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Abstract

At a sufficiently large phase-space density, a Bose gas can be described by a macroscopic
wave function subject to nonlinear dynamics. Degenerate Bose gases now constitute a
major platform in the study of self-trapped nonlinear fields known as solitons or solitary
waves. Up to now, most experimental observations of solitons have been restricted to
one-dimensional situations, where they are generically stable. On the contrary, multi-
dimensional solitary waves are more prone to instabilities and thus more challenging to
observe experimentally. In this thesis, we produce solitary waves in a two-dimensional
ultracold bosonic system. After presenting our experimental setup, we demonstrate our
ability to produce deterministically a Townes soliton, a celebrated solution of the nonlinear
Schrödinger equation in two dimensions. Our novel approach is based on a two-component
mixture: starting from a uniform bath of atoms in a given internal state, we imprint the
soliton wave function using an optical transfer to another state. We show that the soliton
can exist with various sizes, a hallmark of the scale invariance present in the underlying
model. We then confirm the relation linking the soliton atom number to the interaction
strength. Our experimental observations are supported by further numerical and theoreti-
cal considerations. These studies also allow us to go beyond the simplest model sustaining
a Townes soliton, by considering effects beyond the mean-field description. Finally, we
propose a few experiments aimed at characterizing excited, moving, as well as colliding
solitons.

Résumé

Lorsque la densité dans l’espace des phase d’un gaz de bosons identiques devient suff-
isamment élevée, il peut alors être décrit par une fonction d’onde macroscopique sujette
à une dynamique non linéaire. Ces gaz quantiques sont aujourd’hui devenus des plate-
formes incontournables dans l’étude des solitons, objets fondamentaux de la physique non
linéaire, aussi connus sous le nom d’ondes solitaires. Jusqu’à maintenant, l’essentiel des
observations expérimentales de solitons a été limité à des situations unidimensionnelles,
où les solitons sont stables naturellement. À l’inverse, les ondes solitaires de plus grande
dimension sont généralement fragilisées par la présence d’instabilités dynamiques, ren-
dant leur étude expérimentale plus difficile. Dans cette thèse, nous produisons des ondes
solitaires à partir d’un système de bosons bidimensionnel. Après avoir présenté notre dis-
positif expérimental, nous montrons comment préparer de façon déterministe un soliton de
Townes – une solution remarquable de l’équation de Schrödinger non linéaire en dimension
deux. Notre approche s’appuie sur l’utilisation d’un gaz à deux composantes : à partir
d’un échantillon uniforme d’atomes dans un état interne donné, nous imprimons la fonc-
tion d’onde du soliton grâce à un transfert optique vers un autre état. Nous vérifions que le
soliton peut exister sous diverses tailles, confirmant ainsi l’invariance d’échelle du modèle
physique sous-jacent. Nous confirmons également la relation liant le nombre d’atomes
contenu dans le soliton et la force des interactions. Nos observations expérimentales sont
corroborées par des études numériques et théoriques. Par ailleurs, ces considerations
nous permettent d’étudier la physique au-delà du modèle simple comportant un soliton de
Townes, en considérant des effets allant au-delà du champ moyen. Finalement, nous pro-
posons quelques expériences vouées à étudier les excitations, le mouvement et les collisions
de tels solitons.
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Merci à Patricia qui m’a fait bénéficier de sa grande expérience, de sa rigueur et de son
enthousiasme pendant mes deux premières années de doctorat. Merci à Édouard pour
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Introduction

The wave function is a fundamental concept in quantum physics. This function associates
a complex-valued probability amplitude to each possible configuration of a physical system.
In non-relativistic quantum mechanics, the state of any isolated system of particles can be
described in this manner. Because its evolution is described by a linear wave equation –
the Schrödinger equation – the wave function behaves essentially like other waves do, be
it sound or light. In particular, this wave-like description brings the possibility to observe
interference phenomena, which arise when multiple waves associated to the same field
overlap. The duality between a wave-like and a corpuscular behavior is itself at the origin of
several difficulties in the interpretation of quantum mechanics. Experimentally, quantum
interference can now be observed using mesoscopic systems, such as large molecules for
instance [1–3]. Nonetheless, the description of most macroscopic systems in terms of a
wave function is out of reach. Indeed, the number of arguments of this function then scales
like the number of particles. Moreover, interactions between particles generically lead to
complicated correlations that cannot be disentangled. As a corollary, the observation of
interference phenomena is usually unrealistic for such systems.

For a many-body system, there are specific situations which allow a description with
much less degrees of freedom. For instance, if an assembly of indistinguishable particles
occupies the same state, then it is sufficient to use a single-particle wave function – the
macroscopic wave function – to describe the whole system. When the number of particles
is so large that one can neglect its discrete nature, the problem can be reduced to a
classical field theory for this macroscopic wave function. In such cases, the corresponding
state bears a well-defined phase and can lead to interference phenomena. This coherent
field has thus a lot in common with the electromagnetic field emitted by a laser source.
This reasoning can also be extended to a situation where only a few single-particle states
are massively populated. In this case, the macroscopic state will be described by a field
involving the same number of components as there are relevant states.

Which conditions can lead to such a behavior? First of all, the particles should be
bosons since they can occupy the same quantum state. Remarkably, the above situa-
tion appears as a direct consequence of the phenomenon of Bose-Einstein condensation,
initially predicted for an ideal system of massive bosons [4]. Below a certain critical tem-
perature, a macroscopic fraction of the particles is expected to accumulate in the state of
lowest energy. This transition is thus a manifestation of the gregarious nature of bosons.
A description in terms of a classical field has been fruitful in the case of superfluid Helium
4, which was realized to exhibit quantum mechanical properties on a large scale soon after
its discovery [5]. This also applies to the Ginzburg-Landau theory of superconductivity [6]
for which the notion of a common state is meaningful only for pairs of electrons, the lat-
ter being fermions. In both situations, this classical field description is supported by the
observation of coherent phenomena, such as Josephson oscillations or quantized vortices.
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12 INTRODUCTION

Moreover, there is a deep connection between these two behaviors and the phenomenon of
Bose-Einstein condensation. However, interactions are never rigorously absent for massive
particles and, in these situations, the use of a macroscopic wave function is mostly phe-
nomenological. Indeed, a rigorous derivation of a classical field theory from microscopic
principles is hindered by the presence of strong interactions and the induced correlations.

Experimentally, ultracold quantum gases provide an important realization of a weakly-
interacting system. Since the first demonstration of Bose-Einstein condensation in 1995
[7, 8], these dilute, defect-free, isolated and fully tunable systems have become a major
tool in the study of many-body quantum phenomena. In an early and spectacular exper-
iment, two separated condensates were made overlapping and displayed an interference
pattern [9]. This – and many other experiments – confirmed the wave-like properties of
ultracold bosonic systems, often referred to as coherent matter-waves. On the theoreti-
cal point-of-view, the macroscopic state of the system can be understood using a single-
particle nonlinear wave equation for the macroscopic wave function, the so-called nonlinear
Schrödinger equation (NLSE). In the context of superfluid systems, this equation is also
known as the Gross-Pitaevskii equation. Most developments presented in this thesis will
rely on this model. In the weakly-interacting regime, the nonlinear term can be obtained
directly by treating all interactions in a mean-field picture. Although the full quantum
problem is itself linear with respect to the many-body wave function, the appearance of
an effective nonlinearity is the price to pay for this considerable simplification.

Since they can be described using a nonlinear wave equation, quantum gases soon
became a novel platform for the study of nonlinear phenomena. While the importance of
linear physics does not need to be debated, nonlinear physical phenomena have become
a central and transverse research field over the second half of the twentieth century. In
particular, physicists have realized that nonlinear wave equations, although more difficult
to grasp and to analyze mathematically, could lead in general to much richer behaviors.
Historically, nonlinear physics have first become a prominent research axis in the context
of hydrodynamics. Indeed, the Navier-Stokes equations on its own can yield a multitude
of nonlinear behaviors such as various types of instabilities [10].

Solitons are probably some of the most important and fascinating objects in nonlinear
physics. In mathematical terms, solitons can be defined as stationary solutions of nonlinear
wave equations. They typically arise from the compensation of a linear dispersion effect
by a nonlinear contraction mechanism. Solitons were first discovered in the context of
hydrodynamics, for one-dimensional (1D) problems. In 1845, J. S. Russell [11] described a
solitary elevation of water propagating in a narrow channel. Importantly, his observations
could not be interpreted using a linear wave equation. At that time, the impact of this
discovery was already undeniable at the theoretical level. Yet, the generality and the scope
of the concept of solitons could not be properly appreciated, both on the theoretical and
the experimental side. Following the work of Zabusky & Kruskal [12] in 1965, solitons
were shown to be extremely general and stable solutions for some 1D problems. More
generally, solitons are encountered in a broad range of physical settings, including nonlinear
photonics, hydrodynamics, superconductors, polymers, plasmas, and even high-energy
physics [13].

In dimension larger than one, the creation, the manipulation and the observation of self-
bound fields is a central challenge [14]. Indeed, there exists a great variety of such states,
in particular because these can feature a nontrivial topology. Moreover, the dynamics and
the interactions between such objects bring an even richer phenomenology [15]. In parallel,
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the introduction of multiple components in the field degrees of freedom can also lead to
new behaviors and can yield composite solitons. Unfortunately, the solitons present in the
most simple NLSE models are generically unstable with respect to small perturbations, a
property less present in 1D systems. To circumvent this issue, numerous strategies have
been proposed theoretically to protect these states against instabilities, and few of these
experiments have been implemented.

Let us discuss specifically the case of nonlinear optics. Soon after the invention of lasers
in 1960, it was realized that the propagation of coherent and intense light beams through
matter was significantly affected by nonlinear (Kerr) effects. Moreover, in a stationary
situation well captured by the paraxial approximation, this behavior can be described
using the NLSE by replacing the time variable by the distance on the propagation axis.
This culminated with the first observations of nonlinear self-trapping of light [16–19], and
soliton propagation in optical settings [20, 21]. Intriguingly, it turns out that light and
matter – which are fundamentally of very different nature – can be described in a unified
framework under specific conditions.

In this thesis, we will be interested in the celebrated Townes soliton. This soliton
is a localized solution of the 2D NLSE with a cubic nonlinearity. More precisely, it is
the unique real, nodeless, and axially symmetric solution of the 2D NLSE. The Townes
soliton was first predicted by Chiao et al. [17] and Talanov [18] in the context of self-
trapping of intense laser beams in nonlinear media. This soliton bears some peculiar
properties inherited from the 2D NLSE. For instance, its L2-norm is fixed by the strength
of the nonlinearity. Furthermore, it can be formed with any size, a hallmark of the scale
invariance of the 2D NLSE. However, the Townes soliton is unstable as small deviations
away from equilibrium can lead to the collapse of the field. For all these reasons, the quest
for this soliton has triggered a myriad of experimental works in nonlinear optical settings.

The toolbox of the cold-atom physicist is particularly well adapted to the preparation
and the study of multidimensional fields, especially when complex state engineering is
required. On the one hand, the availability of high-resolution optical systems allows the
in-situ observation of quantum gases with unprecedented accuracy. On the other hand,
a great variety of initial states and Hamiltonians can now be tailored. For instance, the
geometry of these systems can be controlled using a great variety of optical potentials.
This has allowed the observation of dark and bright solitons in quasi-1D geometry in
pioneering experiments [22–24]. Furthermore, spatial light modulators now allow the
production of ever-more complex light-field configurations. Such techniques can be used
to design optical box potentials [25] or to imprint specific phase profiles on the atomic
wave function. In addition, atomic species naturally come with an internal structure
which allows the exploration of multi-component or spinor physics [26]. This was recently
illustrated by the realization of magnetic solitons in two-component [27] or spin-1 Bose-
Einstein condensates [28].

Interestingly, quantum gases also offer the possibility to go beyond a description in
terms of a classical field. In particular, the use of Feshbach resonances [29] has allowed
to explore strongly correlated phases of matter, while staying in the dilute regime where
a theoretical treatment is still conceivable. Is it possible to observe effects beyond the
mean-field description, without leaving the regime of weak interactions? In 2015, Petrov
[30] positively answered this question by introducing the concept of quantum droplets.
Experimentally, such droplets have now been realized using either binary mixtures of
quantum gases described by short-range interactions [31,32] and single-component systems
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of highly-magnetic atoms where dipole-dipole interactions play a significant role [33, 34].
In both cases, the interactions – treated at the mean-field level – are set to be weakly
attractive, yielding an unstable situation a priori. The inclusion of quantum fluctuations
– going beyond the mean-field description – then provides a repulsive effect with a different
scaling in density which can stabilize the system. Eventually, the balance between these
two mechanisms defines an equilibrium density. A large system would feature a flat-top
density profile over a large region, similarly to an incompressible fluid. These constitute
an important realization of stabilized multidimensional fields.

Quantum droplets bear strong analogies with other systems encountered in condensed
matter physics, such as Helium droplets [35–37]. In this last case, however, the densities
and the effect of interactions make the system not amenable to a rigorous theoretical
treatment. The discovery of dilute quantum droplets has thus opened new directions to
gain insight on quantum liquids. Furthermore, these systems also allow to study exotic
phases of matter such as supersolids, which were predicted in 1970 by Leggett in the
context of solid Helium [38]. According to the current definition, a supersolid should
present both superfluid properties and an interaction-induced periodic density modulation.
Interestingly, the NLSE with a well-chosen nonlocal nonlinearity can support a ground
state with supersolid properties [39]. Emergent platforms having demonstrated signatures
of supersolidity include dipolar quantum gases [40–42], systems interacting strongly with
optical cavities [43], spin-orbit-coupled BECs [44].

In this manuscript, I present our recent realization of a Townes soliton using a two-
component planar Bose gas [45]. Our experimental apparatus allows us to prepare cold
bosonic samples confined in two dimensions (2D), with a versatile potential in the hor-
izontal plane. At zero temperature, one can faithfully use a description in terms of a
classical field satisfying the 2D NLSE. Since interactions in the system are all repulsive,
our situation seems a priori incompatible with the attractive interactions required to ob-
serve a Townes soliton. We developed a novel approach using a two-component system.
In the case where one component is in a strong minority, one obtains effectively attractive
interactions between the atoms in this component. In contrast with other recent studies of
2D solitary waves emerging from a dynamical instability [46,47], we deterministically pre-
pared a Townes soliton using an optical transfer. Finally, we also draw fruitful analogies
between our system and the behavior of quantum droplets.

I will now detail the content of this thesis.

– In Chapter 1, I describe the experimental platform which allows us to prepare
planar samples of Rubidium 87. In particular, I discuss the techniques used for
tailoring controllable optical fields, as reported in [48]. This is crucial to prepare
binary systems with arbitrary spin distributions.

– In Chapter 2, I provide some theoretical tools to describe the weakly-interacting
2D Bose gas. I also justify the use of the NLSE for studying this system even at low
(but finite) temperature.

– In Chapter 3, I discuss the existence and the properties of solitons, focusing on the
single-component NLSE with attractive interactions. In particular, I introduce the
celebrated Townes soliton and discuss its main features.

– In Chapter 4, I present our main experimental results concerning the determinis-
tic preparation and the characterization of Townes solitons using a two-component
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planar Bose gas. Starting from a uniform bath of atoms in a given state, our proto-
col consists in imprinting the wave function of the Townes soliton using an optical
transfer to another state. Throughout this manuscript, this novel composite system
will be called a spin bubble.

– In Chapter 5, I justifiy the use of a single-component attractive NLSE for inter-
preting the results of Chapter 4, even though the system is made of two components
with only-repulsive interactions. This mapping is rooted in the immiscible character
of the binary mixture.

– In Chapter 6, I propose a few directions for future characterizations of spin bub-
bles. More precisely, I determine the excitation spectrum of spin bubbles in various
regimes. I also investigate the outcome of binary collisions of Townes solitons.

– In the various appendices gathered at the end of the manuscript, I complement some
of our results and derive some others step-by-step.

During my thesis, I had the opportunity to work on several other projects using this
experimental setup. Most of these results not being detailed in the manuscript, I now
dedicate a few lines to mention them. A list of the four corresponding publications can be
found in Appendix H. The weakly-interacting 2D Bose gas has specific properties, both at
equilibrium and from a dynamical point-of-view. In [49], we related far-from-equilibrium
dynamics of distinct initial systems linked by scaling transformations. We also reported
the discovery of breathing solutions of the nonlinear dynamics. The emergence of a su-
perfluid phase in 2D at low temperature is described by a peculiar phase transition, the
so-called Berezinskii-Kosterlitz-Thouless phase transition. A noteworthy signature of this
transition shows up in the first-order correlation function of the system, which quanti-
fies the spatial coherence of the atomic field. This function decays exponentially fast in
the normal phase, whereas it is expected to show a power-law behavior in the superfluid
phase. A determination of this correlation function using matter-wave experiments has
been reported in the thesis of Raphaël Saint-Jalm [50]. During this last year, we developed
a spectroscopic method analogous to Ramsey interferometry for our many-body system.
Using this method, we could measure the so-called Tan’s contact accross the BKT transi-
tion [51]. We could also reveal the subtle effect of magnetic dipole-dipole interactions in
a 2D geometry [52]. Finally, our exploration of immiscible binary mixtures started with
the study of the demixion instability [53].
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Chapter 1

Production of planar Bose gases

This thesis explores some aspects specific to quantum planar systems. For a two-dimensional
(2D) system of atoms with mass m, density n and temperature T , the importance of quan-
tum statistics on collective properties is quantified by the so-called phase-space density

D = nλ2
th, (1.1)

which compares the inter-particle distance ∼ n−1/2 to the thermal wavelength λth =√
2π~2/mkBT . At standard temperatures, λth gives the typical extension of individual

wave packets. A large system reaches the regime of quantum degeneracy when this wave-
length gets of the order of to the inter-particle distance, or equivalently when D becomes of
order unity. As a celebrated example, preparing an assembly of bosons at a large phase-
space density in 3D may allow one to observe Bose-Einstein condensation [4], i.e. the
macroscopic accumulation of particles in the state of lowest energy. Quantum gases thus
offer a unique access to exotic states of matter [54]. However, the preparation of such
systems requires the control of both the internal and the external degrees of freedom of
individual atoms.

In this chapter, we present the setup used throughout this thesis to produce 2D degen-
erate samples of gaseous Rubidium 87 (87Rb), a bosonic isotope with one valence electron
and a nuclear spin I = 3/2 [55]. While many species can now be brought to quantum
degeneracy, atomic vapors of 87Rb keep the advantage of being easily cooled and manip-
ulated. Since most of the current setup was built before my arrival in the group, we refer
the reader to the previous Master and PhD theses [50,53,56–58] for detailed characteriza-
tions. As we show in Sec 1.1, we are able to create a single slab of atoms in the quasi-2D
regime, with a fully programmable in-plane geometry. The central topic of this thesis is
the study of solitons using binary mixtures. In Sec 1.2, we show how to manipulate the
internal degree of freedom of the atoms for the preparation of two-component planar Bose
gases.

1.1 Experimental sequence

We first summarize the ingredients for the preparation of 2D systems with an arbitrary
geometry in the horizontal plane. The preliminary steps for all our experiments are pre-
sented in Subsec 1.1.1, while Subsec 1.1.2 is devoted to the description of our horizontal
confinement. Finally, some calibrations needed to characterize the system are detailed in
Subsec 1.1.3.

17
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Figure 1.1: (a) Internal structure of 87Rb. We depicted only levels relevant for the ex-
periments. All states have a principal quantum number n = 5 for the valence electron.
Light on the D2 line is slightly red-detuned with respect to the (F = 2→ F ′ = 3) cycling
transition, used for laser-cooling. The hyperfine splitting in the electronic ground state
manifold lies in the micro-wave domain, and the degeneracy between the various Zeeman
sublevels is lifted in the presence of a magnetic field B. The two states figured in red,
|F = 1,mF = 0〉 ≡ |1〉 and |F = 2,mF = 0〉 ≡ |2〉, are the protagonists of our experimen-
tal findings. (b) Time-line of the experimental sequence showing the duration of the main
time-steps. The resulting atom number N and the temperature T are represented after
each box.

1.1.1 Preliminary steps

In the following, we consider only the low-lying states of 87Rb. The relevant part of its
energy structure is thus shown in Fig 1.1(a). At low magnetic field, internal levels are
characterized by their total (integer) angular momentum F and its projection along a
quantization axis, indexed by mF . Our setup exploits the usual techniques for preparing a
degenerate alkali Bose gas, as summarized in Fig 1.1(b). Each experimental sequence lasts
approximately 30 s and is computer-controlled with the software Cicero-Word generator.
In the next paragraphs, we detail the various preliminary steps.

Laser cooling

In a vacuum system with pressure ∼ 10−7 mbar, a piece of solid Rb is heated up to
65◦. A 2D magneto-optical trap (MOT) captures a tiny part of the vapor which rises
from it. An adjacent glass-cell of dimension 105 × 25 × 25 mm under higher vacuum
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Figure 1.2: Preliminary steps. A 3D magneto-optical trap is loaded from an adjacent 2D
MOT via a pushing laser beam (red arrow). The 3D MOT is made of six laser beams and
a quadrupolar magnetic field produced by the coils MCx (x = 1, 2). (a) Top view of the
glass cell. The cloud is depicted as a red dot (not at scale). (b) Side view. Are also shown
the conical coils QCx for the magnetic trap. (c) Top view, with the two crossed dipole
beams DBx loaded from the magnetic trap.

(pressure < 10−10 mbar) is loaded using a laser pushing beam, as shown in Fig 1.2(a-b).
Simultaneously, a 3D MOT is switched on at the center of the cell. All laser beams are
produced from a laser with wavelength 780 nm, and cooling is performed on the D2-line
using the (F = 2→ F ′ = 3)-cycling transition. A quadrupolar magnetic field is generated
by two coils in anti-Helmoltz configuration along the x-axis.

After loading the 3D MOT for 7 s, approximately 109 atoms end up trapped in the
region where the six MOT beams overlap, at a temperature of 250 µK and isolated from
any material support. The MOT is then compressed by ramping the laser-light detuning.
A molasses time-step follows for further cooling. Eventually, atoms undergo an optical
pumping stage and are transferred into the hyperfine ground state F = 1.

Magnetic and optical traps, evaporative cooling

The cloud is subsequently transferred to a magnetic trap. This trap is made of a pair of con-
ical coils mounted along the vertical z-axis in anti-Helmoltz configuration, see Fig 1.2(b).
Since only low-field seekers are trapped, we retain only atoms in state |F = 1,mF = −1〉,
which represent ' 1/3 of the total atom number. After compressing the trap for increas-
ing the collision rate, radio-frequency evaporation is performed during 12 s. Atoms with a
large energy are forced to leave the trap and the remaining ones re-thermalize with a lower
mean energy. At this stage, one is left with a cloud of ∼ 2× 107 atoms at a temperature
of 20 µK.

Afterwards, the trap is decompressed and the cloud is transferred into a hybrid trap,
formed by a crossed optical dipole trap – produced from two infrared lasers operating at
1064 nm – and a magnetic-field gradient for gravity compensation, see Fig 1.2(c). Optical
evaporation is performed during 3 s after which one obtains a degenerate cloud containing
' 5·105 atoms, leading to a Thomas-Fermi radius of approximately 6 µm along the vertical
direction and 15 µm in the horizontal plane.
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Figure 1.3: Loading into the final trap. (a) Front view: box trap formed from repulsive
horizontal walls (green light propagating vertically) and a repulsive optical lattice pro-
duced by the interference of the two beams after being focused by the lens L1. In-situ
absorption imaging is performed using the red light propagating downwards through the
two microscope objectives MOx. The lens L2 is used for monitoring the vertical lattice
position. (b) Varying the position d of a translation stage TS modifies the spacing d′,
the angle θ and thus the fringe spacing i = λ/ [2 sin(θ/2)]. The relative phase of the two
beams is corrected by controlling the piezo-electric transducer P . (c) The cloud is loaded
in the most contrasted fringe (white = no intensity). (d) The spacing i is finally tuned
from a large (circle) to a smaller (star) value in order to reach the quasi-2D regime.

Loading into the final trap

For loading the final trap, we first rise the horizontal confinement, see Fig 1.3(a-d). This
repulsive optical potential is produced by a 532 nm laser whose intensity profile is shaped
thanks to a digital micro-mirror device1. Shortly after, the power of one dipole arm is
ramped up to its maximal value to reduce the cloud’s vertical size, and the atomic cloud
is loaded into a single node of a vertical optical lattice, initially with i = 13 µm fringe
spacing. This lattice – produced from the same 532 nm laser – results from the interference
of two beams that intersect onto the atoms with a small angle θ. The lenses Lx shown in
Fig 1.3(a) are aspherical to limit spherical aberrations which could lead a displacement of
the beam during the compression. After loading this green box, atoms are transferred to
the magnetic-insensitive state |F = 1,mF = 0〉 using a succession of micro-wave pulses.

Compression of the accordion

For atoms lying deep in a well of the optical lattice, one can approximate the vertical
potential by a harmonic potential with angular frequency ωz. The population of the
vertically excited states then depends on the thermal energy kBT and the interaction
energy per particle Ei/N . The so-called quasi-2D regime is reached when kBT and Ei/N �
~ωz. For such a tight confinement, the cloud is effectively 2D and has a Gaussian density
distribution of thickness `z =

√
~/mωz along the vertical direction. In practice, the fringe

spacing is adiabatically reduced down to 3 µm thanks to an optical accordion [50, 59, 60]

1More precision is given in the next subsection.



1.1. EXPERIMENTAL SEQUENCE 21

6 7 8 9

Ω/2π (kHz)
N

Figure 1.4: Calibration of the vertical accordion frequency via parametric heating. The
depth of the trap is modulated at a frequency Ω/2π, with an amplitude . 1%, during 400
ms. The edge of the resonance at Ω0 = 2π ·8.6 kHz (red dashed line) corresponds to twice
the vertical frequency ωz.

before forcing optical evaporation, so that the quasi-2D regime is reached with typically
& 1 · 105 atoms. The angular frequency of the vertical optical lattice is typically set to
ωz = 2π · 4 kHz, and can be adjusted by modifying the power of the accordion beams.
This allows us to estimate the thickness `z ' 180 nm of the cloud for all experiments
reported here.

We calibrate ωz by inducing parametric resonance along the vertical direction [61,62].
More precisely, we modulate ωz with a small amplitude. The loss rate is maximum when
the modulation frequency Ω satisfies the resonance condition Ω = 2ωz. The asymmetric
profile of the loss curve shown in Fig 1.4 is related to the anharmonicity of the vertical
confinement. The harmonic frequency ωz is obtained at the high-frequency edge of the
resonance. Indeed, atoms with a sufficiently high energy explore a larger portion of the
vertical well. Henceforth, they experience a curvature of the potential which is lower
than deeply trapped atoms do, and some atoms can thus be excited even when Ω . 2ωz.
Additionally, the spatial phase of the interference pattern is stabilized by adjusting the
difference of optical path between the two beams. To do so, a picture of the lattice is
taken at the beginning of each sequence. The optical path difference is adjusted thanks
to piezo-electric transducer placed inside an arm to keep constant the fringe position over
long time scales.

Magnetic field control

The quantization axis is defined by a static magnetic field B. Its direction can be tuned
arbitrarily thanks to a set of coils mounted around the glass cell. The magnitude of this
magnetic field is kept sufficiently high – on the order of 1 G, up to 10 G – to lift the degen-
eracy between the different Zeeman states. This also limits spin-changing collisions in the
ground state and thus avoids redistribution of the Zeeman populations. We compensate
for the magnetic field fluctuations along the vertical direction – mainly due to the subway
traffic – to maintain a sufficient magnetic field stability. We measure less than 1 mG
peak-to-peak fluctuations over the day when the magnetic field is vertical. Fluctuations
can reach up to a few mG when the magnetic field lies in the horizontal plane.
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Figure 1.5: Beam shaping with a DMD. The light impinging on (1)-mirrors is deflected
toward the atoms, the rest of the beam is lost.

Using the magnetic trap coils, we can create an additional in-plane harmonic potential.
While this technique is much less flexible than the one described in Subsec 1.1.2, it provides
us with a less rough potential, with frequencies of a few tens of Hz. Note that only magnetic
field-sensitive states (e.g. |F = 1,±1〉) can experience this potential. This technique
has allowed us to study the dynamical symmetry present in our system, see [49, 50] and
Subsec 2.1.3.

Final atom number and temperature

Optionally, we can tune the final atom number by transferring a fraction of them from
state |F = 1,mF = 0〉 to state |F = 2,mF = 0〉. This fraction – which is then resonant
with the 780 nm laser light – is expelled from the trap by sending a short light pulse. The
temperature of the cloud can also be tuned by adjusting the final level of evaporation.
Finally, the system is hold during 0.5 s to reach thermal equilibrium.

1.1.2 A tunable horizontal confinement

We now describe with greater detail our final horizontal potential. By using a digital
micromirror device (DMD), we are able to tailor the light potential felt by the atoms and
to produce a large variety of geometries, with sizes ranging from 5 to 50 µm and densities
ranging from 5 to 100 atoms/µm2. Our DMD (DLP7000 from Texas Instrument interfaced
by Vialux GmbH) is an array of 1024 × 784 square mirrors of side 13.7 µm. Each mirror
can be set in one of the two following positions: on position (1), light of the incoming laser
beam is reflected toward the atoms; on position (0), light is deflected to another direction,
such that it is not perceived by the atoms. The potential can thus locally be turned ON
or OFF by programming the position of each mirror using a binary image, see Fig 1.5 for
an illustration.

The DMD plane is imaged onto the atoms with a magnification 1/70, through a high
numerical aperture microscope (NA = 0.45). Each mirror has an effective size of 0.2 µm on
the atomic plane, and the Gaussian beam reflecting on the DMD has a waist of 40 µm at
the same position. The steepness of the optical potential is limited by the optical resolution
of ∼ 1 µm. Since the potential is repulsive, atoms are trapped in the low-intensity regions
which are disconnected from free-space. Images displaying the 2D column density of a few
samples are shown in Fig 1.6. The inset of Fig 1.6(a) gives a side-view of the same sample
loaded in a single node of the vertical lattice. It is also possible to display a movie of
binary images on the DMD, with a refresh rate as large as 10 kHz. This is useful e.g. for
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Figure 1.6: In-situ images of 2D samples. The effective pixel size on the atomic plane is
1.15 µm, the optical resolution is limited to ∼ 1 µm. The inset of (a) corresponds to a
side view of the same sample before compression of the accordion. Because of the limited
resolution along this imaging axis, the undesirable loading of two dark fringes can only be
detected in this uncompressed configuration.

loading a complicated box from a larger (and more regular) one, or for exciting the cloud
with a time-dependent potential.

Arbitrary control of the in-plane geometry

During this thesis, we have developed a new method for the generation of optical potentials
with a controllable intensity, as reported in [48, 53]. The use of a binary pattern for
intensity modulation has been demonstrated for flattening a beam profile in direct imaging
[63], as well as for holographic beam shaping when working in Fourier space [64]. These
techniques rely on the averaging of the light reflected by many adjacent DMD pixels whose
separation is smaller than the optical resolution.

The realization of grey-levels of intensity using a DMD requires a dithering operation
for converting a continuous map into a binary image made of (0)’s and (1)’s. Here,
this operation is achieved using the so-called error diffusion technique, motivated by the
good performances of this algorithm [65]. Additionally, precise generation of the optical
potential is made possible thanks to a feedback loop. A related approach has also been
recently demonstrated for a 1D Bose gas by Tajik et al [66].

Atomic response

Besides the sharp horizontal confinement described earlier, we use an additional DMD
projected onto the atoms (same model, Vialux DLP7000). The corresponding beam has
a waist of ∼ 55 µm in the atomic plane. Since the effective pixel size of this extra-DMD is
also of ∼ 0.2 µm, the area defined by the diffraction spot of the imaging system – with an
optical resolution of ∼ 1 µm – contains approximately 5 × 5 pixels. The combination of
this DMD with the optical system can be thought as a spatially-varying reflectance for the
impinging beam. Hence, this allows us to modulate the incoming intensity among about
25 levels.

In practice, we characterize this supplementary optical potential V2(r) by looking di-
rectly at the modification of the atomic density distribution. The potential is added after
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Figure 1.7: Feedback loop for intensity modulation. Here we chose a target profile which
varies linearly along the x–direction, and a uniform (0)-configuration for the initial DMD
pattern. The density profile (top left) was obtained after the first three turns in the loop
and by averaging 5 independent shots. The error signal (top right) is simply the difference
between the measured and the target density profiles. The result of the feedback loop
after 15 turns is illustrated on Fig 1.8(a, e).

compression of the accordion, before the last evaporation stage. We work in a regime where
the cloud is well described by the Thomas-Fermi approximation presented in Subsec 2.1.2.
This simply means that the local density n(r) at position r can be written

n(r) ∝ µ− V (r), (1.2)

with µ the (global) chemical potential, and a proportionality factor which is not essential
at this stage. The full potential V (r) = V1(r) + V2(r) also accounts for the overall box
potential V1(r) with possible optical defects. Because of the simple relation between n(r)
and V (r), generating a particular optical potential is equivalent to preparing a specific
density profile – our target profile. This is achieved by displaying the suitable image on
the device.

Feedback loop

The feedback loop we implemented is shown in Fig 1.7. Starting from a simple image on
the DMD – e.g. a uniform image made of (0)s – we measure the initial density profile. We
compute the difference between the measured and the target density profile at each point
r of the atomic plane. This error map, convoluted with a Gaussian function for filtering
high-frequency noise, is then projected back onto the DMD plane. Up to a conversion
factor, the error is added to the continuous DMD map for adapting the local intensity.
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Figure 1.8: Samples with arbitrary potential. (a-d) are example density profiles measured
after applying the feedback loop for various target profiles. (e,f) give the profiles integrated
along the x– and y–directions for samples (a,b). (g) shows the radial profile of sample (c),
and (h) shows the azimuthal profile of sample (d). Figure adapted from [48].

The latter is dithered using the error diffusion algorithm. The updated binary image is
then displayed on the DMD, and the correction loop goes on until the procedure converges.

Performances

Fig 1.8 presents a few density profiles obtained thanks to this method, which provides us
with an enhanced control of the optical potential. The convergence of the loop is hindered
by various noise sources contributing to the measured density profile: thermal fluctuations
of the atomic cloud, quantum projection noise due to the partial transfer before imaging,
photonic shot noise associated to the imaging. While thermal fluctuations are expected
to have little influence deep in the superfluid regime, the two other contributions can be
mitigated by averaging more images to determine the density distribution. In practice,
this number of images per turn is the main factor limiting the quality of the correction,
as discussed in [48]. In practice, we limit ourselves to reasonable optimization times and
typically take 10 to 30 images on each turn. However, the above procedure is less efficient
for preparing potentials varying over a short distance. In particular, it requires a very
good knowledge of the mapping between the DMD and the atomic plane. Both can drift
in the course of a day because of mechanical relaxation on the optical table. In some cases,
we thus choose a slightly different approach to circumvent this issue.

Azimuthal correction

We illustrate this last remark in Fig 1.9. Here, the goal is to produce a thin ring of
atoms with a flat azimuthal density profile. Experimentally, we find that the method
presented above can seriously damage the initial density profile by producing small-scale
potential defects, essentially due to the vicinity to the box boundaries. In this case, it
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Figure 1.9: Azimuthal correction. (a) Initial density profile trapped in a ring of inner
radius 15 µm and outer radius 20 µm. (b) The corresponding azimuthal density profile (in
blue) presents large fluctuations. (c) The feedback loop produces a DMD image which does
not vary along the radial direction. (d) Final density profile, together with the azimuthal
profile represented as red dots in (b). Although the improvement is not very apparent on
the images, the dispersion of the red dots in (b) is only 2% of their mean value (versus
9% for the blue dots).

is more efficient to produce a correcting potential which varies only along the azimuthal
coordinate, as shown in Fig 1.9(c).

1.1.3 Some calibrations

Detection

In-situ density distributions like the ones shown in Fig 1.6 are obtained using absorption
imaging along the vertical axis, see also Fig 1.3(a). To do so, we first transfer a certain
fraction of atoms from state |F = 1,mF = 0〉 to state |F = 2,mF = 0〉. The latter
is resonant with our imaging beam. We then measure the optical depth of the sample,
i.e. the attenuation of the laser intensity in the forward direction due to light scattering.
The optical depth (OD) is defined such that the transmitted intensity Iout links to the
incident intensity Iin through the relation

Iout = e−ODIin. (1.3)

We use vertically propagating light, resonant with the (F = 2→ F ′ = 3) cycling transition
at 780 nm, in the low intensity-saturation regime. Thanks to a high numerical aperture
microscope (NA = 0.45), we get an optical resolution of ∼ 1 µm. The transmitted light is
imaged on a CCD camera (Princeton - Pixis 1024 Excelon), with an effective pixel size of
1.15 µm on the atomic plane.

Temperature calibration

The temperature of the cloud is estimated using the equation of state of a 2D Bose
gas. An important simplification of this equation arises from the so-called scale invariance
discussed later in Subsec 2.1.3. Thanks to this, the phase-space density D can be expressed
in a reduced form

D = D
(

µ

kBT
, g̃

)
, (1.4)
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Figure 1.10: Equation of state (1.4) for a coupling strength g̃ = 0.16 provided by Prokof’ev
& Svistunov [67] (blue dots), together with the Thomas-Fermi (green dotted line) and
Hartree-Fock (red dashed line) predictions. We use an interpolating function (solid blue
line) for calibrating the temperature. The star indicates the critical point for the superfluid
transition.

where µ and kBT appear only through their ratio. In this equation, we also introduced
the dimensionless parameter g̃ defined by

g̃ =
√

8π
a

`z
(1.5)

which characterizes the interactions in 2D, a being the 3D scattering length2. There
is no analytic form for Eq (1.4) that links the thermal to the deeply degenerate regime.
However, Prokof’ev & Svistunov [67] could determine numerically (1.4) using Monte-Carlo
simulations. Their results were verified experimentally by Hung et al. [68] and Yefsah et
al. [69] on trapped systems.

In this thesis, we work with uniform samples and we wish to determine their tem-
perature T and chemical potential µ. Inspired from [70], we locally modify the effective
chemical potential felt by the atoms by adding a small and flat repulsive potential, assum-
ing it does not alter the temperature significantly. This picture applies within the local
density approximation (LDA). In practice, the extra-potential is imposed using a second
DMD and an adjustable light intensity. We measure the density in this region for various
potential heights, and extract (T, µ) by fitting these data to an analytical version of (1.4)
plotted on Fig 1.10.

Density calibration with Ramsey sequence

The relation between the 2D density and the optical depth is linear for sufficiently small
densities [71, 72], with a proportionality factor given by the light-scattering cross-section
σl. In practice, the visible density is kept low by transferring only a small fraction of atoms
into state |F = 2,mF = 0〉. Currently, σl is determined using Ramsey spectroscopy, which
we now briefly present. In the experiment, atoms can occupy the two internal states
|F = 1,mF = 0〉 ≡ |1〉 and |F = 2,mF = 0〉 ≡ |2〉 which can be coupled through micro-
wave pulses (see Subsec 1.2.1). These states are characterized by intra-species and inter-

2See Subsec 2.1.1 for more details
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Figure 1.11: (a) Ramsey sequence on the Bloch sphere. (b) In the absence of interactions,
the population of atoms detected in state |2〉 exhibits oscillation centered on ν0 (black
points), which are shifted by an amount ∆ν in the presence of interactions (blue points).
Figure adapted from [51].

species scattering lengths a11, a22, a12, or equivalently by the corresponding 2D coupling
strengths g̃ij .

Let us first neglect interactions and consider a two-level atom with a Bohr frequency
ν0. Initially, the atom is in state |1〉. On the Bloch sphere of Fig 1.11(a), this is represented
by a Bloch vector pointing downwards. At time t = 0, we apply the following Ramsey
sequence. A first pulse with frequency ν creates a coherent superposition of states |1〉 and
|2〉 with equal weights (π/2-pulse). The corresponding vector now lies in the equatorial
plane of the Bloch sphere and is let evolving freely during a time τ . During this waiting
time, atoms get dephased at a rate δ = 2π(ν − ν0) and the corresponding vector rotates
in the equatorial plane at the same angular velocity3. A second identical pulse is applied
before measuring the total population transferred into state |2〉. When the experiment is
repeated for several values of ν, the population in |2〉 exhibits oscillations4 centered on
ν = ν0, with a period (2π/τ), as shown in Fig 1.11(b). In practice, this reference Ramsey
sequence is performed after releasing the atoms from the trap for a 2 ms time-of-flight,
such that the cloud’s density gets low enough and interactions can be neglected5.

Now we consider the effect of interactions on the Ramsey signal. In the supplemental
material of [51] (see also [73]), it is shown that weak interactions solely induce a shift of
the resonant frequency, as indicated in Fig 1.11(b). For atoms deeply in the superfluid
regime, the resonant frequency shift associated to mean-field effects can be written as

∆ν = µ1 − µ2 µi =
~2

m
(g̃11n1 + g̃12n2) , (1.6)

where µi is the chemical potential in state |i〉, with density ni after the first pulse. In the
present case, n1 = n2 = n/2, n being the total density to be determined. Henceforth, one

3This is valid within the rotating-wave approximation (RWA).
4The waiting time τ = 10 ms limits the uncertainty on the frequency measurements to ∼ 1 Hz. The

duration of the pulses (typically τ ′ = 100 µs) is much shorter than the time-scale for any spatial dynamics
(& 1 ms) and the waiting time τ , so that they can be considered as instantaneous. When |ν−ν0| becomes of
the order of π/(2τ ′) (the Rabi-frequency), the first pulse cannot bring the Bloch vector onto the equatorial
plane, and the amplitude of the oscillations is reduced (not visible on Fig 1.11(b)).

5We calibrated the magnetic field gradient experienced during free-fall to substract the effect of this
magnetic field change on the atomic energy levels.
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obtains

∆ν =
~
m

∆a√
2π`z

n ∆a = a22 − a11. (1.7)

Knowing the scattering length difference ∆a [74], this frequency shift allows us to estimate
the 2D density. σl can then be deduced by comparing this density to the optical depth
measured on the same sample. This method is more easily implemented than the one
based on the triangle periodic evolution, already described in [50, 53]. Moreover, we can
measure `z with great accuracy and ∆a is fixed although known with limited accuracy.
Hence, this method is much less sensitive to statistical noise than the triangle method.

1.2 Preparation of binary mixtures

We now turn to the preparation of binary mixtures. In Subsec 1.2.1, we show how to
create linear superpositions of two different states. Importantly, we are able to modify the
inter-species scattering length through magnetic dipole-dipole interactions (Subsec 1.2.2).

1.2.1 Internal degrees of freedom

We consider the electronic ground-state manifold of 87Rb, spanned by the states |F,mF 〉
with total angular momentum F = 1, 2 (mF = −F, . . . , F ). In most of this work, we
manipulate the two states |F = 1,mF = 0〉 ≡ |1〉 and |F = 2,mF = 0〉 ≡ |2〉 which will
form the basis of a pseudo-spin [26]. One advantage of using these states is their insensi-
tivity to magnetic fields. If one neglects the quadratic Zeeman shift, the energy splitting
between these two states is not altered by magnetic field fluctuations and defines the
clock-transition frequency ν0 ' 6.8683 GHz. Furthermore, magnetic field inhomogeneities
do not modify the potential felt by the atoms.

Coherent coupling

A coherent field nearly resonant with the energy splitting |1〉 ↔ |2〉 can induce Rabi
oscillations between these states, in the absence of interactions. For example, starting
with all atoms in state |1〉, the probabilities (Π1,Π2) to find the atoms in each state after
a driving time t are given by

Π1(t) =
Ω2

δ2 + Ω2
sin2

(√
δ2 + Ω2

t

2

)
Π2(t) = 1−Π1(t), (1.8)

where δ = 2π (ν − ν0) is the detuning of the field’s frequency ν with respect to the hyperfine
frequency, and Ω is the corresponding Rabi frequency. At resonance δ = 0, one can
exchange the populations of (|1〉, |2〉) by applying a pulse with duration t such that Ω t =
π (π-pulse). For Ω t = π/2 (π/2-pulse), an atom in state |1〉 is put in the coherent
superposition (|1〉 + |2〉)/

√
2. For N atoms initially in state |1〉, the corresponding state

thus writes ( |1〉+ |2〉√
2

)N
=

1

2N/2

N∑

j=0

√(
n

j

)
|1 : j, 2 : N − j〉 (1.9)

where |1 : j1, 2 : j2〉 is the fully symmetric state with ji atoms in |i〉, i = 1, 2. The
population of atoms in state |2〉 is thus given by a binomial law. In the large N limit
which we consider in most cases, one can neglect the so-called quantum projection noise,
i.e. the fluctuations of the two populations in state (1.9) which scale as 1/

√
N . This holds
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also for other pulse durations. We can then replace such a superposition by a product
state |1 : N1, 2 : N2〉 with well-defined atom numbers, in particular when writing the
coupled equations describing our binary mixtures. In practice, we use two techniques for
coherently coupling states |1〉 and |2〉, which we now describe.

Micro-wave for homogeneous addressing

In many situations, we use an antenna located near the glass cell to produce a micro-
wave field driving a magnetic dipole transition6. When doing so, we address the cloud
homogeneously since the radiation’s wavelength is of a few cm. We reach Rabi frequencies
on the order of Ω = 2π · 10 kHz. As a consequence, magnetic field fluctuations of ∼ 1 mG
have little impact on magnetic field-sensitive transitions7. Furthermore, these transfers
occur much faster than any spatial dynamics studied here, whose typical timescales are
& 1 ms.

Raman transfer with spatial resolution

We now present the optical setup used to perform Raman transitions between states |1〉
and |2〉. A simplified scheme is shown in Fig 1.12 and many implementation details can be
found in [50,53]. To summarize, we use two co-propagating laser beams with almost equal
wavelength λ ' 790 nm. These two beams, denoted R1 and R2 hereafter, are frequency-
shifted by an amount δνR close to the hyperfine splitting ν0 between states |1〉 and |2〉,
so that they can induce resonant two-photon transitions. Both beams have waists of
∼ 40 µm and carry a total power of a few 10 mW. As exemplified on Fig 1.13(a), we reach
Rabi frequencies larger than 25 kHz. Note that the Raman beams are not flat. Indeed,
both beams have a finite waist and surface defects on the DMD might also deform this
intensity profile. This induces significant intensity gradients on the atomic plane. This is
confirmed by measuring the local Rabi-frequency on the cloud, as reported in Fig 1.13(b).

The chosen wavelength λ lies in between the D1 and D2 lines. It is detuned enough
such that spontaneous emission can be neglected for the characteristic experimental times.
Moreover, the light-shifts associated to the coupling to the two upper manifolds exactly
cancel each other for this tune-out wavelength. This is crucial since, because of intensity
gradients, the Raman beams could otherwise print a non-uniform phase on the atomic
states over the cloud size. Furthermore, since the two beams have identical trajectories
after the optical fibers, spatial phase fluctuations over the beam profiles exactly compen-
sate in the two-photon Rabi-frequency ΩR ∝ Ω1Ω∗2. From this, we can safely assume that
the Raman process yields no spatial phase gradients.

6The corresponding field is generated by a Rohde & Schwarz SMB100AV synthesizer providing a 6.8 GHz
source, mixed with a signal around 34 MHz produced by a generator (Rigol DG1062Z) controlled by USB.
The frequency of the 6.8 GHz source is stabilized using a 10 MHz reference oscillator. The two signals are
mixed using an I-Q mixer (Pulsar IMOH 03-458), the output of which is amplified (Kuhne KU PA 700,
maximum output 10 W) before radiating through the antenna. More details can be found in [50, 53]. A
second micro-wave chain has recently been mounted: it is composed of a Rohde & Schwarz SMB100AV
synthesizer controlled by GPIB, an amplifier (maximum output 50 W) and a one-loop antenna mounted
as close as possible to the glass-cell.

7As presented in Subsec 1.1.1, atoms are initially polarized in state |1,−1〉 when being transferred into
the box potential. We apply two successive micro-wave pulses driving the transitions |1,−1〉 ↔ |2, 0〉 and
|2, 0〉 ↔ |1, 0〉 to transfer atoms into state |1, 0〉 before starting most experiments. The first frequency is
affected by the linear Zeeman effect and hence much more sensitive to magnetic field fluctuations (1 mG
fluctuations correspond to 0.7 kHz frequency fluctuations).
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Figure 1.12: Raman beam setup. (a) Laser light is split into two paths with frequency
shifts controlled using an electro-optical modulator (EOM) and acousto-optical modulators
(AOM). The beams are then recombined with orthogonal polarization and sent to the main
table. (b) On the main table, the two overlapping beams impinge on a DMD for intensity
modulation before shining onto the atomic plane. (c) The optical path can be modified
to create a relative angle between the two beams on the atomic plane, yielding a non-zero
momentum transfer. This is achieved using a motorized mirror M and a polarizing beam-
splitted (PBS) which separates again the two frequency components.

Importantly, the two beams can also be splitted and recombined on the atoms mak-
ing a non-zero angle θ, see Fig 1.12(c). In this Bragg configuration, the atoms which
are transferred to state |2〉 undergo a kick with momentum p = 2~k/ sin(θ/2) to ensure
momentum conservation. This way, we can imprint a phase gradient corresponding to
velocities v = p/m ranging from 0 to 3.5 µm/ms, a value larger than the sound velocity
written in Eq (2.19). Conservation of energy, accounting for the kinetic energy of a non
zero-momentum state, yields the following relation for the resonant frequency νR

hνR = hν0 +
1

2
mv2. (1.10)

The corresponding shift equals 1.3 kHz for the largest velocity, which could be determined
by spectroscopy. In a near future, we intend to study the propagation of spin bubbles
and binary collisions in a bath at rest. A preliminary study of these problems is given in
Chapter 6.

Arbitrary spin distributions

One advantage of this method comes from the small wavelength of the corresponding
field, compared to the micro-wave coupling considered above. This allows us to perform
spatially-resolved transitions. On the atomic plane, the local Rabi-frequency is propor-
tional to the total intensity8. For a given illumination time t, the population transfer

8More precisely, this Rabi-frequency scales as ΩR ∝ Ω1Ω∗2 where Ωi is related to the reduced matrix
elements between state |i〉 and upper-lying states, induced by the beam Ri. Since Ωi is proportional to
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Figure 1.13: (a) Mean OD versus exposure time t, measured inside the circle depicted in
(b). The oscillations have a two-photon Rabi frequency Ωr = 2π · 19kHz and are damped
(τR = 200(50) µs) because of intensity dispersion in this region. (b) Two-photon Rabi-
frequency on the atomic plane.

given in Eq (1.8) thus depends on the local intensity. Before reaching the atoms, the two
overlapping beams impinge on a third DMD for intensity modulation9. They are mixed
with the 780 nm and 532 nm beams – respectively used for imaging and for the horizontal
confinement – and sent vertically, passing through the two microscope objectives. The
DMD is imaged with a magnification 1/37.5, so that each pixel has an effective size of
0.4 µm. In Chapter 4, we will adapt the grey-level feedback loop presented in Subsec 1.1.2
in order to realize a Townes soliton.

Hyperfine relaxation

A drawback of using state |2〉 is the possibility for hyperfine-changing two-body collisions.
These are induced by dipole-dipole interactions [75,76]. Such collisions involve transitions
from states in F = 2 to F = 1 and lead to immediate loss of the collision partners on very
short timescales, due to the amount of energy released in kinetic energy during the process.
While the lifetime τ of the sample composed of |1〉 is typically & 10 s and essentially
determined by one-body losses, hyperfine relaxation limits the duration of experiments
involving state |2〉 to a few tens of milliseconds. More quantitatively, we measured the
loss dynamics of an initially homogeneous sample in |2〉 with density n and fit it to the
following (one + two-body) loss model

dn

dt
= −1

τ
n− β2D n

2 n(t) =
n0 e−t/τ

1 + β2D n0 τ
(
1− e−t/τ

) . (1.11)

with fit parameters (n0, β2D). By repeating the experiment for various initial densi-
ties, we estimate β2D = 140(30) ms·µm2. For a 2D sample, this quantity is integrated

the square-root of Ri’s intensity, we find that ΩR scales as the total intensity when the two beams undergo
the same intensity modulation through the DMD.

9In the Bragg configuration, the two beams follow different paths and do not reflect on the same number
of mirrors. The corresponding images on the atoms are symmetric to one another with respect to the y-axis
of the camera. The DMD image thus needs to be symmetric as well to be correctly imprinted on the atoms.



1.2. PREPARATION OF BINARY MIXTURES 33

along the column density, and one can form a three-dimensional two-body loss coefficient
β3D =

√
2π`z β2D, yielding a value β3D = 5(1) × 10−14 cm3·s−1. We note that this quan-

tity is significantly smaller than the value β3D = 10.2(1.3) × 10−14 cm3·s−1 reported by
Schmaljohann et al. [75] who studied a 3D BEC. This discrepancy might be explained by
the lower magnetic field, B = 340(20) mG, imposed in [75], which allows for spin dynam-
ics in the F = 2 manifold, and thus modifies the decay channels for a cloud initially in
|F = 2,mF = 0〉.

1.2.2 Magnetic dipole-dipole interactions

In the low-temperature regime, interactions involving states |1〉 and |2〉 are characterized
by the set of scattering lengths (a11, a12, a22). In this thesis, we use the values given by
Altin et al. [74]

a11 = 100.9 a0 a12 = 98.9 a0 a22 = 94.9 a0, (1.12)

a0 being the Bohr radius. In 3D, a description in terms of scattering lengths hold as long
as one can neglect long-range interactions, such as dipole-dipole interactions which scale as
1/r3. These are characterized by the so-called dipolar length add. Since magnetic moments
of alkali-metal atoms are limited to . 1 Bohr magneton (µB), long-range magnetic dipole-
dipole interactions (MDDI) have no sizable effect in most cases. For 87Rb, add = 0.7 a0

which is two orders of magnitude smaller than the values reported in Eq (1.12). Moreover,
their averaged contribution to the mean-field energy vanishes when integrated over full
3D space (〈cos3 θ − 1〉 = 0), so that they do not contribute to the values of the different
scattering lengths.

This reasoning might be mitigated when setting the scattering length to zero by using
a Feshbach resonance [29] as exemplified in [77, 78], or when working with spinor gases
where many scattering lengths coincide and MDDI can have a significant effect [79, 80].
In this subsection, we summarize our recent findings concerning MDDI in 2D [52] and
show that the effective inter-species interaction parameter depends on the orientation of
the guiding magnetic field with respect to the atomic plane.

Modification of the scattering length a12

Consider two atoms (A,B) separated by a vector r. Their electronic spin operators are
denoted ŝA and ŝB. For this two-particle system, the MDDI Hamiltonian writes

Û(r) =
µ0µ

2
B

πr3
[ŝA · ŝB − 3 (ŝA · u) (ŝB · u)] , (1.13)

with u = r/r the unit vector connecting these two atoms, and µ0 the magnetic perme-
ability. This Hamiltonian does not modify the scattering properties of atoms in the same
state. However, it does play a role for pairs of particles occupying the two different states
|1〉, |2〉 and can be seen as an additional inter-species potential

U(r) =
µ0µ

2
B

πr3

(
1− 3 cos2 θ

)
, (1.14)

where θ is the angle between u and the (arbitrary) quantization axis. To evaluate the
effect of (1.14), we consider the Fourier transform Ũ(k) of the potential U(r) in a quasi-
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2D geometry as derived by Fisher [81]

Ũ(k) =
~2

m

√
8πadd

`z

[
cos2 Θ

(
2− 3

√
2

π
k̄ek̄

2/2 erfc(k̄/
√

2)

)

+ sin2 Θ

(
−1 + 3

√
2

π

k̄2
x

k̄
ek̄

2/2 erfc(k̄/
√

2)

)]
, (1.15)

where erfc(x) = 1 − erf(x) is the complementary error function, add = µ0µ
2
Bm/12π~2 =

0.7 a0 is the dipolar length, Θ is the angle between the magnetic field and the normal to
the atomic plane, and k̄ = k`z. The anisotropy of the potential is signaled by the factor
k̄x in the second term of (1.15). This expression has a simple limit for values of k � 1/`z

Ũ(0) =
~2

m

√
8π
add

`z

(
3 cos2 Θ− 1

)
, (1.16)

which corresponds to the spatial average of the MDDI potential. An analogous calculation
in 3D yields an infinite value due to the long-range character of the potential [82]. An
additional difference with the 3D case [83] is that MDDI does not induce any dynamical
instability in a single-component planar system of bosons, as shown by Fisher [81]. By
considering the spatial average of the contact potential (2.6) in the quasi-2D regime, one
can interpret Eq (1.16) as a modification of the scattering length a12 with respect to its
3D bare value a0

12 by an amount

δa12(Θ) = add

(
3 cos2 Θ− 1

)
. (1.17)

Can one add up the scattering lengths a0
12 and δa12(Θ)?

In general, the scattering length associated to a pair-wise potential cannot be decomposed
as the sum of the scattering lengths computed for each term appearing in the potential. In
other words, the scattering length is not a linear function of the potential. Yet, this is true
within the Born approximation. One condition of applicability of the Born approximation
is the fact that the potential does not contain any bound state. However, this is absolutely
not the case of the inter-atomic potentials from which a0

12 can be deduced, which contains
tens of bound states. At this stage and contrary to Eq (1.17), there is no reason to
conclude that the effective scattering length accounting for MDDI can be written as a12 =
a0

12 + δa12(Θ).

In fact, this is still authorized and we now briefly explain why. The reasoning is made
of two steps. First, the length scale associated to the interatomic potential – with a van
der Waals tail in 1/r6 – is different from the length scale associated the MDDI, since the
first dominates at a short distance. For this reason, one can use the asymptotic form of the
zero-energy wave function associated to a0

12 when treating the effect of MDDI, for instance
through the Bethe-Peierls prescription [84,85]. Second, the potential associated to MDDI
is weak, and can be treated at the Born approximation level in a region where the van
der Waals potential can be neglected. Eventually, one finds that the modified scattering
length indeed writes as a12 = a0

12 + δa12(Θ).

Ramsey spectroscopy

We characterize the effect of MDDI using Ramsey spectroscopy, as presented in Sub-
sec 1.1.3. Here, the two identical pulses do not necessarily create equal-weight super-
positions of the basis state (|1〉, |2〉). These pulses are parametrized by the population
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Figure 1.14: Magnetic dipole-dipole interactions in 2D. (a) Clock shift versus imbalance
parameter f for various orientations of the magnetic field. (b) Ratio R defined in Eq (1.19),
showing the variation of a12 when varying the orientation of the magnetic field. The sine
fit furnishes a calibration of the various interaction parameters. Blue dots correspond
to the maximum density, while red squares are obtained at half density. Figure adapted
from [52].

imbalance f = (n1 − n2)/(n1 + n2) after the first transfer. For instance, f = 0 for a
balanced mixture, f = 1 for a pulse of area Ω t � π. We work in the deeply degen-
erate regime. Applying Eq (1.6) in this imbalanced case, one deduces that the resonant
frequency shift writes

∆ν =
~
m

n√
2π`z

[a22 − a11 + (2a12 − a11 − a22) f ] (1.18)

for an initial 2D density n. For a given orientation Θ of the magnetic field, we measure the
variation of ∆ν with respect to the imbalance f , and observe the expected affine behavior
(1.18), as shown in Fig 1.14(a). The change of slope observed when changing Θ (with a
fixed y-intercept) reflects the modification of a12. Up to an irrelevant minus-sign, the ratio
of the slope to the intercept of this line

R(Θ) =
2 a12(Θ)− a22 − a11

a11 − a22
(1.19)

should be independent of the density and is thus a robust observable. We plot the variation
of the measured ratio for different angles Θ in Fig 1.14(b) and confirm its insensitivity to
density. From a sinusoidal fit of R(Θ), we determine the values of a22 − a11 = −7.0(2) a0

and a0
12 − a11 = −2.0(1) a0. These are in fair agreement with the values (1.12). Further-

more, we checked that contrary to the 3D case, the effect of MDDI does not depend on
the size nor on the shape of the sample. This result holds as long as the horizontal size of
the system is much larger than the vertical confinement length `z.
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1.3 Conclusion

In this chapter, we have presented our experimental platform for preparing two-dimensional
Bose gases. We created a single slab of atoms from a 3D cloud using an optical accordion.
We also demonstrated our ability to prepare a system with an arbitrary geometry, thanks
to a digital micromirror device and grey-levels of intensity. Emphasis was then placed on
the two states which we manipulate in the rest of this work. In particular, we are able
to create spin superpositions by using spatially-resolved Raman transitions. The effect of
magnetic dipole-dipole interactions was also investigated. Although weak, these can dras-
tically modify the properties of our mixture due to the vicinity to the miscibility-threshold.
In particular, tuning a12 will allow us to test important properties of soliton physics in
Chapter 4.



Chapter 2

Description of a two-dimensional
Bose gas

In the previous chapter, we showed how to prepare a homogeneous planar Bose gas deep
in the quantum regime. The next step is to describe its main properties. For a large
phase-space density, Einstein [4] predicted that a non-interacting 3D bosonic system ex-
periences a phase transition characterized by the accumulation of particles in the state of
lowest energy. This is the celebrated Bose-Einstein condensation (BEC). Remarkably, the
addition of sufficiently weak interactions does not dramatically modify this picture and
can be captured in a mean-field approximation.

In Sec 2.1, we apply this mean-field approximation to describe the ground state of
a weakly-interacting 2D Bose gas. This allows us to introduce the celebrated nonlinear
Schrödinger equation (NLSE), also known as the Gross-Pitaesvkii equation (GPE) in the
context of superfluids. This equation is a standard model of nonlinear physics and will
be considered throughout this thesis. The dimensionality of a system can dramatically
affect its macroscopic behavior, especially the occurrence and the characteristics of phase
transitions. In Sec 2.2, we show that BEC does not occur in 2D at a non zero temperature,
but that a transition to a superfluid state still exists. In particular, this justifies the use of
a mean-field formalism even at low (but finite) temperature. The reader will find a more
exhaustive account in the review article [86] and the lecture notes [87].

2.1 Description at zero temperature

In this section, we describe the ground state of a weakly-interacting 2D Bose fluid at
zero temperature. We first derive the nonlinear Schrödinger equation (Subsec 2.1.1) and
discuss some properties that hold in any dimension (Subsec 2.1.2). Interestingly, there are
other features specific to the 2D case. In particular, extra symmetries come into play and
constrain the dynamics as well as the equilibrium properties, as shown in Subsec 2.1.3.

2.1.1 The nonlinear Schrödinger equation

The quantum problem

We consider a system of N � 1 bosons of mass m, in two dimensions. In this section, we
ignore any internal degree of freedom. The particles feel a trapping potential V (r) and
interact through a pairwise potential U(r − r′). In the language of first quantization, the

37



38 CHAPTER 2. DESCRIPTION OF A TWO-DIMENSIONAL BOSE GAS

corresponding Hamiltonian is given by

Ĥ =

N∑

i=1

[
p̂2
i

2m
+ V (r̂i)

]
+

1

2

∑

i 6=j
U(r̂i − r̂j) (2.1)

where r̂i and p̂i are the operators representing the position and the momentum of particle
i. Equivalently, one can switch to the second quantization formulation and write

Ĥ =

∫
d2r

[
~2

2m
∇Ψ̂†(r) · ∇Ψ̂(r) + V (r)Ψ̂†(r)Ψ̂(r)

+
1

2

∫
d2r′ Ψ̂†(r)Ψ̂†(r′)U(r − r′)Ψ̂(r′)Ψ̂(r)

]
. (2.2)

In this expression, Ψ̂(r) (resp. Ψ̂†(r)) is the field operator annihilating (resp. creating) a
particle at position r. Our goal is to describe the ground state |ΦN 〉 of the Hamiltonian
(2.2), under the constraint that |ΦN 〉 contains exactly N particles.

Weakly-interacting regime

In the following, the interaction potential U(r−r′) is assumed to be short-ranged and will
eventually be replaced by an effective potential accounting for the low-energy scattering
properties [85]. This substitution is possible when working in the low-temperature regime
in which collisions only affect particles with zero relative angular momentum, through the
so-called s-wave channel. This regime is reached when the thermal wavelength λth is much
larger than the characteristic range of the interactions. For 87Rb, this is given by the van
der Waals radius RvdW = 99.4 a0, a0 being the Bohr radius.

In a 3D situation, it is relevant in this low-temperature regime to substitute the full
inter-atomic potential by a peudo-potential Upp with zero range, which acts on a wave
function ψ as

Upp[ψ(r)] = g δ(r)
∂

∂r
[rψ(r)]

∣∣∣∣
r=0

. (2.3)

In this expression, the coupling parameter g = 4π~2a/m is set precisely to recover the
3D scattering length a of the full inter-atomic potential. The latter is related to the 3D
scattering cross-section through σc = 8πa2. Note that for the ground state levels of 87Rb
and at low magnetic field, the scattering length a ' RvdW is positive and the corresponding
interactions are effectively repulsive (g > 0). Importantly, the derivative term in Eq (2.3)
is useful only when wave functions present a singularity at the origin. It does not yield
any difference with respect to a pure contact potential in the case of functions regular at
the origin.

In 2D, there exists no such zero-range potential for quantum scattering problems. We
will discuss some consequences of this statement at the end of Subsec 2.1.3. Still, it is
allowed to use a 2D contact potential when studying the classical field problem associated
to Eq (2.2)

E[φ] =

∫
d2r

[
~2

2m
|∇φ|2 + V (r)|φ(r)|2 +

∫
d2r′ U(r − r′)|φ(r)′|2|φ(r)|2

]
, (2.4)

i.e. when one can neglect the operatorial nature of the field. This is the approach we will
follow in the next paragraph. We now explain which coupling parameter to choose in this
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case. We saw in the previous chapter that an effective 2D system is realized by imposing
a tight confinement along one direction of space, here the vertical direction z. The motion
along that direction is then frozen and occurs only in the perpendicular (x, y)−plane.
For deeply trapped atoms, the vertical confinement can be approximately described by
a harmonic potential, with angular frequency ωz. The tight-confinement condition then
writes

kBT and Ei/N � ~ωz (2.5)

with Ei/N the interaction energy per particle. In other words, the characteristic energies at
play should not allow the particles to populate the excited states of the vertical potential.
Note that most experiments work in the regime µ < kBT . When condition (2.5) is
fulfilled, the vertical state of the system is a Gaussian density distribution of extension
`z =

√
~/(mωz). In a situation where a mean-field treatment is possible, the macroscopic

wave function is regular everywhere and one can forget about the derivative term in
Eq (2.3). Integrating the resulting contact potential along z yields the following effective
2D contact potential

U(r) =
~2

m
g̃ δ(r) g̃ =

√
8π

a

`z
. (2.6)

associated to the dimensionless coupling strength g̃. We insist on the fact that this ex-
pression makes sense only for a classical field problem like (2.4). The weakly-interacting
regime in 2D corresponds to g̃ � 1 [86]. With our experimental parameters (a ' RvdW,
ωz/2π ' 4 kHz), one obtains g̃ ' 0.16. While the cloud is kinematically 2D, as ex-
pressed by Eq (2.5), collisions conserve their 3D character since a � `z, hence the name
of quasi-2D regime.

Hartree ansatz

As discussed by Petrov et al. [88], the ground state of a weakly-interacting 2D system is a
true condensate. This means that, at T = 0, a majority of the particles described by |ΦN 〉
are in the same quantum state, described by a single-particle wave-function φ(r). We get
a good description of |ΦN 〉 by using the so-called Hartree ansatz

〈r1, . . . , rN |ΦN 〉 ∝ φ(r1) · · ·φ(rN ), (2.7)

i.e. by assuming that all particles are in the same state. In particular, this prescription
amounts to neglecting all spatial correlations between particles. The macroscopic wave-
function φ will be normalized in the following way

∫
d2r |φ(r)|2 = N, (2.8)

such that |φ(r)|2 represents the particle density. We emphasize that the validity of (2.7)
holds for the ground state description valid at T = 0, and not at temperatures T > 0 a
priori. By computing the total energy 〈ΦN |Ĥ|ΦN 〉 with the Hartree ansatz, one obtains
the energy functional

E[φ] =

∫
d2r

[
~2

2m
|∇φ|2 + V (r)|φ(r)|2 +

~2

2m
g̃|φ(r)|4

]
, (2.9)

where we used the expression of the potential given in Eq (2.6). In this expression, the term∫
d2r |φ|4 does not yield any singularity. Note that we also used the following approximate
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relation N − 1 ' N assuming N � 1. The three terms in Eq (2.9) respectively give the
kinetic energy Ek, the potential energy Ep and the interaction energy Ei of the system.
We can now minimize (2.9) with respect to φ to get a description of the ground state.
To satisfy condition (2.8), we introduce a Lagrange multiplier µ and we add the following
term

−µN = −µ
∫

d2r|φ(r)|2 (2.10)

to the expression defining (2.9). µ represents the chemical potential ∂E/∂N of the system.
The modified functional can now be minimized in the standard manner and one gets the
stationary nonlinear Schrödinger equation

− ~2

2m
∇2φ+ V (r)φ+

~2

m
g̃|φ|2φ = µφ. (2.11)

Multiplying Eq(2.11) by φ∗(r) and integrating over the full plane leads to the following
remarkable relation, valid in any dimension

−µN = Ek + Ep + 2Ei = E + Ei. (2.12)

Time-dependent formulation

We now derive the equation describing the dynamics of the macroscopic wave-function. We
change notation for this time-dependent field ψ(r, t). An evolution equation generalizing
(2.11) can be obtained by considering the following Lagrangian

L[ψ] =

∫
d2r

i~
2

(
ψ∗
∂ψ

∂t
− ψ∂ψ

∗

∂t

)
− E[ψ], (2.13)

where ψ∗ represents the complex conjugate of ψ. Looking for the mimimum of the ac-
tion S[ψ] =

∫
dtL[ψ] with given initial and final configurations, this leads to the time-

dependent NLSE

i~
∂ψ

∂t
= − ~2

2m
∇2ψ + V (r)ψ +

~2

m
g̃|ψ|2ψ. (2.14)

Importantly, the evolution under Eq (2.14) conserves both the energy E and the atom
number N . As usual, from a solution φ(r) of the stationary equation (2.11), one can form

a time-dependent function ψ(r, t) = φ(r) e−
iµt
~ solution of Eq (2.14), µ playing the same

role as the energy for the linear Schrödinger equation.

2.1.2 Ground state and dynamics

Hereafter, we present various properties of the NLSE solutions. These can be generalized
in any dimension D, and a more exhaustive account can be found in [89]. We focus
on the 2D homogeneous case which is relevant for our experiments. In practice, this is
achieved by considering a system confined in a large and flat potential V (r) with sharp
edges (vanishing boundary conditions). Alternatively, it is often easier to consider periodic
boundary conditions for theoretical or numerical calculations, as long as one focuses on
properties not sensitive to the presence of edges.
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Figure 2.1: (a) Density profile in the Thomas-Fermi regime (blue solid line) compared to
the ground-state density profile in the absence of interactions (green dashed line). (b)
Bogoliubov dispersion relation (blue solid line), together with the phonon regime at low
k’s (green dotted line) and the regime of large k’s (red dashed line) which resembles the
free particle spectrum (up to an additive constant). Momenta are expressed in units of
kc = 1/ξ.

Thomas-Fermi regime

Let us determine the equilibrium properties of the system in a box potential. Deep in the
bulk, we study the situation in which one can neglect the kinetic term of Eq (2.11) with
respect to the nonlinear term. This leads to the important relation

µ =
~2

m
g̃ n, (2.15)

and the density n = |φ|2 is thus uniform far from the edges. This is the so-called Thomas-
Fermi approximation. Close to the boundaries, one cannot neglect the kinetic term and
the density |φ|2 varies from n to zero over a characteristic distance

ξ ≡ 1√
2g̃n

, (2.16)

called the healing length, obtained by balancing the kinetic and interaction energy cost in
the transition region. With our typical experimental parameters (g̃ ' 0.16, n ' 100/µm2)
one can estimate ξ ' 0.2 µm. In Fig 2.1, we show a density-cut obtained after solv-
ing Eq (2.11) in a rectangular system with vanishing boundary conditions. The profile is
almost uniform except when approaching the box edges. For comparison, we also repre-
sented the ground state of the system in the absence of interactions – i.e. a sine square
vanishing at both edges.

There exist other stationary solutions to Eq (2.11) with an energy strictly larger than
the ground state, thus being metastable. In 2D and in 3D, important examples are the
vortex states and ring solitons in a disk box potential with axial symmetry [90]. Vortex
states feature a phase winding (multiple of 2π) around the origin, and ring solitons combine
this vorticity with alternating rings of high and low densities. In 2D, these solutions take
the following form using polar coordinates

φ(r, θ) = R(r) eisθ, (2.17)
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where s ∈ Z∗. The radial part R(r) of the wave-function must vanish at r = 0 since the
phase is ill-defined at this position, and the healing length gives the characteristic radius
of the corresponding density depletion.

Bogoliubov excitations

Elementary excitations above the ground state can be determined via a linear stability
analysis of Eq (2.14). In the uniform case, this leads to the celebrated Bogoliubov equations
[91] involving complex frequencies ω̄k = ωk + iγk and associated to plane waves with wave
vector k of norm k. In the case of repulsive interactions, one obtains only real frequencies
(γk = 0) which satisfy the following dispersion relation

~ωk =
~2

2m

√
k2 (k2 + 4g̃n). (2.18)

In this expression, the healing length provides a typical momentum separating the free-
particle excitations (k � kc ≡ 1/ξ), for which the dispersion relation (2.18) is quadratic,
from the phonon excitations (k � kc), for which it is linear. The corresponding phonons
propagate at the Bogoliubov speed of sound c0 defined such that ωk ' c0k, yielding

c0 =
~
m

√
g̃n =

~√
2mξ

. (2.19)

With our experimental parameters, one can estimate c0 ' 3 mm·s−1. Note that c0 gives
an upper bound to the critical velocity for a superfluid flow, based on Landau’s criterion
[92]. These sound modes were observed experimentally in a 2D configuration by several
groups [93–95]. In the finite temperature case, however, the generalization of Bogoliubov’s
theory in two dimensions is not straightforward, as explained by Mora & Castin [96].

Hydrodynamic formulation

We reformulate the time-dependent equation (2.14). Using the density-phase representa-
tion ψ =

√
n(r) eiθ(r), we consider the two variables

n(r) v(r) =
~
m
∇θ, (2.20)

where v can be seen as an irrotational velocity field. Due to the gradient term in (2.20)
and the fact that θ is single-valued, the circulation of v along any closed contour Γ must
be quantized ∫

Γ
d` · v =

h

m
s. s ∈ Z (2.21)

Using the so-called Madelung transform (2.20), Eq (2.14) can be re-expressed as





∂n

∂t
= −∇ · (nv)

∂v

∂t
=∇

[
−1

2
v2 − V (r)− ~2

m2
g̃ n+

~2

2m2

∆
√
n√
n

]
.

(2.22)

where the first line is simply a continuity equation ensuring the conservation of the atom
number. The second equation can be seen as a modified Euler equation. These hydrody-
namic equations further simplify in the Thomas-Fermi regime where the last term of the
second equation – known as the quantum pressure – can be neglected. In this case, the
motion of a condensate can be described by classical, irrotational hydrodynamics.
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2.1.3 Symmetries in two dimensions

In general, physical models come with a certain number of symmetries. These symmetries
usually constrain the possible behaviors and can greatly simplify the study of the associated
physical phenomena. For example, the celebrated theorem established by Noether [97]
shows that a Hamiltonian system with a continuous symmetry features a corresponding
conserved quantity. In the context of partial differential equations, these symmetries
formally correspond to transformations linking different solutions of the same equation.
As simple examples, one can derive the conservation of energy from the invariance of
Eq (2.14) with respect to a time translation, while the conservation of the norm (2.8) is
associated to the invariance of Eq (2.14) under the transformation ψ 7→ eiϕψ with phase
ϕ.

Symmetries of the 2D NLSE are well-known and were studied extensively during the
thesis of Raphaël Saint-Jalm [50]. In the free-space case or in a harmonic potential, the
NLSEs written in various dimensions D all share a certain group of symmetries. However,
the two-dimensional case is particular as it comes with an additional set of transformations
whose group is isomorphic to SL(2, R) [98]. In the following, we discuss the origin and
some consequences of this dynamical – or hidden – symmetry. We first focus in the free-
space case (with an external potential V = 0) which is easier to grasp and relevant for our
experiments. For the presentation to be self-contained, the corresponding transformations
are also listed and briefly described in Appendix A.

Scale invariance

Among these transformations, the most important of them is certainly the following dila-
tion by a factor λ, which we rewrite hereafter

Dλ [ψ] (r, t) =
1

λ
ψ

(
r

λ
, t

λ2

)
. (2.23)

Using this transformation, one can deduce a new solution Dλ [ψ] of Eq (2.14) from a
previously known one ψ. This procedure can also be applied to the stationary solutions
obtained from Eq (2.11), for which the transformation (2.23) only affects space. The
corresponding property is called scale invariance, since the dynamics do not depend on
the scale over which it happens (up to a simple rescaling of time). This phenomenon
arises because of the particular form of the “contact-potential” in 2D, which scales exactly
like the kinetic operator ∇2 in a dilation operation. In more precise terms, this happens
because the interaction energy ∝

∫
d2r |φ|4 and the kinetic energy ∝

∫
d2r |∇φ|2 for a

classical field scale in the same way under (2.23), both being multiplied by a factor 1/λ2.
For the same reason, one cannot form a quantity homogeneous to a length scale based on
the model (2.14) solely1 when V = 0.

These conclusions hold also for a 1/r2-interaction potential, a model known as the
Calogero-Sutherland model [99]. This model is well-known for being exactly solvable in
1D, e.g. using the Bethe-ansatz [100]. Finally, the spin-1/2 unitary Fermi gas in 3D is
another realization of a scale invariant system [101, 102]. In this important case, the s-
wave scattering length a is infinite and does not appear anymore in the description of the
system. Note that this does not apply to the 3D unitary Bose gas as three-body physics -
the existence of Efimovian states with universal properties - then come into play [103,104].

1There is no contradiction between this statement and the introduction of a healing length ξ in Eq
(2.16) as the latter is related to a particular system (a homogeneous system with density n).
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Figure 2.2: Dynamical symmetry. (a) Evolution of the RMS size σ2 in a harmonic trap
with angular frequency ω = 2π · 19.3(1) rad/s, starting from a homogeneous square (b).
The oscillations are fitted with a cosine function and an additional linear slope to account
for losses. The fitted frequency ω′ = 2π · 38.5(1) rad/s agrees well with the frequency 2ω
deduced from Eq (2.25). The density profiles corresponding to the times indexed by (b, c,
d, e) are shown on the right. Figure adapted from [49].

Variance identity

An important consequence of the dynamical symmetry described by the SL(2,R) group
is the variance identity, also known as the virial theorem. In the absence of an external
potential, this identity relates the evolution of the root-mean-square (RMS) size σ to the
total energy E

d2σ2

dt2
=

4E

m
σ2 ≡ 1

N

∫
d2r n(r, t) r2. (2.24)

In two dimensions and in free space, a stationary state is thus a zero-energy state. Note
that when interactions are repulsive (g̃ > 0), there exists no stationary and normalizable
state for which the definition of σ makes sense. Stationary states can only be realized
with the help of an external potential. Actually, the relation (2.24) is always true for the
linear Schrödinger equation in any dimension D, but it is maintained in the nonlinear case
only for D = 2. The variance identity will be our main test-bed of scale invariance in
Chapter 4.

Dynamics in a harmonic trap

In the presence of a harmonic potential with angular frequency ω, scale invariance is
violated. However, there is still a symmetry group isomorphic to SL(2, R) which has
distinctive consequences on the dynamics [105, 106]. For example, the variance identity
(2.24) is modified and one can verify that

d2σ2

dt2
+ 4ω2σ2 =

4E

m
. (2.25)

The size σ2 thus oscillates at angular frequency 2ω [106] – or with a period T/2, where T =
2π/ω is the period of the classical motion in the trap2. This breathing mode was observed

2This is also the period for the center-of-mass motion, according to Kohn’s theorem [107].
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Figure 2.3: Breather of the 2D NLSE. Evolution of an equiliteral triangle (from the left,
first picture) in a harmonic trap. The triangle is inverted after a quarter of period of the
trap (third picture). It is very close to the initial distribution after half a period (fourth
picture). Figure adapted from [49].

experimentally using an elongated 3D Bose gas [108] and a 2D Fermi gas [109], and also
recently using a multitude of initial states on our setup [49], see Fig 2.2. Importantly, one
can also relate the dynamics in a harmonic trap with the one happening in free space
through the transformation (A.9) reported in Appendix A, as tested by Saint-Jalm et
al. [49].

Breathers

These well-established facts do not constrain all the possible behaviors of a system de-
scribed by the 2D NLSE. In [49], we found that the evolution of certain wave packets in a
harmonic trap is periodic. Such periodic solutions of a nonlinear wave equations are called
breathers. These findings concern the uniform equilateral triangle3 featuring a motion of
period T/2. The evolution of a triangle is shown on Fig 2.3. The periodicity was confirmed
by numerical simulations of the 2D NLSE. Note that the evolution of an initially uniform
disk was also explored in [49]. However, refined numerical simulations seem to show that
the uniform disk is not a breather of the 2D NLSE, although it features a nearly periodic
evolution at short times. This situation was studied recently by Torrents et al. [110].

The periodicity of the triangular wave-packet in a harmonic trap has been rigorously
elucidated by Shi et al. [111], thanks to a mapping between the non-interacting (hence
linear) Boltzmann equation and hydrodynamical equations4. Such a mapping is usually
possible under local thermal equilibrium, i.e. when the collision rate is high-enough. How-
ever, it may also be accidentally valid despite the absence of interactions. Shi et al. [111]
explicitly showed that the triangle dynamics fall into that category. Olshanii et al. [112]
have interpreted this dynamics as the periodic formation of Damski shock-waves [113].

Quantum anomaly

As claimed earlier, the use of a contact potential for describing interactions in 2D must be
limited to the weakly-interacting regime g̃ � 1. In this case, the mean-field approximation

3Experimentally, such a system is prepared by reaching equilibrium in a uniform box potential, deep
in the Thomas-Fermi regime (i.e. with a healing length ξ negligibly small with respect to the size of the
system).

4As recalled after introducing Eqs (2.22), the NLSE can be mapped to classical hydrodynamical equa-
tions for an irrotational flow in the Thomas-Fermi regime.
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can describe the ground state with good accuracy. However, while the formulation of the
NLSE (2.14) is always mathematically acceptable, the quantum treatment of scattering
is ill-defined for such a contact potential. Indeed, one can show that the low-energy
limit for the scattering in 2D introduces a length scale, the so-called 2D scattering length
a2D [87,114,115]. How does this translate in a geometry with reduced dimension? Petrov
& Shlyapnikov [115] could relate this quantity to the parameters of the full 3D problem

a2D ∼ `z exp

(
−2π

g̃

)
g̃ =
√

8π
a3D

`z
. (2.26)

The introduction of a2D is in direct contradiction with the scale invariance discussed above,
and the symmetry initially present in the classical theory is thus broken by quantum
mechanics. Such a situation is known as a quantum anomaly [116]. In practice, due to the
exponential term, the weakly-interacting regime associated to g̃ � 1 implies that a2D is so
small (with respect to any realistic atomic length scale) that a2D has no concrete physical
meaning. Scale invariance is then effectively realized in this regime.

How can one investigate the possible breaking of scale invariance for larger values of
g̃? Experimentally, this regime can be reached using a Feshbach resonance, for instance.
Olshanii et al. [117] have proposed an experimental scheme for evidencing this phenomenon
as a shift of the breathing mode frequency predicted to be equal to 2ω by the scale-invariant
theory (see Eq (2.25)). Related experiments have been performed since then, allowing the
observation of this anomalous shift in the case of a 2D-Fermi gas [118], as well as in the
2D-3D crossover with a unitary Fermi gas [119].

In this section, we have shown how to describe a weakly interacting two-dimensional
Bose gas at zero temperature through the nonlinear Schrödinger equation. In the following,
we treat the case relevant experimentally of a non-zero temperature.

2.2 Description at finite temperature

We now account for a finite temperature in the description of a two-dimensional Bose gas.
Our main question is the following: is the mean-field theory developed in the previous
section still relevant when T > 0, i.e. when the system is not in its ground state but
may present fluctuations? It is well-known that the accumulation of particles in a single
state, i.e. Bose-Einstein condensation, allows for such a simplification. However, it is also
well-known that BEC cannot occur in an ideal two-dimensional system at T > 0. It is
thus necessary to study the effect of interactions on the thermodynamics of the 2D Bose
gas.

To give a simple insight over this vast program, we extend the concept of classical
field theory to a finite temperature situation and formulate the question of Bose-Einstein
condensation in this formalism (Subsec 2.2.1). Although BEC does not occur in the 2D
interacting case, we show that both phase and density fluctuations are still strongly re-
duced for large phase-space densities, allowing for the presence of a superfluid fraction
(Subsec 2.2.2). Finally, we remind that the appearance of this superfluid fraction is linked
to a particular phase transition, the so-called Berezinski-Kosterlitz-Thouless mechanism
(Subsec 2.2.3).
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2.2.1 Classical field formalism

Description of thermal equilibrium

In general, a system at thermal equilibrium is described by a density matrix ρ̂ in which
the populations of eigen-states depend only on the temperature T . For example, if one
uses the grand-canonical ensemble, this density matrix can be expressed as

ρ̂ = Z−1 exp

(
−Ĥ − µN̂

kBT

)
Z = Tr

[
exp

(
−Ĥ − µN̂

kBT

)]
, (2.27)

where Ĥ is the quantum Hamiltonian written in (2.2), µ is the chemical potential and
N̂ is the atom number operator. Formally, one could solve the problem by diagonalizing
the argument in the exponential of (2.27) to deduce the corresponding populations ∝
exp

(
−(E

(i)
N − µN)/kBT

)
. Because of the interaction term in (2.2), however, the eigen-

states of ρ̂ involve a priori entangled many-body states living in a huge Hilbert space,
precluding any analytical (even numerical) resolution in most cases.

The classical field formalism relies on a two-fold assumption [120–122]. First, similarly
to Sec 2.1, most atoms occupy a same single-particle state φ. In other words, each eigen-
state of ρ̂ writes like Eq (2.7) for various φ’s. Second, one can neglect the granularity of
the quantum field – associated to the number of particles, excitations – and adopt classical
equations for the fluctuating field φ. The problem of thermal equilibrium is thus reduced
to the determination of the probability distribution P[φ] of observing the field φ. Physical
quantities can then be evaluated through expressions of the type

〈Ô〉 = Tr
(
Ôρ̂
)
'
∫
D[φ]P[φ]O[φ], (2.28)

where O is the classical counterpart of some quantum observable Ô, and
∫
D[φ] indicates

an integral over all configurations φ.

Note that in most cases, classical field theories suffer from divergences when account-
ing for short-scale modes, a problem analogous to the ultra-violet (UV) catastrophe for
the black-body radiation. Such ultra-violet (UV) divergences come from high-energy de-
grees of freedom not being quantized. In practice, these divergences can often be cured
by introducing some UV-cutoff at short scales. A natural choice for this cutoff is the
thermal wavelength λth. Indeed, modes with an energy lower than the thermal energy
have appreciable populations and satisfy condition (2), while this becomes less and less
true for higher-energy modes. However, physical quantities should not be sensitive to the
precise choice of the cutoff, as long as one is not interested in physical properties at the
corresponding scale.

In the following, we thus forget about the density matrix ρ̂ given in Eq (2.27) and
use a description based on a classical fluctuating field φ(r). At thermal equilibrium, the
behavior of the system is then fully determined by the energy functional

E[φ] =

∫
d2r

[
~2

2m
|∇φ|2 + V (r)|φ(r)|2 +

~2

2m
g̃|φ(r)|4

]
, (2.29)

and the temperature T for the modes of length scale & λth.
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BEC as a spontaneous symmetry breaking

We discuss how to translate the notion of Bose-Einstein condensate in the vocabulary of
classical field theory. In the density-phase representation already considered in Eq (2.20),
one writes the fluctuating field as

φ =
√
n eiθ. (2.30)

As originally formulated by Bogoliubov [91], the presence of a BEC (e.g. in dimension
D = 3) is associated to a density distribution with strongly reduced density fluctuations,
together with a spatially-locked phase field θ(r) which does not fluctuate even over large
distances. This prescription – i.e. the choice of a particular phase θ – breaks the U(1)-
symmetry of the model, associated to the transformation φ 7→ eiθφ [123]. Moreover, the
chosen phase (defined with respect to some arbitrary convention) will differ randomly from
shot to shot.

Long-range order

The property discussed above defines the onset of long-range order (LRO) for the order
parameter φ. To be more quantitative, let us introduce the (reduced) first-order correlation
function for a homogeneous system5

g1(r1, r2) ≡ 1

n
〈φ∗(r1)φ(r2)〉, (2.32)

In reality, g1 is only a function of the distance r = |r1 − r2| because of homogeneity
and isotropy, so that we write g1(r) in the following. What is the physical meaning of
g1(r)? Since the system is homogeneous, the modulus of φ will be the same everywhere,
on average. Knowing a value of φ at position r1, g1(r) measures the relative values
taken by φ at the distant point r2. Anticipating the next discussions, we see that, if one
forgets about density fluctuations, g1(r) is a convenient tool for quantifying the phase
fluctuations between two distant points. g1 should thus take very small values whenever
the quantities φ(r1) and φ(r2) are statistically independent. On the contrary, the classical
field is spatially-coherent when g1 takes values of order unity [124,125]. Like in optics, the
presence of spatial coherence allows the observation of interference effects.

As formulated by Penrose & Onsager in 1956 [126], the presence of a BEC in an
infinite medium is indicated by a non-zero limit of g1 for large separations, a property
known as off-diagonal LRO6. This is for example realized in the 3D-case below the critical
temperature for BEC.

2.2.2 Description at low temperature

Freezing of density fluctuations

In any dimension, the interaction energy becomes dominant for large phase-space densities.
Density fluctuations then come with a high cost and are strongly reduced [127–129], as

5In the quantum formalism, g1 is defined as

g1(r1, r2) ≡ 1

n
〈Ψ̂†(r1)Ψ̂(r2)〉, (2.31)

where the field operators Ψ̂, Ψ̂† were introduced in Subsec 2.1.1.
6In fact, an equivalent definition of g1 is based on the off-diagonal elements of the density matrix

〈r′|ρ̂|r〉.
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observed experimentally in non-uniform systems [68, 130, 131]. This quasi-condensate or
pre-superfluid regime can be understood as a state with a fixed density smaller than n
and a fluctuating phase θ. Traditionally, density fluctuations are characterized using the
density-density correlation function

g2(r1, r2) ≡ 1

n2
〈n(r1)n(r2)〉, (2.33)

which depends on r = |r1 − r2| only, and quantifies the probability to detect a particle at
position r1 knowing that another particle has been detected at position7r2. In particular,
g2(0) measures the probability to detect simultaneously two particles at the same position.
For a random (Poissonian) distribution of particles, one can show that g2(0) = 1. A value
of g2(0) > 1 (resp. g2(0) < 1) thus indicates a bunching (resp. an antibunching) tendency
of these particles. The ideal thermal Bose gas is characterized by a value g2(0) = 2
(obtained using the quantum definition (2.34)), while a quasi-condensate should exhibit
reduced density fluctuations associated to g2(0) = 1, the results being the same for a true
BEC.

Importantly, g2(0) is generically ill-defined for an interacting quantum fluid. Indeed,
g2(r) is expected to diverge as ln2 r at short distance, in 2D [132]. A more rigorous
way to study density fluctuation relies on the so-called Tan’s contact, first introduced by
Tan [133–135] as a proxy for characterizing the tails in the momentum distribution of an
interacting two-component Fermi gas. Tan’s contact also gives information on pair corre-
lations. During this thesis, we measured the two-body contact of a weakly-interacting 2D
Bose gas across the superfluid phase transition [51]. This work has been reported in Ap-
pendix H, and confirms that density fluctuations are strongly reduced at low temperature
in our system. Our next concern is thus the freezing of phase fluctuations quantified by
the first-order correlation function g1

Mermin-Wagner-Hohenberg theorem

In 2D and without interactions, g1 decays fast and vanishes at a large distance whatever
the temperature T > 0, in line with the absence of BEC reminded above. The character-
istic decay length ` of g1 – or coherence length – is given by λth in the classical regime
D � 1. For a system in dimension D < 3, Peierls [136] pointed out in 1935 that self-
ordering is seriously hindered by thermal fluctuations. He was then studying the physics
of crystallization. Following the work of Bogoliubov [137] and his famous k−2−theorem,
Hohenberg [138] and Mermin & Wagner [139] simultaneously established the following
theorem: for a system of dimension D < 3 with short-range interactions, there cannot
be any phase transition involving the spontaneous breaking of a continuous symmetry at
T > 0. The Mermin-Wagner-Hohenberg (MWH) theorem thus forbids genuine BEC in
the weakly-interacting 2D Bose fluid. Nevertheless, one should keep in mind that, even
in the ideal case, coherence can still establish over a finite size sample for a large enough
degeneracy [86,87].

7When considering classical fields, there is no need for normal-ordering in Eq (2.33) since all quantities
commute. In the quantum case, g2 is defined as

g2(r1, r2) ≡ 1

n2
〈Ψ̂†(r2)Ψ̂†(r1)Ψ̂(r1)Ψ̂(r2)〉, (2.34)

where normal ordering allows us to get rid of a δ(r1 − r2) term appearing when writing directly Eq (2.33)
with quantum operators. The latter is the expression of quantum shot-noise.
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The MWH theorem not only concerns the weakly-interacting 2D Bose fluid, and we
now list a few other models with similar interactions and symmetries. For example, the
XY–model in 2D describes planar ferromagnets composed of rigid magnetic moments
S disposed on a regular lattice. The corresponding Hamiltonian includes only nearest-
neighbor interactions of the form S · S′. This model clearly features a U(1)-symmetry
associated to a simultaneous rotation of the spins in the lattice plane. The ground state
of the system is obtained when all spins are parallel to each other. However, the MWH
theorem precludes any long-range ordering at finite temperatures, and thus the existence
of true 2D ferromagnets. The concepts developed below, in particular in Subsec 2.2.3, are
also relevant to the study of quasi-crystals in 2D [140], the 2D Coulomb gas [141], thin
liquid Helium films [142], exciton-polariton fluids [143] and 2D arrays of Josephson-coupled
BECs [144].

Quasi-long-range order

In the low-temperature phase, only long-wavelength phase perturbations (phonons) are
significant [86]. In this regime, Bogoliubov’s theory can be applied and leads to the
following form for the first-order correlation function

g1(r) = 〈exp [i (θ(r2)− θ(r1))]〉 ' exp
[
−〈θ(r2)− θ(r1)〉2

]
. (2.35)

Evaluating the quantity 〈θ(r2) − θ(r1)〉2 (which requires a UV cut-off, typically at λth)
shows that the behavior of g1 is very different from the high-temperature case, in which we
expect g1 to decay exponentially. Indeed, for T < Tc, g1 is found to decay as a power-law

g1(r) ∼
(
λth

r

)α
α =

1

Ds
(2.36)

Such a slow decay of correlations is the defining feature of quasi-long-range order (QLRO).
It allows phase coherence to establish over macroscopic distances, without contradicting
the MWH theorem. This phenomena, which can be seen as a manifestation of phase
stiffness, allows the appearance of a superfluid fraction [145]. This shows that the 2D
weakly-interacting Bose gas is indeed superfluid at low temperature, in spite of MWH
theorem.

2.2.3 Berezinskii-Kosterlitz-Thouless transition

What is the main mechanism limiting phase ordering? And how does the weakly-interacting
2D Bose gas evolves from a normal fluid at low phase-space densities to a superfluid sys-
tem at high phase-space densities? Indeed, we have seen that there is no Bose-Einstein
condensation in this case. The answers to these questions were given by Thouless &
Kosterlitz [146] and Berezinskii [147] in 1972, through the so-called Berezinski-Kosterlitz-
Thouless (BKT) mechanism.

A topological phase transition

We start by explaining which mechanism limits phase ordering in the system. Vortices
have been introduced in Subsec 2.1.2. For any contour rounding the center of a vortex, the
phase field smoothly changes by an integer multiple of 2π. This is an intrinsic property
of the topology of the phase field θ(r), hence the name of topological defects. Because of
the phase winding, isolated vortices induce large variations of the phase field over small
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Figure 2.4: Superfluid fraction ns/n determined by Prokof’ev & Svistunov [148] for g̃ =
0.16. The universal jump of ns at the critical point is indicated by the red line.

distances. Strictly speaking, a vortex is also associated to a zero of the density field where
the velocity field gets ill-defined. This density depletion is limited to the vortex core and
extends approximately over a size given by the healing length ξ.

Remarkably, there exists a critical temperature Tc below which isolated vortices are not
thermodynamically favored in the system. While these isolated vortices proliferate in the
high-temperature phase and destroy phase ordering, they can only survive in the form of
bound vortex-antivortex pairs below Tc. Such pairs do not perturb significantly the phase
field on large distances. In this case, the thermodynamic properties of the system are
essentially determined by phonon modes, and lead to the quasi-long-range order presented
in Subsec 2.2.2. This example of topological phase transition allows the appearance of a
superfluid fraction ns. Across this transition, all thermodynamic quantities are regular,
but the superfluid phase-space density Ds = nsλ

2
th exhibits a universal jump from 0 to 4

at the critical point. In particular, this means that the exponent α introduced in Eq (2.36)
and characterizing the decay of g1 is comprised between 0 and 1/4.

This last universal relation does not provide the value of Tc in terms of n and g̃ since
the superfluid density ns is not easily accessed. Using Monte-Carlo simulations, Prokof’ev
& Svistunov [148] have established a quantitative connection between the critical value
Dc of the total phase-space density D, and the coupling strength g̃. Their result writes

Dc = ln

(
ξD
g̃

)
, (2.37)

where ξD = 380(3) is a number determined numerically. They also provided the superfluid
fraction ns/n accross the BKT transition, see Fig 2.4. Note that for temperatures T/Tc <
0.2 relevant for this work, the system is almost entirely superfluid.

Some experimental investigations

The BKT mechanism was first demonstrated experimentally by Bishop & Reppy [142] in
1978 during their study of two-dimensional liquid 4He films with torsion pendula. In this
pioneering work, Bishop & Reppy indirectly determined ns through the reduction of the
moment of inertia of a torsion pendulum under the critical temperature. In cold atom
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physics, Hadzibabic et al. [149] were first to observe quasi-coherence on a trapped 2D Bose
gas at low temperature together with the onset of proliferation of free vortices. There has
been a proposal to determine ns by measuring the response of the system to a rotation
simulated using an artificial gauge field [150, 151], though not implemented yet. Besides,
Christodoulou et al. [95] determined the superfluid density through their measurement of
the sound velocity across the BKT transition.

A robust characterization of the decay of g1 across the BKT transition should discrim-
inate between an exponential and an algebraic behavior when crossing the critical point,
and should also test the value for the exponent α defined in (2.36). Despite remarkable
attempts using various platforms (e.g. [152, 153]), such a characterization has been elu-
sive until the very recent work of Sumami et al. [154]. Indeed, Sumami et al. indirectly
determined the behavior of g1 in the homogeneous case by performing matter-wave in-
terferometry on a system of two independent and harmonically trapped Bose gases. An
analogous study with a homogeneous system has been reported in the thesis of Raphaël
Saint-Jalm [50], although not published. This protocol might provide an even more strin-
gent test of the BKT theory.

2.3 Conclusion

We have introduced the nonlinear Schrödinger equation describing the ground state of
a two-dimensional Bose gas in the weakly-interacting regime. While some properties of
this equation are relevant in any dimension, there are features specific to the 2D case
due to an additional dynamical symmetry. This leads to spectacular phenomena such as
the existence of breathing solutions in spite of the nonlinear character of the equation.
We also presented some features going beyond the mean-field description. In the second
section, we briefly discussed the main arguments justifying the use of the NLSE even at
finite temperature. In the next chapter we will see which interesting properties emerge
from the 2D NLSE with attractive interactions.



Chapter 3

Physics of Townes soliton

Solitons are fundamental objects in the study of nonlinear phenomena. They are encoun-
tered in a broad range of fields, including photonics, hydrodynamics, condensed matter,
cosmology and high-energy physics [13]. For our purpose, solitons – or solitary waves1–
can be defined as localized stationary solutions of nonlinear wave equations.

Why considering nonlinear models? As long as a linear description is adequate, wave
propagation is generically affected by dispersion, i.e. the fact that the phase velocity de-
pends on the wave’s frequency. In a more intuitive fashion, dispersion ultimately provokes
the spreading of a wave packet in time or space. In some cases, however, nonlinearities
cannot be neglected. A nonlinear contracting effect may then compete with the disper-
sive behavior. When these two mechanisms exactly compensate each other, one obtains
a self-bound solution – a soliton – often with fascinating properties. Solitons were first
introduced in the study of one-dimensional problems where some exact analytical solu-
tions could be exhibited. They were found to be easily created and remarkably stable.
Extensions to higher dimension soon revealed dramatically different behaviors, such as
instabilities and wave collapse.

In this chapter, we discuss the existence and the stability of solitons, laying the foun-
dations for the results of Chapter 4. The nonlinear Schrödinger equation (NLSE) with
repulsive interactions was presented in Chapter 2. In the following, we will study the case
of attractive interactions and its solitonic solutions (Sec 3.1), in particular in two dimen-
sions. The 2D NLSE is known to host the celebrated Townes soliton (Sec 3.2), a stationary
but unstable solution of this equation. In fact, we show that under certain circumstances,
solutions of the 2D NLSE dynamics can collapse in a finite time (Sec 3.3). Finally, we
discuss a recent series of experiments performed by Chen & Hung [46,47] which show the
appearance of solitary waves in an attractive 2D Bose gas (Sec 3.4).

3.1 Solitons of the nonlinear Schrödinger equation

In this section, we introduce the various NLSE solitons. We do not dig too much into the
mathematical details and rather give some phenomenological arguments. One-dimensional
solitons were first discovered in the context of the Korteweg-de Vries equation, before being
exhibited for the 1D NLSE (Subsec 3.1.1). In higher dimension, stationary solutions are
more fragile than in 1D, as discussed in Subsec 3.1.2.

1The distinction between the notions of soliton and solitary wave is discussed in Subsec 3.1.2. Somewhat
imprecisely, we will often use these two expressions indifferently.
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3.1.1 Solitons in one dimension

Historical background

The first detailed report of a solitonic behavior dates back to the nineteenth century. In
1845, Russell [11] described the course of a wave of translation or large solitary elevation
in a narrow and shallow channel, over a few kilometers. This discovery also brought some
controversies about the possibility of such a phenomenon. In particular, the soliton celerity
was claimed to be larger than the one of gravity waves c0 obtained in the linear regime. At
the end of the nineteenth century, Korteweg & de Vries [155] derived the model equation
(KdV) for the propagation of small deformations in a shallow channel

1

c0

∂η

∂t
+
∂η

∂x
+

3

2h
η
∂η

∂x
+
h2

6

∂3η

∂x3
= 0. (3.1)

In this nonlinear partial differential equation, η(x, t) stands for the elevation of the surface
with respect to its rest value h, x counts the position along the canal, and t is the time2.
The linear gravity-wave celerity writes c0 =

√
gh, with g the acceleration of gravity. The

first three terms of Eq (3.1) represent convection in 1D, while the last term has a dispersive
character.

Remarkably, Eq (3.1) admits the following exact solution

η(x, t) = η0

[
cosh

(√
3η0

h

x− vt
2h

)]−2

v = c0

(
1 +

η0

2h

)
(3.3)

which describes the propagation of a localized elevation of maximum height η0 at a constant
velocity v > c0. Solution (3.3) is thus a supersonic excitation of Eq (3.1). For this reason,
it is intrinsically a nonlinear phenomenon, i.e. it cannot be obtained as a solution of the
corresponding linear theory. Tidal bores (mascarets in French) and tsunamis are concrete
illustrations of solitonic propagation.

The special status of the KdV equation and its shape-maintaining solution (3.3) was
uncovered in 1965. A decade earlier, Fermi et al. [156] numerically simulated the evolution
of a 1D-chain of particles, where nearest neighbor interactions were imposed by a harmonic
plus a simple perturbing potential (e.g. linear, cubic). The harmonic case is exactly
solvable. Indeed, the evolution can then be decomposed into independent modes oscillating
with a well-defined frequency. However, the perturbed cases are not. By tracking the
spatial Fourier components of this chain under simple initial conditions, Fermi et al. did
not observe the equipartition of energy between modes which was expected at long times,
a characteristic of thermal equilibrium. Quite the contrary, the system showed an almost
periodic evolution. This became known as the Fermi-Pasta-Ulam (FPU) problem.

In 1965, Zabusky & Kruskal [12] re-derived KdV as an effective description for small
amplitude waves in the FPU problem. Through numerical simulations, they noticed that
a large class of initial conditions led Eq (3.1) to the formation of multiple pulses similar to

2Note that under the proper change of variable and some rescaling, Eq (3.1) can be expressed in the
more standard and dimensionless form

∂η

∂t
+

∂

∂x

(
∂2η

∂x2
+ η2

)
= 0, (3.2)

in which we kept the same notations for simplicity.
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(3.3). They were first to coin the term solitons for these peaks. The solitons were found
to propagate at a constant velocity when far from each other, and to emerge roughly
unaffected from successive collisions. This was a crucial step to explain the recurrence
phenomenon observed in [156]. In 1967, the inverse scattering method was discovered by
Gardner et al. [157] as a powerful technique for solving KdV.

Actually, the KdV equation is a particular instance of an integrable model. This holds
also for the 1D NLSE whose solitonic solutions are presented in the next paragraph.
For both examples, the existence of a large number of conservation laws constrains the
dynamics to a regular (and solvable) behavior. Such systems do not feature ergodicity :
they can only visit a tiny portion of phase-space during the dynamics, as illustrated by the
recurrence phenomenon observed by Fermi et al. [156]. In particular, thermal equilibrium
is never reached. This is to be opposed to chaotic systems, where slightly differing initial
conditions can lead to arbitrary large deviations at long times.

Nonlinear Schrödinger equation

We now remind the nonlinear Schrödinger equation describing the evolution of a matter-
wave ψ. In dimension D, we choose to write the NLSE

i~
∂ψ

∂t
= − ~2

2m
∇2ψ +

~2

2m
g̃|ψ|2ψ. (3.4)

In this expression, the quantity g̃ has the dimension of a length to the power (D − 2). It
is dimensionless only for D = 2. As reminded earlier, the cubic nonlinearity |ψ|2ψ stems
from our choice of a contact potential. In reality, the NLSE is a very general model as
it often emerges when describing the envelope dynamics of a quasi-monochromatic plane
wave propagating in a dispersive medium with a weak nonlinearity [158].

In the context of nonlinear optics, Eq (3.23) describes the propagation of a light beam
within the paraxial approximation, inside a medium with a focusing Kerr effect. For a
spatial soliton, ψ represents the complex envelop of the electric field. The beam profile
is then supposed to be stationary in time: t represents the distance on the optical axis,
while the spatial coordinates represent the transverse directions. In this case, dispersion
is due to diffraction. In dimension D = 1, it is also possible to obtain temporal solitons,
i.e. a beam localized in time, a pulse. In that case, t still represents the distance on
the optical axis, while the spatial direction is a local time. The NLSE also applies to
some cases of non-linear wave propagation in plasmas, such as small-amplitude Langmuir
waves [13,159,160].

Reduced notations

To avoid the heaviness of standard physical units, we define a system of reduced notations
where all physical quantities are expressed in units of length. In some cases, we will also
incorporate the absolute value of the parameter g̃ in the norm of the wave function φ,
such that

∫
d2r |φ|2 = |g̃|N . This way, it gets clearer that the strength of the nonlinearity

is solely determined by the nonlinear parameter N ≡ g̃N . To help switching from one
convention to another, we list the correspondence between the standard and the reduced
notations in Table 3.1, with a symbol ′ over the reduced quantities. In practice, we do not
use these primed notations for simplicity and solely mention the convention beforehand.
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Quantity In physical units Reduced quantity

Position r r′

Spatial derivative ∇ ∇′

Time t m
~ t
′

Velocity (c0,v) ~
m(c′0,v

′)

Angular frequency ω ~
mω
′

Energy (E,µ) ~2
m (E′, µ′)

Wave function (φ, ψ) (φ′, ψ′)

Table 3.1: Correspondence between the quantities expressed in physical units and reduced
quantities. The notations of the two right-hand columns facing each other are defined to
be equal. In some cases, we choose a different normalization for the wave function such
that

∫
d2r |φ|2 = |g̃|N .

Solitons of the 1D NLSE

The pioneering works [12, 157] raised interest in solvable models with an infinite number
of degrees of freedom. In 1972, Zakharov & Shabat [161] extended the inverse scattering
method to the 1D attractive NLSE. Using our reduced notations, this equation writes

i
∂ψ

∂t
= −∂

2ψ

∂x2
− |ψ|2ψ. (3.5)

with
∫

d2r |ψ|2 = |g̃|N . Similarly to KdV, the evolution under (3.5) is also nearly peri-
odic, see Fig 3.1 for an illustration starting from a Gaussian distribution. A well-known
stationary solution of Eq (3.5) is the following bright soliton

ψ(x, t) =
√

2|µ| 1

cosh
(√
|µ|x

) e−iµt (3.6)

which only depends on a parameter µ < 0 analogous to a chemical potential. Note
that the analytical form (3.6) is surprisingly similar to the Eq (3.3) describing the KdV
soliton. An extended family of moving solutions can also obtained from (3.6) using Galilean
invariance. Alike KdV solitons, solitons of the 1D NLSE can collide and retrieve their
original shape afterwards, up to a phase jump [161]. This stability is also reminiscent of
particles undergoing elastic collisions. These properties suggest that a fine tuning of the
initial conditions is not required for the observation of 1D NLSE solitons.

Let us stress that the bright soliton (3.6) is not the only remarkable solution of the
attractive NLSE (3.5). The Peregrine soliton is another example both localized in time and
space [162], which is reminiscent of the rapid formation and disappearance of freak waves
in the ocean. Shape-preserving solutions also exist for the repulsive NLSE – corresponding
to a nonlinear term with a positive sign in Eq (3.5). Since they correspond to a hole in an
infinite system, they are called grey solitons [163]. If the asymptotic |ψ|2 is taken to be
equal to 1 (hence the chemical potential equals κ), they can be expressed as

ψ(x, t) =
(
ν tanh

[
ν
√
κ
(
x−√κχt

)]
+ iχ

)
e−iκt ν2 + χ2 = 1 (3.7)
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Figure 3.1: Evolution under the 1D NLSE. Example with Gaussian initial conditions (red
curve at the left). The time of evolution t increases from left to right. The density profile
|ψ(x, t)|2 first shows one bright peak (green curve) before it splits into two peaks (purple
curve). The subsequent evolution is almost periodic.

with real numbers −1 < ν, χ < 1. Such a wavefunction cannot be normalized but still
corresponds to a localized excitation. More precisely, (3.7) can be interpreted as a density
hole with depth ν2 moving at a constant velocity

√
κχ. For a 1D BEC, the limit (ν =

0, |χ| = 1) gives a velocity equal to the Bogoliubov speed3, meaning that a grey soliton is
always subsonic. In the other limiting case |ν| = 1, |χ| = 0, the density profile is stationary
and vanishes for x = 0, with a phase jump of π across its center, hence the name of dark
soliton. Note that a solution analogous to this dark soliton is the vortex in dimension
D = 2, as presented in Subsec 2.1.2.

Some observations of 1D solitons

In nonlinear optics, the experimental study of NLSE solitons started soon after the inven-
tion of intense and monochromatic laser sources. Self-trapping of laser light in a nonlinear
medium was predicted in the early 1960s [16]. However, this situation involving two trans-
verse dimensions is qualitatively different from the 1D case, as we will show in the next
subsection. Henceforth, diffraction needed to be inhibited along one or two directions to
realize a genuine 1D soliton, be it a temporal or a spatial soliton.

The first realization of a 1D (temporal) soliton in optics was described by Mollenauer
et al. [20], following the earlier proposal of Hasegawa & Tappert [164]. Dynamics in the
transverse directions was frozen thanks to a tight confinement using an optical fiber. The
first observation of temporal dark solitons was reported by Weiner et al. [165]. The optical
generation of spatial solitons in a 1D configuration was demonstrated a bit later than its
temporal counterpart, using liquid carbon disulphide CS2 [21]. In this case, the beam was
strongly elliptical so that diffraction along the major axis was essentially suppressed. Other
realizations and extensions of the NLSE paradigm for the study of optical solitons can be
found in the lecture notes of Zakharov et al. [166]. Note that solitonic pulses were proposed
as promising platforms for the implementation of ultra-fast optical communications [167].

Regarding matter-wave solitons, two series of experiments performed in 2002 reported
the production of bright solitons using attractive Bose gases confined in a quasi-1D ge-

3See Subsec 2.1.2.
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(a) (b)

Figure 3.2: One-dimensional matter-wave solitons. (a) Atomic cloud in an anti-confining
cigar-shaped trap. In (A), the interactions are repulsive and the systems gets more dilute
as it drifts when time goes one (from bottom to top). In (B), attractive interactions allow
a self-bound soliton to propagate through the optical wave-guide. The integrated density
profiles are shown on the left. Figure taken from [23]. (b) Example of soliton train. The
atom number in the initial BEC is one order of magnitude larger than in (a), facilitating
the formation of multiple solitons. Figure taken from [24].

ometry [23, 24], see Fig 3.2. Both groups used ultracold 7Li initially at equilibrium with
a positive scattering length in a cylindrical trap. The scattering length could then be
tuned from positive to negative thanks to a magnetic Feshbach resonance. Khaykovich et
al [23] obtained a single soliton, while a train composed of a few solitons was observed by
Strecker et al [24]. In the second case, the axial confinement allowed them to observe the
solitons on a longer timescale.

Following these pioneering experiments, subsequent studies observed the reflection of
a soliton on a potential barrier [168], binary collisions [15], long-lived excitation (breath-
ing) modes4 [169]. Bright solitons could also be used for implementing a Mach-Zender
interferometer [170]. Note that dark solitons in a repulsive Bose gas have been produced
earlier using a phase imprinting method [22, 172]. Finally, matter-wave magnetic solitons
– spin solitary waves in a multi-component superfluid system – were proposed by Qu et
al. [173] and observed very recently [27,28].

3.1.2 Multidimensional solitons

For a given nonlinear problem, supplementary dimensions can substantially enrich the
observable behaviors. For instance, topologically non-trivial configurations like 2D vortices
with embedded vorticity, or 3D magnetic textures alike skyrmions can be realized [174].
However, unlike 1D solitons which are usually stable objects, integrability is generically
lost in 2D and 3D settings – in particular, the inverse scattering method cannot be applied
– and stability becomes a major concern. This is the origin of the distinction between
solitary waves and solitons, the first ones being stationary waves which do not share the
stability properties of 1D solitons.

4Note that the existence of a localized breathing mode in this experiment is a signature of physics
beyond the standard 1D NLSE. Indeed, this soliton does not support localized excited states [171].
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Figure 3.3: Scaling analysis. The function E(`) defined in (3.9) is represented for D =
1, 2, 3 (blue solid line in each case). While it presents a clear minimum (resp. maximum)
for D = 1 (resp. D = 3), it is monotonic for D = 2. An extremum can be obtained only for
a particular value of the nonlinear parameter N , and any ` due to scale invariance (green
dashed line). In (c), we also plot the analogous scaling in the presence of a harmonic
potential (red dashed line), in the case where a local minimum exists at ` = `min.

As an illustration, the immersion of a 1D soliton in higher dimension is likely to
suffer from transverse instabilities, also known as snake instabilities. Indeed, a system
with a solitonic profile in one direction and an almost uniform distribution along the
others fragments into small pieces along the uniform direction, as shown by Zakharov &
Rubenchik [175].

Scaling analysis

A simple scaling argument can bring insight onto the existence of stationary localized wave
packets φ(r) in dimension D. We first rewrite the energy functional (2.9) in the case of a
focusing nonlinearity using our reduced notations

E[φ] =
1

2

∫
dDr

(
|∇φ|2 − |φ|4

)
, (3.8)

where φ has been normalized such that
∫

d2r |φ|2 = |g̃|N = N . To proceed further, let us
introduce a family of self-similar wave functions, each being described by its characteristic
size `. Then, the energy functional (3.8) should scale with ` as

E(`) ∝ 1

`2
− κN

`D
, (3.9)

where the number κ > 0 depends on the shape of the chosen wave function. This depen-
dence is shown in Fig 3.3 for D = 1, 2, 3. For D = 1, one finds a global minimum for a
certain size `∗ ∼ 1/N , a signature of the bright solitons introduced earlier. When D = 3,
a global maximum is reached for `∗ ∼ N , indicating a dynamical instability. For D = 2,
the two terms of Eq (3.9) have the same scaling with ` as a consequence of scale invariance
(see Subsec 2.1.3). An extremum of E[φ] can only be found for a particular value of N
and whatever size `.
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Some observations of multidimensional solitary waves

A fundamental realization of 2D NLSE solitary waves is the so-called self-trapping of
optical beams, i.e. the equilibration between 2D diffraction and nonlinear Kerr focusing
of an intense laser beam. Self-focusing was predicted by Askar’yan in 1962 [16], while the
self-trapped mode was first described by Chiao et al. [17] and Talanov [18]. This mode is
the celebrated Townes soliton which we study in detail in Sec 3.2.1.

Historically, a first attempt to demonstrate self-trapping was reported by Garmire et
al [176]. Using a pulsed laser propagating in CS2, the authors observed the formation
of a bright filament. With a modified setup and an enhanced optical resolution, the
same team found a few months later that the filament was in reality formed of multiple
small-scale filaments [177]. In all experiments performed at that time, the use of nano-
second lasers induced time-dependent effects which were not captured by the simple 2D
NLSE, as discussed by Shen [178]. The first robust observation of self-trapping using
a continuous-wave laser was reported by Bjorkholm & Ashkin [19]. In this case, the
propagating medium was a sodium vapor characterized by a saturating nonlinearity which
provided a stabilization mechanism.

Remarkably, the formation of 2D solitary waves has been observed with other types of
nonlinearities, including the photorefractive effect [179], quadratic or second-order optical
nonlinearity [180], combination of fifth-seventh order (∼ focusing-defocusing) nonlinearity
[181]. Let us also mention the formation of discrete solitons in photonic lattices [182] and
gap solitons in two-dimensional lattices [183]. In another vein, 3D light bullets5 in arrays
of waveguides have been reported by Minardi et al. [184]. However, despite long-term
efforts (e.g. the recent experiment of Falcaõ-Filho et al. [185]), a robust observation of the
soliton profile associated to the focusing 2D NLSE has been only qualitative.

In the tightly-confined geometries associated to BECs, an external potential can also
stabilize a 3D solitary wave. As shown in Fig 3.3(c), a local energy minimum may emerge
in a harmonic potential, provided the BEC atom number does exceed a critical value.
It is then in a metastable state which may decay by tunnelling effect [187]. Such a 3D
system was observed by Cornish et al. [188] as shown in Fig 3.4. The measured atom num-
ber was then significantly larger than the theoretical prediction because multiple solitons
were formed [189]. In [190], Meyer et al. generated the previously unobserved Jones-
Roberts dark solitons in a three-dimensional atomic Bose-Einstein condensate using a
phase-imprinting method. More recently, Chen & Hung [46, 47] performed a quench of a
homogeneous 2D Bose gas from repulsive to attractive interactions and observed to the
formation of multiple solitary waves. The properties of these wave packets were found to
be in good agreement with the Townes soliton, as we discuss in Sec 3.4.

Quantum droplets

Quantum droplets form another important class of multidimensional self-bound objects,
although their nature is fundamentally different. Originally proposed by Petrov [30], they
were considered first in a 3D binary system with intra-species repulsion and inter-species
attraction, in a regime where a mean-field theory predicts no stable state. Petrov suggested
that quantum fluctuations [191] could stabilize the system and give it liquid-like properties.
This approach was subsequently generalized to situations in low dimension [192].

5Light bullets refer to solitons which are localized both along the propagation axis and in transverse
directions [186].
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Figure 3.4: Formation of 3D matter-wave solitons in a harmonic trap. Images and in-
tegrated profiles of remnant condensates after the collapse of a 3D cloud with attractive
interactions. When the interaction are sufficiently weak, a single peak is observed like in
(a), while multiple peaks form for stronger interactions and/or a larger initial condensate
(b-d). Figure taken from [188]

The proposal of Petrov [30] was experimentally demonstrated shortly after [31, 32].
Moreover, the transition from quantum droplets to bright solitons in a BEC mixture was
studied by Cheiney et al. [193]. A few month before, quantum droplets were also observed
using highly-magnetic atoms where quantum fluctuations also stabilized the otherwise
unstable system [33,34]. Hot topics on multidimensional solitary waves and related objects
were recently reviewed by Kartashov et al. [14].

Wave collapse

The energy scaling (3.9) allows some wave packets to reach arbitrary small sizes ` during
the dynamics, in dimension D = 3. It is also true in dimension D = 2 for some values
of the nonlinear parameter N . This can have dramatic consequences on the dynamics, as
for example it may allow for the collapse of the wave packet. This brings also some new
questions: Can this collapse be observed? Can one predict the corresponding dynamics?
Can one stabilize these solitary waves?

Such a sudden contraction was predicted numerically by Kelley [194] in 1965 for a
laser beam with a sufficiently high input power. It was soon invoked to explain the
anomalous onset of stimulated Raman scattering in liquids and solids observed in the
sixties [195]. Self-focusing is not only a fundamental but also a technical problem, as it
is often responsible for the damage caused by high-power lasers [196]. In particular, the
control of nonlinear effects is one key point of the chirped-pulse amplification technique
[197].

The rigorous analysis of this singular behavior triggered a lot of research in mathemat-
ics from the late seventies [158,198]. In the (marginal) 2D case where the nonlinearity has
exactly the same scaling as the dispersive term, the situation is said to be critical. In this
case, the collapse is shown to be strong, i.e. a finite amount of mass concentrates in the
collapsing core6. In 3D or higher dimensions, the situation is called super-critical and the
collapse is weak, i.e. the mass of the collapsing core tends to zero as one approaches the
collapse time. This distinction is important as it determines the efficiency of the collapse
as a mechanism for energy dissipation.

6See Subsec 3.3.2.
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In atomic systems, a strong increase of the density usually leads to enhanced inelastic
processes which at least partially destroy the sample. In 3D BECs confined in a harmonic
trap, wave collapse occurs when the atom number exceeds a critical value and leads to
the celebrated Bose-nova. This was experimentally demonstrated by Donley et al. [199].
In the experiment performed by Eigen et al. [200], collapse was triggered in an initially
homogeneous system trapped in a 3D box potential. In this case, the authors confirmed
the scaling laws associated to weak collapse, in particular the counter-intuitive fact that
stronger instability leads to reduced losses.

3.2 Properties of the Townes soliton

In this section, we study the stationary states of the 2D NLSE, in particular the celebrated
Townes soliton. Various solutions are presented in Subsec 3.2.1, and the stability of the
Townes soliton is discussed in 3.2.2.

3.2.1 Stationary states of the 2D NLSE

Fundamental solutions

Our goal is to determine the localized stationary solutions φ(r) of the 2D NLSE. By
localization, we mean that |φ| and its derivatives should go to zero sufficiently fast at a
large distance. Using polar coordinates (r, θ) and the reduced notations of Subsec 3.1.1,
φ should thus satisfy the following equation

µφ = −1

2
∇2φ− |φ|2φ ∇2 =

∂2

∂r2
+

1

r

∂

∂r
+

1

r2

∂2

∂θ2
. (3.10)

with
∫

d2r |φ|2 = |g̃|N = N . If we consider solutions with a rotational symmetry, φ can
be written as

φ(r, θ) = eisθR(r), (3.11)

with a phase winding s ∈ Z. Functions (3.11) have an angular moment of Lz = Ns~.
Using this ansatz, Eq (3.10) rewrites as an ordinary differential equation on R(r)

µR = −1

2

(
d2

dr2
+

1

r

d

dr
− s2

r2

)
R−R3, (3.12)

where the phase term is responsible for the centrifugal barrier term s2/r2. If ones assumes
a power-law behavior at the origin, i.e. R(r) ∼ rα, then Eq (3.12) leads automatically
to7 α = |s|. As expected, a phase singularity is associated to a vanishing density for
the vortex modes with s 6= 0. Solutions with s 6= 0 are of great interest, in particular for
their topological properties [174]. However, we restrict in the following to the fundamental
solutions with no embedded vorticity. For s = 0, we rewrite Eq (3.12) in a slightly different
manner

d2R

dr2
= −1

r

dR

dr
− 2R3 − 2µR, (3.13)

with boundary conditions R(r) → 0 when r → +∞, and dR/dr(0) = 0. In fact, this last
condition on dR/dr(0) is automatically verified by the fundamental solutions [158], but
here we take it as a regularity assumption. Eq (3.13) is a second-order differential equation.
Knowing dR/dr(0) = 0, one only needs to specify R(0) to determine R on the whole axis.
However, an arbitrary choice of R(0) does not guarantee the desired asymptotic behavior.

7A solution with α = −|s| 6= 0 cannot be normalized.
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Asymptotic behavior

For a localized state, the nonlinear term becomes negligible at sufficiently large distances.
Eq (3.13) then reduces to the linear problem

d2R

dr2
= −1

r

dR

dr
− 2µR. (3.14)

A localized solution of the nonlinear problem should thus approach a solution of Eq (3.14)
asymptotically. For µ > 0 and up to a rescaling, the solutions of (3.13) are the zeroth-order
Bessel functions (J0, Y0) with asymptotic behavior

J0(r) ∼
√

2

πr
cos
(
r − π

4

)
Y0(r) ∼

√
2

πr
sin
(
r − π

4

)
. (3.15)

Since these functions cannot be normalized, the values of µ > 0 will be disqualified from
now on. For µ < 0, the solutions of (3.14) are the zeroth-order modified Bessel functions
(I0,K0) with asymptotic behavior

I0(r) ∼
√
π

2r
exp (+r) K0(r) ∼

√
π

2r
exp (−r) . (3.16)

Because of the divergent behavior of I0(r), our solution should behave like the zeroth-order
modified Bessel function of the second kind, K0. More precisely, we expect that

R(r) ∼ C√
r/`

e−
√

2r/` ` ≡ 1√
|µ|
, (3.17)

with a characteristic extension `, and a solution-dependent number C.

Scale invariance

Importantly, one can further restrict the parameter space and only study the case µ = −1
for which Eq (3.13) rewrites as

d2R

dr2
= −1

r

dR

dr
− 2R3 + 2R. (3.18)

Indeed, solutions R(`) of (3.13) corresponding to µ 6= −1 can be deduced from a solution
R of (3.18) through the rescaling

R(`)(r) =
1

`
R
(r
`

)
. (3.19)

The mapping between different µ’s is a direct consequence of the scale invariance of the 2D
NLSE (3.10), already discussed in the previous chapter. To summarize, finding a single
stationary state R gives access to a family of stationary solutions containing the same
atom number, obtained by dilation operations.

Mechanical analogy, shooting method

To show the existence and to determine the shape of the localized solutions of Eq (3.18),
we now propose a mechanical analogy in which R represents the position of a particle,
and r is the time [201, 202]. The left-hand-side of Eq (3.13) stands for the acceleration of
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Figure 3.5: Mechanical analogy. (a) Double-well associated to Eq (3.18). We show the
initial trajectories of two particles starting from a position slightly smaller (red ball) and
larger (blue ball) than the local equilibrium position R = +1. (b) The corresponding wave-
functions R(r) with the same color code. These solutions do not respect the constrain of
localization. (c) Various trajectories for increasing R(0) while getting closer and closer
to the Townes value R(0) ' 2.21. From light to dark green, the initial values R(0) differ
respectively by 10−2, 10−3, 10−4 and 10−5 from the Townes value.

the particle, while its right-hand-side is the associated force. More precisely, the first term
on the right-hand-side of Eq (3.13) is a time-dependent friction ∝ −dR/dr, while the two
last ones derive from the potential

V (R) =
1

2
R4 −R2. (3.20)

As shown in Fig 3.5(a), V (R) is a double-well potential. The shooting method consists in
tuning precisely R(0) to fulfill the asymptotic constrain R(r)→ 0 for large r, noting that
R = 0 is an unstable equilibrium position. Starting from an initial position R(0) > 0, the
particle should first roll down the slope. If R(0) is small, it will go to the right. Due to
the friction term, the mechanical energy is not conserved and the particle will undergo
damped oscillations around R = 1, see Fig 3.5(b). If R(0) is large enough, the particle
will go to the left and eventually cross the central hill. It will maybe come back and most
probably finish its course around one of the stable equilibrium positions, R = ±1.

Townes soliton

In Fig 3.5(c), we observe that starting from a low value of R(0) and increasing it progres-
sively, the strictly positive solution that we obtain will approach more and more the value
R = 0 at infinite time, eventually finishing its course at R = 1. Remarkably, there exists
a specific value R(0) ' 2.21 for which the particle goes to the position R = 0 at infi-
nite time (r → +∞) without ever crossing the hill, thus fulfilling the desired asymptotic
condition. This solution R0(r) which is positive and monotonically decreasing to zero is
nothing but the Townes soliton [17]. It is shown in Fig 3.6(a), and we now summarize
some of its properties. Coming back to physical units, the atom number contained in the
soliton verifies

NT |g̃| =
∫

d2r R0(r)2 ≡ NT = 5.85 . . . (3.21)
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Figure 3.6: Fundamental solutions. (a) Townes soliton radial profile R0(r), with its quasi-
exponential tails represented in logarithmic-linear scale in the inset. (b) Higher-order
solutions Rn(r) with n = 1, 2, 3 (resp. in red, orange, purple) have exactly n nodes.

∫
d2r Rn(r)2 Rn(0)

n = 0 5.85 2.21

n = 1 38.58 3.33

n = 2 97.89 4.15

n = 3 183.66 4.83

Table 3.2: Norm and value at the origin of the four first fundamental solutions of Eq (3.18).

which can be determined only numerically. Alternatively, an approximate value NT '
2π can be obtained analytically through a Gaussian ansatz (see Desaix et al. [203] and
Appendix B) with an error of only ' 7%. For this specific value of N , the family of
Townes profiles are minimizers of the energy functional (3.8) with exactly E = 0. This is
a necessary condition for stationarity, as we immediately deduce from the variance identity
(2.24). From this fact combined with Eq (2.12) expressed for µ = −1, we also deduce the
following relation

NT = Ek = −Ei. (3.22)

For N < NT , the energy functional E[φ] is always strictly larger than 0. This lower bound
is approached from above by dilating infinitely any wave function. For N > NT , there
exist functions with arbitrary negative energy.

Higher-order solutions with zero vorticity

Higher-order solutions of Eq (3.13) were first considered by Haus [201] and Yankauskas
[202]. If we carry on with the mechanical analogy, the corresponding trajectories start
from a position higher than for the Townes soliton value R(0) ' 2.21, cross a finite number
of times n the central hill and finally approach R = 0 at infinite time. These solutions
Rn(r) can thus be indexed by their number of nodes n. The solutions corresponding to
n = 1, 2, 3 are shown in Fig 3.6(b).
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Alike the Townes soliton, all stationary states need to satisfy E = 0 to fulfill the
variance identity (2.24), and thus also verify Eq (3.22). Table 3.2 gives the corresponding
norms and values at the origin – which is also the maximum in absolute value [201, 204].
Analogous spherical shell solutions exist also in dimension D = 3. Finally, note that such
oscillating solutions have no equivalent in dimension D = 1, the only localized stationary
state being (3.6). This difference is due to the singular behavior of the Laplacian at the
origin r = 0 in dimension D > 1, as written in Eq (3.10).

3.2.2 Stability of the Townes soliton

Linear stability analysis

Now that we have determined the shape of the Townes soliton, we discuss its stability
with respect to small perturbations when evolving under the time-dependent NLSE

i
∂ψ

∂t
= −1

2
∇2ψ − |ψ|2ψ. (3.23)

Here, we used reduced notations of Subsec 3.1.1 with
∫

d2r |ψ|2 = |g̃|N = N . Stability and
elementary excitations of the 2D NLSE around the Townes soliton have been investigated
in various works [171, 205–207]. The analysis can be worked out in a way similar to the
Bogoliubov formalism, as shown in Appendix A. In this paragraph, we only summarize
the main steps and results of this analysis.

Starting from a small perturbation R0(r)+ε(r, 0) around the stationary solution R0(r),
one linearizes Eq (3.23) and obtains a linear operator describing the evolution of the per-
turbation. Determining the spectrum of this operator allows one to decompose the per-
turbation into normal modes evolving independently, with a complex frequency ω̄. For
the Townes soliton, Malkin & Shapiro [171] showed that there is no dynamical instability,
i.e. no eigen-frequency with a non-zero imaginary part. On the one hand, there is a contin-
uous spectrum of real frequencies which correspond to delocalized excitations. In practice,
a localized superposition of such excitations would eventually spread and leave the soliton
unaffected. Henceforth, modes belonging to the continuous part of the spectrum do not
induce any instability.

Instability by collapse

On the other hand, Malkin & Shapiro exhibit eight discrete modes corresponding to the
value ω = 0. These so-called neutral modes are all generated by one of the 2D NLSE
symmetries. In other words, each of these modes can be obtained by applying one of the
symmetries listed in Sec A.1 to a previously known solution. One can say that the Townes
soliton has no genuine excitation modes. Moreover, these modes cannot grow faster than
a power of t, i.e. the difference between the wave function ψ(r, t) obtained at time t and
the Townes soliton can be expressed as

ψ(r, t)−R0(r)eit '




n∑

j=0

εj(r)tj


 eit, (3.24)

with an integer n ≤ 3, as long as the corresponding deviation is not too large. However,
all this does not guarantee the orbital stability of the soliton. Indeed, using the lens
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transformation written in Eq (A.8) and applied to the Townes soliton R0, one can consider
the evolution under Eq (3.23) of the following initial condition

ψ(r, t = 0) = R0 (r) exp

(
−βr

2

2

)
, (3.25)

for a real parameter β. For β > 0 (resp. β < 0), this corresponds to a situation of
focusing (resp. defocusing), where the velocity field v associated to ψ and the radius
vector r are anti-parallel (resp. parallel) everywhere. The solution of the 2D NLSE with
initial condition (3.25) can be written exactly as

ψ(r, t) =
1

1− βtR0

(
r

1− βt

)
exp

[
i

(
t

1− βt −
β

2

r2

1− βt

)]
. (3.26)

The evolution of the corresponding density profile will thus be self-similar. Importantly, for
β > 0, this solution will become singular exactly at time t∗ = 1/β. Choosing a small β > 0,
we have found a solution of the 2D NLSE initially close to the Townes soliton and which
collapses in a finite time. This shows that the Townes soliton is subject to an instability by
collapse, despite the absence of a standard dynamical instability. Importantly, the other
symmetry-generated mode given in Eq (A.19) may also induce a collapse in a finite time.
In this case, it corresponds to a solution having slightly more atoms than the Townes
soliton. Note that the same conclusion applies to all the stationary solutions of the 2D
NLSE 3.10.

Beyond the cubic equation

Let us outline a few strategies that were proposed for stabilizing the Townes soliton, i.e. to
suppress the instability by collapse and to make it linearly stable. The simplest cure con-
sists in adding a harmonic potential to the nonlinear equation [208,209]. This is sufficient
to stabilize all solutions with azimuthal number s = 0 (no embedded vorticity) introduced
in Subsec 3.2.1, and a subset of the s = ±1 solutions (vortex solutions). Alternatively, one
may consider discrete models in two-dimensional lattices [210, 211], or impose a periodic
modulation of the coupling strength g̃ in the free-case [212].

Another strategy consists in introducing higher-order nonlinearities, besides the stan-
dard −|ψ2|ψ cubic term of Eq (3.10). NLSEs with nonlinear terms of the form

(
−|ψ|2 + |ψ|4

)
ψ

(
e−|ψ|

2 − 1
)
ψ − |ψ|2

1 + |ψ|2ψ (3.27)

were studied for example by Malkin [213], Zakharov et al. [204] and Vakhitov & Kolokolov
[206] respectively. All these nonlinear functionals are dominated by the cubic term −|ψ|2ψ
for small |ψ|, and the last two terms exhibit saturation of the nonlinearity. More exotic
nonlinear models might involve spatial derivatives like the expression

−
(
|ψ|2 +∇2|ψ|2

)
ψ, (3.28)

originally considered by Rosanov et al. [214] as a weakly nonlocal nonlinearity. Note
that the last term is indeed stabilizing, since the two terms have opposite sign around a
maximum of |ψ|2, the Laplacian being negative around a maximum.

Note that in all these cases, scale invariance is broken. In particular, solitons with
different chemical potentials µ < 0 have generically different norms N = |g̃|N and differ-
ent shapes. However, in the limit where the stationary solution has a very small density
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|ψ|2 everywhere, higher-order nonlinearities can be neglected and the solutions tend to
the Townes soliton profile, with an atom number N ' NT /|g̃|. In most cases, this limit
is given by µ→ 0− since 1/

√
|µ| sets the typical scale of the stationary solution. Protec-

tion against collapse in a saturating non-linear medium was demonstrated numerically by
Dawes & Marburger in 1969 [215]. Interestingly, a necessary – though not always sufficient
– condition for guaranteeing the linear stability of the fundamental positive solution in
such models is given by the Vakhitov-Kolokolov criterion [206]

dN
dµ

< 0. (3.29)

Intuitively, this condition ensures that the system cannot decay spontaneously by emitting
particles towards infinity.

In this section, we have studied the properties and the stability of the Townes soliton.
We now propose to discuss a fundamental aspect of the 2D NLSE (3.23) where the Townes
soliton will appear again.

3.3 Wave-packet collapse

We study the phenomenon of wave-packet collapse associated to the time-dependent 2D
NLSE. This will allow us to highlight the universality of the Townes profile, even in
such a catastrophic situation. We first discuss in which conditions collapse can occur
(Subsec 3.3.1). Special emphasis is placed on the consequences of the variance identity.
As a second step, we briefly describe the behavior of collapsing solutions, just before the
collapse occurs (Subsec 3.3.2).

3.3.1 Conditions for collapse

As seen earlier, the 2D NLSE may lead to a singularity in finite time, in the sense that one
(or more) points of space are associated to a diverging density. In real experiments, the
2D NLSE is never appropriate when the wave amplitude has increased so dramatically.
Indeed, other effects (higher-order nonlinearities, dissipative processes, physical damage)
then need to be taken into account. However, understanding the conditions for the onset
of such phenomena is still relevant for the applications. In parallel, grasping the nature
of the singularity has triggered a lot of research in mathematics [158, 198, 216]. In this
section, we examine if one can predict the occurrence of collapse from the knowledge of
the initial conditions.

A sufficient (but not necessary) condition for collapse

For convenience, we rewrite and integrate the variance identity (2.24) using the reduced
notations of Subsec 3.1.1

dσ2

dt2
= 4E σ2(t) = σ2

0 + t〈r · v〉0 + 2E t2, (3.30)

where σ is the RMS size of the cloud, v is the velocity field defined in Eq 2.20, and the
index ·0 stands for the averaged value taken at time t = 0. In the case of a real initial
state, the initial velocity field vanishes everywhere and thus 〈r · v〉0 = 0. In this case,
one finds that σ will reach zero at a time tσ =

√
σ2

0/2|E| if and only if E < 0. For a
real wave function, an energy E < 0 is thus a sufficient condition for collapse. Note that
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(a) Townes profile R0

N
NT = Nσ = N∗

Regular Collapse

(b) Arbitrary profile ψ

N
NT NσN∗

Regular Collapse

Figure 3.7: Condition for collapse. (a) For a profile with a Townes shape ∝ R0, the
condition for collapse N = N∗ coincides exactly with the upper bound given by the
variance identity Nσ. (b) For an arbitrary profile ψ(r), the solution will be regular for
N < NT and singular for N > Nσ. However, there is no analytical criterion to determine
the regularity for NT < N < Nσ.

collapse might happen at an earlier time t∗ < tσ, and it is the case in general. Besides,
if one considers an arbitrary profile ψ(r, t = 0), it is always possible to multiply ψ by a
sufficiently large number – thus modifying the product N = |g̃|N – to compel σ2 to vanish
in a finite time. Indeed, the energy can be made arbitrarily negative in this way, while
the first two terms on the right-hand-side of Eq (3.30) are left unaffected.

However, let us stress that E < 0 is not a necessary condition for wave-collapse. For
example, σ2 might vanish in spite of E > 0, for example if the term 〈r ·v〉0 is negative and
sufficiently large in absolute value. This corresponds to a situation of strong focusing, as
exemplified by the solution explicitly given in Eq (3.25). This solution has indeed a positive
energy: the initial kinetic energy increases due to the phase term, while the interaction
energy stays the same (the density is unchanged). In this case, the evolution toward
collapse is rigorously self-similar. Conversely, Fibich & Papanicolaou [217] show that for
a given profile and a defined atom number, it is always possible to modify its phase field
to avoid collapse, using a sufficiently “exploding” velocity field directed outwards.

A gap in the theory

We just saw that a given profile can be made collapsing by adjusting the nonlinear param-
eter N . It can also be made regular at all times by defocusing it sufficiently. A natural
question thus rises: is it possible to focus enough a given profile with a given atom number
– i.e. to find the adequate phase field for a given real wave function – to make it collapse
in a finite time? An important result was obtained by Weinstein in 1983 [218] who showed
that any solution of the 2D NLSE with regular initial conditions and N < NT is regular
at all times. Below this threshold, solutions disperse to zero in a way similar to solutions
of the linear Schrödinger equation. Moreover, example (3.25) shows that this is a sharp
condition, in the sense that one can exhibit a singular evolution for any value of N ≥ NT 8.
To summarize, for a given real profile ψ(r, t = 0), the nonlinear parameter N must be
larger than NT to authorize a possible collapse. Moreover, there always exists a value of
N = Nσ above which E < 0 and such that collapse is certain.

The regularity of solutions should thus be questioned only in the range NT ≤ N ≤ Nσ,
and it is indeed a subtle issue. These two values coincide only for the Townes profile. For

8For examples with N > GT , it is sufficient to multiply the Townes profile by the correct factor c > 1
to obtain a negative energy and thus a collapse.
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Figure 3.8: Observation of the Townes profile after partial collapse of an optical pulse.
(a) Output intensity profile of a laser beam after propagating in a nonlinear medium, for
various powers. The beams shrinks more and more when the total power increases. (b-c)
For a large enough power, the central part of the intensity profile is consistent with the
one of a Townes wave-packet. Figures taken from [221].

an arbitrary profile ψ(r), it is probable that there exists a third value N∗ separating the
domain of regular and singular solutions. On the particular case of a Gaussian profile,
Fibich & Gaeta [219] have estimated numerically this threshold to be N∗ ' 5.96, which is
strictly lower than Nσ = 2π (see Appendix B). The case of a radial profile decreasing like
e−r

4
is also considered. However, there is no systematic way of determining if a solution

with NT ≤ N ≤ Nσ will undergo collapse or not.

3.3.2 Collapse dynamics

The numerical study of Kelley [194] was the first to report singular behaviors from smooth
initial conditions. Kelley was then considering cylindrical beams with an initial Gaussian
profile. This was the starting point of intense research on wave collapse. The large
amplitudes and steep gradients which are reached before the formation of the singularity
require very precise simulations, particularly challenging in the early days of numerical
computation. In particular, accurate simulations of the collapse dynamics require a very
high and adaptative resolution around the singular point.

On the analytical side, early studies of the collapse dynamics assumed that an initial
Gaussian beam evolved essentially in a self-similar manner. Under this assumption, a
variational method can reduce the 2D NLSE to a simple ordinary differential equation
describing the evolution of the amplitude, see [220] and Appendix B. In this framework,
the threshold for collapse on N = |g̃|N is found to coincide with the sufficient condition
of zero energy. However, we claimed in the last paragraph that this is not verified numeri-
cally. More advanced methods, like the so-called adiabatic approach of Malkin [213], were
developed since and helped estimate the collapse point with good accuracy.

Self-similar collapse

Using the lens transformation (3.25), it is possible to exhibit a solution of (3.23) which
collapses exactly at a given time and position of space, while conserving its Townes pro-
file through a self-similar evolution. Interestingly, it is also possible to exhibit solutions
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which collapse on a finite number of positions simultaneously [198]. It was soon realized
numerically that any collapsing solution eventually concentrates a finite mass toward the
collapse point, this atom number being at least equal to the Townes soliton one [222]. If
the RMS size is still strictly positive at the time of collapse, it means that only a fraction
and not all the mass concentrate around toward the singular point. This applies to the
Gaussian profile for instance.

In fact, it can be shown that the collapse dynamics is asymptotically quasi-self-similar
close to the singular point. More precisely, most collapsing solutions are well approached
by a profile given by

ψ(r, t) ' 1

λ(t)
R0

(
r

λ(t)

)
exp

[
iτ(t) + i

λ̇(t)r2

2λ(t)

]
λ(t) ∼ (t− t∗)1/2 (3.31)

for t < t∗, plus corrections associated to a lack of exact self-similarity, the rest of the dis-
tribution forming a background [213,223,224]. In particular, the peak density should thus
increase approximately as (t − t∗)−1. As shown in Fig 3.8, a signature of the self-similar
evolution toward a Townes-profile (3.31) during collapse was obtained experimentally by
Moll et al. [221]. To do so, they studied the intensity profiles of laser pulses after prop-
agating in a nonlinear medium. The Townes profile has thus a universal character, even
for out-of-equilibrium dynamics.

3.4 A recent experiment

In this last section, we discuss a series of experiments recently realized by Chen & Hung
[46,47]. We start from their experimental observations (Subsec 3.4.1) and then discuss their
interpretation of the phenomena as a modulational instability, yielding a novel insight on
Townes soliton physics (Subsec 3.4.2).

3.4.1 Quench of a 2D Bose gas

In the experiments reported by Chen & Hung [46,47], uniform quasi-2D samples of cesium
atoms at equilibrium undergo a quench from repulsive to attractive interactions, using
a Feshbach resonance. In [46], a preliminary universal dynamics was followed by the
formation of long-lived solitary waves of size λc containing approximately the Townes
atom number NT . It is likely that blobs with an excess atom number underwent collapse,
being subject to atom losses when reaching high densities. An alternative protocol using
two successive quenches suggested that blobs with an atom number N > NT could still
form a quasi-stationary state after losing this excess. On the contrary, blobs with a too
low atom number generically spread and form a background in the density distribution.

In [47], Chen & Hung confirmed the scale invariance of the underlying physics as well
as the scaling (3.21) of NT with the coupling strength g̃. As reported in Fig 3.9(a), the
observed solitary waves were in good agreement with the Townes soliton profile. This was
confirmed over a broad range of experimental parameters, by varying the initial density
and the final interaction parameter.

3.4.2 Modulational instability

How can one interpret the results of Chen & Hung [46, 47]? The uniform state is the
simplest stationary solution of the 2D NLSE (3.10) in a infinite medium. This holds indeed
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Figure 3.9: (a) Radial profile of the remnant blobs following the quench of a 2D Bose gas
from repulsive to attractive interactions. Over a broad range of parameters, the bare data
(inset) can be rescaled and collapsed onto a single curve, showing good agreement with
the expected Townes soliton (solid line). Figure taken from [47]. (b) Complex frequencies
ω̄k = ωk + iγk from a Bogoliubov analysis in the attractive case. Contrary to the repulsive
case (2.18), low k modes have an imaginary part and are therefore unstable, with a largest
growing rate at (kc, γc).

both for a positive and a negative coupling strength. In the positive case, this solution is
the ground state of the system as it minimizes both the kinetic and the interaction energy.
By contrast, we have seen that the energy functional (3.9) is not bounded in the negative
case whenever the atom number is larger than the Townes one. We thus anticipate that
the uniform solution will be subject to a dynamical instability in the presence of a weak
modulation.

Bogoliubov analysis

Let us understand the effect of a tiny modulation above a homogeneous system. For
an atomic system with density n, the Bogoliubov analysis presented in Subsec 2.1.2 can
be directly extended to the attractive case, yielding a set of complex frequencies ω̄k =
ωk + iγk associated to a wave vector of norm k. In the limit of small k, the free-particle
term of Eq (2.18) becomes negligible. As a consequence, (~ω̄k)2 becomes negative for
k ≤ km = 2

√
|g̃|n. Such an imaginary frequency can lead to the exponential growth of

modes k ∈]0, km[ with a rate

γk =
~

2m

√
k2 (k2

m − k2) (3.32)

which we represent in Fig 3.9(b). Unstable modes thus correspond to long wavelengths
λ ≡ 2π/k ≥ 2π/km. For a system with a finite extension, the corresponding infrared cut-
off might suppress the instability. For instance, consider a square of side L with periodic
boundary conditions, the initial uniform density then writes n = N/L2, with N is the
atom number. This system can only host discrete modes with wave-vector k = (2π/L) n
indexed by a pair n ∈ Z2. Unstable modes are not present when λm ≡ 2π/km >

√
2L
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(longest wavelength along the diagonal), which leads to the condition

N < Nc ≡
π2

√
2|g̃|
' 7

|g̃| . (3.33)

This critical atom number Nc is similar to the Townes atom number NT defined in
Eq (3.21). This naive analysis suggests that a finite uniform system is stable below the
threshold for the formation of a Townes soliton, a prediction supported numerically [219].

Fastest-growing mode

In a very large system, one expects self-modulation to be initially dominated by the
most unstable mode, i.e. the mode with largest growth rate γk. This maximum is easily
determined for k and γk respectively equal to

kc =
√

2|g̃|n γc =
1

2

~
m
|g̃|n. (3.34)

Let us consider the case relevant here of an interaction parameter quenched from positive
to negative values, starting with a system at thermal equilibrium. We then expect modes
of low energy (long wavelength) to have initially an appreciable population. Moreover,
even if this dominant mode is not initially populated but other modes are, small nonlinear
couplings from the populated modes to this fastest-growing mode might trigger its rapid
growth. In most practical situations, we thus expect the formation of structures whose size
is approximately given by the wavelength λc = 2π/kc. Chen & Hung [46,47] exploited the
fact that this dynamics leads to the formation of blobs of size λc which contain typically
' πλ2

cn = Nc atoms. As noted above, this number is close to the Townes atom number
NT .

This so-called modulational instability (MI) – also known as self-modulation or side-
band instability – is a hallmark of many phenomena encountered in nonlinear physics,
including hydrodynamics, electrodynamics, optics, or matter-wave physics [225]. The
phenomenon of filamentation, observed in the early experiments on self-focusing, can be
seen as a particular manifestation of this instability [178]. The formation of matter-wave
soliton trains by Strecker et al [24] already mentioned in Subsec 3.1.1 was also interpreted
in this manner [226]. In the series of experiments [46, 47], solitons were thus formed in
a stochastic fashion. This is complementary to our protocol detailed in Chapter 4 which
allows the deterministic realization of Townes solitons.

3.5 Conclusion

In this chapter, we presented the solitary waves associated to the nonlinear Schrödinger
equation. The absence of integrability and the collapse instabilities in 2D suggest the
physics is very different from the one-dimensional case. These also make solitary waves
in higher dimensions less easy to probe. The amount of experimental works on this topic,
especially in nonlinear optics and matter-wave physics, show the broad interest that were
risen by these issues.

We then focused on the Townes soliton, historically the first solution considered in the
problem of self-trapping of optical beams. Its stability and elementary excitations were
discussed, as well as stabilization mechanisms which can facilitate the observation of the
soliton profile. The Townes soliton also emerges as a universal profile for the collapse
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dynamics. The recent demonstration of Chen & Hung [46, 47] confirms this universal
character.

As an outlook, note that spatial light modulators could be useful for the deterministic
preparation of solitary waves propagating in optical media, for example in atomic vapors
with large nonlinear parameters and good transparency. In parallel to this, the high
versatility of cold-atomic platforms make them ideal candidates to study the existence
and the stability of solitary waves for multidimensional fields. In the next chapter, we
present our recent deterministic realization of a Townes profile using a novel experimental
approach, namely a two-component planar Bose gas which mimics the physics of a single-
component attractive system.



Chapter 4

Realization of a Townes soliton

In this chapter, we discuss our realization of a matter-wave Townes soliton. This soli-
tary wave arises in a two-dimensional homogeneous system described by the nonlinear
Schrödinger equation, in the presence of attractive interactions. Under that condition,
the soliton may exist with any size, provided it has the correct shape and the correct
atom number. In cold atom physics, this can be achieved by considering an assembly
of bosons in a two-dimensional box, described by contact interactions. At low magnetic
fields, interactions between the 87Rb atoms which we use are repulsive.

To circumvent this limitation, we use a novel approach based on a two-component
planar Bose gas. Starting from a uniform bath of atoms in a given internal state, we
imprint the soliton wave function using an optical transfer to another state. In Sec 4.1, we
illustrate the dynamics of strongly imbalanced binary mixtures under our experimental
conditions. As a first test, we observe contraction behaviors which are compatible with
the physics described by the attractive NLSE. A rigorous study of the underlying physics
is postponed to Chapter 5. The realization of a Townes soliton is demonstrated in Sec 4.2.
In particular, we check the scale invariance of the solitonic behavior for the well defined
atom number NT = NT /|g̃e|, where NT ' 5.85 and g̃e the effective coupling strength in
our two-component system.

Most of the material presented in this chapter has been taken from [45]. Some com-
plementary data were also added.

4.1 Effective one-component dynamics

In the following, we show that under appropriate experimental conditions, the dynamics
of a two-component system can mimic the physics of a single-component matter-wave,
evolving according to the nonlinear Schrödinger equation (3.23). This naturally arises in
a weak depletion limit presented in Subsec 4.1.1. Our experimental protocol for preparing
such mixtures is detailed in Subsec 4.1.2, and an example dynamics is given in Subsec 4.1.3.

4.1.1 Weak depletion regime

Effective equation at equilibrium

We first present the main ingredient of this chapter, i.e. the mapping to a single-component
NLSE description for our binary mixture and its domain of validity. To do so, we consider
a two-component planar superfluid at zero temperature and described by the macroscopic
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Figure 4.1: Equilibrium configuration of a strongly imbalanced mixture in the weak de-
pletion regime. The in-plane density distribution of the majority component |1〉 (resp.
the minority component |2〉) is depicted in (a) (resp. in (b)). The minority component
forms a bubble, and digs a small hole in the bath of atoms in state |1〉 which has asymp-
totic density n∞. The corresponding radial profiles are shown in (c), together with the
almost constant total density. Profiles were obtained through imaginary time evolution of
the coupled NLSEs, as described in the next chapter, for parameters similar to the ones
explored in this chapter.

wave-functions (φ1(r), φ2(r)). Each component i = 1, 2 describes the external state of
an atom with mass m in a given internal state |i〉. The dimensionless coupling strength
(g̃11, g̃22, g̃12) characterizing the intra- and inter-component interactions are assumed to
be all positive.

Most importantly, we consider a situation in which the density of component |1〉 is
everywhere much larger than in state |2〉, see Fig 4.1 for an example. In the following, we
refer to this as the weak depletion regime, and component |2〉 will be called the minority
component. In this configuration, the equilibrium state of component |2〉 can be deter-
mined using an equation for a single component only. The corresponding (stationary)
cubic NLSE

µ′2φ2 = − ~2

2m
∇2φ2 +

~2

m
g̃e|φ2|2φ2 g̃e = g̃22 −

g̃2
12

g̃11
(4.1)

is characterized by an effective (composite) coupling strength g̃e, a modified chemical
potential µ′2, and the same mass m. In the following, we give simple physical arguments
supporting this mapping, whereas a rigorous justification will be given in Chapter 5.

An immiscible mixture

For the states we consider hereafter, the interaction parameters are such that g̃2
12 > g̃11 g̃22.

As a consequence, our mixture is immiscible [53,227] (see also Subsec 5.1.1). The effective
coupling strength g̃e is then negative, and the corresponding single-component equation
(4.1) can host a Townes soliton. At a large distance away the soliton, the bath of atoms in
state |1〉 is essentially unaffected by the minority component and has asymptotic density
n∞. In practice, this is relevant when the soliton size is much smaller than the bath
container, and the density is approximately uniform in the intermediate region, far from
the box edges.
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The total density is frozen

We will show in the next chapter that, when the interaction parameters g̃ij are all close
to each other, the total density of the mixture is almost constant over the full system’s
extent

n1 + n2 ' n∞, (4.2)

and component |1〉 forms a negative pattern of the n2-distribution, as illustrated in
Fig 4.1(c). This remark applies beyond the weak depletion regime. For example, if
the two states were to occupy separate domains, then mechanical equilibrium imposes
g̃11n

2
1 = g̃22n

2
2, as we show in Subsec 5.1.1. If g̃11 ' g̃22, one finds that the total density

changes very little (in relative value) from one domain to the other. Eq (4.2) is approxi-
mately realized in our experiment, since the interaction parameters given in Eq (1.12) all
differ by less than 6%. The effective interaction parameter g̃e is then always one order of
magnitude smaller than the bare g̃ij ’s.

Physical justification

Let us give some physical insights on the use of Eq (4.1) for the minority component, in
the immiscible case. The mapping from an all-repulsive to an effectively-attractive system
may seem exotic at first glance. It was already considered by Dutton & Clark [228].
Actually, Eq (4.1) can be qualitatively understood by analyzing the behavior of a very
dilute bubble of atoms in state |2〉 in a bath of the other species.

Since the two components are immiscible, it might be energetically favorable for the
bubble to contract and to push away the other component in order to reduce their re-
ciprocal overlap. Equilibrium is reached when the decrease of total interaction energy is
exactly balanced by the increase of kinetic energy, which rises when the spatial extension
gets smaller. When the atom number in |2〉 is large enough, the two species segregate
and form spin domains, with a significant overlap restricted to the frontier between the
domains [53].

Minority component dynamics

An important issue is the promotion of the stationary description (4.1) to its time-
dependent version

i~
∂ψ2

∂t
= − ~2

2m
∇2ψ2 +

~2

m
g̃e|ψ2|2ψ2. (4.3)

In the weak depletion regime, one can assume that the dynamics of the dense bath of atoms
in state |1〉 with density n∞ occurs on a short time scale (∝ m/(~2g̃11n∞)) compared to
the minority component dynamics. The bath is then always at equilibrium on the time
scale of the evolution of the minority component, and Eq (4.3) can be deduced from this
adiabatic approximation [228].

The effective interaction parameter g̃e corresponds to a dressing of the interactions for
component |2〉 by the atoms of the bath [76]. In this limit, the dynamics of the particles in
state |2〉 remain scale invariant since the characteristic length of the bath, i.e. its healing
length ξ1 = 1/

√
2g̃11n1, does not play any role. However, Eq (4.3) fails reproducing the

dynamics of density waves which occur on a faster time scale. Nevertheless, we will show
in the following that this equation still well captures the dynamics considered in this work.
In particular, we will test the important properties associated to Eq (4.3), e.g. the variance
identity (2.24).
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Figure 4.2: Preparation of a spin distribution. (a) A uniform disk of atoms in |1〉 undergoes
a Raman transition using a pair of co-propagating beams. The in-plane intensity profile
of these beams is shaped using a DMD, allowing us to tailor arbitrary intensity patterns
on the atomic cloud. (b) Density cuts of the cloud immediately after exposure, with a
constant total density (grey dashed line). (c) CCD picture of an example Townes profile
in |2〉 at t = 0. The box edge is indicated as a black dashed circle. 20 pictures have been
averaged. (d) Corresponding error signal at the end of the feedback loop. The amplitude
of the error is less than 10% of the peak density. Radial density profiles for the same data
are shown on (e) using lin-lin scale, and (f) using log-lin scale.

4.1.2 Preparation and detection

We now present our experimental protocol for preparing a system close to equilibrium, in
the weak depletion regime. The experiment starts with a homogeneous system of atoms
in the hyperfine state |1〉 ≡ |F = 1,mF = 0〉 and density n∞ ' 100 µm−2. The cloud is
contained in a disk box-potential with sharp edges and radius R = 20 µm. Before preparing
the binary mixture, the system is deeply in the superfluid regime with a temperature
T ' 50 nK, T/Tc ' 0.1 with Tc the critical temperature for the superfluid transition (see
Subsec 2.2.3).

An external magnetic field B of magnitude B = 0.7 G with tunable orientation is
applied, allowing us to tune the intra-species interactions as explained in Subsec 1.2.2.
Unless explicitly mentioned, the magnetic field is kept normal to the atomic plane. The
interaction parameters are defined as g̃ij =

√
8πaij/`z, where aij are the scattering lengths

between |i〉 and |j〉 given in Eq (1.12), and `z =
√

~/mωz is the harmonic oscillator length
associated to the confinement along the vertical direction of frequency ωz = 2π · 4 kHz.
Here, we find g̃11 = 0.16.
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Spin distribution imprinting

As expressed by Eq (4.2), equilibrium configurations have approximately a uniform to-
tal density. We thus only have to tune properly the spin distribution. The use of Ra-
man beams allows us to prepare arbitrary spin distributions, see Subsec 1.2.1. Using
co-propagating Raman beams, we induce a spatially-resolved transfer from state |1〉 to
state |2〉 ≡ |F = 2,mF = 0〉 via a resonant two-photon transition, without any momen-
tum transfer. Thanks to an extra DMD and a dithering algorithm, the local intensity and
thus the local Rabi-frequency ΩR(r) can be tuned arbitrarily from 0 to a maximum value
& 10 kHz, with a spatial resolution of ∼ 1 µm, see Fig 4.2(a-b). For a given exposure time
tR, the total density is kept constant everywhere. One obtains a system whose initial wave
functions can be written as

ψ1 =
√
n∞
√

1− p(r) ψ2 =
√
n∞
√
p(r) p(r) = sin2

(
ΩR(r)tR

2

)
(4.4)

in the bulk. As reminded in Subsec 1.2.1, the light shifts associated to the Raman beams
cancel each other, and the Raman beams do not induce any phase gradient on the wave-
functions ψi, i = 1, 2. The Raman pulse duration is short enough (tR < 25 µs for all data
studied in this chapter) so that no dynamics occur during the transfer.

Our protocol for preparing well-defined spin patterns is based on an iterative algorithm
which minimizes the difference between the measured spin distribution and the target
one [51]. In Fig 4.2(c), we show an example realization of a Townes density profile, i.e. a
density distribution n2(r) ∝ R2

0(r) where R0 is the Townes soliton already represented in
Fig 3.6. The bubble is imprinted at the center of the box to minimize edge effects, and
to preserve the rotational symmetry of the system. In the feedback loop, we typically
average 20 pictures for computing the error signal at each turn, see Fig 4.2(d). This rather
large number of pictures is required as the signal-to-noise is particularly low in the weak
depletion regime.

Detection

After imprinting a given spin distribution, we let the system evolve for a variable time t
and measure the in situ density distribution via absorption imaging. We systematically
wait for a minimum delay of 0.8 ms before taking the image. Indeed, a shorter delay
may let the Raman beams shine onto the CCD chip during the first imaging pulse. We
checked numerically that this technical delay leads to negligible modifications of the density
distributions, and we take this time as an initial condition.

In the weak depletion regime, the density n1 is by definition much larger than n2.
For that reason, it is not possible to image this component with resonant light, since it
would lead to a too large optical depth. For such dense samples, resonant dipole-dipole
interactions induced by the probing laser beam make the relation between the optical
depth and the density nonlinear, and prevent us from determining the density accurately.
Imaging with detuned light could reduce the optical depth, but would also blur the patterns
present in the density distribution due to refraction index gradients. For these reasons,
we do not image neither consider component |1〉 in the following. As we now focus only
on component |2〉, we also drop the index 2 (ψ2, n2 → ψ, n, etc).
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Figure 4.3: Fluctuations of the center of mass position on independent realizations. (a)
The coordinate histograms at various times reveal a spreading of the center of mass from
shot-to-shot. Data for an initial density distribution varying like ∝ exp

[
−(r/`)4

]
, with

RMS size σ0 = 8.5 µm and N = 1050. (b) Center of mass dispersion as a function of time
(blue dots). The fit (blue line) yields a spreading velocity v = 45(2) µm·s−1. The inset
shows the velocity v extracted from various datasets, using initial Townes profiles (red
dots) and profiles in ∝ exp

[
−(r/`)4

]
(blue dots). Circles correspond to RMS size σ = 8.5

µm and diamonds to σ = 5.7 µm.

Radial profiles

The evolutions studied in the following all start with radially symmetric profiles. We
checked that this symmetry is approximately preserved during the dynamics, up to small
preparation and detection imperfections. For better visualization and for increasing the
signal-to-noise, it is thus relevant to work with radial profiles. These radial profiles are
defined with respect to the center of mass of the wave packet

r0 =
1

N

∫
d2r n(r)r N =

∫
d2r n(r), (4.5)

where N is the total atom number of the bubble. N is estimated by simply summing the
measured density distribution pixel-by-pixel. Experimentally, we observe small random
drifts of the wave-packet from one shot to another. We attribute this motion to thermal
fluctuations of the bath of atoms in state |1〉, before inducing the Raman transfer. Aver-
aging blindly absorption images taken after the same evolution time would then lead to an
artificial broadening of the distribution. To get rid of this effect, we determine the center
of mass of each individual image.

A priori, this step could be achieved by using the standard definition for the center of
mass (4.5). Because of the small densities studied here, we checked by eye that this method
leads to large errors in some cases. We find it more robust to extract the center of mass
using a 2D fit to the data, with the (initial) target density distribution as a fitting model.
For a given evolution time, we finally bin the data with respect to their distance r to the
center, with a one-pixel bin size. At this stage, we are left with a 1D radial density profile
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n(r), as shown in Fig 4.2(e-f). This shows an excellent control of the density distribution
of component |2〉 over almost two decades in density.

Center of mass fluctuations

Choosing an arbitrary dataset, we show in Fig 4.3(a) the histograms of the center of mass
position for various evolution times. This clearly reveals the spreading of the centers
aforementioned, although a more accurate description of the statistics would necessitate
a larger sampling. A global drift is also observed in some cases, probably caused by
a residual inhomogeneity of the trapping potential. We plot in Fig 4.3(b) the center of
mass dispersion ∆r for t < 30 ms, where the evolution is well captured by a model in√

∆r2
0 + (vt)2, typical of a ballistic expansion.

Reproducing the analysis for various datasets yields an approximately constant spread-
ing velocity v ∼ 50 µm·s−1, seemingly independent of the shape, size or atom number, as
shown on the inset of Fig 4.3(b). Note that the corresponding velocity is low compared
to other velocity scales considered throughout this work (Bogoliubov velocity, expansion
velocity in the absence of interactions). Preliminary data do not show a clear dependence
of this spreading velocity with temperature neither.

Finite size

Since we restrict to the weak depletion regime, all the profiles studied here have a density
n which does not exceed 20% of the bath density n∞ = 100 µm−2. Moreover, the bath
itself has a finite size (20 µm radius), and should always be larger than the soliton size.
This restricts the range of sizes we can explore for the soliton preparation, since the latter
has a well defined atom number. On the other side, we will show in Subsec 5.2.2 that the
soliton should necessarily have a size σ much larger than the bath healing length ξ1 ' 0.2
µm. In fact, one can show that this condition is immediately satisfied in the case of a
small depletion n� n∞, provided |g̃e| � g̃11 as verified here.

Losses

We restrict the evolution to short times to limit the amount of losses in state |2〉 to typically
< 10%. Such losses occur mainly in this state because of the two-body hyperfine-changing
collisions already discussed in Subsec 1.2.1. This is especially important for the contracting
bubbles which undergo strong losses when the density has increased significantly. In
practice, the explored evolution times are . 50 ms.

4.1.3 An example dynamics

We now illustrate our approach with an example dynamics and motivate the use of the
time-dependent NLSE (4.3) for our binary mixture. In Fig 4.4, we follow the evolution
of a Gaussian density profile ∝ exp

[
−(r/`)2

]
with an atom number N = 950(50) and an

initial RMS size σ0 = 5.7 µm. The density distributions in 4.4(a) show an increase of the
central density from 10 to 16 atoms per µm2 over 30 ms, and an apparent contraction of
the full distribution. This is made clearer by looking at the corresponding radial profiles
in Fig 4.4(b, c).

The various lines shown in Fig 4.4(b-e) enable a direct comparison to the one-component
NLSE. Indeed, these were obtained from a numerical simulation of Eq (4.3) with parame-
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Figure 4.4: Evolution of a Gaussian wave packet, with atom number N = 950(50) and
initial RMS size σ0 = 5.7 µm. The density distributions at various times are shown in
(a), together with the radial profiles in lin-lin (resp. log-lin) scale on (b) [resp. (c)]. The
solid lines are numerical simulations of the one-component NLSE with similar parameters
and sampled at the same times (more sparsely dotted lines correspond to longer times).
The finite imaging resolution was taken into account by convolving the numerical profiles
with a 2D-Gaussian kernel of standard deviation 1.1 µm. The density profile is clearly not
Gaussian anymore at t = 30 ms. The RMS size σ and the central density n(r = 0) are
shown on (d, e).

ters matching the initial target distribution1. In particular, we observe a decrease of the
RMS size2 σ compatible with the one expected from the variance identity 2.24. Note that
σ decreases only slightly while the central density increases significantly. This indicates
that, contrary to the non-interacting case, the evolution of a Gaussian is not self-similar
and n(r = 0)σ2 is not a conserved quantity. At times t > 20 ms, we observe a large de-
viation of the measured central density with respect to the numerics, which we attribute
to the saturation of the optical depth for high density. We find that this affects very little
the determination of the RMS size.

4.2 Dynamics of a Townes profile

In this section, we demonstrate our ability to prepare a Townes soliton. We prepare
a Townes profile and explore various atom numbers in Subsec 4.2.1. We then consider
various sizes and interaction strengths in 4.2.2. We confirm the existence of a solitonic
behavior for a specific value of |g̃e|NT and arbitrary sizes, a hallmark of scale invariance.

1Numerical methods are described in Appendix E .
2See Subsec 4.2.1 and Appendix D for more details about the determination of the RMS size.
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Figure 4.5: Evolution of a Townes profile. (a-c) Radial profiles at different times for
imprinted Townes profiles with (a) N = 250(40), (b) N = 720(20) and (c) N = 1200(50)
atoms. The initial RMS sizes σ0 are similar. The solid lines are fits to the data used
for the determination of the RMS size σ(t), as explained in the main text. (d-f) Same
data reported in log-lin scale. Similarly to Fig 4.4, note that for N notably different from
NT , the functional form of the density distribution n(r) changes significantly during the
evolution. Therefore, the product n(0)σ2 is not a constant of motion in spite of the atom
number conservation.

We finally discuss some effects beyond the weak depletion regime in Subsec 4.2.3.

4.2.1 Various atom numbers

We first study the evolution of a Townes profile for a fixed initial RMS size and various
atom numbers N . Here, the external magnetic field is set perpendicular to the atomic
plane, yielding a value of g̃e = −7.6× 10−3. We focus on data corresponding to an initial
value of σ0 = 5.7 µm. The corresponding radial density profiles are shown in Fig 4.5. We
observe an almost stationary time evolution for N = 720(20) whereas the central density
of the cloud decreases for N = 250(40) and increases for N = 1200(50).

Determination of the RMS size

To be more quantitative, we measure the RMS size σ of the system at each time t. Direct
determination of the RMS size is challenging experimentally. Indeed, the contribution of
points at large r is important for a 2D integral and our signal-to-noise ratio is poor in this
region. As a remedy, we use a fit to the data to determine σ(t). The choice of the fitting
function relies on a time-dependent perturbation theory of the one-component NLSE.
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Figure 4.6: Determination of the RMS size, fitting procedure. (a) Fitting function
χ(r)/χ(0) deduced from time-dependent perturbation theory (blue dashed line), together
with a Townes profile (dashed line). Deformation δn(r, t) as defined in Eq (4.7), for various
times t of the experimental runs presented in Fig 4.5(a) for (N = 250) (a), and Fig 4.5(c)
(N = 1200) (b). We also plot the best fit of χ(r) to the data.

Technical details have been gathered in Appendix D. Using this perturbation theory, we
predict the deformation of the density profile n(r, t) at short times and close to the critical
atom number NT

δn(r, t) = n(r, t)− n(r, 0) ' ηχ(r)t2, (4.6)

which is expected to be quadratic in time. In this expression, η is a small parameter
measuring the deviation from the critical atom number, and χ(r) is the shape of the
deformation reported in Fig 4.6(a), overlaid with a Townes profile. An explicit expression
of χ(r) in terms of the Townes profile and its first radial derivative is given in Eq (D.6).
We checked that the 2D integral of χ(r) is zero, as the integral of the density should be
conserved by the evolution under the NLSE.

In practice, we first fit the initial profile to a Townes density profile with a free am-
plitude and size, which we denote n0(r). For each time of the evolution, we compute the
deformation of the density profile with respect to the fitted initial one

δn(r, t) = n(r, t)− Λn0(r) (4.7)

where Λ is a correction factor to make the two terms of the right-hand-side of Eq (4.7)
have the same atom number. The second step consists in fitting this profile with the
function χ(r) with a free amplitude and size. This fit is performed on a radial region that
extends from 0 to 1.75σ0, with σ0 the initial RMS size (obtained from the Townes fit).
Examples of such fits are reported in Fig 4.6(b,c). Finally, we compute σ0 using the initial
Townes fit of Eq (4.7) and this fitting function, which we integrate over the full plane. The
corresponding profiles are shown in Fig 4.5 as solid lines. Additionally, we estimate the
error on σ by performing a bootstrap analysis. We confirmed the validity of this method
by applying it to the results of numerical simulations of the two-component NLSEs and
by checking the overall quality of the fits.
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Figure 4.7: Variance identity and scale invariance. (a) Time evolution of the fitted RMS
size for the three configurations considered in Fig 4.5 with σ0 ' 5.7 µm. The solid lines are
a fit to the data with Eq (4.8), following the variance identity. (b) Expansion coefficient
as a function of the atom number of the imprinted wave packet for a magnetic field
perpendicular to the atomic plane. All data for different initial sizes collapse onto a single
curve. The solid line is the theory prediction computed for g̃e = −7.6 × 10−3 without
any adjustable parameter. The shaded area around this line represents our estimated
uncertainty on the calibration of g̃e.

Variance identity, expansion coefficient

Using the previous method, we extract the RMS size σ(t) of the cloud for each time t and
study its time evolution, as shown in Fig 4.7. Qualitatively, the variation of σ for each
atom number confirms our initial intuition of an expansion (resp. a contraction) for the
data represented in Fig 4.5(a) (resp. Fig 4.5(b)), while the size measured for N = 720
varies only slightly over 40 ms. We further analyze these data using the variance identity
(2.24) which provides the time evolution of the RMS size of the density profile for the one-
component NLSE. More precisely, we fit the time evolution of σ to the function resulting
from the integration of Eq (2.24)

σ2(t) = σ2
0 +

(
~

mσ0

)2

γ t2, (4.8)

with fitting parameters σ0 and γ. Here, we assumed that the imprinted state is a real
wave function and thus dσ/dt = 0 at t = 0. The expansion coefficient γ we just defined is
a dimensionless quantity. It can be written as γ = 2mσ2

0E/~2, where E is the (conserved)
total energy for the effective single-component NLSE (4.3).

For a family of real wave functions with a given shape, the expansion coefficient does
not depend on the size of the wave function due to scale invariance. Moreover, it should
vary as an affine function with the atom number N , according to the form of E. In the
specific case of a Townes profile, one can show that the expressions of the kinetic and
interaction energy integrals (3.22) lead to

γ(N) = α

(
1− N

NT

)
α ' 1.19, (4.9)
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where the coefficient α is determined numerically. Consistently, γ cancels for the Townes
soliton which contains precisely N = NT atoms. The fits shown in Fig 4.7 as solid lines
indicate that the evolution of σ is well-captured by the law (4.8), again confirming the
validity of the attractive NLSE description.

4.2.2 Check of scale invariance

Townes profiles with various sizes

The expansion coefficient γ should not depend on the size of the wave packet and thus
allows us to test scale invariance in our system. We repeat the experiments described
above for various initial sizes σ0 and various atom numbers N . We report in Fig 4.7(b)
the fitted expansion coefficient γ as a function of the atom number N for these different
values of σ0. All data collapse onto a single curve γ(N) which experimentally confirms
the scale invariance of the system.

The stationary state, obtained for γ = 0, contains an atom number equal to N exp
T =

790(40). We determined N exp
T using a linear fit of γ with γ(N = 0) = 1.19 fixed at the

expected value. In Fig 4.7(b), we also show as a solid line the prediction for γ of Eq (4.9),
where NT = 770(50) is fixed by the independently estimated value of g̃e

3. It shows a very
good agreement for lower values of N . The small deviation at large N is likely due to the
larger density of the minority component wave packet, which leads to increased losses and
deviation from the low depletion regime.

Gaussian profiles

What is the particular status of the Townes profile in the above experiment? As shown
in Subsec 3.3.1, for an arbitrary density profile there always exists an atom number such
that the energy of Eq (3.8) is zero and hence, from the variance identity (2.24), the RMS
size is stationary. Of course, this is not sufficient to achieve a fully stationary profile. To
show this, we reproduce the previous analysis starting from a family of Gaussian density
distributions.

The determination of the RMS size is also done through a fit to the radial density
profiles whose details have been gathered in Appendix D. We extract a new series of
expansion coefficients γ for various sizes and atom numbers, which we plot in Fig 4.8(a).
The data also collapse onto a single curve. The solid line gives the theoretical prediction for
γ(N) analogous to (4.9). In the case of Gaussian wave-packets, γ = 1 in the non-interacting
case (N = 0), and intercepts the x-axis for N = NG ≡ 2π/|g̃e|, which is only 7% larger
than NT (see Appendix B). Again, we observe good agreement of the experimental data
with theory4.

We find however that even when γ = 0, the corresponding profile is not stationary.
We illustrate this point in Fig 4.8(b) where we compare the deformation over time of two

3Note that in all data reported here, the uncertainties on the measured atom number are associated to
the statistical variations of the cloud over the different repetitions of the experiment. Systematic errors
on the atom number calibration are estimated to be on the order of 10%. The determination of NT is
sensitive to the knowledge of the scattering length differences. A variation of these two differences by 0.1 a0
corresponds to a variation of NT by ≈ 50 atoms for our experimental parameters.

4We indicate that these data were collected at an early stage of the project. In particular, the feedback
loop for the Raman beam-shaping was not implemented yet. The choice of grey-level images projected on
the DMD was done by inverting the relation between the local target transferred fraction and the local
Rabi frequency for the two-photon transition.
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Figure 4.8: Gaussian initial states. (a) Expansion coefficients for the evolution of Gaussian
initial states. As in Fig 4.7(b), the solid line is the theory prediction computed for g̃e =
−7.6 × 10−3 without any adjustable parameter. It crosses the x-axis for N = NG & NT .
(b) Deformation of an initial Gaussian profile in blue (resp. an initial Townes profile in red)
computed from Eq (4.7) and normalized by the initial peak density n0. For both data-sets,
the initial peak density are very close to each other, σ0 = 8.5 µm , N = 800 ' NG ' NT

leading to a almost constant RMS size (γ ' −0.2). However the Gaussian profile undergoes
much larger deformations over the represented time-scale. (c) Overlap of the radial profiles
with the initial ones for the same data.

wave packets, a Gaussian and a Townes profile, with the same atom number N = 800
and same initial RMS size σ0 = 8.5 µm. In Fig 4.8(a) and 4.7(b) these correspond to
the blue pentagons with slightly negative γ values (' −0.2), thus having both an almost
stationary RMS size. However, the observed density distributions is clearly not stationary
in the Gaussian case, as shown in the upper panel of Fig 4.8(b), while the corresponding
Townes profiles has almost not evolved for the selected profiles (lower panel of Fig 4.8(b)).

To consolidate this argument, we study the overlap O(t) between the profiles at time
t and t = 0 for each distribution, which we define as

O(t) =
〈n(0)|n(t)〉
‖n(0)‖ ‖n(t)‖ , 〈n1|n2〉 =

∫
dr n1(r)n2(r) ‖n‖2 = 〈n|n〉. (4.10)

The evolution of O(t) is shown in Fig 4.8(c) and confirms our initial observation. This
highlights the specific status of the Townes profiles in our experiment5

Control of NT

Thanks to the existence of magnetic dipole-dipole interactions in a mixture of the two
components, the value of the inter-species scattering length a12 can be shifted, for a 2D
cloud, by an amount varying from−0.7 a0 to +1.4 a0 around its 3D bare value a0

12 = 98.9a0,
see Subsec 1.2.2 and [52]. This is achieved by changing the angle Θ of the applied magnetic
field with respect to the atomic plane, as represented in Fig 4.2(a). In all cases, we have
a22 − a2

12/a11 < 0 and thus a similar inequality for the interaction parameters g̃ij . This

5Note that in Eq (4.10), the integral does not comprise the Jacobian factor expected from an azimuthal
integration. Indeed, the low signal-to-noise ratio of our data leads to aberrant values when using this
definition. We also notice that the values of O(t) do not deviate strongly from one in all our data. Indeed,
the density profiles have not dramatically changed and must take positive values everywhere.
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Figure 4.9: Control of NT . (a) Expansion coefficient as a function of the atom number N
for various orientations of the magnetic field. The RMS size of the imprinted cloud is set to
σ0 = 8.6 µm for all data considered here, and the bath density is n∞ = 90 atoms per µm2.
For each set of points we also plot the linear fit of γ(N) from which we deduce N exp

T . (b)
Variation of N exp

T for different values of g̃e. The solid line is the prediction NT = NT /|g̃e|.
(Inset) The experimentally accessible values of |g̃e| are plotted with respect to the angle Θ.
The shaded area around this line represents our estimated uncertainty on the calibration
of g̃e.

implies that g̃e < 0, such that we cannot cross the miscibility threshold using this trick.
The inset of Fig 4.9(b) shows the experimentally accessible values of |g̃e|. Despite the
smallness of the shift on a12 compared to a0

12, it has a strong influence on the effective
critical atom number NT = NT /|g̃e|, which varies from NT (Θ = 0◦) = 770 to NT (Θ =
90◦) = 5600 with our experimental parameters.

In Fig 4.9(a), we report our measurements of the expansion coefficient γ(N) for various
orientations Θ of the magnetic field. We restrict ourselves to atom numbers N < 2200
to ensure the bath stays in the weak depletion limit for the sizes σ < 9 µm imposed by
the geometry of the experiment. From a linear fit of γ with γ(N = 0) = 1.19 fixed at
the expected value, we deduce the stationary atom number N exp

T at which this expansion
coefficient vanishes. We show in Fig 4.9(b) the measured variation of N exp

T when varying Θ.
We confirm the prediction NT = NT /|g̃e| with g̃e varying from −3.9×10−3 to −7.6×10−3.
Anisotropic effects due to magnetic dipole-dipole interactions are not expected to modify
the properties of the system as long as σ � `z, where `z is the vertical confinement
length [52]. In Appendix C, we show that the modification of NT should remain smaller
than 10% for all data presented here. We have thus observed the main properties of a
Townes soliton in our experimental setup.

4.2.3 Finite-depletion regime

Our approach using a two-component gas raises new specific questions. For instance,
for a wave packet with large enough |g̃e|N , the central density can diverge in a finite
time in the single-component case whereas such a collapsing behaviour cannot occur in
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Figure 4.10: Dynamics with finite depletion. Radial profiles for a Townes density profile
with N/NT ' 1 in (a) and N/NT ' 1.5 in (b), both with an initial RMS size σ0 ' 8.5 µm.
The bath density is set to n∞ ' 30 atoms per µm2, and the angle of the magnetic field
with the atomic plane is Θ = 39◦, leading to a value of NT = 1100(50). (c) Overlap with
the initial profile for the same data.

the two-component case with repulsive interactions (all g̃ij > 0). Indeed, as the minority
component density becomes comparable to the bath one, the bath brings a new length scale
to the effective one-component description, thus breaking scale invariance. As discussed
in the next chapter, such corrections act as a stabilization mechanism and modify the
equilibrium properties of the system. In particular, they lead for any atom number N >
NT to a localized ground state solution with a well-defined size σN . We checked that for
all data reported in Fig. 4.7(b) and 4.9(b), the shift of the stationary atom number due to
the additional stabilizing terms remains small (. 10%).

In Fig 4.10, we show some preliminary data signaling physics beyond the standard cubic
NLSE. To reach the finite-depletion regime while maintaining a small density in state |2〉,
we prepare a bath with a much lower density than previously (n∞ ' 30 atoms per µm2).
We then consider two initial Townes density profiles with atom numbers N/NT ' 1 and 1.5
respectively. The corresponding initial depletions are 27% and 37%, respectively. While
the bubble with N/NT ' 1 undergoes large changes of its amplitude over the first 30 ms
of evolution, the system with N/NT ' 1.5 seems close to equilibrium. This is further
confirmed by extracting the overlap O of the radial profiles with the initial ones for the
same data, as shown in Fig 4.10(c). These results suggest a modification of the equilibrium
atom number for such depletions and sizes. In particular, the increase of size for case (a)
indicates that the stationary state for such an atom number has a larger size than what
we imprinted.

4.3 Conclusion

In this chapter, we have presented a novel approach for the exploration of matter-wave
solitons using a two-component planar Bose gas. The mapping to a single-component
attractive system was possible because of the immiscible character of the mixture. We
have shown our excellent control for the preparation of arbitrary spin distributions using
intensity modulation of Raman laser beams. Experimentally, we showed that the single-
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component NLSE gives a fairly accurate description of our system.

Most importantly, we could prepare a Townes soliton in a deterministic fashion. To
our knowledge, this has not been achieved previously. We tested scale invariance of the
underlying physics by observing the solitonic behavior for various sizes. We also confirmed
the universal scaling |g̃e|NT = NT ' 5.85 that holds between the nonlinear coupling
strength g̃e and the atom number N of the soliton. The next chapter complements this
experimental study with various theoretical considerations and numerical verification. In
particular, we will explore physics beyond the weak depletion regime.

As an outlook, note that similar methods could allow us to investigate higher-order
solutions of the 2D NLSE, with nodes in the density profile as depicted in Fig 3.6(b), or
even vortex solitons. For the first category, the wave function changes sign across each
node. This can be implemented by adjusting the duration of the Raman pulse. Imprinting
a phase winding is more subtle, and could be achieved by imposing a light shift for a
certain time t to induce a dynamical phase e−itE/~ with a well-chosen spatial dependence
of E. However, a phase winding imposes a discontinuity in the laser intensity profile for
connecting the regions that have a 2π phase difference.

There is another recipe for doing so in the weak depletion regime. It consists in applying
four consecutive pulses of duration tR, with alternating phases Φj = jπ/2, j = 0, 1, 2, 36.
If we denote Ωj(r) the corresponding positive Rabi frequency at position r for the pulse
j, the wavefunction in state |2〉 will be given in the perturbative regime by

ψ2(r, 4tR) ' tR
3∑

j=0

Ωj(r)eiΦj = tR [(Ω0(r)− Ω2(r)) + i (Ω1(r)− Ω3(r))] . (4.11)

By properly choosing the values of Ωj(r) across the sample for each pulse, one can design
the appropriate phase field. In particular, using two instead of four pulses (for example
Ω0,Ω1) does not allow to tune the real and imaginary parts of ψ2 from positive to negative.
For example, an (s = +1) vortex profile F (r)eiθ with polar coordinates (r, θ) could be
realized by choosing

Ωj(r) = F (r) cos2

(
θ(r)

2
− j π

4

)
. (4.12)

The large refresh rate of our spatial light modulator allows for a sufficiently fast modifi-
cation of Ω. The phase jump Φj can be imposed by sweeping the phase of the generator
used for driving the Raman laser AOMs. In practice, it takes . 40 µs for a 2π-shift and
should not be limiting considering the typical timescale for the mixture. Interestingly, this
method would avoid the discontinuous intensity profile imposed by the dynamical phase
method aforementioned.

6Phases Φj are defined here in the frame rotating with the effective micro-wave coupling induced by
the pair of Raman beams.



Chapter 5

Single-component description of a
binary mixture

In the previous chapter, we demonstrated experimentally that the equilibrium configura-
tion of a dilute superfluid immersed in a bath of another component is well-described by a
single-component attractive nonlinear Schrödinger equation. Supported by direct compar-
isons of the experimental data with the behavior predicted by the NLSE, this allowed us to
observe a Townes soliton. We interpreted the attractive interactions as the manifestation
of the immiscible character of the mixture. We also noticed that the cubic NLSE could
not capture the physics of the system when the density of the minority component gets
comparable to the bath density.

In this chapter, we provide some theoretical foundations to the results of Chapter 4.
We start by studying the equilibrium state of an immiscible binary mixture (Sec 5.1). Us-
ing these results, we justify rigorously the approach of Chapter 4 by reducing the coupled
equations which describe the immiscible mixture to a single equation for the minority com-
ponent, without assuming a weak depletion of the bath (Sec 5.2). We also complement this
result by adopting a microscopic point-of-view on the problem, yielding a complementary
insight on the weak depletion regime. Finally, we discuss some effects going beyond the
NLSE formalism in Sec 5.3.

5.1 Two-component description

In this section, we describe the equilibrium state of an immiscible mixture, in the strongly
imbalanced regime. In Subsec 5.1.1, we remind a simple condition which determines
whether a binary superfluid is miscible or immiscible, in the absence of trapping po-
tential. Focusing on the immiscible case, we use numerical simulations to determine the
equilibrium state of a minority component immersed in a large bath (Subsec 5.1.2).

5.1.1 An immiscible mixture

Immiscibility criterion

We first revisit some concepts relevant for our experiment and already developed in the
thesis of Edouard Le Cerf [53]. Here, we consider a 2D system, but these results do
not depend on the dimension of space. At zero temperature, the two wave functions

91
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Figure 5.1: Immiscibility criterion. The energy balance between a fully overlapping (a)
and a fully segregating (b) configuration is determined by the parameter ∆ defined in
Eq (5.3). (c) In our case, the frontier is smooth and the density profiles partially overlap
inside a region of width ξs ∼ a few µm.

(φ1(r), φ2(r)) describing our mixture satisfy a set of coupled NLSEs generalizing Eq (2.11)

µ1φ1 = − ~2

2m
∇2φ1 +

~2

m
g̃11|φ1|2φ1 +

~2

m
g̃12|φ2|2φ1

µ2φ2 = − ~2

2m
∇2φ2 +

~2

m
g̃22|φ2|2φ2 +

~2

m
g̃12|φ1|2φ2

(5.1)

(5.2)

with
∫

d2r|φi|2 = Ni the total atom number in component |i〉, and with dimensionless
coupling strengths g̃ij > 0 between component |i〉 and |j〉. Since the interactions are all
repulsive, the chemical potentials µi’s are positive numbers. Let us compare the total
energy of two overlapping condensates to the energy of fully segregating components,
neglecting the kinetic energy cost of such a frontier – see Fig 5.1(a,b) and Timmermans
[229] for instance. One deduces that, if the interaction parameters satisfy the immiscibility
criterion

∆ =
g̃2

12

g̃11 g̃22
> 1, (5.3)

then it is energetically favorable for the two species to segregate, like oil and water would
do. In this case, the density ni of each component is homogeneous inside the corresponding
spin domain, while the other component is completely absent. By computing the pressure
in each domain, one deduces that mechanical equilibrium is possible provided that

g̃11n
2
1 = g̃22n

2
2. (5.4)

As depicted in Fig 5.1(c), the frontier between the domains is smooth when the param-
eter ∆ takes moderate values above 1. On the other hand, one would expect the two
components to fully separate when ∆ � 1. More quantitatively, Ao & Chui [230] and
Barankov [231] show that, perpendicularly to the frontier, the density profiles rise from
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Figure 5.2: Bogoliubov analysis of a balanced mixture with our experimental parameters.
(a) Real part ω±k of the Bogoliubov frequencies associated to modes (+) (red line) and (−)
(blue line). (b) Same convention for the imaginary γ±k : only the lower branch (−) induces
a dynamical instability, with a maximum rate γc = mc2

−/2~ obtained for a wave-vector
kc = km/

√
2 = 2mc−/~. For better visualization, the span of the vertical axis in (b) is

50 times smaller than in (a). (c) Spatial variation of δn1 − δn2 (solid line) and δn1 + δn2

(dotted line) for the lower-branch excitation with the same wave-vector. These modes are
essentially associated to spin modulations. The same for the upper branch is shown in
(d), associated to total density modulations.

zero to their bulk value over a typical width called the spin healing length

ξs ≡
1

(√
∆− 1

)1/2

ξ1 + ξ2

2
ξi =

1√
2g̃iini

, (5.5)

where the ξi’s are the individual healing lengths [230]. With our typical experimental
parameters, one obtains 1.005 < ∆ < 1.05, for any orientation of the magnetic field (see
Subsec 1.2.2). For a balance mixture (n1 = n2 = 50 atoms/µm2), one always finds ξs & 1.5
µm, i.e. a length scale significantly larger than the healing length ξi ' 0.25 µm of each
component. In the intermediate region, the two components thus partially mix. Note
that there is a kinetic energy cost in forming a frontier. Hence, we anticipate that when
reducing the atom number of one component, it might become favorable to fully mix with
the other component.

Bogoliubov analysis

We now adopt a dynamical point of view and perform a Bogoliubov analysis of the coupled
equations (5.1, 5.2), starting from an initially homogeneous configuration with densities
ni (i = 1, 2). Following Timmermans [229], this yields two branches of excitations (±)
with dispersion relations ~ω̄±k (k), associated to a modulation with wave vector k. These
can be written as

(
~ω̄±k

)2
= ~2c2

±k
2 +

(
~2k2

2m

)2

c2
± =

1

2

(
c2

1 + c2
2 ±

√(
c2

1 − c2
2

)2
+ 4∆c2

1c
2
2

)
, (5.6)

with c2
i = (~/m)2g̃iini the sound velocity of each component taken separately. As usual,

ω̄k = ωk + iγk is a priori a complex number. We show the two branches in Fig 5.2 for
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a balanced mixture using our typical experimental parameters. While the upper branch
has the same form as the standard Bogoliubov spectrum written in Eq (2.18),

(
~ω̄−k

)2
can

take negative values for low values of k, if and only if (c−)2 < 0. More precisely, one finds
(c−)2 < 0 if and only if the immiscibility criterion (5.3) is satisfied.

As a consequence, a homogeneous and immiscible binary mixture is unstable with re-
spect to some small modulations with large wavelengths. The subsequent dynamics, called
demixion phenomenon, has been extensively studied by our team [53]. In the immiscible
case, the dispersion relation of the lower branch (−) is formally equivalent to the Bogoli-
ubov spectrum of an attractive Bose gas which we discussed in Subsec 3.4.2. Moreover,
the eigen-vectors associated to (5.6) are associated to a density modulation δni above ni
in each component. The latter are related to each other through

δn1 = ±mc
2
− − (~2/m)g̃11n1

(~2/m)g̃12n1
δn2 ' ±δn2. (5.7)

The last inequality holds for nearby interaction parameters g̃ij , and thus ∆ sligthly differ-
ing from one. In this case, the soft modes (−) correspond essentially to spin modulations
for which the difference δn1−δn2 varies appreciably, i.e. the two density fields oscillate out
of phase (see Fig 5.2(c)). On the contrary, the upper branch (+) corresponds to density
modulations where the total density δn1 + δn2 oscillates, see Fig 5.2(d). Since |c−| � |c+|,
we find that the characteristic time scales for large wavelength spin modulations is signif-
icantly larger than for density modulations, with inverted conclusions for the energies at
play. Hence, we anticipate that the equilibrium state of an inhomogeneous configuration
will be dominated by spin modulations, while the total density should be approximately
frozen.

Strong imbalance limit

To further connect the attractive Bose gas case to the physics studied in Chapter 4, we
consider the case of a strongly imbalanced mixture where the initially homogeneous den-
sities verify n2 � n1. In this situation, the expansion of Eq (5.6) with respect to the small
parameter n2/n1 yields the following expression at first order

γ−k '
~

2m

√
k2

[
k2 + 4

(
g̃22 −

g̃2
12

g̃11

)
n2

]
, (5.8)

for the growth rate of the lower branch in the unstable region. A direct comparison to
the analogous results for an attractive Bose gas (Subsec 3.4.2) allows us to identify the
effective coupling strength g̃e = g̃22 − g̃2

12/g̃11 associated to the component |2〉. This is
precisely the parameter considered in Chapter 4 for describing the weak depletion regime.
We will now describe more precisely the spatial structure of the ground state for such an
imbalanced mixture.

5.1.2 Spin bubbles

Formulation of the problem

We are interested in localized wave functions of component |2〉 immersed in a bath of atoms
in state |1〉, this bath extending to infinity with asymptotic density n∞. In the rest of this
manuscript, we refer to this object as a spin bubble. In this case, the chemical potential µ1

of component |1〉 equals the mean-field energy shift (~2/m)g̃11n∞. For symmetry reasons,
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such a stationary state has a rotational symmetry around its center. In practice, one needs
to enclose the system in a box potential with sharp edges. We thus assume that the box
is significantly larger than the spin bubble lying at its center.

An important simplification comes from the scale invariance of the binary system, aris-
ing because all interactions are given by “contact potentials” in the mean-field description
(see Subsec 2.1.3). Starting from a known equilibrium configuration, we can generate an
extended family of spin bubbles by rescaling simultaneously both components with the
same factor. In particular, the value of the asymptotic density n∞ – and thus of the chem-
ical potential µ1 – merely sets a length scale for the system. As a consequence, one only
needs to study the problem for one value of n∞, other solutions being deduced from the
simultaneous dilation operation. With such a prescription, the system is fully determined
by the value of the other chemical potential µ2. In other words, the only meaningful
quantity is the ratio µ2/µ1.

Radial NLSE resolution

We now determine the spin bubble distributions for various1µ2/µ1. To determine the
ground state configuration, we evolve the two coupled equations (5.1, 5.2) in imaginary
time through a time split-step algorithm, as explained in Appendix E. In this approach, the
inputs of the numerical calculation are the atom numbers of each component, chosen such
that N1 � N2. We initialize the wave function with a Gaussian distribution containing N2

atoms for component |2〉, and its “negative” for component |1〉, with density n∞ at large
distance. The chemical potentials µi’s are deduced afterwards. Due to the vicinity of the
interaction parameters in our case, we expect µ2 and µ1 to be almost equal in whatever
equilibrium configuration. Because the energy scales at play in the ground state are small,
this method requires extremely long evolution times. These long times can be limiting in
a fully 2D geometry as one also desires good spatial resolution.

We developed a new method for evolving Eqs (5.1, 5.2) using only the radial coordinate
r, enforcing rotational invariance around the origin r = 0 and reducing the full 2D problem
to a less involved 1D problem along the radial axis. Note that this method also enforces
vanishing boundary conditions at the edges, since periodic boundary conditions would
not make sense for a radial problem. As claimed earlier, the presence of edges does not
perturb the spin bubble state as long as it lies deeply in the bulk. The generalization of the
standard split-step method from Cartesian to radial coordinates is not straightforward.
Implementation details have thus been gathered in Appendix E. Using this method, we
observe significant acceleration of the calculation with respect to the full 2D algorithm,
allowing us to determine the spin bubble states with a good accuracy.

1In principle, the determination of the equilibrium state could be achieved using the shooting method
introduced in the single-component case (see Subsec 3.2.1). Extending the mechanical analogy to the
coupled equations (5.1, 5.2) and assuming real-valued wave-functions, the mechanical system is now a
particle with position (φ1, φ2) moving in a 2D potential

V (φ1, φ2) = µ1φ
2
1 + µ2φ

2
2 −

1

2

(
g̃11φ

4
1 + g̃22φ

4
2 + 2g̃12φ

2
1φ

2
2

)
. (5.9)

The shooting method then consists in fine-tuning the initial conditions in order to approach asymptotically
the equilibrium position given by (φ1 =

√
n∞, φ2 = 0). Because the spatial scale associated to a spin bubble

is at least given by the spin healing-length ξs � ξi, the shooting method requires precise numerics as one
needs to resolve the scales given by the ξi’s and ξs at the same time. We find that it gives very poor results
in realistic calculation times.
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Figure 5.3: Numerical determination of spin bubble states. We show the density distri-
butions n2 (blue solid lines), n1 − n∞ (red), the excess density δn (grey) for N2/NT = 10
(a), 1.5 (b), 1.01 (c). The r-axis is not fixed between graphs. We also show the profiles
predicted from the effective equation (5.13) (orange dashed line) and its moderate deple-
tion limit (5.16) (orange dotted line). Note that the latter overlap almost perfectly with
n2 in (c).

Determination of spin bubble states

We now determine the spin bubble states for various ratios of the chemical potentials µ2/µ1

and coupling strengths (g̃12, g̃22) = (0.99, 0.94) g̃11, similar to the experimental values. We
plot a few example distributions in Fig 5.3(a-c) which confirm that the ground state is
mainly associated to a spin modulation, the total density varying only slightly.

A priori, the atom number N2 contained in the spin bubble depends on the values of µ2

and µ1 separately. Using a dimensional argument, one sees that the chemical potentials
can only determine N2 through their ratio µ2/µ1. Since we focus on the ground state
(which is thus stable), N2 is a decreasing function of µ2/µ1. This is closely related to
the Vakhitov-Kolokolov criterion given in Eq (3.29) for a single-component NLSE. Hence,
there is a one-to-one correspondence between the authorized values of N2 and of µ2/µ1. In
Fig 5.4(a), we plot the variation of N2 with µ2/µ1 in the explored region. We normalized
N2 to the Townes atom number NT ' 5.85/|g̃e|, obtained with the effective coupling
strength g̃e for the binary mixture.

The allowed values for µ2/µ1

Let us first determine the extreme values taken by µ2/µ1. For a bubble with a large
atom number N2, we expect component |2〉 to form a spin domain with density n2 =√
g̃11/g̃22 n∞ (see Eq (5.4)), rejecting most of the |1〉 component out of the central region.

This is realized for instance in Fig 5.3(a). Such a spin domain can accommodate any atom
number, and N2 is thus not bounded from above. For an infinite spin domain, the chem-
ical potential of component |2〉 simply equals the mean-field energy shift (~2/m)g̃22n2 =
(~2/m)

√
g̃22g̃11n∞. This gives the lower bound for the ratio (µ2/µ1)min =

√
g̃22/g̃11. In

Fig 5.4(a), this bound is not reached because the boundary contributes to the chemical
potential through kinetic energy. As we will see in Subsec 6.1.3, this correction plays the
role of a line tension along the perimeter of the domain. For large N2, this correction
scales like the fraction of atoms ∝ 1/

√
N2 contained in the domain boundary.

On the other side, we find numerically that the spin bubble only exists provided its
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Figure 5.4: Properties of spin bubble states. (a) Atom number as a function of the ratio
µ2/µ1, (µ2/µ1)min,max have been defined in the main text. (b) RMS size σ divide by
the natural length scale `0 ∼ ξs defined in Eq (5.20). Inset: same data for larger atom
numbers. (c) Central density rescaled by n∞. Inset: same data for larger atom numbers.
In (b) and (c), we show the same observables obtained from the effective equation (5.13)
(orange dashed line) and its moderate depletion limit (5.16) (orange dotted line). (d)
The overlap of the spin bubble density with the Townes density profile goes to one when
N2/NT → 1.

atom number is larger than the Townes atom number NT . In the next section, we will
show that the profile is indeed determined by a cubic NLSE in this regime. For N2 ≤ NT ,
we obtain two components spreading over the entire box, i.e. not a localized state for
component |2〉. For N2 & NT , the bubble gets very dilute and the energy cost for adding
one particle to the system is simply equal to (~2/m)g̃12n∞, such that we obtain the upper
limit for2 (µ2/µ1)max = g̃12/g̃11.

2One can wonder if these results still hold when considering |1〉 instead of |2〉 as the minority component,
or instead if this depends on our particular choice of g̃ij ’s. Indeed, in a trapped configuration, it is usually
favorable for the component with the largest interaction strength (here |1〉) to form a shell around the
other component. In fact, one finds that (µ2/µ1)min < (µ2/µ1)max is equivalent to ∆ > 1, i.e. only if the
immiscibility criterion given in Eq (5.3) is satisfied. Hence, one would find the same behavior if exchanging
|1〉 and |2〉.



98 CHAPTER 5. SINGLE-COMPONENT DESCRIPTION OF A BINARY MIXTURE

The shape of the spin bubble

In Fig 5.4(b), we show the non-monotonic variation of the RMS size σ of the bubble
as a function of N2/NT . In the spin domain regime, we can approximate the density
distribution by a flat-top disk domain with radius R =

√
N2/πn2. In this case, we obtain

an RMS size of σ = R/
√

2. The inset of Fig 5.4(b) shows that the size σ grows indeed
like
√
N2 when N2/NT gets large. The transition between the small and the large atom

number regimes occurs approximately when R ∼ ξs, the spin healing length defined in
Eq (5.5), or equivalently for N2 ∼ NT .

When the atom number N2 decreases, the kinetic energy and the interaction energy
compete for maintaining the |2〉-component together and thus determine the equilibrium
shape of the bubble. For N2 & NT , we obtain a smooth distribution peaking at the center,
see Fig 5.3(b, c) for two different realizations. In Fig 5.4(b), we observe a rapidly increas-
ing size σ when approaching NT from above, with a power-law scaling in 1/

√
N2 −NT .

Reciprocally, the central density of the bubble decreases to zero as n2(0)/n∞ ∼ (N2−NT ).

Importantly, we observe that the wave function φ2 tends to a Townes profile when N2

decreases to NT . We confirm this observation by measuring the overlap of φ2 with the
Townes profile for various N2. To do so, we use the definition of the overlap O given in
Eq (4.10) and determine the overlap O`(N2) between |φ2|2 and a Townes density profile
with extension `. We then maximize this quantity to extract OT (N2). This is shown in
Fig 5.4(d). Our next goal is to justify these results from a theoretical point-of-view, using
an effective single component description for the minority component.

5.2 Effective one-component description

In this section, we discuss the main result of this chapter, i.e. the determination of a
single-component equation for the minority component |2〉. To do so, we present two
approaches. In a “top-down” approach, we reduce the coupled NLSEs (5.1, 5.2) to a
single-component equation for the minority component (Subsec 5.2.1). This result is valid
for any depletion of the bath, provided all interaction parameters are close to each other.
In a “bottom-up” approach, we consider spin bubbles from a microscopic point-of-view
(Subsec 5.2.2). In particular, we interpret the effective interactions between atoms of the
minority component as an exchange of virtual phonons from the underlying condensate.

5.2.1 Turning the coupled NLSEs into a single one

Derivation

We now justify theoretically the observations made in the previous section. Concretely,
we derive an effective single-component description of our binary system described by
Eqs (5.1, 5.2), focusing on the ground state wave function3. To simplify notations, we
use the reduced notations introduced in Subsec 3.1.1 with

∫
d2r |ψ2|2 = N2. The effective

single-component description relies on the vicinity of the interaction coupling strengths,
i.e.

|g̃12 − g̃11|
g̃11

,
|g̃22 − g̃11|

g̃11
� 1, (5.10)

3Extension of this derivation to vortex states is possible, by separating the radial and azimuthal con-
tributions in the Laplacian written in Eq (5.12).
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which allows us to simplify the NLSE at lowest order in these small parameters. The
situation in which all parameters are equal correspond to an SU(2) symmetry point. We
remind that for the experiments reported in Chapter 4, the interaction parameters all differ
by less than 6%. As discussed above, we expect the low-energy dynamics to be dominated
by spin waves, such that the total density

n1 + n2 = n∞ + δn (5.11)

is weakly perturbed, with an excess density δn satisfying |δn| � n∞. At low energy,
the relevant spatial variations occur on the scale of the spin healing length ξs. Using
Eq (5.5), the Laplacian operator ∆ ∼ 1/ξ2

s can itself be considered of order one in the small
parameters defined in Eq (5.10), such that the term ∇2φ1 in Eq (5.1) can be replaced, at
order one, by ∇2√n∞ − n2. This approximation allows one to express the excess density
δn in terms of the second component only, as

g̃11δn =
∇2√n∞ − n2

2
√
n∞ − n2

+ (g̃11 − g̃12)φ2
2. (5.12)

Inserting this expression in Eq (5.2) and keeping terms of order one at most in (5.11), we
obtain the following effective single-component equation for component |2〉

(µ2 − g̃12n∞)φ2 = −1

2
∇2φ2 + g̃eφ

3
2 +
∇2√n∞ − n2

2
√
n∞ − n2

φ2, (5.13)

which is the main result of this section. In particular, we recover the effective coupling
constant g̃e = g̃22 − g̃2

12/g̃11.

Structure of the effective equation

In Eq (5.13), the prefactor g̃12n∞ corresponds to the interaction energy cost for adding a
single particle of component |2〉 into the bath. Such a global energy shift plays no role in the
following, and we absorb it in the chemical potential µ2 hereafter. With this simplification,
localized solutions exist only for µ2 < 0. Eq (5.13) is a nonlinear Schrödinger equation
with two nonlinear terms. The term g̃eφ

3
2 is the usual cubic nonlinearity, corresponding

to an effective system of bosonic particles with contact interactions and coupling constant
g̃e, as studied in Chapter 3.

The second term is more complicated and plays a significant role when the density n
becomes comparable to the asymptotic bath density n∞. Moreover, it is not defined for
densities larger than n∞. In the limit of large atom numbers the density thus plateaus
to this value, describing a spin domain configuration. Note that this plateau density n∞
differs from the one deduced from the mechanical equilibrium condition (5.4). This is due
to the precision of our derivation, which neglects terms of order larger than one in the
small parameters defined in Eq (5.10)4. Besides, Eq (5.13) can be derived by adding the
supplementary term

1

2

∫
d2r

(
∇√n∞ − n2

)2
(5.14)

to the energy functional written in Eq. (3.8). This shows that our effective model inherits
from the initial Hamiltonian structure.

4This discrepancy could be artificially corrected by defining δn in a slightly different way, for example
by writing

√
g̃11n1 +

√
g̃22n2 =

√
g̃11n∞ + δn. However, this remedy does not ensure better precision far

from the top-hat region, or for moderate depletions. We thus prefer to keep a simpler prescription for δn.



100CHAPTER 5. SINGLE-COMPONENT DESCRIPTION OF A BINARY MIXTURE

(a)

0 2 4 6

−2

0

2

4

r

F

(b)

0 0.2 0.4 0.6 0.8 1
0

2

4

ε

N
2
/N

T

Figure 5.5: (a) Deformation of the Townes soliton in the perturbative regime: function
F introduced by Rosanov & al. [214] and defined in Eq (5.16) (red), together with the
non-deformed Townes profile (blue). (b) Atom number for the effective equation (5.13)
(blue) and its moderate depletion limit (5.16) (red) as a function of the small parameter
of the theory ε = |µ2|/g̃en∞. The dashed line gives the perturbative result of Eq (5.19),
and the horizontal dotted line indicates the limit N2 = NT .

Weak depletion

One can expand, in the limit of a large bath density, Eq. (5.13) in powers of the depletion
n2/n∞. At minimal order, we obtain the NLSE

µ2φ2 = −1

2
∇2φ2 + g̃eφ

2
2φ2, (5.15)

with coupling constant g̃e. We have thus recovered the attractive NLSE introduced em-
pirically in the previous chapter. This result explains the convergence to a Townes soliton
for spin bubbles with low depletions, at least with a precision of order one in the small
parameters (5.10).

In reality, the numerical results of the previous section suggest that the convergence
to a Townes profile when N2 → NT holds rigorously, even slightly away from the SU(2)
symmetry point. We thus guess that the quantity δn defined in Eq (5.11) goes to zero faster
than n2 when going to the low depletion regime (N2 → NT ), such that the replacement of
the Laplacian term performed in Eq (5.12) is in fact asymptotically exact when going to
zero depletion. This is also revealed by the relative smallness of δn in Fig 5.3(c). While
the present derivation does not fully explain this fact, the microscopic picture drawn up
in Subsec 5.2.2 will complement the macroscopic model used here.

A first correction breaking scale invariance

At next order in the perturbation, we obtain the equation

µ2φ2 = −1

2
∇2φ2 + g̃eφ

3
2 −
∇2n2

4n∞
φ2. (5.16)

The additional term, which was considered by Rosanov & al. [214], can be viewed as a
weakly non-local interaction. Since this term involves an explicit length scale 1/

√
n∞, it
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breaks scale invariance, and we no longer expect self-similarity between stationary states.
In a perturbative treatment, the stationary state can be written as a weakly deformed
Townes soliton

φ2(r) =
1

`
R0(r/`) +

1

2n∞|g̃e|`3
F (r/`), (5.17)

where ` = 1/
√
|µ2|, R0 is the Townes function introduced in Subsec 3.2 and F is the

solution of the linear problem

(
1

2
∇2 + 3R2

0 − 1

)
F = −1

2
R0∇2R2

0 (5.18)

that we show in Fig 5.5(a). In particular, Eq (5.17) allows us to identify the small pa-
rameter of the theory ε = |µ2|/g̃en∞. In other words, ε quantifies this importance of
the Laplacian term of Eq (5.17) compared to the standard cubic nonlinearity. The atom
number contained in the perturbed state is always larger than NT and is pertubatively
given by

N2 ' NT

(
1 + 2.72

|µ2|
|g̃e|n∞

)
. (5.19)

For the effective equation (5.13) and its expansion given by Eq (5.16), we determine the
ground state using the shooting method introduced in Subsec 3.2.1. In practice, we solve
the models only for g̃e = −1 and |g̃e|n∞ = 1 using the proper rescaling. We plot the
variation of N2 with respect to ε in Fig 5.5(b) and recover the perturbative result given in
Eq (5.19).

Comparison

We now compare the different models studied above, namely the coupled NLSEs (5.1, 5.2),
the single-component effective equation (5.13), and the first correction (5.16) breaking
scale invariance of the 2D NLSE. To do so, we identify distributions containing the same
atom number N2. The three different models are shown together in Fig 5.3(a-c), where
we observe that the single component effective model gives a faithful description of the
two-component system for any atom number. We also checked that we obtain better
agreement between the coupled NLSEs and the single component effective equation when
the interaction parameters get closer to the SU(2) symmetry point.

We now estimate the RMS size of the deformed Townes soliton in the perturbative
regime. The second term inside the parenthesis of Eq (5.19) is assumed to be small, so
that it is legitimate to express |µ2| = 1/`2 in terms of the RMS size σ of the Townes term
of Eq (5.17), yielding σ = 1.09 `. Eventually, we obtain the following relation

σ ' `0
1.26√

N2/NT − 1
`0 ≡

1√
|ge|n∞

. (5.20)

We thus recover the power-law scaling observed numerically in Subsec 5.1.2. The Townes
soliton is asymptotically reached for N2 → NT , for an infinite size and zero depletion of
the bath. We show the variation of the RMS size σ with the atom number (N2/NT ) for
our various models in Fig 5.4(b). All models predict a similar value for 1 < N2/NT < 1.1,
a regime in which the perturbative prediction (5.20) performs very well. In this interval,
we obtain a maximum depletion of the bath of ' 20% for the coupled NLSEs. This is also
the maximum depletion of all data presented in Chapter 4, except for Subsec 4.2.3.
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We have shown that the Townes soliton is the ground state of the system in the limit
of a weak depletion of the bath. A finite depletion of the bath comes with corrections to
the standard cubic NLSE which break scale invariance and imposes an equilibrium size
for any atom number N2 > NT . In the previous chapter, we have probed the physics of
Townes soliton in a regime in which we are not sensitive to these supplementary terms.
Indeed, while the variation of the predicted size is very important for small variations of
N2 (which we cannot resolve anyway), the corresponding energies are small and lead to
very slow dynamics.

An outlook

It would be interesting to prepare any ground state of the system experimentally, without
using prior knowledge of the effective coupling strength g̃e. To prepare the ground state in
a deterministic way, one could perform an adiabatic evolution of the system under a micro-
wave coherent coupling, starting from an initially homogeneous bath of atoms in state |1〉.
To do so, one applies micro-wave at a frequency ν, initially red-detuned with respect to the
clock transition |1〉 → |2〉. In a finite-size bath and choosing a strong-enough detuning, this
situation eventually yields a very small transferred population N2 < NT . In this case, one
expects the minority component to spread over the entire system. Subsequently, one could
slowly ramp up the micro-wave frequency to a final value νf . The atom number N2 will
rise during the ramp, and can eventually exceed NT . If the process is adiabatic, the system
will end up with the size and shape expected for the spin bubble. The corresponding atom
number will be determined by the final chemical potential µ2 of the effective |2〉-system –
itself a function of the final frequency νf . As we will see in Subsec: 6.1.2, the time scale
required for an adiabatic preparation would be & 1 s. This is currently out of reach using
our setup, mainly because of losses in state |2〉 (see Subsec 1.2.1). However, this might be
relevant using another system.

5.2.2 A microscopic point-of-view

Induced interactions

Since we can turn the coupled NLSEs into an equation for a single component |2〉, we can
think of the bath as an intermediate inducing interactions between atoms of the minority
component. Such induced interactions are encountered in a broad variety of phenomena in
condensed matter physics, from the superconductivity of metals through the exchange of
phonons [6], to solutions of Helium 3 in liquid Helium 4 [232]. From a more fundamental
point-of-view, the quantum description of the electromagnetic interactions can be pictured
in terms of photon exchange [233]. In nuclear physics, the nuclear forces between fermions
can be understood in terms of meson exchange through the Yukawa potential.

In cold atom physics, modified interactions between bosons due to the exchange of
fermions near the Fermi surface have been observed. These were related to the so-called
Ruderman-Kittel-Kasuya-Yosida mechanism [234]. An analog manifestation of this effect
is the boson-induced interactions experienced by a polarized – thus non-interacting –
Fermi gas, which can trigger collapse [235]. This induced interaction is also described
by a Yukawa potential arising from the exchange of phonons in the BEC. In 3D and for
increasing couplings, Naidon [236] shows that the Yukawa potential connects to the Efimov
potential which also allows two impurities to form a bound state with one BEC atom [103].
However, this is precluded in 2D since the Efimov mechanism is not present.
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The effective potential

In this paragraph, we consider two impurity atoms in state |2〉 immersed in a pure BEC
in state |1〉, at zero temperature. We temporarily forget about the direct interactions be-
tween the atoms in state |2〉 and consider solely the impurity-bath interactions. That way,
we can determine the modification of the system’s energy as a function of the separation
r between the impurities, which we interpret as a potential energy. Within the Bogoli-
ubov approximation and if one neglects the impurity’s dynamics (assuming an infinite
mass), this energy can be determined using perturbation theory. We report an elementary
derivation of this interaction potential in Appendix F. The result of this derivation in two
dimensions is the following Yukawa-like potential

Vind(r) = − 2

π

~2

m
g̃2

12n0K0

(
1√
2

r

ξ1

)
, (5.21)

where ξ1 is the BEC healing length, and K0 is the zeroth-order modified Bessel function
of the first kind with the asymptotic behavior K0(r) ∼ e−r/

√
r. An important feature

of these induced interactions is that the effective potential (5.21) is attractive. It is also
short-ranged, with a range provided by ξ1.

In the case explored experimentally, the separation between two impurity atoms in
state |2〉 is of few µm on average (as given by the size σ), i.e. much larger than ξ1. For
that reason, one can approximate this potential by a contact-potential whose coupling
strength is given by g̃′ = −g̃2

12/g̃11, see Appendix F. If one sums this contribution to the
direct interaction between atoms in state |2〉, one recovers the effective coupling strength

g̃e = g̃22 −
g̃2

12

g̃11
. (5.22)

This provides a microscopic justification to the soliton physics explored in Chapter 4.

Weakly nonlocal contribution of the effective potential

Importantly, we emphasize that the use of a contact potential in this case is possible only
for a bubble whose size is much larger than ξ1. This is a much more restricting condition
than for using the direct contact potential g̃22, whose range is given by RvdW. To go
beyond this description, we now consider the modified NLSE given by

µφ2(r) =

[
−1

2
∇2 + g̃22|φ2|2 +

∫
d2r|φ2(r′)|2Vind(r − r′)

]
φ2(r), (5.23)

using the reduced notations introduced in Subsec 3.1.1 with
∫

d2r |ψ2|2 = N2. Following
Rosanov et al. [214], we now account for the weakly nonlocal character of the effective
potential Vind. To do so, we decompose φ2(r′) in a Taylor series and eventually obtain

µφ2(r) =

[
−1

2
∇2 + g̃en2 −

(
g̃12

g̃11

)2 ∇2n2

4n∞

]
φ2(r). (5.24)

A direct comparison with Eq (5.16) shows that this model and the one derived from the
coupled NLSEs coincide, within a correction in (g̃12 − g̃11) /g̃11 which we neglected in the
derivation of Subsec 5.2.1.
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5.3 Beyond the nonlinear Schrödinger equation

In this last section, we discuss a few concepts going beyond the NLSE formalism. We
first discuss the connection between the behavior of the dilute component |2〉 and polaron
physics (Subsec 5.3.1). Then, we consider the effect of finite temperature on the solitonic
behavior (Subsec 5.3.2). Finally, we go beyond the mean-field formalism and describe the
bound states of bosons in 2D with attractive interactions (Subsec 5.3.3).

5.3.1 Polaron physics

In Subsec 5.2.2, we studied the induced interaction between particles whose mass was
assumed to be infinite. Does a finite mass m brings additional physics in this point-of-
view? The description of a particle interacting with a bath is a standard problem of
quantum mechanics. It was introduced by Landau & Pekar [237] when describing the
state of an electron moving through a deformable crystal. As the electron travels through
the crystal and deforms it, it excites phonons which in turn may modify the motion of the
electron. As a result, the electron gets dressed and screened by the cloud of phonons. The
whole thus forms a quasi-particle known as a polaron. The properties of polarons have
implications on the study of ionic crystals, polar semiconductors or high-temperature
superconductors.

The standard model for polaron physics is the so-called Fröhlich Hamiltonian [238].
In particular, this model describes the interaction between an impurity atom and the
Bogoliubov modes of a BEC. Just as a phonon-dressing may modify the interactions
between particles, it can also modify the dynamical properties of a single polaron. An
important question for us concerns the renormalization of the impurity’s mass due to the
BEC phonons. This renormalized mass m∗ can be defined as the coefficient entering the
term in p2/2m∗ of the dispersion relation of the impurities. In the weak coupling regime
which we define in Appendix F, one can estimate the effective mass of the impurities. By
adapting the calculation of Grusdt & Demler [239] to the 2D case, we obtain the following
relation

m∗ =
m

1− 0.125α
> m α =

g̃2
12

g̃11
. (5.25)

With our experimental parameters, this corresponds to a relative modification of ' 2.5%.
While this could not be detected with our current setup, it would become feasible by
spectroscopic means with slightly stronger interactions.

As an outlook, going further in the limit of uncorrelated impurities could allow us to
study the quantum Brownian motion of impurities in a quasi-BEC. Lampo et al. [240]
predict a super-diffusive behavior with some memory of the initial conditions. Note that
such experiments would necessitate single-particle resolution. In practice, this could be
achieved by transferring only a few atoms using our Raman beams. One could then freeze
the motion of the particles with a pinning lattice, and detect the position of each impurity
using fluorescence imaging.

5.3.2 The influence of finite temperature

A non-zero temperature is usually associated with disorder and tend to destroy fragile
structures. In particular, spin bubbles arose in a mean-field picture valid only at zero
temperature. What happens to them at finite temperature? In this paragraph, we give an
insight on the question of finite temperature through an experimental point-of-view. We
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still consider a single-component model for the impurity component with bath-mediated
interactions, and we wonder for which atom number Nc the effective energy of the trans-
ferred spin bubble is zero, yielding an expansion factor γ(Nc) = 0.

We have seen that spin bubbles can exist due to the immiscible character of the binary
mixture. At finite temperature, a first naive approach consists in using an effective coupling
strength

g̃e(T ) = g̃22 + g̃′(T ), (5.26)

which depends on the temperature T through a bath-induced interaction parameter g̃′(T ),
modified due to thermal fluctuations. As shown by Yu & Pethick [241], this correction
can be linked to thermodynamic quantities

g̃′(T ) = −~2

m
g̃2

12

(
∂n1

∂µ1

)

T

(5.27)

and g̃′(T ) can be rewritten in terms of the isothermal compressibility κT = 1/n2
1(∂n1/∂µ1)T .

Mediated interactions thus get stronger when the underlying bath becomes more com-
pressible. Deep in the superfluid regime, the partial derivative entering Eq (5.27) can be
computed using Popov’s theory [50,242], yielding

(
∂µ1

∂n1

)

T

=
~2

m
g̃11

(
1− 1

D

)
. (5.28)

One recovers the simple mean-field result when taking D → +∞, corresponding to the
zero-temperature limit. For finite D, one finds that the effective coupling strength g̃′ is
enhanced by a factor D/(D − 1) > 1. In total, we thus expect the effective nonlinear
parameter g̃e(T ) to become more negative as T increases. This counter-intuitive effect is
due to the rise of compressibility with temperature in the superfluid regime. It is similar
to the case studied by Ota et al. [243] who predicted phase separation in a planar mixture
even for ∆ . 1. In this case, an increase of temperature seems to favor phase separation.
For the experiments presented in Chapter 4, we estimate the modification of g̃e to be
negligible (. 2% modification of NT ).

One could be tempted to deduce from this that the condition γ(Nc) = 0 would be
shifted to lower values of Nc ≤ NT at finite temperature. However, while the mediated
interactions at large wavelength g̃′(T ) might be enhanced, a finite temperature also means
that the particles can probe more easily the finite range of the effective potential Vind. For
wavelengths smaller than the healing length ξ1, the magnitude of the interactions should
be reduced, see Pethick & Smith for example [76]. Moreover, the content in kinetic and
interaction energies should be modified by taking into account thermal fluctuations, for
instance through the equation of state [244]. Finally, one can simply question the relevance
of the simplest single-component model for this problem. Hence, this question seems highly
non-trivial but might be approached with numerical calculations. More importantly, this
could be experimentally investigated without much difficulty, as we plan to do in a near
future. One could then study the effect of the bath thermal excitations and a possible
diffusive behavior of the solitons formed in the other component [245,246].

5.3.3 Beyond mean-field effects

Until now, we have described the physics of our binary mixtures through a mean-field ap-
proach captured by the coupled equations (5.1, 5.2). This allowed us to exhibit stationary
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states with N & NT , featuring properties similar to the Townes soliton. Contrary to the
physics studied in Sec 3.3, these states are protected from wave-packet collapse due to the
presence of an effective repulsive term arising from the presence of the bath.

This situation is reminiscent of quantum droplets [30], whose formation results from
the competition between a tunable mean-field attractive term and a beyond-mean-field
repulsive term. The scaling of these two terms with density is different and leads to a
stable equilibrium with a droplet size that depends on the particle number. While our
stabilization mechanism here is purely mean-field, we discuss the possibility of beyond
mean-field stabilization for 2D bosons with attractive interactions.

Bound states with universal properties

To proceed, we first forget about the mixture and consider a system of bosons in 2D, with
attractive interactions. As noted in Subsec (2.1.3), scale invariance is also broken in the
one-component case when one regularizes the contact potential that leads to the interac-
tion energy term

∫
d2r |φ|4 in Eq. (3.8) [247–249]. Such a regularization is not required

as long as one restricts to the classical field approach of Eq (4.3) valid for |g̃| � 1 [145],
but it becomes compulsory for larger |g̃| where a quantum treatment of atomic interac-
tions is in order. It is thus important to know how this modifies the physics of Townes
solitons considered up to now, and if such effects could possibly affect our experimental
observations.

Hammer & Son [247] studied the ground state properties of weakly interacting bosons
in two dimensions using a classical field formalism with a regularized contact potential.
According to Holstein [116], a more accurate description of the system can be obtained
by substituting the bare parameter g̃ by a running coupling constant g̃(k)

1

g̃(k)
=

1

g̃
+

1

2π
ln

(
kc
k

)
, (5.29)

which depends on the relative momentum k of the two particles involved in the collision.
The introduction of a cut-off in momentum space kc is a signature of an intrinsic length
scale 1/kc of the physical system, here given by the van der Waals radius RvdW introduced
in Subsec 2.1.1. In the weakly interacting regime, one can neglect the k-dependent log-
arithmic correction of Eq (5.29). Hammer & Son [247] determined the properties of the
ground state by using a variational approach. One considers trial wave functions with a
Townes profile of extension `. The energy per particle of the classical field with N atoms
then writes

EN (`) ∝ 1

`2
+ κ

g̃(`−1)N

`2
(5.30)

where κ > 0 is a numerical factor and g̃(k) is evaluated at the typical momentum `−1. In
contrast to Eq (3.9), EN has now a non-trivial dependence on ` because of the non-constant
parameter g̃(`−1). This term breaks scale invariance and gives rise to an equilibrium size
and a binding energy (`N , EN ) that follow a geometrical law

`N+1 ∼ 0.34 `N EN+1 ∼
1

(0.34)2
EN . (5.31)

Note that `N and EN vary extremely rapidly with N . For example, one can rewrite `N as

`N ∼ RvdW exp [−ζ(N −NT )] , (5.32)
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with ζ ≈ 1 and NT the Townes atom number associated to the bare g̃. Observing these
universal scalings and the corresponding breaking of scale invariance would be of extreme
interest.

An experimental point-of-view

In practice, the predicted value for `N is physically reasonable only for |N − NT | ∼ few
units. For N = NT = NT /|g̃|, this size is ∼ RvdW, which is 3 orders of magnitude smaller
than the size of our system. A small shift of only a few atoms, typically from NT to
N∗ ≡ NT − 6, gives a size of a few microns, compatible with the extension of our system.
Experimentally, we cannot resolve the difference between these two atom numbers, as it
would require single-particle resolution. Going further away from NT , the corresponding
sizes are either much too large or much too small to be experimentally relevant.

Moreover, for |g̃|≪ 1, as explored here, the typical evolution time scale of a N -particle
state with a Townes profile of size ` slightly different from `N will be prohibitively long.
Indeed, consider a system with N = N∗ atoms. At equilibrium, Hammer & Son [247]
predict an energy per particle

EN∗(`∗) ∼ −
~2

N∗m`2∗
, (5.33)

which can be obtained from Eqs (5.30, 5.29). Interestingly, this energy is 1/N∗ smaller
than the usual energy associated with the length scale `∗ ≡ `N∗ . Therefore, if the system
is prepared in a Townes profile of size ` slightly differing from `∗, the typical energy scale
governing the dynamics is

EN∗(`)− EN∗(`∗) ∼
1

NT

∆`

`∗

~2

m`2∗
, (5.34)

with ∆` = ` − `∗. This energy difference ∝ 1/NT = |g̃|/GT is thus negligible for |g̃| � 1
and the typical time scale considered in Chapter 4. In the case |g̃| ∼ 1, a realistic droplet
size would be achieved for only a few atoms and one could observe the predicted scaling
of `N with N .

This reasoning brings additional questions: is it relevant to go beyond a mean-field
description in our case? Do the above arguments hold for such an imbalanced mixture,
where the interactions are composite and part of them are mediated by the bath? We saw
in Sec 5.1 that the mean-field formalism predicts stable states only for N2 > NT . It is thus
an open question if one can predict bound states also for N2 < NT . As shown above, one
should go to a regime of stronger interactions to be able to characterize the corresponding
states and scalings. Note that beyond-mean-field effects are predicted to play a role in
otherwise immiscible mixtures. For instance, Naidon & Petrov [250] expect that bubbles
of the mixed phase could coexist with a pure phase of one of the components, provided
masses or intraspecies interactions are unequal.

5.4 Conclusion

In this chapter, we theoretically and numerically determined the ground state of a strongly
imbalanced mixture. We confirmed the mapping to an effective single-component NLSE in
a regime of weak depletion where the density of the minority component is much smaller
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than the surrounding bath density. We also introduced an effective equation which con-
nects the regime of weak depletion to the physics of spin domains. The rest of the dis-
cussion was devoted to a description of the few-particle case through a microscopic point-
of-view. We showed that the attractive character of the effective description was linked
to supplementary attractive interactions mediated by the bath phonons. We also rose
important questions about the case of finite temperature and effects going beyond our
mean-field description.



Chapter 6

Perspectives on spin bubbles
dynamics

In most of this manuscript, we considered spin bubbles – localized states of one superfluid
component immersed in a delocalized state of another component – from a static point-
of-view. In Chapter 4, we determined experimentally the conditions of existence of such
states. This approach was justified theoretically in Chapter 5. A natural extension of this
work consists in exploring their dynamical behavior. In this last chapter, we propose a
few paths for further characterizations of spin bubbles, through two independent topics.

Given a many-body system at equilibrium, it is fruitful to probe its collective behavior
by analyzing its response to a perturbation. For a sufficiently weak perturbation, this
response can usually be understood in a linear approach, yielding eigen-frequencies and
eigen-modes of the system. Such an approach has been successful in domains as diverse as
the study of liquid Helium droplets [35–37], helio-sismology [251], and hydrodynamics in
general. For quantum gases, the determination of BECs internal modes has helped gain
insight on many-body states since the first experimental achievement of Bose-Einstein
condensation [89]. In Sec 6.1, we study the stability and the elementary excitations of spin
bubbles, from low to large depletions of the bath.

Another widespread technique to probe the properties and the internal structure of
many-body systems consists in studying binary collisions, as is often done in high energy
physics. While the phenomenology of soliton binary collisions under the 1D NLSE is well
understood [12], much less is known about situations involving higher-dimensional fields.
Importantly, these situations can yield a richer phenomenology than in 1D [252–254].
Experiments have allowed to observe collisions of bright solitons in 3D [188] and quasi-
1D geometries [15], of vector solitons [255], or quantum droplets [256]. As a preliminary
step for exploring 2D spin bubble collisions, we study the collisions of Townes solitons in
Sec 6.2.

6.1 Stability and elementary excitations

In this section, we determine the elementary excitations of spin bubbles and compare the
different models considered in Chapter 5. After presenting our methods (Subsec 6.1.1),
we focus on two extreme regimes. In Subsec 6.1.2, we determine the breathing mode of
the deformed Townes soliton, in the weak depletion regime. Then, we show that the
surface modes of spin bubbles, deep in the spin-domain regime, are closely linked to

109
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the deformations of incompressible 2D droplets (Subsec 6.1.3). We finally discuss the
applicability of these results from an experimental point-of-view (Subsec 6.1.4).

6.1.1 Methods

Models

In the following, we compare the various models introduced in the previous chapter. Using
the reduced notations of Subsec 3.1.1, we first remind the coupled NLSEs describing our
binary mixture

i
∂ψ1

∂t
= −1

2
∇2ψ1 +

(
g̃11|ψ1|2 + g̃12|ψ2|2

)
ψ1

i
∂ψ2

∂t
= −1

2
∇2ψ2 +

(
g̃22|ψ2|2 + g̃12|ψ1|2

)
ψ2,

(6.1)

(6.2)

with wave functions ψi normalized such that
∫

d2r |ψi|2 = Ni, Ni being the atom number
in component |i〉, and g̃ij > 0 the various coupling strengths. In parallel, we also consider
the single-component effective models. In Subsec 5.2.1, these were derived when describing
the equilibrium state of the bubble. One of our goal in this section is to test whether their
time-dependent version can faithfully describe the spin-bubble dynamics. Let us first
consider the effective NLSE

i
∂ψ2

∂t
= −1

2
∇2ψ2 − g̃e|ψ2|2ψ2 +

1

2

∇2
√
n∞ − |ψ2|2√
n∞ − |ψ2|2

ψ2, (6.3)

where the wave function ψ2 is normalized such that
∫

d2r |ψ2|2 = N2, N2 being the atom
number in the minority component |2〉. In this expression, g̃e < 0 is the effective coupling
strength for our binary mixture, as written in Eq (5.22), and n∞ represents the density of
the bath component |1〉, far from the spin bubble. Importantly, Eq (6.3) is meaningful only
when the density |ψ2|2 is smaller than n∞. Furthermore, the extreme value |ψ2|2 = n∞ is
reached in the case of a spin domain. In this region, the bath component is then completely
absent. In Chapter 5, we also considered the expansion of Eq (6.3) with respect to the
depletion |ψ2|2/n∞. At zeroth order, this yielded the cubic NLSE, which we studied in
detail in Chapter 3. At first order, we obtained the first correction to the cubic NLSE
breaking scale invariance

i
∂ψ2

∂t
= −1

2
∇2ψ2 − g̃e|ψ2|2ψ2 −

∇2|ψ2|2
4n∞

ψ2. (6.4)

For each of the above models, we have determined the localized states for atom numbers
N2 larger than the Townes atom number NT ' 5.85/|g̃e|. These states can be indexed by
using their chemical potential µ < 0, or equivalently by using their atom number N2.

Linearization and diagonalization

In the following, we study the stability and determine the eigen-modes of these localized
states. To do so, we consider a small perturbation around a given equilibrium state. We
linearize the evolution equation and obtain a linear partial differential equation, analogous
to the Bogoliubov equations. For convenience, the explicit form of this linear system for
these models has been reported in Appendix G. The remaining task consists in determining
(numerically) the spectrum of the corresponding linear operator, i.e. the set of eigen-
values γ̄ = γ + iω . As usual, the problem is simplified using polar coordinates1. Because

1Numerically, the gradient and Laplacian operators appearing in these differential operators were ex-
pressed using the Bessel-Fourier transform presented in Appendix E.
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of rotational invariance, the linear operator decomposes into invariant subspaces with
azimuthal number s ∈ Z, such that the action of the angular part of the Laplacian within
each invariant subspace reduces to a multiplication by (−s2/r2).

If any eigen-frequency γ̄ = γ + iω has a non-zero real part γ, we expect the system to
be subject to a dynamical instability, i.e. the exponential growth of the associated eigen-
mode. As expected for the ground state of the system, we do not obtain any unstable
mode and always have γ = 0. Thus, we only need to discuss the allowed values for the
angular frequency ω associated to a periodic evolution of the perturbation. Importantly,
we remind that a stable oscillatory mode is localized if and only if |ω| < |µ|, as discussed
by Malkin & Shapiro [171]. In this case, we call it an internal mode (or an elementary
excitation) of the system2. A priori, such an oscillation is long-lived, at least as long as
one can restrict to a linear description for the perturbation. Note that, due to nonlinear
couplings, an internal mode can generate higher-order harmonics which might fall into the
continuum. These generally lead to a slow damping of the oscillations3.

Determination of ω through real-time evolution

Numerically, the previous method is less easily implemented for the coupled NLSEs (6.1,
6.2) for the following reason. The determination of the ground state is necessary for
expressing the linearized evolution operators given in Appendix G, before diagonalization.
However, obtaining the ground state is very expensive in terms of computational time,
especially for atom numbers slightly above the Townes atom number NT . The reason for
this last statement will be made clearer in Subsec 6.1.2.

Alternatively, it is possible to directly determine the evolution of a given perturbation
by simulating the corresponding NLSE. This is the method we choose in Subsec 6.1.2
regarding the coupled NLSEs, focusing on the radial mode with azimuthal number s = 0.
As a good approximation of the ground state in the regime N2/NT & 1, we imprint at t = 0
a Townes profile with the desired atom number and the desired RMS size in the minority
component |2〉, along with its negative in component |1〉. We then let the system evolve
using real time evolution of the coupled NLSEs, as presented in Appendix E. Finally, we
extract the RMS size of component |2〉 and the frequency ω from its evolution.

In practice, nonlinear terms in the evolution of the perturbation are always present
when using this protocol, and contribute to the signal by shifting the oscillation frequency.
In all numerical results reported here, we assume that the amplitude of the mode, always
smaller than 1% of the initial RMS size, yields only little modification of the bare eigen-
frequency. As a cross-check, we also used the same protocol for determining the frequency
of the s = 0 mode for the single-component models described in the previous paragraph,
yielding excellent agreement with the linearization method.

6.1.2 Weak depletion regime

Using the methods described above, we now determine the spectrum of spin bubbles, fo-
cusing on the weak depletion regime. For an infinitely small depletion, we expect the
system to be described by the cubic NLSE. The elementary excitations of the correspond-
ing Townes soliton were discussed in Subsec 3.2.2 and in Appendix A. Briefly, we remind

2The mode is delocalized if |ω| > |µ|, i.e. it is not attached to the localized wave packet.
3We mean by slow that the decay is typically not exponential but rather inverse polynomial, as discussed

by Pelinovsky et al. [257].
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Figure 6.1: Breathing mode. (a) Spectrum of the Townes soliton in the first quarter
of the complex plane γ̄ = γ + iω, featuring only neutral (γ = ω = 0) and delocalized
(γ = 0, ω > |µ|) modes. (b) For the weakly deformed Townes soliton, a breathing mode
with angular frequency ω0 detaches from the neutral modes. (c) Frequency of the breathing
mode for the effective equation (6.3) (green), its weak depletion expansion (6.4) (red), and
the coupled NLSEs (6.1, 6.2) (blue). The grey dotted line gives the perturbative result
(6.5). We set n∞ = 100 atoms/µm2 and g̃e = −7.6 · 10−3, similarly to Chapter 4. (d)
Same as (c) for larger N2/NT , only for the single-component models. The limit for the
continuum frequencies (ω0 = |µ|, using reduced notations) is indicated by the dashed line
with the same color code. The star indicates the largest value of N2/NT ' 1.45 for which
the breathing mode of the effective equation (6.3) is localized.

that the Townes soliton has only eigen-frequencies inside the continuum spectrum (corre-
sponding to |ω| > |µ|) and non-oscillating neutral modes (ω = 0). The latter are generated
by symmetries and exact solutions of the NLSE. This spectrum is represented in Fig 6.1(a)
where we restricted to the first quarter of the complex plane4.

For models departing from the cubic NLSE, the situation is modified and genuine
elementary excitations can emerge. For example, the elementary excitations of the first
correction to the cubic NLSE breaking scale invariance (6.4) were studied by Rosanov
et al. [214]. In particular, the authors of [214] exhibit a breathing mode with angular
frequency ω0(µ) 6= 0, corresponding to an isotropic deformation with azimuthal number
s = 0 and associated to an oscillation of the bubble’s size. Rosanov et al. also provide
the expression of ω0(µ) 6= 0 in the perturbative limit µ → 0−. Using physical units, we
express this frequency as a function of N2/NT

ω0 (N2/NT ) = κ
~
m
|g̃e|n∞ (N2/NT − 1)3/2 , (6.5)

with a numerical factor κ ' 0.95 obtained numerically. To obtain this expression, we used
the link between µ and N2/NT written in Eq (5.19). In the limit N2 → N+

T , higher-order
nonlinearities can be neglected. In this case, the Townes soliton and its spectrum are
recovered. For N2 > NT , Eq (6.5) shows that this mode detaches from the neutral modes
with ω = 0, as represented in Fig 6.1(b). As a validation step, we show in Fig 6.1(c) the
breathing mode frequency for all three models presented in Subsec 6.1.1, together with the
perturbative result given by Eq (6.5). All models overlap for N2/NT < 1.05. In particular,

4The rest of the spectrum simply contains γ̄∗ and −γ̄, for each value of γ̄ shown in Fig 6.1(a), as
explained in Appendix A.2.
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the perturbative law (6.5) is also verified for the breathing mode of the binary mixture5.
Henceforth, this result suggests that the models (6.3) and (6.4) not only account for the
static properties of spin bubbles, but also for their dynamics.

What about the non-perturbative regime? For N2/NT > 1.05, we observe in Fig 6.1(c)
a clear disagreement between the low depletion correction (6.4) and the two others.
Rosanov et al. [214] observe numerically that the breathing mode for the NLSE (6.4)
exists for any values of µ < 0, whereas no other mode seem to detach from the continuum.
This is in strong contrast with the situation of Eq (6.3). Intuitively, one does not expect
the bubble to breath when the depletion gets maximal, since its central density then can-
not increase. We show in Fig 6.1(d) that the breathing mode approximately disappears
for N2/NT & 1.45, where it reaches the limit of the continuum. This corresponds to a
depletion of |ψ|2/n∞ ' 55% at the center of the bubble (see Fig 5.4). Moreover, we show
in the next paragraph that other modes emerge for Eq (6.3) for larger atom numbers.

6.1.3 Surface modes

We now look for additional modes associated to an azimuthal deformation, i.e. to an
azimuthal number s 6= 0. For the coupled NLSEs in the immiscible case, these elementary
excitations have been determined for a trapped immiscible mixture [258], and for a linear
interface [259]. For simplicity, here we study only the effective model (6.3). Indeed, we
saw that this model gives a fair description of the spin bubbles, even for finite depletion.

As shown in Fig 6.2(b), diagonalisation of the linearized evolution operator show that
the first s 6= 0 mode (namely the quadrupolar mode with s = 2) appears for N2/NT ' 4,
i.e. when the depletion of the bath approaches 100% (see Fig 5.4). Using this model, we
thus find that surface modes only appear in the spin domain regime. For larger atom
numbers, other modes with larger values of s fall below the continuum. This occurs
approximately when the perimeter of the domain equals s-times the spin healing length
' 1/

√
n∞|g̃e|.

Link with incompressible hydrodynamics

As seen earlier, a spin domain has a fixed density in the bulk. As a consequence, one
may expect this system to behave like an incompressible liquid. In reality, this maximum
density is fixed by the bath density and can be seen as an external parameter. Hence,
the analogy is true only for the effective description of the minority component |2〉 but,
of course, not without the bath. In particular, the binary system is not self-bound in the
absence of potential, since the two components described by repulsive interactions would
then expand.

For a 3D spherical droplet shaped by surface tension, one can show that surface modes
are quantized, see [260] for example. These ripplon type excitations also exist for a 2D
incompressible droplet. As depicted in Fig 6.2(a), these excitations correspond to an os-
cillation of the boundary such that

r(θ, t) = R [1 + α cos (s θ − ωst)] , (6.6)

5As a consequence, ω0 goes to zero faster than the other characteristic frequency ∝ µ, which fixes the
spatial scale of the soliton and thus of our numerical grid. This explains why the evolution in imaginary
times used to obtain the ground state gets prohibitively long when N2 → NT , as claimed in the previous
subsection.
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Figure 6.2: Surface modes. We plot in (b) the frequency of each surface mode represented
in (a), using the same color code. Similarly to Fig 6.1(d), we expressed the angular fre-
quency in physical units using n∞ = 100 atoms/µm2 and g̃e = −7.6 · 10−3. Solid lines are
deduced from diagonalisation of the linearized operators, while the dotted lines are the
predictions written in Eq (6.7) for an incompressible 2D droplet [261]. We only plot the
frequencies of localized modes which fall below the continuum line (grey dashed line). The
star indicates the smallest value of N2/NT ' 4 for which the quadrupolar mode (s = 2) is
localized. (c) Energy per particle computed with the effective NLSE (6.4) (solid blue line)
and the hydrodynamical model valid deep in the spin-domain regime (red dashed line).

where R is the radius of the bubble, θ is the polar angle around the bubble, r(θ, t) its
boundary at an angle θ and at time t, and α � 1 the amplitude of the mode. This
definition also accounts for a possible breathing mode s = 0, as described earlier. However,
it immediately implies that a breathing mode is forbidden for an incompressible fluid.
Furthermore, modes with s = ±1 represent a global motion of the bubble (not an internal
oscillation) such that we do not consider them in the following. Surface modes with angular
frequency ωs (|s| > 2) can be obtained following Akulenko & Nesterov [261]

ωs =

√
T

mn∞R3
s (s− 1) (s+ 1), (6.7)

which also involve the atomic mass m, the surface density n∞ and the linear tension
coefficient T . In particular, for a large azimuthal number s and thus a large wave vector
ks = 2πs/R, we recover the well-known dispersion relation ω(k) ∝ k3/2 of capillary waves.
In this case, the excitations are not sensitive to the curvature of the droplet.

How to choose the different parameters involved in Eq (6.7) for our single-component
effective model? For the radius R, we will simply use the relation N2 = n∞πR2 applicable
to a homogeneous disk, and which become asymptotically exact when N2 → +∞. The
only missing ingredient is thus the linear tension coefficient which we now determine.

Linear tension coefficient

To estimate the linear tension coefficient for the single-component effective equation, we
use the result of Barankov [231] for a 2D mixture6. First, we will assume that the intra-

6The difficulty consists in finding a relation which only involves the parameters present in the effective
single-component model. Actually, extending the procedure of [231] to our single-component equation
should be feasible.
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Figure 6.3: Summary of the elementary excitations when varying N2/NT .

species coupling strength are equal, i.e.7 g̃11 = g̃22 ≡ g̃. Since the effective coupling
strength |g̃e| � g̃, we can use the following result valid at first order in |g̃e|/g̃

T ' ~2

2m

√
|g̃e|n3/2

∞ , (6.8)

which only depends on the parameters present in the effective model. To check that this
estimate is correct, we compared the total energy obtained numerically to the following
estimate E ' e0A+ T `, valid in the spin-domain limit. Here, A = πR2 is the total area,
e0 = g̃en∞ the energy per unit area, and ` = 2πR the perimeter of the domain. The
first term accounts for the bulk contribution, and the second one for the existence of a
boundary. We show the result in Fig 6.2(c).

In Fig 6.2(c), we show the frequency of the modes given in Eq (6.7), together with the
result of the diagonalization. As expected, we find good agreement between these two.
In the previous subsection, we have seen that the breathing mode exists only inside a
finite interval of |µ|. We deduce that the effective NLSE (6.3) has no localized elementary
excitations for 1.45 . N2/NT . 4. As a consequence, if a domain in this regime of
parameters is initially excited, we expect it to self clean by emitting delocalized excitations.
This is similar to the situation of 3D quantum droplets, as shown by Petrov [30].

6.1.4 The experimental point-of-view

To conclude this study of spin bubbles’ elementary excitations, we discuss the relevance
of these features for our experimental setup. We summarized the different results of this
section in Fig 6.3. First, the observation of the breathing mode for the weakly deformed
Townes soliton – and its scaling given in Eq (6.5) – would be very interesting. In particular,
it would yield a new point-of-view on the breaking of scale invariance. However, the
experimental time scales required to observe such a scaling for N2/NT < 1.05 (typical
period of 1 s) are too long compared to the dissipative dynamics associated to two-body
losses in state |2〉 (see Subsec 1.2.1). For this reason, this study seems currently out of
reach.

On the other hand, the frequencies obtained for the surface modes, as shown in
Fig 6.2(b), are compatible with realistic experimental time scales. Actually, this study has
more to do with (linear) interface phenomena in phase separated mixtures than it is specific
to radially symmetric spin bubbles. In particular, there have been various proposals to in-
duce hydrodynamic instabilities using segregated BECs, such as the Rayleigh-Taylor [262],
the Kelvin-Helmholtz instability [263] or the Plateau–Rayleigh [264] instabilities. All these
proposals start with immiscible components separated by a linear interface.

7Since the spin-domain density is equal to n∞, this assumption is already present in the effective model.
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Figure 6.4: Collisions of Townes solitons. Initially, two counter-propagating Townes soli-
tons of size σ, velocity v, and relative phase ϕ are separated by a distance d.

Experimentally, one could wonder how to prepare a quasi-stationary linear interface.
Because of the experimental constraint g̃22 < g̃11, such domains would feature a density
in the region populated by state |2〉 larger than in |1〉. Hence, this situation corresponds
to a modulation of both the total density and the spin distribution. Our experimental
platform allows us to prepare arbitrary density and spin distributions. As an example,
one could start from a system in state |1〉 with the desired total density obtained using
an extra-optical potential, as described in Subsec 1.1.2. From that point, one could use a
spatially resolved Raman transition to transfer half of the system in state |2〉, the other
half remaining in |1〉. In particular, our optical resolution should allow thus to tailor the
smooth density profiles expected at the interface.

6.2 Collisions of Townes solitons

In this second part, we describe binary collisions of Townes solitons using numerical simu-
lations. We limit ourselves to the cubic NLSE in Subsec 6.2.1 and determine the stability
regime for head-on collisions. As already claimed in Subsec 3.1.1, solitons of the 1D NLSE
generically collide and retrieve their original shape afterwards. We will see hereafter that
the situation is different in 2D. In Subsec 6.2.2, we point out interesting directions in the
case of solitons prepared from a binary mixture.

6.2.1 Collisions under the cubic NLSE

We consider the collisions of Townes solitons evolving under the cubic NLSE. Using the
reduced notations of Subsec 3.1.1, we write this equation in the attractive case as

i
∂ψ

∂t
= −1

2
∇2ψ + g̃|ψ|2ψ, (6.9)

with g̃ < 0 the dimensionless coupling strength. The wave function ψ is normalized such
that

∫
d2r |ψ|2 = N , N being the total atom number. We evolve the initial states described

in the next paragraph using real-time evolution of the NLSE in 2D with periodic boundary
conditions, as described in Appendix E.
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Figure 6.5: Density profiles for head-on collisions taken at various times t, with relative
phase ϕ = 0, and ρ ' 1. We divided n by the peak density n0 obtained at time t = 0.

Initial states

We consider initial states given by two counter-propagating Townes solitons, with the same
size. Thanks to the Galilean invariance of Eq (6.9), we restrict the analysis to the rest
frame for the center of mass, which we set to r = 0. We also take the velocities of each
solitons aligned with (Ox). Finally, we denote the Townes soliton Rσ(x, y), stationary
solution of Eq (6.9) with N = NT and RMS size σ. For solitons initially separated by a
distance d, travelling at a velocity v and with a zero impact parameter, we will thus use
as initial conditions

ψ(r, t = 0) = Rσ(x+ d/2, y)ei(kx+ϕ) +Rσ(x− d/2, y)e−ikx. (6.10)

In this expression, the wave packet represented by the first term lies essentially in the
x < 0 half plane and propagates toward increasing x, and conversely for the second term,
see Fig 6.4(a). The wave vector k is related to the velocity through the relation k = mv/~,
and it is associated to a de Broglie wavelength λdB = 2πk. In practice, we choose d� σ,
so that there is initially negligible overlap between the two wave packets, and the total
atom number is approximately given by 2NT . Numerically, the useful time scale is given
by the classical collision time for point-like particles tc = d/2v. In the following, we
consider a regime in which the initial separation d does not play any role, except for fixing
tc. Finally, we also introduced a possible relative phase ϕ. Such a relative phase will alter
the interference pattern made by the two wave packets when overlapping.

Interaction parameter ρ = λdB/σ

Contrary to the 1D cubic NLSE, Townes solitons are deformed during the collision and
do not conserve their shape after tc. However, one can clearly distinguish between quali-
tatively different behaviors. Because of the scale invariance of Eq (6.9), the two relevant
length scales σ and λdB should determine the dynamics only through their ratio ρ = λdB/σ.
Rewriting λdB in terms of the velocity v, we see that ρ is proportional to the duration of
the interaction during which the two solitons overlap (if they were to separate afterwards).

Nearly elastic collisions

A small value of the interaction parameter ρ corresponds to a very short interaction time.
In this case, one expects the collision to be nearly elastic and the solitons to emerge almost
unaltered from the process. In other words, kinetic energy dominates over the interaction



118 CHAPTER 6. PERSPECTIVES ON SPIN BUBBLES DYNAMICS

t = 0 t = 0.75tc t = tc

0

1

n/n0
t = 2tc(a)

0

1

n/n0
(b)

Figure 6.6: Density profiles for head-on collisions taken at various times t, with ρ ' 4.3
and relative phase ϕ = 0 (a), π (b). We divided n by the peak density n0 obtained at
time t = 0.

term in Eq (6.9), and the inter-soliton interactions almost play no role. Such a process
with small ρ and relative phase ϕ = 0 is shown in Fig 6.5. After leaving the interaction
region indicated by the interference pattern, we indeed observe well defined peaks with
constant velocities. After the collision, we observe that the peak density of each wave
packet first increases, before decreasing at longer times. Using longer evolution times, we
predict numerically that the two separated wave packets will spread and that the evolution
will be regular at all times.

As stated above, the relative phase ϕ determines the position of the interference pat-
tern during the interaction. In this nearly elastic regime, we find that this phase plays
essentially no role. Finally, we did not observe any significantly new feature for collisions
with non-zero impact parameters in this regime. By measuring the diffusion angle of these
well-defined wave packets, we observed a small enhancement of this angle for an impact
parameter b ' σ of the system, the maximum angle increasing with larger values of ρ.
This is not surprising since we do not expect any deviation for head-on collisions, as well
as when the impact parameter is much large than the extent σ of each wave packet.

Strongly inelastic collisions

For larger values of ρ corresponding to longer interaction times, the situation is dramati-
cally different. As illustrated in Fig 6.6(a) for a relative phase ϕ = 0, the central density
blows up during the period of overlap, i.e. the system collapses at the origin r = 0. Obvi-
ously, we do not expect our simulations to properly describe the dynamics just before the
collapse8. We only assert that they provide a fair estimate of the threshold for collapse at
the center, which we observe for ρc ' 3.6. For a relative phase ϕ 6= 0, these conclusions
no longer hold. In particular, for ϕ = π, the density at the center is strictly zero at any
time and collapse can thus never occur at the center r = 0, as shown in in Fig 6.6(b).

Near-threshold collisions

Interestingly, we observe a remarkable behavior close to the threshold for collapse at the
center, as we show in Fig 6.7. In this case, after an initial rise of the density at the

8In particular, the image shown in Fig 6.6(a) at t = 2tc has been added to show that collapse is indicated
by a long-living peak in our simulation.
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Figure 6.7: Scattering perpendicularly to the propagation axis for ρ ' 3.4, just above the
threshold for collapse at the center given by ρc ' 3.6. We divided n by the peak density
n0 obtained at time t = 0.

center, a large part of the mass is eventually scattered perpendicularly to the propagation
axis. We observe that the system is then regular at all times. This situation in which
four well-defined momentum states participate to the nonlinear dynamics is reminiscent
of four-wave mixing in Bose-Einstein condensates [265]. In particular, one could wonder
if this formalism could be useful for understanding this numerical observation. However,
contrary to the usual case of four-wave mixing, here the different wave packets overlap
notably in momentum space. Finally, it is not excluded that some fine tuning of the
parameters could lead to long-lived wave packets propagating along y.

6.2.2 Extension to a binary mixture

Propagation in a bath

We now address the question relevant experimentally of binary collisions of solitons ob-
tained from a binary mixture. We insist on the fact that the following discussions are not
rigorous. They are rather conjectures which we plan to explore in future work. Our first
concern is the description of initial states like (6.10) in the case of spin bubbles. Indeed,
these states being immersed in a bath, the naive use of Galilean invariance to describe
a moving soliton should impart the same motion to the bath. On the other hand, we
observe numerically that launching the soliton with a finite velocity in a bath initially at
rest yields nontrivial dynamics, which can even destroy the spin bubble for large velocities.

In practice, one might obtain a shape-maintaining bubble by pushing it gradually. In
particular, Sasaki et al. [266] show that a deformed bubble can propagate at a constant
velocity in a bath at rest at a large distance. However, Sasaki et al. studied the case of
spin domains formed in strongly segregating components, so that our situation necessi-
tates further theoretical investigation. In parallel, one might look for an effective NLSE
generalizing Eq (6.3), in the case of a relative motion between the soliton and the bath.
This effective equation could describe the state obtained from this gradual launch, going
to the frame attached to the bubble. In other words, our protocol could then be under-
stood as an adiabatic evolution of the bubble under this effective model, with a slowly
evolving bath velocity. However, the existence of a dynamical instability for large relative
velocities of the two components suggested that this adiabatic protocol will not yield a
stable soliton above a certain propagation velocity, see the work of Takeuchi et al. [263]
for example.
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Collisions

A second question concerns the long time dynamics following the collision. If the limit
of short interaction times (small ρ) is accessible, it seems reasonable to think that the
collisions will still be nearly elastic. After the collision, the deformed solitons would
escape from the interaction region. They might be excited and could undergo long living
oscillations.

For longer interaction times (i.e. ρ & a few units), we showed earlier that the system
described by the cubic NLSE (6.9) can undergo collapse. In the case of a binary mixture,
we have seen in Chapter 5.1.1 that the system possesses a well-defined ground state and
thus cannot undergo such a collapse. In this regime, do we expect the system to form a
bound state, as explored for example by Montesinos et al. [254] in the case of stabilized
two-dimensional vector solitons? One could also wonder about the fate of such bound
states after long times. In particular, we have seen in Subsec 6.1.3 that the ground state
of the system does not possess any localized elementary excitations for a certain range of
atom numbers. This situation might lead to a self-cleaning (self-evaporating) of the self-
bound system. Finally, it would be interesting to determine if the collision can destroy
both solitons, as predicted in the last paragraph of Subsec 6.2.1.

Experimental implementation

Finally, we briefly discuss the experimental feasibility of such experiments with minimal
modifications of our current setup. Using the method described in Subsec 1.2.1, we can
transfer two bubbles separated by d with proper beam shaping. However, the two bubbles
would then propagate in the same direction. A collision of one of the solitons on the
external box potential could reverse its propagation direction, eventually producing a
collision. However, this situation would bring a new difficulty associated to the barrier
reflection. In order to circumvent this issue, one could switch the momentum transfer from
one direction to the opposite direction, by exchanging the frequencies of the two beams
involved in the two-photon transition.

6.3 Conclusion

In this chapter, we have discussed a few experimental paths for future characterizations of
the spin bubbles explored in this thesis. We first determined the excitation spectrum of the
spin bubbles. This allowed us to compare the various equilibrium descriptions introduced
in Chapter 5. This suggested that a single-component model could also describe accurately
the spin bubbles’ dynamics. In the large depletion regime, we draw an analogy between the
excitation spectrum of a spin domain and the behavior of an incompressible 2D droplet.

In a second part, we briefly described the binary collisions of Townes solitons. Contrary
to the cubic 1D NLSE, the counter-propagating solitons do not survive after a collision,
in the case of the 2D NLSE. There is however a possibility for nearly elastic collisions,
depending on the effective duration of the interaction between the two solitons. Finally,
we discussed the extension of the observed phenomena to the case of solitons prepared
from a binary mixture.



Summary and outlook

In this thesis, I presented our recent realization of a Townes soliton using a two-component
planar Bose gas [45]. In Chapters 1, I first explained how to produce two-dimensional
samples of Rubidium 87 with fully controllable geometry. I also detailed our techniques
for the preparation of binary mixtures, using two different internal states of Rubidium
87. A theoretical description of this two-dimensional weakly-interacting Bose gas with
repulsive interactions was given in Chapter 2. This allowed us to derive a nonlinear wave
equation – the celebrated nonlinear Schrödinger equation – as a good description for both
the equilibrium and the dynamical properties of our system. We discussed the specific
dynamical symmetries associated to this equation, which give rise to additional features
not present in 1D and 3D geometries.

In Chapter 3, I introduced the Townes soliton. This long-sought solitary wave is a
solution of the 2D nonlinear Schrödinger equation with attractive interactions. Because of
the specific symmetries of this equation, the Townes soliton has some peculiar properties.
It contains an atom number fixed by the strength of the interactions, and it can adopt
any size because of the scale invariance of the underlying theory. However, this soliton is
also intrinsically unstable and can be subject to collapse for small deviations away from
equilibrium. In Chapter 4, we showed our experimental realization of this solution using
a novel protocol based an immiscible mixture of superfluids. The Townes soliton was
prepared as the state of one minority component of the system, digging a shallow hole in
a bath of the other component. We called this system a spin bubble.

In Chapter 5, I justified rigorously our approach in two complementary ways. Starting
from the system of coupled NLSEs describing the mixture, we re-derived the attractive
NLSE under the approximation that all interaction parameters were nearly equal. In this
case, the total density of the system is approximately frozen. The ground state is then
effectively described by a spin modulation which obeys a single-component NLSE with
additional nonlinearities. Eventually, the attractive NSLE was recovered in the limit of
a small depletion of the bath. From a microscopic point-of-view, we showed that the
interactions between atoms of the minority component were modified due to the exchange
of virtual phonons through the superfluid bath. Beyond this paradigm, we discussed
a few effects not currently observable with our setup, but which could motivate future
developments. These concerned the connection of our work to polaron physics, the effect
of finite temperature, and the possibility to study bound states of attractive bosons in 2D
with universal properties for sufficiently strong interactions.

Chapter 6 was conceived as an outlook. First, we determined the excitation spectrum
of spin bubbles. In particular, we showed the appearance of a breathing mode for the
deformed Townes soliton, in the case of a finite depletion of the bath. We could also relate
the state of this bubble in the spin-domain regime (in which the bath is fully expelled at
the center) with the behavior of an incompressible fluid, which can be subject to surface
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deformations. In addition, we briefly explored the dynamics of colliding Townes solitons
and raised some prospects about analogous experiments using solitons formed from a
binary mixture.

As discussed throughout this thesis, there are many possible extensions to this work.
Let me recall a few of them. In a very near future, we first plan to understand how the state
of the bubble is modified when it has a relative motion with respect to the bath. While one
could expect the bubble to be slightly deformed in the low-velocity case, its dynamics could
be subject to strong damping mechanisms for larger velocities, such as surface instabilities,
vortex generation, etc. This will also lead us to study the interactions between moving
bubbles. A second direction concerns the temperature dependence of the solitonic features.
In particular, it would useful to determine how the conditions for quasi-stationarity vary
with temperature. Due to the interactions with thermal fluctuations, one could also expect
some diffusive motion of the soliton center of mass, and a modification of the soliton
lifetime. Another path could consist in studying the effect of disorder on this behavior.
Experimentally, a disordered potential could be implemented by applying a supplementary
optical potential, using a speckle pattern [267] or by generating random patterns on a
digital micromirror device [268]. In particular, the interplay between interactions and
disorder could yield new insights on localization phenomena in 2D [269]. Using a single-
particle detection scheme, we could study the dynamics of isolated impurity atoms evolving
inside a 2D superfluid bath, an instance of quantum brownian motion [240]. Finally,
reaching a regime of strong interactions could allow us to study phenomena going beyond
the mean-field description applied throughout this work. In consonance with this, we are
currently studying the possibility of micro-wave induced Feshbach resonance in our system,
as predicted by Papoular et al. [270]. Another long-time prospect in this direction would
consist in inducing Rydberg excitations inside the system. The corresponding Rydberg
dressing could lead to a greatly enhanced effective interaction potential. This is precisely
the goal of the new experiment which is currently built by the next generation of students
in the team.



Appendix A

Elementary excitations of the
Townes soliton

In this appendix, we determine the elementary excitations of a Townes soliton and discuss
its stability with respect to small perturbations. Our presentation is mostly inspired from
Malkin & Shapiro [171]. As a preliminary step, we recall the list of the continuous sym-
metries associated to the 2D NLSE (Sec A.1). After linearizing the equation of motion
(Sec A.2), we describe the so-called neutral modes of the soliton. Importantly, we show
that each of them can be associated to one of the continuous symmetries listed below
(Sec A.3). The main conclusion of the analysis is the following: despite there is no dynam-
ical instability in the usual sense, there exist neutral modes which can lead to a collapse
of the perturbed soliton in a finite time.

A.1 Continuous symmetries

For the presentation to be self-contained, we first remind the continuous symmetries asso-
ciated to the 2D NLSE in the free case (V = 0), as detailed by Saint-Jalm [49,50]. In the
context of partial differential equations, a symmetry can be defined as a group of transfor-
mations1 defined on a functional space, which realize a one-to-one correspondence between
solutions of the equation. These transformations form a continuous group when they are
parametrized by a continuous parameter. We rewrite the 2D NLSE for a complex field
ψ(r, t) with attractive interactions using the reduced notations introduced in Subsec 3.1.1

i
∂ψ

∂t
= −1

2
∇2ψ − |ψ|2ψ. (A.1)

with
∫

d2r |ψ|2 = |g̃|N ≡ N . All the symmetries described here also apply to the repulsive
case.

Galilean group

The Galilean group is a symmetry group of the 2D NLSE in any dimension D [98]. It is
composed of the following transformations.

– The translations Tr0 by a distance vector r0

Tr0 [ψ] (r, t) = ψ(r − r0, t). (A.2)
1The identity operator, the composition of two transformations, and the inverse of any transformation

must belong to the group.
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– The boosts Bvy with velocity v0

Bv0 [ψ] (r, t) = ψ(r − v0t, t) exp

[
i

(
v0 · r −

v2
0

2
t

)]
. (A.3)

– The rotations in plane Rθ of angle θ

Rθ [ψ] (r, t) = ψ(R−θ · r, t). Rθ =


cos θ − sin θ

sin θ cos θ


 . (A.4)

– The time translations Ut0 of time t0

Ut0 [ψ] (r, t) = ψ(r, t− t0). (A.5)

In total, the above transformations form a group with 6 generators. The gauge transfor-
mation Pϕ with phase ϕ

Pϕ [ψ] (r, t) = eiϕψ(r, t). (A.6)

is also a symmetry in any dimension.

Dynamical symmetry

In 2D, the NLSE symmetry group is enlarged thanks to a dynamical symmetry [50, 98]
associated to the following transformations

– The dilations Dλ by a factor λ

Dλ [ψ] (r, t) =
1

λ
ψ

(
r

λ
, t

λ2

)
, (A.7)

hallmark of scale invariance of the 2D NLSE.

– The lens transformations or expansions Lβ by a factor β

Lβ [ψ] (r, t) =
1

1− βt ψ
(

r

1− βt
, t

1− βt

)
exp

(
− i

2

βr2

1− βt

)
. (A.8)

These last two sets of transformations can be combined with the time translations Ut0 to
form a group isomorphic to SL(2, R).

Link with the 2D NLSE in a harmonic potential

There also exist transformations Kα linking the solutions ψ′ of the 2D NLSE in a harmonic
potential V (r) = αr2/2 to solutions in the free case V (r) = 0

Kα
[
ψ′
]

(r, t) =
1

λ(t)
ψ′
(

r

λ(t)
, arctan(

√
|α|t)√

|α|

)
exp

(
i

2

λ̇(t)r2

λ(t)

)
, (A.9)

with λ(t) =
√

1 + αt2, and λ̇ its derivative [105]. Written that way, we allow the potential
V to be either confining (in which case α = mω2 > 0, with ω the associated angular
frequency), or anti-confining (α < 0). To be rigorous, these transformations are not
symmetries of the 2D NLSE, since they do not link solutions of the free 2D NLSE. Formally,
they correspond to Bäcklund transformations between two different partial differential
equations, as investigated by Saint-Jalm et al. [49, 50].
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A.2 Stability analysis

We now present a stability analysis for the Townes soliton, analogous to Bogoliubov’s
formalism [171, 205–207]. Thanks to scale invariance, one can restrict the analysis of
stability around the Townes soliton R0 defined by

−R0 = −1

2
∇2R0 −R3

0 ∇2 =
d2

dr2
+

1

r

d

dr
. (A.10)

The linear system

We assume initial conditions ψ(r, t = 0) slightly departing from the stationary solution
R0(r), and write it as ψ(r, t = 0) = R0(r)+ε(r, t = 0). The wave function ψ(r, t) evolving
under Eq (A.1) can then be expressed as

ψ(r, t) = [R0(r) + ε(r, t)] eit, (A.11)

with ε(r, t) a small perturbation with respect to R0(r), at least at short times. Decom-
posing ε(r, t) into real and imaginary parts ε(r, t) = u(r, t) + iv(r, t), Eq (A.1) can be
linearized around the stationary solution R0(r, t) = R0(r) eit. This leads to the following
differential system2

∂

∂t


u
v


 =


 0 L̂0

−L̂1 0




u
v


 =M


u
v


 , (A.13)

where we defined the operatorM in terms of the self-adjoint differential operators L̂0 and
L̂1 introduced by Zakharov [205]

L̂0 = 1− 1

2
∇2 −R2

0 L̂1 = 1− 1

2
∇2 − 3R2

0. (A.14)

Structure of the spectrum of M
A standard way to proceed consists in reducing the operator M into its simplest form.
One thus wishes to decompose M into generalized eigen-functions and eigen-spaces with
associated eigen-values3 γ̄ = γ+ iω ∈ C. This will allow us to identify modes which evolve
independently – normal modes – at least as long as the linear perturbation theory remains
valid. Contrary to L̂0 and L̂1, M is not self-adjoint itself. Hence, it is a priori unclear if
this operator can be diagonalized, and where the eigen-values γ̄ lie in the complex plane.
However, from the definition ofM, one can show that if γ̄ is an eigen-value, then −γ̄ and
γ̄∗ are too.

Malkin & Shapiro [171] show that there is no dynamical instability, i.e. that M has
no eigen-value γ̄ with a real part γ 6= 0. An eigen-value with γ 6= 0 would lead to the
exponential growth of the amplitude of the corresponding eigen-function. Moreover, the

2This is easily obtained by noticing that

|ψ|2 = (R+ u)2 + v2 ' R2 + 2Ru (A.12)

at first order.
3This is the analog of the Jordan decomposition for infinite dimension operators. Our choice for the

real and imaginary part of γ̄ will help identify stable and unstable modes.
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operator M has a continuous spectrum of imaginary eigen-values γ̄ = iω ∈ iR such that
|ω| > 1. As shown in [171], these correspond to non-normalizable (delocalized) excita-
tions whose amplitude oscillates in time. In practice, a localized superposition of such
excitations would eventually spread and leave the soliton unaffected. Henceforth, these
do not induce any instability. Finally, Malkin & Shapiro show that there are otherwise
no elementary excitations that can be associated to an eigen-value γ̄ = iω ∈ iR such that
0 < |ω| < 1.

A.3 Neutral modes and symmetries

The remaining part of the spectrum is associated to the eigen-value γ̄ = 0. The corre-
sponding generalized eigen-functions can be identified by inserting the following ansatz

ε(r, t) =
n∑

j=0

εj(r) tj n ∈ N. (A.15)

for the perturbation in the evolution equation (A.13). These modes are called neutral
modes and do not oscillate, but grow like polynomials with the time4 t. To proceed,
let us decompose the operator M within invariant subspaces with well-defined azimuthal
quantum number s ∈ Z, such that the angular part of the Laplacian reduces to a multi-
plication by (−s2/r2) in each invariant subspace. As usual, this simplification arises from
the rotational symmetry of the linearized problem.

One can exhibit eight neutral modes in total: four of them are associated to the
azimuthal value s = 0 (corresponding to isotropic perturbations), and four others are
combinations of s = ±1 modes (dipole modes). Moreover, these cannot grow faster than
t3. Following the analysis of Malkin & Shapiro [171], we now associate each of these neutral
modes with a 2D NLSE symmetry. By this, we mean that each of them can be obtained
by applying one of the symmetries listed in Sec A.1 to a previously known solution.

Six neutral modes are stable

The translations Tr0 defined in Sec A.1 generate two independent dipole modes when
applied to the trivial solution R0(r, t). These are rigorously time-independent since a
displaced soliton is not subject to any dynamics. They are thus obtained by setting n = 0
in Eq (A.15). The boosts Bvy generate another pair of independent dipole modes. Since
they correspond to a uniform motion of the soliton without any deformation, these modes
grow linearly with time (n = 1 in Eq (A.15)), as immediately deduced from Eq (A.3).

For the isotropic perturbations s = 0, a first neutral mode is generated by the gauge
transformations Pϕ applied to the trivial solution R0(r, t). It is obviously time-independent
(n = 0 in Eq (A.15)). A second one is generated by the dilation operation Dλ arising from
scale invariance. Using Eq (A.7) and the fact the Townes soliton has an overall running
phase R0(r) eit, we find that the only time-dependence in the perturbation comes from the
modification of the phase factor, with grows linearly (n = 1 in Eq (A.15)).

4Remember that, after some evolution time, the linear analysis may break down, as the perturbing
terms become non-negligible.
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One unstable mode is generated by Lβ
A third isotropic mode with s = 0 can be found by applying the lens transformations
(A.8) to the Townes soliton R0(r, t)

Lβ [R0] (r, t) =
1

1− βtR0

(
r

1− βt

)
exp

[
i

(
t

1− βt −
β

2

r2

1− βt

)]
, (A.16)

with a real parameter β. For a small β, the exact solution (A.16) varies like a polynomial
in t at short times, with a dominant quadratic term (n = 2 in Eq (A.15)). Importantly,
for β > 0, this solution will form a singularity exactly at t0 = 1/β. This shows that
the Townes soliton is subject to an instability by collapse, despite there is no dynamical
instability in the usual sense. Interestingly, all the modes considered above conserve the
Townes soliton norm

N =

∫
d2r R2

0(r) ≡ NT ' 5.85. (A.17)

One unstable mode is generated by Kα
To exhibit the fourth and last mode with azimuthal number s = 0, we first consider the
stationary solutions of the 2D NLSE in a harmonic trap V (r) = αr2/2. For α ≥ 0 and
a chemical potential µ ∈] − ∞,√α[, there exists a unique solution which is radial and
monotonically decreasing [209]. We can thus select the particular solution Rα obtained
for µ = −1 and satisfying the equation

−1

2

(
d2Rα
dr2

+
1

r

dRα
dr

)
−R3

α +
1

2
αr2Rα = −Rα. (A.18)

Then, using the transformation (A.9), we can form the exact solution

Kα [Rα] (r, t) =
1

λ(t)
Rα

(
r

λ(t)

)
exp

[
i

(
arctan(

√
|α|t)√

|α|
+
λ̇(t)r2

2λ(t)

)]
. (A.19)

with λ(t) =
√

1 + αt2. For a small α, this exact solution generates the last secular mode
exhibited by Malkin & Shapiro [171], which grows like a polynomial with a dominant
t3 term (n = 3 in Eq (A.15)). We now wish to describe the long-time behavior of this
perturbation for a small α. To do so, we first develop the solution (A.19) at t = 0 for
small α > 0 as Rα(r) ' R0(r) + αu(r). Using (A.18), one finds that u(r) satisfies the
following linear differential equation

L̂1u = −1

2
r2R0, (A.20)

with u(0) ' 0.26, the operator L̂1 being defined in Eq (A.14). We can now discuss the
fate of the initial wave function R0(r) + αu(r) for a small α. Interestingly, this mode is
the only one not to conserve the Townes atom number. More precisely, one finds in the
limit of small α

N = NT + 2α

∫
d2r u(r)R0(r)

︸ ︷︷ ︸
<0

. (A.21)

For α > 0, one finds N < NT , such that the solution will be regular at all times [218].
This is not surprising since the exact solution (A.19) is regular and expands.
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The previous reasoning cannot be extended to α < 0 since localized solutions do not
exist in an inverted harmonic potential [271]. However, one can still study the behavior
of an initial wave function R0(r) + αu(r) for a small α < 0. This corresponds to N > NT
and thus an excess atom number with respect to the Townes soliton. In this case, one
can show that the total energy is negative, such that this wave function will eventually
collapse in a finite time, as shown by the variance identity (2.24). In fact, it is even easier
to exhibit a collapsing solution initially close to the Townes soliton. To do so, one has
simply to multiply the Townes soliton by a factor slightly larger than one. The energy of
the corresponding profile will then be negative.



Appendix B

Variational method

In this appendix, we study the 2D NLSE through a Gaussian ansatz, which leads to
analytical calculations and can help one get insight onto the dynamics. We first determine
the total energy E as a function of the atom number N contained in the wave packet.
Using the reduced notations of Subsec 3.1.1, we thus consider the static wave function

φ(r) =

√
N

2πβ
exp

(
− r

2

4β

)
(B.1)

with nonlinear parameter N = |g̃|N . Inserting this ansatz into the energy functional

E[φ] =

∫
d2r

[
1

2
|∇φ|2 − 1

2
|φ(r)|4

]
, (B.2)

we obtain, term-by-term

E(β) =
N
4β
− N

2

8πβ
. (B.3)

Using this expression, we deduce that E = 0 for a nonlinear parameter N = 2π ≡ NG. For
N > NG (resp. N < NG), one deduces from the variance identity (2.24) that the RMS
size of the wave packet will increase (resp. decrease). In a situation where the RMS size
decreases, the profile eventually becomes singular in a finite time. We now apply a time-
dependent variational method to describe approximately the 2D NLSE dynamics [203,272].
We still consider a Gaussian density distribution, but the wave function is now time-
dependent and we choose to write it as

ψ(r, t) =

√
N

2πβ(t)
exp

(
− r2

4β(t)

)
exp

(
−iα(t)r2

)
, (B.4)

We insert this time dependent ansatz in the Lagrangian

L[ψ] =

∫
d2r

i~
2

(
ψ∗
∂ψ

∂t
− ψ∂ψ

∗

∂t

)
− E[ψ], (B.5)

from which the NLSE derives. After dividing by N , we find

L(α, α̇, β, β̇) = α̇β − 2α2β − 1

2β

(
1− NNG

)
. (B.6)

We now write the Euler-Lagrange equations

d

dt

(
∂L
∂α̇

)
=
∂L
∂α

d

dt

(
∂L
∂β̇

)
=
∂L
∂β

, (B.7)
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Gaussian profile ∝ exp
(
− r2

4β

)

N

NT ' 5.85 NG ' 2π

N∗ ' 5.96

Regular Collapse

Figure B.1: Regularity domain for Gaussian initial conditions. The collapse threshold
NG = 2π obtained from the variational method is very close to the more accurate value
N∗, determined numerically by Fibich & Gaeta [219].

which lead to the following differential equations

β̇ = −4αβ α̇ = 2α2 − 1

2

(
1− NNG

)
1

β2
. (B.8)

If we assume that the wave function is a real Gaussian at t = 0, then α(t = 0) = 0 and
β(t = 0) = β0 > 0. In this case, the solutions of (B.8) can be written explicitly

α(t) = −1

2

γt

β0 + γ
β0
t2

β(t) = β0 +
γ

β0
t2, (B.9)

with the expansion factor

γ = 1− NNG
. (B.10)

The evolution of the RMS size σ2 = 2β obtained through the variational method coincides
with the exact result given by the variance identity (2.24). Moreover, the variational
method predicts a collapse of the wave-function (a diverging density) if and only if γ < 0
(i.e. N > NG), with a collapse time t∗ = β0/

√
|γ| which coincides with the instant tσ

of zero RMS size. As indicated in Fig B.1, this is very close to the collapse threshold
N∗ ' 5.96 determined numerically by Fibich & Gaeta [219]. This shows the power of
variational methods, even when they consist of minimal ingredients.



Appendix C

Anisotropic contribution of MDDI

We study qualitatively the anisotropic contribution of magnetic dipole-dipole interactions
(MDDI) to the mixture studied in this thesis. We show that it is sufficient to take the
(isotropic) modification of a12 into account for interpreting the experimental results of
Chapter 4. As shown in Subsec 1.2.2, MDDI modify the interactions between components
|1〉 and |2〉 through an additional interaction potential U(r). In the following, we will
consider the Fourier transform of this potential [81]

Ũ(k) = g̃dd

[
cos2 Θ

(
2− 3

√
2

π
k̄ek̄

2/2 erfc(k̄/
√

2)

)

+ sin2 Θ

(
−1 + 3

√
2

π

k̄2
x

k̄
ek̄

2/2 erfc(k̄/
√

2)

)]
. (C.1)

In this expression, erfc(x) = 1 − erf(x) is the complementary error function, g̃dd =√
8πadd/`z, add = µ0µ

2
Bm/12π~2 = 0.7 a0 is the dipolar length (a0 is the Bohr radius), Θ

is the angle between the magnetic field (contained in the (Oxz) plane) and the normal to
the atomic plane, `z is the vertical harmonic oscillator length, and k̄ = k`z. As long as
momenta k̄ � 1 are involved, one can limit to the first finite-range correction to Ũ(k)

Ũ(k) ' g̃dd

[
3 cos2 Θ− 1 + 3

√
π

2

(
cos2 Θ k̄ − sin2 Θ

k̄2
x

k̄

)]
. (C.2)

In this last expression, the terms independent of k simply add to the inter-species coupling
strength. The k−dependent terms break scale invariance, and the term involving kx also
breaks isotropy. In the following, we determine how much these k−dependent terms
determine the properties of the ground state in our system.

Single-component effective description

We use an effective single-component description φ for component |2〉, with the reduced
notations of Subsec 3.1.1 and normalizing φ such that

∫
d2r |φ|2 = N , N being the atom

number in state |2〉. Our effective description accounts for the mediated interactions
(modified by MDDI) as well as the first correction to the cubic NLSE obtained for a finite
depletion of the bath (see Subsec 5.2.1). For taking MDDI into account, we introduce a
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momentum-dependent coupling strength g̃e(k) defined as

g̃e(k) = g̃22 −

(
g̃0

12 + Ũ(k)
)2

g̃11

' g̃22 −
(
g̃0

12

)2
+ 2g̃0

12Ũ(k)

g̃11

' g̃e + g̃′e

(
cos2 Θ k̄ − sin2 Θ

k̄2
x

k̄

)

(C.3)

(C.4)

(C.5)

In this expression, g̃0
12 =

√
8πa0

12/`z is defined from the 3D-bare value a0
12 given in

Eq (1.12). Note that we assumed Ũ(k) � g̃0
12 to obtain the second line. Finally, we

introduced

g̃e = g̃22 −
(
g̃0

12

)2
+ 2g̃0

12g̃dd

(
3 cos2 Θ− 1

)

g̃11
g̃′e = 3

√
2π
g̃0

12g̃dd

g̃11
(C.6)

in the last line, with g̃e the Θ-dependent effective coupling strength considered in1 Sub-
sec 4.2.2.

Gaussian ansatz

We will now use the following anisotropic Gaussian ansatz to describe the ground state

φ(x, y) =

√
N

2πσxσy
exp

[
−1

4

(
x2

σ2
x

+
y2

σ2
y

)]
, (C.7)

with total atom number N and RMS sizes which we will express as σx = λσ, σy = σ/λ, λ
measuring the deviation from isotropy. The corresponding kinetic energy is given by

E0 =
N

8σ2

(
1

λ2
+ λ2

)
. (C.8)

The interaction energy associated to Eq C.5 is more easily be computed by going to Fourier
space

E1 =
1

2

∫
d2k

(2π)2
ñ(k)g̃e(k)ñ(−k)

=
N2

8πσ2

(
g̃e + g̃′e

`z
σ

[
f⊥(λ) cos2 Θ + f‖(λ) sin2 Θ

])
,

(C.9)

(C.10)

using the Fourier transform ñ(k) of the density profile n = |φ|2. In this expression, we
introduced the following functions of λ

f⊥(λ) =

∫
d2k k exp

[
−
(
λ2k2

x +
k2
y

λ2

)]
'
√
π

2

f‖(λ) =

∫
d2k

k2
x

k
exp

[
−
(
λ2k2

x +
k2
y

λ2

)]
'
√
π

4
− 3
√
π

8
(λ− 1) .

(C.11)

(C.12)

1Precisely, the expression of g̃e used in Subsec 4.2.2 differs from the quantity considered here by a
negligibly small correction ∝ g̃2dd/g̃11.
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Figure C.1: (a) RMS size as a function of N/NG for a tilt of magnetic field of Θ = 37◦,
deduced from minizing E(σ, λ). (b) Stationary atom number N/Ng with RMS size = 8.5
µm as a function of Θ for models (1) (blue) and (2) (red). (c) Anisotropy parameter λ
(λ = 1 corresponds to an isotropic Gaussian profile).

For both functions, we also gave the expansion at first order for small anisotropy |λ−1| �
1. For the finite-depletion correction, we have to compute

E2 =
1

8

∫
d2r

(∇n)2

n∞

=
N2

64πn∞σ4

(
1

λ2
+ λ2

)
.

(C.13)

(C.14)

Minimization and discussion

Gathering all the terms, we can now minimize the following energy functional for a given
angle Θ and an atom number N

E(σ, λ) = E0 + E1 + E2 =
N

8σ2

{(
1 +

N

8πn∞σ2

)(
1

λ2
+ λ2

)

+
N

π

(
g̃e + g̃′e

`z
σ

[√
π

2
cos2 Θ +

(√
π

4
− 3
√
π

8
(λ− 1)

)
sin2 Θ

])}
, (C.15)

with respect to the two free parameters (σ, λ). In the following, we will compare three
models

– Model (1), obtained by taking all the terms of Eq (C.15) into account.

– Model (2), without accounting for the finite-range + anisotropy corrections to E1.
In other words, by setting g̃′e = 0. This model is analogous to the effective equation
considered in Subsec 5.2.1.

– Model (3), without accounting for the finite depletion correction E2 and the finite-
range + anisotropy corrections to E1. It thus consists in using a Gaussian ansatz
for the 2D NLSE with a modified g̃e, yielding a modified stationary atom number
NG = 2π/|g̃e|.

Choosing Θ = 37◦ for illustration, we show in Fig C.1(a) the RMS size of the ground state
for the first two models2, as a function of the atom number N . How to relate this point-
of-view with the study of Subsec 4.2.2? In Subsec 4.2.2, our goal was to determine the

2With our definition of σ in Eq (C.7), the RMS size is given by
√

2σ.



134 APPENDIX C. ANISOTROPIC CONTRIBUTION OF MDDI

stationary state of the system, assuming it was approximately given by a Townes profile
and had an RMS size ' 8.6 µm, i.e. the typical size we explored in the experiment. To
do so, we looked for the atom number N which canceled the expansion coefficient γ.

Using the variational approach developed here, we can do the same assuming the
ground state is approximately given by a Gaussian distribution3. In Fig C.1(b), we show
the modification of N with respect to NG for the first two models, when imposing an
RMS size of 8.6 µm. In Fig C.1(c), we show the corresponding anisotropy parameter λ.
From this, we deduce that the deviation of N/NG for models (1) and (2) from the simplest
effective model (3) is . 10 % for all values of Θ < 50◦ as we explored in Subsec 5.2.1. Even
for Θ = 90◦, the expected anisotropy is λ ' 5 %, which would be challenging to detect
experimentally.

Outlook

Let us mention that the anisotropic contribution of MDDI might be detectable through
the adiabatic preparation of the ground state, as proposed at the end of Subsec 5.2.1.
Moreover, the isotropic and anisotropic contributions to the spin bubble state could be
studied separated by applying a magnetic field rotating around the axis orthogonal to
the atomic plane, as recently demonstrated by Tang et al. [273]. This would cancel the
anisotropic contribution of MDDI without affecting the correction to the inter-species
scattering length. On a broader perspective, it would be interesting to consider such a
problem in the case of highly-magnetic atoms, such as Dysprosium or Erbium [83]. In 3D,
the shape of a single-component trapped gas of highly-magnetic dipolar atoms has been
modified by tuning the orientation of a static magnetic field [274,275].

3We remind that the Gaussian profile is not a stationary of the equation of motion, in particular for the
simple 2D NLSE. However, as shown in Appendix B and in Fig 4.8, the atom number for which γ cancels
gives a good estimate of the Townes atom number.



Appendix D

Perturbative expansions for data
analysis

In this appendix, we develop perturbatively the nonlinear Schrödinger equation to obtain
fitting functions for the data presented in Chapter 4. We study the evolution of initial
Townes profiles (Subsec D.1) and Gaussian profiles (Subsec D.2).

D.1 Dynamics of Townes profiles

We use time-dependent perturbation theory to extract a suitable fitting function for the
deformation of the Townes density profile. We use the reduced notations of Subsec 3.1.1
and consider the evolution of a Townes-shaped wave function ψ with nonlinear parameter
N under the time-dependent NLSE

i
∂ψ

∂t
= −1

2
∇2ψ − |ψ|2ψ. (D.1)

From Subsec 3.2.1, we know that the stationary solution of Eq. (D.1) with chemical po-
tential µ = −1 is given by R0(r)eit, with a nonlinear parameter N = NT 1. We consider
a wave function ψ proportional to the Townes profile R0(r) at t = 0, but with an inter-
action parameter N that is slightly different from NT . We define the small parameter of
the expansion η such that N = (1 + η)NT . At short times, the deformation of the wave
function with respect to the Townes profile is expected to be small, and we can expand
the solution with respect to η

φ(r, t) = [R0(r) + ηε(r, t) + . . .] eit. (D.2)

We restrict here to the first-order correction in η, and consider the first terms of the Taylor
expansion of ε(r, t) with respect to τ

ε(r, t) = ε0(r) + ε1(r)t+ ε2(r)t2 + . . . (D.3)

The initial condition gives directly ε0(r) = R0(r), and by injecting the expansion given in
Eq. (D.3) in Eq. (D.1), we identify

ε1(r) = iR3
0(r)

ε2(r) =
1

2

(
1− 1

2
∇2 −R2

0

)
R3

0.
(D.4)

1The results we derive here can be extended to other values of µ by dilations, due to the scale invariance
of Eq (D.1).
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Interestingly, this last identity can be further simplified using the equation (A.10) verified
by the Townes soliton R0, and we obtain

ε2(r) =

(
R5

0 −R3
0 −

3

2
R0R

′
0

2
)
. (D.5)

When computing the density profile n(r, t) = |ψ(r, t)|2, only the real term ε2 contributes
at first order in η (the imaginary term ε1 contributes to the phase of the wave function).
We deduce the expected deformation of the density profile at first order and at short times

δn(r, t) = n(r, t)− n(r, 0)

' 2ηR0(r)ε2(r)t2 ≡ ηχ(r)t2, (D.6)

where we have defined χ(r) = 2R0(r)ε2(r). We checked that the 2D integral of χ is zero,
as the norm of ψ should be conserved by the evolution under Eq. (D.1).

D.2 Dynamics of Gaussian profiles

For a family of profiles which are not stationary for any N , one cannot duplicate the
previous method. This applies for instance to the dynamics of Gaussian profiles which we
study hereafter. To determine how an initial Gaussian profile

ψ(r, t = 0) = G(r) =

√
N

2πσ2
exp

(
− r2

4σ2

)
(D.7)

is deformed, we expand the evolved density profile at short times t

n(r, t) = |ψ(r, t)|2 ' n(r, 0) +

(
∂n

∂t

)

t=0

t+

(
∂2n

∂t2

)

t=0

t2

2
. (D.8)

Since the initial condition is real, one immediately shows that2

(
∂n

∂t

)

t=0

= 2Re

[
ψ(r, 0)

(
∂ψ

∂t

)

t=0

]
= 0 (D.9)

using Eq (A.1), with Re(·) corresponding to the real part. On the other hand, we obtain

1

2

(
∂2n

∂t2

)

t=0

=

∣∣∣∣
(
∂ψ

∂t

)

t=0

∣∣∣∣
2

+ Re

[
ψ(r, 0)

(
∂2ψ

∂t2

)

t=0

]

=
N

16πσ6

[(
r2

σ2
− 2

)
e−

r2

2σ2 − 4N
π

(
r2

σ2
− 1

)
e−

r2

σ2

]
(D.10)

(D.11)

such that the deformation n(r, t) − n(r, 0) evolves initially quadratically with time. The
first term with parenthesis is associated to the linear part of the 2D NLSE, while the
second term is generated by the nonlinear cubic term. Eventually, we use the following
function for fitting the deformation and determining the RMS size of the data used in
Subsec 4.2.2

χG(r) = A

[(
r2

σ2
− 2

)
e−

r2

2σ2 +B

(
r2

σ2
− 1

)
e−

r2

σ2

]
, (D.12)

with fitting parameters A, B and σ.

2This is obtained from the continuity equation written in Eq (2.22), since the velocity field is then zero.



Appendix E

Numerical recipes for the 2D
NLSE

E.1 Resolution in 2D

In this appendix, we summarize the ingredients we used for implementing 2D NLSE simu-
lations [276,277]. We present the algorithm for a single component, but the generalization
to a two-component system is immediate. We consider a time-dependent field ψ(x, y, t)
on a square domain Σ of side L, normalized to the total atom number such that

∫

Σ
d2r |ψ(x, y, t)|2 = N. (E.1)

For convenience, we use periodic boundary conditions

ψ(x+ L, y, t) = ψ(x, y + L, t) = ψ(x, y, t). (E.2)

The field can be expanded as a Fourier series

ψ(r, t) =
1

L

∑

q∈Z2

exp

(
i
2π

L
r · q

)
φq(t), (E.3)

which can be inverted to express the Fourier coefficients φq(t) as

φq(t) =
1

L

∫

Σ
d2r exp

(
−i

2π

L
r · q

)
ψ(r, t) q ∈ Z2. (E.4)

For completeness, note that the Fourier coefficients of ∇rψ are given by
[
i2π
L qφq(t)

]
q∈Z2

using this convention, and that the Parseval-Plancherel equality writes

∫

Σ
d2r |ψ(r)|2 =

∑

q∈Z2

|φq(t)|2. (E.5)

Discretization in space and time

For 2D simulations, we sample the fields ψ on a square lattice with N2
s sites. We will use

the index jx and jy (and the vector notation j = (jx, jy) for compactness) such that

xjx =
L

Ns
jx, yjy =

L

Ns
jy, 0 ≤ jx, jy ≤ Ns (E.6)
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considering that xL = x0, yL = y0 due to periodic bourdary conditions. We thus get a
physical lattice spacing d` ≡ L/Ns. For a system with typical density n and dimensionless
coupling strength g̃, the characteristic length scale associated to the field ψ is the healing
length ξ = 1/

√
2g̃n. Sampling the field ψ correctly in this region requires maintaining

d` ≤ ξ. We also discretize the time evolution of the field. Fixing a distance d` brings
characteristic time and energy scales given by

t0 ≡
m(d`)2

~
E0 ≡ ~

2π

t0
=

2π~2

m(d`)2
. (E.7)

We will thus express the time t in the dimensionless form τ = t/t0, with time-step dτ . We
also express ψ in a dimensionless form by forming

Ψj =
1√
n
ψ(xjx , yjy) n ≡ N

`2
, (E.8)

n being the averaged density. The normalization condition (E.1) now writes

∑

j∈[[0,Ns−1]]2

|Ψj |2 = N2
s . (E.9)

The discrete Fourier transform of Ψj is defined as

Φq =
1

L

∑

j∈[[0,Ns−1]]2

exp

(
−i

2π

Ns
j · q

)
Ψj '

Ns√
N
φq, (E.10)

with q ∈ [[−Ns/2 + 1, ..., Ns/2]]2 for Ns even, corresponding to the First Brillouin Zone
(FBZ)1. The inverse transformation writes

Ψj =
1

Ns

∑

q∈FBZ

exp

(
i
2π

Ns
j · q

)
Φq. (E.11)

Split-step method

We solve the NLSE (A.1) using the time split-step algorithm. First, let us have a look at
the linear Schrödinger equation

i~
∂ψ

∂t
= Ĥψ =

(
− ~2

2m
∇2 + V (r)

)
ψ ψ(t = 0) = ψ0 (E.12)

whose solutions can be written as

ψ(t) = Û0(t)ψ0 Û0(t) = exp

(
−i
Ĥt

~

)
. (E.13)

The evolution operator Û0 has a simple composition property

Û0(k dt) = Û0(dt)k k ∈ Z. (E.14)

1Why choosing the FBZ? Periodic boundary conditions on ψ impose an infra-red cut-off and a dis-
cretization of q-vectors, as expressed in the Fourier series (E.3). All q-vectors are defined modulo-Ns, and
at this stage all labeling of q modulo-Ns are equivalent. For example, one could choose q ∈ [[0, ..., Ns− 1]]2

instead of using the FBZ. However, the best interpolation to the fields derived from ψ – like its gradient or
its laplacian – are given by the FBZ labeling. Choosing the FBZ labelling is thus necessary for computing
the kinetic energy, for instance.
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The Hamiltonian Ĥ is made of two terms which do not commute, so that the exponential
cannot be expanded a priori. However, for a small enough time interval dt, one can neglect
the error in splitting the two terms and write

Û0(dt) = exp

[
− i

~

(
p̂2

2m
+ V̂

)
dt

]
' exp

(
− i

~
p̂2

2m
dt

)
exp

(
− iV̂

~
dt

)
, (E.15)

using Trotter’s product formula. For the NLSE, we extend this time split-step method
and apply an infinitesimal time-evolution operator defined by

Û(dt) = exp

(
− i

~
p̂2

2m
dt

)
exp

[
− i
~

(
V̂ +

~2

m
g̃|ψ|2

)
dt

]
, (E.16)

which depends explicitly on the field ψ through the last non-linear term.

Algorithm

We now turn to dimensionless fields and explicitly write the split-step algorithm. Starting
from a field Ψj(τ0), we first evolve in real-space for an infinitesimal time dτ , using only
the potential Vj (possibly depending on time) and the interaction term. We write the
corresponding part of the NLSE in a dimensionless form

i
∂Ψj

∂τ
=
(
Ṽj +G|Ψj |2

)
Ψj Ṽj ≡

m(d`)2

~2
Vj G ≡ N

N2
s

g̃. (E.17)

and first compute the auxiliary field

Ψ′j = exp
[
−i
(
Ṽj(τ0) +G|Ψj(τ0)|2

)
dτ
]

Ψj(τ0). (E.18)

Then, we write the evolution due to the kinetic term only in Fourier space

i
∂Φq

∂τ
=

1

2

(
2πq

Ns

)2

Φq, (E.19)

and compute the evolved field using the Fourier transform Φ′q of Ψ′j

Φq(τ1) = exp

[
− i

2

(
2πq

Ns

)2

dτ

]
Φ′q, (E.20)

before returning to real space to obtain Ψj(τ1). Arbitrary evolution times are performed
by iterating the procedure2.

In order to compute the ground state of a given NLSE energy functional, we use an
evolution with imaginary time given by the substitution t → −it. The algorithm is very
similar to the real-time evolution. If the initial state used for this evolution has a non-
zero overlap with the ground state, then the evolution should converge toward the ground
state. However, the evolution not being unitary, the atom number is not conserved by
these operations. Therefore, one needs to renormalize the field Ψj after each step, using
condition (E.9) in order to maintain a constant atom number.

2In order to control the error made by splitting the exponential evolution operation, one should keep
the argument of the exponential low enough. Such a condition on dτ depends on the potential landscape
for the potential energy, but we can express it for the interaction and kinetic energy term, respectively

G|Ψj |2dτ ∼ Gdτ � 1
1

2

(
2π

Ns

)2

q2dτ ≤ π2

2
dτ � 1, (E.21)

so that we need to satisfy simultaneously dτ � 1/G, and dτ � 2/π2.
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E.2 Using radial coordinates

We now turn to the resolution of the NLSE (A.1) using radial coordinates, assuming
rotational invariance around the origin r = 0. This allows us to map the 2D problem to
a 1D problem and should speed up the algorithm. If we use a split-step method, evolving
the field with the real space terms of the equation is still straightforward. However, the
kinetic term is not as simple to manipulate. Indeed, the evolution in Fourier space (E.19)
was easily implemented because the plane waves exp (i q · r) are eigenfunctions of the
Laplacian operator in 2D. Thus, the infinitesimal kinetic evolution operator (E.19) was
diagonal in the Fourier basis. This is not true when considering only the radial part of
the Laplacian.

Bessel functions and Hankel transform

The eigen-functions of the radial Laplacian operator are obtained using the functions
zeroth-order Bessel function of the first kind J0(qr), with J0 verifying

∆J0 = J ′′0 (r) +
1

r
J ′0(r) = −J0(r), (E.22)

corresponding to the eigenvalue −1 for the Laplacian. Owing to the spectral theorem,
the family {r 7→ J0(qr)}q∈R+ forms a basis of r-dependent functions that are sufficiently
regular. Our approach is based on the work of Baddour [278]. We start by introducing
the Hankel transform – or Bessel-Fourier transform – of a function f(r) defined on [0,+∞[
and sufficiently regular

F (ρ) =

∫ +∞

0
f(r)J0(ρr) r dr. (E.23)

This transformation can be inverted3

f(r) =

∫ +∞

0
F (ρ)J0(ρr) ρdρ, (E.25)

which allows us to go from one representation to the other. Our goals are two-fold.

1. Formulate the Hankel transformations for compact support functions.

2. Discretize these transformations.

Discrete Hankel transform

We start with point (1). We restrict the basis of J0 functions by limiting to functions f
that are defined on [0, R], with f(R) = 0. In particular, this means that the system is
defined on a disk of radius R with strict boundary conditions at r = R – using periodic
boundary conditions would not make sense for a radial grid. We have the exact series
expansion

f(r) =

+∞∑

k=1

f̂kJ0

(
jkr

R

)
, (E.26)

3This is readily verified by using the definition of J0(r) as an integral

J0(r) =
1

2π

∫ 2π

0

eir cos(θ) dθ. (E.24)
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where jk is the k-th zero of J0. The f̂k’s are the coefficients of the decomposition on
the discrete basis {r 7→ J0(jkr/R)}k∈N∗ . In terms of the Hankel transform F of f , these
coefficients write4

f̂k =
2

R2J2
1 (jk)

F

(
jk
R

)
, (E.28)

where J1 is the first-order Bessel function. If we denote ρk = jk/R the sampling points
of the Hankel transform F , and Fk = F (ρk) its values, then the series expansion (E.26)
writes

f(r) =
2

R2

+∞∑

k=1

Fk
J2

1 (jk)
J0

(
jkr

R

)
. (E.29)

The action of the Laplacian is determined using (E.22)

∆f =
2

R2

+∞∑

k=1

Fk
J2

1 (jk)

(
− j

2
k

R2

)
J0

(
jkr

R

)
. (E.30)

such that the coefficients Fk are multiplied by −j2
k/R

2.

Discrete grid on the radial axis

We now turn to point (2). We need to discretize f on a grid of size Ns ∈ N lying in [0, R].
We will choose the following sampling points5

rm =
jm
π
, m ∈ [[1, Ns]], (E.32)

and impose R = jNs+1/π as a boundary. The series expansion (E.29) at position rm writes

fm ≡ f(rm) =
2

R2

+∞∑

k=1

Fk
J2

1 (jk)
J0

(
jkrm
R

)
. (E.33)

To manipulate such expressions numerically, we restrict this sum to a finite number of
k values (the first Ns ones). This is legitimate if the function f varies slowly between
successive sampling points rm. We thus introduce the approximate expansion

fm =
π

R

Ns∑

k=1

YmkFk Ymk =
2

πR

1

J2
1 (jk)

J0

(
jkrm
R

)
, (E.34)

where we introduced the matrix Y of size Ns × Ns [278]. When Ns goes to infinity, Y
tends to its own inverse. By contrast with the discrete Fourier transform, this is not exact
for finite Ns. However, we will still use the approximate inverse transformation

Fk =
R

π

Ns∑

k=1

Ykmfm. (E.35)

4This is a consequence of the following relation∫ 1

0

J0(xjm)J0(xjn)x dx = δmn
J2
1 (jk)

2
(E.27)

5The asymptotic behavior of J0 being

J0(r) ∼
√

1

2πr
cos
(
r − π

4

)
, (E.31)

its zeros are approximately given by jm ' mπ − π/4. On thus obtains rm ' m− 1/4.



142 APPENDIX E. NUMERICAL RECIPES FOR THE 2D NLSE

Application to the split-step algorithm

Using these transformations, we determine the action of the kinetic energy evolution term
on the field Ψ(r). We denote its discretized version Ψm = Ψ(rm), and its Fourier-Bessel
coefficients Φk. First, let us notice that

ei(dτ/2)∆J0

(
jkr

R

)
= e−ij

2
k dτ/(2R2)J0

(
jkr

R

)
, (E.36)

so that we can compute

ei(dτ/2)∆Ψ(r) ' 2

R2

L∑

k=1

Φk

J2
1 (jk)

[
ei(dτ/2)∆J0

(
jkr

R

)]

=
2

R2

Ns∑

k=1

Φk

J2
1 (jk)

J0

(
jkr

R

)
e−ij

2
k dτ/(2R2)

' 2

πR

Ns∑

m=1

L∑

k=1

Ykm
Ψm

J2
1 (jk)

J0

(
jkr

R

)
e−ij

2
k dτ/(2R2).

(E.37a)

(E.37b)

(E.37c)

Using the following relation

2

πR

1

J2
1 (jk)

J0

(
jkrm′

R

)
= Ym′k , (E.38)

we evaluate the left-hand side of equation (E.37a) at rm′ and find

[
ei(dτ/2)∆Ψ

]
m′

=

Ns∑

m=1

Ns∑

k=1

Ym′kYkme
−ij2k dτ/(2R2)Ψm. (E.39)

We will thus perform evolution under the kinetic term without going to Bessel-Fourier
space. Instead, we will use a matrix multiplication in real-space

Ψm′(tn+1) =

Ns∑

m=1

Km′mΨ′m, (E.40)

using the auxiliary field Ψ′ obtained at time tn from Ψ(tn), where the matrix K has been
defined as

Km′m =

Ns∑

k=1

Ym′kYkm exp

(
−ij

2
k dτ

2R2

)
. (E.41)

Note that the matrices Y and K are computed once for all at the beginning of the algo-
rithm. Since this operation involves matrices of size Ns×Ns, the corresponding calculation
time is still quadratic with the size Ns of the system, like for the 2D case. Although the
scaling with Ns is a priori unchanged, the time need to compute the evolution for a same
size is decreased by a factor & 5 with respect to the 2D case.



Appendix F

Induced interactions

We study the interactions between two impurity atoms induced by a uniform BEC [232].
We consider a 2D geometry at zero temperature, but most results can be generalized
to a 3D situation. For simplicity, the impurities do not interact with each other. Still,
they interact with the atoms forming the BEC. These interactions are characterized by a
coupling strength g̃12, whereas interactions among the BEC atoms are characterized by
g̃11 > 0. For a BEC described by the bosonic field operators Ψ̂(r), Ψ̂†(r), the inter-species
interaction part of the Hamiltonian writes

Ĥ12 =
~2

m
g̃12

[
Ψ̂†(R̂a)Ψ̂(R̂a) + Ψ̂†(R̂b)Ψ̂(R̂b)

]
. (F.1)

Here, the R̂a,b denote the position operators of each impurity. Although the contact
potential in Eq (F.1) is generically ill-defined, we will see in the following that it leads to
well-defined perturbative calculations. We first determine the perturbation caused by a
single impurity immersed in a BEC (Sec F.1), and then compute the effective potential
energy of two impurities (Sec F.2).

F.1 A single impurity

First, let us determine the perturbation on the BEC density distribution caused by the
presence of a single impurity. For simplicity, the impurity is assumed to have an infinite
mass. As a consequence, it is not subject to any dynamics and remains fixed at a position
Ra = 0. This impurity thus solely modifies the structure of the underlying BEC through
the potential

V̂a =
~2

m
g̃12 n̂(0). (F.2)

Bogoliubov’s approximation

To compute the effect of this perturbation on the BEC, we use Bogoliubov’s approximation
[89]. We decompose the field operator Ψ̂(r) as

Ψ̂(r) ' √n0 + δΨ̂(r) =
√
n0 +

∑

k 6=0

âk
eik·r
√
L2
, (F.3)

where n0 is the condensate density, and âk is the operator annihilating a particle in the
single-particle state with wave function eik·r/

√
L2 (L2 is the area of the system). Let us
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first forget about the interaction with the impurity. Neglecting terms involving more than
two âk, â

†
k (with k 6= 0), we diagonalize the Hamiltonian for component |1〉 by introducing

the new bosonic operators b̂k, b̂
†
k such that

âk = uk b̂k + vk b̂
†
−k uk, vk = ±

(
k2 + 2g̃11n0

2k
√
k2 + 4g̃11n0

± 1

2

)1/2

. (F.4)

These correspond to quasi-particle excitations carrying an energy quantum ~ωk given by

~ωk =
~2k

2m

√
k2 + 4g̃11n0. (F.5)

The ground state |Φ0〉 of the system (with energy E0) is then found as the vacuum of

quasi-particles, i.e. b̂k|Φ0〉. We also denote |Φk〉 = b̂†k|Φ0〉, the excited state containing a
single quasi-particle (with k 6= 0), with energy Ek = E0 + ~ωk.

Perturbation of the bath

We compute the modified ground state |Φ′0〉 at first order in perturbation theory. To do
so, we only take into account the excited states with at most one elementary excitation.
The perturbed ground state then writes

|Φ′0〉 = |Φ0〉+ |δΦ0〉 = |Φ0〉+
∑

k 6=0

〈Φk|V̂a|Φ0〉
E0 − Ek

|Φk〉, (F.6)

with the following matrix elements

〈Φk|V̂a|Φ0〉 =
~2

m
g̃12

√
n0

L2
(uk + vk) . (F.7)

We now compute the modified density distribution

〈n̂(r)〉 = 〈Φ′0|n̂(r)|Φ′0〉 = ‖√n0|Φ0〉+ δΨ†|Φ0〉+
√
n0|δΦ0〉‖2 (F.8)

By developing the second and third terms of this expression via Eqs (F.4, F.3, F.6) and
using Pythagore’s theorem, one obtains

〈n̂(r)〉 = n0 +
∑

k 6=0

∣∣∣〈Φk|δΨ†|Φ0〉+
√
n0〈Φk|δΦ0〉

∣∣∣
2

= n0 +
∑

k 6=0

∣∣∣∣
eik·r
√
L2
vk −

~2

m
g̃12

n0√
L2

uk + vk
~ωk

∣∣∣∣
2

.

(F.9)

(F.10)

In this last expression, developing the modulus square yields three sums. One of them
is independent of the perturbation and simply adds a contribution n′ to the condensate
density n0. This is the celebrated quantum depletion. Another is quadratic with respect
to the parameter g̃12 and must be neglected at first order. The interesting term is thus
the crossed term. It is also the only one which depends on the position r. By taking
the continuum limit and substituting the sum on the wave vectors

∑
k 6=0 by the integral

∫
d2k

(
L
2π

)2
, we can rewrite this defect in the density profile as

δn(r) = −~2

m
g̃12

n0

L2

∫
d2k

(
L

2π

)2 vk (uk + vk)

~ωk
2 cos (k · r)

= − 2

π
g̃12n0

∫ +∞

0
k dk

J0(kr)

(1 + uk/vk) (k2 + 4g̃11n0)
,

(F.11)

(F.12)
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Figure F.1: (a) Density perturbation created by a single impurity, in units of g̃12 � 1. (b)
Scattering amplitude Vk associated to the Fröhlich Hamiltonian of Eq (F.14), as a function

of the momentum k, with V∞ = ~2
m g̃12

√
n0/L2.

where J0 is the zeroth-order Bessel function of the first kind. The second line was obtained
using Eq (F.5) and the algebraic relation

(uk + vk)
2 =

k√
k2 + 4g̃11n0

. (F.13)

The integral in Eq (F.12) is dimensionless. The factor (1 + uk/vk)
−1 yields a 1/k diver-

gence, which is compensated by the Jacobian of the integral in polar coordinates. This
factor goes to zero like 1/k2 at infinity, and this integral is thus well defined. We can com-
pute this quantity numerically. As shown in Fig F.1(a), δn(r)/n0 varies smoothly from
∼ −g̃12 (which we assume to be small in absolute value) to zero, over a typical distance
given by the healing length ξ = 1/

√
2g̃11n0. As a first conclusion, we find that a single

impurity creates a small hole of relative depth g̃12 and size ξ in the BEC. Moreover, the
energy shift of the system is simply given by (~2/m)g̃12n0, i.e. the mean-field shift.

The effective mass

In this paragraph, we consider a single impurity (a) with a finite mass – equal to the
mass m of the BEC atoms – and work out the renormalization of this mass through the
interactions with the Bogoliubov modes of the BEC. The derivation follows closely Grusdt
& Demler [239], adapted to the 2D case. We approximate the impurity-BEC interaction
term by

~2

m
g̃12Ψ̂†(R̂a)Ψ̂(R̂a) =

~2

m
g̃12n0 +

∑

k 6=0

Vk

(
b̂k + b̂†−k

)
e−ik·R̂a , (F.14)

where we kept only the terms of lowest order in the Bogoliubov operators b̂k, b̂
†
k. We also

introduced the scattering amplitude

Vk =
~2

m
g̃12

√
n0

L2
(uk + vk) =

~2

m
g̃12

√
n0

L2

(
k2

k2 + 4g̃11n0

)1/4

(F.15)

where the last expression is obtained using Eq (F.13). Physically, this consists in neglecting
elementary processes involving the impurity and more than one Bogoliubov quasi-particles,
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thus limiting to elementary processes involving the BEC state (k = 0) at least once.
Contrary to a contact potential, the amplitude Vk associated to these processes is not
constant but is reduced for low k’s, as shown in Fig F.1(b). The first term of Eq (F.14) is
simply the mean-field shift which we eliminate in the following. Grouping all the terms,
we obtain the celebrated Fröhlich Hamiltonian [238].

To proceed, we characterize the importance of the impurity-boson interactions by
defining a dimensionless quantity. To do so, we form an energy characteristic of the
phonon-impurity interactions Ei = (~2/m)g̃12

√
n0/ξ2. By comparing it to the chemical

potential of the condensate µ = (~2/m)g̃11n0, we can define the following coupling constant

α ≡ 1

2

(
Ei

µ

)2

=
g̃2

12

g̃11
(F.16)

where the factor 1/2 is chosen to follow the usual convention. The so-called weak-coupling
regime corresponds to α� 1. Following Grusdt & Demler [239], we determine the renor-
malized mass of the polaron, defined as the coefficient m∗ which should enter its dispersion
relation p2/2m∗. The result, valid only in the weak-couling regime, writes

m∗ ' m

1− αI > m, (F.17)

where the integral I is written below and determined numerically

I = π

∫ +∞

0
du

u4

√
u2 + 1

(
u
√
u2 + 1 + u2

)3 ' 0.125 (F.18)

In the weak coupling regime, the polaron mass is thus always up-shifted with respect to
the bare mare. Using our experimental parameters, we find a relative variation of mass
given by m∗/m − 1 ' 2%. This quantity is small with respect to one, as expected from
the weak-coupling approximation.

F.2 The effective potential

We now consider two impurities of infinite mass, separated by R = Rb − Ra, and the
corresponding interaction potential V̂ = V̂a + V̂b. We wish to determine the variation of
energy of the full system as a function of the separation R. Since the impurities do not
interact directly, we simply recover (twice) the mean-field energy shift at first order in
perturbation theory. We thus apply second order perturbation theory which introduces
indirect couplings in the energy correction δE. Limiting again to at most one elementary
excitation for the excited states, we obtain

δE =
∑

k 6=0

〈Φ0|V̂ |Φk〉〈Φk|V̂ |Φ0〉
E0 − Ek

. (F.19)

Similarly to Eq (F.7), we give the expression of the matrix elements

〈Φk|V̂ |Φ0〉 =
~2

m
g̃12

√
n0

L2
(uk + vk)

(
e−ik·Ra + e−ik·Rb

)
. (F.20)
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Plugging this in Eq (F.19), we keep only the terms which depend on the separation R to
extract the interaction potential Vind. Taking the continuum limit, this leads to

Vind (R) = − ~4

m2
g̃2

12

n0

L2

∫
d2k

(
L

2π

)2 (uk + vk)
2

~ωk
2eik·R. (F.21)

Using the relation (F.13), we further simplify this expression into

Vind (R) = −~2

m

1

π2
g̃2

12n0

∫
d2k

eik·R

k2 + 4g̃11n0

= −~2

m

2

π
g̃2

12n0

∫
k dk

J0(kR)

k2 + 4g̃11n0
.

(F.22)

(F.23)

In the last integral, one can recognize the Hankel transform of the zeroth-order modified
Bessel function of the first kind K0, such that we can write

Vind(R) = −~2

m

2

π
g̃2

12n0K0

(
1√
2

R

ξ

)
. (F.24)

We remind the asymptotic behavior K0(R) ∼ e−R/
√
R. In 3D, an analogous calculation

yields a Yukawa potential ∝ e−R/ξ/(R/ξ) involving the 3D healing length ξ. In any case,
the potential is attractive. It is also short-ranged with a range provided by the healing
length ξ. For an average distance between atoms R � ξ and in a mean-field treatment,
one can approximate this potential by a contact potential whose coupling strength is given
by

g̃′ =
m

~2

∫
d2RVind (R)

= − 1

π2
g̃2

12n0

∫
d2k

1

k2 + 4g̃11n0

∫
d2R eik·R

︸ ︷︷ ︸
(2π)2δ(k)

,

(F.25)

(F.26)

so that we obtain eventually

g̃′ = − g̃
2
12

g̃11
. (F.27)

Importantly, this effective coupling strength is always negative, even though g̃12 might be
positive or negative. Furthermore, this quantity does not depend on the BEC density n0.

Weakly nonlocal contribution of the effective potential

In a mean-field treatment of the impurity component φ2, it might be necessary to account
for the nonlocal character of the potential Vind. Using the reduced notations introduced
in Subsec 3.1.1 with

∫
d2r |ψ2|2 = N2, we rewrite the NLSE as

µφ2(r) =

[
−1

2
∇2 +

∫
d2r|φ2(r′)|2Vind(r − r′)

]
φ2(r). (F.28)

Following Rosanov et al. [214], we now account for the weakly nonlocal character of the
effective potential Vind. To do so, we decompose φ2(r′) in a Taylor series and eventually
obtain

µφ2(r) =

[
−1

2
∇2 + g̃′n2 + κ

∇2n2

4

]
φ2(r), (F.29)
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with a prefactor κ which can be written as

κ =
m

~2

∫
d2RR2 Vind(R)

= −
(
g̃12

g̃11

)2 1

n0
.

(F.30)

(F.31)

In this last equality, we used the fact that

∫
d2RR2eik·R = − (2π)2 [δ(kx)δ′′(ky) + δ(ky)δ

′′(kx)
]
. (F.32)



Appendix G

Elementary excitations of spin
bubbles

In this appendix, we provide the equations used to determine the elementary excitations
for the various NLSEs encountered in Chapter 5. We will use the reduced notations of
Subsec 3.1.1. The procedure can be summarized as follows. For a single-component NLSE,
we are given an equilibrium solution R(r) with chemical potential µ, and consider a small
perturbation around R(r). Similarly to Sec A.2, we write this perturbation as

ψ(r, t) = [R(r) + ε(r, t)] e−iµt, (G.1)

with ε(r, t) a small perturbation with respect to R(r). We decompose ε(r, t) into real
and imaginary parts ε(r, t) = u(r, t) + iv(r, t). We then linearize the evolution equation
assuming small u and v, and obtain a set of linear partial differential equations. Our
goal in this appendix is to write explicitly these equations. Similarly to what we did
in Sec A.2, the remaining task consists in determining (numerically) the spectrum of the
corresponding linear operator.

Nonlinear Schrödinger equation with nonlocal correction

We first consider the NLSE studied by Rosanov et al. [214]

i
∂ψ

∂t
= −1

2
∇2ψ − |ψ|2ψ − ∇

2|ψ|2
4

ψ, (G.2)

with
∫

d2r |ψ|2 = g̃N , g̃ < 0 being the dimensionless coupling strength in 2D and N the
total atom number. Contrary to Eq (5.16), here we expressed all the lengths in terms of
the typical length-scale `0 = 1/

√
|g̃e|n∞. After linearizing the evolution equation (G.2),

we obtain the system introduced by [214]

∂

∂t


u
v


 =


 0 L̂nl

0

−L̂nl
1 0




u
v


 (G.3)
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which is analogous to Eq (A.13), except that the differential operators (L̂nl
0 , L̂

nl
1 ) now write1

L̂nl
0 = −µ− 1

2
∇2 −R2 − 1

2
R∇2R− 1

2
(∇R)2

L̂nl
1 = −µ− 1

2

(
1 +R2

)
∇2 − (R∇R) · ∇ − 3R2 −R∇2R− 1

2
(∇R)2 .

(G.5)

(G.6)

Note that in this last expression, the scalar product (R∇R) · ∇ acts only on the radial
variable.

Single-component effective equation

We then consider the elementary excitations of the effective equation

i
∂ψ

∂t
= −1

2
∇2ψ − |ψ|2ψ +

1

2

∇2
√

1− |ψ|2√
1− |ψ|2

ψ, (G.7)

considered in Chapter 5, cf Eq (5.13). For the linearization procedure, we find it easier to
rewrite the last term of Eq (G.7) as

+
1

2

∇2
√

1− |ψ|2√
1− |ψ|2

ψ =

[
−1

8

(
∇|ψ|2

)2

(1− |ψ|2)2 −
1

4

∇2|ψ|2
1− |ψ|2

]
ψ, (G.8)

although this expression seems less easy to interpret physically. The only difference with
the previous case is the expression of the operators (L̂eff

0 , L̂eff
1 ), now given by2

L̂eff
0 = −µ− 1

2
∇2 −R2 − 1

2

(∇R)2

(1−R2)2 −−
1

2

R∇2R

1−R2

L̂eff
1 = −µ− 1

2

1

1−R2
∇2 − 3R2 − (R∇R) · ∇

(1−R2)2 −
1

2

(
3R2 + 1

)
(∇R)2

(1−R2)3 − R∇2R

(1−R2)2

(G.10)

(G.11)

Coupled nonlinear Schrödinger equations

Finally, we consider the coupled NLSEs with equal masses

i
∂ψ1

∂t
= −1

2
∇2ψ1 +

(
g̃11|ψ1|2 + g̃12|ψ2|2

)
ψ1

i
∂ψ2

∂t
= −1

2
∇2ψ2 +

(
g̃22|ψ2|2 + g̃12|ψ1|2

)
ψ1,

(G.12)

(G.13)

with
∫

d2r |ψi|2 = Ni, Ni being the atom number in component |i〉, and with intra-species
and inter-species dimensionless coupling strengths g̃11, g̃22, g̃12. In this case, we look for

1To derive this result, use the relation

|ψ|2 = (R+ u)2 + v2 ' R2 + 2Ru (G.4)

valid at first order, and the identity: ∇2 (fg) =
(
∇2f

)
g +

(
∇2g

)
f + 2 (∇f) (∇g) .

2The perturbation must not only be small with respect to R, but it should also not modify too much
the factors like 1/(1− |ψ|2). To obtain these expressions, one thus uses the following expansion

1

1− |ψ|2 '
1

1−R2

(
1 + 2

R

1−R2
u

)
. (G.9)
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perturbations around the equilibrium configuration (R1, R2), with chemical potentials
(µ1, µ2)

ψ(r, t) = [R1(r) + u1(r, t) + iv1(r, t)] e−iµ1t

ψ(r, t) = [R2(r) + u2(r, t) + iv2(r, t)] e−iµ2t,

(G.14)

(G.15)

with u1, v1, u2, v2 ∈ R. The linear system can now be written as

∂

∂t




u1

v1

u2

v2




=




0 L̂
(1)
0 0 0

−L̂(1)
1 0 −L̂12 0

0 0 0 L̂
(2)
0

−L̂12 0 −L̂(2)
1 0







u1

v1

u2

v2



, (G.16)

with the following differential operators

L̂
(1)
0 = −µ1 −

1

2
∇2 + g̃11R

2
1 + g̃12R

2
2

L̂
(1)
1 = −µ1 −

1

2
∇2 + 3g̃11R

2
1 + g̃12R

2
2,

(G.17)

(G.18)

(L̂
(2)
0 , L̂

(2)
1 ) being deduced from (L̂

(1)
0 , L̂

(1)
1 ) by exchanging the indices 1 and 2 in these last

equations. We also introduced an operator L̂12 coupling the two components

L̂12 = 2g̃12R1R2. (G.19)
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Dynamical Symmetry and Breathers in a Two-Dimensional Bose Gas
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A fluid is said to be scale invariant when its interaction and kinetic energies have the same scaling in a
dilation operation. In association with the more general conformal invariance, scale invariance provides a
dynamical symmetry which has profound consequences both on the equilibrium properties of the fluid and
its time evolution. Here we investigate experimentally the far-from-equilibrium dynamics of a cold two-
dimensional rubidium Bose gas. We operate in the regime where the gas is accurately described by a
classical field obeying the Gross-Pitaevskii equation, and thus possesses a dynamical symmetry described
by the Lorentz group SO(2,1). With the further simplification provided by superfluid hydrodynamics, we
show how to relate the evolutions observed for different initial sizes, atom numbers, trap frequencies, and
interaction parameters by a scaling transform. Finally, we show that some specific initial shapes—
uniformly filled triangles or disks—may lead to a periodic evolution corresponding to a novel type of
breather for the two-dimensional Gross-Pitaevskii equation.
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I. INTRODUCTION

Symmetries play a central role in the investigation of a
physical system. Most often, they are at the origin of
conserved quantities, which considerably simplify the
study of the equilibrium states and the evolution of the
system. For example, spatial symmetries associated with
translation and rotation lead to the conservation of linear
and angular momentum. More generally, it is interesting to
determine the dynamical (or hidden) symmetries of the
system under study, which can lead to more subtle con-
served quantities. These symmetries are described by the
group of all transformations of space and time that leave the
action, therefore, the equations of motion, invariant.
A celebrated example is the 1=r potential in three dimen-
sions, where there exists a dynamical symmetry described
by the group Oð4Þ for the bounded orbits [1]. When treated
by classical mechanics, it leads to the conservation of the
Laplace-Runge-Lenz vector from which one deduces that
the bounded orbits are actually closed trajectories.
Among the systems that display rich dynamical

symmetries are the ones whose action is left invariant
by a dilation transformation of space and time. Such

scale-invariant systems were initially introduced in particle
physics to explain scaling laws in high-energy collisions
[2]. We consider here the nonrelativistic version of scale
invariance, which applies to the dynamics of a fluid of
particles. We consider the simultaneous change of length
and time coordinates of each particle according to the
scaling

r → r=λ; t → t=λ2: ð1Þ

In this dilation, the velocity of a particle is changed as
v → λv. Therefore, the kinetic energy of the fluid scales as
Ekin → λ2Ekin, which ensures that the corresponding part of
the action (∝

R
Ekindt) remains invariant in the transforma-

tion (1). If the interaction energy has the same scaling
Eint → λ2Eint, the total action of the fluid is invariant in the
dilation. The simplest example of such a fluid is a
collection of nonrelativistic particles, either noninteracting
(Eint ¼ 0) or with pairwise interactions described by a 1=r2

potential. A scale-invariant fluid possesses remarkably
simple thermodynamic properties: For example, its equa-
tion of state depends only on the ratio of chemical potential
to temperature instead of being an independent function of
these two variables.
Most physical systems exhibiting scale invariance also

possess a more general conformal invariance, where time and
space are modified by conformal transformations instead of
the simple dilations given in Eq. (1) [3]. In the nonrelativistic
domain, this conformal invariance exists for the Schrödinger
equation describing themotion of the two systemsmentioned
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above, free particles [4,5] and particles interactingwith a 1=r2

potential [6]. In both cases, the dynamical symmetry group
associated with this scale and conformal invariance is the
Lorentz group SO(2,1). This is also the case for the three-
dimensional pseudo-spin-1=2 Fermi gas in the unitary regime
(for a review, see, e.g., Ref. [7]). There, the scattering length
between the two components diverges, ensuring the required
disappearance of a length scale related to interactions. In
addition to the existence of a universal equation of state, this
dynamical symmetry leads to a vanishing bulk viscosity
[8,9] and also to general relations between the moments
of the total energy and those of the trapping energy in a
harmonic potential [10].
In this article, we consider another example of a scale-

and conformal-invariant fluid with the SO(2,1) dynamical
symmetry, the “weakly interacting” two-dimensional (2D)
Bose gas. The concept of “weak interaction” means in this
context that the state of the gas is well described by a
classical field ψðr; tÞ. This field is normalized to unity
(
R jψ j2d2r ¼ 1) so that the density of the gas reads
nðr; tÞ ¼ Njψðr; tÞj2 where N is the number of particles.
In the scaling of positions, the 2D matter-wave field
changes as ψðrÞ → λψðλrÞ, which guarantees that the norm
is preserved and that the dynamical part of the action
∝ iℏ

R
dt

R
d2rψ�∂tψ is invariant. The interaction energy

of the gas then reads for contact interaction

Eint ¼
N2ℏ2

2m
g̃
Z

jψðrÞj4d2r; ð2Þ

where m is the mass of a particle, and g̃ the dimensionless
parameter characterizing the strength of the interaction.
One can immediately check that Eint obeys the λ2 scaling
required for scale invariance, which can be viewed as a
consequence of the dimensionless character of g̃. The
classical field description used here is valid if one restricts
to the case of a small coupling strength g̃ ≪ 1 [11]. This
restriction is necessary because of the singularity of the
contact interaction ðℏ2=mÞg̃δðrÞ in 2D when it is treated at
the level of quantum field theory. Note that the condition
g̃ ≪ 1 does not constrain the relative values of the inter-
action and kinetic energies. Actually, in the following we
often consider situations where Eint ≫ Ekin (Thomas-Fermi
regime).
So far, the scale and conformal invariance of the weakly

interacting 2D Bose gas has been mainly exploited to
measure its equation of state [12,13]. Also, one of its
dynamical consequences in an isotropic 2D harmonic
potential of frequency ω has been explored: The frequency
of the breathing mode was predicted to be exactly equal to
2ω for any g̃ [14–16], as tested in Refs. [17,18]. Note that in
the presence of a harmonic potential, the whole system is
not scale invariant anymore, but it still possesses a
dynamical symmetry described by the group SO(2,1), as

shown in Ref. [15]. Recently, deviations from this pre-
diction for g̃≳ 1, an example of a quantum anomaly [19],
have been observed [20,21].
The purpose of our work is to go beyond static properties

of the weakly interacting 2D Bose gas and its single-mode
oscillation in a harmonic potential and to reveal more
general features associated with its dynamical symmetry.
To do so, we study the evolution of the gas in a 2D
harmonic potential of frequency ω, starting from a uni-
formly filled simple area (disk, triangle, or square). Here,
we use g̃ ≤ 0.16 so that the classical field description is
legitimate. We first check (Sec. II) the prediction from
Ref. [15] that Ekin þ Eint should have a periodic evolution
in the trap with the frequency 2ω. We then investigate the
transformations linking different solutions of the equations
of motion. These transformations are at the heart of the
dynamical symmetry group SO(2,1). In practice, we first
link the evolution of clouds with the same atom number and
homothetic initial wave functions in harmonic potentials
with different frequencies (Sec. III). Then, restricting to the
case where superfluid hydrodynamics is valid, we derive
and test a larger family of transformations that allows one to
connect the evolutions of two initial clouds of similar
shapes with different sizes, atoms numbers, trap frequen-
cies, and interaction strengths (Sec. IV). Finally, in Sec. V
we explore a property that goes beyond the symmetry
group of the system and that is specific to triangular and
disk-shaped distributions in the hydrodynamic limit: We
find numerically that these distributions evolve in a
periodic manner in the harmonic trap, and we confirm this
prediction over the accessible range for our experi-
ment (typically, two full periods of the trap 4π=ω).
These particular shapes can therefore be viewed as two-
dimensional breathers for the Gross-Pitaevskii (nonlinear
Schrödinger) equation in the hydrodynamic limit [22].
They also constitute a novel example of universal dynamics
in a quantum system prepared far from equilibrium
[23–25].

II. EVOLUTION OF POTENTIAL ENERGY

Our experiment starts with a 3D Bose-Einstein conden-
sate of 87Rb that we load around a single node of a vertical
(z) standing wave created with a laser of wavelength
532 nm. The confining potential along z is approximately
harmonic with a frequency ωz=ð2πÞ up to 4.9 kHz. The
interaction parameter is g̃ ¼ ffiffiffiffiffiffi

8π
p

as=lz, where as is the 3D
s-wave scattering length and lz ¼ ðℏ=mωzÞ1=2. The inter-
action energy per particle and the residual temperature are
both smaller than ℏωz so that the vertical degree of freedom
is effectively frozen [26]. The initial confinement in the
horizontal xy plane is ensured by “hard walls” made with a
light beam also at 532 nm. This beam is shaped using a
digital micromirror device (DMD), and a high-resolution
optical system images the DMD pattern onto the atomic
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plane [27], creating a box potential on the atoms. The cloud
fills uniformly this box potential, and it is evaporatively
cooled by adjusting the height of thewalls of the box. For all
data presented here, we keep the temperature low enough to
operate deep in the superfluid regime with T=Tc < 0.3,
where Tc is the critical temperature for the Berezinskii-
Kosterlitz-Thouless transition. At this stage, the atoms are
prepared in the F ¼ 1, mF ¼ 0 hyperfine (ground) state,
which is insensitive to magnetic field.
Once the gas reaches equilibrium in the 2D box, we

suddenly switch off the confinement in the xy plane and
simultaneously transfer the atoms to the field-sensitive state
F ¼ 1, mF ¼ −1 using two consecutive microwave tran-
sitions. Most of the experiments are performed in the
presence of a magnetic field that provides the internal state
F ¼ 1, mF ¼ −1 with an isotropic harmonic confinement
in the xy plane, with ω=2π around 19.5 Hz. We estimate the
anisotropy of the potential to be ≲2%. We let the cloud
evolve in the harmonic potential for an adjustable time
before making an in situmeasurement of the spatial density
nðrÞ ¼ NjψðrÞj2 by absorption imaging.
The measurement of nðrÞ gives access to both the

interaction energy (2) and the potential energy in the
harmonic trap

Epot ¼
N
2
mω2

Z
r2jψðrÞj2d2r: ð3Þ

Since the gas is an isolated system, we expect the total
energy Etot ¼ Ekin þ Eint þ Epot to be conserved during the
evolution, where the kinetic energy Ekin reads

Ekin ¼
Nℏ2

2m

Z
j∇ψ j2d2r: ð4Þ

The SO(2,1) symmetry for a 2D harmonically trapped
gas brings a remarkable result: Ekin þ Eint and Epot should
oscillate sinusoidally at frequency 2ω [15]. More precisely,
using the 2D Gross-Pitaevskii equation, one obtains the
relations

dEpot

dt
¼ −

dðEkin þ EintÞ
dt

¼ ωW; ð5Þ

dW
dt

¼ 2ωðEkin þ Eint − EpotÞ; ð6Þ

where we define W ¼ ωm
R
r · vnd2r and the velocity field

vðrÞ ¼ ðℏ=mÞIm½ψ�ðrÞ∇ψðrÞ�=jψðrÞj2. Initially, the gas is
prepared in a steady state in the box potential so that v ¼ 0;
hence, Wð0Þ is also null. Therefore, the potential energy
evolves as

EpotðtÞ ¼
1

2
Etot þ ΔE cosð2ωtÞ; ð7Þ

where ΔE ¼ 1
2
½Epotð0Þ − Ekinð0Þ − Eintð0Þ� can be positive

or negative. A similar result holds for the sum Ekin þ Eint
(with ΔE replaced by −ΔE) but not for the individual
energies Ekin or Eint.
We show in Fig. 1(a) the evolution of the potential

energy per particle for an initially uniformly filled
square. Although the density distribution is not periodic
[see Fig. 1(b)], the potential energy Epot evolves periodi-
cally and is well fitted by a cosine function with a period
that matches the 2ω prediction and the expected zero initial
phase. For a better adjustment of the data, we add a (small)
negative linear function to the fitting cosine. Its role is
likely to account for the residual evaporation rate of atoms
from the trap (approximately 0.1 s−1).
This simple dynamics can be viewed as a generalization

of the existence of the undamped breathing mode at
frequency 2ω that we mention in the Introduction
[14,15]. We emphasize that this result is a consequence
of the SO(2,1) symmetry and does not hold for the Gross-
Pitaevskii equation in 1D or 3D.
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FIG. 1. Time evolution of the potential energy per particle of a 2D
gas of 87Rb atoms in an isotropic harmonic potential of frequencyω
for a square of side length 27.6ð5Þ μm with 4.1ð2Þ × 104 atoms.
(a) Evolution of the potential energy per particle. Each point is an
average of seven to ten realizations, and the error bars indicate the
standard deviation of these different realizations. The frequency of
the trap is measured with the oscillation of the center of mass:
ω=2π ¼ 19.3ð1Þ Hz.The oscillations ofEpot are fittedwith a cosine
function and an additional linear slope (continuous line). This slope
is −0.25ð4Þ Hz=ms and accounts for the loss of particles from the
trap. The fitted frequency is 38.5(1) Hz, which is compatible with
ω=π, as predicted by the SO(2,1) symmetry of the gas. (b) Density
distribution of an initially uniform gas after the evolution in a
harmonic potential at timesωt ¼ 0, π, 2π, 3π, 4π, corresponding to
the first periods of the potential energy indicated by the labels from1
to 5. The horizontal black lines represent 10 μm.
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III. GENERAL SCALING LAWS

An important consequence of the dynamical symmetry
of the 2D Gross-Pitaevskii equation is the ability to link two
solutions ψ1;2 of this equation corresponding to homothetic
initial conditions: One can relate ψ1ðr; tÞ and ψ2ðr0; t0Þ,
provided they evolve with the same parameter g̃N and the
same trap frequency ω1 ¼ ω2. By using a simple scaling on
space and time, this link can be further extended to the
case ω1 ≠ ω2.
The general procedure is presented in the Appendix, and

we start this section by summarizing the main results.
Consider a solution of the Gross-Pitaevskii equation
ψ1ðr; tÞ for the harmonic potential of frequency ω1:

iℏ
∂ψ1

∂t ¼ −
ℏ2

2m
∇2ψ1 þ

ℏ2g̃N
m

jψ1j2ψ1 þ
1

2
mω2

1r
2ψ1: ð8Þ

Using scale and conformal invariance, we can construct a
solution ψ2ðr0; t0Þ of the Gross-Pitaevskii equation with the
frequency ω2 ¼ ζω1 using

ψ2ðr0; t0Þ ¼ fðr; tÞψ1ðr; tÞ; ð9Þ

where space is rescaled by r0 ¼ r=λðtÞ with

λðtÞ ¼
�
1

α2
cos2ðω1tÞ þ α2ζ2sin2ðω1tÞ

�
1=2

; ð10Þ

and the dimensionless parameter α is the homothetic
ratio between the initial states. The relation between the
times t and t0 in frames 1 and 2 is

tanðω2t0Þ ¼ ζα2 tanðω1tÞ; ð11Þ

and the multiplicative function f is

fðr; tÞ ¼ λðtÞ exp
�
−i

m_λr2

2ℏλ

�
; ð12Þ

where _λ≡ ½ðdλÞ=ðdtÞ�. The two solutions ψ1;2ðtÞ corre-
spond to the evolution of two clouds with the same
parameter g̃1N1 ¼ g̃2N2. At t ¼ 0, these two wave func-
tions correspond to the ground states of the Gross-
Pitaevskii equation in the box potentials with characteristic
lengths L1;2, with L2 ¼ αL1. Both initial wave functions
ψ1;2ð0Þ can be chosen real, and the scale invariance of the
(time-independent) 2D Gross-Pitaevskii equation ensures
that they are homothetic: αψ2ðαr; 0Þ ¼ ψ1ðr; 0Þ. For exam-
ple, in the limit Eint ≫ Ekin, ψð0Þ corresponds to a uniform
density in the bulk and goes to zero at the edges on a scale
given by the healing length ξ≡ ½Nℏ2=ð2mEintÞ�1=2. For
two box potentials of homothetic shapes filled with the
same number of particles, the ratio ξ2=ξ1 is equal to the
ratio L2=L1.

We explore experimentally this mapping between two
evolutions in the particular case L1 ¼ L2 and ω1 → 0, i.e.,
α ¼ 1 and ζ → þ∞. We thus compare the evolution of
clouds with the same shape and the same size either in a
harmonic potential or in free (2D) space. The choice of the
initial shape is arbitrary; here we start from a uniform
triangle of side length 40.2ð3Þ μm with 3.9ð3Þ × 104 atoms
and let it evolve either in a harmonic potential of frequency
ω2=ð2πÞ ¼ 19.7ð2Þ Hz or without any potential (ω1 ¼ 0).
In both cases, we record images of the evolution, examples
of which are given in Figs. 2(a) and 2(b). These two
evolutions should be linked via Eq. (9). The relation (11)
between t and t0 reads

tanðω2t0Þ ¼ ω2t; ð13Þ

and the relation (10) becomes

λðtÞ ¼ ð1þ ω2
2t

2Þ1=2: ð14Þ

The relation (13) indicates that the scaling transformation
maps the first quarter of the oscillation period in the
harmonic trap ω2t0 ≤ π=2 onto the ballistic expansion from
t ¼ 0 to t ¼ ∞. In the absence of interactions, this result
has a simple physical interpretation: After the ballistic
expansion between t ¼ 0 to t ¼ ∞, the asymptotic position
distribution reveals the initial velocity distribution of the
gas, whereas the evolution in the harmonic trap during a
quarter of oscillation period exchanges initial positions and
initial velocities. We emphasize that the mapping (13) also
holds for an interacting system as a consequence of the
SO(2,1) symmetry underlying the 2D Gross-Pitaevskii
equation [28].
In order to reconstruct the scaling laws (13) and (14)

from the measured evolutions, we compare each image
n1ðr; tÞ for the free evolution with the set of images
n2ðr0; t0Þ obtained for the in-trap evolution. More precisely,
we start by defining the overlap O½n1; n2� between two
images in the following way:

(i) We introduce the scalar product ðn1jn2Þ between two
images

ðn1jn2Þ ¼
Z

n1ðrÞn2ðrÞd2r ð15Þ

and the norm of an image kn1k ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðn1jn1Þ
p

.
(ii) In order to relate two images that differ by a spatial

scaling factor λ, we introduce the quantity

p½n1; n2; λ� ¼
ðnðλÞ1 jn2Þ
knðλÞ1 kkn2k

; ð16Þ

where nðλÞ1 ðrÞ ¼ λ2n1ðλrÞ is the image rescaled from
n1ðrÞ by the factor λ, with the same atom number:
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N1 ¼
R
n1ðrÞd2r ¼

R
nðλÞ1 ðrÞd2r. Note that the

definition of the norm given above entails knðλÞ1 k ¼
λkn1k. By construction, the quantity p½n1; n2; λ� is
always smaller or equal to 1, and it is equal to 1 only

when the image nðλÞ1 is identical to n2 up to a
multiplicative factor.

(iii) Finally, for a couple of images ðn1; n2Þ, we vary λ
and define their overlap as

O½n1; n2� ¼ max
λ

p½n1; n2; λ�: ð17Þ

In practice, for each image n1ðtÞ acquired at a given time t,
we determine the time t0opt where the overlap between n1ðtÞ
and n2ðt0Þ is optimal. We denote ΛðtÞ as the value of the
scaling parameter λ for which the valueO½n1ðtÞ; n2ðt0optÞ� is
reached (see the Supplemental Material [30] for more
details). Since the center of the images may drift during
the evolution, we also allow for a translation of n2 with
respect to n1 when looking for the optimum in Eqs. (16)
and (17).
The result of this mapping between the two evolutions is

shown in Figs. 2(c) and 2(d). In Fig. 2(c), we plot t0opt as a
function of t. The prediction (13) is shown as a continuous
line and is in good agreement with the data. In Fig. 2(d), we
show the variation of the corresponding optimal scaling
parameter ΛðtÞ. Here again, the prediction (14) drawn as a
continuous line is in good agreement with the data. The
overlap between the density distributions at the correspond-
ing times is shown in the inset of Fig. 2(d) and is always
around 0.95, confirming that these density distributions

have very similar shapes. Indeed, the overlap between two
images averaged over a few experimental realizations taken
in the same conditions ranges from 0.98 to 0.99 due to
experimental imperfections.
Finally, we note that here we connect solutions of the

Gross-Pitaevskii equation (8) with the same atom number
N1 ¼ N2. Actually, the results derived above also apply to
pairs of solutions with g̃1N1 ¼ g̃2N2, since only the product
g̃N enters in the Gross-Pitaevskii equation (8).

IV. SCALING LAWS IN THE
HYDRODYNAMIC REGIME

In the previous section, we link the evolution of two
clouds with the same atom number N (or the same g̃N). We
show now that it is also possible to link evolutions with
different N’s and g̃’s, provided we restrict to the so-called
hydrodynamic (or Thomas-Fermi) regime, where the heal-
ing length ξ is very small compared to the size of the gas.

A. General formulation

The Gross-Pitaevskii equation (8) can be equivalently
written in terms of the density and the velocity fields as

∂tnþ ∇ · ðnvÞ ¼ 0; ð18Þ

m∂tvþ ∇
�
1

2
mv2 þ ℏ2

m
g̃nþ 1

2
mω2r2 þ PðnÞ

�
¼ 0; ð19Þ

where PðnÞ ¼ −ℏ2=2mð∇2
ffiffiffi
n

p Þ= ffiffiffi
n

p
is the so-called quan-

tum pressure. When the characteristic length scales over

(a) (b) (c) (d))()(

FIG. 2. Evolution of a gas with triangular shape [side length 40.2ð3Þ μm, 3.9ð3Þ × 104 atoms] for two different values of the harmonic
trapping frequency. (a),(b) Averaged images of the density distribution after a variable evolution time in the harmonic potential of
frequency ω1 ¼ 0 and ω2=2π ¼ 19.7ð2Þ Hz, respectively. The images are an average over five to ten realizations, and the horizontal
black lines represent 10 μm. Pairs of images with approximately corresponding evolution times are shown. (c) Optimal time t0optðtÞ for
which the overlap between images of the first and the second evolutions is maximum. (d) Optimal rescaling factor between the
corresponding images n1ðtÞ and n2ðt0optÞ. In the two graphs (c) and (d), the solid lines are the theoretical predictions given by Eqs. (13)
and (14). The inset of (d) presents the overlap between the corresponding images of the two series. In (c) and (d), the error bars indicate
the confidence intervals within 2 standard deviations of the fits used to reconstruct the scaling laws.
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which the density and velocity vary are much larger than
the healing length ξ, one can neglect the contribution of the
quantum pressure in Eq. (19):

m∂tvþ ∇
�
1

2
mv2 þ ℏ2

m
g̃nþ 1

2
mω2r2

�
¼ 0: ð20Þ

This approximation corresponding to the Thomas-Fermi
limit leads to the regime of quantum hydrodynamics for the
evolution of the density n and the irrotational velocity
field v [31]. It enriches the dynamical symmetries of the
problem, as we see in the following. For our experimental
parameters, this approximation is legitimate since the
healing length is a fraction of a micrometer only, much
smaller than the characteristic size of our clouds (tens of
micrometers).
We consider two homothetic shapes, e.g., two boxlike

potentials with a square shape, with sizes L1;2 and filled
with N1;2 atoms. We assume that we start in both cases with
the ground state of the cloud in the corresponding shape so
that the initial velocity fields are zero. Note that contrary to
the case of Sec. III, the ratio between the healing lengths
ξ2=ξ1 is not anymore equal to L2=L1 so that the initial wave
functions are not exactly homothetic, but this mismatch
occurs only close to the edges over the scale of ξ1;2 ≪ L1;2.
As before, at time t ¼ 0we switch off the potential creating
the shape under study and switch on a harmonic potential
with frequency ω1;2. Our goal is to relate the two evolutions
with parameters ðg̃1N1; L1;ω1Þ and ðg̃2N2; L2;ω2Þ.
The general transformation involves three dimensionless

constant parameters μ, α, ζ:

g̃2N2 ¼ μ2g̃1N1; L2 ¼ αL1; ω2 ¼ ζω1; ð21Þ

and reads

g̃2n2ðr0; t0Þ ¼ λ2μ2g̃1n1ðr; tÞ; ð22Þ

v2ðr0; t0Þ ¼ λμv1ðr; tÞ − μ_λr ð23Þ

with _λ ¼ ½ðdλÞ=ðdtÞ�. The spatial variables are rescaled as
r0 ¼ r=λðtÞ with the function λ now given by

λðtÞ ¼
�
1

α2
cos2ðω1tÞ þ

�
ζα

μ

�
2

sin2ðω1tÞ
�
1=2

; ð24Þ

and the relation between the times t and t0 in frames 1
and 2 is

tanðω2t0Þ ¼
ζα2

μ
tanðω1tÞ: ð25Þ

With a calculation similar to that detailed in the Appendix,
one can readily show that if ðn1; v1Þ is a solution of the
hydrodynamic equations (18) and (20) for the frequency

ω1, then ðn2; v2Þ is a solution for the frequencyω2. If μ ¼ 1,
these equations also apply beyond the Thomas-Fermi limit,
as we show in Sec. III. More strikingly, they show that in
the quantum hydrodynamic regime, the evolution of any
cloud is captured by a universal dynamics that depends
only on its initial geometry.

B. Connecting evolutions with a fixed trap frequency,
a fixed size, and different g̃N

We present here the experimental investigation of the
scaling described above, focusing on the case L1 ¼ L2 and
ω1 ¼ ω2, i.e., α ¼ ζ ¼ 1. In other words, we compare the
evolution of two clouds with the same initial shape and
density distribution, different atom numbers, and different
interaction strengths in a given harmonic trap. For sim-
plicity, we consider the result of the evolution at times t and
t0 such that ω1t ¼ ω2t0 ¼ π=2, which satisfies the con-
straint (25). In this case, λðtÞ ¼ 1=μ so that the general
scaling (22) reads

g̃2n2ðμr; t0π=2Þ ¼ g̃1n1ðr; tπ=2Þ: ð26Þ

We start with a cloud in a uniform box potential with the
shape of an equilateral triangle of side length
L ¼ 38.2ð3Þ μm. At t ¼ 0, we transfer the atoms in the
harmonic trap of frequency ω=2π ¼ 19.6 Hz and remove
the box potential. At t ¼ π=ð2ωÞ, we image the cloud. We
perform this experiment for different values of g̃ (and
slightly different atom numbers) corresponding to the
product g̃N between 200 and 4000. This leads to a ratio
ξ=L always smaller than 0.03, ensuring that we stay in the
quantum hydrodynamic regime. The variation of g̃ is
achieved by changing the intensity I of the laser beams
creating the vertical confinement with g̃ ∝ I1=4. The values
of g̃ are obtained from the measurement of the vertical
frequency ωz (see Supplemental Material [30]).
We analyze the series of images using the same general

method as in Sec. III. We select arbitrarily one image as a
reference point (here, the one corresponding to g̃N ≈ 2000
shown as a red square on Fig. 3). Then, we calculate the
best overlap between this reference point and all other
images obtained for different g̃N’s, and extract an optimal
scaling parameter Λ. The results of this analysis are
displayed on Fig. 3. The inset shows that the overlap is
close to 1 for all values of g̃N, indicating that the clouds all
have the same shape, as expected from Eq. (26). On the
main graph of Fig. 3, we show the variations of Λ−2 with
g̃N. The scaling law (24) predicts that Λ−2 ¼ μ2 ∝ g̃N,
which is indicated by the solid line passing by the origin
and the reference point. Here again, this prediction is in
excellent agreement with the data, apart from the point for
the largest g̃N. We attribute this discrepancy to the fact that
the local defects of the vertical confinement play a more
significant role at larger powers of the vertical confining
laser beam.
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Interestingly, the shape for t0 ¼ π=ð2ωÞ, i.e., t ¼ ∞ for
an evolution without any trap, is close to a uniformly filled
triangle but inverted compared to the initial one (see insets
of Fig. 3). The emergence of such a simple form after time-
of-flight is reminiscent of the simple diamondlike shape
obtained for the 3D expansion of a uniform gas initially
confined in a cylindrical box [32]. Note that we also
observe such a diamondlike shape at t ¼ π=ð2ωÞ starting
from a square box, albeit with a nonuniform density (see
Supplemental Material [30]).

C. Connecting evolutions with a fixed trap frequency,
different sizes, and different g̃N

Finally, we compare the evolution of two clouds with
homothetic shapes and α, μ ≠ 1, ζ ¼ 1, which means
clouds with different initial sizes, different atom numbers,
and evolving in the same harmonic trap. We perform an
experiment where the initial shape is a square with a
uniform density. The first cloud has a side length
L1 ¼ 27.0ð5Þ μm, contains N1 ¼ 3.7ð3Þ × 104 atoms,
and its initial density distribution is shown on Fig. 4(a).
The second one has a side length L2 ¼ 36.8ð5Þ μm and
contains N2 ¼ 5.4ð3Þ × 104 atoms [Fig. 4(b)]. The ratio
ξ=L is around 0.01 for these two clouds. We let them evolve
in the same harmonic potential described above and with
the same interaction parameter g̃ and take pictures after

different evolution times. We expect that the two evolutions
n1ðr; tÞ of the first cloud and n2ðr0; t0Þ of the second cloud
are linked via Eqs. (22), (24), and (25), with parameters
α ¼ L2=L1 ¼ 1.36ð4Þ and μ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

N2=N1

p ¼ 1.21ð8Þ. We
analyze the two series of images with the same procedure as
in Sec. III and determine the scaling laws that link the two
evolutions one to the other. The best overlaps between the
images of the first and second series are shown in Fig. 4(c).
They are all above 0.97, indicating that the two evolutions
are indeed similar. The relation between the time t0 of the
second frame and the corresponding time t of the first frame
is shown on Fig. 4(d), and the best scaling factor ΛðtÞ is
shown on Fig. 4(e). The solid lines show the theoretical
predictions (25) and (24), which are in very good agree-
ment with the experimental data.
With the three experiments described in Secs. III and IV,

the scaling laws (22)–(25) are tested independently for the
three parameters α, μ, and ζ, demonstrating that in the
quantum hydrodynamic regime, the evolution of a cloud
initially at rest depends only on its initial shape, up to
scaling laws on space, time, and atom density.

V. TWO-DIMENSIONAL BREATHERS

In Sec. II, we have shown that due to the SO(2,1)
symmetry, the evolution of the potential energy Epot is

FIG. 3. Scaling factor at ωt ¼ π=2 for different values of g̃N.
(a) Initial density distribution of the cloud. (b)–(d) Density
distributions of the cloud after an evolution during t ¼ π=ð2ωÞ
in the harmonic trap for different values of g̃N. For (a)–(d), the
horizontal black lines represent 10 μm. Main graph: Best scaling
factor Λ−2 as a function of g̃N. The red square corresponds to the
reference image and its ordinate is fixed to 1. The solid line
represents the prediction (26). The shaded area represents its
uncertainty due to the one in the atom number of the reference
point. The vertical error bars represent the precision at 2 standard
deviations of the fit that determines Λ−2. (e) Value of the overlap
between the density distributions and the reference point. The
error bars due to the fit are smaller than the black points.

(a) (d)

(e)

(b)

(c)

)
(

)
(

FIG. 4. Mapping between two clouds with the same shape,
different sizes, and different atom numbers. (a),(b) Initial density
distribution of the two clouds. The horizontal black lines represent
10 μm. (c) Best overlap between each image of the first series of
images and the images of the second one. (d) Optimal time t0opt of
the second evolution as a function of the time t of the first
evolution. (e) Optimal scaling factor ΛðtÞ between the first and
second evolutions. In (d) and (e), the solid lines are the predictions
(25) and (24) where the values of the parameters α and μ are
measured independently. The uncertainty of these values is
represented as a shaded area. In (d), this area is too narrow to
be discernable. In (c)–(e), the error bars indicate the confidence
intervals within 2 standard deviations of the fit that we use to
reconstruct the scaling laws. They are too small to be seen on (d).
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periodic with period T=2≡ π=ω for an arbitrary initial state
ψðr; 0Þ [see Eq. (7)]. Of course, the existence of this
periodicity does not put a strong constraint on the evolution
of ψðr; tÞ itself. Because of the nonlinear character of the
Gross-Pitaevskii equation, the evolution of ψ is not
expected to be periodic, as illustrated in Fig. 1(b) for a
square initial shape. When looking experimentally or
numerically at various initial shapes like uniformly filled
squares, pentagons, or hexagons, we indeed observe that
even though EpotðjT=2Þ ¼ Epotð0Þ for integer values of j,
the shapes nðrÞ ¼ NjψðrÞj2 at those times are notably
different from the initial ones. We find two exceptions to
this statement, which are the cases of an initial equilateral
triangle and a disk. This section is devoted to the study of
these very particular states that we call “breathers”.
In the present context of a fluid described by the Gross-

Pitaevskii equation, we define a breather as a wave function
ψðr; tÞ that undergoes a periodic evolution in an isotropic
harmonic trap of frequency ω (for a generalization to
different settings, see, e.g., Refs. [22,33]). According to
this definition, the simplest example of a breather is a
steady-state ψSðrÞ of the Gross-Pitaevskii equation, e.g.,
the ground state. Other breathers are obtained by super-
posing ψS with one eigenmode of the Bogoliubov–de
Gennes equations resulting from the linearization of the
Gross-Pitaeveskii equation around ψS. In principle (with
the exception of the breathing mode [15]), the population of
this mode should be vanishingly small to avoid damping
via nonlinear mixing. Extending this scheme to the super-
position of several modes in order to generate more
complex types of breathers seems difficult. Indeed, the

eigenmode frequencies are, in general, noncommensurable
with each other; therefore, the periodicity of the motion
cannot occur as soon as several modes are simultaneously
excited [34]. Note that for a negative interaction coefficient
g̃ in 1D, a bright soliton forms a stable steady state of the
Gross-Pitaevskii equation (even for ω → 0) and thus also
matches our definition. In that particular 1D case, a richer
configuration exhibiting explicitly the required time perio-
dicity is the Kuznetsov-Ma breather, which is obtained by
superposing a bright soliton and a constant background
(see, e.g., Ref. [37] and references therein).
Here, we are interested in 2D breathers that go well

beyond a single-mode excitation, and we start our study
with the uniform triangular shape. In this case, for experi-
ments performed with a gas in the Thomas-Fermi regime,
we find that the evolution of the shape is periodic with
period T=2 within the precision of the measurement. As an
illustration, we show in Fig. 5(a) four images taken
between t ¼ 0 and T=2. The scalar product ðnð0ÞjnðtÞÞ
between the initial distribution and the one measured at
times T=2, T, 3T=2, and 2T shown in Fig. 5(b) is indeed
very close to 1. We can reproduce the same result for
various initial atom numbers.
We did not find an analytical proof of this remarkable

result, but we can confirm it numerically by simulating the
evolution of a wave function ψðr; tÞ with the Gross-
Pitaevskii equation [38]. We show in Fig. 6(a) a few
snapshots of the calculated density distribution and in
Fig. 6(b) the evolution of the modulus of the (usual) scalar
product jhψð0ÞjψðtÞij between the wave functions at times
0 and t. The calculation is performed on a square grid of

(a) (c)

(d)(b)

)
(

)
(

FIG. 5. (a) Density distributions of an initially triangular-shaped cloud at t=T ¼ 0, t=T ¼ 0.08, t=T ≈ 1=4, and t=T ≈ 1=2. The first
and last distributions are close to each other. (b) Scalar product between the initial density distribution of a triangular-shaped cloud (red
square) and the density distributions during its evolution in the harmonic trap. The first point is fixed at 1. The dashed lines indicate
where t=T is a multiple of 1=2. The shape seems to be periodic of period T=2. (c) Density distributions of an initially disk-shaped cloud
at t=T ¼ 0, t=T ≈ 2=7, t=T ≈ 1, and t=T ≈ 2. The first two and the last distributions are close to each other. (d) Scalar product between
the initial density distribution of a disk-shaped cloud (red square) and the density distributions during its evolution in the harmonic trap.
The first point is fixed at 1. The dashed lines indicate where t=T is a multiple of 2=7. The shape seems to be periodic of period 2=7. In (a)
and (c), the horizontal black lines represent 10 μm. In (b) and (d), the black arrows indicate the point corresponding to density
distributions shown in (a) and (c), respectively. The error bars represent the statistical error of the measurement.
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size Ns × Ns with Ns ¼ 512. The initial wave function is
the ground state of a triangular box with the side length
Ns=2 centered on the grid, obtained by imaginary time
evolution for g̃N ¼ 25 600. Note that by contrast to the
“scalar product between images” introduced above, the
quantity jhψð0ÞjψðtÞij is also sensitive to phase gradients of
the wave functions. Its evolution shows clear revivals
approaching unity for t close to multiples of T=2.
We show in Fig. 7(a) the finite-size scaling analysis

of the value of the first maximum of this scalar product
occurring at tmax ≈ T=2 for increasing grid sizes
Ns ¼ 64;…; 1024. The product g̃N is adjusted such that
the healing length ξ ¼ ½Nℏ2=ð2mEintÞ�1=2 ¼ al, where l is
the grid spacing and a2 ¼ 0.5, 1, 2, 4, 8. The condition
a ≪ Ns ensures that ξ is much smaller than the size of the
triangle (Thomas-Fermi regime), while having a≳ 1 pro-
vides an accurate sampling of the edges of the cloud. The
overlap between jψð0Þi and jψðtmaxÞi increases with the
grid size and reaches 0.995 for the largest grid.
In the simulation, the trapping frequency ω is adjusted

such that jΔEj ≪ Etot in Eq. (7); the cloud then keeps an
approximately constant area over time, which is favorable
for the numerics. Note that this choice does not restrict the
generality of the result, since the scaling laws seen in
Sec. III allow one to connect the evolution of a given
ψðr; t ¼ 0Þ in traps with different frequencies. In particular,
if the evolution starting from ψðr; 0Þ in a trap of frequency
ω1 is periodic with period π=ω1, the evolution in another
trap with frequency ω2 will be periodic with period π=ω2

[see Eq. (11)].
Two simulations with the same ratio a=Ns ∝ ξ=L, where

L ¼ lNs=2 is the size of the initial cloud, describe the same

physical system with a better accuracy as a and Ns are
increased. For the results in Fig. 7(a), increasing the
number of pixels Ns for a fixed a=Ns makes the scalar
product closer to 1. If this result could be extended as such
to arbitrary large values of Ns, this would demonstrate that
the ground state of a triangular box evolves periodically in a
harmonic potential. However, a closer look at the results of
this finite-size scaling analysis seems to indicate that a
should either be kept constant or increased at a slower rate
than Ns to have the scalar product approaching 1 in an
optimal way. Of course this conjecture deduced from our
numerical analysis needs to be further explored with ana-
lytical tools, which is out of the scope of the present paper.

(a) (c)

(d)(b)

FIG. 6. (a) Calculated density distributions at times t=T ¼ 0, 1=8, 1=4, 1=2 and (b) calculated time evolution of jhψð0ÞjψðtÞij starting
from the ground state in a triangular box. The numerical integration of the Gross-Pitaevskii equation is performed on a 512 × 512 grid.
The triangle is centered on the grid, with a side length equal to half the grid size. We choose g̃N ¼ 25 600 corresponding to an initial
healing length ξ ≈ l, where l is the grid step. (c) Calculated density distributions at times t=T ¼ 0, 2=7, 1, 2 and (d) calculated time
evolution of jhψð0ÞjψðtÞij starting from the ground state in a disk-shaped box. The numerical integration of the Gross-Pitaevskii
equation is performed on a 512 × 512 grid. The disk is centered on the grid, with a diameter equal to half the size of the grid. We choose
g̃N ¼ 12 800 leading to an initial healing length ξ ≈ 2l, where l is the grid step. In (b) and (d), the black arrows indicate the times
corresponding to the snapshots presented in (a) and (c).

(a) (b)

FIG. 7. Finite-size scaling for the numerical simulations.
(a) Scalar product jhψð0ÞjψðT=2Þij for an initial triangular shape.
The size of the grid Ns and the sampling of the healing length
a≡ ξ=l are varied. The highest value is 0.9953 obtained for
Ns ¼ 1024, a ¼ 1. (b) Scalar product jhψð0Þjψð2TÞij for an
initial disk shape. The highest value is 0.9986 obtained for
Ns ¼ 1024, a ¼ 2.8. On both figures, the black dots indicate the
highest value of the scalar product for each line.
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The requirement for the Thomas-Fermi regime
(ξ=L ≪ 1) is necessary for obtaining a periodic evolution
of the shape with period T=2. Indeed, in the ideal gas case
(g̃ ¼ 0), the evolution over T=2 corresponds to an inversion
of the initial shape with respect to the origin, i.e., a triangle
pointing upwards for the case of interest here [Fig. 5(a)].
One may then wonder about the existence of a periodicity T
for the triangular shape, irrespective of the product g̃N.
Indeed this periodicity holds in both limiting cases g̃ ¼ 0
(ideal gas) and g̃N large (Thomas-Fermi regime). However,
numerical simulations show unambiguously that the evo-
lution is not periodic in the intermediate case.
We also run the same simulations for other simple

regular polygons (square, pentagons, hexagon). We do
not observe a similar revival of the initial wave function
over the time period ð0; 5TÞ (see Supplemental Material
[30] for details).
Finally, we turn to the case of a disk-shaped initial cloud

[Fig. 5(c)]. The experiment is performed with a cloud
prepared such that jΔEj ≪ Etot in Eq. (7), so that the
potential energy is approximately constant over time.
In this particular case, the experimental result shown in
Fig. 5(d) seems to indicate a periodicity of approximately
2T=7 for the evolution of the overlap between nðr; 0Þ and
nðr; tÞ. To illustrate this, Fig. 5(c) displays four density
distributions at times between 0 and 2T. Let us assume that
this periodicity 2T=7 is exact when ΔE ¼ 0. For a disk-
shaped initial distribution with any value of ΔE, the
evolution cannot be 2T=7 periodic. Indeed, the potential
energy of the cloud is only T=2 periodic, which is not a
submultiple of 2T=7. However, all the disk-shaped clouds
should have a 2T periodicity, which is the least common
multiple of T=2 and 2T=7. As we show now, this 2T
periodicity is well supported by a numerical analysis.
We show in Fig. 6(c) snapshots of the calculated density

distribution and in Fig. 6(d) the time evolution of the
overlap jhψð0ÞjψðtÞij starting from the ground state in a
disk-shaped box potential centered on a 512 × 512 grid.
The disk diameter is chosen equal to half the grid size, and
the simulation is run for g̃N ¼ 12 800. This simulation
shows that the overlap between ψðr; 0Þ and ψðr; tÞ indeed
recovers values close to 1 at times close to multiples of
2T=7, as observed experimentally.
A closer inspection of Fig. 6(d) indicates that the time

evolution of the overlap is in good approximation periodic
with period 2T, with a symmetry around t ¼ T as well as
around t ¼ 2T. If the evolution is effectively periodic with
period 2T, the symmetry around these points is expected.
Indeed, the wave function is chosen real for t ¼ 0, and will
thus be real also at 2T (up to a global phase). Therefore, the
evolution must be symmetric around those points thanks to
time-reversal symmetry. On the other hand, this symmetry
does not show up around the other local maxima j2T=7
(j ¼ 1;…; 6), indicating that one does not expect a full
overlap with the initial state for those points.

In order to investigate further the revival around 2T, we
run a finite-size scaling analysis for the same grid sizes as
for the triangles and for a2 ¼ 1, 2, 4, 8, 16 [Fig. 7(b)]. We
find that the numerical results are compatible with a full
recovery of the initial wave function at time 2T, with a
scalar product between the wave functions at times 0 and
2T attaining a maximum of 0.9986 for the largest grid size
Ns ¼ 1024 and a2 ¼ 8. In this case, the optimal value of a
for a given Ns (marked with a dot in Fig. 7) increases with
Ns; note that the optimal ratio a=Ns ∝ ξ=L decreases when
Ns increases, which guarantees that the cloud remains in
the Thomas-Fermi regime.
To conclude this section, we emphasize that the phe-

nomenon described here is notably different from the
existence of a breathing mode at frequency 2ω [14,15]
that we mention in the Introduction and explore in Sec. II.
Here, we observe a periodic motion of the whole cloud not
just of the second moment hr2i of the position. We also note
that the observed phenomenon is a genuine nonlinear
effect, which cannot be captured by a linearization of
the motion of the cloud around an equilibrium position.
Indeed, the state of the gas at an intermediate time may
dramatically differ from the state at initial time or after a full
period both in terms of size and shape. A proper analysis of
these breathers may require a multimode approach, with the
observed phenomenon resulting from a mode synchroni-
zation effect via nonlinear couplings.

VI. SUMMARY AND OUTLOOK

In this paper, we investigate experimentally some
important consequences of the dynamical symmetries of
the two-dimensional Gross-Pitaevkii equation describing
the evolution of a weakly interacting Bose gas in a
harmonic potential. First, we show that the SO(2,1)
symmetry leads to a periodic evolution of the potential
energy and to scaling laws between the evolution of clouds
with the same atom number and the same interaction
parameter. Second, we show that in the quantum hydro-
dynamic regime, more symmetries allow one to describe
the evolution of the gas by a single universal function
irrespective of its size, atom number, trap frequency, and
interaction parameter g̃. This universal evolution depends
only on the initial shape and velocity field of the cloud.
Third, we identify two geometrical boxlike potentials,
equilateral triangle and disk, which lead to a periodic
motion of the wave function when one starts with a gas
uniformly filling these shapes and releases it in a harmonic
potential of frequency ω. The periods of these breathers are
π=ω and 4π=ω for the triangles and the disks, respectively.
This result is confirmed by a numerical simulation for a
cloud initially in the Thomas-Fermi regime of the boxlike
potential, giving an overlap between the initial state and the
state after one period larger than 0.995 and 0.998 for the
triangle and the disk, respectively.
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The existence of these breathers raises several interesting
questions. First, it is not immediate that their existence is a
direct consequence of the dynamical symmetries of the
system. If this is the case, such breathers could appear also
for other systems exhibiting the SO(2,1) symmetry, like a
three-dimensional unitary Fermi gas or a cloud of particles
with a 1=r2 interaction potential. Remarkably, the latter
case can be approached using classical (Newton) equations
of motion; a preliminary numerical analysis with up to 105

particles indicates that an initial triangular (resp. disk)
shape with uniform filling also leads to an approximate
periodic evolution in a harmonic potential with same period
T=2 (resp. 2T) as the solution of the Gross-Pitaevskii
equation. We also note that in the 1D case, the spectrum of
the Hamiltonian of a gas of particles interacting with a
repulsive 1=r2 potential is composed of evenly spaced
energy levels, ensuring a periodic evolution of the system
for any initial state [39,40].
The allowed shapes for such breathers is also an

intriguing question. In our exploration (both experimental
and numerical), we find this behavior only for triangles and
disks, but one cannot exclude that complex geometrical
figures can show a similar phenomenon. Another issue is
related with thermal effects. For all studies reported here,
we operate with a gas deeply in the degenerate regime,
which is well approximated by the zero-temperature Gross-
Pitaevskii formalism. A natural extension of our work is
therefore to study to which extent the present findings will
subsist in the presence of a significant nonsuperfluid
component. For our experimental setup, this will require
a significant increase in the vertical trapping frequency so
that the vertical degree of freedom remains frozen for the
thermal component of the gas.
Finally, we recall that the SO(2,1) symmetry is only an

approximation for the description of a two-dimensional
Bose gas. It is valid when the gas can be modeled by a
classical field analysis, hence, for a small interaction
parameter g̃ ≪ 1. For stronger interactions, one has to turn
to a quantum treatment of the fluid. This breaks the scale
invariance and the SO(2,1) symmetry that exist at the
classical field level, providing an example of a “quantum
anomaly” [19,41,42]. For example, the frequency of the
breathing mode of a gas in a harmonic potential then differs
from its classical value 2ω. It remains to be understood if a
similar quantum anomaly shows up for the breathers
described in this work.
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APPENDIX: SYMMETRY GROUPS OF THE
SCHRÖDINGER AND 2D GROSS-PITAEVSKII

EQUATIONS

For completeness, we summarize in this Appendix the
main properties of the transformations that leave invariant
the Schrödinger equation (i) for a free particle and (ii) for a
particle confined in a harmonic potential. The ensemble of
these transformations forms a group called the maximal
kinematical invariance group, which is parametrized in the
2D case by eight real numbers. In what follows, we are
interested only in the subgroup that is relevant for scale and
conformal invariance. For example, in the case of a free
particle, five parameters are related to space translations,
changes of Galilean frame, and rotations, which do not play
a role in our study. We are then left with three parameters
corresponding to time translations, dilations, and special
conformal transformations. These transformations also
leave the 2D Gross-Pitaevskii equation invariant. In the
following, we identify their generators and show that they
obey the SO(2,1) commutation algebra. We follow closely
the approach of Refs. [5,43], which was developed for the
Schrödinger equation describing the motion of a single
particle but also applies with little modifications to the
case of the nonlinear Gross-Pitaevskii equation. In this
Appendix, we set ℏ ¼ 1 to simplify the notations.

1. Free particles

Although we are interested ultimately in the case where
the particles evolve in a harmonic potential, we start by a
brief summary of the free-particle case, for which the
algebra is slightly simpler, while involving transformations
of a similar type. In Ref. [5], it was shown that in addition
to space translations, rotations, and Galilean transforma-
tions, the three following transformations leave invariant
the free-particle Schrödinger equation:

(i) The translations in time

r → r; t → tþ β; ðA1Þ
since the Hamiltonian has no explicit time
dependence.

(ii) The dilations

r → r=λ; t → t=λ2 ðA2Þ

already introduced in Eq. (1) of the main text.
(iii) The so-called “expansions”

r →
r

γtþ 1
; t →

t
γtþ 1

; ðA3Þ

which correspond to a special conformal transfor-
mation for the time.

The combination of these transformations forms a three-
parameter group with the most general transformation
written as
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r → gðr; tÞ≡ r
γtþ δ

; ðA4Þ

t → hðtÞ≡ αtþ β

γtþ δ
; ðA5Þ

with the constraint αδ − βγ ¼ 1. The dilation (A2) is
obtained by setting β ¼ γ ¼ 0, δ ¼ λ, and αδ ¼ 1.
Let us consider a function ψ1ðr; tÞ which is a solution of

the Gross-Pitaevskii equation in free space:

P0½ψ1; r; t� ¼ 0 ðA6Þ

with

P0½ψ ; r; t�≡ i
∂ψ
∂t þ

1

2m
∇2
rψ −

g̃N
m

jψ j2ψ : ðA7Þ

Starting from ψ1ðr; tÞ, we define the function ψ2ðr0; t0Þ as

ψ2ðr0; t0Þ ¼ fðr; tÞψ1ðr; tÞ ðA8Þ

with r0, t0 set as

r0 ¼ gðr; tÞ; t0 ¼ hðtÞ ðA9Þ

and

fðr; tÞ ¼ ðγtþ δÞ exp
�
−i

mγr2=2
γtþ δ

�
: ðA10Þ

With a tedious but straightforward calculation, one can
check that ψ2ðr0; t0Þ is also a solution of the Gross-
Pitaevskii equation

P0½ψ2; r0; t0� ¼ 0 ðA11Þ

for any value of the parameters α, β, γ, δ with the constraint
αδ − βγ ¼ 1. The group of transformations (A4) and (A5)
thus allows one to generate an infinite number of solutions
of the Gross-Pitaevskii equation. We could pursue this
analysis by determining the generators associated with the
action of these transformations on the wave functions
ψðr; tÞ, but we postpone it to the case of a harmonically
confined system which is more relevant for our physical
system. The two studies are anyway very similar, and the
symmetry groups of the two systems have the same Lie
algebra [5,43].

2. Particles in a harmonic trap

In the presence of an isotropic harmonic potential of
frequency ω, the general transformations on position and
time leaving invariant the Schrödinger equation are also
defined by a set of four numbers ðα; β; γ; δÞ with the
constraint αδ − βγ ¼ 1 [43]. Setting

η ¼ tanðωtÞ; η0 ¼ tanðωt0Þ; ðA12Þ

the change in position is

r → r0 ¼ gðr; tÞ≡ r
λðtÞ ðA13Þ

with

λðtÞ ¼ ½½α sinðωtÞ þ β cosðωtÞ�2
þ ½γ sinðωtÞ þ δ cosðωtÞ�2�1=2; ðA14Þ

while the transformation on time t → t0 ¼ hðtÞ reads

η0 ¼ αηþ β

γηþ δ
: ðA15Þ

Note that the time translations belong to this set of
transformations, as expected for a time-independent
problem. They are obtained by taking α ¼ δ ¼ cosðωt0Þ
and β ¼ −γ ¼ sinðωt0Þ.
We start with a solution ψ1 of the Gross-Pitaevskii

equation in the trap

Pω½ψ1; r; t� ¼ 0 ðA16Þ

with

Pω½ψ ; r; t� ¼ P0½ψ ; r; t� −
1

2
mω2r2ψ : ðA17Þ

Using this group of transformations, we can generate
another function ψ2ðr0; t0Þ satisfying

Pω½ψ2; r0; t0� ¼ 0 ðA18Þ

following the definitions (A8) and (A9) with now

fðr; tÞ ¼ λðtÞ exp
�
−i

m_λr2

2λ

�
: ðA19Þ

The fact that ψ2 is a solution of the Gross-Pitaevskii
equation was proven for the noninteracting case in
Ref. [43], and one can check that the contribution of the
interaction term proportional to jψ j2ψ cancels in the 2D
case thanks to the scaling f ∝ λ.
In the main text, we use a specific version of the

transformation ðr; tÞ → ðr0; t0Þ that (i) maps the time
t ¼ 0 onto the time t0 ¼ 0, and (ii) is such that _λð0Þ ¼ 0
since we want to relate a real solution ψ1 onto another real
solution ψ2 (ψ1 and ψ2 are both ground-state wave
functions in a boxlike potential). These two conditions,
in association with αδ − βγ ¼ 1, impose β ¼ γ ¼ 0 and
δ ¼ 1=α, hence,
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λðtÞ ¼
�
α2sin2ðωtÞ þ 1

α2
cos2ðωtÞ

�
1=2

ðA20Þ

and

tanðωt0Þ ¼ α2 tanðωtÞ: ðA21Þ

Finally, we note that the simple dilation transformation
r0 ¼ r=

ffiffiffi
ζ

p
, t0 ¼ t=ζ allows one to relate a solution of the

Gross-Pitaevskii equation ψ1ðr; tÞ in a trap with frequency
ω1 to a solution

ψ2ðr0; t0Þ ¼
ffiffiffi
ζ

p
ψ1ðr; tÞ ðA22Þ

in a trap with frequency ω2 ¼ ζω1:

Pω1
½ψ1; r; t� ¼ 0 ⇒ Pω2

½ψ2; r0; t0� ¼ 0: ðA23Þ

We can thus combine this dilation with the transformation
(A20) and (A21) in order to obtain the transformation that
links two (initially real) solutions ψ1ðr; tÞ and ψ2ðr0; t0Þ of
the Gross-Pitaevskii equation for a given g̃N obtained in
harmonic traps with frequencies ω1;2 and starting with
homothetic initial conditions with characteristic lengths
L1;2. This transformation reads

r0 ¼ r
λðtÞ ; tanðω2t0Þ ¼ ζα2 tanðω1tÞ ðA24Þ

with

λðtÞ ¼
�
α2ζ2sin2ðω1tÞ þ

1

α2
cos2ðω1tÞ

�
1=2

ðA25Þ

and α ¼ L2=L1, ζ ¼ ω2=ω1. This transformation corre-
sponds to the scaling (10) used in the main text.

3. Generators and SO(2,1) symmetry

We now look for the infinitesimal generators of the
transformation ψ1 → ψ2 in the presence of a harmonic
potential (Appendix Sec. II) and show that they fulfill the
commutation algebra characteristic of the SO(2,1) group.
We focus here on the transformation (A13)–(A15) which
relates solutions of the Gross-Pitaevskii equation for
the same nonlinear coefficient g̃N and the same trap
frequency ω.
We first note that the set of four numbers ðα; β; γ; δÞ with

the constraint αδ − βγ ¼ 1 actually forms a set of three
independent parameters for the free-particle case
(Appendix Sec. I). To this set of numbers, we can associate
a matrix

M ¼
�
α β

γ δ

�
ðA26Þ

of the group SLð2; RÞ. In order to simplify our discussion,
we consider the following three subgroups of SLð2; RÞ,
each parametrized by a single parameter sj, j ¼ 1, 2, 3:

�
es1=2 0

0 e−s1=2

�
;

�
coshðs2=2Þ sinhðs2=2Þ
sinhðs2=2Þ coshðs2=2Þ

�
; ðA27Þ

and

�
cosðs3=2Þ − sinðs3=2Þ
sinðs3=2Þ cosðs3=2Þ

�
: ðA28Þ

We obtain three independent generators by considering a
small displacement from the unit matrix for each subgroup
(jsjj ≪ 1). In all three cases, we write the passage from ψ1

to ψ2 as

ψ2ðr; tÞ ≈ ½1̂ − isjL̂jðtÞ�ψ1ðr; tÞ; ðA29Þ

where we introduce the time-dependent generator L̂jðtÞ.
The goal is to determine explicitly these operators and their
commutation relation in order to check that they satisfy the
SO(2,1) algebra.
(a) Generator associated with s1. We have in this case

M ≈ 1̂þ s1
2
σ̂z; ðA30Þ

where the σ̂j, j ¼ x, y, z are the Pauli matrices. We
first get λðtÞ ¼ 1 − ðs1=2Þ cosð2ωtÞ so that

fðr;tÞ¼1−
s1
2
cosð2ωtÞ− is1

mωr2

2
sinð2ωtÞ; ðA31Þ

and the infinitesimal changes in r, t are

gðr;tÞ≈ r

�
1þs1

2
cosð2ωtÞ

�
; hðtÞ¼ tþ s1

2ω
sinð2ωtÞ:

ðA32Þ

These expressions allow one to determine the passage
from ψ1 to ψ2 as in Eq. (A29) with

L̂1ðtÞ ¼ −
i
2
cosð2ωtÞð1þ r · ∇Þ

þ 1

2ω
sinð2ωtÞðmω2r2 − i∂tÞ: ðA33Þ

(b) Generator associated with s2. We find

M ≈ 1̂þ s2
2
σ̂x: ðA34Þ

In this case, λðtÞ ¼ 1þ ðs2=2Þ sinð2ωtÞ, and
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fðr; tÞ¼ 1þ s2
2
sinð2ωtÞ− is2

mωr2

2
cosð2ωtÞ: ðA35Þ

It also provides the transformation of space and time
coordinates:

gðr; tÞ ≈ r

�
1 −

s2
2
sinð2ωtÞ

�
;

hðtÞ ¼ tþ s2
2ω

cosð2ωtÞ: ðA36Þ

This corresponds to a transformation similar to the one
considered above in Eq. (A32) with the time trans-
lation t → tþ π=ð4ωÞ. The associated operator for the
passage from ψ1 to ψ2 is thus

L̂2ðtÞ ¼
1

2ω
cosð2ωtÞðmω2r2 − i∂tÞ

þ i
2
sinð2ωtÞð1þ r · ∇Þ: ðA37Þ

(c) Generator associated with s3. Finally, we have for the
third case,

M ≈ 1̂ −
s3
2
iσ̂y: ðA38Þ

We simply have λðtÞ ¼ 1, fðr; tÞ ¼ 1, and this case
corresponds to the time translations mentioned above,
for which we have

gðr; tÞ ¼ r; hðtÞ ¼ t − s3=2ω: ðA39Þ

The operator L̂3ðtÞ is thus

L̂3ðtÞ ¼
i
2ω

∂t: ðA40Þ

From the expressions of the three generators L̂j, we
easily find the commutations relations valid at any time

½L̂1;L̂2�¼−iL̂3; ½L̂2;L̂3�¼ iL̂1; ½L̂3;L̂1�¼ iL̂2; ðA41Þ

which are characteristic of the Lorentz group SO(2,1). As
explained in Ref. [15], this set of commutation relations
allows one to construct, in particular, families of solutions
with an undamped breathing motion.
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Tan’s contact is a quantity that unifies many different properties of a low-temperature gas

with short-range interactions, from its momentum distribution to its spatial two-body cor-

relation function. Here, we use a Ramsey interferometric method to realize experimentally

the thermodynamic definition of the two-body contact, i.e., the change of the internal energy

in a small modification of the scattering length. Our measurements are performed on a

uniform two-dimensional Bose gas of 87Rb atoms across the Berezinskii–Kosterlitz–Thouless

superfluid transition. They connect well to the theoretical predictions in the limiting cases of a

strongly degenerate fluid and of a normal gas. They also provide the variation of this key

quantity in the critical region, where further theoretical efforts are needed to account for our

findings.
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The thermodynamic equilibrium of any homogeneous fluid
is characterized by its equation of state. This equation gives
the variations of a thermodynamic potential, e.g., the

internal energy E, with respect to a set of thermodynamics vari-
ables such as the number of particles, temperature, size, and
interaction potential. All items in this list are mere real numbers,
except for the interaction potential whose characterization may
require a large number of independent variables, making the
determination of a generic equation of state challenging.

A considerable simplification occurs for ultra-cold atomic fluids
when the average distance between particles d is much larger than
the range of the potential between two atoms. Binary interactions
can then be described by a single number, the s-wave scattering
length a. Considering a as a thermodynamic variable, one can
define its thermodynamic conjugate, the so-called Tan’s contact1–9

C � 8πma2

_2
∂E
∂a

; ð1Þ

where the derivative is taken at constant atom number, volume, and
entropy, andm is the mass of an atom. For a pseudo-spin 1/2 Fermi
gas with zero-range interactions, one can show that the conjugate
pair (a, C) is sufficient to account for all possible regimes for the gas,
including the strongly interacting case a≳ d10,11. For a Bose gas, the
situation is more complicated: formally, one needs to introduce also
a parameter related to three-body interactions, and in practice, this
three-body contact can play a significant role in the strongly
interacting regime12–15.

Since the pioneering experimental works of refs. 16,17, the two-
body contact has been used to relate numerous measurable
quantities regarding interacting Fermi gases: the tail of the
momentum distribution, short-distance behavior of the two-body
correlation function, radio-frequency spectrum in a magnetic
resonance experiment, etc. (see refs. 18,19 and references therein).
Its generalization to low-dimensional gases has also been widely
discussed13,20–28. For the Bose gas case of interest here, experi-
mental determinations of two- and three-body contacts are much
more scarce, and concentrated so far on either the quasi-pure
BEC regime29,30 or the thermal one29,31. Here, we use a two-pulse
Ramsey interferometric scheme to map out the variations of the
two-body contact from the strongly degenerate, superfluid case to
the non-degenerate, normal one.

We operate with a uniform, weakly interacting two-
dimensional (2D) Bose gas where the superfluid transition is of
Berezinskii–Kosterlitz–Thouless (BKT) type32,33. For our rela-
tively low spatial density, effects related to the three-body contact
are negligible and we focus on the two-body contact. It is well
known that for the BKT transition, all thermodynamic functions
are continuous at the critical point, except for the superfluid
density34. Our measurements confirm that the two-body contact
is indeed continuous at this point. We also show that the
(approximate) scale invariance in 2D allows us to express it as a
function of a single parameter, the phase-space density D ¼ nλ2,
where n is the 2D density, λ ¼ ð2π_2=mkBTÞ1=2 the thermal
wavelength, and T the temperature. Our measurements around
the critical point of the BKT transition provides an experimental
milestone, which shows the limits of the existing theoretical
predictions in the critical region.

Results
Our ultra-cold Bose gas is well described by the Hamiltonian Ĥ,
sum of the kinetic energy operator, the confining potential, and
the interaction potential Ĥint ¼ aK̂ with

K̂ ¼ 2π_2

m

Z Z
ψ̂yðrÞ ψ̂yðr0Þ δ̂ðr� r0Þ ψ̂ðr0Þ ψ̂ðrÞ d3r d3r0: ð2Þ

Here δ̂ðrÞ is the regularized Dirac function entering in the defi-
nition of the pseudo-potential35 and the field operator ψ̂ðrÞ
annihilates a particle in r. Using Hellmann–Feynman theorem,
one can rewrite the contact defined in Eq. (1) as
C ¼ 8πma2hK̂i=_2.

In our experiment, the gas is uniform in the horizontal xy
plane, and it is confined with a harmonic potential of frequency
ωz along the vertical direction. We choose ℏωz larger than both
the interaction energy and the temperature, so that the gas is
thermodynamically two-dimensional (2D). On the other hand,
the extension of the gas az ¼ ð_=mωzÞ1=2 along the direction z is
still large compared to the 3D scattering length a, so that the
collisions keep their 3D character36. Therefore, the definition (1)
of the contact and the expression (2) of the interaction potential
remain relevant, and the interaction strength is characterized by
the dimensionless parameter ~g ¼ ffiffiffiffiffi

8π
p

a=az � 0:16.
If the zero-range potential δ̂ðr� r0Þ appearing in (2) did not

need any regularization, the contact C would be equal simply to
g2ð0ÞC0 where

C0 � 4ð2πÞ3=2 a
2�nN
az

ð3Þ

sets the scale of Tan’s contact, with �n the average 2D density and
N the atom number. The in-plane two-body correlation function
is defined by g2ðrÞ ¼ h: n̂ðrÞn̂ð0Þ :i=�n2, where n̂ðrÞ is the operator
associated with the 2D density and the average value is calculated
after setting the particle creation and annihilation operators in
normal order. We recall that for an ideal Bose gas, the value of
g2(0) varies from 2 to 1 when one goes from the non-condensed
regime to the fully condensed one37.

It is well known that g2(0) is generally an ill-defined quantity
for an interacting fluid. For example, in a Bose gas with zero-
range interactions, one expects g2(r) to diverge as 1/r2 in 3D and
ðlog rÞ2 in 2D when r→ 012,13. On the other hand, when one
properly regularizes the zero-range potential δ̂ in Eq. (2), Tan’s
contact is well-behaved. In the zero-temperature limit, the mean-
field energy of the 2D gas is E ¼ ð_2=2mÞ~g�nN38, leading to C=
C0. In the large temperature, non-degenerate limit (but still
assuming the s-wave scattering regime), one can use the virial
expansion (see Supplementary Note 4 and ref. 35) to calculate the
deviation of the free energy F(N, A, T, a) of a uniform quasi-2D
gas with N atoms in an area A with respect to the ideal classi-
cal (Boltzmann) gas value. It reads F � FBoltzmann ¼ ð_2=mÞ~g�nN ,
from which the value of the contact C= 2C0 is obtained using
C= (8πma2/ℏ2)(∂F/∂a)N,A,T.

In this work, we determine the contact experimentally by
measuring the change in energy per atom hΔν= ΔE/N when the
scattering length is changed by the small amount Δa. Replacing
∂E/∂a by ΔE/Δa in the definition (1), we obtain

C
C0

� ffiffiffiffiffi
2π

p maz
_�n

Δν

Δa
: ð4Þ

To measure the energy change hΔν resulting from a small
modification of the scattering length, we take advantage of a
particular feature of the 87Rb atom: All scattering lengths aij, with
(i, j) any pair of states belonging to the ground-level manifold,
take very similar values39. For example, ref. 40 predicts a11=
100.9 a0, a22= 94.9 a0 and a12= 98.9 a0, where the indices 1 and
2 refer to the two states 1j i � F ¼ 1;mz ¼ 0j i and 2j i �
F ¼ 2;mz ¼ 0j i used in this work and a0 is the Bohr radius. For
an isolated atom, this pair of states forms the so-called clock
transition at frequency ν0≃ 6.8 GHz, which is insensitive (at first
order) to the ambiant magnetic field. Starting from a gas at
equilibrium in 1j i, we use a Ramsey interferometric scheme to
measure the microwave frequency required to transfer all atoms
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to the state 2j i. The displacement of this frequency with respect to
ν0 provides the shift Δν due to the small modification of scat-
tering length Δa= a22− a11.

The Ramsey scheme consists of two identical microwave pul-
ses, separated by a duration τ1= 10 ms. Their duration τ2 ~ 100
μs is adjusted to have π/2 pulses, i.e., each pulse brings an atom
initially in 1j i or 2j i into a coherent superposition of these two
states with equal weights. Just after the second Ramsey pulse, we
measure the 2D spatial density �n in state 2j i in a disk-shaped
region of radius 9 μm, using the absorption of a probe beam
nearly resonant with the optical transition connecting 2j i to the
excited state 5P3=2; F0 ¼ 3. We infer from this measurement the
fraction of atoms transferred into 2j i by the Ramsey sequence,
and we look for the microwave frequency νm that maximizes this
fraction.

An example of a spectroscopic signal is shown in Fig. 1. In
order to determine the bare transition frequency ν0, we also
perform a similar measurement on a cloud in ballistic expansion,
for which the 3D spatial density has been divided by more than
100 and interactions play a negligible role. The uncertainty on the
measured interaction-induced shift Δν= νm− ν0 is on the order
of 1 Hz. In principle, the precision of our measurements could be
increased further by using a larger τ1. In practice, however, we
have to restrict τ1 to a value such that the spatial dynamics of the
cloud, originating from the non-miscibility of the 1− 2 mixture
(a212 > a11a22), plays a negligible role (Supplementary Note 2). We
also checked that no detectable spin-changing collisions appear
on this time scale: more than 99 % of the atoms stay in the clock
state basis. Another limitation to τ1 comes from atom losses,
mostly due to 2-body inelastic processes involving atoms in 2j i.

For τ1= 10 ms, these losses affect <5% of the total population and
can be safely neglected.

We see in the inset of Fig. 1 that there indeed exists a frequency
νm for which nearly all atoms are transferred from 1j i to 2j i, so
that E(N, a22)− E(N, a11)=N h(νm− ν0) (see the Supplementary
Note 1 for details). We note that for an interacting system, the
existence of such a frequency is by no means to be taken for
granted. Here, it is made possible by the fact that the inter-species
scattering length a12 is close to a11 and a22. We are thus close to
the SU(2) symmetry point where all three scattering lengths
coincide. The modeling of the Ramsey process detailed in Sup-
plementary Note 1 shows that this quasi-coincidence allows one
to perform a Taylor expansion of the energy E(N1,N2) (with N1

+N2=N) of the mixed system between the two Ramsey pulses,
and to expect a quasi-complete rephasing of the contributions of
all possible couples (N1,N2) for the second Ramsey pulse. The
present situation is thus quite different from the one exploited in
ref. 31, for example, where a11 and a12 were vanishingly small. It
also differs from the generic situation prevailing in the spectro-
scopic measurements of Tan’s contact in two-component Fermi
gases, where a microwave pulse transfers the atoms to a third,
non-interacting16 or weakly-interacting state19.

We show in Fig. 2 our measurements of the shift Δν for den-
sities ranging from 10 to 40 atoms/μm2, and temperatures from
10 to 170 nK. Since ℏωz/kB= 210 nK, all data shown here are in
the thermodynamic 2D regime kBT < ℏωz. More precisely, the
population of the ground state of the motion along z, estimated
from the ideal Bose gas model41, is always≳90 %. All shifts are
negative as a consequence of a22 < a11: the interaction energy of
the gas in state 2j i is slightly lower than in state 1j i. For a given
density, the measured shift increases in absolute value with
temperature. This is in line with the naive prediction of
C / g2ð0Þ since density fluctuations are expected to be an

Fig. 1 Ramsey signal. Example of an interferometric Ramsey signal showing
the optical density of the fraction of the gas in state 2j i after the second
Ramsey pulse, as a function of the microwave frequency ν. These data were
recorded for �n � 40 atoms/μm2 and T ~ 22 nK, τ1= 10 ms. Here, τ2 has
been increased to 1 ms to limit the number of fringes for better visibility.
Inset. Filled black disks (resp. open red circles): central fringe for atoms in
2j i (resp. 1j i) in our standard configuration τ2= 0.1 ms. The density in 1j i is
obtained by applying a microwave π-pulse just before the absorption
imaging phase. When atoms are maximally transferred in state 2j i, we
observe no significant population in state 1j i, compatible with a full transfer
induced by the Ramsey pulses. Blue squares: single-atom response
measured during the ballistic expansion of the cloud by imaging atoms in
2j i. The lines in the inset are sinusoidal fits to the data. The vertical error
bars of the inset correspond to the standard deviation of the three
repetitions made for this measurement.

Fig. 2 Frequency shift of the resonance. Variations of the shift Δν with
temperature for various 2D spatial densities. The horizontal error bars
represent the statistical uncertainty on the temperature calibration, except
for the points at very low temperature (10–22 nK). These ultra-cold points
are deeply in the Thomas–Fermi regime, where thermometry based on the
known equation of state of the gas is not sensitive enough. The
temperature is thus inferred from an extrapolation with an evaporation
barrier height of the higher temperature points. The error on the frequency
measurement is below 1 Hz and is not shown in this graph. Inset: Variations
of the shift Δν with density at low temperature T ~ 22 nK, i.e., a strongly
degenerate gas. The straight line is the mean-field prediction corresponding
to Δa=−5.7 a0.
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increasing function of T. Conversely for a given temperature, the
shift is (in absolute value) an increasing function of density.

For the lowest temperatures investigated here, we reach the
fully condensed regime in spite of the 2D character of the sample,
as a result of finite size effects. In this case, the mean-field pre-
diction for the shift reads Δν ¼ �n _ Δa=ð ffiffiffiffiffi

2π
p

mazÞ [i.e., C= C0
in Eq. (4)]. Our measurements confirm the linear variation of Δν
with �n, as shown in the inset of Fig. 2 summarizing the data for
T= 22 nK. A linear fit to these data gives Δa/a0=−5.7 (1.0)
where the error mostly originates from the uncertainty on the
density calibration. In the following, we use this value of Δa for
inferring the value of C/C0 from the measured shift at any tem-
perature, using Eq. (4). We note that this estimate for Δa is in
good agreement with the prediction Δa/a0=−6 quoted in ref. 40.
The first corrections to the linear mean-field prediction were
derived (in the 3D case) by Lee, Huang, and Yang in ref. 42. For
our densities, they have a relative contribution on the order of 5 %
of the main signal (Δν≲ 1 Hz) (Supplementary Note 3), and their
detection is borderline for our current precision.

We summarize all our data in Fig. 3, where we show the
normalized contact C/C0 defined in Eq. (4) as a function of the
phase-space density D. All data points collapse on a single curve
within the experimental error, which is a manifestation of the
approximate scale invariance of the Bose gas, valid for a relatively
weak interaction strength ~g ≲ 143,44.

Discussion
We now compare our results in Fig. 3 to three theoretical pre-
dictions. The first one is derived from the Bogoliubov approx-
imation applied to a 2D quasi-condensate45. This prediction is
expected to be valid only for D notably larger than the phase-
space density at the critical point Dc (see “Methods” section) and
it accounts well for our data in the superfluid region. Within this
approximation, one can also calculate the two-body correlation
function and write it as g2ðrÞ ¼ gT¼0

2 ðrÞ þ gthermal
2 ðrÞ. One can

then show the result (Supplementary Note 3)

C
C0

¼ 1þ gthermal
2 ð0Þ; ð5Þ

which provides a quantitative relation between the contact and
the pair correlation function, in spite of the already mentioned
singularity of gT¼0

2 ðrÞ in r= 0.
For low phase-space densities, one can perform a systematic

expansion of various thermodynamic functions in powers of the
(properly renormalized) interaction strength46, and obtain a
prediction for C (dashed blue line in the inset of Fig. 3). By
comparing the 0th, 1st, and 2nd orders of this virial-type
expansion, one can estimate that it is valid for D≲ 3 for our
parameters. When D ! 0, the result of ref. 46 gives C/C0→ 2,
which is the expected result for an ideal, non-degenerate Bose gas.
The prediction of ref. 46 for D � 3 compares favorably with our
results in the weakly degenerate case.

Finally, we also show in Fig. 3 the results of the classical field
simulation of ref. 47 (red dotted line), which are in principle valid
both below and above the critical point. Contrary to the quantum
case, this classical analysis does not lead to any singularity for 〈n2

(0)〉, so that we can directly plot this quantity as it is provided in
ref. 47 in terms of the quasi-condensate density. For our inter-
action strength, we obtain a non-monotonic variation of C. This
unexpected behavior, which does not match the experimental
observations, probably signals that the present interaction
strength ~g ¼ 0:16 (see “Methods” section and the Supplementary
Note 5) is too large for using these classical field predictions, as
already suggested in ref. 47.

Using the Ramsey interferometric scheme on a many-body
system, we have measured the two-body contact of a 2D Bose gas
over a wide range of phase-space densities. We could implement
this scheme on our fluid thanks to the similarities of the three
scattering lengths in play, a11, a22, a12, corresponding to an
approximate SU(2) symmetry for interactions. Our method can
be generalized to the strongly interacting case aij≳ az, as long as a
Fano-Feshbach resonance allows one to stay close to the SU(2)
point. One could then address the LHY-type corrections at zero
temperature48,49, the contributions of the weakly-bound dimer
state and of three-body contact13,14, or the breaking of scale
invariance expected at non-zero temperature.

Finally, we note that even for our moderate interaction
strength, classical field simulations seem to fail to reproduce our
results, although they could properly account for the measure-
ment of the equation of state itself43,44. The semi-classical treat-
ment of ref. 50 and the quantum Monte Carlo approach of ref. 51

(see also ref. 52) should provide a reliable path to the modeling of
this system. This would be particularly interesting in the vicinity
of the BKT transition point where the usual approach based on
the XY model53, which neglects any density fluctuation, does not
provide relevant information on Tan’s contact. It would allow one
to address the fundamental question raised for example in ref. 26,
regarding the behavior of the contact CðDÞ or its derivatives in
the vicinity of the phase transition, and the possibility to signal
the position of the critical point either by a singularity or at least a
fast variation of Tan’s contact around this point.

Methods
The preparation and the characterization of our sample have been detailed in54,55

and we briefly outline the main properties of the clouds explored in this work. In
the xy plane, the atoms are confined in a disk of radius 12 μm by a box-like
potential, created by a laser beam properly shaped with a digital micromirror
device. We use the intensity of this beam, which determines the height of the
potential barrier around the disk, as a control parameter for the temperature. The
confinement along the z direction is provided by a large-period optical lattice, with
a single node occupied and ωz/(2π)= 4.41 (1) kHz. We set a magnetic field B=
0.701 (1) G along the vertical direction z, which defines the quantization axis. We
use the expression Dc ¼ ln ð380=~gÞ for the phase-space density at the critical point
of the superfluid transition56. Here, ~g ¼ ffiffiffiffiffi

8π
p

a11=az ¼ 0:16 is the dimensionless
interaction strength in 2D, leading to Dc ¼ 7:7. We study Bose gases from the
normal regime (D ¼ 0:3Dc) to the strongly degenerate, superfluid regime
(D> 3Dc).

Fig. 3 Contact measurement. Variations of the normalized Tan ’s contact
C/C0 with the phase-space density D. The encoding of the experimental
points is the same as in Fig. 2. The colored zone indicates the non-
superfluid region, corresponding to D<Dc � 7:7. The continuous black line
shows the prediction derived within the Bogoliubov approximation. Inset:
Zoom on the critical region. The dashed blue line is the prediction from
ref. 46, resulting from a virial expansion for the 2D Bose gas. The dotted red
line shows the results of the classical field simulation of ref. 47.
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Data availability
The data sets generated and analyzed during the current study are available from the
corresponding author on request.
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In atomic systems, clock states feature a zero projection of the total angular momentum and thus a low
sensitivity to magnetic fields. This makes them widely used for metrological applications like atomic
fountains or gravimeters. Here, we show that a mixture of two such nonmagnetic states still displays
magnetic dipole-dipole interactions comparable to the one expected for the other Zeeman states of the same
atomic species. Using high-resolution spectroscopy of a planar gas of 87Rb atoms with a controlled in plane
shape, we explore the effective isotropic and extensive character of these interactions and demonstrate their
tunability. Our measurements set strong constraints on the relative values of the s-wave scattering lengths
aij involving the two clock states.

DOI: 10.1103/PhysRevLett.125.233604

Quantum atomic gases constitute unique systems to
investigate many-body physics thanks to the precision with
which one can control their interactions [1,2]. Usually, in
the ultralow temperature regime achieved with these gases,
contact interactions described by the s-wave scattering
length dominate. In recent years, nonlocal interaction
potentials have been added to the quantum gas toolbox.
Long-range interactions can be mediated thanks to optical
cavities inside which atoms are trapped [3]. Electric dipole-
dipole interactions are routinely achieved via excitation of
atoms in Rydberg electronic states [4]. Atomic species with
large magnetic moments in the ground state, like Cr, Er, or
Dy, offer the possibility to explore the role of magnetic
dipole-dipole interactions (MDDIs) [5]. The latter case has
led, for instance, to the observation of quantum droplets [6],
roton modes [7], or spin dynamics in lattices with off site
interactions [8–10].
For alkali-metal atoms, which are the workhorse of many

cold-atom experiments, the magnetic moment is limited to
≲1 Bohr magneton (μB) and in most cases, MDDIs have no
sizeable effect on the gas properties [11]. However, some
paths have been investigated to evidence their role also for
these atomic species. A first route consists of specifically
nulling the s-wave scattering length using a Feshbach
resonance [12,13], so that MDDIs become dominant. A
second possibility is to operate with a multicomponent (or
spinor) gas [14], using several states from the ground-level
manifold of the atoms. One can then take advantage of a
possible coincidence of the various scattering lengths in
play. When it occurs, the spin-dependent contact interac-
tion is much weaker than the spin-independent one, and
MDDIs can have a significant effect [15], e.g., on the
generation of spin textures [16,17] and on magnon spectra
[18]. In all instances studied so far with these multi-
component gases, each component possesses a nonzero

magnetic moment and creates a magnetic field that
influences its own dynamics, as well as the dynamics of
the other component(s).
In this Letter, we present another, yet unexplored, context

in which MDDIs can influence significantly the physics of a
two-component gas of alkali-metal atoms.We operatewith a
superposition of the two hyperfine states of 87Rb involved in
the so-called hyperfine clock transition, j1i≡ jF ¼ 1; mZ ¼
0i and j2i≡ jF ¼ 2; mZ ¼ 0i, where thequantization axisZ
is aligned with the uniform external magnetic field
[Fig. 1(a)]. For a single-component gas prepared in one of
these two states, the average magnetization is zero by
symmetry andMDDIs have no effect. However, when atoms
are simultaneously present in these two states, we show that
magnetic interactions between them are nonzero, and that the
corresponding MDDIs can modify significantly the position
of the clock transition frequency.
Our Letter constitutes a magnetic analog of the obser-

vation of electric dipole-dipole interactions (EDDIs)
between molecules in a Ramsey interferometric scheme
[19]. There, in spite of the null value of the electric dipole
moment of a molecule prepared in an energy eigenstate, it
was shown that EDDIs can be induced in a molecular gas
by preparing a coherent superposition of two rotational
states. Both in our Letter and in [19], the coupling between
two partners results in a pure exchange interaction, with
one partner switching from j1i to j2i and the other one from
j2i to j1i. This exchange Hamiltonian also appears for
resonant EDDIs between atoms prepared in different
Rydberg states [20].
In spite of their different origin, the physical manifes-

tations of MDDIs in our setup are similar to the standard
ones. Here, we study it for a 2D gas using high-resolution
Ramsey spectroscopy [Fig. 1(b)] and we explicitly test two
important features of dipole-dipole interactions in this
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planar geometry: their effect does not depend on the in plane
shape of the cloud (isotropy), nor on its size (extensivity).
More precisely, we recast the role of MDDIs as a modifi-
cation of the s-wave interspecies scattering length a12 and
show the continuous tuning of a12 by changing the orienta-
tion of the external magnetic field with respect to the atom
plane. We obtain in this way accurate information on the
relative values of intra- and interspecies bare scattering
lengths of the studied states.
We start with the restriction of the MDDIs Hamiltonian

to the clock state manifold [21], using the magnetic
interaction between two electronic spins ŝA and ŝB with
magnetic moments mA;B ¼ 2μBsA;B,

V̂ddðr; uÞ ¼
μ0μ

2
B

πr3
½ŝA · ŝB − 3ðŝA · uÞðŝB · uÞ�; ð1Þ

where r is the distance between the two dipoles and u is the
unit vector connecting them. The calculation detailed in the
Supplemental Material [22] shows that MDDIs do not
modify the interactions between atoms in the same state j1i
or j2i, but induce a nonlocal, angle-dependent exchange
interaction [Figs. 1(c) and 1(d)]. The second-quantized
Hamiltonian of the MDDIs for the clock states is thus

Ĥð1;2Þ
dd ¼ μ0μ

2
B

4π

ZZ
d3rAd3rB

1 − 3 cos2 θ
r3

× Ψ̂†
2ðrAÞΨ̂†

1ðrBÞΨ̂2ðrBÞΨ̂1ðrAÞ; ð2Þ

where the Ψ̂iðrαÞ are the field operators annihilating a
particle in state jii at position rα, r ¼ jrA − rBj, and θ is the
angle between rA − rB and the quantization axis.

We now investigate the spatial average value of Ĥð1;2Þ
dd .

We note first that, for a 3D isotropic gas, the angular

integration gives hĤð1;2Þ
dd i3D ¼ 0, as usual for MDDIs [5].

We then consider a homogeneous quasi-2D Bose gas
confined isotropically in the xy plane with area L2. We
assume that the gas has a Gaussian density profile along the
third direction z, n1;2ðzÞ ¼ N1;2e−z

2=l2z =
ffiffiffi
π

p
lzL2, where

lz ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏ=mωz

p
is the extension of the ground state of

the harmonic confinement of frequency ωz for particles of
mass m, and N1;2 is the atom number in states j1i, j2i. One
then finds [23–25]

hĤð1;2Þ
dd i2D ¼ μ0μ

2
BN1N2

3
ffiffiffiffiffiffi
2π

p
lzL2

ð3 cos2Θ − 1Þ; ð3Þ

where Θ is the angle between the external magnetic field B
and the direction perpendicular to the atomic plane. This
energy is maximal and positive for B perpendicular to
the atomic plane (Θ ¼ 0) and minimal and negative for B in
the atomic plane (Θ ¼ π=2). Equation (3) shows that the
energy per atom in state j1i depends only on the spatial
density N2=L2 of atoms in state j2i, which proves the
extensivity.
In 2D, the Fourier transform of the dipole-dipole

Hamiltonian possesses a well-defined value at the origin
k ¼ 0 [23]. Consequently, for a large enough sample

(typically, L ≫ lz), the average energy hĤð1;2Þ
dd i2D, evalu-

ated by switching the integral (2) to Fourier space, is
independent of the system shape. This contrasts with the
3D case, for which the MDDIs energy changes sign when
switching from an oblate to a prolate cloud [5,26].
Considering the effective isotropy of the MDDIs in
this 2D configuration, it is convenient to describe their
role as a change δa12 of the interspecies scattering length

with respect to its bare value defined as að0Þ12 . In 2D,

interspecies contact interactions lead to hĤð1;2Þ
contacti2D ¼ffiffiffiffiffiffi

8π
p

a12ℏ2N1N2=ðmlzL2Þ and we deduce

δa12ðΘÞ ¼ addð3 cos2Θ − 1Þ; ð4Þ

where add ¼ μ0μ
2
Bm=ð12πℏ2Þ is the so-called dipole length

that quantifies the strength of MDDIs [27].
We now tackle the experimental observation of this

modification of the interspecies scattering length in a quasi-
2D Bose gas. The experimental setup was described in
[30,31]. Basically, a cloud of 87Rb atoms in state j1i is
confined in a 2D box potential: A “hard-wall” potential
provides a uniform in plane confinement inside a 12 μm
radius disk, unless otherwise stated. The vertical con-
finement can be approximated by a harmonic potential

(a)

(c) (d)

(b)

FIG. 1. (a) Level diagram of the hyperfine ground-level mani-
fold showing the two states relevant to this Letter: j1i≡ jF ¼ 1;
mZ ¼ 0i and j2i≡ jF ¼ 2; mZ ¼ 0i. (b) Image of the atomic
cloud obtained through absorption imaging along the direction
perpendicular to the atomic plane. Atoms are confined in the xy
plane in a disk of radius 12 μm. The orientation of the magnetic
field B is tuned in the xz plane. (c) Schematics of atoms prepared
in the state j1i, with no MDDIs in this case. MDDIs are also
absent when all atoms are in j2i. (d) Significant MDDIs occur for
atoms in a linear superposition of j1i and j2i.
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with frequency ωz=2π ¼ 4.4ð1Þ kHz, corresponding to
lz ¼ 160 nm. We operate in the weakly interacting regime
characterized by the dimensionless coupling constant
g̃ ¼ ffiffiffiffiffiffi

8π
p

a11=lz ¼ 0.16ð1Þ, where a11 is the s-wave scat-
tering length for atoms in j1i. The in plane density of the
cloud is n̄ ≈ 95=μm2 and we operate at the lowest achiev-
able temperature in our setup T < 30 nK. A ≈ 0.7 G bias
magnetic field Bwith tunable orientation is fixed during the
experiment.
Spectroscopy is performed thanks to a Ramsey sequence

similar to [32]. Atoms initially in j1i are coupled to state j2i
with a microwave field tuned around the hyperfine splitting
of 6.8 GHz. A first Ramsey pulse with a typical duration
of a few tens of microseconds, creates a superposition of the
two clock states with a tunable weight. After an “inter-
rogation time” TR ¼ 10 ms, a second identical Ramsey
pulse is applied [33]. After this second pulse, we perform
absorption imaging to determine the population in j2i. We
measure the variation of this population as a function of the
frequency of the microwave field, see Figs. 2(a) and 2(b).
We fit a sinusoidal function to the data, so as to determine
the resonance frequency of the atomic cloud. All frequency
measurements Δν are reported with respect to reference
measurements of the single-atom response that we perform
on a dilute cloud. The typical dispersion of the measure-
ment of this single-atom response is about 1 Hz and
provides an estimate of our uncertainty on the frequency
measurements. We checked that the measured resonance
frequencies are independent of TR in the range 5–20 ms.
Shorter delays lead to a lower accuracy on the frequency
measurement. For longer delays, we observe demixing
dynamics [34] between the two components and a modi-
fication of the resonance frequency.
In the following, we restrict to the case of strongly

degenerate clouds [35] described in the mean-field approxi-
mation. Consider first the case of a uniform 3D gas. The
resonant frequency Δν can be computed by evaluating the
difference of mean-field shifts for the two components [32],

Δν ¼ ℏ
m
n½a22 − a11 þ ð2a12 − a11 − a22Þf�: ð5Þ

Here the aij are the inter- and intraspecies scattering
lengths, n ¼ n1 þ n2 is the total 3D density of the cloud
where each component i has a density ni after the first
Ramsey pulse and f ¼ ðn1 − n2Þ=ðn1 þ n2Þ describes the
population imbalance between the two states.
It is interesting to discuss briefly two limiting cases of

Eq. (5). In the low transfer limit f ≈ 1, the first Ramsey
pulse produces only a few atoms in state j2i, imbedded in a
bath of state j1i atoms. Interactions within pairs of state j2i
atoms then play a negligible role, so that the shift Δν does
not depend on a22. It is proportional to ða12 − a11Þ, hence
sensitive to MDDIs. In the balanced case f ¼ 0, the
Ramsey sequence transforms a gas initially composed only
of atoms in state j1i into a gas composed only of atoms in

state j2i. The energy balance between initial and final
states then gives a contribution Δν ∝ ða22 − a11Þ, which is
insensitive to MDDIs.
It is important to note that the validity of Eq. (5) for a

many-body system is not straightforward and requires
some care [36,37]. We discuss in Ref. [38] the applicability
of this approach to our experimental system and show that
it relies on the almost equality of the three relevant
scattering lengths aij of the problem. Note also that in
our geometry, even if the gas is uniform in plane, the
density distribution along z is inhomogeneous and the
spectroscopy measurement is thus sensitive to the inte-
grated density n̄ðx; yÞ ¼ R

dznðx; y; zÞ.
We now discuss the measurement of the frequency shift

Δν as a function of the imbalance f for different orienta-
tions of the magnetic field with respect to the atomic plane,
see Fig. 2(c). For each orientation, we confirm the linear
behavior expected from Eq. (5). The variation of the slope

(a)

(c)

(b)

FIG. 2. (a),(b) Normalized Ramsey oscillations measured for B
perpendicular (Θ ¼ 0°) or parallel (Θ ¼ 90°) to the atomic plane.
For both cases, we show the transferred population as a function
of detuning δ to the single-atom resonance. In each case the
resonance is marked by a vertical dashed line. The circles
(respectively, squares) correspond to a balanced (respectively,
unbalanced) mixture f ¼ 0 (respectively, f ≈ 0.95). Vertical error
bars represent the standard deviation from the two measurements
realized for each points. (c) Variation of the frequency shift Δν
with the imbalance f. We restrict to positive imbalances, for
which the population in j2i remains small enough to limit the role
of two-body relaxation and spin-changing collisions. For each
angle, the solid line is a linear fit to the data.
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dΔν=df for different orientations reflects the expected
modification of a12 with Θ of Eq. (4). More quantitatively,
we fit a linear function to the data for each Θ. The ratio
of the slope to the intercept of this line is RðΘÞ ¼
½a22 þ a11 − 2a12ðΘÞ�=ða22 − a11Þ. Interestingly, this ratio
is independent of the density calibration and is thus a robust
observable.
The evolution of the measured ratio for different angles

is shown in Fig. 3. For Θ ¼ 0° and 90°, we also show the
ratio measured for a density approximately twice as small
as the one of Fig. 2. These two points overlap well with
the main curve, which confirms the insensitivity of R with
respect to n̄. We fit a sinusoidal variation Θ ↦ αþ
β cosð2ΘÞ to RðΘÞ from which we extract α ¼ 0.53ð1Þ
and β ¼ 0.30ð1Þ. We then determine a22 − a11 ¼ −3add=β
and að0Þ12 −a11¼addð3α−3−βÞ=ð2βÞ. Using add¼0.70a0,
with a0 the Bohr radius, we find a22 − a11 ¼ −7.0ð2Þa0
and að0Þ12 − a11 ¼ −2.0ð1Þa0. These results are in good
agreement with the values predicted in [39], a11 ¼
100.9a0, a22 − a11 ¼ −6.0a0, and að0Þ12 − a11 ¼ −2.0a0.
All experiments described so far have been realized with

a fixed disk geometry. As stated above, the description of
the contribution of MDDIs as a modification of the
interspecies scattering length relies on the effective isotropy
of the interaction in our 2D system. We investigate
this issue by measuring the frequency shift of the clock
transition for an in plane magnetic field orientation

(Θ ¼ 90°), which breaks the rotational symmetry of the
system. We operate with a fixed density (n̄ ≈ 80=μm2) and
a varying elliptical shape. We choose a large imbalance
f ≈ 0.95 to have the highest sensitivity to possible mod-
ifications of a12. We define an anisotropy parameter
η ¼ ðRy − RxÞ=ðRx þ RyÞ for the ratio of the lengths Rx

and Ry of the two axes of the ellipse. We report in Fig. 4 the
measured shifts as a function of η and confirm, within our
experimental accuracy, the independence of the MDDIs
energy with respect to the cloud shape. We have also
investigated the influence of the size of the cloud on Δν
(inset of Fig. 4). Here we choose a disk-shaped cloud and
a magnetic field perpendicular to the atomic plane. We
observe no detectable change ofΔνwhen changing the disk
radius from 8 to 18 μm, which confirms the absence of
significant finite-size effects.
In conclusion, thanks to high-resolution spectroscopy we

revealed the non-negligible role of magnetic dipolar inter-
actions between states with a zero average magnetic
moment. We observed and explained the modification of
the interspecies scattering length in a two-component
cloud. Because of the smallness of MDDIs for alkali-metal
atoms, we did not observe any modification of the global
shape of the cloud. This contrasts with the case of single-
component highly magnetic dipolar gases where the shape
of a trapped gas has been modified with a static [40–42]
or time-averaged-field [11,43]. Nevertheless, the effect
observed here provides a novel control on the dynamics
of two-component gases. For example, the effective inter-
action parameter between two atoms in state j2i mediated
by a bath of atoms in state j1i can be written as

FIG. 3. Variation of the ratio RðΘÞ determined from the data of
Fig. 2(c) with the magnetic field orientation Θ. Blue circles
(respectively, red squares) correspond to the measurement at
maximum density (respectively, half density). The variation of
this ratio is well fitted by a cosine variation compatible with the
prediction for MDDIs. The amplitude and offset of this variation
allow one to determine accurately relative values of the scattering
lengths. Vertical error bars represent the uncertainty obtained
from the fitting procedure of the data in Fig. 2. The uncertainty on
the determination of the angles is limited by the geometrical
arrangement of the coils generating the field B, estimated here at
the level of 1°.

FIG. 4. Interaction shift Δν as a function of the anisotropy
parameter η. For a fixed density and an in plane magnetic field,
we vary the anisotropy of the elliptically shaped 2D cloud. No
dependence on the shape of the cloud is observed, in agreement
with the expected isotropic character of MDDIs in 2D when
Rx;y ≫ lz. Vertical error bars represent the estimated 1 Hz
accuracy on the determination of the single-atom resonance
frequency. Inset: interaction shift as a function of the size of
the cloud, for B normal to the atom plane.
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g̃eff22 ¼ g̃22 − g̃212=g̃11, where g̃ij ¼
ffiffiffiffiffiffi
8π

p
aij=lz [44]. With

our parameters, we achieve a variation by a factor 7 of
g̃eff22 , which will lead to important modifications of polaron
dynamics. Similarly, it can be exploited to tune the
miscibility of mixtures or the dynamics of spin textures.
The distance to the critical point for miscibility, whose
position is given by g̃22g̃11 ¼ g̃212, is also strongly sensitive
to a variation of g̃12. For instance, the length scale of spin
textures appearing in phase separation dynamics of a
balanced mixture will be modified, for our parameters,
by a factor of almost 3 when Θ is switched from 0° to 90°
[34]. In addition, one can exploit the nonlocal character of
MDDIs by confining the atoms in a deep lattice at unit
filling, where the exchange coupling evidenced here will
implement the so-called quantum XX model [45] without
requiring any tunneling between lattice sites. The extreme
sensitivity of the clock transition and its protection from
magnetic perturbations will then provide a novel, precise
tool to detect the various phases of matter predicted within
this model.

This work is supported by ERC (Synergy UQUAM),
European Union's Horizon 2020 Programme (QuantERA-
NAQUAS project), and the ANR-18-CE30-0010 grant. We
thank F. Pereira dos Santos, M. Zwierlein, and P. Julienne
for stimulating discussions. We acknowledge the contri-
bution of R. Saint-Jalm at the early stage of the project.

*beugnon@lkb.ens.fr
[1] C. Chin, R. Grimm, P. Julienne, and E. Tiesinga, Feshbach

resonances in ultracold gases, Rev. Mod. Phys. 82, 1225
(2010).

[2] I. Bloch, J. Dalibard, and W. Zwerger, Many-body physics
with ultracold gases, Rev. Mod. Phys. 80, 885 (2008).

[3] K. Baumann, C. Guerlin, F. Brennecke, and T. Esslinger,
Dicke quantum phase transition with a superfluid gas in an
optical cavity, Nature (London) 464, 1301 (2010).

[4] R. Löw, H. Weimer, J. Nipper, J. B. Balewski, B. Butscher,
H. P. Büchler, and T. Pfau, An experimental and theoretical
guide to strongly interacting Rydberg gases, J. Phys. B 45,
113001 (2012).

[5] T. Lahaye, C. Menotti, L. Santos, M. Lewenstein, and
T. Pfau, The physics of dipolar bosonic quantum gases,
Rep. Prog. Phys. 72, 126401 (2009).

[6] I. Ferrier-Barbut, H. Kadau, M. Schmitt, M. Wenzel, and T.
Pfau, Observation of Quantum Droplets in a Strongly
Dipolar Bose Gas, Phys. Rev. Lett. 116, 215301 (2016).

[7] L. Chomaz, R. M.W. van Bijnen, D. Petter, G. Faraoni, S.
Baier, J. H. Becher, M. J. Mark, F. Waechtler, L. Santos, and
F. Ferlaino, Observation of Roton mode population in a
dipolar quantum gas, Nat. Phys. 14, 442 (2018).

[8] A. de Paz, A. Sharma, A. Chotia, E. Maréchal, J. H.
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Abstract
We demonstrate the arbitrary control of the density profile of a two-dimensional Bose gas by
shaping the optical potential applied to the atoms. We use a digital micromirror device (DMD)
directly imaged onto the atomic cloud through a high resolution imaging system. Our
approach relies on averaging the response of many pixels of the DMD over the diffraction spot
of the imaging system, which allows us to create an optical potential with an arbitrary intensity
profile and with micron-scale resolution. The obtained density distribution is optimized with a
feedback loop based on the measured absorption images of the cloud. Using the same device,
we also engineer arbitrary spin distributions thanks to a two-photon Raman transfer between
internal ground states.

Keywords: quantum gases, spatial light modulator, spin textures

(Some figures may appear in colour only in the online journal)

1. Introduction

Ultracold quantum gases are ideal platforms to study physi-
cal phenomena, thanks to their high flexibility and their isola-
tion from the environment. They are widely used for quantum
simulations [1] and metrological applications [2]. Various trap
geometries have been realized to confine atomic clouds. His-
torically, harmonic confinements have been the norm in cold
atom experiments due to their ease of implementation [3, 4].

4 These authors contributed equally to this work.
∗ Author to whom any correspondence should be addressed.

The recent realization of uniform systems opened new per-
spectives to explore the thermodynamic properties and dynam-
ical behavior of quantum gases [5–8]. Other trap potentials
have been applied to explore physics in specific geometries,
such as supercurrents in ring potentials [9–12], analog sonic
black holes in more complex potentials [13], and low-entropy
phases in lattice systems [14].

In the past years, several approaches have been developed
to generate complex optical potential profiles [15–22]. Most
of them rely on the development of spatial light modula-
tors, which can modulate the phase or the intensity of a light
beam. Digital micromirror devices (DMDs) are one of the most
widely used in cold atom experiments thanks to their low cost,
simple use and high refresh rates. They consist of millions of
individual micromirrors which can be set in two different ori-
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Figure 1. Sketch of the experimental setup for arbitrary density
control. Two DMDs are used to project an optical potential onto the
atoms with a high NA microscope objective (objective 1). Both of
them are illuminated by a blue-detuned 532 nm laser. DMD1
provides the hard-wall potential, while DMD2 adds an additional
potential for density control. The light fields from the two DMDs are
mixed on a polarizing beam splitter with orthogonal polarizations so
that they do not interfere with each other. The atoms are imaged
onto the camera with a second identical objective (objective 2). We
use absorption imaging to measure the 2D density profiles on a CCD
camera.

entations, hence corresponding to a ‘black’ or ‘white’ signal in
a chosen image plane of the DMD chip. They have been used to
correct optical aberrations when working as a programmable
amplitude hologram in a Fourier plane [23], and to produce
different potential profiles by direct imaging [21, 24–26].

In this article, we demonstrate arbitrary control of the den-
sity profile of two-dimensional (2D) Bose gases by tailoring
the in-plane trapping potential using DMDs. We program a
pattern on the DMD chip and simply image it onto the atomic
cloud. The limitation due to the binary status of the DMD pix-
els (black or white) is overcome by realizing a spatial average
of the response of ∼25 pixels over the point spread function of
the imaging system. This gives us access to several levels of
grey for the optical potential at a given position in the atomic
plane. The DMD pattern is computed thanks to an error diffu-
sion algorithm combined with a feedback loop to directly opti-
mize the measured atomic density distribution. The method is
proved to be efficient and robust to optical imperfections. In
addition, we demonstrate the realization of arbitrary spin dis-
tributions with the same protocol by using spatially resolved
two-photon Raman transitions.

2. Apparatus and main results

We work with a degenerate 2D Bose gas of 87Rb atoms. The
main experimental setup has been described previously in
[27, 28]. Briefly, about 105 Rb atoms in the F = 1, m = 0
hyperfine ground state are loaded into a 2D box potential.
The vertical confinement is provided by a vertical lattice. All
atoms are trapped around a single node of the lattice in an
approximately harmonic potential with a measured trap fre-

quency ωz/2π = 4.1(1) kHz. The in-plane trap is provided
by a hard-wall potential created by a first DMD (DMD1 in
the following)5. All laser beams used for creating the 2D
box potential have a wavelength of 532 nm and thus repel
Rb atoms from high intensity regions. The cloud temperature
is controlled by lowering the in-plane potential height, thus
enabling evaporative cooling. We reach temperatures below
30 nK and an average 2D atom density of ∼80 μm−2, corre-
sponding to a regime where the cloud is well described by the
Thomas–Fermi approximation. Both the interaction energy
and thermal energy are smaller than the vertical trapping fre-
quency and the atom cloud is thus in the so-called quasi-2D
regime.

We show in figure 1 a sketch of the experimental setup
for arbitrary density control. We modify the density distribu-
tion by using another DMD (DMD2) to impose an additional
repulsive optical potential to the hard-wall potential made by
DMD1. The pattern on DMD2 is imaged onto the atomic
plane thanks to an imaging system of magnification ≈1/70.
The pixel size of DMD2 is 13.7 μm, leading to an effective
size of 0.2 μm in the atomic plane. The numerical aperture
(NA ∼ 0.4) is limited by a microscope objective above the
vacuum glass cell containing the atoms and leads to a spatial
resolution around 1 μm. Consequently, the area defined by the
diffraction spot of the imaging system typically corresponds to
a region where 5 × 5 pixels of DMD2 are imaged, which makes
possible the realization of grey levels of light intensity. DMD2
is illuminated by a blue-detuned 532 nm laser with a waist of
w ∼ 55 μm in the atomic plane. The intensity of the beam is
set to provide a maximum repulsive potential around 2μ where
μ is the chemical potential of the gas for a density of 80 μm−2.
The potential is added before the final evaporation stage in the
box potential.

The 2D atomic density profile is obtained by absorption
imaging with a second identical microscope objective placed
below the glass cell. This imaging system has a similar opti-
cal resolution and the effective pixel size of the camera in
the atomic plane is 1.15 μm. We probe the atoms in the trap
using a 10 μs pulse of light on the D2 line resonant between
the F = 2 ground state and the F′ = 3 excited state. Before
detection, a microwave pulse is applied to transfer a controlled
fraction of atoms into the ground level from F = 1, m = 0
to F = 2, m = 0, which thus absorbs light from the imaging
beam. The transferred fraction is controlled so that the mea-
sured optical depth (OD) is always smaller than 1.5 to reduce
nonlinear imaging effects.

Figure 2 presents a selection of 2D density profiles
realized in our experiment. For each example, we show
in figures 2(a)–(d) averaged absorption images and in
figures 2(e)–(h) the corresponding mean OD integrated along
one or two spatial directions. Figure 2(a) shows a uniform pro-
file in which we have corrected the inhomogeneities caused by
residual defects of the overall box potential created by the com-
bination of DMD1 and vertical lattice beams. Figures 2(b)–(d)

5 All DMDs used in this work are DLP7000 from Texas Instruments and
interfaced by Vialux GmbH.
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Figure 2. Various density profiles realized in our experiment. From left to right, we show a uniform profile and linearly varying density
profiles along x, along the radial direction and along the azimuthal direction. (a)–(d) Averaged absorption images (50, 99, 50, 20 shots
respectively). (e)–(h) Corresponding OD profiles integrated over one direction (x and y in (e) and (f), azimuthal in (g) and radial in (h)). The
solid lines represent the OD profiles of the target density distributions. Error bars show the statistical error corresponding to one standard
error of the mean.

Figure 3. (a) Diagram of the iterative algorithm. (b) Example of
grey-level profile Gn obtained during the optimization loop used to
create the linearly varying profile shown in figure 2(b).
(c) Corresponding dithered image computed with the error diffusion
algorithm and programmed on the DMD. The grey level ranges from
0 to 1, with an effective pixel size of 1.15 μm equal to the one of the
absorption image. The DMD pattern is binary with an effective pixel
size of 0.2 μm.

correspond to linearly varying density distributions respec-
tively along the x direction, along the radial direction and along
the azimuthal direction.

3. Detailed implementation

One could naively think that for a given target density pro-
file, the suitable pattern on DMD2 could be directly computed
and imaged onto the atoms. However, several features prevent
such a simple protocol. First, the DMD is a binary modulator.
Then, for a finite number of pixels, it is not possible to create
an arbitrary grey-level pattern with perfect accuracy. Here, we
use the well-known error diffusion technique to generate the
binary pattern for a given grey-level profile [29, 30] (see the
appendix for a short description). Second, the imaging system
from DMD2 to the atoms has an optical response that leads to
a modification of the ideal image, mainly because of the finite
aperture of the optical elements. Third, any imperfection on the
optical setup (inhomogeneity of the laser beam, optical aber-
rations. . . ) also degrades the imaging of the DMD pattern onto
the atomic cloud. Finally, the atomic density distribution is
obtained through absorption imaging, which adds noise mostly
coming from the photonic shot noise induced by the imaging
beam. Hence, an iterative method is needed to obtain the opti-
mal DMD pattern that gives a density distribution as close as
possible to the target. The working principle of the optimiza-
tion loop is simply to add (remove) light at the positions where
there are more (fewer) atoms than the target until the density
profile converges to the target one.

Figure 3(a) shows the steps of the iterative loop. The
basic idea of each step n consists in computing the difference
between the measured density distribution An and the target
image Tn, and adding it with a suitable gain K to the previous
grey-level intensity profile Gn. This gives the grey-level profile
of iteration n + 1 (see figure 3(b)),

Gn+1 = Gn + K(An − Tn), (1)
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Figure 4. Convergence of the iterative algorithm. (a) Plot of Fm, Nd

and F with iteration number. Target profile is a linear density
distribution along x in a square box (of figure 2(b)). F converges
very fast and stays around 0.06 after iteration 6. Nd decreases
suddenly at iteration 8 and 15 because Na (number of absorption
images for averaging) changes from 5 to 10 at iteration 8 and to 99
at iteration 15. For Fm, we show the estimated statistical error bars
to give an illustrative indication of our typical uncertainties. These
error bars are obtained from a bootstrap approach on the different
repetitions of the experiment in the same conditions. (b) For the last
iteration (iteration 15), we plot Fm, Nd and F versus the number of
images Na used for averaging. Both Fm and Nd decrease with Na
while F does not depend on Na. (c) Evolution of F for different K′

0s.

which is then discretized thanks to the error diffusion
algorithm (see figure 3(c)) and imaged onto the atoms. Besides
this general idea, we detail below some specific features of our
loop:

• We initialize the optimization with a grey-level profile G0

which can either be uniformly 0 or 1.
• To avoid border effects, we select on the absorption

images a region slightly inside the box potential (two pix-
els smaller in each direction) for density control and we
extrapolate the grey-level profile Gn outside the box. The
extrapolation is done by simply duplicating the value of
the outermost pixels of Gn by three more pixels along each
side for a square box or along the radial direction for a
disk.

• The image An of the density distribution is obtained from
the average of several repetitions of the experiment with

the same parameters to limit the contribution of detection
noise.

• The measured image of the atomic distribution is convo-
luted with a Gaussian function of rms width 1 pixel of the
camera of the imaging system. This convolution acts as a
low pass filter which reduces high spatial frequency noise,
especially detection noise.

• Considering the Gaussian shape of the beam illuminated
on DMD, we choose K to be position dependent K(x, y) =

K0 × e
2[(x−x0)2+(y−y0)2]

w2 , where w is the waist of the beam
in the atomic plane and x0 and y0 are the coordinates
of the center of the beam. It makes the effective gain
approximately the same for all the pixels.

• At each iteration, we rescale the amplitude of the target
profile to obtain the same mean OD as the one of An. This
avoids taking into account errors coming from the shot-
to-shot variation of the atom number which would lead
to a global error that we are not interested in. Note that
this variation is smaller than 10% during the optimization
loop.

4. Characterization of the loop

We stop the optimization loop when the measured density
distribution has converged to the target one, up to a prede-
fined precision. To estimate the deviation from the target, we
define a figure of merit Fm corresponding to the measured
root-mean-square deviation:

Fm =

√
Npix

∑
(i, j)∈A(OD(i, j) − ODT (i, j))2

(
∑

(i, j)∈AOD(i, j))2
, (2)

where A is the region of interest containing Npix pixels and
OD(i, j) (resp. ODT(i, j)) is the measured average OD (resp.
target OD). The value of the figure of merit Fm results from
two kinds of contributions. Obviously, there is the actual devi-
ation of the density distribution from the target. In addition,
several features of the measurement method give an unde-
sired contribution to Fm. Indeed, thermal fluctuations of the
atomic cloud, projection noise due the partial transfer imag-
ing discussed above and photonic shot noise in absorption
imaging lead to unavoidable residual noise. For our parame-
ters, we computed in a separate work that the two dominant
mechanisms are photonic and projection noise with a similar
weight, whose exact values depend on the studied density dis-
tribution. In the low temperature regime explored here thermal
fluctuations are almost negligible.

The contributions coming from photonic shot noise and
projection noise can be reduced by averaging more images.
However, for the typical repetition rate of our experiment (∼
30 s), the number of averaged images has to be limited to a few
tens for realistic applications. To characterize the optimization
loop, we compute this noise contribution Nd so as to remove it
from the measured Fm. We directly estimate Nd from the set of
images taken with the same parameters by computing the dis-
persion of the measured absorption images from the averaged
image,
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Nd =

√
Npix

∑
k

∑
(i, j)∈A(ODk(i, j) − OD(i, j))2

N2
a (

∑
(i, j)∈AOD(i, j))2

, (3)

where the index k refers to the kth absorption image among
the Na pictures taken for the average. We thus define the
corrected figure of merit:

F =
√

F2
m − N 2

d , (4)

which quantifies the distance of the density profile from the
target while removing measurement noise.

In figure 4(a), we show the evolution of Fm, Nd and F as
a function of the number of iterations in the example case of a
linear profile in a square box (as shown in figure 2(b)). We ini-
tialize the loop with a grey-level profile equal to zero and we
choose K0 = 0.2. The number of pictures which are averaged
is 5 for the first 7 iterations, 10 up to iteration 14 and 99 for
the last iteration. This leads to clear jumps of Nd with the iter-
ation number. Interestingly, we see that F converges almost
monotonously to about 0.06 after the first 6 iterations and then
stays approximately constant whatever the value of Na is. This
indicates that the contribution of measurement noise is well
subtracted. This is confirmed in figure 4(b), where we plot Fm,
Nd and F as a function of Na using the data of the final itera-
tion of figure 4(a). As expected, both Fm and Nd decrease with
Na while F does not change.

We also studied the behavior of the iterative loop with dif-
ferent K′

0s varying from 0.1 to 0.6. The convergence of F is
plotted in figure 4(c). The iterative algorithm works well for
a large range of values of K0. We observe that increasing K0

speeds up the convergence, but too large values of K0 lead
to strong local variations in the measured images. In prac-
tice, for most target distributions, we use K0 = 0.2 as a good
compromise between these two trends.

In the appendix, we study through simple numerical simu-
lations the remaining limitations that contribute to the exper-
imentally obtained F . The main limitation comes from the
number of iterations used in the experiment (∼15). We show
that the figure of merit F decreases slowly down to ∼0.02
for larger iteration numbers but reaching such a limit would
require prohibitively long experimental times.

5. Arbitrary spin distribution

Using a similar protocol, we also demonstrate arbitrary spin
distributions by shaping a pair of copropagating Raman beams
which couple the |F = 1, m = 0〉 (|1〉) and |F = 2, m = 0〉
(|2〉) states by a two-photon Raman transition. The two Raman
beams originate from the same laser and have a wavelength
of ∼790 nm, in between the D1 and D2 line of 87Rb atoms.
One beam is frequency shifted with respect to the other by
∼6.8 GHz to fulfill the two-photon resonance between the
two states. The two beams are coupled into the same single-
mode optical fiber with orthogonal linear polarizations. After
reflection on a third DMD (DMD3, not shown in figure 1)
they are overlapped with the two beams coming from DMD1
and DMD2 and are imaged onto the atomic plane with a
magnification of ≈1/40 and a waist of 40 μm.

Figure 5. Imprinting a spatial spin texture. We show the density
distribution of atoms in |2〉 immersed in a bath of atoms in |1〉.
The total density of the gas is uniform in a 20 μm radius disk
(∼ 80 μm−2, corresponding to OD ∼ 8). The main figures show the
radial profiles of component |2〉 in semilog scale for (a) a Gaussian
profile and (b) a solitary Townes profile. The solid lines are the
target radial profiles. Error bars show the statistical error
corresponding to one standard error of the mean. Insets show the
corresponding averaged absorption images (20 shots). The dashed
lines represent the edges of the bath of atoms in |1〉.

Starting from a cloud of atoms in state |1〉 of uniform den-
sity, we pulse the Raman beams with a duration of a few tens
of μs to coherently transfer a controlled fraction of atoms to
state |2〉. In this protocol, the total density of the cloud remains
uniform. We then image the density distribution of atoms in
state |2〉 prior to any spin dynamics and apply an optimization
protocol identical to the one developed for creating arbitrary
density distributions. We show in figure 5 two examples of
spin profiles realized in our system at the end of the optimiza-
tion loop: a Gaussian profile (figure 5(a)) and the so-called
Townes profile (figure 5(b)), which is a solitonic solution of the
2D attractive non-linear Schrödinger equation that decreases
almost exponentially with r at large r [31]. The measured pro-
files are very close to the target over typically two orders of
magnitude in density.

6. Discussion and outlook

In conclusion, we have demonstrated the arbitrary control of
the density profile of an ultracold 2D quantum gas by tai-
loring a repulsive optical potential. We have also demon-
strated the arbitrary creation of spin textures using spatially
resolved Raman transitions. An iterative method was applied,
making the method robust to technical imperfections. The
approach described here can be straightforwardly applied to
other atomic species. It opens new possibilities for studying the
dynamics of single or multi-component low-dimensional gases
where, for instance, the presence of scale-invariance or inte-
grability leads to a rich variety of non-trivial time evolutions
[32–35].
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Appendix A

A.1. Error diffusion algorithm

We briefly recall in this paragraph the main features of the error
diffusion algorithm, which we use to compute the pattern pro-
grammed on the DMD. Error diffusion is used to convert a
grey-level image where each pixel takes arbitrary values into
an image with only zeros and ones. Starting for instance from
the top left pixel of the image, one chooses the status of the cor-
responding DMD pixel by rounding to 0 or 1 the targeted grey
level . This binary choice results in an error which is ‘diffused’
to the remaining neighboring pixels with a given weight. In
this work, we use the method developed in reference [29]. We
process the pixels from left to right and from top to bottom.
The error made when choosing the state of a pixel (denoted by
a � in equation (5)) is diffused to its first right neighbor and
the three nearest neighbors of the following line with weights
given by

⎛
⎜⎝

− �
7
16

. . .

. . .
3
16

5
16

1
16

. . .

⎞
⎟⎠ . (5)

A.2. Simulations

In this section, we simulate the experiment to understand
the various contributions to the obtained value of the figure
of merit F for the density correction. In the simulation,
we start with a ‘test’ density profile A0, which is obtained
from an experiment with DMD2 being off. It is an averaged
image of 100 experimental shots so that the detection noise
is mostly averaged out. We follow the same procedure which
was described in figure 3(a) but in a ‘numerical experiment’.
We simulate the action of the potential shaped by the DMD by
using the local density approximation in the Thomas–Fermi
regime. Thus, for each iteration n of the loop we compute the
density profile as

An = A0 − αCn, (6)

where Cn is the light intensity profile given by the DMD pat-
tern after a convolution step that simulates the finite numerical
aperture of the optical system. We use here a Gaussian profile
with an rms width σ = 0.5 μm. The parameter α is introduced
to represent the effect of the light potential on the atomic den-
sity. We use as an input to the simulation experimental images
of the OD distribution (OD ∼ 1) and we choose α = 2 to be
as close as possible to the calibrated experimental parameters.
We add an offset to An to keep the mean OD constant. We also
have the possibility to add some noise to An to simulate the
experimental fluctuations.

We show in figure 6 the simulated evolution of F as a func-
tion of the iteration number. The target is a linear profile along
the x direction, same as the one studied in figures 2(b) and 4.
The blue and red curves show the simulated results with the
parameters used in the experiment: K0 = 0.2 and the absorp-
tion image is convolved with a Gaussian function of an rms
width 1 pixel. For the blue curve, we add independently on
each pixel of An a Gaussian noise corresponding to Nd = 0.09,

Figure 6. Numerical simulation of the experiment. Evolution of F
as a function of iteration number with (blue) or without (red) noise.
The target distribution is a linear density profile along x. The
diamond corresponds to the number of iterations used in figure 4(a).
The inset shows the same curves at large iteration number.

which is the typical noise obtained in the experiment for the
average of 10 repetitions of the sequence. For the red curve,
no detection noise is added, i.e. Nd = 0. The marker on the red
curve corresponds to the point when the iterative loop is ter-
minated for the experimental data shown in figure 4(a). Here,
F = 0.046, in qualitative good agreement with the obtained
experimental value of 0.06.

We finally discuss the limitations to the obtained figure of
merit. We show in the inset of figure 6 the evolution of the
figure of merit at large iteration number. Better values (∼0.02)
are obtained for larger number of iterations (∼600) but with a
slow convergence largely hidden by the typical experimental
noise. This regime is not reachable in practice with our typical
experimental cycle time. The residual value could be explained
by the filtering made when convolving the absorption image
and also by the residual defects coming from the error diffusion
protocol.
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