolutional neural network (left gray box in Figure
6.3), based on the connection between convolutions and differentiations [65, 155].

This offers the possibility to learn a class of filters approximating each partial derivative in Eq
9.2, which are constrained by a kernel moment loss, as detailed in section 6.3.3. As noted by [155],
the flexibility added by this constrained learning strategy gives better results for solving PDEs than
handcrafted derivative filters. Finally, we use 1 × 1 convolutions to linearly combine these derivatives
with ci,j coefficients in Eq 9.2.

Kalman gain: We approximate Kt in Eq D.6 by a gate with learned convolution kernels Wh, Wu

and bias bk:
Kt = tanh

(︂
Wh ∗ h̃t+1 + Wu ∗ E(ut) + bk

)︂
. (6.8)

Note that if Kt = 0, the input is not accounted for and the dynamics follows the physical predictor;
if Kt = 1, the latent dynamics is resetted and only driven by the input. This is similar to gating
mechanisms in LSTMs or GRUs.

Discussion: With specific Φ predictor, Kt gain and encoder E, PhyCell recovers recent models from
the literature:

model Φ Kt E
PDE-Net [154] Eq D.5 0 Id

Advection-diffusion advection-diffusion 0 Id
flow [58] predictor

Recurrent Kalman Filter [11] locally linear, no approximate deep encoder
physical constraint Kalman gain

PhyDNet (ours) Eq D.5 Eq 6.8 deep encoder

PDE-Net [155] directly works on raw pixel data (identity encoder E) and assumes Markovian
dynamics (no correction, Kt=0): the model solves the autonomous PDE ∂u

∂t = Φ(u) given in Eq D.5
but in pixel space. This prevents from modelling time-varying PDEs such as those tackled in this work,
e.g. varying advection terms. The flow model in [58] uses the closed-form solution of the advection-
diffusion equation as predictor ; it is however limited only to this PDE, whereas PhyDNet models a much
broader class of PDEs. The Recurent Kalman Filter (RKF) [11] also proposes a prediction-correction
scheme in a deep latent space, but their approach does not include any prior physical information,
and the prediction step is locally linear, whereas we use deep models. An approximated form of the
covariance matrix is used for estimating Kt in [11], which we find experimentally inferior to our gating
mechanism in Eq 6.8.

6.3.3 Training

Given a training set of N videos D =
{︂

u(i)
}︂

i={1:N}
and PhyDNet parameters w = (wp, wr, ws),

where wp (resp. wr) are parameters of the PhyCell (resp. residual) branch, and ws are encoder and
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decoder shared parameters, we minimize the following objective function:

L(D, w) = Limage(D, w) + λLmoment(wp). (6.9)

We use the L2 loss for the image reconstruction loss Limage, as commonly done in the literature
[268, 266, 182, 267, 269].

Lmoment(wp) imposes physical constraints on the k2 learned filters
{︂

wk
p,i,j

}︂
i,j≤k

, such that each

wk
p,i,j of size k × k approximates ∂i+j

∂xiyj . This is achieved by using a loss based on the moment matrix

M(wk
p,i,j) [154], representing the order of the filter differentiation [65]. M(wk

p,i,j) is compared to a

target moment matrix ∆k
i,j (see M and ∆ computations in Appendix D.1.2), leading to:

Lmoment =
∑︂
i≤k

∑︂
j≤k

||M(wk
p,i,j) − ∆k

i,j ||F . (6.10)

Prediction mode: An appealing feature of PhyCell is that we can use and train the model in a
”prediction-only” mode by setting Kt = 0 in Eq D.6, i.e. by only relying on the physical predictor Φ in
Eq D.5. It is worth mentioning that the ”prediction-only” mode is not applicable to standard Seq2Seq
RNNs: although the decomposition in Eq 6.2 still holds, i.e. Mr(h, u) = Φ(h) + C(h, u), the resulting
predictor is naive and useless for multi-step prediction h̃t+1 = 0, see Appendix D.1.3.1).

Therefore, standard RNNs are not equipped to deal with unreliable input data ut. We show in
section 6.4.4 that the gain of PhyDNet over those models increases in two important contexts with
unreliable inputs: multi-step prediction and dealing with missing data.

6.4 Experiments

6.4.1 Experimental setup

We evaluate PhyDNet on four datasets from various origins.

Moving MNIST is a standard benchmark in video prediction [236] consisting in two random MNIST
digits bouncing on the walls of a 64 × 64 grid. We predict 10 future frames given 10 input frames.
Training sequences are generated on the fly and the test set of 10000 sequences is provided by [236].

Traffic BJ consists in traffic flow data collected by taxicabs in Beijing [296]. Each 32 × 32 image is a
2-channels heat map with leaving/entering traffic. Video prediction on such real-world complex data
require modelling transport phenomena and traffic diffusion. Following the setting of [296, 269, 267],
we predict 4 future frames given 4 input frames.

SST consists in daily Sea Surface Temperature (SST) data from the sophisticated simulation engine
NEMO (Nucleus for European Modelling of the Ocean), as in [58]. SST evolution is governed by the
physical laws of fluid dynamics. We predict 4 frames of size 64 × 64 given 4 input frames.
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Human 3.6 contains 3.6 million images of human actions [107], with complex 3D articulated motions.
Following the setting of [269], we use only the ”walking” scenario with subjects S1, S5, S6, S7, S8
for training, and S9, S11 for testing. We predict 4 future images of size 128×128×3 given 4 input images.

Network architectures and training: PhyDNet shares a common backbone architecture for all datasets
where the physical branch contains 49 PhyCells filters (with kernel of size 7 × 7) and the residual
branch is composed of a 3-layers ConvLSTM with 128 filters in each layer. We set up the trade-off
parameter between Limage and Lmoment to λ = 1. Detailed architectures and λ impact are given in
Appendix D.2.1. Our code is available at https://github.com/vincent-leguen/PhyDNet.

Evaluation metrics: We follow evaluation metrics commonly used in state-of-the-art video prediction
methods: the Mean Squared Error (MSE), Mean Absolute Error (MAE) and the Structural Similarity
(SSIM) [270] that computes the perceived image quality with respect to a reference. Metrics are
averaged for each frame of the output sequence. Lower MSE, MAE and higher SSIM indicate better
performances.

6.4.2 State of the art comparison

We evaluate PhyDNet against strong recent baselines, including very competitive data-driven RNN
architectures: ConvLSTM [281], PredRNN [268], Causal LSTM [266], Memory in Memory (MIM) [269].
We also compare to methods dedicated to specific datasets: DDPAE [104], a disentangling method
specialized and state-of-the-art on Moving MNIST ; and the physically-constrained advection-diffusion
flow model [58] that is state-of-the-art for the SST dataset.

Overall results presented in Table 6.1 reveal that PhyDNet outperforms significantly all baselines on
all four datasets. The performance gain is large with respect to state-of-the-art general RNN models,
with a gain of 17 MSE points for Moving MNIST, 6 MSE points for Human 3.6, 3 MSE points for SST

Table 6.1: Quantitative forecasting results of PhyDNet compared to baselines using various datasets.
Numbers are copied from original or citing papers. * corresponds to results obtained by running
online code from the authors. The first five baseline are general deep models applicable to all datasets,
whereas DDPAE [104] (resp. advection-diffusion flow [58]) are specific state-of-the-art models for
Moving MNIST (resp. SST). Metrics are scaled to be in a similar range across datasets to ease
comparison.

Moving MNIST Traffic BJ Sea Surface Temperature Human 3.6

Method MSE MAE SSIM MSE ×100 MAE SSIM MSE ×10 MAE SSIM MSE / 10 MAE /100 SSIM

ConvLSTM [281] 103.3 182.9 0.707 48.5∗ 17.7∗ 0.978∗ 45.6∗ 63.1∗ 0.949∗ 50.4∗ 18.9∗ 0.776∗

PredRNN [268] 56.8 126.1 0.867 46.4 17.1∗ 0.971∗ 41.9 62.1 0.955 48.4 18.9 0.781
Causal LSTM [266] 46.5 106.8 0.898 44.8 16.9∗ 0.977∗ 39.1∗ 62.3∗ 0.929∗ 45.8 17.2 0.851
MIM [269] 44.2 101.1 0.910 42.9 16.6∗ 0.971∗ 42.1∗ 60.8∗ 0.955∗ 42.9 17.8 0.790
E3D-LSTM [267] 41.3 86.4 0.920 43.2∗ 16.9∗ 0.979∗ 34.7∗ 59.1∗ 0.969∗ 46.4 16.6 0.869

Advection-diffusion [58] - - - - - - 34.1∗ 54.1∗ 0.966∗ - - -
DDPAE [104] 38.9 90.7∗ 0.922∗ - - - - - - - - -

PhyDNet 24.4 70.3 0.947 41.9 16.2 0.982 31.9 53.3 0.972 36.9 16.2 0.901
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Table 6.2: An ablation study shows the consistent performance gain on all datasets of our physically-
constrained PhyCell vs the general purpose ConvLSTM, and the additional gain brought up by the
disentangling architecture PhyDNet. * corresponds to results obtained by running online code from
the authors.

Moving MNIST Traffic BJ Sea Surface Temperature Human 3.6

Method MSE MAE SSIM MSE × 100 MAE SSIM MSE × 10 MAE SSIM MSE / 10 MAE / 100 SSIM

ConvLSTM 103.3 182.9 0.707 48.5∗ 17.7∗ 0.978∗ 45.6∗ 63.1∗ 0.949∗ 50.4∗ 18.9∗ 0.776∗

PhyCell 50.8 129.3 0.870 48.9 17.9 0.978 38.2 60.2 0.969 42.5 18.3 0.891
PhyDNet 24.4 70.3 0.947 41.9 16.2 0.982 31.9 53.3 0.972 36.9 16.2 0.901

and 1 MSE point for Traffic BJ. In addition, PhyDNet also outperforms specialized models: it gains 14
MSE points compared to the disentangling DDPAE model [104] specialized for Moving MNIST, and
2 MSE points compared to the advection-diffusion model [58] dedicated to SST data. PhyDNet also
presents large and consistent gains in SSIM, indicating that image quality is greatly improved by the
physical regularization. Note that for Human 3.6, a few approaches use specific strategies dedicated to
human motion with additional supervision, e.g. human pose in [259]. We perform similarly to [259]
using only unsupervised training, as shown in Appendix D.2.2. This is, to the best of our knowledge,
the first time that physically-constrained deep models reach state-of-the-art performances on generalist
video prediction datasets.

In Figure 6.4, we provide qualitative prediction results for all datasets, showing that PhyDNet
properly forecasts future images for the considered horizons: digits are sharply and accurately predicted
for Moving MNIST in (a), the absolute traffic flow error is low and approximately spatially independent
in (b), the evolving physical SST phenomena are well anticipated in (c) and the future positions of the
person is accurately predicted in (d). We add in Figure 6.4(a) a qualitative comparison to DDPAE
[104], which fails to predict the future frames properly. Since the two digits overlap in the input
sequence, DPPAE is unable to disentangle them. In contrast, PhyDNet successfully learns the physical
dynamics of the two digits in a disentangled latent space, leading a correct prediction. In Appendix
D.2.5, we detail this comparison to DPPAE, and provide additional visualizations for all datasets.

6.4.3 Ablation Study

We perform here an ablation study to analyse the respective contributions of physical modelling
and disentanglement. Results are presented in Table 6.2 for all datasets. We see that a 1-layer PhyCell
model (only the left branch of PhyDNet in Figure 6.2(b)) outperforms a 3-layers ConvLSTM (50 MSE
points gained for Moving MNIST, 8 MSE points for Human 3.6, 7 MSE points for SST and equivalent
results for Traffic BJ), while PhyCell has much fewer parameters (270,000 vs. 3 million parameters).
This confirms that PhyCell is a very effective recurrent cell that successfully incorporates physical prior
in deep models. When we further add our disentangling strategy with the two-branch architecture
(PhyDNet), we have another performance gap on all datasets (25 MSE points for Moving MNIST, 7
points for Traffic and SST, and 5 points for Human 3.6), which proves that physical modelling is not
sufficient by itself to perform general video prediction and that learning unknown factors is necessary.

To complement the discussion of Table 6.2, we give here in Table 6.3 the approximate number of
models parameters of trained models:
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Figure 6.4: Qualitative results of the predicted frames by PhyDNet for all datasets. First line is the
input sequence, second line the target and third line PhyDNet prediction. For Moving MNIST, we add
a fourth line with the comparison to DDPAE [104] and for Traffic BJ the difference |Prediction-Target|
for better visualization.

Table 6.3: Number of parameters of models trained on Moving MNIST.

method number of parameters

ConvLSTM 3.106

PhyCell 370.103

PhyDNet 3.106

We see that a 1-layer PhyCell with 49 filters has far fewer parameters than a 3-layers ConvLSTM
(with 128 filters in each layer) and obtains far better results (gain of 50 MSE points). Then PhyDNet
with approximately the same number of parameters as ConvLSTM (3 million) again improves the
performances by 25 MSE points, reaching a state-of-the-art MSE score of 24.4.

We qualitatively analyze in Figure D.6 partial predictions of PhyDNet for the physical branch
ûp

t+1 = D(hp
t+1) and residual branch ûr

t+1 = D(hr
t+1). As noted in Figure 6.1 for Moving MNIST, hp

captures coarse localisations of objects, while hr captures fine-grained details that are not useful for
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Figure 6.5: Qualitative ablation results on Moving MNIST: partial predictions show that PhyCell
captures coarse localisation of digits, whereas the ConvLSTM branch models the fine shape details of
digits. Every two frames are displayed.

the physical model. Additional visualizations for the other datasets are provided in Appendix D.2.5.

Influence of physical regularization We conduct in Table 6.4 a finer ablation on Moving MNIST to
study the impact of the physical regularization Lmoment on the performance of PhyCell and PhyDNet.
When we disable Lmoment for training PhyCell, performances improve by 7 points in MSE. This
underlines that physical laws alone are too restrictive for learning dynamics in a general context, and
that complementary factors should be accounted for. On the other side, when we disable Lmoment for
training our disentangled architecture PhyDNet, performances decrease by 5 MSE points (29 vs 24.4)
compared to the physically-constrained version. This proves that physical constraints are relevant,
but should be incorporated carefully in order to make both branches cooperate. This enables to
leverage physical prior, while keeping remaining information necessary for pixel-level prediction. Same
conclusions can be drawn for the other datasets, see Appendix D.2.4.

Table 6.4: Influence of physical regularization for Moving MNIST.

Method MSE MAE SSIM

PhyCell 50.8 129.3 0.870
PhyCell without Lmoment 43.4 112.8 0.895
PhyDNet 24.4 70.3 0.947
PhyDNet without Lmoment 29.0 81.2 0.934

77



6.4. EXPERIMENTS

6.4.4 PhyCell analysis

Physical filter analysis With the same general backbone architecture, PhyDNet can express different
PDE dynamics associated to the underlying phenomena by learning specific ci,j coefficients combining
the partial derivatives in Eq (9.2). In Figure 6.6, we display the mean amplitude of the learned
coefficients ci,j with respect to the order of differentiation. For Moving MNIST, the 0th and 1st orders
are largely dominant, meaning a purely advective behaviour coherent with the piecewise-constant
translation dynamics of the dataset. For Traffic BJ and SST, there is also a global decrease in
amplitude with respect to order, we nonetheless notice a few higher order terms appearing to be useful
for prediction. For Human 3.6, where the nature of the prior motion is less obvious, these coefficients
are more spread across order derivatives.

Moving MNIST Traffic BJ SST Human 3.6

Figure 6.6: Mean amplitude of the combining coefficients ci,j with respect to the order of the differential
operators approximated.

Dealing with unreliable inputs We explore here the robustness of PhyDNet when dealing with
unreliable inputs, that can arise in two contexts: long-term forecasting and missing data. As explained
in section 6.3.3, PhyDNet can be used in a prediction mode in this context, limiting the use of unreliable
inputs, whereas general RNNs cannot. To validate the relevance of the prediction mode, we compare
PhyDNet to DDPAE [104], based on a standard RNN (LSTM) as predictor module. Figure 6.7 presents
the results evaluated in MSE and SSIM obtained by PhyDNet and DDPAE on Moving MNIST.

For long-term forecasting, we evaluate the performances of both methods far beyond the prediction
range seen during training (up to 80 frames), as shown in Figure 6.7(a). We can see that the performance
drop (MSE increase rate) is approximately linear for PhyNet, whereas it is much more pronounced for
DDPAE. For example, PhyDNet for 80-steps prediction reaches similar performances in MSE than
DDPAE for 20-steps prediction. This confirms that PhyDNet can limit error accumulation during
forecasting by using a powerful dynamical model.

Finally, we evaluate the robustness of PhyDNet on DDPAE on missing data, by varying the ratio of
missing data (from 10 to 50%) in input sequences during training and testing. A missing input image
is replaced with a default value (0) image. In this case, PhyCell relies only on its latent dynamics
by setting Kt = 0, whereas DDPAE takes the null image as input. Figure 6.7(b) shows that the
performance gap between PhyDNet and DDPAE increases with the percentage of missing data.
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(a) Long-term forecasting (b) Missing data

Figure 6.7: MSE comparison between PhyDNet and DDPAE [104] when dealing with unreliable inputs,
for long-term forecasting (a) and in presence of missing data (b).

6.5 Conclusion

We have proposed PhyDNet, a new model for disentangling prior dynamical knowledge from
other factors of variation required for video prediction. PhyDNet enables to apply PDE-constrained
prediction beyond fully observed physical phenomena in pixel space, and to outperform state-of-the-art
performances on four generalist datasets. Our introduced recurrent physical cell for modelling PDE
dynamics generalizes recent models and offers the appealing property to decouple prediction from
correction.
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Chapter 7

Augmenting incomplete physical models for
complex dynamics forecasting
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Chapter abstract

Forecasting complex dynamical phenomena in settings where only partial knowledge of their dynamics
is available is a prevalent problem across various scientific fields. e.g. in climate. While purely
data-driven approaches are arguably insufficient in this context, standard physical modelling based
approaches tend to be over-simplistic, inducing non-negligible errors. In this Chapter, we introduce
the APHYNITY framework, a principled approach for augmenting incomplete physical dynamics
described by differential equations with deep data-driven models. It consists in decomposing the
dynamics into two components: a physical component accounting for the dynamics for which we have
some prior knowledge, and a data-driven component accounting for errors of the physical model.
The learning problem is carefully formulated such that the physical model explains as much of the
data as possible, while the data-driven component only describes information that cannot be captured
by the physical model, no more, no less. This not only provides the existence and uniqueness for this
decomposition, but also ensures interpretability and benefits generalization. Experiments made on
three important use cases, each representative of a different family of physical phenomena, show that
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APHYNITY can efficiently leverage approximate physical models to accurately forecast the evolution
of the system and correctly identify relevant physical parameters.
The work described in this Chapter is based on the following publication:

• [288, 287]: Yuan Yin∗, Vincent Le Guen∗, Jeremie Dona∗, Ibrahim Ayed∗, Emmanuel de
Bézenac∗, Nicolas Thome and Patrick Gallinari. ”Augmenting Physical Models with Deep
Networks for Complex Dynamics Forecasting”, In International Conference on Learning Repre-
sentations (ICLR 2021, oral presentation), JSTAT 2021.

7.1 Introduction

M
odelling and forecasting complex dynamical systems is a major challenge in domains such as
environment and climate [210], health science [40], and in many industrial applications [247].
As explained in Chapter 1, Model-Based (MB) approaches typically rely on partial or ordinary

differential equations (PDE/ODE) and stem from a deep understanding of the underlying physical
phenomena. Machine learning (ML) and deep learning methods are more prior agnostic yet have
become state-of-the-art for several spatio-temporal prediction. However, pure ML methods are still
limited for modelling complex physical dynamics, and cannot properly generalize to new conditions
unlike MB approaches.

Combining the MB and ML paradigms is an emerging trend to develop the interplay between
the two paradigms. For example, [23, 155] learn the explicit form of PDEs directly from data,
[201, 231] use NNs as implicit methods for solving PDEs, [228] learn spatial differences with a graph
network, [251] introduce continuous convolutions for fluid simulations, [58] learn the velocity field of an
advection-diffusion system, [96, 37] enforce conservation laws in the network architecture or in the loss
function.

The large majority of aforementioned ML/MB hybrid approaches assume that the physical model
adequately describes the observed dynamics. This assumption is, however, commonly violated in
practice. This may be due to various factors, e.g. idealized assumptions and difficulty to explain
processes from first principles [88], computational constraints prescribing a fine grain modelling of the
system [4], unknown external factors, forces and sources which are present [135].

In this Chapter, we aim at leveraging prior dynamical ODE/PDE knowledge in situations where
this physical model is incomplete, i.e. unable to represent the whole complexity of observed data. To
handle this case, we introduce a principled learning framework to Augment incomplete PHYsical models
for ideNtIfying and forecasTing complex dYnamics (APHYNITY). The rationale of APHYNITY,
illustrated in Figure 7.1 on the pendulum problem, is to augment the physical model when—and only
when—it falls short.

Designing a general method for combining ML and MB approaches is still a widely open problem,
and a clear problem formulation for the latter is lacking [205]. Our contributions towards these goals
are the following:

• We introduce a simple yet principled framework for combining both approaches. We decompose
the data into a physical and a data-driven term such that the data-driven component only
models information that cannot be captured by the physical model. We provide existence and
uniqueness guarantees (Section 7.3.1) for the decomposition given mild conditions, and show that
this formulation ensures interpretability and benefits generalization.
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(a) Data-driven Neural ODE (b) Simple physical model (c) Our APHYNITY framework

Figure 7.1: Predicted dynamics for the damped pendulum vs. ground truth (GT) trajectories
d2θ/dt2 + ω2

0 sin θ + αdθ/dt = 0. We show that in (a) the data-driven approach [33] fails to properly learn
the dynamics due to the lack of training data, while in (b) an ideal pendulum cannot take friction
into account. The proposed APHYNITY shown in (c) augments the over-simplified physical model
in (b) with a data-driven component. APHYNITY improves both forecasting (MSE) and parameter
identification (Error T0) compared to (b).

• We propose a trajectory-based training formulation (Section 7.3.2) along with an adaptive
optimization scheme (Section 7.3.3) enabling end-to-end learning for both physical and deep
learning components. This allows APHYNITY to automatically adjust the complexity of the
neural network to different approximation levels of the physical model, paving the way to flexible
learned hybrid models.

• We demonstrate the generality of the approach on three use cases (reaction-diffusion, wave
equations and the pendulum) representative of different PDE families (parabolic, hyperbolic),
having a wide spectrum of application domains, e.g. acoustics, electromagnetism, chemistry,
biology, physics (Section 7.4). We show that APHYNITY is able to achieve performances close to
complete physical models by augmenting incomplete ones, both in terms of forecasting accuracy
and physical parameter identification. Moreover, APHYNITY can also be successfully extended
to the non-stationary dynamics context (Section 7.4.3).

7.2 Related work

Correction in data assimilation As discussed in Chapter 2, data assimilation techniques such as the
Kalman filter [116, 11] assume that the prediction errors correspond to noise. These errors are modelled
probabilistically as random variables, and an optimal correction step is derived after each prediction
step. In this sequential two-step scheme, also arising commonly in robotics and optimal control [34, 146],
there is no cooperation between prediction and correction. The originality of APHYNITY is to leverage
model-based prior knowledge by augmenting it with neurally parameterized dynamics; the residual does
not corresponds to noise but to an unknown or unmodelled part of the dynamical model. APHYNITY
also ensures an optimal cooperation between the prior model and the augmentation.

Augmented physical models Combining physical models with machine learning (gray-box or hybrid
modelling) was first explored from the 1990’s: [196, 245, 206] use neural networks to predict the
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unknown parameters of physical models. The challenge of proper MB/ML cooperation was already
raised as a limitation of gray-box approaches but not addressed. Moreover these methods were evaluated
on specific applications with a residual targeted to the form of the equation. In the last few years, there
has been a renewed interest in deep hybrid models bridging data assimilation techniques and machine
learning to identify complex PDE parameters using cautiously constrained forward model [155, 58].

Recently, some approaches have specifically targetted the ML/MB cooperation in the case of
incomplete physical models. HybridNet [153] and PhICNet [216] both use data-driven networks to learn
additive perturbations or source terms to a given PDE. The former considers the favorable context
where the perturbations can be accessed, and the latter the special case of additive noise on the input.
[264, 168] propose several empirical fusion strategies with deep neural networks but lack theoretical
groundings. Crucially, all the aforementioned approaches do not address the issues of uniqueness of
the decomposition or of proper cooperation for correct parameter identification. Besides, we found
experimentally that this vanilla cooperation is inferior to the APHYNITY learning scheme in terms of
forecasting and parameter identification performances (see experiments in Section 7.4.2).

7.3 The APHYNITY Model

In the following, we study dynamics driven by an equation of the form:

dXt

dt
= F (Xt) (7.1)

defined over a finite time interval [0, T ], where the state X is either vector-valued, i.e. we have Xt ∈ Rd

for every t (pendulum equations in Section 7.4), or Xt is a d-dimensional vector field over a spatial
domain Ω ⊂ Rk, with k ∈ {2, 3}, i.e. Xt(x) ∈ Rd for every (t, x) ∈ [0, T ] × Ω (reaction-diffusion and
wave equations in Section 7.4). We suppose that we have access to a set of observed trajectories
D = {X· : [0, T ] → A | ∀t ∈ [0, T ], dXt/dt = F (Xt)}, where A is the set of X values (either Rd or vector
field). In our case, the unknown F has A as domain and we only assume that F ∈ F , with (F , ∥ · ∥) a
normed vector space.

The overall APHYNITY approach is illustrated in Figure 7.2.

7.3.1 Decomposing dynamics into physical and augmented terms

As introduced in 7.1, we consider the common situation where incomplete information is available on
the dynamics, under the form of a family of ODEs or PDEs characterized by their temporal evolution
Fp ∈ Fp ⊂ F . The APHYNITY framework leverages the knowledge of Fp while mitigating the
approximations induced by this simplified model through the combination of physical and data-driven
components. F being a vector space, we can write:

F = Fp + Fa,

where Fp ∈ Fp encodes the incomplete physical knowledge and Fa ∈ F is the data-driven augmentation
term complementing Fp. The incomplete physical prior is supposed to belong to a known family, but
the physical parameters (e.g. propagation speed for the wave equation) are unknown and need to be
estimated from data. Both Fp and Fa parameters are estimated by fitting the trajectories from D.
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Figure 7.2: The APHYNITY model for learning complex dynamical systems augments an approximate
physical model Fp by a deep data-driven model Fa. We propose a decomposition fulfilling uniqueness
guarantees (Section 7.3.1). We introduce a trajectory-based formulation for learning the joint ODE
dXt
dt = (Fp + Fa)(Xt), which leads to different and experimentally better identification results than the

physical model Fp (Section 7.3.2). APHYNITY is learned end-to-end with an adaptive optimization
algorithm (Section 7.3.3) ensuring a meaningful cooperation between physics and augmentation.

The decomposition F = Fp + Fa is in general not unique. For example, all the dynamics could be
captured by the Fa component. This decomposition is thus ill-defined, which hampers the interpretability
and the extrapolation abilities of the model. In other words, one wants the estimated parameters of
Fp to be as close as possible to the true parameter values of the physical model and Fa to play only
a complementary role w.r.t Fp, so as to model only the information that cannot be captured by the
physical prior. For example, when F ∈ Fp, the data can be fully described by the physical model, and
in this case it is sensible to desire Fa to be nullified; this is of central importance in a setting where
one wishes to identify physical quantities, and for the model to generalize and extrapolate to new
conditions. In a more general setting where the physical model is incomplete, the action of Fa on the
dynamics, as measured through its norm, should be as small as possible.

This general idea is embedded in the following optimization problem:

min
Fp∈Fp,Fa∈F

∥Fa∥ subject to ∀X ∈ D, ∀t,
dXt

dt
= (Fp + Fa)(Xt). (7.2)

The originality of APHYNITY is to leverage model-based prior knowledge by augmenting it with
neurally parameterized dynamics. It does so while ensuring optimal cooperation between the prior
model and the augmentation.

A first key question is whether the minimum in Eq 7.2 is indeed well-defined, in other words whether
there exists indeed a decomposition with a minimal norm Fa. The answer actually depends on the
geometry of Fp, and is formulated in the following proposition proven in Appendix E.2:

Proposition 1 (Existence of a minimizing pair) If Fp is a proximinal set1, there exists a decomposition
minimizing Eq 7.2.

Proximinality is a mild condition which, as shown through the proof of the proposition, cannot be

1A proximinal set is one from which every point of the space has at least one nearest point. A Chebyshev set is one
from which every point of the space has a unique nearest point. More details in Appendix E.1.
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weakened. It is a property verified by any boundedly compact set. In particular, it is true for closed
subsets of finite dimensional spaces. However, if only existence is guaranteed, while forecasts would be
expected to be accurate, non-uniqueness of the decomposition would hamper the interpretability of Fp

and this would mean that the identified physical parameters are not uniquely determined.

It is then natural to ask under which conditions solving problem Eq 7.2 leads to a unique de-
composition into a physical and a data-driven component. The following result provides guarantees
on the existence and uniqueness of the decomposition under mild conditions. The proof is given in
Appendix E.2:

Proposition 2 (Uniqueness of the minimizing pair) If Fp is a Chebyshev set1, Eq 7.2 admits a unique
minimizer. The Fp in this minimizer pair is the metric projection of the unknown F onto Fp.

The Chebyshev assumption condition is strictly stronger than proximinality but is still quite mild
and necessary. Indeed, in practice, many sets of interest are Chebyshev, including all closed convex
spaces in strict normed spaces and, if F = L2, Fp can be any closed convex set, including all finite
dimensional subspaces. In particular, all examples considered in the experiments are Chebyshev sets.

Propositions 1 and 2 provide, under mild conditions, the theoretical guarantees for the APHYNITY
formulation to infer the correct MB/ML decomposition, thus enabling both recovering the proper
physical parameters and accurate forecasting.

7.3.2 Solving APHYNITY with deep neural networks

In the following, both terms of the decomposition are parametrized and are denoted as F
θp
p and

F θa
a . Solving APHYNITY then consists in estimating the parameters θp and θa. θp are the physical

parameters and are typically low-dimensional, e.g. 2 or 3 in our experiments for the considered physical
models. For Fa, we need sufficiently expressive models able to optimize over all F : we thus use
deep neural networks, which have shown promising performances for the approximation of differential
equations [201, 5].

When learning the parameters of F
θp
p and F θa

a , we have access to a finite dataset of trajectories

discretized with a given temporal resolution ∆t: Dtrain = {(X(i)
k∆t)0≤k≤⌊T/∆t⌋}1≤i≤N . Solving Eq 7.2

requires estimating the state derivative dXt/dt appearing in the constraint term. One solution is to
approximate this derivative using e.g. finite differences as in [23, 96, 53]. This numerical scheme requires
high space and time resolutions in the observation space in order to get reliable gradient estimates.
Furthermore it is often unstable, leading to explosive numerical errors as discussed in Appendix E.4. We
propose instead to solve Eq 7.2 using an integral trajectory-based approach: we compute ˜︁Xi

k∆t,X0
from

an initial state X
(i)
0 using the current F

θp
p + F θa

a dynamics, then enforce the constraint ˜︁Xi
k∆t,X0

= Xi
k∆t.

This leads to our final objective function on (θp, θa):

min
θp,θa

⃦⃦⃦
F θa

a

⃦⃦⃦
subject to ∀i, ∀k, ˜︁X(i)

k∆t = X
(i)
k∆t, (7.3)

where ˜︁X(i)
k∆t is the approximate solution of the integral

∫︁X
(i)
0 +k∆t

X
(i)
0

(F θp
p + F θa

a )(Xs) dXs obtained by a

differentiable ODE solver.
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In our setting, where we consider situations for which F
θp
p only partially describes the physical

phenomenon, this coupled ML/MB formulation leads to different parameter estimates than using the
MB formulation alone, as analyzed more thoroughly in Appendix E.3.

Interestingly, our experiments show that using this formulation also leads to a better identification

of the physical parameters θp than when fitting the simplified physical model F
θp
p alone (Section 7.4).

With only an incomplete knowledge on the physics, θp estimator will be biased by the additional
dynamics which needs to be fitted in the data. Appendix E.6 also confirms that the integral formulation
gives better forecasting results and a more stable behavior than supervising over finite difference
approximations of the derivatives.

7.3.3 Adaptively constrained optimization

The formulation in Eq 7.3 involves constraints which are difficult to enforce exactly in practice. We
considered a variant of the method of multipliers [15] which uses a sequence of Lagrangian relaxations
Lλj

(θp, θa):
Lλj

(θp, θa) = ∥F θa
a ∥ + λj · Ltraj(θp, θa), (7.4)

where Ltraj(θp, θa) =
∑︁N

i=1
∑︁T/∆t

h=1 ∥X
(i)
h∆t − ˜︁X(i)

h∆t∥.

Algorithm 1: APHYNITY

Initialization: λ0 ≥ 0, τ1 > 0, τ2 > 0;
for epoch = 1 : Nepochs do

for iter in 1 : Niter do
for batch in 1 : B do

θj+1 = θj − τ1∇ [λjLtraj(θj) + ∥Fa∥]
end

end
λj+1 = λj+ τ2Ltraj(θj+1)

end

This method needs an increasing sequence (λj)j such that the successive minima of Lλj
converge

to a solution (at least a local one) of the constrained problem in Eq 7.3. We select (λj)j by using an
iterative strategy: starting from a value λ0, we iterate, minimizing Lλj

by gradient descent2, then
update λj with: λj+1 = λj + τ2Ltraj(θj+1), where τ2 is a chosen hyper-parameter and θ = (θp, θa).
This procedure is summarized in Algorithm 1. This adaptive iterative procedure allows us to obtain
stable and robust results, in a reproducible fashion, as shown in the experiments.

7.4 Experimental validation

We validate our approach on 3 classes of challenging physical dynamics: the damped pendulum,
reaction-diffusion, and wave propagation, representative of various application domains such as chem-
istry, biology or ecology (for reaction-diffusion) [26, 44, 260] and earth physic, acoustic, electromagnetism
or even neuro-biology (for waves equations) [232, 180].

2Convergence to a local minimum isn’t necessary, a few steps are often sufficient for a successful optimization.
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The last two dynamics are described by PDEs and thus in practice should be learned from very
high-dimensional vectors, discretized from the original compact domain. This makes the learning
much more difficult than from the one-dimensional pendulum case. For each problem, we investigate
the cooperation between physical models of increasing complexity encoding incomplete knowledge of
the dynamics (denoted Incomplete physics in the following) and data-driven models. We show the
relevance of APHYNITY (denoted APHYNITY models) both in terms of forecasting accuracy and
physical parameter identification.

7.4.1 Experimental setting

We describe the three families of equations studied in the experiments. In all experiments,
F = L2(A) where A is the set of all admissible states for each problem, and the L2 norm is computed

on Dtrain by: ∥F∥2 ≈
∑︁

i,k ∥F (X(i)
k∆t)∥2. All considered sets of physical functionals Fp are closed

and convex in F and thus are Chebyshev. In order to enable the evaluation on both prediction and
parameter identification, all our experiments are conducted on simulated datasets with known model
parameters. Each dataset has been simulated using an appropriate high-precision integration scheme
for the corresponding equation. All solver-based models take the first state X0 as input and predict
the remaining time-steps by integrating F through the same differentiable generic and common ODE
solver (4th order Runge-Kutta)3. Implementation details and architectures are given in Appendix E.5.

Damped pendulum: The evolution of a damped pendulum is governed by the ODE d2θ
dt2 + ω2

0 sin θ +
λdθ

dt = 0, where θ(t) is the angle, ω0 = 2π
T0

is the proper pulsation (T0 being the period) and λ is

the damping coefficient. With the state X = (θ, dθ
dt ), the ODE can be written as in Eq 7.1 with

F : X ↦→ (dθ
dt , −ω2

0 sin θ − λdθ
dt ).

We consider the following physical models of increasing complexity:

• Hamiltonian models [96, 246], an energy conservative approximation of the system, with Fp = {F H
p :

(u, v) ↦→ (∂yH(u, v), −∂xH(u, v)) | H ∈ H1(R2)} where H1(R2) is the first order Sobolev space.

• Param ODE (ω0), the pendulum without friction, with Fp = {F
ω2

0
p : (u, v) ↦→ (v, −ω2

0 sin u) |
ω2

0 ≥ ω2
min}.

• Param ODE (ω0, λ), the full pendulum equation (but with unknown parameters), with Fp = {F
ω2

0 ,λ
p :

(u, v) ↦→ (v, −ω2
0 sin u − λv) | ω2

0 ≥ ω2
min, λ ≥ λmin > 0}.

Reaction-diffusion equations: We consider a 2D FitzHugh-Nagumo type model [121]. The system is
driven by the PDE ∂u

∂t = a∆u + Ru(u, v; k), ∂v
∂t = b∆v + Rv(u, v) where a and b are respectively the

diffusion coefficients of u and v, ∆ is the Laplace operator. The local reaction terms are Ru(u, v; k) =
u − u3 − k − v, Rv(u, v) = u − v. The state is X = (u, v) and is defined over a compact rectangular
domain Ω with periodic boundary conditions.

The considered physical models are:

3This integration scheme is then different from the one used for data generation, the rationale for this choice being
that when training a model one does not know how exactly the data has been generated.
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• Param PDE (a, b) with unknown (a, b) diffusion terms and without reaction terms: Fp = {F a,b
p :

(u, v) ↦→ (a∆u, b∆v) | a ≥ amin > 0, b ≥ bmin > 0};

• Param PDE (a, b, k) the full PDE with unknown parameters: Fp = {F a,b,k
p : (u, v) ↦→

(a∆u + Ru(u, v; k), b∆v + Rv(u, v) | a ≥ amin > 0, b ≥ bmin > 0, k ≥ kmin > 0}.

Damped wave equations: We investigate the following 2-dimensional damped-wave PDE: ∂2w
∂t2 −c2∆w+

k ∂w
∂t = 0 where k is the damping coefficient. The state is X = (w, ∂w

∂t ) and, as for reaction-diffusion,
we consider a compact spatial domain Ω with Neumann homogeneous boundary conditions. Note that
this damping differs from the pendulum case, as its effect is global.

The considered physical models are:

• Param PDE (c), without damping term and Fp = {F c
p : (u, v) ↦→

(v, c2∆u) | c ≥ cmin > 0};

• Param PDE (c, k) with Fp = {F c,k
p : (u, v) ↦→ (v, c2∆u − kv) |

c ≥ cmin > 0, k ≥ kmin > 0}.

Baselines As purely data-driven baselines, we use Neural ODE [33] for the three problems and
PredRNN++ ([266], for reaction-diffusion only) which are competitive models for datasets generated
by differential equations and for spatio-temporal data. As ML/MB methods, in the ablations studies
(see Appendix E.6), we compare for all problems, to the vanilla ML/MB cooperation scheme found
in [264, 168]. We also show results for True PDE/ODE, which corresponds to the equation for data
simulation (which do not lead to zero error due to the difference between simulation and training
integration schemes). For the pendulum, we compare to Hamiltonian neural networks [96, 246] and to
the the deep Galerkin method (DGM) [231]. See additional details in Appendix E.5.

7.4.2 Results

We analyze and discuss below the results obtained for the three kind of dynamics. We successively
examine different evaluation or quality criteria. The conclusions are consistent for the three problems,
which allows us to highlight clear trends for all of them.

Forecasting accuracy: The data-driven models do not perform well compared to True PDE/ODE (all
values are test errors expressed as log MSE): -4.6 for PredRNN++ vs. -9.17 for reaction-diffusion, -2.51
vs. -5.24 for wave equation, and -2.84 vs. -8.44 for the pendulum in Table 7.1. The Deep Galerkin
method for the pendulum in complete physics DGM (ω0, α), being constrained by the equation,
outperforms Neural ODE but is far inferior to APHYNITY models. In the incomplete physics case,
DGM (ω0) fails to compensate for the missing information. The incomplete physical models, Param
PDE (a, b) for the reaction-diffusion, Param PDE (c) for the wave equation, and Param ODE (ω0) and
Hamiltonian models for the damped pendulum, have even poorer performances than purely data-driven
ones, as can be expected since they ignore important dynamical components, e.g. friction in the
pendulum case. Using APHYNITY with these imperfect physical models greatly improves forecasting
accuracy in all cases, significantly outperforming purely data-driven models, and reaching results often
close to the accuracy of the true ODE, when APHYNITY and the true ODE models are integrated
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Table 7.1: Forecasting and identification results on the (a) damped pendulum, (b) reaction-diffusion and
(c) wave equation datasets. We set for (a) T0 = 6, α = 0.2, for (b) a = 1×10−3, b = 5×10−3, k = 5×10−3,
and for (c) c = 330, k = 50 as true parameters. log MSEs are computed respectively over 40, 25 and 25
predicted time-steps. %Err param. averages the results when several physical parameters are present.
For each level of incorporated physical knowledge, equivalent best results according to a Student t-test
are shown in bold. n/a corresponds to non-applicable cases.

Dataset Method log MSE %Err param. ∥Fa∥2

(a)
Damped
pendu-
lum

Data-driven Neural ODE [33] -2.84±0.70 n/a n/a

Incomplete
physics

Hamiltonian [246] -0.35±0.10 n/a n/a
APHYNITY Hamiltonian -3.97±1.20 n/a 623

Param ODE (ω0) -0.14±0.10 13.2 n/a
Deep Galerkin Method (ω0) [231] -3.10±0.40 22.1 n/a
APHYNITY Param ODE (ω0) -7.86±0.60 4.0 132

Complete
physics

Param ODE (ω0, α) -8.28±0.40 0.45 n/a
Deep Galerkin Method (ω0, α) [231] -3.14±0.40 7.1 n/a
APHYNITY Param ODE (ω0, α) -8.31±0.30 0.39 8.5

True ODE -8.58±0.20 n/a n/a
APHYNITY True ODE -8.44±0.20 n/a 2.3

(b)
Reaction-
diffusion

Data-
driven

Neural ODE [33] -3.76±0.02 n/a n/a
PredRNN++ [266] -4.60±0.01 n/a n/a

Incomplete
physics

Param PDE (a, b) -1.26±0.02 67.6 n/a
APHYNITY Param PDE (a, b) -5.10±0.21 2.3 67

Complete
physics

Param PDE (a, b, k) -9.34±0.20 0.17 n/a
APHYNITY Param PDE (a, b, k) -9.35±0.02 0.096 1.5e-6

True PDE -8.81±0.05 n/a n/a
APHYNITY True PDE -9.17±0.02 n/a 1.4e-7

(c)
Wave
equa-
tion

Data-driven Neural ODE [33] -2.51±0.29 n/a n/a

Incomplete
physics

Param PDE (c) 0.51±0.07 10.4 n/a
APHYNITY Param PDE (c) -4.64±0.25 0.31 71.

Complete
physics

Param PDE (c, k) -4.68±0.55 1.38 n/a
APHYNITY Param PDE (c, k) -6.09±0.28 0.70 4.54

True PDE -4.66±0.30 n/a n/a
APHYNITY True PDE -5.24±0.45 n/a 0.14

with the same numerical scheme (which is different from the one used for data generation, hence the
non-null errors even for the true equations), e.g. -5.92 vs. -5.24 for wave equation in Table 7.1. This
clearly highlights the capacity of our approach to augment incomplete physical models with a learned
data-driven component.

Physical parameter estimation: Confirming the phenomenon mentioned in the introduction and
detailed in Appendix E.3, incomplete physical models can lead to bad estimates for the relevant
physical parameters: an error respectively up to 67.6% and 10.4% for parameters in the reaction-
diffusion and wave equations, and an error of more than 13% for parameters for the pendulum in
Table 7.1. APHYNITY is able to significantly improve physical parameters identification: 2.3% error
for the reaction-diffusion, 0.3% for the wave equation, and 4% for the pendulum. This validates the
fact that augmenting a simple physical model to compensate its approximations is not only beneficial
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(a) Param PDE (a, b), diffusion-only (b) APHYNITY Param PDE (a, b) (c) Ground truth simulation

Figure 7.3: Comparison of predictions of two components u (top) and v (bottom) of the reaction-diffusion
system. Note that t = 4 is largely beyond the dataset horizon (t = 2.5).

for prediction, but also helps to limit errors for parameter identification when dynamical models do
not fit data well. This is crucial for interpretability and explainability of the estimates.

Ablation study: We conduct ablation studies to validate the importance of the APHYNITY augmen-
tation compared to a naive strategy consisting in learning F = Fp + Fa without taking care on the
quality of the decomposition, as done in [264, 168]. Results shown in Table 7.1 of Appendix E.6 show
a consistent gain of APHYNITY for the three use cases and for all physical models: for instance for
Param ODE (a, b) in reaction-diffusion, both forecasting performances (log MSE =-5.10 vs. -4.56) and
identification parameter (Error= 2.33% vs. 6.39%) improve. Other ablation results are provided in
Appendix E.6 showing the relevance of the the trajectory-based approach described in Section 7.3.2 (vs
supervising over finite difference approximations of the derivative F ).

Flexibility: When applied to complete physical models, APHYNITY does not degrade accuracy,
contrary to a vanilla cooperation scheme (see ablations in Appendix E.6). This is due to the least
action principle of our approach: when the physical knowledge is sufficient for properly predicting the
observed dynamics, the model learns to ignore the data-driven augmentation. This is shown by the
norm of the trained neural net component Fa, which is reported in Table 7.1 last column: as expected,
∥Fa∥2 diminishes as the complexity of the corresponding physical model increases, and, relative to
incomplete models, the norm becomes very small for complete physical models (for example in the
pendulum experiments, we have ∥Fa∥ = 8.5 for the APHYNITY model to be compared with 132 and
623 for the incomplete models). Thus, we see that the norm of Fa is a good indication of how imperfect
the physical models Fp are. It highlights the flexibility of APHYNITY to successfully adapt to very
different levels of prior knowledge. Note also that APHYNITY sometimes slightly improves over the
true ODE, as it compensates the error introduced by different numerical integration methods for data
simulation and training (see Appendix E.5).

Qualitative visualizations: Results in Figure 7.3 for reaction-diffusion show that the incomplete
diffusion parametric PDE in Figure 7.3(a) is unable to properly match ground truth simulations:
the behavior of the two components in Figure 7.3(a) is reduced to simple independent diffusions
due to the lack of interaction terms between u and v. By using APHYNITY in Figure 7.3(b), the
correlation between the two components appears together with the formation of Turing patterns, which
is very similar to the ground truth. This confirms that Fa can learn the reaction terms and improve
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(a) Neural ODE (b) APHYNITY Param PDE (c) (c) Ground truth simulation

Figure 7.4: Comparison between the prediction of APHYNITY when c is estimated and Neural ODE
for the damped wave equation. Note that t + 32, last column for (a, b, c) is already beyond the training
time horizon (t + 25), showing the consistency of APHYNITY method.

prediction quality. In Figure 7.4, we see for the wave equation that the data-driven Neural ODE model
fails at approximating dw/dt as the forecast horizon increases: it misses crucial details for the second
component dw/dt which makes the forecast diverge from the ground truth. APHYNITY incorporates a
Laplacian term as well as the data-driven Fa thus capturing the damping phenomenon and succeeding
in maintaining physically sound results for long term forecasts, unlike Neural ODE.

Additional illustrations: We give further visual illustrations to demonstrate how the estimation of
parameters in incomplete physical models is improved with APHYNITY. For the reaction-diffusion
equation, we show that the incomplete parametric PDE underestimates both diffusion coefficients. The
difference is visually recognizable between the poorly estimated diffusion (Figure 7.5(a)) and the true
one (Figure 7.5(c)) while APHYNITY gives a fairly good estimation of those diffusion parameters as
shown in Figure 7.5(b).

(a) a = 0.33×10−3, b = 0.94×10−3,
diffusion estimated with Param
PDE (a, b)

(b) a = 0.97 × 10−3, b = 4.75 ×
10−3, diffusion estimated with
APHYNITY Param PDE (a, b)

(c) a = 1.0 × 10−3, b = 5.0 × 10−3,
true diffusion

Figure 7.5: Diffusion predictions using coefficient learned with (a) incomplete physical model Param
PDE (a, b) and (b) APHYNITY-augmented Param PDE(a, b), compared with the (c) true diffusion

7.4.3 Extension to non-stationary dynamics

We evaluate here the applicability of APHYNITY in a more challenging setting where physical
parameters of the equations vary in each sequence. For the damped pendulum equations, instead of
fixed parameters (T0 = 6, α = 0.2) and varying initial conditions (Section 7.4.2), we vary both the
parameters (T0, α) and the initial conditions between trajectories.
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We simulate 500/50/50 trajectories for the train/valid/test sets. For each trajectory, the period T0
(resp. the damping coefficient α) are sampled uniformly in the range [3, 10] (resp. [0, 0.5]).

We train models that take the first 20 steps as input and predict the next 20 steps. To account for
the varying ODE parameters between sequences, we use an encoder that estimates the parameters
based on the first 20 timesteps. In practice, we use a recurrent encoder composed of 1 layer of 128 GRU
units. The output of the encoder is fed as additional input to the data-driven augmentation models
and to an MLP with final softplus activations to estimate the physical parameters when necessary
(ω0 ∈ R+ for Param ODE (ω0), (ω0, α) ∈ R2

+ for Param ODE (ω0, α)).

In this varying ODE context, we also compare to the state-of-the-art univariate time series forecasting
method N-Beats [183].

Results shown in Table 7.2 are consistent with those presented in Section 7.4.2. Pure data-driven
models Neural ODE [33] and N-Beats [183] fail to properly extrapolate the pendulum dynamics.
Incomplete physical models (Hamiltonian and ParamODE (ω0)) are even worse since they do not
account for friction. Augmenting them with APHYNITY significantly and consistently improves
forecasting results and parameter identification.

We provide similar experiments for the reaction-diffusion and wave equations in Appendix E.7.

Table 7.2: Forecasting and identification results on the damped pendulum dataset with different
parameters for each sequence. log MSEs are computed over 20 predicted time-steps. For each level of
incorporated physical knowledge, equivalent best results according to a Student t-test are shown in
bold. n/a corresponds to non-applicable cases.

Method log MSE %Error T0 %Error α ∥Fa∥2

data-
driven

Neural ODE [33] -4.35±0.9 n/a n/a n/a
N-Beats [183] -4.57±0.5 n/a n/a n/a

Incomplete
physics

Hamiltonian [96] -1.31±0.4 n/a n/a n/a
APHYNITY Hamiltonian -4.72±0.4 n/a n/a 5.6±0.6

Param ODE (ω0) -2.66±0.9 21.5±19 n/a n/a
APHYNITY Param ODE (ω0) -5.94±0.7 5.0±1.8 n/a 0.49±0.1

Complete
physics

Param ODE (ω0, α) -5.71±0.4 4.08±0.8 152±129 n/a
APHYNITY Param ODE (ω0, α) -6.22±0.7 3.26±0.6 62±27 (5.39±0.1)e-10

True ODE -8.58±0.1 n/a n/a n/a
APHYNITY True ODE -8.58±0.1 n/a n/a (2.15±1.6)e-4

7.5 Conclusion

In this Chapter, we have introduced the APHYNITY framework that can efficiently augment
approximate physical models with deep data-driven networks, performing similarly to models with
full-known dynamics. We have exhibited the superiority of APHYNITY over data-driven, incomplete
physics, and state-of-the-art approaches combining ML and MB methods, both in terms of forecasting
and parameter identification on three various classes of physical systems. Besides, APHYNITY is
flexible enough to adapt to different approximation levels of prior physical knowledge.
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Part III

Application to solar irradiance forecasting

Abstract

In this final part, we tackle the industrial solar energy forecasting problem with fisheye images
that we briefly discussed in Chapter 1. We first present in details the use-case, and review the
existing traditional methods and the early deep learning approaches (Chapter 8). We also
propose a first data-driven deep learning model for solar irradiance estimation and prediction
and discuss its limitations. In Chapter 9, we investigate the model-based machine learning
cooperation studied in this thesis for improving the model. We propose a new physically-
constrained architecture adapted from our PhyDNet video prediction model (Chapter 6).
We also evaluate the use of our DILATE loss (Chapter 4) for enforcing predictions with
accurate shape and temporal localization, and of our APHYNITY framework (Chapter 7)
for optimal ML/MB decomposition.
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Chapter 8

Overview of solar irradiance forecasting
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Chapter abstract

In this Chapter, we describe in details the industrial solar irradiance forecasting problem with fisheye
images at EDF. We first review the traditional image processing and machine learning techniques,
and the early deep learning approaches that have recently shown promising results. We propose a
first deep learning model for estimating and predicting the future solar irradiance, which will be a
strong deep baseline for the following Chapter.
The work described in this Chapter is based on the following publication:

• [136] Vincent Le Guen and Nicolas Thome. ”Prévision de l’irradiance solaire par réseaux de
neurones profonds à l’aide de caméras au sol”. In: GRETSI 2019.
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8.1 Introduction

T
o tackle climate change and limit global warming, major world economies agreed in 2015 at
the Paris climate conference (COP21) on a restrictive plan to reduce greenhouse gas emissions.
In the energy sector, this reinforced massive investments towards renewable energy generation

such as solar or wind. However, a limitation of solar and wind energies is their intermittent and
non-controllable nature, in contrast to conventional fossil fuel or nuclear energy. This causes major
challenges for their integration at scale in the existing electricity grid, since electricity production
and consumption must be balanced at every time. Therefore, accurately forecasting the intermittent
energy production at various time horizons (from seconds to a few days) becomes a crucial aspect of
the energy transition. Many applications could benefit from improved solar energy forecasts, such as
the development of smart grids, hybrid solar/conventional power systems, or energy trading.

8.1.1 The solar irradiance components

In this thesis, we are interested in forecasting the solar irradiance, which corresponds to the incoming
power of electromagnetic radiation received from the sun (expressed in W/m2). The Global Horizontal
Irradiance (GHI) can be decomposed into the Direct Normal Irradiance (DNI) directly coming from
the sun perpendicularly to the photovoltaic (PV) panels, and the Diffuse Horizontal Irradiance (DHI)
coming from the diffusion by the clouds and aerosols of the atmosphere or reflection from the ground
(see Figure 8.1):

GHI = DHI + sin h × DNI (8.1)

Figure 8.1: The different components of solar irradiance. Figure taken from [113].
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where h is the solar elevation angle.

The GHI is the main quantity of interest in this thesis, since it is directly linked to the electric power
production expressed in Watts, by knowing the technology, orientation of the photovoltaic panels and
the ambient temperature. In practice, before applying any statistical method, the solar irradiance is
often normalized by a clear-sky model corresponding to the theoretical irradiance received in cloudless
conditions. This normalization compensates for the inherent seasonality of the solar irradiance. In this
thesis, we use the ESRA (European Solar Radiation Atlas) clear sky model [207] and we denote KGHI
the GHI normalized by its clear-sky values.

8.1.2 The different data sources for solar irradiance forecasting

For solar energy, the main source of variability comes from the occlusion of the sun by clouds.
We presented in Figure 1.4 the main classes of methods for forecasting solar irradiance. Although
statistical time series forecasting can be directly applied on the 1D solar irradiance series, this strategy
is blind to the motions of clouds and thus cannot properly anticipate the variations. To understand the
spatio-temporal dynamics of clouds, current methods rely on weather forecasts or sky image analysis.
Numerical weather forecasts solve the equations of physics to forecast the dynamics of the atmosphere
; they have a spatial resolution of around 1km and a temporal resolution of 1 to 2h for the AROME
model of Meteo France. For shorter forecasting horizons, satellite images can be exploited to provide
irradiance forecasts up to a few hours with a 15 min granularity and a 1km spatial scale.

For very short-term horizons (< 20min) at the scale of a PV plant, fisheye cameras pointed towards
the sky (see Figure 8.2) have become popular in recent years [87, 43, 42, 164, 223, 129]. They offer an
hemispheric view of the sky that enables to assess the evolution of the cloud cover.

Figure 8.2: Fisheye camera and fisheye image for short-term solar irradiance forecasting.

8.1.3 Meteorological campaign at EDF R&D with fisheye images

EDF Research and Development (R&D) has led a meteorological campaign since 2010 at La Réunion
Island with fisheye cameras (Axis PTZ 212) and pyranometers (SPN1) for measuring ground truth
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Figure 8.3: EDF scientific test site at La Reunion Island composed of a fisheye camera, a pyranometer
and a weather station mounted above a PV power plant.

solar irradiance (see Figure 8.2 and Figure 8.3). A database of more than 7 million images every 10s
and corresponding irradiance measurements was collected. The objective is to forecast solar irradiance
with fisheye cameras only, which are much cheaper than pyranometers and provide an additional spatial
information compared to irradiance time series.

8.2 Related work

In the Section, we review the main existing methods for short-term solar irradiance forecasting.

Persistence and statistical models For very-short term forecasting, a first natural baseline is the
persistence, which assumes that the current irradiance level (normalized by the clear-sky) will persist.
Persistence is often a competitive baseline, with optimal performances in clear-sky conditions. However,
persistence does not anticipate variations by definition. Other statistical models [62, 276, 170] use local
information (e.g. past irradiance values, PV production, temperature, weather forecasts) to capture
statistical patterns and predict future values with regression or clustering algorithms. However, these
methods do not observe the cloud motion and thus fail to anticipate variations due to sun occlusions.

Ground-based images For assessing the cloud coverage and anticipating short-term variations due
to sun occlusions, researchers have investigated sky imagery with ground-based cameras from the
2010’s. Earlier works have used specific scientific instruments, such as the Total Sky Imager in [41, 164]
(spherical mirror with a camera pointing downwards) or suntrackers. Since, low-cost webcam cameras
have encountered a great success, leading to a soaring interest from the community [87, 43, 42, 223].
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Although many hardware and algorithmic variants exist (e.g. additional sensors, multiple cameras
for stereo estimation), all these methods mainly follow a similar traditional image processing pipeline:

1. Camera calibration for determining the distortion parameters of the fisheye objective,

2. Fisheye image acquisition at fixed intervals (e.g. every 10s, 1min), sometimes with several
expositions and High Dynamic Range (HDR) processing,

3. Image segmentation with thresholds based on color ratios or other photometric properties.
Thresholds are either handcrafted or adaptative. The segmentation can be used for deriving a
binary cloud map, or for deriving image features.

4. Cloud motion estimation with optical flow,

5. Cloud motion propagation into the future to generate a predicted irradiance map.

However sophisticated the processing pipeline may be, the challenges of the problem remain: the
clouds follow a complex stochastic motion with abrupt variations that is hard to extrapolate. All these
methods also rely on some manual engineering that only remains valid in a limited range of conditions.

Deep learning for solar irradiance forecasting Since a few years, deep learning has become an appealing
alternative to replace the whole conventional pipeline with a model learned end-to-end from raw fisheye
images [195, 295, 235, 239, 179, 186, 299]. However, as Paletta et al. [184] has highlighted, standard
deep learning methods still struggle to properly understand the cloud motion and do not anticipate
sharp variations.

8.3 Proposed models for solar irradiance estimation and forecasting

In this Section, we introduce two deep learning models: one for solar irradiance estimation, the
second for forecasting. We define estimation as the prediction of the irradiance rT associated with the
image IT . Forecasting corresponds to predicting the future irradiance rT +H (or the complete future
trajectory rT +1, · · · , rT +H) given a sequence of past images (I1, · · · , IT ).

8.3.1 Solar irradiance estimation

For solar irradiance estimation, we use a convolutional neural network that takes as input a fisheye
image (without preprocessing) and outputs the estimated solar irradiance for that image. We first
propose a handcrafted convolutional architecture (shown in Figure 8.4) working on RBG images resized
at 80 × 80 pixels. This model has approximately 470,000 parameters.

We also propose a much larger model relying on the DenseNet architecture [105] that has reached
state-of-art performances on the ImageNet image classification task. The model works with higher
resolution images, resized at 224 × 224 pixels. For adapting the model to this regression task, we
replace the final classification layers by fully-connected layers for outputting one irradiance value. The
overall model has approximately 18 Million parameters.
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Figure 8.4: Small convolutional network used for solar irradiance estimation.

8.3.2 Solar irradiance forecasting

To forecast solar irradiance, we propose a neural network architecture relying on the ConvLSTM
model [281] which is a strong baseline for deep video prediction. Depicted in Figure 8.5, our architecture
is composed of a ConvLSTM encoder that reads a sequence of T past fisheye images (I1, · · · , IT −1, IT )
and encodes them into a context vector. The network has two output branches: one for predicting the
future solar irradiance r̂T +F at a given horizon T and the other for the future fisheye image ÎT +H .

We empirically verified that this multi-task objective improves performances compared to forecasting
irradiance only, due to the richer supervision signal and the cooperation between both tasks.

Our forecasting model is composed of 4 stacked ConvLSTM layers acting on input images resized
to 80 × 80 pixels.

Figure 8.5: Proposed architecture for solar irradiance forecasting based on the ConvLSTM model [281].
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8.4 Experimental results

8.4.1 Fisheye image dataset

We conduct experiments on the fisheye image dataset collected by EDF at La Reunion Island. For
the estimation task, we use a training set composed of 4,190,064 images from the years 2012 to 2015,
and a test set of 1,265,717 images in the year 2016. Images are processed from a solar elevation of 10°,
and all irradiance measurements are normalized by the ESRA clear-sky model [207]. We use images
resized at 80 × 80 pixels for the ConvNet model and 224 × 224 for the DenseNet model.

For the forecasting task, the training set is composed of 180,000 sequences of 10 images spaced by
1min (with the associated ground truth solar irradiance measurements) from the years 2014 to 2016,
and the test set of 20,000 sequences during the year 2013 on the same site. We use images resized at
80 × 80 pixels. We keep 5 images for the input range and predict the 5 following images and solar
irradiances.

8.4.2 Solar irradiance estimation results

We present in Table 8.1 the estimation results for the KGHI. We have trained two DenseNet models:
one that only predicts the KGHI and the other that jointly predicts the KGHI and KDHI. We compare
our proposed deep models with the baseline previously developed at EDF R&D [87]. This traditional
method segments the fisheye images with thresholds on the R-B difference and the lumimance, defines
5 features based on the segmentation ratios and applies a Nadaraya-Watson kernel regression [177] for
estimating the irradiance.

We evaluate the performances with the normalized Mean Absolute Error (nMAE) and normalized
Root Mean Squared Error (nRSME). Normalization is performed by dividing by the mean KGHI value
over the training set.

Table 8.1: KGHI estimation results on the test set.

model nMAE nRMSE

Baseline 14.9 % 21.6 %
ConvNet KGHI 6.59 % 10.3 %
DenseNet KGHI 2.91 % 5.27 %

DenseNet KGHI + KDHI 2.90 % 4.83 %

Results show that the ConvNet model (depicted in Figure 8.4) yields a large performance im-
provement (from 21.6 % to 10.3 % in nRMSE) over the baseline. Going deeper with the DenseNet
model further gives a large gap in performances (5.27 %). It confirms the ability of deep learning to
automatically learn a representation space for approximating a complex mapping from a large dataset
of annotated images. Finally, we observe that the DenseNet model that jointly estimates the KGHI
and KDHI gives the best performances (4.83 %), indicating that exploiting the correlations between
both irradiance components helps in better estimating the KGHI. Intuitively, for two images with
similar GHI but different cloud conditions, the differences of diffuse irradiance (DHI) should help to
learn more specific cloud features that better generalize for estimating different test images.
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We display in Figure 8.6 a few qualitative estimation examples. We can see for several sky conditions
that the DenseNet estimations are very close to the measurements, both in GHI and DHI. Interestingly,
the difference with the baseline is much higher when the diffuse irradiance (DHI) is high, e.g. for
images (c) and (e). It can be explained by the difficulty of the image segmentation with handcrafted
thresholds on clouds with different levels of gray; the deep learning approach better learns features for
representing the shades of clouds, supervised by the GHI and DHI values.

Figure 8.6: Qualitative fisheye estimation results of the GHI and DHI.

8.4.3 Solar irradiance forecasting results

We then evaluate the forecasting performances of our method on the fisheye image dataset. We
compare our ConvLSTM architecture with the optical flow baseline previously developed at EDF R&D
[87] (sketched in Figure 2.3), and with the (smart) persistence which consists in copying the current
value as the forecast for the future timestep (for quantities normalized by the clear sky).

Global results presented in Table 8.2 show that our proposed deep forecasting model outperforms
both the optical flow baseline and the persistence. However, the performance gap with the traditional
method is narrower than for estimation, revealing the difficulty of the forecasting task.

To further analyse the differences, we display in Figure 8.7 the model predictions on a particular
day of the test set. We can see that the ConvLSTM predictions are much closer to the KGHI ground
truth than the optical flow baseline and than the persistence ConvNet (which corresponds to applying
the estimation ConvNet).

Interestingly, the optical flow baseline has a worse RMSE than the persistence. However, the optical
flow method shows a better ability to anticipate sharp variations (e.g. around the timestep 200), and is
therefore better suited for the industrial application. It confirms that the MSE and variants are not
adapted to train and evaluate models in this non-stationary context with abrupt changes, which has
motivated the contributions of this thesis. In the following Chapter, we will train and evaluate models
with our proposed shape and temporal criteria to improve models in this context.
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Table 8.2: Forecasting performances of the KGHI (normalized Global Horizontal Irradiance) at a 5min
horizon.

Method normalized RMSE

Optical flow baseline 32.9 %
Persistence 28.5 %

ConvLSTM (ours) 26.6 %

Figure 8.7: Qualitative KGHI forecasting results at 5min on a particular day.

8.5 Conclusion

In this Chapter, we have presented the solar irradiance forecasting problem with fisheye images at
EDF, and reviewed the existing methods (traditional and deep). We have proposed first deep models
for estimating and forecasting the solar irradiance, that have reached state-of-the-art results compared
to traditional methods. However, for the forecasting task, there still exists room for improvement,
in particular for modelling the sharp variations and the complex nonlinear cloud dynamics. These
limitations will be addressed in the next Chapter.
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Chapter abstract

In this Chapter, we continue on the solar irradiance forecasting problem described in the previous
Chapter. Based on the observation that common deep learning methods struggle to properly predict
the complex cloud dynamics, we apply here the methodological innovations presented in parts I and
II of this thesis. We first propose a new physically-constrained deep forecasting architecture based on
our PhyDNet model for video prediction. We show that it significantly boosts performances compared
to the model of the previous Chapter and to other state-of-the-art deep models. Then we apply the
proposed DILATE training loss function (Chapter 4) for enforcing predictions with accurate shape
and temporal localization. We also apply our APHYNITY framework (Chapter 7) that guarantees
an optimal ML/MB decomposition. We discuss the benefits brought up by each of these mechanisms.
The work described in this Chapter is based on the following publication:

• [138]: Vincent Le Guen and Nicolas Thome. ”A Deep Physical Model for Solar Irradiance
Forecasting With Fisheye Images”. In: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition Workshops 2020 (OmniCV 2020 workshop)
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9.1 Introduction

A
s discussed in the previous Chapter, forecasting solar irradiance with fisheye images remains
a very difficult task for pure deep learning methods, because of the complex non-stationary
motion of clouds. In this Chapter, we adapt the methodological contributions of this thesis,

namely the DILATE loss function (Chapter 4), the PhyDNet video prediction model (Chapter 6) and
the APHYNITY framework (Chapter 7), for solving this problem.

9.2 Proposed forecasting models

Given a dataset of fisheye images u1:T = (u1, ..., uT ) and associated solar irradiance measurements
rt, our goal is to forecast the future irradiance rT +H for a given horizon H. First, we briefly review the
PhyDNet model (Section 9.2.1) and propose an improvement to the architecture for better disentangling
the physical and residual components (Section 9.2.2). Then, we propose two implementations of the
PhyDNet model for solar irradiance forecasting (Section 9.2.3). The PhyDNet-monostep model is a
direct adaptation of the architecture introduced in the previous Chapter, where the ConvLSTM is
replaced by PhyDNet; we call this model PhyDNet-mono since we directly predict the future irradiance
at the desired horizon rT +H . We also propose the PhyDNet-multistep model, that forecasts the entire
trajectory up to the desired horizon (rT +1, · · · , rT +H). This multistep extension allows to exploit
the whole intermediate trajectory for learning, for example by using the DILATE loss that compares
multistep time series.

9.2.1 Review of the PhyDNet model

As described in Chapter 6, PhyDNet [139] is a deep architecture that leverages partial differential
equations (PDEs) for video prediction. Since physics alone is not sufficient for accurate predictions at
the pixel level, PhyDNet aims at learning a latent space H that linearly disentangles physical dynamics
from residual factors (such as texture, details,...). The latent state h is decomposed into physical and
residual components h = hp + hr, and follows the dynamics:

∂h(t, x)
∂t

= ∂hp

∂t
+ ∂hr

∂t
:=Mp(hp, E(u)) + Mr(hr, E(u)). (9.1)

The physical model Mp is composed of a PDE in latent space Φp(hp) and a correction term Cp(hp, E(u))
with input data (embedded by encoder E): Mp(hp, E(u)) = Φp(hp) + Cp(hp, E(u)). The physical
predictor Φp encodes a general class of linear PDEs up to a differential order q:

Φp(hp(t, x)) =
∑︂

i,j:i+j≤q

ci,j
∂i+jhp

∂xi∂yj
(t, x). (9.2)

Partial derivatives are computed by constrained convolutions as in PDE-Net [155] and combined by
learned coefficients cij . Discretizing the PDE ∂hp

∂t (t, x) = Mp(hp, E(u)) with the Euler numerical
scheme leads to a recurrent neural network cell (PhyCell). PhyCell performs a physical prediction step
in latent space (Eq 9.3) followed by a correction with embedded input data E(ut) (Eq 9.4), with a
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Figure 9.1: PhyDNet-monostep architecture for solar irradiance forecasting. Input images are embed-
ded by an encoder E in a common latent space, followed by specific encoders Ep and Er for extracting
physical and residual features. PhyDNet recurrent model is unfolded in time and computes a context
vector c = Dp(hp

T )+Dr(hr
T ), which is used for predicting the future irradiance r̂T +H and image ûT +H .

tradeoff controlled by the learned Kalman gain Kt.

h̃p
t+1 = hp

t + Φp(hp
t ) Prediction

hp
t+1 = h̃p

t+1 + Kt ⊙
(︂
E(ut) − h̃p

t+1

)︂
. Correction

(9.3)

(9.4)

The residual model Mr(hp, E(u)) captures the unknown factors related to unmodelled physics,
e.g. appearance, texture, and is fully learned from data (implemented by a general ConvLSTM [281]).

9.2.2 PhyDNet model with separate encoders and decoders

One limitation of PhyDNet model is that images ut are embedded by the encoder E in a common
latent space for correcting the dynamics of both physical Cp(hp, E(u)) and residual models Cr(hr, E(u)).
This limits the disentangling ability of PhyDNet since E(ut) contains both physical and residual features.
We thus propose to learn separate latent spaces for both branches, via additional specific encoders
(Ep, Er) and decoders (Dp, Dr), leading to the following dynamical model:

∂h(t, x)
∂t

=Mp(hp, Ep ◦ E(u)) + Mr(hr, Er ◦ E(u)). (9.5)

Ep aims at learning a specific image embedding for controlling the physical dynamics in latent space
with correction features uniquely related to physics (and similarly for Er).

In the following, we denote this model as PhyDNet-dual.
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Figure 9.2: PhyDNet-multistep architecture for solar irradiance forecasting. This is a Sequence To
Sequence architecture with the PhyDNet recurrent neural network. Contrary to PhyDNet-monostep,
this model predicts the future solar irradiance and image for each time step of the prediction range.

9.2.3 PhyDNet for solar irradiance forecasting

We first propose the PhyDNet-monostep architecture, which is a direct adaptation of the forecasting
model described in Chapter 8. Depicted in Figure 9.1, we replace the ConvLSTM encoding the input
sequence u1:T by the PhyDNet-dual encoder, allowing to extract physically-constrained features. The
final physical and residual latent states are decoded by their respective specific decoders Dp and Dr
and then summed to get a context vector c = Dp(hp

T ) + Dr(hr
T ). Then a multi-layer perceptron

(MLP) uses the input context c to forecast the future irradiance r̂T +H , and the global decoder D
simultaneously forecasts the future image D(c) = ûT +H .

We also propose the PhyDNet-multistep shown in Figure 9.2. Instead of directly forecasting the
future values from the last step of the input range, PhyDNet-multistep is composed of a PhyDNet-dual
recurrent decoder. It provides future image and irradiance predictions for each time step of the
prediction range (T + 1, · · · , T + H). This multi-step strategy allows to supervise the model based on
a whole predicted trajectory: we evaluate in the experiments the application of the DILATE training
loss function instead of the MSE.

9.3 Experimental results

We conduct experiments on the same fisheye dataset as in the previous Chapter. The training
dataset for solar irradiance forecasting is composed of 180,000 sequences of 10 images spaced by 1min
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(with the associated ground truth solar irradiance measurements) from the years 2014 to 2016 at La
Reunion Island, and the evaluation dataset of 20,000 sequences during the year 2013 on the same site.
We keep 5 images for the input range and predict the 5 following images and solar irradiances. Images
are resized at 80 × 80 pixels.

9.3.1 Irradiance forecasting with PhyDNet

We forecast solar irradiance at a 5min horizon, given a 5min past context. We compare quantitatively
the proposed PhyDNet models against recent competitive video prediction baselines: ConvLSTM [281]
(which corresponds to the model presented in Chapter 8) and PredRNN [268]. Each baseline is adapted
in the same way for solar irradiance forecasting, in the monostep or multistep settings.

We report in Table 9.1 the normalized RMSE1 for the predicted irradiance (KGHI) r̂T +5min.

Table 9.1: Solar irradiance (KGHI) forecasting at a 5min horizon.

irradiance nRMSE

PhyDNet-monostep irradiance only 27.8 %
ConvLSTM-monostep [281] 26.6 %
PredRNN-monostep [268] 25.1 %
PhyDNet-monostep [139] 24.4 %
PhyDNet-dual-monostep 23.5 %
PhyDNet-dual-multistep 21.5 %

The first line in Table 9.1 corresponds to a PhyDNet-monostep that only predicts the future
irradiance r̂T +5min and not the future image. It gives the worst performances among compared models,
indicating that the the joint image-irradiance multitask setting provides a better supervision for training
the forecasting model. All the other models in Table 9.1 jointly predict future images and irradiances.

We observe that, in the monostep setting, the PhyDNet recurrent neural network gives better
results (24.4%) compared to the ConvLSTM (26.6 %) and PredRNN (25.1 %). It shows that integrating
physical dynamics greatly helps in modelling the cloud motion. With the separate encoders and
decoders, PhyDNet-dual-monostep further improves the performances (23.5 %). Finally, we see that
with the multistep strategy, PhyDNet-dual-multistep provides another large improvement (21.5 %).
The supervision coming for a complete trajectory of future images and irradiances significantly boosts
the training process.

We provide in Figure 9.3 a qualitative illustration of the 5min GHI predictions of the PhyDNet-
dual-multistep predictions on a particular day. We see that our model closely follows the ground truth
measurements and is able to successfully anticipates the sharp irradiance fluctuations, despite the fast
alternation of clouds and sun.

1nRMSE = Root Mean Squared Error normalized by the mean value of the quantity on the train set, expressed as a
percentage.
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Figure 9.3: 5min ahead solar irradiance forecasts from fisheye images. Our proposed deep model
leveraging physical prior knowledge accurately predicts the sharp intra-day solar irradiance fluctuations.

9.3.2 Applications of DILATE and APHYNITY

We evaluate here the application of the DILATE loss function (Chapter 4) and APHYNITY
framework (Chapter 7) introduced in this thesis.

We use the DILATE loss at training time instead of the MSE for the predicted irradiance time
series (5 predicted points in the future). We experimentally fixed the hyperparameter α balancing the
shape and temporal term to 0.95, which yields the best results.

For APHYNITY, we minimize the norm of the residual hidden state hr for all time steps. Note
that contrary to the APHYNITY models presented in Chapter 7, we do not use here the NeuralODE
for extrapolating the trajectory in latent space, but the PhyDNet recurrent neural network. Exploiting
a NeuralODE integration is a promising way for future works.

Forecasting results are presented in Table 9.2. We compare the application of DILATE, APHYNITY
and the combination of both mechanisms. We can see that these 3 variants lead to approximately
similar performances: they improve slightly over the PhyDNet-dual-multistep baseline in normalized
RMSE and in the DILATE objective (confirmed with the shape and temporal metrics).

Discussion The performance improvement due to DILATE and APHYNITY exists, but is rather
small compared to the performance gap due to the architecture design of PhyDNet-dual and to the
multistep training scheme. We discuss here the possible reasons. Concerning DILATE, we apply the
loss in our experiments on predicted trajectories of 5 timesteps. This is rather small compared to our
experiments in Chapter 4 (the shortest trajectories have 20 timesteps for the Synthetic dataset). For
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shorter trajectories, dynamic time warping is less relevant, and the sharp variations are more difficult
to visualize. Augmenting the forecasting horizon of our method and reducing the time interval between
images (up of the 10s sampling frequency) are interesting future directions for better exploiting the
DILATE loss.

Regarding APHYNITY, the physical model used in PhyDNet is a class of linear PDEs. This is a
very coarse physical prior, more general than in the experiments presented in Chapter 7. Moreover, due
to the non-observed prior, the physical model is applied in a learned latent space which is not explicitly
controlled, contrary to the fully-visible setting in Chapter 7. This may explain why optimizing the
ML/MB decomposition leads to less improvement. An appealing future direction would be to exploit
more specific physical laws modelling the cloud motion and/or a more precise description of the input
space where the physical laws apply.

Table 9.2: Evaluation of the DILATE loss and the APHYNITY framework on the 5-min solar irradiance
forecasting problem.

nRMSE DTW TDI DILATE Ramp score

PhyDNet-dual-multistep 21.5 % 34.1 63.3 97.4 78.6
DILATE 21.2 % 33.6 63.0 96.6 77.3

APHYNITY 21.4 % 34.2 62.2 96.4 77.3
APHYNITY + DILATE 21.2 % 33.6 61.5 95.1 77.9

9.3.3 Video prediction

We then evaluate PhyDNet-dual-multistep on the video prediction task. Given 5 input images with
a 1 min interval, we forecast the 5 future images up to t0 + 5min. We compare PhyDNet-dual-multistep
with ConvLSTM and Memory In Memory (MIM) [269]. Evaluation metrics are the mean squared error
(MSE), mean absolute error (MAE) and the structural similarity index SSIM (higher is better). Results
shown in Table 9.3 reveal that PhyDNet-dual-multistep outperforms both baselines for all metrics.
It confirms that incorporating physical prior information for modelling cloud motion is beneficial
compared to fully data-driven algorithms.

Table 9.3: Quantitative video prediction results.

MSE MAE SSIM

ConvLSTM [281] 83.1 681 0.845
MIM [269] 68.6 635 0.840

PhyDNet-dual-multistep 68.1 629 0.862

We show in Figure 9.4 a video prediction example of PhyDNet-dual model. The future of this
sequence presents 2 clouds (circled in blue and green) moving closer between t0 and t0 + 3min and
finally merging at time t0 + 4min. We observe that PhyDNet-dual predicts the same outcome with a
good accuracy on cloud location, although clouds become blurry because of uncertainty.

In Figure 9.5, we provide a particular comparison to ConvLSTM [281], which forms the residual
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Figure 9.4: Qualitative fisheye video forecasting results up to 5min horizon. The proposed model
successfully predicts the motion of the blue and green clouds that move nearer and finally merge into
the yellow cloud.

Figure 9.5: Qualitative forecasting comparison between PhyDNet-dual-multistep and ConvLSTM.

branch of PhyDNet. In sequence (a), we see that the shape of the small cloud getting nearer the sun is
much better predicted by PhyDNet-dual. In sequence (b), the sun will reappear 1 min in the future.
PhyDNet-dual provides a better anticipation by prediction a bright spot at the sun location and better
defined cloud shapes. It confirms that incorporating physical dynamics greatly improves the predictions
of natural phenomena, with a small amount of additional parameters with respect to ConvLSTM.

9.4 Conclusion

In this Chapter, we have explored the methodological contributions of this thesis for solving the
solar irradiance forecasting problem at EDF. We have proposed an improvement of our PhyDNet
video prediction model that we have adapted for this task. The PhyDNet model greatly improves
the performances compared to competitive pure data-driven, confirming the benefits of the MB/ML
integration. We have also highlighted the crucial importance of making multistep instead of monostep
predictions. Furthermore, we have applied the DILATE loss function and the APHYNITY framework,
which further improve the forecasting performances, albeit slightly.
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10.1 Summary of contributions

F
rom a general perspective, we have explored in this thesis how to incorporate prior knowledge
into machine learning for improving spatio-temporal forecasting models. More specifically, we
have studied two important scientific challenges.

10.1.1 Multistep forecasting of non-stationary dynamics

In many real-world applications, time series present non-stationary dynamics with possible sharp
variations, e.g. traffic flows, financial stocks, or solar irradiance time series. Current state-of-the art
deep learning methods for multistep deterministic and probabilistic forecasting struggle to properly
predict these abrupt events: their predictions often smooth the sharp variations and/or present a
temporal missalignment. One of the reasons is that most works focus on neural network architecture
design and overlook the choice of the training loss function. The dominantly used loss function is the
mean squared error (MSE), that is unable to take into account global information about the multistep
dynamics.

In this thesis, we have shown that this is possible to design dedicated multistep loss functions to
impose a certain desired behaviour to the output. For time series, we focus on shape and temporal
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criteria that are commonly used as assessment metrics in applications. In Chapter 3, we have drawn a
panorama of shape and temporal criteria based on smooth approximations of Dynamic Time Warping
(DTW) and Time Distortion Index (TDI). We have expressed them both as dissimilarities (loss
functions) and similarities (positive semi-definite kernels). We have insisted on their differentiability,
which is an important requirement for training models with gradient-based optimization, and propose
optimized implementations of these losses for efficient back-propagation training.

We have then applied the proposed shape and time differentiable criteria to two spatio-temporal
forecasting contexts. In Chapter 4, we have introduced a differentiable loss function (DILATE), that
combines a shape term and a temporal term, for training any deep forecasting model to produce
multistep deterministic forecasts. We have shown that training with DILATE produces sharper
predictions with a better temporal localization than training with the standard MSE, while maintaining
the performances with MSE evaluation.

In Chapter 5, we have proposed the STRIPE model for probabilistic forecasting. In order to
produce a limited set of possible scenarios that reflect the shape and temporal variability of ground
truth trajectories, the STRIPE model is equipped with a diversification mechanism that structures the
output diversity. This is done with a diversity loss relying on determinantal point processes (DPP),
with two shape and temporal criteria introduced in Chapter 3. STRIPE leads to more diverse forecasts
according to shape and temporal criteria without sacrificing on quality. We have also revealed the
crucial importance to decouple the criteria used for quality and diversity.

10.1.2 Exploiting incomplete prior physical knowledge in machine learning models

The extrapolation task underlying spatio-temporal forecasting is quite different and much more
challenging for pure data-driven methods than the perception tasks at the origin of the impressive
success of deep learning. For example, forecasting complex natural dynamics such as climate remains
out of the scope of pure machine learning. An appealing solution is to incorporate external physical
knowledge, which is an old research problem that is still open today. In this thesis, we have particularly
focused on exploiting incomplete physical knowledge, in contrast to mainstream methods that suppose a
full prior knowledge. The incomplete case can stem from the difficulty of the phenomenon that remains
elusive to a complete description from physical laws, e.g. for modelling all the complex interacting
phenomena for predicting the evolution of the atmosphere, or from a non-observable prior context,
i.e. when the dynamical model does not apply directly in the input space.

In Chapter 6, we have tackled the problem of generic video prediction. It is an example of a
non-observable prior context: although there often exists some physical dynamical prior, for example
on the motion of clouds in fisheye images, physical laws do not directly apply at the pixel level.
The dynamical model is meaningful in a space where the clouds have previously been identified and
segmented. We have introduced the PhyDNet prediction model that automatically learns a latent
space in which we suppose that a class of linear partial differential equations apply. PhyDNet is a
two-branch architecture: the first branch captures the physical dynamics. Since this prior knowledge is
often insufficient to fully describe the content of videos, PhyDNet is composed of a second branch for
modelling the complementary information necessary for accurate prediction (e.g. texture, details, etc).
We have highlighted the ability of PhyDNet to properly disentangle the physical dynamics from these
unknown factors.

In Chapter 7, we have further delved into the question of augmenting incomplete physical models
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with deep data-driven counterparts. This is an area that has been explored by very few works up to now,
and mostly empirically. We have proposed the APHYNITY framework, that consists in decomposing
the dynamics in two components: a physical component accounting for the dynamics for which we have
some prior knowledge, and a data-driven component accounting for insufficiencies of the physical model.
APHYNITY is a principled learning framework minimizing the norm of the data-driven augmentation,
that theoretically guarantees a unique decomposition under mild assumptions. APHYNITY is able to
seamlessly adapt to different approximation levels of prior physical knowledge, covering the whole range
of Machine Learning /Model-Based methods presented in Chapter 1. We have exhibited the superiority
of APHYNITY over data-driven, incomplete physics, and state-of-the-art approaches combining ML
and MB methods, both in terms of forecasting and parameter identification on three various classes of
physical systems.

10.1.3 Solar irradiance forecasting with fisheye images

Finally, we have proposed solutions to the industrial solar irradiance forecasting problem with
fisheye images raised at EDF. In Chapter 8, we have presented the challenges of the problem and
proposed a first deep learning model for estimating and forecasting solar irradiance. We have also
discussed the limitations of standard deep learning forecasting approaches in this context, that have
motivated the contributions of this thesis.

In Chapter 9, we have applied the methodological contributions exposed in parts I and II of this
thesis. We have improved and adapted our PhyDNet model for physically-constrained fisheye image
prediction. The PhyDNet model greatly improves the performances compared to competitive pure
data-driven, confirming the benefits of the physical knowledge integration. Furthermore, we have
applied the DILATE loss function and the APHYNITY framework, leading to another (relatively small)
performance gain.

10.2 Perspectives

We present here a non-exhaustive list of possible future research directions for different time
horizons.

10.2.1 Directions for improving solar irradiance forecasting

Application of DILATE and APHYNITY As discussed in Chapter 9, the main performance improve-
ments compared to pure deep learning methods stem from the application of our physically-constrained
PhyDNet architecture. The application of the DILATE loss and the APHYNITY framework further
improve the performances, but less significantly.

Concerning the DILATE loss function, we have applied in our experiments the loss on future
trajectories of 5 timesteps, which is rather small compared to the experiments in Chapter 4 (the
shortest trajectories have 20 timesteps for the Synthetic dataset). For short trajectories, the sharp
variations are harder to visualize and the use of dynamic time warping (DTW) is less relevant. To fully
exploit the capacity of the DILATE loss, an interesting perspective is to augment the length of future
trajectories, by reducing the processing interval between images or by augmenting the forecasting
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horizon.

Regarding APHYNITY, we use in the PhyDNet model a very general physical prior model: a
class of linear PDEs. This is a weaker prior than those used in Chapter 7. Moreover, due to the
non-observability of the prior, the physical model is applied in a learned latent space which is not
explicitly controlled, contrary to the fully-visible setting in Chapter 7. This may explain why the
Machine Learning / Model Based decomposition is more challenging to optimize. An interesting future
direction would be to exploit more specific physical laws modelling the cloud motion and/or a more
precise description of the input space where the physical laws apply.

Probabilistic forecasting In this thesis, we have forecasted solar irradiance in a deterministic manner
with the PhyDNet model. An interesting future work is to extend our contributions on probabilistic
forecasting to this problem. An adaptation of the STRIPE model would provide to the decision makers
a small set of possible scenarios about the cloud motion (for example if the clouds will occlude the sun
or not, and at what temporal horizon).

Handling the rotational distortion of fisheye images Fisheye images present a rotational symmetry
along the vertical axis. Clouds in linear translation are observed as a curved motion in fisheye images.
To handle this distortion induced by the fisheye camera objective, some forecasting methods preprocess
fisheye images by projecting them in a plane where a translational cloud motion is linear. In this thesis,
we have instead directly processed raw fisheye images with general convolutional layers commonly used
in computer vision for encoding translation equivariance. Future works include applying the plane
projection or polar transformation [185] as preprocessing, or evaluating more dedicated neural network
layers that handle rotation equivariance, such as spherical CNNs [46, 47].

10.2.2 Applications of deep augmented physical models

Non-stationary dynamics forecasting

In this thesis, our contributions towards non-stationary dynamics forecasting concern rethinking
the training process by including shape and temporal criteria, and are thus agnostic to the forecasting
architectures. An interesting future perspective would be to also incorporate prior knowledge in the
model architectures, as studied in part II of this thesis. For time series, leveraging trend, seasonality and
extrinsic prior knowledge (such as special events) [134] could help to better model the non-stationary
abrupt changes and measure their impact on diversity and model confidence [84, 49]. The combination
between a traditional forecasting model with interpretable and controlled factors (e.g. a ARIMA model)
and a data-driven augmentation network would be a possible application case for APHYNITY.

Optical flow

Optical flow estimation is a long-standing problem in computer vision, consisting in estimating
the motion field between two frames. It is a core building block for many applications, such as image
compression or object tracking. For example, optical flow is used to understand the cloud motion in
traditional forecasting methods with fisheye images.
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Traditional methods for optical flow, e.g. the Lucas-Kanade [160] and the Horn-Schunk [103] models,
are based on the brightness constancy assumption I1(x) = I2(x + w) that states that the pixel intensity
is preserved after advection by the flow field w. Linearising this equation leads to the celebrated optical
flow PDE:

∂I

∂t
(t, x) = −w(t, x) · ∇I(t, x). (10.1)

The PDE in Eq 10.1 is a simplified physical model, since the brightness constancy assumption is
violated in several conditions, e.g. in presence of occluded objects, local, global illumination changes or
specular reflexions.

Other traditional methods exploit different prior physical models for optical flow in specific contexts,
e.g. the PDE continuity equation for fluid flows [51].

More recently, deep learning approaches have proposed learning optical flow in an end-to-end
fashion and have become state-of-the-art [67, 238, 243, 237]. Two classes of methods exist: supervised
and unsupervised ones. In the supervised context [67, 238, 243], deep learning methods do not exploit
the brightness constancy hypothesis anymore, or indirectly (through the computation of a cost volume).
Instead, they rely on large synthetic datasets of annotated image pairs, making their generalization to
real-world datasets not obvious.

On the other side, unsupervised deep learning approaches [109, 151, 237] are closer in spirit to
traditional approaches. Without ground truth labels for optical flow, they rely on a photometric
reconstruction loss. The reason deep unsupervised methods outperform traditional methods is that
they fully exploit the correlations from the training dataset, instead of independently optimizing a
flow field for each image pair. Typical photometric losses include the L1 loss that directly assumes
intensity constancy, or more robust losses such the Charbonnier loss, the structural similarity (SSIM)
[115] or the census loss [169] that is robust to global illumination changes. Although adequate losses
may address some limitations of the brightness constancy assumption, they do not overcome all failure
cases. Therefore the photometric constancy assumption also represents a simplified physical model.

In this context, an appealing research perspective is to explicitly exploit the simplified optical
flow PDE in Eq 10.1 in a deep augmented model. This is a favorable case for the application of our
APHYNITY framework. This ML/MB integration could regularize and boost the performances of
deep supervised estimation models, in particular for generalizing to new datasets. It could also be
applied in a semi-supervised context, where the learned data-driven augmentation could complement
the simplified photometric constancy for non-annotated images.

Model-Based Reinforcement Learning

Reinforcement Learning (RL) [241] is a branch of machine learning that studies how autonomous
agents make decisions in the environment in order to maximize their cumulative reward. Combined
with deep learning, RL has encountered impressive successes for example by reaching super-human
performance at the game of Go [230].

There are two main modelling approaches in RL: model-based and model-free. In the model-based
approach, the agent uses an internal predictive model of the world to simulate the consequences of its
actions, and choose the best action accordingly. In contrast, in the model-free approach, the control
policy is learned directly from experienced trajectories, without any dynamical model.
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Figure 10.1: Principle of Model-Based Reinforcement Learning. Illustration from Sergey Levine1.

The principle of Model-Based Reinforcement Learning (MBRL) is illustrated in Figure 10.1. It
consists in planning through a dynamical model f(st, at), where st is the current state and at the
chosen action. The dynamical model is learned to minimize the future (discounted) cumulative cost:

min
at0 ,...,a∞

∞∑︂
t=t0

γt−t0c(ŝt, at) subject to ∀t ≥ t0,
dst

dt
= f(st, at). (10.2)

where c is a cost function and γ < 1 a discount factor.

The dynamical model f can be a simple linear (or locally linear) model, a physical model, or a
pure data-driven model parameterized by a deep neural network2. In all cases, the model f is often
too simplified to perfectly extrapolate the future trajectories.

A common solution for nonetheless exploiting the incomplete model is to consider short-term rollouts
and perform Model Predictive Control (MPC) [178, 108], which consists in replanning frequently to
mitigate the error propagation in the forecasted trajectories.

An interesting future direction would be to explore deep augmented models in this MBRL case. A
simplified prior dynamical model of the system could be augmented with a data-driven counterpart
and learned together with the APHYNITY framework. This cooperation could improve the accuracy
of the predictive model, enabling to perform more truthworthy long-term rollouts, and to replan less
frequently.

An other appealing direction concerns improving the exploration process in Reinforcement Learning
with a diversity-promoting mechanism [189, 74, 145]; this mechanism could be implemented with
determinantal point processes with adequate kernels to represent structured diversity.

10.2.3 Long-term perspectives

The field of spatio-temporal forecasting is still a very active area of research in the AI community,
and has not reached yet the degree of maturity of deep learning in computer vision or language.
Forecasting complex dynamics remains highly challenging for pure machine learning, due to the relative
current scarcity of data for learning complex natural phenomena such as climate. The quantity of

2Please note that in the RL community, the term model-based denotes the presence of a dynamical model f , that
can either be a pure data-driven model (denoted as Machine Learning in this thesis) or a model with a physical prior
(denoted as Model-Based in this thesis).
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training data will likely continue to grow in future years, yet it is not clear at which point it will become
sufficient. Relying on this growing data accumulation, the exploration of bigger and bigger models
to overcome the underfitting phenomenon is a possible way, which is faced with many computational
challenges.

The other way, which was explored in this thesis, is to incorporate external knowledge to regularize
machine learning models, in the form of loss functions, model architectures or training strategies.
We hope that the contributions of this thesis will open the way towards hybrid and more flexible
Machine Learning/Model-Based models for tackling complex real-world applications, e.g. in climate
science, robotics or reinforcement learning. In particular, the augmentation strategy explored in
this thesis - a linear combination - is rather particular. For many incomplete models, there exists
high-order interactions between the simplified model and the residual information. Exploring more
general augmentations schemes, linked with the growing field of neural architecture search [72], is an
appealing direction for future years.
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[20] Léon Bottou. Large-scale machine learning with stochastic gradient descent. In Proceedings of
COMPSTAT’2010, pages 177–186. Springer, 2010.

[21] George EP Box, Gwilym M Jenkins, Gregory C Reinsel, and Greta M Ljung. Time series
analysis: forecasting and control. John Wiley & Sons, 2015.

[22] EH Bristol. Swinging door trending: Adaptive trend recording? In ISA National Conf. Proc.,
1990, pages 749–754, 1990.

[23] Steven L Brunton, Joshua L Proctor, and J Nathan Kutz. Discovering governing equations
from data by sparse identification of nonlinear dynamical systems. Proceedings of the National
Academy of Sciences, 113(15):3932–3937, 2016.

[24] John Charles Butcher. Numerical methods for ordinary differential equations. John Wiley &
Sons, 2016.

[25] Wonmin Byeon, Qin Wang, Rupesh Kumar Srivastava, and Petros Koumoutsakos. ContextVP:
Fully context-aware video prediction. In European Conference on Computer Vision (ECCV),
pages 753–769, 2018.

[26] Robert Stephen Cantrell and Chris Cosner. Spatial ecology via reaction-diffusion equations. John
Wiley & Sons, 2004.

123



BIBLIOGRAPHY

[27] Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov, and
Sergey Zagoruyko. End-to-end object detection with transformers. In European Conference on
Computer Vision (ECCV), pages 213–229. Springer, 2020.

[28] Lluis Castrejon, Nicolas Ballas, and Aaron Courville. Improved conditional VRNNs for video
prediction. In International Conference on Computer Vision (ICCV), 2019.

[29] Kanad Chakraborty, Kishan Mehrotra, Chilukuri K Mohan, and Sanjay Ranka. Forecasting the
behavior of multivariate time series using neural networks. Neural networks, 5(6):961–970, 1992.

[30] Bo Chang, Minmin Chen, Eldad Haber, and Ed H Chi. Antisymmetricrnns: a dynamical system
view on recurrent neural networks. In International Conference on Learning Representations
(ICLR), 2019.

[31] Xiaobin Chang, Frederick Tung, and Greg Mori. Learning discriminative prototypes with dynamic
time warping. In Computer Vision and Pattern Recognition (CVPR), pages 8395–8404, 2021.

[32] Sucheta Chauhan and Lovekesh Vig. Anomaly detection in ecg time signals via deep long
short-term memory networks. In IEEE International Conference on Data Science and Advanced
Analytics (DSAA), 2015.

[33] Tian Qi Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud. Neural ordinary
differential equations. In Advances in Neural Information Processing Systems (NeurIPS), 2018.

[34] Wen-Hua Chen. Disturbance observer based control for nonlinear systems. IEEE/ASME
transactions on mechatronics, 9(4):706–710, 2004.

[35] Yanping Chen, Eamonn Keogh, Bing Hu, Nurjahan Begum, Anthony Bagnall, Abdullah Mueen,
and Gustavo Batista. The UCR time series classification archive. 2015.

[36] Yitian Chen, Yanfei Kang, Yixiong Chen, and Zizhuo Wang. Probabilistic forecasting with
temporal convolutional neural network. Neurocomputing, 399:491–501, 2020.

[37] Zhengdao Chen, Jianyu Zhang, Martin Arjovsky, and Léon Bottou. Symplectic recurrent neural
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Résumé de la thèse

10.3 Introduction

Cette thèse aborde le problème de la prédiction spatio-temporelle par apprentissage profond. Cela
correspond à la tâche de prédiction de phénomènes complexes sous forme de séries temporelles ou
de vidéos, ce qui nécessite de modéliser des dépendances temporelles complexes avec d’importantes
corrélations spatiales. Ce sujet est d’une importance cruciale pour de nombreuses applications, telle
que la prévision climatique, le diagnostic médical, l’évolution des marchés financiers, la demande pour
des produits en commerce ou la maintenance prédictive dans l’industrie. A Électricité de France (EDF),
l’application qui motive cette thèse est la prévision à court-terme de la production photovoltäıque
à l’aide d’images fisheye. Cette tâche est habituellement résolue à l’aide d’algorithmes basés sur les
prévisions météo et les images satellite. Toutefois ces sources de données ont une résolution spatiale et
temporelle insuffisante pour prédire l’irradiance solaire à très court-terme (< 20min) à l’échelle d’un
parc de production photovoltäıque particulier.

Dans cette thèse, nous abordons ces tâches de prédiction avec des méthodes d’intelligence artificielle,
en particulier l’apprentissage statistique et l’apprentissage profond. Ces derniènes années, l’apprentissage
profond a connu un rebond de popularité impressionnant avec le succès du réseau de neurones profond
AlexNet [127] qui a surpassé toutes les méthodes d’apprentissage machine traditionnel lors de la
compétition de classification d’images ImageNet. Depuis, l’apprentissage profond s’est imposé comme
le paradigme état de l’art pour de nombreuses tâches liées à la perception, telle que la vision par
ordinateur, la reconnaissance vocale ou le traitement du langage naturel. Malgré ces impressionnants
succès, les méthodes d’apprentissage entièrement basées sur les données sont limitées pour extrapoler
l’évolution de systèmes physiques complexes, particulièrement quand la volumétrie de données est
faible et pour des séries temporelles non-stationnaires avec des possibles variations brusques. La tâche
d’extrapolation sous-jacente est par nature très différente des tâches de perception pour lesquelles
l’apprentissage profond est très efficace, et nécessite de modéliser des dynamiques complexes.

Pour pallier à ces problèmes, nous proposons dans cette thèse d’exploiter de l’information physique
a priori en combinaison avec les méthodes d’apprentissage basées données. Il s’agit d’une question
très étudiée dans la littérature mais qui reste toujours largement ouverte. Les différents contextes de
prévision sont illustrés sur la Figure 10.2. D’un côté les méthodes basées modèle (model-based, MB)
supposent une bonne compréhension mathématique ou physique des phénomènes, souvent formalisée
sous forme d’équations différentielles ordinaires ou partielles. A partir de données pour les conditions
initiales et aux limites, la prédiction est effectuée par la résolution numérique des équations. C’est le
paradigme dominant dans de nombreux domaines scientifiques, par exemple la mécanique des fluides
computationnelle. Toutefois ces méthodes sont limitées si la connaissance physique est imparfaite, ce
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Figure 10.2: Les différents contextes de prédiction. A gauche, l’apprentissage statistique et profond
peuvent extrapoler des systèmes dynamiques sans a priori après apprentissage sur un grand jeu de
données. A droite, les méthodes basées modèle supposent une connaissance physique complète du
système et prédisent le futur par simulation numérique depuis des conditions aux limites. Entre les
deux, les méthodes hybrides utilisant des données et de la connaissance incomplète sont une voie
d’exploration très active et prometteuse.

qui est souvent le cas pour des systèmes physiques complexes comme la modélisation du climat.

De l’autre côté, les méthodes d’apprentissage machine (Machine Learning, ML) sont une alternative
agnostique à l’information a priori sur le système. L’apprentissage profond a prouvé sa capacité à
apprendre automatiquement des relations complexes à partir de grandes bases de données annotées et
est devenu état de l’art pour de nombreuses tâches de prédiction. Toutefois, ces méthodes sont toujours
limitées pour modéliser des dynamiques physiques complexes. En outre, elles manquent la plausibilité
physique pour interpréter les résultats et extrapoler pour de nouvelles conditions.

Entre les deux, les méthodes hybrides model-based machine learning (MB/ML) sont une approche
attrayante pour combiner de l’information a priori et des données. Historiquement, les méthodes
d’assimilation de données exploitent des données pour corriger les prédictions de modèles physiques en
présence d’observations bruitées [18, 116]. Elles constituent toujours l’état de l’art pour la prévision
météorologique.

Revisiter la coopération MB/ML avec l’apprentissage profond moderne est un sujet émergent qui
suscite un intérêt majeur pour de nombreuses communautés scientifiques. La physique peut être
incorporée dans l’apprentissage de modèles soit sous la forme de contraintes douces dans la fonction
de perte [201, 231], soit comme des contraintes dures dans les architectures des réseaux [57, 174].
Du point de vue apprentissage, ces contraintes physiques permettent de développer des modèles plus
interprétables qui se conforment aux lois physiques et qui restent robustes en présence de données
bruitées. Cela se traduit typiquement par une plus grande efficacité dans l’utilisation des données et de
meilleures performances d’extrapolation au-delà du domaine d’apprentissage.
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Dans cett thèse, nous explorons cette catégorie de méthodes hybrides et nos contributions tâchent
de répondre à la question générale suivante:

Comment exploiter de la connaissance physique a priori dans des modèles d’apprentissage statistique?

Nous nous concentrons sur deux principales directions: incorporation d’information physique a priori
dans la fonction d’entrâınement des modèles et développement d’architectures augmentées MB/ML
dans le cas de connaissance physique incomplète.

10.4 Critères différentiable de forme et de temps pour la prédiction déter-

ministe et probabiliste

Les méthodes traditionnelles de prévision de séries temporelles sont des méthodes statistiques basées
modèle qui décrivent des caractéristiques telles que les tendances et la saisonalité. Elles comprennent
les méthodes autorégressives comme les modèles ARIMA (Auto Regressive Integrated Moving Average)
[21]. Ces méthodes font souvent des hypothèses fortes sur les données, par exemple la stationarité, qui
ne sont pas vérifiées en pratique.

Avec l’avènement de l’apprentissage profond, les réseaux de neurones profonds sont devenus la
méthode état de l’art pour la prédiction de séries temporelles [133, 219, 183, 300], grâce à leur capacité
à modéliser des dépendences temporelles complexes à partir d’un corpus d’apprentissage. La plupart
des travaux récents se sont concentrés sur l’amélioration des architectures des réseaux de neurones.
Le choix de la fonction de perte d’apprentissage, tout aussi important, est quant à lui peu abordé: la
plupart des méthodes optimisent l’erreur quadratique moyenne (EQM) ou ses variantes.

L’erreur quadratique moyenne (EQM) est assez peu adaptée pour comparer des séries temporelles à
plusieurs pas de temps, comme nous l’illustrons sur la Figure 10.3. L’EQM ne permet pas de modéliser
les erreurs de forme ni les décalages temporels entre séries. Pourtant, des critères de forme et de temps
sont utilisés dans les applications pour évaluer les prédictions fournies par des algorithmes, par exemple
le ramp score [252] pour la forme et le TDI (Temporal Distortion Index) [83] pour le temps. Mais ils
ne sont pas utilisés en pratique pour l’entrâınement des réseaux de neurones car ils sont la plupart du
temps non différentiables.

Dans cette thèse, nous proposons d’exploiter des critères de forme et de temps pour l’entrâınement
de réseaux de neurones profonds pour la prédiction de séries temporelles, dans le cas déterministe et
probabiliste. Notre objectif est d’aborder des problèmes de prédiction non stationnaires, où les séries
temporelles peuvent avoir des variations brutales, comme c’est le cas pour l’irradiance solaire qui chute
brutalement lorsqu’un nuage occulte le soleil. Pour cela, nous introduisons des critères différentiables
de forme et de temps, que nous formulons à la fois sous la forme de dissimilarités (fonctions de perte)
et de similarités (noyaux semi-définis positifs). Les critères de forme sont basés sur une approximation
différentiable de l’algorithme du Dynamic Time Warping (DTW) [217] et ceux de temps sur le Temporal
Distortion Index (TDI) [83].

Nous proposons deux implémentations de ces critères, pour la prévision déterministe et probabiliste.
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Vraie distribution future modèle stoch. [292]

(a) Prévision déterministe (b) Prévision probabiliste

Figure 10.3: Limites d l’erreur quadratique moyenne pour la prévision déterministe et probabiliste.
(a) Pour la prévision déterministe, les trois prédictions (1,2,3) ont la même erreur quadratique moyenne
(EQM) par rapport au vrai futur (en noir). Mais on voudrait favoriser la prédiction 2 (bonne forme, léger
retard) et 3 (bon positionnement temporel, forme imprécise) sur la prédiction 1 (pas très informative).
(b) Pour la prévision probabiliste, les méthodes état de l’art apprises avec l’EQM [292, 203] perdent la
capacité à produire des prédictions nettes (en orange) par rapport aux vraies trajectoires futures (en
vert).

10.4.1 DILATE

Pour la prévision déterministe de séries temporelles avec des réseaux de neurones profonds, nous
introduisons une fonction de perte appelée DILATE (DIstortion Loss with shApe and TimE ). Conçue
comme une alternative à l’EQM, DILATE combine une composante sur la forme des séries temporelles
et une composante sur le décalage temporel pour comparer une série prédite ŷ avec le vrai futur y∗:

LDILATE(ŷ, y∗) = α Lforme(ŷ, y∗) + (1 − α) Ltemporelle(ŷ, y∗) (10.3)

= α DTW∆
γ (ŷ, y∗) + (1 − α) TDI∆,Ωdissim

γ (ŷ, y∗). (10.4)

Le principe de DILATE est illustré sur la Figure 10.4. La perte sur la forme Lforme correspond à la
soft-DTW [55] et la perte temporelle Ltemporelle à une relaxation différentiable du TDI [83]. Les deux
pertes sont combinées linéairement avec un facteur α ∈ [0; 1] qui est un hyperparamètre de la méthode.

Nous conduisons des expériences sur plusieurs jeux de données synthétiques et réels pour évaluer
les performances de la perte DILATE. Les résultats révèlent que l’entrâınement avec DILATE améliore
significativement les performances évaluées sur des critères de forme et de temps, tout en maintenant
des performances équivalentes évaluées en EQM. DILATE est agnostique à l’architecture du réseau de
neurones et fonctionne aussi bien avec des architecture standard que les dernières architectures état de
l’art.

10.4.2 STRIPE

La prévision probabiliste consiste à décrire la loi de probabilité conditionnelle des trajectoires
futures sachant une trajectoire d’entrée. Dans cette thèse, notre objectif est de décrire cette loi de
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Figure 10.4: Fonction de perte DILATE pour l’entrâınement de réseaux de neurones profonds pour la
prédiction déterministe de séries temporelles.

probabilité par un petit ensemble (par exemple 10) de trajectoires futures possibles qui représentent
bien la variabilité sur l’évolution du phénomène. Ces scénarios doivent être à la fois précis et divers
selon des critères de forme et de temps, ce que ne permettent pas les méthodes actuellement état de
l’art en prévision probabiliste [219, 202].

Pour cela, nous introduisons un modèle appelé STRIPE (Shape and Time diverRsIty in Probabilistic
forEcasting). Illustré sur la Figure 10.5, le modèle STRIPE est une architecture de type encodeur-
décodeur qui permet de générer des trajectoires futures à plusieurs pas de temps. Il s’agit d’un modèle
génératif où les différents futurs possibles sont générés à partir de l’échantillonnage de variables latentes.
Plus précisément, le modèle STRIPE est composé d’un encodeur qui prend la série temporelle d’entrée
x1:T et produit une variable descriptive h. On adjoint à cette variable h des variables latentes zs et
zt qui capturent la variabilité en forme (respectivement en temps). Le décodeur prend en entrée la
concaténation (h, zs, zt) et produit une trajectoire future ŷT +1:T +τ .

Pour structurer la diversité des trajectoires prédites, les variables latentes sont générées par des
réseaux de neurone appelés STRIPE-forme et STRIPE-temps. La diversité est favorisée par l’ajout
d’une fonction de perte de diversité Ldiversité. Elle est basée sur l’utilisation des processus ponctuels
déterminantaux (DPP) [130], qui sont un outil mathématique élégant pour décrire la diversité d’un
ensemble d’éléments. La perte de qualité Lqualité est la perte DILATE pour assurer des prédictions
avec à la fois la bonne forme et un faible décalage temporel. Pour assurer le maintien de la qualité des
prédictions lors de l’étape de diversification, un réseau postérieur permet d’échantillonner les variables
latentes lors de l’entrâınement, pour qu’elles correspondent à de réelles trajectoires du jeu de données.

Nous menons des expériences sur un jeu de données synthétique où l’on dispose de l’ensemble
des futures trajectoires comme supervision, ainsi que sur des jeux de données réels où l’on a qu’un
seul futur disponible. Les résultats montrent que STRIPE parvient à des prédictions avec une bien
meilleure diversité mesurée avec des critères de forme et de temps que des mécanismes de diversification
concurrents de la littérature [63, 244, 71, 292] et que des algorithmes dédiés à la prédiction probabiliste
[219]. De plus, STRIPE maintient une bonne qualité des prédictions obtenues et obtient le meilleur
compromis entre qualité et diversité.
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Figure 10.5: Modèle STRIPE pour la prévision probabiliste.

10.5 Prédiction avec incorporation d’information physique incomplète

Dans cette partie de la thèse, nous explorons comment incorporer de l’information physique a
priori dans les modèles d’apprentissage statistique. En particulier, nous nous intéressons au cas où la
connaissance physique est incomplète, ce qui est une question très peu traitée dans la littérature.

10.5.1 Modèle PhyDNet pour la prédiction de vidéo

Nous proposons un modèle d’apprentissage profond dédié à la prédiction de vidéos, dénommé
PhyDNet, qui incorpore de l’information physique sous la forme d’une classe d’équations aux dérivées
partielles (EDP) linéaires. Toutefois, pour des vidéos génériques, les équations physiques de la
dynamique ne s’appliquent pas directement au niveau des pixels. Par exemple, il est nécessaire au
préalable de segmenter les objets et de déterminer leur centre de masse avant d’appliquer les lois de
Newton. C’est un cas représentatif d’un a priori non observable dans l’espace d’entrée.

Pour traiter ce problème, nous supposons qu’il existe un espace latent dans lequel le modèle
dynamique d’EDP linéaire s’applique. Le modèle PhyDNet est composé d’un encodeur-décodeur pour
apprendre automatiquement l’espace latent le plus adapté à partir des données. Dans cet espace latent,
nous décomposons la dynamique en deux parties: une partie qui intégre les lois a priori de la physique
et une partie qui apprend l’information complémentaire à la physique nécessaire pour avoir une bonne
prédiction au niveau des pixels.

Le modèle PhyDNet est un réseau de neurones récurrent, illustré sur la Figure 10.6 dans sa version
pliée (à gauche) et dépliée (à droite). Pour modéliser la partie physique, nous introduisons une cellule
récurrente appelée PhyCell qui discrétise une équation aux dérivées partielle linéaire par un schéma
d’Euler, pour laquelle les dérivées partielles sont calculées avec des convolutions contraintes [155]. La
deuxième branche modélise le résidu qui n’est pas expliqué par la physique; pour cela nous utilisons un
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réseau de neurones récurrent assez générique, en l’occurence un ConvLSTM [281]. Les deux branches
sont sommées dans l’espace latent, avant d’être décodées vers une prédiction de l’image future.

⎧⎨⎩h̃t+1 = ht + Φ(ht) Prediction

ht+1 = h̃t+1 + Kt ⊙
(︂
E(ut) − h̃t+1

)︂
. Correction

(10.5)

(10.6)

Figure 10.6: Modèle PhyDNet pour la prédiction de vidéo.

Nous menons des expériences sur des jeux de données avec différents niveaux de connaissance a
priori: depuis Moving MNist où la dynamique de déplacement des chiffres est parfaitement connue,
jusqu’à des vidéos généralistes de mouvements humains, en passant par des cas où l’on a un a priori
physique incomplet sur la dynamique, comme pour le traffic routier ou la température de surface
des océans. Dans tous ces cas, nous montrons la supériorité de PhyDNet par rapport à des modèles
d’apprentissage profond sans a priori physique.

10.5.2 Modèle APHYNITY pour la coopération optimale entre physique et apprentissage
profond

La prédiction de systèmes dynamiques pour lesquels on a une connaissance partielle de leur
dynamique est un problème très courant dans de nombreux champs scientifiques. Par exemple pour la
modélisation climatique, il est très compliqué de mettre en équations précisément tous les phénomènes
complexes régissant la dynamique de l’atmosphère.

Nous introduisons ici un schéma d’apprentissage, appelé APHYNITY, pour augmenter des modèles
physiques simplifiés décrits par des équations aux dérivées partielles, avec des réseaux de neurones
profonds. Nous considérons des systèmes dynamiques sous la forme de l’équation différentielle:

dXt

dt
= F (Xt). (10.7)
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Le modèle APHYNITY décompose la fonction de dynamique F en une composante Fp pour laquelle
nous avons un a priori physique et une composante d’augmentation Fa qui corrige les erreurs du modèle
physique: F = Fp + Fa.

Le problème d’apprentissage est formulé de manière à ce que le modèle physique explique la
dynamique le plus possible, tandis que le modèle d’augmentation ne capture que l’information qui
ne peut pas être capturée par la physique. Inspiré par le principe de moindre action, ce schéma
d’apprentissage consiste à minimiser la norme du résidu Fa sous la contrainte de prédiction parfaite du
modèle augmenté:

min
Fp∈Fp,Fa∈F

∥Fa∥ subject to ∀X ∈ D, ∀t,
dXt

dt
= (Fp + Fa)(Xt). (10.8)

Sous de faibles hypothèses qui sont vérifiées dans de nombreux cas expérimentaux, il y a existence
et unicité du problème d’optimisation APHYNITY, ce qui favorise l’interprétabilité et la généralisation
du modèle.

Figure 10.7: Schéma d’apprentissage APHYNITY pour la coopération optimale entre modèles physiques
et modèles d’apprentissage.

Nous proposons une approche trajectoire pour implémenter en pratique le schéma APHYNITY, qui
est illustré sur la Figure 10.7. A partir d’une condition initiale X0, un modèle physique paramétré par
θp donne la dynamique physique Fp, tandis que le modèle d’augmentation basé données paramétrisé
par θa fournit la dynamique Fa. La dynamique résultante F = Fp + Fa est intégrée dans le temps par
un schéma numérique différentiable qui donne les prédictions pour un ensemble de pas de temps futurs.
Les paramètres du modèle sont appris par l’optimisation du problème sous contraintes APHYNITY (Eq
10.8). Un algorithme d’optimisation sous contraintes adaptatif est utilisé pour résoudre efficacement le
problème de l’Eq 10.8.

Nous menons des expériences sur trois problèmes representatifs de classes de phénomènes physiques:
dynamique Newtonienne (pendule amorti), équations de réaction-diffusion et équations d’ondes. Dans
chaque cas, nous considérons des modèles physiques simplifiés (par exemple les équations du pendule
sans le terme d’amortissement) et augmentons ces modèles avec le schéma APHYNITY.

Les résultats expérimentaux montrent la supériorité d’APHYNITY sur des modèles basés données
uniquement, sur des modèles physiques incomplets et sur des méthodes état de l’art qui combinent
données et connaissances. Le gain de performances se voit à la fois sur l’erreur de prédiction et sur
l’erreur d’identification des paramètres physiques du modèle. De plus, l’approche APHYNITY est
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Figure 10.8: Caméra fisheye et exemple d’image fisheye utilisées pour la prévision à court-terme de
l’irradiance solaire.

suffisamment flexible pour s’adapter à des niveaux différents de connaissance physique a priori.

10.6 Application à la prédiction d’irradiance solaire

Les énergies renouvelables sont en forte progression dans le monde ces dernières années. Toutefois,
leur variabilité spatiale et temporelle reste un défi pour leur intégration à grande échelle dans les
réseaux électriques existants, pour lesquels l’équilibre à tout instant entre production et consom-
mation d’électricité est primordial. L’enjeu réside également dans le pilotage indépendant de parcs
photovoltäıques ou éoliens qui peuvent être couplés à des moyens de stockage ou de production
supplémentaires, notamment dans les systèmes insulaires isolés.

Dans ce contexte, EDF a engagé depuis plusieurs années des travaux sur la prévision de pro-
duction photovoltäıque, à différents horizons temporels et à l’aide de différentes données d’entrée
(modèles météorologiques, images satellites, images au sol, mesures en temps réel). L’amélioration
des méthodes de prévision à court terme (de quelques minutes à une heure) est aujourd’hui un enjeu
fondamental. La variabilité temporelle à court-terme de la production photovoltäıque est principalement
liée à des phénomènes physiques météorologiques, tels que le déplacement des nuages. Les modèles
météorologiques et les images satellite ont une résolution spatiale et temporelle insuffisante pour prédire
le déplacement des nuages à court-terme au-dessus d’un site de production. Pour cela, l’utilisation
de caméras au sol hémisphériques est une piste très prometteuse pour suivre les nuages et anticiper
les variations brusques de production à quelques minutes [87, 43, 42, 164, 223]. EDF dispose de
plusieurs sites instrumentés de caméras hémisphériques fisheye et de capteurs de rayonnement solaire
(pyranomètres), constituant ainsi une base de données annotées de plusieurs millions d’images du ciel
au pas de temps 10s (Figure 10.8).

Les méthodes traditionnelles de prévision par images fisheye reposent sur du traitement d’images
classique. La châıne de traitement typique [87, 43, 42, 223] se compose des étapes suivantes: calibration
de la caméra fisheye, prétraitement de l’image, segmentation de l’image avec des seuillages, calcul du
flot optique et propagation du mouvement pour prévoir la future position des nuages et enfin calcul de
l’irradiance future avec des algorithmes de régression.
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Depuis quelques années, les méthodes d’apprentissage profond se sont révélées être une alternative
intéressante pour estimer et prévoir le rayonnement solaire de bout en bout [195, 295, 235, 239, 179, 186,
299], sans la nécessité de definir des indicateurs sur les images manuellement. Au début de cette thèse,
nous avons exploré de premières architectures de réseaux de neurones profonds pour l’estimation et la
prévision du rayonnement [136]. Pour l’estimation du rayonnement correspondant à l’image courante,
nous avons remarqué un gain de performances très important en utilisant des réseaux convolutionnels
par rapport aux méthodes traditionelles, ce qui était attendu sachant les succès de l’apprentissage
profond pour les tâches de perception. Par contre, la prévision du rayonnement est une tâche beaucoup
plus compliquée: notre architecture préliminaire basée sur un ConvLSTM donne de meilleurs résultats
que la méthode traditionnelle mais avec une marge plus faible.

Pour améliorer les prédictions, nous avons appliqué les contributions méthodologiques de cette thèse
à ce problème. Nous avons adapté le modèle PhyDNet de prédiction de vidéo à la prédiction jointe des
images fisheye et des rayonnements futurs. Illustrée sur la Figure 10.9, cette architecture prend en
entrée une séquence d’images fisheye qui est traitée par le réseau de neurones récurrent PhyDNet. Le
réseau est ensuite appliqué récursivement pour décoder les images futures et les rayonnements futurs.

Figure 10.9: Modèle PhyDNet adapté pour la prévision de l’irradiance solaire.

Le modèle PhyDNet a permis un gain de performances important sur les prévisions de l’irradiance
solaire à 5min par rapport à notre modèle de base ConvLSTM.

Nous avons également exploré l’application de la fonction de perte DILATE et du schéma
d’apprentissage APHYNITY à ce problème. Ces deux mécanismes permettent d’obtenir un nou-
veau gain de performances, quoique plus faible que celui apporté par l’architecture inspirée par la
physique PhyDNet. Nous en avons analysé les raisons et proposé des pistes d’améliorations futures.
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Figure 10.10: Prévisions de l’irradiance à 5min avec des images fisheye. Notre modèle inspiré par la
physique prédit correctement les variations brusques de l’irradiance solaire.

10.7 Conclusion et perspectives

Dans cette thèse, nous avons exploré de manière générale comment incorporer de la connaissance
physique a priori dans les modèle d’apprentissage statistique pour améliorer la prévision spatio-
temporelle. Plus particulièrement, nous avons abordé deux principales directions de recherche.

La première concerne le choix de la fonction de perte pour entrâıner les modèles. Au lieu de l’erreur
quadratique moyenne très majoritairement utilisée, nous proposons d’utiliser des critères de forme et
de décalage temporel sur les trajectoires prédites. Nous nous attaquons au contexte de la prévision
déterministe avec notre proposition de fonction de perte DILATE, et au contexte probabiliste, où notre
objectif est de décrire la distribution prédictive par un faible nombre de scénarios divers et précis, avec
notre modèle STRIPE.

Notre seconde direction de recherche est d’augmenter des modèles physiques incomplets avec des
réseaux de neurones profonds basés données. Pour la prédiction de vidéo, nous introduisons le modèle
PhyDNet qui sépare une partie de dynamique physique modélisée par des équations aux dérivées
partielles, d’une partie résiduelle qui capture l’information complémentaire, comme la texture et les
détails, nécessaire à la bonne prédiction. Nous proposons aussi un schéma d’apprentissage, appelé
APHYNITY, qui assure une décomposition bien posée et unique entre des modèle physiques incomplets
et des réseaux de neurones profonds, sous de faibles hypothèses.

Nous avons validons les contributions de cette thèse sur de nombreux jeux de données synthétiques
et réels, et sur l’application de prévision photovoltäıque à EDF.

Les travaux de cette thèse ouvrent de nombreuses perspectives intéressantes à explorer. A court-
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terme, les perspectives pour l’améliorations des prédictions d’irradiance comprennent l’utilisation de
modèle physiques plus spécifiques à la dynamique de l’atmosphère, l’apprentissage sur des séquences
temporelles de plus longue durée, ou encore l’utilisation de réseaux de neurones qui encodent l’invariance
par rotation pour le traitement des images fisheye.

A plus long terme, l’étude des modèles physiques augmentés et leur application pour résoudre des
problèmes naturels complexes comme la prévision climatique est particulièrement attrayante. Plusieurs
applications pourraient directement bénéficier de ces travaux, par exemple l’estimation du flot optique
qui est traditionnellement basée sur l’hypothèse simplifiée de la conservation de l’intensité lumineuse, ou
l’apprentissage par renforcement basé modèle qui suppose un modèle de dynamique (souvent simplifié)
pour prendre des décisions.

Par ailleurs, nous avons étudié dans cette thèse des décompositions linéaires entre modèles physiques
simplifiés et leur augmentations, ce qui est une hypothèse assez forte. D’autres schémas de décomposi-
tions peuvent être envisagés, par exemple entre des modélisations physiques à des échelles spatiales
différentes.

Mots-clés : apprentissage profond, prévision spatio-temporelle, prévision photovoltäıque.
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Appendix A

Appendix for differentiable shape and
temporal criteria for non-stationary
forecasting

A.1 Proof that the temporal kernel is PSD

The DTW score between two time series y ∈ Rd×n and z ∈ Rd×m can be written S(π) =∑︁|π|
i=1 ∆(yπ1(i), zπ2(i)) where π = (π1, π2) is a valid alignment between both series. Equivalently we

can write the DTW score S(π) = S(A) = ⟨A, ∆(y, z)⟩, where A ⊂ {0, 1}n×m is the warping path in
matrix form (Aij = 1 if yi is associated to zj and 0 otherwise).

Let w : An,m −→ R∗
+ be a strictly positive weighting function on alignment paths and let’s consider

the following kernel:

Kw(y, z) =
∑︂

A∈An,m

w(A) e
− S(A)

γ (A.1)

=
∑︂

A∈An,m

w(A) e
− ⟨A,∆(y,z)⟩

γ (A.2)

=
∑︂

π∈An,m

w(π) e
−

∑︁|π|
j=1 ∆(yπ1(j),zπ2(j))

γ (A.3)

=
∑︂

π∈An,m

w(π)
|π|∏︂

j=1
e

−
∆(yπ1(j),zπ2(j))

γ (A.4)

=
∑︂

π∈An,m

w(π)
|π|∏︂

j=1
k(yπ1(j), zπ2(j)), (A.5)

where we denote k = e
− ∆

γ . We prove the following result:
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Proposition 3 If k is a PSD kernel such that k
1+k is also PSD, the kernel Kw defined in Eq. A.5 is

also PSD.

The proof is adapted from [56]. First, for any time series y = (y1, . . . , yn) ∈ Rd×n of length n and
for any sequence a ∈ Nn, we introduce the notation:

ya = (y1, . . . , y1⏞ ⏟⏟ ⏞
a1 times

, . . . , yn, . . . , yn⏞ ⏟⏟ ⏞
an times

). (A.6)

Let χ be any PSD kernel defined on Rd with the following condition |χ| < 1, we introduce the
kernel κ defined as:

κ(y, z) =
{︄∏︁|x|

i=1 χ(yi, zj) if |y| = |z|
0 otherwise.

(A.7)

Then, given a strictly positive weighting function w(a, b) > 0, the following kernel Kw defined in
Eq. A.8 is PSD by construction:

Kw(y, z) =
∑︂

a∈Nn

∑︂
b∈Nm

w(a, b) κ(ya, zb). (A.8)

where we recall that n = |y| and m = |z|. We denote ϵa = (1, . . . , 1⏞ ⏟⏟ ⏞
a1 times

, . . . , p, . . . , p⏞ ⏟⏟ ⏞
ap times

) for any a ∈ Np. We

also write for any sequences u and v of common length p: u ⊗ v = ((u1, v1), . . . , (up, vp)). With these
notations, we can rewrite Kw as:

Kw(y, z) =
∑︂

a∈Nn,b∈Nm

∥a∥=∥b∥

w(a, b)
∥a∥∏︂
i=1

χ((y, z)ϵa⊗ϵb(i)). (A.9)

Notice now for each couple (a, b) there exists a unique alignment path π and an integral vector
v verifying πv = ϵa ⊗ ϵb. Conversely, for each couple (π, v) there exists a unique pair (a, b) verifying
πv = ϵa ⊗ ϵb. Therefore the kernel Kw in Eq. A.9 can be written equivalently with a parameterization
on (π, v) for w:

Kw(y, z) =
∑︂

π∈An,m

∑︂
v∈N|π|

w(π, v)
|π|∏︂

j=1
χ((y, z)πv(j)), (A.10)

where χπ(j) is a shortcut for χ(yπ1(j), zπ2(j)).
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Now we assume that the weighting function w depends only on π: w(π, v) = w(π). Then we have:

Kw(y, z) =
∑︂

π∈An,m

w(π)
∑︂

v∈N|π|

|π|∏︂
j=1

χ
vj

π(j)

=
∑︂

π∈An,m

w(π)
|π|∏︂

j=1

(︂
χπ(j) + χ2

π(j) + χ3
π(j) + . . .

)︂

=
∑︂

π∈An,m

w(π)
|π|∏︂

j=1

χπ(j)
1 − χπ(j)

.

By setting now χ = k
1+k which is PSD by hypothesis and verifies |χ| < 1 (recall that k = e

− ∆
γ ), we get:

Kw(y, z) =
∑︂

π∈An,m

w(π)
|π|∏︂

j=1
kπ(j)

=
∑︂

π∈An,m

w(π)
|π|∏︂

j=1
k(yπ1(j), zπ2(j)),

which corresponds exactly to the kernel Kw defined in Eq. A.5. This proves that Kw in Eq. A.5 is a
well defined PSD kernel.

With the particular choice w(A) = ⟨A, Ωsim⟩, we recover:

Kw(y, z) =
∑︂

A∈A
⟨A, Ωsim⟩ e

− ⟨A,∆(y,z)⟩
γ

= Z × TDI∆,Ωsim
γ (y, z)

= e−DTW∆
γ (y,z)/γ × TDI∆,Ωsim

γ (y, z)
= Ktime(y, z),

which finally proves that Ktime defined in paper Eq. 9 is a valid PSD kernel.

The particular choice k(u, v) =
1
2e−∥u−v∥2

2

1 − 1
2e−∥u−v∥2

2
fulfills Proposition 1 requirements: k is indeed PSD

as the infinite limit of a sequence of PSD kernels
∑︁∞

i=1 gi = g
1−g = k, where g is a halved Gaussian

PSD kernel: g(u, v) = 1
2e−∥u−v∥2

2 . For this choice of k, the corresponding pairwise cost matrix writes
(it is the half-Gaussian cost defined in Section 3.2.1.2):

∆(yi, zj) = γ
[︂
∥yi − zj∥2

2 − log
(︂
2 − e−∥yi−zj∥2

2
)︂]︂

. (A.11)
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Appendix B

Appendix for DILATE

B.1 External shape and temporal metrics

We detail here the two external metrics used in our experiments to evaluate the shape and temporal
errors.

Ramp score: The notion of ramping event is a major issue for intermittent renewable energy production
that needs to be anticipated for electricity grid management. For assessing the performance of trained
forecasting models in presence of ramps, the Ramp Score was proposed in [252]. This score is based on
a piecewise linear approximation on both input and target time series by the Swinging Door algorithm
[22, 79]. The Ramp Score described in [252] is computed as the integral between the unsigned difference
of derivatives of both linear approximated series. For assessing only the shape error component, we
apply in our experiments the ramp score on the target and prediction series after alignment by the
optimal DTW path.

Hausdorff distance: Given a set of change points T ∗ in the target signal and change points T̂ in the
predicted signal, the Hausdorff distance is defined as:

Hausdorff(T ∗, T̂ ) := max(max
t̂∈T̂

min
t∗∈T ∗

|t̂ − t∗|, max
t∗∈T ∗

min
t̂∈T̂

|t̂ − t∗|). (B.1)

It corresponds to the greatest temporal distance between a change point and its prediction.

We now explain how the change points are computed for each dataset: for Synthetic, we know
exactly by construction the positions of the change points in the target signals. For the predictions, we
look for a single change point corresponding to the location of the predicted step function. We use
the exact segmentation method by dynamic programming described in [248] with the Python toolbox
http://ctruong.perso.math.cnrs.fr/ruptures-docs/build/html/index.html# .

For ECG5000 and Traffic datasets which present sharp peaks, this change point detection algorithm
is not suited (detected change points are often located at the inflexion points of peaks and not at
the exact peak location). We thus use a simple peak detection algorithm based on first order finite
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differences. We tune the threshold parameter for outputting a detection and the min distance between
detections parameter experimentally for each dataset.

B.2 Comparison to DILATE divergence variant

Blondel et al. [17] point out two limitations for using DTW∆
γ as a loss function: first, it can take

negative values and second, DTW∆
γ (y, z) does not reach its minimum when y = z. To address these

issues, they propose a proper divergence defined as follows [17]:

DTW-div∆
γ (y, z) = DTW∆

γ (y, z) − 1
2(DTW∆

γ (y, y) + DTW∆
γ (z, z)). (B.2)

This divergence is non-negative and satisfies DTW-div∆
γ (y, y) = 0. However, it is still not a distance

function since the triangle inequality is not verified (as for the true DTW).

These limitations also hold for DILATE. Consequently, we use the same normalization trick to define
a proper DILATE-divergence. Forecasting results in Table B.1 show that DILATE-div is equivalent to
DILATE with the Seq2Seq and N-Beats [183] models, and inferior to DILATE with the Informer model
[300]. It confirms the good behaviour of the DILATE loss that does not require this renormalization.

Table B.1: Comparison between DILATE and DILATE-div on the synthetic-det dataset.

Model MSE DILATE

Seq2Seq DILATE 13.1 ± 1.8 33.7 ± 3.1
Seq2Seq DILATE-div 13.6 ± 0.9 33.6 ± 2.1

N-Beats [183] DILATE 13.3 ± 0.7 37.9 ± 1.6
N-Beats [183] DILATE-div 13.8 ± 0.9 38.5 ± 1.4

Informer [300] DILATE 11.8 ± 0.7 30.1 ± 1.3
Informer [300] DILATE-div 12.9 ± 0.1 31.8 ± 6.5

B.3 DILATE additional visualizations

We provide additional qualitative predictions with DILATE for the Synthetic-det in Figure B.1,
for ECG5000 in Figure B.2 and for Traffic in Figure B.3.
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Figure B.1: Qualitative predictions for the Synthetic-det dataset.
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Figure B.2: Qualitative predictions for the ECG5000 dataset.
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Figure B.3: Qualitative predictions for the Traffic dataset.
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Appendix C

Appendix for STRIPE

C.1 STRIPE implementation details

Neural network architectures: STRIPE++ is composed of a Sequence To Sequence predictive
model. The encoder is a recurrent neural network (RNN) with 1 layer of 128 Gated Recurrent Units
(GRU) [39] units, producing a latent state h of dimension 128. We fixed by cross-validation the
dimension of each diversifying variable zs or zt to be k = 8. The decoder is another RNN with
128 + 8 + 8 = 144 GRU units followed by fully connected layers responsible for producing the future
trajectory.

The Posterior network has a similar architecture as the encoder: it is a RNN with 1 layer of 128
GRU units that takes as input the full series (x1:T , y∗

T +1:T +H), followed by two multi-layer perceptrons
(MLP) dedicated to output the parameters (µ∗

s, σ∗
s) and (µ∗

t , σ∗
t ) of the Gaussian distribution from

which to sample the posterior diversifying variables z∗
s and z∗

t .

The STRIPE++
shape and STRIPE++

time proposal mechanisms build on top of the encoder (that produces
h) with a MLP with 3 layers of 512 neurons (with Batch Normalization and LeakyReLU activations)
and a final linear layer to produce N = 10 latent codes of dimension k = 8 (corresponding to the
proposals for zs or zt).

STRIPE hyperparameters: We cross-validated the relevant hyperparameters of STRIPE:

• k: dimension of the diversifying latent variables z. This dimension should be chosen relatively to
the hidden size of the RNN encoders and decoders (128 in our experiments). We fixed k = 8 in
all cases.

• N : the number of future trajectories to sample. We fixed N = 10. We performed a sensibility
analysis to this parameter in paper Figure 8.

• µ = 20: quality constraint hyperparameter in the DPP kernels.
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C.2 STRIPE additional visualizations

Wee provide additional visualizations for the Traffic and Electricity datasets that confirm that
STRIPE predictions are both diverse and sharp.

C.2.0.1 Electricity
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C.2.0.2 Traffic
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Appendix D

Appendix for PhyDNet

D.1 PhyDNet model

D.1.1 Discrete PhyCell derivation

PhyCell dynamics is governed by the PDE:

∂h
∂t

(t, x) = Φ(h) + C(h, u)

= Φ(h(t, x)) + K(t, x) ⊙ (E(u(t, x)) − (h(t, x) + Φ(h(t, x))).

By Euler discretization ∂h
∂t = δht = ht − ht−1, we get:

ht+1 − ht = Φ(ht) + Kt ⊙ (E(ut) − (ht + Φ(ht)))
ht+1 = ht + Φ(ht) + Kt ⊙ (E(ut) − (ht + Φ(ht)))
ht+1 = (1 − Kt) ⊙ (ht + Φ(ht)) + Kt ⊙ E(ut).

D.1.2 Moment matrix

For a filter w of size k × k, the moment matrix M(w) is a matrix of size k × k defined as:

M(w)i,j = 1
i!j!

k−1
2∑︂

u=− k−1
2

k−1
2∑︂

v=− k−1
2

uivjw[u, v],

for i, j = 0, ..., k − 1.

For any function h : R2 −→ R, we consider the convolution of h with the filter w. Taylor’s expansion
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gives:

k−1
2∑︂

u=− k−1
2

k−1
2∑︂

v=− k−1
2

w[u, v]h(x + δx.u, y + δy.v) =
k−1

2∑︂
u=− k−1

2

k−1
2∑︂

v=− k−1
2

w[u, v]
k−1∑︂

i,j=1

∂i+jh

∂xi∂yj
(x, y)uivj

i!j! δxiδyj

+o(|δx|k−1 + |δy|k−1)

=
k−1∑︂

i,j=1
M(w)i,jδxiδyj ∂i+jh

∂xi∂yj
(x, y) + o(|δx|k+1 + |δy|k−1).

This equation shows that we can control the differential order approximated by the filter w by imposing
constraints on its moment matrix M(w). For example, in order to approximate the differential operator

∂a+b

∂xa∂yb (.), it suffices to impose M(w)i,j = 0 for i ̸= a and j ̸= b. By denoting ∆k
i,j the Kronecker matrix

of size k × k, which equals 1 at position (i, j) and 0 elsewhere, we thus enforce the moment matrix
M(w) to match the target ∆k

a,b with the Frobenius norm. This justifies the choice of our moment loss

for enforcing each filter wk
p,i,j to approximate the corresponding derivative ∂i+j

∂xi∂yj (.):

Lmoment =
∑︂
i≤k

∑︂
j≤k

||M(wk
p,i,j) − ∆k

i,j ||F .

D.1.3 Prediction mode training

We show in section D.1.3.1 that the decomposition Mr(h, u) = Φ(h) + C(h, u) still holds for
standard Seq2Seq models (RNN, GRU, LSTM). As mentioned in Chapter 6, the resulting predictor Φ
is, however, naive and useless for multi-step prediction, i.e. Φ(h) = −h and h̃t+1 = 0.

In multi-step prediction, the option followed by standard Seq2seq models is to recursively reinject
back predictions as ground truth input for the next time steps. Scheduled Sampling [14] is a solution
to mitigate error accumulation and train/test discrepancy, that we use in our ConvLSTM branch. This
is, however, inferior to the results obtained with our PhyCell trained in the ”prediction-only” mode, as
shown in Section 6.4.4.

D.1.3.1 PDE formulation for standard RNNs

Vanilla RNN The equations for the vanilla RNN are:

ht = tanh(Whht−1 + Wuut + b),

with weight matrices Wh, Wu and bias b. By approximating ∂h
∂t = δht = ht − ht−1, we get the PDE:

∂h
∂t

(t, x) = M(h, u)

= tanh(Whh(t) + Wuu(t) + b) − h(t).
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A linear decoupling of this PDE is

∂h
∂t

(t, x) = Φ(h) + C(h, u),

with Φ(h) = −h(t) and C(h, u) = tanh(Whh(t) + Wuu(t) + b) which gives in discrete time the
prediction-correction scheme:{︄

h̃t+1 = 0
ht+1 = h̃t+1 + tanh (Whht−1 + Wuut + b) .

(D.1)

(D.2)

We see that the prior predictor Φ brings no information and that the correction step drives the whole
dynamics.

Gated Recurrent Unit (GRU) The equations of the Gated Recurrent Unit [39] are:

rt = σ(Wrhht−1 + Wruut + br)
zt = σ(Wzhht−1 + Wzuut + bz)
gt = tanh(Wgh(rt ⊙ ht−1) + Wguut + bg)
ht = zt ⊙ ht−1 + (1 − zt) ⊙ gt,

where rt is the reset gate, zt is the update gate and gt is the update vector. By approximating
∂h
∂t = δht = ht − ht−1, we get the PDE:

∂h
∂t

(t, x) = M(h, u)

= z(t) ⊙ h(t) + (1 − z(t)) ⊙ g(t) − h(t).

A linear decoupling of this PDE is

∂h
∂t

(t, x) = Φ(h) + C(h, u),

with Φ(h) = −h(t) and C(h, u) = z(t) ⊙ h(t) + (1 − z(t)) ⊙ g(t) which gives in discrete time the
prediction-correction scheme: {︄

h̃t+1 = 0
ht+1 = h̃t+1 + zt ⊙ ht−1 + (1 − zt) ⊙ gt.

(D.3)

(D.4)

We again see that the prior predictor Φ brings no information and that the correction step drives the
whole dynamics.
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Long Short-Term Memory (LSTM) We give the formulation for the standard LSTM [102] (the
ConvLSTM [281] can be immediately deduced by replacing matrix products by convolutions):

it = σ(Wihht−1 + Wiuut + bi)
ft = σ(Wfhht−1 + Wfuut + bf )
gt = tanh(Wghht−1 + Wguut + bg)
ct = ft ⊙ ct−1 + it ⊙ gt

ot = σ(Wohht−1 + Wouut + bo)
ht = ot ⊙ tanh(ct).

where it is the input gate, ft the forget gate, gt the input-modulation gate, ot the output gate, ct the
cell state and ht the latent state. We define the LSTM augmented latent state as:

h̄ =
(︄

g
c

)︄
.

The augmented state h̄ thus verifies the PDE:

∂h̄
∂t

=

⎛⎜⎝∂h
∂t
∂c
∂t

⎞⎟⎠ =
(︄

o(t) ⊙ tanh(c(t)) − h(t))
f(t) ⊙ c(t) + i(t) ⊙ g(t) − c(t)

)︄
.

A linear decoupling of this PDE is

∂h̄
∂t

(t, x) = Φ(h̄) + C(h̄, u),

with Φ(h̄) = −h̄(t) and

C(h̄, u) =
(︄

o(t) ⊙ tanh(c(t))
f(t) ⊙ c(t) + i(t) ⊙ g(t)

)︄
,

which gives in discrete time the prediction-correction scheme:⎧⎪⎪⎪⎨⎪⎪⎪⎩
h̃̄t+1 = 0

h̄t+1 = h̃̄t+1 +
(︄

ot ⊙ tanh(ct)
ft ⊙ ct + it ⊙ gt

)︄
.

(D.5)

(D.6)

We again see that the prior predictor Φ brings no information and that the correction step drives the
whole dynamics.
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D.2 Experiments

D.2.1 Model architectures and training

Model architectures We give here the architecture of the encoder and decoder for all datasets. They
share common building blocs, composed of convolutions, GroupNorm activation functions [280] and
LeakyRelu non-linearities. For each of the following architectures, we use skip connections from the
encoder to the decoder, as classically done, e.g. in [60]. We define:

• conv-block(input, output, stride) = {Conv2D + GroupNorm + LeakyRelu(0.2)}

• upconv-block(input,output,stride)={TransposedConv2D + GroupNorm + LeakyRelu(0.2) }

• upconv(input,output,stride)=TransposedConv2D(input, output, stride)

Moving MNIST:

Encoder Decoder

conv-block(1,8,1) upconv-block(128,64,1)
conv-block(8,16,1) upconv-block(128,32,2)
conv-block(16,32,2) upconv-block(64,32,1)
conv-block(32,32,1) upconv-block(64,16,2)
conv-block(32,64,2) upconv-block(32,8,1)
conv-block(64,64,1) upconv(16,1,1)

Traffic:

Encoder Decoder

conv-block(2,32,1) upconv-block(256,64,1)
conv-block(32.64,2) upconv-block(128,32,2)
conv-block(64,128,1) upconv(64,2,1)

SST:

Encoder Decoder

conv-block(1,32,1) upconv-block(256,64,1)
conv-block(32.64,2) upconv-block(128,32,2)
conv-block(64,128,1) upconv(64,1,1)
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Human 3.6:

Encoder Decoder

conv-block(3,16,1) upconv-block(256,128,1)
conv-block(16,32,1) upconv-block(256,64,2)
conv-block(32,64,2) upconv-block(128,64,1)
conv-block(64,64,1) upconv-block(128,32,2)
conv-block(64,128,2) upconv-block(64,16,1)
conv-block(128,128,1) upconv(32,3,1)

Influence of λ We show in Figure D.1 the influence of parameter λ balancing Limage and Lmoment

when training PhyDNet for Moving MNIST dataset. When λ decreases towards 0, MSE tends towards
the unconstrained case at 29. MSE reaches a minimum around λ = 1. When λ further increases,
physical regularization is too high and MSE increases above 30. In the paper, we fix λ = 1 for all
datasets.

Figure D.1: Influence of hyperparameter λ when training PhyDNet for Moving MNIST dataset.

D.2.2 State-of-the art comparison

We show here that PhyDNet results are equivalent on Human 3.6 to a recent baseline that explicitly
uses additional human pose annotations [259]. In the supplementary of their paper [259], the authors
evaluate their model with Peak Signal over Noise Ratios (PSNR) curves with respect to the forecasting
horizon for all deciles of motion in Human 3.6 videos. Regarding prediction horizon up to H = 4,
their method obtains a PSNR always below 21 and around 22 for the 1st decile (with the least human
motion). In comparison, PhyDNet attains a per-frame MSE of 369, corresponding to a PSNR of 21.2.
This shows that PhyDNet performs similarly than [259] for the prediction horizon considered, without
requiring additional human pose annotations.
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Table D.1: A detailed ablation study shows the impact of the physical regularization Lmoment on the
performances of PhyCell and PhyDNet for all datasets.

Method Moving MNist Traffic BJ Sea Surface Temperature Human 3.6

MSE MAE SSIM MSE ×100 MAE SSIM MSE ×10 MAE SSIM MSE /10 MAE /100 SSIM

ConvLSTM 103.3 182.9 0.707 48.5∗ 17.7∗ 0.978∗ 45.6∗ 63.1∗ 0.949∗ 50.4∗ 18.9∗ 0.776∗

PhyCell 50.8 129.3 0.870 48.9 17.9 0.978 38.2 60.2 0.969 42.5 18.3 0.891
PhyCell without Lmoment 43.4 112.8 0.895 43.6 16.89 0.980 35.4 56.0 0.970 39.6 17.4 0.894
PhyDNet 24.4 70.3 0.947 41.9 16.2 0.982 31.9 53.3 0.972 36.9 16.2 0.901
PhyDNet without Lmoment 29.0 81.2 0.934 43.9 16.6 0.981 32.3 53.1 0.971 36.7 15.9 0.904

D.2.3 Ablation study

We give in Figure D.6 additional visualisations completing Figure D.6. We qualitatively analyze
partial predictions of PhyDNet for the physical branch ûp

t+1 = D(hp
t+1) and residual branch ûr

t+1 =
D(hr

t+1). For Moving MNIST (a) and Human 3.6 (d), hp captures coarse localisations of objects, while
hr captures fine-grained details that are not useful for the physical model. For Traffic BJ, hp captures
the main patterns of the road network, while hr models remaining details. Finally for SST, the visual
difference between hp and hr is slighter, but the cooperation between both branches is crucial, as
shown by quantitatives results.

D.2.4 Influence of physical regularization

We provide the detailed ablation study for all datasets in Table D.1 that complements Table 6.2.
When we disable Lmoment for training PhyCell, performances improve for all datasets (improvement of
7 MSE points for Moving MNIST, 5 points for Traffic BJ, 3 points for SST and Human 3.6). This
again shows that physical constraints alone are too restrictive for learning dynamics in a general
context, where other factors are required for prediction. When we further include PhyCell in our
two-branches disentangling architecture PhyDNet, there is another huge performance gain compared
to PhyCell (improvement of 25 MSE points on Moving MNIST, 7 points for Traffic and SST, 5
points for Human 3.6). We also remark that when we disable Lmoment for training PhyDNet, we get
worse performances (drop of 5 MSE points for Moving MNIST and 2 points for Traffic) or equivalent
performances (difference below 0.5 MSE point for SST and Human 3.6). This again confirms the
relevance of physical constraints.

D.2.5 Additional visualisations

We give further qualitative prediction of PhyDNet on Traffic BJ (Figure D.2) with a comparison
with Memory in Memory [269] that is state-of-the-art for this dataset. We see that PhyDNet leads to
sharper results and a lower absolute error. Interestingly, PhyDNet absolute errors are approximately
spatially independent, whereas MIM errors tend to be higher at a few keys locations of Beijing road
network.

We also provide additional prediction visualisations for Sea Surface Temperature (Figure D.3) and
Human 3.6 (Figure D.4) which confirm the good behaviour of PhyDNet.

We add a detailed qualitative comparison to DDPAE in Figure D.5. DDPAE is a specific disen-
tangling method for Moving MNIST that extracts the positions of the two digits and tracks them
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Figure D.2: Additional qualitative results for Traffic BJ and comparison to Memory In Memory [269].
We see that PhyDNet absolute error are smaller than MIM errors, and independent of the spatial
structure of the road network.

with a predictive recurrent neural network. In this example, DDPAE fails to disentangle the two
digits (components 1 and 2) in Figure D.5 when they overlap in the input sequence, resulting in
blurry predictions. In contrast, PhyDNet successfully learns a latent space in which the two digits are
disentangled, resulting in far better predictions in terms of sharpness and position of the digits.
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Figure D.3: PhyDNet additional qualitative results for Sea Surface Temperature.

Figure D.4: PhyDNet additional qualitative results for Human 3.6.
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Figure D.5: Detailed qualitative comparison to DDPAE [104] on Moving MNIST dataset.

180



D.2. EXPERIMENTS

Figure D.6: PhyDNet additional ablation visualisations for all datasets.
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Appendix for APHYNITY

E.1 Reminder on proximinal and Chebyshev sets

We begin by giving a definition of proximinal and Chebyshev sets, taken from [78]:

Definition 1 A proximinal set of a normed space (E, ∥ · ∥) is a subset C ⊂ E such that every x ∈ E
admits at least a nearest point in C.

Definition 2 A Chebyshev set of a normed space (E, ∥ · ∥) is a subset C ⊂ E such that every x ∈ E
admits a unique nearest point in C.

Proximinality reduces to a compacity condition in finite dimensional spaces. In general, it is a
weaker one: boundedly compact sets verify this property for example.

In Euclidean spaces, Chebyshev sets are simply the closed convex subsets. The question of knowing
whether it is the case that all Chebyshev sets are closed convex sets in infinite dimensional Hilbert
spaces is still an open question. In general, there exists examples of non-convex Chebyshev sets, a
famous one being presented in [114] for a non-complete inner-product space.

Given the importance of this topic in approximation theory, finding necessary conditions for a set
to be Chebyshev and studying the properties of those sets have been the subject of many efforts. Some
of those properties are summarized below:

• The metric projection on a boundedly compact Chebyshev set is continuous.

• If the norm is strict, every closed convex space, in particular any finite dimensional subspace is
Chebyshev.

• In a Hilbert space, every closed convex set is Chebyshev.

E.2 Proof of Propositions 1 and 2

We prove the following result which implies both propositions in the article:
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PHYSICAL MODELS

Proposition 4 The optimization problem:

min
Fp∈Fp,Fa∈F

∥Fa∥ subject to ∀X ∈ D, ∀t,
dXt

dt
= (Fp + Fa)(Xt) (E.1)

is equivalent a metric projection onto Fp.

If Fp is proximinal, Eq E.1 admits a minimizing pair.

If Fp is Chebyshev, Eq E.1 admits a unique minimizing pair which Fp is the metric projection.

The idea is to reconstruct the full functional from the trajectories of D. By definition, A is the set
of points reached by trajectories in D so that:

A = {x ∈ Rd | ∃X· ∈ D, ∃t, Xt = x}.

Then let us define a function F D in the following way: For a ∈ A, we can find X· ∈ D and t0 such that
Xt0 = a. Differentiating X at t0, which is possible by definition of D, we take:

F D(a) = dXt

dt

⃓⃓⃓⃓
t=t0

.

For any (Fp, Fa) satisfying the constraint in Eq E.1, we then have that (Fp + Fa)(a) = dXt/dt|t0 =
F D(a) for all a ∈ A. Conversely, any pair such that (Fp, Fa) ∈ Fp × F and Fp + Fa = F D, verifies the
constraint.

Thus we have the equivalence between Eq E.1 and the metric projection formulated as:

minimize
Fp ∈ Fp

⃦⃦⃦
F D − Fp

⃦⃦⃦
. (E.2)

If Fp is proximinal, the projection problem admits a solution which we denote F ⋆
p . Taking

F ⋆
a = F D − F ⋆

p , we have that F ⋆
p + F ⋆

a = F D so that (F ⋆
p , F ⋆

a ) verifies the constraint of Eq E.1.

Moreover, if there is (Fp, Fa) satisfying the constraint of Eq E.1, we have that Fp + Fa = F D by what
was shown above and ∥Fa∥ = ∥F D − Fp∥ ≥ ∥F D − F ⋆

p ∥ by definition of F ⋆
p . This shows that (F ⋆

p , F ⋆
a )

is minimal.

Moreover, if Fp is a Chebyshev set, by uniqueness of the projection, if Fp ̸= F ⋆
p then ∥Fa∥ > ∥F ⋆

a ∥.
Thus the minimal pair is unique.

E.3 Parameter estimation in incomplete physical models

Classically, when a set Fp ⊂ F summarizing the most important properties of a system is available,
this gives a simplified model of the true dynamics and the adopted problem is then to fit the trajectories
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using this model as well as possible, solving:

minimize
Fp ∈ Fp

EX∼DL( ˜︁XX0 , X)

subject to ∀g ∈ I, ˜︁Xg
0 = g and ∀t,

d ˜︁Xg
t

dt
= Fp( ˜︁Xg

t ).
(E.3)

where L is a discrepancy measure between trajectories. Recall that ˜︁XX0 is the result trajectory of an
ODE solver taking X0 as initial condition. In other words, we try to find a function Fp which gives
trajectories as close as possible to the ones from the dataset. While estimation of the function becomes
easier, there is then a residual part which is left unexplained and this can be a non negligible issue in
at least two ways:

• When F ̸∈ Fp, the loss is strictly positive at the minimum. This means that reducing the space
of functions Fp makes us lose in terms of accuracy.1

• The obtained function Fp might not even be the most meaningful function from Fp as it would
try to capture phenomena which are not explainable with functions in Fp, thus giving the wrong
bias to the calculated function. For example, if one is considering a dampened periodic trajectory
where only the period can be learned in Fp but not the dampening, the estimated period will
account for the dampening and will thus be biased.

This is confirmed in Section 7.4: the incomplete physical models augmented with APHYNITY get
different and experimentally better physical identification results than the physical models alone.

Let us compare our approach with this one on the linearized damped pendulum to show how
estimates of physical parameters can differ. The equation is the following:

d2θ

dt2 + ω2
0θ + α

dθ

dt
= 0.

We take the same notations as in the article and parametrize the simplified physical models as:

F a
p : X ↦→ (dθ

dt
, −aθ),

where a > 0 corresponds to ω2
0. The corresponding solution for an initial state X0, which we denote

Xa, can then written explicitly as:
θa

t = θ0 cos
√

at.

Let us consider damped pendulum solutions X written as:

θt = θ0e−t cos t,

which corresponds to:

F : X ↦→ (dθ

dt
, −2(θ + dθ

dt
)).

1This is true in theory, although not necessarily in practice when F overfits a small dataset.
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It is then easy to see that the estimate of a with the physical model alone can be obtained by minimizing:∫︂ T

0
|e−t cos t − cos

√
at|2.

This expression depends on T and thus, depending on the chosen time interval and the way the integral
is discretized will almost always give biased estimates. In other words, the estimated value of a will
not give us the desired solution t ↦→ cos t.

On the other hand, for a given a, in the APHYNITY framework, the residual must be equal to:

F a
r : X ↦→ (0, (a − 2)θ − 2dθ

dt
).

in order to satisfy the fitting constraint. Here a corresponds to 1 + ω2
0 not to ω2

0 as in the simplified
case. Minimizing its norm, we obtain a = 2 which gives us the desired solution:

θt = θ0e−t cos t,

with the right period.

E.4 Discussion on supervision over derivatives

In order to find the appropriate decomposition (Fp, Fa), we use a trajectory-based error by solving:

minimize
Fp ∈ Fp, Fa ∈ F

∥Fa∥

subject to ∀g ∈ I, ˜︁Xg
0 = g and ∀t,

d ˜︁Xg
t

dt
= (Fp + Fa)( ˜︁Xg

t ),

∀X ∈ D, L(X, ˜︁XX0) = 0.

(E.4)

In the continuous setting where the data is available at all times t, this problem is in fact equivalent
to the following one:

minimize
Fp ∈ Fp

EX∼D

∫︂ ⃦⃦⃦⃦dXt

dt
− Fp(Xt)

⃦⃦⃦⃦
. (E.5)

where the supervision is done directly over derivatives, obtained through finite-difference schemes. This
echoes the proof in Section E.2 of the Appendix where F can be reconstructed from the continuous
data.

However, in practice, data is only available at discrete times with a certain time resolution. While
Eq E.5 is indeed equivalent to Eq E.4 in the continuous setting, in the practical discrete one, the way
error propagates is not anymore: For Eq E.4 it is controlled over integrated trajectories while for Eq
E.5 the supervision is over the approximate derivatives of the trajectories from the dataset. We argue
that the trajectory-based approach is more flexible and more robust for the following reasons:

• In Eq E.4, if Fa is appropriately parameterized, it is possible to perfectly fit the data trajectories
at the sampled points.
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• The use of finite differences schemes to estimate F as is done in Eq E.5 necessarily induces a
non-zero discretization error.

• This discretization error is explosive in terms of divergence from the true trajectories.

This last point is quite important, especially when time sampling is sparse (even though we
do observe this adverse effect empirically in our experiments with relatively finely time-sampled
trajectories). The following gives a heuristical reasoning as to why this is the case. Let ˜︁F = F + ϵ be
the function estimated from the sampled points with an error ϵ such that ∥ϵ∥∞ ≤ α. Denoting ˜︁X the
corresponding trajectory generated by ˜︁F , we then have, for all X ∈ D:

∀t,
d(X − ˜︁X)t

dt
= F (Xt) − F ( ˜︁Xt) − ϵ( ˜︁Xt).

Integrating over [0, T ] and using the triangular inequality as well as the mean value inequality, supposing
that F has uniformly bounded spatial derivatives:

∀t ∈ [0, T ], ∥(X − ˜︁X)t∥ ≤ ∥∇F∥∞

∫︂ t

0
∥Xs − ˜︁Xs∥ + αt,

which, using a variant of the Grönwall lemma, gives us the inequality:

∀t ∈ [0, T ], ∥Xt − ˜︁Xt∥ ≤ α

∥∇F∥∞
(exp(∥∇F∥∞t) − 1).

When α tends to 0, we recover the true trajectories X. However, as α is bounded away from 0 by
the available temporal resolution, this inequality gives a rough estimate of the way ˜︁X diverges from
them, and it can be an equality in many cases. This exponential behaviour explains our choice of a
trajectory-based optimization.

E.5 Implementation details

We describe here the three use cases studied in the paper for validating APHYNITY. All experiments
are implemented with PyTorch and the differentiable ODE solvers with the adjoint method implemented
in torchdiffeq.2

E.5.1 Damped pendulum

We consider the non-linear damped pendulum problem, governed by the ODE

d2θ

dt2 + ω2
0 sin θ + α

dθ

dt
= 0,

where θ(t) is the angle, ω0 = 2π
T0

is the proper pulsation (T0 being the period) and α is the damping

coefficient. With the state X = (θ, dθ
dt ), the ODE can be written as dXt

dt = F (Xt) with F : X ↦→
(dθ

dt , −ω2
0 sin θ − αdθ

dt ).
2https://github.com/rtqichen/torchdiffeq
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Dataset For each train / validation / test split, we simulate a dataset with 25 trajectories of 40
timesteps (time interval [0, 20], timestep δt = 0.5) with fixed ODE coefficients (T0 = 12, α = 0.2) and
varying initial conditions. The simulation integrator is Dormand-Prince Runge-Kutta method of order
(4)5 (DOPRI5, [66]). We also add a small amount of white gaussian noise (σ = 0.01) to the state. Note
that our pendulum dataset is much more challenging than the ideal frictionless pendulum considered
in [96].

Neural network architectures We detail in Table E.1 the neural architectures used for the damped
pendulum experiments. All data-driven augmentations for approximating the mapping Xt ↦→ F (Xt)
are implemented by multi-layer perceptrons (MLP) with 3 layers of 200 neurons and ReLU activation
functions (except at the last layer: linear activation). The Hamiltonian [96, 246] is implemented
by a MLP that takes the state Xt and outputs a scalar estimation of the Hamiltonian H of the
system: the derivative is then computed by an in-graph gradient of H with respect to the input:

F (Xt) =
(︂

∂H
∂(dθ/ dt) , −∂H

dθ

)︂
.

Table E.1: Neural network architectures for the damped pendulum experiments. n/a corresponds to
non-applicable cases.

Method Physical model Data-driven model

Neural ODE n/a MLP(in=2, units=200, layers=3, out=2)

Hamiltonian MLP(in=2, units=200, layers=3, out=1) n/a
APHYNITY Hamiltonian MLP(in=2, units=200, layers=3, out=1) MLP(in=2, units=200, layers=3, out=2)

Param ODE (ω0) 1 trainable parameter ω0 n/a
APHYNITY Param ODE (ω0) 1 trainable parameter ω0 MLP(in=2, units=200, layers=3, out=2)

Param ODE (ω0, α) 2 trainable parameters ω0, λ n/a
APHYNITY Param ODE (ω0, α) 2 trainable parameters ω0, λ MLP(in=2, units=200, layers=3, out=2)

Optimization hyperparameters The hyperparameters of the APHYNITY optimization algorithm
(Niter, λ0, τ1, τ2) were cross-validated on the validation set and are shown in Table E.2. All models
were trained with a maximum number of 5000 steps with early stopping.

Table E.2: Hyperparameters of the damped pendulum experiments.

Method Niter λ0 τ1 τ2

APHYNITY Hamiltonian 5 1 1 0.1
APHYNITY ParamODE (ω0) 5 1 1 10

APHYNITY ParamODE (ω0, λ) 5 1000 1 100
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E.5.2 Reaction-diffusion equations

The system is driven by a FitzHugh-Nagumo type PDE [121]

∂u

∂t
= a∆u + Ru(u, v; k)

∂v

∂t
= b∆v + Rv(u, v),

where a and b are respectively the diffusion coefficients of u and v, ∆ is the Laplace operator. The
local reaction terms are Ru(u, v; k) = u − u3 − k − v, Rv(u, v) = u − v.

The state X = (u, v) is defined over a compact rectangular domain Ω = [−1, 1]2 with periodic
boundary conditions. Ω is spatially discretized with a 32×32 2D uniform square mesh grid. The periodic
boundary condition is implemented with circular padding around the borders. ∆ is systematically
estimated with a 3 × 3 discrete Laplace operator.

Dataset Starting from a randomly sampled initial state Xinit ∈ [0, 1]2×32×32, we generate states by
integrating the true PDE with fixed a, b, and k in a dataset (a = 1 × 10−3, b = 5 × 10−3, k = 5 × 10−3).
We firstly simulate high time-resolution (δtsim = 0.001) sequences with explicit finite difference method.
We then extract states every δtdata = 0.1 to construct our low time-resolution datasets.

We set the time of random initial state to t = −0.5 and the time horizon to t = 2.5. 1920 sequences
are generated, with 1600 for training/validation and 320 for test. We take the state at t = 0 as X0 and
predict the sequence until the horizon (equivalent to 25 time steps) in all reaction-diffusion experiments.
Note that the sub-sequence with t < 0 are reserved for the extensive experiments in Appendix E.7.1.

Neural network architectures Our Fa here is a 3-layer convolution network (ConvNet). The two
input channels are (u, v) and two output ones are (∂u

∂t , ∂v
∂t ). The purely data-driven Neural ODE uses

such ConvNet as its F . The detailed architecture is provided in Table E.3. The estimated physical
parameters θp in Fp are simply a trainable vector (a, b) ∈ R2

+ or (a, b, k) ∈ R3
+.

Table E.3: ConvNet architecture in reaction-diffusion and wave equation experiments, used as data-
driven derivative operator in APHYNITY and Neural ODE [33].

Module Specification

2D Conv. 3 × 3 kernel, 2 input channels, 16 output channels, 1 pixel zero padding
2D Batch Norm. No average tracking
ReLU activation —
2D Conv. 3 × 3 kernel, 16 input channels, 16 output channels, 1 pixel zero padding
2D Batch Norm. No average tracking
ReLU activation —
2D Conv. 3 × 3 kernel, 16 input channels, 2 output channels, 1 pixel zero padding

Optimization hyperparameters We choose to apply the same hyperparameters for all the reaction-
diffusion experiments: Niter = 1, λ0 = 1, τ1 = 1 × 10−3, τ2 = 1 × 103.
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E.5.3 Wave equations

The damped wave equation is defined by

∂2w

∂t2 − c2∆w + k
∂w

∂t
= 0,

where c is the wave speed and k is the damping coefficient. The state is X = (w, ∂w
∂t ).

We consider a compact spatial domain Ω represented as a 64 × 64 grid and discretize the Laplacian
operator similarly. ∆ is implemented using a 5 × 5 discrete Laplace operator in simulation whereas
in the experiment is a 3 × 3 Laplace operator. Null Neumann boundary condition are imposed for
generation.

Dataset δt was set to 0.001 to respect Courant number and provide stable integration. The simulation
was integrated using a 4th order finite difference Runge-Kutta scheme for 300 steps from an initial
Gaussian state, i.e for all sequence at t = 0, we have:

w(x, y, t = 0) = C × exp
(x−x0)2+(y−y0)2

σ2 . (E.6)

The amplitude C is fixed to 1, and (x0, y0) = (32, 32) to make the Gaussian curve centered for all
sequences. However, σ is different for each sequence and uniformly sampled in [10, 100]. The same
δt was used for train and test. All initial conditions are Gaussian with varying amplitudes. 250
sequences are generated, 200 are used for training while 50 are reserved as a test set. In the main
paper setting, c = 330 and k = 50. As with the reaction diffusion case, the algorithm takes as input a
state Xt0 = (w, dw

dt )(t0) and predicts all states from t0 + δt up to t0 + 25δt.

Neural network architectures The neural network for Fa is a 3-layer convolution neural network with
the same architecture as in Table E.3. For Fp, the parameter(s) to be estimated is either a scalar
c ∈ R+ or a vector (c, k) ∈ R2

+. Similarly, Neural ODE networks are build as presented in Table E.3.

Optimization hyperparameters We use the same hyperparameters for the experiments:
Niter = 3, λ0 = 1, τ1 = 1 × 10−4, τ2 = 1 × 102.

E.6 Ablation study

We conduct ablation studies to show the effectiveness of APHYNITY’s adaptive optimization and
trajectory-based learning scheme.

E.6.1 Ablation to vanilla ML/MB cooperation

In Table E.4, we consider the ablation case with the vanilla augmentation scheme found in
[139, 264, 168], which does not present any proper decomposition guarantee. We observe that the
APHYNITY cooperation scheme outperforms this vanilla scheme in all case, both in terms of forecasting
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Table E.4: Ablation study comparing APHYNITY to the vanilla augmentation scheme [264, 168] for
the reaction-diffusion equation, wave equation and damped pendulum.

Dataset Method log MSE %Err Param. ∥Fa∥2

Damped
pendu-
lum

Hamiltonian with vanilla aug. -0.35±0.1 n/a 837±117
APHYNITY Hamiltonian -3.97±1.2 n/a 623±68

Param ODE (ω0) with vanilla aug. -7.02±1.7 4.5 148±49
APHYNITY Param ODE (ω0) -7.86±0.6 4.0 132±11

Param ODE (ω0, α) with vanilla aug. -7.60±0.6 4.65 35.5±6.2
APHYNITY Param ODE (ω0, α) -8.31±0.3 0.39 8.5±2.0

Augmented True ODE with vanilla aug. -8.40±0.2 n/a 3.4±0.8
APHYNITY True ODE -8.44±0.2 n/a 2.3±0.4

Reaction-
diffusion

Param. PDE (a, b) with vanilla aug. -4.56±0.52 8.4 (7.5±1.4)e1
APHYNITY Param. PDE (a, b) -5.10±0.21 2.3 (6.7±0.4)e1

Param. PDE (a, b, k) with vanilla aug. -8.04±0.03 25.4 (1.5±0.2)e-2
APHYNITY Param. PDE (a, b, k) -9.35±0.02 0.096 (1.5±0.4)e-6

True PDE with vanilla aug. -8.12±0.05 n/a (6.1±2.3)e-4
APHYNITY True PDE -9.17±0.02 n/a (1.4±0.8)e-7

Wave
equation

Param PDE (c) with vanilla aug. -3.90 ± 0.27 0.51 88.66
APHYNITY Param PDE (c) -4.64±0.25 0.31 71.0

Param PDE (c, k) with vanilla aug. -5.96 ± 0.10 0.71 25.1
APHYNITY Param PDE (c, k) -6.09±0.28 0.70 4.54

performances (e.g. log MSE= -0.35 vs. -3.97 for the Hamiltonian in the pendulum case) and parameter
identification (e.g. Err Param=8.4% vs. 2.3 for Param PDE (a, b for reaction-diffusion). It confirms
the crucial benefits of APHYNITY’s principled decomposition scheme.

E.6.2 Detailed ablation study

We conduct also two other ablations in Table E.5:

• derivative supervision: in which Fp +Fa is trained with supervision over approximated derivatives
on ground truth trajectory, as performed in [96, 53]. More precisely, APHYNITY’s Ltraj is
here replaced with Lderiv = ∥dXt

dt − F (Xt)∥ as in Eq. (E.5), where dXt
dt is approximated by finite

differences on Xt.

• non-adaptive optim.: in which we train APHYNITY by minimizing ∥Fa∥ without the adaptive
optimization of λ shown in Algorithm 1. This case is equivalent to λ = 1, τ2 = 0.

We highlight the importance to use a principled adaptive optimization algorithm (APHYNITY
algorithm described in paper) compared to a non-adpative optimization: for example in the reaction-
diffusion case, log MSE= -4.55 vs. -5.10 for Param PDE (a, b). Finally, when the supervision occurs
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Table E.5: Detailed ablation study on supervision and optimization for the reaction-diffusion equation,
wave equation and damped pendulum.

Dataset Method log MSE %Err Param. ∥Fa∥2

Damped
pendu-
lum

Augmented Hamiltonian derivative supervision -0.83±0.3 n/a 642±121
Augmented Hamiltonian non-adaptive optim. -0.49±0.58 n/a 165±30
APHYNITY Hamiltonian -3.97±1.2 n/a 623±68

Augmented Param ODE (ω0) derivative supervision -1.02±0.04 5.8 136±13
Augmented Param ODE (ω0) non-adaptive optim. -4.30±1.3 4.4 90.4±27
APHYNITY Param ODE (ω0) -7.86±0.6 4.0 132±11

Augmented Param ODE (ω0, α) derivative supervision -2.61±0.2 5.0 3.2±1.7
Augmented Param ODE (ω0, α) non-adaptive optim. -7.69±1.3 1.65 4.8±7.7
APHYNITY Param ODE (ω0, α) -8.31±0.3 0.39 8.5±2.0

Augmented True ODE derivative supervision -2.14±0.3 n/a 4.1±0.6
Augmented True ODE non-adaptive optim. -8.34±0.4 n/a 1.4±0.3
APHYNITY True ODE -8.44±0.2 n/a 2.3±0.4

Reaction-
diffusion

Augmented Param. PDE (a, b) derivative supervision -4.42±0.25 12.6 (6.8±0.6)e1
Augmented Param. PDE (a, b) non-adaptive optim. -4.55±0.11 7.5 (7.6±1.0)e1
APHYNITY Param. PDE (a, b) -5.10±0.21 2.3 (6.7±0.4)e1

Augmented Param. PDE (a, b, k) derivative supervision -4.90±0.06 11.7 (1.9±0.3)e-1
Augmented Param. PDE (a, b, k) non-adaptive optim. -9.10±0.02 0.21 (5.5±2.9)e-7
APHYNITY Param. PDE (a, b, k) -9.35±0.02 0.096 (1.5±0.4)e-6

Augmented True PDE derivative supervision -6.03±0.01 n/a (3.1±0.8)e-3
Augmented True PDE non-adaptive optim. -9.01±0.01 n/a (1.5±0.8)e-6
APHYNITY True PDE -9.17±0.02 n/a (1.4±0.8)e-7

Wave
equation

Augmented Param PDE (c) derivative supervision -1.16±0.48 12.1 0.00024
Augmented Param PDE (c) non-adaptive optim. -2.57±0.21 3.1 43.6
APHYNITY Param PDE (c) -4.64±0.25 0.31 71.0

Augmented Param PDE (c, k) derivative supervision -4.19±0.36 7.2 0.00012
Augmented Param PDE (c, k) non-adaptive optim. -4.93±0.51 1.32 0.054
APHYNITY Param PDE (c, k) -6.09±0.28 0.70 4.54

Augmented True PDE derivative supervision -4.42 ± 0.33 n/a 6.02e-5
Augmented True PDE non-adaptive optim. -4.97±0.49 n/a 0.23
APHYNITY True PDE -5.24±0.45 n/a 0.14

on the derivative, both forecasting and parameter identification results are systematically lower than
with APHYNITY’s trajectory based approach: for example, log MSE=-1.16 vs. -4.64 for Param PDE
(c) in the wave equation. It confirms the good properties of the APHYNITY training scheme.
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E.7 Additional experiments

E.7.1 Reaction-diffusion systems with varying diffusion parameters

We conduct an extensive evaluation on a setting with varying diffusion parameters for reaction-
diffusion equations. The only varying parameters are diffusion coefficients, i.e. individual a and b for
each sequence. We randomly sample a ∈ [1 × 10−3, 2 × 10−3] and b ∈ [3 × 10−3, 7 × 10−3]. k is still
fixed to 5 × 10−3 across the dataset.

In order to estimate a and b for each sequence, we use here a ConvNet encoder E to estimate
parameters from 5 reserved frames (t < 0). The architecture of the encoder E is similar to the one in
Table E.3 except that E takes 5 frames (10 channels) as input and E outputs a vector of estimated
(ã, b̃) after applying a sigmoid activation scaled by 1 × 10−2 (to avoid possible divergence). For the
baseline Neural ODE, we concatenate a and b to each sequence as two channels.

In Table E.6, we observe that combining data-driven and physical components outperforms the
pure data-driven one. When applying APHYNITY to Param PDE (a, b), the prediction precision is
significantly improved (log MSE: -1.32 vs. -4.32) with a and b respectively reduced from 55.6% and
54.1% to 11.8% and 18.7%. For complete physics cases, the parameter estimations are also improved
for Param PDE (a, b, k) by reducing over 60% of the error of b (3.10 vs. 1.23) and 10% to 20% of the
errors of a and k (resp. 1.55/0.59 vs. 1.29/0.39).

The extensive results reflect the same conclusion as shown in the main article: APHYNITY improves
the prediction precision and parameter estimation. The same decreasing tendency of ∥Fa∥ is also
confirmed.

Table E.6: Results of the dataset of reaction-diffusion with varying (a, b). k = 5 × 10−3 is shared across
the dataset.

Method log MSE %Err a %Err b %Err k ∥Fa∥2

Data-
driven Neural ODE [33] -3.61±0.07 n/a n/a n/a n/a

Incomplete
physics

Param PDE (a, b) -1.32±0.02 55.6 54.1 n/a n/a
APHYNITY Param PDE (a, b) -4.32±0.32 11.8 18.7 n/a (4.3±0.6)e1

Complete
physics

Param PDE (a, b, k) -5.54±0.38 1.55 3.10 0.59 n/a
APHYNITY Param PDE (a, b, k) -5.72±0.25 1.29 1.23 0.39 (5.9±4.3)e-1

True PDE -8.86±0.02 n/a n/a n/a n/a
APHYNITY True PDE -8.82±0.15 n/a n/a n/a (1.8±0.6)e-5

E.7.2 Additional results for the wave equation

We conduct an experiment where each sequence is generated with a different wave celerity. This
dataset is challenging because both c and the initial conditions vary across the sequences. For each
simulated sequence, an initial condition is sampled as described previously, along with a wave celerity c
also sampled uniformly in [300, 400]. Finally our initial state is integrated with the same Runge-Kutta
scheme. 200 of such sequences are generated for training while 50 are kept for testing.

193



E.7. ADDITIONAL EXPERIMENTS

For this experiment, we also use a ConvNet encoder to estimate the wave speed c from 5 consecutive
reserved states (w, ∂w

∂t ). The architecture of the encoder E is the same as in Table E.3 but with 10
input channels. Here also, k is fixed for all sequences and k = 50. The hyper-parameters used in these
experiments are the same than described in the Section E.5.3.

The results when multiple wave speeds c are in the dataset are consistent with the one present when
only one is considered. Indeed, while prediction performances are slightly hindered, the parameter
estimation remains consistent for both c and k. This extension provides elements attesting for the
robustness and adaptability of our method to more complex settings. Finally the purely data-driven
Neural-ODE fails to cope with the increasing difficulty.

Table E.7: Results for the damped wave equation when considering multiple c sampled uniformly in
[300, 400] in the dataset, k is shared across all sequences and k = 50.

Method log MSE %Error c %Error k ∥Fa∥2

Data-
driven Neural ODE [33] 0.056±0.34 n/a n/a n/a

Incomplete
physics

Param PDE (c) -1.32±0.27 23.9 n/a n/a
APHYNITY Param PDE (c) -4.51±0.38 3.2 n/a 171

Complete
physics

Param PDE (c, k) -4.25±0.28 3.54 1.43 n/a
APHYNITY Param PDE (c, k) -4.84±0.57 2.41 0.064 3.64

True PDE (c, k) -4.51±0.29 n/a n/a n/a
APHYNITY True PDE (c, k) -4.49±0.22 n/a n/a 0.0005
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- application to solar energy.

Résumé : Cette thèse aborde le problème de la prédiction spatio-temporelle par apprentissage
profond, motivée par la prévision à court-terme de la production photovoltäıque à Electricité
de France (EDF). Nous explorons dans cette thèse deux principales directions de recherche. La
première concerne le choix de la fonction de perte pour entrâıner les modèles: nous proposons
d’utiliser des critères de forme et de décalage temporel sur les trajectoires prédites. Nous
introduisons la fonction de perte DILATE pour la prévision déterministe et le modèle STRIPE
pour la prévision probabiliste. Notre seconde direction de recherche est d’augmenter des
modèles physiques incomplets avec des réseaux de neurones profonds. Pour la prédiction de
vidéo, nous introduisons le modèle PhyDNet qui sépare une partie de dynamique physique,
d’une partie résiduelle qui capture l’information complémentaire, comme la texture et les
détails, nécessaire à la bonne prédiction. Nous proposons aussi un schéma d’apprentissage,
appelé APHYNITY, qui assure une décomposition bien posée et unique entre des modèles
physiques incomplets et des réseaux de neurones profonds, sous de faibles hypothèses.

Mots clés : apprentissage profond, apprentissage statistique, prévision spatio-temporelle,
prévision photovoltäıque.

Abstract : This thesis tackles the subject of spatio-temporal forecasting with deep learning.
The motivating application at Electricity de France (EDF) is short-term solar energy forecasting
with fisheye images. We explore two main research directions for improving deep forecasting
methods by injecting external physical knowledge. The first direction concerns the role of the
training loss function. We show that differentiable shape and temporal criteria can be leveraged
to improve the performances of existing models. We address both the deterministic context
with the proposed DILATE loss function and the probabilistic context with the STRIPE
model. Our second direction is to augment incomplete physical models with deep data-driven
networks for accurate forecasting. For video prediction, we introduce the PhyDNet model
that disentangles physical dynamics from residual information necessary for prediction, such
as texture or details. We further propose a learning framework (APHYNITY) that ensures a
principled and unique linear decomposition between physical and data-driven components un-
der mild assumptions, leading to better forecasting performances and parameter identification.

Keywords : deep learning, machine learning, spatio-temporal forecasting, solar energy
forecasting.
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