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Frobenius norm, 2,0 -norm, and Mode-m product X (q) q-mode matricization of X While this stability is fundamental, it needs a constant and precise regulation of vital organs by the brain. During a General Anesthesia (GA), a part of this stability is undermined by anesthetics. As a result, anesthesiologists must support some vital functions such as the respiratory system. The objective of a tailored anesthesia is twofold: (i) to avoid excessively deep narcosis, associated with a higher risk of post-operative cognitive dysfunction and delayed awakening, (ii) to prevent under dosing, which is associated with a risk of memorization. To that end, anesthesiologists need to infer, in real-time, the level of consciousness of the patient, also referred to as the Depth of Anesthesia (DoA). Since recently, they can rely on a wide range of physiological variables monitored with a large number of sensors. This remarkable change in the medical eld is allowed by the stunning progression of sensors and their systematic use. As a direct consequence, a large amount of signals and time-series is becoming available. Well-known examples of such signals are ElectroCardioGrams (ECG) signals, ElectroEncephaloGrams (EEG) signals, and all physiological variables. This change is particularly noticeable in clinical anesthesia where there was a very limited amount of data until recently. The main question now is how mathematics can help us to transit from all these multivariate raw signals to actionable data and knowledge. This is even more crucial, as this subject of interest at the crossroads of medical and mathematical disciplines may lead to important bene ts in the treatments of patients but also in our understanding of human physiology.

Collaboration with the medical unit of the Centre Borelli. During this thesis, I collaborated with the medical unit of the Centre Borelli (ex Cognac-G). This center is a research team regrouping mathematicians (statisticians, machine learning specialists, etc.) and medical researchers, gathered around the quanti cation of human behavior. In particular, I worked in close collaboration with M.D. Clément Dubost, head of the intensive care unit at the "Hôpital d'Instruction des Armées Bégin". Together, we put a lot of e ort into designing a complete protocol -from the recording chain to data analysis -in order to jointly propose useful mathematical methods to study patients under anesthesia. In the past, the Centre Borelli has already developed several experimental protocols for a wide range of clinical problems from human locomotion to infants' eye movements. The quanti cation of the phenomenon of interest has always been made through the analysis of physiological signals recorded with several sensors. The rst objective being to extract the relevant information from these signals to understand the physiological mechanisms that produced them. The second objective being to automatize the quanti cation process in order to provide tools that can be used routinely by practitioners.

Motivations

2.1 From data to knowledge by leveraging multivariate structures

Rethinking medicine through its transition into the next-generation cannot be done without signi cant changes in the way we analyze medical data. Indeed, data sets from current investigations are often much larger, and more complicated, than those of earlier days. This phenomenon is partly due to the democratization of cheap, and easy-to-manipulate sensors, but is also explained by the current leading habit which is to collect any available data from patients in view of a better understanding of di erent physiological phenomenons. Consequently, multiple signals such as ECG, or EEG signals, are now recorded on an almost daily basis. Their wide diversity and their substantial volume inevitably necessitate vast improvements in data storage, manipulation, as well as advances in analytical methods. To e ciently analyze these data, several approaches were taken. At rst, the trend was to emphasize univariate data analysis with models including a single output variable. In particular, they focused on how to integrate prior knowledge about data, either by making hypotheses on the class of models to restrict their complexity, or through constraints and regularizations. A classical example illustrating both forms is the ridge regression rst proposed by [START_REF] Tikhonov | On the solution of ill-posed problems and the method of regularization[END_REF]. Here, a linear model is assumed in the features and a 2 regularization i.e. a smoothness assumption, is added to avoid too large parameters. Another important example is the lasso regression [START_REF] Tibshirani | Regression shrinkage and selection via the lasso[END_REF] where a 1 regularization i.e. a sparsity assumption, is added to induce only few non zero parameters. Other class of models also o er interesting alternatives to add prior knowledge on the structure of some signals. This is for example the case of shift-invariant, or convolutional representations [Garcia-Cardona and Wohlberg, 2018a], which treat a signal as a linear decomposition into few local atoms/patterns. They extract recurrent non-sinusoidal patterns and lead to the discovery of local structures in a set of non-stationary signals like time series, i.e. recordings with a temporal dimension [START_REF] Lewicki | Coding time-varying signals using sparse, shift-invariant representations[END_REF][START_REF] Grosse | Shift-invariant sparse coding for audio classi cation[END_REF].

While all these ideas have led to both theoretical and practical advances, there is an inevitable gap between what is being proposed for the univariate case and what we can expect from well-de ned statistical models. Indeed, the output signals are often multivariate (also called multi-way [START_REF] Escandar | Second-and higher-order data generation and calibration: a tutorial[END_REF]), and the relations between their variables, or dimensions, must be considered if we want to analyze them adequately. To ll this gap, the statistical and machine learning communities -among others-have placed great emphasis on multivariate analysis through techniques that allow e.g. the presence of more than one output variable [START_REF] Van Steen | Multivariate and multidimensional analysis[END_REF][START_REF] Hidalgo | Multivariate or multivariable regression?[END_REF]. The rst natural step to go beyond the univariate case is to consider the bivariate case i.e. matrix-valued data. Many strategies have been proposed to incorporate relations between the di erent dimensions of such data, highlighting what a multivariate analysis can bring in term of performance and interpretability. Indeed, the bivariate case allows us to consider previously unavailable properties and structures. This is the case of the low-rank structure leveraged in multiple methods such as low-rank Principal Component Analysis (PCA) [START_REF] Vidal | Generalized Principal Component Analysis[END_REF], matrix recovery [START_REF] Fazel | Matrix rank minimization with applications[END_REF][START_REF] Rohde | Estimation of high-dimensional low-rank matrices[END_REF], and matrix completion [START_REF] Candès | Exact matrix completion via convex optimization[END_REF][START_REF] Koltchinskii | Nuclear-norm penalization and optimal rates for noisy low-rank matrix completion[END_REF][START_REF] Negahban | Estimation of (near) low-rank matrices with noise and high-dimensional scaling[END_REF][START_REF] Recht | A simpler approach to matrix completion[END_REF]. The combination of both low-rank and sparsity structures also appeared relevant in a number of models. Depending on the combination (see Figure 1.1), it gives rise to more robust and interpretable methods such as sparse PCA [START_REF] Zou | Sparse principal component analysis[END_REF], subspace clustering [START_REF] Vidal | Subspace clustering[END_REF][START_REF] Udell | Generalized low rank models[END_REF]Hae ele and Vidal, 2019], and sparse subspace clustering with outliers [START_REF] Elhamifar | Sparse subspace clustering: Algorithm, theory, and applications[END_REF].

A multivariate analysis through graphs. Besides low-rank and sparsity, another promising way to leverage the structure of multivariate data is to use the notion of graph (or network). Indeed, the graph brings valuable knowledge on the process that generates the data (e.g. two linked nodes are highly correlated or have very close values) which make it useful in a large range of domains and applications spanning biology [START_REF] Barabasi | Network biology: understanding the cell's functional organization[END_REF], neuroscience [START_REF] Richiardi | Machine learning with brain graphs: predictive modeling approaches for functional imaging in systems neuroscience[END_REF][START_REF] Preti | The dynamic functional connectome: State-of-the-art and perspectives[END_REF], clustering [START_REF] Belkin | Laplacian eigenmaps and spectral techniques for embedding and clustering[END_REF][START_REF] Luxburg | A tutorial on spectral clustering[END_REF], representation learning [START_REF] William | Representation learning on graphs: methods and applications[END_REF], multi-task learning [Chen et al., 2015a;[START_REF] Nassif | Multitask learning over graphs: an approach for distributed, streaming machine learning[END_REF], and others [START_REF] Zhu | Semi-supervised learning with graphs[END_REF][START_REF] Kolaczyk | Statistical analysis of network data with R[END_REF]. Being able to build models or learning algorithms from these data, while considering their underlying graph structure, is therefore a major key component to improve performances. What remains is to nd a way to incorporate prior information about the structure of signals with a graph. One possibility is to consider undirected probabilistic graphical models where a set of random variables is represented as di erent nodes of a graph [START_REF] Koller | Probabilistic graphical models: principles and techniques[END_REF]. In this representation, an edge between two nodes indicates the conditional dependency between the two corresponding random variables, given the other ones. More recently, Graph Signal Processing (GSP) [START_REF] Shuman | The emerging eld of signal processing on graphs: extending high-dimensional data analysis to networks and other irregular domains[END_REF][START_REF] Ortega | Graph signal processing: overview, challenges, and applications[END_REF]Djuric and Richard, 2018], has also appeared to be a powerful alternative framework to extract valuable information from multivariate data. To take into account the structure of a signal, the idea is to consider it as de ned on the nodes of a graph and to encode relationships between its variables via the edges. In this formalism, the graph de nes a support, and the signals, now called graph signals, are de ned on this support. This allows to capture the structure on which a signal evolves, hence providing more information than considering the signal alone. Furthermore, by generalizing standard concepts of signal processing to signals recorded over graphs i.e. graph signals, GSP provides intuitive constraints for the modelization. For instance, the smoothness of observations with respect to the true underlying graph is one of the most common and natural assumption [START_REF] Daitch | Fitting a graph to vector data[END_REF][START_REF] Egilmez | Graph learning from data under structural and Laplacian constraints[END_REF][START_REF] Kalofolias | How to learn a graph from smooth signals[END_REF][START_REF] Chepuri | Learning sparse graphs under smoothness prior[END_REF][START_REF] Dong | Learning graphs from data: a signal representation perspective[END_REF], which asks for signals to have small local variations among adjacent nodes. Indeed, this property is very natural and is therefore leveraged in a wide range of applications. One can cite multi-task estimation over graph [START_REF] Nassif | Multitask learning over graphs: an approach for distributed, streaming machine learning[END_REF] where an underlying graph captures the link between multiple tasks allowing agents to cooperate with each other. This cooperation may be encouraged with a regularization that imposes a certain degree of smoothness between the di erent decision rules of each agent [START_REF] Nassif | A regularization framework for learning over multitask graphs[END_REF]. Unfortunately, while in these methods the availability of a graph is a core assumption, e.g. in spectral clustering [START_REF] Luxburg | A tutorial on spectral clustering[END_REF], semi-supervised learning [START_REF] Zhu | Semi-supervised learning with graphs[END_REF], etc., in most situations no natural graph can be derived or de ned. One approach is therefore to infer it from a set of signals assumed to admit the same underlying graph. This task, often referred to as graph learning (or graph topology inference), has also received signi cant attention in various elds such as in statistic, signal processing, biology, and others [START_REF] Friedman | [END_REF][START_REF] Hecker | [END_REF][START_REF] Lim | L'extension naturelle du cas bivarié est le cas multivarié où la variable à expliquer est maintenant tensorielle[END_REF][START_REF] Moscu | Online graph topology inference with kernels for brain connectivity estimation[END_REF]. A review of recent methods for graph topology inference is given in [START_REF] Dong | Learning graphs from data: a signal representation perspective[END_REF].

A multivariate analysis through tensors. The inevitable extension of the bivariate case is the multivariate case. Similarly to the transition from the one to the second dimension, new possibilities and thus new strategies become available to leverage the structure of the multivariate data. To this end, a signi cant amount of works has been concentrated around tensor methods. This growing interest is mainly due to their ability to better exploit the multivariate aspect of the data. Indeed, in part spurred by pioneering works in psychometrics [START_REF] Cattell | parallel proportional pro les" and other principles for determining the choice of factors by rotation[END_REF], the list of applications of tensor methods with success encompasses problems in signal processing [START_REF] Zhou | Tensor regression with applications in neuroimaging data analysis[END_REF][START_REF] Cichocki | vision par ordinateur[END_REF], computer vision [START_REF] Shashua | [END_REF][START_REF] Liu | Tensor completion for estimating missing values in visual data[END_REF], spectral learning of latent variable models [START_REF] Anandkumar | [END_REF][START_REF] Janzamin | Spectral learning on matrices and tensors[END_REF], neuroscience [START_REF] Beckmann | [END_REF][START_REF] Miwakeichi | Mørup et al[END_REF][START_REF] Mørup | Parallel factor analysis as an exploratory tool for wavelet transformed event-related EEG[END_REF][START_REF] Becker | Dans cette vaste littérature, l'une des stratégies les plus utilisées consiste à appliquer directement une décomposition tensorielle aux données[END_REF], etc. Thorough surveys of these techniques with their applications are given in [START_REF] Kolda | Tensor decompositions and applications[END_REF]; [START_REF] Grasedyck | A literature survey of low-rank tensor approximation techniques[END_REF] and [START_REF] Sidiropoulos | Tensor decomposition for signal processing and machine learning[END_REF]. In this vast literature, one of the most widely used strategies is to directly apply tensor decomposition to the data. This often leads to more interpretable results and better performances. Indeed, by factorizing the data in a lower dimensional space, tensor decompositions introduce a compact basis which can describe the data in a concise manner. One important example of such decomposition is the Canonical Polyadic Decomposition (CPD) [START_REF] Hitchcock | The expression of a tensor or a polyadic as a sum of products[END_REF], also known as Parafac or CANDECOMP [START_REF] Harshman | Foundations of the PARAFAC procedure: models and conditions for an "explanatory" multimodal factor analysis[END_REF][START_REF] Carroll | Celle-ci exprime un tenseur comme une somme minimale de tenseurs de rang un. D'autres décompositions, telles que la décomposition de Tucker[END_REF], which expresses a tensor as a minimal sum of rank-one tensors. Other decompositions such as the Tucker decomposition [START_REF] Tucker | Implications of factor analysis of three-way matrices for measurement of change[END_REF], or the higher-order singular value decomposition [START_REF] Lathauwer | se sont avérées e caces. Ces décompositions ont notamment conduit à des progrès signi catifs en complétion tensorielle[END_REF], have also proven to be e cient. For example, these decompositions have led to signi cant progresses in tensor completion that pertain to tensor recovery [START_REF] Gandy | [END_REF][START_REF] Liu | Tensor completion for estimating missing values in visual data[END_REF][START_REF] Goulart | Une autre stratégie consiste à imposer des structures tensorielles dans des méthodes déjà existantes par le biais de contraintes et de régularisations supplémentaires[END_REF][START_REF] Rauhut | Low rank tensor recovery via iterative hard thresholding[END_REF]. Another strategy is to include tensor-induced structures in existing methods through additional constraints and regularizations. In [START_REF] Zhou | Tensor regression with applications in neuroimaging data analysis[END_REF], authors proposed a family of tensor regression models where a CP low-rank constraint is added. They also extended these models to Tucker low-rank constraints [START_REF] Li | Tucker tensor regression and neuroimaging analysis[END_REF]. Others focused on multilinear rank constraints [START_REF] Rabusseau | Low-rank regression with tensor responses[END_REF][START_REF] Sun | Store: sparse tensor response regression and neuroimaging analysis[END_REF], sparsity constraints on each rank-1 tensor of the CPD [START_REF] He | Boosted sparse and low-rank tensor regression[END_REF], etc. This idea of enforcing a particular structure with constraints is also used in several multivariate dictionary learning models [START_REF] Hawe | [END_REF][START_REF] Sironi | [END_REF][START_REF] Dantas | [END_REF][START_REF] Schwab | ou même pour accélérer les réseaux de neurones convolutifs[END_REF] or to accelerate convolutional neural networks [START_REF] Lebedev | [END_REF][START_REF] Kim | Globalement, si tous ces modèles apportent inévitablement plusieurs di cultés dues à la grande complexité des objets manipulés, ils ont prouvé leur utilité et montré, une fois de plus, qu'il est important de bien prendre en compte la structure des données pour obtenir de meilleurs résultats[END_REF][START_REF] Astrid | CP-decomposition with tensor power method for convolutional neural networks compression[END_REF]. Overall, while all these high-order models inevitably bring several di culties due to the complexity of the manipulated objects, they have proven their usefulness in a wide range of elds showing, once again, the importance of considering the underlying structure of the data to obtain more e cient methods.

Analysis of consciousness during a general anesthesia

In its more practical aspect, this thesis was built around the necessity to analyze data recorded during a General Anesthesia (GA): a drug-induced, reversible condition that includes speci c behavioral and physiological traits (unconsciousness, amnesia, analgesia, and akinesia) [START_REF] Brown | General anesthesia, sleep, and coma[END_REF]. This unnatural condition is obtained through the use of di erent drugs (e.g. inhalational hypnotic anesthetics -sevo urane -or intravenous anesthetics -propofol) which are all reinforcing the GABA inhibitory system in the brain. However, while GA is a cornerstone of modern medicine, and is crucial for the realization of many medical and surgical procedures [START_REF] Purdon | Electroencephalogram signatures of loss and recovery of consciousness from propofol[END_REF], it may carry some risks (e.g. cognitive dysfunction [START_REF] Punjasawadwong | Processed electroencephalogram and evoked potential techniques for amelioration of postoperative delirium and cognitive dysfunction following non-cardiac and non-neurosurgical procedures in adults[END_REF], postoperative delirium [START_REF] Fritz | Intraoperative electroencephalogram suppression predicts postoperative delirium[END_REF]). Consequently, a sustained and careful monitoring of the level of consciousness of the patient -also referred to as the Depth of Anesthesia (DoA) -is required. Although there is no consensual de nition of the DoA, it has been de ned by experts as "the probability of non-response to stimulation, calibrated against the strength of the stimulus, the di culty of suppressing the response, and the drug-induced probability of non-responsiveness at de ned e ect site concentrations" [START_REF] Shafer | De ning depth of anesthesia[END_REF]. Its precise knowledge is essential to allow accurate titration of the drugs administered. The major objectives are to avoid excessively deep narcosis, associated with a higher risk of post-operative cognitive dysfunction and delayed awakening, and to prevent underdosing, associated with a risk of memorization [START_REF] Sebel | The incidence of awareness during anesthesia: a multicenter united states study[END_REF].

The Dynamics of the Brain under Anesthesia. As a direct measurement of the main target of anesthetics i.e. the brain [START_REF] Merry | International standards for a safe practice of anesthesia 2010[END_REF], ElectroEncephaloGraphy (EEG), which measure the scalp electrical potentials originating from neural currents in the brain, remain the goldstandard to assess the DoA (see Figure 1.2). Indeed, many of the changes that occur in the brain can be readily observed in the EEG [START_REF] Tong | Quantitative EEG analysis methods and clinical applications[END_REF][START_REF] Sanei | EEG signal processing[END_REF][START_REF] Cohen | Analyzing neural time series data: theory and practice[END_REF]. In consequence, since the 2000's, they have been extensively used to study the phenomenons occurring during a GA [START_REF] Purdon | Clinical electroencephalography for anesthesiologistspart I: background and basic signatures[END_REF][START_REF] Liu | Closed-loop propofol administration: routine care or a research tool? What impact in the future?[END_REF]. A wide range of research has thus showed that GA produces distinct patterns on the EEG which can be described in relation to ve states in which they appear: Awake or induction, Loss of Consciousness (LoC), Anesthesia or maintenance, Recovery of Consciousness (RoC), and emergence. As the level of general anaesthesia deepens, the best known and most common pattern is a gradual increase in speci c frequency bands and signal amplitude. Figure 1.3 illustrate this phenomenon by showing a frontal EEG channel of the same patient in Awake and Anesthesia states. We clearly see changes in the raw data with the apparition of small waves with large amplitudes. These visual changes, present in almost every patient, lead to a modi cation of the EEG spectrum i.e. the decomposition of the EEG signal into the power in its frequency components (see Figure 1.4). Actually, in an important study conducted by [START_REF] Purdon | Electroencephalogram signatures of loss and recovery of consciousness from propofol[END_REF], researchers have shown that the power of α and δ-waves (respectively in the 8-13 Hz and 1-3Hz ranges) is a promising predictor of the di erent states of a patient during a GA only induced by propofol. Indeed, they showed that the power of these two ranges of frequencies tend to increase with the induction of the drug. Therefore, their tracking allows to de ne precisely which state a patient is more likely to be in. A typical evolution of the power of each frequency over time is displayed in Figure 1.5 through a spectrogram. They also nd that these modi cations at the level of a channel are combined with a spatial-modi cation called "anteriorization". More precisely, while in the Awake state α-waves are mostly present at the back of the head, with the induction of propofol, these waves start to slowly migrate to the forehead. This process is reversed when the amount of drugs decreases. With this example, we see the importance to go beyond an univariate analysis to fully describe and understand global mechanisms.

A routine clinical context. While these studies allow a better understanding of the GA, they are, in the major part, conducted in an ideal environment. In a clinical context, reality is quite di erent. First, anesthesiologists use, not one, but multiple drugs to induce the GA. Analysis becomes more di cult as each drug induces its own time-frequency patterns [START_REF] Purdon | Clinical electroencephalography for anesthesiologistspart I: background and basic signatures[END_REF]. Second, the analysis of EEG signals su ers from several limitations, especially when data are recorded during real surgeries. Indeed, even if there is no artifact due to muscle contractions (patients are curarized), EEG signals are still prone to low signal to noise ratio, impulsive noise due to sensor malfunctions, and artifacts caused by e.g. electro-surgical devices that are used to cut and cauterize tissue (see Figure 1.6) [START_REF] Tong | Quantitative EEG analysis methods and clinical applications[END_REF]. Thus, it becomes very di cult to use standard methods which assume an ideal theoretical set-up. Third, the use of EEG is time consuming making it unusable for a daily-routine. As a global consequence, other methods, not necessarily based on EEG, must be investigated.

To pass through all these issues, during a surgery, several monitoring systems have been proposed for DoA assessment but they all have some limitations [START_REF] Bruhn | Depth of anaesthesia monitoring: what's available, what's validated and what's next[END_REF]. No point-of-care gold standard monitoring DoA prevails. The most used system is probably the BiSpectral Index (BIS) [START_REF] Kissin | Depth of anesthesia and bispectral index monitoring[END_REF][START_REF] Avidan | Anesthesia awareness and the bispectral index[END_REF]]. It provides a numerical value from 0 to 100 (from no cerebral activity to awake and responsive). However, being largely used, especially in the US, it has a lot of drawbacks such as high inter-individual variability [START_REF] Whitlock | Relationship between bispectral index values and volatile anesthetic concentrations during the maintenance phase of anesthesia in the b-unaware trial[END_REF], low performance with volatile anesthetics [START_REF] George Mychaskiw | Explicit intraoperative recall at a bispectral index of 47[END_REF], high latency and interferences with surgical knife, artifacts from movements or from forced air warming therapy [START_REF] Hemmerling | Falsely increased bispectral index during endoscopic shoulder surgery attributed to interferences with the endoscopic shaver device[END_REF]. Another index is the sample-entropy introduced by [START_REF] Richman | Physiological time-series analysis using approximate entropy and sample entropy[END_REF]. It is a variant of the approximate entropy that gives information on the complexity of a time series such as EEG signal. In summary, although the EEG is the gold standard for the evaluation of the DoA, it requires additional sensors, it presents some limitations, and it is time consuming. That is why, in a routine clinical context, the best evaluation of the DoA is thought to be, most of the time, the one made by the anesthesiologist on the basis of the physiological variables of the patient.

Altogether, in practice, the ideal DoA monitor should be able to give an evaluation without EEG. Furthermore, while a neural analysis of GA is often centered around useful but old methods of analysis such as time-frequency representation, we believe that recent advances in statistics and machine learning could greatly contribute in a thinner understanding of the complex mechanisms occurring during GA.

Contributions

In the following, we detail the contributions of this thesis. To emphasize their versatility, each contribution is supported by a wide variety of experiments, including at least one that is related to GA. Furthermore, for each algorithm we provide an online open-source Python code.

A database of patients recorded during a general anesthesia

Made in collaboration with M.D. Clément Dubost, the rst contribution of this thesis is the construction and deployment of a complete protocol and recording chain to build a large database of patients under routine GA on which we could work. To that end, helped by Brian Berthet-Delteil, Arno Benizri, and Gael de Rocquigny, we continuously recorded synchronously the physiologic variables routinely monitored during anesthesia together with a 32 channels EEG. All these variables are listed in Table 1. 1. Between February 2016 andMay 2018, 88 subjects, all from "Hôpital d'Instruction des Armées Bégin, Saint-Mandé, France", have been included in the database. Note that, to the best of our knowledge, this is the rst database of patients under routine GA where both multichannel EEGs and physiological variables are recorded synchronously from the moment they enter the operating room up to three hours after the end of surgery.

Graph learning on multivariate signals

In the second contribution, we consider the graph learning problem i.e. the problem of learning a graph from multivariate graph signals. As already explained, such signals are multivariate observations carrying measurements corresponding to the nodes of an unknown graph, which we desire to infer. The idea of this contribution actually comes from a simple observation. In general, we do not have a graph which is adapted to the signal of interest. One possible idea is thus to learn it. However, as this is an ill-posed problem, we must assume several properties on both signals and associated graph. In our approach, these properties take their inspiration from the eld of Graph Signal Processing (GSP) [START_REF] Shuman | The emerging eld of signal processing on graphs: extending high-dimensional data analysis to networks and other irregular domains[END_REF][START_REF] Ortega | Graph signal processing: overview, challenges, and applications[END_REF]. This domain provides intuitive graph-induced structural constraints, and has already proven its success in many applications, especially in neuroscience with the analysis of the brain. Indeed, for instance [START_REF] Huang | A graph signal processing perspective on functional brain imaging[END_REF] show that by constructing a graph from structural connectivity and considering brain activity as graph signals, it is possible to capture relevant brain properties (e.g. cognitive features) with GSP concepts.

More speci cally, we elaborate an optimization problem to learn the Laplacian of the underlying graph. To alleviate the ill-posed problem, the graph signals are assumed to behave smoothly with respect to the same underlying graph structure and to admit a sparse representation in the spectral domain of this graph. This last property, referred to as bandlimitedness in GSP, is known to carry information related to the cluster structure of the graph [START_REF] Luxburg | A tutorial on spectral clustering[END_REF][START_REF] Sardellitti | Graph topology inference based on sparsifying transform learning[END_REF]. The learned graph is therefore a good candidate in the initialization of spectral clustering methods. Note that these two properties are also core assumptions in a lot of methods treating e.g. graph sampling, or interpolation over graphs. To solve this graph learning problem, we propose two algorithms called IGL-3SR and FGL-3SR. Based on a 3-step alternating procedure, both algorithms rely on standard minimization methods -such as manifold gradient descent or linear programming -and have lower complexity compared to previous algorithms. While IGL-3SR ensures convergence, FGL-3SR acts as a relaxation and is signi cantly faster since its alternating process relies on multiple closed-form solutions. To highlight the e ciency of our methods, we provide multiple examples ranging from meteorology to EEG analyses.

Tensor-based convolutional dictionary learning approach

The third contribution results from the combinations of two families of methods to analyze multivariate signals. The rst family of methods is called Convolutional Dictionary Learning (CDL) [START_REF] Wohlberg | E cient algorithms for convolutional sparse representations[END_REF]Garcia-Cardona and Wohlberg, 2018a]. It consists in learning atoms -or patterns -which give a sparse approximation of signals. Hence, contrary to Fourier or wavelet bases, the atoms are not prede ned, but are learned from the signal itself. This idea of providing a linear decomposition of a signal into few learned atoms, instead of prede ned ones, has led to signi cant results in a wide range of topics, including image classi cation, image restoration, and signal processing (see [START_REF] Wohlberg | E cient algorithms for convolutional sparse representations[END_REF]Garcia-Cardona and Wohlberg, 2018a Two spectrograms obtained from a stereo music recording. Some repetitive patterns (highlighted in red and orange) are visible on the two spectrograms and suggest that a CDL model may appear as natural for such data. In addition, the low-rank structure of the data is here transferred into the activations tensors rather than into the observed patterns. In other words, although the time-frequency atoms may be complex (and thus without a low-rank structure), the activations (i.e. the time/frequency/channel positions where these atoms appear) clearly exhibit a low-rank structure.

and references therein). Nevertheless, while these methods exhibit interesting properties, they are mainly focused on resolution for univariate signals [Garcia-Cardona and Wohlberg, 2018b], and therefore do not fully take into account the possible interaction between the di erent modes of multivariate signals. Moreover, they are frequently vulnerable to noise and perturbations such as impulsive noise [START_REF] Simon | Rethinking the csc model for natural images[END_REF][START_REF] Wang | Generalized convolutional sparse coding with unknown noise[END_REF].

To take into account these drawbacks, we introduce a tensor CDL model where both activations and atoms are represented by tensors. More precisely, we propose to employ CDL approaches in combination with a second family of methods that include CP low-rank constraints in their modelization. By adding to the initial CDL problem a CP low-rank constraint for each activation, we constrain these activations to be sparse and low-rank. We therefore take into account the multivariate structure of the data and obtain accurate and interpretable results. Note that while the idea of enforcing low-rank constraints for CDL is not novel, it is mainly enforced on the dictionary and not on the activations. Nevertheless, we claim that constraining the activations to be low rank brings two majors advantages. First, in multiple application contexts the low-rank structure naturally appears in the activations rather than in the atoms/dictionary (see Figure 1.7). Second, low-rank constraints on activation entail a better robustness with respect to noise, which is one of the main weaknesses of the activation learning part of CDL [START_REF] Simon | Rethinking the csc model for natural images[END_REF]. Another motivation of this model comes from a large number of works which relies on a tensorial representation of multivariate time-series with great success (see e.g. the huge literature considering EEG signals [START_REF] Miwakeichi | Mørup et al[END_REF][START_REF] Mørup | Parallel factor analysis as an exploratory tool for wavelet transformed event-related EEG[END_REF][START_REF] Vos | Canonical decomposition of ictal scalp EEG and accurate source localisation: Principles and simulation study[END_REF][START_REF] Becker | Multiway space-time-wave-vector analysis for source localization and extraction[END_REF][START_REF] Becker | EEG extended source localization: tensor-based vs. conventional methods[END_REF][START_REF] Becker | Dans cette vaste littérature, l'une des stratégies les plus utilisées consiste à appliquer directement une décomposition tensorielle aux données[END_REF][START_REF] Dauwels | Multi-channel EEG compression based on matrix and tensor decompositions[END_REF][START_REF] Mørup | Applications of tensor (multiway array) factorizations and decompositions in data mining[END_REF][START_REF] Zhao | Multilinear subspace regression: an orthogonal tensor decomposition approach[END_REF][START_REF] Mahyari | A tensor decomposition-based approach for detecting dynamic network states from eeg[END_REF]). In these works, signals are frequently analyzed by computing a short-time Fourier transform for each "channel", resulting in a tensor of order 3 encoding a space-time-frequency representation. The resulting tensor is then studied through the prism of the canonical polyadic decomposition to exploit the interactions among multiple modes. Here, while slightly di erent because we do not directly apply tensor decompositions to the data, coupling the CDL representation with a low-rank constraint also results in (local) representations that are (i) more robust to noise and (ii) easier to understand [START_REF] Zhao | Multilinear subspace regression: an orthogonal tensor decomposition approach[END_REF][START_REF] Zhou | Tensor regression with applications in neuroimaging data analysis[END_REF][START_REF] Cong | Tensor decomposition of EEG signals: a brief review[END_REF][START_REF] Rabusseau | Low-rank regression with tensor responses[END_REF].

Graph Product for multivariate graph signals

In the fourth contribution, we propose a simple approach to identify the frequency support of multivariate time-vertex graph signals by combining graph and tensor methods. Such signals are related to the notion of time-vertex signal processing in GSP where both spatial and temporal interactions are modeled [START_REF] Grassi | A time-vertex signal processing framework: scalable processing and meaningful representations for time-series on graphs[END_REF]. Although this framework was initially introduced for matrix-value signals, in the multivariate case we need to extend it by considering relationships within any dimension (e.g. time, space, feature space). To this end, one graph per dimension is de ned, and these structures are merged using a graph product [START_REF] Imrich | Product graphs: structure and recognition[END_REF][START_REF] Hammack | Handbook of product graphs[END_REF][START_REF] Leskovec | Kronecker graphs: an approach to modeling networks[END_REF][START_REF] Sandryhaila | Big data analysis with signal processing on graphs: representation and processing of massive data sets with irregular structure[END_REF]]. An example is given in Figure 1.8. Interestingly, it appears that the resulting complex structure can be easily studied through the tensor formalism. Henceforth, to identify the frequency support of the multivariate graph signal, we rst choose one graph per dimension a priori, and then, introduce an optimization problem including tensor-based regularizations adapted to a bandlimitedness assumption. These sparsity regularizations can be speci ed so as to work only on one dimension (i.e. selection of the best time samples, channels, or features). In addition, by comparing results obtained with the graphs chosen a priori against the ones from random graphs, we provide a simple way to assess their relevance. We apply our method to a tensorial representation of EEG signals highlighting its performance for sampling and compression. While this contribution is focused on time-vertex signals, the core idea can be applied on any multivariate graph signals.

Apprenticeship learning for a predictive state representation of anesthesia

In this fth, and last, contribution, we propose a decision support algorithm which assists anesthesiologists in administering drugs in order to maintain an optimal DoA. Derived from a Transform Predictive State Representation algorithm (TPSR) [START_REF] Littman | Predictive representations of state[END_REF][START_REF] Rosencrantz | Learning low dimensional predictive representations[END_REF][START_REF] Boots | Closing the learning-planning loop with predictive state representations[END_REF], our model learns by observing anesthesiologists in practice. This framework, known as apprenticeship learning [Abbeel and [START_REF] Kim | Globalement, si tous ces modèles apportent inévitablement plusieurs di cultés dues à la grande complexité des objets manipulés, ils ont prouvé leur utilité et montré, une fois de plus, qu'il est important de bien prendre en compte la structure des données pour obtenir de meilleurs résultats[END_REF], is particularly useful in the medical eld as it is not based on an exploratory process -a prohibited behavior in healthcare [START_REF] Gottesman | Evaluating reinforcement learning algorithms in observational health settings[END_REF]. TPSR is one particularly powerful and exible model class employed in the area of sequence prediction. The key insight in this class of models is that observed sequence data is often the manifestation of some underlying, or hidden, dynamics [START_REF] Hamilton | E cient learning and planning with compressed predictive states[END_REF]. By modeling the transition structure between di erent hidden states and the probabilities governing the emission of observations from these hidden states, a succinct and powerful predictive model can be obtained. Notice that, while the previous contributions are mostly related to EEG analyses, here, to provide a very practical tool for the anesthesiologists we only rely on the four commonly monitored variables during surgery: Heart Rate (HR), Mean Blood Pressure (MBP), Respiratory Rate (RR), and the concentration of anesthetic drug (AAFi). This choice is motivated by the fact that, while an analysis of EEG is mandatory to precisely understand the behavior of brain activity, we believe that a practical tool should be based only on physiological variables routinely monitored and visualized by anesthesiologists. The proposed approach could be of great help for clinicians by improving the ne tuning of the DoA. Furthermore, the possibility to predict the evolutions of variables would help preventing side e ects such as low blood pressure. A tool that could autonomously help the anesthesiologist would improve safety-level in the surgical room.

Outline of the thesis

This thesis is organized as follows:

• Chapter 2 introduces an optimization problem to learn a graph from signals that are assumed to be smooth and admitting a sparse representation in the spectral domain of the graph. We solve this problem by introducing an algorithm that combines barrier methods, alternating minimization, and manifold optimization. A relaxed algorithm is also proposed, which allows to scale in time with the graph dimensions. Finally, the two proposed algorithms are tested on several synthetic and real databases, and compared to state-of-the-art approaches.

• Chapter 3 provides a new approach to learn representation of multivariate signal based on tensor and convolutional dictionary learning approaches. We show that a CP low-rank constraint on the multivariate activations allows to take into account their possible (linear) structure, together with allowing a better robustness to noise. Two algorithms either based on ADMM and FISTA are proposed, and a large amount of experiments are performed on both synthetic and real data.

• Chapter 4 proposes a simple approach to identify the frequency support of multivariate time-vertex graph signals. It is built around the notion of graph product and the de nition of three graphs that each model the interactions within one dimension (time, space, feature space). By using the tensor formalism, several sparsity methods are proposed. These approaches are tested on multichannel EEG signals in order to assess the sampling and interpolation performances of the proposed framework.

• Chapter 5 introduces a decision support algorithm based on TPSR and apprenticeship learning which assists anesthesiologists in administering drugs in order to maintain the optimal DoA. In the objective of proposing a practical tool, the model only relied on four commonly monitored variables. The performances of the resulting agent is analyzed with diverse metrics and through its confrontation to real anesthesiologists. 

Introduction

Graphs are fundamental to model pairwise relations between objects or entities of interest. In the past years, they have proven their e ciency in a large variety of elds from biology [START_REF] Barabasi | Network biology: understanding the cell's functional organization[END_REF] to neuroscience [START_REF] Richiardi | Machine learning with brain graphs: predictive modeling approaches for functional imaging in systems neuroscience[END_REF]. The strength of such concept is explained by its exibility and its capacity to represent irregular and complex structures that can not be analyze with standard tools. However, while the availability of the graph is a core assumption in many computational tasks, such as spectral clustering [START_REF] Luxburg | A tutorial on spectral clustering[END_REF], semi-supervised learning [START_REF] Zhu | Semi-supervised learning with graphs[END_REF], or graph signal processing [START_REF] Shuman | The emerging eld of signal processing on graphs: extending high-dimensional data analysis to networks and other irregular domains[END_REF][START_REF] Sandryhaila | Discrete signal processing on graphs[END_REF][START_REF] Ortega | Graph signal processing: overview, challenges, and applications[END_REF], in most situations no natural graph can be derived or de ned. In this situation, one approach is to infer the underlying graph from available data. This task, often referred to as graph learning, has also received signi cant attention in various elds such as machine learning, signal processing, biology, meteorology, etc. [START_REF] Friedman | [END_REF][START_REF] Hecker | [END_REF][START_REF] William | Representation learning on graphs: methods and applications[END_REF][START_REF] Dong | Learning graphs from data: a signal representation perspective[END_REF]. Learning a graph is an ill-posed problem as several graphs can explain the same set of observations. In consequence, previous works have been devoted to introduce underlying models or constraints that would narrow down the range of possible solutions. For instance, physical constraints may be imposed to suggest epidemic models or other information propagation and interaction models [START_REF] Rodriguez | Uncovering the temporal dynamics of di usion networks[END_REF][START_REF] Du | Learning networks of heterogeneous in uence[END_REF][START_REF] Gomez-Rodriguez | Estimating di usion networks: recovery conditions, sample complexity & soft-thresholding algorithm[END_REF]. From a statistical perspective, the graph learning task is seen as the estimation of the parameters of a certain probability distribution parameterized by the graph itself. Generally, the assumed class of distributions is either a Bayesian Network in the case of directed graph, or a Markov Random Field for undirected graphs [START_REF] Koller | Probabilistic graphical models: principles and techniques[END_REF][START_REF] Yang | Graphical models via univariate exponential family distributions[END_REF][START_REF] Wang | Inference for high-dimensional exponential family graphical models[END_REF][START_REF] Tarzanagh | Estimation of graphical models through structured norm minimization[END_REF]. Here, the graph structure encompasses the conditional dependencies between variables. In the particular case of a Gaussian Random Field, the graph learning task consists in estimating the inverse covariance matrix, known as the precision matrix [START_REF] Banerjee | Model selection through sparse maximum likelihood estimation for multivariate Gaussian or binary data[END_REF].

Several constraints could be imposed on this matrix. For instance, in [START_REF] Friedman | [END_REF], the proposed estimation method, known as the Graph-Lasso algorithm, relies on the assumption that the precision matrix is sparse. More recently, Graph Signal Processing (GSP) [START_REF] Shuman | The emerging eld of signal processing on graphs: extending high-dimensional data analysis to networks and other irregular domains[END_REF][START_REF] Ortega | Graph signal processing: overview, challenges, and applications[END_REF]Djuric and Richard, 2018], has appeared to be a powerful alternative framework to learn graphs [START_REF] Pasdeloup | Characterization and inference of graph di usion processes from observations of stationary signals[END_REF][START_REF] Thanou | Learning heat di usion graphs[END_REF][START_REF] Segarra | Network topology inference from spectral templates[END_REF][START_REF] Dong | Learning graphs from data: a signal representation perspective[END_REF]. Indeed, GSP generalizes standard concepts and tools of signal processing to multivariate signals recorded over graphs.

Hence, notions such as smoothness, sampling, ltering, etc., were adapted to GSP, and then used to learn speci c graphs. For instance, the smoothness of observations with respect to the true underlying graph is one of the most common assumption [START_REF] Daitch | Fitting a graph to vector data[END_REF][START_REF] Kalofolias | How to learn a graph from smooth signals[END_REF][START_REF] Egilmez | Graph learning from data under structural and Laplacian constraints[END_REF][START_REF] Chepuri | Learning sparse graphs under smoothness prior[END_REF][START_REF] Dong | Learning graphs from data: a signal representation perspective[END_REF] to learn graphs on which signals have small local variations among adjacent nodes (Figure 2.1). Another natural assumption is the sparsity of the observations in a graph spectral basis [START_REF] Valsesia | Sampling of graph signals via randomized local aggregations[END_REF][START_REF] Sardellitti | Graph topology inference based on sparsifying transform learning[END_REF]. Indeed, in clustering for instance, the vector of labels seen as a signal over the nodes of a graph, exhibits a sparse spectral representation: it is smooth within each cluster and varies from one cluster to another (Figure 2.2). Building such graph is therefore of huge interest for graph-based clustering approaches. Such sparsity assumption is also relevant for the sampling task. Indeed, by making use of this property, it is possible under mild conditions to reconstruct the observations for nodes that have not been sampled [Chen et al., 2015b,d]. The GSP framework is also strongly motivated by a wide range of applications where there exist inherent structures behind data observations. One remarkable and elegant application of the GSP is for example in the analysis of brain activity [START_REF] Huang | Graph frequency analysis of brain signals[END_REF][START_REF] Huang | A graph signal processing perspective on functional brain imaging[END_REF] where the main interest lies in its potential to jointly model brain structure as a graph and brain activities as signals residing on the nodes of this graph. The structural and functional connectivity of the brain related to di erent diseases or external stimuli can then be study at the same time.

Aim and main contributions. In the present chapter, we introduce an optimization problem to learn a graph from signals that are assumed smooth and with a sparse representation in the spectral domain of the graph. These properties, all borrowed from GSP, can be considered either as constraints or regularizations for the graph learning task, and o er a new perspective on the topic.

The main contributions of this chapter are summarized as follows:

• The graph learning task problem is cast as the minimization of a smooth non-convex objective function over a non-convex set (Section 3). This problem is e ciently solved by introducing an algorithm that combines barrier methods, alternating minimization, and manifold optimization (Section 4). Another algorithm is also proposed, which allows to scale in time with the graph dimensions (Section 5).

• A factor analysis model for smooth graph signals with sparse spectral representation is introduced (Section 6). This model provides a probabilistic interpretation of our optimization problem by linking its objective function to a maximum a posteriori estimation.

• The two proposed algorithms are tested on several synthetic and real data, and compared to state-of-the-art approaches (Section 8). Experimental results show that our approach allows to obtain similar or better performance than standard existing methods while signi cantly lowering the necessary computing resources.

Background on graphs

A graph describes a network by specifying pairs of entities, denoted nodes, that are connected to one another. This connection can be symmetric (e.g. neighborhood) or asymmetric (e.g. prey v.s. predator). We begin this section by providing de nitions for directed, undirected, and weighted graphs.

De nitions from graph theory

De nition 2.1.

(Directed graph.) -A directed graph G = (V, E) is de ned via a nite set of nodes (or vertices) V = {1, • • • , N }, and a set of edges E = {(i, j, w ij ), i, j ∈ V} ⊂ V × V, i.e.
pairs of nodes that are considered neighbors. The size of G denotes the number of nodes of G, i.e. card(V) = N .

In the sequel, we will always assume that a graph has no self-loops (i.e. ∀u ∈ V, (u, u) / ∈ E), and no multiple edges on the same pair of nodes. Furthermore, we will always consider undirected graph. The following de nition encodes this notion where connections between entities are symmetric.

De nition 2.2. (Undirected graph.) -An undirected graph G = (V, E) is a directed graph whose edge set is symmetric, i.e. ∀(u, v) ∈ E, (v, u) ∈ E.

In many applications, the importance of a connection between two nodes is variable. Assigning a weight to each edge is a very natural way to take this imbalance into account.

De nition 2.3. (Weighted graph.) -A weighted graph is a pair G = (V, E) with nodes V = {1, • • • , N }, and set edges E = {(i, j, w ij ), i, j ∈ V} with weights w ij ∈ R + arranged in a weights matrix W ∈ R N ×N . This graph can be either directed of undirected. It is directed if connections between nodes are asymmetric and the pairs (i, j) are ordered. It is undirected if the pairs (i, j) are not ordered and hence interactions between nodes are symmetric.

Remark 2.1. A graph is said to be binary if the weights are in {0, 1}. In this case, the weights matrix W is called the adjacency matrix and is often denoted A.

Many graph characteristics can be expressed using the weights matrix W , making it an important piece of network analysis. From it, we can for example introduce the notion of degree.

De nition 2.4. (Degree and degree matrix.) -The degree of a node i is the number of nodes to whom it is connected and is expressed as

d i = N i=1 W i,j .
The degree matrix D is a diagonal matrix which contains the degree of each node.

In the following, we will focus mainly on a matrix called the graph Laplacian. While several de nitions are proposed in the literature, we consider in this manuscript the combinatoral graph Laplacian. SPECTRAL REPRESENTATION De nition 2.5. (Combinatorial graph Laplacian.) -A graph is entirely described by its combinatorial graph Laplacian matrix L = D -W , where D is the degree matrix and W the weights matrix.

The Laplacian matrix of a graph is the subject of numerous works, especially in spectral graph theory [START_REF] Chung | Spectral graph theory[END_REF][START_REF] Mohar | Laplace eigenvalues of graphs -a survey[END_REF][START_REF] Das | The Laplacian spectrum of a graph[END_REF][START_REF] Zhang | The Laplacian eigenvalues of graphs: a survey[END_REF]. A great deal of attention is dedicated to the eigenvalues and eigenvectors of the Laplacian as they re ect important properties of the associated graph (see e.g. [START_REF] Alon | Eigenvalues and expanders[END_REF][START_REF] De Abreu | Old and new results on algebraic connectivity of graphs[END_REF]). Among all the eigenvalues of the Laplacian, one of the most popular is the second smallest, called the algebraic connectivity, because this is a convenient value to measure how well a graph is connected [START_REF] Fiedler | Algebraic connectivity of graphs[END_REF]. For example, a graph is connected if and only if its algebraic connectivity is di erent from zero (a direct consequence of the Matrix-Tree Theorem [START_REF] Biggs | Algebraic graph theory[END_REF][START_REF] De Abreu | Old and new results on algebraic connectivity of graphs[END_REF]). The associated eigenvector is called the Fiedler vector and is also of great interest [START_REF] Fiedler | A property of eigenvectors of nonnegative symmetric matrices and its application to graph theory[END_REF]. We now recall two important propositions related to the spectrum of a Laplacian. Proposition 2.1. If G is undirected, with no self-loops, L is a real (symmetric) positive semide nite matrix and, its eigendecomposition -which is also its singular value decomposition -can be written as L = XΛX , with Λ = diag(λ 1 , . . . , λ N ) a diagonal matrix with the eigenvalues and X = (x 1 , . . . , x N ) a matrix with the eigenvectors as columns.

Proposition 2.2. Let assume that G has a unique connected component. In this particular case, λ 1 = 0 and x 1 = 1 N , where 1 N is the constant unitary vector of size N .

When a matrix satis es these two propositions, one can treat it as a Laplacian and consider the graph associated with it. These two propositions are therefore cornerstone in the graph inference task as they de ne su cient constraints to recover a true Laplacian.

De nitions from GSP

In this section, we introduce basic GSP concepts. A full overview can be found in [START_REF] Shuman | The emerging eld of signal processing on graphs: extending high-dimensional data analysis to networks and other irregular domains[END_REF][START_REF] Ortega | Graph signal processing: overview, challenges, and applications[END_REF] and more recently in [START_REF] Stanković | Introduction to graph signal processing[END_REF].

De nition 2.6. (Graph signal.) -A graph signal, or graph function, is de ned as a function y : V -→ R N that assigns a scalar value to each node. This function can be represented as a vector y ∈ R N , with y i the function value at the i-th node.

It is possible to create a spectral representation of y adapted to a graph using the Graph Fourier Transform (GFT).

De nition 2.7. (Graph Fourier Transform.) -Given a graph G, the GFT of a graph signal y is given by h = X y, where the components of h are interpreted as Fourier coe cients, the eigenvalues as distinct frequencies, and the eigenvectors as a decomposition basis. This de nition is motivated by one important observation. Let consider a directed cycle graph, which is the support of classical time-varying signals (see Figure 2.4(b)). Interestingly, it appears that the eigenvector decomposition of the adjacency or Laplacian matrix gives as eigenvector matrix the Fourier matrix (see e.g. [START_REF] Segarra | Reconstruction of graph signals through percolation from seeding nodes[END_REF][START_REF] Huang | Graph frequency analysis of brain signals[END_REF]). Hence, the GFT of a graph signal y (with respect to the cyclic graph) is its discrete Fourier transformation.

The subsequent de nitions describe two fundamental properties of graph signals assumed in this chapter. De nition 2.8. (Spectral sparsity.) -We say that a graph signal y admits a k ∈ N + sparse spectral representation with respect to a graph G if for h = X y

h 0 = k , (2.1) 
i.e. if the number of non-zero elements in its Fourier coe cient vector is equal to k.

Relation with clusters of a graph. The spectral sparsity is related to the number of clusters of a graph [START_REF] Luxburg | A tutorial on spectral clustering[END_REF][START_REF] Sardellitti | Graph topology inference based on sparsifying transform learning[END_REF]. To see this, let consider an ordered vector of two labels y = (-1, -1, 1, 1). In the case where the graph has two connected components i.e. two "perfect clusters", the rst two columns of X are x 1 = (0, 0, 1, 1) and x 2 = (1, 1, 0, 0) and the vector y is thus a linear combination of x 1 and x 2 . As X is an orthogonal matrix, x 3 , y = x 4 , y = 0. In other words, X y = h admits a 2 sparse spectral representation with respect to this graph.

Relation with sampling. This property is also crucial for sampling i.e. measuring a graph signal on a reduced set of nodes that allow its stable reconstruction [Chen et al., 2015d;[START_REF] Marques | Sampling of graph signals with successive local aggregations[END_REF][START_REF] Lorenzo | Sampling and recovery of graph signals[END_REF][START_REF] Puy | Random sampling of bandlimited signals on graphs[END_REF]Wang et al., 2018a;[START_REF] Tanaka | Sampling on graphs: from theory to applications[END_REF]]. An intuitive way to formalize (irregular) sampling for a graph signal is to introduce a M ×N selection matrix C and to de ne the sampled signal of size M as

ȳ = Cy . (2.2)
If C is chosen as binary, it has a single non-zero element per row, and at most one non-zero element per column. Hence, the signal ȳ is a selection of M out of the N elements of y. Now, let assume that y is k-sparse. The sampled signal ȳ is then

ȳ = Cy = CXh = CX k h k , (2.3) 
where X k , and h k are X and h without the irrelevant dimensions determined by the sparsity of h. If for a speci c choice of C, the matrix CX k ∈ R K×K is invertible, h k can be recovered from ȳ and the signal in the original domain can be found from its sampling i.e. .4) This equation shows how the original signal can be interpolated from its samples. However, note that the matrix CX k has to be invertible. Hence, the key for guaranteeing perfect signal reconstruction is to select a subset of nodes such that the corresponding rows in X k are linearly independent. Remark 2.2. (Sparsity assumption.) -In GSP this property is known as bandlimitedness. In general, it is assumed that the null components of h are those associated to the largest eigenvalues (frequencies). Indeed, this additional hypothesis permits to t the fundamental principle of signal processing which suggests that the high-frequency band of a signal should be ltered, as they carry mainly noise and little or no information. This assumption on graph signals is very common, especially in GSP where it is the main hypothesis of several GSP sampling methods [START_REF] Narang | Signal processing techniques for interpolation in graph structured data[END_REF][START_REF] Anis | Towards a sampling theorem for signals on arbitrary graphs[END_REF]Chen et al., 2015b,d;[START_REF] Marques | Sampling of graph signals with successive local aggregations[END_REF].

y = X k (CX k ) -1 ȳ . ( 2 
De nition 2.9. (Smoothness.) -A graph signal y is said to be s ≥ 0 smooth with respect to a graph G if

L 1/2 y 2 2 = y Ly = 1 2 i,j w ij y i -y j 2 ≤ s • y 2 2 .
(2.5)

Remark 2.3. (Smoothness assumption.) -While this property can be quanti ed with various metrics, the most common is given by the above de nition. From this formula, we see that y gets smoother, thus (2.5) lower, when its value at any two nodes gets closer as their edge weight gets larger. This natural property has consequently been widely considered for graph inference [START_REF] Daitch | Fitting a graph to vector data[END_REF][START_REF] Dong | Learning Laplacian matrix in smooth graph signal representations[END_REF][START_REF] Kalofolias | How to learn a graph from smooth signals[END_REF]. Also note that if x is an eigenvector of the Laplacian matrix L associated to the eigenvalue λ, then x Lx = λx x = λ.

Graph learning task in GSP

To highlight the impact of the sparsity assumption on the graph inference task, we illustrate the interplay between the graph and the data in Figures 2.5. In this example, we consider an unordered signal y tanking its values in {0, 1}. This signal can potentially be de ned on the three graphs from Figure 2.5. Indeed, without any assumption on the properties of the graph signal, they are all valid choices. In the other hand, if we assume that the signal need to admit a sparse spectral representation on its underlying graph (with one connected component), then (b) is the most reasonable candidate. In this chapter, our objective is to learn this graph from a set of observations that are all supposed to share the same underlying graph.

Problem statement

This section describes the graph learning problem for sparse and smooth graph signals.

Setup and working assumptions

The general task of graph learning aims at building a graph G that best explains the structure of n observed graph signals {y (k) } n k=1 of size N . We collect them in a matrix Y = [y (1) , • • • , y (n) ] ∈ R N ×n . The proposed graph learning framework takes as input the matrix Y and outputs the Laplacian matrix L associated to G (note that both notions are equivalent). Our learning process is based on the following assumptions: On the spectral sparsity assumption. To further justify the consideration of this property we can see that it is also related to the cluster structure of a graph. Indeed, if a graph has k clusters, a signal that is smooth within each cluster and can vary arbitrarily across di erent clusters will admit a k-sparse spectral representation. In this context, the non-null weights of h will be necessarily associated to the k rst eigenvectors of the corresponding Laplacian matrix as these eigenvectors are also smooth within the clusters [START_REF] Luxburg | A tutorial on spectral clustering[END_REF]. To enforce such behavior in the graph learning process, i.e. make sure that only the rst coe cients of h are non-zero, the bandlimitness property must be combined with the smoothness property. 

Graph learning for smooth and sparse spectral representation

A general graph learning scheme consists in learning the adjacency or the Laplacian matrix. However, since the constraint of Assumption 2.2 (sparsity of the graph signals over the eigen-basis of the Laplacian matrix) is easier to be expressed in the spectral domain, in this chapter we focus on learning the eigendecomposition of the Laplacian matrix L = XΛX . The optimization problem incorporates a linear least square regression term depending of Y , X, and H, which controls the distance of the new representation XH to the observations Y . In addition, due to Assumption 2.2, we add two penalization terms: One to control the smoothness of the new representation, depending on Λ and H; the other to control the sparsity on the spectral domain, which only depends on H. Finally, as we want to learn a Laplacian matrix satisfying Assumption 2.1, equality and inequality constraints relative to X and Λ are necessary. To that end, we introduce the following optimization problem: 

min H,X,Λ Y -XH 2 F + α Λ 1/2 H 2 F + β H S , (2.6 
       X X = I N , x 1 = 1 √ N 1 N , (a) (XΛX ) k, ≤ 0 k = , (b) Λ = diag(0, λ 2 , . . . , λ N ) 0 , (c) tr(Λ) = N ∈ R + * , (d) 
where I N is the identity matrix of size N , tr(•) denotes the trace, and Λ 0 indicates that the matrix is semi-de nite positive.

This problem aims at conjointly learning the Laplacian L (i.e. (X, Λ)) and a smooth bandlimited approximation XH of the observed signals Y . Here, H is the same size as Y and corresponds to the spectral representation of the graph signals through the GFT.

Interpretation of the terms. In the objective function (2.6), the rst term corresponds to the quadratic approximation error of Y by XH, where • F is the Frobenius norm. The second term is a smoothness regularization imposed to the approximation XH. Rewriting the smoothness equation (2.5) for the set of graph signals XH, we obtain

L 1/2 XH 2 F = XΛ 1/2 X XH 2 F = Λ 1/2 H 2 F = N i=1 λ i H i,: 2 2 , 
where H i,: is the i-th row of the matrix H. This kind of regularization is very common in graph learning [START_REF] Kalofolias | How to learn a graph from smooth signals[END_REF][START_REF] Chepuri | Learning sparse graphs under smoothness prior[END_REF]. From its de nition, we can see that it tends to be low when high values of {λ i } N i=1 are associated to rows of H with low 2 -norm. This corroborates the idea that the {λ i } N i=1 can be interpreted as frequencies and the elements of H as Fourier coe cients. The last term, β H S , is a sparsity regularization. In this work, we propose to either use the 2,1 (sum of the 2 -norm of each row of H) or 2,0 (number of rows with 2 -norm di erent than 0) that induces a row-sparse solution H.

Remark on the choice of • S -In the context of GSP, it is natural to assume that the graph signals are bandlimited at the same dimensions. This property is enforced by • S and has two main advantages: it is a key assumption for sampling over a graph and this particular structure is better for inferring graphs with clusters [START_REF] Sardellitti | Graph topology inference based on sparsifying transform learning[END_REF]. Therefore, in this work, the use of the classical 0 -norm and the 1 -norm have not been investigated since they would impose sparsity at every dimension of the matrix H "independently", which would consequently break the bandlimitedness assumption.

The hyperparameters, α, β > 0 are controlling respectively the smoothness of the approximated signals and the sparsity of H. A discussion on the in uence of these hyperparameters and an e cient way to x them is provided in Section 8.3.1. Finally, the rst three constraints (2.6a), (2.6b), (2.6c) enforce XΛX to be a Laplacian matrix of a graph with a single connected component (Assumption 2.1). More speci cally, by de nition, L = D -W with W ∈ R N ×N + , thus we necessary have ∀k = , L k, = (XΛX ) k, ≤ 0 (constraint (2.6b)). Furthermore, as XΛX is the eigendecomposition of the Laplacian matrix of an undirected graph with a single connected component (Assumption 2.1), X X = I N , (2.6a) and (2.6c)). The last constraint (2.6d) was proposed in [START_REF] Dong | Learning Laplacian matrix in smooth graph signal representations[END_REF] as to impose structure in the learned graph so that the trivial solution Λ = 0 is avoided. A discussion about values other than N is made in [START_REF] Kalofolias | How to learn a graph from smooth signals[END_REF].

x 1 = 1 √ N 1 N and λ 1 = 0 < λ 2 ≤ . . . ≤ λ N (constraints
Properties of the objective function (2.6). The objective function (2.6) is not jointly convex but when • S is taken to be the 2,1 norm, it is convex with respect to each of the blockvariables H, X, or Λ, taken independently. A natural approach to solve this problem is therefore to alternate between the three variables, minimizing over one while keeping the others xed. However, due to the equality constraint (2.6a) and inequalities (2.6b), the feasible set is not convex with respect to X. Hence, this approach raises several di culties that will be discussed and handled in the following section.

Reformulation of the problem

As stated in Section 3.2,problem (2.6) is not jointly convex and cannot be solved easily with constraints (2.6a) and (2.6b). In this section, we propose to rewrite constraints (2.6a) and (2.6b), in order to de ne a new equivalent optimization problem that can be solved with well-known techniques.

Reformulation of the constraint (2.6a)

In this section, we show that the constraints (2.6a) can be reformulated as a constraint over the space of orthogonal matrices in R (N -1)×(N -1) . Although such transformation does not change the convexity of the feasible set, we will see in Section 4.3 that there exist e cient algorithms that perform optimization over such manifold.

De nition 2.10. (Orthogonal group) -The space of orthogonal matrices in R N ×N , called orthogonal group, is the space:

Orth(N ) = {X ∈ R N ×N | X X = I N } .
Lemma 2.1. -Given X, X 0 ∈ R N ×N two orthogonal matrices, both having their rst column equal to 1 √ N 1 N (constraint (2.6a)), we have the following equality

X = X 0 1 0 N -1 0 N -1 [X 0 X] 2:,2:
, with [X 0 X] 2:,2: denoting the submatrix of X 0 X containing everything but the rst row and column of itself. Furthermore, [X 0 X] 2:,2: is in Orth(N -1).

The above lemma allows us to build an equivalent formulation of Problem (2.6) given by the following proposition.

Proposition 2.3. -Given X 0 ∈ R N ×N an orthogonal matrix with rst column being equal to

1 √ N 1 N , an equivalent formulation of optimization problem (2.6) is given by min H,U ,Λ Y -X 0 1 0 N -1 0 N -1 U H 2 F + α Λ 1/2 H 2 F + β H S f (H, U , Λ) , (2.7) CHAPTER 2. LEARNING LAPLACIAN MATRIX FROM GRAPH SIGNALS WITH SPARSE SPECTRAL REPRESENTATION s.t.              U U = I N -1 , (a') X 0 1 0 N -1 0 N -1 U Λ 1 0 N -1 0 N -1 U X 0 k, ≤ 0 k = , (b') Λ = diag(0, λ 2 , . . . , λ N ) 0 , (c) tr(Λ) = N ∈ R + * . (d)
The latter proposition says that since the rst column of X is xed and known, it is su cient to look for an optimal rotation of a valid matrix X 0 that preserves the rst column. Such a rotation matrix is given above and is parametrized by a U in Orth(N -1). Note that in practice, to nd a matrix X 0 satisfying (2.6a), we build the Laplacian of any graph with a single connected component and take its eigenvectors.

Log-barrier method for constraint (2.7b')

In order to deal with constraint (2.7b ), we propose to use a log-barrier method. This barrier function allows us to consider an approximation of problem (2.7) where the inequality constraint (2.7b') is made implicit in the objective function. Denoting by f (•) the objective function of (2.7), we want to solve min

H,U ,Λ f (H, U , Λ) + 1 t φ(U , Λ) s.t. (2.7a'), (2.7c), (2.7d) , (2.8) 
where t is a xed positive constant and φ(•) is the log-barrier function associated to the constraint (2.7b ).

De nition 2.11. (Log-barrier function) -Let the following matrix in R N ×N :

h(U , Λ) = X 0 1 0 N -1 0 N -1 U Λ 1 0 N -1 0 N -1 U X 0 ,
involved in the constraint (2.7b ). The associated log-barrier function φ : R (N -1)×(N -1) × R N ×N --→ R is de ned by:

φ(U , Λ) = - N -1 k=1 N >k log -h(U , Λ) k, , (2.9) 
with

dom(φ) = (U , Λ) ∈ R (N -1)×(N -1) × R N ×N | ∀1 ≤ k < ≤ N, h(U , Λ) k, < 0 , i.e.
its domain is the set of points that strictly satisfy the inequality constraints (2.7b').

This barrier function allows us to perform block-coordinate descent on three easier to solve subproblems, as we discuss in the next section.

Resolution of the problem: IGL-3SR

In this section, we describe our method, the Iterative Graph Learning for Smooth and Sparse Spectral Representation (IGL-3SR), and its di erent steps to solve Problem (2.8). Given a xed t > 0, we propose to use a block-coordinate descent on H, U , and Λ, which permits to split the problem in three partial minimizations that we discuss in this section. One of the main advantages of IGL-3SR is that each subproblem can be solved e ciently and as the objective function is lower-bounded by 0, this procedure ensures convergence. The summary of the method is presented in Algorithm 2.1.

Optimization with respect to H

For xed U and Λ, the minimization Problem (2.8) 

with respect to H is min H Y -XH 2 F + α Λ 1/2 H 2 F +β H S , where X = X 0 1 0 N -1 0 N -1 U . (2.10) When • S is set to • 2,0 (resp. • 2,1
), this problem is a particular case of what is known as Sparsify Transform Learning [START_REF] Ravishankar | Learning sparsifying transforms[END_REF] (resp. is a particular case of the Group Lasso [START_REF] Yuan | Model selection and estimation in regression with grouped variables[END_REF]] known as Multi-Task Feature Learning [START_REF] Argyriou | Multi-task feature learning[END_REF]). Moreover, as X is orthogonal, we are able to nd closed-form solutions (Proposition 2.4).

Proposition 2.4. (Closed-form solution for the 2,0 and 2,1 -norms) -The solutions of Problem (2.10) when • S is set to • 2,0 or • 2,1 , are given in the following.

• Using the 2,0 -norm, the optimal solution of (2.10) is given by the matrix H ∈ R N ×n where for 1 ≤ i ≤ N,

H i,: = 0 if 1 1+αλ i (X Y ) i,: 2 2 ≤ β , 1 (1+αλ i ) (X Y ) i,: else .
(2.11)

• Using the 2,1 -norm, the optimal solution of (2.10) is given by the matrix H ∈ R N ×n , where

for 1 ≤ i ≤ N, H i,: = 1 1 + αλ i 1 - β 2 1 (X Y ) i,: 2 + (X Y ) i,: , (2.12) 
where (t) + max{0, t} is the positive part function.

Optimization with respect to Λ

For xed H and U , the optimization Problem (2.8) with respect to Λ is

min Λ α tr(HH Λ) Λ 1/2 H 2 F + 1 t φ(U , Λ) s.t. Λ = diag(0, λ 2 , . . . , λ N ) 0 , (c) tr(Λ) = N ∈ R + * . (d) (2.13)
This objective function is di erentiable and convex with respect to Λ, and the constraints de ne a Simplex. Thus, several convex optimization solvers can be employed, such as those implemented in CVXPY [START_REF] Diamond | CVXPY: a Python-embedded modeling language for convex optimization[END_REF]. Popular algorithms are interior-point methods or projected gradient descent methods [START_REF] Maingé | Strong convergence of projected subgradient methods for nonsmooth and nonstrictly convex minimization[END_REF]. Using one algorithm of the latter type, we compute the gradient of 2.13 and project each iteration onto the Simplex [START_REF] Duchi | E cient projections onto the l 1-ball for learning in high dimensions[END_REF].

Optimization with respect to U

For xed H and Λ, the optimization Problem (2.8) with respect to U is:

min U Y -X 0 1 0 N -1 0 N -1 U H 2 F + 1 t φ(U , Λ) s.t. U U = I (N -1) . (a') (2.14) Figure 2.6:
The principle of the manifold gradient descend given schematically. T X Orth(N ) is the tangent space of Orth(N ) at X. The red line corresponds to a curve in Orth(N ) passing through the point X in the direction of the arrow. At each iteration, considering that X is the point of the current solution, a search direction belonging to T X Orth(N ) is rst de ned, and then a descent along a curve of the manifold is performed (at the direction of the black arrow along the red line).

The objective function is not convex but twice di erentiable and the constraint (a') involves the set of orthogonal matrices Orth(N -1) which is not convex. Orthogonality constraint is central to many machine learning optimization problems including Principal Component Analysis (PCA), Sparse PCA, and Independent Component Analysis (ICA) [START_REF] Hyvärinen | Independent component analysis: algorithms and applications[END_REF][START_REF] Zou | Sparse principal component analysis[END_REF][START_REF] Shalit | Coordinate-descent for learning orthogonal matrices through givens rotations[END_REF]. Unfortunately, optimizing over this constraint is a major challenge since simple updates such as matrix addition usually break orthonormality. One class of algorithms tackles this issue by taking into account that the orthogonal group Orth(N ) is a Riemannian submanifold embedded in R N ×N . In this work, we focus on manifold adaptation of descent algorithms to solve Problem (2.14).

The generalization of gradient descent methods to a manifold consists in selecting, at each iteration, a search direction belonging to the tangent space of the manifold de ned at the current point X, and then performing a descent along a curve of the manifold. Figure 2.6 provides pictures this principle.

De nition 2.12. (Tangent space at a point of Orth(N )) -Let X ∈ Orth(N ). The tangent space of Orth(N ) at point X, denoted by T X Orth(N ) is a 1 2 N (N -1) dimensional vector space de ned by:

T X Orth(N ) = XΩ | Ω ∈ R N ×N is skew-symmetric .
When we endow each tangent space with the standard inner product, we are able to de ne a notion of Riemannian gradient that allows us to nd the best direction for the descent. For an objective function f : R N ×N → R, the Riemannian gradient de ned over Orth(N ) is given by: 2.15) where P X is the projection onto the tangent space at X, which is equal to P X (ξ) = 1 2 X(X ξξ X), and ∇ X is the standard Euclidean gradient. At each iteration, the manifold gradient descent computes the Riemannian gradient (2.15) that gives a direction in the tangent space. Then the update is given by applying a retraction onto this direction, up to a step-size. A retraction consists in an update mapping from the tangent space to the manifold. Note that there are many possible ways to perform this update [START_REF] Edelman | The geometry of algorithms with orthogonality constraints[END_REF][START_REF] Absil | Optimization algorithms on matrix manifolds[END_REF][START_REF] Arora | On learning rotations[END_REF][START_REF] Meyer | Geometric optimization algorithms for linear regression on xed-rank matrices[END_REF]. Finally, from the last equation, we see that in order to solve problem (2.14) with this method, we need the Euclidean gradient of the objective function, namely those of f (•) and φ(•). These are given in the following proposition. 

grad f (X) = P X (∇ X f (X)) , ( 
∇ U f (H, U , Λ) = -2 (HY X 0 ) 2:,2: + 2U (HH ) 2:,2: , ∇ U φ(U , Λ) = - N -1 k=1 N >k B k, + B k, U Λ 2:,2: h(U , Λ) k, , with ∀1 ≤ k, ≤ N, B k, = X 0 e k e X

Log-barrier method and initialization

Choice of the t parameter. The quality of the approximation of Problem (2.7) by Problem (2.8) improves as t > 0 grows. However, taking a too large t at the beginning may lead to numerical issues. As a solution, we use the path-following method, which computes the solution for a sequence of increasing values of t until the desired accuracy. This method requires an initial value for t, denoted t (0) , and a parameter µ such that t ( +1) = µt ( ) . For an in-depth discussion we refer to [START_REF] Boyd | Convex optimization[END_REF].

Initialization. At the beginning, our IGL-3SR method requires a feasible solution to initialize the algorithm. One possible choice is to take U as the identity matrix I N -1 and to replace (X 0 , Λ) by the eigenvalue decomposition of the complete graph with trace equals to N . Indeed, its eigenvalue decomposition will always satisfy the constraints and belong to the domain of the barrier function. The initialization of H is not needed as we start directly with the H-step.

IGL-3SR is summarized in Algorithm 2.1.

Computational complexity of IGL-3SR

Considering a graph with N nodes and n > N graph signals:

• H-step (non-iterative) -The closed-form solution requires to compute the matrix product X Y , which is of complexity O(nN 2 ).

• Λ-step (iterative) -When using a projected gradient descent method, the complexity of each iteration is O(nN 2 ) to compute the gradient and O(N log(N )) for the projection [START_REF] Duchi | E cient projections onto the l 1-ball for learning in high dimensions[END_REF]]. Hence, denoting by τ Λ the number of iterations in each Λ-step, the complexity is O(τ Λ nN 2 ).

• X-step (iterative) -The complexity of each iteration is O(nN 2 ) to compute the Riemannian gradient and O(N 3 ) when we use the QR factorization as retraction [START_REF] Boyd | Introduction to applied linear algebra: vectors, matrices, and least squares[END_REF]]. Hence, denoting by τ X the number of iterations in each X-step, the complexity is O(τ X • nN 2 ).

Overall -The complexity to go through the big loop of IGL-3SR once (i.e. once through each of the H, Λ, and X steps) is of order O(max(τ Λ , τ X ) • nN 2 ). However, recall that τ Λ and τ X can be large in practice for reaching a good solution. In the following, we propose a relaxation for a faster resolution that relies on closed-form solutions. while not convergence do 10:

H-step: Compute the closed-form solution of Proposition (2.4) 11:

for 1 = 1, . . . , N do 12:

H i,: ←- 1 1 + αλ i 1 - β 2 1 (X Y ) i,: 2 + (X Y ) i,:
13:

end for 14:

Λ-step: Solve Problem (2.13)

15: Λ ←-arg min Λ α tr(HH Λ)+ 1 t φ(U , Λ) s.t. Λ = diag(0, λ 2 , . . . , λ N ) 0 , tr(Λ) = N ∈ R + * 16:
U -step: Solve Problem (2.14)

17:
while not convergence do 18:

U ←retraction(U ( (HY X 0 ) 2:,2: U -U (HY X 0 ) 2:,2: ))

19:

end while 20:

end while 21:

t ←µt 22: end while 5 A relaxation for a faster resolution: FGL-3SR

In this section, we propose another algorithm called Fast Graph Learning for Smooth and Sparse Spectral Representation (FGL-3SR) to approximately solve the initial Problem (2.6). FGL-3SR has a signi cantly reduced computational complexity due to a well-chosen relaxation. As in the previous section, we use a block-coordinate descent on H, X, and Λ, which permits to decompose the problem in three partial minimizations. FGL-3SR relies on a simpli cation of the minimization step in X by removing the constraint (2.6b). This simpli cation allows us to compute a closedform on this step which greatly accelerates the minimization. However, the constraints (2.6a) and (2.6b) are equally important to obtain a valid Laplacian matrix at the end, and reducing the problem does not ensure that the constraint (2.6b) will be satis ed. The following proposition explains why we can get rid of constraint (2.6b) at the X-step, while still being able to ensure that the matrix will be a proper Laplacian at the end of the algorithm.

Proposition 2.6. (Feasible eigenvalues) -Given any X ∈ R N ×N being an orthogonal matrix with rst column being equal to 

   (XΛX ) i,j ≤ 0 i = j , (2.6b) Λ = diag(0, λ 2 , . . . , λ N ) 0 , (2.6c) tr(Λ) = c ∈ R + * .
(2.6d)

In Proposition 2.7 of the next section, we will see that, by ignoring constraint (2.6b) at the X-step, we can compute a closed-form solution to the optimization problem. For this reason, we propose to use the closed-form solution that we derive to learn X, and right after always optimize with respect to Λ. Hence, we are sure that we will obtain a proper Laplacian at the end of the process (Proposition 2.6). The initialization and the optimization with respect to H are not concerned by this relaxation and can therefore be performed as in IGL-3SR (see Sections 4.1 and 4.4).

Optimization with respect to X

As already explained, during the X-step, we solve the program

min X Y -XH 2 F s.t. X X = I N , x 1 = 1 √ N 1 N , (2.6a) (2.16)
where the constraint (2.6b) is missing. The closed-form solution is given next.

Proposition 2.7. (Closed-form solution of Problem (2.16)) -Let X 0 be any matrix that belongs to the constraints set (2.6a), and M = (X 0 Y H ) 2:,2: the submatrix containing everything but the input's rst row and rst column. Finally, let P DQ be the SVD of M . Then, the problem admits the following closed form solution: .17) In practice, X 0 can be xed to the current value of X.

X = X 0 1 0 N -1 0 N -1 P Q . ( 2 

Optimization with respect to Λ

With respect to Λ, the optimization Problem (2.6) becomes:

min Λ α tr(HH Λ) Λ 1/2 H 2 F s.t.    (XΛX ) i,j ≤ 0 i = j , (b) Λ = diag(0, λ 2 , . . . , λ N ) 0 , (c) tr(Λ) = N ∈ R + * , (d) 
(2.18)
which is a linear program that can be solved e ciently using linear cone programs. Note that this will involve an optimization over N parameters with 1 2 N (N -1) + N + 1 constraints.

FGL-3SR is summarized in Algorithm 2.2. 

Computational complexity of FGL-3SR

H i,: ←- 1 1 + αλ i 1 - β 2 1 (X Y ) i,: 2 + (X Y ) i,:
9:

end for 10:

X-step: Compute the closed-form solution of Proposition (2.7) 11:

M ←-(X Y H ) 2:,2:

12:

(P , D, Q ) ←-SVD(M ) 13: X ←-X 1 0 N -1 0 N -1 P Q 14:
Λ-step: Solve the linear Program (2.18) 15:

Λ ←-arg min Λ α tr(HH Λ) s.t.    (XΛX ) i,j ≤ 0 i = j Λ = diag(0, λ 2 , . . . , λ N ) 0 tr(Λ) = N ∈ R + *
16: end for

• H-step (non-iterative) -The closed-form solution requires to compute the matrix product X Y , which is of complexity O(nN 2 ).

• X-step (non-iterative) -The closed-form solution requires to compute the SVD of (X 0 Y H ) 2:,2: ∈ 1) , which is of complexity O(N 3 ) [START_REF] Cline | Computation of the singular value decomposition[END_REF]].

R (N -1)×(N -
• Λ-step -Solving the LP can be done with interior-point methods or with the ellipsoid method [START_REF] Vandenberghe | The CVXOPT linear and quadratic cone program solvers[END_REF]. For accuracy ε, the ellipsoid method yields a complexity of O(max(m, N ) • N 3 log (1/ε)), where m = 1 2 N (N -1) + N + 1 is the number of constraints [START_REF] Bubeck | Convex optimization: algorithms and complexity[END_REF].

Overall -As m > N , the complexity for FGL-3SR is of order O(N 5 ) when using the ellipsoid method. In contrast, the most competitive related algorithm of the literature (ESA-GL [START_REF] Sardellitti | Graph topology inference based on sparsifying transform learning[END_REF]) relies on a semi-de nite program and is of order at least O(N 8 ) (see Section 7). As will be clearly demonstrated in Section 8, in practice the empirical execution time of FGL-3SR is lower than IGL-3SR and ESA-GL.

Di erences between IGL-3SR and FGL-3SR

The two proposed algorithms are based on a modi cation of the initial optimization problem (2.6). Indeed, both of them relax the constraint (2.6b), ∀k = , (XΛX ) k, ≤ 0, but with two di erent approaches. IGL-3SR approximates the initial optimization problem through the use of a log-barrier function. The advantage of the barrier is twofold. First, it allows to overcome the technical constraint (2.6b) and solve the program using a block-coordinate descent algorithm. Second, the use of the barrier makes the block-variables separable over the constraint set allowing the convergence of the objective function of IGL-3SR. In addition, IGL-3SR always keep the set of variables in the initial set of constraints, essential for the matrix XΛX to be a proper Laplacian. On the other hand, FGL-3SR does not use a log-barrier function to relax the constraint (2.6b), but instead, removes it at the X-step. Recall that we are able to do that because we know from Lemma 2.6 that for any X returned by the X-step (5.1), there exist a Λ making XΛX a Laplacian. This relaxation has the advantage to drastically speed-up the X-step while loosing the convergence property and the decreasing over the initial constraints set.

A probabilistic interpretation

In this section, we introduce a new representation model adapted to smooth graph signals with sparse spectral representation. The goal of this model is to provide a probabilistic interpretation of Problem (2.6) and link its objective function to a maximum a posteriori estimation (Proposition 2.8).

Given a Laplacian matrix L = XΛX , we propose the following Factor Analysis Framework to model a graph signal y y = Xh + m y + ε , (2.19) where m y ∈ R N is the mean of the graph signal y and ε is a Gaussian noise with zero mean and covariance σ 2 I N . Here, the latent variable h ∈ R N controls y through the eigenvector matrix X of L. The choice of the representation matrix X is particularly adapted since it re ects the topology of the graph and provides a spectral embedding of its vertices. Moreover, as seen in Section 3, X can be interpreted as a graph Fourier basis, which makes it an intuitive choice for the representation matrix. In a noiseless scenario with m y = 0 N , h actually corresponds to the GFT of y.

To comply with the spectral sparsity assumption (Assumption 2.2), we now propose a distribution that allows h to admit zero-valued components. To this end, we introduce independent latent Bernoulli variables γ i with success probability 2.20) where Λ † is the Moore-Penrose pseudo-inverse of the diagonal matrix containing the values

p i ∈ [0, 1]. Knowing γ 1 , . . . , γ N , the conditional distribution for h is h|γ ∼ N (0 N , Λ † ) , ( 
{λ i • 1{γ i = 1}} N
i=1 . In this model, γ i controls the sparsity of the i-th element of h. Indeed, if γ i = 0, then h i = 0 almost surely. In the other hand, if γ i = 1 then h i follows a Gaussian distribution with zero-mean and variance equal to 1/λ i . This is adapted to the smoothness hypothesis as for high value of λ i (high frequency), the distribution of h i concentrates more around 0, leading to small value of λ i h 2 i . The associated probability of success p i can be chosen a priori. One way to chose it is to take p i inversely proportional to λ i . Indeed, this would increase the probability to be sparse at dimensions where the associated eigenvalue is high. Note that, since λ 1 = 0, h 1 follows a centered degenerate Gaussian, i.e h 1 is equal to 0 almost surely. Furthermore, if p i = 1 for all i, our model reduces to the one proposed by [START_REF] Dong | Learning Laplacian matrix in smooth graph signal representations[END_REF], which was only focused on the smoothness assumption.

De nition 2.13. (Prior and conditional distributions) -The following equations summarize the prior and important conditional distributions of our model:

p(h i |γ i , λ i ) ∝ exp(-λ i h 2 i ) • 1{γ i = 1} + 1{h i = 0, γ i = 0} , (2.21) p(y|h, X) ∝ exp(- 1 σ 2 y -Xh -m y 2 2 ) , (2.22 
)

p(γ i ) ∝ p γ i i (1 -p i ) 1-γ i . (2.23)
For simplicity, in the following we consider that m y = 0 N and p 1 = 0.

Lemma 2.2. -Assume the proposed Model (2.19). If p 1 = 0 and p i ∈ (0, 1), ∀i ≥ 2, then:

-log(p(h|y, X, Λ)) ∝ 1 σ 2 y -Xh 2 2 + 1 2 h Λh + N i=1 1{h i = 0} p i log( λ i √ 2π ) -log(p i ) -log( λ i √ 2π
) .

De nition 2.14. (Lambert W-Function) -The Lambert W -Function, denoted by W (•), is the inverse function of f : W -→ W e W . In particular, we consider W to be the principal branch of the Lambert function, de ned over [-1/e, ∞).

Proposition 2.8. (A posteriori distribution of h) -Let C > 0, and assume for all i ≥ 2 that

p i = e -C if λ i = √ 2π, whereas p i = -W -e -C log(λ i / √ 2π) λ i / √ 2π 1 log(λ i / √ 2π) otherwise.
Then, p i ∈ (0, 1) and there exist constants α, β > 0 such that:

-log(p(h|y, X, Λ)) ∝ y -Xh 2 2 + αh Λh + β h 0 .
This proposition tells us that for a given Laplacian matrix, the maximum a posteriori estimate of h would corresponds to the minimum of Problem (2.6).

Related work on GSP-based graph learning methods

We now detail the two state-of-the-art methods for graph learning in the GSP context that are closer to our work and that will be used for our experimental comparison in Section 8.

1. GL-SigRep [START_REF] Dong | Learning Laplacian matrix in smooth graph signal representations[END_REF]: This method supposes that the observed graph signals are smooth with respect to the underlying graph, but do not consider the spectral sparsity assumption. To learn the graph, they propose to solve the optimization problem:

min L, Ỹ Y -Ỹ 2 F + α L 1/2 Ỹ 2 F + β L 2 F s.t.    L k, = L ,k ≤ 0 k = , L1 = 0 N , tr(L) = N ∈ R + * .
(2.24)

Remark that since no constraints are imposed on the spectral representation of the signals, the Laplacian matrix is directly learned. The optimization procedure to solve (2.24) 

H,X Y -XH 2 F s.t. X X = I N , x 1 = 1 √ N 1 N , H 2,0 ≤ K ∈ N , (2.25)
which is solved using an alternating minimization. Once estimates for H and X have been computed, they solve a second optimization problem in order to learn the Laplacian L associated to the learned basis X. This is done by minimizing

min L∈R N ×N , C K ∈R K×K tr( H T K C K H K ) + µ L 2 F s.t.        L k, = L ,k ≤ 0 k = , L1 N = 0 N , L X K = X K C K , C K 0 , tr(L) = N ∈ R + * , (2.26) 
where C K ∈ R K×K and X K corresponds to the columns of X associated to the non-zero rows of H denoted H K . Thus, the second step aims at estimating a Laplacian that enforces the smoothness of the learned signal representation X H. This semi-de nite program requires the computation of over 1 2 N (N -1) + 1 2 K(K -1) parameters that, as we show empirically in the next section, can be di cult to compute for graphs with large number of nodes. For more details on the optimization program and the additional matrix C K , the readers shall refer to the aforementioned paper.

Experimental evaluation

The two proposed algorithms, IGL-3SR and FGL-3SR, are now evaluated and compared with the two state-of-the-art methods presented earlier, GL-SigRep and ESA-GL. The results of our empirical evaluation are organized in three subsections: Section 8.2 and 8.3 use synthetic data for rst comparing the di erent methods and then study the in uence of the hyperparameters; Section 8.4 displays several examples on real-world data.

All experiments were conducted on a personal laptop with 4-core 2.5GHz Intel CPUs and Linux/Ubuntu OS. For the Λ-step of both algorithms, we use the Python's CVXPY package [START_REF] Diamond | CVXPY: a Python-embedded modeling language for convex optimization[END_REF]. For the X-step of IGL-3SR, we use the conjugate gradient descent solver combined with an adaptive line search, both provided by Pymanopt [START_REF] Townsend | Pymanopt: a Python toolbox for optimization on manifolds using automatic di erentiation[END_REF], a Python toolbox for optimization on manifolds. Note that this package only requires the gradients given in Proposition 2.5. The source code of our implementations is available at https://github.com/pierreHmbt/GL-3SR.

CHAPTER 2. LEARNING LAPLACIAN MATRIX FROM GRAPH SIGNALS WITH SPARSE SPECTRAL REPRESENTATION

Evaluation metrics

We provide visual and quantitative comparisons of the learned Laplacian L and its weight matrix W using the performance measures: Recall, Precision, and F 1 -measure, which are standard for this type of evaluation [START_REF] Pasdeloup | Characterization and inference of graph di usion processes from observations of stationary signals[END_REF]. The F 1 -measure evaluates the quality of the estimated support -the non-zero entries -of the graph and is given by:

F 1 = 2 × precision × recall precision + recall .
As in [START_REF] Pasdeloup | Characterization and inference of graph di usion processes from observations of stationary signals[END_REF], the F 1 -measure is computed on a thresholded version of the estimated weight matrix W . This threshold is equal to the average value of the o -diagonal entries of W (same process as in [START_REF] Sardellitti | Graph topology inference based on sparsifying transform learning[END_REF]).

In addition, we compute the correlation coe cient ρ(L, L) between the true Laplacian entries L i,j and their estimates L i,j

ρ(L, L) = ij (L ij -L m )( L ij -L m ) ij (L ij -L m ) 2 ij ( L ij -L m ) 2 , (2.27) 
where L m and L m are the average values of the entries of the true and estimated Laplacian matrices, respectively. This ρ(•) function evaluates the quality of the weights distribution over the edges.

Experiments on synthetic data

We now evaluate and compare all algorithms on several types of synthetic data. Details about graphs, associated graph signals, and evaluation protocol used for the experiments, are detailed in the sequel.

Graphs and signals.

We carried out experiments on graphs with 20, 50, and 100 vertices, following: i) a Random Geometric (RG) graph model with a 2-D uniform distribution for the coordinates of the nodes and a truncated Gaussian kernel of width size 0.5 for the edges, where weights smaller than 0.75 were set to 0; ii) an Erdős-Rényi (ER) model with edge probability 0.2. Given a graph, the sampling process was made according to Model (2.21) that we presented in Section 6. The mean value of each signal was set to 0, the variance of the noise was set to 0.5, and the sparsity was chosen to obtain observations with k-sparse spectral representation, where k is equal to half the number of nodes (i.e 10, 20, 50). For each type of graph, we ran 10 experiments with 1000 graph signals generated as explained above. For all the methods, the hyperparameters α and β are set by maximizing the F 1 -measure on the thresholded W , as explained in Section 8.1.

Choice of • S . In the following we make all experiments for IGL-3SR and FGL-3SR with the 2,1 -norm. This is motivated by an important fact brought by the closed-form solutions given in Proposition 2.4. Indeed, for 2,1 -norm, the sparsity of H is only controlled by β (Equation (2.12)).

On the contrary, when using the 2,0 -norm, the value of α also in uences the sparsity (Equation (2.11)). This is an important behavior, as the tuning of β and α becomes independent -at least with respect to the H-step -and therefore, as we will see in Section 8. Quantitative results. Average evaluation metrics and their standard deviation are collected in Table 2.1. The results show that the use of the sparsity constraint improves the quality of the learned graphs. Indeed, the two proposed methods IGL-3SR and FGL-3SR, as well as ESA-GL, have better overall performance in all the metrics than GL-SigRep that only considers the smoothness aspect. This had to be expected as our methods match perfectly to the sparse (bandlimited) condition.

Comparing the results across the di erent types of synthetic graphs, our methods are robust while being more e cient on RG graphs. In general, IGL-3SR, and FGL-3SR present similar performance to ESA-GL. However IGL-3SR seems preferable in the case of RG graphs. For 100 nodes, the computational resources necessary for GL-SigRep was already too demanding, therefore only the results for the rest three methods are reported. We can see that, while IGL-3SR has better results than FGL-3SR, the time necessary to estimate the graph is much longer. In addition, examples of learned graphs are displayed in Figure 2.7 with the ground-truth on the left and the learned weighted adjacency matrices (after thresholding). The evolution of the F 1 -measure regarding the value of the threshold is also displayed and shows that a large range of threshold could have been used to obtain similar performance. All these results, combined with those of Table 2.1, indicate that in this sampling process the proposed FGL-3SR method managed to infer accurate graphs despite the relaxation.

Speed performance. Figure 2.8 displays the evolution of the empirical computation time as the number of nodes increases. For each algorithm, time per iteration is: i) for IGL-3SR and FGL-3SR, the time needed for the computation of the 3 steps one time; ii) for ESA-3SR,the time needed for the computation of the quadratic program; iii) for GL-SigRep, the time needed for the computation of its two steps one time. FGL-3SR appears to be much faster than the other methods. Furthermore, we observe that our methods are scalable over a wider range of graph sizes than the competitors. Indeed, even quite small graphs of 100 and 150 nodes, respectively, were already too 'large' for the two competitors to be able to produce results, and they even led to memory allocation errors. IGL-3SR v.s. FGL-3SR. In terms of numerical performance, IGL-3SR is better than FGL-3SR (Table 2.1). Indeed, except for graphs of size 20, metrics relative to the recovery of the true graph give better results. On the contrary, in terms of computational time aspect FGL-3SR is better than IGL-3SR (see Figure 2.8). Indeed, no matter the size of the graph, FGL-3SR has a time per iteration lower than IGL-3SR. This is due to the fact that contrary to IGL-3SR which solves two out of three sub-problems with iterative methods, FGL-3SR solves two sub-problems via closed-form solutions which are e ciently computable. In conclusion, when the number of nodes is small, IGL-3SR is preferred. If not, one should use FGL-3SR. 

In uence of the hyperparameters

We now study how hyperparameters of IGL-3SR and FGL-3SR in uence their overall performance, with respect to the F 1 -measure. This study is made on a RG graph with N = 20 nodes and 10-bandlimited signals Y in R 20×1000 .

In uence of α and β

We rst highlight the in uence of α and β on FGL-3SR. We run and collect the F 1 -measure for 20 values of α (resp. β) in [10 -5 , 100] (resp. [10 -5 , 60]). The resulting heatmaps are displayed in Figure 2.9. The most important observation is that the value of α does not seem to impact the quality of the resulted graphs. Indeed, for a xed value of β, the F 1 -measure is stable when α varies. However, it is interesting that the convergence curve of FGL-3SR (Figure 2.10) is directly impacted by α: large values for α tend to produce oscillations on the convergence curves. Thus, setting to a small value α > 0 is suggested. Contrary to α, tuning the parameter β is critical since high β values cause a drastic decrease in F 1 -measure. This sharp decrease appears when the chosen β imposes too much sparsity for the learned H. One may note that the best β corresponds to the value just before the sharp decrease, and this is the value that should be chosen. Although the previous analysis has been done on FGL-3SR, during our experimental studies, α and β in uenced the F 1 -measure similarly when using IGL-3SR.

In uence of t

We now highlight the in uence of t on IGL-3SR. Figure 2.11 shows the learned graphs for several values of t ∈ [10, 10 4 ]. This experiment brings two main messages: rst, when t is too low, the learned graph is very close to the complete graph, whereas when t increases the learned graph becomes more structured and tends to be sparse. This result was expected since a larger t brings the barrier closer to the true constraint, i.e. we allow elements of the resulting Laplacian matrix to be closer to 0. Second, it appears that α also in uences the nal results in a similar way to t. Again, this was expected as the minimization of the objective function during the Λ-step of Problem (2.8) is equivalent to the minimization of tr(HH Λ) + 1 α t φ(U , Λ). For a discussion on the initial value of t, t (0) , and the step size µ such that t ( +1) = µt ( ) , both relative to the barrier method, we refer the reader to [START_REF] Boyd | Convex optimization[END_REF]. However, recall that t is not a hyperparameter to tune in practice, and should be taken as large as possible. The mere goal is to prevent numerical issues. Fortunately, a wide range of values for t (0) and µ achieves that goal [START_REF] Boyd | Convex optimization[END_REF]. Tuning the hyperparameters. The hyperparameter α does not seems to have a substantial impact on the F 1 -measure. However, a low value of it may be preferred in FGL-3SR for convergence purpose (Figure 2.10). The parameter t always needs to be maximal provided that it does not cause numerical issues. Classical heuristics and methods, like the one presented in Section 4.4, can be used to tune t [START_REF] Boyd | Convex optimization[END_REF]. Hence, according to our experiments, it remains only β as a critical hyperparameter to tune for both these methods. Based on Figure 2.9, one way to x it is to nd the largest β value that leads to satisfying results in terms of signal reconstruction. Alternatively, if we have an idea about the number of clusters k that resides on the graph, we could select a β value that produces a k-sparse spectral representation. Bearing in mind that other related works require the tuning of two hyperparameters, our approach turns out to be of higher value for practical application on real data where these parameters are unknown and must be tuned.

Temperature data

We used hourly temperature (C • ) measurements on 32 weather stations in Brittany, France, during a period of 31 days [START_REF] Chepuri | Learning sparse graphs under smoothness prior[END_REF]. The dataset contains 24 × 31 = 744 multivariate observations, i.e. Y ∈ R 32×744 , that are assumed to correspond to an unknown graph, which is our objective to infer. For our two algorithms, we set α = 10 -4 , and β is chosen so that we obtain a 2-sparse spectral representation, which this last assumes that there are two clusters of weather stations.

The graphs obtained with each of the method are displayed in Figure 2.12 (a-b). They are in accordance with the one found in [START_REF] Chepuri | Learning sparse graphs under smoothness prior[END_REF] on the same dataset. Both the proposed methods provide similar results, which shows that the relaxation used in FGL-3SR has a moderate in uence in practice in this real-world problem. Although ground-truth is not available for this use-case, the quality of the learned graph can be assessed when using it as input in standard tasks such as graph clustering or sampling. For instance, when applying spectral clustering [START_REF] Ng | On spectral clustering: analysis and an algorithm[END_REF] with two clusters on the resulting Laplacian matrices, it can be seen that both methods split the learned graph in two parts corresponding to the north and the south of the region of Britanny (Figure 2.12 (c-d)), which is an expected natural segmentation. The learned graphs can be also employed in the graph sampling task. Indeed, due to the constraints used in the optimization problem, the graph signals are bandlimited with respect to learned graphs. For instance, in this example the graph signals are 2-bandlimited. This property means that it is possible to select only 2 nodes and to reconstruct the graph signal values of the 30 remaining nodes using linear interpolation. Figure 2.13 displays an example of such reconstruction: thanks to the learned graph structure, the use of only 2 nodes allows to reconstruct su ciently well the whole data matrix with a mean absolute error of 0.614. Again, this is a very interesting result that indirectly shows the quality of the learned graph.

Cancer genome data

In this second experiment, we consider the RNA-Seq Cancer Genome Atlas Research Network dataset [START_REF] Weinstein | The cancer genome atlas pan-cancer analysis project[END_REF]. The data set contains the information of 801 individuals, each of them characterized by a set of 20531 genetic features and being labeled by one out of 5 types of cancer: breast carcinoma (BRCA), colon adenocarcinoma (COAD), kidney renal clear-cell carcinoma (KIRC), lung adenocarcinoma (LUAD), and prostate adenocarcinoma (PRAD).

The goal of the considered task is to learn a graph of the N = 801 individuals (the nodes) using the n = 20531 genetic features (the samples seen here as graph signals) and determine if this graph is able to group the individuals according to their tumor type. The number of nodes being large, we propose to use FGL-3SR and, as previously, to use spectral clustering [START_REF] Ng | On spectral clustering: analysis and an algorithm[END_REF] on the learned graph the nd the cluster mapping.

As the number of nodes of the graph is too large, ESA-GL and Sig-Rep are not able to run in reasonable time. Therefore, we compare FGL-3SR to two other state-of-the-art methods, which are however not GSP-oriented but rather specialized to obtain a graph that facilitates data clustering. The two competitors are namely the Constrained Laplacian Rank (CLR) algorithm [START_REF] Nie | The constrained Laplacian rank algorithm for graph-based clustering[END_REF] that builds a special graph from the available data, and the Structured Graph Learning (SGL) algorithm [START_REF] Kumar | Structured graph learning via Laplacian spectral constraints[END_REF][START_REF] Kumar | A uni ed framework for structured graph learning via spectral constraints[END_REF] that take as input the sample covariance matrix of the data. As quality measure we use the clustering accuracy, which has also been used in the associated papers of the competitors from where we obtain their reported results. The results for the three methods are respectively: FGL-3SR: 0.9887, CLR: 0.9862, SGL: 0.9987.

The rst interesting result is that FGL-3SR presents similar accuracy to CLR and SGL, even though it is not a graph learning method specially designed for clustering like the competitors. Secondly, while FGL-3SR comes second in terms of accuracy after SGL, two important remarks need to be made about the SGL method: 1) it must x the right number of clusters of the learned graph a priori to obtain such result; 2) it has an additional hyperparameter to tune compared to FGL-3SR. Therefore comparably, bearing in mind the above results, the fact that SGL is ne-tailored for the undertaken clustering tasks and that it has higher tuning complexity, and nally the limitations of ESA-GL and Sig-Rep that prevent them from being applied in this scenario, FGL-3SR seems to be a promising alternative for large-scale graph-based learning applications.

Results on the ADHD dataset

In this third experiment, we consider the Attention De cit Hyperactivity Disorder (ADHD) dataset [START_REF] Bellec | The neuro bureau ADHD-200 preprocessed repository[END_REF] composed of functional Magnetic Resonance Imaging (fMRI) data. ADHD is a mental pathophysiology characterized by an excessive activity [START_REF] Boyle | Trends in the prevalence of developmental disabilities in US children, 1997-2008[END_REF]. We study the resting-state fMRI of 20 subjects with ADHD and 20 healthy subjects available from Nilearn [START_REF] Abraham | Machine learning for neuroimaging with scikit-learn[END_REF]. Each of the 40 fMRI consists in a series of images measuring the brain activity. These images are processed as follows. We split the brain into N = 39 Regions Of Interest (ROIs) with the Multi-Subject Dictionary Learning atlas [START_REF] Varoquaux | Multi-subject dictionary learning to segment an atlas of brain spontaneous activity[END_REF] (see the pixel values over the associated ROI. Each image is thereby transformed into a graph signal.

For each of the 40 subjects, we therefore have access to a matrix in R n×39 , where n is the number of images in the fMRI of the subject (i.e. the number of graph signals).

We propose to estimate a graph for each subject independently. Examples of learned graphs with FGL-3SR for an ADHD subject and a healthy subject are displayed in Figure 2.14. Visually, they reveal strong symmetric links between the right and left hemisphere of the brain. This phenomenon is common in resting-state fMRI where one hemisphere tends to correlate highly with the homologous anatomical location in the opposite hemisphere [START_REF] Damoiseaux | Consistent resting-state networks across healthy subjects[END_REF][START_REF] Smith | Correspondence of the brain's functional architecture during activation and rest[END_REF]. Pointing out di erences, though, the graph from the ADHD subject seems less structured and contains several spurious links (diagonal and north-south connections).

Aiming to better highlight the potential value of quality learned graphs for such studies, we proceed and use the Laplacian matrices of the brain graphs to classify the subjects, as proposed in several resting-state fMRI studies [START_REF] Abraham | Deriving reproducible biomarkers from multi-site resting-state data: an autism-based example[END_REF][START_REF] Dadi | Benchmarking functional connectome-based predictive models for resting-state fMRI[END_REF]. First, we subtract the 9. ELECTROENCEPHALOGRAPHY MICROSTATES ANALYSIS THROUGH GRAPHS 59 average graph for all subjects, which in fact removes the symmetrical connections common to all subjects), and then we use a 3-Nearest Neighbors classi cation algorithm. We use the correlation coe cient of Equation (2.27) as distance metric between Laplacian matrices, and a leave-one-out cross-validation strategy. The classi cation accuracy of the described approach reaches 65%. This level shall be compared with the performance obtained using simple correlation graphs [START_REF] Abraham | Deriving reproducible biomarkers from multi-site resting-state data: an autism-based example[END_REF]] that, on these 40 subjects, leads to an accuracy of 52.5%. It appears that in this context the use of a more sophisticated graph learning process allows a subject characterization that goes beyond considering basic statistical correlation e ects. Interestingly, this score is also comparable with state-of-the-art results reported in [START_REF] Sen | A general prediction model for the detection of ADHD and autism using structural and functional MRI[END_REF] for the same task, but on a larger database (67.3% of accuracy), using more sophisticated and specially-tailored processing steps, as well as carefully chosen classi ers.

Electroencephalography microstates analysis through graphs

In this preliminary experiment, we are interested in multichannel ElectroEncephaloGraphy (EEG). EEG is an important method to access real-time information about the global function of neuronal networks. Traditionally, its analysis relies on the study of the di erent frequency bands present in each channel. However, due to the time-frequency uncertainty principle, studying the frequency inherently sacri ces the high temporal resolution of the EEG. To overcome this issue and analyze short-lasting uctuations of neuronal activity, several methods in the time domain have been proposed. These methods are based on the seminal work of [START_REF] Lehmann | EEG alpha map series: brain micro-states by space-oriented adaptive segmentation[END_REF] which rst considers the temporal evolution of the topography of the scalp electric eld instead of the frequencies. With this idea, they obtain a global measure of the brain activity with high temporal resolution. They show that the topography does not change randomly and continuously over time but instead remains stable for 80 to 120 milliseconds. These periods of quasi-stability are termed EEG microstates and are a window to better understand the behavior of the brain activity (see e.g. [START_REF] Musso | Spontaneous brain activity and eeg microstates. a novel eeg/fmri analysis approach to explore resting-state networks[END_REF][START_REF] Van De Ville | EEG microstate sequences in healthy humans at rest reveal scale-free dynamics[END_REF]). A full review and introduction can be found in [START_REF] Michel | EEG microstates as a tool for studying the temporal dynamics of whole-brain neuronal networks: a review[END_REF] and [START_REF] Poulsen | Microstate EEGlab toolbox: an introductory guide[END_REF]. In this experiment, we aim to study the microstates during a general anesthesia. For a better understanding of these microstates, we rst extract them from the EEG signals and then learn their underlying graphs with FGL-3SR.

Dataset. The data consists in 32 EEG signals recorded at 250 Hz during a General Anesthesia (GA) for 10 patients. Signals are rst ltered using a bandpass lter between 1 and 20Hz, to remove the potential drift below 1Hz, and to keep the frequencies below 20Hz that characterize GA [START_REF] Brown | General anesthesia, sleep, and coma[END_REF]. We also remove some artifacts using Independent Component Analysis (ICA) and set the reference to average -an important parameter to study microstates. Finally, for each patient, we crop the signals to only keep times relative to the "Anesthesia state" [START_REF] Brown | General anesthesia, sleep, and coma[END_REF].

Segment the signals and graph learning of the microstates. EEG microstate segmentation is performed based on a standard procedure. The local maxima of the global eld power (GFP) [START_REF] Lehmann | Reference-free identi cation of components of checkerboardevoked multichannel potential elds[END_REF] are extracted from the EEG. Then, several runs of the modi ed Kmeans algorithm are performed [START_REF] Pascual-Marqui | Segmentation of brain electrical activity into microstates: model estimation and validation[END_REF], using di erent random initializations. The run resulting in the best segmentation, as measured by the Global Explained Variance (GEV) [START_REF] Poulsen | Microstate EEGlab toolbox: an introductory guide[END_REF] is kept. Through this segmentation, we extract and group the similar temporal parts of the EEG, hence satisfying the i.i.d. hypothesis of the factor analysis model introduced in Section 6. Furthermore, as the topography remains stable during a few milliseconds, the assumption that the signal is stationary during this short period of time is valid. We then learn with FGL-3SR the structure of each found microstate using the signals relative to each cluster. Hyperparameters are set in order to obtain visually relevant graphs.

Results. We extract 6 microstates from the signal and learn their associated graphs (see Figure 2.15). They explain 80% of the variance i.e. GEV equals 0.80 and are consistent with those of Shi et al. [2020]. All graphs returned by FGL-3SR are structured, well re ecting the topology of microstates. This underlines the pertinence of our approach for the visualization and the study of microstates with graphs. One other advantage of this approach is that, unlike standard methods, graphs allow us to nely analyze the spatial relationships between the EEG channels (the links between the nodes). In other terms, we do not only analyze the topography, which is a partial information (averaging). Thus, instead of only comparing the topology of microstates, we can compare their structure via appropriate metrics on graphs [START_REF] Maretic | GOT: an optimal transport framework for graph comparison[END_REF]. Furthermore, these graphs allow to apply a wide range of other useful methods such as ltering, sampling, spectral clustering, blind source separation of graph signals [START_REF] Miettinen | Blind source separation of graph signals[END_REF], and even computation of similarity between the topography using the Wasserstein distance between the underlaying graphs [START_REF] Maretic | GOT: an optimal transport framework for graph comparison[END_REF]. Note that for the 6 learned graph, the hyperparameter β was set to the same value and led to the same sparsity for H. To conclude, we believe that the graph representation may allow a thinner analysis of the structure of the microstates during anesthesia.
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This chapter presented a data-driven graph learning approach by employing a combination of two assumptions. The rst is standard in the related literature and concerns the smoothness of graph signals with respect to the underlying graph structure. The second is the spectral sparsity assumption, a consequence of the presence of clusters in real-world graphs. We proposed two algorithms to solve the corresponding optimization problem. The rst one, IGL-3SR, e ectively minimizes the objective function and has the advantage to decrease at each iteration. To address its low speed of convergence, we propose FGL-3SR that is a fast and scalable alternative. The ndings of our empirical evaluation on synthetic data showed that the proposed approaches are as good or better performing than the reference state-of-the-art algorithms in term of reconstructing the unknown underlying graph and of computational cost (running time). Experiments on real-world benchmark use-cases suggest that our algorithms learn graphs that are useful and promising for any graph-based machine learning methodology, such as graph clustering and subsampling, etc. Finally, by including the two assumptions in a probabilistic model, we link our optimization problem to a maximum a posteriori estimation and pave the way for further statistical understanding.

Technical proofs

This section provides the technical proofs of the di erent propositions exposed above. Recall that lower case variables refer vectors/scalars while bold upper case variable denote matrices. The table below provides the main notations used in the technical discussion that that follows.

x , M

Transpose of vector x, matrix M . tr(M )

Trace of matrix M . diag(x) Diagonal matrix containing the vector x. M k,l (k, l)-th element of the matrix M . M k,:

k-th row of M . M :,l l-th column of M . M k:,l:

Submatrix containing the elements of M from the k-th row to the last row, and from the l-th column to the last column. M 0 M is a positive semi-de nite matrix.

M †

The Moore-Penrose pseudoinverse of M . e k

Vector containing zeros except a 1 at position k.

I n

Identity matrix of size n. 0 n

Vector of size n containing only zeros.

1 n
Vector of size n containing only ones.

1 A (•)

The indicator function over the set A. x 0

The number of non-zero elements of a vector x.

• F The Frobenius norm. • 2,0 The 2,0 -norm, with M 2,0 = i=1 1 { M i,: 2 =0} . • 2,1 The 2,1 -norm, with M 2,1 = i=1 M i,: 2 . ∇f Gradient of the function f . •, • Inner product function. Orth(N ) The set of all orthogonal matrices of size N × N . Table 2.2: Table of notations used throughout the chapter. SPECTRAL REPRESENTATION Lemma 2.1 -Given X, X 0 ∈ R N ×N two orthogonal matrices with rst column equals to 1 √ N 1 N (constraint (2.6a
)), we have the following equality:

X = X 0 1 0 N -1 0 N -1 [X 0 X] 2:,2:
, with [X 0 X] 2:,2: denoting the submatrix of X 0 X containing everything but the rst row and column of itself. Furthermore, remark that [X 0 X] 2:,2: is in Orth(N -1).

Proof. Let consider X, X 0 ∈ R N ×N two orthogonal matrix with rst column equals to 1 √ N 1 N . We have the following equalities:

X 0 1 0 N -1 0 N -1 [X 0 X] 2:,2: =     . . . . . . X 0(:,1) X 0(:,2:) [X 0 X] 2:,2: . . . . . .     =     . . . . . . 1 √ N 1 N X :,2: . . . . . .     = X .
Furthermore, thanks to the orthogonality of X and X 0 , we have

[X 0 X] 2:,2: [X 0 X] 2:,2: = X 0,(2:,:) X :,2: X 0,(2:,:) X :,2: = X 0,(2:,:) X :,2: X :,2: [X 0,(2:,:) ] = I N -1 .
By symmetry we conclude that [X 0 X] 2:,2: ∈ Orth(N -1).

Proposition 2.3 -Given X 0 ∈ R N ×N an orthogonal matrix with rst column equals to 1 √ N 1 N , an equivalent formulation of optimization problem (2.6) is given by: min

H,U ,Λ Y -X 0 1 0 N -1 0 N -1 U H 2 F + α Λ 1/2 H 2 F + β H S f (H, U , Λ) , s.t.              U U = I N -1 , (a') X 0 1 0 N -1 0 N -1 U Λ 1 0 N -1 0 N -1 U X 0 k, ≤ 0 k = , (b') Λ = diag(0, λ 2 , . . . , λ N ) 0 , (c) tr(Λ) = N ∈ R + * . (d)
Proof. From the previous lemma, we know that X can be decompose into two orthogonal matrices X 0 and U = [X 0 X] 2:,2: . Hence, we can optimize with respect to U instead of X and the second part of the constraint (2.6a) is automatically satis ed. To make the equivalence, we just replace

X from the main optimization problem to X 0 1 0 N -1 0 N -1 U
where U is now imposed to be orthogonal.
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Proposition 2.4 (Closed-form solution for the 2,0 and 2,1 -norms) -The solutions of problem (2.10) when • S is set to • 2,0 or • 2,1 are given in the following.

• Using the 2,0 -norm, the optimal solution of (2.10) is given by the matrix H ∈ R N ×n where for 1 ≤ i ≤ N,

H i,: = 0 if (X Y ) i,: 2 2 /(1 + αλ i ) ≤ β , (X Y ) i,: /(1 + αλ i ) else .
• Using the 2,1 -norm, the optimal solution of (2.10) is given by the matrix H ∈ R N ×n where for 1 ≤ i ≤ N,

H i,: = 1 1 + αλ i 1 - β 2 1 (X Y ) i,: 2 + (X Y ) i,:
, where (t) + max{0, t} is the positive part function.

Proof. In the following, we suppose that Y = 0 since in this trivial case, the solution is simply given by H = 0.

Closed-form solution for the 2,0 . Recall that H 2,0 = i=1 1 { H i,: 2 =0} , the objective function can be written as:

f (X, Λ, H) = X Y -H 2 F + α Λ 1/2 H 2 F + β H 2,0 = Y 2 F + N i=1 n j=1 H 2 i,j -2(X Y ) i,j H i,j + αλ i H 2 i,j + β1 { H i,: 2 =0} = Y 2 F + N i=1 H i,: 2 
2 -2 (X Y ) i,: , H i,: + αλ i H i,: 2 2 + β1 { H i,: 2 =0} = Y 2 F + N i=1 (1 + αλ i ) H i,: 2 2 -2 (X Y ) i,: , H i,: + β1 { H i,: 2 =0} = Y 2 F + N i=1 fi (X, Λ, H i,: ) .
Our objective function is written as a sum of independent objective functions, each associated with a di erent H i,: . Hence, we can optimize the problem for each i. Our problem for a given i is:

min H i,: ∈R n (1 + αλ i ) H i,: 2 
2 -2 (X Y ) i,: , H i,: + β1 { H i,: 2 =0} .
When we restrict the minimization to H i,: 2 = 0, the unique solution is H i,: = 0 n and fi (X, Λ, H i,: ) = 0.

When H i,: 2 = 0, the objective function is convex and di erentiable, thus it su ce to take the following derivative equal to 0 ∂ ∂H i,:

fi (H i,:

) = 2(1 + αλ i )H i,: -2(X Y ) i,: = 0 , H i,: = (X Y ) i,: /(1 + αλ i ) . SPECTRAL REPRESENTATION
With this solution, the objective function fi is equal to:

f (X, Λ, H i,: ) = (1 + αλ i ) (X Y ) i,: /(1 + αλ i ) 2 2 -2 (X Y ) i,: , (X Y ) i,: /(1 + αλ i ) + β = 1 1 + αλ i (X Y ) i,: 2 
2 - 2 1 + αλ i (X Y ) i,: 2 2 + β = β - 1 1 + αλ i (X Y ) i,: 2 2 . 
Hence, whenever

1 1 + αλ i (X Y ) i,: 2 
2 ≤ β, the objective function is positive, making H i,: = 0 a better choice for the minimization and conversely. In conclusion, for all 1 ≤ i ≤ N, the solution is:

H i,: = 0 if (X Y ) i,: 2 2 /(1 + αλ i ) ≤ β , (X Y ) i,: /(1 + αλ i ) else .
Closed-form solution for the 2,1 . Similarly to the 2,0 case, the objective function can be decomposed by a sum of independent objectives functions.

f (X, Λ, H) = X Y -H 2 F + α Λ 1/2 H 2 F + β H 2,1 = Y 2 F + N i=1 n j=1 H 2 i,j -2(X Y ) i,j H i,j + αλ i H 2 i,j + β j=1 H 2 i,j = Y 2 F + N i=1 H i,: 2 
2 -2 (X Y ) i,: , H i,: + αλ i H i,: 2 2 + β H i,: 2 = Y 2 F + N i=1 (1 + αλ i ) H i,: 2 2 -2 (X Y ) i,: , H i,: + β H i,: 2 = Y 2 F + N i=1 fi (X, Λ, H i,:
) .

Again, we can optimize the problem for each row i of H independently. Our problem for a given i is:

min H i,: ∈R n (1 + αλ i ) H i,: 2 
2 -2 (X Y ) i,: , H i,: + β H i,: 2 .
(2.28)

Although non-di erentiable at H i,: = 0 n , this function is convex and we need to nd H i,: such that the vector 0 n belongs to the subdi erential of fi denoted by ∂ fi (H i,: ) and is equal to

∂ fi (H i,: ) =    B 2 -2(X T Y ) i,: , β if H i,: = 0 n , 2 1 + αλ i + β 2 1 H i,: 2 H i,: -2(X Y ) i,: otherwise ,
where B 2 stand for the 2 -norm bowl.

Remark that when (X Y ) i,:

2 ≤ β 2 , 0 n ∈ B 2 -2(X T Y ) i,:
, β and thus in this case H i,: = 0 n .
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On the contrary, when (X Y ) i,: 2 > β 2 , we must nd H i,: such that:

1 + αλ i + β 2 1 H i,: 2 H i,: = (X Y ) i,:
.

By taking the norm of the previous equation, we obtain

1 + αλ i + β 2 1 H i,: 2 H i,: 2 = (X Y ) i,: 2 ⇐⇒(1 + αλ i ) H i,: 2 + β 2 = (X Y ) i,: 2 ⇐⇒ H i,: 2 = (X Y ) i,: 2 - β 2 /(1 + αλ i ) > 0 .
We can now replace H i,: 2 in the initial equation and get H i,: .

1 + αλ i + β(1 + αλ i ) 2 (X Y ) i,: 2 -β H i,: = (1 + αλ i ) (X Y ) i,: 2 (X Y ) i,: 2 -β/2 H i,: = (X Y ) i,: ⇐⇒H i,: = (X Y ) i,: 2 -β/2 (1 + αλ i ) (X Y ) i,: 2 (X Y ) i,: = 1 1 + αλ i 1 - β 2 1 (X Y ) i,: 2 (X Y ) i,: ,
which concludes the proof.

Proposition 2.5 (Euclidean gradient with respect to U ) -The Euclidean gradient of f and φ with respect to U are

∇ U f (H, U , Λ) = -2 (HY X 0 ) 2:,2: + 2U (HH ) 2:,2: , ∇ U φ(U , Λ) = - N -1 k=1 N >k B k, + B k, U Λ 2:,2: h(U , Λ) k, .
with ∀1 ≤ k, ≤ N, B k, = X 0 e k e X 0 2:,2: , and h(•) from De nition 2.11.

Proof. We begin by computing the gradient of the main objective, with respect to U . Recall the objective function with respect to U :

f (H, U , Λ) = -2tr Y X 0 1 0 N -1 0 N -1 U H + tr H 1 0 N -1 0 N -1 U U H .
The corresponding gradient is the following.

∇ U f (H, U , Λ) = -2∇ U tr Y X 0 1 0 N -1 0 N -1 U H + ∇ U tr H 1 0 N -1 0 N -1 U U H = -2∇ U tr HY X 0 1 0 N -1 0 N -1 U + ∇ U tr HH 1 0 N -1 0 N -1 U U = -2∇ U (HY X 0 ) 1,1 • 1 + tr (HY X 0 ) 2:,2: U + ∇ U (HH ) 1,1 • 1 + tr (HH ) 2:,2: U U = -2 (HY X 0 ) 2:,2: + 2U (HH ) 2:,2: . SPECTRAL REPRESENTATION
We now derive the gradient of the barrier function φ(U , Λ) with respect to U :

∇ U φ(U , Λ) = - N -1 k=1 N >k ∇ U log -h(U , Λ) k, = - N -1 k=1 N >k 1 h(U , Λ) k, ∇ U h(U , Λ) k, .
We can write the h function as:

h(U , Λ) k, = e k e , h(U, Λ) = X 0 e k e X 0 , 1 0 N -1 0 N -1 U Λ 1 0 N -1 0 N -1 U = X 0 e k e X 0 , λ 1 0 N -1 0 N -1 U Λ 2:,2: U = tr X 0 e e k X 0 0 0 N -1 0 N -1 U Λ 2:,2: U = X 0 e e k X 0 1,1 • 0 + tr X 0 e e k X 0 2:,2: U Λ 2:,2: U = tr B k, U Λ 2:,2: U . In conclusion we have ∇ U h(U , Λ) k, = B k, + B k, U Λ 2:,2:
, which nishes the proof. Proposition 2.6 (Feasible eigenvalues) -Given any X ∈ R N ×N being an orthogonal matrix with rst column equals to 1/ √ N (constraint (2.6a)), there always exist a matrix Λ ∈ R N ×N such that the following constraints are satis ed:

   (XΛX ) i,j ≤ 0 i = j , (3b) Λ = diag(0, λ 2 , . . . , λ N ) 0 , (3c) tr(Λ) = c ∈ R + * . (3d) 
Proof. Let us consider a positive real value c > 0. Taking Λ = diag(0, c, . . . , c)/(N -1) leads to tr(Λ) = c and ∀i = j, (XΛX ) i,j = -c/N < 0. However, this solution with constant eigenvalues actually corresponds to the complete graph. For our purpose, it is the worst case scenario as it contains no structural information between the nodes.

Proposition 2.7 (Closed-form solution of problem (2.16)) -Consider the optimization problem (2.16). Let X 0 be any matrix that belongs to the constraints set (a), and M = (X 0 Y H ) 2:,2: the submatrix containing everything but the input's rst row and rst column. Finally, let P DQ be the SVD of M . Then, the problem admits the following closed form solution

X = X 0 1 0 N -1 0 N -1 P Q .
Proof. One can observe that the relaxed optimization problem is equivalent to nding:

G = argmin G Y -X 0 1 0 N -1 0 N -1 G G H 2 F , (2.29) 11. TECHNICAL PROOFS 67 s.t. G G = I N -1
. This is obtained by replacing X with X 0 G.

Solving the above Equation (2.29) is equivalent to nding:

G = arg max G tr HY X 0 G = arg max G tr M G , s.t. G G = I N -1 .
Then, as proved in [START_REF] Zou | Sparse principal component analysis[END_REF], we nally have G * = P Q , which completes the proof.

Lemma 2.2 -Assume the proposed Model (2.19). If p 1 = 0 and p i ∈ (0, 1), ∀i ≥ 2, then,

-log(p(h|y, X, Λ)) ∝ 1 σ 2 y -Xh 2 2 + 1 2 h Λh + N i=1 1 {h i =0} p i log( λ i √ 2π ) -log(p i ) -log( λ i √ 2π
) .

Proof. Based on the Factor Analysis model and the independence of h i 's,

log(p(h|y, X, Λ)) ∝ log (p(y|h, X, Λ)) + log (p(h|X, Λ)) ∝ - 1 2σ 2 y -Xh 2 2 + N i=1 log (p(h i |λ i )) .
(2.30)

Let us now focus on log (p(h i |λ i )), for which we have

log (p(h i |λ i )) = log   γ i ={0,1} p(h i , γ i |λ i )   = log   γ i ={0,1} p(h i , γ i |λ i ) p(γ i |h i , λ i ) p(γ i |h i , λ i )   ≥ (=) γ i ={0,1} p(γ i |h i , λ i ) log p(h i , γ i |λ i ) p(γ i |h i , λ i ) .
The last equality is obtain using the concavity of the logarithm and Jensen inequality. For this particular case, it correspond to an equality. Then we have:

log (p(h i |λ i )) = γ i ={0,1} p(γ i |h i , λ i ) log (p(h i , γ i |λ i )) ( ) - γ i ={0,1} p(γ i |h i , λ i ) log (p(γ i |h i , λ i )) . ( )
Before computing the previous two sums, we need to observe that:

p(γ i = 1|h i ) = 1 if h i = 0 , p i if h i = 0 . SPECTRAL REPRESENTATION
We can now compute ( ) and ( ) as follows:

( ) = γ i ={0,1} p(γ i |h i , λ i ) [log (p(h i |γ i , λ i )) + log (p(γ i |λ i ))] = 1 {h i =0} + p i 1 {h i =0} log λ i √ 2π - 1 2 λ i h 2 i + log (p i ) + (1 -p i )1 {h i =0} log 1 {h i =0} + log (1 -p i ) ( ) = [p i log(p i ) + (1 -p i ) log(1 -p i )] 1 {h i =0} .

Finally we can compute log (p(h

i |λ i )): log (p(h i |λ i )) = ( ) -( ) = 1 {h i =0} log λ i √ 2π - 1 2 λ i h 2 i + log (p i ) + p i log λ i √ 2π 
1 {h i =0} = 1 {h i =0} log λ i √ 2π + log (p i ) -p i log λ i √ 2π + p i log λ i √ 2π - 1 2 λ i h 2 i ∝ 1 {h i =0} log λ i √ 2π + log (p i ) -p i log λ i √ 2π - 1 2 λ i h 2 i .
Note that with our parametrization, the particular case i = 1 leads to log (p(h 1 |λ 1 )) = 0. Now plugging our result in equation ( 2.30) and multiplying on both side by -1, we get our nal result.

Proposition 2.8 (A posteriori distribution of h) -Let C > 0, and assume for all i ≥ 2 that

p i = e -C if λ i = √ 2π and p i = -W -e -C log(λ i / √ 2π) λ i / √ 2π / log(λ i / √ 2π) if not. Then, p i ∈ (0, 1)
and there exist constants α, β > 0 such that:

-log(p(h|y, X, Λ)) ∝ y -Xh 2 2 + αh Λh + β h 0 .
Proof. To show that the p i 's are well-de ned and belongs to (0, 1), it su ces to apply Lemma 2.3 with x = λ i / √ 2π.

We now proof the main result of the proposition. If λ i = √ 2π, then p i = e -C < 1 and

p i log( λ i √ 2π ) -log(p i ) -log( λ i √ 2π ) = -log(p i ) = C .
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If

λ i = √ 2π, then -p i log(λ i / √ 2π) = W -e -C log(λ i / √ 2π) λ i / √ 2π
. Since W corresponds to the inverse function of f (W ) = W e W , we have:

-p i log(λ i / √ 2π)e -p i log(λ i / √ 2π) = - e -C log(λ i / √ 2π) λ i / √ 2π ⇐⇒ -p i log(λ i / √ 2π)e -p i log(λ i / √ 2π) = - e -C log(λ i / √ 2π) λ i / √ 2π ⇐⇒ log p i log(λ i / √ 2π) e -p i log(λ i / √ 2π) = log e -C log(λ i / √ 2π) λ i / √ 2π ⇐⇒ log(p i ) + log log(λ i / √ 2π) -p i log(λ i / √ 2π) = -C + log log(λ i / √ 2π) -log(λ i / √ 2π) .
Same as the case where λ i = √ 2π, the nal equality gives us:

p i log( λ i √ 2π ) -log(p i ) -log( λ i √ 2π ) = C . (2.31)
Plugging the equation ( 2.31) into the nal result of proposition 1, we obtain:

-log(p(h|y, X, Λ)) ∝ 1 2σ 2 y -Xh 2 2 + 1 2 h Λh + C h 0 ∝ y -Xh 2 2 + αh Λh + β h 0 ,
taking α = σ 2 and β = 2Cσ 2 . This concludes the proof.

Lemma 2.3. Let C > 0. For any x > 0, 0 ≤ -W - e -C log(x) x / log(x) ≤ 1 . (2.32)
Proof. First, we show that this function is decreasing for x > 0. The derivative of the function is given by

∂ ∂x -W - e -C log(x) x / log(x) = W -e -C log(x) x W -e -C log(x) x + log(x) x log 2 (x) W -e -C log(x) x + 1
.

(2.33)

For x > 0 and C > 0,

-1/e < -e -(C+1) = min x>0 - e -C log(x) x ≤ - e -C log(x) x .
(2.34)

As W (•) is strictly increasing for x > -1/e, we have W -e -C log(x)

x > W (-1/e) = -1.

Hence, the bottom part of the previous equation is always positive.
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For

0 < x ≤ 1, W -e -C log(x)
x is positive. Furthermore,

-e -C log(x) x < - log(x) x ⇐⇒ W -e -C log(x) x < W -log(x) x = -log(x) (2.35) ⇐⇒ W -e -C log(x) x + log(x) < 0 . (2.36)
Hence, when 0 < x ≤ 1, the upper part of the previous equation is negative.

For 1 < x ≤ e, W -e -C log(x)
x is negative. Furthermore,

- 1 e ≤ - log(x) x < -e -C log(x) x ⇐⇒ W - log(x) x = -log(x) < W -e -C log(x) x (2.37) ⇐⇒ W -e -C log(x) x + log(x) > 0 . (2.38)
Hence, when 1 < x ≤ e, the upper part of the previous equation is negative again.

For x > e, W -e -C log(x)

x is negative. Furthermore, W -e -C log(x)

x > -1 and log(x) > 1.

Hence, the addition is positive and the upper part of the previous equation is negative again.

We just have shown that the derivative is negative for x > 0. Hence, the initial function is decreasing on this interval. We now go back to the initial inequality (2.32). The left part of the inequality is straightforward as for x large enough, the function corresponds to the product of two positive functions. The function being decreasing, the lower bound follows. For the upper bound, let us remind that for y > e, we have the inequality W (y) < log(y) [START_REF] Hoorfar | Approximation of the Lambert W function and hyperpower function[END_REF]. Let f (x) = -e -C log(x)

x , for x small enough we have:

W (f (x)) < log(f (x)) ⇔ -W (f (x)) > -log(f (x)) ⇔ -W (f (x)) / log(x) < -log(f (x))/ log(x) .
Taking the limit when x -→ 0 + conclude the proof, 

lim x→0 + -log(f (x))/ log(x) = lim x→0 + -log(- e -C log(x) x )/ log(x) = lim x→0 + -log(e -C ) + log(-log(x)) -log(x) / log(x) = lim x→0 + C log(x) + log(log(1/x)) log(1/x) + 1 = 1 .
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Introduction

The linear decomposition of a signal into few atoms of a learned dictionary instead of a prede ned one such as discrete cosine transform, wavelets, curvelets, etc., has led to state-of-the-art results in a wide range of topics, including image denoising [START_REF] Elad | Image denoising via sparse and redundant representations over learned dictionaries[END_REF], image classi cation [START_REF] Raina | Self-taught learning: transfer learning from unlabeled data[END_REF][START_REF] Mairal | Supervised dictionary learning[END_REF][START_REF] Yang | Linear spatial pyramid matching using sparse coding for image classi cation[END_REF], and other signal processing tasks [START_REF] Huang | Sparse representation for signal classi cation[END_REF][START_REF] Févotte | Nonnegative matrix factorization with the Itakura-Saito divergence: with application to music analysis[END_REF][START_REF] Peyré | Sparse modeling of textures[END_REF][START_REF] Mairal | Online learning for matrix factorization and sparse coding[END_REF] and Wohlberg, 2018a] while multivariate data with a natural tensor structure are encountered in many scienti c areas.

One approach to still apply vector-based algorithms on multivariate data is to vectorized them by stretching their elements. However, this naive processing ignores the multidimensional structure of the input and is frequently sub-optimal. A powerful idea to e ectively exploit the structural information is to use multilinear analysis and low-rank tensor decomposition techniques [START_REF] Kolda | Tensor decompositions and applications[END_REF]. Indeed, by providing essential tools for handling multivariate data they naturally simplify the adaptation of machine learning and statistical methods to tensors. Until recently, a lot of works have considered with great success the tensor framework e.g. in regression [Zhou Contributions. In this chapter, we provide two algorithms based on ADMM or FISTA for CDL taking into account the underlying structure of the multivariate/tensor signals. Unlike previous works, we do not rely on a low-rank constraint on the atoms. Instead, we extend the standard minimization CDL problem to a tensorial one with an additional CP low-rank decomposition constraint on the activation maps. The idea of enforcing low-rank constraints in CDL is not novel: [START_REF] Rigamonti | Learning separable lters[END_REF] and [START_REF] Sironi | [END_REF] used the idea of separable lters for learning a low-rank collection of atoms in order to improve computational runtime. More recent publications including [START_REF] Quesada | Separable dictionary learning for convolutional sparse coding via split updates[END_REF][START_REF] Silva | E cient separable lter estimation using rank-1 convolutional dictionary learning[END_REF][START_REF] Quesada | Combinatorial separable convolutional dictionaries[END_REF] have also successfully used low-rank (or even rank-1) constraints on 2-D dictionary. Yet, in all these approaches, the low-rank constraints have been enforced on the dictionary/atoms. However, in several applicative contexts, the low-rank structure naturally appears in the activations rather than in the atoms/dictionary. To illustrate the relevance of our new approach, we display in Figure 3.1 an example of two spectrograms obtained from a stereo music recording. Both spectrograms exhibit a low-rank structure. This is a known property for such time-frequency representations, which is commonly used for signal decomposition or source separation. Some repetitive patterns (highlighted in red and orange) are also visible on the spectrograms which suggests that a CDL model may appear as natural for such data. However, the strong low-rank structure of the data is here transferred into the activations tensors rather than into the observed patterns. In other words, although the time-frequency atoms may be complex (and thus without a low-rank structure), the activations (i.e. the time/frequency/channel positions where these atoms appear) clearly are low-rank. In this example, this phenomenon may be explained by the harmonic structure of the audio signals, to the tempo grid used by the instruments or to the fact that both channels approximately capture the same audio scene. Such observations can also be made for sequences of images, where the structure lies in the locations of the patterns rather that in the individual atoms. LOW RANK ACTIVATIONS

The organization of this chapter is as follow. We rst recall the standard CDL model and the most important algorithms to solve the associated problem in Section 2. Then, we introduce our multivariate CDL problem, referred to as Kruskal Convolutional Dictionary Learning (K-CDL) in Section 3. We propose two algorithms based on ADMM or FISTA to solve it (Section 4). Their properties are analyzed and discuss in details. Finally, in Section 6, we conduct multiple empirical analysis on synthetic and real data to highlight the performances of our approach.

Convolutional dictionary learning

The Dictionary Learning problem (DL) was introduced in the context of modeling receptive elds in human vision by Olshausen andField [1996, 1997]. As their results were considered impressive by the scienti c community, DL enjoyed early success and found many applications in image processing (e.g. for discovering and visualizing the underlying structure of natural image patches). However, DL is mostly a patch-based method, and thereby does not capture the correlation between local neighborhoods. To circumvent this drawback, following the work of [START_REF] Lewicki | Coding time-varying signals using sparse, shift-invariant representations[END_REF] in discrete 1D time-varying signals, [START_REF] Grosse | Shift-invariant sparse coding for audio classi cation[END_REF] introduced its extension called Convolutional Dictionary Learning (CDL). This work was generalized to images by [START_REF] Mørup | Shift invariant sparse coding of image and music data[END_REF]. The main idea behind CDL is to replace the traditional patch-based model with a global shift-invariant one. In this way, a dictionary of patterns/atoms (small signals) is learned so that the input signals can be represented approximately by a superposition of only a small number of them, called "active". For any input signal, these active basis functions produce a sparse signal representation that concisely represents that signal.

Formally, given a nite set of N signals y 1 , . . . , y N in R M and a scalar λ > 0, the 1 -regularized CDL problem is

min {d k } K k=1 ,{z n,k } N,K n,k=1 1 2 N n=1 y n - K k=1 d k z n,k 2 2 + λ K k=1 z n,k 1 , (3.1) 
s.t. d k 2 ≤ 1 ∀k = 1, . . . , K
where the d k ∈ R W are the atoms, the z n,k ∈ R M are the activation maps, and denotes the (circular) convolutional operator (see Appendix for more details). An example of such representation is given in Figure 3.2.

For clarity, in the sequel, we will drop the index k or n when obvious e.g. {d k } K k=1 will be denoted by {d k }.

In its simplest form, the CDL problem (3.1) involves two important components: a sparsity regularization and a unit-norm constraint.

The sparsity regularization. A natural regularization to encourage sparsity of the activations maps is the 0 -regularization. However, with this (semi)-norm, the problem is often intractable and research has either focus for an approximate solution using a greedy algorithm, or for a convex relaxation. A typical convex relaxation for this problem is the equation (3.1), where a 1 -regularization is preferred. This relaxation can be shown to consistently estimate the solution of the 0 problem under some assumptions on the sparsity of the solution and the design of the dictionary [START_REF] Donoho | Optimally sparse representation in general (nonorthogonal) dictionaries via l1 minimization[END_REF][START_REF] Fuchs | On sparse representations in arbitrary redundant bases[END_REF]. While other sparsity-based penalties may be considered e.g. group sparsity, in this chapter, we will focus on the most frequently employed, the 1 -regularization (see [START_REF] Mairal | Sparse modeling for image and vision processing[END_REF] for a complete review).

The unit-norm constraint. The most common constraint imposed on the atoms is to have a unit norm as in equation (3.1). This is an important constraint since multiplying an atom d k by a scalar a > 1 and all {z n,k } N n=1 by 1/a, does not change the value of the objective function even if the 1 -norm is decreased by a factor 1/a. Thus, without the unit norm constraint, the {z n,k } N n=1 tend to 0 and the norm of d k explodes. Other constraints have also been proposed, such as smoothness constraints enforced by regularizing the gradient with its 2 -norm.

Even though the CDL problem is not jointly convex in ({d k }, {z n,k }), it is convex with respect to each variable when the other one is xed. A natural optimization scheme for minimizing the objective function is therefore to alternate between the minimization with respect to the atoms {d k } when the activation maps {z n,k } are xed and vice versa. This strategy known as alternating minimization or block coordinate descent [START_REF] Ortega | Iterative solution of nonlinear equations in several variables[END_REF]] has proven to be very e ective in solving a wide range of optimization problems such as iteratively reweighted least squares, robust regression, or sparse recovery [START_REF] Daubechies | Iteratively reweighted least squares minimization for sparse recovery[END_REF]. Note that, we consider an optimization problem for which it is not possible, in general, to guarantee that we are going to obtain the global minimum. Furthermore, this problem exhibits several symmetries and admits multiple global optima which can be an issue in practice [START_REF] Mairal | Sparse modeling for image and vision processing[END_REF]. Optimizing with respect to {z n,k } is often referred as Convolutional Sparse Coding (CSC) and will be our main focus in this chapter. LOW RANK ACTIVATIONS

Convolutional sparse coding

As the activation maps are independent across the signals y 1 , . . . , y N , we can solve the CSC problem for only one of them.

Given a signal y, the CSC problem is

min {z k } 1 2 y - K k=1 d k z k 2 2 + λ K k=1 z k 1 , (3.2) 
where is the circular convolution (see Appendix).

In the sequel, without further information, we will always use this convolution and focus on the CSC instead of the CDL. Several algorithms have been proposed to solve the CSC problem. The work of [START_REF] Kavukcuoglu | Learning convolutional feature hierarchies for visual recognition[END_REF] extends to CSC the coordinate descent methods introduced by [START_REF] Friedman | Pathwise coordinate optimization[END_REF]. The Feature Sign Search algorithm proposed in [START_REF] Grosse | Shift-invariant sparse coding for audio classi cation[END_REF] solves at each step a quadratic sub-problem for an active set of the estimated nonzero coe cients.

More recently, Papyan et al. [2017a] and [START_REF] Zisselman | A local block coordinate descent algorithm for the CSC model[END_REF] have introduced respectively the Slice-Based Dictionary Learning (SBDL) and the Local Block Coordinate Descent (LoBCoD) algorithms. The two most important algorithms remain the ones of [START_REF] Bristow | Fast convolutional sparse coding[END_REF] and [START_REF] Chalasani | A fast proximal method for convolutional sparse coding[END_REF] which are described below.

Convolutional sparse coding with ADMM

Zeiler et al. [2010] were the rst to propose an e cient algorithm for the CSC problem (3.2) by introducing an auxiliary variable to separate the convolution from the 1 -regularization. This important idea of separating the delity term from the sparsity term is now widely used in contemporary methods. To do so, solvers often rely on the Alternating Direction Method of Multipliers (ADMM) [START_REF] Glowinski | Sur l'approximation, par éléments nis d'ordre un, et la résolution, par pénalisation-dualité d'une classe de problèmes de dirichlet non linéaires[END_REF][START_REF] Gabay | A dual algorithm for the solution of nonlinear variational problems via nite element approximation[END_REF] in the Fourier domain for the computational convenience of convolutions [START_REF] Bristow | Fast convolutional sparse coding[END_REF][START_REF] Wohlberg | E cient convolutional sparse coding[END_REF][START_REF] Wohlberg | E cient algorithms for convolutional sparse representations[END_REF]. The algorithm who popularize ADMM for both the CSC and CDL is called Fast Convolutional Sparse Coding (FCSC) [START_REF] Bristow | Fast convolutional sparse coding[END_REF]. In this paper, authors have shown remarkable improvements in e ciency by exploiting the Parseval's equality and the convolutional theorem for solving (3.2).

The steps to solve the CSC problem with ADMM are straightforward. We rst consider the splitting

f ({z k }) = 1 2 y - K k=1 d k z k 2 2 , ψ({z k }) = λ K k=1 z k 1 , (3.3) 
where f is the delity term which control the di erence between the input and its reconstruction, and ψ is the regularization term. Then, by introducing K auxiliary variables {t k }, we rewrite the main equation (3.2)

min {t k ,z k } f ({z k }) + ψ({t k }) s.t. z k = t k ∀k = 1, . . . , K .
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The corresponding iterations of the ADMM algorithm with a scalar ρ > 0 and the {u k } as dual variables are given by {z

(s+1) k } = arg min {z k } f ({z k }) + ρ 2 K k=1 z k -t (s) k + u (s) k 2 2 , (3.4) {t (s+1) k } = arg min {t k } ψ({t k }) + ρ 2 K k=1 z (s+1) k -t k + u (s) k 2 2 , (3.5 
)

{u (s+1) k } = u (s) k + z (s+1) k -t (s+1) k . (3.6)
Subproblem (3.5) admits the well-known closed-form solution [START_REF] Tibshirani | Regression shrinkage and selection via the lasso[END_REF] ∀k = 1, . . . , K, t

(s+1) k = S λ/ρ (z (s+1) k + u (s) k ) ,
where S γ (•) is the soft-thresholding operator i.e. for a vector

x ∈ R m S γ (x)[i] = sign(x i ) max(|x i | -γ, 0) .
Subproblem (3.4) also admits a closed-form solution (in certain conditions). However, nding the solution is a computationally demanding process due to the size of the matrices involved. As proposed by [START_REF] Bristow | Optimization methods for convolutional sparse coding[END_REF], one way to address this issue is to use both the Parseval's and convolution theorems in order to take advantage of the convolutional structure of the problem. Forgetting the iteration index, rewriting the objective function of (3.4) in the Fourier domain gives

1 2M y - K k=1 d k * z k 2 2 + ρ 2M K k=1 z k -t k + u k 2 2 , (3.7) 
where • denotes the frequency representation of a signal, * is the component-wise product, and and its minimum is given by the solution in z of

each d k is in C M . As u * v = diag(u)v,
D H D + ρI z = D H y + ρ( t -u) , (3.8) 
where (•) H stands for the Hermitian transpose. Here, the matrix

D H D + ρI is of size KM ×
KM and can be expensive to inverse (when possible). Fortunately, as D is block diagonal, D H D is a particular diagonal block matrix known as band matrix (see Figures 3.3a and 3.3c). Hence, it is possible to permute rows and columns in order to only solve M independent K × K linear systems (see Figures 3.3b and 3.3d). More precisely, this system is actually composed of M independent system, which correspond to each frequency computed by the FFT. The solution of the initial problem can then be retrieved using the inverse Fourier transform. The full algorithm to solve the CSC based on ADMM is described in Algorithm 3.1.

Remark 3.1. In the general case, the necessity to nd such permutation comes from the graph community where they want to exhibit adjacency matrices with small bandwidth. Two popular algorithms are the reverse Cuthill-McKee algorithm [START_REF] Cuthill | Reducing the bandwidth of sparse symmetric matrices[END_REF] later improved by the GPS algorithm [START_REF] Gibbs | An algorithm for reducing the bandwidth and pro le of a sparse matrix[END_REF]. 

Algorithm 3.1 ADMM for CSC

Input: signal y, dictionary D, regularization and ADMM parameters λ, ρ, tolerance ε Initialization: z (0) Precompute y and D using the FFT

t (0) ←-z (0) u (0) ←-(0, • • • , 0) repeat Update of z via equation (3.4) Compute z (s) , t (s) 
and u (s) using the FFT Solve the linear systems

D H D + ρI z = D H y + ρ( t (s) + u (s) )
Compute z (s+1) using the inverse FFT Update of t via equation (3.5)

t (s+1) ←-S λ/ρ (z (s+1) + u (s) )
Update of u via equation (3.6)

u (s+1) ←-u (s) + z (s+1) -t (s+1) until z (s+1) -z (s) ∞ ≤ ε
Convergence and complexity The ADMM algorithm is proven to converge to the optimal solution [START_REF] Gabay | Chapter ix applications of the method of multipliers to variational inequalities[END_REF]. Furthermore, in practice, this algorithm often gives an estimate with su cient accuracy within tens of iterations. Indeed, with alternate minimization, each iteration does not need to nd an optimal point, but a point with medium accuracy. Unfortunately, simple examples show that ADMM can be very slow to converge to high accuracy [START_REF] Boyd | Distributed optimization and statistical learning via the alternating direction method of multipliers[END_REF].

The complexity of ADMM-based solvers such as FCSC are easily obtained by the analysis of each step. The rst step requires the FFT which gives a complexity of O(KM log(M )). Then, as already mentioned, we need to solve M independent linear systems of size K × K which gives a complexity of O(K 3 M ) when using direct method such as Gaussian elimination or Cholesky decomposition. Finally, the soft-threshold part and the dual variable updates give a complexity of O(KM ).

Convolutional sparse coding with FISTA

Using the Fast Iterative Soft Thresholding Algorithm (FISTA) [START_REF] Beck | A fast iterative shrinkage-thresholding algorithm for linear inverse problems[END_REF] to solve the CSC problem (3.2) was rst proposed by [START_REF] Chalasani | A fast proximal method for convolutional sparse coding[END_REF]. Based on the Iterative Soft Thresholding Algorithm (ISTA) [START_REF] Daubechies | An iterative thresholding algorithm for linear inverse problems with a sparsity constraint[END_REF], this popular proximal method has the advantage of being a simple gradient-based algorithm involving very simple computations. Furthermore, compared to ISTA, FISTA performs an extra step known as the Nesterov's momentum which accelerates its convergence.

The steps to solve the CSC problem with FISTA are straightforward. We rst consider the same splitting (3.3) used in ADMM (Section 2.1.1). Then we alternate between i) a gradient descent step on the delity term f i.e.

z (s+1/2) k = z (s) k -η∇f {z (s) k } K k=1 with η > 0 , (3.9) 
ii) the proximal operator of η • ψ(•)

∀k = 1, . . . , K, z (s+1) k = prox η•ψ z (s+1/2) k = S ηλ z (s+1/2) k
, where S γ (•) is the soft-thresholding operator introduced earlier, and iii) the Nesterov's momentum relative to FISTA (see Algorithm 3.2). Once again, we can take advantage of the FFT and perform the descent step in the frequency domain. The descent step is thus given by

z (s+1/2) k = z (s) k -η ∇ f { z (s) k } K k=1
with η > 0 .

To express the gradient in a nice formulation, and forgetting the iteration index, we introduce the matrix D = [diag( d 1 ), . . . , diag( d K )] in C M ×KM , and the vector z = [ z 1 , . . . , z K ] in C KM . The delity term becomes y -D z 2 2 and the gradient with respect to z is now given by

∇ f { z k } K k=1 = ∇ f ( z) = -D H ( y -D z) = D H ( D z -y) ,
where (•) H stands for the Hermitian transpose.

Convergence and complexity FISTA has an optimal theoretical convergence rate guarantee of O(1/t 2 ) [START_REF] Beck | A fast iterative shrinkage-thresholding algorithm for linear inverse problems[END_REF] which makes it very e cient to solve the CSC problem.

The proof of convergence and the convergence rates do not depend on the particular structure of the CSC problem and can also be proven. Unlike for the simple proximal scheme (ISTA), we cannot guarantee that the sequence of iterates generated by the accelerated version (FISTA) is itself convergent. Furthermore, it should be noted that accelerated schemes are not necessarily descent algorithms, in the sense that the objective does not necessarily decrease at each iteration [START_REF] Bach | Optimization with sparsity-inducing penalties[END_REF].

The Update of w via a proximal gradient step (ISTA)

8:
Compute z (s) using the FFT 9:

w (s+1/2) ←-z (s) - 1 L D H ( D z (s) -y) 10:
Compute w (s+1/2) using the inverse FFT 11:

w (s+1) ←-S ηλ w (s+1/2) k λ/L and not λ 12:
Nesterov momentum step (FISTA)

13:

t (s+1) ←- 1 + 1 + 4 • t (s) 2 2 
14:

z (s+1) ←-w (s+1) + t (s) -1 t (s+1) + 1 (w (s+1) -w (s) ) 15: until z (s+1) -z (s) ∞ ≤ ε

Dictionary update

We now quickly focus on the problem of learning a dictionary.

Given the activation maps {z n,k }, the CDL problem becomes

min {d k } K k=1 1 2 N n=1 y n - K k=1 d k z n,k 2 2 
(3.10)

s.t. d k 2 ≤ 1 ∀k = 1, . . . , K .
Conversely to the sparse coding, here the activation maps are xed and we want to nd a common dictionary for all the signals {y n }. In the past years, a lot of algorithms have been proposed to solve this problem. In the following, we quickly present some of them. where the constraint is now a penalization-term. The proximal operator of I Ω is the projection proj Ω onto Ω. As Ω is the 2 unit ball, this operator is separable for each atom and can be computed 

T ( KM W + M (k 3 + Kk 2 ) LARS + M K 2 Gram + M k(W + K) + W K 2 K-SVD ) LoBCoD (CSC + CDL)[Zisselman et al., 2019] T ( KM W + M (k 3 + Kk 2 ) LARS + M K 2 Gram + M (W + W k + K) Stochastic-LoBCoD )
Table 3.1: T is the number of iteration, K the number of atoms, M the size of the signal, W the size of the atoms, and k is the maximum number of nonzeros per "needle" (see [START_REF] Zisselman | A local block coordinate descent algorithm for the CSC model[END_REF]). Note that, in the worst case, k = K. FCSC-ShM is FCSC with an iterative application of the Sherman-Morrison equation.

via a closed-form

proj Ω (d k ) = d k max ( d k 2 , 1)
.

At each iteration, the proximal/projected gradient descent algorithm performs a gradient step for the smooth and convex delity term i.e. the left term in 3.11. Then, it used the proximal operator of I Ω i.e. the projection, to compute the next point. Like ISTA, this algorithm can be accelerated using the Nesterov's momentum and is called Accelerated Proximal Gradient Descent.

Alternate direction method of multipliers

In their paper, [START_REF] Bristow | Fast convolutional sparse coding[END_REF] also introduced a method for the dictionary update based on ADMM. As for the proximal gradient descent algorithm, this method rst introduces the indicator function I Ω for the constraint. Then, it splits the objective function in two groups of variables {d k }, { dk } and constrains these variables to be equal. Problem (3.10) becomes

min {d k },{ dk } 1 2 N n=1 y n - K k=1 d k z n,k 2 2 + I Ω ( D) s.t. d k = dk ∀k = 1, . . . , K .
The update is made as for ADMM-based solver for CSC (see Subsection 2.1.1). [START_REF] Mairal | Online learning for matrix factorization and sparse coding[END_REF] proposed an algorithm based on the block coordinate descent. The block coordinate descent updates at each iteration only one of the dictionary atoms with all the other xed. The atoms are updated using the coordinate-wise proximal gradient descent step. [START_REF] Aharon | K-SVD: an algorithm for designing overcomplete dictionaries for sparse representation[END_REF] proposed a method based on the computation of K Singular Value Decomposition to update the dictionary. This algorithm can be seen as an extension of the K-Means algorithm and it has been adapted for convolutional dictionary learning in [START_REF] Yellin | Blood cell detection and counting in holographic lens-free imaging by convolutional sparse dictionary learning and coding[END_REF].

Block coordinate descent, K-SVD

Comparison of the solvers in the convolutional setting

While we only present the two leading CSC solvers in the above sections, there exist other algorithms build upon them which improve their theoretical algorithmic complexity. We collected all of them in Table 3.1. We also displayed the evolution of their theoretical complexity for typical dimension in Figure 3.4.

Up to date, the most e ective algorithm in term of theoretical complexity is due to [START_REF] Wohlberg | E cient algorithms for convolutional sparse representations[END_REF] and is based on ADMM. They show that the complexity of solving the linear system (3.8) can be reduced to O(KM ) with a careful analysis of the matrices involved and the use of the Sherman-Morrison formula [START_REF] Sherman | Adjustment of an inverse matrix corresponding to a change in one element of a given matrix[END_REF]. However, the comparative review made by Garcia-Cardona and Wohlberg [2018a] indicates a very wide range of performances across the existing methods. For example, their results show that FISTA with frequency domain computation of the gradient is a viable alternative to ADMM-based solvers. In term of scalability, they show that methods based on FISTA or with parallel implementation are scalable to relatively large training sets, e.g. 100 images of 512 × 512 pixels. Finally, they note that while the computation time seems to only increase linearly with the number of training inputs and the number of dictionary atoms, the increase is more than linear with the size of the inputs, preventing the use of these methods for large inputs.

Theoretical guarantees for convolutional representation

Since the convolutional setting is equivalent to the vectorial case, previous works on DL can be directly applied for CDL. The objective function of the DL is not jointly convex. Thus, the
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83 alternate minimization approach is not guarantee in general to converge to a global minimum. Furthermore, the problem has several symmetries and admits multiple global optima (possibility of arbitrary permutation, sign ambiguities, etc.) [START_REF] Mairal | Sparse modeling for image and vision processing[END_REF]. The rst theoretical studies of alternate minimization for DL were for vectorial data. [START_REF] Agarwal | Learning sparsely used overcomplete dictionaries via alternating minimization[END_REF] show that, under certain conditions (enough samples and observed signals do not have noise or outliers), if data are generated using a dictionary, there exists a polynomial time algorithm which permits to estimate this dictionary. Under presence of noise and outlier points, [START_REF] Gribonval | Sample complexity of dictionary learning and other matrix factorizations[END_REF] show the sample complexity of dictionary retrieval methods and quantify the e ect of the assumptions made in the model. These results can be improved for CDL by taking into account the particular structure of the data. Papyan et al. [2017b] introduce quantities which extend the di erent concepts used in sparse coding literature to convolutional settings and highlights the properties of dictionary elements critical for the uniqueness of the coding signal. In their second paper, [START_REF] Papyan | Working locally thinking globally-part II: Stability and algorithms for convolutional sparse coding[END_REF] study the recovery capacities of classical convolutional sparse coding algorithms for noisy observations. Note that recent advances on deconvolution model also provide theoretical guarantees of reconstruction but only when there is a single atom (see e.g. [START_REF] Zhang | On the global geometry of sphere-constrained sparse blind deconvolution[END_REF][START_REF] Kuo | Geometry and symmetry in short-and-sparse deconvolution[END_REF][START_REF] Lau | Short and sparse deconvolution-a geometric approach[END_REF]Qu et al., 2019b,a;Qu et al.;Shi andChi, 2019, 2020]).

Tensor-based convolutional dictionary learning

Although the CDL problem for univariate data or images is widely study and well understood, its ability to take into account multivariate data is not well established. The generalization of the CDL problem to more dimensions can naturally be studied through the lens of tensor algebra. Indeed, this particular algebra provides an e cient framework to manipulate such data (see Appendix 9 for some remainders). One of the most important notion from tensor algebra is undoubtedly the generalization of the matrix rank which allows to e ciently take into account (or constrained) the underlaying structure of the tensor. However, this extension to multivariate signals is not trivial and several issues appear e.g. non-unity of the notion of rank, apparition of symmetries, non-convexity of the CSC problem. To deal with these issues, in the following, we carefully describe each component of our optimization problem. It includes additional constraints mandatory to obtain good results. Furthermore, as the number of parameters increases exponentially with the number of modes, we describe e cient procedure to reduce the complexity of the algorithms and handle such amount of data.

We now present how we extend the CDL problem to tensor data in order to take advantage of the underlying structure of this particular object.

Let Y 1 , . . . , Y N ∈ Y R n 1 ו•
•×np be N tensor inputs of order p > 0 i.e. multidimensional signals. We de ne the regularized Kruskal Convolutional Dictionary Learning problem (K-CDL) as

min {D k Z n,k } 1 2 N n=1 Y n - K k=1 D k 1,••• ,p Z n,k 2 
F
(3.12)

+ ϕ (Z n,1 , • • • , Z n,K ; α) + ψ (Z n,1 , • • • , Z n,K ; β) 84 CHAPTER 3. TENSOR BASED CONVOLUTIONAL DICTIONARY LEARNING WITH CP LOW RANK ACTIVATIONS s.t. CP-rank(Z n,k ) ≤ R ∀n, k , (a) D k ∈ D, D k F ≤ 1 ∀k , (b) 
with ϕ(•) a sparsity regularization, ψ(•) a regularization explained below, and α, β 0 two vectors of hyperparameters.

In this formulation, the {Z n,k } ∈ Y are (multivariate) sparse activation maps which specify where the (multivariate) atoms

{D k }, in D R w 1 ו••×wp , (w 1 ≤ n 1 , • • • , w p ≤ n p ),
are placed in the input signals. To take advantage of the tensor structure, we add a Canonical Polyadic (CP) low-rank constraint (3.12 a) on the activation maps. The formulation of the K-CDL problem therefore relies on four important constraints and regularizations explained bellow.

The CP low-rank constraint (a). This constraint controls the linear links between the di erent modes of the activations maps and thus takes into account the structure of the data. In the following, we choose to embed this constraint using the Kruskal operator

[[ • ]] (see De nition 3.4 in Appendix). Hence, each activation Z n,k is replaced by [[Z n,k,1 , • • • , Z n,k,p ]]
where the {Z n,k,q } are in R nq×R . This approach is the generalization of the Burer-Monteiro heuristic for matrix [START_REF] Burer | A nonlinear programming algorithm for solving semide nite programs via low-rank factorization[END_REF].

The unit-ball constraints (b). The constraint on the {D k } prevents the scaling indeterminacy between the atoms and the activations as in the standard CDL. While in this chapter we only consider the unit-ball constraint, it can be easily modi ed to learn dictionaries with other structures.

The sparsity regularization ϕ(•). The regularization ϕ(•) on the activations is here to advantage sparse solutions. There is multiple ways to induce this sparsity. One popular choice in tensor regression is to add an 1 -norm over the Kruskal operator of each activations in the objective function. However, this may leads to a complicated optimization problem [START_REF] Chen | Reduced rank stochastic regression with a sparse singular value decomposition[END_REF][START_REF] Tan | Logistic tensor regression for classi cation[END_REF]. Another popular choice is to impose sparsity on each Rank-1 component of the CP decomposition of the activations i.e.

ϕ : (Z n,1,1 , • • • , Z n,K,p ; α) ∼ = (Z n,1 , • • • , Z n,K ; α) --→ K k=1 R r=1 α k,r Z n,k,1 (r, :) • • • • • Z n,k,p (r, :) 1 with α 0 , (3.13 
) where the {Z n,k,q } ∈ R nq×R are the one from the CP decomposition. This constraint can be bene cial in multiple ways as discuss by [START_REF] He | Boosted sparse and low-rank tensor regression[END_REF]. Nevertheless, as the CP decomposition may not be unique, the problem may su er from parameter identi ability issues [START_REF] Mishra | Sequential co-sparse factor regression[END_REF]. Moreover, this is not a separable function with respect to the CP components {Z n,k,q }. Regarding these issues, we propose a regularization constraint called Mode sparsity constraint, de ned by .14) This constraint induces the sparsity of each element of the CP-decomposition for every activations independently. The sparsity in each mode is therefore controlled without the impact of the other modes i.e. the regularization (and not the objective function) is separable in each {Z n,k,q }. One additional advantage is that the multi-convolutional operator is well-adapted to such property of separability. When necessary, we can also add a positive constraint on the activation maps.

ϕ : (Z n,1,1 , • • • , Z n,K,p ; α) --→ K k=1 p q=1 α k,q Z n,k,q 1 with α 0 . ( 3 
Identi ability and the ψ(•) constraint. The CP decomposition is known to be unique when it satis es the Kruskal condition [START_REF]Rank, decomposition, and uniqueness for 3-way and n-way arrays[END_REF], but only up to permutation of the normalized factor matrices. In other words, the CP decomposition is unchanged by scaling or permutation, and the {Z n,k,q } that solve equation (3.12) may not be unique. The scaling indeterminacy makes the optimization di cult as there is a continuous manifold of equivalent solutions. This di culty is handled in (3.12) via ψ(•), a ridge-based penalization (e.g. [START_REF] Acar | A scalable optimization approach for tting canonical tensor decompositions[END_REF] and [START_REF] Paatero | A weighted non-negative least squares algorithm for three-way 'PARAFAC' factor analysis[END_REF]). On the contrary, the minimizers up to a permutation are isolated equivalent minimizers, and thus do not negatively impact the optimization [START_REF] Acar | A scalable optimization approach for tting canonical tensor decompositions[END_REF].

p q=1 K k=1 β n,k,q Z k,q 2 F , (β 1,1 , • • • , β K,p ) 0) to (3.12) (see
Remark 3.2. When R = 1, the representation induced by the K-CDL is closed to the "Low rank tensor deconvolution" from [START_REF] Phan | Low rank tensor deconvolution[END_REF].

Remark 3.3. In recent tensor regression works, some authors prefer to add a combination of trace norm and 1 -norm in the objective function to automatically infer the rank [START_REF] Song | Multilinear regression for embedded feature selection with application to fMRI analysis[END_REF]. However, [START_REF] Bengua | E cient tensor completion for color image and video recovery: Low-rank tensor train[END_REF] showed that the trace norm may not be appropriate for capturing the global correlation of a tensor leading us to our solution. Furthermore, we will see that the use of the Kruskal operator allows to split the K-CDL problem into smaller problems with less complexity and parameters to infer.

In the following we are mostly interesting in solving the K-CDL problem with atoms xed i.e. the Kruskal-CSC (K-CSC) problem.

Given a signal Y, and with regard to the previous remarks, the elastic-net K-CSC problem is

min {[ [Z k,1 ,••• ,Z k,p ]]} k 1 2 Y - K k=1 D k 1,••• ,p [[Z k,1 , • • • , Z k,p ]] 2 F (3.15) + p q=1 α q K k=1 Z k,q 1 + p q=1 β q K k=1 Z k,q 2 F ,
where the {Z k,q } are in R nq×R and the • 2 F is added to improve the minimization process, as previously discussed.

For simplicity, for all q we have set α 1,q = • • • = α K,q , and β 1,q = • • • = β K,q . Furthermore, in the following we set N = 1.

Resolution of the problem

Even though the K-CDL problem (3.12) is not convex, it is convex with respect to each of the

Z-block {(Z 1,q , • • • , Z K,q )} p q=1 , or D-block (D 1 , • • • , D K )
when the other ones are xed. Furthermore, the two regularizations are separable with respect to these blocks. A natural optimization scheme for minimizing the objective function is therefore to use a block-coordinate strategy or alternating minimization [START_REF] Hildreth | A quadratic programming procedure[END_REF][START_REF] Ortega | Iterative solution of nonlinear equations in several variables[END_REF][START_REF] Nikolova | Alternating proximal gradient descent for nonconvex regularised problems with multiconvex coupling terms[END_REF]. The main idea is to split the main non-convex problem into several convex subproblems; CHAPTER 3. TENSOR BASED CONVOLUTIONAL DICTIONARY LEARNING WITH CP LOW RANK ACTIVATIONS 1) by freezing the D-block and all except one Z-block at a time (referred as Z-step) 2) by only freezing all the Z-blocks (referred as D-step). Although this algorithm monotonically decreases the objective function, a stationary point is not guaranteed to be a local minimum (it can be a saddle point). Fortunately, we will see that in practice the block relaxation algorithm almost always converges to at least a local minimum.

The Z-step or activations update. To solve (3.15), we also use an iterative strategy. For q varying between 1 and p, we consider min

Z 1,q ,••• ,Z K,q 1 2 Y - K k=1 D k 1,••• ,p [[Z k,1 , • • • , Z k,q , • • • Z k,p ]] 2 
F
(3.16)

+ α q K k=1 Z k,q 1 + β q K k=1 Z k,q 2 F .
One basic solution is to rewrite the problem as a regression one (without the convolution) and to use tensor regression solvers [START_REF] Zhou | Tensor regression with applications in neuroimaging data analysis[END_REF][START_REF] Li | Near optimal sketching of low-rank tensor regression[END_REF][START_REF] He | Boosted sparse and low-rank tensor regression[END_REF]. However, it requires the construction of a very large circulant tensor which is not tractable in practice due to memory limitation. In the following, we propose two e cient algorithms based on either ADMM or FISTA to solve (3.16).

Let rst introduce two functions and three important properties which will be useful in the following.

f {Z k,q } K,p k,q=1 = 1 2 Y - K k=1 D k 1,••• ,p [[Z k,1 , • • • , Z k,p ]] 2 F , ( 3 
.17)

g {Z k,q } K k=1 = α q K k=1 Z k,q 1 + β q K k=1 Z k,q 2 
F . (3.18) In this equation, f is the delity term that controls the di erence between the input and its reconstruction, and g is the summation of the regularizations.

Lemma 3.1. (Mode-wise DFT) -Given the CP-decomposition of a tensor X = [[X 1 , • • • , X p ]],
the DFT can be performed mode-wise, i.e.

X = R r=1 x (1) r • • • • • x (p) r [[ X 1 , • • • , X p ]] . (3.19)
The complexity of computing

( X 1 , • • • , X p ) using the FFT goes from O( p i=1 n i log( p i=1 n i )) to O(R p i=1 n i log(n i ))).
Notice that the DFT is only performed on the second dimension of each factor matrix, i.e. X q = [ X q (:, 1) | . . . | X q (:, R)].

We see from this lemma the important advantage of separable signals over non-separable ones in term of complexity. 

f {Z k,q } K,p k,q=1 = 1 2 p i=1 N i Y - K k=1 D k * [[ Z k,1 , • • • , Z k,p ]] 2 
F
(3.20) 

1 p i=1 N i f { Z k,q } K,p k,q=1 , (3 
f { Z k,q } K,p k,q=1 = 1 2 y (q) -Γ( A ⊗ I) z (q) 2 F , (3.22) 
where y (q) is the vectorization of the folding of Y along the dimension q, z (q) = [ z

(q) 1 , . . . , z (q) 
K ] where ∀k, z

(q) k is the vectorization of the matrix Z k,q , Γ = [diag( d 1 (n) ), . . . , diag( d K (n) )] with d (q)
k the vectorization of the folding of D k along the dimension q, and

A =    B 1 . . . B K    where B k = ( ← p i=1,i =q Z k,i ) . (3.23) Here, Γ ∈ C n 1 •••np×Kn 1 •••np , A ∈ C K p 1,i =q n i ×KR , I ∈ R nq×nq
, and z (q) ∈ C KRnq . Thus, the design matrix

Γ( A ⊗ I) is in C n 1 •••np×KRnq .

T-ConvADMM: ADMM-based solver for K-CSC

We now introduce an ADMM-based solver for the K-CSC (3.15). Considering the previous splitting of the objective function, the iterations of the ADMM algorithm with a scalar ρ > 0 and {U k } as dual variables are given by

{Z (s+1) k,q } = arg min {Z k,q } f ({Z k,q }) + ρ 2 K k=1 Z k,q -T (s) k + U (s) k 2 F , (3.24) {T (s+1) k } = arg min {T k } g ({T k }) + ρ 2 K k=1 Z (s+1) k,q -T k + U (s) k 2 F , (3.25) {U (s+1) k } = U (s) k + Z (s+1) k,q -T (s+1) k . (3.26)
As g is fully separable, subproblem (3.25) admits the closed-form solution ∀k = 1, . . . , K, T

(s+1) k = 1 1 + 2β q /ρ S αq/ρ (Z (s+1) k,q + U (s) k ) ,
where S γ (•) is the soft-thresholding operator. Subproblem (3.24) also admits a closed-form solution (with conditions). However, this solution is di cult to compute due to the size of the LOW RANK ACTIVATIONS for q in {1, • • • , p} do 5:

y (q) , { d (q) k } ←-vec( Y (q) ), {vec( D (q) k )} 6: Precompute { Z k,i } K,p k=1,i=1,i =q ←-{DFT(Z k,i )} K,p k=1,i=1,i =q 7: D ←-Γ( A ⊗ I) 8: repeat 9:
Update of Z via equation (3.24) 10:

Z (s) , T (s) , U (s) ←-DFT(Z (s) ), DFT(T (s) ), DFT(U (s) )
11:

z (s) , t (s) , u (s) ←-vec( Z (s) ), vec( T (s) ), vec( U (s) )
12:

z (s+1) ←-Solve D H D + ρI z = D H y + ρ( t (s) + u (s) )
13: s+1) 14:

Z (s+1) ←-Matricization of z (
Z (s+1) ←-IDFT( Z (s+1) )
15:

Update of T via equation (3.25) 16:

T (s+1) ←-prox ρ,αq,βq (Z (s+1) + U (s) ) 17:
Update of u via equation (3.26) 18: s+1) 19:

U (s+1) ←-U (s) + Z (s+1) -T (
until

Z (s+1) -Z (s) ∞ ≤ ε 20:
end for 21: until Z (s+1) -Z (s) ∞ ≤ ε matrices involved. One way to solve it e ciently is to exploit the Parseval's and convolution theorems (3.1) in order to take advantage of the convolutional structure of the problem (as in the univariate case). Using the previous propositions, the solution of (3.24) in the Fourier domain is given by the solution in z of

( A H ⊗ I) Γ H Γ( A ⊗ I) + ρI z = ( A H ⊗ I) Γ H y + ρ( t -u) , (3.27) 
where (•) H stands for the Hermitian transpose. The matrix ( A

H ⊗ I) Γ H Γ( A ⊗ I) + ρI is of
size KRn q × KRn q which can be expensive to inverse. Fortunately, it has a particular diagonal block structure (see Figures 3.5a and 3.5c). Hence, we can permute rows and columns to only solve n q independent KR × KR linear systems (see Figures 3.5b and 3.5d).

Complexity of T-ConvADMM.

The complexity of T-ConvADMM is easily obtained by the analysis of each step. The pre-computation of the tensor Y and { D k } is of complexity O((K + 1)(M log(M ))) with M = p i=1 n i . Then, given a particular mode q, we pre-compute the FFT of the remaining Z k,i , (i = q). By Lemma (3.1), these operations have a complexity of O(KR(p -1) p i=1,i =q n i log(n i )). Finally, as in the standard ADMM-based solvers, an analysis of the matrices involved leads to solve n q linear systems of size KR. When using Gaussian elimination or Cholesky decomposition the complexity is therefore of O((KR) 3 n q ). However, it is possible to take advantage of iterative methods to reduced the complexity. Finally, the soft-threshold part and the dual variable updates are of complexity O(Kn q ). As we have this complexity for every modes, the overall complexity is O((KR) 3 p i=1 n i ).

T-ConvFISTA: FISTA-based solver for K-CSC

To solve the K-CSC (3.15) with FISTA, we introduce the following splitting (3.30) and alternate between i) a gradient descent on f (•), ii) the proximal operator over ϕ(•), and iii) the Nesterov's momentum. As ϕ is separable, its proximal operator is given for each Z k,q by the soft-thresholding operator. The gradient descent step is performed in the Fourier domain. This "trick" decreases the complexity of the gradient computation. A nice formulation of the gradient in the Fourier domain is given by the following lemma.

f {Z k,q } K k=1 = 1 2 Y - K k=1 D k 1,••• ,p [[Z k,1 , • • • , Z k,p ]] 2 F + β q K k=1 Z k,q 2 F (3.28) = f 1 {Z k,q } K k=1 + f 2 {Z k,q } K k=1 (3.29) ϕ {Z k,q } K k=1 = α q K k=1 Z k,q 1 ,
Corollary 3.2. The partial derivative of f 1 with respect to Z ,q is given by

∂ ∂Z ,q f 1 ({Z k,q }) = IDFT Y (q) - K k=1 D (q) k * [[ Z k,1 , • • • , Z k,p ]] * D (q) B . (3.31)
Using proposition (3.1), we also have a vectorial formulation for the gradient given by

∇ vec({Z k,q }) f 1 ({Z k,q }) = IDFT ( A H ⊗ I) Γ H Γ( A ⊗ I) z (q) -y (q) . ( 3 

.32)

Signi cant speed-up. There are several ways to improve the speed of this algorithm in a given implementation. For instance, the computation of ( A ⊗ I) z (q) can be performed in O(KR p i=1 n i ) operations instead of O(KRn q p i=1 n i ) (naive computation) by noticing that

( A ⊗ I) z (q) = ( A ⊗ I)vec([ Z 1,q | • • • | Z K,q ]) = vec([ Z 1,q | • • • | Z K,q ] A ) . LOW RANK ACTIVATIONS
In addition, we can exploit distributed computation by using a parallel matrix-vector multiplication.

In our speci c case where p i=1 n i KRn q , we can precompute the Gram matrix q) to improve e ciency. All the work being in computing this Gram matrix which is now done only once.

( A H ⊗ I)Γ H Γ( A ⊗ I) and ( A H ⊗ I) Γ H y ( 
These computations are also parallelizable using an all-reduce method. This means, for example, that the Gram matrix can be computed only keeping a single ( A H ⊗ I) Γ H ) i,: in working memory at a given time, so it is feasible to solve a lasso problem with extremely large p i=1 n i on a single machine, as long as KRn q is modest [START_REF] Parikh | Proximal algorithms[END_REF].

Proposition 3.1. The matrix ( A H ⊗ I) Γ H Γ( A ⊗ I) is composed of K 2 blocks equal to ( ← p i=1,i =q Z k,i ) H ⊗ I diag( d k (q) )diag( d (q) ) ( ← p i=1,i =q Z ,i ) ⊗ I . (3.33)
Each of these blocks can be computed in O(R 2 p i=1,i =q n i ). Hence, the full matrix can be computed in O((KR) 2 p i=1,i =q n i ) operations. Furthermore, this matrix is a (KRn q × KRn q ) banded matrix (as explained before). Its product with z (q) can therefore be made in only O((KR) 2 n q ) operations.

Complexity of T-ConvFISTA.

The complexity of T-ConvFISTA is easily obtained by the analysis of each step. The pre-computation of the tensor Y and { D k } is of complexity O((K + 1)(M log(M ))) with M = p i=1 n i . Then, given a particular mode q, we pre-compute the FFT of the remaining Z k,i , (i = q). By Lemma (3.1), these operations have a complexity of O(KR(p -1) p i=1,i =q n i log(n i )). Finally, we perform the gradient step in the frequency domain. Each computation of the gradient is of complexity O((KR) 2 n q ) if the Gram matrix is precomputed. The overall complexity is therefore dominating by O((KR) 2 n q ) for typical value of parameters. As we do this process for every mode, we obtain an overall complexity of O((KR) 2 p i=1 n i ).

Some additional remarks

Comparison of the complexity with previous CSC solvers. We collect the theoretical complexity of our two solvers in Table 3.2. In addition, a comparison of the evolution of the complexity between the standard Fourier-based solvers is displayed in Figure 3.6. The theoretical complexity of our tensor-based solvers is much smaller than the complexity of the other methods with a dominant term O((KR)

2 max(n i )) instead of O(KM log(M )) = O(K p i=1 n i log( p j=1 n j ))
for FCSC with iterative application of the Sherman-Morrison equation (FCSC-ShM) [START_REF] Wohlberg | E cient algorithms for convolutional sparse representations[END_REF] or even O(K p i=1 n i p i=1 w i ) for LoBCoD (CSC) while being the most recent solver. As an example, for a multispectral images of size (n 1 ×n 2 ×n 3 ) = (128×128×128) with 12 atoms and a rank set to R = 3, (KR) 2 (n 1 + n 2 + n 3 ) = 497, 664 while Kn 1 n 2 n 3 log(n 1 n 2 n 3 ) = 366, 316, 018.

Originality and advantages of the low-rank method To date, most works have focused only on the 2-D case with a low-rank constraint enforced on the atoms, i.e in the patterns observed in the data [Garcia-Cardona and Wohlberg, 2018b]. However, in several applicative contexts, data are multilinear and the low-rank structure naturally appears in the activations rather than in the atoms/dictionary. To take these observations into account, in the K-CDL we extend the standard 

Z (0) Precompute: Y, { D k }, G and ( A ⊗ I) y (q) t (0) ←-1 repeat Update of W via a proximal gradient step (ISTA) Compute Z (s) using the FFT z (s) ←-vec( Z (s) ) w (s+1/2) ←-z (s) -η G z (s) -( A ⊗ I) y (q) W (s+1/2) ←-Matricization of w (s+1/2)
Compute W (s+1/2) using the IFFT Update of W via a proximal step (ISTA)

W (s+1) ←-prox η,α,β W (s+1/2) k
Nesterov momentum step (FISTA)

t (s+1) ←- 1 + 1 + 4 • t (s) 2 2 Z (s+1) ←-W (s+1) + t (s) -1 t (s+1) + 1 (W (s+1) -W (s) ) until Z (s+1) -Z (s) ∞ ≤ ε
CDL problem to a tensorial one with an additional low-rank CP decomposition constraint on the activation maps. This is an important modi cation both in term of representation and complexity implying ve main advantages:

1. First, the low-rank constraint allows to exploit the underlying structural information of the input signals. This has already been proved to be very e ective in various contexts from image processing to EEG signals decomposition (see e.g. [START_REF] Guo | Tensor learning for regression[END_REF][START_REF] Liu | Tensor completion for estimating missing values in visual data[END_REF]). In image processing for example, previous works have shown that the vectorization of an image removes the inherent spatial structure of it while a low rank tensor regression produces more interpretable results [START_REF] Zhou | Tensor regression with applications in neuroimaging data analysis[END_REF].

2. Second, because the activations are decomposed in each mode, they are much more interpretable than those of the standard CDL. This is a mandatory property when working on complex data such as EEG recordings.

3. Third, low-rank constraints on activations entail a better robustness with respect to noise [START_REF] Zhou | Tensor regression with applications in neuroimaging data analysis[END_REF][START_REF] Zhao | Multilinear subspace regression: an orthogonal tensor decomposition approach[END_REF][START_REF] Cong | Tensor decomposition of EEG signals: a brief review[END_REF][START_REF] Rabusseau | Low-rank regression with tensor responses[END_REF], which is one of the main weakness of the activation learning part of CDL [START_REF] Simon | Rethinking the csc model for natural images[END_REF]. LOW RANK ACTIVATIONS Table 3.2: T is the number of iterations, K the number of atoms, M = np i=1 n i , and R the CP-rank.

Algorithm

4. A fourth advantage is the drastic reduction of the number of unknown activation parameters. Indeed, it goes from K p i=1 n i (unconstrained model) to KR p i=1 n i . This reduction in dimension, and consequently in computational cost, is substantial. 5. Finally, the low-rank constraint imposes that each activation Z k can be written as the sum of at most R separable lters (product of multiple one dimensional lters). The K-CDL is therefore a separable convolution problem. This property allows to signi cantly speed up the calculus of the convolution and of the solvers (Section 4). Indeed, ltering an

(n 1 × n 2 ) image with a (w 1 × w 2 ) non-separable atom is O(n 1 n 2 (w 1 + w 2 )). By contrast, it is instead of O(n 1 n 2 w 1 w 2 )
for a non-separable atom. This cost reduction becomes even more desirable when dealing with higher order inputs.

How to do the initialization? The initialization of the factor matrices {Z k,q } can highly impact the performance of the algorithms. While there are many possible ways to do this initialization, one easy and e ective approach is to choose random factor matrices, a strategy already used in the CP-ALS algorithm [START_REF] Battaglino | A practical randomized CP tensor decomposition[END_REF]. Notice that, unlike the standard initialization of FISTA with vector of zeros, we must choose random factor matrices without to much sparsity. Indeed, at each step of the algorithms, we construct a "new dictionary" Γ( A ⊗ I) based on the factors. Hence, if some initial factors are too sparse, this new dictionary contains a lot of zeros and we may not be able to solve our problem properly. One extreme case is when we choose all factor matrices equal to zeros. The new dictionary is then lled with zeros and we cannot nd a solution of the global problem. In the following we initialize the {Z k,q } with random Uniform matrices.

Simultaneously sparse and low-rank. It has been shown in [START_REF] Richard | Estimation of simultaneously sparse and low rank matrices[END_REF]] that, being low-rank is not an equivalent of sparsity for matrices, but that being low-rank and sparse can actually be seen as two orthogonal concepts. However, while the estimation of simultaneously sparse and low-rank matrices could be desirable, a balance between the two constraints has to be found as the two regularizations may have adversarial in uence. In our setting, this is achieved by using a Ivanov regularization for the rank (CP-rank ≤ R) and a Tykhonov regularization for the sparsity (e.g. k,q α k,q Z k,q 1 ). This means that the solution should be as sparse as possible while having a CP-rank less than or equal to R. 

Dictionary update, D-step.

Given the activations {Z n,k }, the dictionary update aims at improving how the model reconstructs the inputs .34) This step presents no signi cant di erence with existing methods. The problem is smooth and convex and can be solved using the algorithms presented in Section 2.

Y 1 , • • • , Y N by solving min ∀k,D k ∈D, D k F ≤1 1 2 N n=1 Y n - K k=1 D k 1,••• ,p Z n,k 2 F . ( 3 

Related works

We now brie y present some methods related to the CDL problem or its variants to better understand where our contribution lies in this vast literature. We collect on Table 3.3 a selective list of algorithms. We divided this list in three categories. The st one contains algorithms for the standard CDL problem of Section 2. Complete reviews are provided in [START_REF] Wohlberg | E cient algorithms for convolutional sparse representations[END_REF] Standard CDL. The notion of translation invariant representation of a signal was proposed by [START_REF] Simoncelli | Shiftable multiscale transforms[END_REF] after they observed that block-based wavelet algorithms were sensitive to translation and scaling of the input signal. Later, [START_REF] Lewicki | Coding time-varying signals using sparse, shift-invariant representations[END_REF] proposed an algorithm to nd this e cient representation by inferring the best temporal positions of given 1-D functions in a kernel basis i.e. dictionary. Their main idea was to infer the values and temporal locations of the non-zero coe cients and then to re ne the result through a modi ed conjugate gradient local search. The generalization of the work of [START_REF] Lewicki | Coding time-varying signals using sparse, shift-invariant representations[END_REF] to a 2-D convolution is due to [START_REF] Grosse | Shift-invariant sparse coding for audio classi cation[END_REF] and is now referred as the (multivariate) CDL problem presented in Section 2 (in contrast to the univariate CDL for 1-D atoms). In their paper, they rst expressed the problem with a 1 -norm regularization and convolutional constraints. Then, they used a frequency domain method combined with the feature sign search minimization algorithm [START_REF] Lee | E cient sparse coding algorithms[END_REF]. While the e ciency of this representation has led to a wide range of applications, the large-scale nature of them has placed great demands on the computational e ciency of the algorithms. This has given rise to a range of optimization approaches for CSC and CDL. For instance, [START_REF] Chalasani | A fast proximal method for convolutional sparse coding[END_REF] introduced a convolutional extension of the FISTA algorithm for sparse inference called ConvFISTA (see Section 2). Then, [START_REF] Bristow | Fast convolutional sparse coding[END_REF] proposed the FCSC algorithm, a Fourier method based on ADMM (see Section 2). The FCSC has been progressively improved in [START_REF] Wohlberg | E cient convolutional sparse coding[END_REF][START_REF] Wohlberg | E cient algorithms for convolutional sparse representations[END_REF][START_REF] Šorel | Fast convolutional sparse coding using matrix inversion lemma[END_REF]. Up to now, the state-of-the-art algorithms always operate in the frequency domain to exploit the convolutional structure of the problem. However, while this is the rst step towards making CDL practical, these frequency methods can introduce boundary artifacts. To address this issue, [START_REF] Heide | Fast and exible convolutional sparse coding[END_REF] proposed to incorporate a particular matrix in the optimization problem. They derive a exible formulation and propose an e cient ADMM-based solution called FFCSC which splits the objective into a sum of simpler convex functions. Very recently, Papyan et al. [2017a]; [START_REF] Moreau | DICOD: distributed convolutional coordinate descent for convolutional sparse coding[END_REF]; [START_REF] Zisselman | A local block coordinate descent algorithm for the CSC model[END_REF] proposed more localized strategies. Note that while their algorithms operate in the batch mode (i.e., all the samples have to be accessed in each iteration), recent works study online learning to improve scalability [START_REF] Degraux | Online convolutional dictionary learning for multimodal imaging[END_REF][START_REF] Liu | Online convolutional dictionary learning[END_REF]Wang et al., 2018b;[START_REF] Liu | First-and second-order methods for online convolutional dictionary learning[END_REF].

Standard CDL with a low-rank constraint on the dictionary. The idea of learning separable atoms in the multivariate CDL was rst introduced in tensorial computer vision by [START_REF] Rigamonti | Learning separable lters[END_REF] and [START_REF] Sironi | [END_REF]. They proposed two methods to learn high-order CP low-rank dictionary: a rst one learns low-rank atoms thanks to a nuclear norm, the other learns low-rank atoms a posteriori. However, note that (i) both methods cannot be directly applied to learn lowrank activations as there is an additional sparsity constraint, (ii) in their formulation this is the full dictionary (called lters bank) which is assumed to be low-rank. Thus, the original atoms are approximated by a weighted sum of shared rank-1 atoms e.g. several two-dimensional atoms are stacked together to form a 3-dimensional tensor and this resulting tensor is decomposed in a sum of rank-1 tensors. Interestingly, in these two papers, they empirically showed that using separable atoms as dictionaries in CSC or convolutional neural network applications provides signi cant improvements in computational performance with respect to non-separable implementations, while giving little loss in accuracy or reconstruction quality. From this observation, very recently, some papers have re-focused on the 2-D multivariate CDL problem and assumed or learned separable/low-rank 2-D lter banks [START_REF] Silva | Fast convolutional sparse coding with separable lters[END_REF][START_REF] Quesada | Separable dictionary learning for convolutional sparse coding via split updates[END_REF][START_REF] Silva | E cient separable lter estimation using rank-1 convolutional dictionary learning[END_REF][START_REF] Dupré La Tour | Multivariate convolutional sparse coding for electromagnetic brain signals[END_REF]]. The rst one, [START_REF] Silva | Fast convolutional sparse coding with separable lters[END_REF], introduced a computationally e cient algorithm when the dictionary atoms are given and already separable. The two others, [START_REF] Quesada | Separable dictionary learning for convolutional sparse coding via split updates[END_REF][START_REF] Silva | E cient separable lter estimation using rank-1 convolutional dictionary learning[END_REF], proposed to directly learn the separable 2-D atoms. A slightly modi cation of this separable CDL problem is proposed by [START_REF] Quesada | Combinatorial separable convolutional dictionaries[END_REF] where they empirically showed that this alternative formulation provides a reduction in computation time over the stantard CSC and CDL algorithms.

Tensor and dictionary. Instead of trying to extend the multivariate CDL to tensor, another approach is to use a tensor-based representation including particular tensor operations. In [START_REF] Bibi | High order tensor formulation for convolutional sparse coding[END_REF], authors used the t-product (see de nition in [START_REF] Kilmer | Factorization strategies for third-order tensors[END_REF]) to provide another tensor CDL formulation that has the potential to uncover high dimensional correlation among channels, but is also computationally expensive. Finally, [START_REF] Jiang | E cient multi-dimensional tensor sparse coding using t-linear combination[END_REF] and [START_REF] Gong | A low-rank tensor dictionary learning method for hyperspectral image denoising[END_REF] exploit other products such as the t-linear combination but do not consider convolutional models.

Relation between K-CDL and CDL With speci c choices on the parameters or on the dimension values, the K-CDL problem reduces to well-known CDL ones. Hence, it can be seen as a generalization of several approaches in the literature.

• For vector-valued atoms and signals (p = 1), the K-CDL reduces to the 1-D CDL, known as univariate CDL, presented in Section 2. • When p > 1 and R = +∞ (i.e. no low-rank constraint), the K-CDL also reduces to the CDL presented in Section 2, known as Multivariate CDL.

• When p = 2, R < +∞ and w 2 = 1, the K-CDL reduces to models which impose a matrix rank structure on the dictionary.

CHAPTER 3. TENSOR BASED CONVOLUTIONAL DICTIONARY LEARNING WITH CP

LOW RANK ACTIVATIONS • Finally, when R = 1, the representation induced by the K-CDL is closed to the Low rank tensor deconvolution model from [START_REF] Phan | Low rank tensor deconvolution[END_REF] which is, however, not proposed as a CDL model.

Experiments

To illustrate and compare the e ectiveness and e ciency of our two tensor-based solvers, we consider in this section a wide range of synthetic and real data. To make comparisons that are as fair as possible, each algorithm is implemented in Python using Tensorly [START_REF] Kossai | Tensorly: tensor learning in Python[END_REF] (for tensor algebra in Python), Sporco [START_REF] Wohlberg | SPORCO: a Python package for standard and convolutional sparse representations[END_REF] (a Python package for convolutional sparse representations with some C/C++ modules), and standard python libraries. Furthermore, to save memory and reduce the time complexity, both methods are implemented with sparse matrix packages. We also compare our methods to the two leading batch CDL algorithms presented in the previous sections: FCSC with iterative application of the Sherman-Morrison equation [START_REF] Bristow | Fast convolutional sparse coding[END_REF][START_REF] Wohlberg | E cient algorithms for convolutional sparse representations[END_REF], and ConvFISTA in the Fourier domain [START_REF] Chalasani | A fast proximal method for convolutional sparse coding[END_REF][START_REF] Wohlberg | E cient algorithms for convolutional sparse representations[END_REF]. They are both implemented in Sporco. All subsequent simulations are run on a machine through Linux/Ubuntu with 16-core of 2.5GHz Intel CPUs and 64GB of RAM.

For the convenience of the reader, we list here the CDL algorithms compared and the acronyms we use throughout this section: ADMM with tensor-based rank constraint (T-ConvADMM) of Section 4.1, FISTA with tensor-based rank constraint (T-ConvFISTA) of Section 4.2, FCSC with iterative application of the Sherman-Morrison equation (FCSC-ShM or FCSC for short) [START_REF] Bristow | Fast convolutional sparse coding[END_REF][START_REF] Wohlberg | E cient algorithms for convolutional sparse representations[END_REF], FISTA in the Fourier domain (ConvFISTA) [START_REF] Chalasani | A fast proximal method for convolutional sparse coding[END_REF][START_REF] Wohlberg | E cient algorithms for convolutional sparse representations[END_REF]. Note that, based on the previous analysis of the complexity, we choose to use T-ConvFISTA with precomputation of the Gram matrix. For the dictionary update, we also use ADMM with iterative application of the Sherman-Morrison equation [START_REF] Wohlberg | E cient algorithms for convolutional sparse representations[END_REF].

Evaluation on synthetic data

We now present a large range of results on synthetic data.

Dataset. Small-scale and large-scale experiments are performed by considering two main di erent datasets:

• A small-scale dataset which contains 10 independent input signals of size (25 × 25 × 25). Each signal is generated as follows. We draw K = 3 atoms of size (5 × 5 × 5) according to an Uniform distribution with values in [-1, 1] and normalize them. Then, we set the maximal CP-rank to R * = 2 and draw sparse activations from a Bernoulli-Uniform distribution with Bernoulli parameter equal to 0.2, and range of values in [-1, 1]. Finally, we generate the input tensor according to the convolutional model induced by the K-CDL (3.12).

• A large-scale dataset which is generated as the small-scale dataset but with input signals of size (128 × 128 × 128) and Bernoulli parameter equal to 0.02.

• These two dataset are extended with their noisy counterpart called noisy small-scale dataset and noisy large-scale dataset. Following [START_REF] Wohlberg | E cient algorithms for convolutional sparse representations[END_REF], for each input, we construct noisy input signals by adding Multivariate Gaussian noise of progressively high variance to obtain a Signal to Noise Ratio (SNR) with respect to the original input of 25.5, 9.5, and 3.0dB corresponding to a noise's variance approximatively equals to 5.29e-6, 2.25e-4 and, 9.00e-4 ; (standard where MSE denotes the Mean Squared Error. SNR is an asymmetric decibel measurement (dB) used to compare the level of a signal to the level of background noise.

Metrics. We use four metrics to evaluate our methods:

• The Root Mean Square Error (RMSE) between the true input signal (resp. the true activation maps) and the reconstruction. The lower the better. We denote them RMSE(Y) and RMSE(Z).

• The number of times a method reaches a "correct" minimizers among all the initializations e.g.

RMSE under ε = 1.e-6. This metric re ects the sensitivity of an algorithm to its initializations. The higher the better. We denoted them #{RMSE(Y) < ε} and #{RMSE(Z) < ε}.

Evaluation of the K-CSC (known dictionary)

In this experiment, we only compare the performances of the methods on the CSC as this is where stands our major contribution. The true dictionary is therefore given at the begining. The {Z k,q } are initialized with random Uniform matrices. LOW RANK ACTIVATIONS Noiseless scenario. We start with the noiseless case. For each one of the 20 input signals, we run our methods with R = 1, 2, 3, 4 and for ve di erent initializations. This makes a total of 400 runs. The metric #{RMSE(•) < ε} is therefore calculated on 50 initializations. Each time, the reconstruction giving the lowest RMSE(Y) among the ve tries is kept.

Quantitative results are collected in Table 3.4. Both T-ConvADMM and T-ConvFISTA give competitive results with RMSE under 1.e -7 as soon as R ≥ 2. Furthermore, as expected, the best results are obtained when the estimated rank R is equal to the true one, i.e. when R = R * = 2. Notice that, although surprising, an overestimation of the rank does not penalize the performance and still leads to very low RMSE -under 1.e -7. We also collected results of the standard methods in Table 3.4 (bottom). With RMSE only around 1.e-5, we clearly outperformed FCSC-ShM and ConvFISTA. This was expected as they do not take into account the underlying rank structure, i.e. the separability of the activations. In addition, for the two datasets we display on Figures 3.7 and 3.8 the values of the objective function (average on all the runs) in term of times or iterations. Curves with respect to times slightly advantage T-ConvADMM against T-ConvFISTA. Furthermore, they show the advantage of correctly estimating R * as, with a high R, methods are more expensive (at least at the beginning). This is in line with the complexity section. Nevertheless, note that our implementation takes into account the sparsity of the matrices involved. Hence, thanks to a proper tuning of the hyperparameters, even if R is too large our methods quickly converge -the unnecessary column of the activation maps being set to 0. In comparison, results obtained in Table 3.4 take ∼ 500 seconds for both FCSC-ShM and ConvFISTA against ∼ 200 seconds for our methods. This gives a di erence of more than a factor 2. Another very interesting result is the convergence in term of iterations. Curves with respect to iterations do not present signi cant di erence between our two methods. More importantly, they also do not present signi cant di erence between the two datasets and converge in approximatively 10 iterations.

Results with noise. We now study the noisy case. This is an important experiment as while the CSC model has been successfully used for image processing problems, it still falls behind traditional patch-based methods on simple tasks such as denoising [START_REF] Simon | Rethinking the csc model for natural images[END_REF]. For each input signal, we run our methods with ve di erent initializations. The metric #{RMSE(•) < ε} is therefore calculated on 50 initializations. Each time, the reconstruction giving the lowest RMSE(Y) among the ve tries is kept. We set R = R * = 2 during all the experiment.

Quantitative results are collected in Table 3.5. The most remarkable result is that, even under strong noise, T-ConvADMM and T-ConvFISTA yield very good reconstructions. Figure 3.9 provides a visual example of this important property. We see that T-ConvADMM reconstructs the input signal with high accuracy when SNR ∼ 3.0dB while FCSC is completely defective and mostly over ts the noise. This was expected because the noise does not share the low-rank structure of the signal. The K-CSC model, which includes a low-rank constraint, succeeds to not capture it and thus recovers the true signal with accuracy. In other words, taking into account the low-rank structure of the signal eliminates the noise and allows a better recovery of the activations. Furthermore, notice that since for both datasets R * = 2 , the larger the signal, the more "restrictive" the rank constraint is. This leads to lower RMSEs on the large-scale dataset than on the small-scale dataset.

R = 2 R = 3 R = 4 (d) T-ConvFISTA

Evaluation of the K-CDL (unknown dictionary)

We now quickly evaluate our algorithms on the full K-CDL. We use the datasets of the previous section, set R = 2, and use T-ConvFISTA combined with the FCSC solver with Sherman-Morrison iterates for the D-step [START_REF] Wohlberg | E cient algorithms for convolutional sparse representations[END_REF]. This solver is preferred to T-ConvADMM as it provides similar results on the K-CSC without the necessity of tuning the ρ parameter (we calculate the Lipschitz constant instead). The activations {Z k,q } and the atoms {D k } are initialized with random Uniform matrices or tensors. Then, we normalize the atoms to satisfy the 2 constraint.

Results. On noiseless signals, we obtain a range of RMSEs comparable to those obtained with standard methods when R ≥ R * . However, on noisy signals, we observe that T-ConvFISTA returns better results than FCSC-ShM and ConvFista even if the number of active coe cients is lower (see Figure 3.10, for an example on the same signal of Figure 3.9). We now compare the time performance of T-ConvFISTA with the other solvers. To be as fair as possible, we employ the strategy proposed in [START_REF] Mairal | Online learning for matrix factorization and sparse coding[END_REF] and re-implemented the other two methods in pure Python. Their code now share an important part with our algorithm, and we can draw meaningful comparisons, which would have been di cult otherwise. Figure 3.11 shows the average time until convergence (i.e. until the relative convergence tolerance becomes lower than 1e -4 [START_REF] Boyd | Distributed optimization and statistical learning via the alternating direction method of multipliers[END_REF]). While it is important to remark that the relative speeds of each methods are dependent of their choice of hyperparameters as well as on the sparsity of the signals, we observe that (i) T-ConvFISTA with the optimizations discussed in Section 4.2 is signi cantly faster than its regular counterpart and (ii) T-ConvFISTA is faster than FCSC-ShM and ConvFista, even if the advantage decreases as R increases. This is in line with the time complexity of each algorithm (see Table 3.2).

Examples on real data

In this section, we use T-ConvFISTA on a wide range of real data. We start with images and show that it is possible to accurately reconstruct them even with CP low-rank activations. Then, we extract time-frequency patterns related to musical instruments in audio signals. Finally, we consider multichannel ElectroEncephaloGram (EEG) and ElectroCardioGram (ECG) signals. We show that the separability of the activations is an important property allowing to segment the signal or to easily understand its underlying structure. Hyperparameters are set in order to bring enough sparsity while not deteriorating the reconstructions. .12: Black and white satellite view of an airport. In the middle, the reconstruction of the initial image with our method. On the right with classical method.

R = 1 R = 2 R = 3 R = 4 ConvFista FCSC-SM

Gray images -2rd order tensor (matrix).

We rst consider the matrix case with a black and white satellite view of an airport of size (150 × 250) from [START_REF] Hearn | Fast computation of convolution operations via low-rank approximation[END_REF] (see Figure 3.12 (a)). As this image admits obvious low-rank activation maps due to its redundancy and to its patterns alignment (e.g. planes or cars), we set R = 3 and learn 6 atoms.

Interestingly, even with this very low-rank constraint we are able to e ciently reconstruct the initial image (Figure 3.12 (b)) and nd relevant atoms (Figure 3.13). This is an important behavior since this means that even if the image does not present a global low-rank structure (i.e. the matrix representing the image is not low-rank), it exists patterns with low-rank activations. We display the full results in Figure 3.14. Note that, activations are rank-1 and not 3 as nd by T-ConvFISTA. In addition, we also display results for the same image but of size (500 × 800) in order to highlight the capacity of the algorithm to treat large data (Figure 3.14). Color images -3rd order tensor. We now consider the famous Lena image encoded in the RGB space (Figure 3.15 (a)). We set R = 10 and learn 25 color atoms of size (12 × 12 × 3).

Results for T-ConvFISTA and FCSC are displayed on Figures 3.15 (b,c) and 3.16. While the image seems less structured than the previous one, we see that our method stills e ciently reconstruct it. To compare the sparsity, we force the two methods to return equivalent RMSEs. From 3.16 (c) and (g), we see that to reconstruct the image with an RMSE of ∼ 0.023, T-ConvFISTA need much less activations than FCSC: 0.16% against 0.28%. We therefore clearly see that, even if this image does not have an obvious structure, our algorithm is able to nd it and to learn it. Interestingly, although we set R = 10, it always returns activations with CP-rank smaller than 6. Nb of active coefficients: 0.18% (f) Right stereo audio: Activations Figure 3.17: Results on the jazz signal. On top the true spectrograms of the left and right channels. On the middle, the reconstructions. On the bottom, the activations obtained by adding up the activations of all atoms.

6.2.2 Audio signal -3rd order tensor with low-rank structure.

Identifying recurring patterns in audio signal is an important problem in many scienti c domains. A popular model to achieve this is nonnegative matrix factorization (NMF) [START_REF] Lee | Learning the parts of objects by non-negative matrix factorization[END_REF]. A more recent model is the convolutive nonnegative matrix factorization (CNMF) [START_REF] Pearlmutter | Convolutive non-negative matrix factorisation with a sparseness constraint[END_REF]. It extends the classic NMF by introducing a convolutional structure into the low-rank model reconstruction and thus, captures short-term temporal dependencies in the data. However, these two methods never deal with stereo or multidimensional signals. In this example, we propose to use T-ConvFISTA to learn a dictionary (i.e. short-lived temporal patterns) on a stereo audio signal. This stereo signal is 5 seconds long and recorded at 8000Hz, for a total of 2 × 40000 = 80000 points. For each signal (one per channel), we compute a short-time Fourier transform to obtain its spectrogram. Window size is set to 512 samples with 50% overlap : only the rst 50 bins have been conserved (0 -781.25 Hz). The nal data consists in a third order tensor of size (2 × 50 × 158). We reconstruct the input using K = 25 frequency-time atoms of size (1 × 4 × 8) (i.e. atoms with 46.875 Hz bandwidth of 0.224 seconds). The maximal CP-rank of each associated activation is set to R = 5.

We obtain a RMSE of 3.415e-3 with 0.17% active coe cients while with FCSC we obtain a RMSE of 4.048e-3 with more than 0.34% active coe cients. For reference, the RMSE is equal to 1.060e-2 when the reconstruction is full of 0. The results are displayed on Figure 3.17. Atoms and activations returned by our method are displayed Figure 3.18. Since in this audio signal the di erent instruments play at di erent frequency we can isolate them: the rst two atoms of Figure 3.18(e) correspond to the drums and the two last ones (Figure 3.18 (f)) to the guitar. LOW RANK ACTIVATIONS the STF representation, the signal is rst ltered using a bandpass lter between 1 and 20Hz, to remove the potential drift below 1Hz, and to keep the frequencies below 20Hz that characterize GA [START_REF] Brown | General anesthesia, sleep, and coma[END_REF]. Then, on each channel a short time Fourier transform is used with window size equals to 1024 samples and 50% overlap: only the rst 82 bins have been conserved (0 -20 Hz). We stack the 32 spectrograms in a nal tensor Y of size (32 × 82 × 490). During a GA, patients are static and EEG signals do not present many patterns. As a consequence, we set R = 2, and only learn K = 5 atoms of size (1 × 15 × 5) corresponding to time-frequency atoms covering 8.19 seconds and a band of frequencies of 3.42Hz. To reconstruct the 1-D initial signal from the spectrograms we apply the inverse short time Fourier transform. Learned dictionary and activations. Three learned atoms with their activations are displayed in Figure 3.20. One important property is the high interpretability of our results. Indeed, as we decompose the activations into the modes (channels × frequencies × times), we can study each one of them independently. For example, from the frequency activations (mode 2), we see that the rst two atoms are relative to important frequencies in anesthesia referred as α and θ-waves.

Regarding their time activations (mode 3), they decrease with time (see Figure 3.21). This is a common behavior that occurs during a GA induced by propofol [START_REF] Purdon | Electroencephalogram signatures of loss and recovery of consciousness from propofol[END_REF]. Indeed, it is known that when sedation begins, α and θ-waves appear. Then, during the ROC stage, they gradually disappear and fade away. The third atom corresponds to important spikes which may be explain by impulsional noise. From the channel activations (mode 1), we see that most of its contribution is on one channel. However, due to the propagation of the electricity on all the scalp, the other sensors also record these spikes at the same time. The activation tensor relative to this particular atom is therefore rank-1 (as found by the algorithm). Notice that, thanks to its identi cation, we can remove its contribution from the nal reconstruction in order to not observe the spikes (Figure 3.22).

Robustness to noise and reconstruction. Via the channel activations (mode 1) of one learned atom we identify three de cient channels: 10 (CP1), 21 (CP2), and 28 (F4) (Figure 3.23). In a clinical context, these channels are at spatial positions where the cap can come o . The sensors then only pick up noise at these positions. Fortunately, as show in the synthetic experiments, due to the low-rank constraint, the model assumes links between the channels and is robust to strong noise. In our case, this lead to an automatic reconstruction of the bad channels using the good ones. in Figure 3.24 for instance, we see a bad channel (in green) presenting a lot of noise, especially after 8 seconds. Using the other channels (e.g. the blue one), our algorithm reconstructs the initial signal (in orange). Figure 3.25: On top, one time activation map with threshold (orange dash line). On bottom, result of the EKG signal detection on a small part of it. Each vertical orange dash line is obtained automatically.

Electrocardiogram: automatic detection of the P-QRS-T complex

An ElectroCardioGram signal (EKG) is characterized by ve main events referred as P, QRS complex (three events) and T. Each one has a speci c role during the cardiac cycle and their abnormalities will lead to di erent diagnoses [START_REF] Thakor | Applications of adaptive ltering to ECG analysis: noise cancellation and arrhythmia detection[END_REF][START_REF] Taillefer | Comparative diagnostic accuracy of Tl-201 and Tc-99m sestamibi SPECT imaging (perfusion and ECG-gated SPECT) in detecting coronary artery disease in women[END_REF]. To date, the gold-standard of EKG analysis remains human analysis, except in speci c situations such as continuous ST-segment monitoring during anesthesia of high-risk cardiac patients [START_REF] Landesberg | Perioperative myocardial ischemia and infarction identi cation by continuous 12-lead electrocardiogram with online st-segment monitoring[END_REF]. The PR interval is known to be linked to the autonomic nervous system [START_REF] Shouldice | PR and PP ECG intervals as indicators of autonomic nervous innervation of the cardiac sinoatrial and atrioventricular nodes[END_REF]. Drugs used during anesthesia are blocking the autonomous tone, explaining in a large part the side-e ects of anesthesia [START_REF] Gelman | Catecholamine-induced changes in the splanchnic circulation a ecting systemic hemodynamics[END_REF]]. An automatic and real time detection of the PR interval appears potentially interesting. In this example, we show how to use T-ConvFISTA to detect P-QRS-T complexes easily.

The EKG signal is recorded at 600Hz during ∼ 25 minutes for a total of 1, 070, 000 points. Before applying our method, we decompose it with a short-time Fourier transform to obtain a Time-Frequency (TF) representation. Window size is set to 64 samples with 50% overlap so that we keep a high temporal accuracy while drastically reducing the signal in time. Only the rst 10 bins have been conserved. The nal signal is of size (10 × 33439). As the spectrogram exhibits a lot of regularity and small variability, we set R = 2 and K = 1. To reduce the time complexity, we learn the atom on the beginning of the signal. When the atom is learned, we only perform the CSC on the full EKG signal and therefore enjoy an important reduction in complexity. Finally, to detect the complex, we apply a threshold on the time activations map (3.25 (a)). An illustration of the nal segmentation is given in Figure 3.25 (b). Note that, as standard methods do not allow to independently control the sparsity in dimension, the activations are spread on the frequency axis. Hence, we obtain a poor quality atom compared to the one return by T-ConvFISTA and the reconstruction becomes noisy (Figure 3.26 (c,d)). 

Conclusion

In this chapter, we generalized the CDL problem to multivariate signals. More particularly, using tensor algebra we supposed that the activation maps are sparse and CP low-rank. We proposed two algorithms based on ADMM and FISTA to e ciently solve the associated minimization problem. The two algorithms are evaluated and compared on both synthetic and real data. We showed that they provide better results than conventional algorithms in term of reconstruction, sparsity, and interpretability. On real data we showed that the ability of our methods to split the activation maps in each mode allows a better comprehension of the input signal. 

X = [[X 1 , • • • , X p ]],
the DFT can be performed mode-wise i.e.

X = R r=1 x (1) r • • • • • x (p) r . (3.36)
The complexity of the computation of X using the FFT goes from

O( p i=1 n i log( p i=1 n i )) to O(R p i=1 n i log(n i ))).
Proof. Using the de nition of the CP-decompositions, the proof is straightforward. Furthermore, as we only perform 1-D FFT, we obtain the given complexity.

Theorem 3.2. (Equality in the Fourier domain) -In the Fourier domain, the delity term f (•) is equal to

f {Z k,q } K k=1 = 1 2 p i=1 N i Y - K k=1 D k * [[ Z k,1 , • • • , Z k,p ]] 2 F , (3.37) 
where • denotes the frequency representation of a signal, and * is the component-wise product.

Proof. The proof rests on several equalities and properties.

Y - K k=1 D k R r=1 z (1) k,r • • • • • z (p) k,r 2 F = 1 2 p i=1 N i Y - K k=1 DFT(D k R r=1 z (1) k,r • • • • • z (p) k,r ) 2 F (Parseval's theorem -Plancherel) = 1 2 p i=1 N i Y - K k=1 D k * R r=1 DFT(z (1) k,r • • • • • z (p) k,r ) 2 F (convolution theorem) = 1 2 p i=1 N i Y - K k=1 D k * R r=1 z (1) k,r • • • • • z (p) k,r 2 
F (separable) = 1 2 p i=1 N i Y - K k=1 D k * [[ Z k,1 , • • • , Z k,p ]] 2 F (Kruskal operator) .
Corollary 3.3. (A compact vectorized formulation) -The following equality holds 3.38) where y (q) is the vectorization of the folding of Y along the dimension q, z (q) = [ z (q) 1 , . . . , z

f {Z k,q } K k=1 = 1 2 y (q) -Γ( A ⊗ I) z (q) 2 F , ( 
K ] where ∀k, z

(q) k is the vectorization of the matrix Z k,q , Γ = [diag( d 1 (n) ), . . . , diag( d K (n) )] with 114 CHAPTER 3. TENSOR BASED CONVOLUTIONAL DICTIONARY LEARNING WITH CP LOW RANK ACTIVATIONS d (q)
k the vectorization of the folding of D k along the dimension q, and

A =    B 1 . . . B K    where B k = ( ← p i=1,i =q Z k,i ) . (3.39) Here, Γ ∈ C n 1 •••np×Kn 1 •••np , A ∈ C K p 1,i =q n i ×KR , I ∈ R nq×nq
, and z (q) ∈ C KRnq . Thus, the design matrix

Γ( A ⊗ I) is in C n 1 •••np×KRnq .
Proof. The proof mainly rests on the proposition (3.4) and on the formulation of the previous theorem.

Y - K k=1 D k * [[ Z k,1 , • • • , Z k,p ]] 2 F = Y (q) - K k=1 D (q) k * Z k,q ← p i=1 Z (i) k 2 F (matricization) = y (q) - K k=1 d (q) k * ← p i=1 Z (i) k ⊗ I vec( Z k,q ) 2 F (vectorization) = y (q) - K k=1 diag( d (q) k ) ← p i=1 Z (i) k ⊗ I vec( Z k,q ) 2 F (x * y = diag(x)y) = y (q) - K k=1 diag( d (q) k ) C k z k 2 F ,
where the last line is just notations. To obtain the nal equality, we stack the matrices {diag( d

(q)
k )} and construct a block-diagonal matrix such that the block are the {C k }. Finally we obtain the following equality.

   C 1 . . . C K    =    B 1 ⊗ I . . . B K ⊗ I    =    B 1 . . . B K    ⊗ I , where B k = ( ← p i=1,i =q Z k,i
). This end the proof.

Proposition 3.2. The matrix ( A

H ⊗ I) Γ H Γ( A ⊗ I) is composed of K 2 blocks equals to ( ← p i=1,i =q Z k,i ) H ⊗ I diag( d k (q) )diag( d (q) ) ( ← p i=1,i =q Z ,i ) ⊗ I . (3.40)
Each of these blocks can be computed in O(R 2 p i=1 n i ). Hence, the full matrix can be computed in O((KR) 2 p i=1 n i ) operations. Furthermore, this matrix is a (KRn q × KRn q ) banded matrix (as explain before). Its product with z (q) can therefore be made in only O((KR) 2 n q ) operations.

Proof. The rst step of the proof requires to write Γ H as the Kronecker product of two speci c matrices in order to use the equality (q) ) into smaller diagonal matrices as follow

(A ⊗ B)(C ⊗ D) = (AC ⊗ BD). Recall that Γ H is a block-diagonal matrix, i.e. Γ H = [diag( d 1 (q) ), • • • , diag( d K (q) )].
diag( d k (q) ) = N \q i=1 diag(e i ) ⊗ ∆ k,i with N \q = p i=1,i =q n i , with diag(e i ) ∈ R N \q ×N \q and ∆ k,i ∈ C nq×nq being the i-th diagonal block of diag( d k (q) ) (i.e. ∆ k,i = diag( d k (q) ) (i•nq:(i+1)•nq),(i•nq:(i+1)•nq) ). As (diag(e i ) ⊗ ∆ k,i
) is decomposed in two matrices of the proper dimension, we can used the equality

(A ⊗ B)(C ⊗ D) = (AC ⊗ BD)
and we have

( p i=1,i =q Z k,i ) H ⊗ I diag( d k (q) )diag( d (q) ) ( p i=1,i =q Z ,i ) ⊗ I = B H k ⊗ I N \q i=1 diag(e i ) ⊗ ∆ k,i N \q j=1 (diag(e j ) ⊗ ∆ ,j ) B ⊗ I = N \q i=1 N \q j=1 B H k ⊗ I diag(e i ) ⊗ ∆ k,i (diag(e j ) ⊗ ∆ ,j ) B ⊗ I = N \q i=1 N \q j=1 B H k diag(e i )diag(e j ) B ⊗ ∆ k,i ∆ ,j = N \q i=1 B H k diag(e i )diag(e i ) B ⊗ ∆ k,i ∆ ,i = N \q i=1 (diag(e i ) B k ) H diag(e i ) B ⊗ ∆ k,i ∆ ,i = N \q i=1 B k (i, :) • B (i, :) ⊗ ∆ k,i ∆ ,i .
The outer product of two vectors in C 1×R is of complexity O(R 2 ). This product is made for each 1 ≤ i ≤ N \q and for each K 2 blocks. Hence, the overall complexity is O((KR) 2 p i=1,i =q n i ).

Notation and preliminaries on tensor

In the sequel, we recall the tensor algebra concepts which allowed us to extend the CDL to multivariate signals. Please refer to [START_REF] Kolda | Tensor decompositions and applications[END_REF][START_REF] Sidiropoulos | Tensor decomposition for signal processing and machine learning[END_REF] for a more in-depth introduction on the tensor algebra topic.

Some important de nitions and formulas

A tensor is a multidimensional array extending the notion of vectors and matrices. Formally, a p-th order tensor is an element of the tensor product of p ∈ N * vector spaces, denoted X ∈ X R n 1 ו••×np and addressed by p indexes. Whereas in matrices we can extract rows or columns, in tensors we can extract slices, bers, or elements. A slice of a tensor is the matrix obtained by xing all its indexes except two, while a ber is a vector obtained by xing all its indexes except one. Slice, ber, or element are denoted in equivalent ways X :,:,

••• ,ip , X :,••• ,ip , or X i 1 ,••• ,ip . LOW RANK ACTIVATIONS

Some products

In this section, we review some useful products and their properties, as they pertain to tensor computations. These operations greatly facilitates the understanding of this particular algebra and lightens the notations. We start by three important matrix products.

De nition 3.1. (Kronecker, Khatri-Rao, and Hadamard product) -The Kronecker product between

A ∈ R m×n and B ∈ R k× is denoted A ⊗ B. The result is a matrix of size (mk) × (n ) such that A ⊗ B =    a 1,1 B • • • a 1,n B . . . . . . . . . a m,1 B • • • a m,n B    .
The Khatri-Rao product [START_REF] Smilde | Multi-way analysis: applications in the chemical sciences[END_REF] between

A ∈ R m×k and B ∈ R n×k is denoted A B.
The result is a matrix of size (mn) × (k) such that

A B = [a :,1 ⊗ b :,1 , • • • , a :,k ⊗ b :,k ] .
The Hadamard product, or component-wise product, between A ∈ R m×n and B ∈ R m×n is denoted

A * B. The result is also a matrix of size m × n such that (A * B) i,j = A i,j • B i,j .
De nition 3.2. (Inner product and induced norm) -Let X and Y be two tensors in X. The inner product between X and Y is given by

X , Y = n 1 i 1 =1 • • • np ip=1 X i 1 ,••• ,ip Y i 1 ,••• ,ip = vec(X ) vec(Y) .
The norm induced by this inner product is the Frobenius norm denoted • F , and such that X F = X , X 1/2 i.e. the square root of the sum of the squares of all the elements of X .

Multiplication between tensors and matrices is de ned using the m-mode product.

De nition 3.3. (Mode-m product) -For m ∈ {1, • • • , p} and A in R nm×nq , the mode-m product between X and A is given by

(X × m A) i 1 ,••• ,i m-1 ,j,i m+1 ,••• ,p = nm k=1 X i 1 ,••• ,i m-1 ,k,i m+1 ,••• ,p A k,j .
The mode product of X with two proper matrices U , V admits the two following fundamental properties

X × m U × n V = X × n V × m U (m = n) X × m U × m V = X × m U V .
An illustration of this product is given in Figure 3.27.
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Figure 3.27: Illustration of the Mode-2 product with a third order tensor.

Canonical Polyadic Decomposition and tensor rank

Tensor algebra has many similarities but also many striking di erences with matrix algebra. One of the main di erence is related to the de nition of the rank which is not unique as in the matrix case. Many de nitions exist in the literature which are not equivalent in general. The most well known is called the Canonical Polyadic rank (CP-rank) of a tensor.

Proposition 3.3. (Canonical Polyadic Decomposition/PARAFAC and CP-rank) -For any tensor X ∈ X, there exist R > 0, and, x

(i) r ∈ R n i , 1 ≤ i ≤ p, 1 ≤ r ≤ R, such that X = R r=1 x (1) r • • • • • x (p) r . (3.41) 
The smallest R for which such decomposition exists is called the Canonical Polyadic rank of X (CP-rank(X ) or rank(X ) for short), and in this case (3.41) is referred to as the CP decomposition of X .

De nition 3.4. (Kruskal operator [START_REF]Three-way arrays: rank and uniqueness of trilinear decompositions, with application to arithmetic complexity and statistics[END_REF]) -With the notation of Proposition 3.3, the Kruskal operator

[[ • ]] is de ned as [[X 1 , • • • , X p ]] R r=1 x (1) r • • • • • x (p) r ,
where

X i = x (i) 1 | . . . | x (i) R ∈ R n i ×R , 1 ≤ i ≤ p.
Remark 3.4. A CP-decomposition is always possible for a (possibly) non-optimal R by considering the canonical basis.

Matricization and vectorization

Matricization, also known as unfolding or attening, is the process of reordering the elements of a tensor into a matrix. For instance, we can rearranged a tensor in R n 1 ×n 2 ×n 3 into a matrix in R (n 1 •n 2 )×n 3 . The matricization operation permits a better comprehension of the tensor object and is very useful in practice (e.g. optimization). Before the introduction of a proper de nition, we recall that a slice of a tensor is the matrix obtained by xing all its indexes except two. As an illustration let us consider a third order tensor X in R n 1 ×n 2 ×n 3 . A slice i is here denoted by X (i, :, :) or X i:: . The two other slices are de ned equally.

De nition 3.5. (q-mode matricization of a tensor) -Let X be a tensor in R n 1 ו••×np . The q-mode matricization of X is a matrix in R nq× p i=1,i =q nq denoted X (q) and obtained by stacking all slices of X except the q-th. LOW RANK ACTIVATIONS Converting a tensor to a matrix is useful both computationally and theoretically as there exist connections between the matricization, and the Kruskal operator. One of the most important proposition is given in the following. Proposition 3.4. (Matricization of the Kruskal operator) -Let X be a tensor in

X with CP- decomposition [[X 1 , • • • , X p ]]. Then, X (q) = X q (X p • • • X q+1 X q-1 • • • X 1 ) = X q ← p i=1,i =q X i ,
where is the Khatri-Rao product (see de nition 3.1) and ← p i=1 denotes the product of p Khatri-Rao products in reverse order. We can also vectorized this formula which gives us

vec(X (q) ) = (X p • • • X q+1 X q-1 • • • X 1 ⊗ I) vec(X q ) = ← p i=1,i =q X i ⊗ I nq vec(X q ) ,
where I nq is the identity matrix of size (n q × n q ). We now go back to the CDL. As we want to extend it to tensor signals, we are confronted to the problem of a correct de nition of the convolutional operator. Fortunately, the convolutional operator for multidimensional signals is well de ned and does not di er much from the one for one-dimensional signals. We recall its properties in the next section.

How to perform the convolution for discrete signals?

The CDL equation (3.1) contains the convolution operator . However, for discrete signals (seen as vectors), there exists several ways to perform such convolution. In this section, we address this issue by presenting the di erent ways to proceed.

The standard adaptation of the convolution for discrete signals leads to the following de nition.

De nition 3.6. (Discrete convolution) -Let consider two discrete functions f, g de ned on all the set of integer Z i.e. with in nite support. The convolution between this two functions is called the discrete convolution and is given by

(f g)[n] = +∞ k=-∞ f [k]g[n -k] .
Here, we use the notation f [•] to highlight the discrete structure of the functions.

In this de nition, we have considered discrete signals with in nite support i.e. f [n] is de ned for all n in Z. However, in practice, f is usually known over a nite domain, (e.g. 0 ≤ n < N ) and the convolution must be modi ed to take into account this border e ects. To compute the discrete convolution between two discrete functions f, g with nite support, one approach is to assume that values outside the domain of consideration are 0 (also referred as Dirichlet boundary [START_REF] Bristow | Optimization methods for convolutional sparse coding[END_REF]). Another popular approach is to extend f, g with a periodization by introducing two functions f and g such that

f [n] = f [n mod N ] , g[n] = g[n mod N ] .
Here, f and g are two discrete functions with period N (see Figure 3.28 for an example). This strategy leads to the de nition of the circular convolution. De nition 3.7. (Circular discrete convolution) -Let consider two functions f , g de ned on {0, . . . , N -1} with period N . The circular convolution between f and g is given by

( f g)[n] = N -1 k=0 f [k]g[n -k] .
The premise behind the circular convolution approach is to develop a relation between the Convolution theorem and the Discrete Fourier Transform in order to calculate the convolution between two nite-extent, discrete-valued signals. Indeed, remark that, f g is a signal of period N . It can therefore be decomposed in a Fourier basis like classical periodic signals which gives rise to the following important theorem.

De nition 3.8. (Discrete Fourier Transform (DFT)) -Let consider a function f de ned on {0, . . . , N -1} with period N . The Discrete Fourier Transform (DFT) of f is given by

f [k] = N -1 n=0 f [n] exp - i2πkn N ,
and the Inverse DFT (IDFT) of f is given by

f [n] = 1 N N -1 k=0 f [k] exp i2πkn N ,
where • denotes the frequency representation of a signal.

Theorem 3.3. (Discrete convolution theorem) -If f and g have period N , then the DFT of h = f g is h[n] = f [n] • g[n]
, or in vector notation h = f * g , where • denotes the frequency representation of a signal, and * is the component-wise product.

This theorem is the core of most methods that solve the CDL problem as it allows to take advantage of the Fast Fourier Transform (FFT) to signi cantly reduces the complexity of the algorithms. Indeed, a direct computation of h -with the summation -requires O(N 2 ) multiplications. With the FFT the complexity reduces to O(N log(N )).

Remark 3.5. If f and g do not have the same support, we extend the one with the lowest support with zeros (zero-padding). LOW RANK ACTIVATIONS 

How to perform the convolution for multidimensional signals?

The standard adaptation of the convolution for multivariate discrete signals (seen as tensors) leads to the following de nition.

De nition 3.9. (Discrete convolution) -Let consider two p-dimensional discrete functions F , G de ned on all the set of integer Z p i.e. with in nite support. The convolution between this two functions is called the discrete convolution and is given by

(F G)[n 1 , • • • , n p ] = +∞ k 1 =-∞ • • • +∞ kp=-∞ F [k 1 , • • • , k p ]G[n 1 -k 1 , • • • , n p -k p ] .
When the convolution is only performed on some dimensions, we use the symbol 1,2,••• where the subscript numbers are the dimension involved (see Figure 3.29).

Remark 3.6. For unidimensional signal, 1 reduces to the 1-D discrete convolutional operator.

In this de nition, we have considered discrete multidimensional signals with in nite support.

To compute the discrete convolution between two discrete function F , G with nite support, one approach is to assume that values outside the domain of consideration are 0 (also referred as Dirichlet boundary [START_REF] Bristow | Optimization methods for convolutional sparse coding[END_REF]). However, as in the univariate case (see Section 9.2), to develop a relation between the Convolution theorem and the DFT, we use the circular convolution for multivariate discrete signals.

Let consider the periodization of F and G,

F [n 1 , • • • , n p ] = F [n 1 mod N 1 , • • • , n p mod N p ] G[n 1 , • • • , n p ] = G[n 1 mod N 1 , • • • , n p mod N p ] .
Here, F and G are now two discrete functions with period (N 1 , • • • , N p ) (each of the modes are periodic one-dimensional signals). The circular convolution is de ned as follow.

De nition 3.10. (Circular discrete convolution) -Let consider two functions F , G de ned on

{0 . . . , N 1 -1}ו • •×{0 . . . , N p -1} with both a period of (N 1 , • • • , N p ).
The circular convolution between F and G is given by F G is a signal of period (N 1 , • • • , N p ) and can be decomposed in a Fourier basis like classical periodic signals which give rises to the following important theorem.

( F G)[n 1 , • • • , n p ] = N 1 -1 k 1 =0 • • • Np-1 kp=0 F [k 1 , • • • , k p ] G[n 1 -k 1 , • • • , n p -k p ] .
Theorem 3.4. (Discrete convolution theorem) -If F and G have period (N 1 , • • • , N p ), then the DFT of H = F G is H[n 1 , • • • , n p ] = F [n 1 , • • • , n p ] * G[n 1 , • • • , n p ] , or in tensor notation H = F * G ,
where • denotes the frequency representation of a signal, and * is the component-wise product.

Remark 3.7. If F and G do not have the same support, we extend the one with the lowest support with zeros (zero-padding).

A direct computation of H with the summation requires

O( p i=1 N 2 i ) multiplications. With the p-dimensional FFT the complexity becomes O( p i=1 N i log( p i=1 N i )).
We have extensively use this theorem to accelerate our algorithms.

Separable signals

One important di erence of multivariate signals over the univariate ones is the notion of separability. With this notion, we can avoid the complexity introduced by the additional dimensions. This not only simpli es formulas, but also leads to fast numerical algorithms.

Introduction

Graph Signal Processing (GSP) [START_REF] Shuman | The emerging eld of signal processing on graphs: extending high-dimensional data analysis to networks and other irregular domains[END_REF][START_REF] Ortega | Graph signal processing: overview, challenges, and applications[END_REF] has emerged as a powerful eld to analyze structured data as it allows, for instance, to handle complex signal such as those recorded with sensor networks. Indeed, by assuming that each component of the signal lies on a graph node, complex spatial interactions or dependencies can be taken into account for several tasks such as sampling, ltering, or reconstruction [START_REF] Sandryhaila | Discrete signal processing on graphs[END_REF]Chen et al., 2015b,c,d;[START_REF] Marques | Sampling of graph signals with successive local aggregations[END_REF]. In most works, this type of signal, called graph signal, only refers to a single time instance (e.g. its acquisition time) and hence encodes the variation of an instantaneous observation over an underlying graph structure. Therefore, very often the time variations are not taken into account in the processing of such signals: studies consider either one time-sample [START_REF] Wagner | Distributed wavelet transform for irregular sensor network grids[END_REF][START_REF] Jain | Big data+ big cities: graph signals of urban air pollution [exploratory sp][END_REF][START_REF] Mohan | Wavelets on graphs with application to transportation networks[END_REF], where only the spatial dimension is analyzed, or an average on a time window. In order to deal with temporal graph signals, recent works have introduced the notion of time-vertex signal processing, where both spatial and temporal interactions are modeled [START_REF] Grassi | A time-vertex signal processing framework: scalable processing and meaningful representations for time-series on graphs[END_REF]. In this context, another Graph Fourier Transform (GFT), called Joint Fourier Transform (JFT), has been introduced [START_REF] Sandryhaila | Big data analysis with signal processing on graphs: representation and processing of massive data sets with irregular structure[END_REF][START_REF] Loukas | Frequency analysis of time-varying graph signals[END_REF]] and e ciently used in several examples such as video inpainting, seismic epicenter localization [START_REF] Grassi | A time-vertex signal processing framework: scalable processing and meaningful representations for time-series on graphs[END_REF], and recovery of high-dimensional processes evolving over a graph (spread modeling) [START_REF] Loukas | Stationary time-vertex signal processing[END_REF]]. In the case of multivariate sensor networks, or feature-based representations, one solution may consist in treating each feature or modality individually. However, the underlying assumption is that all variables are independent, which is not true in a lot of typical situations, such as meteorological data which could be composed of several correlated variables (temperature, atmospheric pressure, rainfalls) over time and space. In this situation, a third graph layer is needed to also model the links between the di erent modalities. As a result, multivariate time-vertex graph signals should be modeled with three types of interactions: one in time, one in space, and one in feature space. By combining the notion of graph product with the tensor formalism, we show in this chapter that it is possible to extend the notion of GFT to multivariate graph signals, and to provide e cient algorithms for processing them.

This chapter provides a framework for processing multivariate time-vertex graph signals, based on the notion of graph product and the de nition of three graphs that each model the interactions within one dimension (time, space, feature space). By using the tensor formalism, several sparsity methods are provided, that can be speci ed so as to work only on one dimension (i.e. selection of the best time samples, sensors or features). These approaches are tested on real ElectroEn-cephaloGram (EEG) signals in order to assess the sampling and interpolation performances of the proposed framework.

Background and notations

We rst recall the notations used in this chapter and introduce the product graph.

Tensor algebra

Let d 1 , d 2 , . . . , d p ∈ N * and Y = R d 1 × . . . × R dp R d 1 ו•
•×dp be the product of p R-vector spaces. Recall that an element of Y ∈ Y is called a tensor of order p. In the following, Y will be used indi erently to denote the multilinear form in Y * and its representation in the canonic base of Y, the choice being clear from the context. The mode-m matrix product between a tensor Y and a matrix m) where Y (m) denotes the tensor Y unfolded along axis m. The operator ⊗ represent the Kronecker product. When multiple products are necessary, we use the upper version of these notations, × and . See Appendix 9 for a complete presentation.

X ∈ R j×dm in coordinate notation is (Y × m X) i 1 ,••• ,i m-1 ,j,i m-1 ,••• ,ip dm k=1 Y i 1 ,••• ,i m-1 ,k,i m-1 ,••• ,n X j,k and is equivalent to Y × m X ⇔ XY (

Product graph

Let G = (V, E) be a directed weighted graph with nodes V = {1, • • • , N }, edges E = {(i, j, w ij ), i, j ∈ V}, and weights w ij ∈ R + . As stated in the previous chapter, the Laplacian matrix L of the graph is de ned as L = D -W , where D is the degree matrix and W the weights matrix (De nition 2.5). For simplicity, we assume that L is diagonalizable. Its eigendecomposition is L = XΛX -1 , with Λ = diag(λ 1 , . . . , λ N ) a diagonal matrix with the eigenvalues and X = (x 1 , . . . , x N ) a matrix with the eigenvectors as columns. If L is not diagonalizable, Jordan decomposition into generalized eigenvectors is used.

Let E 2 ) be two graphs with N 1 and N 2 vertices and Laplacian

G 1 = (V 1 , E 1 ) and G 2 = (V 2 ,
L 1 = X 1 Λ 1 X -1 1 , L 2 = X 2 Λ 2 X -1 2
, respectively. A product graph of G 1 and G 2 , denoted by the symbol , is the graph with Laplacian equal to

L = (X 1 ⊗ X 2 )Λ (X -1 1 ⊗ X -1 2 ) , (4.1) 
where Λ depends of the choice of the product [START_REF] Imrich | Product graphs: structure and recognition[END_REF][START_REF] Hammack | Handbook of product graphs[END_REF][START_REF] Leskovec | Kronecker graphs: an approach to modeling networks[END_REF][START_REF] Sandryhaila | Big data analysis with signal processing on graphs: representation and processing of massive data sets with irregular structure[END_REF] (see Figure 4.1).

Graph signal processing

A bivariate graph signal can be represented as a matrix Y ∈ R N 1 ×N 2 , where Y i,j is the value at the i-th node of G 1 and j-th node of

G (i) 2 .
Using the Graph Fourier Transform (GFT) it is possible to create a spectral representation H of Y de ned as

H = Y × 1 X -1 1 × 2 X -1 2 . (4.2)
The eigenvalues can be interpreted as distinct frequencies, the components of H as Fourier coe cients, and the eigenvectors as a decomposition basis. Notice that if G 1 is a cycle graph, X 1 is the Discrete Fourier Transform matrix, and the GFT formula (4.2) is exactly the JFT. Hence, the JFT could be seen as a particular case of the multidimensional GFT.

With the tensor formalism used in (4.2), it is straightforward to extend the previous de nitions to product graph with more than two related graphs. Given a collection of M graphs (G m ) M m=1 with (N m ) M m=1 vertices and Laplacian

(L m = X m Λ m X -1 m ) M m=1 , the Laplacian of the (full) product graph is L = ( M m=1 X m )Λ ( M m=1 X -1 m ) , (4.3) 
where Λ is a matrix which depends of the choice of the product. As an example, if we choose

the cartesian product, Λ = M m=1
Λ m where is the Kronecker sum [START_REF] Merris | Laplacian graph eigenvectors[END_REF].

The GFT of a tensor graph signal

Y ∈ R N 1 ו••×N M is therefore H = Y M × m=1 X -1 m . (4.4) 
This de nition is the most important one as this is from it that we can identify the spectral support of multivariate signals.

Method

In this section, we propose to use tensor algebra to represent multivariate time-vertex graph signals. Using the extended version of GFT, we propose a subsampling technique that aims at recovering the whole signals by using a subset of features, time samples, or sensors.

Framework for processing multivariate time-vertex graph signals

In the context of graph signals obtained from multivariate sensor networks, data can be stored in a tensor Y in R F ×T ×S , where F is the number of features recorded by the sensor, T is the number of time samples, and S is the number of sensors. Interactions between the di erent dimensions can be modelled with three di erent graphs that each encodes the interactions for one dimension:

• G F -This graph quanti es the similarity between the di erent features or modalities of the data. There are several techniques to build such a graph. An intuitive approach is to consider a weighted correlation graph where the weights between two nodes corresponds to the absolute Pearson correlation coe cient between the modalities or features.

• G T -This graph controls the interactions between time samples. One common choice is to use a directed cycle graph of size T , which links each sample to the next sample. This type of dependencies can be seen as a Markov process where the value of a sample only depends on the previous sample. This graph is widely used in the GSP community since, for this graph, the Graph Fourier Transform corresponds to the classical Fourier Transform. The weight (adjacency) matrix of G T is a circulant matrix which is known to have as eigenvector matrix the discrete Fourier transform matrix [START_REF] Huang | Graph frequency analysis of brain signals[END_REF][START_REF] Loukas | Frequency analysis of time-varying graph signals[END_REF][START_REF] Segarra | Reconstruction of graph signals through percolation from seeding nodes[END_REF][START_REF] Ortega | Graph signal processing: overview, challenges, and applications[END_REF]. Although G T is directed, its Laplacian is still well de ned by L T = I T -W T , where I T is the identity matrix of size (T × T ).

METHOD 127

Element-wise sparsity Row-wise sparsity unfolding • G S -In a sensor network, this graph models the interactions between the sensors. When dealing with a physical network, this graph can be based on physical links that exist between the sensors. When these interactions are unknown, an intuitive choice consists in building the graph in order to re ect the spatial closeness of each sensor. In general case, this graph is undirected and the edge weights can be built with the Gaussian function

W S (i, j) = exp -s i -s j 2 2 /σ 2 , (4.5) 
where s i is the spatial position of the i-th node of G S .

Notice that since G F and G S are undirected, with no self-loops, and with a single connected component, their Laplacian are symmetric positive semi-de nite and X -1 F = X F , and X -1 S = X S .

Identifying the support of the tensor graph signal

Most graph signal subsampling techniques are based on the assumption that the signal representation in the GFT domain is sparse [START_REF] Narang | Signal processing techniques for interpolation in graph structured data[END_REF][START_REF] Anis | Towards a sampling theorem for signals on arbitrary graphs[END_REF]Chen et al., 2015b,d].

A graph signal with this property is called bandlimited with respect to its graph. When the frequency support of a graph signal is not known, we need to identify it in order to design a proper sampling and interpolation procedure. This problem leads to the following sparse signal reconstruction minimization

min H Y M × m=1 X -1 m -H 2 F + Ω(H) , (4.6) 
where Ω is a regularization function imposing some sparsity on H. There are several valid choices for Ω. However, to obtain bandlimited tensor graph signal, we need to design a function which imposes sparsity on slices. We propose to use the two following functions, illustrated on Figure 4.2:

1. General Sparsity (GS) constraint:

Ω : (H, α) --→ α H 0 . (4.7) 
Notice that H can be complex (e.g. if the graph is directed). In this case, • 0 is naturally de ned as the number of non-negative coe cients Re(

H i 1 ,••• ,ip ) 2 + Im(H i 1 ,••• ,ip ) 2 i.e.
both the real and the imaginary parts are equal to zero. This function is the equivalent of the vectorial zero semi-norm for tensor object. When using this semi-norm, the solution of (4.6) is given by the hard-threshold operator S α

H * = S α Y M × m=1 X -1 m . (4.8) 
Although this sparsity constraint is very simple to implement, it does not allow us to control in which dimension the sparsity occurs. In particular, this behavior is not adapted to the bandlimitedness assumption.

2. Controlled Sparsity (CS) constraint:

Ω : (H, (α m ) M m=1 ) --→ M m=1 α m H (m) 2,0 . (4.9) 
This function imposes zeros on the rows of the unfolding H which make it more adapted for the bandlimitedness assumption (see Figure 4.2). Considering each norm/mode independently, the solution of the subproblem is obtained by sorting the rows of

Y × M m=1 X -1 m (m)
by their 2 -norm and then selecting the rows with norms lower than α m (row/column-wise hard thresholding) [START_REF] Baraniuk | Model-based compressive sensing[END_REF]. The complexity of this sorting process is O( M k=1 N k + N m log(N m )). Following this observation, we propose the following optimization problem and the algorithm 4.1 to solve it

min H Y M × m=1 X -1 m -H 2 F (4.10) s.t. H (m) 2,0 ≤ K m M m=1 , (4.11) 
where each K m ∈ R control the sparsity of the m-th dimension. Contrary to the previous constraint, this one is adapted to the bandlimited property. Indeed, thanks to the parameters K m it is possible to impose di erent sparsity constraints for the three di erent domains (time, space, feature space).

Selecting the best nodes and reconstruction

The sparsity in the frequency domain allows to subsample graph signals by selecting few elements from each graph domain. This task is referred to as subsampling. Sampling a subset of nodes from multiple graph (G m ) M m=1 is equivalent to selecting a subset of rows and columns from each associated X m . Fortunately, as the support of the tensor graph signal is now estimated (see previous section), the columns which need to be kept are known and we only need to select the best subset of rows for each X m . When only one graph is considered, several methods exist in order to e ciently nd a proper subset. For high-dimensional data, greedy methods (algorithms that select one node at a time) are very useful. Several authors have proved submodularity of di erent optimality criteria such as D-optimality [START_REF] Shamaiah | Greedy sensor selection: leveraging submodularity[END_REF], and frame potential [ [START_REF] Ranieri | Near-optimal sensor placement for linear inverse problems[END_REF]. We can also follows ideas of [START_REF] Ortiz-Jiménez | Sampling and reconstruction of signals on product graphs[END_REF], 2019] which proposed low-complexity greedy algorithms based on submodular functions to sample signals that reside on the vertices of a product graph.

(K m ) M m . 2: Output : H 3: for m = 1, • • • , M do 4: X m ←-eigen(L m ) 5: end for 6: H ←-Y × M m=1 X -1 m 7: for m = 1, • • • , M do 8: for j = 1, • • • , N m -

Results

In this section, we test our di erent strategies on real EEG data.

Data

Dataset. The dataset consists of S = 32 EEG signals collected at 250 Hz during a general anesthesia with electrodes attached on the brain of a patient. For each EEG signal, we compute the spectrogram through Short-Time Fourier-Transform with time-windows of 256 samples and with 50% overlap. Then, we compute the energies in F = 12 frequency bands equally spaced between 0.1 Hz and 12 Hz (in order to retrieve the delta, theta and alpha waves that are relevant for anesthesia [START_REF] Brown | General anesthesia, sleep, and coma[END_REF][START_REF] Purdon | Electroencephalogram signatures of loss and recovery of consciousness from propofol[END_REF]). The nal tensor graph signal Y is in

R F ×T ×S = R 12×233×32 .
Graph construction. As explained in the previous section, we construct three graphs, G F , G T , G S , respectively as a weighted correlation graph, a cycle graph, and a spatially weighted graph. The graph G S related to the spatial component is constructed using the spatial position of each channels in 3-D space; low weights are removed (see Figure 4.3).

Subsampling and reconstruction

The di erent techniques described in this work are tested on the EEG data. Then, for a given percentage of removed nodes, we reconstruct the data and compute the Root Mean Square Error (RMSE). Results with four di erent sparsity constraints are displayed in solid lines in Figure 4.4:

• General Sparsity (GS) with a total of 74560 nodes. The conserved nodes can appear in any time/space/feature space positions.

• Controlled Sparsity (CS) on the feature space dimension F with a total of 12 nodes. Only a few energy signals are kept and other are reconstructed by using the correlations between the modalities.

• Controlled Sparsity (CS) on the time dimension T with a total of 233 nodes. Only a few time samples are kept for the reconstruction: this task is linked with signal interpolation and to the classical de nition of signal subsampling.

• Controlled Sparsity (CS) on the spatial dimension S with a total of 32 nodes. Only a few EEG sensors are used to reconstruct others, based on their spatial interactions.

The performances of the GS constraint con guration are very satisfactory since it is possible to reconstruct the whole data set with a 0.02 RMSE by removing up to 80% of the nodes. This means that the data is actually very sparse in the frequency domain and that the information can be well represented in sparse domains. However, the main drawback of this approach is that, since the selected nodes can appear in any domain (time, space, feature space), subsampling may be di cult to implement.

The results obtained with Controlled Sparsity (CS) constraints are very contrasted. To obtain a 0.04 RMSE, it is equivalent to remove 30% of the time samples or 60% of the sensors or of the frequency bands. It therefore appears that the graph structure is especially relevant in the subsampling process for this two last dimensions. For the F and S dimensions, results appear similar up to ∼ 10% of removed nodes but di er for larger percentages. Indeed, removing more sensors seems to have a slightly stronger e ect than removing more modalities (before 80%). This is probably due to the fact that the main phenomena occurring during anesthesia appear in the alpha band between 8 Hz and 12 Hz which spans several of the 10 considered frequency bands. Therefore, a strong correlation exists between modalities that enables a fairly good reconstruction. For the T dimension, the RMSE increases linearly with the number of removed nodes, which is probably due to the relatively weak interactions modeled in the G T graph. Although the performances of the Controlled Sparsity con guration appear to be worse than the General Sparsity, it is interesting to notice that for this con guration, the subsampling experiment can directly be used to select sensors, lower the sampling frequency or to choose the relevant frequency band to monitor during anesthesia. 

Importance of the graph structure

Intuitively, the structure of the graphs used for sampling and reconstruction is crucial. To prove this point, we propose in this experiment to replace one or all of the graphs G F , G T , G S with a random Erdős-Rényi (ER) graph. For the General Sparsity (GS) constraint, all graphs are random and for the Controlled Sparsity (CS) constraint only the graph of interest is random. The resulting reconstruction performances are displayed in dotted lines on Figure 4.4.

For the General Sparsity constraint, the performances decrease with the use of random graphs: for 80% of removed nodes, the RSME is now 0.03 instead of 0.02. As far as the Controlled Sparsity constraints are concerned, and as seen in the previous subsection, the graph structure is especially important for the F and S dimensions. In particular, when considering the spatial dimension, the RMSE is signi cantly larger with the random graph, which shows that the proposed spatial modeling is here useful for the sampling/reconstruction process. Interestingly, although the directed cycle graph has been a very common model for dealing with the temporal aspects of time-vertex signals [START_REF] Loukas | Frequency analysis of time-varying graph signals[END_REF][START_REF] Grassi | A time-vertex signal processing framework: scalable processing and meaningful representations for time-series on graphs[END_REF], it here appears that this graph does not bring the necessary structure for the sampling task: results are here similar when this graph is replaced by a random graph. Instead of the simple Markov formulation, a more structured graph (learned via bandlimited signals for example) could probably better model the relationships between time samples.

Conclusion

In this chapter, we imposed with three di erent graphs relationships between the three dimensions, time, space, and feature space of multivariate time-vertex graph signals. To be able to sample these signals, we provided an e cient algorithm which identify their graph frequency support. In addition, we introduced a way to assess the relevance of the graphs chosen a priori by comparing our results with those obtained when random graphs are taken into account. The results showed the importance of the graphs in this algorithm and support for the relevance of the controlled sparsity constraints to recover multivariate bandlimited signals.

Apprenticeship learning for a predictive state representation of anesthesia

Abstract

In this chapter, we present a decision support algorithm which assists anesthesiologists in administering anesthetics in order to maintain an optimal DoA. (DoA). Derived from a Transform Predictive State Representation algorithm, our model learns by observing anesthesiologists in practice. This framework, known as apprenticeship learning, is particularly useful in the medical eld as it is not based on an exploratory process -a prohibited behavior in healthcare. The model only relies on four commonly monitored variables: Heart Rate, Mean Blood Pressure, Respiratory Rate, and concentration of anesthetic drug. The performances of the model is analyzed with metrics derived from the Hamming distance and cross entropy. They demonstrate that low rank dynamical system had the best performances on both predictions and simulations. Then, a confrontation of our agent to a panel of six real anesthesiologists demonstrate that 95.7 % of the actions are valid. These results strongly support the hypothesis that TPSR based models convincingly embed the behavior of anesthesiologists including only four variables that are commonly assessed to predict the DoA. The proposed approach could be of great help for clinicians by improving the ne tuning of the DoA. Furthermore, the possibility to predict the evolutions of the variables would help preventing side e ects such as low blood pressure. A tool that could autonomously help the anesthesiologist would thus improve safety-level in the surgical room.
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Introduction

In the early 2010's, the 4th National Audit Project (NAP4) estimated that 2.9 million General Anesthesia (GA) were performed annually in the UK [START_REF] Woodall | National census of airway management techniques used for anaesthesia in the UK: rst phase of the fourth national audit project at the royal college of anaesthetists[END_REF]. As this practice carries risks (cardiovascular complication [START_REF] Golubovic | A risk strati cation model for cardiovascular complications during the 3-month period after major elective vascular surgery[END_REF], cognitive dysfunction [START_REF] Punjasawadwong | Processed electroencephalogram and evoked potential techniques for amelioration of postoperative delirium and cognitive dysfunction following non-cardiac and non-neurosurgical procedures in adults[END_REF] and postoperative delirium [START_REF] Fritz | Intraoperative electroencephalogram suppression predicts postoperative delirium[END_REF]), a sustained and intense attention of the anesthesiologists is imperative to evaluate the level of consciousness of the patient, also referred to as the Depth of Anesthesia (DoA). However, its precise estimation remains an open problem and a constant monitoring of many physiological variables such as heart rate or blood pressure is needed to prevent complications. Since this large amount of information is intractable for the human brain, modern monitors provide multiple auditory and visual warnings, to inform and alert anesthesiologists when physiological variables begin to deteriorate. Unfortunately, those additional indications, while originally meant to help, tend to cause information overload [START_REF] Stevenson | E ects of divided attention and operating room noise on perception of pulse oximeter pitch changesa laboratory study[END_REF], and often fail to be fully processed. Moreover, due to the global problematic of cost e ciency and human resource limitations, it has become common for anesthesiologists to manage two surgical rooms at the same time [START_REF] Merry | International standards for a safe practice of anesthesia 2010[END_REF]. In this context, the development of autonomous agents1 which assist the anesthesiologists managing the delivery of drugs during a GA has become crucial to ease the decision making process, reduce the daily workload and personalize the anesthetic administration, all of this allowing a potentially signi cant improvement in care.

Several methods have been introduced to fully automate a particular task using closed-loop control models. These methods are used in many elds and cover a wide range of applications [START_REF] Zhang | A closed-loop system for maintaining constant experimental muscle pain in man[END_REF][START_REF] Wang | Closed-loop control of arti cial pancreatic β -cell in type 1 diabetes mellitus using model predictive iterative learning control[END_REF][START_REF] Herrero | Closed-loop control for precision antimicrobial delivery: an in silico proof-of-concept[END_REF][START_REF] Romero-Ugalde | Closed-loop vagus nerve stimulation based on state transition models[END_REF]. The automation of the delivery of drugs in anesthesia is one of them [START_REF] Gentilini | Modeling and closed-loop control of hypnosis by means of bispectral index (BIS) with iso urane[END_REF][START_REF] Ionescu | Robust predictive control strategy applied for propofol dosing using BIS as a controlled variable during anesthesia[END_REF][START_REF] Sawaguchi | A model-predictive hypnosis control system under total intravenous anesthesia[END_REF][START_REF] Dumont | Closed-loop control of anesthesia -a review[END_REF]. Conventional control techniques have been proposed, such as proportional integral-derivative control [O'hara et al., 1991]. However, these methods perform poorly when applied to processes with variable time delays, nonlinearities, and non-negligible process noise [START_REF] Tang | An optimal fuzzy PID controller[END_REF]. More advanced techniques commonly associated with intelligent systems were studied, including bayesian ltering [START_REF] Ching | Real-time closed-loop control in a rodent model of medically induced coma using burst suppression[END_REF], fuzzy control [START_REF] Moore | Fuzzy control for closed-loop, patient-speci c hypnosis in intraoperative patients: a simulation study[END_REF], and reinforcement learning algorithms as markov decision processes [START_REF] Borera | Partially observable markov decision process for closed-loop anesthesia control[END_REF][START_REF] Moore | Reinforcement learning for closed-loop propofol anesthesia: a study in human volunteers[END_REF]. The latter are receiving signi cant interest in the medical community [START_REF] Prasad | A reinforcement learning approach to weaning of mechanical ventilation in intensive care units[END_REF][START_REF] Moore | Reinforcement learning: a novel method for optimal control of propofol-induced hypnosis[END_REF] as they provide e cient models and strong training patterns for autonomous agent that are mathematically sound and have already proven their usefulness in other areas (e.g. robotic programming [START_REF] Kaelbling | Reinforcement learning: a survey[END_REF][START_REF] Kober | Reinforcement learning in robotics: a survey[END_REF]). However, the de nition of a proper and accurate reward function -a mandatory part of reinforcement learning methods -is nearly intractable for complex problems [START_REF] Kuderer | Learning driving styles for autonomous vehicles from demonstration[END_REF]. Moreover, while the free exploration of the policies space is a key part of the learning process in reinforcement learning algorithms, this is a prohibitive behavior in healthcare. We refereed to [START_REF] Yu | Reinforcement learning in healthcare: a survey[END_REF] for a complete survey on reinforcement learning in healthcare.

The use of apprenticeship learning (also called learning by watching, imitation learning, learning from demonstration)2 [Abbeel and [START_REF] Kim | Globalement, si tous ces modèles apportent inévitablement plusieurs di cultés dues à la grande complexité des objets manipulés, ils ont prouvé leur utilité et montré, une fois de plus, qu'il est important de bien prendre en compte la structure des données pour obtenir de meilleurs résultats[END_REF] permits to overcome these drawbacks as the learning process in this framework only need observations of experts without the need for exploration. Moreover, models derived from Predictive State Representations (PSRs) [START_REF] Littman | Predictive representations of state[END_REF], such as Transformed PSRs (TPSRs) [START_REF] Rosencrantz | Learning low dimensional predictive representations[END_REF], rely entirely on observable quantities -an especially desirable property when the underlying latent state (in this case, consciousness) is complex and poorly understandood. Based on spectral learning algorithms, TPSR increases the compactness of the space of relevant states. From a mathematical perspective, many theoretical results demonstrate the rich expressiveness of these models. For instance, [START_REF] Littman | Predictive representations of state[END_REF] -in uenced by [START_REF] Rivest | Diversity-based inference of nite automata[END_REF] -showed that PSRs are as exible and powerful as partially observable markov decision process while providing much more compact representations.

In this study, we introduce a novel decision support tool that predicts in real-time whether anesthesiologists should reduce the drug dose, do nothing or increase the drug dose given previous sequences of actions and observations (see Figure 5.1 for an illustration). To this end, we combine Apprenticeship Learning principles and TPSR model to solve major problems of control techniques. The resulting approach presents signi cant advantages, including the fact that the model learns "how anesthesiologists do", instead of trying to learn a complex model of consciousness and deducing "how anesthesia should work". Another major contribution is that our model only relies on a high-resolution recording of the Heart Rate (HR), the Mean Blood Pressure (MBP), the 136 CHAPTER 5. APPRENTICESHIP LEARNING FOR A PREDICTIVE STATE REPRESENTATION OF ANESTHESIA Respiratory Rate (RR) and the concentration of anesthetic drug (AAFi). These four variables are constantly in uenced by the drug and are mandatory monitored, making the resulting model suitable for daily use. We also introduce a simple algorithm to homogenize the acquired physiological data and decrease the intra-patient variability. Indeed, the patient's age and gender, as well as disease and surgical intervention are known to a ect response to anesthetics [START_REF] Schnider | The in uence of method of administration and covariates on the pharmacokinetics of propofol in adult volunteers[END_REF]. Finally, models were evaluated 1) quantitatively with metrics derived from the Hamming distance and cross entropy 2) with a confrontation to six real anesthesiologists on three cases. This confrontation provides additional metrics to fully evaluate our model and is a mandatory prerequisite for medical application.

This work is organized as follows. We recall the PSR model and its learning process in Section 2.

Then, we introduce our main contribution, the construction of a TPSR-based autonomous agent to assist the anesthesiologists managing the delivery of drugs during a GA. (Section 3). We also de ne and discuss our methodology and preprocessing choices. In Section 3.3 we assess the performance of the model with respect to multiple di erent metrics (Section 3.4) and with three evaluations done by a panel of experts in anesthesiology (Section 3.5). Finally, the performances, advantages and drawbacks of our approach are discussed in the last section (Section 5).

Predictive state representation

From the angle embraced in this work, we consider a GA as a discrete-time dynamical system where at each time step, the environment (i.e. the patient) generates observable data (i.e. physiological variables) from a set O. Recorded by a medical device, these data are transmitted to the agent which takes an action from a set of possible actions A = {0, 1, 2} = {reduce the drug dose, do nothing, increase the drug dose}. Finally, the environment moves to an (unknown) hidden state and produces new observations. In the present work, we used PSR based models to learn this system. The algorithm of PSR was rst introduced by [START_REF] Littman | Predictive representations of state[END_REF]. The authors showed the advantages of this model over Markovian approaches and discussed the improvement brought by possible nonlinear models. Following this idea, [START_REF] Singh | Learning predictive state representations[END_REF][START_REF] Rudary | A nonlinear predictive state representation[END_REF] have focused on improving the learning process of the PSR models. The algorithm used in this chapter, called Transformed Predictive State Representations (TPSR), was introduced in [START_REF] Rosencrantz | Learning low dimensional predictive representations[END_REF], where the authors presented the multiple advantages over PSRs, namely removing the problems of local minima in the associated minimization problem and producing a more compact representation. This mathematical model is described below; we refer to [START_REF] Rivest | Diversity-based inference of nite automata[END_REF][START_REF] Littman | Predictive representations of state[END_REF][START_REF] Rosencrantz | Learning low dimensional predictive representations[END_REF][START_REF] Boots | Closing the learning-planning loop with predictive state representations[END_REF] for an in depth presentation.

Background on PSR and TPSR

A linear PSR can be seen as a complete description of a dynamical system. Formally, it consists of two in nite countable sets H and T and a system-dynamics matrix D de ned as follows:

• The elements of H (resp. T ), called histories (resp. tests) and referring to the past (resp. the future), are de ned by T

H := h ∈ (A × O) k | k ∈ N ,
:= τ ∈ (A × O) | ∈ N * .
In other words, they consist in an ordered sequences of action-observations pairs (a, o) ∈ A×O,

denoted by h = a 1 o 1 a 2 o 2 • • • a k o k (resp. τ = a 1 o 1 a 2 o 2 • • • a o ).
• The system-dynamics matrix D, containing an in nite number of columns and rows, has its elements equal to

D(τ i , h j ) = D j,i := p(τ i | h j ) = p(h j , τ i ) p(h j ) , (5.1) 
where p denotes the probability associated with the law of the dynamical system for all pairs (τ, h) in (T × H) -in other words, p(τ i | h j ) denotes the probability of observing τ i in the future given that h j was observed in the immediate past. If p(h j ) = 0 we set p(τ i | h j ) = 0.

The rank of D characterizes the complexity of the system and is commonly referred to as its linear dimension.

• Any family Q := {q 1 , • • • , q k }, k ∈ N, of linearly independent columns of D is called a su cient set of core tests (core set for short) if |Q| = rank(D) (|•| denotes the cardinality of a set). The elements of the core set form a base of the vector space spawned by the columns of D. Therefore, for any τ ∈ T , there exists an unique weight vector m τ such that for all h

D(τ, h) = p(τ | h) = m T τ p(Q | h) . (5.2) 
In this equation, p(Q | h) is called the belief vector and is de ned as

     p(Q | h) := p(q 1 | h), . . . , p(q |Q| | h) T if h = ∅ , p(Q | ∅) := m T 0 otherwise , (5.3) 
with m 0 denoting the (unknown) initial condition of the system and ∅ being the empty history. Similarly, we de ne D(Q) as the submatrix of D that contains the columns relative to the core set i.e.

[D(Q, h) T ] i = [p(Q | h) T ] i = p(q i | h) (see Figure 5.2).
Discovery problem Finding a core set is called the discovery problem. This is important as for any such Q, the knowledge of D(Q) -as well as the initial distribution m 0 -is enough to fully describe the dynamical system [START_REF] Singh | Predictive state representations: a new theory for modeling dynamical systems[END_REF]. OF ANESTHESIA Basically, there are two main approaches to solve this problem and learn PSRs [START_REF] Hamilton | E cient learning and planning with compressed predictive states[END_REF]. The rst one is a discovery-based technique (see e.g. [START_REF] Wolfe | Learning predictive state representations in dynamical systems without reset[END_REF][START_REF] James | Learning and discovery of predictive state representations in dynamical systems with reset[END_REF][START_REF] James | Combining memory and landmarks with predictive state representations[END_REF]) leading to an explicit knowledge of Q. The second one is a subspace-based technique which is used here and referred to as Transformed PSRs (TPSRs). The latter uses spectral methods to nd a subspace isomorph to the vector space generated by Q instead of determining Q exactly. To use TPSR model, we applied the spectral algorithm introduced by [START_REF] Boots | Closing the learning-planning loop with predictive state representations[END_REF] which learns several matrices (namely B ao , b ∞ and b * , de ned below) from sequences of action-observation pairs. This algorithm provides compact and accurate models and permits to predict the most likely future sequences of actions and states e ciently.

We now recall the matrices involved in this algorithm. For H ⊂ H and T ⊂ T , two nite subsets, let de ne

• P H ∈ R |H| that contains the probability of every event in H i.e. P H (h j ) = [P H ] j := p(h j ).

• P T ,H ∈ R |T |×|H| where entry (i, j) is the joint probability of (h j , τ i ) i.e. P T ,H (τ i , h j ) = [P T ,H ] i,j := p(h j , τ i ).

• P T ,ao,H ∈ R |T |×|H| (one matrix for each unique pair ao) where entry (i, j) of P T ,ao,H is the probability of the history h j , the next action-observation pair ao, and the subsequent test τ i i.e. P T ,ao,H (τ i , h j ) = [P T ,ao,H ] i,j := p(h j , ao, τ i ).

Let k ∈ N and a 1 o 1 . . . a k o k ∈ (A × O) k . For any t ≤ k, let h t = a 1 o 1 . . . a t o t and b t = p(Q|h t ) the associated belief vector. Thus, the belief vector at time (t + 1) can be expressed as b t+1 = p(Q | h t ao t ). The equation binding b t and b t+1 is called the update rule and is given by

b t+1 = B aot b t b T ∞ B aot b t , (5.4) 
where

     B aot = U T P T ,aot,H (U P T ,H ) † is a transition matrix, b T ∞ = P T H (U T P T ,H ) † is a normalizer (∀h, b T ∞ p(Q | h) = 1) , b * = U T P T ,H 1 |H| is the initial state. (5.5)
Here, 1 |H| is the ones-vector of length |H|, † denotes the Moore-Penrose pseudo inverse and U contains the left singular vectors of P T ,H .

Predictions With the previously de ned matrices, for any sequence of u (action, observation) pairs (u ∈ N * ), we have

     p(a t+1 o t+1 | h t ) = b T ∞ B ao t+1 b t (for u = 1) , p(a t+1 o t+1 , • • • , a t+u o t+u | h t ) = b T ∞ B ao t+u • • • B ao t+1 b t .
(5.6) This equation is the key to provide an estimator of the probability p(•).

For further discussion on those equations, we refer the reader to the work of [START_REF] Boots | Closing the learning-planning loop with predictive state representations[END_REF] where theoretical aspects and relation to the matrices of PSRs were discussed. The methodology to predict actions and/or observations in GA is discussed Section 3.

Methodological choices.

In this subsection, we present our strategy to adapt the TPSR to the problem of closed-loop control of anesthesia. Namely, the introduction of new variables to control the maximum length of each sequence and the use of speci c algorithms to compute the di erent matrices.

Maximal length of a sequence. The computation of the matrices T and H is intractable in practice as they are indexed over an in nite set. To circumvent this problem, we introduced M H ∈ N * (resp. M T ∈ N * ) the maximal length of each history (resp. each test) and restricted ourselves to the learning of Learning problem. We computed the estimators P H , P T ,H and P T ,ao,H ao of the true TPSR matrices using the entire training set (in other words, all observed combinations were processed). Then, we used a randomized SVD algorithm [START_REF] Halko | Finding structure with randomness: probabilistic algorithms for constructing approximate matrix decompositions[END_REF] 

H M H := h ∈ (A×O) k | k ∈ N M H and T M T := τ ∈ (A×O) | ∈ N M T \{0} . With
p(h j ) ←- 1 N M m=1 M H =1 | Sm|- k=1 1 { Sm (k:k+ ) =h j }
6:

[ P H ] j ←p(h j ) [ P T ,H ] i,j ←p(h j , τ i )

10:

for all ao do 11:

[ P T ,ao,H ] i,j ←p(h j , ao, τ i )

12:

end for 13: end for 14: U ←randomize-SVD( P T ,H , R) B ao ←-U T P T ,aot,H ( U P T ,H ) †

15: b T ∞ ←-P T H ( U T P T ,H ) † 16: b * ←-U T P T ,

19: end for

The agent predictions were made using a maximum likelihood approach on the distribution given by equation (5.6).

     arg max p(a t+1 o t+1 | h t ) (for u = 1) , arg max p(a t+1 o t+1 , • • • , a t+u o t+u | h t ) .
(5.7)

Ties were broken at random.

Toy example

Here, we give some intuition of the inner working of the TPSR on a simple toy example.

The source-code of this example is accessible at https://reine.cmla.ens-cachan.fr/p.humbert/ TPSR_implementation. The dataset consisted on a sequence of actions -→ a and a sequence of observations -→ o display in Figure 5.4.

The sequence of action -→ a presents two interesting features. First, the pattern (0, 1, 2) is repeated almost all the way. Moreover 0 are always followed by 1 i.e p(1 | 0) = 1. On the contrary, 1 are never followed by 0 i.e p(0 | 1) = 0. Second, there is a "breakpoint" in the repetition of the pattern with six "2 . A visualization of these two sequences is displayed in blue Figure 5.5 b).

To emphasize the importance of the observations sequence -→ o , we considered two distinct datasets.

PREDICTIVE STATE REPRESENTATION

141 1,2,2,2,2,2,2,2 "rupture" , 0 ,1,2,0,1,2,0,1,2,0,1,2) ,2,1,0,0,0,1,1,1,2,2,2,0,1,2,0,1,1,2,1,2,0,1,2) . In both cases, we considered history and test with a maximal size of 2 (i.e. M H = M T = 2) and computed estimators of the di erent matrices P H , P T ,H and P T ,ao,H ao (learning part of the algorithm). Then, the core test was found via an SVD (discovery problem). Finally, at any given time t, the agent provided the most probable pair (action, observation) at time t + 1 using equation (5.6) and a maximum likelihood approach. On Figure 5.5, we displayed in red the results of the prediction. For the model (A), we observe that the TPSR learned to predict the pattern (0, 1, 2), but cannot anticipate the "breakpoint" sequence of "2" -as no information is brought by the observation in this model. On the other hand, in model (B), we see that the TPSR used the observation information to predict the "breakpoint". Note that since the most present action in the dataset is "2" this is the action predicted at t = 0. This underlines the importance of observations for acute prediction of actions. OF ANESTHESIA Sex (F/M) Age (year) Weight (kg) Height (cm) 10/21 60 ± 20 82 ± 14 176 ± 7 

- → a = ( 0, 1, 2 pattern , 0,

Methods

The goal of our model is to maintain the patient under a deep anesthesia state quali ed as "surgical anesthesia". The anesthesia usually requires the use of two types of drugs: morphinomimetic in order to control the pain and hypnotic drugs to ensure that the patient remains asleep. In our model we only focused on the administration of the hypnotic agent (which is made continuously under general anesthesia), in this case the gas sevo urane. This gas is administered to the patient thanks to the endotracheal tube and rapidly reaches the brain. It is the actions to do on the gas administration that we aimed at modeling, among the three possibilities: decrease, do nothing, or increase the gas concentration.

Dataset

Study participants. The study has been approved by the ethics committee of the French society of anesthesiology (SFAR) under the number IRB 00010254-2016-018. Patients were included from March to May 2017 in a single observational center, the Begin military teaching hospital, Saint-Mandé, France. They were included if they were scheduled for an outgoing surgery for inguinal hernia repair under GA, if they gave their consent to the study and if their comorbidity score was low (classi ed ASA 1 or 2 [START_REF] Daabiss | American society of anaesthesiologists physical status classi cation[END_REF]). They were excluded if they presented complications during the surgery (cardiac arrhythmias, variation of the blood pressure or cardiac frequency more than 20 % compared to the baseline value, or unplanned hospitalization). A summary on the 31 participants is available in Table 5.1.

Anesthesia protocol. The anesthesia protocol was in accordance with the declaration of Helsinki. Four anesthesiologists were included in the study. All the patients were pre-oxygenated via face-mask by 100% oxygen for at least 3 minutes before induction. Sufentanil 0.3 µg/kg of ideal-body weight was injected rapidly followed 3 minutes later by 2 -4 mg/kg propofol in combination with ketamine 20 mg. When required for the surgery, patients were paralyzed following induction with a bolus of 0.17 mg/kg of cisatracurium. After tracheal intubation, patients were ventilated with tidal volume of 6 mg/kg ideal-body weight, 5 cmH 2 O Positive end-expiratory Pressure (Peep) and a respiratory rate between 10 and 14 to maintain EtCO 2 between 30 and 40 mmHg. Anesthesia was maintained with sevo urane MAC age-adjusted (e.g. 1.0), a volatile anesthetic agent [START_REF] Patel | Sevo urane: a review of its pharmacodynamic and pharmacokinetic porperties and its clinical use in general anaesthesia[END_REF]. Dose adjustments were made by the anesthesiologist in charge of the patient depending on clinical variables available. Once asleep, patients received a single bolus of local anesthesia when indicated for the surgery.

Data. During the surgery, patients were continuously monitored with a multiparametric device, the Carescape monitor B850, from General Electrics (GE) HealthcareTM Finland Oy, Helsinki, Finland. Variables were recorded synchronously with a sampling frequency of 1Hz during the anesthesia. We selected 4 standard physiological variables (listed in of 4 trajectories for each patient. The anesthetics drugs in uence all the organs and especially the cardiopulmonary system. Therefore, the four variables that we selected are all constantly in uenced by the drug [START_REF] Hert | Sevo urane[END_REF]. Moreover, they are mandatory monitored, making the resulting model suitable for daily use since no additional sensors are needed. All these variables are in accordance with the recommendation of the American Society of Anesthesiologists. This choice was also motivated by our aim to provide a decision support tool. Additionally, it should be noticed that the dimension of the system-dynamics matrix D from the TPSR increases exponentially with the number of variables considered. Therefore, the choice of a restricted number of variables reduce the complexity of the learning problem, acting as an additional regularization.

Preprocessing

To homogenize the data, noise and trend of all trajectories were removed via a Simple Moving Average lter (SMA) with a windows size n of {5, 15, 30} seconds and no overlap. The random process underlying each physiological variable was assumed to be locally stationary, as their variations were relatively slow, which justi ed the use of SMA for small values of n.

Observations. Each observation o ∈ O consisted of quadruplets HR, MBP, RR, AAFi discretized using n th thresholds (n th ∈ N >2 ) and taking their values in the set {0, 1, • • • , n th }where 0 represents low values, and n th high values. The discretization was calculated using Ckmeans, a clustering algorithm based on K-means which has been proven to outperform it in the one-dimensional case [START_REF] Wang | Ckmeans. 1d. dp: optimal k-means clustering in one dimension by dynamic programming[END_REF]. We made an exception for AAFi, which was discretized according to common anesthetic heuristics (i.e. with thresholds between 1% and 3%). The purpose of this calibration procedure was 1) to reduce the inter-patient variability while keeping the intra-patient variability by mapping similar physiological states into the same discretized state-a key part of the problem, as incoherent discretization led to contradictory events, 2) to train a model that automatically adapts to the demographic characteristics of patients (e.g. age, height, weight, BMI). The number of thresholds used in the discretization is a parameter of the model and is evaluated in our experiments. To allow real-time use of the model, preprocessing parameters were estimated during a calibration phase. An example of discretization is displayed Figure 5.6. OF ANESTHESIA Actions. The actions were derived from the AAFi variable which represents the amount of drug administrated to a patient. The considered set of possible actions was A = {0, 1, 2} = Reduce drug dose, Do nothing, Increase drug dose formally de ned by

• action 0 (Reduce drug dose) -Signi cant decrease of the AAFi (by at least 10%),

• action 1 (Do nothing) -No signi cant increase or decrease of the AAFi,

• action 2 (Increase drug dose) -Signi cant increase of the AAFi (by at least 10%).

More precisely, actions are labeled as follows. Between two regularly spaced sampling points (distant by e.g. 30 s), the action is labeled 2 (resp 0) if the AAFi has increased by at least 10% (resp decreasing by at least 10%). Otherwise, the action is labelled 1. The data pipeline we used for our model is illustrated in Figure 5.7. 

Evaluation process

We now present the di erent experiments made to evaluate the performances of our model. First, we conducted an extensive analysis of the di erent parameters and their respective in uence to identify the best set of parameters, using cross-validation and multiple metrics (see Section 3.4). Second, we compared the performance of the resulting model with a Spectral Hidden Markov Model (SHMM) [START_REF] Hsu | A spectral algorithm for learning hidden markov models[END_REF][START_REF] Minh | A regularized spectral algorithm for hidden markov models with applications in computer vision[END_REF], i.e. HMM learned with a spectral algorithm. Finally, our model and its associated agent were confronted to a panel of six anesthesiologists assessing three cases.

Quantitative analysis setup

Prior to any evaluations, the dataset was randomly split into a Training-set (60%), a Validation-set (20%) and a Test-set (20%). We repeated this procedure ve times, and average the results over the ve random splits.

Classical metrics. In the rst experiment, we evaluated the discrepancy between actions predicted by the agent and actions of the experts. The agent predictions were selected using a maximum likelihood approach on the distribution given by equation (5.6) -ties were broken at random. The metric used in this experiment was the averaged Hamming Distance (HD) between two sequences (τ, τ ) of length µ -a classical metric for PSRs, closely related to the One-Step Prediction Accuracy [START_REF] Hefny | Predictive state models for prediction and control in partially observable environments[END_REF]] -(Equation 5.8).

HD(τ

, τ ) = 1 µ µ i=1 1 τ [i] = τ [i] .
(5.8) 1) before this. Then SCE-A 0,2 is simply de ned as SCE-A (δ) 0,2 (t, i) =log(p t,i,δ ) .

(5.10)

When no delay is considered (δ = 0), SCE-A 0,2 is CE-A 0,2 . During experiments, the delay was set to 1 minute.

SHMM comparison.

In a third step, we compared our TPSR model with the best set of parameters to a tuned SHMM. We used the same metrics as in the previous experiments.

Real expert evaluation method

The evaluation of reinforcement learning algorithms in healthcare is complex and special care needs to be taken [START_REF] Gottesman | Evaluating reinforcement learning algorithms in observational health settings[END_REF][START_REF] Gottesman | Guidelines for reinforcement learning in healthcare[END_REF]. Hence, for an exhaustive and thorough evaluation of our method, we confronted the best model of the quantitative analysis and its corresponding agent with a panel of six anesthesiologists from the anesthesia-intensive care department of the Begin military teaching hospital. This experiment provides additional metrics to fully evaluate a generative model and is a mandatory prerequisite for medical application. The evaluation was conducted as follows. To begin the confrontation, each anesthesiologist was presented with sequences where only the previous actions and the four discretized selected variables were displayed. Then, the three following experiments were conducted and results collected.

• Experiment 1 -At each time, and given the real previous sequences, the anesthesiologist chose an action in A = Reduce drug dose, Do nothing, Increase drug dose . Those actions were recorded and we measured the disagreement rate between the actions taken by the anesthesiologist and the actions predicted by the agent. This experiment quanti es the capacity of the agent to make the right decisions at the right time.

• Experiment 2 -At each time, and given the real previous sequences, the agent predicted an action in A = Reduce drug dose, Do nothing, Increase drug dose and the anesthesiologist labeled it as good: the action is the best choice, acceptable: the action is not optimal but still a good choice,

dangerous: the action may lead to future complications.

We measured the frequency of each label. This experiment provides a qualitative evaluation of the actions of the agent, even if they di er from the real anesthesiologist. Indeed, due to anesthetic latency and the nature of our problem, actions that di er from the anesthesiologist might still be valid choices.

• Experiment 3 -At each time, and given the previous generated sequences, the anesthesiologist chose an action in A = Reduce drug dose, Do nothing, Increase drug dose and predicted the evolutions of each variables.

For each variable, we measured the agreement rate between the prediction made by the anesthesiologist to the one made by the agent. This experiment qualitatively evaluate the capacity of our trained model to predict a plausible evolution of the dynamical system given an action. OF ANESTHESIA It should be noted that agreement with human experts in experiment 2 may have been in uenced by the lack of a blind evaluation. That is why the other two experiments were carefully design to avoid this problem, and their results are in concordance with experiment 2.

Results

Quantitative analysis

Results of the quantitative analysis. We evaluated the ability of each set of parameters to predict the right pairs (action, observations) with the metrics de ned in Section 3.4. For each parameter, the following values were compared: n ∈ {5, 15, 30}, n th ∈ {3, 4, 5}, M H ∈ {2, 3, 6}, M T ∈ {2, 3, 6} and R was set to {50, 100, 300, 400}. It is important to note that n played a very crucial role in our model as it signi cantly modi ed the data during the preprocessing. Results of the best set of parameters for each value of n are displayed in Table 5.4.

The best result was obtained for (n = 30, n th = 3, M H = 6, M T = 3, R = 400) (an example of agent sequence is displayed in Figure 5.8). This model was used for the confrontation with anesthesiologists. It is interesting to note that the agent tended to predict action and observation with a slight time delay. This aspect was emphasized by the evaluation with the SCE-A 0,2 . Furthermore, the curves of Figure 5.8 illustrate that the prediction of physiological variables was accurate and generally di ered because of a slight delay.

Contribution of the variables.

• Contribution of AAFi -The AAFi variable is used both as an observation and for the computation of the actions. Hence, the question of whether AAFi in uences the model by making the prediction obvious is crucial. To highlight the fact that our model is able to predict the action without simply relying on previous AAFi levels, we conducted additional experiments where AAFi was not included in the model. As a baseline, we also computed the results when no variables were included in the model. These results are presented in Table 5.5. These additional experiments showed that the removal of the AAFi variable in the model only mildly reduced out model performance in term of the SCE-A 0,2 metric: around 0.722 instead of 0.628 for the original model (with AA ). In comparison, removing all observations (i.e only relying on actions) leads to a SCE-A 0,2 of 0.913. This additional experiment suggests that while AAFi is an important variable for the prediction, it does not trivially contain all the required information.

The good results obtained by the agent are therefore not explained by the presence of the AAFi variable in the observations.

• Contribution of RR -The RR is an important variable for monitoring the patient's state.

However, in our protocol, the patient is arti cially ventilated, i.e. RR is regulated to maintain EtCO 2 at a certain level. To study the importance of this variable, we have computed extra results without the RR variable in the model (see Table IV). It turns out that for n = 30, SCE-A 0,2 was equal to 0.635 (against 0.628 when RR is in the model and 0.722 when AAFi is not in the model). This shows that the importance of this variable in our model remains limited. However, we believe that the presence of this variable still makes sense in a clinical setting, especially in critical situations. Indeed, under general anesthesia when the depth of anesthesia is appropriate to perform surgery, patients stop breathing spontaneously. The breathing is thus performed arti cially by a ventilator, where the RR is set by the anesthesiologist. In such a condition, the stability of the RR represents the good tolerance of the patient towards the mechanical ventilation and becomes an important indicator of under dosage of anesthesia when the variability increases. In our current experiment, the dataset does not contain any critical situations as every surgery have been unremarkable as regard as the anesthesia. Hence, the RR does not signi cantly contribute to the model performance at this time. However, we anticipate that this is an important indicator of awakening. Thus, RR can be considered an alert variable, which could be used to introduce hard coded behavior in the model: for instance, when it exceeds a certain threshold, the algorithm could send an alarm and exit the closed-loop system, handing the matter back to the anesthesiologist. This is classical approach to closed-loop system.

SHMM. We evaluated the performances of the SHMM for each of our discretization size and for a maximal rank of 400. The results were reported in Table 5.4. We also present in Figure 5.9 the prediction of the best SHMM model on the same patient as Figure 5.8. Figure 5.8 c) is a good representation of the performance of models -the closer the two curves are, the better the model is. It appears that TPSR signi cantly outperformed SHMM in all the experiments.

Real expert evaluation

We asked six consultants anesthesiologists to evaluate our best model. Results from the three experiments introduced in Subsection 3.5 are presented in the Table 5.6. The results were in accordance with those of the paragraph 4.1.

• Experiment 1 showed an accuracy rate close to the one found in the quantitative evaluation section.

• Experiment 2 showed that 95.7 % of the actions were considered valid by the experts. This high rate of concordance was expected due to the long-latency of the anesthetics drugs.

• Experiment 3 demonstrated that the agent can predict the evolution of the variables in the upcoming minutes secondary to any given action. 5 Discussion and future works Linear dimension. Interestingly, the distribution of the singular values of P T ,H (which is linked to the linear dimension of the TPSR) was found to be similar regardless of the number of included patients. Furthermore, the number of singular values close to zero was signi cant for several values of horizons, justifying the low rank approximation of the matrix P T ,H . Our experiments revealed that models with low rank dynamical system demonstrate strong performances on both predictions and simulations. These results justify the choice of TPSRs over regular PSRs. Moreover, they may have signi cant consequences in the medical eld as the evaluation of DoA through physiological variables could require much less information than presumed i.e. the space of latent states relative to a patient under GA could actually be relatively small.

In uence of parameters. Throughout our experiments, we observed that di erent values of M H and M T yield similar performances. There might be four possible explanations for this phenomenon.

1. The dynamic system does not have a very long memory. This hypothesis is reasonable, as generally, anesthesiologists do not concentrate on a long period of time, partly because of all the simultaneous tasks required.

2. The population included is homogeneous as we only included patients undergoing inguinal hernia repair under GA. No patient in the population had any signi cant past medical history nor underwent any side-e ect during the GA.

3. Values of the horizon parameters that have a signi cant impact are large, and thus require signi cantly larger dataset to observe.

4. The discretization process and the values of the parameter n reduce the long time range dependency of the dynamic system.

Future works might try to evaluate each of these hypotheses.

Additionally, the experiments showed that n th = 3 is the best choice for this parameter as it achieve the best trade-o between a) the generalization of the discretization which reduces the inter-patient variability and b) the accuracy of the physiological variable trajectories. Recall that the research of the best set of parameters is more indicative on the behavior of the algorithm than on which parameters need to be actually set for a clinical use. Indeed, the number of patients included is not large enough to properly optimize all the hyperparameters of the models, and current values may change on a larger cohort.

Action and observation prediction. In our experiments, the agent was able to accurately predict the evolution over time of the physiological variables. This performance was expected for discrete AAFi and RR, which exhibit very small variations. However, the small errors on all the observations imply that the agent has learned the complete dynamic system properly. Conversely, predictions were slightly less accurate on actions. This might be explained by the multiplicity of the strategy (policy) exhibited by the experts. Nevertheless, simulations have shown that the actions taken by the agent were validated by the experts. Furthermore, in the rst experiments, a signi cant part of the error was due to small time latency -the agent taking action a few seconds before or after the expert. This behavior was highlighted by the SCE-A 0,2 , a speci c metric relevant in our GA scenario. Since those actions would have produced similar results, the good results of the SCE-A 0,2 demonstrated that the HD metric arti cially under estimated the global performance of the agent. The labels of the actions in our model may be seen as relatively inaccurate, since they are restricted to three basics action and that the exact dose of AAFi to be added if necessary is not predicted. Such precision, while theoretically possible by using the continuous extension of the TPSR model [START_REF] Hefny | Predictive state models for prediction and control in partially observable environments[END_REF] would require a signi cantly larger cohort of patient to be properly calibrated.

SHMM comparison.

These experiments highlighted the advantage of our approach over the SHMM. This observation was in line with previous results (see e.g. [START_REF] Singh | Predictive state representations: a new theory for modeling dynamical systems[END_REF][START_REF] Boots | Hilbert space embeddings of predictive state representations[END_REF]). One explanation is that, contrary to TPSR, SHMM tends to scale poorly with the complexity of the system to be modeled. However, the implementation of PSRs requires more computational power.

Anesthesiologists feedback. The confrontation with the experts in anesthesiology showed that our agent was coherent and followed an expected policy most of the time. Moreover, all the experts agreed that n = 30 appears to be the most realistic value for this parameter. Nevertheless, they also highlighted that there was a latency of the AAFi variable in some situations, particularly when using low ow of fresh gas.

Clinical relevance. The interest of our agent is double: helping at maintaining a patient at the optimal DoA and predict the occurrence of cardiovascular side-e ects (with the idea to avoid them). The workload in the surgical theater imposes that an anesthesiologist is often in charge of two surgery rooms plus the post-anesthesia care unit. A tool that could autonomously help the anesthesiologist would thus improve the safety-level in the surgical room. With such a workload, for a low-risk patient undergoing a low-risk surgery, the anesthesiologist in charge may eventually remember a few characteristics of the patient and usually the pre-induction values of HR and MBP. Once anesthesia level is stabilized and surgery has started, it seems reasonable to consider that the anesthesiologist will leave the patient under the nurse-anesthetist care and will only watch the patient every 10-minute. If we consider that the anesthesiologist will remember the pre-induction, post-induction HR, MBP, RR and AAFi, for one patient we end with: 4 values, every 10-minute meaning 24 values every hour to assess the DoA and status of the patient. As opposed, our agent will take into account all the variables available every second. For a low-risk patient with MBP assesses every 5 minutes this will represent 10.820 values every hour.

Limitations. Despite the strong performances of our model during our experimental evaluations, the PSR approach of the GA setting su er several drawbacks. First, the model is very dependent on the discretization. Indeed, it is a key component that in uences the entire learning process as a too ne or too wide discretization leads to an incorrect estimation of the matrices involved in the model. Second, the lack of a preexisting e cient simulator, as well as a goldstandard for the DoA, greatly limit the possibility to improve the performances above what is observed in the expert trajectories.

In its current state, our method is merely a proof of concept for the feasibility of maintaining the anesthesia using carefully trained multimodal algorithm. More experiments and recordings including patients in multiple settings and hospitals will be needed before considering this method as fully valid. It is the authors' belief that the clinical sta will be likely to accept this new approach, as automatic closed-loop anesthesia protocols are already existing, based on the bispectral index [START_REF] Liu | Closed-loop propofol administration: routine care or a research tool? What impact in the future?[END_REF]. Our method can be seen as an improvement over the exiting protocols, as it takes into account multiple physiological signals as input.

Future works. Beyond the in uence of the horizon parameter, we believe that the recording of other relevant physiological variables with additional sensors (e.g. electroencephalogram, muscular sensors, galvanic skin response, ...) could improve the performance of the model. Moreover, a wider range of surgery type in the dataset could bring valuable information on the behavior of the agent. The next step will aim at increasing the population in order to test the generalization of our algorithm in other settings such as in intensive care unit.

Conclusion

In the present chapter, we combined apprenticeship learning techniques and model derived from existing PSR, known as TPSR. The resulting agent learned a policy of maintaining the optimal DoA using expert trajectories. The use of machine learning models based on observable variables during GA is pertinent due to the high number of information intractable for the human brain. The performances of the resulting model are promising and convincingly embedded the general behavior of an anesthesiologist. These preliminary results are very encouraging and demonstrate that cardio-pulmonary changes induced by GA can relatively easily be predicted by apprenticeship-learning based algorithm allowing a potentially signi cant improvement in care.

Conclusion and perspectives

In this thesis, ve contributions were proposed. The rst one was the construction and deployment of a complete protocol and recording chain that has enabled us to build a large database of patients under routine General Anesthesia (GA). This contribution was motivated by the privileged applicative context of this work which was the study of patients under anesthesia. Then, because signals recorded during GA are mainly multivariate, e.g. multichannel ElectroEncephalogram (EEG) recordings, three contributions focused on methods processing multivariate signals e ciently. More speci cally, in Chapters 2, 3, and 4, we proposed several methods built on graphs and tensors which are known to exploit the underlying multivariate data structure. Finally, in the last chapter, we made a more prospective contribution consisting in a rst attempt at automatic and individual administration of anesthetics for patients under GA relying on reinforcement learning techniques. We further summarized and gave some future perspectives of each chapter in the following.

In Chapter 2, we introduced an optimization problem to learn the underlying graph from a set of graph signals supposed to share the same structure. This graph learning task being ill-posed, two constraints known as smoothness and sparse spectral representation were included. Borrowed from graph signal processing, these two constraints allow to learn a graph which re ects the topology of the data. The main idea behind the inclusion of the second constraint was to nd a graph which makes signals bandlimited over it. This important feature being known to carry information related to the cluster structure of the graph, makes this graph a good candidate in the initialization of spectral clustering methods. A rst algorithm, called IGL-3SR, was proposed to solve this problem by combining barrier methods, alternating minimization, and manifold optimization. A relaxed algorithm, called FGL-3SR, was also introduced, which allows to scale in time with the graph dimensions. The numerical experiments of this chapter showed that both algorithms display competitive results with regards to previous methods. Three interesting directions of research would be (i) to prove the convergence of these algorithms to at least a local minimum, (ii) to derive concentration bounds on the estimated Laplacian matrix, (iii) to consider dynamic graph topologies i.e. network structures which change over time. To date, several works have already addressed these questions but on other related settings. For instance, [START_REF] Kumar | Structured graph learning via Laplacian spectral constraints[END_REF][START_REF] Kumar | A uni ed framework for structured graph learning via spectral constraints[END_REF] introduced provably convergent algorithms when considering Gaussian graphical models and studied structural constraints on the eigenvalues of the Laplacian. In [START_REF] Sardellitti | Graph topology inference based on sparsifying transform learning[END_REF], authors studied the conditions under which the Laplacian matrix can be recovered uniquely when signals are considered sparse over the underlying graph. However, their results are only deterministic, and providing statistical properties based on probabilistic model could be of interest. Beside these questions, several researches in multitask learning [START_REF] Argyriou | Multi-task feature learning[END_REF][START_REF] Jacob | Clustered multi-task learning: A convex formulation[END_REF] may be useful to propose more e cient learning algorithms. A more applicative direction would be to conduct further experiments to see whether learned graphs CHAPTER 6. CONCLUSION AND PERSPECTIVES from EEG signals provide a better overview of the di erent states occurring during GA. This was already a fruitful idea in the analysis of brain activity [START_REF] Richiardi | Machine learning with brain graphs: predictive modeling approaches for functional imaging in systems neuroscience[END_REF][START_REF] Huang | Graph frequency analysis of brain signals[END_REF][START_REF] Huang | A graph signal processing perspective on functional brain imaging[END_REF], but graphs were then given a priori.

Chapter 3 introduced a multivariate Convolutional Dictionary Learning (CDL) problem, called Kruskal CDL, K-CDL for short, where the multivariate activations are assumed to be CP low-rank. By taking into account the structure of the activations, this model has two major advantages over the standard CDL. First, as it decomposes the activations into the sum of rank-1 tensors, results are highly interpretable. Second, it turned out that the CP low-rank constraint allows to entail a better robustness with respect to noise, one of the main weaknesses of the activation learning part of CDL methods. In this chapter, two algorithms, called T-ConvADMM and T-ConvFISTA, were proposed for the K-CDL problem. We proved that by acting in the frequency domain and by using the particular structure of the matrices involved in the optimization at our advantage, they have a theoretical complexity which increases quadratically in the number of atoms and with the rank. Overall, experiments on synthetic and real data showed that the K-CSC is a valuable alternative to CDL when signals are multivariate. Interestingly, this has also been the case even if signals seem to have a richer structure like images. In the future, it would be interesting to study the statistical in uence of the sparse and CP low-rank assumptions on the estimator, especially on its robustness to noise. This has already been a subject of interest in numerous other settings with sparse or low-rank matrix and tensor recovery [START_REF] Fazel | Matrix rank minimization with applications[END_REF][START_REF] Rohde | Estimation of high-dimensional low-rank matrices[END_REF][START_REF] Donoho | Minimax risk of matrix denoising by singular value thresholding[END_REF][START_REF] Yang | Rate optimal denoising of simultaneously sparse and low rank matrices[END_REF][START_REF] De Morais | Estimation of structured tensor models and recovery of low-rank tensors[END_REF][START_REF] Rauhut | Low rank tensor recovery via iterative hard thresholding[END_REF][START_REF] Li | Nonconvex robust low-rank matrix recovery[END_REF], compressed sensing [START_REF] Candès | Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information[END_REF][START_REF] Donoho | Compressed sensing[END_REF], matrix and tensor completion [START_REF] Candès | Exact matrix completion via convex optimization[END_REF][START_REF] Koltchinskii | Nuclear-norm penalization and optimal rates for noisy low-rank matrix completion[END_REF][START_REF] Negahban | Estimation of (near) low-rank matrices with noise and high-dimensional scaling[END_REF][START_REF] Recht | A simpler approach to matrix completion[END_REF][START_REF] Liu | Tensor completion for estimating missing values in visual data[END_REF][START_REF] Gandy | [END_REF], etc. It would also be interesting to focus on how to overcome the non-convexity of the vast majority of the tensor decomposition/factorization problems [Hae ele and Vidal, 2015]. Another important line of research would be to study other sparsity-induced structure and rank constraints in convolutional representation. Note that this is already done in tensor regression with e.g. sparsity constraint on each rank-1 tensor of the CP decomposition [START_REF] He | Boosted sparse and low-rank tensor regression[END_REF], Tucker low-rank constraint [START_REF] Li | Tucker tensor regression and neuroimaging analysis[END_REF], multilinear rank constraint [START_REF] Rabusseau | Low-rank regression with tensor responses[END_REF][START_REF] Sun | Store: sparse tensor response regression and neuroimaging analysis[END_REF], etc. A generalization of these decompositions, known as tensor network models, could also be investigated [START_REF] Orús | A practical introduction to tensor networks: Matrix product states and projected entangled pair states[END_REF][START_REF] Cichocki | Tensor networks for dimensionality reduction and large-scale optimization: Part 1 low-rank tensor decompositions[END_REF][START_REF] Li | Evolutionary topology search for tensor network decomposition[END_REF].

Chapter 4 proposed a method to recover the spectral support of bandlimited multivariate time-vertex graph signals de ned on a product of graphs. By taking into account the three dimensions time, space, and feature of a multichannel EEG signal, we highlighted the importance of the underlying graphs for sampling. In addition, we introduced a simple way to assess the relevance of the graphs chosen a priori by comparing our results with those obtained when random graphs are choose instead. Results showed the importance of graphs in this algorithm and support for the relevance of controlled sparsity constraint to recover multivariate sparse (bandlimited) signals. An interesting direction of research would be to learn the di erent graphs constituting the product graph with the method proposed in Chapter 2. This idea has already been investigated when the multivariate graphs signals are only assumed smooth with respect to the underlying product graph [START_REF] Kadambari | Learning product graphs from multidomain signals[END_REF][START_REF] Lodhi | Learning product graphs underlying smooth graph signals[END_REF]. A more applicative contribution would be to use this method for the selection of relevant EEG channels. By identifying the scalp area providing valuable information about brain activity under GA, we could select the most optimal EEG channel to characterize the DoA. This would be of great help to the anesthesiologist who could only rely on a subset of these channels [START_REF] Dubost | Selection of the best electroencephalogram channel to predict the depth of anesthesia[END_REF]. Furthermore, this could be an interesting way to answer the more general question of channel selection (see e.g. [START_REF] Arvaneh | Optimizing the channel selection and classi cation accuracy in eeg-based bci[END_REF][START_REF] Alotaiby | A review of channel selection algorithms for eeg signal processing[END_REF]).

Finally, Chapter 5 is a rst attempt to propose a decision support tool based on a predictive state representation model which assists anesthesiologists in administering anesthetics during a general anesthesia and to maintain the optimal Depth of Anesthesia (DoA). This algorithm based on a predictive state representation model exhibits interesting quantitative results. In addition, because a precise evaluation of the quantitative performances of reinforcement learning algorithms are di cult to obtain in healthcare applications [START_REF] Gottesman | Evaluating reinforcement learning algorithms in observational health settings[END_REF][START_REF] Gottesman | Guidelines for reinforcement learning in healthcare[END_REF][START_REF] Yu | Reinforcement learning in healthcare: a survey[END_REF], a confrontation with real anesthesiologists was performed. These results strongly support the hypothesis that this model convincingly embedded the behavior of anesthesiologists. Nevertheless, this model could be improved in several ways (i) by assuming continuous and not discrete observations using e.g. a kernel density estimation method from [START_REF] Boots | Closing the learning-planning loop with predictive state representations[END_REF]), and (ii) by increasing the number of available actions as in [START_REF] Moore | Reinforcement learning for closed-loop propofol anesthesia: a study in human volunteers[END_REF]. Several recent works on apprenticeship learning (or imitation learning), especially the ones focusing on how to e ectively learn from imperfect demonstrations, could also be considered [START_REF] Ho | Generative adversarial imitation learning[END_REF][START_REF] Wu | Imitation learning from imperfect demonstration[END_REF]. However, great care must be taken. In particular, we strongly believe that these types of approaches should only be considered as part of a support system to accompany the anesthesiologists, not a replacement.

Developing these models, we strove to make their codes available online with documentation to facilitate their use in the community. Indeed, as re-implementing recent technical methods is a major time-consuming task. We believe open-source projects are of major interest. Moreover, we plan to release the database to bene t the community at large. On a concluding note, we would like to stress that questions that motivated this thesis lie beyond the GA. Indeed, multivariate data are now present in multiple datasets and will undoubtedly become increasingly complex. The methods and algorithms described in this work have therefore a great potential, and can already be successfully used in countless situations as shown throughout this thesis.

Résumé en français

1 Contexte de la thèse Contexte général. Le corps humain est dans un état constant d'équilibre appelé homéostasie. Si cette stabilité est fondamentale, elle nécessite une régulation constante et précise des organes vitaux par le cerveau. Lors d'une Anesthésie Générale (AG), une partie de cette stabilité est mise à mal par les anesthésiques. Les anesthésistes doivent alors soutenir eux même certaines fonctions vitales, comme le système respiratoire, en personnalisant l'anesthésie. L'objectif d'une anesthésie personnalisée est double : (i) éviter une narcose associée à un risque plus élevé de dysfonctionnement cognitif postopératoire et de réveil tardif, (ii) prévenir un sousdosage, associé à un risque de mémorisation. Les anesthésistes doivent donc déduire, en temps réel, le niveau de conscience du patient, également appelé profondeur de l'anesthésie (DoA en anglais) et ainsi adapter leurs dosages. Depuis peu, ils peuvent s'appuyer sur une large gamme de variables physiologiques mesurées par de nombreux capteurs. Ce remarquable changement dans le domaine médical est en parti due à l'amélioration des capteurs et à leur utilisation systématique. Une conséquence directe est la disponibilité de grande quantité de données. Les exemples les plus connus de ces données sont les signaux mesurés par électrocardiographie (ECG), électroencéphalographie (EEG) ou encore toutes les variables physiologiques. Ce changement est particulièrement notable dans le domaine de l'anesthésie clinique, où la quantité de données était très limitée. La question principale est maintenant de savoir comment les mathématiques peuvent nous aider à transformer ces signaux bruts en des données où il est possible d'extraire des connaissances. Cette question au carrefour des mathématiques et de la médecine est d'autant plus cruciale en ce qu'elle pourrait conduire à d'importants avancées dans la manière de soigner les patients mais aussi dans notre compréhension de la physiologie humaine.

Collaboration avec l'unité médicale du Centre Borelli. Au cours de cette thèse, j'ai collaboré avec l'unité médicale du Centre Borelli (ex Cognac-G). Ce centre est une équipe de recherche regroupant des mathématiciens (statisticiens, spécialistes de l'apprentissage automatique, etc.) et des chercheurs en médecine, tous réunis autour de la quanti cation du comportement humain. J'ai notamment travaillé en étroite collaboration avec le docteur Clément Dubost, chef du service de réanimation de l'Hôpital d'Instruction des Armées Bégin. Ensemble nous avons conçu un protocole complet -de la chaîne d'enregistrement à l'analyse des données -dans le but de proposer des méthodes mathématiques utiles à l'étude des patients sous anesthésie. Par le passé, le Centre Borelli a déjà développé plusieurs protocoles expérimentaux pour des problèmes cliniques allant de la locomotion humaine aux mouvements oculaires des nourrissons. La quanti cation du phénomène d'intérêt a toujours été faite grâce à l'analyse de signaux enregistrés avec plusieurs capteurs. Le premier objectif étant d'extraire les informations pertinentes de ces signaux pour en comprendre les mécanismes physiologiques qui les ont produits. Le second objectif étant d'automatiser le processus de quanti cation a n de fournir des outils utilisables en routine. Pour étudier e cacement ces données, plusieurs approches ont été adoptées. Dans un premier temps, la tendance était de se focaliser sur l'analyse des données univariées avec des modèles comprenant une seule variable à expliquer. Les recherches se sont surtout concentrés sur l'intégration de connaissances préalables sur les données soit en faisant des hypothèses sur la classe de modèles pour en restreindre la complexité, soit par le biais de contraintes et de régularisations. Un exemple classique illustrant cette dernière approches est la régression ridge proposée pour la première fois par [START_REF] Tikhonov | On the solution of ill-posed problems and the method of regularization[END_REF]. Dans ce cas, un modèle linéaire est supposé et une régularisation 2 , c'est-à-dire une hypothèse de régularité, est ajoutée a n d'éviter des coe cients trop grands. Un autre exemple important est la régression lasso [START_REF] Tibshirani | Regression shrinkage and selection via the lasso[END_REF] où une régularisation 1 , c'est-à-dire une hypothèse de parcimonie, est ajoutée. D'autres modèles existent pour ajouter des connaissances préalables sur la structure des signaux. C'est par exemple le cas des représentations convolutives [Garcia-Cardona and Wohlberg, 2018a], qui permettent d'extraire des motifs récurrents non sinusoïdaux et conduisent ainsi à la découverte de structures locales dans des signaux non stationnaires comme les séries temporelles [START_REF] Lewicki | Coding time-varying signals using sparse, shift-invariant representations[END_REF][START_REF] Grosse | Shift-invariant sparse coding for audio classi cation[END_REF].

Bien que toutes ces idées aient conduit à des avancées tant théoriques que pratiques, un écart existe entre les résultats obtenus dans le cas univarié et ce que l'on peut attendre de modèles statistiques bien dé nis. En e et, les signaux à expliquer sont souvent multivariés et les relations entre leurs variables, ou dimensions, doivent être prises en compte si l'on veut les analyser de manière adéquate. Pour combler cette lacune, les statisticiens se sont penché sur l'analyse multivariée et ont développé des techniques permettant, par exemple, la présence de plus d'une variable de sortie [START_REF] Van Steen | Multivariate and multidimensional analysis[END_REF][START_REF] Hidalgo | Multivariate or multivariable regression?[END_REF]. Pour aller au-delà du cas univarié, une première étape naturelle est de considérer le cas bivarié où la variable à expliquer est matricielle. De nombreuses stratégies ont été proposées pour incorporer les relations entre les di érentes dimensions de ces données, mettant en évidence ce qu'une analyse multivariée peut apporter en termes de performance et d'interprétabilité. Un intéret du cas bivarié est qu'il nous permet de considérer des propriétés et des structures jusqu'alors indisponibles. C'est le cas de la structure de rang faible exploitée dans de nombreuses méthodes comme l'Analyse en Composantes Principales (ACP) de rang faible [START_REF] Vidal | Generalized Principal Component Analysis[END_REF], la reconstruction de matrice [START_REF] Fazel | Matrix rank minimization with applications[END_REF][START_REF] Rohde | Estimation of high-dimensional low-rank matrices[END_REF] (matrix recovery en anglais), et la complétion de matrice [START_REF] Candès | Exact matrix completion via convex optimization[END_REF][START_REF] Koltchinskii | Nuclear-norm penalization and optimal rates for noisy low-rank matrix completion[END_REF][START_REF] Negahban | Estimation of (near) low-rank matrices with noise and high-dimensional scaling[END_REF][START_REF] Recht | A simpler approach to matrix completion[END_REF]. La combinaison des structures de rang faible et de parcimonie est également apparue pertinente dans un certain nombre d'applications. Selon la combinaison (voir gure 7.1), cela donne lieu à des méthodes plus robustes et interprétables telles que l'ACP parcimonieuse [START_REF] Zou | Sparse principal component analysis[END_REF], la classi cation non-supervisée de sous-espaces [START_REF] Vidal | Subspace clustering[END_REF][START_REF] Udell | Generalized low rank models[END_REF]Hae ele and Vidal, 2019], et la classi cation non-supervisée de sous-espaces parcimonieux avec valeurs aberrantes [START_REF] Elhamifar | Sparse subspace clustering: Algorithm, theory, and applications[END_REF].

Analyse multivariée à l'aide de graphes. Outre les notions de rang faible et de parcimonie, une autre façon d'exploiter la structure des données multivariées consiste à utiliser la notion de graphe. En e et, le graphe peux apporter des connaissances précieuses sur le processus qui génère les données (par ex. deux noeuds liés sont fortement corrélés ou ont des valeurs très proches), ce qui le rend utile dans bon nombre de domaines et d'applications allant de la biologie [START_REF] Barabasi | Network biology: understanding the cell's functional organization[END_REF] aux neurosciences [START_REF] Richiardi | Machine learning with brain graphs: predictive modeling approaches for functional imaging in systems neuroscience[END_REF][START_REF] Preti | The dynamic functional connectome: State-of-the-art and perspectives[END_REF], en passant par la classi cation non-supervisé [START_REF] Belkin | Laplacian eigenmaps and spectral techniques for embedding and clustering[END_REF][START_REF] Luxburg | A tutorial on spectral clustering[END_REF], l'apprentissage par représentation [START_REF] William | Representation learning on graphs: methods and applications[END_REF], l'apprentissage multitâche [Chen et al., 2015a;[START_REF] Nassif | Multitask learning over graphs: an approach for distributed, streaming machine learning[END_REF], etc. [START_REF] Zhu | Semi-supervised learning with graphs[END_REF][START_REF] Kolaczyk | Statistical analysis of network data with R[END_REF]. Construire des modèles ou des algorithmes d'apprentissage en tenant compte de la structure de graphe des données, est donc un élément clé pour améliorer les performances. Il reste à trouver un moyen d'incorporer ces informations structurelles dans les modèles et les méthodes. Une possibilité est de considérer des modèles graphiques probabilistes non dirigés où un ensemble de variables aléatoires est représenté par les di érents noeuds d'un graphe [START_REF] Koller | Probabilistic graphical models: principles and techniques[END_REF]. Dans cette représentation, une arête entre deux noeuds indique la dépendance conditionnelle entre les deux variables aléatoires correspondantes, sachant les autres. Plus récemment, le Traitement des Signaux sur Graphes (GSP en anglais) [START_REF] Shuman | The emerging eld of signal processing on graphs: extending high-dimensional data analysis to networks and other irregular domains[END_REF][START_REF] Ortega | Graph signal processing: overview, challenges, and applications[END_REF]Djuric and Richard, 2018], est apparu comme une puissante alternative pour extraire des informations de signaux multivariées. Pour prendre en compte la structure du signal, l'idée est de le considérer comme dé ni sur les noeuds d'un graphe et d'encoder les relations entre ses variables via les arêtes. Dans ce formalisme, le graphe dé nit un support, et les signaux, désormais appelés signaux sur graphes, sont dé nis sur ce support. Cela permet de capturer la structure sur laquelle un signal évolue, fournissant ainsi plus d'informations que si l'on considère le signal seul. De plus, en généralisant les concepts standards du traitement du signal aux signaux sur graphes, le GSP fournit des contraintes intuitives pour la modélisation. Par exemple, la régularité des observations par rapport au vrai graphe sous-jacent est l'une des hypothèses la plus courante qui demande à ce que les signaux aient de petites variations entre les noeuds adjacents. [START_REF] Daitch | Fitting a graph to vector data[END_REF][START_REF] Egilmez | Graph learning from data under structural and Laplacian constraints[END_REF][START_REF] Kalofolias | How to learn a graph from smooth signals[END_REF][START_REF] Chepuri | Learning sparse graphs under smoothness prior[END_REF][START_REF] Dong | Learning graphs from data: a signal representation perspective[END_REF]. Cette propriété très naturelle est exploitée dans beaucoup d'applications. On peut citer l'estimation multi-tâche sur graphe [START_REF] Nassif | Multitask learning over graphs: an approach for distributed, streaming machine learning[END_REF] où le graphe capture le lien entre plusieurs tâches permettant aux agents de coopérer entre eux. Cette coopération peut être encouragée par une régularisation qui impose un certain degré de proximité entre les di érentes règles de décision de chaque agent [START_REF] Nassif | A regularization framework for learning over multitask graphs[END_REF]. Bien souvent, la connaissance du graphe 

Analyse de la conscience pendant une anesthésie générale

Cette thèse s'est également construite autour de la nécessité d'analyser des données enregistrées lors d'une Anesthésie Générale (AG). AG est un état réversible induit qui comprend des traits comportementaux et physiologiques spéci ques (inconscience, amnésie, analgésie et akinésie) [START_REF] Brown | General anesthesia, sleep, and coma[END_REF]. Cet état non naturel est obtenu principalement par l'utilisation de di érentes drogues (par exemple, des anesthésiques hypnotiques inhalés -le sévo urane -ou des anesthésiques intraveineux -le propofol) qui agissent sur les récepteurs inhibiteurs GABA du cerveau. Cependant, bien que l'AG soit une pierre angulaire de la médecine moderne, et qu'elle soit cruciale dans de nombreuses procédures chirurgicales [START_REF] Purdon | Electroencephalogram signatures of loss and recovery of consciousness from propofol[END_REF], elle peut comporter certains risques (par exemple, dysfonctionnement cognitif [START_REF] Punjasawadwong | Processed electroencephalogram and evoked potential techniques for amelioration of postoperative delirium and cognitive dysfunction following non-cardiac and non-neurosurgical procedures in adults[END_REF], délire postopératoire [START_REF] Fritz | Intraoperative electroencephalogram suppression predicts postoperative delirium[END_REF]). Une surveillance permanente de l'état de conscience du patient -également appelée profondeur d'anesthésie (DoA en anglais) -est donc nécessaire. Bien qu'il n'existe pas de dé nition consensuelle du DoA, elle a été dé nie par les experts comme "la probabilité de nonréponse à une stimulation, calibrée en fonction de la force du stimulus, de la di culté à supprimer la réponse et de la probabilité de non-réponse induite par le médicament à des concentrations dé nies au site d'e et" [START_REF] Shafer | De ning depth of anesthesia[END_REF]. Sa connaissance précise est essentielle pour permettre un titrage précis des anesthésiques administrés. Les principaux objectifs sont d'éviter une narcose, associée à un risque plus élevé de dysfonctionnement cognitif postopératoire et de A routine clinical context. Si ces études permettent de mieux comprendre l'AG, elles sont, pour la plupart, menées dans un environnement idéal. En clinique, la réalité est tout autre. Tout d'abord, les anesthésistes utilisent non pas un, mais plusieurs anesthésiques pour induire l'AG. L'analyse devient alors plus di cile car chacun d'eux induit ses propres comportement tempsfréquence [START_REF] Purdon | Clinical electroencephalography for anesthesiologistspart I: background and basic signatures[END_REF]. Deuxièmement, les méthodes d'analyse des signaux EEG sont peu robuste aux bruits. Un problème courant surtout lorsque les données sont enregistrées pendant des interventions chirurgicales. En e et, même s'il n'y a pas d'artefact dû aux contractions musculaires (les patients sont curarisés), les signaux EEG sont toujours sujets à un faible rapport signal/bruit, à un bruit impulsif dû à des dysfonctionnements du capteur et à des artefacts causés, par exemple, par des appareils utilisés pour couper et cautériser les tissus (voir gure 7.6) [START_REF] Tong | Quantitative EEG analysis methods and clinical applications[END_REF]. Il devient donc très di cile d'utiliser les méthodes standard qui supposent une con guration théorique idéale. Troisièmement, l'utilisation des méthodes d'EEG prend du temps, ce qui les rend inutilisables au quotidienne. Ces trois exemples nous montrent que d'autres méthodes, pas nécessairement basées sur l'EEG, doivent être étudiées.

Pour surmonter toutes ces di cultés, plusieurs systèmes de surveillance ont été proposés pour l'évaluation de la DoA au cours d'une intervention chirurgicale. Tous présentent quelques limites et il n'existe pas encore de "gold-standard" de surveillance de la DoA. Le système sans doute le plus utilisé est l'indice BiSpectral (BIS) [START_REF] Kissin | Depth of anesthesia and bispectral index monitoring[END_REF][START_REF] Avidan | Anesthesia awareness and the bispectral index[END_REF]. Il fournit une valeur numérique de 0 à 100 (de l'absence d'activité cérébrale à l'éveil). Cependant, bien qu'il soit souvent utilisé, en particulier aux États-Unis, il présente de nombreux inconvénients tels qu'une grande variabilité inter-individuelle [START_REF] Whitlock | Relationship between bispectral index values and volatile anesthetic concentrations during the maintenance phase of anesthesia in the b-unaware trial[END_REF], de faibles performances avec les anesthésiques volatils [START_REF] George Mychaskiw | Explicit intraoperative recall at a bispectral index of 47[END_REF], et une latence élevée. En somme, l'EEG semble être la meilleure méthode pour évaluer la DoA, bien qu'elle nécessite des capteurs supplémentaires, présente certaines limites et prend du temps. C'est pourquoi, en clinique, la meilleure évaluation de la DoA est, la plupart du temps, celle réalisée par l'anesthésiste sur la base des variables physiologiques du patient.

En résumé, dans la pratique, un monitoring idéal de l'AG devrait être capable de donner une évaluation sans EEG. En outre, alors que l'analyse de l'AG est souvent centrée sur d'anciennes méthodes d'analyse, telles que la représentation temps-fréquence, nous pensons que les progrès récents en matière de statistiques et d'apprentissage automatique pourraient grandement contribuer à une compréhension plus ne des mécanismes complexes qui se produisent pendant l'AG.

Contributions

Nous détaillons ici les di érentes contributions de cette thèse. A n de souligner leur polyvalence, chaque contribution est accompagné d'une grande variété d'expériences, dont au moins une liée à l'anesthésie générale. De plus, pour chaque algorithme, un code Python open-source est disponible en ligne.

Une base de données de patients sous anesthésie générale

Fruit d'une collaboration avec le docteur Clément Dubost, la première contribution de cette thèse est la construction et le déploiement d'une chaîne de mesures nous ayant permis de constituer une base de données de patients sous AG. Aidés par Brian Berthet-Delteil, Arno Benizri et Gaël de Rocquigny, nous avons enregistré en continue et de manière synchrone les variables physiologiques de routine d'une anesthésie ainsi que 32 canaux EEG. De février 2016 à mai 2018, 88 sujets, tous issus de "l'Hôpital d'Instruction des Armées Bégin, Saint-Mandé, France", ont été inclus dans la base de données. Notons qu'à notre connaissance, il s'agit de la première base de données de patients sous AG où à la fois des EEG multicanaux et des variables physiologiques sont enregistrés de manière synchrone depuis l'entrée en salle d'opération et jusqu'à trois heures après la n de l'intervention.

Apprentissage de graphes

Pour deuxième contribution, nous considérons le problème de l'apprentissage d'un graphe à partir de signaux multivariés sur graphes. Comme nous l'avons déjà expliqué, ces signaux sont associés à un graphe inconnu, que nous souhaitons apprendre. L'idée de cette contribution vient d'une observation simple. En général, nous ne disposons pas d'un graphe adapté au signal d'intérêt. Une idée possible est donc de l'apprendre. Cependant, comme il s'agit d'un problème mal posé, nous devons supposer plusieurs propriétés sur les signaux observés et le graphe associé. Dans notre approche, ces propriétés s'inspirent du domaine du Traitement des Signaux sur Graphes (GSP en anglais) [START_REF] Shuman | The emerging eld of signal processing on graphs: extending high-dimensional data analysis to networks and other irregular domains[END_REF][START_REF] Ortega | Graph signal processing: overview, challenges, and applications[END_REF]. Ce domaine fournit des contraintes structurelles intuitives induites par les graphes, et a déjà fait ses preuves dans de nombreuses applications, notamment en neurosciences avec l'analyse du cerveau. En e et, [START_REF] Huang | A graph signal processing perspective on functional brain imaging[END_REF] montrent qu'en construisant un graphe à partir de la connectivité structurelle et en considérant l'activité cérébrale comme des signaux sur graphes, il est possible de capturer des propriétés cérébrales pertinentes (par exemple, des caractéristiques cognitives) avec des concepts du GSP.

Plus précisément, nous élaborons un problème d'optimisation pour apprendre le Laplacien du graphe sous-jacent. Pour rendre identi able ce problème mal posé, les signaux observés sont supposés se comporter de manière régulière/lisse sur le même graphe et admettre une représentation parcimonieuse dans le domaine spectral de ce graphe. Cette dernière propriété de largeur de bande faible est connue pour porter des informations liées au nombre de clusters du graphe [START_REF] Luxburg | A tutorial on spectral clustering[END_REF][START_REF] Sardellitti | Graph topology inference based on sparsifying transform learning[END_REF]. Le graphe appris est donc un bon candidat dans l'initialisation des méthodes de classi cation spectral non-supervisée. Notez que ces deux propriétés sont également des hypothèses de base dans un grand nombre de méthodes comme par exemple l'échantillonnage sur graphes, ou l'interpolation sur graphes. Pour résoudre ce problème d'apprentissage, nous proposons deux algorithmes appelés IGL-3SR et FGL-3SR. Basés sur une procédure alternée, les deux algorithmes s'appuient sur des méthodes de minimisation standardtelles que la descente du gradient sur variétés riemanniennes ou l'optimisation linéaire. Alors que IGL-3SR est assuré de converger, FGL-3SR est une relaxation du problème de base et est donc signi cativement plus rapide que les autres méthodes. Pour mettre en évidence l'e cacité de nos méthodes, nous fournissons de nombreux exemples allant de la météorologie à l'analyses de signaux EEG.

Apprentissage de dictionnaires convolutifs tensorielles

La troisième contribution résulte de la combinaison de deux familles de méthodes d'analyse de signaux multivariés. La première famille de méthodes est l'apprentissage de dictionnaires convolutifs (CDL en anglais) [START_REF] Wohlberg | E cient algorithms for convolutional sparse representations[END_REF]Garcia-Cardona and Wohlberg, 2018a]. Elle consiste à apprendre des atomes -ou motifs -locaux permettant une reconstruction parcimonieuses des signaux. Ainsi, contrairement aux méthodes considérant des bases de Fourier ou d'ondelettes, ici, les atomes ne sont pas prédé nis et sont appris à partir du signal lui-même. Cette idée de fournir une décomposition linéaire d'un signal en quelques atomes locaux appris, au lieu d'atomes prédé nis, a conduit à des résultats signi catifs dans de nombreux domaine comme la classi cation d'images, la restauration d'images et le traitement du signal (voir [START_REF] Wohlberg | E cient algorithms for convolutional sparse representations[END_REF]Garcia-Cardona and Wohlberg, 2018a]). Néanmoins, bien que ces méthodes aient des propriétés intéressantes, elles sont principalement axées sur le traitement de signaux univariés [Garcia-Cardona and Wohlberg, 2018b], et ne prennent donc pas pleinement en compte l'interaction possible entre les di érents dimensionss des signaux multivariés. De plus, elles sont bien souvent vulnérables au bruit et aux perturbations telles que le bruit impulsionnel [START_REF] Simon | Rethinking the csc model for natural images[END_REF][START_REF] Wang | Generalized convolutional sparse coding with unknown noise[END_REF].

En prenant en compte ces inconvénients, nous introduisons un modèle CDL tensoriel où les activations et les atomes sont représentés par des tenseurs. Plus précisément, nous proposons de combiner les approches CDL avec une seconde famille de méthodes qui incluent des contraintes de rang CP faible dans leur modélisation. En plus d'ajouter au problème CDL initial une contrainte de rang CP faible pour chaque activation, nous contraignons ces activations à être parcimonieuses. Nous prenons ainsi en compte la structure multivariée des données et obtenons de meilleurs résultats aussi bien en terme de reconstruction que d'interprétabilité. Il est à noter que l'idée d'imposer des contraintes de rang faible dans le CDL n'est pas nouvelle mais est principalement imposée sur le dictionnaire et non sur les activations. Néanmoins, contraindre les activations à être de rang faible apporte deux avantages majeurs. Premièrement, dans de nombreux contextes, la structure de rang faible apparaît naturellement dans les activations plutôt que dans les atomes/le dictionnaire (voir la gure 7.7). Deuxièmement, les contraintes de rang faible sur les activations impliquent une meilleure robustesse au bruit, une des principales faiblesses du problème d'apprentissage d'activations du CDL [START_REF] Simon | Rethinking the csc model for natural images[END_REF]. Le succés d'un grand nombre de travaux s'appuyant sur une représentation tensorielle de séries temporelles multivariées (voir par exemple l'importante littérature sur le traitement des signaux EEG [START_REF] Miwakeichi | Mørup et al[END_REF][START_REF] Mørup | Parallel factor analysis as an exploratory tool for wavelet transformed event-related EEG[END_REF][START_REF] Vos | Canonical decomposition of ictal scalp EEG and accurate source localisation: Principles and simulation study[END_REF][START_REF] Becker | Multiway space-time-wave-vector analysis for source localization and extraction[END_REF][START_REF] Becker | EEG extended source localization: tensor-based vs. conventional methods[END_REF][START_REF] Becker | Dans cette vaste littérature, l'une des stratégies les plus utilisées consiste à appliquer directement une décomposition tensorielle aux données[END_REF][START_REF] Dauwels | Multi-channel EEG compression based on matrix and tensor decompositions[END_REF][START_REF] Mørup | Applications of tensor (multiway array) factorizations and decompositions in data mining[END_REF][START_REF] Zhao | Multilinear subspace regression: an orthogonal tensor decomposition approach[END_REF][START_REF] Mahyari | A tensor decomposition-based approach for detecting dynamic network states from eeg[END_REF]) est également source de motivation. Dans ces travaux, les signaux sont généralement analysés en calculant une transformée de Fourier à court terme pour chaque "canal", ce qui donne un tenseur d'ordre 3 espace-temps-fréquence. Ce tenseur est alors étudié à travers le prisme de la décomposition canonique polyadique pour exploiter les interactions entre les multiples modes. Notons que notre approche est légèrement di érent car nous n'appliquons pas directement les décompositions tensorielles aux données. Néanmoins, la combinaison de la représentation CDL avec une contrainte de rang faible aboutit également à des représentations (locales) qui sont (i) plus robustes au bruit et (ii) plus faciles à comprendre [START_REF] Zhao | Multilinear subspace regression: an orthogonal tensor decomposition approach[END_REF][START_REF] Zhou | Tensor regression with applications in neuroimaging data analysis[END_REF][START_REF] Cong | Tensor decomposition of EEG signals: a brief review[END_REF][START_REF] Rabusseau | Low-rank regression with tensor responses[END_REF].

3.4 Produit de graphes pour l'analyse de signaux multivariés sur graphes

Dans cette quatrième contribution, nous proposons une approche simple pour identi er le support fréquentielle des signaux multivariés temporels sur graphes. Ces signaux sont liés à la notion du traitement des signaux temporels sur graphes où les interactions spatiales et temporelles sont modélisées [START_REF] Grassi | A time-vertex signal processing framework: scalable processing and meaningful representations for time-series on graphs[END_REF]. Bien que ce cadre ait été initialement introduit pour les signaux matricielles, nous l'étendons au cas multivarié (par exemple en considérant les relations entre les dimensions, temps, espace, variables). À cette n, un graphe par dimension est dé ni. Ces graphes sont alors fusionnés à l'aide d'un produit de graphes [START_REF] Imrich | Product graphs: structure and recognition[END_REF][START_REF] Hammack | Handbook of product graphs[END_REF][START_REF] Leskovec | Kronecker graphs: an approach to modeling networks[END_REF][START_REF] Sandryhaila | Big data analysis with signal processing on graphs: representation and processing of massive data sets with irregular structure[END_REF]. Un exemple est donné par la gure 7.8. Il apparaît que la structure complexe qui en résulte peut être facilement étudiée à travers le formalisme tensoriel. Ainsi, pour identi er le support fréquentiel d'un signal sur graphe, nous choisissons (a priori) un graphe par dimension, puis nous introduisons un problème d'optimisation incluant des régularisations tensorielles adaptées à l'hypothèse de largeur de bande faible. Ces régularisations parcimonieuses peuvent être spéci ées de manière à ne considérer qu'une seule dimension (c'est-à-dire la sélection uniquement des meilleurs noeuds temporels ou canaux ou variables). De plus, en comparant les résultats obtenus avec les graphes choisis a priori à ceux obtenus à partir de graphes aléatoires, nous fournissons un moyen simple d'évaluer leur pertinence. Nous appliquons notre méthode à une représentation tensorielle de signaux EEG en mettant en évidence ses performances pour l'échantillonnage et la compression. Bien que cette contribution se concentre sur les signaux temporels sur graphes, elle peut être appliquée à n'importe quel signal multivarié sur graphe.

3.5 Support décisionnel grâce à l'apprentissage par mimétisme.

Dans cette cinquième et dernière contribution, nous proposons un algorithme qui aide les anesthésistes à administrer les anesthésiques pour maintenir une DoA optimale. Dérivé d'un algorithme appelé Transform Predictive State Representation (TPSR) [START_REF] Littman | Predictive representations of state[END_REF][START_REF] Rosencrantz | Learning low dimensional predictive representations[END_REF][START_REF] Boots | Closing the learning-planning loop with predictive state representations[END_REF], notre modèle apprend en observant les anesthésistes dans la pratique. Ce cadre, connu sous le nom d'apprentissage par mimétisme [Abbeel and [START_REF] Kim | Globalement, si tous ces modèles apportent inévitablement plusieurs di cultés dues à la grande complexité des objets manipulés, ils ont prouvé leur utilité et montré, une fois de plus, qu'il est important de bien prendre en compte la structure des données pour obtenir de meilleurs résultats[END_REF], est particulièrement utile dans le domaine médical car il ne repose pas sur un processus exploratoire -un comportement prohibé dans le cas présent [START_REF] Gottesman | Evaluating reinforcement learning algorithms in observational health settings[END_REF] 
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 11 Figure 1.1: Illustration of (a) the low-rank assumption, (b) the combination of a low-rank and a group sparse assumptions.
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 12 Figure 1.2: Illustration of a 32-channel EEG montage of one patient. On the y-axis of each signal is annotated the name of the corresponding channel.
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 13 Figure 1.3: On the top, temporal signal in Awake state. On the bottom, temporal signal in Anesthesia state.
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 14 Figure 1.4: On the left, spectrum in Awake state. On the right, spectrum in Anesthesia state.
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 15 Figure 1.5: Spectrogram of one patient during a general anesthesia induced by propofol and sevo urane.
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 16 Figure 1.6: EEG recording (in µV ) of a patient during anesthesia with a lot of noise (sampling frequency: 100 Hz).
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 17 Figure 1.7: Two spectrograms obtained from a stereo music recording. Some repetitive patterns (highlighted in red and orange) are visible on the two spectrograms and suggest that a CDL model may appear as natural for such data. In addition, the low-rank structure of the data is here transferred into the activations tensors rather than into the observed patterns. In other words, although the time-frequency atoms may be complex (and thus without a low-rank structure), the activations (i.e. the time/frequency/channel positions where these atoms appear) clearly exhibit a low-rank structure.
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 18 Figure 1.8: Illustration of the product graph G between two graphs G 1 and G 2 . represents either a Cartesian (only colored edges), a Kronecker (only gray edges) or a strong product (all edges) between these two graphs. Figure modi ed from the original one in [Ortiz-Jiménez et al., 2018].
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 21 Figure 2.1: Two graph signals observed on the same graph of 300 nodes. Same colors represent identical values on the nodes. (a) The rst signal does not admit smoothness on the graph. (b) The second signal admits smoothness at the level of adjacent nodes. From the de nition, smooth graph signals in the vertex domain are signals where neighboring nodes tend to have similar values.
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 222 Figure 2.2: Three smooth graph signals (N = 300) with decreasing bandlimitedness: (a) A signal with a 150 sparse spectral representation. (b) A signal with a 6 sparse spectral representation. (c) A signal with a 3 sparse spectral representation. Same colors represent identical values on the nodes.
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 23 Figure 2.3: Graphical representation of a directed (a), undirected (b) and (directed) weighted (c) graph. Directed edges are represented by arrows, and their thickness represents the weight.
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 24 Figure 2.4: Three particular graphs: (a) Complete graph, (b) Directed cyclic graph, and (c) Line graph.
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 25 Figure 2.5:A graph signal y taking its values in {0, 1} on three di erent graphs. This signal can potentially live on these graphs but only one leads to a sparse graph signal representation. In this illustration, while all the graphs are valid a priori, only the second one favor the sparsity property of y and have one connected component.
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 2111 (Assumption on the graph G) -G is undirected, with no self-loop and has a single connected component. With Assumption 2.1, L is a symmetric positive semi-de nite matrix with eigenvalue decomposition L = XΛX , where λ 1 = 0 and x 1 = (see Proposition 2.1 and 2.2). Assumption 2.2. (Assumption on the signals Y ) -Graph signals Y de ned over the true underlying graph G are assumed s-smooth and admit a k-sparse spectral representation, with unknown values for s and k.
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 2 Figures 2.1 and 2.2 show examples of graph signals that illustrate the intuition behind our two core assumptions on signals.
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 25 (Euclidean gradient with respect to U ) -The Euclidean gradient of f (•) and φ(•) with respect to U are:

  Graph learning on ER synthetic graphs.
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 27 Figure 2.7: Graph learning results on random synthetic graphs of 20 nodes: (a) for a RG graph, and (b) for an ER graph. Each of the two sub gures presents: (top row) the evolution of the F 1 -measure with respect to di erent threshold values and the dashed line indicates the chosen threshold value; (bottom row) shows as leftmost the ground truth adjacency matrix, followed by the respective learned adjacency matrices (thresholded) by the compared methods.

( a )

 a Standard scale. (b) Semi-log scale.
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 28 Figure 2.8: Average and standard deviation of the computation time over 10 trials for IGL-3SR, FGL-3SR, ESA-GL, and GL-SigRep, as the number of nodes increases. GL-SigRep and ESA-GL failed to produce a result for graphs with more than 100 and 150 nodes, respectively. (a) The total computation times, and (b) the time needed for a single iteration of each algorithm.

  Average of the F 1 -measure. (b) Standard deviation of the F 1 -measure. Standard deviation of the F 1 -measure (focus).
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 29 Figure 2.9: Evolution of the average (a)(c) and standard deviation (b)(d) of the F 1 -measure over 10 runs of FGL-3SR on RG graphs with 20 nodes. At the top gure row β ∈ [0, 100], and at the bottom row β ∈ [20, 70].
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 210 Figure 2.10: Convergence curves of the objective function as the number of iterations increases, using FGL-3SR with (a) α = 10 -5 , (b) α = 10 -1 , (c) α = 1.

Figure 2 .

 2 Figure 2.11: Learned graphs with increasing t values: (top row) α = 10 -4 , (bottom row) α = 10 -3 .

( a )

 a Learned graph by IGL-3SR. (b) Learned graph by FGL-3SR. (c) Graph clustering on IGL-3SR's result. (d) Graph clustering on FGL-3SR's result.
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 2 Figure 2.12: (Top row) Learned graph with (a) IGL-3SR and (b) FGL-3SR. The node color corresponds to the average temperature in C • during all the period of observation. (Bottom row) Graph segmentation in two parts (red vs. green nodes) with spectral clustering using the Laplacian matrix learned by (c) IGL-3SR and (d) FGL-3SR.
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 2 Figure 2.13: (a) The 2 nodes kept for the signal interpolation are shown in black. (b) The true signal at the target node (in red) shown on the left and its reconstruction using only the 2 selected nodes shown on the left (in black).
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 2 14a). Each ROI de nes a node and the signal value at a certain node is the aggregation of SPECTRAL REPRESENTATION Indicative Regions of Interest (ROIs) from[START_REF] Varoquaux | Multi-subject dictionary learning to segment an atlas of brain spontaneous activity[END_REF].

Figure 2 .

 2 Figure 2.14: (a) Indicative ROIs from the Multi-Subject Dictionary Learning atlas extracted in[START_REF] Varoquaux | Multi-subject dictionary learning to segment an atlas of brain spontaneous activity[END_REF] with sparse dictionary learning. Results: Graphs returned by FGL-3SR, separately for (b) an ADHD patient and (c) a healthy subject, where darker edges indicate larger weights of connection.

Figure 2 .

 2 Figure 2.15: Left: The learned graph with k being the sparsity obtained. Middle: The topography of the microstate. Right: The topography of the second eigenvector of the learned graph.
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 31 Figure 3.1: Spectrograms of a stereo audio jazz signal.

  Activation maps z 1 and z 2 .(d 1 z 1 ) + (d 2 z 2 ) (d) Final signal.

Figure 3 . 2 :

 32 Figure 3.2: Two atoms are displayed in (a) and (b). The rst one in blue is a sinusoidal and the second one in orange is the "Mexican hat function". For each atom, the corresponding activation map is represented in (c). The resulting signal from the CSC model is displayed in (d).

  the component-wise product is rewritten in a matrix product. Then, by introducing the matrix D = [diag( d 1 ), . . . , diag( d K )] in C M ×KM , and the three vectors z = [ z 1 , . . . , z K ] , t = [ t 1 , . . . , t K ] , and u = [ u 1 , . . . , u K ] in C KM , the rst term of (3.7) becomes y -D z 2 2

Figure 3 . 3 :

 33 Figure 3.3: Visualization of the Gram matrix D H D before and after a reordering. The two left matrices (a, b) correspond to the Gram matrix without reordering (a) and with reordering (b). The two right matrices (c, d) also correspond to the Gram matrix without reordering (c) and with reordering (d) but for a higher dimension.

  complexity of FISTA-based solvers are easily obtained by the analysis of each step. The pre-computations of y and { d k } is of complexity O((K + 1)M log(M )). Then, the rst step of FISTA requires the FFT which gives a complexity of O(KM log(M )). The computation of the gradient only relies on simple matrix multiplications and have a complexity of O(KM ) instead of O(KM 2 ) due to the diagonal-block structure of D. Finally, the soft-threshold part and the dual variable updates give a complexity of O(KM ). LOW RANK ACTIVATIONS Algorithm 3.2 FISTA for CSC 1: Input: signal y, dictionary D, regularization and step parameters λ, η (η = 1/L, the inverse of Lipschitz constant if calculate), tolerance ε 2: Initialization: z (0) 3: Precompute y and D using the FFT 4: t (0) ←-1 5: w (0) ←z (0) 6: repeat 7:

2. 2 . 1 2 2

 212 Proximal gradient descent Since in equation (3.10) the constraint on the atoms is convex, it is possible to use a proximal gradient descent to solve the CDL. Let us denote by I Ω the indicator function of the constraint set Ω = {x | x 2 ≤ 1} i.e. Ω is the unit ball. Problem (3.10) is then equivalent to min + I Ω (D) ,(3.11) 

  + CDL)[Papyan et al., 2017a] 
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 34 Figure 3.4: Evolution of the complexity (in semi-log) for data in R n1×n2×3 (color images) when (a) n 1 , n 2 vary and K = 64 (b) K varies and n 1 = n 2 = 500. Only the Fourier-based methods are reported.
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 31 (Equality in the Fourier domain) -The orthogonality of the Fourier basis implies a Plancherel formula. Therefore, in the Fourier domain, the delity term f (•) is equal to

  .21) where • denotes the frequency representation of a signal, * is the component-wise product, and f denotes the delity term in the Fourier domain up to the factor 1 p i=1 N i . Corollary 3.1. (A compact vectorized formulation) -The following equality holds

Algorithm 3 . 3 T

 33 -ConvADMM, ADMM for K-CSC 1: Input: signal Y, dictionary D 1 , • • • , D K , regularization and ADMM parameters λ, ρ, tolerance ε 2: Precompute Y and { D k } 3: repeat 4:

Figure 3 . 5 :

 35 Figure 3.5: Visualization of ( A H ⊗ I) Γ H Γ( A ⊗ I) before and after a reordering. The two left matrices (a, b) correspond to the Gram matrix without (a) and with reordering (b). The two right matrices (c, d) also correspond to the Gram matrix without (c) and with reordering (d) but for a higher dimension.

Algorithm 3 . 4 T

 34 -ConvFISTA (sub-problem) Input: signal Y, dictionary D 1 , • • • , D K , regularization and step parameters α, β, η (η = 1/L, the inverse of Lipschitz constant if calculate), tolerance ε Initialization:

Figure 3 . 6 :

 36 Figure 3.6: Evolution of the theoretical complexity (in semi-log) for data in R n1×n2×3 (color images) when (a) n 1 , n 2 vary and K = 36, R = 1, (b) K varies and n 1 = n 2 = 500, R = 1, (c) K = R varies and n 1 = n 2 = 500, and (d) K = R varies and n 1 = n 2 = n 3 = 500 (multispectral image). For (c) and (d), we set the number of iterations of standard methods to 1000 and for our methods to 500 for the number of inner iterations and 20 for the other. Recall that all complexity are given without taking into account the sparsity. This is therefore the worst complexity possible. Only the Fourier-based methods are reported.
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 37 Figure 3.7: Average curves with standard deviation of the convergence of our two methods on the small-scale dataset with respect to (a, b) the times and (c, d) the number of iterations and for R = 2, 3, 4.
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 38 Figure 3.8: Average curves with standard deviation of the convergence of our two methods on the large-scale dataset with respect to (a, b) the times and (c, d) the number of iterations and for R = 2, 3, 4.
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 39 Figure 3.9: One tube of 3-rd order of: (Top) input + noise (SNR of 3.0dB), input, and reconstruction with T-ConvADMM. (Bottom) input + noise (SNR of 3.0dB), input, and reconstruction with FCSC-ShM.

Figure 3 .

 3 Figure 3.10: One tube of 3-rd order of: input + noise (SNR of 3.0dB), input, and reconstruction with T-ConvFISTA.

Figure 3 .Figure 3

 33 Figure 3.11: Time until convergence of T-ConvFISTA on the dictionary learning process (Z + D steps), with and without the optimizations discussed in Section 4.2. The standard deviation are indicated using black lines.

Figure 3 . 13 :Figure 3 .

 3133 Figure 3.13: Illustration of the reconstruction with T-ConvFISTA on the medium scale image. On top, a partial reconstruction and the learn dictionary. Then, four atoms with their activation maps.

Figure 3 . 15 :Figure 3 . 16 :

 315316 Figure 3.15: On the left, the Lena image. On the middle, the reconstruction obtained with T-ConvFISTA. On the middle, the reconstruction obtained with FCSC.

  Figure 3.20: (a) Three atoms of interest with their activations. From left to right: the time-frequency atom, the channel activations (mode 1), the frequency activations (mode 2), and the time activations (mode 3). (b) The activations obtained by adding up the activations of all atoms. Topographies are made with MNE-Python [Gramfort et al., 2013].

Figure 3 .

 3 Figure 3.21: Evolution of the time activations for the rst and second atoms of Figure 3.20 which are relative to the δ and α waves.

Figure 3 . 22 :

 322 Figure 3.22: The rst column shows the atoms learn with T-ConvFISTA on EEG signals. The three other columns show the corresponding activation map for each dimension.

  Figure 3.23: (a) Spatial activations before removing the bad channels. (b) Raw signal at one of the bad channel.

Figure 3 .

 3 Figure 3.24: On top, raw signal of a good channel (blue), a bad channel (green), and a reconstruction of the bad channel with T-ConvFISTA (orange). The other two gures are more focused on signals.

Figure 3 . 26 :

 326 Figure 3.26: Results on EKG signals. (a, b) are the reconstruction with T-ConvFISTA. (c, d) are the reconstruction with FCFC.

2 .

 2 (Mode-wise DFT) -Given the CP-decomposition of a tensor

Figure 3 . 28 :

 328 Figure 3.28: Periodization of the " nite" function f draw in orange.

Figure 3 . 29 :

 329 Figure 3.29: Illustration of the multidimensional convolution (Dirichlet boundary version) with 3-th order tensors, where each cube represents a dimension and each axis an order. Notice that the result has one additional dimension in each order.

Figure 3 .

 3 Figure 3.30: (c) Illustration of a two dimensional separable function F = f 1 • f 2 with f 1 and f 2 being the atoms (a) and (b). (c) Illustration of a two dimensional multi-separable function F = 4 k=1 f 1,k • f 1,k with {f 1,k } and {f 2,k } being di erent dilatations of the atoms (a) and (b).

Figure 4 . 1 :

 41 Figure 4.1: Illustration of the product graph G between two graphs G 1 and G 2 . represents either a Cartesian (only colored edges), a Kronecker (only gray edges) or a strong product (all edges) between these two graphs. Figure modi ed from the original one in [Ortiz-Jiménez et al., 2018].

Figure 4 . 2 :

 42 Figure 4.2: Illustration of the di erence between the two sparsity norms. On the top, the element-wise sparsity norm. On the bottom, the row-wise sparsity norm. A black square means zero-value.

1 :

 1 Input : Y, (L m ) M m , and

  argsort(y)[0 : K m ] 12: H (m) [s] ←-0 13: end for

Figure 4 . 3 :

 43 Figure 4.3: Weight matrix of the graph G S and template 2-D layouts of the sensors.

Figure 4 . 4 :

 44 Figure 4.4: Evolution of the RMSE with the percentage of removed dimensions for a) General Sparsity (GS) or Controlled Sparsity (CS) on the b) Feature space F c) Time T d) Spatial S dimensions. The dotted plots correspond to con gurations where all graphs have been replaces by random ER graphs.
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 51 Figure 5.1: Diagram of the agent and the speci c environment. The environment (i.e. the patient) provides observable data (i.e. physiological variables). The monitor records this data and transmits it to the agent. The anesthesiologist chooses an action based on the action suggested by the agent, the values given by the monitor and the behavior of the patient.

Figure 5 . 2 :

 52 Figure 5.2: Illustration of the PSR framework. On the left the system-dynamic matrix D. The gray columns involved in the construction of the matrix on the right are core tests.

Figure 5 . 3 :

 53 Figure 5.3: a) Sequence of action in A and sequence of observations in O. Each shade of red (resp. blue) represent a di erent action (resp. observation). b) Extraction of unique tuples of (actions, observations) of size 2, 3 and 4. c) Example of estimation of the probability of a test of size 2 given all possible histories.
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 5114 to compute the Singular Value Decomposition (SVD) of P T ,H and obtain its left singular vectors U . Algorithm 5.1 summarizes the learning problem and an illustration is provided in Figure 5.3. OF ANESTHESIA Algorithm Learning Input : M preprocessed trajectories ( S 1 , • • • , S M ), integers M H , M T , R 2: Output : b T ∞ , b * and B ao ao 3: for j ∈ {1, • • • , |H|} do 5:

Figure 5 . 4 :Figure 5 . 5 :

 5455 Figure 5.4: Sequence of actions and of observations constituting the dataset. At each color is associated 0, 1 or 2.

Figure 5 . 6 :Table 5 . 3 :

 5653 Figure 5.6: Example of a discretization on the four variables, HR, MBP, RR and AAFi with n th = 3.For each variable, on the top the raw signal recorded by the monitor during the GA. On the bottom, its discretization in four classes via CKmean.

Figure 5 . 7 :

 57 Figure 5.7: On the left: Preprocessing and discretization procedure for the HR variable. The raw signal (trajectory) is ltered and discretized via the combination of the SMA and CKmean to obtain a sequence of observations. On the right: Extraction of the action from the AAFi variable. The raw signal (trajectory) is ltered and actions are extracted to obtain a sequence of actions. Then, a sequence actions/observations is made in order to t in the TPSR framework.

Figure 5 . 8 :

 58 Figure 5.8: Result of the model with the most promising parameters on one patient. At the top, the two graphs show the results of the prediction of actions. (a) -comparison of the real actions (blue dotted line) with those predicted by our agent (red line); (b) -cumulative sum of the real sequence of actions (blue dotted line) and of the predicted (red line). The next four graphs are the results of the prediction of physiological variables. For each graph, in blue dotted line the real sequences and in red line the predictions.

Figure 5 . 9 :

 59 Figure 5.9: Result of the best SHMM model on the same patient of Figure 5.8. At the top, the two graphs show the results of the prediction of actions. (a) -comparison of the real actions (blue dotted line) with those predicted by our agent (red line); (b) -cumulative sum of the real sequence of actions (blue dotted line) and of the predicted (red line). The next four graphs are the results of the prediction of physiological variables. For each graph, in blue dotted line the real sequences and in red line the predictions.

Figure 7 . 1 :

 71 Figure 7.1: Illustration de (a) l'hypothèse de rang faible, (b) la combinaison des hypothèses de rang faible et de parcimonie.

FzFigure 7 . 2 :

 72 Figure 7.2: Représentation de 32 canaux EEG d'un patient. Sur l'axe y de chaque signal est annoté le nom du canal correspondant.

Figure 7 . 5 :

 75 Figure 7.5: Spectrogramme d'un patient sous anesthésie générale induite par propofol et sévo urane.

Figure 7 . 6 :

 76 Figure 7.6: EEG enregistré pendant une anesthésie générale présentant beaucoup de bruit. L'unité de l'axe des y est µV .

Figure 7 . 7 :

 77 Figure 7.7: Deux spectrogrammes obtenus à partir d'un signal musical stéréo. Certains atomes se répètent (surlignés en rouge et orange) tout en étant visibles sur les deux spectrogrammes. Cette observation suggère que le modèle de CDL est pertinent sur ces données. De plus, une structure de rang faible se retrouve dans les tenseurs d'activations (et non dans les atomes). En d'autres termes, bien que les atomes temps-fréquence sont complexes (et donc sans structure de rang faible), les activations (c'est-à-dire les positions temps/fréquence/canal où ces atomes apparaissent) présentent clairement une structure de rang faible.

Figure 7 . 8 :

 78 Figure 7.8: Illustration d'un produit de graphe G entre deux graphes G 1 et G 2 . représente un produit Cartésien (seulement les arêtes colorées), un produit de Kronecker (seulement les arêtes grises) ou un "strong product" (toutes les arêtes) entre ces deux graphes. Figure inspirée de [Ortiz-Jiménez et al., 2018].
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  ]

	Variables	Units	abbreviation
	EKG		
	Electrocardiogram 1	µV	EKG
	E-EEG Module		
	Electroencephalography (32 channels)	µV	EEG
	Basics Module		
	Heart Rate	/min	HR
	Systolic arterial blood pressure	mmHg SBP
	Diastolic arterial blood pressure	mmHg DBP
	Mean arterial blood pressure	mmHg MBP
	Saturated percentage of Dioxygen Temperature 1 Temperature 2	/100% SpO 2 T1 ℃ ℃ T2
	Heart rate from arterial line 1	/min	P1 HR
	Invasive systolic arterial blood pressure 1 mmHg P1 Sys
	Invasive diastolic arterial blood pressure 1 mmHg P1 Dia
	Invasive mean arterial blood pressure 1	mmHg P1 Mean
	Heart rate from arterial line 2	/min	P2 HR
	Invasive systolic arterial blood pressure 2 mmHg P2 Sys
	Invasive diastolic arterial blood pressure 2 mmHg P2 Dia
	Invasive mean arterial blood pressure 2	mmHg P2 Mean
	ST elevation on lead DII	mm	ST II
	ST elevation on lead V5	mm	ST V5
	ST elevation on lead aVL	mm	ST aVL
	Gaz Analysis Module		
	End tidal carbon dioxyde	mmHg Et CO 2
	Anesthesia Agent		AA
	AA Expiratory Concentration	/100% AA ET
	AA Inspiratory Concentration	/100% AA FI
	Total Minimum Alveolar Concentration	/100% AA MAC SUM
	Fraction inspired of dioxygen	/m	Fi O 2
	Mean alveolar concentration	/m	MAC
	Fraction inspired Nitrous Oxide	/m	Fi N 2
	End tidal Nitrous Oxide	/m	Et N 2 O
	Respiratory Rate	/min	RR
	BIS Module		
	Bispectral Index		BIS
	BIS Burst Suppression Ratio	%	BIS BSR
	BIS Electromyography	dB	BIS EMG
	BIS Signal Quality Index	%	BIS SQI

Table 1 .
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1: Standard variables recorded during a surgery.
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  0 2:,2: , and h(•) from De nition 2.11.

  consists in an alternating minimization over L and Ỹ . With respect to Ỹ the problem has a closed-form solution whereas for L, the authors propose to use a Quadratic Program solver involving

	2. ESA-GL [Sardellitti et al., 2019]:
	This is a two-step algorithm where the signals are supposed to admit a sparse representation
	with respect to the learned graph. The di erence to our work is two-fold. First, ESA-GL does
	not include the smoothness assumption while learning the Fourier basis X. This brings a
	di erent two-step optimization program. Second, the complexity of the ESA-GL algorithm (at
	least O(N 8 )) is much higher than ours (O(N 5 ) for FGL-3SR -see Section 5.3), and hence is prohibitive for large graphs. The rst step consists in tting an orthonormal basis such that
	the observed graph signals Y admit a sparse representation with respect to this basis. They
	consider the problem
	min
	1 2 N (N -1) parameters and 1 2 N (N -1) + N + 1 constraints.

Table 2 .
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			RG graph model				ER graph model			
	N	Metrics	IGL-3SR	FGL-3SR	ESA-GL	GL-SigRep	IGL-3SR	FGL-3SR	ESA-GL	GL-SigRep
	20	0.973 (±0.042) 0.952 (±0.042) 0.974 (±0.018) 0.985 (±0.023) 0.968 (±0.052) 0.899 (±0.054) 0.929 (±0.032) F1-measure ↑ 0.974 (±0.028) 0.968 (±0.027) Precision ↑ Recall ↑ 0.938 (±0.052) 0.903 (±0.029) 0.925 (±0.050) ρ(L, L) ↑ Time ↓ < 1min < 10s < 5s	0.929 (±0.068) 0.952 (±0.045) 0.819 (±0.080) 0.967 (±0.028) 0.927 (±0.046) 0.824 (±0.105) 0.947 (±0.040) 0.938 (±00.028) 0.816 (±0.068) 0.786 (±0.037) 0.917 (±0.035) 0.730 (±0.063) < 5s < 1min < 10s	0.931 (±0.045) 0.951 (±0.041) 0.899 (±0.075) 0.704 (±0.125) 0.941 (±0.038) 0.779 (±0.071) 0.897 (±0.045) 0.199 (±0.074) < 5s < 5s
	50	0.901 (±0.022) 0.817 (±0.041) 0.902 (±0.018) 0.807 (±0.036) F1-measure ↑ 0.901 (±0.014) 0.812 (±0.017) Precision ↑ Recall ↑ 0.863 (±0.020) 0.743 (±0.031) ρ(L, L) ↑ Time ↓ < 17mins < 40s	0.845 (±0.088) 0.910 (±0.040) 0.720 (±0.059) 0.812 (±0.042) 0.791 (±0.055) 0.820 (±0.027) 0.868 (±0.036) 0.750 (±0.001) 0.815 (±0.021) 0.832 (±0.033) 0.549 (±0.022) 0.783 (±0.026) < 60s < 40s < 17mins	0.791 (±0.047) 0.740 (±0.049) 0.761 (±0.031) 0.728 (±0.020) < 40s	0.854 (±0.038) 0.476 (±0.037) 0.830 (±0.051) 0.856 (±0.023) 0.841 (±0.021) 0.610 (±0.026) 0.816 (±0.058) 0.058 (±0.002) < 60s < 40s
	100	0.713 (±0.012) 0.711 (±0.029) 0.751 (±0.067) 0.584 (±0.011) F1-measure ↑ 0.732 (±0.034) 0.641 (±0.010) Precision ↑ Recall ↑ 0.612 (±0.045) 0.483 (±0.015) ρ(L, L) ↑ Time ↓ < 50mins < 2mins	0.667 (±0.022) 0.743 (±0.017) 0.703 (±0.012) 0.596 (±0.033) < 4mins	-----	0.677 (±0.044) 0.640 (±0.033) 0.580 (±0.021) 0.543 (±0.027) 0.623 (±0.009) 0.586 (±0.016) 0.551 (±0.016) 0.512 (±0.0223) 0.644 (±0.023) -0.654 (±0.038) -0.637 (±0.023) -0.589 (±0.019) -< 50mins < 2mins < 4mins -

3.1, easier to tune. 1: Comparison of the four methods on ve quality metrics (avg ± std) for graphs of N = {20, 50, 100} nodes, and for xed number of n = 1000 graph signals.

  Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 Convolutional dictionary learning . . . . . . . . . . . . . . . . . . . . . . . . . . 74 2.1 Convolutional sparse coding . . . . . . . . . . . . . . . . . . . . . . . . . 76 2.2 Dictionary update . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

			80
	2.3	Comparison of the solvers in the convolutional setting . . . . . . . . . .	82
	2.4	Theoretical guarantees for convolutional representation . . . . . . . . .	82
	Tensor-based convolutional dictionary learning . . . . . . . . . . . . . . . . . .	83
	Resolution of the problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .	85
	4.1	T-ConvADMM: ADMM-based solver for K-CSC . . . . . . . . . . . . . .	87
	4.2	T-ConvFISTA: FISTA-based solver for K-CSC . . . . . . . . . . . . . . .	89
	4.3		

Some additional remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 4.4 Dictionary update, D-step. . . . . . . . . . . . . . . . . . . . . . . . . . 93 Related works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 6.1 Evaluation on synthetic data . . . . . . . . . . . . . . . . . . . . . . . . . 96

  . Recently, its convolutional counterpart known as Convolutional Dictionary Learning (CDL) or Convolutional Sparse Coding (CSC), has gained renewed interest. The central idea behind CDL is to replace the traditional patch-based representation with a global shift-invariant one. Various algorithms built around the Alternating Direction Method of Multipliers (ADMM) or the Fast Iterative Shrinkage-Thresholding Algorithm (FISTA) have been suggested to e ciently handle the associated CDL problem. But interestingly, they mainly focused on a resolution for univariate signals or images [Garcia-Cardona
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: Selective list of CDL/CSC solvers.
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4: Results return on the CSC task on dataset without noise. For T-ConvADMM and T-ConvFISTA, R = 1, 2, 3, or 4. Mean and standard deviation are reported. For the RMSE the lowest the better. For the other ones, the higher the better. deviation ∼ 0.0023, 0.015, and 0.03). Recall that the de nition of the SNR between a signal y ref and a comparison one y noisy = y ref + ε is SNR(y ref , y noisy ) = 10 log 10 Var(y ref ) MSE(y ref , y noisy ) , (3.35)
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5: Results return on the CSC task on dataset with noise. For T-ConvADMM and T-ConvFISTA, R is set to the true value, R * = 2. Mean and standard deviation are reported. With SNR= -17dB, the best result with T-ConvADMM and T-ConvFISTA was obtained by the tensor full of zero (no activations) for the small-scale dataset. For the two standard methods, the best result was obtained by the tensor full of zero regardless the size of the data.
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  such a restriction we assumed that H M H was su cient i.e. it allowed to solve the discovery problem -this hypothesis was validated by our experimental results (Section 3.3). In the following, we referred those two sets by H and T to simplify the notation. It is worth noting that |H| ≈ ((n th + 1) 4 |A|) M H , and that the same can be stated for T . Consequently, both sets grow exponentially with M H and M T . The two numbers M H and M T were considered as parameters of the problem.
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 51 Demographic description of the participants. The values presented are means and standard deviations.
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 52 Selected variables classi ed by modules. For each of the variables, sampling frequency, unit and abbreviation are provided.

  AAFi TPSR without AAFi TPSR without RR TPSR with no obs.

	4. RESULTS			149
	TPSR with Metrics n = 30	n = 30	n = 30	n = 30
	HD-A	0.416(±0.022)	0.439(±0.012)	0.419(±0.001)	0.456(±0.012)
	CE-A 0,2	1.087(±0.129)	1.145(±0.071)	1.124(±0.018)	1.161(±0.015)
	SCE-A 0,2 0.628(±0.056)	0.722(±0.029)	0.635(±0.021)	0.913(±0.013)

Table 5 . 5 :

 55 Additional results of the quantitative analysis. For every metrics, the best values were the smallest ones. Metrics reported are the Hamming Distance of Action (HD-A), the Cross Entropy of Action 0 and 2 (CE-A 0,2 ) and the Sliding Cross Entropy of Action 0, 2 (SCE-A 0,2 ). For more details on the metrics, seeSubsection 3.4 

Table 5 . 6 :

 56 Evaluation of the best models (n = 30, n th = 3, M H = 6, M T = 3, R = 400) by a panel of anesthesiologists. Experiment 1: Rate of disagreement between agent and anesthesiologist actions. Experiment 2: rate on actions classify as (good/acceptable/dangerous). Experiment 3: Rate of agreement between agent and anesthesiologists observations. See Section 3.5 for more details on the three experiments.

	5. DISCUSSION AND FUTURE WORKS

  Comprendre les données brutes par leurs structures multivariéesRepenser la médecine ne peut se faire sans changements importants dans la façon dont nous analysons les données médicales. En e et, les données issus des recherches actuelles sont souvent beaucoup plus volumineux et plus complexes que celles d'autrefois. Ce phénomène est en partie dû à la démocratisation des capteurs bon marché et faciles à manipuler qui simpli ent la collecte systématique de nombreuses données sur les patients. Par conséquent, désormais, de multiples signaux, tels que les signaux ECG ou EEG, sont enregistrés presque quotidiennement. Or, leur grande diversité et leur volume important nécessitent inévitablement des améliorations dans les techniques de stockage et de manipulation de données, ainsi que des avancées dans les méthodes d'analyse.

	2 Motivations
	2.1

  . Le TPSR est une classe de modèles particulièrement puissante et exible utilisée dans le domaine de la prédiction séquentielle. L'idée principale de cette classe de modèles est que les données observées sont souvent la manifestation d'une dynamique sous-jacente cachée. En modélisant la structure de transition entre di érents états cachés et les probabilités d'occurrence des observations, on peut obtenir un modèle prédictif succinct et puissant. Notons que, bien que les contributions précédentes soient principalement liées à l'analyse des signaux EEG, ici, pour fournir un outil utilisable en pratique par les anesthésistes, nous nous basons uniquement sur les quatre variables couramment surveillées pendant la chirurgie : La fréquence cardiaque, la pression artérielle, la fréquence respiratoire et la concentration expirée d'anesthésique. Ce choix est motivé par le fait que, bien qu'une analyse des signaux EEG soit obligatoire pour comprendre précisément le comportement de l'activité cérébrale, nous pensons qu'un outil pratique devrait être basé uniquement sur des variables physiologiques couramment surveillées et visualisées par les anesthésistes. Cette approche pourrait être d'une grande aide pour les anesthésistes a n de prédire l'évolution des variables et ainsi prévenir les e ets secondaires tels que l'hypotension artérielle. En résumé, ce support décisionnel pourrait aider l'anesthésiste à améliorer le soin et la sécurité des patients. Tenseurs et graphes pour l'analyse multivariée -application aux neurosciences.Mots clés: Tenseur, graphe, analyse multivariée, neurosciences Résumé: Comment extraire l'information contenue dans des données multivariées est devenue une question fondamentale ces dernières années. En effet, leur disponibilité croissante a mis en évidence les limites des modèles standards et la nécessité d'évoluer vers des méthodes plus polyvalentes. L'objectif principal de cette thèse est de fournir des méthodes et des algorithmes prenant en compte la structure des signaux multivariés. Des exemples bien connus de tels signaux sont les images, les signaux audios stéréo, et les signaux d'électroencéphalographie multicanaux. Parmi les approches existantes, nous nous concentrons spécifiquement sur celles basées sur la structure induite par les graphes ou les tenseurs qui ont déjà attiré une attention croissante en raison de leur capacité à mieux exploiter l'aspect multivarié des données et leur structure sous-jacente. Bien que cette thèse prenne l'étude de l'anesthésie générale comme contexte applicatif privilégié, les méthodes développées sont adaptées à un large spectre de données structurées multivariées. How to extract knowledge from multivariate data has emerged as a fundamental question in recent years. Indeed, their increasing availability has highlighted the limitations of standard models and the need to move towards more versatile methods. The main objective of this thesis is to provide methods and algorithms taking into account the structure of multivariate signals. Well-known examples of such signals are images, stereo audio signals, and multi-channel electroencephalography signals. Among the existing approaches, we specifically focus on those based on graph or tensor-induced structure which have already attracted increasing attention because of their ability to better exploit the multivariate aspect of data and their underlying structure. Although this thesis takes the study of patients under general anesthesia as a privileged applicative context, methods developed are also adapted to a wide range of multivariate structured data.
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RESOLUTION OF THE PROBLEM: IGL 3SR

In the chapter we de ne agents as Apprenticeship Learning based models.

A slight di erence is now made between apprenticeship learning and imitation learning in the literature.

Remerciements

We now consider multichannel EEG signals that record brain activity with sensors covering a large part of the head. Note that, this is a di culet dataset because there is a lot of noise, impulsion noise, and de cient measures. This two-dimensional measurement is stored in a matrix X in R Ns×Nt where N s is the number of sensors and N t is the number of samples.

Justi cation of the model. Assuming a static propagation, the X matrix can be factorized into a lead-eld matrix A and a signal matrix of N r sources, denoted S ∈ R Nr×Nt , such that X = AS [START_REF] Becker | Dans cette vaste littérature, l'une des stratégies les plus utilisées consiste à appliquer directement une décomposition tensorielle aux données[END_REF]. The goal is now to nd a transformation allowing to produce a relevant data tensor from X. A frequently used idea is to compute a short-time Fourier transform on each channel to obtain a Space-Time-Frequency (STF) representation Y [START_REF] Miwakeichi | Mørup et al[END_REF][START_REF] Mørup | Parallel factor analysis as an exploratory tool for wavelet transformed event-related EEG[END_REF][START_REF] Becker | Multiway space-time-wave-vector analysis for source localization and extraction[END_REF][START_REF] Becker | EEG extended source localization: tensor-based vs. conventional methods[END_REF][START_REF] Zhao | Multilinear subspace regression: an orthogonal tensor decomposition approach[END_REF]. In previous methods, authors assume that the time and frequency variables separate in order to justify a CP decomposition of the tensor. While no theoretical validation that justi es this application has been performed [START_REF] Becker | EEG extended source localization: tensor-based vs. conventional methods[END_REF], all these works show that tensor decomposition inherently exploits the interactions among multiple modes. Here, we adopt a slightly di erent point of view as we do not assume that the full tensor Y is tri-linear. Instead, we only assume that it results from the summation of K relevant atoms with associated tri-linear activations. The sparsity of the activations is supported by recent results on neuroscience which postulate that neural activity consists more of transient bursts of isolated events rather than rhythmically sustained oscillations [START_REF] Van Ede | Neural oscillations: sustained rhythms or transient burst-events?[END_REF]. Such activities could be described not only by their frequency and amplitude but also by their rate, duration, and shape suggesting that multivariate CDL is well-adapted to analyze them.

Data and parameters. The data consists in 32 EEG signals recorded at 250 Hz during a General Anesthesia (GA). We crop the full signal to keep only an important phase of the GA known as the "Recovery of Consciousness" (RoC) [START_REF] Purdon | Electroencephalogram signatures of loss and recovery of consciousness from propofol[END_REF]. Each signal is then of 1000 seconds (see Figure 3.19). With all channels included, it corresponds to 8, 000, 000 points. To construct De nition 3.11. (Separable discrete signal) -A discrete signal F is said to be separable if it can be write as the outer product of univariate signals i.e.

where the {f i } p i=1 are univariate discrete signals.

When F is write as a tensor, we see that F is separable if its CP-rank is equal to 1. We can easily extend this de nition to "multi"-separable function by considering signals equals to the summation of multiple separable signals, i.e. tensor with CP-rank > 1. This extension allows to consider separable signals with more complex structure (see examples in Figure 3.30).

Subsampling of multivariate time-vertex graph signals Abstract

In this chapter, we present an approach for processing and subsampling multivariate time-vertex graph signals. The main idea is to model the relationships within each dimension (time, space, feature space) with di erent graphs and to merge these structures with graph products. Our technique based on a tensor formalism aims at identifying the frequency support of the graph signal in order to preserve its content after subsampling. Results are provided on real electroencephalogram signals. -A) and Observation (HD-O), the Mean HD-O, the Cross Entropy of Action 0 and 2 (CE-A 0,2 ) and the Sliding Cross Entropy of Action 0, 2 (SCE-A 0,2 ). On the left, results for our TPSR model, on the right, results for the SHMM. For more details on the metrics, see Subsection 3.4 We also computed the distance of actions or observations sequences separately. Let τ | a be the sequence of actions provided by the dataset and τ | a the one found with the algorithm e.g. τ | a = (a 1 a 2 a 3 a 4 a 5 a 6 a 7 a 8 a 9 ) = (1, 1, 1, 2, 1, 1, 1, 0, 1). We de ned the HD of Actions (HD-A) by HD-A(τ, τ

The HD of Observations (HD-O) is de ned similarly. Finally, we used the cross entropy measure in Action 0 -Reduce drug doseor 2 -Increase drug doseand referred it by CE-A 0,2 . This metric is de ned as follows. Suppose that at time t the expert takes the action i ∈ {0, 2}, then

(5.9)

Metric taking into account a delay. Due to anesthetics latency, the action of an anesthesiologist will only be noticed on the recorded variables after a short time delay. Indeed, the time to reach equilibrium point after a modi cation of the concentration of sevo orane is approximately 1 minute (considering a supply of fresh gas of 0.4 L/mn) [START_REF] Philip | Gas man version 4. 1 teaches inhalation kinetics[END_REF]. This phenomenon is not captured by HD-A, HD-0 or CE-A 0,2 . We introduce here a new metric called Sliding Cross Entropy on Action 0 -Reduce drug doseor 2 -Increase drug dose-(SCE-A 0,2 ) to address this problem. SCE-A (δ) 0,2 is de ned as follows. Suppose that at time t the expert takes the action i ∈ {0, 2}, then let

In other words, p t,i,δ represents the probability of the event where the agent takes the correct action, but with a possible time latency of δ -and that the agent only do neutral action (i.e. action réveil tardif, et de prévenir un sous-dosage, associé à un risque de mémorisation [START_REF] Sebel | The incidence of awareness during anesthesia: a multicenter united states study[END_REF].

Fonctionnement du cerveau pendant une anesthésie. L'analyse des signaux mesurés par ElectroEncéphaloGraphie (EEG) reste la référence pour évaluer la DoA (voir gure 7.2). En e et, ces signaux sont une mesure directe de la principale cible des anesthésiques, le cerveau [START_REF] Merry | International standards for a safe practice of anesthesia 2010[END_REF]. Ainsi, bon nombre des changements se produisant dans le cerveau peuvent y être facilement observés [START_REF] Tong | Quantitative EEG analysis methods and clinical applications[END_REF][START_REF] Sanei | EEG signal processing[END_REF][START_REF] Cohen | Analyzing neural time series data: theory and practice[END_REF]. Fort de ce constat, depuis les années 2000, l'EEG est largement utilisée pour étudier les phénomènes survenant lors d'une AG [START_REF] Purdon | Clinical electroencephalography for anesthesiologistspart I: background and basic signatures[END_REF][START_REF] Liu | Closed-loop propofol administration: routine care or a research tool? What impact in the future?[END_REF]. Les recherches ont ainsi montré que l'AG induit certains comportements dans les signaux EEG qui peuvent être décrits en fonction de cinq états : L'éveil, la Perte de Conscience (PdC), L'anesthésie, le Rétablissement de la Conscience (RdC), et en n, l'émergence. Lorsque l'anesthésie s'approfondit, le schéma le plus connu et le plus courant est une augmentation progressive de bandes de fréquences spéci ques et de l'amplitude du signal. La gure 7.3 illustre ce phénomène en montrant le canal EEG frontal d'un patient réveillé puis sous anesthésie. On y voit clairement des changements dans les données brutes avec l'apparition de petites ondes de grandes amplitudes. Ces changements visuels, présents chez presque tous les patients, entraînent une modi cation du spectre du signal EEG (voir Figure 7.4). Dans une importante étude menée par [START_REF] Purdon | Electroencephalogram signatures of loss and recovery of consciousness from propofol[END_REF], les chercheurs