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“As far as the laws of mathematics refer to reality, they are not certain;
and as far as they are certain, they do not refer to reality.”

Albert Einstein (1879–1955)



iii

Acknowledgements
No words can express my sincere wishes and thanks to those who directly or indirectly support
and encourage me to complete this thesis successfully. They all deserve my gratitude and appre-
ciation.

I wish to express my gratitude most strongly to my supervisors, Professor Loïc LE MARREC
and Professor Guy CASALE, for guiding me here to do the work I love and have unforgettable
memories. They have taught me the methodology to do the research and present it professionally
and understandably. Principally, they provided invaluable guidance, encouraged me during the
darkest moments throughout this research, and shared their exciting moments with their great
sense of humour. It was a great privilege and honour to work and study under their guidance.

It is an occasion to express my gratitude to Professor DUONG Minh Duc, who helped me
become more confident in pursuing my dreams. Through his teaching method, most problems
have become naturally simple, coherent and concise. I learnt a lot from him, not only the method-
ology but also the humility and sympathy. I am incredibly grateful for what he has offered me.

I greatly appreciate Professor Patrizio NEFF and Professor Vladimir SALNIKOV - the review-
ers of the thesis, who have been so kindly spend time to read my thesis. Their comments and
remarks are helpful to improve the manuscript. It is my pleasure to thank Professor Lalaonorina
R.RAKOTOMANANA, Professor Emmanuelle ROUHAUD, Professor Boris KOLEV, Professor
Patrick VEROVIC and Professor Nicolas AUFFRAY, who accepted to be on my thesis committee.

I would like to acknowledge the Institute of Mathematical Researcher of Rennes (IRMAR) and
Center Henri Lebesgue (CHL) and the staff therein. A special thank goes to Xhenxila Lacham-
bre, Marie-Aude Verger and Chantal Halet for all their administrative supports to complete this
thesis successfully. By the way, my sincere thanks to the French-Vietnam Master in Applied
Mathematics Program for being a bridge for "us" to studying and researching in France.

My sincere thanks go to Professor Lalaonorina R.RAKOTOMANANA, who has always been
interested in our research, for his careful and thoughtful comments. I also want to thank Pro-
fessor Ilya M. PESHKOV. His kindness has left me with unforgettable memories. Thanks to my
colleagues Nguyen Dinh Duong and Marwan Hariz, who share the experience of PhD life with
me. A special mention goes to the Vietnamese community in France. Thank all of you for your
caring, sharing Vietnamese foods with me and especially our friendship. A special thanks go to
Nguyen Thi Minh Phuong, who is always willing to help everyone.

Last but not least, I wish to give all my heart to my family, particularly my parents for their
love and sacrifices for my future. I am very much thankful for my passion, "Minh Chau" and my
lovely cat "Happy/Pi", who stand by and constantly encourage me during the darkest moments.
The thesis is dedicated to my Dad and Mom.

Nguyen Van Hoi, Rennes, France (December 2021)





v

Contents

Acknowledgements iii

Résumé xi

1 Introduction 1
1.1 General introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Riemann-Cartan geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.1 Affine connection and covariant derivative . . . . . . . . . . . . . . . . . . . 3
1.2.2 Torsion and curvature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2.3 Metric tensor and metric-compatible connection . . . . . . . . . . . . . . . . 7

1.3 Generalized material continuum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.3.1 Transformation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.3.2 Defective medium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.4 Cosserat continuum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.4.1 Linear Cosserat continuum . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.4.2 Generalization of Cosserat continuum . . . . . . . . . . . . . . . . . . . . . . 15

1.5 Overview on continuum theory of defects . . . . . . . . . . . . . . . . . . . . . . . . 16
1.5.1 Classical dislocation mechanics . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.5.1.1 Linearized dislocation mechanics . . . . . . . . . . . . . . . . . . . 17
1.5.1.2 Non-linear dislocation mechanics . . . . . . . . . . . . . . . . . . . 18

1.5.2 Geometric theories of defects . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
1.5.2.1 Dislocation mechanics and Cartan’s moving frames . . . . . . . . 20
1.5.2.2 Nonholonomic principle . . . . . . . . . . . . . . . . . . . . . . . . 21
1.5.2.3 Spin connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

1.6 Contribution of this thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
1.6.1 Motivation: a reformulation of Eringen’s description . . . . . . . . . . . . . 25
1.6.2 Non scale material modeling: non-linear transformation . . . . . . . . . . . 26
1.6.3 Scaled material model: Higher-order transformations . . . . . . . . . . . . . 27

1.6.3.1 Theoretical analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
1.6.3.2 Geometric illustration . . . . . . . . . . . . . . . . . . . . . . . . . . 30

1.6.4 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

I Riemann-Cartan geometry applied to mechanics 37

2 Geometrical approach to kinematics of defected material 39
2.1 Riemann-Cartan geometry and defects . . . . . . . . . . . . . . . . . . . . . . . . . . 40



vi

2.1.1 An induced geometrical structure . . . . . . . . . . . . . . . . . . . . . . . . 40
2.1.2 Geometrical interpretation of the induced connection . . . . . . . . . . . . . 43

2.2 Physical interpretations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
2.2.1 Physical picture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

2.2.1.1 Numerical simulation
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

2.2.2 Introducing a sub-scale
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

2.2.2.1 Numerical simulation
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

2.3 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
2.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3 Field equations 51
3.1 Strain measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.1.1 Green-Lagrange measure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.1.2 Relative strain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.1.3 Change of torsion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.2 Internal energy density and stress tensors . . . . . . . . . . . . . . . . . . . . . . . . 52
3.3 Mass, inertia and kinetic energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.4 Variational equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.4.1 Work of the internal forces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
3.4.2 Work of the external forces . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
3.4.3 Work of the kinetic energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.4.4 Local equations of motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.5 Linear equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
3.5.1 General equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
3.5.2 One dimensional dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

II Tangent geometry and applications to mechanics 65

4 Fiber bundle manifolds: a geometry of a microstructured material 67
4.1 Fiber bundle manifolds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.1.1 Smooth fiber bundle manifold . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.1.1.1 The tangent bundle manifold . . . . . . . . . . . . . . . . . . . . . 70

4.1.2 Vertical tangent spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
4.1.3 Ehresmann connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.1.4 Parallel transport . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
4.1.5 Ehresmann curvature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.2 Geometry of a microstructured material . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.2.1 The solder form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.2.2 Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76



vii

4.2.3 Parallel and rolling transport . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
4.2.4 Curvature and torsion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
4.2.5 Sasaki metric . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5 On tangent geometry and generalized continuum with defects 81
5.1 Toward transformation of microstructured media . . . . . . . . . . . . . . . . . . . 82
5.2 Scaled material model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.2.1 Preliminary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
5.2.2 Overall approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.3 Induced structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
5.3.1 Linear induced connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
5.3.2 Induced torsion, curvature and non-metricity tensor . . . . . . . . . . . . . 88
5.3.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.4 Alternative approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
5.4.1 Non-scale material modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
5.4.2 On comparison with the nonholonomic principle . . . . . . . . . . . . . . . . . 93
5.4.3 Spin connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
5.4.4 On comparison with Kröner-Lee-decomposition . . . . . . . . . . . . . . . . 94
5.4.5 The solder form and moving frame . . . . . . . . . . . . . . . . . . . . . . . 95

5.5 Explicit transformations producing curvature, torsion and metricity tensor . . . . . 95
5.5.1 Parallel and rolling transport . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
5.5.2 Pure-non-metric transformation . . . . . . . . . . . . . . . . . . . . . . . . . 99
5.5.3 Length-scale dependence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
5.5.4 Torsion with no curvature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
5.5.5 Discussion on Burger vector . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
5.5.6 Curvature with no torsion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

5.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

Conclusion 109





ix

To my parents
Nguyen Mui et Do Thi Chau





xi

Résumé
Cette thèse porte sur un modèle géométrique de transformations mécaniques de milieux maté-
riels possédant une micro-structure.
Ce type de matériaux est courant dans la nature. La modélisation du comportement de ces mi-
lieux est un vaste sujet qui englobe l’homogénéisation, les théories de milieux effectifs, ou encore
les théories multi-échelles. Ces approches sont souvent efficaces en petites déformations mais
des difficultés géométriques apparaissent pour des grandes déformations.
Une alternative consiste à interpréter le milieu continu comme une variété, dite matérielle, M fi-
brée sur une variété, dite spatiale, B. Cette dernière est plongée dans l’espace ambiant euclidien.
Dans ce cas, le type de variété illustre certaines caractéristiques du matériau. En mécanique des
milieux continus, les variétés spatiales permettent de modéliser le comportement macroscopique
de domaines matériels ; ici sa configuration est modélisée à travers le choix d’une connexion et
d’une métrique sur la variété matérielle M .
Nous ne considérons dans cette thèse que des défauts de type mécanique, c’est-à-dire provenant
d’incohérence dans les placements et orientations des micro-éléments. Ce placement induit sur
la variété matérielle une connexion et une métrique tirées en arrière des connexion et métrique
de l’espace euclidien. Les défauts sont alors mesurés à travers la torsion, la courbure et la non-
métricité de la connexion. Le choix de la cinématique du plongement est donc un élément crucial
pour la construction du modèle.
Dans ce texte plusieurs types de plongements seront abordés et chaque fois la variété matérielle
induite sera étudiée et comparée aux modèles classiques ou plus modernes de la littérature. Il
s’avère que si l’on considère le plongement d’une variété spatiale et de son espace tangent, la va-
riété induite possède des caractéristiques d’une variété de Riemann-Cartan déjà exploitées pour
l’étude des matériaux à défauts cristallins ou à dislocations. La connexion n’a pas de courbure
mais possède une torsion qui s’interprète comme une densité de dislocations.

Une des contributions principales de cette thèse est d’introduire une nouvelle approche des
transformations de matériaux micro-structurés. Les transformations sont définies sur l’espace
tangent à la variété matérielle TM . On construit ainsi une connexion et une métrique obtenues
par tiré-en-arrière. Cette construction permet une grande liberté dans la description de la struc-
ture induite. Elle permet naturellement de distinguer les notions de connexion et de métrique à
diverses échelles. Cela confère au modèle la possibilité d’avoir une interprétation physique des
résultats.
La variété ainsi construite possède des propriétés très riches car elle possède une connexion mu-
nie de torsion et de courbure et la métrique n’est plus forcément compatible avec la connexion.
L’ensemble de ces propriétés qui se distinguent d’une variété de Riemann classique permet de
modéliser une large classe de défauts de microstructures. Les applications en mécanique des
milieux continus sont larges : de la mécaniques des fluides à l’écrouissage en passant par la plas-
ticité ; mais ces thèmes ne seront pas abordés dans cette thèse.

La seconde contribution majeure consiste en le choix de ce morphisme de fibré. Il est en ef-
fet obtenu en n’introduisant qu’une nouvelle quantité scalaire (un facteur d’échelle). Les autres
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ingrédients (ou degrés de libertés du modèle) utilisés sont associés à la cinématique du micro-
élément et existent de longue date dans d’autres modèles. On dispose donc d’une modélisation
contrôlable par un nombre réduit de variables indépendantes ce qui permet une discussion ex-
haustive et rigoureuse. En particulier la notion de facteur d’échelle est relativement explicite à la
lecture des résultats.

La troisième contribution de cette thèse est relative à la mise en pratique de ces modèles à tra-
vers des simulations numériques. Ces simulations permettent d’illustrer les propriétés micro-
scopiques et macroscopiques du matériau après transformation. Les effets de ces connexions
sont illustrés en simulant numériquement le transport parallèle de directeurs le long d’un che-
min de longueur finie. Cela a permis d’interpréter macroscopiquement des phénomènes qui sont
souvent illustrés sur des lacets infinitésimaux. Dans le cadre d’une modélisation multi-échelle,
ces lacets infinitésimaux ne fournissent en effet qu’une information partielle (car ils sont relatifs
par construction à des interprétations microscopiques). Afin d’élargir et de compléter ce type
d’interprétation d’autres transports ont été élaborés afin de fournir des outils originaux aux mé-
caniciens : transport par roulement sans glissement, transport le long d’un circuit de Burger de
dimension finie. L’ensemble de ces simulations permet une analyse exhaustive des propriétés du
modèle sur des variables scalaires ou vectorielles, dont le support peut être macroscopique ou
microscopique.

Ce texte est composé de cinq chapitres. Le premier chapitre décrit les types de défauts étu-
diés dans cette thèse et présente rapidement les différentes approches mises en place dans la
littérature pour modéliser mathématiquement la présence de ces types de défauts dans un ma-
tériau. La plupart des travaux précédents utilisent des transformations multi-valuées ce qui crée
des difficultés tant théoriques que lors de la mise en place d’une analyse numérique. Ces points
faibles sont la motivation de ce travail visant à une description de ces phénomènes en utilisant
des transformations uni-valuées.
Dans le second chapitre, nous examinons les matériaux soumis à des transformations du type:

Υ : TB → TE3, (X, V) 7→ (φ(X), Ψ(X)V). (0.0.1)

En général ces transformations vérifient Ψ 6= Dφ, ce qui correspond à une incompatibilité des
placements des particules macroscopiques avec les placements des particules microscopiques
créant des défauts dans le matériaux. Ce type de transformation permet une reformulation de
la description donnée par Eringen des micro et macro-déformations en théorie micromorphique
(ERINGEN, 1999). Le pull-back de la connexion de Levi-Civita et de la métrique euclidienne par
Υ font de B une variété de Riemann-Cartan d’un type spécial appelé variété de Weitzenböck :
la connexion n’a pas de courbure, est compatible à la métrique, seule la présence de torsion té-
moigne de la présence de défauts.
Dans le chapitre 4, nous présentons les concepts de variétés fibrés, de connexions de Ehresmann,
de formes de soudure et de métriques de Sasaki ainsi que les notions de torsions et courbures gé-
néralisées pour ces objets. Nous traitons plus particulièrement le cas de microstructures linéaires
"canoniques" : la macro-particule en p ∈ B est interprétée comme une portion microscopique de



xiii

matériau et modélisé mathématiquement par l’espace tangent TpB.
Le chapitre 5 se restreint au cas de microstructure linéaire canonique : M est TB et la forme
de soudure est l’application identité. Dans un premier temps, nous autorisons notre matériau à
subir des transformations non-linéaires à l’échelle microscopique, c’est-à-dire représentées par :

Υ : TB → TE3 (X, Y) 7→ (φ(X), Ψ(X, Y)). (0.0.2)

La connexion obtenue par tiré-en-arrière n’est plus linéaire et la métrique est remplacée par une
métrique de Sasaki. Malheureusement ce type de transformation ne permettent pas de construire
une connexion avec de la courbure. Afin de généraliser le raisonnement, l’idée a été d’introduire
un modèle de matériaux dits "dimensionné" considérant que la matrice jacobienne de la transfor-
mation macroscopique F = Dφ définie la déformation (transformation linéaire tangeante) d’un
macro-élément dV alors que Ψ contrôle la déformation d’un micro-élément δV à une sous échelle.
Le type de transformation considérée est alors le suivant.
Considérons un vecteur Y dans TXB et un vecteur Z à l’échelle microscopique, c’est-à-dire dans
VTXB, nos transformations sont données par

Υv : VTB → VTE3, (X, Y, Z) 7→ (φ(X), F(X)Y, Θ(X)Z), (0.0.3)

avec det F = Dφ > 0 et det Θ > 0. Nous construisons une connexion de Ehresmann induite par
une telle transformation en étendant Υv à l’espace total du double tangent i.e., en considérant Υ:
TTB → TTE3 tel que

Υ(X, Y, Z) = Υv(X, Y, Z) ∀ (X, Y, Z) ∈ VTB. (0.0.4)

A priori, la forme de Υ : TTB → TTE3 est

(X, Y, Z) 7→ (φ(X), F(X)Y, Ω(X, Y)Z),

avec X ∈ B, Y ∈ TXB, Z ∈ T(X,Y)TB. Par analogie avec la formule du gradient total d’une
application TB → TE3, (X, Y) 7→ (φ(X), Ψ(X, Y)), nous posons Ω de la forme suivante :

Ω = Fa
A∂a ⊗ dXA + Ωi

A∂i ⊗ dXA + Θi
J∂i ⊗ dY J , (0.0.5)

où le choix de Ωi
A est a priori libre mais doit être spécifié pour définir totalement Υ. Dans ce

travail nous introduisons un facteur d’échelle ζ et posons

Ωi
A(X, Y) =

(
(1− ζ)∂AFi

I + ζ∂AΘi
I

)
Y I

où 0 < ζ ≤ 1 est un paramètre libre controllant les interactions d’échelles. Il peut être défini
comme ζ = `/L où L and ` sont les échelles macroscopiques et microscopiques caractéristiques.
Ce modèle "dimensionné" décrit donc la cinématique à deux échelles à travers les quantités F et
Θ et deux métriques associées à chaque échelle sont obtenues: Gh

AB = Fa
AgabFb

B et Gv
I J = Θi

IgijΘ
j
J
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respectivement. Le facteur d’échelle n’intervient pas à ce niveau mais à travers la connexion:

ΓI
AJ = ΘI

i

(
(1− ζ)∂AFi

J + ζ∂AΘi
J

)
. (0.0.6)

et donc les tenseurs associés de torsion, courbure et non-métricité.
Cette dichotomie est illustrée par de nombreux exemples numériques. Ainsi dans la Figure 1
une illustration relativement standard est fournie. Cette illustration est obtenue en imposant un

FIGURE 1: Plongement dans l’espace ambiant de la variété matérielle. Ici la dé-
formation macroscopique est nulle mais les micro-éléments ont subi un glissement

non-uniforme.

déplacement nul F = I mais un glissement non-uniforme des micro-éléments. Dans le modèle
proposé cette describtion cinématique ne préfigure pas de la présence ou non de défauts (à savoir
ici de dislocation). En effet la connexion n’est pas complètement déterminée par ces déformations
locales mais dépend également du facteur ζ qui relie le deux échelles. En fonction du paramètre ζ

la transformation Υ induit (par tiré en arrière) sur la variété M une torsion nulle ou non-triviale.
La présence de torsion ou courbure n’est révélée que par intégration. Sur une courbe fermée dé-
finie sur un domaine macroscopique, plusieurs procédés d’intégration permettent d’exhiber ces
indicateurs. Que cela soit par roulement sans-glissement ou par transport parallèle, la présence
de torsion ou courbure apparait par la non-fermeture de la quantité intégrée. Cette approche per-
met de généraliser la notion de circuit de Burger sur un domaine macroscopique sous la forme
d’une courbe intégrale dans un domaine matériel munie de torsion ou courbure.

Le modèle proposé permet d’interpréter les transformations de matériaux micro-structurés en
controllant le lien entre les phénomènes à deux échelles distinctes. Ce modèle est basé sur une
formulation géométrique qui est particulièrement dédiée aux grandes transformations et aux si-
mulations numériques. Les applications à des matériaux réels nécessitent cependant des travaux
supplémentaires qui sont listés en conclusion.
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Chapter 1

Introduction

“Write down all things we have and we want.
Observe the same and different factors, break down the problems and take the simplest step first.
It takes us further than we are.”

DUONG Minh Duc (translated by NVH)

1.1 General introduction

A crystalline structure, in practice, always has a great number of defects. These may be chemical,
electrical or structural involving foreign atoms. Most of physical properties of a medium, such as
plasticity, melting, growth, etc., depend on crystalline structure defects. Accordingly, the study
of defects becomes an essential research field. A comprehensive experimental and theoretical
investigation of defects in crystals began in the 1930s (“Zur Theorie der Elastizitätsgrenze und
der Festigkeit kristallinischer Körper”). It continues to be of interest until nowadays (Cordier
et al., 2014). There are many different kinds of defects, that are classified depending on their
space dimensionality. The simplest one is a point defect occurring if an atom is missing from
its regular lattice site (vacancy), or there may be an excess atom (interstitial). Suppose a more
extensive set of vacancies comes to lie side by side, forming an entire disc of missing atoms. The
boundary line forms a line-like defect. Certainly, line-like defects can also arise in an opposite
process of clustering of interstitial atoms. Line-like defects of this type are called dislocation
lines. A dislocation line may also result from several discs of missing or excessive atoms stacked
on top of each other. If many discs of missing or excess atoms come to lie close together, defects
in such a case say a disclination (Kleinert, 2008). Dislocations and disclinations play a central
discussion in this thesis.

The experiment process leading to all kinds of defects from an ideal crystal is the Volterra pro-
cess (Volterra, 1907), in which layers of matter are cut from a perfect crystal, with a subsequent
smooth rejoining of the cutting surfaces; for a shortcut, the sketch of the process is presented in
Figure 1.6. In this context, dislocations are obtained by a (local) discontinuity translation from
ideal crystalline to perturbed one, and hence dislocations are so-called translational defects; sim-
ilarly disclinations are underlined as rotational defects.

One possible way to model a continuum with a large number of defects is to consider it in
a continuum framework. The most promising approach, concerned by such a point of view, is
to model a continuum with defects in the framework of differential geometry. Indeed, since the
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1950s it has been noticed by several authors (Bilby, Bullough, and Smith, 1955; Kondo, 1955; Es-
helby, 1956; Kröner, 1960; Nye, 1953) and others that the Riemann-Cartan (RC) manifolds exhibit
some close relations to the continuum with defects, in which dislocations and disclinations den-
sities are interpreted as torsion and curvature tensor, respectively, of a material connection. These
seminal works have their roots in Cartan’s approach (Cartan, 1922) where the author insists on
the crucial interpretation of lack of closure of a parallelogram supported by a moving frame after
a parallel transport along an infinitesimal loop. The paper was arisen from the Cosserat brothers
who introduced a continuum model involving an independent field of rotation in addition to the
standard displacement field (Cosserat and Cosserat, 1909).

The limitation of these theories is that even though these authors laid down the crucial inter-
pretation of dislocations as the sources of torsion, none of them identified the geometric origin
for the relevance of torsion and then curvature as well. From what is said above, it should be
clear that the problem of determining the material connection and the metric as well is important
for the theory of defects. Among them, Lee and his co-worker (Le and Stumpf, 1996a; Le and
Stumpf, 1996c) starting with the ideas from Noll, 1967/68; Wang, 1967/68 and the multiplicative
decomposition of the deformation gradient F = FeFp (which was initially proposed by (Bilby,
Bullough, and Smith, 1955) and (Lee and Liu, 1967)), they obtained some relations between tor-
sion of the crystal connection and the elastic and plastic deformation gradients. The material
connection here is metric compatible, with torsion but vanishing curvature. Yavari and Goriely,
2012a was inspired by this approach and had introduced the slightly different method in which
they identified the plastic deformation gradients as Cartan’s moving frames to construct the ap-
propriate material manifolds. In this seminal work, they demanded that the material manifold
with an evolving connection (compatible with the metric) such that the frame field is everywhere
parallel. Nevertheless, from a mathematical viewpoint, this requirement is not trivial.

Another popular approach consists in focusing on the discontinuity of scalar and vector fields
(Rakotomanana, 1998) by invoking multivalued fields (Kleinert, 2008). Such approach is a mi-
croscopic alternative interpretation of the non-holonomy supported by geometrical quantities
(scalar or tensorial) at a scale for which the material may be interpreted as a continuum (Rako-
tomanana, 2018). Even if this approach was inspired by elastoplastic transformation of crystals,
its applications has a wider range including relativity and quantum mechanics (Kleinert, 2000;
Katanaev, 2005). In this modeling, the global smooth transformation is replaced by a multivalued
map, and hence the global coordinates transformation is replaced by a local ones dxa = ea

AdXA

where the triads ea
A may be multivalued too. Such a map carries a flat space to spaces with cur-

vature and torsion. The connection and metric are not induced by a smooth and single-valued
transformation but the multivalued triads may cause some difficulties.

The aim of this thesis: From the foregoing, we aim to consist of mathematical modeling of
material with defects, which is represented by the appropriated Rieman-Cartan (RC) manifold
derived from a true transformation (single-valued map). Our idea is driven by the reformula-
tion of the Eringen-Mindlin approach (Suhubi and Eringen, 1964; Mindlin, 1964) in terms of RC
geometry. Even if it relates to the theories, but its root is to introduce an additional degree of
freedom, for which macroscopic mapping is still diffeomorphism, whereas the additional field
modifies the topology of the continuum at another scale, meaning that neighbours of microcells
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are changed. Soon, we realize that the fiber geometry (Epstein, 2010; Epstein, 2014) is a satisfac-
tory mathematical framework where these intuitive considerations, that are the microcontinuum
field theories (Eringen, 1999; Mindlin, 1964) and RC approach, would fit naturally. By the way, it
is reasonable to begin this thesis with the introduction of RC geometry and some applications in
mechanics.

In this chapter, we remind a synthesis of some definitions on Riemann-Cartan geometry (RC
manifold). A global overview on generalized continuous media for medium with distributions
of defects is presented, too. Particular attention is addressed on models using mathematical
supports associated with RC manifold: a development of the Cosserat continuum is presented
and several more modern approaches to construct such a manifold are given. Finally, this chap-
ter ends with a description of the objectives of this dissertation regarding previous works and
mention the plan of the study.

1.2 Riemann-Cartan geometry

Riemann (1826-1866) aimed to introduce the notion of a manifold and its structures. The first is
a Riemannian metric, a quadratic field that plays the role of a natural generalization of the inner
product between two vectors in Euclidean space. The other is a connection what will then be
called the Levi-Civita connection, which is derived from the metric. By definition, the associated
torsion of the Levi-Civita connection is null. Briefly, the resulting geometry is Riemannian ge-
ometry. Later, Cartan (1869-1951) enriched Riemann’s geometry by introducing a non-vanishing
torsion. The connection is now independent of the metric. Riemannian geometry is renamed by
Riemann-Cartan geometry regarding the contribution of Cartan.

In the present section, we will review the principal properties on Riemann-Cartan geometry.
Readers can find more details on Nakahara, 2003; Epstein, 2010; Epstein, 2014; Choquet-Bruhat,
DeWitt-Morette, and Dillard-Bleick, 1982; Rakotomanana, 2018 and references therein.

1.2.1 Affine connection and covariant derivative

Let B be an arbitrary manifold, we denote that TB is the tangent bundle space of the manifold,
T∗B is its dual bundle space, and X(B) is the set of vector fields on B. On the manifold, two
vectors defined at different points cannot be naively compared with each other. So far, there is
no directional derivative acting on vector fields or more general tensors fields. Hence, one needs
a tool, called a connection, which specifies how a vector is transported along a curve.

Definition 1.2.1 (Affine connection). A linear (affine) connection on B is an operation

∇ : X(B)×X(B) → X(B)

(u, v) 7→ ∇uv
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which satisfies the following conditions,

∇u(v + w) = ∇uv +∇uw,

∇u+vw = ∇uw +∇vw,

∇( f u)v = f∇uv,

∇u( f v) = u[ f ]v + f∇uv,
(1.2.1)

where f ∈ C ∞(B) and u[ f ] is the directional derivative of f along a vector field u. Employing (xa) as
coordinates system on B, we deduce that u[ f ] = ua∂a f 1 and

∇∂a ∂b = Γc
ab∂c, (1.2.2)

where Γc
ab are the connection coefficients or so-called Christoffel symbols and ∂a = ∂/∂xa is the natural

base for the tangent bundle corresponding to coordinates (xa) (sometimes ea will be used instead of ∂a).
The connection coefficients specify how the basis vectors change from a point to its neighbor.

It is remarkable that the connection must not depend on the chosen coordinate. In practice,
under a coordinate transformation xa 7→ x̃j = x̃j(xa), the connection coefficients transform as

Γ̃k
ij =

∂xb

∂x̃i
∂xc

∂x̃j
∂x̃k

∂xa Γa
bc +

∂2xa

∂x̃i∂x̃j
∂x̃k

∂xa . (1.2.3)

Hereafter, to verify that an object is an affine connection, we only need to confirm that it is a set
of smooth functions satisfying this transformation rule (1.2.3).

Having the tool in hand that measures the variation of a vector from a point to its neighborhood,
one may first extend this notion along any general curve on B.

Definition 1.2.2 (Curves). Let σ be a curve in B:

σ : [0, 1] → B

t 7→ σ(t) = (xa(t))
(1.2.4)

For such coordinate system, the velocity field of the curve σ̇(t) = u(t) is a vector field defined along this
curve:

u(t) =
dxa(t)

dt
∂a

In particular, one may control the transport of a vector along a curve without changing or los-
ing information. The following definition performs it. The one-to-one correspondence between
the connection and parallel transport is pictorially given in Figure 1.1.

Definition 1.2.3 (Parallel transport). Let

σ : [0, 1]→ B t 7→ σ(t) = (xa(t)) (1.2.5)

be a curve in B, its velocity field u(t) = σ̇(t) = ẋa(t)ea, and let v be a vector field defined (at least) along
this curve. The vector field v is said to be parallel transported along σ if and only if it satisfies

∇uv = 0 (1.2.6)

1when an index variable appears twice in a single term and is not otherwise defined, it implies summation of that
term over all the values of the index. This convention is called Einstein summation.
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In terms of the components, (1.2.6) reads as ((Nakahara, 2003))

dva

dt
+ Γa

bc
dxb(σ(t))

dt
vc = 0. (1.2.7)

FIGURE 1.1: The relationship between the connection and parallel transport: The
vector u defines a path of length ε. Let v‖ denote a vector vp “parallel transported”

to q.

Since ∇u has the meaning of a derivative, it is natural to define the covariant derivative of
f ∈ C ∞(B) by the ordinary directional derivative: ∇u f = u[ f ]. Furthermore, it can generalize
the derivative of tensor fields on a manifold. In particular, the covariant derivative of a vector
field v and of a 1-form field ω are respectively given by

∇∂b (va∂a) =

(
∂bva + Γa

bcuc
)

∂a (1.2.8)

∇∂b (ωadxa) =

(
∂bωa − Γc

baωc

)
dxa. (1.2.9)

One may write that ∇v = ∇∂b (va∂a)⊗ dxb and ∇ω = ∇∂b (ωadxa)⊗ dxb.
More generally, we can say that the covariant derivative of a type (p, q) tensor is a type (p, q + 1)

tensor as follows. We require that for any product of arbitrary tensors, we should have

∇(t1 ⊗ t2) = ∇t1 ⊗ t2 + t1 ⊗∇t2. (1.2.10)

This allows us to define the components of the covariant derivative of any tensor field as

∇∂bt
a1..ap
1...cq = ∂bt

a1..ap
c1...cq + Γa

bdt
d..ap
c1...cq + ... + Γa

bdt
a1..d
c1...cq

− Γd
bc1

t
a1..ap
d...cq
− ...− Γd

bc1
t

a1..ap
c1...d .

(1.2.11)

1.2.2 Torsion and curvature

Now the manifold B is always supposed to be endowed with the affine connection∇. It must be
emphasized that the connection is not a tensor, it cannot have an intrinsic geometrical meaning
as a measure of how much a manifold is curved. Torsion and curvature tensors are introduced
for that purpose (Nakahara, 2003).
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Definition 1.2.4 (Torsion). Denote [u, v] the Lie bracket of vector fields given by

[u, v] = (ua∂avb − va∂aub)eb. (1.2.12)

The torsion tensor of the connection is a map

T : X(B)×X(B) → X(B)

(u, v) 7→ T(u, v) = ∇uv−∇vu− [u, v].
(1.2.13)

This map satisfies the tensorial property. Then, we can write T = Ta
bcdxb ⊗ dxc ⊗ ∂a with

Ta
bc = Γa

bc − Γa
cb. (1.2.14)

The tensor measures the failure of the closure of the parallelogram made up of the small displacement
vectors and their parallel transports, a visual representation is formed in Figure 1.2.

FIGURE 1.2: Geometrical meaning of the the torsion tensor: Cartan parallelogram.
Let M be a point on the manifold B, and (MP) and (MQ) be two sets of curves
intersecting at M. Both MP and MQ are assumed infinitesimal and then constitutes
two vectors of the tangent bundle TMB . Vectors u and v are the images of MQ and
MP by parallel transport along (MP) an (MQ) respectively. The torsion measures
the lack of closure of the parallelogram made up of infinitesimal vectors MP and

MQ and their parallel transport v and u (Rakotomanana, 2018).

Definition 1.2.5 (Curvature). The curvature tensor is a map

R : X(B)×X(B)×X(B) → X(B)

(u, v, w) 7→ R(u, v)w = ∇u∇vw−∇v∇uw−∇[u,v]w.
(1.2.15)

It is a tensor field of type (1, 3). Writing R = Ra
bcd∂a, with

Ra
bcd = ∂cΓa

db − ∂dΓa
cb + Γa

ceΓe
db − Γa

deΓe
cb, then Ra

bcd = −Ra
bdc. (1.2.16)

This tensor measures the difference between two vectors: an initial one and a final one obtained by parallel
transport the initial vector along a loop, a pictorial representation is formed in Figure 1.3.
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FIGURE 1.3: Geometrical meaning of the curvature tensor: It is natural to define V
parallel transported along a great circle if the angle V makes with the great circle is
kept fixed. If V at p is parallel transported along great circles C and C′, the resulting

vector at q points in opposite directions (Nakahara, 2003).

1.2.3 Metric tensor and metric-compatible connection

A manifold is a topological space that locally looks like Euclidean space. Calculus on a manifold
is assured by the existence of smooth local coordinate systems. A structure - called a metric
tensor - is a natural generalization to an arbitrary manifold of the inner product between two
vectors in the Euclidean space. It is defined as follows.

Definition 1.2.6. A Riemannian metric g on the manifold is a type (0, 2) tensor field which satisfies the
following axioms at each point p ∈ B and for u, v ∈ TpB - a tangent bundle at the point p ∈ B

• gp(u, v) = gp(v, u)

• gp(u, u) ≥ 0, the equality holds if and only if u = 0.

Locally, the tensor can be read in the coordinate system as

g = gab(x)dxa ⊗ dxb. (1.2.17)

Definition 1.2.7. On a manifold with a connection and a metric, (B,∇, g), the connection ∇ is said
metric-compatible if and only if

∇g = 0 .

In terms of coordinates, one gets

∇∂cgab − Γd
cagdb − Γd

cbgda = 0. (1.2.18)

Equivalently, the metric-compatible condition is ∇vg(u, w) = 0 for arbitrary vector fields u, v, w on B.
It can be read as

∇vg(u, w) = g(u,∇vw) + g(∇vu, w).

Theorem 1.2.8 (Levi-Civita connection). It can be shown that on any Riemannian manifold (B, g),
there is a unique linear connection that is compatible with g and is torsion-free. This connection is the
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Levi-Civita connection and denoted ∇ (Nakahara, 2003) with the connection coefficients:

La
bc =

1
2
gad
(

∂gcd

∂xb +
∂gdb

∂xc −
∂gcb

∂xd

)
. (1.2.19)

For an arbitrary connection ∇ satisfying metric-compatible condition, the connection coeffi-
cients can be decomposed by (Nakahara, 2003)

Γa
bc = La

bc + Ka
bc. (1.2.20)

where the second term of right-hand side term of (1.2.20) is called contorsion, denoted by

Ka
bc =

1
2

(
Ta

bc + gadTe
dcgdb + gadTe

dbgdc

)
. (1.2.21)

As a consequence, the curvature tensor R can be written in terms of curvature of the Levi-Civita
connection R and the contorsion tensor K as (Yavari and Goriely, 2012a)

R`
abc = R

`
abc +∇∂bK

`
ca −∇∂cK

`
ba + K`

bsK
s
ca −K`

csK
s
ba, (1.2.22)

where the covariant derivatives of the contortion tensor are given with respect to the Levi-Civita
connection ∇.

We last summarize the classification of manifold with connection and metric

Definition 1.2.9. If the manifold B endowed with connection ∇, and a metric g, one gets

• If ∇g = 0; T = 0 and R = 0, the manifold is a flat (Euclidean) manifold.

• If ∇g = 0; T 6= 0 and R = 0, (B,∇, g) is a Weitzenböck manifold.

• If ∇g = 0; T 6= 0 and R 6= 0, (B,∇, g) is a Riemann–Cartan manifold.

• If ∇g 6= 0, (B,∇, g) is sometimes (in mechanical litterature) called a Weyl manifold.

Remark 1.2.10. Trivial geometry of the Euclidean space:
Denote En n-dimensional Euclidean space. It admits a natural Riemannian metric tensor (still denote g)
and a canonical affine connection γ, which is nothing else than the Levi-Civita connection of the metric. In
particular, when Cartesian systems are used on En, the metric coincides with Kronecker delta, i.e. g = δ

and the connection γ vanishes identically.

1.3 Generalized material continuum

1.3.1 Transformation

Basically, a body B is a set of particles. The mean role of B is to label each material element p. In
a physical configuration, each element p ∈ B is identified with the position x in the space that
it occupies. This space is usually called the ambient space and corresponds to this work to the
Euclidean space E3. Such identification may define a notion of differential manifold B. In this
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FIGURE 1.4: Transformation of a continuum (Rakotomanana, 2018).

context, we may suppose that the material body is a three-dimensional differentiable manifold
B with boundary such that there exists a global orientation-preserving diffeomorphism

ψ : B → E3. (1.3.1)

Such a map depends on time in general. The image of B is assumed to be a connected sub-
set of the Euclidean space. In that sense, a configuration of the continuum is the pair(ψ, ψ(B))

(Rakotomanana, 2018). Let us consider two configurations of the continuum matter: a so-called
reference configuration (ψr, ψr(B)) and a so-called current configuration (ψc, ψc(B)). A trans-
formation of the body concerning the reference state to the current state is a mapping E3 → E3

(see Figure 1.4)

ϕ = ψcψ−1
r . (1.3.2)

This description is the limits of Noll, 1967/68. In most studies, ones thinks of the body as an
ideal initial state that is brought into a deformed final state. In other words, it assumes that B

and ψr(B) are merged. Hereafter, we call transformation and denote ϕ for either (1.3.1) and
(1.3.2).

Definition 1.3.1. Deformation gradient:
Let us consider a transformation ψ : B → E3. Most of studies of transformations are based on the

local analysis on infinitesimal area located around X ∈ B. As the small piece, the transformation of
neighboring points surrounding X can be represented by a linear mapping F(X) : TXB → Tϕ(X)E

3

which is called deformation gradient at X. Let (XA) and (xa) denote coordinate systems on B and E3,
respectively. Then, the deformation gradient with respect to the coordinate bases is given by

F(X) = Fa
A(X)∂a ⊗ dXA with Fa

A(X) =
∂ϕa(X)

∂XA . (1.3.3)



10 Chapter 1. Introduction

Sometimes, we denote F = Dϕ or F = ϕ∗ or even F = dϕ. Its inverse F−1 = ϕ∗ is given by ϕ∗(x) =

FA
a ∂A ⊗ dxa satisfying the completeness relationships:

Fa
A(X)FB

a (ϕ(X)) = δB
A Fa

A(X)FA
b (ϕ(X)) = δa

b . (1.3.4)

FIGURE 1.5: Two connected material points x and x + dx along a material line. At a
length scale 30µm, the metric alone is not sufficient for modeling the shape change
due to relativistic motions of grains. Grain interfaces are source of dislocations

during plastic flow of poly-crystalline solids. (Rakotomanana, 2018).

As an arbitrary manifold, B can be equipped with a connection∇ and a metric G. Technically,
the transformation ψ is used to carry the geometry of the Euclidean ambient space onto B to
establish the connection and the metric. These quantities (expressed in the reference coordinates)
contain all the relevant information to describe the states of the configuration, at least in the
case of this study. More precise, the metric tensor provides a suitable tool for measuring angles
and distances, whereas the connection specifies a way to identify an element to another in its
neighbourhood. As a consequence, the structure of the medium can be characterized by the
induced manifold (B,∇,G). As if ϕ ∈ C ∞, the induced manifold is equivalent to the ambient
Euclidean space E3 (Marsden and Hughes, 1994). Such a map captures a pure elastic solid.

Nevertheless, the smooth mapping does not capture a wide type of material, for instance, a
defective continuum. Besides, the plastic behaviour of the solids also yields that such a trans-
formation does not exist. The smooth transformation is again not sufficient for dealing with the
evolution of a microstructure, see Figure 1.5.

To go further, some approaches have been introduced. With respect to the scope of this thesis,
there is a considerable breakthrough dealing with a non-smooth and/or multivalued transforma-
tion rather than the previous smooth and single-valued one. Such a map - namely nonholonomic
map - does not preserve the topology of the body (Kleinert, 2000). The method concerns such a
map is known as the nonholonomic principle. We refer the reader to the books Kleinert, 2008;
Rakotomanana, 2018 and references therein.

Following the nonholonomic principle, the material manifold B is then equipped with the
metric and the connection (that is metric compatible) and may have both torsion and curvature.
The nonholonomic mappings enable to exhibit the Volterra process (Volterra, 1907). This process
is conducted as follows: to simplify the problem, let a hollow cylinder composed of an elastic
material, then cut it, thereby destroying its multiple connectedness. Then take the two lips that
the cut has separated, translate and rotate them against each other. Finally, after eventually
removing superfluous or adding missing material, we weld the two planes together again. The
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pictorial representation is given in Figure 1.6. The Volterra process, by construction, yields two
different kinds of defects : dislocations or translational defects and disclinations or rotational
defects (Kleinert, 2008; Puntigam and Soleng, 1997; Katanaev, 2005).

Employing such a nonholonomic mapping, different cases may occur: we first consider that
the current configuration is defect-free in the sense that the mapping ψr is a diffeomorphism en-
suring that the reference configuration has zero torsion Tr = 0 and zero curvature Rr = 0. In
such a case, if ϕ is a diffeomorphism, the current configuration is defect-free too. Conversely,
defects may appear during the transformation by meant of the non-zero torsion and/or curva-
ture (Tr 6= 0 and Rr 6= 0). Now, let us assume the reference configuration is not defect-free in
the sense that ψr is not a diffeomorphism, then the induced connection may have torsion and/or
curvature. If the current configuration is prescribed by diffeomorphism ϕ, no additional defects
are created, and hence Tc = Tr and Rc = Rr; but if ψr is not a diffeomorphism, the current con-
figuration may not have the same internal defects as before, and hence Tc 6= Tr and Rc 6= Rr.

FIGURE 1.6: The sketch of the Volterra process: (a): Reference cylinder with defect
line ξ0 and cut surface S. (b,c) Edge dislocations with Bürgers vector b. (d) Screw
dislocation. (e,f) Twist disclinations with Frank vector ω. (g) Wedge disclination

(Cordier et al., 2014).

1.3.2 Defective medium

As far as we know, a description of dislocations and disclinations in terms of the differential ge-
ometry of manifolds has a long history. The connection between a continuum mechanics of solids
with a distribution of defects and RC geometry follows from the fact that the dislocation density
is equivalent to torsion of the differential geometric space that has been initiated by (Kondo, 1955;
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FIGURE 1.7: Transmission electron microscopy (TEM) picture of dislocations in a
steel (Cordier et al., 2014).

Bilby, Bullough, and Smith, 1955). A related idea has been developed to formulate disclinations
in terms of the curvature tensor. It is attributed to (Kröner, 1960). Since the 1950s, there are nu-
merous researchers on the connections between the mechanics of solids with distributed defects
and (non-)Riemannian geometries, see for example Katanaev, 2005; Puntigam and Soleng, 1997.

Methodologically speaking, these theories were perhaps spurred by the realization that cer-
tain objects of differential geometry, already provided on a path, may give intuitively graspable
pictures to generalize the presence of defects in the medium. In particular, a so-called Burger
vector exhibiting the lack of closure of a Burgers’ circuit enclosing an edge dislocation in two
dimensions and the lack of commutativity of two vector fields in case of the presence of torsion
(see Figure 1.8):

FIGURE 1.8: Burger circuit is considered as a discrete version of the Cartan parallel-
ogram. The non closure of the path ABCDE measures the number of defect inside
the parallelogram. Only one defect (triangle) is represented here. The opening EA

define the so-called Burgers vector (Rakotomanana, 2018).

More precisely, let M be a point on the manifold B and (MP) and(MQ) two sets of curves in-
tersecting at M. Both MP (whose components (d1xa(M))) and MQ (whose components (d2xa(M)))
are assumed infinitesimal and then regarded as two vectors of the tangent bundle TMB. Vectors
u = d2xa(P)ea and v = d1xa(Q)ea are the images of MQ and MP by parallel transport along
(MP) an (MQ) respectively (Figure 1.2):

d2xa(P) = d2xa(M)− Γa
bcd2xcd1xb

d1xa(Q) = d1xa(M)− Γa
bcd1xcd2xb. (1.3.5)
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Then , ~MQ + v and ~MP + u do not agree and the difference is

( ~MQ + v)− ( ~MP + u) =Γa
bcdSbc =

1
2

(Γa
bc − Γa

cb)dSbc =
1
2
Ta

bcdSbc, (1.3.6)

where dSbc = d1xbd2xc − d1xcd2xb has been identified as the surface area element. On the other
hand, if we denote dbe a resulting Burgers vector of all dislocation which pierces through the area
element, a dislocation density is then obtained by (Kröner, 1981)

dbe =
1
2

αeaεabcdSbc, (1.3.7)

where the anti-symmetric tensor ε:

εamn =


1 if (amn) is an even permutation of (123)

−1 if (amn) is an odd permutation of (123)

0 otherwise.

(1.3.8)

Therefore, the identification of the dislocations density (1.3.7) and Cartan circuit (1.3.6) suggests
that the dislocation density can be given by

Te
bc = αeaεabc αea =

1
2
Te

bcεabc. (1.3.9)

In another way, the dislocation density can be exposed as

Γe
bc =

1
2

αeaεabc αea = Γe
bcεabc. (1.3.10)

If the connection is compatible with the metric g, then Γe
bc = Le

bc + Ke
bc; and hence

αea = Ke
bcεabc. (1.3.11)

Since Ka
bc is antisymmetric the indices in b, c, it is useful to introduce a tensor of second rank κ,

so-called Nye’ contortion tensor, by

κec =
1
2
Ke

bdεcbd Ke
bc = κeaεabc. (1.3.12)

Inserting (1.3.12) into (1.3.11), one deduces

αea = κedεdbcεabc = κea − δeaκbb. (1.3.13)

These equations are similar to Nye’s equations of the classical dislocation mechanics (Nye, 1953).
We also refer the survey papers Kröner, 1960; Kröner, 1981 for a more discussion.

A crucial observation as follows shows that the curvature tensor is a measurement of discli-
nations densities. If we parallel transport a vector at a given point along a loop or transport it
to another point along two different curves, the resulting vectors at the end-point are generally
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different Figure 1.3. We expect that this non-integrability of parallel transport characterizes the
intrinsic notion of curvature. On the other hand, it was recognized that disclinations might be
generated by cutting a section of matter out of an ideal medium. In this sense, the missing area
line-like the properties of the curvature tensor. In conclusion, this identity defines a foundation
of the differential geometrical statement of the defective continuum theory and says that the
disclinations densities and the curvature torsion represent precisely the same phenomenon.

1.4 Cosserat continuum

1.4.1 Linear Cosserat continuum

In Cosserat and Cosserat, 1909, Cosserat brothers introduced a continuum model involving an
independent field of infinitesimal rotation ω of the geometric structure (in the case of crystals:
of the lattice structure) in addition to the standard (elastic) displacement field u. A crystalline
body is a field of applications of the theory. Especially, one can easily illustrate dislocated crys-
tals whose building blocks had indeed been made by rotations (which varies from one element
to another) but by not translations. In Kröner, 1960, Kröner outlined the development of the
Cosserat theory (in which an elastic distortion and a (lattice) structure field (see later) are gen-
erally not derived from the displacement and rotation fields). Follow the ideas developed by
(Kondo, 1955) and (Bilby, Bullough, and Smith, 1955), the general theory was shown to be iden-
tical to a medium whose geometrical state is described by Riemann-Cartan geometry. Briefly,
the Levi-Civita connection represents the elastic deformations, and a contortion represents the
(lattic) structure field. In linear version , force field and torque field are identical with Einstein
and torsion tensors, respectively (Kröner, 1981).

It is reasonable to make a presentation of the Cosserat continuum. The (static) linear con-
tinuum theory is represented as follows. The rotation angle can be replaced by the equivalent
(axial) vector ~ω where its components are given by

ωa =
1
2

εbcaωbc. (1.4.1)

Instead of displacements and rotations one can also use the elastic deformations and the structure
fields. Indeed, the displacement field and rotation field uniquely define the elastic distortion
tensor β and the structure tensor ξ (it is called Nye’s curvature in the case of the lattice structure
(Nye, 1953), it is described by RC geometry, torsion tensor (Kröner, 1960)) which are respectively
defined by (Katanaev, 2005)

βab = ∂aub −ωab (1.4.2)

ξab = ∂aωb. (1.4.3)

In the case of the crystal structure, the latter one implies that the lattice structure field (Nye’s
tensor) has precisely the characteristics that the Cosserats described. Let Ξ be an internal energy
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function of β and ξ :

Ξ(β, ξ). (1.4.4)

We define an associated force stresses tensor σ (this is an analogy to the stress that uses in elastic-
ity theory) and a (Cosserat) torque-stresses tensor τ (these are defined as the torque that a surface
element is endowed with when no rotations take place) by

ς =
∂Ξ

∂β
τ =

∂Ξ

∂ξ
. (1.4.5)

The linear (static) Cosserat medium is in equilibrium if the forces and the torques balanced at
every point are valid in Eulerian notation: (a very nice introduction to the Cosserat continuum
theory is supplied in the note of Kröner, 1960, see also (Katanaev, 2005))

∂bςba + f a = 0 (1.4.6)

εa
bcςbc + ∂bτba + ma = 0 (1.4.7)

where f a and ma mean the densities of external forces and torques. The stress tensor is symmetric
if and only if the condition ∂bτba + ma = 0 is satisfied. Consequently, the fundamental static
systems reduces to the elasticity theory (Gonzalez and Stuart, 2008; Marsden and Hughes, 1994).

1.4.2 Generalization of Cosserat continuum

Inspired by the work’s Cosserat brothers (Cosserat and Cosserat, 1909), Élie Cartan developed an
extended continuum model based on the Riemann-Cartan manifold. It is endowed with not only
a Riemannian metric (measuring the shape change) but also an affine connection∇, replacing the
classical partial derivative operator “∂”, incorporating torsion and curvature (Cartan, 1922). Car-
tan published a series of articles Cartan, 1923; Cartan, 1924; Cartan, 1925 (English translation is
in Cartan, 1986), where he presented a theory of generalized relativity in the framework of his
formulation of affine geometry.

Following the same spirit, to generalize Navier equation with respect to the presence of de-
fects in a medium (Futhazar, Le Marrec, and Rakotomanana, 2014) proposed that the reference
state is modeled by a RC manifold in order to take into account the presence of defects. In their
work, the authors focused on a small elastic perturbation superimposed on the medium. To sim-
plify problem, the superimposed transformation is assumed to be a diffeomorphism. Hence, no
additional defects are created. Therefore, the connection is a fixed parameter in the Lagrangian
function, so that we do not consider its variation during the superimposed transformation. We
employ the same conservation equations as in classical elasticity (Marsden and Hughes, 1994)
but “∂” is replaced by the material connection ∇ with respect to the defected reference state.
Let u, ε, and σ be respectively the superimposed displacement field, the small-strain tensor, and
the (symmetric) stress tensor. Then, the conservation laws are (Rakotomanana, 1998):
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• Mass conservation

ρ = ρ0 det(e) (1.4.8)

where ρ0 is a mass density at the time t = 0, and e is so-called triads that will be defined
later in Section-1.5.2.2.

• Momentum conservation without external force:

ρ0∂2
t u = ∇ · σ. (1.4.9)

Next, one assumes a linear Hooke’s constitutive law for an homogeneous isotropic elastic medium
to obtain

σ = λTr(ε)I + 2µε (1.4.10)

with λ and µ are Lamé constant coefficients, and I is the identity tensor. However, the two
definitions of the strain ε can be proposed with the help of the Levi-Civita connection ∇ and the
material connection ∇ (Futhazar, Le Marrec, and Rakotomanana, 2014):

ε =
1
2

(
∇u +∇uT

)
and ε =

1
2

(
∇u +∇uT

)
. (1.4.11)

The two different options are available: firstly, according to the RC geometry of the reference
state, it seems more rigorous to use the covariant derivative with respect to the material connec-
tion for calculating the strain tensor, which illustrates how the continuum is locally modified.
But on the other hand, we could suppose that the superimposed deformation is only sensible
to the metric; hence, the influence of defects on the strain definition would be neglected: each
infinitesimal volume is deformed without further restrictions due to the defected arrangement
within matter.

These two options presented in Futhazar, Le Marrec, and Rakotomanana, 2014 show how
physical considerations may be invoked in order to develop mechanical model based on RC
geometry. In particular, the methodology is not unique and is subject of interesting debates (in
this paper as in most of other works).

1.5 Overview on continuum theory of defects

Even if it has been shown that RC manifolds can be used to describe a medium with distributions
of defects, a crucial point still arises. Indeed, one need to construct a connection and metric of
the manifold.

Before going into details of the proposed theory, let us briefly and critically review the classi-
cal linearized, non-linear dislocation mechanics and existing geometrical theories. This will help
us to fix more clearly ideas and notations. It will help to see the parallel between the existing
methods and at the end the approach proposed in this manuscript.
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1.5.1 Classical dislocation mechanics

1.5.1.1 Linearized dislocation mechanics

Following the textbook we used, we use the previous notations for different objects in this subsec-
tion. We must be careful that they are not the same, even if they may reveal identical meanings.

We start with classical linearized dislocation mechanics. In the linearized setting, the total
distortion can be additively decomposed into elastic and plastic parts (Kröner, 1960, English
translation (Kröner, 1981))

β = βe + βp (1.5.1)

(Be careful that β is distinct from (1.4.2)). The difference between the elastic and plastic dis-
tortions is a change in the internal state of the infinitesimal domain dV (for instance, particles,
atoms,...place inside the domain dV). The elastic distortion always means the same distortion
of the domain and its internal state, whereas this is not the case with the corresponding plastic
distortion βp in the sense of Kröner, 1981. The total distortion must be integrable:

curl β = εamn∂mβbn = 0, (1.5.2)

implying that

α = curl βp = −curl βe. (1.5.3)

Here, α is interpreted as a tensor of dislocation density. An immediate consequence of the defi-
nition of α is the equation

div α = ∂cαab = 0. (1.5.4)

This equation shows that dislocations cannot end inside the medium. In addition, the vanishing
of α implies that the existence elastic displacement u such that βe = ∇u.

In the nineteenth century, St. Venant found that the elastic distortion can lead to a smooth u
if and only if the elastic strain

ε =
1
2

(βe + βT
e ) (1.5.5)

satisfies the differential equations

inc ε = ∇× ε×∇ = 0 (−εcamεdbn∂b∂aεmn = 0), (1.5.6)

which is called compatibility condition. It suggests to introduce second order incompatibility
law of the form

η = inc ε. (1.5.7)
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The incompatibility tensor η measures the deviation from compatibility. Furthermore, its appear-
ance or disappearance describes whether the body has internal stresses. Then, this tensor can be
considered as the source tensor for a kind of internal stresses (Kröner, 1981).

The relation between the incompatibility tensor η and the dislocation density tensor α is ob-
tained as the following: the equation α = −curl βe can be rewritten in the following form

εacd∂cωdb = −εacd∂cεdb − αab, (1.5.8)

where

ω =
1
2

(βe − βT
e ) (1.5.9)

is the antisymmetric part of the elastic distortion tensor. It illustrates a rigid rotation of the
volume element dV. The tensor can be replaced by the equivalent (axial) vector ~ω where its
components are given by

ωa =
1
2

εbcaωbc ωbc = εbcaωc. (1.5.10)

Straightforward computations give

∂bωa = εacd∂cεdb + αab −
1
2

αccδba, (1.5.11)

it means that the lattice rotation is composed by the elastic strain and the distribution from the
dislocations.

Now, we define Nye tensor κ

κab = αab −
1
2

αccδab. (1.5.12)

It is identical to (1.3.13). Inserting the above equation into (1.5.10) and then applying the curl
operation, one obtains (Kröner, 1960)

inc ε− curl κ = 0. (1.5.13)

As a consequence, we may find some examples of zero-stress dislocations distributions in the
linearized setting (Head et al., 1993) or in geometric approach (Yavari and Goriely, 2012b).

1.5.1.2 Non-linear dislocation mechanics

A standard starting point in many theories of non-linear plasticity is to assume a decomposition
F = FeFp (their coordinates expression follows in Fe and Fp, respectively), which was initially
proposed by Bilby, Bullough, and Smith, 1955 and Lee and Liu, 1967. Physically, Fp represents
the plastic distortion due to the flow of defects through the material structure, whereas Fe is the
local deformation due to the stretch and the rotation of the material structure. However, they
are not defined as the gradients of a continuous one-to-one mapping. Using this decomposition,
one can introduce an intermediate configuration as shown in Figure 1.9: Fp may be interpreted
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as a local deformation from the initial configuration to the intermediate one, and Fe relates the
intermediate state to the current state. As usual, it is assumed that the reference and the final
deformed bodies are embedded in a Euclidean space.

FIGURE 1.9: Pictorial representation of Kröner-Lee-decomposition.

Let us consider an arbitrary circuit c in the current configuration, Burger vector of dislocation
is defined by Le and Stumpf, 1996b

bα = −
∮

c
(F−1

e )α
b dxb. (1.5.14)

Here, it is assumed that (xa) and (zα) are coordinates of current and intermediate configurations,
respectively. Thanks to Stokes’ theorem, one gets

bα =
1
2

∫
A

(
∂(F−1

e )α
c

∂xb −
∂(F−1

e )α
b

∂xc

)
dxb ∧ dxc, (1.5.15)

where A is a surface area surround by the circuit. For infinitesimal circuits, a Burger vector is
given as a two-form

bα =
1
2

(
∂(F−1

e )α
c

∂xb −
∂(F−1

e )α
b

∂xc

)
dxb ∧ dxc. (1.5.16)

The indices α in bα are used to describe the Burgers vector in the intermediate configuration.
Equivalently, we can push this vector forward to the current configuration as

ba = (Fe)
a
α

(
∂(F−1

e )α
b

∂xc − ∂(F−1
e )α

c

∂xb

)
dxb ∧ dxc. (1.5.17)
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It is the occasion to define the dislocation density tensor, or, in a differential-geometric interpre-
tation, the torsion tensor t

ta
bc = (Fe)

a
α

(
∂(F−1

e )α
b

∂xc − ∂(F−1
e )α

c

∂xb

)
. (1.5.18)

One can equivalently write the dislocation density tensor in terms referred to the initial configu-
ration

TA
BC = (F−1

p )A
α

(
∂(Fp)α

B
∂XC −

∂(Fp)α
C

∂XB

)
. (1.5.19)

Here, (XA) is a chart respect to the initial configuration. Nevertheless, in this approach the
coordinate on the intermediate configuration (zα) is not explicit.

1.5.2 Geometric theories of defects

1.5.2.1 Dislocation mechanics and Cartan’s moving frames

Mechanics of solids with distributed dislocations can be formulated as a classical non-linear elas-
ticity problem (Yavari and Goriely, 2012b). The idea behind this theory is to define the appro-
priate material manifold by considering Lee-Kröner decomposition as a Cartan’s moving frame.
The same idea has been previously applied to the mechanics of growing solids (Yavari, 2010).
More preciously, the authors showed that in multiplicative plasticity, one could combine the ref-
erence and intermediate configurations into a parallelizable material manifold (i.e. the manifold
with connection has torsion but no curvature, this connection is metric compatible) by identify-
ing the plastic part to Cartan’s moving frames: let (XA) coordinates in the manifold B, consider
a moving frame defined by

eα = (F−1
p )A

α ∂A. (1.5.20)

We assume that this frame is orthogonal i.e. the metric tensor has a simple representation:

Gαβ = δαβeα ⊗ eβ. (1.5.21)

Denote eα the corresponding coframe of the frame eα. One requires that this frame is everywhere
parallel, and hence back to the natural frame ∂A the connection has the form

ΓA
BC = (F−1

p )A
α

∂(Fp)α
C

∂XB . (1.5.22)

Accordingly, the torsion 2-form tensor is

TA
BC = (F−1

p )A
α

(
∂(Fp)α

C
∂XB −

∂(Fp)α
B

∂XC

)
dXB ∧ dXC. (1.5.23)
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It is identical to (1.5.19).
The material metric is

GAB = (F−1
p )α

A(F−1
p )

β
Bδαβ. (1.5.24)

Note that by construction, the connection is metric-compatible, has torsion but vanishing curva-
ture. The connection and the metric are, in general, time-dependent.

As the manifold is flat (zero curvature), one gets (see Yavari and Goriely, 2012b for details)

div α = 0, (1.5.25)

where

αAB =
1
2
TA

CDεBCD (1.5.26)

is the dislocation density tensor.
Following this approach, the intermediate configuration is not necessarily needed. The im-

portant thing is that the reference material manifold is now described by a Weitzenböck mani-
fold, which generally depends on time. At the same time, the authors constructed the material
manifold for several examples of bodies with distributed dislocations and presented non-trivial
examples of zero-stress dislocation distributions. Extension of this geometric approach to dis-
tributed disclinations is given in (Yavari and Goriely, 2013).

1.5.2.2 Nonholonomic principle

In this section, we show how the nonholonomic transformation changes the intrinsic geometry
of matter. This new geometry is interpreted as a material manifold with defects (Kleinert, 2000;
Kleinert, 2008). In this context, the continuum is assumed to be a differential manifold B under-
going a material transformation (a map from B into E3) X 7→ x, which may be non-smooth and
maybe a multivalued map (to simplify problem we assume (xa) is Cartesian). However, it is pos-
sible to map the points surrounding X defined by the tangent vector dX to dx via an infinitesimal
transformation thanks to triads ea

A such that

dxa = ea
AdXA. (1.5.27)

Their reciprocal triads are introduced by

ea
AeA

b = δa
b and ea

AeB
a = δB

A. (1.5.28)

Remark 1.5.1. The notion of the triads e is sometimes introduced with other name (distortion field
Peshkov and Romenski, 2016) or as micro-deformation field in the microcontinuum theories Mindlin,
1964; Eringen, 1999 or a Cartan’s moving frame in geometrical model Yavari and Goriely, 2012a. It may
be the support for analysis of static and dynamics of defects under name vielbein Katanaev, 2005.
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It is therefore usual to define metric-components, as extension of the usual definitions

GAB = g(ea
Aea, eb

Beb) = ea
Agabeb

B, (1.5.29)

where g is the metric tensor of the Euclidean space E3.
On the other hand, we can differentiate the vector base, and implicitly define an affine con-

nection coefficients

∇BeC =
∂eC

∂XB =
∂ec

C
∂XB ec = eA

c
∂ec

C
∂XB eA := ΓA

BCeA. (1.5.30)

The connection may have both torsion and curvature. Furthermore, the multivalued triads form
parallel fields implying that the induced metric is also a parallel tensor in the sense that

∇A

(
eb

BdXB
)

=
( ∂eb

B
∂XA − ΓC

ABeb
C

)
dXB =

( ∂eb
B

∂XA − eC
c

∂ec
B

∂XA eb
C

)
dXB = 0. (1.5.31)

Consequently, the induced metric is also a parallel tensor

∇AG = ∇A

(
gbceb

BdXB ⊗ ec
CdXC

)
= gbc∇A

(
eb

BdXB
)
⊗ ec

CdXC + gbceb
BdXB ⊗∇A

(
ec

CdXC
)

= 0.

(1.5.32)

However, the connection and metric are, in general, also multivalued. It could cause difficulties
in performing consistent length measuring and parallel transport. To overcome this difficulty,
one has to require that the induced connection and the induced metric are smooth and single-
valued. The multivalued fields are driven by mathematical requirements and physical motiva-
tions, for instance used to describe magnetic monopoly (Kleinert, 1990; Kleinert, 1992; Klein-
ert, 2000) and many other systems also described by multivalued fields (Kleinert, 1989; Klein-
ert, 2008). In addition, even if multi-valuation of some fields may introduce some difficulties,
numerical simulations can be performed and lead to applications in solid and fluid mechanics
(Dumbser, Peshkov, and Romenski, 2018).

As the construction, several cases may occur, it permits us to highlight the role of torsion and
curvature tensors on the classification of continuum transformation:

Holonomic transformation:
If the mapping X 7→ x is smooth and single-valued, the triads are usually the deformation gra-
dient of the map with

ea
A =

∂xa

∂XA . (1.5.33)

Since the transformation is smooth and single valued, it is integrable i.e. its second derivative
commutes

∂ea
A

∂XB −
∂ea

B
∂XA =

∂2xa

∂XA∂XB −
∂2xa

∂XB∂XA = 0. (1.5.34)
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Then it is straightforward to check that the torsion is equal to zero undergoing an holonomic
transformation:

TA
BC = eA

a

(
∂ea

C
∂XB −

∂ea
B

∂XC

)
= 0. (1.5.35)

Nonholonomic transformation and torsion:
If e is single-valued but they are not the deformation gradient in the case of the mapping X 7→ x is
smooth and/or not single-valued, in such a case (1.5.34) is not satisfied showing that the torsion
tensor is not equal to zero for such a nonholonomic transformation, the induced manifold is a
Weitzenböck manifold. This transformation captures translational dislocations of Volterra.

Typical examples of torsion corresponding to edge dislocations are generated by a Volterra
process in which a layer of atoms is added or removed Figure 1.10, is given by (Kleinert, 2000)

dx1 = dX1

dx2 = dX2 + b
(

∂

∂XA arctan
X2

X1

)
dXA.

(1.5.36)

The only non-zero component of torsion is T2
12(X) =

b
2

δ(2)(X) where δ(2) is a Dirac distribution.

FIGURE 1.10: Here, the letter q is used to replace X. Edge dislocation associated
with a missing semi-infinite plane of atoms are created by the multivalued mapping

from the ideal (Kleinert, 2000; Kleinert, 2008).

Nonholonomic transformation and curvature:
It is known that the preceding mapping is not sufficient to describe all topological defects. To go
further, we must also add the multivaluedness of the triads. As a consequence, (1.5.34) is still not
satisfied. Furthermore, the multivaluedness of the triads lead its second-order derivatives do not
commute yielding that the curvature tensor is not equal to zero (Rakotomanana, 2018)

∂

∂XA

(
∂eC

∂XB

)
− ∂

∂XB

(
∂eC

∂XA

)
=

∂

∂XA (ΓD
BCeD)− ∂

∂XB (ΓD
ACeD) = RD

ABCeD 6= 0. (1.5.37)
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We can also calculate the curvature in terms of the triads to give

RD
ABCeD = eD

a

(
∂2ea

C
∂XA∂XB −

∂2ea
C

∂XA∂XB

)
6= 0. (1.5.38)

Such a transformation may be related to the process of rotational dislocations or some plastic
deformations of matter. A typical example corresponds to an edge disclinations is associated
with an infinitesimal section of angle Ω adding in an ideal atomic array Figure 1.11, is defined
(Kleinert, 2000; Kleinert, 2008)

xa = δa
A

(
XA − Ω

2π
εA

B XB arctan
X2

X1

)
. (1.5.39)

Here, we remind that

εA
B =


1 if (A, B) = (1, 2)

−1 if (A, B) = (2, 1)

0 if A = B.

The only non-zero component of curvature is R1
212(X) = Ωδ(2)(X).

FIGURE 1.11: Edge disclination associated with an adding semi-infinite section
of atoms of angle Ω is formulated by the nonholonomic mapping (Kleinert, 2000;

Kleinert, 2008).

1.5.2.3 Spin connection

As it has been underlined just before, connection having both torsion and curvature cannot be
obtained with single-valued triads. Another method consists in introducing an additional field

ωc
Ba = Sc

C∂B(S−1)C
a , (1.5.40)
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where S is the rotation matrix, to give a connection (Obukhov, Ponomariev, and Zhytnikov, 1989;
Rakotomanana, 2018) by solving the relation (Katanaev, 2005)

∇Bec
C = ∂Bec

C − ΓA
BCec

A + ea
Cωc

Ba = 0. (1.5.41)

Consequently,

ΓA
BC = eA

c ∂Bec
C + eA

c ωc
Baea

C, (1.5.42)

where the first term reduces to the Weitzenböck connection with non-zero torsion but zero cur-
vature. The second term eA

c ωc
Baea

C has a role of spin connection, with possibly non-zero torsion
and/or non-zero curvature. Such a connection is also metric compatible.

1.6 Contribution of this thesis

1.6.1 Motivation: a reformulation of Eringen’s description

Following the paradigm of Cosserat’s brothers, the attention is mainly paid to new degree of
freedom illustrating the versatility of microstructured media. In terms of physical picture, a ma-
terial body may be envisioned as a collection of a huge number of small elements containing a
large number of small particles that contribute to the macroscopic behavior of the body. Math-
ematically, material particles are assumed to be geometric objects (point, vector) that possess
physical and mathematical properties i.e. mass, charge, deformable directors. The paradigm of
such a continuum model accounting for microstructure effect is the micromorphic medium in-
troduced by Suhubi and Eringen, 1964 and Mindlin, 1964 in 1964. Nowadays, the size effects
involved in a natural way in this model have received more and more attention both in statics
(Polizzotto, 2013; Forest, 2009; Grammenoudis and Tsakmakis, 2009) and dynamics (Ghiba et al.,
2015; Madeo et al., 2015; Madeo et al., 2018).

FIGURE 1.12: Deformation of a microelement.

In the micromorphic theory (Eringen, 1999), a material point P = (X, V) ∈ TB is character-
ized by its center of mass C (with coordinates (XA)) and vector V attached to C. Deformation
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carries P to p = (x, v) ∈ TE3 in the current state is described by

X 7→ x = φ(X),

V 7→ v = Ψ(X)V, (1.6.1)

where det F > 0 and det Ψ > 0. A pictorial interpretation is given in Figure 1.12.
It has been recognized that the evolution of the internal state is the cause of defects in a

medium (Kröner, 1981). However, up to the present no connection and metric have been defined,
which means the absence of a geometrical approach related to the micromorphic theories. One
of the contributions of this thesis is to fulfil this gap.

Next, we see that even if metric (tensor) and connection are already defined on the manifold
B, they actually act on the tangent bundle TB. This suggests that the microcontinuum is then
represented by the tangent bundle TB. The material transformation is now a mapping Υ :
TB → TE3. Such a map enriches the continuum by an induced geometry pull-backed from the
ambient space. The typical example is the transformation (1.6.1):

Υ : TB → TE3, (X, V) 7→ (φ(X), Ψ(X)V), (1.6.2)

where Υ is smooth and has an smooth inverse, and preserves orientation, and in general Ψ 6= Dφ.
Using Υ the pull-back of the Levi-Civita connection and the Euclidean metric endow B with a

special type of Riemann-Cartan geometry called Weitzenböck manifold: the connection can have
torsion but no curvature. The connection coefficients are exactly the so-called wryness tensor
introduced by (Eringen, 1999).

1.6.2 Non scale material modeling: non-linear transformation

Nevertheless, the Weitzenböck manifolds are not suitable to describe all kind of defects since
it requires that the connection has both torsion and curvature. A large class of defects can be
modelized using connections, this is done by using multivalued triad and multivalued maps in
order to encompass disclinations. However, the multivalued fields may cause some difficulties
to handle (see Subsection-1.5.2.2).

To overcome this difficulty, several ideas will be proposed: we firstly recognize that fiber
bundle manifolds suffice to mention that each point on the base manifold can be considered en-
dowed with additional degrees-of-freedom or internal states, the tangent bundle is the typical
example of fiber bundle. In this sense, a microstructured material is modeled by a fiber bundle
M

π→ B, the typical example means M = TB. As an arbitrary fiber bundle manifold, M can
be equipped with a connection-namely Ehresmann connection N and metric tensor G of Sasaki
form, in general, these geometric objects and derived quantities (torsion, curvature) may not only
depend on position, but also on the internal state. If the bundle is endowed with a connection
and a metric, it says fiber geometry (Epstein, 2010; Epstein, 2014; Nakahara, 2003). This extends
the Riemann-Cartan geometry for which (relative) position of material points controls all geo-
metric objects. It encompasses various geometries among Euclidean, Riemannian, Weitzenböck,
Weyl manifolds (however, the concepts of fiber geometry are out of the scope of Chapter-1, we re-
fer the reader to Chapter-4 for more details). As usual, the connection and the metric are induced
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from the Euclidean space by a smooth transformation represented by a fiber morphism from the
bundle M to Euclidean space.

Hereafter, we restrict ourselves to the linear microstructure case when M is isomorphic to
TB (to simplify problem M = TB). Even so, the following methodology may be valid for
general cases. Our first idea was to allow non linear transformations of microelements. Such a
material transformation is represented by

Υ : TB → TE3, (X, Y) 7→ (φ(X), Ψ(X, Y)). (1.6.3)

The connection obtained by pull-back is no longer linear connection and the metric should be
replaced by a Sasaki metric. Unfortunately, we proved that even if such connection may have
torsion, they never get curvature.

In conclusion, such a bundle map was not sufficient for the intended purpose. One of the
main reasons is that the pull-back is performed thanks to the total gradient of Υ. This hypothesis
must be relaxed, which we intend to present in the following subsection.

Remark 1.6.1. Our setting may be interesting to those familiar with (pseudo-)Finsler geometry and its
applications. For Finsler space, the connection and its derived quantities (curvature, etc.) are generated
by a metric tensor. This geometrical quantity is formed by a fundamental scalar function L(X, Y) that
exists at every point except for Y = 0, homogeneous of degree one in Y (Bao, Chern, and Shen, 2000).
Our theory is more closed to a so-called pseudo-Finsler space (Bejancu, 1990) where the fundamental
scalar function with required properties (Bao, Chern, and Shen, 2000), in this context, the components
of the metric are obtained by differentiation, does not exist. Accordingly, the connection and metric are
completely independent. Application of (pseudo-)Finsler geometry in continuum mechanics and physics
have been suggested earlier by Kondo, 1963, later by Saczuk, 1997; Fu, Saczuk, and Stumpf, 1998; Stumpf
and Saczuk, 2000, and nowadays by Pfeifer, 2013; Clayton, 2015; Clayton, 2017a; Clayton, 2017b; Yajima
and Nagahama, 2020.

1.6.3 Scaled material model: Higher-order transformations

1.6.3.1 Theoretical analysis

The second idea was to introduce a scaled material model by considering that F defines the
stretch of macroelement dV whereas Ψ controls the stretch of a sub-scale micro-element δV. If
the material transformation was described by (1.6.2), scaling effects was not directly tractable as
F and Ψ are acting on the same space TB. This difficulty can be circumvented in the following
way:

Let us consider that a vector Y at a macro-scale belongs to TXB and a vector Z at a micro-scale
is an element of VTXB, the transformation may be represented as

Υv : VTB → VTE3, (X, Y, Z) 7→ (φ(X), F(X)Y, Θ(X)Z), (1.6.4)
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with det F = |Dφ| > 0 and det Θ > 0. Consequently, it is no more redundant since the maps
related to each scale are separated. Remark that hereafter, Θ is used instead of Ψ to depict the
micro-stretch as these maps are not defined on the same space.

To construct an induced Ehresmann connection, the last idea is to extend Υv to the whole
space i.e. to find a bundle map Υ: TTB → TTE3 such that

Υ(X, Y, Z) = Υv(X, Y, Z) ∀ (X, Y, Z) ∈ VTB. (1.6.5)

A priori, Υ : TTB → TTE3 is a map of the form

(X, Y, Z) 7→ (φ(X), F(X)Y, Ω(X, Y)Z),

with X ∈ B, Y ∈ TXB, Z ∈ T(X,Y)TB. The extension have to be able to recover the stan-
dard model when the material transformation is simply defined by TB → TE3, (X, Y) 7→
(φ(X), Ψ(X, Y)). Then, Ω is nothing else then the total gradient of such a map. In this context,
Ω should be in the following form:

Ω = Fa
A∂a ⊗ dXA + Ωi

A∂i ⊗ dXA + Θi
J∂i ⊗ dY J , (1.6.6)

where the choice of Ωi
A is still free. Let n be the ambient Ehresmann connection derived from the

Levi-Civita connection on TE3. Without losing any information, we suppose that (x, y) are the
Cartesian coordinates, then the connection coefficients are equal to zero. The pull-back of n by Υ

gives

N(Y)V = Ω−1n(F(X)Y)(φ∗V)

with coefficients N J
A = ΘJ

i Ωi
A.

(1.6.7)

This connection is generally nonlinear. However, as mentioned at the beginning, we need a
special hypothesis to ensure the linearity of the connection. It is straightforwardly furnished as
follows:

Lemma 1.6.2 (Chapter-5). The connection is linear i.e. N I
A(X, Y) = ΓI

AJ(X)Y J if and only if Ωi
A(X, Y)

is linear i.e. Ωi
A(X, Y) = Ωi

AJ(X)Y J . At this context, one gets

ΓI
AJ = ΘI

i Ωi
AJ .

In order to remove this indeterminacy, Ωi
AI is constructed by a linear balance between the

stretching variation at each scale:

Ωi
AI =

(
(1− ζ)∂AFi

I + ζ∂AΘi
I

)
, (1.6.8)

where 0 < ζ ≤ 1 is a free parameter controlling the scaling effect. For example and without
loss generality, it can be defined as ζ = `/L where L and ` are the macroscopic and microscopic
characteristic scales, respectively.
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At this stage, one gets

ΓI
AJ = ΘI

i

(
(1− ζ)∂AFi

I + ζ∂AΘi
I

)
. (1.6.9)

Usually, an induced metric is obtained by G = Υ∗g 2 where is g Riemannian metric of the ambient
space. With regarding to the connection N, this metric tensor has a Sasaki structure:

G(X, Y) = Gh
AB(X)dXA ⊗ dXB + Gv

I J(X)δY I ⊗ δY J

with Gh
AB = Fa

AgabFb
B Gv

I J = Θi
IgijΘ

j
J .

(1.6.10)

Roughly, this states the existence of two independent mechanisms, the first one is the ordinary
dragging of vectors by means of the deformation gradient F = Dφ of the macro-structure. The
other mechanism is associated with the transformation Θ of the microstructure.
Their components are functions of the base coordinates X alone. The vertical metric component
is explicitly independent of the Ehresmann connection N. More precisely, the components of G
in the proper horizontal and vertical bases are completely specified by Υv and independent of
the choice of the (possibly non-linear) connection N(X, Y).

The manifold (M ,G, Γ) gives a complete description of the current configuration of the mi-
crostructured material. The split structure of the transformation and metrics allows to describe
the current state as the superposition of a microscopic and macroscopic processes. The scalar ζ
governs such coupling. It is able to describe the current configuration on B by defining a micro-
manifold (B,G, Γ) with G ≡ Gv and a macro-manifold (B,Gh, L) where L is the Levi-Civita
connection of the horizontal metric:

LC
AB =

1
2
GhCD(

∂AG
h

BD + ∂BG
h

AD − ∂DG
h

AB

)
, (1.6.11)

As a consequence, this connection has no torsion and no curvature and is metric-compatible. The
property of (B,G, Γ) is richer.
The following theorem which permits us to highlight the classification on the derived manifolds
of the material transformations:

Theorem 1.6.3 (Section-5.2). If Ωi
A satisfies lemma-1.6.2, the connection Γ and the metric tensor G

construct a large class of manifold (B, Γ,G) where in locally GAB = Gv
AB. In particularly, if Ωi

A has
the form (1.6.8), this manifold is suitable to describe defect-state of the medium and satisfies the following
properties

• If Θ = F, macro and micro elements behave in the same way. It yields that T = 0; R = 0 and
∇G = 0. The manifold behaves as an Euclidean space.

• If ζ = 1, the scaling effect is no longer considered. In that case the manifold behaves as a Weitzenböck
manifold with T 6= 0, R = 0 and ∇G = 0.

2Υ∗ is a pull-back operator or inverse of a gradient of Υ and is defined as the same manner as the definition (1.3.1).
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• If ζ → 0, the size of the microsctructure tends to be negligible. Even if T → 0, one may observe
R 6= 0 and ∇G 6= 0. In particular, if ∇G = 0, the manifold tends to behaves as Riemann-Cartan
manifold.

• If Θ 6= F and 0 < ζ < 1, then T 6= 0, R 6= 0 and ∇G 6= 0. The manifold behaves as a Weyl
manifold.

Some words to summarize, our idea is to introduce a new degree of freedom into the material
transformations. Hence, even if the macroscopic mapping is still smooth, the additional field
does modify the internal topology of the medium. The proposed theories encompass the macro-
scopical and microscopical universes as a whole. All the physical quantities that we focused on
are single-valued and smooth. Then all geometrical quantities are smooth and single-valued, too,
without any "extraordinary" assumption like the nonholonomic principle. Consequently, both
theoretical and numerical analysis may be handled without additional difficulties. The general
kinematic structure of the theory includes macroscopic and microscopic fields in a multi-scaled
approach (represented by the scaling factor ζ), including finite transformations.

To highlight the potential of the new theory, several examples of transformation producing a
distribution of material defects are exhibited and analyzed. Particular attention is paid to trans-
ports along a finite path to extend the traditional infinitesimal analysis of torsion and curvature
to a macroscopical observation.

Last but not least, the new methods could motivate some interesting issues. For example,
other extensions Υ and families of scaling factors may exist. They may be chosen in order to well
to treat materials with specific microstructures. Physically and mathematically, the appearance
of the scaling factor seems convenient and clear. A mechanical process having the advantage of
the scalar factor ζ is, however, still absent at the moment. It promises an interesting mission for
further researches. Our geometric setting is consistent with the microcontinuum framework. It
is able to reformulate the microcontinuum field in a universal language of differential geometry.
The geometrical nature of our approach also indicates that it is able to obtain a relativistic version
of the theory, which must conform to the geometrical settings of general relativity.

1.6.3.2 Geometric illustration

To give a short presentation but without loss generality, let us consider that B, which is labeled
by the two Cartesian coordinates (X1, X2), is a subset in the 2D Euclidean space, see Figure 1.13;
and a typical material transformation Υv that is completely defined by

F =

1 0
0 1

 and Θ =

1 θ(X1)

0 1

 . (1.6.12)

With these, we can entirely describe the evolution of the body, that is really presented in Figure
1.14 in which the shape of the macroelement is unchanged (since F = δ) but their relative micro-
cells change according to Θ. Hence, the transformation induces at the macroscopic level, the
initial state Figure 1.13 and the deformed state Figure 1.14 have the same shape, but it includes a
perturbation at micro-scale. Such a picture is commonly used to interpret dislocations density in
illustration.
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FIGURE 1.13: representation of the body B. Cells are a representation of VTpB. A
closed material loop σ(t) is specified.

FIGURE 1.14: Representation in the ambient space of the current configuration for

the transformations (1.6.12) with θ(X1) =
π

4
cos (

X1

4L
π).

Now, in order to compare a matter with another, what we need is the connection to form the
parallel transport of vector (fields). The complete transformation Υ has been introduced for that
purpose. It has to be ensured that the properties of the connection (i.e. torsion and curvature
tensors,...), that are derived from Υ, must coincide with the properties of Υv. Accordingly, it
allows us to decide whether or not presence of defects during the material transformation Υv.
Last, to measure lengths and angles, metrics tensors have to be defined too.

Suppose that Υ is defined by (1.6.4) with the hypothesis (1.6.8), one gets the induced con-
nection Γ (see (1.6.9)). At the same time, the metrics (see (1.6.10)) are also defined, they are
compatible with the deformations of the micro and macro cells undergoing the transformation
Υv (see Figure 1.14, this picture is useful to illustrate the two metrics). Since we investigate the
two different mechanics in a whole, it is useful to express things on a finite domain. Hereafter,
the following processes are focused on such domain. First, if we parallel transport a vector along
a loop, the resulting vector coincides with the initial one, which means there is no curvature (see
Figure 1.15 as an example). Nevertheless, such process is not sufficient to verify the presence of
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torsion.

FIGURE 1.15: Representation in the ambient space of the current configuration for
the transformations (1.6.12) the developing curve σ̃ obtained for various ζ. There is
no curvature but the non-zero torsion: T1

12 = −T1
21, last the metric is not compati-

ble with the induced connection.

p

TpB

FIGURE 1.16: A pictorial representation of the developing curves: B is a sphere,
a loop σ given on the sphere has an intrinsic curvature of the manifold. Its devel-
oping curve σ̃ defined on TpB is no more closed, it convinces the presence of the

curvature on B.

Among the classical parallel transport, a particular attention is paid to a so-called rolling
without slipping transport. Roughly speaking, it allows us to lift a curve in B, passing a given
point p ∈ B to the tangent TpB. The lift of a given curve σ is denoted σ̃, namely a developing
curve. Conversely, a given σ̃ with the initial point is p determines a unique curve σ (namely the
driven curve) in B. Hence, detection of defects can be performed in the tangent bundle TB or
the base manifold B. If the connection has vanishing torsion and curvature, developing curves
of a loop in B still closes. Otherwise, it is no longer true. The gap is a quantifier of dislocation
density in the case the curvature is absent. A pictorial representation of the developing curve is
given in Figure 1.16. The transformation (1.6.12) is a typical example, for which the developing
curve is no longer closed (when ζ 6= 0), the resulting gaps designate the presence of torsion;
additionally, these gaps are dependent on ζ Figure 1.17.



1.6. Contribution of this thesis 33

p

TpB

ζ = 0

ζ = ℓ/L
ζ = 1

FIGURE 1.17: Representation in the ambient space of the current configuration for
the transformations (1.6.12) the parallel transport of the frame along the loop σ

obtained for various ζ.

FIGURE 1.18: Burger’s circuit σ obtained for various ζ = 1 and for the transforma-
tion (1.6.12) represented in the ambient space.

Notice that the preceding process does not correspond to the classical (but heuristic) way to
define a Burger circuit, over an infinitesimal material loop (the loop in B). Another strategy
has been proposed. More preciously, for the given σ̃, a so-called driven curve is obtained by
a connection of the base manifold. This curve is renamed a Burger circuit σ, and it does not
coincide with σ in the case of the presence of defects. For example, we consider the example
(1.6.12) for which the Burger circuit is not closed, see Figure 1.18.

To sum up, the Burger circuit is not a topological invariant. On the contrary, the developing
curve looks more robust for quantification of the density of defects. Moreover, this curve is useful
to discriminate the presence of curvature too (see Chapter-5).

1.6.4 Outline

1. Chapter-2 is devoted to describe how the bundle mapping (1.6.2) induces a material affine
connection and metric in the framework of RC geometry. Several physical illustrations are
also given to demonstrate that this formalism can simulate the creation of dislocations.
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2. In the chapter one, we see how the material transformation (1.6.2) changes the intrinsic
geometry of matter. This new geometry is interpreted as a material manifold with defects.
Until now, φ and Ψ are unknown what we have to look for to entirely describe the motion of
matter. We deal with a mechanical process that aims to find Ψ and φ to describe the motion
of matter entirely. For that purpose, variational process is given to determine governing
equations of motion. That is the aim of Chapter-3.

3. Chapter-4 gives descriptions of microstructured materials as a field of applications of fiber
geometry. For example, the linear microstructure may be considered as a fiber bundle
M

π→ B where M is isomorphic to TB. The basic concepts of fiber bundle manifold and
Ehresmann connection are first presented. The split structure of the tangent bundle over
M derived from the Ehresmann connection recommends introducing the so-called Sasaki
metric. As a tensor field, this is invariant under any change of coordinates. Additionally,
the split structure of the metric suggests that there exists two independent mechanisms and
allows us to investigate them more efficient. Soon, we can see in the next chapter that the
use of such a metric is completely natural. Moreover, the components of the metric in the
proper horizontal and vertical bases are entirely independent of the choice of the connec-
tion. Relations between Ehresmann connection and an affine one are somewhat clear. The
solder form is initially introduced to emphasize these relationships. Nevertheless, it may
reveal some properties that enable us to investigate specific microstructures.

4. Chapter-5 explores how the language of fiber bundle geometry may help us overcome the
limitation just obtained from the first approach (see Chapter-2). We use these notions Ehres-
mann connection, sloder form, Sasaki metric to describe structural changes in real mate-
rials. In this context, a scaled material modeling is introduced, which concerns material
transformations represented by fiber morphisms, an induced connection and metric are
first described, then derived geometrical quantities such as curvature, torsion, and non-
metricity tensor are obtained. Alternative approaches are reviewed and compared to high-
light significant features of this model. The chapter ends with a presentation of the appli-
cations of this theory.
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Part I

Riemann-Cartan geometry applied to
mechanics
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Chapter 2

Geometrical approach to kinematics of
defected material

It has been recognized long time ago that a continuum with a distribution of defects has a close
connection with the RC manifold. The equality of the torsion tensor to zero is naturally consid-
ered the criterion for the absence of dislocations density. On the other hand, disclinations density
is closely related to the curvature tensor of the material connection.

Our study consists in constructing such geometry meaning to define a metric and a connec-
tion modelling a material. To do so, we propose a new approach inspired by the microcontin-
uum theory where points and vectors behave independently. More preciously, the continuum
is modelized by a tangent space TB. The material transformation is then a smooth mapping
Υ: TB → TE3 where E3 is the three-dimensional Euclidean space. This mapping may depend
on time. In this chapter, we will show how such mapping changes the intrinsic geometry of
the continuum. The resulting geometry (here, Weitzenböck manifold) is expressed on the body
manifold B, but it allows us to describe microscopic defects of the continuum. The mapping
Υ may induces perturbations of the continuum that may capture the translational defects (dis-
locations). Hence, it permits us to highlight the role of the torsion tensor on the classification
of the continuum transformations. In some senses, our model may provide a bridge between
the classical geometrical theory of defects and the micromorphic theory. Additionally, the new
approach could be compared with the nonholonomic principle. The advantage of the present
model is that we only analyze single-valued maps rather than multivalued ones according to the
nonholonomic principle. It results that the current model is the easiest to handle for both nu-
merical and theoretical analysis. The limitation of this approach is that the induced connection is
metric-compatible, has torsion but has vanishing curvature. As a first step, this study provides
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a key idea for further studies to help us find another geometry background that is more consis-
tent with the microstructured medium with distributions of defects. It helps us to overcome the
shortcoming that the present study captured.

Section-2.1 is devoted to describing how a material affine connection and a metric are induced
by the bundle mapping Υ. In Section-2.2, we present a physical picture to show how micro-
deformation of bodies gives rise to the extra degree of freedom necessary to characterize the
microstructured continuum. Some examples are reported in Section-2.3. It is the occasion to
exhibit the physical meaning of each geometrical quantity and then state how our model is useful
to illustrate creations of defects.

2.1 Riemann-Cartan geometry and defects

A geometrical interpretation of the transformations of material is first presented through in terms
of RC manifold. This formalism invokes only smooth functions, but it can simulate the creation
of defects. Through this, we will examine the limitation of such an approach.

FIGURE 2.1: The bundle map Υ is defined by the transformation φ of the point and
the tangent map Ψ at this point. The map of vector Ψ is generally not necessary the

derivative of φ.

2.1.1 An induced geometrical structure

Let us consider a bundle mapping

Υ : TB → TE3, (X, V) 7→ (φ(X), Ψ(X)V) (2.1.1)

where Υ is smooth, has a smooth inverse and preserves orientation. In addition, one allows
Ψ 6= F, here we remind F is the deformation gradient of φ. A pictorial interpretation is given in
Figure 2.1. Hereafter, a standard convention is used: capital letter for the initial state and small
letter for the current state. In particular, ∂a (respectively ∂A) is the natural basis defined on E3

(respectively B).
The vector transformation Ψ(X) : TXB → TxE3 is linear and satisfies det Ψ(X) > 0. The linear
map Ψ(X) can be expressed by Ψ(X) = Ψa

A(X)∂a⊗ dXA. Its inverse is a map TxE3 → TXB given
by Ψ−1(x) = ΨA

b (x)∂A ⊗ dxb with

ΨB
b (x)Ψa

B(X) = δa
b and ΨA

b (x)Ψb
B(X) = δA

B . (2.1.2)
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The deformation gradient of φ is F = Dφ (sometimes denoted φ∗). For any X ∈ B, F(X) is
a linear map from TXB into TxE3. In terms of components, F = Fa

A∂a ⊗ dXA with Fa
A = ∂Aφa

satisfying det F(X) > 0 . Its inverse φ∗(x) is given by φ∗(x) = FA
b (x)∂A ⊗ dxb with

FA
b (x)Fa

A(X) = δa
b and FA

b (x)Fb
B(X) = δA

B . (2.1.3)

Note that the notation x = φ(X) is used with X ∈ B. If there is no room for confusion, we
neglect the notations x, X in some formulas.

Let us denote ∇0 the Levi-Civita connection defined on E3 with coefficients γa
bc, the ambient

metric

g(x) = gab(x)dxa ⊗ dxb. (2.1.4)

By definition, the connection γ is metric-compatible ∇0g = 0.
Let U, V be vector fields on B, we define the two quantities G and ∇ given on B as follows:

G(U, V) = g(ΨU, ΨV) and ∇VU = Ψ−1(∇0
φ∗VΨU). (2.1.5)

In terms of components,

GAB = Ψa
AgabΨb

B and ΓA
BC = ΨA

c Fb
B(Ψa

Cγc
ab + ∂bΨc

C). (2.1.6)

Proposition 2.1.1. ∇ is an affine connection defined on B. Furthermore, the connection∇ is compatible
with the metric G.

Proof. We first need to verify that ∇ is an affine connection defined on B. Recall f is a smooth
real function, V, U, W are vector fields over B, one has

∇V+UW = Ψ−1∇0
φ∗(V+U)ΨW

= Ψ−1(∇0
φ∗VΨW +∇0

φ∗UΨW)

= Ψ−1∇0
φ∗VΨW + Ψ−1∇0

φ∗UΨW

= ∇VW +∇UW.

∇V(U + W) = Ψ−1∇0
φ∗VΨ(U + W)

= Ψ−1(∇0
φ∗VΨU +∇0

φ∗vΨW)

= Ψ−1∇0
φ∗VΨU + Ψ∇0

φ∗VΨW

= ∇VU +∇VW.

(2.1.7)

and

∇( f V)U = Ψ−1∇0
φ∗( f V)ΨU

= Ψ−1 f∇0
φ∗VΨU

= f Ψ∇0
φ∗VΨU

= f∇VU.

∇V( f U) = Ψ−1∇0
φ∗VΨ( f U)

= Ψ−1(φ∗V[ f ]ΨU + f∇0
φ∗VΨU)

= Ψ−1(φ∗V[ f ])ΨU + Ψ−1( f∇0
φ∗VΨU)

= φ∗V[ f ]U + f∇VU

= (∂Aφa)VA(∂a f (φ(X)))U + f∇VU

= (∂Aφa)VA(∂B f )(∂aφ−1B)U + f∇VU

= V[ f ]U + f∇VU.

(2.1.8)
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Moreover, as follow we prove that the connection∇ is compatible with the metric G. From a fact
that

∇0
φ∗V( f ◦ φ−1) = φ∗V[ f ◦ φ−1] = Fa

AVA ∂( f ◦ φ)

∂xa = Fa
AVA ∂ f

∂XB FB
a = VA ∂ f

∂XA = V[ f ] = ∇V f ,

one gets
∇VG(W, U) = ∇0

φ∗Vg(ΨW, ΨU).

Put v = φ∗V, u = ΨU and w = ΨW, one obtains

G(W,∇VU) + G(∇VW, U) = g(w,∇0
vu) + g(∇0

vw, u) = ∇0
vg(w, u) = ∇VG(W, U).

This proves that ∇G = 0.
To end the proof, we find out components of the induced metric G and the connection∇: for any
U, V ∈ TXB, the induced metric reads GAB = Ψa

AgabΨb
B . Remind that ∂a (respectively ∂A) is the

natural basis defined on E3 (respectively B) with respect to the chosen coordinates. One gets

∇φ∗∂B (Ψ∂A) = ∇0
Fb

B∂B
Ψa

A∂a

= Fb
B(Ψa

A∇0
∂b

∂a + ∂bΨa
A∂a)

= Fb
B(Ψa

Aγc
ab + ∂bΨc

A)∂c.

Consequently,
∇∂B ∂A = Ψ−1(∇0

φ∗∂B
Ψ∂A) = ΨC

c Fb
B(Ψa

Aγc
ab + ∂bΨc

A)∂C

Therefore, we obtain that the connection coefficients are

ΓC
BA = ΨC

c Fb
B(Ψa

Aγc
ab + ∂bΨc

A). (2.1.9)

This ends the proof.

The antisymmetric part of the affine connection defines the torsion tensor T. When the Carte-
sian coordinates are used, the connection is γc

ab = 0, and hence the induced connection may be
rewritten as

ΓA
BC = ΨA

a ∂BΨa
C. (2.1.10)

and the torsion tensor becomes:

TA
BC = ΨA

a (∂BΨa
C − ∂CΨa

B). (2.1.11)

Remark 2.1.2. The connection coefficients are exactly as the same as the so-called wryness tensor intro-
duced by Eringen (Eringen, 1999).

Proposition 2.1.3. The induced torsion vanishes if and only if there exists (at least locally) a function
ψ : B → E3 such that Ψ = Dψ.

Proof. Trivially, if there exists a function ψ : B → E3 such that Ψ = Dψ the connection induced
by Υ : TB → TE3 has zero torsion. Without losing any information, we assume that Cartesian
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coordinate system on TE3 are used. The torsion T = 0 yields ΓC
BA = ΓC

AB i.e. ΨC
c ∂BΨc

A = ΨC
c ∂AΨc

B.
Then, one gets ∂BΨc

A = ∂AΨc
B. Write ωc = Ψc

AdXA (with c = 1, 3 must be seen as labels of the one-
form and not as indices). Its exterior derivative 1 is the 2-form:

dωc = (∂AΨc
B − ∂BΨc

A)dXA ∧ dXB. (2.1.12)

Hence, the torsion T vanishes if and only if dωc = 0. Remind that a r-form β is called exact
if there is a (r − 1)-form such that dη = β. r-form β is closed if dβ = 0. Note that if a 1-form
is closed, there is a neighborhood such that it is exact (see definition in (Epstein and Segev,
2014)). Applying this result, there exists ηc (at least locally on B) such that dηc = ωc and hence
Ψc

A = ∂Aηc. This establishes that ψ = (η1, η2, η3).

Proposition 2.1.4. The connection ∇ has zero curvature.

Proof. As the curvature tensor is a map R : TB × TB × TB → TB defined by R(U, V)W =

∇U∇VW −∇V∇UW −∇[U,V]W, direct computations show:

R(U, V)W = ∇UΨ−1
(
∇0

φ∗VΨW
)
−∇VΨ−1

(
∇0

φ∗UΨW
)
−Ψ−1

(
∇0

φ∗[U,V]ΨW
)

= Ψ−1
(
∇0

φ∗U∇
0
φ∗VΨW −∇0

φ∗V∇
0
φ∗UΨW −∇0

[φ∗U,φ∗V]ΨW
)

= Ψ−1R0(φ∗U, φ∗V)ΨW.

(2.1.13)

Since the curvature R0 of the Euclidean space is zero, R vanishes.

Remark 2.1.5. The forms of the metric and the connection looks qualitatively similar to the ones in almost
all defect-theories, see Section-(1.9), (1.5.2.1). Among them, one of the powerful tools is the nonholonomic
principle Kleinert, 2008; Kleinert, 2000. Roughly, Ψ plays the same roles as e. It suggests that G can be
used to measure lengths and relative angles on B. Nevertheless, the present approach differs on a crucial
point. The motion of the material manifold B is presented by Υ that consists of two independent variables,
φ and Ψ, that are both smooth and single-valued maps. This point allows wide types of mathematical
analysis and numerical simulation may be more comfortably handled.

Remark 2.1.6. The bundle map seems to be an alternative representation of elastoplastic process with
F = Ψ, the elastic deformation part Fe = F = Dφ, and immediately Fp = F−1Ψ. However, in such
a way, the intermediate configuration is not needed. In fact, we have identified this configuration to the
initial configuration.

2.1.2 Geometrical interpretation of the induced connection

Denote σ(t) a curve in B, this curve generates a vector field U = σ̇(t) along σ with t ∈ R.
Let V be another vector field defined along σ. To determine an affine connection on the current
manifold, we have to specify how the vector field V is parallel transported from one material

1If we denote the vector space of r-forms Ωr(B), the exterior derivative dr is a map Ωr(B) → Ωr+1(B) whose
action on an r-form ω = 1

r! ωµ1,..,µr dxµ1 ∧ ... ∧ dxµr is defined by drω = 1
r! (∂νωµ1,...,µr dxµ1 ) ∧ ... ∧ dxµr ∧ dxν Nakahara,

2003
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FIGURE 2.2: Pictorial representation of the induced connection: Two points P, Q
belonging to σ(t) are very close. Let v = ΨV and v||p be a parallel transport of vq

from q to p. The gap between v‖p and vp gives us a covariant variation of v along u.

Hence, its pull-back is the gap between V‖P and Vp by Ψ.

point to another along σ(t). The following proposition demonstrates a link between parallel
transport and a connection.

Proposition 2.1.7 (Chapter 1, Page 74, Marsden and Hughes, 1994). Let σ(t) be a given curve in
B generating U := σ̇(t), and V be a vector field defined along σ. Denote ρt,s : Tσ(s)B → Tσ(t)B is a
parallel transport from σ(s) to σ(t). Then

∇σ̇(t)V(σ(t)) =
d
ds

(
ρt,sV(σ(s))

)
|s=t

.

Let `t,s : Tφ(σ(s))φ(B) → Tφ(σ(t))φ(B) denote the parallel translation from φ(σ(s)) to φ(σ(t)).
Then, the parallel translation ρ(t, s) is naturally defined by

ρ(t, s) = Ψ−1(σ(t)) ◦ `t,s ◦Ψ(σ(s)). (2.1.14)

Insert (2.1.7) into (2.1.14), we conclude that

∇σ̇(t)V(σ(t)) = Ψ−1(σ(t))
d
ds

(
`t,sΨ(σ(s))V(σ(s))

)
|s=t

= Ψ−1(σ(t))∇0
˙(φσ)(t)Ψ(σ(t))V(σ(t))

= Ψ(σ(t))∇0
φ∗ ˙σ(t)Ψ(σ(t))V(σ(t)).

It verifies ∇UV = Ψ−1∇0
φ∗UΨV.

2.2 Physical interpretations

Some physical illustrations are presented hereafter. It is the occasion to interrogate the physical
meaning of each geometrical quantities but also the way to illustrate each phenomena.
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FIGURE 2.3: Micro structure of a media: a center of mass
of infinitesimal element dV is assumed to be a math-
ematical point p belongs to B, while an atom includ-
ing the element is identified with a tangent vector to the

manifold B at the point p.

2.2.1 Physical picture

When geometrical description is used to express mechanical processes, it is assumed that the
body consists of a huge number of infinitesimal volume elements dV which are considered as
mathematical points in the base manifold B. The motion of such a point P is governed by the
map φ. Mathematically, these points span the body continuously, whereas mechanically speak-
ing, the volume element dV contains finite quantities of matter (for which P is interpreted as
the center of mass of dV). More interestingly, this interpretation breaks the continuous inter-
pretation of mathematical points as matters are presented between two adjacent points P′. This
remark remains without effect if the mater in dV is stretched by Dφ, as in the standard Rieman-
nian description of continuum mechanics Marsden and Hughes, 1994. Relaxing this hypothesis
consists in considering that each material element (atom) in dV supports a stretch associated with
a map Ψ 6= Dφ.

In the reference configuration, let us note U a local position vector of an atom relative to P,
i.e. U is the two-point vector PA (with base P and head A) in dV. In a non-Riemannian case,
u = Ψ U is associated with the current position of this atom relatively to the material center of
mass P. This description is closely related to the Eringen point of view in the Eringen-Mindlin
theory in Suhubi and Eringen, 1964; Eringen and Suhubi, 1964; Eringen, 1999. In the following,
this approach is called unique-scale modeling (USM).

2.2.1.1 Numerical simulation

In the present section, graphical simulations are performed in order to propose illustrations of
each process. These simulations represent the current state of the material domain lying in the
Euclidean space. Hence, the position of each material point P is prescribed by x = φ(X). These
points are elements of a Cartesian grid in the reference configuration B. The size of the grid is
L in each direction: XA = nAL where nA is a natural number. Mathematically speaking, L has
to be small in regard to the variation of φ. From the mechanical point of view, L is the typical
dimension of dV. Then each atom A from a volume element dV centered around P is placed in
the Euclidean space at x + u, where x = φ(X) and u = Ψ(X) U (recall that U = ~PA ∈ TPB). In
practice, the element A of dV is chosen in a sub-Cartesian grid in B around P. In other words,
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U I = (− 1
2 + nI

d
L )L where nI is an integer smaller than L/d. Hence, d is the reference distance

between two atoms, and the scale ratio d/L imposes the number L/d of atoms along a Cartesian
direction of B. It must be underlined that the scale ratio d/L is here nothing else than a numeri-
cal and graphical choice: it does not contain any significance neither in the mechanical nor in the
geometrical point of view.

FIGURE 2.4: Graphical presentation of a
reference configuration in the Euclidean
space. Each color cell is macroelement.
Points are atoms contained in the cells.
Size of the cell L = 1, distance of two

atoms d = 1/12.

-2 -1 0 1 2

X
1

-2

-1

0

1

2

X
2

2.2.2 Introducing a sub-scale

FIGURE 2.5: Various length scales of a model: micro-
scopic and macroscopic. The scale ratio `/L is defined

for accounting for scaling effects.

As it has been underlined, no specific sub-scale has been introduced through preceding mod-
eling: the new physical effect introduced by Ψ 6= Dφ acts uniformly in the whole domain dV.
However, from a mechanical point of view, the effect of the length scales can not be ignored. For
instance, experiment tests have shown that continuum plasticity is used at macroscopic level (
≥ 300µm). A macroscopic plasticity of materials involves microscopic slip (' 104µm). Focusing
on this, the microscopic effects constitutes the basic point of view for crystalline plasticity. In
between, gradient continuum models have been proposed to take into consideration mesoscopic
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plasticity (Rakotomanana, 2018; Rakotomanana, 2005). A sub-scale may be introduced by con-
sidering that dV is composed of a large number of microelements δV of finite (but tiny) size.
In the current state, the localization of each microelement (centered at a point Q) is prescribed
by F(X) = Dφ measured at P, whereas the stretch of microelement is controlled by Ψ(X) still
measured at P. This description is closely related to the Mindlin point of view in the Eringen-
Mindlin theory Eringen and Suhubi, 1964; Suhubi and Eringen, 1964; Mindlin, 1964. Hereafter,
this approach is called sub-scale modeling (SSM).

2.2.2.1 Numerical simulation

In a numerical point of view, let us consider a cubic microelement δV is of side `. Then ` is the
typical length for which the cut-and-glued process operates in dislocations theories (Nabarro,
1967; Acharya, Knops, and Sivaloganathan, 2019). In the reference configuration, the position
of the center Q of δV relatively to P is defined by the two-point vector U = ~PQ. For this cubic
arrangement, UA = (− 1

2 + 2nA+1
2

`
L )L with nA an integer in [0, L

` − 1]. The center of δV are then
placed at x + u in the Euclidean space, where u = F U. As F is computed at P, the center Q
of microelements of dV are rearranged in a parallelipedic grid in the current configuration. An
atom A placed in a microelement is rearranged around Q according to v = ΨV where V is the
two-point vector ~QA in the reference state. For simulation purpose, the atoms are placed in
δV according to a Cartesian grid; in other words V I = (− 1

2 + nI
d
` )`, where nI ∈ [0, `

d ]. Again
d is the distance between each atoms; it is introduced for graphical reasons but does not offer
any physical or mathematical informations. However, the scale ratio `/L (i.e. the volume-ratio
δV/dV) represents the spatial gap for-which macro-stretch F and micro-stretch Ψ act uniformly.
Indeed, even if Ψ(X) is evaluated at P and is then homogeneous in all microelements δV of dV,
the action of Ψ on all microelements of dV introduces a non-uniform pattern on dV (if Ψ(X) 6=
F(X)). Numerically, this is obtained because Ψ and F act on position vectors relative to different
origins.

Nevertheless, it must be underlined that mathematically F and Ψ act on vector belonging
to TB and both are computed at P hence the geometrical state characterized by the metric and
torsion tensor is the same in Eringen and Mindlin point of view. The sub-scale ` brings some
interesting illustrations, but it is not unfortunately tractable in a mathematical language in the
frame-work of Riemann-Cartan geometry, see examples in the next section.

2.3 Examples

We assume that the body is defect-free, and is subset in the Euclidean space. Let consider an
example proposed by Acharya and Bassani, 2000 and reconsidered in Yavari and Goriely, 2012a.
In this example, the material point map φ is identity (then F = I) but Ψ is given as below:

Ψ = I + ψ ∂1 ⊗ ∂2 (2.3.1)
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FIGURE 2.6: Graphical pre-
sentation of a reference con-
figuration in the Euclidean
space. Smaller cells are
microelements dV. Each
color cell is macroelement
δV. Points are atoms con-
tained in δV. Here we con-
sider L = 1, and ` = 1/3,
and a distance of two atoms

is d = 1/12.
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where Cartesian coordinates are used both in the body and in the ambient Euclidean space (then
g = δ and γ = 0). Even if ψ(X2) is in Yavari and Goriely, 2012a, here ψ : B → R is a smooth
function (at least C 2) of any (X1, X2, X3).
The induced metric GAB = Ψa

AgabΨb
B is

G = I + ψ(∂1 ⊗ ∂2 + ∂2 ⊗ ∂1) + ψ2∂2 ⊗ ∂2. (2.3.2)

In particular, det(G) = 1 which means that the volume of the element dV does not change.
The connection coefficients are

Γ1
A2 = ∂Aψ. (2.3.3)

This yields to a possible non-zero torsion T with non-zero components:

T1
A2 = −T1

2A = ∂Aψ with A ∈ {1, 3}

Specifically, if ψ depends only on X1, T1
12 = ∂1ψ corresponding to a density of edge type disloca-

tions. On the other hand, if ψ depends only on X3, one have T1
32 = ∂3ψ characterizing a density

of screw type dislocations. Last, suppose ψ is function of X2, the current state is defect free even
if Ψ 6= F.

In Figure 2.7, the illustration is provided for A = 1 and 2 in the USM framework with:

ψ(XA) =
1

2L
sin (

XA

4L
π) (2.3.4)

The magnitude of the transformation is voluntarily intensified as can be observed in the illustra-
tion. For XA = X1 (Figure 2.7-left), the presence of screw dislocations induces local transforma-
tions of the element dV that does not allow any gluing process without introducing additional
elastic strain. From another point of view, the total gap of current vector field (green) along a
closed material loop does not vanish as it is illustrated too. These phenomena are not observed if
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XA = X2 (Figure 2.7-right), this gliding process does not introduce defect even if, as F 6= Ψ, two
initial adjacent atoms belonging to distinct macroelements are no more neighbors after transfor-
mation.

In the end, it is in agreement with theoretical analysis since on the one side (Figure 2.7-left)
T 6= 0, R = 0 and ∇g = 0, and on the other side (Figure2.7-right) T = 0, R = 0 and ∇g = 0.
The same transformation is observed within the SSM point of view in Figure 2.8. If XA = X1, the
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FIGURE 2.7: Current configuration in the Euclidean space for a transformation pre-
scribed by (2.3.1) and (2.3.4) with A = 1 (left) and A = 2 (right). The USM point of

view is used with L = 1 and d = 1/12.

local defects look less intense but more present and distributed along the macroelement in such a
way that the total amount of defect is preserved in a macroelement (Figure 2.8-left). If XA = X2,
the gliding process supports a spacial dispersion too (Figure 2.8-right). Notice that if φ is defined
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FIGURE 2.8: Same as Figure 2.7 but within the SSM point of view with L = 1,
d = 1/12 and ` = 1/3.

by

x1 = X1 − 2
π

cos (
XA

4L
π) and x2 = X2, (2.3.5)
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then F = Ψ if XA = X2. In that case, the resulting transformation is the same whatever the choice
of either USM or SSM computation (see Figure 2.9).
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FIGURE 2.9: Current configuration for a compatible transformation prescribed by

(2.3.1) and (2.3.4) with A = 2 and φ : (X1, X2) → (X1 − 2
π

cos (
XA

4L
π), X2).

Computation is performed within the SSM point of view with L = 1, d = 1/12 and
` = 1/3. Same result is obtained if USM is chosen.

It is the occasion to underline a risk of confusion introduced through SSM simulations. Here,
the lowest pattern is a dot with a typical size d. If ` is similar or smaller than d, no transformation
is observed: atoms are along the Cartesian grid in the current state. Nonetheless, in a mathemat-
ical point of view, the torsion is unchanged. As already underlined d does not have physical or
mathematical significance, this observation is just a numerical artifact. This motivates to impose
` > d in the same spirit than the Nyquist criteria in signal processing.

2.4 Conclusion

A simple geometric theory of defects inspired by the micromorphic models has been introduced.
It shows how the new transformation changes the intrinsic geometry of matter, from which dis-
locations may be created (underling, by the way, the non-zero torsion tensor). The interesting
thing is that we have proved that even if the map yields perturbation of the body at the micro
scale, it may not create defects. The example has shown how this situation may be captured.
Even though the models do not incorporate all classes of defects in the topological point of view,
it motivates the development of geometrical modelling that fullfils this gap. A further general-
ization of the present theory is mentioned in the following tasks.

Another important thing is that starting with the transformation, Eringen defined some strain
and the wryness tensor is one of them (Eringen, 1999). Nevertheless, we have proved in our
theory that the wryness tensor is a connection, then it is not a tensor in the geometrical sense.
Hence, the wryness tensor can not be defined as a strain. Additionally, one of the incompatibility
conditions, being a measurement of the disclinations, is precisely equal to the curvature tensor
of our connection. Hence, the incompatibility law is always satisfied. To sum up, the present
theory modify this misfit.
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Chapter 3

Field equations

In the preceding chapter, we see how the material transformation Υ changes the intrinsic ge-
ometry of matter. This new geometry is interpreted as a material manifold with defects. Up to
present, φ and Ψ are unknown that we have to look for in order to describe the motion of matter
entirely.

We begin with some strain measurements in Section-3.1. Section-3.2 gives a formula of inter-
nal energy and the stress tensors. Section-3.3 is devoted to the concepts of mass, microinertia, and
kinetic energy; these points play central roles in the dynamical equations of microcontinuum. In
continuum mechanics, it is possible to derive all the balance equations by using Hamilton’s prin-
ciple; this point is displayed in Section-3.4. Linear constitutive equations for isotropic material
are collected in Section-3.5.

3.1 Strain measures

Recall the bundle map (2.1.1), for simplicity, the manifold B is assumed to be a subset evolving
within Euclidean space; the Cartesian coordinate is used on E3. To keep things simple, we sup-
pose that the reference configuration and the manifold B are merged together. The Kronecker
metric δAB and the Levi-Civita connection γ are employed on the reference configuration. The
current state is described by the metric G and the connection Γ that are derived from the material
transformation (see (2.1.6)).

3.1.1 Green-Lagrange measure

The change of the distance and angle between the material point and its neighbourhood during
the motion is measured by the classical (Green-Lagrange) strain E (Marsden and Hughes, 1994;
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Gonzalez and Stuart, 2008). This is defined by the change of the material matrices

E =
1
2

(G− δ). (3.1.1)

3.1.2 Relative strain

The measurement of the difference between the micro and macro-deformation is obtained by the
relative strain, and it is formalized by

E = Ψ−1F− I, (3.1.2)

where I = δA
B ∂A ⊗ dXB is the identity tensor. This strain was introduced by Eringen (Eringen,

1999).
Alternatively, one can define another relative strain as

Ẽ = F−1Ψ− I.

3.1.3 Change of torsion

The changes in the intrinsic material manifold can be considered as strains measurement. By
the construction, the new defects may be created by the material transformation. It is crucial to
exhibit a dedicated tool measuring such creation of dislocations. This tool is in agreement with
the torsion tensor T.

3.2 Internal energy density and stress tensors

Let us denote Ξ internal or free energy density. Throughout the remainder of our developments,
we assume that Ξ is in the form:

Ξ = Ξ(E, E ,T) (3.2.1)

All the arguments of Ξ are components of tensors. They are invariant under the action of the
diffeomorphism (in the sense that they transform covariantly according to usual tensor transfor-
mations depending on their type). Therefore, the Lagrangian function is covariant. Now, we can
define the set of stress tensors as follows:

S =
∂Ξ

∂E
, D =

∂Ξ

∂E , T =
∂Ξ

∂T
. (3.2.2)

3.3 Mass, inertia and kinetic energy

The results appearing here are similar to Eringen, 1999. However, to make the section self-
contained and easy for the readers, we would like to reformulate these results ourselves.

The concepts of mass and inertia require a finite volume of the material body. Before we take an
asymptotic analysis of each material point: indeed one considers a particle “P” having volume
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FIGURE 3.1: Micro-volume element.

∆V, in the reference state and its image “p” within a volume ∆v, in the current configuration at
time t. The total mass of these particles is the sum of the masses of microelements i.e.

ρ0∆V =
∫

∆V
ρ′0dV′ ρ∆v =

∫
∆v

ρ′dv′, (3.3.1)

where primed quantities refer to microelements contained in “P” and “p”, respectively. A pic-
torial interpretation is given in Figure 3.1. We assume that the mass of the microelements is
conserved during the motion

ρ′0dV′ = ρ′dv′. (3.3.2)

This implies that, in the limit as ∆V→ 0 and ∆v→ 0, one gets

ρ0dV = ρdv (3.3.3)

The relative position vectors U and u of the elements are taken with respect to center mass “P”
and “p”, so that. ∫

∆V
ρ′0U dV′ = 0

∫
∆v

ρ′u dv′ = 0. (3.3.4)

Consequently,

d
dt

∫
∆v

ρ′u dv′ =
d
dt

∫
∆V

ρ′0ΨU dV′ =
∫

∆V
ρ′0Ψ̇U dV′ =

∫
∆v

ρ′u̇ dV′ = 0. (3.3.5)

Now, let us denote K a kinetic energy density per unit mass:

K =
1

2ρdv

∫
∆v

ρ′(ẋ + u̇) · (ẋ + u̇) dv′. (3.3.6)

Here, the “cdot” product is defined by: for arbitrary vectors v, u ∈ TxE3, u · v = uagabvb. Apply-
ing (3.3.4) and (3.3.5), we conclude

K =
1
2

V ·V +
1
2

1
ρdv

∫
∆v

ρ′u̇agabu̇b dv′ (3.3.7)
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where V is a material velocity

Va(X, t) =
∂φa(X, t)

∂t
. (3.3.8)

The first part is analogous to the macroscopic kinetic energy, while the second term is associated
with the kinetic energy of microelements.

Next, since u̇a = Ψ̇a
AUA = Ψ̇a

AΨA
c uc = νa

cuc. It is time to define a so-called microgyration
variable (Eringen, 1999).

νa
c = Ψ̇a

AΨA
c . (3.3.9)

Applying this notion, one gets u̇a = νa
cuc and hence the microscopic kinetic energy can be rewrit-

ten as

1
2

1
ρdv

∫
∆v

ρ′u̇agabu̇b dv′ =
1
2

νa
sgabνb

h
1

ρdv

∫
∆v

ρ′usuh dv′ =
1
2

νa
sgabνb

hi
sh, (3.3.10)

where a microinertia tensor i is given by (Eringen, 1999)

ish =
1

ρdv

∫
∆v

ρ′usuhdv′. (3.3.11)

Insert (3.3.10) into (3.3.7), one gets

K =
1
2

V ·V +
1
2
i : νgν. (3.3.12)

It is called the spatial formula of the kinetic energy. Its material form will be constructed as
follows: first of all, similar to (3.3.11) a material microinertia tensor I is defined by (Eringen,
1999)

ISH =
1

ρ0dV

∫
∆V

ρ′0USUH dV′. (3.3.13)

After that, upon using the law of conversation of mass (3.3.3), we conclude a law of conservation
of microinertia (Eringen, 1999)

ish = Ψs
SΨh

H
1

ρdv

∫
∆V

ρ′0USUH dV′ = Ψs
SI

SHΨh
H. (3.3.14)

Thanks to this relation and (3.3.9), we obtain

i : νgν = νa
sgabνb

hi
sh = Ψ̇a

AΨA
s gabΨ̇b

BΨB
h Ψs

SI
SHΨh

H

= ISH Ψ̇a
AgabΨ̇b

B (ΨA
s Ψs

S) (ΨB
h Ψh

H) = ISH Ψ̇a
SgabΨ̇b

H = I : Ψ̇gΨ̇. (3.3.15)

Finally, inserting (3.3.15) into (3.3.12), the kinetic energy can be rewritten as

K =
1
2

V ·V +
1
2
I : Ψ̇gΨ̇. (3.3.16)
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3.4 Variational equations

In continuum mechanics, it is possible to derive all the balance equations by using a Hamilton’s
principle. The principle states that the dynamics of a physical system are determined by a varia-
tional problem for a functional based on a single function, the Lagrangian, which may contain all
physical information concerning the system and the forces acting on it. Now, we first consider
the infinitesimal variations of the coordinates

x → x̃ = x + δu Ψ → Ψ̃ = Ψ + δΨ (3.4.1)

Variation δu is called external variation, whereas variation of fields δΨ are called internal (Capozziello
and De Laurentis, 2011; Rakotomanana, 2018). We write Hamilton’s principle for independent
variations δu and δΨ between fixed limits of u and Ψ at times t0 and t1:∫ t1

t0

δK dt +
∫ t1

t0

δWe dt =
∫ t1

t0

δW dt, (3.4.2)

where K andWe are the total kinetic energy and the work done by external forces, respectively.
W designates the work of the internal forces.

3.4.1 Work of the internal forces

The virtual work of the internal forces will be stored in the material

δW =
∫

B
δΞ dV with δΞ = S : δE + D : δE + T : δT. (3.4.3)

Firstly, as EAB =
1
2

(Ψa
AgabΨb

B − δAB), one obtains

S : δE = SABδEAB =
1
2
SAB

(
gabΨa

AδΨb
B + gabΨb

BδΨa
A

)
=

(
Ψa

AS
ABgab

)
δΨb

B = P : δΨ, with P B
b = gbaΨa

AS
AB. (3.4.4)

Second, as δ(Ψa
CΨC

b ) = 0, one obtains δΨa
CΨC

b + Ψa
CδΨC

b = 0 and then

δΨB
b = ΨB

a Ψa
CδΨC

b = −ΨB
a δΨa

CΨC
b . (3.4.5)

Applying the above relation, one obtains

D : δΨ−1F = D A
B δΨB

b Fb
A = D A

B Fb
AδΨB

b

= −
(

D A
B Fb

AΨB
a ΨC

b

)
δΨa

C := −D̃ : δΨ, with D̃ C
a := ΨB

a D A
B Fb

AΨC
b . (3.4.6)

Then, we can write

D : δE = D : δΨ−1F + D : Ψ−1δF = −D̃ : δΨ + D : δF, with D
A

b := ΨB
b D A

B . (3.4.7)
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Next, as ΓC
AB = ΨC

b ∂AΨb
B , variation of the connection reads

δΓC
AB = δΨC

b ∂AΨb
B + ΨC

b ∂AδΨb
B = −ΨC

a δΨa
DΨD

b ∂AΨb
B + ΨC

b ∂AδΨb
B . (3.4.8)

We deduce that

T : δT = T AB
C δTC

AB =

(
T AB

C ΨC
a ΨD

b ∂BΨb
A −T AB

C ΨC
a ΨD

b ∂AΨb
B

)
δΨa

D

+

(
T AB

C ΨC
b

)
∂AδΨb

B −
(

T AB
C ΨC

b

)
∂BδΨb

A

= 2
(

T AB
C ΨC

a ΨD
b ∂BΨb

A

)
δΨa

D + 2
(

T AB
C ΨC

b

)
∂AδΨb

B

= T̃ : δΨ + T : ∇δΨ. (3.4.9)

Here, we have used the fact that T AB
C = −T BA

C , and have defined

T̃ D
a := 2

(
T AB

C ΨC
a ΨD

b ∂BΨb
A

)
and T

AB
b := 2

(
T AB

C ΨC
b

)
(3.4.10)

Insert (3.4.4), (3.4.7), and (3.4.9) into (3.4.3), the virtual work of the internal forces reads

δW =
∫

B
D : δF + (P− D̃ + T̃ ) : δΨ + T : ∇δΨ dV. (3.4.11)

Notice that the first term can be expressed by

D
A

a δFa
A = ∂A(D

A
a δua)− ∂A(D

A
a )δua, (3.4.12)

and the third one is reformulated by

T
AB
b ∂AδΨb

B = ∂A(T
AB
b δΨb

B)− ∂A(T
AB
b )δΨb

B . (3.4.13)

Denote “N′′ a unit normal vector to ∂B, employing the Divergence Theorem (Marsden and
Hughes, 1994; Gonzalez and Stuart, 2008), it yields that

δW =
∫

B
−DivD · δu + (P− D̃ + T̃ −DivT ) : δΨ dV

+
∫

∂B
D · N · δu + T · N : δΨ dS.

(3.4.14)

3.4.2 Work of the external forces

The form of (3.4.14) is the motivation for the variation of work done by external forces:

δWe =
∫

B
b · δu + Z : δΨ dV +

∫
∂B

s · δu + D : δΨ dS, (3.4.15)

where b is the body force per unit volume, s is the surface force per unit area (stress-vector or
traction), and Z is interpreted as a double force per unit volume and D is a double force per unit
area.
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3.4.3 Work of the kinetic energy

The kinetic work is known as∫ t1

t0

δKdt =
∫ t1

t0

∫
B

ρ0 δ

(
1
2

V ·V +
1
2
I : Ψ̇gΨ̇

)
dVdt. (3.4.16)

Firstly, we noticed that δ

(
VagabVb

)
= 2VagabδVb and δVa(X, t) = ∂δua(X, t)/∂t, in the usual

way (see Love, 1944, p.166) we find

∫ t1

t0

∫
B

1
2

ρ0 δ

(
VagabVb

)
dVdt =

∫ t1

t0

∫
B

VagabδVb dVdt

= −
∫ t1

t0

∫
B

ρ0 A · δu dVdt

where the material acceleration A is given by A(X, t) =
∂V(X, t)

∂t
.

Secondly, it can be verify that

1
2
I : δ(Ψ̇gΨ̇) = IABΨ̇a

Agab
˙δΨb

B . (3.4.17)

Consequently, one gets

∫ t1

t0

∫
B

1
2

ρ0I : δ(Ψ̇gΨ̇) dVdt = −
∫ t1

t0

∫
B

ρ0Λ : δΨ dVdt, (3.4.18)

where the micro acceleration or spin inertia Λ is defined by

ΛB
b = gabΨ̈a

AI
AB. (3.4.19)

Furthermore, if we apply δΨ = Ψ̇ to (3.4.18), one gets

Λ : Ψ̇ =
1
2

d
dt

(
I : Ψ̇gΨ̇

)
. (3.4.20)

Finally, insert (3.4.17) and (3.4.18) into (3.4.16), we conclude that

∫ t1

t0

δKdt = −
∫ t1

t0

∫
B

ρ0

(
A · δu + Λ : δΨ

)
dVdt. (3.4.21)

3.4.4 Local equations of motion

Substituting (3.4.14) - (3.4.15) - (3.4.21) into (3.4.2) (drop the integration with respect to time), one
obtains∫

B
(b− ρ0 A + Div D) · δu + (Z− ρ0Λ + D̃ − P− T̃ + Div T ) : δΨ dV

+
∫

∂B
(s−D · N) · δu + (D−T · N) : δΨ dS = 0.

(3.4.22)
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The necessary and sufficient conditions to ensure the above equation to be satisfied for arbitrary
variation δu and δΨ 

b + Div D = ρ0A

Z + D̃ − P− T̃ + Div T = ρ0Λ

(3.4.23)

together with its boundary conditions:

s = D · N and D = T · N. (3.4.24)

These are local equations of motion, of which the first equations are the local balance of momen-
tum while the second is balance of moment of momentum.

3.5 Linear equations

This section concerns the linear theory of the equations of motion. In what follows we use, for
instance, we write ua

,A instead of ∂Aua.

3.5.1 General equations

Due to the aim of the section, we employ linear approximations

Fa
A ' (δa

b + ua
,b)δb

A

Ψa
A ' (δa

b + ma
b)δb

A

ΨA
a ' δA

b (δb
a −mb

a).
(3.5.1)

where u is small displacement vector field. With these, in the first approximation, one gets

ΓA
BC ' ma

c,bδA
a δc

Cδb
B

TA
BC ' (ma

c,b −ma
b,c)δA

a δb
Bδc

C

EAB '
1
2

(δcbmc
a + δacmc

b)δa
Aδb

B

EA
B ' (ua

,b −ma
b)δA

a δb
B.

(3.5.2)

This is the occasion to define:

tabc = δae(me
c,b −me

b,c) (3.5.3)

dab = δae(ue
,b −me

b) (3.5.4)

εab =
1
2

(δcbmc
a + δacmc

b). (3.5.5)
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The linear approximation for the stress, and the stress fields require a quadratic approximation
for the stored energy Ξ, in its variables. In this work, we suppose that

Ξ =
1
2

c εaaεbb + d εabεab +
1
2

$ daadbb +
1
2

η dabdba +
1
2

(η + ε) dabdab

g daaεbb + h (dab + dba)εba −
1
4

α tbbatcac

+
1
8

β tbcatbca +
1
4

γ tbcatcab.

(3.5.6)

In which,“− 1
4 α tbbatcac + 1

8 β tbcatbca + 1
4 γ tbcatcab” is coming from a distribution of dislocations. It

is similar to one in (Katanaev, 2005).
For the homogeneous isotropic material, the linear constitutive equations for stresses read

σab ' ∂Ξ

∂εab
= c δabεii + 2d εab + g δabdii + h (dab + dba) (3.5.7)

τab ' ∂Ξ

∂dab
= $ δabdii + (ε + η) dab + η dba + g δab εii + 2h εab. (3.5.8)

The last ones µqrp ' ∂Ξ

∂tqrp
are explicitly expressed by

2µaab = αtqqb + (β− γ)taab = −2µaba, a 6= b (3.5.9)

2µabc = βtabc + γ(tcab + tbca), a 6= b 6= c. (3.5.10)

By the way, the components µaab are associated with edge dislocations, while the other ones are
related to screw dislocation.

For the homogeneous, isotropic material the micro acceleration (3.4.19) reads

ΛB
b = IABΨ̈a

Agab ⇒ ΛB
b = IABm̈a

cδc
Aδab = m̈bcδc

BI
BB (3.5.11)

with IBB are constants.
Next, from (3.5.2), (3.5.3), (3.5.7), and (3.5.9), one gets

SAB =
∂Ξ

∂EAB
' δA

a σabδB
b (3.5.12)

D B
A =

∂Ξ

∂EA
B
' δa

Aδaeτ
ebδB

b (3.5.13)

T BC
A =

∂Ξ

∂TA
BC
' δa

Aδaeµ
ebcδB

b δC
c . (3.5.14)
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Consequently,

P B
b = gbaΨa

AS
AB ' δbcσcdδB

d (3.5.15)

D̃ C
a = ΨB

a D A
B Fb

AΨC
b ' δaeτ

edδC
d (3.5.16)

D
A

b = ΨB
b D A

B ' δbeτ
edδA

d (3.5.17)

T̃ D
a = 2(T AB

C ΨC
a ΨD

b ∂BΨb
A) ' 0 (3.5.18)

T
AB
b = 2(T AB

C ΨC
b ) ' 2δbeµ

edcδA
d δB

c . (3.5.19)

Finally, insert these into (3.4.23), the linearization of the local equations of motion on m and u
are given by (as the infinitesimal transformation, there is no distinction between the upper and
lower indices, all the equations as below will be written with indices down with the small letter
(xa)) 

ba + τab,b = ρ0üa

Zab + τab − σab + 2µacb,c = ρ0Ibbm̈ab.

(3.5.20)

It looks quantitatively the same as the linear equations of the micromorphic continuum (Eringen,
1999). The linear equations of a Cauchy continuum (Marsden and Hughes, 1994) are obtained by
setting: c = g, d = h, F = Ψ, Ibb = 0, and $ = ε = η = α = β = γ = 0.

3.5.2 One dimensional dynamics

We investigate here a simplified solution for which all kinematic variable are just dependent on
time and x3. We focus on self-sustained waves (or vibrations), then b = 0 and Z = 0.
The first equation of (3.5.20) is τa3,3 = ρ0üa. It gives explicitly:

$ δa3u3,33 + (ε + η) ua,33 + η u3,a3

+(g− $) δa3 mii,3 + (h− ε− η) ma3,3 + (h− η) m3a,3 = ρ0üa.
(3.5.21)

The second equation of (3.5.20) is τab − σab + 2µa3b,3 = ρ0Ibbm̈ab. In which, (3.5.7) gives

τab − σab = ($− g) δabu3,3 + (ε + η − h) ua,b + (η − h) ub,a

+ (2g− $− c) δabmii + (2h− ε− η − d) mab + (2h− η − d) mba. (3.5.22)

Using the constitutive laws (3.5.9), we obtain:

2µ113 = −(α + β− γ)m11,3 − αm22,3 (3.5.23)

2µ123 = −βm12,3 + γm21,3. (3.5.24)

2m213 = −βm21,3 + γm12,3 (3.5.25)

2m223 = −αm11,3 − (α + β− γ)m22,3. (3.5.26)

2m313 = −(α + β− γ)m31,3 (3.5.27)

2m323 = −(α + β− γ)m32,3. (3.5.28)
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The other components are zero. Therefore, the second equation of (3.5.20) gives explicitly

($− g) u3,3 + (2g− $− c) mii + (4h− ε− 2η − 2d) m11

+(α + β− γ) m11,33 + α m22,33 = ρ0I11m̈11

(2h− ε− η − d) m12 + (2h− η − d) m21 + β m12,33 − γ m21,33 = ρ0I22m̈12

(ε + η − h) u1,3 + (2h− ε− η − d) m13 + (2h− η − d) m31 = ρ0I33m̈13

(3.5.29)

(2h− ε− η − d) m21 + (2h− η − d) m12 + β m21,33 − γ m12,33 = ρ0I11m̈21

($− g) u3,3 + (2g− $− c) mii + (4h− ε− 2η − 2d) m22

+α m11,33 + (α + β− γ) m22,33 = ρ0I22m̈22

(ε + η − h) u2,3 + (2h− ε− η − d) m23 + (2h− η − d) m32 = ρ0I33m̈23

(3.5.30)

(η − h) u1,3 + (2h− ε− η − d) m31 + (2h− η − d) m13

+(α + β− γ) m31,33 = ρ0I11m̈31

(η − h) u2,3 + (2h− ε− η − d) m32 + (2h− η − d) m23

+(α + β− γ) m32,33 = ρ0I22m̈32

($− g + ε + 2η − 2h) u3,3 + (2g− $− c) mii + (4h− ε− 2η − 2d) m33 = ρ0I33m̈33.

(3.5.31)

The systems (3.5.21) and (3.5.29)-(3.5.30)-(3.5.31) form a linear differential system of 12 unknowns.
Even if this system is strongly coupled, some simplified solutions are exhibited hereafter in the
case where the micro-inertia phenomena are isotropic : I11 = I22 = I33 := I.

By means of linear combinations, the systems (3.5.21) and (3.5.29)-(3.5.30)-(3.5.31) can be de-
composed into three independent systems of equations:

Micro-rotation:

(2h− ε− η − d) m12 + (2h− η − d) m21 + β m12,33 − γ m21,33 = ρ0Im̈12

(2h− ε− η − d) m21 + (2h− η − d) m12 + β m21,33 − γ m12,33 = ρ0Im̈21.
(3.5.32)

Let us consider a micro-rotation such that m12 = −m21. In this case, the above systems reduce to

−ε m12 + (β + γ) m12,33 = ρ0Im̈12. (3.5.33)

Transversal waves:

(ε + η) u1,33 + (h− ε− η) m13,3 + (h− η) m31,3 = ρ0ü1

(ε + η − h) u1,3 + (2h− ε− η − d) m13 + (2h− η − d) m31 = ρ0Im̈13

(η − h) u1,3 + (2h− η − d) m13 + (2h− ε− η − d) m31 + (α + β− γ)m31,33 = ρ0Im̈31.

(3.5.34)

The other transversal systems are the same as before except u1, m13 and m31 are replaced with u2,
m23 and m32, respectively.
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Longitudinal waves:

λ1 u3,33 + α1 m11,3 + α1 m22,3 + λ2 m33,3 = ρ0ü3

α2 u3,3 + λ3 m11 + ζ2 m22 + ζ2 m33 + λ4m11,33 + αm22,33 = ρ0Im̈11

α2 u3,3 + ζ2 m11 + λ3 m22 + ζ2 m33 + αm11,33 + λ4m22,33 = ρ0Im̈22

ζ1 u3,3 + ζ2 m11 + ζ2 m22 + λ3 m33 = ρ0Im̈33,

(3.5.35)

where
λ1 = $ + 2η + ε

λ2 = 2h− ε− 2η + g− $

λ3 = 4h− ε− 2η − 2d + 2g− $− c
λ4 = α + β− γ

α1 = g− $

α2 = $− g
ζ1 = $− g + ε + 2η − 2h
ζ2 = 2g− $− c.

We try to find harmonic solutions of the form:

ua(X3, t) = Uaiei(kX3−ωt)), mab(X3, t) = Mabei(kX3−ωt)), (3.5.36)

where ω is the frequency and k is the wavenumber. Three dispersion relations (the relations be-
tween ω and k) result:

Micro-rotation:

ω2 =
ε + (β + γ)k2

ρ0I
. (3.5.37)

Transversal waves: ω2 are the eigenvalues of A with

A =
1

ρ0I

 (ε + η)Ik2 −(h− ε− η)Ik −(h− η)Ik
(ε + η − h)k −(2h− ε− η − d) −(2h− η − d)

(η − h)k −(2h− η − d) (α + β− γ)k2 − (2h− ε− η − d)

 . (3.5.38)

Longitudinal waves: ω2 are the eigenvalues of A with

A =
1

ρ0I


λ1Ik2 −α1Ik −α1Ik −λ2Ik
α2k λ4k2 − λ3 αk2 − ζ2 −ζ2

α2k αk2 − ζ2 λ4k2 − λ3 −ζ2

ζ1k −ζ2 −ζ2 −λ3

 . (3.5.39)

Only one eigenvector may be computed analytically, it corresponds to (0, 1,−1, 0) and is associ-
ated with the eigenfrequency

ω2 = −4h− ε− 2η − 2d + (γ− β)k2

ρ0I
. (3.5.40)
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3.6 Conclusion

In this chapter, we have presented kinematics of a defected medium in terms of Riemann-Cartan
geometry, supposing the inconsistent transformation (i.e. the internal state vector is associated
with the micro-deformation of material with the internal structure. The map of vectors is not
consistent with the transformation of the material point). The theory is very close to the micro-
morphic theories. Nevertheless, the present model seems to clarify the interaction of a defected
continuum with the microcontinuum. Variational equations and their linearizations are derived
from this perspective. The number of material parameters has been reduced in comparison with
the classical micromorphic theories (Mindlin, 1964; Eringen, 1999 for example). The theory is
applied to wave propagation in a fixed direction. The physical meaning of the material parame-
ters as well as the relation between the present model and the second-order gradient continuum
(Polizzotto, 2013 an example) is still missing and would be a perspective of future works.
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Part II

Tangent geometry and applications to
mechanics
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Chapter 4

Fiber bundle manifolds: a geometry of a
microstructured material

As mentioned several times, the evolution of the internal state is the cause of defects in the
body. We want to look for a mathematical framework that could help us to examine effectively
this physical intuition. I recently became conscious that such a framework exists based on the
notions of the fiber bundle manifold and Ehresmann connection.

The fiber bundle manifold is an "extra" structure generalized to the product of the base (mate-
rial) manifold and the space of internal state. The total space can be equipped with a connection-
namely Ehresmann connection N and metric tensor G of Sasaki form. In general, these geometric
objects and derived quantities (torsion, curvature) may not only depend on the position but also
on the internal state (Wang, 1967/68). The fiber bundle equipped with the connection and the
metric is known as a fiber geometry ( Epstein, 2010; Epstein, 2014; Nakahara, 2003). This extends
the Riemannian geometry for which (relative) position of material points control all geometri-
cal objects as underlined by Weyl, 1918. It encompasses various geometries among Euclidean,
Riemannian, Weitzenböck, Weyl manifolds. The satisfactory framework could be adapted in a
natural way for several phenomena in physics. As examples, its application concerns mainly
general relativity theory - the theory of gravity, but other applications are already investigated
by Iliev, 2001; Romano, 2007.

As a field of applications, the microcontinuum can be modeled as a fiber bundle because it
suffices to mention that each point on the base manifold can be endowed with additional degrees
of freedom or internal states. As a consequence, a motion of the microcontinuum is formally a
fiber morphism (Epstein and Elżanowski, 2007), see also the next chapter. As such approach en-
compasses the macroscopic and microscopic universes as a whole, all the physical quantities may
be considered as single-valued and smooth (outside macroscopic inhomogeneities). Accordingly,
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both theoretical and numerical analysis may be handled without additional difficulties. Further-
more, the complete description of the microcontinuum is derived from introducing an additional
field - namely a solder form. At the same time, the solder form enriches the fiber geometry some-
how.

This chapter is organized as follows: Section-4.1 gives a short review about general fiber
bundles, Ehresmann connection on a fiber bundle. These concepts are essential ingredients in
this thesis. This connection is a generalization of the affine connection. All concepts explained
throughout this chapter can be found in detail in (Epstein, 2010; Epstein, 2014; Nakahara, 2003).
Section-4.2 gives a presentation of a microstructured material in terms of fiber geometry.

4.1 Fiber bundle manifolds

To get some intuition for the bundle concept, let us start with a definition of a product bundle.
Let B and F be smooth manifolds, equipped with the coordinates (xa), and (yi) respectively.
Consider the Cartesian product B × F - a so-called product bundle. It is endowed with two
natural projection maps, namely:

pr1 : B ×F −→ B

(xa, yi) 7−→ xa and
pr2 : B ×F −→ F

(xa, yi) 7−→ yi .

The concept of fiber bundle is a generalization of the product bundle. Essentially, what we want
to achieve is the loss of the second projection pr2, while preserving the first pr1.

4.1.1 Smooth fiber bundle manifold

In order to define the notion carefully, we first review some basic properties of group actions:

Definition 4.1.1 (Topological group Epstein, 2010). Recall that a group is a set G endowed with a
binary associative internal operation, called group multiplication or group product, which is usually in-
dicated by simple apposition, namely: if g, h ∈ G then the product is gh ∈ G . Associativity means that
(gh)k = g(hk), for all g, h, k ∈ G . Moreover, it is assumed that there exists an identity element e ∈ G

such that eg = ge = g for all g ∈ G . Finally, for each g ∈ G , there exists an inverse g−1 ∈ G such that
gg−1 = g−1g = e. The identity can be shown to be unique, and so is also the inverse of each element of
the group.
A topological group is a topological space (or, in particular, a topological manifold) G with a group struc-
ture that is compatible with the topological structure, namely, such that the multiplication G × G → G

and the inversion G → G are continuous maps.

Definition 4.1.2 (Left action Epstein, 2010). If G is a group and M is a set, we say that G acts on the
left on M , if for each g ∈ G , there is a map Lg: M → M such that: (i) Le(m) = m for all m ∈ M ,
where e is the group identity; (ii) Lg ◦ Lh = Lgh for all g, h ∈ G . When there is no room for confusion, we
also use the notation gm for Lgm.
The action of G on M is said to be effective if Lg(m) = m for every m ∈M implies g = e.
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Definition 4.1.3 (Epstein, 2010). Let G be a topological group acting on a topological manifold M . The
topological group G is said to act on the left on a manifold M if: (i) Every element g ∈ G induces a
homeomorphism Lg : M → M . (ii) Lg ◦ Lh = Lgh, namely, (gh)(x) = g(h(x)) for all g, h ∈ G and
m ∈ M . (iii) The left action L : G → M is a continuous map. In other words, L(g, m) = Lg(m) is
continuous in both variables (g and m).

The object M
π→ B (obviously, (M , π, B,F , G )) is called a fiber bundle manifold, consisting of

smooth manifolds M , called the total space, B as the base manifold, typical fiberF and structure
group G (acting effectively on the left on F ) and a continuous surjective bundle-projection map
π : M → B such that there exists an open covering of B, with open sets Uv, and respective
homeomorphisms (called local trivializations)

ςv : π−1(Uv)→ Uv ×F , (4.1.1)

with the property π = pr1 ◦ ςv. This property means that for every point x in Uv the fiber
π−1(x) is entirely mapped onto the fiber pr−1

1 (x) of the product Uv ×F . More precisely, a local
trivialization ςv consists of the identity map of Uv and a continuous family of fiber-wise home-
omorphisms ς̃v,x : π−1(x)→ pr−1

1 (x).

FIGURE 4.1: Pictorial representation of local trivializations and transition functions

Consider two trivializations, ςv and ςι, such that their respective open sets have a non-empty
intersection Uv ∩ Uι. At each point x ∈ Uv ∩ Uι, we obtain two different homeomorphisms ς̃v,x

and ς̃ι,x. We call the composition

ς̃vι,x = ς̃ι,x ◦ ς̃−1
v,x : F → F , (4.1.2)

the transition map at x between the first and the second trivializations. We demand to each
transition map to be a transformation of F induced by some elements g(x) of the structure group
G . The dependence on x must be continuous.

Definition 4.1.4. A fiber-bundle morphism between M
π→ B and M ′ π′→ B′ as a pair of (smooth) maps,

K: M →M ′ and k: B → B′ such that

π′ ◦ K = k ◦ π. (4.1.3)
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4.1.1.1 The tangent bundle manifold

The tangent bundle of a manifold is a special fiber bundle which is naturally constructed for
every smooth n-dimensional manifold B. It is denoted by TB, obtained by attaching to each
point b on B its tangent space TbB. Explicitly,

TB =
⋃

b∈B

TbB. (4.1.4)

More precisely, an element in TB is a pair (b, v) where b ∈ B and v is a tangent vector to B at
the point b. The canonical projection is given by the assignation:

π : TB −→ B

(b, v) 7−→ b.

TB is also a smooth manifold with dimension 2n. Indeed, let (U , (xa)a=1,..,n) be a local chart
in B around b. This yields a natural basis ∂/∂xa at TbB with b ∈ B. For any tangent vector
v ∈ TbB, we can identify it with its components va. Hence, we assign to each point (b, v) ∈ TB

the 2n numbers (x1, .., xn, v1, .., vn), namely, a point in R2n. Thus, the coordinate chart in π−1(U )

is obtained. The fiber at the point b ∈ B is π−1(b) = TbB. Since each fiber is an n-dimensional
vector space, we say that the typical fiber of TB is Rn. To construct its group action G, let us
denote (x̃a) an other coordinate chart at b. The components ṽa of v in the new natural basis
∂/∂x̃a are related to the old ones

ṽa =
∂x̃b

∂xa va. (4.1.5)

Last, for (xa) and (x̃a) to be good coordinate systems, the matrix Ab
a = ∂x̃b/∂xa must be non-

singular. Consequently, the structure group of the tangent bundle is indeed the general linear
group GL(n, R).

4.1.2 Vertical tangent spaces

Recall xa(a = 1, ..., n = dim(B)) and yi(i = 1, ..., m = dim(F )) are the coordinate charts in B

and F , respectively. Their Cartesian product constitutes a local coordinate chart xa, yi for the
fiber bundle M . A given tangent vector field w over M evaluated at c ∈M can be expressed as

w = wa(c)
∂

∂xa + wi(c)
∂

∂yi . (4.1.6)

By the definition of the projection π, it induces a tangent mapping π∗: TM → TB which acts in
the following way

π∗ : TcM → Tπ(c)B, w 7→ wa ∂

∂xa . (4.1.7)

The kernel ker(π∗) is exactly that part of the tangent space TM spanned by the induced basis
elements ∂

∂yi which comes from the fiber F , while the image of π∗ is a vector tangent to the base
space at π(c) expressed in the coordinate basis from the base space. Hence, at each point c ∈M
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the tangent space TcM has a canonically vertical subspace VcM , explicitly defined by

VcM = ker(π∗) = span(
∂

∂yi ). (4.1.8)

4.1.3 Ehresmann connection

Given a fiber Mp at p and a fiber Mq at q, we want to connect them from a given point belonging
to the fiber Mp. To do so, we have to build a "bridge". If p and q are infinitesimally close, it can
be identified with a tangent vector v to B at p. At this stage, the bridge is a lift of v to the bundle
M . We require this assignment to be smooth and unique. For instance, let m be the starting
point belonging to the fiber Mp, the collection of all the possible bridges is called the horizontal
space, see Figure 4.2. This task is performed by Ehresmann connections and formulated by the
following definition:

Formally, Ehresmann connection consists of a smooth assignment to each point m ∈M of an
n-dimensional subspace HmM ⊂ TmM the tangent bundle of M , called the horizontal subspace
at c, such that

TmM = HmM ⊕VmM . (4.1.9)

In this equation, ⊕ denotes the direct sum of vector spaces. In the other words, each tangent
vector w ∈ TmM is uniquely decomposable as the sum of a horizontal part hor(w) ∈ HmM and
a vertical part ver(w) ∈ VmM .

FIGURE 4.2: An Ehresmann connection

Equivalently, Ehresmann connection can be formalized by a lift operator defined as follows.

Definition 4.1.5. An Ehresmann connection on M is a morphism N : TB ×
B

M → TM such that

dπ ◦ N(v, m) = v. In local coordinates,

N =

(
∂

∂xa − Ni
a(m)

∂

∂yi

)
⊗ dxa.
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We can lift the natural local basis ∂/∂xa of TpB to respective bases of the horizontal spaces at
any point c ∈Mp:

HcM = span (
δ

δxa :=
∂

∂xa − Ni
a(c)

∂

∂yi ) and VcM = span(
∂

∂yi ). (4.1.10)

The dual of the horizontal and vertical tangent spaces are given by

H∗c M = span(dxa) and V∗c M = span(δyi := dyi + Ni
a(c)dxa). (4.1.11)

4.1.4 Parallel transport

A smooth curve in a fiber bundle M always projects, by composition, onto a unique smooth
curve in the base manifold B. The converse is, of course, not true since a curve σ in the base
manifold can be obtained as the projection of any of an infinite number of curves in the fiber.
However, if the fiber bundle is endowed with an Ehresmann connection N, it is possible to lift
the curve σ to a unique horizontal curve σ↑ in the fiber through a given point c ∈M . Such curve
is defined as the following:

FIGURE 4.3: Parallel transport along a curve

Consider a curve σ: [0, 1] → B, with σ(0) = a, σ(1) = b, a, b ∈ B, and a point c ∈ M . The
unique horizontal lift σ↑ satisfies the following properties: for all t ∈ (0, 1)

π ◦ σ↑ = σ. (4.1.12a)

ver(σ̇↑(t)) = 0. (4.1.12b)

π∗(σ̇↑) = σ̇(t). (4.1.12c)

This horizontal lift of a base curve σ through any point c ∈ M exists locally and is unique
Epstein, 2010; Epstein, 2014; Nakahara, 2003. As this horizontal curve cuts through the various
fibers hovering over the original curve σ, the point c is said to undergo a parallel transport with
respect to the given connection and the given curve., see Figure 4.3.

We end this section with the auto-parallel equations:
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Definition 4.1.6 (Auto-parallels of an Ehresmann connection). With the smooth curve σ on B, its
natural lift to the tangent bundle is σ̂ = (σ, σ̇) ∈ M . The curve σ is said to be an auto-parallel of an
Ehresmann connection N if and only if its natural lift is a horizontal curve. In coordinates, this yields to
the auto-parallel equations (Miron, 1994)

σ̈α + Nα
a (σ, σ̇)σ̇a = 0. (4.1.13)

4.1.5 Ehresmann curvature

The split of the tangent spaces of M into the horizontal and vertical subspaces gives rise to the
question whether these subspaces belong to integral manifolds which are sub manifolds of M .
The answer to this question is given by the definition of the curvature of a connection with the
help of the Fröbenius theorem which we cite here without proof (the proof is reported in Epstein,
2010; Epstein, 2014).

Theorem 4.1.7. Fröbenius Theorem
A k-dimensional distribution D in a smooth m-dimensional M (with k < n) is a smooth assignment of a
k-dimensional subspace Dp ⊂ TpM to each point p ∈ M . A distribution with the property that the Lie
bracket of any two vector fields belonging to the distribution also belongs to the distribution is said to be
involutive. Theorem of Fröbenious states that a distribution is an integration if and only if it is involutive.

FIGURE 4.4: Lack of vertical closure of the horizontal lift of a loop.

Applying Fröbenius theorem, we conclude that there exists a submanifold of M for which
VcM is the tangent space; this submanifold is the fiber Mc. Since for arbitrary basis ∂/∂yi and
∂/∂yj, one has [∂/∂yi, ∂/∂yj] = 0.

For the horizontal tangent spaces the situation is more complicated. To analyse whatever this
distribution is integrable we calculate the Lie bracket of the basis vector fields. This failure of
integrability leads to the definition of the curvature coefficients of the connection as

Ri
ab =

〈
δyi, [

δ

δxa ,
δ

δxb ]

〉
,
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in the coordinates expression,

Ri
ab =

∂Ni
a

∂xb − N j
b

∂Ni
a

∂yj + N j
a

∂Ni
b

∂yj −
∂Ni

b
∂xa . (4.1.14)

The geometrical interpretation of the curvature is the following: let σ be a loop in the base man-
ifold. For zero curvature case, its horizontal lift will be closed. Otherwise, it may not be closed,
see Figure 4.5.

4.2 Geometry of a microstructured material

A microstructured material is modeled by a fiber bundle M
π→ B with extra data described in

this section. The three-dimensional differentiable manifold B is compact (in general with bound-
aries, even if this point is not addressed in this manuscript) and orientable. It is the geometrical
support of the material, hereafter called the body. Fiber of the bundle M at p ∈ B is denoted by
Mp. It is considered as the microelement present in the material at the point p.

After the general definitions, each subsection will end by the application of the definition in
a special case where M = TB meaning that microelements are interpreted as a first order in-
finitesimal neighborhoods of points. Such interpretation coincides with standard analysis with
defective crystals or grained material. This equality means that the same mathematical object,
namely TB, is used to model different mechanical objects: the space of “velocities” of geometri-
cal point p : TpB on the one hand and the microelement at p : Mp on the other hand.

This general formalism, supposing possibly that M 6= TB, also has the advantage to extend
the present theoretical background to other physical materials (porous media, phase transfor-
mation, soft mater, etc.; see for example Epstein, 2012; Bradlyn and Read, 2015; Lychev et al.,
2020).

4.2.1 The solder form

FIGURE 4.5: A vertical vector v is a tangent to Mp. The solder form is used to glue
the tangent to the fiber to the tangent to the body manifold B.
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Let us denote by V(M ) the vertical tangent bundle of M
π→ B, i.e. the subbundle ker dπ ⊂

TM . The fiber of V(M ) at p ∈ B is the tangent bundle to the microelement Mp, namely T(Mp).
One supposes that the tangent at the microelement at m ∈Mp, namely Tm(Mp) ≡ VmM , should
be TpB, meaning that microelements are tangent to the body B. It is formalized in the following
definition:

Definition 4.2.1. A solder form on M is an isomorphism TB ×
B

M 1 ϑ→ V(M ).

The definition (4.2.1) implies that the dimension of a microelement is equal to the dimension
of B. Hereafter, we consider the case where dim B = dim Mp. An alternative definition of the
solder form can be found in (Hélein, 2009). Note however this latter reference is only related
to vector bundles and is then less general. On the other hand, the definition of a solder form
(4.2.1) does not correspond to the original definition by Ehresmann for general fiber bundles e.g
(Kobayaschi, 1957).

Let (xa) be coordinates on B. Let us complete the definition of the solder form in a coordinate
system (xa, yi) on M . A solder form can be written accordingly:

ϑ = ϑi
a(m)

∂

∂yi ⊗ dxa.

If x̃a(xb) and ỹi(xb, yj) define another coordinate systems on the bundle M then we have:

ϑ = ϑ̃i
a(m)

∂

∂ỹi ⊗ dx̃a =

(
ϑ̃i

a(m)
∂yj

∂ỹi
∂x̃a

∂xb

)
∂

∂yj ⊗ dxb.

When M is a vector bundle2 on B, then one obtains V(M ) ∼= M ×
B

M 3. A particular type of

solder form can be defined by a bundle map over M , TB ×
B

M
ϑ→ M ×

B
M , induced by an

isomorphism TB →M . This is a strong interpretation of the tangency condition of V(M ) with
B modeled by the solder form.

One should keep in mind that the bundle TB is used to model two different objects: the tan-
gent spaces TB on the one hand, and the microelements M on the other hand.
For the special case M = TB, the canonical solder form is reduced to the isomorphism associ-

ated with the identity TB = M . This isomorphism TB×
B

M
ϑcan→ V(M ) is given by the following

construction. A coordinate system (xa) on B induces coordinates (xa, yi) on TB such that for

v ∈ TB, v = δa
i yi(v)

∂

∂xa . Expressed in these coordinates, the canonical solder form is:

ϑcan = δ
j
b

∂

∂yj ⊗ dxb.

1TB ×
B

M =
{

(v, u) ∈ TB ×M | πTB(v) = π(u)
}

.

2A vector bundle E
π→ N is a fiber bundle whose fiber is a vector space. The tangent bundle TE over an m-

dimensional manifold N is a vector bundle whose typical fiber is Rm with m = dim N .
3Indeed, for any m, n ∈Mp with p ∈ B, (1− t)m + tn ∈Mp since Mp is a vector space. Therefore, d((1−t)m+tn)

dt ∈
VmM . It establishes a isomorphism between M ×

B
M and V(M ).
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4.2.2 Connections

For infinitesimally close points p and q in B, the identification of the microelements Mp and Mq

is a matter of choice that takes part in the overall model. This identification is performed by using
a field of tangent vector to M along Mp whose projection on B is the constant vector ~pq. This
should be done along any fiber Mp and this assignment should be smooth and unique. This task
is performed by Ehresmann connections. Let N be the connection, in local coordinates (xa, yi),

N =

(
∂

∂xa − Ni
a(m)

∂

∂yi

)
⊗ dxa.

This formula can be read as follow: the microelement Mp at p (with coordinates (xa)) is
identified with its neighbor Mq at q (with coordinates (xa + dxa)) using the infinitesimal trans-

formation
(
−Ni

a(m)dxa
) ∂

∂yi where m ∈Mp. If the points p and q are connected by a finite path

σ, then Mq is identified with Mp by solving (dyi + Ni
a(m)dxa)|σ = 0 with m = (x, y). This last or-

dinary differential equation (ODE) may not have solution defined on the whole path σ and then
the finite identification may not exist. A large class of connections ensuring the existence of finite
identification is given by principal connections. Among them, the linear and affine connections
are described below.

Definition 4.2.2. Given a connection N and a solder form ϑ, another connection N − ϑ is defined by
expression in local coordinate is:

N − ϑ =

(
∂

∂xa − (Ni
a(m) + ϑi

a(m))
∂

∂yi

)
⊗ dxa.

If M = TB, one may be especially interested in the particular case of linear connection
meaning that Ni

a(x, y) = Γi
aj(x)yj. In that case, the connection N − ϑcan is will be called the

associated linear connection. For a change of the coordinate system on B: x̃a = x̃a(xb) leading to
ỹi = (∂x̃i/∂xj)yj on TB, the connection coefficient satisfies the specific transformation rule:

∂x̃b

∂xa Ñk
b =

∂x̃k

∂xb Nb
a −

∂2 x̃k

∂xa∂xb yb. (4.2.1)

For linear connections, this implies that Γ satisfies the transformation law (1.2.3) (properties
of the covariant derivative are given in (1.2)). It means that from any linear connection N on
M = TB one gets a covariant derivative ∇ on X(B) with Christoffel symbols Γ and vice-versa
(see Kolev and Desmorat, 2021 for discussion on covariant derivatives). Remark that all along
the thesis the terminology Christoffel symbols will refer to coefficient of a covariant derivative or
connection (see (1.2)) and they are not necessarily related to Riemannian metric.

4.2.3 Parallel and rolling transport

Let σ : [0, 1] → B; t 7→ σ(t) = (xa(t)) be a curve on B. If B is an open subset of E3 this curve
may be defined by the prescription of its origin p = σ(0) and its tangent (velocity) field σ̇(t) =

ẋa(t)∂/∂xa. For more general (non-euclidean) manifold B, special attention should be paid to
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such integration. Indeed, parallel and rolling without slipping transports along σ are usually
defined for the Levi-Civita connection on a Riemannian manifold. In our context, “parallel”
refers to the connection N and “rolling”4 to the connection N− ϑ. The definitions are as follows.

1. Its parallel lift is defined by

ẋa(∂/∂xa − Ni
a(σ(t), y)∂/∂yi).

Hence the parallel lift of σ is obtained by solving

ẏi = −Ni
a(σ(t), y)ẋa.

2. Its rolling lift is defined by

ẋa(∂/∂xa −
(

Ni
a(σ(t), y) + ϑi

a(σ(t), y)
)

∂/∂yi).

Accordingly, the rolling lift of σ is obtained by solving

ẏi = −(Ni
a(σ(t), y) + ϑi

a(σ(t), y))ẋa.

These lifts of the curve through any point m ∈ M exists locally and is unique, but it may not
have solutions defined on the whole path σ (Epstein, 2010; Epstein, 2014; Nakahara, 2003). The
above equations can be understood as they transport a point (yi(0)) ∈ Mσ(0) along a curve
σ into a point (yi(t)) ∈ Mσ(t). Particularly, M = TB so that yi(t) are components of vector
y(t) = yi(t)∂/∂xi ∈ Tσ(t)B. Hence, it can be interpreted as a transport of vectors.

Let us consider the particular case where M = TB, the connection is linear (Ni
a(x, y) =

Γi
aj(x)yj) and the solder form is the canonical one. The coordinate system (xa) defines a basis

ei = δa
i

∂
∂xa in each tangent space. Writing Oi

j = Γi
aj(x)dxa and Ji = δi

adxa, the above systems can
be read as follows:

1. The parallel transport by the connection N of a vector (yi(0)) ∈ TpB along a curve σ on B

with σ(0) = p is obtained by solving the equations

dY = −OY with Y(t) = (yi(t)). (4.2.2)

2. The rolling transport by the connection N − ϑ of a point p + yi(0)ei ∈Mp along σ is σ(t) +

yi(t)ei ∈Mσ(t) where Y(t) = yi(t)ei ∈ Tσ(t)B solves the equations

dY = −OY− J . (4.2.3)
4The name "rolling" transport is motivated by Cartan who generalized the notion of an affine connection. It may

also be regarded as a specialization of the general concept of a principal connection, in which the geometry of the
principal bundle is tied to the geometry of the base manifold using a solder form. Consider a smooth surface S in 3D
E3. Every smooth surface S has a unique affine plane tangent to it at each point. A tangent plane can be "rolled" along
S, and as it does so the point of contact traces out a curve on S. Conversely, given a curve on S, the tangent plane can
be rolled along that curve. This provides a way to identify the tangent planes at different points along the curve.
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4.2.4 Curvature and torsion

The total curvature R of our material (i.e. the bundle M ) measures the compatibility of N − ϑ

with Lie brackets of vector fields. For two vector fields V and W on the base manifold B, the
curvature,

R(V, W) = (N − ϑ) [V, W]−
[
(N − ϑ)V, (N − ϑ)W

]
is a vertical vector field on M . This formula can be divided into two terms

R(V, W) =

(
N[V, W]− [NV, NW]

)
+

(
− [ϑV, ϑW] + [NV, ϑW] + [ϑV, NW]− ϑ[V, W]

)
.

At this step two contributions have to be highlighted:

Definition 4.2.3. The first term is the Ehresmann curvature, namely R(V, W), also called the curvature

of the connection. The second term is the weak torsion, namely T(V, W). We can write, R = Ri
ab

∂

∂yi ⊗

dxa ⊗ dxb and T = Ti
ab

∂

∂yi ⊗ dxa ⊗ dxb where their components are respectively given by:

Ri
ab =

∂Ni
b

∂xa −
∂Ni

a

∂xb − N j
a

∂Ni
b

∂yj + N j
b

∂Ni
a

∂yj , (4.2.4)

Ti
ab =− ϑ

j
a

∂ϑi
b

∂yj + ϑ
j
b

∂ϑi
a

∂yj +
∂ϑi

b
∂xa − N j

a
∂ϑi

b
∂yj + ϑ

j
b

∂Ni
a

∂yj − ϑ
j
a

∂Ni
b

∂yj −
∂ϑi

a

∂xb + N j
b

∂ϑi
a

∂yj . (4.2.5)

The geometrical interpretation of the curvature is as follows.

Lemma 4.2.4. If the curvature of a connection vanishes, then the lift of any loop σ on base manifold B,
when defined, is closed Epstein, 2010; Epstein, 2014.

One gets two connections from one, adding or not the solder form. In general, the vanishing
of R and the vanishing of R are independent. When the connection have a special structure, it
can happen that R controls R as it is the case in the linear situation below where R = 0 implies
R = 0 and T = 0.

Lemma 4.2.5. Let us consider the case where M = TB and N linear, meaning that Ni
a(x, y) = Γi

aj(x)yj,
and ϑ = ϑcan. It follows by direct computation :

Ri
ab =

(∂Γi
bj

∂xa −
∂Γi

aj

∂xb + Γk
bjΓ

i
ak − Γk

ajΓ
i
bk

)
yj = Ri

jabyj, (4.2.6)

Ti
ab = ϑ

j
bΓi

aj − ϑ
j
aΓi

bj = Ti
ab. (4.2.7)

Here R and T are respectively the associated curvature and torsion tensor of the covariant derivative ∇
associated with Christoffel symbols Γ. In this sense, the derived tensors R and T of the connection N on
M are a geometrical reformulation of the ones of ∇ on X(B).

The curvature and torsion can be interpreted as an obstruction: let us remind that the rolling
transport of Y = (yi) ∈ Mp along the path σ is obtained by solving the equations (4.2.3): dY =
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−OY − J. Solutions may depend on the chosen path. It is not always possible to solve this
system. In practice, this is possible if and only if ddY = 0, otherwise the multivaluedness is
measured by the non vanishing of

ddY = −(dO +O ∧O)Y− (dJ +O ∧ J). (4.2.8)

The first component dO +O ∧O is the usual curvature matrix valued two-form R. The second
term dJ+O ∧ J is the torsion vector valued two-form of T. Both are tensors over B. By the way,
the total curvature vanishes if and only if both the usual curvature and the usual torsion vanish.

4.2.5 Sasaki metric

At this stage, no metric tensor g has to be prescribed on M . This latter is then, at this stage, a free
parameter that could complete the characterization of the material manifold. In the following,
particular metrics would appear naturally. These are Sasaki metrics (Bao, Chern, and Shen, 2000;
Bucataru and Miron, 2007a; Pfeifer, 2013) defined in the coordinates (xa, yi) by:

g(m) = gh
ab(m)dxa ⊗ dxb + gv

ij(m)δyi ⊗ δyj. (4.2.9)

The first term is called the horizontal metric and the other one is the vertical metric.
The benefit of this type of metric is that the split structure of the metric is preserved under

any change of coordinates. This effect is ensured by the proper bases of such metric tensor that
preserves the split structure of the tangent space TM involved by using the Ehresmann connec-
tion N. Indeed, it was stressed in (4.1.10) and (4.1.11) that for a given Ehresmann connection, the
nonholonomic bases (δa, ∂i) and (dxa, δyi) are convenient local basis on TM and T∗M , respec-
tively. In practice, this illustrates that the notion of angle and length are meaningful only if such
quantities are related to neighbouring points belonging to the same micro- or macro-universe.
More precisely the horizontal metric is related to the macroscopic observations on the material,
whereas the vertical part is related to points belonging to a given microelement.

4.3 Conclusion

A new description of a generalized microcontinuum in considering a vector bundle of fiber ge-
ometry character has been introduced. Even if no material transformation and no equation are
mentioned at the moment, we believe that it demonstrates the power of geometric methods ap-
plied towards the framework of mechanics of the microstructured continuum. The geometrical
construction encompasses many kinds of geometry. In this sense, it may capture a wide physical
phenomenon. The application of our approach to model material with a distribution of defects
is presented in the following research.
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Chapter 5

On tangent geometry and generalized
continuum with defects

The concepts of the geometrical structure of a microstructured continuum in terms of fiber char-
acter such as a solder form, an Ehresmann connection and a Sasaki metric are discussed just
before. This chapter introduces tools on fiber geometry towards the framework of mechanics of
microstructured continuum. The material is modeled by an appropriate bundle for which the
associated connection and metric are induced from the Euclidean space by a smooth transfor-
mation represented by a fiber morphism from the bundle to the Euclidean space. Furthermore,
the general kinematic structure of the theory includes macroscopic and microscopic fields in a
multiscaled approach, including large transformation. Defects appear in this geometrical point
of view by an induced curvature, torsion and non-metricity tensor in the induced geometry. Spe-
cial attention is given to transport along a finite path in order to extend the standard infinitesimal
analysis of torsion and curvature to a macroscopic point of view. Both theoretical and numerical
analysis may be handled without additional difficulties. Accordingly, several examples of trans-
formation involving the distribution of material defects are exhibited and analysed.

This chapter is organized as follows: Section-5.2 uses the notions in the previous chapter to
material transformations. The primary intention is to describe structural changes in real mate-
rials; special attention is paid to kinematical interpretation. In this context, a scaled material
modelling is introduced, which concerns material transformations represented by fiber mor-
phisms. An induced connection and metric are first described, then derived geometrical quanti-
ties such as curvature, torsion, and non-metricity tensor are obtained. In Section-5.4, alternative
approaches are reviewed and compared, significant features of this model are also exhibited. The
applications of this theory are presented in Section-5.5. Special attention is paid to the simulation
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of each process (transformation, parallel transport) in a dedicated space (tangent space, body,
etc.) At the same time, several examples of material transformation with distributed defects are
proposed and discussed. Conclusions follow in Section-5.6.

5.1 Toward transformation of microstructured media

On the one side, a continuum with microstructure is assumed to be a tangent bundle over a three-
dimensional differentiable manifold B. On the other side, E3 is the three-dimensional Euclidean
space. For instance a fiber morphism or so-called bundle map M → TE3 presents the evolution
of the microstructured material manifold M in the Euclidean space (Epstein, 2010; Epstein, 2014).
It may possibly depend on time. By a language shortcut, such bundle map is sometimes called
transformation hereafter.

The configuration of the body is described by the geometrical structure induced by pulling-
back from TE3 onto M . This current-induced geometry must be able to reveal if material defects
are present or created by a material transformation. The main objective of this chapter is to
specify how such defective configuration is obtained via such type of bundle mapping or gener-
alization of this latter.

In particular, the complete characterization of the current configuration have to specify how
measures and variations are performed around an infinitesimal neighbourhood of an element
of M . Such information is encoded on the covariant derivative ∇ and the metric tensor. These
latter are acting on elements on TM . In other words, the full configuration is controlled by the
bundle map TM → TTE3. The following section is dedicated to this crucial point.

5.2 Scaled material model

Briefly, the model in Chapter-2 is not sufficient to describe all topological defects: even if dislo-
cation densities are simulated, it looks impossible to introduce curvature that is the geometrical
quantities measuring disclination densities. Additionally, some artifacts observed in the simula-
tions seems to be not quantified by the geometrical properties of the manifold.

However, the language of fiber bundle geometry presented in Section-4.1 may help to over-
come this drawback. For this purpose, the way how the pull-back operation of a fiber-mapping
is used to construct an induced geometry of the transformed material body is presented and
studied.

5.2.1 Preliminary

Here a special model is presented. It is restricted to the particular case where M is isomorphic
to TB and where the solder form is canonical (in the following ϑ = ϑcan).

Let us first remind some standard conventions: denote (XA, Y I) (respectively (xa, yi)) a chart
on M (respectively TE3). The Euclidean space E3 has a canonical affine connection, namely the
Levi-Civita connection γ of the Euclidean metric g (of course, if Cartesian chart is used on the
Euclidean space, the connection coefficients vanish). Its tangent bundle, as any tangent bundle,
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has a canonical solder form denoted by δ as its component (δi
a) in any frame of E3 is the iden-

tity. Last the tangent bundle of the Euclidean space may be equipped with a trivial Ehresmann
connection, with the following expression in a local coordinate system

ni
a(x, y) = γi

aj(x)yj, (5.2.1)

and a metric tensor g having a Sasaki form:

g = gab(x)dxa ⊗ dxb + gij(x)δyi ⊗ δyj. (5.2.2)

Define (EK) = (dXA, dY I) with K running from 1 to 6, the first three basis elements are dXA, the
others are dY I (A and I run from 1 to 3). Similarly, (ek) = (∂a, ∂i) with k running from 1 to 6. The
first three basis elements denote the ∂a basis, the others coincide with ∂i.

A geometrical transformation φ : B → E3 is inducing an “idealized” material transformation

M → TE3

using the derivative and the canonical solder form : (X, Y) 7→ (φ(X), δF(X)ϑ(Y)) with F = φ∗.
In local coordinates the latter can be written δi

aFa
AϑA

I Y I . From now on, the formula will be in
shorter form: Fi

IY
I . In that way, we define

Fi
I = δi

aFa
AϑA

I and Fa
I = Fa

AϑA
I (5.2.3)

5.2.2 Overall approach

In most of standard works on the geometrical analysis of defective media, the tangent transfor-
mation TM → TTE3 is induced by the derivative of M → TE3 but this choice is not a strict
constraint and could be relaxed. For this purpose, an Ehresmann connection has to be created. In
the present chapter, the solder form defined on TB is always assumed to be the canonical form.
The Ehresmann connection may be linear or not. However, in the following, special attention is
given to the linear case for which Ehresmann curvature and weak torsion will coincide with the
ones defined through covariant derivatives.

Mathematically, it is assumed that the continuum consists of a huge number of infinitesimal
volume elements dV, located at point p in the base manifold B (p may be interpreted as the
center of mass of dV, see Figure 2.5). The motion of p is governed by the map φ. Deformation
of dV is controlled by F = φ∗. In addition, the volume elements dV are composed of a large
number of sub-domains/microelements δV of finite (but tiny) size. As δV contains a finite quan-
tity of matter, its stretch may be considered. In this context, the continuum is deformed by two
independent maps: F defines the stretch at a macroscopic scale whereas Θ defines the stretch at
a microscopical scale.

If the material transformation is described by the bundle mapping M → TE3, (X, Y) 7→
(φ(X), Θ(X)Y) the scaling effect is not easily tractable as F and Θ are acting on vector belonging
to TpB and Mp, respectively, that are equivalent manifolds (as M = TB then Mp = TpB), see
also Section-2.
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This difficulty can be circumvented in the following way: let us consider that the local change
of a vector Y associated with the microstructure and belonging to M , is measured by an element
Zv of V(M ). Hence, the material transformation is represented by a smooth map

Υv : V(M )→ VTE3, (X, Y, Zv) 7→ (φ(X), δF(X)ϑY, Θ(X)Zv) , (5.2.4)

where Θ(X) is smooth, invertible and orientation preserving. Accordingly, such sub-scale mod-
eling is no longer redundant since the maps related to each scale are separated.

To construct an induced Ehresmann connection the first idea is to extend Υv to the whole
space i.e. find a bundle map Υ: TM → TTE3 of the form

(X, Y, Z) 7→ (φ(X), δF(X)ϑY, Ω(X, Y)Z), (5.2.5)

with X ∈ B, Y ∈MX, Z ∈ T(X,Y)M . At this stage the attention is now focused on Ω = Ωk
Kek⊗EK

or, in detail:
Ω = Ωa

A∂a ⊗ dXA + Ωa
I ∂a ⊗ dY I + Ωi

A∂i ⊗ dXA + Ωi
I∂i ⊗ dY I ,

for which one has a great freedom of choice. The image of (X, Y) is already partially prescribed.
Indeed, as the restriction of Υ for any element of V(M ) is imposed by (5.2.4):

Ωi
I(X, Y) = Θi

I(X). (5.2.6)

In order to avoid too complex interpretations, a second idea is proposed by considering that if
Θ = F the scaling effect must not be observed. Then, if Θ = F, the material transformation has
to coincide with the simpler one H : M → TE3, (X, Y) 7→ (φ(X), δF(X)ϑY) for which Ω is
nothing else than the total gradientH∗. Accordingly, one gets:

Ωa
A(X, Y) = Fa

A(X) and Ωa
I = 0. (5.2.7)

FIGURE 5.1: Pictorial representation of an induced Ehresmann connection.
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5.3 Induced structure

At this stage Ω takes the following form:

Ω = Fa
A∂a ⊗ dXA + Ωi

A∂i ⊗ dXA + Θi
I∂i ⊗ dY I , (5.3.1)

where the choice of Ωi
A(X, Y) is still free. The inverse of Ω is given by Ω−1 = ΩK

k EK ⊗ ek with
ΩK

k Ω`
K = δ`k and ΩK

k Ωk
L = δK

L . This later is of the form:

Ω−1 = FA
a ∂A ⊗ dxa + ΩI

a∂I ⊗ dxa + ΘI
i ∂I ⊗ dyi, (5.3.2)

where ΘI
i Θ

j
I = δ

j
i and FA

a Fb
A = δb

a .
Let V be an arbitrary tangent vector to B at a point X ∈ B, the induced Ehresmann connec-

tion is naturally defined by considering its horizontal lift given by (a pictorial interpretation is
given in Figure 5.1)

N(X, Y)V = Ω−1
(

n(φ(X), δF(X)ϑY)(φ∗V)

)
with coefficients N I

A = ΘI
i Ωi

A + ΘI
i ni

aFa
A.

(5.3.3)

Here, we remind that n is the ambient Ehresmann connection. The connection coefficients ni
a(x, y) =

γi
aj(x)yj, and γ the Levi-Civita connection given on E3 (see the beginning of Section-5.2). Note

that the definition of the induced connection is independent of the chosen chart.

Proof. Firstly, let us define v := φ∗V = (Fa
AVA)∂a a tangent vector to B at the point x = φ(X).

Secondly, applying the ambient Ehresmann connection n, there is a unique horizontal lift v↑ =

n(y)v = va∂a− ni
ava∂i as a tangent vector to TB at (x = φ(X), y = δF(X)ϑY). Finally, the natural

lift of V is obtained by solving the equation (5.3.3). Straightforward computations, using ΩJ
a = 0,

give

V↑ = ΩB
a v↑

a
∂B + ΩB

i v↑
i
∂B + ΩJ

av↑
a
∂J + ΩJ

i v↑
i
∂J

= ΩB
a Fa

AVA∂B + ΩJ
aFa

AVA∂J −ΩJ
i ni

aFa
AVA∂J

= FB
a Fa

AVA∂B + ΩJ
aFa

AVA∂J −ΩJ
i ni

aFa
AVA∂J

= VA∂A −
(

ΩJ
i ni

aFa
A −ΩJ

aFa
A

)
VA∂J .

It claims that the connection coefficients are

N J
A = ΩJ

i ni
aFa

A −ΩJ
aFa

A.

Finally, because Ωi
ZΩZ

a = Ωi
BΩB

a + Ωi
JΩ

J
a = 0, one has Ωi

J N J
A = −Ωi

JΩ
J
aFa

A + Ωi
JΩ

J
j n

j
aFa

A =

Ωi
BΩB

a Fa
A + ni

aFa
A = Ωi

A + ni
aFa

A. Once again, writing Ωz
JΩ

I
z = Ωa

J ΩI
a + Ωi

JΩ
I
i = Ωi

JΩ
I
i = δI

J , the
connection can be rewritten in the form

N I
A = ΩI

i Ωi
J N J

A = ΩI
i Ωi

A + ΩI
i ni

aFa
A.
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Using the notation ΩI
i (X, Y) = ΘI

i (X) introduced in the section 5.2, the formula (5.3.3) is verified.

Proposition 5.3.1. If the manifold M is endowed with the connection N given in (5.3.3), one obtains

Ω = Fa
A

δ

δxa ⊗ dXA + Θi
I

∂

∂yi ⊗ δY I . (5.3.4)

Hence Ω may be seen as the collection of two maps: Hm(M ) → H(x,y)TE3 and Vm(M ) →
V(x,y)TE3. Roughly speaking, this states the existence of two independent mechanisms, the first
one is the ordinary dragging of vectors by means of the deformation gradient F = φ∗ of the
macrostructure; the second mechanism is associated with the transformation Θ of the microstruc-
ture.

Proof. Without loss of generality Cartesian coordinate system is used on TE3 and accordingly
δ/δxa = ∂a. Combining with a fact that Ωi

IΩ
I
j = Θi

IΩ
I
j = δi

j, one obtains

Ω = Fa
A

δ

δxa ⊗ dXA + Θi
I

∂

∂yi ⊗ (ΩI
j Ω

j
AdXA + dY I).

The proof of the proposition ends because N I
A = ΩI

i Ωi
A and δY I = N I

AdXA + dY I .

The induced metric is given by G = Ω∗g or explicitly G(V, U) = g(ΩV, ΩU) for all V, U ∈
TM . According to the connection N given in (5.3.3), this metric tensor has a Sasaki structure:

G(X, Y) = Gh
AB(X)dXA ⊗ dXB + Gv

I J(X)δY I ⊗ δY J

with Gh
AB = Fa

AgabFb
B Gv

I J = Θi
IgijΘ

j
J .

(5.3.5)

Their components are just functions of the base coordinates X: the metric is uniquely defined
at the point p of B. Besides, it can be seen that the vertical metric component is always given
by Gv

I J = G(∂I , ∂J) = Θi
IgijΘ

j
J what is explicitly independent of the definition of the Ehresmann

connection N (even if the latter is a key ingredient of the definition of proper bases for the hori-
zontal and vertical sub-spaces, see (4.1.10) and (4.1.11)). More precisely, the components of G in
the proper horizontal and vertical bases are completely specified by Υv and they are independent
of the choice of the (possibly non-linear) connection N(X, Y).

From (5.3.4) and (5.3.5) it is observed that microscopic and macroscopic processes are naturally
separated. More specifically, for microscopic process, the solder form is an important tool that
relates the microscopic quantities (belonging to V(M )) to macroscopic quantities (belonging to
TB). By way of illustration, let us consider a vector field V = VA∂/∂XA on B. Its canonical
vertical lift is ϑV = δI

AVA∂/∂Y I at any point along the fiber MX. The vertical metric Gv induces a
metric G on B defined by G(X)(V, W) = Gv(X)(ϑV, ϑW) for every V, W ∈ TXB. In a coordinates
system:

GAB = ϑI
AΘi

IgijΘ
j
Jϑ

J
B

(
in short GAB = Θa

AgabΘb
B

)
. (5.3.6)
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This metric G may be chosen as a measure on B of the current configuration of the microsc-
tructure. The construction of the connection N from this split-structure allows us to interpret
macroscopically a change of microscopic quantities, this is evident through the mix-indices of
the connection N I

A.

5.3.1 Linear induced connection

Remind that the Euclidean space E3 has a canonical connection: the Levi-Civita connection γ

of the Euclidean metric g. More precisely, the trivial Ehresmann connection n has the form
ni

a(x, y) = γi
ajy

j.

Lemma 5.3.2. The connection is linear i.e. N I
A(X, Y) = ΓI

AJ(X)Y J if and only if Ωi
A(X, Y) is linear i.e.

Ωi
A(X, Y) = Ωi

AJ(X)Y J . In that case, one obtains

ΓI
AJ = ΘI

i Ωi
AJ + ΘI

i γi
ajF

j
J Fa

A, (5.3.7)

and if Cartesian coordinates are applied on TE3, ΓI
AJ = ΘI

i Ωi
AJ .

Proof. It is direct thanks to (5.3.3) as Θ is independent of Y. Keep in mind that ni
a = γi

aj(x)yj

with x = φ(X) and y = δFϑY, then straightforward computations gives N I
A(X, Y) = ΘI

i Ωi
A −

ΘI
i ni

aFa
A = ΘI

i Ωi
AJY

J −ΘI
i γi

ajy
jFa

A = ΘI
i Ωi

AJY
J −ΘI

i γi
ajF

j
JY

J Fa
A which verifies (5.3.7).

One considers hereafter Ωi
A(X, Y) = Ωi

AI(X)Y I where Ωi
AI is free up to now. In order to re-

move this indeterminacy Ωi
AI is constructed by a linear balance between the stretching variations

at each scale (Figure 2.5):

Ωi
AI = (1− ζ)∂AFi

I + ζ∂AΘi
I , (5.3.8)

where 0 < ζ ≤ 1 is a free parameter controlling the scaling effect. For example and without any
loss of generality, it can be defined as ζ = `/L where L and ` are the macroscopic and microscopic
characteristic scales, respectively. The parameter ζ is called scaling factor hereafter.

The map Ω coincides with the total gradient of a linear bundle map M → TE3, (X, Y) 7→
(φ(X), δF(X)ϑY) if Θi

I = Fi
I . On the other hand, if ζ = 1, the transformation coincides formally

with the total gradient of M → TE3, (X, Y) 7→ (φ(X), Ψ(X)Y) with Ψi
I = Θi

I (note that Ψ and Θ

are not exactly the same tensor as they act on different spaces: Mp and Vm(M ) respectively).

Corollary 5.3.2.1. If Ωi
A satisfies (5.3.8), then one gets

ΓI
AJ = ΘI

i

(
(1− ζ)∂AFi

I + ζ∂AΘi
I

)
+ ΘI

i γi
ajF

j
J Fa

A , (5.3.9)

and if Cartesian chart applied on TE3 is used, γi
aj = 0 gives

ΓI
AJ = ΘI

i

(
(1− ζ)∂AFi

J + ζ∂AΘi
J

)
. (5.3.10)
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5.3.2 Induced torsion, curvature and non-metricity tensor

As the induced Ehresmann connection N (5.3.10) is linear and the solder form defined on the tan-
gent bundle is the canonical form, the affine connection Γ and the connection N contain the same
information. Hence, following results are presented with Γ instead of N. From these connection
and metric, it is easy to obtain the derived geometrical quantities such as curvature, torsion and
non-metricity tensors.

The torsion of the connection is given by

TI
AB = ϑJ

BΓI
AJ − ϑJ

AΓI
BJ ,

= (1− ζ)ΘI
i

(
δJ

B∂AFi
J − δJ

A∂BFi
J

)
+ ζΘI

i

(
δJ

B∂AΘi
J − δJ

A∂BΘi
J

)
,

= (1− ζ)ΘI
i δi

c
(
∂AFc

B − ∂BFc
A
)

+ ζΘI
i

(
δJ

B∂AΘi
J − δJ

A∂BΘi
J

)
,

= ζΘI
i

(
δJ

B∂AΘi
J − δJ

A∂BΘi
J

)
.

(5.3.11)

Here, we have used the fact that since F = φ∗ then ∂AFc
B = ∂BFc

A. The torsion is proportional to
the scaling factor ζ.

Second, the induced curvature of the connection is directly obtained from (4.2.6):

RI
JAB = Ωi

BJ∂AΘI
i −Ωi

AJ∂BΘI
i + ΘI

i ΘK
j

(
Ωi

BJΩ
j
AK −Ωi

AJΩ
j
BK

)
. (5.3.12)

According to (5.3.8) the curvature contains both linear and quadratic dependency on the scaling
factor.

Finally, the connection may be not compatible with the vertical metric. It is measured by the
non metricity tensor Q = ∇G for which components are QI JA = ∇AGI J . Let us compute the
general form of the non metricity tensor by computing separately each contribution of ∂AGI J −
ΓK

AIGKJ − ΓK
AJGIK.

∂AGI J = ∂A

(
Θi

IgijΘ
j
J

)
=
(

∂AΘi
I

)
gijΘ

j
J + Θi

Igij

(
∂AΘ

j
J

)
+ Θi

I∂AgijΘ
j
J .

Keep in mind that on the Euclidean space the connection is metric compatible

∂Agij = δa
i δb

j ∂Agab = δa
i δb

j ∂cgabFc
A = δa

i δb
j

(
γd

cagdb + γd
cbgda

)
Fc

A

=

(
γk

aigkj + γk
ajgki

)
Fa

A.

Hence, one gets

∂AGI J = ∂A

(
Θi

IgijΘ
j
J

)
=
(

∂AΘi
I

)
gijΘ

j
J + Θi

Igij

(
∂AΘ

j
J

)
+ Θi

I

(
γk

aigkj + γk
ajgki

)
Fa

AΘ
j
J .
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ΓK
AIGKJ = ΘK

i ((1− ζ)∂AFi
I + ζ∂AΘi

I)Θk
KgkjΘ

j
J + ΘK

k γk
aiF

i
I Fa

A(Θl
Kgl jΘ

j
J) ΘK

i Θk
K = δk

i

= δk
i ((1− ζ)∂AFi

I + ζ∂AΘi
I)gkjΘ

j
J + γk

aiF
i
I Fa

AgkjΘ
j
J

= ((1− ζ)∂AFi
I + ζ∂AΘi

I)gijΘ
j
J + γk

aiF
i
I Fa

AgkjΘ
j
J .

ΓK
AJGIK = ΓK

AJGKI GIK = GKI

= ((1− ζ)∂AFi
J + ζ∂AΘi

J)gijΘ
j
I + γk

aiF
i
J Fa

AgkjΘ
j
I i↔ j

= Θi
Igij((1− ζ)∂AFj

J + ζ∂AΘ
j
J) + γk

ajF
j
J Fa

AgkiΘ
i
I .

QI JA =
(

∂AΘi
I

)
gijΘ

j
J + Θi

Igij

(
∂AΘ

j
J

)
− ((1− ζ)∂AFi

I + ζ∂AΘi
I)gijΘ

j
J

−Θi
Igij((1− ζ)∂AFj

J + ζ∂AΘ
j
J)

+

(
Θi

I

(
γk

aigkj + γk
ajgki

)
Fa

AΘ
j
J − γk

aiF
i
I Fa

AgkjΘ
j
J − γk

ajF
j
J Fa

AgkiΘ
i
I

)
= (1− ζ)

((
∂AΘi

I

)
gijΘ

j
J + Θi

Igij

(
∂AΘ

j
J

))
− (1− ζ)

(
∂AFi

IgijΘ
j
J + Θi

Igij∂AFj
J

)
+

(
γk

aigkjFa
AΘ

j
J(Θi

I − Fi
I) + γk

ajgkiFa
AΘi

I(Θ
j
J − Fj

J )

)
= (1− ζ)gij

(
Θ

j
J∂A

(
Θi

I − Fi
I

)
+ Θi

I∂A

(
Θ

j
J − Fj

J

))
+ γk

aigkjFa
A

(
Θ

j
J(Θi

I − Fi
I) + Θ

j
I(Θi

J − Fi
J)

)
.

For Cartesian coordinates on the Euclidean space, gij = δij and the Christoffel symbols are γk
ij =

0, in such a case the formulas are simpler:

QI JA = ∂AGI J − ΓK
AIGKJ − ΓK

AJGIK,

= (1− ζ)

(
Θi

J∂A

(
Θi

I − Fi
I

)
+ Θi

I∂A

(
Θi

J − Fi
J

))
.

(5.3.13)

The metric is compatible with the connection, i.e. Q = 0 if ζ = 1 (no scaling effect) or if Θ = F
(Euclidean manifold). Metricity of a transformation written in Cartesian coordinates on E3 is
equivalent to the equation

Θi
J∂A

(
Θi

I − Fi
I

)
= −Θi

I∂A

(
Θi

J − Fi
J

)
, ∀I, J, A , (5.3.14)

meaning that, for any A, the tensor Θi
I∂A

(
Θi

J − Fi
J

)
∂I ⊗ ∂J must be skew symmetric.

5.3.3 Summary

The manifold (M ,G, Γ) provides a complete description of the current configuration of the mi-
crostructured material. If (5.3.8) is assumed, it is governed by three independent quantities φ, Θ
and ζ. The split structure of the transformation and metrics, underlined at the end of the section
5.3, allows us to describe the current state as the superposition of a microscopic and macroscopic
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processes. These latters are coupled as they are driven by the same kinematic quantities φ and
Θ. The scalar ζ governs such coupling, this has motivated the scaling factor name. This structure
is able to describe the current configuration on B by defining a micro-manifold (B,G, Γ) with
G ≡ Gv (see (5.3.6)) and a macro-manifold (B,Gh, L) with

LC
AB =

1
2
GhCD(

∂AG
h

BD + ∂BG
h

AD − ∂DG
h

AB

)
, (5.3.15)

being the Christoffel symbols of the horizontal metric. This connection has no torsion and no
curvature and is metric-compatible. The properties of (B, Γ,G) is richer:

Proposition 5.3.3. If Ωi
A satisfies lemma-5.3.2, with Ωi

AJ satisfying (5.3.8), the manifold (B,G, Γ) has
the following properties:

• If Θ = F, then macro and microelements behave in the same way. It yields that T = 0; R = 0 and
∇G = 0. The manifold behaves as an Euclidean space.

• If ζ = 1, then the scaling effect is no longer considered. In that case the manifold behaves as a
Weitzenböck manifold with T 6= 0, R = 0 and ∇G = 0.

• If ζ→ 0, then the size of the microsctructure tends to be negligible. Even if T→ 0, one may observe
R 6= 0 and ∇G 6= 0. In particular, if ∇G = 0 the manifold tends to behaves as Riemann-Cartan
manifold.

• If Θ 6= F and 0 < ζ < 1, then T 6= 0, R 6= 0 and ∇G 6= 0. The manifold behaves as a Weyl
manifold.

5.4 Alternative approaches

5.4.1 Non-scale material modeling

In the previous section, the material transformation has been enriched by introducing a map Θ

specifying how vector belonging to V(M ) is transformed independently on φ. An alternative
method consists in prescribing an enrichment on the tangent-map acting on Mp = TpB. In such
a case, the transformation is specified by the bundle map:

H : M → TE3 (X, Y) 7→ (φ(X), Ψ(X, Y)), (5.4.1)

where Ψ(X, Y) is supposed to be smooth, with a smooth inverse and satisfies the condition that
Ψ(X, Y) = 0 if and only if Y = 0. Accordingly, the total gradient H∗ = DH of the bundle
mapping is given by

H∗ = Hk
K ek ⊗ EK = ∂KHk ek ⊗ EK ,

= ∂Aφa ∂a ⊗ dXA + ∂AΨi ∂i ⊗ dXA + ∂IΨ
i ∂i ⊗ dY I .

(5.4.2)

Its inverse is given byH∗ = HK
k EK ⊗ ek withHK

kH`
K = δ`k andHK

kHk
L = δK

L . It givens explicitly:

H∗ = FA
a ∂A ⊗ dxa + ∂aΨ I∂I ⊗ dxa + ∂iΨ

I∂I ⊗ dyi. (5.4.3)
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With the same spirit as (5.3.3), an induced Ehresmann connection is obtained by

N(Y)V = H∗n
(

φ(X), Ψ(X, Y)
)

φ∗V

with coefficients N I
A = ∂jΨ

Inj
aFa

A + ∂iΨ
I∂AΨi.

(5.4.4)

The induced connection is not necessarily linear as soon as it is not the case for Ψ(X, Y).

Proof. Define V↑ = N(Y)V = H∗n(y)v where v↑ = n(y)v = va∂a − ni
ava∂i with v = φ∗V =

Fa
AVA∂A. Using (5.4.3), straightforward computations give

V↑ = HB
a v↑

a
∂B +HB

i v↑
i
∂B +H J

av↑
a
∂J +H J

i v↑
i
∂J

= FB
a va∂B +H J

ava∂J +H J
i v↑

i
∂J

= FB
a Fa

AVA∂B +H J
aFa

AVA∂J −H J
i ni

aFa
AVA∂J

= δB
AVA∂B − (H J

i ni
aFa

A −H
J
aFa

A)VA∂J

= VA∂A − (H J
i ni

aFa
A −H

J
aFa

A)VA∂J .

Hence, the connection coefficients are

N J
A = H J

i ni
aFa

A −H
J
aFa

A.

Next, using a fact thatHi
ZHZ

a = ∂BΨiFB
a + ∂IΨ

i∂aΨ I = 0, one gets

∂IΨ
iN I

A = ∂IΨ
i
(

∂jΨ
Inj

aFa
A − ∂aΨ I Fa

A

)
= ∂IΨ

i∂jΨ
Inj

aFa
A + ∂BΨiFB

a Fa
A

= ∂IΨ
i∂jΨ

Inj
aFa

A + ∂AΨi.

Once again, writingHz
IH

J
z = Ha

IH
J
a +Hi

IH
J
i = Hi

IH
J
i = ∂IΨ

iH J
i = δJ

I , one obtains

N J
A = H J

i ∂IΨ
iN I

A = H J
i ∂IΨ

i∂jΨ
Inj

aFa
A +H J

i ∂AΨi

= ∂jΨ
Jnj

aFa
A + ∂iΨ

J∂AΨi.

This is the end of the proof.

Lemma 5.4.1. The associated Ehresmann curvature R always vanishes.

Proof. From definition 4.2.3, for arbitrary vectors field V and U on B, one has

R(U, V) = N [V, U]− [NV, NU]

= H∗
(

n
(
φ∗ [V, U]

) )
−
[
H∗(n

(
φ∗V

)
),H∗(n

(
φ∗U

)
)
]

= H∗
(

n
([

φ∗V, φ∗U
]) )
−H∗

[
n
(
φ∗V

)
, n
(
φ∗U

)]
.

(5.4.5)
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Since the curvature of the connection n vanishes, n(
[
φ∗V, φ∗U

]
) =

[
n(φ∗V), n(φ∗U)

]
. This

proves that R(U, V) = 0 yielding that the Ehresmann curvature R vanishes 1.

To go further the pull-back operator has not to be defined by the total gradient H∗. This is
exactly what has been done in the scaled material model, see Section-5.2.

Proposition 5.4.2. If the manifold M is endowed with the connection N, the total gradientH∗ becomes

H∗ = Fa
A

δ

δxa ⊗ dXA + ∂IΨ
i ∂

∂yi ⊗ δY I . (5.4.6)

Next, an induced metric is defined by G = H∗g i.e. G(V, U) = g(H∗V,H∗U) with V, U ∈
TM . With respect to the connection N, this tensor splits like Sasaki metric:

G(X, Y) = Gh
AB(X)dXA ⊗ dXB + Gv

I J(X, Y)δY I ⊗ δY J ,

with Gh
AB = Fa

AgabFb
B, Gv

I J = ∂IΨ
igij∂JΨ

j.
(5.4.7)

Similarly, it can be seen that the vertical metric components are always given by Gv
I J = G(∂I , ∂J) =

∂IΨ
igij∂JΨ

j, then the vertical metric is independent of the induced connection N.
Keeping in mind that our objective was to construct a linear Ehresmann connection with

torsion and curvature, the present bundle maps fail for the following reasons: (1) the vertical
metric Gv(X, Y) is generally dependent on fiber coordinates; (2) the connection is not linear; (3)

the curvature of the connection is always zero.
However, in the linear situation for which Ψi(X, Y) = Ψi

I (X)Y I , the non-scale material modeling
may be seen as a subset of the scaled material model. Indeed, the micro-manifold on B (specified
in Section-5.3.3) shares the same properties as the manifold induced by (5.4.1) if Θ = Ψ and/or
ζ = 1. More precisely, one gets

Theorem 5.4.3. If (5.4.1) is linear, one gets

• N I
A(X, Y) = ΓI

AJ(X)Y J ; with ΓC
AB = ΨC

c ∂AΨc
B if Cartesian coordinates are used on TE3.

• The metric Gv induces a metric on B by G = ϑ∗Gv, locally GAB = Ψa
AgabΨb

B .

This elements construct a Weitzenböck manifold (B, Γ,G) with metric-compatible connection and torsion
while vanishing curvature. Obviously, if Ψ = F, no defect appears meaning that the torsion and curvature
of the connection vanish.

Remark 5.4.4. Our approach may be interesting to those who are familiar with (pseudo-)Finsler geome-
try and its applications. For Finsler space, the connection and its derived geometric quantities (curvature,
etc.) are generated by a metric tensor that is driven by a fundamental scalar function L(X, Y) exists at
every point (except for Y = 0), homogeneous of degree one in Y (Bao, Chern, and Shen, 2000). Our
geometric construction resembles a so-called pseudo-Finsler space (Bejancu, 1990) where the fundamen-
tal scalar function with requisite properties Bao, Chern, and Shen, 2000, from which the components of
the metric are obtained by differentiation, does not exist. Consequently, the connection and metric are

1In the above proof, we have used the fact that let M and N be arbitrary differential manifolds, for any vector u, v
on M and differential map h: M→ N, then h∗[u, v] = [h∗u, h∗v] see Chapter 5.3.2 in Nakahara, 2003
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completely independent. The geometrical construction affords great generality for describing several phe-
nomena in physics. Application of (pseudo-)Finsler geometry in continuum mechanics and physics have
been suggested earlier by Kondo, 1963, later by Saczuk, 1997; Fu, Saczuk, and Stumpf, 1998; Stumpf and
Saczuk, 2000, and nowadays by Pfeifer, 2013; Clayton, 2015; Clayton, 2017a; Clayton, 2017b; Yajima and
Nagahama, 2020. Non-conservative mechanical systems may be explored through a non-linear connection
in the Riemannian and Finslerian framework Bucataru and Miron, 2007b. Such non-linear connections
are mainly used to express the non-linear relation between fields having different natures Yajima and Na-
gahama, 2007. An example of an application for a Rikitake system may be found in Yajima and Nagahama,
2007.

5.4.2 On comparison with the nonholonomic principle

The forms of the metric and the connection presented in Theorem-5.4.3 look qualitatively similar
to the ones in numerous other defect-theories Bilby, Bullough, and Smith, 1955; Noll, 1967/68;
Kröner, 1981; Le and Stumpf, 1996a; Yavari and Goriely, 2012a. Among them, one of the pow-
erful tools is the nonholonomic principle Kleinert, 2000; Katanaev, 2005; Kleinert, 2008. In this
context, the continuum is modeled by a differential manifold B supporting a non-standard ma-
terial transformation: a map from B into E3) X 7→ x which is not smooth in general and may be
multivalued (to simplify problem we assume (xa) is Cartesian). However, it is possible to map
the points surrounding X defined by the tangent vector dX to dx via an infinitesimal transforma-
tion thanks to triads ea

A such that

dxa = ea
AdXA. (5.4.8)

Their reciprocal triads are introduced by ea
AeA

b = δa
b and ea

AeB
a = δB

A. It is therefore usual to define
metric-components, as extension of the usual definitions

ĜAB = g(ea
Aea, eb

Beb) = ea
Agabeb

B, (5.4.9)

where g is the metric tensor of the Euclidean space E3.
On the other hand, one can differentiate the vector base, and implicitly define an affine con-

nection coefficients

∇̂BeC =
∂eC

∂XB =
∂ec

C
∂XB ec =

(
eA

c
∂ec

C
∂XB

)
eA := Γ̂A

BCeA. (5.4.10)

The connection may have both torsion and curvature. Furthermore, the connection is metric-
compatible.

By construction, several cases may occur, it permits us to highlight the role of torsion and
curvature tensors on the classification of continuum transformation:

Holonomic transformation: If the mapping X 7→ x is smooth and single-valued, the triads are
usually the deformation gradient of the map with ea

A = ∂xa/∂XA. Then it is straightforward to
check that the torsion and curvature are equal to zero during the holonomic transformation. The
same result is obtained if F = Ψ in Theorem-(5.4.3), or if F = Θ in Proposition-(5.3.3).
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Nonholonomic transformation and torsion: If e are single-valued but they are not the deformation
gradient in the case of the mapping X 7→ x is smooth and/or not single-valued. the induced
manifold is a Weitzenböck manifold like in Theorem-5.4.3. In that sense, Ψ plays the same role
than the triads e. However, the presented approach differs on a crucial point: in the present
model the material manifold is a fiber bundle and the material transformation is a fiber mor-
phism. Such a map is smooth and single-valued and is sufficient to define the induced metric
and connection thanks to the concepts of Ehresmann connection. This point allows wide type of
mathematical analysis and numerical simulation is more comfortably handled.

Nonholonomic transformation and curvature: let us focus on some modeling for which triads are
multivalued. As a consequence, the connection has both torsion and curvature. This connection
is metric compatible. However, the connection and metric are, generally, also multivalued. This
could cause difficulties in performing consistent length measuring and parallel transport. On
the contrary, to achieve this goal the scaled material model in Section-5.2 is still driven by smooth
fields (without additional degree-of-freedom if (5.3.8) is used). Furthermore, the large class of
manifold have been observed, see Proposition-(5.3.3).

5.4.3 Spin connection

Remind that connection having both torsion and curvature cannot be obtained with single-
valued triads. Another method consists in introducing an additional field to give a connection
(Obukhov, Ponomariev, and Zhytnikov, 1989) (see discussion Rakotomanana, 2018; Katanaev,
2005):

Γ̃A
BC = eA

c ∂Bec
C + eA

c ωc
Baea

C, (5.4.11)

where the first term reduces to the Weitzenböck connection with non-zero torsion but zero cur-
vature. The second term has a role of spin connection, with possibly non-zero torsion and/or
non-zero curvature. Such a connection is metric compatible, see Section-1.5.2.3.

The similarity with (5.3.10) has to be underlined even if the overall approach is different. One
can write

ΓA
BC = ζΘA

a ∂AΘa
C + (1− ζ)ΘA

a ∂BFa
C, (5.4.12)

in which the first term is the Weitzenböck connection, whereas the other ΘA
a ∂BFa

C plays the role of
spin connection. Here, the sum of the two distributions is controlled by the factor ζ in the linear
way.

5.4.4 On comparison with Kröner-Lee-decomposition

Lee and his coworker Le and Stumpf, 1996a; Le and Stumpf, 1996c starting with the ideas from
Noll, 1967/68; Wang, 1967/68 and the multiplicative decomposition F = FeFp generally used for
elastoplastic transformation of material, see Section-1.5.1.2, they obtained some relations between
torsion of the crystal connection and the elastic and plastic distortions. The induced material
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manifold is Weizenböck. Later, Yavari and Goriely, 2012a was inspired by this approach and had
introduced the slightly different method where they identified the plastic deformation gradients
as Cartan’s moving frames to construct the appropriate material manifolds. Nevertheless, the
requirement that the material manifold with an evolving connection (compatible with the metric)
yielding that the frame field is everywhere parallel is not apparent.

The present model seems to be an alternative to the multiplicative decomposition. It is clear
that the total gradient is Θ which controls the stretch of microelement from the initial to the final
state. Elastic part is then the derivative of φ and hence Fp ∼ F−1Θ. This last expression obscures
a crucial point: in the present model, the intermediate configuration is not present. This concept
is replaced by the consideration of vertical and horizontal tangent spaces that are the support for
map linearization on vector field related to distinct quantities: H(M ) is related to macroscopic
vector field whereas V(M ) is related to vector field associated with the microstructure (orienta-
tion of grain in a lattice for example).
Such interpretation avoids the intermediate configuration. More crucially, it is an alternative to
the homogenization process recently introduced Reina, Schlömerkemper, and Conti, 2016. In
this latter work, as in the present chapter, a scaling effect is introduced in order to replace the
intermediate configuration. The point of view exposed in Section-5.2 suffices to introduce several
types of microstructural processes and defect in a unified geometrical formalism and with a re-
duce the number of kinematical variables (in practice, the class of defect is wider than in Reina
et al.’s approach).

5.4.5 The solder form and moving frame

If we cut the continuum into many small pieces (dV), each piece will be individually deformed
using the solder form (it defines a new piece δV = ϑ(dV)). After that, each piece will be driven by
the embedding φ that defines its position while its stretch is controlled by the elastic deformation
F = dφ. Mathematically, this process can be formalized as a mapping

M → TE3, (X, V) = (φ(X), Fϑ(V))

Therefore, Fϑ may be considered as the total gradient, and the solder form naturally defines a
moving frame for the material manifold. Such interpretation also avoids the standard-intermediate
configuration.

5.5 Explicit transformations producing curvature, torsion and metric-
ity tensor

This section presents the applications of the proposed theory. Special attention is paid to the sim-
ulation of each process (transformation, parallel transport) in dedicated spaces (tangent space,
body, etc.) in order to compare the properties of the material transformations Υv and the de-
rived connection generated by Υ. Accordingly, several examples of material transformation with
distributed defects are proposed and discussed. Mainly, we will find explicit material transfor-
mations producing curvature, torsion and metricity tensor separately.
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5.5.1 Parallel and rolling transport

FIGURE 5.2: Left: representation of the body B. Cells are a representation of
VmTB. A closed material loop σ(t) is specified. This loop σ will be used all along

Section 5.5. Right: a defect-free current state in the ambient space E2.

In order to present the application of the scaled material model, illustrations are restricted to
in-plane motion in the Euclidean ambient space endowed with g = δ and the trivial Levi-Civita
connection n = 0. Hence, the body B is labeled by two Cartesian coordinates (X1, X2) with
respect to an affine frame (O, e1, e2) on the plane, see Figure 5.2-left.
A current state related to a defect-free transformation is represented in the ambient space E2

(Figure 5.2-right). As no defect are present, the parallel transport of a normal frame (red arrows)
along a path φ(σ(t)) do not change its ambient properties. However, material components of a
parallel transported vector change along the path. On the other hand, the dragging of material
vectors by the transformation is depicted by the change of size and form of the cells. This shape
reveals the material metrics.
In Figure 5.3 another point of view is proposed where the transformation is presented in B by a
pull-back operation. Here, the non-uniformity of the parallel transported frames is the manifes-
tation of the material transformation.
For a more general transformation, for which the body contains defects, Υv is defined by (5.2.4)

FIGURE 5.3: Left: The same defect-free current state than in Figure 5.2 but repre-
sented in B. Right: developing curve σ̃ of σ on TpB.
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and with condition (5.3.8). The prescribed map φ, F = φ∗ and Θ are smooth, invertible and orien-
tation preserving. Hence, for a given ζ, these ingredients are used to define G, Γ, T, R and Q (see
(5.3.6), (5.3.10), (5.3.11), (5.3.12), (5.3.13) respectively). These Lagrangian tensors depend on the
reference coordinates and are associated with fiber bundles on the body B. In order to illustrate
the various types of defect, the parallel and rolling transports are complementary tools revealing
the geometrical properties of the manifold (Section-4.2.3). However, their manifestations differ
according to the chosen representation as it was already observed by comparing Figure 5.2 and
5.3. Here are presented briefly how such transports may be computed and illustrated.

Let us first consider a point p ∈ B and a path σ(t) = (XA(t)) on B parameterized by t ∈ [0, 1]

with σ(0) = p. The parameterization σ(t) generates a tangent vector field σ̇(t) = ẊA(t)∂/∂XA,
last dXA = ẊA(t) dt is defined for numerical purpose.

1. The parallel transport of a vector Y IeI ∈ TpB along σ is the point σ(t) + Y I(t)eI ∈ Mσ(t)

obtained by solving (4.2.2):

Y I(t + dt) = Y I(t)− ΓI
AJ(σ(t))Y JdXA with Y I(0) = Y I . (5.5.1)

A vector Y I(t) belongs to Tσ(t)B. For illustration on E2, F(σ(t))Y(t) is presented at φ(σ(t)).

2. The rolling transport of the point p + Ỹ IeI ∈ TpB along σ is obtained by determining Y(t) =

(Y I(t)) solving (4.2.3) :

Y I(t + dt) = Y I(t)− ΓI
AJ(σ(t))Y JdXA − δI

AdXA with Y I(0) = Ỹ I (5.5.2)

Such a vector gives the coordinates of a point in the frame (σ(t), e1, . . . en) of Tσ(t)B. Re-
member that Mp is TpB which is viewed as an abstract affine space tangent to B at p. In
particular Mp ∩B = {p}.

FIGURE 5.4: A pictorial representation of the developing curve.

This last transport is used to defines two reciprocal transports of curves:
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1. For a path σ on B, the developing curve is the curve σ̃ on TpB such that the rolling transport
of σ̃(t) = p + Ỹ I(t)eI in Tσ(t)B is the origin of this tangent space, namely σ(t) (a pictorial
representation is given by Figure (5.4)). This curve is the curve drawn by the contact point
of tangency of an affine space that rolls without slipping along σ, staying tangent to B. It
can be computed by searching the successive initial conditions Ỹ(t) such that the coordi-
nates of the rolling transport on Tσ(t)B is null. The procedures is the following:
Let A(t) be the matrix solving dA = −OA along σ with initial condition A(0) = Id
and B(t) be the solution of dB = −OB − J along σ with initial condition B(0) = 0.
Then the solution of (4.2.3) along σ with initial condition Y(0) is Y(t) = A(t)Y(0) + B(t).
Now the developing curve is σ(0) + Ỹ I(t)eI with Ỹ(t) satisfying 0 = A(t)Ỹ(t) + B(t) i.e.
Ỹ(t) = −A−1(t)B(t). Technically one solves the equations on A and B by a numerical Euler
scheme:

AI
K(t + dt) = AI

K(t)− ΓI
AJ(σ(t))AJ

K(t)dXA(t) with A(0) = Id, (5.5.3)

BI(t + dt) = BI(t)− ΓI
AJ(σ(t))BJ(t)dXA(t)− δI

AdXA(t) with B(0) = 0. (5.5.4)

Then Ỹ(t) = −A−1(t)B(t) is plotted on TpB. The developing curve σ̃ of σ is presented on
TpB in Figure 5.3-right. On TpB all the frames parallel-transported along σ are equal (this
holds true even for defective transformations).

2. The driven curve is the curve σ on B whose developping curve is a given curve σ̃ in TpB.
The driven curve is unique if the initial point of σ̃ is p. Indeed, comparison of two defor-
mations could be done by fixing a curve σ̃ in TpB and compare the two driven curves on
B.
This curve is obtained by solving a non linear system of ODE. Let ΓI

AJ be the coefficients of
the connection and σ̃(t) = p + Ỹ I(t)eI be a path in TpB satisfying Ỹ I(0) = 0. The driven
curve σ(t) = (XA(t)) and the matrix of the parallel transport A(t) along σ have to be
computed simultaneously:

XA(t + dt)− XA(t) = δA
I AI

J(t)
(

Ỹ J(t + dt)− Ỹ J(t)
)

(5.5.5)

AI
J(t + dt)− AI

J(t) = −ΓI
AK(σ(t))AK

J (t)(XA(t + dt)− XA(t)) (5.5.6)

where ΓK
AJ(σ(t)) is nothing else than ΓK

AJ(XA(t)). Initial conditions are XA(0) = 0 and
A(0) = Id. The driven curve can be plotted either on B or on φ(B).

Let us denote D : (p, σ(t)) → (p, σ̃(t)) the application defining a developing curve. If σ̃ is the
developing curve of σ on B, then σ is the driven curve of σ̃. In other words, the application
(p, σ̃(t)) → (p, σ(t)) defining a driven curve is D−1. Hence, the presence of defect may be
characterized on TpB (by fixing a loop σ and analysing the properties of σ̃) or in B (by fixing
a σ̃ and checking the properties of the corresponding driven curve). These two methods are
equivalent.

For a defect-free transformation, the image of the transformation given by the driven curve
(Figure 5.3-right) and by the embedding in the Euclidean space (Figure 5.2-right) are the same
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up to a rigid motion. It is no more true for a defective transformation as it would be seen in the
next examples.

5.5.2 Pure-non-metric transformation

FIGURE 5.5: Numerical simulations of the transformation (5.5.7). The current state
has no torsion and no curvature but the metric is not compatible with the induced
connection. Top representation in E3 (right) and in B (left). The frame at p is

parallel-transported along σ. Bottom developing curve of σ on TpB obtained.

Let us consider the map φ and its derivative F as follows:

φ X1 → x1 = X1 + h(X2)

X2 → x2 = X2 F =

1 f (X2)

0 1

 . (5.5.7)

where h is a C2-function B → R and of course f (X2) = ∂2h. Suppose that Θ is identity, and then
G = δ. The only non-zero connection coefficient is Γ1

22 = (1− ζ) ∂2 f and consequently, T = 0.
Direct computation shows that R = 0. However, the connection is not metric-compatible as:

∇2G12 = ∇2G21 = −(1− ζ)
∂ f
∂X2 . (5.5.8)

The other components of Q are zero.
This situation is illustrated in Figure 5.6 with

f (XA) =
π

4
sin (

XA

8L
π) (5.5.9)
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of course XA = X2. Each cell is related to a microelement. As relative placement of micro-
cell is controlled by F the superposition of macro and micro-stretch is graphically interpretable.
The identity G = δ supported by the local metric is clearly highlighted as shape and size of
cells are unchanged. This lattice representation is not sensitive to ζ. A rigid translation of each
microscopic layer is observed in the current configuration. In practice, no-void or overlap appear,
no defect is created during such transformation. In addition, the incompatibility of the gliding
of macro-cell with the metric of microelement is clearly quantified by ∇2G12 6= 0.

Geometrically, the parallel-transport along σ of a vector-frame initially placed at p is obtained
by solving (5.5.1). It is observed that the vectors change along the loop even if no torsion and
no-curvature are present in the induced manifold. This phenomena is a direct repercussion of
the non-standard connection which takes into consideration the transformation at both scales.
After transportation along the closed loop the final vector coincides with the initial vector as no
curvature is present Figure 5.6. However, the closure of the developing curve assures that the
connection has vanishing torsion and vanishing curvature Figure 5.6.

Last, from an energetic point of view it is clear that the reference and current state share the
same internal energy. This is quantified by the preservation of metric, torsion and curvature
between the two states. One may consider that in such infinite domain, the current state is ob-
tained by a re-labeling of reference state. But in a mechanical point of view such re-organisation
of material points involves some energy to cut inter-atomic interaction, even if the total energy
involved for both cutting and re-connecting all atoms is null. Hence from a physical point of
view, this process is associated with a shift of energetic interaction but is time-consuming too.
The non-metricity tensor Q is a geometric candidate for measuring such non-elastoplastic pro-
cess.

5.5.3 Length-scale dependence

Theoretically, the parallel-transport is highly sensitive to the scaling factor ζ. If ζ = 0, the effect
of the micro-stretch is absent on the parallel transport. If ζ = 1 the connection is compatible with
the micro-metric, the parallel transport does not change locally the frame as Θ = Id; however
vectors are converted by F if the transformation is presented in the ambient space, see Figure 5.6.

In practice, the metric-incompatibility of the connection can be illustrated by the observation
from the developing curve if defects are absent. If the factor ζ = 0, the developing curve coincide
with φ(σ) up to a rigid motion. For ζ = 1, the connection is metric-compatible and the develop-
ing curve coincides with σ as G = δ. In all these processes, the developing curves are closed, see
Figure 5.6. The scaling factor effects for the torsion and curvature (or observation of dislocations
and disclinations) is presented in the following subsections.
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FIGURE 5.6: Numerical simulations of the transformation (5.5.7). The current state
has no torsion and no curvature but the metric is not compatible with the induced
connection. Top representation in E3 (right) and in B (left). The frame at p is
parallel-transported along σ. Bottom developing curve of σ on TpB obtained for

various ζ.

5.5.4 Torsion with no curvature

The first example is already mentioned in subsection-1.6.3.2. For such transformation, the metric
tensor becomes

G =

1 θ

θ 1 + θ2

 . (5.5.10)

The non-zero connection coefficient is now Γ1
12 = ζ ∂1θ and the torsion is no more null. More

precisely the non-zero components of the torsion are

T1
12 = −T1

21 = ζ
∂θ

∂X1 . (5.5.11)

The curvature is zero, but the non-metricity tensor indicates:

∇1G22 = 2(1− ζ)θ
∂ θ

∂X1 ∇1G12 = ∇1G21 = (1− ζ)
∂ θ

∂X1 . (5.5.12)

Illustration is given in Figure 1.14-left with θ(X1) as follows:

θ(XA) =
π

4
cos (

XA

4L
π). (5.5.13)
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The presence of edge dislocation with defect along X1 is clearly observed. Other type of disloca-

FIGURE 5.7: Representation in the ambient space of the current configuration for
the transformation (5.5.14). There is no curvature but the non-zero components of
the torsion are T1

12 = −T1
21, last the metric is not compatible with the induced

connection.

tions may be obtained, with still F = I but:

Θ =

1 + θ(X2) 0
0 1

 . (5.5.14)

Here

G =

(1 + θ)2 0
0 1

 . (5.5.15)

and the only non zero connection coefficient is Γ1
21 = ζ (∂2θ)/(1 + θ) leading to a non zero

torsion:
T1

21 = −T1
12 = ζ

1
1 + θ

∂θ

∂X2

what looks qualitatively similar to (5.5.11). The non-metricity has a unique non-zero component:

∇2G11 = 2(1− ζ)(1 + θ)
∂ θ

∂X2 .

Last the curvature is still zero. Illustration is given in Figure 5.7 with θ still specified by Figure
1.14 (with XA = X2). The pattern is clearly different to Figure 1.14. The two simulations show
that several processes may be involved in order to create material with no-curvature but Burger
vector along X1. The first one is related to a non-uniform gliding of the microelement whereas
the second one is obtained by a non-uniform extension of these latter. However, even if the value
of the torsion T1

12 is the same at a fixed point, for the two processes, the non-metricity tensor Q
differs and provides information on the process involved.

Geometrically, since φ is smooth and σ is closed, φ(σ) is closed whatever the transformation
(1.6.12) or (5.5.14). If a vector is parallel transported along this close loop (arrow in Figure 1.15
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and Figure 5.7) the final vector recovers its initial properties as it returns to the initial point (as
the curvature is absent). Such procedure is not suitable for highlighting torsion of the manifold
and hence revealing a distribution of dislocation in the defected material. But the presence of
dislocation is predicted as follows: In Figure 1.17 and Figure 5.8 the developing curve σ̃ of σ on
TpB is given. In that case the curve σ̃ is no more closed if T 6= 0 (ζ 6= 0) and presents a gap along
X1 direction. Further discussion follows in the next subsection.

FIGURE 5.8: Representation in the ambient space of the current configuration for
the transformation (5.5.14) (left) and developing curve σ̃ obtained for various ζ
(right). There is no curvature but the non-zero components of the torsion are T1

12 =

−T1
21, last the metric is not compatible with the induced connection.

5.5.5 Discussion on Burger vector

We continue the discussion on the developing curve in Figure 1.17 and Figure 5.8. If computation
is performed around p along an infinitesimal material loop of size δx1 × δx2 this gap coincides
with T1

12δx1δx2. For such infinitesimal loop, it is a quantifier of dislocation density. Here the com-
putation is performed on a finite domain and this gap on σ̃ does not coincide with T1

12∆x1∆x2

(where ∆xi are size of the loop σ) as the torsion is not uniform in these simulations. It must be
highlighted that even for such finite loop, the directions σ̇ at p are unchanged. The developing
curve preserves this signature if curvature is null as it is commonly observed for infinitesimal
domain. It can be seen as a characterisation of the absence of curvature in a finite domain.
It must be emphasized that the developing curve σ̃ of a material curve σ does not correspond to

FIGURE 5.9: Burger’s circuit σ obtained for various ζ and for the transformations
(1.6.12) (left) and (5.5.14) (right) represented in the ambient space.
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the heuristic process consisting to following, along with the microstructure, the directions pre-
scribed by a macroscopic loop. This principle is commonly presented as a methodology to define
the Burger vector over an infinitesimal material loop. It can be obtained by searching the path
σ(t) (hereafter called the Burger’s circuit) in B associated with coordinates XA(t). The unknown
XA(t) is obtained by solving iteratively the process

(p, σ(t)) D−→ (p, ˜̃σ(t)) D−1

−−→ (p, σ(t)) (5.5.16)

where D is the application defining the developing curve with connection of the base manifold
(B,Gh, L). As D 6= D, the Burger’s circuit σ(t) is not σ(t). In practice the following explicit Euler
numerical scheme is used to solve (5.5.16):

AI
J(t + dt) = AI

J(t)− ΓI
AK(σ(t))AK

J (t)dXA(t) with A(0) = Id, (5.5.17)

d ˜̃Y(t) = A(t)−1dX(t) with dỸ(0) = dX(0), (5.5.18)

AI
J(t + dt) = AI

J(t)− LI
AK(σ(t))AK

J (t)dXA(t) with A(0) = Id, (5.5.19)

dX(t) = A(t)d ˜̃Y(t) with dX(0) = dX(0), (5.5.20)

X(t + dt) = X(t) + dX(t) with X(0) = X(0), (5.5.21)

Illustration is given in Figure 5.9 for the two transformations. If ζ = 1, the result is equivalent
to the standard illustration of Burgers-circuit on Riemann-Cartan manifold (2.1) (with ζ = 0 and
for zero-curvature σ(t) = σ(t)). The present scaled material model weight this effect if ζ 6= 1.
In Figure 5.9, the orientation σ̇ is not preserved after the finite loop: ∆σ̇ = σ̇(1) − σ̇(0) 6= 0
as opposed to what was observed on the developing-curve. In other words, on a finite Burger-
circuit ∆σ̇ = 0 is not a signature of absence of curvature. It must be also observed that the gap
between initial and final point of the path ∆σ = σ(1) − σ(0) is different to ∆σ̃ = σ̃(1) − σ̃(0).
Last numerical simulations show that ∆σ changes if traveling along σ is performed clockwise or
counterclockwise. This confirms that Burger-circuit is not a topologically invariant measure of
defect density. In contrary ∆σ̃ is unchanged and looks more robust for a quantification of the
defect density.

5.5.6 Curvature with no torsion

Let us consider a kinematic transformation specified by the following tensors:

F =

1 f (X2)

0 1

 Θ =

1 + θ(X1) 0
0 1

 (5.5.22)

Note that both of them may be defined as a total derivative of a B → E3 map. The metric is of
the form (5.5.15). The non-null connection coefficients are

Γ1
11 =

ζ

1 + θ

∂θ

∂X1 Γ1
22 =

1− ζ

1 + θ

∂ f
∂X2 (5.5.23)
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FIGURE 5.10: Representation in the ambient space of the transformation (5.5.22)
(left) and (5.5.26) (right). There is no torsion but the non-zero components of the
curvature are R1

212 = −R1
221 and the metric is not compatible with the induced

connection.

then the torsion is null. The non-zero components of the curvature are

R1
212 = −R1

221 = −
(

1− ζ

1 + θ

)2 ∂ f
∂X2

∂θ

∂X1 . (5.5.24)

The non-metricity tensor has the following non-null components:

∇1G11 = 2(1− ζ)(1 + θ)
∂ θ

∂X1 , ∇2G12 = ∇2G21 = −(1− ζ)(1 + θ)
∂ f
∂X2 . (5.5.25)

Numerical simulation is given in Figure 5.10-(left) with f (X2) and θ(X1) specified by (5.5.9) and
(5.5.13) respectively.
As for the example related to torsion, some other processes may be involved in order to obtain
the same type of curvature. Indeed, consider the transformation

F =

1 + f (X1) 0
0 1

 Θ =

1 θ(X2)

0 1

 . (5.5.26)

for which the metric is of the same form than (5.5.10). The non-null connection coefficients are

Γ1
11 = (1− ζ)

∂ f
∂X1 Γ1

22 = ζ
∂θ

∂X2 (5.5.27)

then the torsion is null. The non-zero components of the curvature are

R1
212 = −R1

221 = (1− ζ)ζ
∂ f

∂X1
∂θ

∂X2 . (5.5.28)

The non-metricity has the following non-null components:

∇1G11 = −2(1− ζ)
∂ f
∂X1 , ∇1G12 = ∇1G21 = −(1− ζ) θ

∂ f
∂X1

∇2G22 = 2(1− ζ)θ
∂ θ

∂X2 , ∇2G12 = ∇2G21 = (1− ζ)
∂ θ

∂X2 .
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The corresponding illustration Figure 5.10-(right) exhibits pattern highly different from Figure
5.10-(left) even if the same components of the curvature are involved. For both simulations a
frame initially placed at p is parallel transported along σ by solving (5.5.1). For both transfor-
mations the initial (vertical) vector Y(0) and last vector Y(1) differ if the curvature is not zero.
Indeed, for infinitesimal loop of side δx1 × δx2 the horizontal gap of ∆Y = Y(0)− Y(1) is mea-
sured by R1

212Y2δx1δx2. For infinitesimal domain, it is a signature of the curvature and then of
disclination’s densities. At a macroscopic point of view, it is still measurable by such gap. The

FIGURE 5.11: Developing curve σ̃ obtained for various ζ and for the transforma-
tions (5.5.22) (left) and (5.5.22) (right).

developing curve σ̃ is presented for the two transformations in Figure 5.11. Here the compu-
tation is performed for finite loop and σ̃ is no more closed as if the manifold presents non-null
curvature. For infinitesimal loop the computation of such gap ∆σ̃ = σ̃(1) − σ̃(0) shows that
∆σ̃ = O(δx3) in the presence of curvature. In other words, for an infinitesimal loop ∆Y is pre-
dominant to ∆σ̃. However for an finite loop, this hierarchy is broken as both ∆Y and ∆σ̃ are not
negligible. As ∆σ̃ is of the same order of magnitude in presence of curvature or torsion (Figure
1.17 and Figure 5.8), it is impossible to confirm that no torsion is present in such finite domain.
In other words, ∆σ̃-observation on a finite domain is not able to detect the density of dislocations
if some disclinations are present.

The Burger’s circuits σ obtained by (5.5.16) are presented in Figure 5.12. As in the previous

FIGURE 5.12: Burger’s circuit σ obtained for various ζ and for the transformations
(5.5.22) (left) and (5.5.26) (right) represented in the ambient space.
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example (i) the gap of Burger’s circuit differs quantitatively from the gap observed for the de-
veloping curve (ii) the vectors σ̇(1) and σ̇(0) are distinct. Hence this Burger’s circuit associated
with finite loop is not able to detect if defects are associated with torsion only, curvature only
or both of them together. From this point of view the analysis of the developing curve has the
advantage to detect the presence of curvature or not by considering ∆ ˙̃σ.

5.6 Conclusion

In order to model a material transformation that takes into consideration the change and possibly
creations of defects, a geometrical approach has been introduced. In this context, such transfor-
mation is considered as a fiber morphism - or so-called bundle map - from the appropriate fiber
bundle of the material manifold to the Euclidean space. The method is based on the concepts
of Ehresmann connection and solder form. The induced connection N and metric G are first de-
scribed, then curvature, torsion and non-metricity of the connection may be obtained. The more
straightforward method consists in studying M → TE3. It has been proven that this approach
is not able to introduce curvature, even in the case of non-linear maps.

The main idea to introduce rich enough transformations consists in considering that the bun-
dle supporting the transformation is VM , which is the vertical tangent bundle of M . In this
article, the transformations Υv : VM → VTE3 are restricted to the case of linear microstruc-
ture, meaning that M is isomorphic to TB.

This assertion does not constraint entirely TM and is a geometrical modeling of the misfit
between the microscopic and macroscopic states of the material, it is a scaled material model. Tech-
nically this misfit is taken into account by the connections that illustrate - through its torsion,
curvature and non-metricity - the presence of various material defects. Here the material is de-
scribed by a body B having a microstructure M . In such a way, each geometrical quantity may
be measured or computed on the same material support: the body B. In all the cases, the current
state is obtained by a pull-back operation that prescribed an induced geometry on B.

As the scaled material model embraces various underlying points of view (microscopic, macro-
scopic and macroscopic interpretation of a microscopic phenomena) the standard parallel trans-
port is not sufficient. For this purpose, various interpretations, including the rolling without
slipping transport and the developing curve, have been exhibited and illustrated in order to link
the mathematical tools to the mechanical processes.

Such scaled material model is parameterized by single-valued and smooth fields. It is the case
for the induced (linear) connection Γ and metric G (then for torsion or curvature) but also for the
point and vector maps φ and Θ. This feature distinguishes the present model from other known
theories referring to the nonholonomic principle. It allows mathematical analysis and numerical
simulation taking into account both scales.
The non-metricity of the connection can be considered as the price to paid by the scaled material
model to overcome multivalued fields. However, through this modeling, the non-metricity re-
veals the process involved to obtain a defective media. Analysing more deeply this mechanical
interpretation is among the possible objectives of future works.

The restriction of the bundle map Υ to any element of VM is imposed by the transformation
Υv. Accordingly, specifying the completed bundle map Υ is somehow free. In the present work,
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a family of bundle map Υ is considered by introducing just an unique scalar ζ. This choice is suf-
ficient to illustrate the presence of various defect types and avoids adding new unknown fields
in the theory. In the present example, ζ gives a weight of macro and micro effect in a linear way,
but other formulations (leading, for instance, to non-linear connection) are possible. It must be
noticed that the choice of such completion may reveal some interesting physical interpretations
that are beyond the scope of the chapter (in particular for multi-physical problems).

Numerical simulations are presented and show how bridges are built between microscopic
defects and macroscopic observations. It is the occasion to underline that for a given density
of disclinations, the characterisation of a possible presence of dislocations is not attainable by
macroscopic observations (at least with the ζ-family of bundle map Υ chosen in the present case).

Up to now, the present model is purely kinematic. However, this first step was indispens-
able to consider full mechanical problems afterwards. (1) Staying on this kinematic approach,
other possible extensions Υ (than the ζ-family) may be explored in order to take into account
specific microstructured materials such as nano-material; (2) Study of the solder form turns out
to be another interesting subject; (3) Another possible step consists in considering an energetic
counterpart in order to define the equilibrium laws of such model. (4) Note that the present
scaled material model is kinematically non-linear, and a linearization may be the occasion to find
some meaningful explicit solutions. (5) Another possible issue consists in introducing time in the
Galilean or in the Lorentzian framework.
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Conclusion
There is no doubt that geometry plays a fundamental role in the understanding of physics. As
a typical example, the continuum theory of dislocations and disclinations could be formulated
in the Riemann–Cartan geometry framework. Once again, this statement has been confirmed
by the development of fiber geometry throughout this dissertation. We pay attention to enrich-
ing the differential material manifold by metrics and connections derived from material trans-
formations. The resulting geometry can describe and investigate the behaviour of microscopic
defects in the continuum. The proposed theories allow, in many aspects, to better understand
the observed phenomena. Several examples given for different types of defects distributed in
the medium have thus been made to highlight the consistency between theoretical analysis and
numerical simulations and to link the mathematical tools to the mechanical processes. Since our
approaches involve single-valued and smooth fields, both theoretical and numerical analyses are
easily treated.

The new framework yields consistent geometric backgrounds for the microcontinuum frame-
work. It could be helpful to formulate the field theories in a universal language of differential
geometry. Our ideas open a lot of interesting problems for the future. Notably, the geometrical
nature of our approach suggests that it would be not difficult to obtain the relativistic version of
the theory, which should fit impressively to the geometrical settings of general relativity theo-
ries. In what follows, we will summarize our contribution to the current state of understanding
of defects.

Contributions

This thesis concerns a geometric model of mechanical transformations of material media with
a microstructure. This type of material is common in nature. Modeling the behavior of these me-
dia is a broad subject. It encompasses homogenization, influential media theories, and multiscale
theories. These approaches are often effective for infinitesimal transformations, but geometric
difficulties appear for large transformations.

An alternative consists in interpreting the continuum as a fiber bundle manifold M over
the base manifold B. The latter is immersed in the Euclidean ambient space. In this case, the
type of manifold illustrates some characteristics of the material. In continuum mechanics, the
base manifold B makes it possible to model the macroscopic behavior of material domains. Its
microstructure is modeled by choosing a connection and a metric on the bundle M .

Our study only considers mechanical type defects arising from inconsistency in the place-
ments and orientations of the microelements. Such a process is convincingly captured by a
smooth embedding represented by a fiber morphism Υ from M into TE3. The embedding in-
duces a connection and a metric on the material manifold by pulling back from the geometry of
Euclidean space. Defects are then measured through the torsion, curvature and nonmetricity of
the connection. Therefore, the choice of the kinematics of the embeddings is a crucial element for
the construction of the model. In addition, the numerical and theoretical analyses are easier to
handle since the geometric quantities are derived from the smooth maps rather than the existing
methods.
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We first specify how the linear transformation Υ : TB → TE3, (X, V) 7→ (φ(X), Ψ(X)V)

changes the intrinsic geometry of the continuum in the RC framework. Using this kind of map,
the pull-back of the Levi-Civita connection and the Euclidean metric enrich B in the form of
a special type of RC geometry called Weitzenböck manifold. This latter is not efficient to deal
with all topological defects since it is impossible to introduce curvature (the geometric quantities
measuring disclinations densities). Finally, we gave the formalism of Eringen theory based on
geometry. Notably, it reduces the number of material parameters compared to classical micro-
scopic theories.

The breakthroughs of this thesis consist of the second approach - the scaled material model.
This study answered nicely and in an elegant way the drawback just before. It was initially
motivated by reproducing the previous research on another geometrical background - fiber ge-
ometry - that more effectively describes the microcontinuum. It turns out that if we consider the
embedding of the manifold B and its tangent space, the induced manifold has characteristics
of an RC manifold already exploited for the study of materials with crystalline defects or with
dislocations.

Instead, the scaled material model deals with the material transformation that is described
by the bundle map Υv : VM → VTE3. To construct an Ehresmann connection pulling back
from the Euclidean space, one needs to enrich the transformation Υv to the fiber morphism Υ

defined on the whole space TM . The extension Υ is completely constructed by just introducing
a scalar field. It is sufficient to illustrate the presence of various defect types and avoids adding
new unknown fields in the theory. Moreover, it recovers to give a weight of macro and micro
effect in a linear way. This interpretation also has the advantage of recovering some standard
behaviors: it recovers a case where the micro and macro universes behave in the same way.
Recover transformation for which scaling effect is absent. The induced manifold is richer because
it has a connection provided with torsion and curvature, and the metric is no longer necessarily
compatible with the connection.

One of the main contributions of this thesis is to introduce a new approach to the transfor-
mations of microstructured materials. The transformations are defined on a space tangent to
the material manifold TM . The induced manifold has very rich properties distinguished from
a classical Riemann manifold that can model a large class of microstructural defects. This ap-
proach allows great freedom in the description of the induced structure on the material manifold
M . It is possible to distinguish the notions of connection and metric at various scales. It gives
to the model the possibility of having a physical interpretation of the results. Applications in
continuum mechanics are broad: from fluid mechanics to work hardening through plasticity, but
this thesis will not approach these topics.

The second significant contribution consists in the choice of this fiber morphism Υ. The
present work is obtained by introducing only a new scalar quantity - the scaling factor ζ. The
other ingredients (degrees of freedom of the model) used are associated with the kinematics of
the microelement and have existed for a long time in other models. We, therefore, have control-
lable modeling by a reduced number of independent variables, which allows an exhaustive and
rigorous discussion. In particular, the notion of the scale factor is relatively explicit on reading
the results.

The third contribution of this thesis relates to the practical application of these models through
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numerical simulations. These simulations illustrate the microscopic and macroscopic properties
of the material after transformation. The effects of these connections are illustrated by numeri-
cally simulating the parallel transport of directors along a path of finite length. It is possible to
interpret macroscopically some phenomena that are often presented only for infinitesimal paths.
In the context of multiscale modeling, these infinitesimal loops provide only partial information.
In order to broaden and complete this type of interpretation, other transports have been devel-
oped to provide original tools to mechanics: rolling without slipping transport, transport along
a finite domain and Burger circuit. All of these simulations allow an exhaustive analysis of the
properties of the model on scalar or vector variables. From our perspective, it can improve the
agreement between the theoretical and numerical analysis.

Outlook

The thesis ends at this stage but the developed geometric construction in the geometrical theory
of defects always raises many interesting questions. The answers to these will help us to better
understand the applicability of the proposed approaches. Some of them are discussed as follows.

First, it is conspicuous that the induced manifold is richer than ones derived from the classical
theories because the connection may not be compatible with the metric system. In this thesis, we
have shown that it reveals the processes involved in rearranging elements in materials. From
a mechanical point of view, such reorganization requires some energy. In this context, the non-
metricity tensor should be treated as an argument of the strain energy function. However, a
deeper understanding of this quantity needs additional works, it is of interest in future research.

Second, the extension of the bundle map Υ to the mechanical transformation Υv is somehow
free. In this study, a family of bundle maps Υ is completed by introducing a unique scalar fac-
tor ζ. It is enough to illustrate various defect types and to avoid adding new unknown fields in
theory. The present example gives a weight of macro and micro effect linearly, but other formula-
tions (leading, for instance, to non-linear connection) are possible. The choice of such completion
may reveal some interesting physical phenomena, in particular, for multi-physical problems. Be-
sides, other possible extensions Υ may be explored to investigate specific microstructured mate-
rials such as nano-material.

Third, the canonical soldering form ϑ is assumed throughout the manuscript. The reason behinds
this restriction is described in the following statements: In standard literature on continuum the-
ories of defects, dislocations and disclinations are related to torsion and curvature of the affine
connection of the base manifold B, respectively. Accordingly, the application of the model fo-
cuses mainly on linear connection N (i.e., N I

A = ΓI
AJY

J), for which Γ well defined an affine
connection on B, and the torsion, curvature of N coincides with those of the affine connection
Γ. The canonical solder form is initially introduced to emphasize these relationships. In other
words, technical constraints and pedagogic reasons have motivated us to restrict the application
to canonical solder form.
Nevertheless, we believe that such an assumption may contain some physical processes. The
Section-4.2 presents the formulation with a non-canonical solder form to underline the enormous
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scope of such modeling. Honestly, we have found no literature using non-canonical solder form
for physical problems except in cosmology. In addition, at the moment, we have not found any
physical phenomena that are enabled or omitted by the particular belief.

Fourth, the micro-state could be very complex. In particular, the fiber above each point may
not have the same dimension of the body manifold. For example, the micro-state may be a point
on the 2-sphere. Then the restriction imposed by using the canonical solder form is not suitable.
It is understandable to start with the simplest case for which microelements are interpreted as
first-order infinitesimal neighborhoods of geometrical points. For such cases, the micro-state is
uniform inside the macroelement. The present work shows that this hypothesis is sufficient to
illustrate various defect types and points out many interesting properties. In particular, torsion,
curvature and non-metricity appeared through a synthetic kinematic model. It corresponds to
the scope of the study, which is an attempt to introduce tools of fiber geometry towards the frame-
work of a microstructured continuum with distributions of defects. Moreover, our construction
has the advantage that it is not difficult to obtain the relative version of the theory regarding
the complicated microcontinuum. The complex microstructure could be investigated by setting
dim B = dim Mp but using another solder form.

Next, the induced Ehresmann connection is generally non-linear even if the bundle map Υv is
linear in the case of the scaled material model, see Section 5.2 or for the non-linear transformation
H in the non-scale material modeling, see Section 5.4.1. The connection and metric are entirely
independent. This construction is closed to the pseudo-Finsler space, in which exceptional cases
include various types of geometries. Thus, it affords great generality for describing several phe-
nomena in physics. It is an occasion to ask what a physical interpretation of such a non-linear
connection is, at least in the framework of defects.

Up to the present, torsion, curvature and non-metricity tensors or equivalently the functions
φ, Ψ or Θ are unknown fields in this theory. We plan to apply some mechanical processes to
obtain governing equations or consider an energetic counterpart to define the equilibrium laws
of such models. It helps us to solve numerical or analytic material transformations. Finally, the
linearization of the present models may be the occasion to provide meaningful, explicit solutions.

Last but not least, one of the possible issues that we intend to study consists of a general-
ization of general relativity theory. The general relativity theory is Einstein’s theory of space,
time and gravitation in terms of differential geometry of curved spacetime. This theory states
that most forces of nature are represented by fields defined on the spacetime manifold, while
gravity is an intrinsic property of the spacetime manifold - curvature. The geometry of space-
time is derived from a Lorentzian metric and has the structure of Minkowskian space. The flat
manifold may be twisted and curved using multi-valued coordinate transformations. However,
our approaches emphasizes that such a twisted and curved manifold can be obtained by using
smooth transformations. Obviously, for any new geometry background, one question arises: how
to modify and extend the theory in this framework? We strongly believe that the geometrical nature
of our approach also suggests that it would be not difficult to obtain the relativistic version of the
current theory, which should adapt convincingly to the geometrical settings of general relativity
theories.
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Epstein, Marcelo and Marek Elżanowski (2007). Material inhomogeneities and their evolution: A ge-
ometric approach. Interaction of Mechanics and Mathematics. Springer, Berlin, pp. xiv+274.
ISBN: 978-3-540-72372-1.

Eringen, A. Cemal (1999). Microcontinuum field theories. I. Foundations and solids. Springer-Verlag,
New York, pp. xvi+325. ISBN: 0-387-98620-0. DOI: 10.1007/978-1-4612-0555-5. URL: https:
//doi.org/10.1007/978-1-4612-0555-5.

Eringen, A. Cemal and E. S. Suhubi (1964). “Nonlinear theory of simple micro-elastic solids. I”.
In: Internat. J. Engrg. Sci. 2, pp. 189–203. ISSN: 0020-7225. DOI: 10.1016/0020-7225(64)90004-
7. URL: https://doi.org/10.1016/0020-7225(64)90004-7.

Eshelby, J.D. (1956). “The Continuum Theory of Lattice Defects”. In: ed. by Frederick Seitz and
David Turnbull. Vol. 3. Solid State Physics. Academic Press, pp. 79–144. DOI: https://doi.

https://doi.org/10.1155/2015/828475
https://doi.org/10.1155/2015/828475
https://doi.org/10.1155/2015/828475
https://doi.org/10.1007/s00033-016-0752-x
https://doi.org/10.1007/s00033-016-0752-x
https://doi.org/https://doi.org/10.1016/j.geomphys.2016.11.011
https://doi.org/https://doi.org/10.1016/j.geomphys.2016.11.011
https://www.sciencedirect.com/science/article/pii/S0393044016302832
https://www.sciencedirect.com/science/article/pii/S0393044016302832
https://doi.org/10.1038/nature13043
https://doi.org/10.1007/978-3-319-91548-7\_34
https://doi.org/10.1007/978-3-319-91548-7_34
https://doi.org/10.1007/978-3-319-91548-7_34
https://doi.org/10.1177/1081286512465222
https://doi.org/10.1177/1081286512465222
https://doi.org/10.1177/1081286512465222
https://doi.org/10.1177/1081286512465222
https://doi.org/10.1017/CBO9780511762673
https://doi.org/10.1017/CBO9780511762673
https://doi.org/10.1002/9781118361016
https://doi.org/10.1007/978-3-319-06920-3
https://doi.org/10.1007/978-3-319-06920-3
https://doi.org/10.1007/978-3-319-06920-3
https://doi.org/10.1007/978-1-4612-0555-5
https://doi.org/10.1007/978-1-4612-0555-5
https://doi.org/10.1007/978-1-4612-0555-5
https://doi.org/10.1016/0020-7225(64)90004-7
https://doi.org/10.1016/0020-7225(64)90004-7
https://doi.org/10.1016/0020-7225(64)90004-7
https://doi.org/https://doi.org/10.1016/S0081-1947(08)60132-0
https://doi.org/https://doi.org/10.1016/S0081-1947(08)60132-0


References 115

org/10.1016/S0081-1947(08)60132-0. URL: https://www.sciencedirect.com/science/
article/pii/S0081194708601320.

Forest, Samuel (2009). “Micromorphic Approach for Gradient Elasticity, Viscoplasticity, and Dam-
age”. In: Journal of Engineering Mechanics 135.3, pp. 117–131. DOI: 10.1061/(ASCE)0733-
9399(2009)135:3(117).

Frenkel, J. “Zur Theorie der Elastizitätsgrenze und der Festigkeit kristallinischer Körper”. In:
Zeitschrift für Physik 37 (), pp. 572–609.

Fu, M. F., J. Saczuk, and H. Stumpf (1998). “On fibre bundle approach to a damage analysis”. In:
Internat. J. Engrg. Sci. 36.15, pp. 1741–1762. ISSN: 0020-7225. DOI: 10.1016/S0020-7225(98)
00021-4. URL: https://doi.org/10.1016/S0020-7225(98)00021-4.

Futhazar, Grégory, Loïc Le Marrec, and Lalaonirina Rakotomanana (Oct. 2014). “Covariant gra-
dient continua applied to wave propagation within defective material”. In: Archive of Applied
Mechanics, pp. 1339–1356. DOI: 10.1007/s00419-014-0873-7. URL: https://doi.org/10.
1007/s00419-014-0873-7.

Ghiba, Ionel-Dumitrel et al. (2015). “The relaxed linear micromorphic continuum: existence, unique-
ness and continuous dependence in dynamics”. In: Math. Mech. Solids 20.10, pp. 1171–1197.
ISSN: 1081-2865. DOI: 10 . 1177 / 1081286513516972. URL: https : / / doi . org / 10 . 1177 /
1081286513516972.

Gonzalez, Oscar and Andrew M. Stuart (2008). A first course in continuum mechanics. Cambridge
Texts in Applied Mathematics. Cambridge University Press, Cambridge, pp. xviii+394. ISBN:
978-0-521-71424-2. DOI: 10.1017/CBO9780511619571. URL: https://doi.org/10.1017/
CBO9780511619571.

Grammenoudis, P. and Ch. Tsakmakis (Sept. 2009). “Micromorphic continuum. Part I: Strain and
stress tensors and their associated rates”. In: International Journal of Non-Linear Mechanics 44.9,
p. 943. DOI: 10.1016/j.ijnonlinmec.2009.05.005. URL: https://hal.archives-ouvertes.
fr/hal-00573457.

Head, A. K. et al. (1993). “An equilibrium theory of dislocation continua”. In: SIAM Rev. 35.4,
pp. 580–609. ISSN: 0036-1445. DOI: 10.1137/1035136. URL: https://doi.org/10.1137/
1035136.

Hélein, Frédéric (2009). “Manifolds obtained by soldering together points, lines, etc”. In: arXiv
preprint arXiv:0904.4616.

Iliev, Bozhidar Z. (2001). “Fibre bundle formulation of nonrelativistic quantum mechanics. I. In-
troduction. The evolution transport”. In: J. Phys. A 34.23, pp. 4887–4918. ISSN: 0305-4470. DOI:
10.1088/0305-4470/34/23/308. URL: https://doi.org/10.1088/0305-4470/34/23/308.

Katanaev, M. (2005). “Geometric theory of defects”. In: Phys. Usp. 48.7, pp. 675–701. DOI: 10.
1070/PU2005v048n07ABEH002027. URL: https://ufn.ru/en/articles/2005/7/b/.

Kleinert, H (1989). Gauge Fields in Condensed Matter. WORLD SCIENTIFIC. DOI: 10.1142/0356.
eprint: https://www.worldscientific.com/doi/pdf/10.1142/0356. URL: https://www.
worldscientific.com/doi/abs/10.1142/0356.

Kleinert, H. (1992). “The Extra gauge symmetry of string deformations in electromagnetism with
charges and Dirac monopoles”. In: Int. J. Mod. Phys. A 7, pp. 4693–4705. DOI: 10 . 1142 /
S0217751X9200212X.

https://doi.org/https://doi.org/10.1016/S0081-1947(08)60132-0
https://doi.org/https://doi.org/10.1016/S0081-1947(08)60132-0
https://www.sciencedirect.com/science/article/pii/S0081194708601320
https://www.sciencedirect.com/science/article/pii/S0081194708601320
https://doi.org/10.1061/(ASCE)0733-9399(2009)135:3(117)
https://doi.org/10.1061/(ASCE)0733-9399(2009)135:3(117)
https://doi.org/10.1016/S0020-7225(98)00021-4
https://doi.org/10.1016/S0020-7225(98)00021-4
https://doi.org/10.1016/S0020-7225(98)00021-4
https://doi.org/10.1007/s00419-014-0873-7
https://doi.org/10.1007/s00419-014-0873-7
https://doi.org/10.1007/s00419-014-0873-7
https://doi.org/10.1177/1081286513516972
https://doi.org/10.1177/1081286513516972
https://doi.org/10.1177/1081286513516972
https://doi.org/10.1017/CBO9780511619571
https://doi.org/10.1017/CBO9780511619571
https://doi.org/10.1017/CBO9780511619571
https://doi.org/10.1016/j.ijnonlinmec.2009.05.005
https://hal.archives-ouvertes.fr/hal-00573457
https://hal.archives-ouvertes.fr/hal-00573457
https://doi.org/10.1137/1035136
https://doi.org/10.1137/1035136
https://doi.org/10.1137/1035136
https://doi.org/10.1088/0305-4470/34/23/308
https://doi.org/10.1088/0305-4470/34/23/308
https://doi.org/10.1070/PU2005v048n07ABEH002027
https://doi.org/10.1070/PU2005v048n07ABEH002027
https://ufn.ru/en/articles/2005/7/b/
https://doi.org/10.1142/0356
https://www.worldscientific.com/doi/pdf/10.1142/0356
https://www.worldscientific.com/doi/abs/10.1142/0356
https://www.worldscientific.com/doi/abs/10.1142/0356
https://doi.org/10.1142/S0217751X9200212X
https://doi.org/10.1142/S0217751X9200212X


116 Chapter 5. On tangent geometry and generalized continuum with defects

Kleinert, Hagen (1990). “Double gauge invariance and local quantum field theory of charges
and Dirac magnetic monopoles”. In: Phys. Lett. B 246, pp. 127–130. DOI: 10 . 1016 / 0370 -
2693(90)91318-6.

— (2000). “Nonholonomic mapping principle for classical and quantum mechanics in spaces
with curvature and torsion”. In: Gen. Relativity Gravitation 32.5, pp. 769–839. ISSN: 0001-7701.
DOI: 10.1023/A:1001962922592. URL: https://doi.org/10.1023/A:1001962922592.

— (2008). Multivalued fields in condensed matter, electromagnetism, and gravitation. World Scientific
Publishing Co. Pte. Ltd., Hackensack, NJ, pp. xxiv+497. ISBN: 978-981-279-171-9; 981-279-171-
X. DOI: 10.1142/6742. URL: https://doi.org/10.1142/6742.

Kobayaschi, S. (1957). “Theory of connections”. In: Annali di Matematica Pura ed Applicata 43,
pp. 119–194. DOI: 10.1007/BF02411907. URL: https://doi.org/10.1007/BF02411907.

Kolev, Boris and Rodrigue Desmorat (2021). Objective rates as covariant derivatives on the manifold
of Riemannian metrics. arXiv: 2106.01126 [math.DG].

Kondo, K (1955). Geometry of elastic deformation and incompatibility. Memoirs of the unifying study of
the basic problems in engineering sciences by means of geometry. Vol. I. Kazuo Kondo, Chairman.
Gakujutsu Bunken Fukyu-Kai, Tokyo, pp. xv+590.

— (1963). “Non-riemannian and finslerian approaches to the theory of yielding”. In: International
Journal of Engineering Science 1.1, pp. 71–88. ISSN: 0020-7225. DOI: https://doi.org/10.1016/
0020-7225(63)90025-9. URL: https://www.sciencedirect.com/science/article/pii/
0020722563900259.

Kröner, E. (1981). Continuum theory of defects. Ed. by R. Balian et al. Less Houches, Session XXXV,
1980-Physics of defects. North-Holland Publishing Company.

Kröner, Ekkehart (1960). “Allgemeine Kontinuumstheorie der Versetzungen und Eigenspannun-
gen”. In: Arch. Rational Mech. Anal. 4, 273–334 (1960). ISSN: 0003-9527. DOI: 10.1007/BF00281393.
URL: https://doi.org/10.1007/BF00281393.

Le, K. C. and H. Stumpf (1996a). “On the determination of the crystal reference in nonlinear con-
tinuum theory of dislocations”. In: Proceedings of the Royal Society of London. Series A: Math-
ematical, Physical and Engineering Sciences 452.1945, pp. 359–371. DOI: 10.1098/rspa.1996.
0019. eprint: https://royalsocietypublishing.org/doi/pdf/10.1098/rspa.1996.0019.
URL: https://royalsocietypublishing.org/doi/abs/10.1098/rspa.1996.0019.

Le, K.C. and H. Stumpf (1996b). “A model of elastoplastic bodies with continuously distributed
dislocations”. In: International Journal of Plasticity 12.5, pp. 611–627. ISSN: 0749-6419. DOI:
https://doi.org/10.1016/S0749-6419(96)00022-8. URL: https://www.sciencedirect.
com/science/article/pii/S0749641996000228.

— (1996c). “Nonlinear continuum theory of dislocations”. In: International Journal of Engineering
Science 34.3, pp. 339–358. ISSN: 0020-7225. DOI: https://doi.org/10.1016/0020-7225(95)
00092-5. URL: https://www.sciencedirect.com/science/article/pii/0020722595000925.

Lee, E. and D. Liu (1967). “Finite-Strain Elastic—Plastic Theory with Application to Plane-Wave
Analysis”. In: Journal of Applied Physics 38, pp. 19–27.

Love, A. E. H. (1944). A treatise on the Mathematical Theory of Elasticity. Fourth Ed. Dover Publica-
tions, New York, pp. xviii+643.

https://doi.org/10.1016/0370-2693(90)91318-6
https://doi.org/10.1016/0370-2693(90)91318-6
https://doi.org/10.1023/A:1001962922592
https://doi.org/10.1023/A:1001962922592
https://doi.org/10.1142/6742
https://doi.org/10.1142/6742
https://doi.org/10.1007/BF02411907
https://doi.org/10.1007/BF02411907
https://arxiv.org/abs/2106.01126
https://doi.org/https://doi.org/10.1016/0020-7225(63)90025-9
https://doi.org/https://doi.org/10.1016/0020-7225(63)90025-9
https://www.sciencedirect.com/science/article/pii/0020722563900259
https://www.sciencedirect.com/science/article/pii/0020722563900259
https://doi.org/10.1007/BF00281393
https://doi.org/10.1007/BF00281393
https://doi.org/10.1098/rspa.1996.0019
https://doi.org/10.1098/rspa.1996.0019
https://royalsocietypublishing.org/doi/pdf/10.1098/rspa.1996.0019
https://royalsocietypublishing.org/doi/abs/10.1098/rspa.1996.0019
https://doi.org/https://doi.org/10.1016/S0749-6419(96)00022-8
https://www.sciencedirect.com/science/article/pii/S0749641996000228
https://www.sciencedirect.com/science/article/pii/S0749641996000228
https://doi.org/https://doi.org/10.1016/0020-7225(95)00092-5
https://doi.org/https://doi.org/10.1016/0020-7225(95)00092-5
https://www.sciencedirect.com/science/article/pii/0020722595000925


References 117

Lychev, Sergei et al. (2020). “Modeling and Optimization for Oriented Growing Solids”. In: 2020
15th International Conference on Stability and Oscillations of Nonlinear Control Systems (Pyatnit-
skiy’s Conference) (STAB), pp. 1–4. DOI: 10.1109/STAB49150.2020.9140700.

Madeo, Angela et al. (2015). “Band gaps in the relaxed linear micromorphic continuum”. In:
ZAMM Z. Angew. Math. Mech. 95.9, pp. 880–887. ISSN: 0044-2267. DOI: 10.1002/zamm.201400036.
URL: https://doi.org/10.1002/zamm.201400036.

Madeo, Angela et al. (2018). “Relaxed micromorphic modeling of the interface between a homo-
geneous solid and a band-gap metamaterial: new perspectives towards metastructural de-
sign”. In: Math. Mech. Solids 23.12, pp. 1485–1506. ISSN: 1081-2865. DOI: 10.1177/1081286517728423.
URL: https://doi.org/10.1177/1081286517728423.

Marsden, Jerrold E. and Thomas J. R. Hughes (1994). Mathematical foundations of elasticity. Cor-
rected reprint of the 1983 original. Dover Publications, Inc., New York, pp. xviii+556. ISBN:
0-486-67865-2.

Mindlin, R. D. (1964). “Micro-structure in linear elasticity”. In: Arch. Rational Mech. Anal. 16,
pp. 51–78. ISSN: 0003-9527. DOI: 10.1007/BF00248490. URL: https://doi.org/10.1007/
BF00248490.

Miron, R. (1994). “Lagrange geometry”. In: vol. 20. 4-5. Lagrange geometry, Finsler spaces and
noise applied in biology and physics, pp. 25–40. DOI: 10.1016/0895-7177(94)90154-6. URL:
https://doi.org/10.1016/0895-7177(94)90154-6.

Nabarro (1967). Theory of crystal dislocations. Oxford: Clarendon Press.
Nakahara, Mikio (2003). Geometry, topology and physics. Second. Graduate Student Series in Physics.

Institute of Physics, Bristol, pp. xxii+573. ISBN: 0-7503-0606-8. DOI: 10.1201/9781420056945.
URL: https://doi.org/10.1201/9781420056945.

Noll, Walter (1967/68). “Materially uniform simple bodies with inhomogeneities”. In: Arch. Ra-
tional Mech. Anal. 27, pp. 1–32. ISSN: 0003-9527. DOI: 10.1007/BF00276433. URL: https://
doi.org/10.1007/BF00276433.

Nye, J.F (1953). “Some geometrical relations in dislocated crystals”. In: Acta Metallurgica 1.2,
pp. 153–162. ISSN: 0001-6160. DOI: https://doi.org/10.1016/0001- 6160(53)90054- 6.
URL: https://www.sciencedirect.com/science/article/pii/0001616053900546.

Obukhov, Yu. N., V. N. Ponomariev, and V. V. Zhytnikov (1989). “Quadratic Poincaré gauge the-
ory of gravity: a comparison with the general relativity theory”. In: Gen. Relativity Gravitation
21.11, pp. 1107–1142. ISSN: 0001-7701. DOI: 10.1007/BF00763457. URL: https://doi.org/10.
1007/BF00763457.

Peshkov, Ilya and Evgeniy Romenski (2016). “A hyperbolic model for viscous Newtonian flows”.
In: Contin. Mech. Thermodyn. 28.1-2, pp. 85–104. ISSN: 0935-1175. DOI: 10.1007/s00161-014-
0401-6. URL: https://doi.org/10.1007/s00161-014-0401-6.

Pfeifer, Christian (2013). “The Finsler spacetime framework: backgrounds for physics beyond
metric geometry”. PhD thesis. Hamburg U.

Polizzotto, Castrenze (2013). “A second strain gradient elasticity theory with second velocity
gradient inertia – Part I: Constitutive equations and quasi-static behavior”. In: International
Journal of Solids and Structures 50.24, pp. 3749–3765. ISSN: 0020-7683. DOI: https://doi.org/
10.1016/j.ijsolstr.2013.06.024. URL: https://www.sciencedirect.com/science/
article/pii/S0020768313002746.

https://doi.org/10.1109/STAB49150.2020.9140700
https://doi.org/10.1002/zamm.201400036
https://doi.org/10.1002/zamm.201400036
https://doi.org/10.1177/1081286517728423
https://doi.org/10.1177/1081286517728423
https://doi.org/10.1007/BF00248490
https://doi.org/10.1007/BF00248490
https://doi.org/10.1007/BF00248490
https://doi.org/10.1016/0895-7177(94)90154-6
https://doi.org/10.1016/0895-7177(94)90154-6
https://doi.org/10.1201/9781420056945
https://doi.org/10.1201/9781420056945
https://doi.org/10.1007/BF00276433
https://doi.org/10.1007/BF00276433
https://doi.org/10.1007/BF00276433
https://doi.org/https://doi.org/10.1016/0001-6160(53)90054-6
https://www.sciencedirect.com/science/article/pii/0001616053900546
https://doi.org/10.1007/BF00763457
https://doi.org/10.1007/BF00763457
https://doi.org/10.1007/BF00763457
https://doi.org/10.1007/s00161-014-0401-6
https://doi.org/10.1007/s00161-014-0401-6
https://doi.org/10.1007/s00161-014-0401-6
https://doi.org/https://doi.org/10.1016/j.ijsolstr.2013.06.024
https://doi.org/https://doi.org/10.1016/j.ijsolstr.2013.06.024
https://www.sciencedirect.com/science/article/pii/S0020768313002746
https://www.sciencedirect.com/science/article/pii/S0020768313002746


118 Chapter 5. On tangent geometry and generalized continuum with defects

Puntigam, Roland A and Harald H Soleng (1997). “Volterra distortions, spinning strings, and
cosmic defects”. In: Classical and Quantum Gravity 14.5, pp. 1129–1149. DOI: 10.1088/0264-
9381/14/5/017. URL: https://doi.org/10.1088/0264-9381/14/5/017.

Rakotomanana, Lalaonirina (2005). “Some class of SG continuum models to connect various
length scales in plastic deformation”. In: Mechanics of material forces. Vol. 11. Adv. Mech.
Math. Springer, New York, pp. 319–326. DOI: 10.1007/0-387-26261-X\_32. URL: https:
//doi.org/10.1007/0-387-26261-X_32.

Rakotomanana, Lalaonirina R. (1998). “Contribution à la modélisation géométrique et thermo-
dynamique d’une classe de milieux faiblement continus”. In: Arch. Rational Mech. Anal. 141.3,
pp. 199–236. ISSN: 0003-9527. DOI: 10.1007/s002050050076. URL: https://doi.org/10.
1007/s002050050076.

— (2018). Covariance and gauge invariance in continuum physics: Application to mechanics, gravita-
tion, and electromagnetism. Vol. 73. Progress in Mathematical Physics. Birkhäuser/Springer,
Cham, pp. xi+325. ISBN: 978-3-319-91781-8; 978-3-319-91782-5. DOI: 10.1007/978- 3- 319-
91782-5. URL: https://doi.org/10.1007/978-3-319-91782-5.

Reina, Celia, Anja Schlömerkemper, and Sergio Conti (2016). “Derivation of F = FeFp as the
continuum limit of crystalline slip”. In: J. Mech. Phys. Solids 89, pp. 231–254. ISSN: 0022-5096.
DOI: 10.1016/j.jmps.2015.12.022. URL: https://doi.org/10.1016/j.jmps.2015.12.022.

Romano, Giovanni (2007). “Continuum mechanics on manifolds”. In: Lecture notes University of
Naples Federico II, Naples, Italy, pp. 1–695.

Saczuk, Jan (1997). “On the role of the Finsler geometry in the theory of elasto-plasticity”. In:
Rep. Math. Phys. 39.1, pp. 1–17. ISSN: 0034-4877. DOI: 10.1016/S0034-4877(97)81467-X. URL:
https://doi.org/10.1016/S0034-4877(97)81467-X.

Stumpf, H. and J. Saczuk (2000). “A generalized model of oriented continuum with defects”. In:
ZAMM Z. Angew. Math. Mech. 80.3, pp. 147–169. ISSN: 0044-2267. DOI: 10.1002/(SICI)1521-
4001(200003)80:3<147::AID-ZAMM147>3.3.CO;2-G. URL: https://doi.org/10.1002/
(SICI)1521-4001(200003)80:3<147::AID-ZAMM147>3.3.CO;2-G.

Suhubi, E. S. and A. Cemal Eringen (1964). “Nonlinear theory of micro-elastic solids. II”. In:
Internat. J. Engrg. Sci. 2, pp. 389–404. ISSN: 0020-7225. DOI: 10.1016/0020-7225(64)90017-5.
URL: https://doi.org/10.1016/0020-7225(64)90017-5.

Volterra, Vito (1907). “Sur l’équilibre des corps élastiques multiplement connexes”. In: Ann. Sci.
École Norm. Sup. (3) 24, pp. 401–517. ISSN: 0012-9593. URL: http://www.numdam.org/item?
id=ASENS_1907_3_24__401_0.

Wang, C.-C. (1967/68). “On the geometric structures of simple bodies. A mathematical founda-
tion for the theory of continuous distributions of dislocations”. In: Arch. Rational Mech. Anal.
27, pp. 33–94. ISSN: 0003-9527. DOI: 10.1007/BF00276434. URL: https://doi.org/10.1007/
BF00276434.

Weyl, Hermann (1918). “Reine Infinitesimalgeometrie”. In: Math. Z. 2.3-4, pp. 384–411. ISSN:
0025-5874. DOI: 10.1007/BF01199420. URL: https://doi.org/10.1007/BF01199420.

Yajima, T. and H. Nagahama (2007). “KCC-theory and geometry of the Rikitake system”. In: J.
Phys. A 40.11, pp. 2755–2772. ISSN: 1751-8113. DOI: 10.1088/1751-8113/40/11/011. URL:
https://doi.org/10.1088/1751-8113/40/11/011.

https://doi.org/10.1088/0264-9381/14/5/017
https://doi.org/10.1088/0264-9381/14/5/017
https://doi.org/10.1088/0264-9381/14/5/017
https://doi.org/10.1007/0-387-26261-X\_32
https://doi.org/10.1007/0-387-26261-X_32
https://doi.org/10.1007/0-387-26261-X_32
https://doi.org/10.1007/s002050050076
https://doi.org/10.1007/s002050050076
https://doi.org/10.1007/s002050050076
https://doi.org/10.1007/978-3-319-91782-5
https://doi.org/10.1007/978-3-319-91782-5
https://doi.org/10.1007/978-3-319-91782-5
https://doi.org/10.1016/j.jmps.2015.12.022
https://doi.org/10.1016/j.jmps.2015.12.022
https://doi.org/10.1016/S0034-4877(97)81467-X
https://doi.org/10.1016/S0034-4877(97)81467-X
https://doi.org/10.1002/(SICI)1521-4001(200003)80:3<147::AID-ZAMM147>3.3.CO;2-G
https://doi.org/10.1002/(SICI)1521-4001(200003)80:3<147::AID-ZAMM147>3.3.CO;2-G
https://doi.org/10.1002/(SICI)1521-4001(200003)80:3<147::AID-ZAMM147>3.3.CO;2-G
https://doi.org/10.1002/(SICI)1521-4001(200003)80:3<147::AID-ZAMM147>3.3.CO;2-G
https://doi.org/10.1016/0020-7225(64)90017-5
https://doi.org/10.1016/0020-7225(64)90017-5
http://www.numdam.org/item?id=ASENS_1907_3_24__401_0
http://www.numdam.org/item?id=ASENS_1907_3_24__401_0
https://doi.org/10.1007/BF00276434
https://doi.org/10.1007/BF00276434
https://doi.org/10.1007/BF00276434
https://doi.org/10.1007/BF01199420
https://doi.org/10.1007/BF01199420
https://doi.org/10.1088/1751-8113/40/11/011
https://doi.org/10.1088/1751-8113/40/11/011


References 119

Yajima, Takahiro and Hiroyuki Nagahama (2020). “Connection structures of topological singular-
ity in micromechanics from a viewpoint of generalized Finsler space”. In: Ann. Phys. 532.12,
pp. 2000306, 8. ISSN: 0003-3804. DOI: 10.1002/andp.202000306. URL: https://doi.org/10.
1002/andp.202000306.

Yavari, Arash (2010). “A geometric theory of growth mechanics”. In: J. Nonlinear Sci. 20.6, pp. 781–
830. ISSN: 0938-8974. DOI: 10.1007/s00332-010-9073-y. URL: https://doi.org/10.1007/
s00332-010-9073-y.

Yavari, Arash and Alain Goriely (2012a). “Riemann-Cartan geometry of nonlinear dislocation
mechanics”. In: Arch. Ration. Mech. Anal. 205.1, pp. 59–118. ISSN: 0003-9527. DOI: 10.1007/
s00205-012-0500-0. URL: https://doi.org/10.1007/s00205-012-0500-0.

— (2012b). “Weyl geometry and the nonlinear mechanics of distributed point defects”. In: Proc.
R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 468.2148, pp. 3902–3922. ISSN: 1364-5021. DOI: 10.
1098/rspa.2012.0342. URL: https://doi.org/10.1098/rspa.2012.0342.

— (2013). “Riemann-Cartan geometry of nonlinear disclination mechanics”. In: Math. Mech. Solids
18.1, pp. 91–102. ISSN: 1081-2865. DOI: 10.1177/1081286511436137. URL: https://doi.org/
10.1177/1081286511436137.

https://doi.org/10.1002/andp.202000306
https://doi.org/10.1002/andp.202000306
https://doi.org/10.1002/andp.202000306
https://doi.org/10.1007/s00332-010-9073-y
https://doi.org/10.1007/s00332-010-9073-y
https://doi.org/10.1007/s00332-010-9073-y
https://doi.org/10.1007/s00205-012-0500-0
https://doi.org/10.1007/s00205-012-0500-0
https://doi.org/10.1007/s00205-012-0500-0
https://doi.org/10.1098/rspa.2012.0342
https://doi.org/10.1098/rspa.2012.0342
https://doi.org/10.1098/rspa.2012.0342
https://doi.org/10.1177/1081286511436137
https://doi.org/10.1177/1081286511436137
https://doi.org/10.1177/1081286511436137




 

 

Titre :  Modèles géométriques et applications à des milieux matériels avec défauts. 

Mots clés : Variétés de Riemann-Cartan, Structures fibrées, Connexions de Ehresmann, Milieux 
matériels défectueux, Micro-structures, Variétés de Weyl. 

Résumé : Cette thèse porte sur l’étude de la 
modélisation mathématique d’un milieu maté- 
riel potentiellement défectueux dans le cadre de 
la géométrie différentielle. Il est couramment 
admis que la modélisation des milieux à défauts 
est étroitement en lien avec l’étude des variétés 
de Riemann-Cartan. Dans ce cadre, les 
tenseurs de torsion et de courbure sont 
interprétés comme des densités de dislocations 
et de disclinations. C’est la raison pour laquelle 
notre attention s’est concentrée sur la 
formulation de telles variétés mais aussi sur 
l’observation de l’évolution des défauts au cours 
d’une transformation.  

Deux modèles sont présentés, ils sont basés 
sur une géométrie (de variétés) de Riemann 
Cartan associée à une variété de base ou à une  

structure de fibré. La seconde approche 
possède des caractéristiques plus avanta-
geuses dans le sens ou elle permet d’inclure 
une large classe de matériaux en illustrant des 
phénomènes à plusieurs échelles. Comme, 
nous nous concentrons uniquement sur des 
transformations lisses de variétés lisses les 
modèles s’adaptent facilement à une 
exploitation numérique. C'est l'occasion 
d'étudier numériquement et théoriquement 
comment l'introduction d'un facteur d'échelle 
permet de tenir compte de l'influence de la 
micro-structure sur la macro-structure. Enfin 
nous montrerons comment ces théories 
motivent une nouvelle interaction entre les 
mathématiques et la mécanique.  

 

Title :   Geometric models and applications to material media with defects 

Keywords :  Riemann-Cartan geometries, Fiber bundles, Ehresmann connections, defective 
media, Microstructures, Weyl manifolds. 

Abstract : This dissertation focuses on studying 
mathematical modeling of the material with 
defects in the framework of differential 
geometries. Since it has been recognized for a 
long time, the defective media closely connects 
with Riemann-Cartan manifolds. Torsion and 
curvature tensors are being interpreted as 
densities of dislocations and disclinations, 
respectively. Our attention is thus paid to 
establishing such manifolds and investigating 
the evolution of defects during a transformation.  

The two proposed models are based on 
different geometrical backgrounds, saying 
Riemann-Cartan geometry and Fiber bundle 
geometry. These approaches concern new  
 

kinds of material transformations that 
encompass the microcontinuum theories. 
Besides we focus only on smooth fields rather 
than multivalued fields used in existing 
theories. It leads that the numerical and 
theoretical analyses are easier to handle. 
Especially, the influence of the micro and 
macro mechanics are taken into consideration 
as a whole by introducing a so-called scaling 
factor. Special attention is given to transport 
along a finite path in order to extend the 
standard infinitesimal analysis of torsion and 
curvature to a macroscopical point of view. 
Last, the present theories motivate several 
interesting problems in mathematics and 
mechanics. 
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