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Abstract

The Amadeus Revenue Accounting workflow automatically process tickets until an error occurs.

The workflow is then interrupted and user correction is required on the error. The main problem here

is that each error is treated as independent, even if similar errors have already been corrected, result-

ing in an important waste of efforts. The work of this thesis aims to improve the automation of the

error handling process, through clustering of error tickets to form clusters of tickets corresponding

to similar anomalies and requiring similar correction processes.

We propose a new semi-supervised consensus clustering approach named Semi-MultiCons to

achieve the thesis goal. Semi-MultiCons makes use of supervised information in both the ensemble

member generation and consensus process steps, and manages to generate a recommended consen-

sus solution with a relevant inferred number of clusters k based on ensemble members with different

k parameter values. The experimental results demonstrate that Semi-MultiCons is able to alleviate

the widely reported negative effect related to the integration of constraints into clustering and has

remarkable robustness against noisy constraints. Semi-MultiCons is also proved to be able to handle

huge industrial datasets and manages to achieve good performance. With the proposed mini batch

mode, Semi-MultiCons can give quick, or even real, time response.

A Proof-of-Concept of Semi-MultiCons with Big Data ecosystem and Cloud platform was de-

veloped and deployed in real industrial environment. With the PoC, the user is able to explore

clusters of similar error tickets, to validate these clusters, as well as to make batch fix or correction

per cluster. The action from user will then be used as supervised information to improve the overall

quality of Semi-MultiCons clustering result.

Keywords— Clustering, Semi-supervised consensus clustering, Closed sets, Anomalies correction, Revenue

accounting
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Résumé

Le flux de travail du système de comptabilisation des recettes (Revenue Accounting Workflow)

de Amadeus traite automatiquement les tickets comptables jusqu’à ce qu’une erreur se produise. Le

flux de travail est alors interrompu et une action de l’utilisateur est requise pour corriger l’erreur. Le

principal problème ici est que chaque erreur est traitée comme indépendante, même si des erreurs

similaires ont déjà été corrigées, ce qui entraı̂ne une importante perte de temps. Le travail de cette

thèse vise à améliorer l’automatisation du processus de traitement des erreurs, par le regroupement

des tickets d’erreur pour former des clusters de tickets correspondant à des anomalies similaires et

nécessitant des processus de correction similaires.

Nous proposons une nouvelle approche de clustering semi-supervisé par consensus, nommée

Semi-MultiCons, pour atteindre cet objectif. Semi-MultiCons utilise des informations supervisées

à la fois dans l’étape de génération des membres de l’ensemble de clusterings initiaux et dans le

processus de consensus. Cette approche parvient à générer une solution de clustering par consensus

recommandée avec un nombre de clusters inféré K pertinent, à partir de clusterings initiaux avec

différents nombres de clusters K. Les résultats expérimentaux démontrent que Semi-MultiCons est

capable d’atténuer l’”effet négatif”, largement rapporté dans la littérature, lié à l’intégration de

contraintes dans le clustering et est remarquablement robuste en présence de bruit dans les con-

traintes. Semi-MultiCons s’avère également capable de traiter de très larges ensembles de données

industrielles et parvient à obtenir de bonnes performances. Avec le mode ”mini-batch” proposé,

Semi-MultiCons peut donner une réponse rapide, voire en temps réel.

Une preuve de concept de Semi-MultiCons avec l’écosystème Big Data et la plate-forme Cloud

est développée et déployée dans un environnement industriel opérationnel. Grâce à cette preuve de

concept, l’utilisateur est en mesure d’explorer les clusters de tickets d’erreur similaires, de valider

ces clusters et d’effectuer des corrections par lot pour chaque cluster. L’action de l’utilisateur sera

ensuite utilisée comme information supervisée afin d’améliorer la qualité du résultat du clustering
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de Semi-MultiCons.

Mots clés: Clustering, Clustering semi-supervisé par consensus, Ensembles fermés, Correction des anoma-

lies, Comptabilité des recettes
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Chapter 1

Introduction

This chapter explains the related background knowledge and motivation of the work presented in

this thesis. It highlights the need to improve the Revenue Accounting Workflow of Amadeus with

semi-automatic error handling tools. Further, it explains our objective in two stages. Finally, an

overview over the structure of the thesis is given.

1.1 Background and Motivation

Amadeus S.A.S is the leading provider of IT solutions to the global travel and tourism indus-

try. Amadeus creates solutions that enable airlines, airports, hotels, railways, search engines, travel

agencies, tour operators and other stakeholders to operate and improve travel management world-

wide.

Revenue Accounting (RA) refers to the process of managing and dispatching to the different

suppliers involved the amount collected from customer’s payment for their travel. This process

involves multiple successive treatments of the data in input represented as a ticket calculation code

sequence for each travel.

The Amadeus revenue accounting system helps customers performing revenue accounting. It

consists of a sequence of modules, referred as Revenue Accounting Workflow (RAW), each one

performing a computation from its input and sending its output to the next module. It generates

the different amounts related to a journey and the different travels it involves: Interline proration

between transportation operators, calculation of fees, commissions and taxes, etc. Computation re-

sults of each input ticket calculation code sequence are structured as Business Object Model (BOM)

and stored in a database. The Revenue Accounting Workflow is illustrated in Figure 1.1.

1



CHAPTER 1. INTRODUCTION

Figure 1.1: Example Revenue Accounting Workflow and error tasks raised by anomalies. Each

module in the workflow performs a computation from its input and sends its output to the next

module. An error task is raised when the input and/or the output of a module is abnormal.

The first stage of the Revenue Accounting Workflow is to validate input data. Next, amounts

are prorated to travel coupon level. Then, taxes, fees, charges and other values are calculated based

on these prorated coupon amounts and local government laws. If any travel coupon is operated by

other airlines than the seller, an interline process is launched so that involved airlines can negotiate

about the fare of coupon. Finally, the accounting module checks if amounts are balanced, which

means credit should be equal to debit to avoid calculation errors.

This process entails complex management constraints and is automated unless an error occurs.

Errors, defined by domain experts, refer to situations where the input and/or the output of a module

is abnormal. Such anomalies are identified by checking the BOM values before and after each mod-

ule execution to generate error resolution tasks, described by their associated error ticket. During

each module computation, one or several anomalies, such as an incorrect amount computed due to

erroneous values in input for example, can occur.

The main problem with the current Tasks Handling Module (THM) is that each task is treated as

independent, even if similar errors have already been corrected. The analysis of a sample of 2 000

tasks has shown up to 40% similar tasks. This results in an important waste of efforts and machine

learning techniques are considered to help in decreasing costs and time spent on similar error tickets

due to their required individual correction.
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CHAPTER 1. INTRODUCTION

1.2 Objective

The application of machine learning techniques aims to improve the automation of the task

handling process with the automatic identification of anomaly patterns in the Revenue Accounting

Workflow, and the automatic or semi-automatic, depending on the type of the anomaly pattern,

correction of the task. This application involves the two main steps described hereafter.

The first step is the identification of relevant anomaly patterns, regarding anomaly distinctive

features, through the clustering of error tickets to identify clusters of tickets corresponding to similar

anomalies and requiring similar correction processes. Error tickets containing information about the

transportation coupons of a travel are grouped into clusters corresponding each to a type of anomaly

such as a interline calculation or a proration anomaly as illustrated in Figure 1.2.

Figure 1.2: Clustering anomaly pattern correction tasks. The clustering of error tickets aims to

identify clusters of tickets with analogous anomalies that require similar correction tasks.

The second step is the learning of the correction processes associated to each cluster of tickets,

by the assignment of correction actions taken by the users, for the automation of the error correction

process. By this assignment, anomaly corrections can be defined for each type of error pattern

corresponding to a cluster of error tickets. As illustrated in Figure 1.3, these correction processes

can require the intervention of the end-user.

1.3 Outline

This thesis report is organized as follows:

Chapter 2 reviews the central issues of applying classical clustering approaches on Amadeus Rev-

enue Accounting Workflow data, and the most recent algorithmic developments to address these

issues. Further, the concepts and challenges in the research field of these developments, which are

adapted to Amadeus Revenue Accounting Workflow in the context of this thesis, are presented.
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CHAPTER 1. INTRODUCTION

Figure 1.3: Assignment of Correction Processes for Anomaly Pattern Clusters. Each anomaly

pattern cluster identified in the previous step is assigned a correction process, which can require the

intervention of the end-user.

Chapter 3 shares the central preliminary knowledge about multi-level consensus clustering and

the use of pairwise constraints as supervised information in semi-supervised clustering to help in

understanding the proposed framework.

Chapter 4 presents the proposed Semi-MultiCons semi-supervised multiple consensus clustering

framework. Semi-MultiCons aims to improve the multi-level consensus clustering result by inte-

grating supervised information in the consensus creation process and infer the number of clusters k

using frequent closed itemsets extracted from the initial clustering ensemble members.

Chapter 5 introduces the datasets and experimental settings that were used for the eventual experi-

ments presented in the thesis report. These datasets fall into two categories. The first includes bench-

mark UCI clustering datasets allowing to compare the Semi-MultiCons approach with other state-

of-the-art approaches in the literature. The second is a dataset that was created based on Amadeus

operational data to evaluate applicability, performance and relevance of the Semi-MultiCons method

in the context of realistic use cases.

Chapter 6 analyses the result of the Semi-MultiCons approach on the study datasets, in compari-

son with other semi-supervised and/or consensus clustering algorithms. Central results show that,

without requiring the correct number of clusters k in input, Semi-MultiCons is able to infer this

number k and to make a relevant use of supervised information in the form of must-link/cannot-link

4



CHAPTER 1. INTRODUCTION

constraints. We also show how the final result of Semi-MultiCons, represented as a hierarchical

structure of clusters, helps the user to better understand the data space properties and clustering pro-

cess. Experimental results show that Semi-MultiCons can detect the optimal k in most cases with

an equivalent performance as other semi-supervised and/or consensus clustering approaches with

this k value provided in input.

Chapter 7 demonstrates the successful applications of the proposed Semi-MultiCons approach. A

Proof-of-Concept prototype shows the practical potential of Semi-MultiCons as an error handling

module for Amadeus Revenue Accounting Workflow. The prototype automatically groups tasks into

clusters requiring similar correction processes and proposes clusters to users. Furthermore, the user

can validate these clusters and make batch fix or correction on cluster tickets. The feedback from

user will then be used as supervised information to improve the overall quality of further clusterings.

Chapter 8 is an extended analysis about different ways of generating constraints from supervision

information and their impact on the robustness of current state-of-the-art semi-supervised clustering

models as well as on the Semi-MultiCons approach. Different scenarios for which each approach is

more suitable are highlighted.

Chapter 9 summarizes our contributions and concludes the report with remaining open questions.

Furthermore, potential improvements and perspectives for future work are proposed.
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Chapter 2

Central Issues and Related Work

Clustering, or unsupervised classification, is the computational process that aims to discover

clusters (groups) of instances in a dataset. A cluster is a set of instances (e.g., individuals) that are

as much as possible similar among themselves within the group and different from one group to

another regarding their features represented as variable values. See [27], [46] and [85] for surveys

of clustering algorithms. Directly applying classical clustering approaches on Revenue Accounting

Workflow data shows several central issues:

Algorithmic Configuration Choice Issue: Different algorithmic configurations, i.e., a specific

algorithm with a specific parameterization, can provide different clustering solutions. Hence, each

algorithm relies on a particular assumption regarding the distribution model of instances in the data

space, and each parameterization defines a manner to put in practice this model. The quality of

the resulting clustering will depend to which extent they are adequate to the analyzed data space

properties, as studied in [38] and [86].

Clusters Internal Validation Issue: A distinctive characteristic of clustering applications, re-

garding classification issues, i.e., to distinguish application classes, is the absence of initial prior

knowledge on the data space properties and of labelled (class annotated) data to help choosing

an algorithmic configuration that is appropriate for the analysed dataset. Moreover, the problem

of choosing an adequate algorithmic configuration and obtaining a meaningful clustering is exac-

erbated by the existing difficulty of objectively analysing the quality of the clusters obtained. If

several internal validation measures have been proposed, each measure also relies on a specific as-

sumption of the distribution model of instances in the data space and can thus overrate clustering
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results of algorithms based on the same model (e.g., centroid or density based). See [15], [37], [60]

and [68] for studies on clustering validation measures.

Clusters to Application Classes Issue: The objective of the assignment of application classes

(e.g., anomaly correction classes) to clusters is to connect the clusters and the correction classes in

order that each cluster is as much as possible representative, i.e. distinctive in the data space, of

an application class. Classical unsupervised clustering techniques are not able to make use of any

supervised information and thus cannot address this issue.

These central issues, especially the clusters to application classes issue, imply the development

of semi-supervised algorithmic solutions combining unsupervised internal validation of consensus

clusters and supervised external validation of consensus clusters based on Amadeus business met-

rics.

2.1 Semi-supervised Clustering

Semi-supervised clustering incorporates prior knowledge such as class labels or pairwise con-

straints into classical clustering methods to obtain better quality result. In the context of this thesis,

supervised information is used to help solving clusters to application classes issue, as well as to

enforce clustering approach for producing clusters meeting the application constraints and/or user

preferences. The recent semi-supervised clustering algorithms can be classified into three types [6]:

constraint-based methods, distance-based methods and hybrid methods.

• Constraint-based methods refers to algorithms that utilize supervised information to restrict

the feasible solutions when assigning instances to clusters, either directly by changing assign-

ment strategy to prevent assignment that violates supervised information [75], or indirectly

by penalizing and/or rewarding objective function if supervised information is violated and/or

satisfied [17].

• Distance-based methods means supervised information is applied in distance learning. This

distance can be a distance in the original data space [83], a distance in low dimension feature

space [67] or even a kernel distance matrix [39].

• Hybrid methods combine constraint-based methods and distance-based methods [6].

Semi-supervised clustering takes advantage of supervised information to improve the perfor-

mance and guide the search to meet application constraints and user preferences. However, since
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Figure 2.1: Overview of consensus clustering procedure. Different clustering algorithmic configu-

rations are applied to the input dataset for creating the clustering ensemble to which is applied the

consensus function for generating the final clustering result.

most semi-supervised algorithms are iterative and sensitive to input order of data, they can encounter

problems of stability and robustness.

2.2 Ensemble Clustering

We present hereafter the ensemble clustering technique that tackles the problem of choosing

algorithmic configurations. Ensemble clustering, or consensus clustering, approaches aim to ad-

dress the limitations of single clustering approaches and to improve the robustness and quality of

clustering result by combining multiple clustering solutions. These initial solutions, called base

clusterings, are each generated from a different clustering algorithmic configuration, i.e., different

algorithms with different parameterizations are used, for generating more robust consensus clusters

corresponding to agreements between base clusters [69].

The problem can be described as follows. Let m denote the number of clustering solutions. Φ

represents the result sets of clustering solutions Φ = {γ1, γ2, ..., γm}, where γi = {Ci
1, C

i
2, ..., C

i
k}

is the ith clustering result with k clusters. Ci
j denotes the jth cluster of the ith solution. The goal is

to find a consensus partition P which better reflects the relevant properties of each solution in Φ.

In general, ensemble clustering methods consist of two stages. At the first stage, different cluster-

ing solutions are generated from the same dataset. Then, in the second stage, a consensus function

is applied on these clustering solutions to find the final consensus partition [10]. Figure 2.1 shows

an overview of the ensemble clustering process.

Existing ensemble clustering approaches can be classified into the four following categories:
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• Approaches considering the clustering ensemble problem as a clustering of categorical data.

• Approaches based on the generation of an instance co-association matrix depicting the num-

ber of assignments of each pair of objects to the same cluster in a clustering solution.

• Approaches that rely on the generation of a cluster association matrix based on the number of

objects that were commonly assigned to the clusters in a clustering solution.

• Approaches that consider the problem as a graph, or hypergraph, partitioning problem.

Ensemble clustering is proved to outperform single clustering methods on stability and accuracy

[80, 70]. However, it has some limitations in the context of this thesis work. Indeed, most ensemble

clustering approaches require the user to define the number of clusters to generate prior to the

execution. Moreover, approaches based on instance to instance relationship analysis require to

generate large association matrices (N2 size for N instances) which is unfeasible for very large

datasets (e.g., millions of objects) due to space and time complexities of the matrix computation and

manipulation. Also, as an unsupervised learning method, it is not designed to use any supervised

information, even though sometimes a small part of such information is available. See [9], [44] and

[73] for extensive reviews and studies on ensemble clustering algorithmic approaches.

2.3 Semi-supervised Ensemble Clustering

Considering the limitations of semi-supervised clustering and ensemble clustering, it is natural to

combine them, and thus semi-supervised ensemble clustering emerged. Semi-supervised ensemble

clustering not only consider supervised information, but also integrate multiple clustering results

into a unified consensus solution to improve the quality, stability and robustness of the final result

[97].

Supervision information can be used in both steps of consensus clustering as shown in Figure

2.2. It can be used in base clustering generation, which means, replace unsupervised clustering

method with semi-supervised clustering method. In the consensus step, prior knowledge can be

integrated in the consensus function to lead the consensus process. For example, instead of using

all generated clusters and treating each of them with no difference, the existence of supervision

information makes it possible to assign different weights to clusters. Usually, clusters that violate

supervision information are eliminated or assigned a lower weight.
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Figure 2.2: Overview of semi-supervised consensus clustering procedure. Supervised information

is used as prior knowledge either or both during the clustering ensemble creation and the generation

of the final clustering result by the consensus function.

Several semi-supervised consensus clustering approaches have been proposed during the last

few years. In [99], prior knowledge is used to evaluate the quality of each base spectral cluster-

ing result. A confidence matrix of each cluster is then constructed based on it, and is used with a

spectral clustering based consensus function. In [42], voting based consensus clustering is extended

to semi-supervised by replacing unsupervised base clusterings with semi-supervised base cluster-

ings. The user is required to provide weights for each semi-supervised clustering algorithm and for

each cluster. These weights are engaged in a voting based consensus function to produce the final

clustering. In [96], an improved COP-Kmeans (Constraint Partitioning K-means) algorithm [75]

is proposed as base semi-supervised clustering method and a new constrained self-organizing map

as consensus function. In [80], a semi-supervised spectral clustering is applied as base clustering,

while their graph based consensus function, called Hybrid Bipartite Graph Function [29], remains

unsupervised. In [51], a genetic algorithm based consensus function is extended by taking supervi-

sion information into consideration in the fitness function. In [98], cluster ensemble members are

generated by a constraint propagation algorithm [50], which is a semi-supervised method. The prior

knowledge is also used to evaluate and eliminate ensemble members. Only a subset of these ensem-

ble members is taken into account in the graph based consensus function. In [82], prior knowledge

is integrated to improve the CHAMELEON unsupervised hierarchical clustering algorithm [45] and

10



CHAPTER 2. CENTRAL ISSUES AND RELATED WORK

Table 2.1: A summary on semi-supervised consensus clustering methods. For each referred method,

the approach used for base clustering generation and consensus function, and the steps involving the

use of supervised information are described.

Method Base clustering Consensus function

[99] Spectral clustering Spectral clustering

[42] Semi-supervised clustering Voting based approach

[96] Improved COP-Means COP-SOM

[80] Semi-supervised spectral clustering Hybrid Bipartite Graph Function

[51] Unsupervised clustering Genetic algorithm

[98] Constraint propagation Normalized cut

[82] Improved CHAMELEON Co-association based approach

[97] Constraint propagation Weighted normalized cut

in the co-association matrix used by the consensus function. In [97], instead of using all prior

knowledge, a different subset of prior knowledge is assigned to different ensemble members. Then,

an adaptive weighting process associates each ensemble member with its weight and the weighted

normalized cut algorithm, that is a graph based consensus function, is adopted to generate the final

result. A summary about these related work is shown in Table 2.1.

2.4 Multi-level Clustering

In the context of the Revenue Accounting Workflow management, one class of correction pro-

cesses can correspond to several error ticket clusters, and each cluster can correspond to several

correction process classes. In the thesis, the use of multi-level clustering techniques aims to dis-

criminate the application classes according to their properties in the data space, and potentially

refine them by distinguishing different sub-classes of a class according to the different modeling

properties of each cluster in the data space.

Multi-level clustering generates a hierarchical decomposition of clusters, where a cluster at a

level in the hierarchy can be decomposed into several smaller clusters in the sub-levels of the hierar-

chy. Such a clustering approach can provide a relevant framework for the identification of correction

process classes and sub-classes as illustrated in Figure 1.3, where the proration correction process

is divided into two sub-classes corresponding to two sub-clusters in the data space [28].
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2.5 Proposed Solution to Central Issues

The proposed framework is a combination of semi-supervised clustering, ensemble clustering

and multi-level clustering. With semi-supervised clustering, we can use available supervised infor-

mation to improve clustering quality, to assign application classes to clusters as well as to validate

model performance. Ensemble clustering technique simplifies the algorithmic configuration choice.

Results from multiple clustering approaches with different algorithmic configurations are combined

to generate more robust consensus clusters. The use of multi-level clustering technique makes it

possible to refine clusters according to user preferences and application objectives. See Chapter 4

for more details of the proposed framework.
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Chapter 3

Preliminaries

The proposed approach relies on the use of partial initial knowledge represented as constraints

of co-assignment to a cluster or of assignment to different clusters concerning a certain number

of instances of the dataset, and the extension of the MultiCons approach for multiple consensus

clusterings based on the Galois closed set theory. These two central concepts are presented in this

chapter.

3.1 Pairwise Constraints

The prior knowledge integrated in semi-supervised clustering is also called constraints since this

knowledge can be seen as constraints on how data should be grouped during the clustering process.

Many types of constraints exist, including partial label constraints, pairwise constraints, capacity

constraints [78], while the most popular one is pairwise constraints which describe true similarity

between pairs of instances. Common pairwise constraints include must-link constraints and cannot-

link constraints [74]:

• A must-link constraint implies that two instances must be assigned to the same cluster, or

more generally, they are more likely to be similar with each other.

• A cannot-link constraint implies that two instances cannot be assigned to the same cluster, or

more generally, they are more likely to be dissimilar with each other.

Must-link and cannot-link constraints have several variations. [17] proposes δ-Constraint and

ε-Constraint. [57] mentions the notion Interval Constraints and Non-Interval Constraints to respec-
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tively find clusters which are continuous intervals and/or which are not intervals on a dimension in

co-clustering task applied on genes.

Must-link constraints and cannot-link constraints are widely used in semi-supervised clustering

algorithms [74, 61], in metric learning [79], in dimensionality reduction [11] and a lot of other

domains. In this work, prior knowledge is provided in the form of must-link and cannot-link con-

straints. Classical supervised information such as class labels can be translated into pairwise con-

straints.

3.1.1 Class Labels vs. Pairwise Constraints

Constraints are easier to obtain than class labels while constraints provide less information than

labels [12]. Assume that we have three instances x, y and z, where x and y have class label A while

z has class label B. Three constraints can thereby be conjectured: Must-link constraint between

x and y, cannot-link constraint between x and z, and cannot-link constraint between y and z. By

defining number of clusters k = 2, only one possible partition satisfies all constraints: Π1 = {x, y},
Π2 = {z}. From this example, we can see the possibilities to transform class labels into constraints.

Note that, the user does not need to know explicitly what are the labels of x, y and z if he is only

required to provide constraints. However, the final label of partitions is ambiguous without explicit

information about A and B.

3.1.2 Must-Link Constraint Properties

Must-link constraint is symmetrical, reflexive and transitive.

• Symmetrical: x has a must-link constraint with itself x.

• Reflexive: If x has a must-link constraint with y, then y has a must-link constraint with x.

• Transitive: If x has a must-link constraint with y and y has a must-link constraint with z, then

x has a must-link constraint with z.

Also, a set of instances such that each is connected to the other via an explicit or implied must-

link constraint is called Connected Component [16]. For example, if x has two must-link con-

straints, with y and with z, then {x, y, z} is a connected component.
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3.1.3 Transitive Inference of Must-Link Constraints

The transitive property of must-link constraints and the notion of connected components permit

us to infer more must-link constraints based on the original constraint set [8, 75, 19].

• Let CCi be a connected component among original constraints. Then for every pair of in-

stances (x, y) in CCi, a must-link constraint between x and y can be inferred if it does not

appear in the initial constraint set.

• Let CCi and CCj be two connected components constructed from the original constraints. If

there exists a must-link constraint between x and y, where x ∈ CCi and y ∈ CCj , then for

all a ∈ CCi and b ∈ CCj , there must exist a must-link constraint between a and b, which

means CCi and CCj can be merged into one connected component.

3.1.4 Cannot-Link Constraint Properties

Unlike must-link constraints, cannot-link constraints only have reflexive property, since if cannot-

link constraints between x and y and between y and z are given, then it is not guarantee that x and

z cannot-link to each other.

• Reflexive: If x has a cannot-link constraint with y, then y has a cannot-link constraint with x.

3.1.5 Transitive Inference of Cannot-Link Constraints

Even though cannot-link constraint type does not have as many properties as must-link constraint

type, additional cannot-link constraints can still be inferred by combining both [8, 75, 19].

• Let CCi and CCj be two connected components constructed from original constraints. If

there exists a cannot-link constraint between x and y, where x ∈ CCi and y ∈ CCj , then for

all a ∈ CCi and b ∈ CCj , there must exist a cannot-link constraint between a and b.

3.1.6 Conclusion

Applying constraint properties to compute a full set of constraints is necessary and compulsory

before employing any clustering method. This step guarantees that no indirect/inferred constraint is

missing, or will be violated unintentionally during the training process.
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Table 3.1: Example of clustering ensemble members. Each of the five clustering results γi, for i

between 1 and 5, is represented as the list of clusters Cj
i with their respective list of instances.

Base clustering List of base clusters with instance set

γ1 C1
1 = {x1, x2, x3} C2

1 = {x4, x5, x6, x7, x8, x9}
γ2 C1

2 = {x1, x2, x3} C2
2 = {x4, x5, x6, x7, x8, x9}

γ3 C1
3 = {x1, x2, x3, x4, x5} C2

3 = {x6, x7} C3
3 = {x8, x9}

γ4 C1
4 = {x1, x2, x3} C2

4 = {x4, x5, x6, x7} C3
4 = {x8, x9}

γ5 C1
5 = {x1, x2, x3} C2

5 = {x4, x5, x6, x7} C3
5 = {x8, x9}

3.2 MultiCons Approach

The proposed approach extends the MultiCons multiple consensus clustering approach proposed

in [1]. Based on frequent closed itemset mining technique, MultiCons is able to discover frequent

closed patterns among different base clustering solutions. Each frequent closed pattern defines

the agreement of a subset of clusters in partitioning a set of instances. By dividing/merging these

patterns into groups, MultiCons generates multiple consensuses in a tree-like structure that helps

understanding the clustering process and the data space subjacent inherent structures.

In the following sections, the MultiCons approach is explained step by step by using a dataset

X = {x1, x2, ..., x9} as a support example.

3.2.1 Ensemble Members

The first step of MultiCons is to generate ensemble members. Different clustering algorithms

and different parameters can be used in this step as user preference. Consider five unsupervised

clustering methods are applied on dataset X to generate the five ensemble members shown in Ta-

ble 3.1.

3.2.2 Binary Membership Matrix Transformation

The representation of the clustering ensemble as a binary membership matrix aims at optimizing

the efficiency of closed pattern mining from the ensemble. Each cluster of the base clusterings in

the ensemble is then represented as a binary vector depicting the set of instances assigned to the

cluster.
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Table 3.2: Example binary membership matrix M. Each clusters Cj
i of clustering result γi in Ta-

ble 3.1 is represented as a binary vector indicating for each instance xk, with k between 1 and 9, if

it was assigned to the cluster by a value of 1, or not assigned to the cluster by a value of 0.

Instance C1
1 C2

1 C1
2 C2

2 C1
3 C2

3 C3
3 C1

4 C2
4 C3

4 C1
5 C2

5 C3
5

x1 1 0 1 0 1 0 0 1 0 0 1 0 0

x2 1 0 1 0 1 0 0 1 0 0 1 0 0

x3 1 0 1 0 1 0 0 1 0 0 1 0 0

x4 0 1 0 1 1 0 0 0 1 0 0 1 0

x5 0 1 0 1 1 0 0 0 1 0 0 1 0

x6 0 1 0 1 0 1 0 0 1 0 0 1 0

x7 0 1 0 1 0 1 0 0 1 0 0 1 0

x8 0 1 0 1 0 0 1 0 0 1 0 0 1

x9 0 1 0 1 0 0 1 0 0 1 0 0 1

The binary membership matrix M for the support example in Table 3.1 is shown in Table 3.2. It

represents relationships between instances and clusters in the clustering ensemble: Rows represent

the finite set of instances and columns represent the finite set of clusters. A cell value M [i, c] = 1 in

the ith row and cth column denotes that instance i belongs to cluster c, M [i, c] = 0 otherwise.

3.2.3 Closed Pattern Extraction

Closed patterns are extracted from the binary membership matrix using the apriori() function of

the R package arules [36] with the “closed frequent itemsets” parameter. A closed pattern is a pair

consisting of a cluster set and an instance set, such that all instances in the instance set belong to all

clusters in the cluster set. Each denotes a clustering pattern, that is an agreement between the base

clusterings to group together the instances in the instance set. A closed pattern can be observed as a

maximal rectangle of ‘1’ in the binary membership matrix, that is a pair consisting of a row set and

a column set, such that for every row i in the instance set and every column c in the cluster set, we

have M [i, c] = 1.

This closed patterns based approach enables the processing of datasets with a very large number

of instances N , as in contrast to most other consensus clustering approaches, it does not require the

processing of a co-association matrix of size N2 but only of a membership matrix of size N.M ,

where M is the number of base clusters, with M � N , and regarding the demonstrated scalability
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Table 3.3: Closed patterns extracted from example binary membership matrix M. The seven closed

patterns extracted from the binary membership matrix in Table 3.2 are ordered in decreasing order

of the size of their Cluster set Li containing the list of clusters Cj
i that agree to group together the

list of instances xk in the Instance set.

Length ({Li}) Cluster set Li Instance set

5 {C2
1 , C

2
2 , C

1
3 , C

2
4 , C

2
5} {x4, x5}

5 {C2
1 , C

2
2 , C

2
3 , C

2
4 , C

2
5} {x6, x7}

5 {C2
1 , C

2
2 , C

3
3 , C

3
4 , C

3
5} {x8, x9}

5 {C1
1 , C

1
2 , C

1
3 , C

1
4 , C

1
5} {x1, x2, x3}

4 {C2
1 , C

2
2 , C

2
4 , C

2
5} {x4, x5, x6, x7}

2 {C2
1 , C

2
2} {x4, x5, x6, x7, x8, x9}

1 {C1
3} {x1, x2, x3, x4, x5}

properties of Galois closed set extraction algorithms [7, 52, 88].

For further processing, the length of a closed pattern is defined as the length of its cluster set, that

is the number of base clusterings that agreed to group its instance set. The instance set can also be

regarded as a cluster. The extracted closed patterns for the support example are shown in Table 3.3.

3.2.4 Consensus Function

In [1], five consensus functions can be applied on instance sets of Table 3.4 to obtain the final

consensus. Here, we are interested in an iterative merging/splitting approach proposed in [2].

The consensus function in [2] generates Lunique consensus solutions, where Lunique is the num-

ber of unique values among the cluster set sizes |Li|. Concretely, we iterate the loop index lt from

the maximum value of |Li| to the minimum value of |Li| and generate one consensus solution Slt
per iteration. The consensus solution Slt is generated based on instance sets with |Li| = lt and the

consensus solution Slt−1 of the previous iteration.

For each consensus solution, the clusters must be disjoint. Therefore, the consensus function

determine to either merge or split two intersecting cluster sets X and Y using Jaccard similarity

[43]:

s(X,Y ) = max

(
|X ∩ Y |
|X|

,
|X ∩ Y |
|Y |

)
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If s(X,Y ) is greater than the input merging threshold MT , usually set to 0.5 by default, then

they are merged; otherwise the larger cluster is split. The merging threshold MT is a parameter

of the function that can be defined by the user to adapt the merging/splitting consensus creation

process to the properties of the data in input. Experiments have shown that a value MT = 0.5 is

the most adequate for an important majority of the benchmark datasets, originating from different

application contexts and with different data space structure properties, that have been tested. The

consensus process repeats until there is no intersection among clusters. The pseudo-code of this

consensus function of the MultiCons approach is detailed in Algorithm 1.

Algorithm 1 Consensus process of the MultiCons approach.
Input: Instance sets of closed patterns Ci with their length |Li|, merging threshold MT = 0.5

Output: Multiple consensus clustering solutions Sl

1: Lunique← unique values in the list of pattern lengths |Li|
2: Sl0 ← ∅
3: for lt in Lunique do

4: Slt ← Slt−1 ∪ Ci which length |Li| = l

5: endFlag← True

6: repeat

7: for each pair of clusters (X,Y ) in Slt do

8: if X intersects with Y then

9: endFlag← False

10: Calculate s(X,Y )

11: if s(X,Y ) >= MT then

12: Merge X and Y

13: else

14: Split larger cluster

15: end if

16: end if

17: end for

18: until endFlag = True

19: end for

The execution of the closed pattern based consensus function for the support example is shown

in Table 3.4. The iterations consider closed patterns in decreasing order of their cluster set size |Li|.
Each iteration generates a consensus solution according to the clusters generated during the previous

iteration and the considered closed patterns. The first consensus clustering solution consists of

clusters corresponding to the maximal number of agreements between the base clusterings, that is

the closed patterns with the largest cluster set size. For each iteration of the loop, the cluster sets X
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Table 3.4: Example MultiCons consensus process from closed patterns in Table 3.3. Closed patterns

are processed in decreasing order of their cluster set size lt = |Li|, and the first line of each row shows

the patterns considered during the lt cluster set size iteration. The merging and splitting operations

performed during each iteration, depending on underlined intersecting subsets of instances between

created clusters and closed patterns, are then depicted. The resulting consensus clustering Slt of

iteration lt is shown on the last line of the row.

Size lt Set Slt−1 ∪ Ci patterns with |Li| = lt Processing explanation

5 Sl0 = ∅, patterns Ci with |Li| = 5: {{x1, x2, x3}, {x4, x5}, {x6, x7}, {x8, x9}}
{{x1, x2, x3}, {x4, x5}, {x6, x7}, {x8, x9}} No intersection, generate S5

4 S5 = {{x1, x2, x3}, {x4, x5}, {x6, x7}, {x8, x9}}, patterns Ci with |Li| = 4: {{x4, x5, x6, x7}}
{{x1, x2, x3}, {x4, x5}, {x6, x7}, {x8, x9}, {x4, x5, x6, x7}} s(X, Y) = 1, merge

{{x1, x2, x3}, {x4, x5, x6, x7}, {x6, x7}, {x8, x9}} s(X, Y) = 1, merge

{{x1, x2, x3}, {x4, x5, x6, x7}, {x8, x9}} No intersection, generate S4

2 S4 = {{x1, x2, x3}, {x4, x5, x6, x7}, {x8, x9}}, patterns Ci with |Li| = 2: {{x4, x5, x6, x7, x8, x9}}
{{x1, x2, x3}, {x4, x5, x6, x7}, {x8, x9}, {x4, x5, x6, x7, x8, x9}} s(X, Y) = 1, merge

{{x1, x2, x3}, {x4, x5, x6, x7, x8, x9}, {x8, x9}} s(X, Y) = 1, merge

{{x1, x2, x3}, {x4, x5, x6, x7, x8, x9}} No intersection, generate S2

1 S2 = {{x1, x2, x3}, {x4, x5, x6, x7, x8, x9}}, Ci patterns with |Li| = 1: {{x1, x2, x3, x4, x5}}
{{x1, x2, x3}, {x4, x5, x6, x7, x8, x9}, {x1, x2, x3, x4, x5}} s(X, Y) = 1, merge

{{x1, x2, x3, x4, x5}, {x4, x5, x6, x7, x8, x9}} s(X, Y) = 0.4, split the larger cluster

{{x1, x2, x3, x4, x5}, {x6, x7, x8, x9}} No intersection, generate S1

End S1 = {{x1, x2, x3, x4, x5}, {x6, x7, x8, x9}}

and Y considered, i.e., among the previously generated clusters and the considered closed patterns,

that are intersecting are underlined in the execution trace. The last row shows the S1 consensus

clustering at the top of the hierarchical graphical representation in Figure 3.1. For simplification of

the presentation, the iterations of the loop with non-overlapping X and Y are omitted.

3.2.5 Hierarchical Graphical Representation

The generated consensus solutions are presented to the user in a hierarchical graphical represen-

tation, as shown in Figure 3.1 for the support example. Each level represents a generated consen-

sus solution corresponding to a given minimal number of agreements between the base clusterings.

This minimal number of agreements corresponds to the cluster set size of closed patterns considered

during the iteration that generated the solution. A consensus solution that is generated by several
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Figure 3.1: Hierarchical consensus clustering of the MultiCons approach. Each level in the hier-

archical representation depicts a clustering of the dataset, where nodes represent instance sets of

clusters and edges represent inclusion relationships between clusters. This representation shows the

successive groupings of instances, corresponding each to a different number of agreements between

clusterings of the ensemble.

successive iterations of the process is depicted only once in the graphical representation, with the

associated number of times it was generated (not shown in the figure), as it denotes a higher stability

of this solution and thus a higher robustness of its constituting clusters.

A recommended consensus clustering solution is suggested to the user, this solution is selected

based on both its highest similarity with the clustering ensemble and its stability in the consensus

creation process. However, different clustering solutions can be chosen as the final clustering result

depending on objectives, requirements and constraints of the application performed.

3.2.6 Properties of the MultiCons Approach

MultiCons has several advantages over other consensus clustering methods, including:

• No limitation on the selection of the base clustering algorithms and/or their settings. Any

algorithm and any setting can be used.

• The number of cluster K is not required as a parameter for the final consensus solution since

MultiCons is able to discover automatically the internal structure of the hidden clusters.

• The search for the consensus solution is performed on a pattern-based space instead of the

data instances space, thus highly pruning the search space.

21



CHAPTER 3. PRELIMINARIES

• The process of building the consensus solutions is presented in a hierarchical view, which

provides significant demonstration of the relationships among instances in the data space.

• MultiCons generates multiple candidate clustering consensuses instead of a single one, allow-

ing the user to select the most appropriate solution regarding possible application constraints

and requirements.

However, due to the fact that the consensus process needs to be repeated until all clusters are

disjoint, it is hard to evaluate the complexity of MultiCons, which strongly relies on how many

times the process is repeated.
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Semi-Supervised Multiple Consensus

Clustering

Studies of the Revenue Accounting Workflow problem, the semi-supervised learning concepts

and the MultiCons approach lead to the development of a new closed pattern-based consensus semi-

supervised algorithmic approach named Semi-MultiCons. This approach integrates constraints in

different phases of the consensus clustering process.

As depicted in Figure 4.1, cannot-link and must-link constraints can be integrated during the

creation of the base clusterings, by using semi-supervised clustering algorithms. Cannot-link and

must-link constraints can also be integrated during the processing of the clustering ensemble by

the consensus function to generate consensus clusters, so that the resulting consensus clusterings

comply as far as possible with the integrated constraints.

In the Semi-MultiCons approach, the implementation of the consensus function is optimized,

compared to the MultiCons approach, by reducing the number of loops of the consensus cluster

creation process from closed patterns. Novel constraints-based consensus function and selection

method of the recommended final clustering solution were also developed. These new algorithmic

processes introduce the use of supervised information, represented as must-link and cannot-link

constraints, to optimize the relevance of the recommended consensus solution regarding available

prior knowledge.

The workflow of the Semi-MultiCons approach is shown in Figure 4.2. The initial steps of

Semi-MultiCons, that is the creation of the clustering ensemble, its transformation into a binary

membership matrix and the extraction of closed patterns, are identical to MultiCons initial steps.
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(a) Constraint integration during the creation of the base clusterings.

(b) Constraint integration during the processing of the clustering ensemble by the consensus func-

tion to generate consensus clusters.

Figure 4.1: Framework of the Semi-MultiCons approach. Constraints can be integrated during

the creation of the base clusterings and/or during the processing of the clustering ensemble by the

consensus function to generate consensus clusters.
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Figure 4.2: Workflow of the Semi-MultiCons approach. The dataset in input is processed by

different clustering algorithmic configurations to create the clustering ensemble. This ensemble is

transformed to a binary membership matrix from which closed patterns are extracted. These closed

patterns are then processed, according to supervised information, by the Semi-MultiCons consensus

function to generate the hierarchical consensus clustering result in which the final recommended

clustering is identified.

These steps define the search space for the consensus function and the generation of the hierarchi-

cal consensus clustering graphical representation. Semi-MultiCons consists of the following four

central phases:

1. Ensemble member generation.

2. Closed pattern extraction from the binary membership matrix.

3. Constraint-based consensus function.

4. Recommended solution selection

These phases, as well as the related optimizations compared to the MultiCons approach and

the pseudo-code of the consensus function of the Semi-MultiCons approach, are presented in the

following sections.
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4.1 Ensemble Member Generation

MultiCons uses unsupervised clustering algorithms to generate base clustering solutions, while

in Semi-MultiCons, the choice is extended to semi-supervised clustering. Both unsupervised clus-

tering and semi-supervised clustering can be used in ensemble member generation step of Semi-

MultiCons.

4.2 Binary Membership Matrix and Closed Pattern Extraction

Semi-MultiCons applies the same closed patterns extraction technique as MultiCons. See Section

3.2.2 and Section 3.2.3 for a concrete example.

4.3 Implementation Optimization

For each iteration lt of the consensus process of MultiCons, the instance sets of closed patterns

with |Li| = lt are first combined with clusters of the previous consensus solution Slt−1 . These

two types of clustering patterns are compared during the lt iteration to create the St consensus

clustering solution. For this, each pair of instance sets and consensus clusters are enumerated until

no intersection is detected. This results in inaccessible complexity evaluation due to the unknown

number of loops required. However, since all clusters in Slt−1 are already disjoint, this overlapping

check is not required for the Semi-MultiCons approach.

The implementation is optimized by handling separately the closed patterns Ci with |Li| = lt

and already generated clusters in Slt , and is thus able to avoid the use of the repeat loop used in

the MultiCons consensus function. For each closed pattern X in the set of patterns Ci with |Li| =

lt, intersecting cluster sets Y in Slt are enumerated, and merge/split operation is performed based

on constrained consensus function. If the test comparing X and Y determines to merge, then X is

updated to X ∪ Y and set Y is updated to ∅; otherwise the largest cluster set is modified to split

the result. After enumerating all cluster sets Y , the resulting clustering pattern X is disjoint with

all clusters in Slt . Cluster X is then added to Slt and the function continues to enumerate closed

patterns Ci with |Li| = lt. The pseudo-code of the consensus generation process of Semi-MultiCons

is given in Algorithm 2.

Assume that on average a closed pattern Ci contains nc instances and a cluster in Slt contains

ns instances. The average number of loops performed is then N/nc × N/ns. Intersection check
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and constraint check needs O(k× nc × ns), resulting in an approximate complexity of O(kN2) on

average for the Semi-MultiCons consensus process.

Algorithm 2 Optimized consensus process of Semi-MultiCons.
Input: Instance sets of closed patterns Ci with their length |Li|
Output: Multiple consensus solution Sl

1: Lunique ← unique values in the list of pattern lengths |Li|
2: Sl0 ← ∅
3: for lt in Lunique do

4: Slt ← Slt−1

5: Cnow ← Ci with length Li = lt

6: for X in Cnow do

7: for Y in Slt do

8: if Should merge according to constraint-based consensus function then

9: X ← X ∪ Y

10: Y ← ∅
11: else

12: Larger cluster← larger cluster - X ∩ Y

13: end if

14: end for

15: Add X to Slt

16: end for

17: end for

4.4 Constraint-based Consensus Function

After closed patterns are constructed, Semi-MultiCons combines together these patterns using an

iterative merging/splitting approach based on constraints. The novel Semi-MultiCons constraints-

based consensus function makes use of supervised information represented in the form of must-link

and cannot-link constraints. The objective is to define a normalized score that evaluates how many

constraints are satisfied or violated if the merge or split operation between clusters is performed.

Let’s consider the following g() function that defines a value representing existing constraints

between two instance a and b of the dataset. g(a, b) = 1 and g(a, b) = −1 denotes respectively that

instance a and instance b have a must-link or cannot-link constraint. Otherwise, if no constraint

exists between a and b, we have g(a, b) = 0. Then, the score of merging two clusters X and Y is

defined as:
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Smerge =

∑
a∈X\(X∩Y )

∑
b∈Y \(X∩Y )

g(a, b)

|(X ∪ Y ) \ (X ∩ Y )|
(4.1)

It represents how many must-link constraints per instance are satisfied if X and Y are merged.

Similarly, the score of splitting X ∩ Y from X and of split X ∩ Y from Y are defined as follows:

SsplitX =

−
∑

a∈X\(X∩Y )

∑
b∈X∩Y

g(a, b)

|X|
(4.2)

SsplitY =

−
∑

a∈Y \(X∩Y )

∑
b∈X∩Y

g(a, b)

|Y |
(4.3)

If the three scores all equal to 0, it means that no supervised information on X and Y is available

and the s(X,Y ) measure, as defined in Section 3.2.4, will be used. Otherwise, we will select the

highest score to merge or split the clusters to comply with the objective to meet as many constraints

as possible.

To illustrate the effect of the use of supervised information in the consensus generation process,

let’s consider the support example consisting of closed patterns in Table 3.3 with an additional

cannot-link constraint between x4 and x8. The resulting constraint-based consensus process of

Semi-MultiCons is shown in Figure 4.1. For simplification of the presentation, the iterations before

lt = 2, i.e., for lt = 5 and lt = 4, that are not impacted by the additional cannot-link constraint are

omitted since their results are the same as for the Multi-Cons approach.

4.5 Selection Strategy

The Semi-MultiCons result for the support example, which execution is depicted in Table 4.1, is

presented in the hierarchical graphical representation shown in Figure 4.3.

Duplicated consensus clustering solution are generated for iterations lt = 4 and lt = 2. This iden-

tical solution is then represented only once in the final hierarchical graphical representation with its

associated count of how many times this consensus clustering occurs (not shown in the figure). This

count represents the frequency of the consensus solution among all possible solutions, denoting its

stability in the consensus generation process, and thus the robustness of its constituting clusters re-

garding the search space in input. Regarding the final hierarchical graphical representation for the

support example shown in Figure 4.3, the frequencies of each level, from the bottom to the top of the

hierarchy, are respectively 1, 2 and 1. The selection of the final recommended consensus solution
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Table 4.1: Example Semi-MultiCons constraint-based consensus process. Closed patterns are pro-

cessed in decreasing order of their Cluster set size |Li|. Iterations for cluster set size lt = 5 and 4 are

identical to corresponding iterations in Figure 3.4. For lt = 2 and 1, the first line of the correspond-

ing row shows the cluster sets of closed patterns considered during the iteration. The merging and

splitting operations performed during the iteration, depending on underlined intersecting subsets of

instances between created clusters and closed patterns, and the supervised information constraints,

are then depicted. The resulting consensus clustering S2 and S1 are shown on the last line of the

rows. The last row shows the S1 consensus clustering at the top of the hierarchical graphical repre-

sentation in Figure 4.3.

Size lt Slt−1 (sets Y ) Set of patterns Ci with |Li| = lt (sets X) Processing explanation

2 S4 = {{x1, x2, x3}, {x4, x5, x6, x7}, {x8, x9}}
{{x1, x2, x3}, {x4, x5, x6, x7}, {x8, x9}} {{x4, x5, x6, x7, x8, x9}} Smerge = 0, SsplitY = 0, SsplitX = 1/6, split X

{{x1, x2, x3}, {x4, x5, x6, x7}, {x8, x9}} {{x8, x9}} No constraint, s(X, Y) = 1, merge to X

{{x1, x2, x3}, {x4, x5, x6, x7}, ∅} {{x8, x9}} No intersection, generate S2

1 S2 = {{x1, x2, x3}, {x4, x5, x6, x7}, {x8, x9}}
{{x1, x2, x3}, {x4, x5, x6, x7}, {x8, x9}} {{x1, x2, x3, x4, x5}} No constraint, s(X, Y) = 1, merge to X

{∅, {x4, x5, x6, x7}, {x8, x9}} {{x1, x2, x3, x4, x5}} No constraint, s(X, Y) = 0.5, merge to X

{∅, ∅, {x8, x9}} {{x1, x2, x3, x4, x5, x6, x7}} No intersection, generate S1

End S1 = {{x1, x2, x3, x4, x5, x6, x7}, {x8, x9}}

Figure 4.3: Hierarchical consensus clustering of the Semi-MultiCons approach. The three consen-

sus clusterings generated from closed patterns and constraints are represented as a level in the hier-

archical representation. The levels show the successive groupings of instances, each corresponding

to a different number of agreements between clusterings of the ensemble, between instance sets of

clusters represented as nodes. Edges represent inclusion relationships between clusters of different

levels.
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to the user is based on both the number of satisfied must-link constraints and violated cannot-link

constraints, and on the stability of the solution in the result and its similarity with the clustering

ensemble. In the support example in Figure 4.3, the consensus clustering solution {{x1, x2, x3},
{x4, x5, x6, x7}, {x8, x9}} that satisfies the cannot-link constraint between x4 and x8 and has a fre-

quency equals to 2 is selected. This solution is the one that satisfies the largest number of constraints

and has the highest frequency, as well as the highest similarity with the clustering ensemble, among

the generated consensus clustering solutions.

4.6 Conclusion

In this chapter, we propose a new semi-supervised consensus clustering approach, named Semi-

MultiCons. The major contribution of this work is the development of an iterative constraint-based

merging/splitting consensus function based on MultiCons, and the optimization of the implemen-

tation based on the MultiCons approach to reduce computational complexity. In order to properly

recommend the final result to user, we also propose a new constraint-based consensus selection

method.
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Experimental Settings

In this chapter, we introduce our study datasets and experiment settings that were used for almost

all the experiments in the thesis. The datasets consists are divided into two parts. The first part

includes benchmark open-source clustering datasets, in order to compare our approach with other

approaches in the state-of-art literature. The second part was created based on Amadeus data, to

evaluate our method in the context of realistic use cases. Experiment settings include the choice of

base clustering algorithms, the choice of input parameters, the strategy of constraint generation, the

evaluation indexes, and so on.

5.1 Benchmark Datasets

Five classical benchmark datasets from the UCI Machine Learning Repository [26], namely the

Iris, Wine, Seeds, Zoo and Ecoli datasets, are used to evaluate the Semi-MultiCons semi-supervised

ensemble clustering performance using the standard Normalized Mutual Information index (NMI)

[65]. Besides these datasets, the MNIST dataset [49], that is very large regarding both its number

of attributes and its number of instances, is used to evaluate the scalability and complexity of the

Semi-MultiCons approach.

Some basic facts about these datasets are stated in Table 5.1. Both these six well-known

benchmark datasets, and the evaluation indexes, presented hereafter were selected as they are the

most popular in the domain, thus enabling to compare results with most unsupervised and semi-

supervised clustering algorithms proposed in the literature.
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Table 5.1: Benchmark dataset properties. For each of the six experimental datasets, the number of

classes, the number of attributes and the number of instances are shown.

Dataset Classes Attribute Number of instances

Iris 3 4 150

Wine 3 13 178

Seeds 3 7 210

Zoo 7 17 101

Ecoli 8 8 336

MNIST 10 784 70000

5.1.1 Constraint Generation

For all experiments, the must-link and cannot-link constraints are generated randomly from the

classes of instances in the dataset. A pair of instances is added to the set of must-link constraints

if these randomly chosen instances belong to the same class. Otherwise, this pair of instances is

added to the set of cannot-link constraints. This process is repeated until the number of must-link

and cannot-link pairwise constraints required for the experiment is satisfied.

5.1.2 Algorithmic Approaches

Diverse criteria were considered for determining the best approaches to compare with Semi-

MultiCons. These criteria consider in first place the quality of the clustering results, the efficiency

and scalability of the approach regarding data size, the applicability of the approach to dataset

containing heterogeneous and missing data, and the approach robustness to noise and outliers in the

data.

Considering reported theoretical and experimental results in the literature, and availability and

results of tests of implementations, the following semi-supervised clustering algorithmic approaches

were selected: Third model (GV3) from [34], soft least squares Euclidean consensus (DWH) [24],

hard Euclidean consensus (HE) [41] and metric pairwise constrained K-means (MPC-Kmeans) [8].

Implementations of these approaches can be found in R packages clue [40] and conclust [71].
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Table 5.2: Input parameters for benchmark datasets. For each of the five datasets, the range of values

for the k parameter defining the number of clusters extracted in the base clusterings are shown.

Dataset k
Base clustering

(unsupervised)

Base clustering

(semi-supervised)

Iris [2− 6] [Kmeans] [MPC-Kmeans]

Wine [2− 6] [Kmeans] [MPC-Kmeans]

Zoo [5− 9] [Kmeans] [MPC-Kmeans]

Ecoli [4− 8] [Kmeans] [MPC-Kmeans]

MNIST [8− 12] [Kmeans] [MPC-Kmeans]

5.1.3 Input Parameters

For consensus clustering, base clustering algorithmic configurations must be defined to gener-

ate ensemble members. The range of values for the k parameter used for the ensemble member

generation are shown in Table 5.2. In operational applications of clustering, when k is unknown,

a commonly used idea is to estimate its value based on a small sample set of data. However, it is

possible that the estimated k deviates from the number of clusters. The range of k values used for

the experiments were defined as an approximation of the number of classes. For Amadeus datasets,

the range of k is determined based on user preference about error tickets group size, with regard to

correction process features.

Kmeans algorithm is selected as unsupervised base clustering approach because it is the most

widely used and well-known clustering algorithm. The single semi-supervised clustering MPC-

Kmeans approach, which is a semi-supervised variant of Kmeans, is used for both comparison with

Semi-MultiCons semi-supervised consensus clustering approach, and to generate semi-supervised

base clusterings in the clustering ensemble when comparing Semi-MultiCons with other semi-

supervised consensus clustering approaches.

The MPC-Keans approach [8] was chosen since, to the best of our knowledge, it was reported in

the literature as one of the most efficient single semi-supervised clustering approaches. Chapter 8

gives an extend analysis of other semi-supervised clustering algorithms regarding their performance

and robustness in presence of noisy input. MPC-Kmeans is proved to be one of the most accurate

and robust algorithms, regardless time complexity.

The number of constraints ranges from 0 to 210 for UCI Machine Learning Repository datasets.
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For each number of constraints, 100 different constraint sets were generated to get repeated trials.

For the MNIST dataset, the potential negative effect of constraints (see Section 6.1.7 for details)

was not studied due to the limitations of the MPC-Kmeans approach for such a large dataset. In-

deed, for the negative effect experiment, repeated trials are necessary in order to get rid of potential

randomness introduced by constraint selection and/or random seeds. The processing of the MNIST

dataset by the MPC-Kmeans requires around 10 hours to complete, which results in unacceptable

time cost regarding the number of repeated trials required by the experiment. Therefore, the number

of constraints for MNIST is fixed to 6 000 to demonstrate the Semi-MultiCons ability to be applied

on large and challenging, regarding the number of instance classes, datasets. Each consensus clus-

tering approach was run ten times, and both Semi-MultiCons and other approaches are guaranteed

to access exactly the same constraints for each run.

5.1.4 Evaluation Indexes

Normalized Mutual Information (NMI) [48], Clustering Accuracy (ACC) [87] and Purity [62]

indexes are used to evaluate the quality of resulting clusterings. For the Semi-MultiCons approach,

while multiple consensus clustering solutions are generated, only the recommended solution is con-

sidered as the output. In the following experimental results, the evaluation index score and the

inferred number of clusters k of the recommended result are represented as Sr, that is the average

evaluation index value obtained for Semi-MultiCons, and kr, that is the average number of clusters

generated for Semi-MultiCons for the repeated executions of each experiment.

For other consensus clustering approaches, that require k as an input parameter, the number of

clusters kb that provides the best performance for the approach is used. To avoid bias in compari-

son, we also demonstrate the level of Semi-MultiCons which number of clusters is equal to kb as

reference. Essentially, a better performance means a greater evaluation index value and an inferred

kr that is closer to the number of classes in the dataset.

5.2 Amadeus Datasets

Data collected from the Revenue Accounting Workflow of Amadeus contain all accounting infor-

mation required for processing a travel that is coded internally as a ticket in input of the workflow. A

ticket is represented and modelled by using a Business Object Model (BOM), that is a hierarchical

data structure representing the complete travel and its associated coupons, each coupon correspond-
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Figure 5.1: Example Business Object Model (BOM) for ticket. BOM is a hierarchical data structure

representing the complete travel and its associated coupons, each coupon corresponding to a flight

connection and related commercial treatments in the travel.

ing to a flight connection and related commercial treatments in the travel. For each ticket represented

as a BOM, general data on the travel (total price, origin departure and final arrival airports, etc.) are

included, as well as data on each coupon (departure and arrival airports, air operator, price, taxes,

etc.). See Figure 5.1 for a concrete example of BOM.

Both the heterogeneity and number of features associated with each ticket present a great vari-

ability, depending on the module where it is raised. For example, if an error ticket is raised from

Proration module, it means there is an error while amounts on ticket level are prorated to coupon

level. Proration module only utilizes several data on ticket level, which largely restricts the number

of features we should select from original data. As another example, consider an error ticket raised

from the Interline module. Interline represents the process of negotiation between two airlines about

the price of a coupon. In this case, only coupon level data is relevant with regards to the cause of

error and correction process. We select Proration error tickets and Interline error tickets, from July

2019 to December 2019, to construct Amadeus dataset as they provide the largest volume of infor-

mation in error ticket database. Also, each Amadeus airline customer has its individual database,

and we selected the three customers which provide the largest volume of information. Some basic

facts about the Amadeus datasets used during the experiments are stated in Table 5.3.
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Table 5.3: Amadeus dataset properties. For each of the six industrial datasets, its number of esti-

mated classes, number of attributes and number of instances are shown.

Datasets Estimated Classes Attribute Number of instances

Proration 1 6269 10 10720

Proration 2 6273 10 21778

Proration 3 57923 10 101524

Interline 1 6964 20 39860

Interline 2 26446 20 92607

Interline 3 62121 20 121359

5.2.1 Pre-processing

Different pre-processing steps were tested in order to represent the information about error tickets

in a relevant format regarding the applicability of unsupervised and supervised algorithms versus

the heterogeneity, the number of objects and the number of variables in the processed datasets.

Most clustering algorithms require input attributes and output variables to be numeric and can-

not be directly applied to categorical attributes. In the experiments, by using one hot encoding

technique, categorical attributes are represented as binary attributes. Each categorical value is rep-

resented as a binary attribute, and categorical attributes are encoded as vectors with all ‘0’ values

except for the index of the categorical attribute value, which is marked as ‘1’.

Scaling is another essential step for clustering algorithms as they calculate distances between

data. If not scale, the attributes with a larger value range will dominate when calculating distances.

In the experiments, numerical attributes are normalized to range [0, 1] by using min-max scaler.

5.2.2 Constraint Generation

For benchmark datasets, the ground truth class is available for each instance. However, for

Amadeus datasets, we can only access user corrections on error tickets. Therefore, class label

estimation is essential. We applied a strict policy on user corrections to generate class label: Two

corrections are assigned a same class label only if they are exactly the same. With this strict policy,

it is more likely to have more classes than ground truth and there is a large chance that two instances

with different class labels are still similar. Thus in Table 5.3, the number of classes is large. The

must-link and cannot-link constraints are generated based on the estimated classes, using the same
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Table 5.4: Input parameters for Amadeus datasets. For each of the Amadeus datasets, the range

of values for the k parameter defining the number of clusters extracted in the base clusterings are

shown.

Dataset Batch size Number of batches k for a batch
Base clustering

(unsupervised)

Proration 1 5000 3 [2, 50, 200, 250, 1000, 2500] [Kmeans]

Proration 2 5000 5 [2, 50, 200, 250, 1000, 2500] [Kmeans]

Proration 3 5000 21 [2, 50, 200, 250, 1000, 2500] [Kmeans]

Interline 1 5000 8 [2, 50, 200, 250, 1000, 2500] [Kmeans]

Interline 2 5000 19 [2, 50, 200, 250, 1000, 2500] [Kmeans]

Interline 3 5000 25 [2, 50, 200, 250, 1000, 2500] [Kmeans]

strategy as for UCI MLR benchmark datasets.

5.2.3 Input Parameters

Considering the complexity of single semi-supervised clustering algorithms and the volume

of Amadeus datasets, Semi-MultiCons with semi-supervised base clustering was not applied on

Amadeus datasets since ensemble generation step is extremely time consuming. Instead, the same

unsupervised base clustering algorithm as tested for benchmark datasets, that is the Kmeans al-

gorithm, was selected. Considering functional requirements and industrial scenarios, the datasets

listed in Table 5.3 were divided into mini-batches, based on creation timestamp of data instances,

to speed up the clustering process. The final clustering was generated by appending results of the

mini-batches. The size of batch and the range of values for the k parameter, shown in Table 5.4,

were determined by Amadeus Revenue Accounting experts based on their domain knowledge.

Due to the size of the Amadeus datasets, the number of constraints was fixed to 100 per batch

and each consensus approach was run 10 times.

5.2.4 Evaluation Index

We used Purity [81] as an important evaluation index, but not ACC for Amadeus datasets. Purity

is a measure of how well a cluster contains a single class [62]. This is an important index in industrial

scenarios because error ticket cluster proposed by our approaches is assumed to be reliable and
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accurate, on which similar correction actions will be applied. An increment id i is assigned to each

level in the hierarchical consensus clustering of the Semi-MultiCons, from the bottom to the top,

starting with 0. The NMI index score, Purity index score and the inferred number of clusters k of

the level i are noted as Si, Pi and ki respectively. The performance of other consensus clustering

approaches is not demonstrated, since they require k as an input parameter. For Amadeus datasets,

the clustering result presented to the user is always the lowest level in the generated hierarchy, while

the user is able to explore upper levels if needed. See Chapter 7 for more details.
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Chapter 6

Experimental Results

We report the experimental results of the Semi-MultiCons approach on the benchmark and

Amadeus datasets in this chapter. As discussed in Chapter 4, supervised information represented

as constraints can be integrated in different phases of Semi-MultiCons. To completely evaluate the

effect of constraints, we implemented four different variants of the Semi-MultiCons approach:

• MultiCons (MC): Original MultiCons approach.

• Semi-MultiCons (SMC): MultiCons with constraint-based merging/splitting consensus func-

tion and constraint-based consensus selection.

• MultiCons with semi-supervised base clustering (MC-s): Original MultiCons but unsuper-

vised base clusterings are replaced with semi-supervised base clusterings.

• Complete Semi-MultiCons (cSMC): Semi-MultiCons but unsupervised base clusterings are

replaced with semi-supervised base clusterings.

As explained in the previous chapter, MC and SMC approaches utilize Kmeans as base clus-

tering approach while MC-s and cSMC approaches utilize MPC-Kmeans. These variants of the

Semi-MultiCons approach are evaluated and analyzed in this chapter. In the following part, Semi-

MultiCons generally refers to all the Semi-MultiCons approaches used in the experiment, while

SMC specifically refers to the second approach in the previous list.
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6.1 Performance of Semi-MultiCons on Benchmark Datasets

An important difficulty in the application of most clustering and consensus clustering methods is

the setting of the k parameter, that defines the number of clusters that will be generated. Indeed, an

incorrect value for the k parameter may lead to a significant decrease in the relevance of the clus-

tering result. Another difficulty, related to the usage of supervised information in semi-supervised

clustering, is that integrating constraints sometimes lead to worse performance than using no con-

straints, which is a well-known potential negative effect reported in the literature [21, 77, 100].

During the experiments of the Semi-MultiCons approach on the benchmark datasets, we address

the following issues:

• Comparison between the inferred k value provided by Semi-MultiCons with the ground truth

number of classes for classical benchmark datasets used to compare semi-supervised ap-

proaches.

• Comparison of performance between Semi-MultiCons and other semi-supervised clustering

and/or consensus clustering approaches.

• Assessment of the potential negative effect of integrating constraints in the Semi-MultiCons

process.

• Scalability and complexity of the Semi-MultiCons approach for processing very large datasets.

The experimental settings, detailed in Chapter 5, were defined to address more specifically these

central questions.

6.1.1 Performance of Base Clustering Approaches

Figure 6.1 demonstrates the performance of base clustering algorithmic approaches, Kmeans

and MPC-Kmeans, on the Iris, Wine, Seeds, Zoo and Ecoli datasets. The blue curve represents

the best performance that can be achieved by Kmeans and its corresponding number of clusters k

among all tested values in 5.2. The three curves depicting the evaluation of MPC-Kmeans results

correspond each to a different value for the input parameter k. The green curve corresponds to the

kb value number of clusters, that generates the best result among all tested values. The orange curve

corresponds to the kb − 1 value, and the red curve corresponds to the kb + 1 value. The purple and

brown curves represent the average evaluation index score (NMI, Purity or ACC) of Kmeans and

MPC-Kmeans results, respectively, over all tested number of clusters.
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(a) Iris

(b) Wine

(c) Seeds

(d) Zoo
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(e) Ecoli

Figure 6.1: Performance of base clustering approaches. The curves illustrate the best and the av-

erage clustering results obtained by the MCP-Kmeans single clustering approach and the Kmeans

single clustering approach for each of the Iris (a), Wine (b), Seeds (c), Zoo (d) and Ecoli (e) bench-

mark datasets. The horizontal axis shows the number of pairwise constraints used during the run and

the vertical axis shows the evaluation index value (NMI, Purity or ACC) of the clustering solution

generated.

Considering the MPC-Kmeans approach, we observe that its performance strongly depends on

the value of its input parameter k. If this value does not fit well with the number of clusters in

the dataset, MPC-Kmeans fails to give good performance. Also, for imbalanced Zoo and Ecoli

dataset, MPC-Kmeans achieves its best performance when k does not correspond to the number

of classes, showing the difficulties MPC-Kmeans faces when the number of clusters is large. We

also observe that, sometimes the best performance of MPC-Kmeans is worse than unsupervised

Kmeans, especially for Zoo and Ecoli datasets, showing the potential negative effect of integrating

constraints.

Considering the Kmeans approach, it deviates the number of classes as well for Zoo and Ecoli

dataset. Moreover, it achieves its best performance when k equals to 2 for Iris dataset, corresponding

to a clustering result that blindly assign instances from two classes to a same cluster.

This experiment shows the importance of the k parameter setting for Kmeans and MPC-Kmeans

approaches.

6.1.2 Comparison between Inferred and Real Number of Classes

The average inferred numbers of clusters kr by Semi-MultiCons approaches over all trials per

number of constraints for each dataset are presented in Figure 6.2. kb represents the number of
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(a) Iris (b) Wine

(c) Seeds (d) Zoo

(e) Ecoli

Figure 6.2: Comparison between the inferred and ground truth numbers of classes. For each of the

five datasets, the average number of clusters kr inferred by Semi-MultiCons approaches, the number

of clusters kb for MPC-Kmeans to generate the best base clustering solution, and the true number

of classes in the dataset are shown.
43



CHAPTER 6. EXPERIMENTAL RESULTS

clusters defined by the k parameter in input for which the MPC-Kmeans algorithm achieves its best

performance. Detailed results about MPC-Kmeans and Semi-MultiCons performances are given

in Section 6.1.4. The real, i.e., ground truth, number of classes in the dataset is also given as

reference. We can observe that MPC-Kmeans does not always achieve its best performance when

its k parameter value is equal to ground truth number of classes. The MPC-Kmeans approach trends

to find large, balanced clusters in data, while the inferred kr provided by Semi-MultiCons is much

closer to the ground truth number of classes. With the number of constraints increases, the inferred

kr provided by the different Semi-MultiCons approaches come closer to each other, as shown by

the orange, green and red bar, implying that the approaches reach an agreement about the number

of clusters in dataset.

For the Zoo and Ecoli datasets, Semi-MultiCons infers a smaller kr than the number of classes,

corresponding to the fact that these datasets actually have classes that only contain few instances,

even less than 5% of the number of total instances. The Zoo dataset has two classes that contain only

4 and 5 instances, and the Ecoli dataset has three classes that consist of only 2, 2 and 5 instances.

For Iris, Wine and Seeds datasets, Semi-MultiCons infers a large kr, implying that the number of

clusters in the data space may be larger than the number of classes in the dataset.

Actually, several sub-spaces in the data space defined by the input dataset, that is intrinsic clusters

in this data space, can correspond to the same class. This is the case if the class corresponds to

different subgroups of instances, which means the class can be characterized by several distinct

groups of instances in the data space.

On the contrary, if some classes cannot be fully distinguished using the information provided by

the dataset, several classes may belong to the same subspace of the data space, i.e., correspond to a

unique intrinsic group of instances in the data space, and then the number of underlying clusters in

the data space may be lower than the number of classes in the dataset.

The multi-level structure of clusters in output of Semi-MultiCons can provide information about

this property, by showing the successive merging and splitting operations performed, and help to

automatically discover the appropriate number of clusters k for the dataset, that is to identify the

most relevant consensus, i.e., level in the hierarchy, among the consensuses in output.

6.1.3 Comparison with Single Unsupervised Clustering Approaches

The results of the Semi-MultiCons approaches and Kmeans single unsupervised clustering ap-

proach are compared in this experiment. In particular, MC and SMC approaches are selected as
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(a) Iris

(b) Wine

(c) Seeds

(d) Zoo
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(e) Ecoli

Figure 6.3: Comparison between Semi-MultiCons and Kmeans approaches. The curves illustrate

the best clustering result obtained by the Kmeans single clustering approach and the Semi-Multi-

Cons consensus clustering approach for each of the Iris (a), Wine (b), Seeds (c), Zoo (d) and Ecoli

(e) benchmark datasets. The horizontal axis shows the number of pairwise constraints used during

the run and the vertical axis shows the evaluation index value (NMI, Purity or ACC) of the clustering

solution generated.

their consensus results are generated based on Kmeans.

As stated before, three indexes, namely NMI, Purity and ACC, are used to evaluate and compare

the relevance of the generated clustering solutions, and the number of pairwise constraints used was

varied between 0 and 210 to evaluate their impact on the clustering result.

The blue curve represents the best performance that can be achieved by Kmeans and its cor-

responding number of clusters k among all tested values in 5.2. The orange curve represents the

average evaluation index score of Kmeans results over all tested number of clusters. The three

curves depicting the evaluation of Semi-MultiCons results correspond each to a different approach

or number of clusters. The green curve and red curve correspond to the Sr evaluation in the situa-

tion where the number of classes is unknown for MC and SMC, respectively, that is the consensus

clustering evaluated is the one automatically selected by the approach in the output hierarchy. The

purple curve represents the Sr evaluation when the number of clusters k is given to SMC as input,

that is the consensus clustering evaluated is the one with a number of clusters equal to k in the

output hierarchy.

The baselines are the average performance of Kmeans and the result of the MC approach, as

the constraints are not integrated into these two approaches. We can clearly see from the curves

that the SMC approach outperforms the baselines and its performance increases with the number
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of constraints, proving that constraints are useful for improving the quality of the clustering. An

exceptional case is Iris dataset. The NMI index score of SMC drops when the number of constraints

increases. A potential cause is that Kmeans achieves its best performance when the number of

clusters k corresponds to two, which differs from the ground truth number of classes, and SMC

tends to approach this number when the number of constraints increases. The degraded performance

is therefore a trade off at the detriment of the accuracy of the inferred number of clusters.

We can also see that, without knowing the number of clusters, SMC is able to provide good

performance, close to the best performance achieved by Kmeans, as shown by the red curves. When

the number of clusters k, corresponding to the number of clusters which produces the best Kmeans

performance, is given, as shown by the purple curve, the SMC approach is able to give an even

better performance.

6.1.4 Comparison with Single Semi-supervised Clustering Approaches

In this experiment, the results of the Semi-MultiCons approaches and MPC-Kmeans single clus-

tering approaches are compared in terms of relevance of the consensus solution generated. The

results of MC-s, cSMC and MPC-Kmeans for the Iris, Wine, Seeds, Zoo and Ecoli datasets are

presented in Figure 6.4. The average performance obtained for all trials of each run is shown. The

MC approach and SMC approach are excluded from this experiment since their consensus results

are generated based on Kmeans instead of MPC-Kmeans. We could note that for some experiments,

the number of clusters obtained may be different from the number of classes in the dataset, due to

the potential existence of several clusters defining a class in the data space as discussed in Section

6.1.2.

The blue curve corresponds to the kb number of clusters, that generates the best MPC-Kmeans

result among all tested values in 5.2. The orange curve corresponds to the average evaluation index

scores of MPC-Kmeans over all tested number of clusters. The green and purple curves represent

the Sr evaluation in the situation where the number of clusters is unknown for MC-s and cSMC

respectively. The red and brown curves represent the Sr evaluation when the number of clusters kb

is given to MC-s and cSMC, respectively, as input, that is the consensus clustering evaluated is the

one with a number of clusters equal to kb in the output hierarchy.

Both MC-s and cSMC have better performance than the average evaluation index scores of MPC-

Kmeans over all tested number of clusters, proving the positive effect of the consensus process of

the Semi-MultiCons approaches. The curves also illustrate that the performance of MC-s and cSMC
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(a) Iris

(b) Wine

(c) Seeds

(d) Zoo
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(e) Ecoli

Figure 6.4: Comparison between Semi-MultiCons and MPC-Kmeans approaches. The curves il-

lustrate the best clustering result obtained by the MCP-Kmeans single clustering approach and the

Semi-MultiCons consensus clustering approaches for each of the Iris (a), Wine (b), Seeds (c), Zoo

(d) and Ecoli (e) benchmark datasets. The horizontal axis shows the number of pairwise constraints

used during the run and the vertical axis shows the evaluation index value (NMI, Purity or ACC) of

the clustering solution generated.

are improved with the number of constraints, showing the benefit of integrating constraints.

We can also find that MC-s and cSMC approaches are able to give a comparable or better perfor-

mance when the number of clusters kb is given as input, as shown by the red and brown curves, for

all three evaluation indexes. Moreover, without knowing kb, they are still able to give good perfor-

mance, close to those obtained with known kb, as shown by the green and purple curves, especially

when the number of classes is large.

6.1.5 Comparison between the Semi-MultiCons Approaches

The results of the four Semi-MultiCons approaches are illustrated in Figure 6.5. The curve

with different color corresponds to the Sr evaluation in the situation where the number of clusters

is unknown for each Semi-MultiCons approach. The MC approach without using constraints, as

shown by the blue curve, is represented as baseline.

Overall, SMC, MC-s and cSMC approaches outperform the MC approach, except for Ecoli

dataset, for which MPC-Kmeans performs extremely bad and therefore the performance of MC-

s and cSMC are influenced. The performance of SMC sometimes does not grow anymore after

reaching a certain number of constraints, as presented by the orange curve. In contrast, the red

curve and green curve always increase with the number of constraints, displaying the potential of
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(a) Iris

(b) Wine

(c) Seeds

(d) Zoo
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(e) Ecoli

Figure 6.5: Comparison of the four Semi-MultiCons approaches. The curves illustrate the clustering

result obtained by the MC, SMC, MC-s and cSMC approaches for each of the Iris (a), Wine (b),

Seeds (c), Zoo (d) and Ecoli (e) benchmark datasets. The horizontal axis shows the number of

pairwise constraints used during the run and the vertical axis shows the evaluation index value

(NMI, Purity or ACC) of the clustering solution generated.

the MC-s and cSMC approaches.

The difference between the red curve and the green curve illustrates the effect of our constraint-

based merging/splitting consensus function since the only difference between them is that the cSMC

approach further involves constraints into the consensus process. In most cases, this effect is posi-

tive.

The choice between Semi-MultiCons approaches mainly depends on the accessibility of base

clustering approaches, the requirements on scalability and efficiency, etc. In experimental context,

the cSMC approach is always selected as it fully integrates constraints in both ensemble member

generation and consensus process. In real industrial scenarios, the SMC approach is preferred be-

cause generating base clustering results from semi-supervised clustering approaches can be quite

time consuming.

6.1.6 Comparison with Semi-supervised Consensus Clustering Approaches

This experiment compares the results of the Semi-MultiCons and other state-of-the-art semi-

supervised consensus clustering approaches in terms of relevance of the consensus solution gener-

ated.

Experimental results for the Semi-MultiCons, DWH, GV3 and HE approaches for the Iris, Wine,

Seeds, Zoo and Ecoli datasets are presented in Figure 6.6. The height of the curves represents the
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(a) Iris

(b) Wine

(c) Seeds

(d) Zoo
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(e) Ecoli

Figure 6.6: Comparison between Semi-MultiCons and other semi-supervised consensus clustering

approaches. The curves illustrate the clustering result obtained by the DWH, GV1, GV3, HE and

Semi-MultiCons approaches for each of the Iris (a), Wine (b), Seeds (c), Zoo (d) and Ecoli (e)

benchmark datasets. The horizontal axis shows the number of pairwise constraints used during the

run and the vertical axis shows the evaluation index value (NMI, Purity or ACC) of the clustering

solution generated.

value of the evaluation index for the clustering generated when varying the number of pairwise

constraints between 0 and 210 as shown on the horizontal axis.

As in all the subsequent experiments, all the tested semi-supervised approaches use exactly the

same information in input, that is the set of base clusterings in the clustering ensemble and the

set of pairwise constraints between instances. The MC and SMC approaches are therefore not

demonstrated as their base clusterings are different.

Obviously, Semi-MultiCons reaches comparable or better performance when the number of clus-

ters kb is used to choose the final clustering result in the output hierarchy, for all three evaluation

indexes. We can note that even without explicitly knowing the kb value, Semi-MultiCons is able to

generate a solution reaching a good performance, overall close to the best solution.

For the four other approaches, results are similar for the five datasets: The best solutions are gen-

erated by the GV3 algorithm, the lower performer solutions are generated by the DWH algorithm,

and the HE and GV1 algorithms generate solutions with an evaluation that is intermediate between

those of GV3 and DWH algorithms.

During this experiment, the GV3 algorithm is the only approach with performances that are com-

parable with Semi-MultiCons. However, Semi-MultiCons has better properties than GV3 regarding

efficiency in time and space, i.e., number of operations performed and memory usage, as shown by
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the scalability and complexity analysis presented in the following sections.

6.1.7 Analysis about Negative Effect

A potential negative effect issue of semi-supervised clustering methods was largely reported in

the literature [21, 77, 100]. This issue relates to the use of pairwise constraints as supervised in-

formation in the clustering process that sometimes leads to performance, in terms of quality of the

clustering result, that are worse than using no constraint. However, most semi-supervised consen-

sus clustering algorithms were only evaluated by average performance, thus not highlighting this

potential issue.

This experiment analyzes the ratio of negative effect occurrence for the Semi-MultiCons ap-

proach compared to other baseline semi-supervised clustering approaches. The importance of the

negative effect of using constraints is evaluated by the fraction of times that unconstrained version

produced better results than the constrained version. For comparison of results, the unconstrained

version is defined by the performance of the K-means approach, i.e., equivalent to using no con-

straints for performing unsupervised MPC-Kmeans, with an input parameter k equals to the optimal

number of clusters kb. The percentage values given represent the proportion of occurrences that the

clustering solution generated by the constrained algorithm underperforms the result of K-means

approach with parameter k equals to kb.

The results of the experiment are shown in Figure 6.7. The horizontal axis shows the number

of pairwise constraints used during the run and the vertical axis shows the fraction of times that

the algorithm produced worse performance than the baseline Kmeans clustering with kb as input

parameter. The pink and yellow curves represent the evaluation of the MC-s and cSMC consensus

solutions, respectively, when the number of clusters is equal to the optimal number of clusters kb.

The brown and gray curves show the negative effect ratio of the Sr evaluation in the situation where

the number of clusters is unknown for MC-s and cSMC respectively. The five remained curves

represent the evaluation of the semi-supervised results of the DWH, GV1, GV3, HE and MPC-

Kmeans algorithms with a k input parameter equals to kb.

We can see from the results in the figure that for all algorithms, the negative effect is decreased

with the number of constraints increases, implying that extending the size of constraint set can be

a possible solution to fight against negative effect. Under the same condition where the optimal

number of clusters is provided, cSMC highly reduce the occurrences of negative effect for most

datasets, compared to other approaches, as illustrated by the yellow curve. When the optimal num-
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(a) Iris

(b) Wine

(c) Seeds

(d) Zoo
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(e) Ecoli

Figure 6.7: Ratio of negative effect. Evaluation of the negative effect of pairwise constraints for

semi-supervised clustering in terms of the fraction of times that the algorithm produced worse per-

formance than the baseline Kmeans clustering with optimal number of clusters as input parameter.

The horizontal axis shows the number of pairwise constraints used during the run and the vertical

axis shows the ratio of negative effect.

ber of clusters is not provided, Semi-MultiCons alleviates negative effect as well, especially for

the cSMC approach which integrates constraints in both base clusterings generation stage and con-

sensus process. For the Iris dataset, Semi-MultiCons and the GV3 algorithm eventually reach 0%

negative effect when the number of constraints is large enough. A specific feature of the Iris dataset,

compared to other benchmark datasets used, is that this dataset is perfectly balanced regarding the

number of instances of each class.

6.1.8 Performance on the MNIST Benchmark Dataset

This experiment aims to compare the performances, in terms of execution times and applica-

bility regarding memory usage, of the different semi-supervised consensus clustering approaches,

based on MPC-Kmeans base clusterings. The MC approach and SMC approach are therefore not

demonstrated as their base clusterings are different. The MNIST benchmark dataset, containing

70 000 instances, is used for these performance tests. The number of pairwise constraints is fixed to

6 000 and each algorithm is run 10 times. Results for the compared approaches are given in Table

6.1. These results present both the average quality of the clustering in output and the execution

times for each approach. The GV3 algorithm runs out of memory for such a large dataset since it

requires 36.5 GB memory. Thus, this dataset exceeding its capacity regarding memory usage, its

performances are not presented. Note that for this experiment, the optimal number of clusters is not
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Table 6.1: Performance on the MNIST dataset. Comparison of the semi-supervised single and con-

sensus clustering approaches on the MNIST dataset of 70 000 instances. Results show the relevance

of the clustering solution evaluated with the NMI index and execution times in seconds.

Algorithm NMI index Purity index ACC index Time (s)

MC-s 0.7687 0.7566 0.7109 26.37

cSMC 0.8081 0.8047 0.7893 271.53

MPC-Kmeans (k=10) 0.7518 0.7207 0.6758 39006.80

DWH (k=10) 0.7547 0.7327 0.6935 0.23

HE (k=10) 0.7675 0.7424 0.6989 1.08

GV1 (k=10) 0.7581 0.7306 0.6904 3.53

provided to Semi-MultiCons.

We can see that among the six compared approaches, the DWH and HE approaches have the low-

est execution times. However, as observed before, their performance is clearly lower compared to

Semi-MultiCons and GV3 for datasets from UCI Machine Learning Repository. The MPC-Kmeans

approach requires very important execution times compared to all other approaches. Overall, we

can find that the Semi-MultiCons approach is able to both handle large and challenging datasets, and

provide a relevant clustering result even when the optimal number of clusters or classes is unknown.

The t-Distributed Stochastic Neighbor Embedding (t-SNE) visualization [72] of the clustering

results for the compared approaches are demonstrated in Figure 6.8. The implementation in Scikit-

learn Python package [55] was used, with initialization method set to PCA [64] and parameter

perplexity set to 40, that is the same initialization setting as [72]. The t-SNE visualization is trained

on the entire MNIST dataset with 70 000 instances. However, to better visualize the clustering

results, only 1 000 randomly sampled instances are displayed. For reasons of clarity and readability,

the minority clusters which contain less than 1.5% percentage of the total number of instances in

the MNIST dataset, are represented as one cluster in black. We can observe that in the latent space,

the digits 4 and 9 are difficult to be recognized and all the five approaches fail to separate them.

Compared to other approaches, the Semi-MultiCons has better performance on digits 5 and 8 as it

is the only approach that can partition them into two clusters. The HE and DWH approaches have

the worst performance, since they under-perform the other approaches in terms of the digits 2 and 3.

The t-SNE visualization gives a straightforward and complementary illustration to better understand

and evaluate the clustering results presented in Table 6.1.
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Figure 6.8: Representations of the clustering results of the semi-supervised single and consensus

clustering approaches on the MNIST dataset of 70 000 instances using the t-SNE visualization.

Figures show the clustering results for 1 000 sample instances in the latent space. The horizontal

and vertical axis represent the latent space and the colors represent the clustering results.
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6.1.9 Analysis about Convergence

Since the proposed constraint-based consensus process is a dynamic process with merging/split-

ting operations, we evaluate the convergence of Semi-MultiCons in this experiment, to illustrate

the trend of the cost regards to the number of iterations. The objective of the novel constraints-

based consensus function, as explained in 4.4, is to meet as many constraints as possible. The

cost is hereby defined as the percentage of unsatisfied pairwise constraints. It is calculated for

each of the successive levels of the hierarchy generated by Semi-MultiCons, from bottom to top.

These successive levels from bottom to top eventually correspond to the number of iterations, as

each level represents a consensus solution generated based on the previous level and the considered

closed patterns, as stated in Figure 3.4 and Figure 4.1.

Results presented in Figure 6.9 show that for all the six datasets, the cost moves continuously

towards a minima, with a decreasing trend as the number of iteration increases, proving the con-

vergence of the Semi-MultiCons approaches. Among different approaches, the cSMC approaches

has the best convergence as it integrates constraints in both the base clusterings and the consensus

function.

6.1.10 Computational Complexity Study

This study aims to evaluate the efficiency of the Semi-MultiCons approach and compare it with

other semi-supervised clustering approaches. During the first experiment of this study, the execu-

tion times of Semi-MultiCons and the five other semi-supervised clustering approaches used in the

experiments are compared. Experimental results are presented in Figure 6.10. Note that for the

consensus-based approaches, the execution time of the ensemble member generation is not consid-

ered. The curves depict the execution times of the eight approaches compared while varying the

number of pairwise constraints used during the run. We can see that DWH, HE and GV1 are the

most efficient approaches for the five datasets of the UCI Machine Learning Repository. They have

close execution times and their curves often overlap each other in the figure. We can also observe

that Semi-MultiCons execution times are systematically lower than those of MPC-Kmeans and GV3

for all the five datasets.

During the second experiment of this study, Semi-MultiCons is applied to different samples of

the MNIST dataset. Only the cSMC approach is illustrated as it has the most important execution

time among all four Semi-MultiCons approaches according to the result discussed in the previous

section. Seven samples, containing from 10 000 instances for the smallest to 70 000 instances for
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(a) Iris (b) Wine

(c) Seeds (d) Zoo

(e) Ecoli (f) MNIST

Figure 6.9: Convergence of Semi-MultiCons. Evaluation of the convergence of the Semi-MultiCons

approaches in terms of the percentage of unsatisfied pairwise constraints that is represented as the

cost. The horizontal axis shows the successive levels of the generated hierarchy from bottom to top,

which eventually corresponds to the number of iterations, and the vertical axis shows the cost as the

percentage of unsatisfied pairwise constraints.
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(a) Iris (b) Wine

(c) Seeds (d) Zoo

(e) Ecoli

Figure 6.10: Comparison of execution times. The curves show the execution times of the MPC-

Kmeans, DWH, HE, GV3, GV1 and Semi-MultiCons approaches for each of the Iris (a), Wine (b),

Seeds (c), Zoo (d) and Ecoli (e) benchmark datasets. The horizontal axis shows the number of

pairwise constraints used during the run and the vertical axis shows the number of seconds required

by the approach to generate the output clustering solution.
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Figure 6.11: Execution times for the MNIST dataset. Each bar in the diagram represents the execu-

tion time in seconds of the cSMC Semi-MultiCons approach for the MNIST sample which number

of instances is represented on the horizontal axis.

the largest, were generated from the MNIST dataset. The number of pairwise constraints is fixed to

6 000, and 10 trials are performed for each run. Figure 6.11 presents the average execution times

for each of the seven run. The represented curve shows that the scalability property of Semi-Mul-

tiCons is linear in the number of instances for generating the output consensus hierarchy. In Section

4.3, the complexity of Semi-MultiCons was estimated as proportional to the squared number of

instances N in the dataset. The results show that the time complexity is close to our estimate of the

computational complexity of Semi-MultiCons.

6.1.11 Conclusion

The experiments conducted on five reference benchmark datasets from the UCI Machine Learn-

ing Repository and on the MNIST very large dataset have led to the following conclusions:

• The prior knowledge, i.e., supervised information, represented by the pairwise constraints is

useful for improving the quality of clustering.

• Semi-MultiCons manages to infer the correct number of clusters in output while processing

base clustering ensemble members with different numbers of clusters.

• Semi-MultiCons is able to generate a clustering solution with comparable or better relevance

compared to single semi-supervised clustering and consensus clustering approaches without
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explicitly knowing the optimal number of clusters k.

• Semi-MultiCons is able to process datasets with large number of instances contrarily to sev-

eral other approaches, and has a linear scalability in the number of instances.

• Semi-MultiCons has the ability to solve real-life clustering problems encountered when data

is imbalanced, the number of clusters is large and/or the number of clusters is ambiguous or

unknown.

In the general real-world case where the appropriate number of clusters in the data space is

unknown, the Semi-MultiCons approach can be used as a pre-processing step to contribute to the

discovery of the appropriate number of clusters, as well as a consensus clustering method to achieve

better quality of clustering.

Further work on Semi-MultiCons approach encompasses the integration of pairwise constraints

in the closed pattern mining phase for generating constraints-based clustering patterns, and investi-

gating the effect of noise on the performance.

6.2 Performance of Semi-MultiCons on Amadeus Datasets

As demonstrated in Table 6.1, it is infeasible to apply MPC-Kmeans on large industrial dataset

as it can be extremely time consuming. We hereby only analyze the performance of the MC and

SMC approach on Amadeus datasets. The experiment setting is detailed in Chapter 5. During the

experiments of the Semi-MultiCons approach on the Amadeus datasets, we address the following

issues:

• Performance of the Semi-MultiCons approach on large real industrial datasets.

• Comparison between the MC approach and the SMC approach to demonstrate the impact of

integrating user feedback as constraints in the consensus process.

• Scalability and complexity of the Semi-MultiCons approach for real-life huge datasets.

6.2.1 Comparison between the MC and SMC Approaches on Amadeus Datasets

The experiment compares the performances, in terms of NMI and Purity indexes, and of inferred

number of clusters k, for the MC and SMC approaches on Amadeus datasets. To speed up the
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Table 6.2: Performance on Amadeus datasets. Comparison of the MC and SMC approaches on the

real industrial Amadeus datasets of three customers for two task types. Results show the relevance of

the clustering solution evaluated with the NMI (Si) and Purity (Pi) indexes, and the inferred number

of clusters k of each level i in the hierarchical consensus clustering result of Semi-MultiCons.

Si Pi ki

Level i MC SMC MC SMC MC SMC

0 0.9771 0.9786 0.9867 1.0000 7100 7220

1 0.9067 0.9072 0.4715 0.4739 2182 2192

2 0.8201 0.8204 0.2430 0.2437 647 648

3 0.7355 0.7368 0.1452 0.1465 212 213

4 0.6544 0.6622 0.1001 0.1034 84 92

5 0.4558 0.5451 0.0545 0.0707 15 41

(a) Proration 1

Si Pi ki

Level i MC SMC MC SMC MC SMC

0 0.9013 0.9060 0.9637 1.0000 9209 9585

1 0.8663 0.8653 0.6201 0.6190 2998 2987

2 0.8155 0.8152 0.4456 0.4446 933 917

3 0.7429 0.7410 0.3399 0.3347 300 296

4 0.6646 0.6644 0.2674 0.2703 112 114

5 0.4848 0.5430 0.1850 0.2102 19 41

(b) Proration 2
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Si Pi ki

Level i MC SMC MC SMC MC SMC

0 0.9686 0.9734 0.9428 1.0000 61407 65913

1 0.9125 0.9134 0.4426 0.4464 17205 17446

2 0.8472 0.8487 0.2216 0.2244 5226 5366

3 0.7883 0.7903 0.1278 0.1298 1846 1914

4 0.7317 0.7348 0.0815 0.0836 742 795

5 0.5994 0.6438 0.0372 0.0493 129 290

(c) Proration 3

Si Pi ki

Level i MC SMC MC SMC MC SMC

0 0.5800 0.5925 0.9497 1.0000 18934 19713

1 0.5605 0.5730 0.7451 0.7670 4299 4378

2 0.5401 0.5555 0.6707 0.6829 1179 1205

3 0.5174 0.5359 0.6436 0.6506 437 442

4 0.4900 0.5119 0.6291 0.6348 185 189

5 0.4032 0.5386 0.6150 0.6267 37 64

(d) Interline 1

Si Pi ki

Level i MC SMC MC SMC MC SMC

0 0.9081 0.9179 0.9255 1.0000 34612 36847

1 0.8459 0.8597 0.5063 0.5769 7486 7784

2 0.7738 0.7911 0.3337 0.3945 1929 2008

3 0.7161 0.7394 0.2619 0.3251 737 782

4 0.6703 0.7021 0.2316 0.2947 331 375

5 0.5693 0.6533 0.1939 0.2566 68 153

(e) Interline 2
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Si Pi ki

Level i MC SMC MC SMC MC SMC

0 0.9481 0.9518 0.9576 1.0000 74366 78437

1 0.8830 0.8850 0.4206 0.4301 16236 16567

2 0.8124 0.8155 0.2351 0.2412 4336 4454

3 0.7590 0.7638 0.1738 0.1792 1680 1746

4 0.7095 0.7202 0.1426 0.1487 734 799

5 0.6004 0.6676 0.1089 0.1249 147 341

(f) Interline 3

consensus process, the enormous Amadeus datasets are divided into mini batches and the final

clustering of the entire dataset is generated by appending the results of these mini batches. The

number of pairwise constraints is fixed to 100 per batch and each approach is run 10 times per

dataset. Results are listed in Table 6.2. Level i refers to the ith consensus result in the hierarchy

of Semi-MultiCons approach, from the bottom to the top, starting with 0. Columns Si, Pi and ki

represent respectively the NMI index, the Purity index and the inferred number of clusters k of level

i.

We can see that, overall, both the MC approach and the SMC approach give good performance

regarding to NMI index and Purity index on Amadeus datasets. In most cases, the SMC approach

outperforms the MC approach, on both NMI index and Purity index, proving the positive impact of

integrating pairwise constraints into consensus process of Semi-MultiCons. For Proration 2 dataset,

where the SMC approach gives slightly worse performance than the MC approach for several levels,

but the SMC approach still outperform the MC approach on the bottom level, which is the recom-

mend result to users. Especially, the SMC approach achieves remarkable purity index on the level

0, giving strong confidence to users when they determine to batch correct error ticket clusters on the

bottom level.

We also find that on the bottom level, the inferred number of clusters k is larger than number

of estimated classes, listed in Table 5.3, implying that the good purity index might be a trade off

against inferred k. However, in real industrial scenarios, customer concerns more about the purity

as they do not expect to introduce new anomalies when applying batch operation on a proposed

cluster. The customer barely minds the inferred number of clusters k, except when k is extremely

large, e.g. every instance is put in an individual cluster, which is not the case.
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Table 6.3: Execution times for Amadeus datasets. Execution times of the MC and SMC approaches

on the entire dataset, as well as on mini-batches is demonstrated. The number of instances is also

given as reference.

Dataset Number of instances Execution Time (s) Execution Time per Batch (s)

MC SMC MC SMC

Proration 1 10720 40.34 91.01 13.45 30.34

Proration 2 21778 65.98 145.76 13.20 29.15

Proration 3 101524 342.26 701.13 16.30 33.39

Interline 1 39860 63.03 126.66 7.88 15.83

Interline 2 92607 107.19 202.66 5.64 10.67

Interline 3 121359 233.44 441.36 9.34 17.65

6.2.2 Scalability and Complexity Analysis

This analysis aims to evaluate the efficiency of the MC approach and the SMC approach on

Amadeus datasets. Basic facts about these Amadeus datasets can be found in Table 5.3. The num-

ber of pairwise constraints was fixed to 100 per mini-batch, and 10 trials were performed for each

dataset. Table 6.3 presents the average execution time for each entire dataset and the average exe-

cution time per mini-batch. We can see that execution times of both the MC approach and the SMC

approach increase with the number of instances, corresponding to our analysis in Section 4.3. Com-

pared with the MC approach, SMC has more important execution times as it integrates constraints

in the consensus process. The execution time per mini-batch is less than one minute, proving the

potential of the Semi-MultiCons approach to give quick or even real-time response with mini-batch

mode.

6.2.3 Conclusion

The experiments conducted on Amadeus datasets from three different customers and for two task

types have led to the following conclusions:

• Semi-MultiCons is able to handle enormous industrial dataset and manages to give good

performance for all customers and task types.

• The SMC approach outperforms the MC approach by integrating pairwise constraints in the
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consensus process to improve the quality of clustering, especially the Purity index, which is

the main concern of the customer.

• The mini-batch mode improves the efficiency and the scalability of Semi-MultiCons and

makes it possible for Semi-MultiCons to give quick or even real time response.

Future work on Semi-MultiCons application to Amadeus datasets includes collecting real must-

link and cannot-link constraints from end-users to obtain concrete result of the SMC approach, and

extending the experiments to more customers and task types to fully investigate the performance of

Semi-MultiCons on Amadeus data.
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Chapter 7

Proposed Task Handling Module based

on Semi-MultiCons

The objective of this thesis is to contribute to the improvement and automation of the error cor-

rection process of Amadeus Revenue Accounting System, as stated in Chapter 1.2. In the previous

chapter, we presented the proposed Semi-MultiCons approach and demonstrated its performance

on benchmark UCI MLR datasets compared to other state-of-the-art methods. In this chapter, we

design a Proof-of-Concept prototype which applies Semi-MultiCons approach on Amadeus Rev-

enue Accounting Workflow to demonstrate the practical potential of the proposed solution as a Task

Handling Module tool in real industrial scenarios.

7.1 Task Correction Process with Current Task Handling Module

In Chapter 1.1, we briefly introduced the notation of Amadeus Revenue Accounting Workflow

(RAW), and we mainly focused on explaining why and how tasks are raised. In this section, we

describe in detail the mechanism of current Amadeus Task Handling Module to illustrate how tasks

are solved.

Figure 7.1 shows the task correction mechanism with current Task Handling Module. each arrow

shows a data flow from one entity to another in the direction indicated by the arrow. The meaning

of icons is labeled in the figure. Generally, data with anomaly pattern is marked as purple while

normal data is blue. Different data flows are listed with number in circle. We hereafter explain the

task correction process illustrated in Figure 7.1:
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Figure 7.1: Task correction mechanism with current Task Handling Module. Revenue Accounting

System automatically processes tickets until an error occurs. The workflow is then interrupted, and

a task associated with the error ticket is raised. The user is then required to manually investigate

and correct the tasks one by one through the Task Handling Module.

• Data flow 1, 2 and 3 simplify the revenue accounting workflow shown in Figure 1.1. RAW

automatically processes ticket data until an error is detected. The workflow is then interrupted

and a task associated with the error ticket is raised. Both tickets and tasks are represented as

BOMs in the database. However, tasks do have some additional information such as task

creation time, task type (from which module the task is raised), etc.

• Data flow 4 demonstrates the capacity of the current Task Handling Module (THM) to interact

with task database, so that THM is able to display relevant data to the user or apply user

correction on error ticket’s BOM.

• Data flow 5 represents the action from user. Each time, the user can only access one task.

Even if similar tasks have already been corrected, the user is required to do repeated work.

The main issue of the current Task Handling Module comes from data flow 4 and 5, where

each task is treated as independent. Therefore manual effort and time are wasted on tasks that have

similar corrections. To address this issue, we apply the developed Semi-MultiCons approach on

THM and propose a novel solution.
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Figure 7.2: Proposed Task Handling Module solution based on Semi-MultiCons. The user is able to

explore task clusters that contain tasks that are similar with the current one. Cluster characterization

is provided as well, to assist the user in the validation of clusters and make batch corrections.

7.2 Proposed Solution Based on Semi-MultiCons

We propose a new Task Handling Module based on Semi-MultiCons, displayed in Figure 7.2.

Novel functionalities, which are marked as orange, are presented in the following:

• Data flow 1, 2 and 3 remain the same as current THM and are not fully demonstrated due to

page limitation.

• A component implementing Semi-MultiCons approach is added. It gives user additional ac-

cess to Semi-MultiCons hierarchical clustering result and characterization of clusters, as il-

lustrated by data flow 4. To guarantee performance and efficiency regards to the huge size of

industrial datasets, the component is deployed on Cloud.

• Initially, user is still only allowed to access one task in data flow 5. However, it is possible

to explore similar tasks from the current one. User is expected to make batch corrections on

cluster of tasks, based on Semi-MultiCons hierarchical clustering result and characterization

of clusters provided by the component. See Section 7.4 for concrete examples.

Figure 7.3 shows in detail the interactive process between the user and Semi-MultiCons com-

ponent. On the one hand, it requires from the component to generate hierarchical results and to

provide cluster characterization based on feature importance computed by Random Forest. On the

other hand, it also requires from the end-user to configure the data pre-processing step and the base
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Figure 7.3: Interactive process between user and Semi-MultiCons component. The component

generates hierarchical clustering results and cluster characterizations for the user to explore, inter-

pret and validate. Meanwhile, the user is required to define the algorithmic configurations of base

clusterings for generating the binary membership matrix in input of the Semi-MultiCons approach.

clustering algorithmic configurations, and to explore, interpret and validate the task clusters, i.e.,

identify and select the most relevant clusters from Semi-MultiCons hierarchical results. Validated

task clusters can then be integrated in the process as supervised information in the form of pairwise

constraints.

7.3 Design of Semi-MultiCons Component

Current Task Handling Module is implemented in C++ with HTML and CSS. The BOM data

about tickets and tasks is available in Oracle database on-premises. However, to achieve better

efficiency and scalability, the Semi-MultiCons approach requires the usage of Big Data ecosystem

and Cloud platform. The designed component must be able to access the database on-premises,

meanwhile, it must also implement the interactive operations listed in Figure 7.3. The component

has three parts:

• The data collection part is responsible for preparing raw data for the component. It is sched-

uled to run daily, acquiring incoming tickets and tasks data during the day from database

on-premises. This part ensures the access to the database on-premises.

72



CHAPTER 7. PROPOSED TASK HANDLING MODULE BASED ON SEMI-MULTICONS

• The core part is the implementation of Semi-MultiCons. Raw data is pre-processed and

hierarchical clustering result of tasks is generated. User is able to interact with Core part, i.e.

configure input parameters and get clustering results, via RESTful API.

• The cluster characterization part characterizes selected clusters through the analysis of their

discriminating features. Using clusters as class labels, a Random Forest is constructed to

identify the features that distinguish each cluster from the others in the data space. Like core

part, user interactive operations are available through RESTful API.

The component is deployed on OpenShift Container Platform of Amadeus and is implemented in

Spark with R language. RESTful API is programmed by using Python with Kafka to communicate

messages between on-premises and Cloud.

7.4 Industrial Scenarios

To illustrate the component we designed, we create a Proof-of-Concept prototype with Graphical

User Interface (GUI) using Angular. Different real-life scenarios are presented in this section to

demonstrate the practical potential of the proposed solution as a Task Handling Module tool for

Amadeus Revenue Accounting System, to improve the automation of the error correction process.

Sample tickets and tasks in scenarios are retrieved from Amadeus database, and sensitive data has

been anonymized.

7.4.1 Access One Task and Make Correction

Figure 7.4 presents the GUI of our prototype. Tasks are summarized in a table and user can

access one of them by clicking on it. In task detail page shown in Figure 7.5, relevant information

regards to the task is displayed. Investigating these information helps user to understand the task

and a correction can be made by changing editable values. The correction will be dispatched to

ticket and task database once the ’Solve task‘ button is clicked.

7.4.2 Explore Similar Tasks from the Current One

Besides single task correction, our proposed solution allows user to explore similar tasks from the

current one, as illustrated in Figure 7.6. A similar tasks table is available at the bottom of task detail

page. By default, only the lowest level of Semi-MultiCons hierarchical clustering result is displayed.
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Figure 7.4: Screenshot of task list. Tasks are listed in table to give an overview of each task.

Clicking on a task will redirect the user to the task detail page.

Figure 7.5: Screenshot of task details. User can correct editable values in task. The correction is

dispatched to database once the ’Solve task‘ button is clicked.
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Figure 7.6: Screenshot of similar task list. Tasks that are similar with the current one are summarized

in the similar task table at the bottom of the task detail page. The similar task table can be expanded

by clicking on the ’Show more‘ button.

Similar task table can be expanded by clicking on the ’Show more‘ button as demonstrated in Figure

7.7. Tasks which are merged with the current cluster in upper level are added to the table. More

precisely, assume that the current task is x4 in Figure 4.3. Only x5 is displayed in similar task table

by default. Clicking once on ’Show more‘ button ends up to adding x6, x7 to the table.

Color in Group column of similar task table represents cluster ID and overall cluster similarity

with current task. Concretely, if current task is x4 in Figure 4.3. x5 is displayed by default and

cluster {x4, x5} is very similar to x4, thus marked as green. After clicking on Show more button, x6

and x7 are added. They belong to cluster {x6, x7} in lowest level result and the overall similarity is

lower than {x4, x5}, therefore marked as yellow. We can switch to upper or lower level clustering

result through clicking right arrow or left arrow button next to Group. Clicking right arrow button

on Figure 7.7 results in Figure 7.8. Back to our previous example, as cluster {x4, x5} and cluster

{x6, x7} are merged in upper level, x5, x6 and x7 will change their color to orange if right arrow

button is clicked. The ’Show more‘, left arrow and right arrow buttons allow the user to navigate

and explore similar tasks in the Semi-MultiCons hierarchical clustering result.
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Figure 7.7: Screenshot of group column in similar task list. The color in the Group column of the

similar task table represents cluster ID and the overall cluster similarity with the current task.

Figure 7.8: Screenshot of arrow buttons next to Group column. User can switch to upper or lower

clustering results, that is sub-level or sup-level in the Semi-MultiCons hierarchical result, through

clicking right arrow or left arrow button next to the Group column.
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Figure 7.9: Screenshot of the ’Analyze button‘ result. User can select one or several tasks in the

similar task table and click on the ’Analyze button‘ to request for the analysis of cluster features

based on current clustering result.

7.4.3 Cluster Characterization

Characterization of clusters is an indispensable step to assist user in the understanding of the

underlying reasons why tasks were grouped or separated in clustering results. User can select one

or several tasks in the similar task table, as presented in Figure 7.9, and click on the ’Analyze

button‘ to request for the features that distinguish each cluster from the others in the data space.

An example result is shown in Figure 7.10. Moreover, additional features can be displayed in the

similar tasks table through the drop down selector on top of the table (see Figure 7.11) to give the

user the possibility to investigate and verify the features provided by the ’Analyze button‘.

7.4.4 Batch Correction

The user is able to make batch correction on similar task group, as shown in Figure 7.12. One

or several tasks in the similar task table can be selected and once the ’Solved all tasks‘ button is

clicked, the correction for the current task will be dispatched to all selected tasks.
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Figure 7.10: Screenshot of example feature analysis result. The name of the attributes which play

an important role during the clustering process are provided, as well as their importance factor.

Figure 7.11: Screenshot of displayed feature selector. Additional features can be displayed in the

similar task table through the drop down selector on top of the table.
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Figure 7.12: Screenshot of the ’Solve all tasks‘ button. One or several tasks in the similar task table

can be selected and once the ’Solved all tasks‘ button is clicked, the correction performed on the

current task will be dispatched to all selected tasks.

7.5 Conclusion and Future Work

In this chapter, we propose a novel Task Handling Module tool for Amadeus Revenue Accounting

System based on the Semi-MultiCons approach. A new Semi-MultiCons component is integrated

to the current THM to improve the automation of the error correction process and to emphasize user

interactive operations during the process. We create a Proof-of-Concept prototype of the proposed

solution with Big Data ecosystem and Cloud platform. With this novel THM tool, the user is able

to explore clusters of similar tasks in the Semi-MultiCons hierarchical clustering result, to request

for the analysis of features explaining why tasks were grouped or separated, to validate similar task

clusters, as well as to make batch fixes or corrections per cluster. The validation data from the

user will then be used as supervised information to improve the overall quality of Semi-MultiCons

clustering results later on.

The final objective of this application is to be integrated as a novel Task Handling Module of

Amadeus Revenue Accounting System. The prototype presented here is currently under test phase.

As future work, we plan to evaluate and adapt our solution according to feedback from Revenue

Accounting domain experts and Amadeus customers. The evaluation will focus in particular on the
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accuracy of similar task clusters as well as on the time spent for performing corrections using the

proposed solution compared to the time spent using the current Task Handling Module.
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Chapter 8

Impact of Unbalanced and Noisy

Constraint Set

8.1 Introduction

Clustering methods aim at grouping data into homogeneous groups, such that instances in the

same group are more similar to each other than to those in other groups [85, 86]. As an unsupervised

learning approach, clustering is often used to analyze datasets that lack any supervisory information

[76]. However, in practice, we may have some prior knowledge available about the underlying

clustering, for instance, a few numbers of labels or a set of constraints. In order to take advantage

of this supervisory information and extract more relevant information for the user, recent research

works focused on semi-supervised clustering, also called constrained clustering, which uses prior

knowledge to guide the clustering process [25, 31].

Different types of prior knowledge and semi-supervised clustering approaches are considered in

the literature. The most widely used type of constraints is the instance-level must-link/cannot-link

constraint [75]. A must-link constraint implies that two instances should be assigned to the same

group. On the other hand, a cannot-link constraint enforces that two instances cannot be placed

in the same group. Many semi-supervised clustering approaches have been developed based on

must-link and cannot-link constraints. Most of them extend classical clustering algorithms, such

as the K-means algorithm, to a constrained version [8, 17, 32, 56, 74, 75]. Some other methods

focus on using must-link and cannot-link constraints to infer new similarity metrics [5, 22, 58, 84]

or to model the problem by using a declarative framework [20, 33, 35, 54]. Other methods integrate
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constraints into a collaborative [30] or ensemble-based process [3, 42, 82] that involves several

clustering algorithms. Recently, some studies propose to make use of constraints in deep clustering

methods [59, 102].

While most work in the literature focus on the development of novel and efficient semi-supervised

clustering variants, the impact of noisy input on semi-supervised clustering algorithms has not been

explored in-depth. Most research work assume that the input of the algorithm, that is for instance

the number of clusters k and the constraint set, is accurate. The input constraint set is usually gen-

erated based on ground truth labels of instances and is “balanced”. A more realistic situation in an

industrial context, where noisy constraints exist and the distribution of constraints can be extremely

biased, is barely considered to the best of our knowledge. In [17], the authors analyze the com-

plexity of their proposed semi-supervised clustering approach in the case where the constraint set is

skewed. In [21], the impact of constraint set characteristics on performance is pointed out, proving

that some constraint sets can actually decrease algorithm accuracy. This leads to further work that

concentrate on how to select informative and/or “easy” constraint sets [18]. Among the few articles

in the literature which discuss the impact of noisy constraints and of an incorrect number of clusters

k, we can cite [13, 53, 101] for the first issue, and [101] for the second one. In [4] and [14], the

behaviour of semi-supervised clustering algorithms in presence of erroneous constraints is studied.

In this chapter, we simulate realistic industrial settings where the input is noisy, which means the

constraint sets are skewed or contain noisy constraints. We analyze the robustness and accuracy of

the Semi-MultiCons approach and of each other semi-supervised clustering approach, and highlight

the scenarios for which each approach is more suitable.

8.2 Semi-supervised Clustering Approaches

In this section, we present the six semi-supervised clustering algorithms used in these experi-

ments. These include three K-means algorithm variants, namely COP-Kmeans [75], PC-Kmeans

and MPC-Kmeans [8], that integrate constraints in classical K-means algorithm, and three metric

learning approaches, namely RCA [63], MMC [84] and ITML [22], that use constraints to learn a

distance function.
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8.2.1 Constrained K-means

Constrained K-means clustering (COP-Kmeans) was developed in [75] and is one of the most

prominent constrained clustering algorithms. The idea is to ensure that none of the constraints is

violated. An instance i is directly assigned to a cluster if the cluster contains an instance which

has a must-link constraint with i. Otherwise, i will be assigned to the cluster that has the closest

centroid, excluding the clusters containing an instance that has a cannot-link constraint with i. If a

legal cluster cannot be found, then an empty partition is returned.

COP-Kmeans is recognised as being both simple and efficient. However, since COP-Kmeans

enforces that each constraint is satisfied, noisy constraints will inevitably lead to noisy output. COP-

Kmeans can also be sensitive to instances assignment order. Once an instance is assigned to a

cluster, all the other instances that have must-link with it will be assigned to the same cluster. A

different assignment order may thus end up in a different clustering results for those instances.

COP-Kmeans may return an empty partition when an instance cannot be assigned to any cluster due

to having a cannot-link constraint with instances among all clusters.

8.2.2 Pairwise Constrained K-means and Metric Pairwise Constrained K-means

Based on the idea of using constraints in K-means algorithm, [8] proposed Pairwise Constrained

K-means (PC-Kmeans) and Metric Pairwise Constrained K-means (MPC-Kmeans). PC-Kmeans

utilizes constraints for seeding the initial clusters and it directs the instance assignments to clusters

to respect the constraints. The connected components, which consists of instances connected by

must-link constraints, are taken as initial cluster centroids. The objective function is formulated as

the sum of the total squared distances between instances and their cluster centroids, and the penalty

induced by violating any constraint. During the cluster assignment step, an instance will be assigned

to the cluster centroid which minimizes the objective function.

MPC-Kmeans involves both cluster initialization, cluster assignment and metric learning in a

unified framework. The objective function definition and cluster initialization are the same as for

PC-Kmeans. Still, the distance metric is adapted by re-estimating the weight matrices during each

iteration based on the current cluster assignments and constraint violations.

PC-Kmeans and MPC-Kmeans never return an empty partition as COP-Kmeans sometimes do.

But as variants of Kmeans algorithm, they can be order sensitive as well. The complexity of MPC-

Kmeans is critical [14] since MPC-Kmeans updates weight matrices during each iteration of the

clustering process.
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8.2.3 Relevant Components Analysis

Relevant Components Analysis (RCA) [63] is one of the earliest methods that integrates con-

straints in metric learning. It makes use of “chunklet”, which is is essentially equivalent to con-

nected component introduced in Chapter 3, to compute a global linear transformation to assign large

weights to relevant dimensions and low weights to irrelevant dimensions [89]. This transformation

is based on chunklet information only, and does not use any cannot-link constraints.

8.2.4 Mahalanobis Metric for Clustering

Mahalanobis Metric for Clustering (MMC) [84] aims to minimize the sum of Mahalanobis dis-

tances between instances linked by must-link constraints, and at the same time, enforce the distances

between instances linked by cannot-link constraints to be greater than a constant (often set to 1).

This distance metric is trained using convex optimization, and the training process is thus local

optima free.

Although the MMC approach is efficient, the computation of eigenvalues during metric learning

step can be sometimes time consuming. Another restriction is its unrealistic assumption that all

clusters follow a unimodal distribution. Also, MMC is reported to have some uncertainty about

the optimality of the final solution. The proposed gradient based algorithm of MMC needs tuning

several parameters, and it is not guaranteed to find the optimum without such tuning [5].

8.2.5 Information-Theoretic Metric Learning

Similarly to MMC, the Information-theoretic metric learning (ITML) approach [22] aims to

learn an optimal Mahalanobis distance subject to constraints. It gives a bijection between the Ma-

halanobis distance and an equal-mean multivariate Gaussian distribution. In this way, the problem

is translated to minimizing the differential relative entropy, also known as Kullback-Leibler diver-

gence, between two multivariate Gaussians under constraints on the distance function. The problem

is then expressed as a particular Bregman optimization problem by minimizing the LogDet diver-

gence subject to linear constraints.

Unlike some other metric learning methods, no eigenvalue computation or semi-definite pro-

gramming is required in ITML. It can also handle a wide variety of constraints, and can optionally

incorporate a prior on the distance function. However, a simple bijection between Mahalanobis dis-

tance and equal-mean multivariate Gaussian distribution oversimplifies the underlying metric struc-
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ture. In practice, there will often be no feasible solution to the general ITML problem, particularly

when the number of constraints is large, as reported in [47].

8.3 Experimental Setting

The Iris, Wine and Seeds UCI MLR benchmark datasets, presented in Table 5.1, were used in

these experiments. The Zoo and Ecoli datasets were excluded for the reason that the distribution

of their classes is unbalanced. As demonstrated and explained in Section 6.1.2, the existence of

minority class may result in a mismatch between number of classes and the real number of clusters

in dataset, leading to a confusion about the choice of the number of clusters k parameter value for

semi-supervised clustering approaches.

The six semi-supervised clustering approaches presented in the previous section, and the SMC

approach were selected for these experiments. Implementations of the semi-supervised clustering

approaches can be found in Python packages active-semi-supervised-clustering [66] and metric-

learn [23]. These approaches require in input the number of clusters k, for which the number of

classes is given.

The SMC approach with Kmeans base clustering was selected to demonstrate the impact of

unbalanced and noisy input on the consensus process of Semi-MultiCons. The MC-s approach

and the cSMC approach were not included in these experiments, since constraints are integrated

in both the ensemble creation and the consensus generation steps of these approaches, making it

difficult to distinguish the specific influence of noisy input on each step. The input parameters of

the SMC approach are detailed in Table 5.2. The semi-supervised clustering approaches and the

SMC approach were evaluated using the NMI index.

8.4 Experimental Results

The experimental results about the impact of noisy input on the performance of semi-supervised

clustering approaches and Semi-MultiCons are reported in this section.

8.4.1 Impact of Unbalanced Constraint Sets on Semi-supervised Clustering Approaches

During this experiment, we analyse the impact of highly unbalanced constraint sets on the semi-

supervised clustering approaches. The number of constraints ranges from 0 to 210. For each

number of constraints, 30 different constraint sets were generated to obtain repeated trials. The
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(a) Iris
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(b) Wine
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(c) Seeds

Figure 8.1: Performance of semi-supervised clustering with unbalanced constraint sets.
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generated constraint sets contain either 50% must-link constraints and 50% cannot-link constraints,

only must-link constraints, or only cannot-link constraints, to separately investigate their impact on

performances.

The results of COP-Kmeans, PC-Kmeans, MPC-Kmeans, RCA, MMC and ITML for the Iris

(a), Wine (b) and Seeds (c) datasets are presented in Figure 8.1. The horizontal axis shows the total

number of pairwise constraints used during the run and the vertical axis shows the average NMI

index score of the output clustering solution over all trials for each approach. The vertical axis is

normalized to a [0.0, 1.0] range for all subplots in the figure. The blue curve corresponds to the

unsupervised clustering result when no constraint is used, with input parameter k set to number of

classes. The orange curve corresponds to the NMI index score of each approach in the case the

number of must-link constraints is equal to the number of cannot-link constraints. The green curve

and red curve represent the NMI evaluation of each approach in the situation where the constraint

set contains respectively only must-link constraints and only cannot-link constraints.

As demonstrated by the red curve for COP-Kmeans, it may return an empty partition sometimes,

when an instance cannot be assigned to any cluster. The PCKmeans approach does not have good

performance on the Wine dataset, which is similar to results presented in the original PCKMeans

paper [8]. The red curve for the RCA approach is not illustrated because this approach does not

use cannot-link constraints. For the Wine and Seeds datasets, the MMC approach does not find the

optimal final solution, proving the statement in [5] that the MMC approach needs tuning of several

parameters and is not guaranteed to find the optimum without such tuning. The ITML approach fails

to find a feasible solution for the Iris dataset when the number of constraints is large, as represented

by the green curve. This corresponds to the report in [47], arguing that there will often be no feasible

solution to the general ITML problem in practice, particularly when the number of constraints is

large.

Comparing the blue curve with the orange, green and red curves, we can clearly see that the

negative effect, explained in Section 6.1.7, widely exist in semi-supervised clustering approaches,

especially when number of constraints is small. Overall, the semi-supervised clustering approaches

benefit more from must-link constraints than from cannot-link constraints. A pure cannot-link con-

straint set, as demonstrated by the red curve, usually leads to a decrease in performance, especially

for COP-Kmeans and MPC-Kmeans. In contrast, must-link constraints has a significant positive

impact on the performance. Most approaches achieve their best performance with only must-link

constraint set, as illustrated by the green curve. The ITML approach and the MMC approach prob-

ably have the ability to make use of cannot-link constraints, since their orange curve has better
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performance than the green curve.

The metric learning methods RCA, MMC and ITML converge faster than K-means variants

COP-Kmeans, PC-Kmeans and MPC-Kmeans, as their curves quickly reaches their peak of perfor-

mance when the size of constraint set is small. The performance then remains stable, even when

the number of constraints increases. However, K-means variants, especially MPC-Kmeans, seems

to have a higher NMI index score when the number of constraints is large enough.

Among all metric learning methods, the RCA approach generally has the best performance, even

if it only uses must-link constraints. MPC-Kmeans has the highest NMI index score, compared with

other K-means variants.

8.4.2 Impact of Noisy Constraint Sets on Semi-supervised Clustering Approaches

In this experiment, the impact of noisy constraint on the semi-supervised clustering approaches

is analysed. The number of total pairwise constraints is fixed to 100, including 50 must-link con-

straints and 50 cannot-link constraints, guaranteeing that the semi-supervised clustering approaches

have sufficient supervised information to generate initial clustering solution. The number of noisy

constraints ranges from 0 to 20. For each number of noisy constraints, 30 different constraint sets

were generated to get repeated trials. The generated noisy constraints may exist equally in must-

link constraints and cannot-link constraints, or only in must-link constraints, or only in cannot-link

constraints.

Figure 8.2 demonstrates the results of COP-Kmeans, PC-Kmeans, MPC-Kmeans, RCA, MMC

and ITML for the Iris (a), Wine (b) and Seeds (c) datasets. The horizontal axis shows the number of

total noisy constraints used during the run and the vertical axis shows the average NMI index score

of the output clustering solution over all trials for each approach. The vertical axis is normalized

to 0-1 range for all subplots in the figure. The blue curve corresponds to the NMI index score of

each approach under the case that the number of noisy must-link constraints equals to the number

of noisy cannot-link constraints. The orange curve and green curve respectively represent the NMI

evaluation of each approach in the situation where the noisy constraints exist only in must-link

constraints or only in cannot-link constraints.

According to the analysis in the previous experiment, semi-supervised clustering approaches

benefit more from must-link constraints. The finding is confirmed in this experiment, as we can

observe from the orange curve, there is an important decrease on performance when noise exists in

in must-link constraints.
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(a) Iris
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(b) Wine
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(c) Seeds

Figure 8.2: Performance of semi-supervised clustering with noisy constraint sets.
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The MMC approach and the ITML approach have better robustness against noise in cannot-

link constraints, as illustrated by the green curve. Except that, for all the other approaches, noisy

constraints usually lead to a significant drop on performance, by comparing starting point and end

point of the curves, showing the weakness of these approaches in stability, especially when noisy

constraint exists in must-link constraints. The good robustness of the MMC approach and the PC-

Kmeans approach on Wine and Seeds datasets actually comes from the fact that the performance of

the clustering solution without noise is poor, the noisy constraint therefore does not result in worse

performance.

8.4.3 Impact of Unbalanced and Noisy Constraint Sets on Semi-MultiCons

We conducted the same experiments, as for semi-supervised clustering approaches, on the Semi-

MultiCons approach to present its performance and robustness facing noisy input. The results of

unbalanced constraint set for the Iris, Wine and Seeds datasets are presented in Figure 8.3. The blue

curve corresponds to the unsupervised Kmeans clustering result when no constraint is used, with

the input parameter k set to number of classes. The orange curve corresponds to Sr evaluation of

the SMC approach in the case that the number of must-link constraints is equal to the number of

cannot-link constraints. The green and red curves represent the Sr evaluation of the SMC approach

in the situation where the constraint set contains respectively only must-link constraints and only

cannot-link constraints.

Unlike semi-supervised clustering approaches, the SMC approach benefits more from cannot-

link constraints than from must-link constraints, as presented by the red and green curves. This

implies that the SMC approach makes use of both must-link constraints and cannot-link constraints

to infer a proper number of clusters k. Indeed, the performance of the SMC approach is not as

good as the single semi-supervised clustering approach when there is no noise in the constraint set;

However, the SMC approach solves a more difficult problem that is the number of clusters k is

unknown.

The results of noisy constraint sets for the Iris, Wine and Seeds datasets are presented in Figure

8.4. The blue curve corresponds to the Sr evaluation of the SMC approach in the case that the

number of noisy must-link constraints equals to the number of noisy cannot-link constraints. The

orange and green curves represent the Sr evaluation of the SMC approach in the situation where the

noisy constraints exist respectively only among must-link constraints and only among cannot-link

constraints.
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(a) Iris

(b) Wine
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(c) Seeds

Figure 8.3: Performance of Semi-MultiCons with unbalanced constraint sets. The impact of un-

balanced constraint set on the Semi-MultiCons approach for the Iris (a), Wine (b) and Seeds (c)

datasets are shown. The horizontal axis shows the number of total pairwise constraints used during

the run and the vertical axis shows the average NMI index score of the output clustering solution

over all trials. The vertical axis is normalized to [0.0, 1.0] range.
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For all tested benchmark datasets, the SMC approach achieves remarkable robustness against

both must-link noisy constraints and cannot-link noisy constraints, proving that integrating con-

straints in the consensus process provides a better stability than using semi-supervised clustering

approaches.

8.5 Conclusion

The experiments about the impact of unbalanced constraint sets and noisy constraint sets on

semi-supervised clustering approaches and Semi-MultiCons have led to the following conclusions:

• The metric learning semi-supervised clustering approaches converge faster than semi-super-

vised clustering approaches that are K-means variants. However, K-means variants are able

to achieve better performance when the number of constraints is large enough.

• Must-link constraints have a significant positive impact on the performance of semi-supervised

clustering approaches. In contrast, using only cannot-link constraints usually leads to a de-

crease in performance.

• Most semi-supervised clustering approaches do not have a good robustness against noisy

constraints, especially noisy must-link constraints.

• Semi-MultiCons is able to make use of both must-link constraints and cannot-link constraints,

and requires both types of constraints to infer a proper number of clusters k.

• Semi-MultiCons achieves remarkable robustness against both must-link noisy constraints and

cannot-link noisy constraints. However, the performance of Semi-MultiCons is not as good as

the single semi-supervised clustering approach, which is a consequent of the fact that Semi-

MultiCons solves the more challenging problem that the number of clusters k is unknown.

Based on these conclusions, we hereafter highlight the scenarios for which each approach is

more suitable for:

• If the number of constraints is small, it is suggested to use metric learn semi-supervised clus-

tering approaches. In the case that the constraint set mainly contains must-link constraints,

the RCA approach is proposed. Otherwise the MMC approach and the ITML approach are

worth to test.
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(a) Iris

(b) Wine
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(c) Seeds

Figure 8.4: Performance of Semi-MultiCons with noisy constraint sets. The impact of noisy con-

straint set on the Semi-MultiCons approach for the Iris (a), Wine (b) and Seeds (c) datasets are

presented. The horizontal axis shows the number of total noisy constraints used during the run and

the vertical axis shows the average NMI index score of the output clustering solution over all trials.

The vertical axis is normalized to [0.0, 1.0] range.
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• If the number of constraints is large, it is suggested to use semi-supervised clustering ap-

proaches that are K-means variants, especially MPC-Kmeans.

• If the constraint set possibly contains noisy constraints, it is suggested to use the Semi-

MultiCons approach to prevent significant drop in performance.
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Chapter 9

Conclusion and Future Work

The Amadeus Revenue Accounting System automatically process tickets until an error occurs.

The workflow is then interrupted and manual corrections of errors are required. Each error needs

to be corrected by users and put back into the workflow. The workflow may then be interrupted

again, following the same recovery process. The main problem here is that each error is treated

as independent, even if similar errors have already been corrected. The analysis of a sample of

2 000 error correction tasks have shown up to 40% similar tasks, implying an important waste of

efforts. The work conducted during this thesis aims to improve the automation of the error handling

process through two steps: The first is the clustering of error tickets to model clusters of tickets

corresponding to similar anomalies and requiring similar correction processes; The second is the

assignment to error ticket clusters of correction actions performed by the users, and to make use of

this supervision information to improve the clustering quality afterwards.

To achieve these goals and to address the central issues presented in Chapter 2 about applying

classical clustering approaches to Revenue Accounting Workflow data, we proposed a new semi-

supervised clustering approach, named Semi-MultiCons, in Chapter 4. Our contribution includes

the development of a novel iterative constraint-based merging/splitting consensus function based on

the initial MultiCons approach, the optimization of implementation to reduce its complexity, as well

as the proposition of a new constraint-based consensus selection method.

To extensively evaluate the effect of integrating constraints in the ensemble member creation step

and in the consensus generation step of Semi-MultiCons, four different Semi-MultiCons algorithms

were implemented and their performances were analyzed in detail. The experimental results on

UCI MLR benchmark datasets demonstrated in 6 proves that Semi-MultiCons manages to generate

a recommended consensus solution with a relevant inferred number of clusters k based on ensemble
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members with different k and pairwise constraints. Compared with other semi-supervised and/or

consensus clustering approaches, Semi-MultiCons does not require the number of generated clusters

k as an input parameter, and is able to alleviate the widely reported negative effect related to the

integration of constraints into clustering.

The Semi-MultiCons approach was applied on real industrial dataset as well. Based on the

experiments conducted on Amadeus datasets from three different customers and two task types,

Semi-MultiCons was shown to be able to handle huge industrial datasets and to achieve good per-

formance for all customers and task types. The proposed mini-batch mode notably improves the

efficiency and the scalability of Semi-MultiCons, and makes it possible for Semi-MultiCons to give

quick or even real-time response.

We created a real-life Proof-of-Concept prototype with Big Data ecosystem and Cloud platform

to deploy Semi-MultiCons in a real industrial environment. With this PoC, the user is able to

explore clusters of similar tasks in the Semi-MultiCons hierarchical clustering result, to visualize

their feature analysis for understanding why tasks are grouped or separated, to validate clusters of

similar tasks, as well as to make batch fixes or corrections per cluster. The validation data from

users will then be used as supervised information to improve the overall quality of Semi-MultiCons

clustering result later on.

We also analyzed the impact of unbalanced constraint sets and noisy constraint sets on the

performance of both Semi-MultiCons and other semi-supervised clustering approaches. Unlike

other semi-supervised clustering approaches that benefit mainly from must-link constraints, Semi-

MultiCons is able to make use of both must-link constraints and cannot-link constraints, and it re-

quires both types of constraints to infer a relevant number of clusters k. Moreover, Semi-MultiCons

achieves remarkable robustness against both must-link noisy constraints and cannot-link noisy con-

straints.

Further work on the Semi-MultiCons approach involves the integration of pairwise constraints in

the closed pattern mining phase, for generating constraints-based clustering patterns, the collection

of real must-link and cannot-link constraints from users to obtain concrete results, and extended ex-

periments on other customers and task types to fully investigate the performance of Semi-MultiCons

on Amadeus data. We also plan to evaluate and adapt our PoC according to the feedback from the

Revenue Accounting domain experts and Amadeus customers. The evaluation will focus in partic-

ular on the relevance of clusters of similar tasks, as well as the average resolution time per task in

our PoC compared to the current Task Handling Module.
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