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Abstract

How to extract knowledge from multivariate data has emerged as a fundamental question

in recent years. Indeed, their increasing availability has highlighted the limitations of standard

models and the need to move towards more versatile methods. The main objective of this

thesis is to provide methods and algorithms taking into account the structure of multivariate

signals. Well-known examples of such signals are images, stereo audio signals, and multichannel

ElectroEncephaloGraphy (EEG) signals. Among the existing approaches, we speci�cally focus on

those based on graph or tensor-induced structure which have already attracted increasing attention

because of their ability to better exploit the multivariate aspect of data and their underlying

structure. Although this thesis takes the study of patients under general anesthesia as a privileged

applicative context, methods developed are also adapted to a wide range of multivariate structured

data.

The �rst contribution is the construction and deployment of a complete protocol and recording

chain that has enabled us to build a large database of patients under routine general anesthesia.

This database contains 88 patients in which 32 EEG signals and physiological variables are

recorded synchronously from the moment they enter the operating room up to three hours after

the surgery has been completed.

The second contribution consists in elaborating an optimization problem to learn a graph

from a set of signals. These signals are assumed to be smooth and to admit a sparse representation

in the spectral domain of the same underlying graph. This last property borrowed from graph

signal processing is known to carry information related to the cluster structure of this graph. We

solve this problem by introducing two algorithms. They are tested on multiple synthetic and real

data, including EEG signals recorded during anesthesia.

The third contribution is the inclusion of tensor-induced structures in convolutional dictionary

learning methods. More precisely, we add to the initial minimization problem a tensor low-rank

constraint for each activation. By taking into account the multivariate structure of signals, the

induced low-rank structure brings two major advantages. First, in multiple application contexts

the multivariate activations are naturally low-rank. Second, low-rank constraints entail a better

robustness with respect to noise, one of the main weaknesses of the activation learning part of

the convolutional dictionary learning. Two algorithms are introduced to solve this problem. They

are performed on both synthetic and real experiments, from images to EEG signals.

The fourth contribution is based on graph product, an operation built around the two previous

structures i.e. graphs and tensors. With this formalism, we provide a simple way to identify

the frequency support of multivariate graph signals, a useful information for subsampling, and

compression. In addition, we introduce a method to assess the relevance of the graphs chosen a

priori. The proposed algorithm is used on a time-feature-space representation of multichannel

EEG signals with each dimension encoded by a speci�c graph.

Finally, the �fth, and last, contribution is more prospective. It consists in a decision support

algorithm based on a predictive state representation model which assists anesthesiologists in

administering anesthetics during a general anesthesia. In the objective of proposing a practical

and comprehensive tool, the model only relied on the four most commonly monitored variables.

Performances of the resulting agent are analyzed with divers metrics and through its confrontation

to real anesthesiologists.
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1 Context of the thesis

General context. The human body is in a constant equilibrium state known as homeostasis.

While this stability is fundamental, it needs a constant and precise regulation of vital organs by

the brain. During a General Anesthesia (GA), a part of this stability is undermined by anesthetics.

As a result, anesthesiologists must support some vital functions such as the respiratory system.

The objective of a tailored anesthesia is twofold: (i) to avoid excessively deep narcosis,

associated with a higher risk of post-operative cognitive dysfunction and delayed awakening,

(ii) to prevent under dosing, which is associated with a risk of memorization. To that end,

anesthesiologists need to infer, in real-time, the level of consciousness of the patient, also referred

to as the Depth of Anesthesia (DoA). Since recently, they can rely on a wide range of physiological

variables monitored with a large number of sensors. This remarkable change in the medical

�eld is allowed by the stunning progression of sensors and their systematic use. As a direct

consequence, a large amount of signals and time-series is becoming available. Well-known

examples of such signals are ElectroCardioGrams (ECG) signals, ElectroEncephaloGrams (EEG)

signals, and all physiological variables. This change is particularly noticeable in clinical anesthesia

where there was a very limited amount of data until recently. The main question now is how

mathematics can help us to transit from all these multivariate raw signals to actionable data and
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(a) Low-rank (b) Group sparse and low-rank

Figure 1.1: Illustration of (a) the low-rank assumption, (b) the combination of a low-rank and a group

sparse assumptions.

knowledge. This is even more crucial, as this subject of interest at the crossroads of medical and

mathematical disciplines may lead to important bene�ts in the treatments of patients but also in

our understanding of human physiology.

Collaboration with the medical unit of the Centre Borelli. During this thesis, I collabo-

rated with the medical unit of the Centre Borelli (ex Cognac-G). This center is a research team

regrouping mathematicians (statisticians, machine learning specialists, etc.) and medical re-

searchers, gathered around the quanti�cation of human behavior. In particular, I worked in

close collaboration with M.D. Clément Dubost, head of the intensive care unit at the “Hôpital

d’Instruction des Armées Bégin”. Together, we put a lot of e�ort into designing a complete proto-

col – from the recording chain to data analysis – in order to jointly propose useful mathematical

methods to study patients under anesthesia. In the past, the Centre Borelli has already developed

several experimental protocols for a wide range of clinical problems from human locomotion to

infants’ eye movements. The quanti�cation of the phenomenon of interest has always been made

through the analysis of physiological signals recorded with several sensors. The �rst objective

being to extract the relevant information from these signals to understand the physiological

mechanisms that produced them. The second objective being to automatize the quanti�cation

process in order to provide tools that can be used routinely by practitioners.

2 Motivations

2.1 From data to knowledge by leveraging multivariate structures

Rethinking medicine through its transition into the next-generation cannot be done without sig-

ni�cant changes in the way we analyze medical data. Indeed, data sets from current investigations

are often much larger, and more complicated, than those of earlier days. This phenomenon is

partly due to the democratization of cheap, and easy-to-manipulate sensors, but is also explained

by the current leading habit which is to collect any available data from patients in view of a

better understanding of di�erent physiological phenomenons. Consequently, multiple signals

such as ECG, or EEG signals, are now recorded on an almost daily basis. Their wide diversity and

their substantial volume inevitably necessitate vast improvements in data storage, manipulation,

as well as advances in analytical methods. To e�ciently analyze these data, several approaches

were taken. At �rst, the trend was to emphasize univariate data analysis with models including a

single output variable. In particular, they focused on how to integrate prior knowledge about

data, either by making hypotheses on the class of models to restrict their complexity, or through

constraints and regularizations. A classical example illustrating both forms is the ridge regression

�rst proposed by Tikhonov [1963]. Here, a linear model is assumed in the features and a `2
regularization i.e. a smoothness assumption, is added to avoid too large parameters. Another

important example is the lasso regression [Tibshirani, 1996] where a `1 regularization i.e. a
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sparsity assumption, is added to induce only few non zero parameters. Other class of models also

o�er interesting alternatives to add prior knowledge on the structure of some signals. This is

for example the case of shift-invariant, or convolutional representations [Garcia-Cardona and

Wohlberg, 2018a], which treat a signal as a linear decomposition into few local atoms/patterns.

They extract recurrent non-sinusoidal patterns and lead to the discovery of local structures in a

set of non-stationary signals like time series, i.e. recordings with a temporal dimension [Lewicki

and Sejnowski, 1999; Grosse et al., 2007].

While all these ideas have led to both theoretical and practical advances, there is an inevitable

gap between what is being proposed for the univariate case and what we can expect from

well-de�ned statistical models. Indeed, the output signals are often multivariate (also called

multi-way [Escandar et al., 2014]), and the relations between their variables, or dimensions, must

be considered if we want to analyze them adequately. To �ll this gap, the statistical and machine

learning communities –among others– have placed great emphasis on multivariate analysis

through techniques that allow e.g. the presence of more than one output variable [Van Steen and

Molenberghs; Hidalgo and Goodman, 2013]. The �rst natural step to go beyond the univariate

case is to consider the bivariate case i.e. matrix-valued data. Many strategies have been proposed

to incorporate relations between the di�erent dimensions of such data, highlighting what a

multivariate analysis can bring in term of performance and interpretability. Indeed, the bivariate

case allows us to consider previously unavailable properties and structures. This is the case of

the low-rank structure leveraged in multiple methods such as low-rank Principal Component

Analysis (PCA) [Vidal et al., 2016], matrix recovery [Fazel, 2003; Rohde et al., 2011], and matrix

completion [Candès and Recht, 2009; Koltchinskii et al., 2011; Negahban and Wainwright, 2011;

Recht, 2011]. The combination of both low-rank and sparsity structures also appeared relevant in

a number of models. Depending on the combination (see Figure 1.1), it gives rise to more robust

and interpretable methods such as sparse PCA [Zou et al., 2006], subspace clustering [Vidal,

2011; Udell et al., 2016; Hae�ele and Vidal, 2019], and sparse subspace clustering with outliers

[Elhamifar and Vidal, 2013].

Amultivariate analysis through graphs. Besides low-rank and sparsity, another promising

way to leverage the structure of multivariate data is to use the notion of graph (or network).

Indeed, the graph brings valuable knowledge on the process that generates the data (e.g. two

linked nodes are highly correlated or have very close values) which make it useful in a large

range of domains and applications spanning biology [Barabasi and Oltvai, 2004], neuroscience

[Richiardi et al., 2013; Preti et al., 2017], clustering [Belkin and Niyogi, 2002; Von Luxburg, 2007],

representation learning [William et al., 2017], multi-task learning [Chen et al., 2015a; Nassif

et al., 2020], and others [Zhu, 2005; Kolaczyk and Csárdi, 2014]. Being able to build models

or learning algorithms from these data, while considering their underlying graph structure, is

therefore a major key component to improve performances. What remains is to �nd a way to

incorporate prior information about the structure of signals with a graph. One possibility is to

consider undirected probabilistic graphical models where a set of random variables is represented

as di�erent nodes of a graph [Koller and Friedman, 2009]. In this representation, an edge between

two nodes indicates the conditional dependency between the two corresponding random variables,

given the other ones. More recently, Graph Signal Processing (GSP) [Shuman et al., 2013; Ortega

et al., 2018; Djuric and Richard, 2018], has also appeared to be a powerful alternative framework to

extract valuable information from multivariate data. To take into account the structure of a signal,

the idea is to consider it as de�ned on the nodes of a graph and to encode relationships between
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its variables via the edges. In this formalism, the graph de�nes a support, and the signals, now

called graph signals, are de�ned on this support. This allows to capture the structure on which a

signal evolves, hence providing more information than considering the signal alone. Furthermore,

by generalizing standard concepts of signal processing to signals recorded over graphs i.e. graph

signals, GSP provides intuitive constraints for the modelization. For instance, the smoothness of

observations with respect to the true underlying graph is one of the most common and natural

assumption [Daitch et al., 2009; Egilmez et al., 2016; Kalofolias, 2016; Chepuri et al., 2017; Dong

et al., 2019], which asks for signals to have small local variations among adjacent nodes. Indeed,

this property is very natural and is therefore leveraged in a wide range of applications. One can

cite multi-task estimation over graph [Nassif et al., 2020] where an underlying graph captures the

link between multiple tasks allowing agents to cooperate with each other. This cooperation may

be encouraged with a regularization that imposes a certain degree of smoothness between the

di�erent decision rules of each agent [Nassif et al., 2018]. Unfortunately, while in these methods

the availability of a graph is a core assumption, e.g. in spectral clustering [Von Luxburg, 2007],

semi-supervised learning [Zhu, 2005], etc., in most situations no natural graph can be derived or

de�ned. One approach is therefore to infer it from a set of signals assumed to admit the same

underlying graph. This task, often referred to as graph learning (or graph topology inference), has

also received signi�cant attention in various �elds such as in statistic, signal processing, biology,

and others [Friedman et al., 2008; Hecker et al., 2009; Lim et al., 2015; Moscu et al., 2020]. A review

of recent methods for graph topology inference is given in [Dong et al., 2019].

A multivariate analysis through tensors. The inevitable extension of the bivariate case is

the multivariate case. Similarly to the transition from the one to the second dimension, new

possibilities and thus new strategies become available to leverage the structure of the multivariate

data. To this end, a signi�cant amount of works has been concentrated around tensor methods.

This growing interest is mainly due to their ability to better exploit the multivariate aspect

of the data. Indeed, in part spurred by pioneering works in psychometrics [Cattell, 1944], the

list of applications of tensor methods with success encompasses problems in signal processing

[Zhou et al., 2013; Cichocki et al., 2015], computer vision [Shashua and Hazan, 2005; Liu et al.,

2012], spectral learning of latent variable models [Anandkumar et al., 2014; Janzamin et al., 2019],

neuroscience [Beckmann and Smith, 2005; Miwakeichi et al., 2004; Mørup et al., 2006; Becker

et al., 2015], etc. Thorough surveys of these techniques with their applications are given in Kolda

and Bader [2009]; Grasedyck et al. [2013] and Sidiropoulos et al. [2017]. In this vast literature,

one of the most widely used strategies is to directly apply tensor decomposition to the data. This

often leads to more interpretable results and better performances. Indeed, by factorizing the

data in a lower dimensional space, tensor decompositions introduce a compact basis which

can describe the data in a concise manner. One important example of such decomposition

is the Canonical Polyadic Decomposition (CPD) [Hitchcock, 1927], also known as Parafac or

CANDECOMP [Harshman, 1970; Carroll and Chang, 1970], which expresses a tensor as a minimal

sum of rank-one tensors. Other decompositions such as the Tucker decomposition [Tucker, 1963],

or the higher-order singular value decomposition [De Lathauwer et al., 2000], have also proven

to be e�cient. For example, these decompositions have led to signi�cant progresses in tensor

completion that pertain to tensor recovery [Gandy et al., 2011; Liu et al., 2012; Goulart and Favier;

Rauhut et al., 2017]. Another strategy is to include tensor-induced structures in existing methods

through additional constraints and regularizations. In Zhou et al. [2013], authors proposed a

family of tensor regression models where a CP low-rank constraint is added. They also extended

these models to Tucker low-rank constraints [Li et al., 2018]. Others focused on multilinear
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Figure 1.2: Illustration of a 32-channel EEG montage of one patient. On the y-axis of each signal is

annotated the name of the corresponding channel.

rank constraints [Rabusseau and Kadri, 2016; Sun and Li, 2017], sparsity constraints on each

rank-1 tensor of the CPD [He et al., 2018], etc. This idea of enforcing a particular structure with

constraints is also used in several multivariate dictionary learning models [Hawe et al., 2013;

Sironi et al., 2014; Dantas et al., 2018; Schwab et al., 2019] or to accelerate convolutional neural

networks [Lebedev et al., 2015; Kim et al., 2016; Astrid and Lee, 2017]. Overall, while all these

high-order models inevitably bring several di�culties due to the complexity of the manipulated

objects, they have proven their usefulness in a wide range of �elds showing, once again, the

importance of considering the underlying structure of the data to obtain more e�cient methods.

2.2 Analysis of consciousness during a general anesthesia

In its more practical aspect, this thesis was built around the necessity to analyze data recorded

during a General Anesthesia (GA): a drug-induced, reversible condition that includes speci�c

behavioral and physiological traits (unconsciousness, amnesia, analgesia, and akinesia) [Brown

et al., 2010]. This unnatural condition is obtained through the use of di�erent drugs (e.g. inhala-

tional hypnotic anesthetics – sevo�urane – or intravenous anesthetics – propofol) which are all

reinforcing the GABA inhibitory system in the brain. However, while GA is a cornerstone of mod-

ern medicine, and is crucial for the realization of many medical and surgical procedures [Purdon

et al., 2013], it may carry some risks (e.g. cognitive dysfunction [Punjasawadwong et al., 2018],
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Figure 1.3: On the top, temporal signal in Awake state. On the bottom, temporal signal in Anesthesia
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Figure 1.4: On the left, spectrum in Awake state. On the right, spectrum in Anesthesia state.

postoperative delirium [Fritz et al., 2016]). Consequently, a sustained and careful monitoring of

the level of consciousness of the patient – also referred to as the Depth of Anesthesia (DoA) – is

required. Although there is no consensual de�nition of the DoA, it has been de�ned by experts as

“the probability of non-response to stimulation, calibrated against the strength of the stimulus, the

di�culty of suppressing the response, and the drug-induced probability of non-responsiveness at

de�ned e�ect site concentrations” [Shafer and Stanski, 2008]. Its precise knowledge is essential to

allow accurate titration of the drugs administered. The major objectives are to avoid excessively

deep narcosis, associated with a higher risk of post-operative cognitive dysfunction and delayed

awakening, and to prevent underdosing, associated with a risk of memorization [Sebel et al.,

2004].

The Dynamics of the Brain under Anesthesia. As a direct measurement of the main target

of anesthetics i.e. the brain [Merry et al., 2010], ElectroEncephaloGraphy (EEG), which measure

the scalp electrical potentials originating from neural currents in the brain, remain the gold-

standard to assess the DoA (see Figure 1.2). Indeed, many of the changes that occur in the

brain can be readily observed in the EEG [Tong and Thakor, 2009; Sanei and Chambers, 2013;

Cohen, 2014]. In consequence, since the 2000’s, they have been extensively used to study the

phenomenons occurring during a GA [Purdon et al., 2015; Liu and Rinehart, 2016]. A wide range of

research has thus showed that GA produces distinct patterns on the EEG which can be described
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Figure 1.5: Spectrogram of one patient during a general anesthesia induced by propofol and sevo�urane.

in relation to �ve states in which they appear: Awake or induction, Loss of Consciousness (LoC),

Anesthesia or maintenance, Recovery of Consciousness (RoC), and emergence. As the level of

general anaesthesia deepens, the best known and most common pattern is a gradual increase in

speci�c frequency bands and signal amplitude. Figure 1.3 illustrate this phenomenon by showing

a frontal EEG channel of the same patient in Awake and Anesthesia states. We clearly see changes

in the raw data with the apparition of small waves with large amplitudes. These visual changes,

present in almost every patient, lead to a modi�cation of the EEG spectrum i.e. the decomposition

of the EEG signal into the power in its frequency components (see Figure 1.4). Actually, in an

important study conducted by Purdon et al. [2013], researchers have shown that the power of

α and δ-waves (respectively in the 8-13 Hz and 1-3Hz ranges) is a promising predictor of the

di�erent states of a patient during a GA only induced by propofol. Indeed, they showed that

the power of these two ranges of frequencies tend to increase with the induction of the drug.

Therefore, their tracking allows to de�ne precisely which state a patient is more likely to be in. A

typical evolution of the power of each frequency over time is displayed in Figure 1.5 through a

spectrogram. They also �nd that these modi�cations at the level of a channel are combined with

a spatial-modi�cation called “anteriorization”. More precisely, while in the Awake state α-waves

are mostly present at the back of the head, with the induction of propofol, these waves start to

slowly migrate to the forehead. This process is reversed when the amount of drugs decreases.

With this example, we see the importance to go beyond an univariate analysis to fully describe

and understand global mechanisms.

A routine clinical context. While these studies allow a better understanding of the GA, they

are, in the major part, conducted in an ideal environment. In a clinical context, reality is quite

di�erent. First, anesthesiologists use, not one, but multiple drugs to induce the GA. Analysis

becomes more di�cult as each drug induces its own time-frequency patterns [Purdon et al., 2015].

Second, the analysis of EEG signals su�ers from several limitations, especially when data are

recorded during real surgeries. Indeed, even if there is no artifact due to muscle contractions

(patients are curarized), EEG signals are still prone to low signal to noise ratio, impulsive noise

due to sensor malfunctions, and artifacts caused by e.g. electro-surgical devices that are used to

cut and cauterize tissue (see Figure 1.6) [Tong and Thakor, 2009]. Thus, it becomes very di�cult

to use standard methods which assume an ideal theoretical set-up. Third, the use of EEG is time

consuming making it unusable for a daily-routine. As a global consequence, other methods, not
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Figure 1.6: EEG recording (in µV ) of a patient during anesthesia with a lot of noise (sampling frequency:

100 Hz).

necessarily based on EEG, must be investigated.

To pass through all these issues, during a surgery, several monitoring systems have been proposed

for DoA assessment but they all have some limitations [Bruhn et al., 2006]. No point-of-care gold

standard monitoring DoA prevails. The most used system is probably the BiSpectral Index (BIS)

[Kissin, 2000; Avidan et al., 2008]. It provides a numerical value from 0 to 100 (from no cerebral

activity to awake and responsive). However, being largely used, especially in the US, it has a lot of

drawbacks such as high inter-individual variability [Whitlock et al., 2011], low performance with

volatile anesthetics [George Mychaskiw et al., 2001], high latency and interferences with surgical

knife, artifacts from movements or from forced air warming therapy [Hemmerling and Migneault,

2002]. Another index is the sample-entropy introduced by Richman and Moorman [2000]. It is

a variant of the approximate entropy that gives information on the complexity of a time series

such as EEG signal. In summary, although the EEG is the gold standard for the evaluation of the

DoA, it requires additional sensors, it presents some limitations, and it is time consuming. That is

why, in a routine clinical context, the best evaluation of the DoA is thought to be, most of the

time, the one made by the anesthesiologist on the basis of the physiological variables of the patient.

Altogether, in practice, the ideal DoA monitor should be able to give an evaluation without EEG.

Furthermore, while a neural analysis of GA is often centered around useful but old methods of

analysis such as time-frequency representation, we believe that recent advances in statistics and

machine learning could greatly contribute in a thinner understanding of the complex mechanisms

occurring during GA.

3 Contributions

In the following, we detail the contributions of this thesis. To emphasize their versatility, each

contribution is supported by a wide variety of experiments, including at least one that is related

to GA. Furthermore, for each algorithm we provide an online open-source Python code.

3.1 A database of patients recorded during a general anesthesia

Made in collaboration with M.D. Clément Dubost, the �rst contribution of this thesis is the

construction and deployment of a complete protocol and recording chain to build a large database

of patients under routine GA on which we could work. To that end, helped by Brian Berthet-

Delteil, Arno Benizri, and Gael de Rocquigny, we continuously recorded synchronously the
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physiologic variables routinely monitored during anesthesia together with a 32 channels EEG. All

these variables are listed in Table 1.1. Between February 2016 and May 2018, 88 subjects, all from

“Hôpital d’Instruction des Armées Bégin, Saint-Mandé, France”, have been included in the database.

Note that, to the best of our knowledge, this is the �rst database of patients under routine GA

where both multichannel EEGs and physiological variables are recorded synchronously from the

moment they enter the operating room up to three hours after the end of surgery.

3.2 Graph learning on multivariate signals

In the second contribution, we consider the graph learning problem i.e. the problem of learning

a graph from multivariate graph signals. As already explained, such signals are multivariate

observations carrying measurements corresponding to the nodes of an unknown graph, which we

desire to infer. The idea of this contribution actually comes from a simple observation. In general,

we do not have a graph which is adapted to the signal of interest. One possible idea is thus to learn

it. However, as this is an ill-posed problem, we must assume several properties on both signals and

associated graph. In our approach, these properties take their inspiration from the �eld of Graph

Signal Processing (GSP) [Shuman et al., 2013; Ortega et al., 2018]. This domain provides intuitive

graph-induced structural constraints, and has already proven its success in many applications,

especially in neuroscience with the analysis of the brain. Indeed, for instance Huang et al. [2018]

show that by constructing a graph from structural connectivity and considering brain activity as

graph signals, it is possible to capture relevant brain properties (e.g. cognitive features) with GSP

concepts.

More speci�cally, we elaborate an optimization problem to learn the Laplacian of the underlying

graph. To alleviate the ill-posed problem, the graph signals are assumed to behave smoothly

with respect to the same underlying graph structure and to admit a sparse representation in

the spectral domain of this graph. This last property, referred to as bandlimitedness in GSP, is

known to carry information related to the cluster structure of the graph [Von Luxburg, 2007;

Sardellitti et al., 2019]. The learned graph is therefore a good candidate in the initialization of

spectral clustering methods. Note that these two properties are also core assumptions in a lot of

methods treating e.g. graph sampling, or interpolation over graphs. To solve this graph learning

problem, we propose two algorithms called IGL-3SR and FGL-3SR. Based on a 3-step alternating

procedure, both algorithms rely on standard minimization methods – such as manifold gradient

descent or linear programming – and have lower complexity compared to previous algorithms.

While IGL-3SR ensures convergence, FGL-3SR acts as a relaxation and is signi�cantly faster since

its alternating process relies on multiple closed-form solutions. To highlight the e�ciency of our

methods, we provide multiple examples ranging from meteorology to EEG analyses.

3.3 Tensor-based convolutional dictionary learning approach

The third contribution results from the combinations of two families of methods to analyze

multivariate signals. The �rst family of methods is called Convolutional Dictionary Learning

(CDL) [Wohlberg, 2015; Garcia-Cardona and Wohlberg, 2018a]. It consists in learning atoms

– or patterns – which give a sparse approximation of signals. Hence, contrary to Fourier or

wavelet bases, the atoms are not prede�ned, but are learned from the signal itself. This idea

of providing a linear decomposition of a signal into few learned atoms, instead of prede�ned

ones, has led to signi�cant results in a wide range of topics, including image classi�cation, image

restoration, and signal processing (see [Wohlberg, 2015; Garcia-Cardona and Wohlberg, 2018a]
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Variables Units abbreviation

EKG
Electrocardiogram 1 µV EKG

E-EEG Module
Electroencephalography (32 channels) µV EEG

Basics Module
Heart Rate /min HR

Systolic arterial blood pressure mmHg SBP

Diastolic arterial blood pressure mmHg DBP

Mean arterial blood pressure mmHg MBP

Saturated percentage of Dioxygen /100% SpO2

Temperature 1 ℃ T1

Temperature 2 ℃ T2

Heart rate from arterial line 1 /min P1 HR

Invasive systolic arterial blood pressure 1 mmHg P1 Sys

Invasive diastolic arterial blood pressure 1 mmHg P1 Dia

Invasive mean arterial blood pressure 1 mmHg P1 Mean

Heart rate from arterial line 2 /min P2 HR

Invasive systolic arterial blood pressure 2 mmHg P2 Sys

Invasive diastolic arterial blood pressure 2 mmHg P2 Dia

Invasive mean arterial blood pressure 2 mmHg P2 Mean

ST elevation on lead DII mm ST II

ST elevation on lead V5 mm ST V5
ST elevation on lead aVL mm ST aVL

Gaz Analysis Module
End tidal carbon dioxyde mmHg Et CO2

Anesthesia Agent AA

AA Expiratory Concentration /100% AA ET

AA Inspiratory Concentration /100% AA FI

Total Minimum Alveolar Concentration /100% AA MAC SUM

Fraction inspired of dioxygen /m Fi O2

Mean alveolar concentration /m MAC

Fraction inspired Nitrous Oxide /m Fi N2

End tidal Nitrous Oxide /m Et N2O

Respiratory Rate /min RR

BIS Module
Bispectral Index BIS

BIS Burst Suppression Ratio % BIS BSR

BIS Electromyography dB BIS EMG

BIS Signal Quality Index % BIS SQI

Table 1.1: Standard variables recorded during a surgery.
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Activation in time Activation in time

Figure 1.7: Two spectrograms obtained from a stereo music recording. Some repetitive patterns (high-

lighted in red and orange) are visible on the two spectrograms and suggest that a CDL model may appear as

natural for such data. In addition, the low-rank structure of the data is here transferred into the activations

tensors rather than into the observed patterns. In other words, although the time-frequency atoms may be

complex (and thus without a low-rank structure), the activations (i.e. the time/frequency/channel positions

where these atoms appear) clearly exhibit a low-rank structure.

and references therein). Nevertheless, while these methods exhibit interesting properties, they

are mainly focused on resolution for univariate signals [Garcia-Cardona and Wohlberg, 2018b],

and therefore do not fully take into account the possible interaction between the di�erent modes

of multivariate signals. Moreover, they are frequently vulnerable to noise and perturbations such

as impulsive noise [Simon and Elad, 2019; Wang et al., 2020].

To take into account these drawbacks, we introduce a tensor CDL model where both activations

and atoms are represented by tensors. More precisely, we propose to employ CDL approaches

in combination with a second family of methods that include CP low-rank constraints in their

modelization. By adding to the initial CDL problem a CP low-rank constraint for each activation,

we constrain these activations to be sparse and low-rank. We therefore take into account the

multivariate structure of the data and obtain accurate and interpretable results. Note that while

the idea of enforcing low-rank constraints for CDL is not novel, it is mainly enforced on the

dictionary and not on the activations. Nevertheless, we claim that constraining the activations to

be low rank brings two majors advantages. First, in multiple application contexts the low-rank

structure naturally appears in the activations rather than in the atoms/dictionary (see Figure

1.7). Second, low-rank constraints on activation entail a better robustness with respect to noise,

which is one of the main weaknesses of the activation learning part of CDL [Simon and Elad,

2019]. Another motivation of this model comes from a large number of works which relies on a

tensorial representation of multivariate time-series with great success (see e.g. the huge literature

considering EEG signals [Miwakeichi et al., 2004; Mørup et al., 2006; De Vos et al., 2007; Becker

et al., 2010, 2014, 2015; Dauwels et al., 2011; Mørup, 2011; Zhao et al., 2011; Mahyari et al., 2016]).

In these works, signals are frequently analyzed by computing a short-time Fourier transform for

each “channel”, resulting in a tensor of order 3 encoding a space-time-frequency representation.
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Figure 1.8: Illustration of the product graph G between two graphs G1 and G2. � represents either a

Cartesian (only colored edges), a Kronecker (only gray edges) or a strong product (all edges) between these

two graphs. Figure modi�ed from the original one in [Ortiz-Jiménez et al., 2018].

The resulting tensor is then studied through the prism of the canonical polyadic decomposition

to exploit the interactions among multiple modes. Here, while slightly di�erent because we do

not directly apply tensor decompositions to the data, coupling the CDL representation with a

low-rank constraint also results in (local) representations that are (i) more robust to noise and (ii)

easier to understand [Zhao et al., 2011; Zhou et al., 2013; Cong et al., 2015; Rabusseau and Kadri,

2016].

3.4 Graph Product for multivariate graph signals

In the fourth contribution, we propose a simple approach to identify the frequency support of

multivariate time-vertex graph signals by combining graph and tensor methods. Such signals are

related to the notion of time-vertex signal processing in GSP where both spatial and temporal

interactions are modeled [Grassi et al., 2018]. Although this framework was initially introduced

for matrix-value signals, in the multivariate case we need to extend it by considering relationships

within any dimension (e.g. time, space, feature space). To this end, one graph per dimension

is de�ned, and these structures are merged using a graph product [Imrich and Klavzar, 2000;

Hammack et al., 2011; Leskovec et al., 2010; Sandryhaila and Moura, 2014]. An example is given

in Figure 1.8. Interestingly, it appears that the resulting complex structure can be easily studied

through the tensor formalism. Henceforth, to identify the frequency support of the multivariate

graph signal, we �rst choose one graph per dimension a priori, and then, introduce an optimization

problem including tensor-based regularizations adapted to a bandlimitedness assumption. These

sparsity regularizations can be speci�ed so as to work only on one dimension (i.e. selection of

the best time samples, channels, or features). In addition, by comparing results obtained with the

graphs chosen a priori against the ones from random graphs, we provide a simple way to assess

their relevance. We apply our method to a tensorial representation of EEG signals highlighting

its performance for sampling and compression. While this contribution is focused on time-vertex

signals, the core idea can be applied on any multivariate graph signals.

3.5 Apprenticeship learning for a predictive state representation of
anesthesia

In this �fth, and last, contribution, we propose a decision support algorithm which assists anesthe-

siologists in administering drugs in order to maintain an optimal DoA. Derived from a Transform

Predictive State Representation algorithm (TPSR) [Littman and Sutton, 2002; Rosencrantz et al.,

2004; Boots et al., 2011], our model learns by observing anesthesiologists in practice. This frame-

work, known as apprenticeship learning [Abbeel and Ng, 2004], is particularly useful in the
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medical �eld as it is not based on an exploratory process – a prohibited behavior in healthcare

[Gottesman et al., 2018]. TPSR is one particularly powerful and �exible model class employed in

the area of sequence prediction. The key insight in this class of models is that observed sequence

data is often the manifestation of some underlying, or hidden, dynamics [Hamilton et al., 2014]. By

modeling the transition structure between di�erent hidden states and the probabilities governing

the emission of observations from these hidden states, a succinct and powerful predictive model

can be obtained. Notice that, while the previous contributions are mostly related to EEG analyses,

here, to provide a very practical tool for the anesthesiologists we only rely on the four commonly

monitored variables during surgery: Heart Rate (HR), Mean Blood Pressure (MBP), Respiratory

Rate (RR), and the concentration of anesthetic drug (AAFi). This choice is motivated by the

fact that, while an analysis of EEG is mandatory to precisely understand the behavior of brain

activity, we believe that a practical tool should be based only on physiological variables routinely

monitored and visualized by anesthesiologists. The proposed approach could be of great help for

clinicians by improving the �ne tuning of the DoA. Furthermore, the possibility to predict the

evolutions of variables would help preventing side e�ects such as low blood pressure. A tool that

could autonomously help the anesthesiologist would improve safety-level in the surgical room.

4 Outline of the thesis

This thesis is organized as follows:

• Chapter 2 introduces an optimization problem to learn a graph from signals that are assumed

to be smooth and admitting a sparse representation in the spectral domain of the graph. We

solve this problem by introducing an algorithm that combines barrier methods, alternating

minimization, and manifold optimization. A relaxed algorithm is also proposed, which

allows to scale in time with the graph dimensions. Finally, the two proposed algorithms are

tested on several synthetic and real databases, and compared to state-of-the-art approaches.

• Chapter 3 provides a new approach to learn representation of multivariate signal based

on tensor and convolutional dictionary learning approaches. We show that a CP low-rank

constraint on the multivariate activations allows to take into account their possible (linear)

structure, together with allowing a better robustness to noise. Two algorithms either based

on ADMM and FISTA are proposed, and a large amount of experiments are performed on

both synthetic and real data.

• Chapter 4 proposes a simple approach to identify the frequency support of multivariate

time-vertex graph signals. It is built around the notion of graph product and the de�nition

of three graphs that each model the interactions within one dimension (time, space, feature

space). By using the tensor formalism, several sparsity methods are proposed. These

approaches are tested on multichannel EEG signals in order to assess the sampling and

interpolation performances of the proposed framework.

• Chapter 5 introduces a decision support algorithm based on TPSR and apprenticeship

learning which assists anesthesiologists in administering drugs in order to maintain the

optimal DoA. In the objective of proposing a practical tool, the model only relied on four

commonly monitored variables. The performances of the resulting agent is analyzed with

diverse metrics and through its confrontation to real anesthesiologists.
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Learning Laplacian matrix from graph

signals with sparse spectral representation

Abstract

In this chapter, we consider the problem of learning a graph structure from multivari-

ate signals, known as graph signals. Such signals are multivariate observations carrying

measurements corresponding to the nodes of an unknown graph, which we desire to infer.

We propose an optimization program to learn the Laplacian of this graph and provide two

algorithms to solve it, called IGL-3SR and FGL-3SR. To alleviate this ill-posed problem, signals

are assumed to enjoy a sparse representation in the graph spectral domain, a feature which

is known to carry information related to the cluster structure of a graph. They are also

assumed to behave smoothly with respect to the underlying graph structure. Based on a

3-steps alternating procedure, both algorithms rely on standard minimization methods –such

as manifold gradient descent or linear programming– and have lower complexity compared

to state-of-the-art algorithms. While IGL-3SR ensures convergence, FGL-3SR acts as a relax-

ation and is signi�cantly faster since its alternating process relies on multiple easy to compute

closed-form solutions. To justify our approach, we present a probabilistic interpretation of

the optimization program as a Factor Analysis Model. Finally, we extensively evaluate both

algorithms on synthetic and real data. They are shown to perform as good or better than

their competitors in terms of both numerical performance and scalability.
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1 Introduction

Graphs are fundamental to model pairwise relations between objects or entities of interest. In the

past years, they have proven their e�ciency in a large variety of �elds from biology [Barabasi and

Oltvai, 2004] to neuroscience [Richiardi et al., 2013]. The strength of such concept is explained

by its �exibility and its capacity to represent irregular and complex structures that can not be

analyze with standard tools. However, while the availability of the graph is a core assumption

in many computational tasks, such as spectral clustering [Von Luxburg, 2007], semi-supervised

learning [Zhu, 2005], or graph signal processing [Shuman et al., 2013; Sandryhaila and Moura,

2013; Ortega et al., 2018], in most situations no natural graph can be derived or de�ned. In this

situation, one approach is to infer the underlying graph from available data. This task, often

referred to as graph learning, has also received signi�cant attention in various �elds such as

machine learning, signal processing, biology, meteorology, etc. [Friedman et al., 2008; Hecker

et al., 2009; William et al., 2017; Dong et al., 2019].
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(a) (b)

Figure 2.1: Two graph signals observed on the same graph of 300 nodes. Same colors represent identical

values on the nodes. (a) The �rst signal does not admit smoothness on the graph. (b) The second signal

admits smoothness at the level of adjacent nodes. From the de�nition, smooth graph signals in the vertex

domain are signals where neighboring nodes tend to have similar values.

Learning a graph is an ill-posed problem as several graphs can explain the same set of observations.

In consequence, previous works have been devoted to introduce underlying models or constraints

that would narrow down the range of possible solutions. For instance, physical constraints may

be imposed to suggest epidemic models or other information propagation and interaction models

[Rodriguez et al., 2011; Du et al., 2012; Gomez-Rodriguez et al., 2016]. From a statistical perspective,

the graph learning task is seen as the estimation of the parameters of a certain probability

distribution parameterized by the graph itself. Generally, the assumed class of distributions is

either a Bayesian Network in the case of directed graph, or a Markov Random Field for undirected

graphs [Koller and Friedman, 2009; Yang et al., 2015; Wang and Kolar, 2016; Tarzanagh and

Michailidis, 2018]. Here, the graph structure encompasses the conditional dependencies between

variables. In the particular case of a Gaussian Random Field, the graph learning task consists in

estimating the inverse covariance matrix, known as the precision matrix [Banerjee et al., 2008].

Several constraints could be imposed on this matrix. For instance, in [Friedman et al., 2008], the

proposed estimation method, known as the Graph-Lasso algorithm, relies on the assumption that

the precision matrix is sparse.

More recently, Graph Signal Processing (GSP) [Shuman et al., 2013; Ortega et al., 2018; Djuric and

Richard, 2018], has appeared to be a powerful alternative framework to learn graphs [Pasdeloup

et al., 2017; Thanou et al., 2017; Segarra et al., 2017; Dong et al., 2019]. Indeed, GSP generalizes

standard concepts and tools of signal processing to multivariate signals recorded over graphs.

Hence, notions such as smoothness, sampling, �ltering, etc., were adapted to GSP, and then used

to learn speci�c graphs. For instance, the smoothness of observations with respect to the true

underlying graph is one of the most common assumption [Daitch et al., 2009; Kalofolias, 2016;

Egilmez et al., 2016; Chepuri et al., 2017; Dong et al., 2019] to learn graphs on which signals

have small local variations among adjacent nodes (Figure 2.1). Another natural assumption is

the sparsity of the observations in a graph spectral basis [Valsesia et al., 2018; Sardellitti et al.,

2019]. Indeed, in clustering for instance, the vector of labels seen as a signal over the nodes of

a graph, exhibits a sparse spectral representation: it is smooth within each cluster and varies

from one cluster to another (Figure 2.2). Building such graph is therefore of huge interest for

graph-based clustering approaches. Such sparsity assumption is also relevant for the sampling

task. Indeed, by making use of this property, it is possible under mild conditions to reconstruct

the observations for nodes that have not been sampled [Chen et al., 2015b,d]. The GSP framework
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(a) (b) (c)

Figure 2.2: Three smooth graph signals (N = 300) with decreasing bandlimitedness: (a) A signal with a

150 sparse spectral representation. (b) A signal with a 6 sparse spectral representation. (c) A signal with a

3 sparse spectral representation. Same colors represent identical values on the nodes.

is also strongly motivated by a wide range of applications where there exist inherent structures

behind data observations. One remarkable and elegant application of the GSP is for example in

the analysis of brain activity [Huang et al., 2016, 2018] where the main interest lies in its potential

to jointly model brain structure as a graph and brain activities as signals residing on the nodes of

this graph. The structural and functional connectivity of the brain related to di�erent diseases or

external stimuli can then be study at the same time.

Aim and main contributions. In the present chapter, we introduce an optimization problem

to learn a graph from signals that are assumed smooth and with a sparse representation in the

spectral domain of the graph. These properties, all borrowed from GSP, can be considered either as

constraints or regularizations for the graph learning task, and o�er a new perspective on the topic.

The main contributions of this chapter are summarized as follows:

• The graph learning task problem is cast as the minimization of a smooth non-convex objective

function over a non-convex set (Section 3). This problem is e�ciently solved by introducing an

algorithm that combines barrier methods, alternating minimization, and manifold optimization

(Section 4). Another algorithm is also proposed, which allows to scale in time with the graph

dimensions (Section 5).

• A factor analysis model for smooth graph signals with sparse spectral representation is in-

troduced (Section 6). This model provides a probabilistic interpretation of our optimization

problem by linking its objective function to a maximum a posteriori estimation.

• The two proposed algorithms are tested on several synthetic and real data, and compared to

state-of-the-art approaches (Section 8). Experimental results show that our approach allows

to obtain similar or better performance than standard existing methods while signi�cantly

lowering the necessary computing resources.

2 Background on graphs

A graph describes a network by specifying pairs of entities, denoted nodes, that are connected to

one another. This connection can be symmetric (e.g. neighborhood) or asymmetric (e.g. prey v.s.
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(a) Directed graph (b) Undirected graph (c) Weighted graph

Figure 2.3: Graphical representation of a directed (a), undirected (b) and (directed) weighted (c) graph.

Directed edges are represented by arrows, and their thickness represents the weight.

predator). We begin this section by providing de�nitions for directed, undirected, and weighted

graphs.

2.1 De�nitions from graph theory

De�nition 2.1. (Directed graph.) – A directed graph G = (V, E) is de�ned via a �nite set of
nodes (or vertices) V = {1, · · · , N}, and a set of edges E = {(i, j, wij), i, j ∈ V} ⊂ V × V , i.e.
pairs of nodes that are considered neighbors. The size of G denotes the number of nodes of G, i.e.
card(V) = N .

In the sequel, we will always assume that a graph has no self-loops (i.e. ∀u ∈ V, (u, u) /∈ E ), and

no multiple edges on the same pair of nodes. Furthermore, we will always consider undirected

graph. The following de�nition encodes this notion where connections between entities are

symmetric.

De�nition 2.2. (Undirected graph.) – An undirected graph G = (V, E) is a directed graph whose
edge set is symmetric, i.e. ∀(u, v) ∈ E , (v, u) ∈ E .

In many applications, the importance of a connection between two nodes is variable. Assigning a

weight to each edge is a very natural way to take this imbalance into account.

De�nition 2.3. (Weighted graph.) – A weighted graph is a pair G = (V, E) with nodes V =
{1, · · · , N}, and set edges E = {(i, j, wij), i, j ∈ V} with weights wij ∈ R+ arranged in a weights
matrixW ∈ RN×N . This graph can be either directed of undirected. It is directed if connections
between nodes are asymmetric and the pairs (i, j) are ordered. It is undirected if the pairs (i, j) are
not ordered and hence interactions between nodes are symmetric.

Remark 2.1. A graph is said to be binary if the weights are in {0, 1}. In this case, the weights
matrixW is called the adjacency matrix and is often denotedA.

Many graph characteristics can be expressed using the weights matrixW , making it an important

piece of network analysis. From it, we can for example introduce the notion of degree.

De�nition 2.4. (Degree and degree matrix.) – The degree of a node i is the number of nodes to
whom it is connected and is expressed as di =

∑N
i=1W i,j . The degree matrix D is a diagonal

matrix which contains the degree of each node.

In the following, we will focus mainly on a matrix called the graph Laplacian. While several

de�nitions are proposed in the literature, we consider in this manuscript the combinatoral graph
Laplacian.
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De�nition 2.5. (Combinatorial graph Laplacian.) – A graph is entirely described by its combi-
natorial graph Laplacian matrix L = D −W , whereD is the degree matrix andW the weights
matrix.

The Laplacian matrix of a graph is the subject of numerous works, especially in spectral graph
theory [Chung and Graham, 1997; Mohar, 1992; Das, 2004; Zhang, 2011]. A great deal of attention is

dedicated to the eigenvalues and eigenvectors of the Laplacian as they re�ect important properties

of the associated graph (see e.g. [Alon, 1986; De Abreu, 2007]). Among all the eigenvalues of

the Laplacian, one of the most popular is the second smallest, called the algebraic connectivity,

because this is a convenient value to measure how well a graph is connected [Fiedler, 1973].

For example, a graph is connected if and only if its algebraic connectivity is di�erent from zero

(a direct consequence of the Matrix-Tree Theorem [Biggs et al., 1993; De Abreu, 2007]). The

associated eigenvector is called the Fiedler vector and is also of great interest [Fiedler, 1975]. We

now recall two important propositions related to the spectrum of a Laplacian.

Proposition 2.1. If G is undirected, with no self-loops, L is a real (symmetric) positive semi-
de�nite matrix and, its eigendecomposition – which is also its singular value decomposition – can be
written as L = XΛX

ᵀ, with Λ = diag(λ1, . . . , λN ) a diagonal matrix with the eigenvalues and
X = (x1, . . . ,xN ) a matrix with the eigenvectors as columns.

Proposition 2.2. Let assume that G has a unique connected component. In this particular case,
λ1 = 0 and x1 = 1N , where 1N is the constant unitary vector of size N .

When a matrix satis�es these two propositions, one can treat it as a Laplacian and consider the

graph associated with it. These two propositions are therefore cornerstone in the graph inference

task as they de�ne su�cient constraints to recover a true Laplacian.

2.2 De�nitions from GSP

In this section, we introduce basic GSP concepts. A full overview can be found in [Shuman et al.,

2013; Ortega et al., 2018] and more recently in [Stanković et al., 2019].

De�nition 2.6. (Graph signal.) – A graph signal, or graph function, is de�ned as a function
y : V −→ RN that assigns a scalar value to each node. This function can be represented as a vector
y ∈ RN , with yi the function value at the i-th node.

It is possible to create a spectral representation of y adapted to a graph using the Graph Fourier

Transform (GFT).

De�nition 2.7. (Graph Fourier Transform.) – Given a graph G, the GFT of a graph signal y is
given by h = X

ᵀ
y, where the components of h are interpreted as Fourier coe�cients, the eigenvalues

as distinct frequencies, and the eigenvectors as a decomposition basis.

This de�nition is motivated by one important observation. Let consider a directed cycle graph,

which is the support of classical time-varying signals (see Figure 2.4(b)). Interestingly, it appears

that the eigenvector decomposition of the adjacency or Laplacian matrix gives as eigenvector

matrix the Fourier matrix (see e.g. [Segarra et al., 2016; Huang et al., 2016]). Hence, the GFT of a

graph signal y (with respect to the cyclic graph) is its discrete Fourier transformation.

The subsequent de�nitions describe two fundamental properties of graph signals assumed in this

chapter.
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(a) Complete graph (b) Directed cycle graph (c) Line graph

Figure 2.4: Three particular graphs: (a) Complete graph, (b) Directed cyclic graph, and (c) Line graph.

De�nition 2.8. (Spectral sparsity.) – We say that a graph signal y admits a k ∈ N+ sparse
spectral representation with respect to a graph G if for h = X

ᵀ
y

‖h‖0 = k , (2.1)

i.e. if the number of non-zero elements in its Fourier coe�cient vector is equal to k.

Relation with clusters of a graph. The spectral sparsity is related to the number of clusters

of a graph [Von Luxburg, 2007; Sardellitti et al., 2019]. To see this, let consider an ordered vector

of two labels y = (−1,−1, 1, 1). In the case where the graph has two connected components

i.e. two “perfect clusters”, the �rst two columns ofX are x1 = (0, 0, 1, 1) and x2 = (1, 1, 0, 0)
and the vector y is thus a linear combination of x1 and x2. As X is an orthogonal matrix,

〈x3,y〉 = 〈x4,y〉 = 0. In other words,X
ᵀ
y = h admits a 2 sparse spectral representation with

respect to this graph.

Relation with sampling. This property is also crucial for sampling i.e. measuring a graph

signal on a reduced set of nodes that allow its stable reconstruction [Chen et al., 2015d; Marques

et al., 2016; Lorenzo et al., 2018; Puy et al., 2018; Wang et al., 2018a; Tanaka et al., 2020]. An

intuitive way to formalize (irregular) sampling for a graph signal is to introduce aM×N selection

matrix C and to de�ne the sampled signal of size M as

ȳ = Cy . (2.2)

If C is chosen as binary, it has a single non-zero element per row, and at most one non-zero

element per column. Hence, the signal ȳ is a selection of M out of the N elements of y. Now, let

assume that y is k-sparse. The sampled signal ȳ is then

ȳ = Cy = CXh = CXkhk , (2.3)

whereXk, and hk areX and h without the irrelevant dimensions determined by the sparsity

of h. If for a speci�c choice of C , the matrix CXk ∈ RK×K is invertible, hk can be recovered

from ȳ and the signal in the original domain can be found from its sampling i.e.

y = Xk(CXk)
−1ȳ . (2.4)

This equation shows how the original signal can be interpolated from its samples. However,

note that the matrix CXk has to be invertible. Hence, the key for guaranteeing perfect signal

reconstruction is to select a subset of nodes such that the corresponding rows in Xk are linearly

independent.
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Figure 2.5: A graph signal y taking its values in {0, 1} on three di�erent graphs. This signal can potentially

live on these graphs but only one leads to a sparse graph signal representation. In this illustration, while all

the graphs are valid a priori, only the second one favor the sparsity property of y and have one connected

component.

Remark 2.2. (Sparsity assumption.) – In GSP this property is known as bandlimitedness. In general,
it is assumed that the null components ofh are those associated to the largest eigenvalues (frequencies).
Indeed, this additional hypothesis permits to �t the fundamental principle of signal processing which
suggests that the high-frequency band of a signal should be �ltered, as they carry mainly noise and
little or no information. This assumption on graph signals is very common, especially in GSP where
it is the main hypothesis of several GSP sampling methods [Narang et al., 2013; Anis et al., 2014;
Chen et al., 2015b,d; Marques et al., 2016].

De�nition 2.9. (Smoothness.) – A graph signal y is said to be s ≥ 0 smooth with respect to a
graph G if

‖L1/2y‖22 = y
ᵀ
Ly =

1

2

∑
i,j

wij

(
yi − yj

)2 ≤ s · ‖y‖22 . (2.5)

Remark 2.3. (Smoothness assumption.) – While this property can be quanti�ed with various
metrics, the most common is given by the above de�nition. From this formula, we see that y gets
smoother, thus (2.5) lower, when its value at any two nodes gets closer as their edge weight gets larger.
This natural property has consequently been widely considered for graph inference [Daitch et al.,
2009; Dong et al., 2016; Kalofolias, 2016]. Also note that if x is an eigenvector of the Laplacian matrix
L associated to the eigenvalue λ, then xᵀ

Lx = λx
ᵀ
x = λ.

2.3 Graph learning task in GSP

To highlight the impact of the sparsity assumption on the graph inference task, we illustrate

the interplay between the graph and the data in Figures 2.5. In this example, we consider an

unordered signal y tanking its values in {0, 1}. This signal can potentially be de�ned on the

three graphs from Figure 2.5. Indeed, without any assumption on the properties of the graph

signal, they are all valid choices. In the other hand, if we assume that the signal need to admit a

sparse spectral representation on its underlying graph (with one connected component), then (b)

is the most reasonable candidate. In this chapter, our objective is to learn this graph from a set of

observations that are all supposed to share the same underlying graph.

3 Problem statement

This section describes the graph learning problem for sparse and smooth graph signals.
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3.1 Setup and working assumptions

The general task of graph learning aims at building a graph G that best explains the structure of n
observed graph signals {y(k)}nk=1 of size N . We collect them in a matrix Y = [y(1), · · · ,y(n)] ∈
RN×n. The proposed graph learning framework takes as input the matrix Y and outputs the

Laplacian matrix L associated to G (note that both notions are equivalent). Our learning process

is based on the following assumptions:

Assumption 2.1. (Assumption on the graph G) – G is undirected, with no self-loop and has a
single connected component.

With Assumption 2.1, L is a symmetric positive semi-de�nite matrix with eigenvalue decomposi-

tion L = XΛX
ᵀ
, where λ1 = 0 and x1 = 1√

N
1N (see Proposition 2.1 and 2.2).

Assumption 2.2. (Assumption on the signals Y ) – Graph signals Y de�ned over the true under-
lying graph G are assumed s-smooth and admit a k-sparse spectral representation, with unknown
values for s and k.

On the spectral sparsity assumption. To further justify the consideration of this property we

can see that it is also related to the cluster structure of a graph. Indeed, if a graph has k clusters,

a signal that is smooth within each cluster and can vary arbitrarily across di�erent clusters

will admit a k-sparse spectral representation. In this context, the non-null weights of h will be

necessarily associated to the k �rst eigenvectors of the corresponding Laplacian matrix as these

eigenvectors are also smooth within the clusters [Von Luxburg, 2007]. To enforce such behavior

in the graph learning process, i.e. make sure that only the �rst coe�cients of h are non-zero, the

bandlimitness property must be combined with the smoothness property.

Figures 2.1 and 2.2 show examples of graph signals that illustrate the intuition behind our two

core assumptions on signals.

3.2 Graph learning for smooth and sparse spectral representation

A general graph learning scheme consists in learning the adjacency or the Laplacian matrix.

However, since the constraint of Assumption 2.2 (sparsity of the graph signals over the eigen-basis

of the Laplacian matrix) is easier to be expressed in the spectral domain, in this chapter we focus

on learning the eigendecomposition of the Laplacian matrix L = XΛX
ᵀ
. The optimization

problem incorporates a linear least square regression term depending of Y ,X , andH , which

controls the distance of the new representation XH to the observations Y . In addition, due

to Assumption 2.2, we add two penalization terms: One to control the smoothness of the new

representation, depending on Λ andH ; the other to control the sparsity on the spectral domain,

which only depends onH . Finally, as we want to learn a Laplacian matrix satisfying Assumption

2.1, equality and inequality constraints relative to X and Λ are necessary. To that end, we

introduce the following optimization problem:

min
H,X,Λ

‖Y −XH‖2F + α‖Λ1/2H‖2F + β‖H‖S , (2.6)
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X

ᵀ
X = IN , x1 = 1√

N
1N , (a)

(XΛX
ᵀ
)k,` ≤ 0 k 6= ` , (b)

Λ = diag(0, λ2, . . . , λN ) � 0 , (c)
tr(Λ) = N ∈ R+

∗ , (d)

where IN is the identity matrix of size N , tr(·) denotes the trace, and Λ � 0 indicates that

the matrix is semi-de�nite positive.

This problem aims at conjointly learning the Laplacian L (i.e. (X,Λ)) and a smooth ban-

dlimited approximation XH of the observed signals Y . Here, H is the same size as Y and

corresponds to the spectral representation of the graph signals through the GFT.

Interpretation of the terms. In the objective function (2.6), the �rst term corresponds to the

quadratic approximation error of Y byXH , where ‖ · ‖F is the Frobenius norm.

The second term is a smoothness regularization imposed to the approximationXH . Rewriting

the smoothness equation (2.5) for the set of graph signalsXH , we obtain

‖L1/2XH‖2F = ‖XΛ1/2X
ᵀ
XH‖2F = ‖Λ1/2H‖2F =

N∑
i=1

λi‖H i,:‖22 ,

whereH i,: is the i-th row of the matrixH . This kind of regularization is very common in graph

learning [Kalofolias, 2016; Chepuri et al., 2017]. From its de�nition, we can see that it tends

to be low when high values of {λi}Ni=1 are associated to rows of H with low `2-norm. This

corroborates the idea that the {λi}Ni=1 can be interpreted as frequencies and the elements ofH
as Fourier coe�cients.

The last term, β‖H‖S , is a sparsity regularization. In this work, we propose to either use the `2,1
(sum of the `2-norm of each row ofH) or `2,0 (number of rows with `2-norm di�erent than 0)

that induces a row-sparse solution Ĥ .

Remark on the choice of ‖ · ‖S – In the context of GSP, it is natural to assume that the graph

signals are bandlimited at the same dimensions. This property is enforced by ‖ · ‖S and has two

main advantages: it is a key assumption for sampling over a graph and this particular structure is

better for inferring graphs with clusters [Sardellitti et al., 2019]. Therefore, in this work, the use

of the classical `0-norm and the `1-norm have not been investigated since they would impose

sparsity at every dimension of the matrixH “independently”, which would consequently break

the bandlimitedness assumption.

The hyperparameters, α, β > 0 are controlling respectively the smoothness of the approximated

signals and the sparsity of H . A discussion on the in�uence of these hyperparameters and an

e�cient way to �x them is provided in Section 8.3.1. Finally, the �rst three constraints (2.6a), (2.6b),

(2.6c) enforceXΛX
ᵀ

to be a Laplacian matrix of a graph with a single connected component

(Assumption 2.1). More speci�cally, by de�nition, L = D −W with W ∈ RN×N+ , thus we

necessary have ∀k 6= `,Lk,` = (XΛX
ᵀ
)k,` ≤ 0 (constraint (2.6b)). Furthermore, asXΛX

ᵀ
is

the eigendecomposition of the Laplacian matrix of an undirected graph with a single connected

component (Assumption 2.1), X
ᵀ
X = IN ,x1 = 1√

N
1N and λ1 = 0 < λ2 ≤ . . . ≤ λN

(constraints (2.6a) and (2.6c)). The last constraint (2.6d) was proposed in Dong et al. [2016] as to

impose structure in the learned graph so that the trivial solution Λ̂ = 0 is avoided. A discussion

about values other than N is made in Kalofolias [2016].
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Properties of the objective function (2.6). The objective function (2.6) is not jointly convex

but when ‖·‖S is taken to be the `2,1 norm, it is convex with respect to each of the block-

variablesH,X, or Λ, taken independently. A natural approach to solve this problem is therefore

to alternate between the three variables, minimizing over one while keeping the others �xed.

However, due to the equality constraint (2.6a) and inequalities (2.6b), the feasible set is not

convex with respect to X . Hence, this approach raises several di�culties that will be discussed

and handled in the following section.

3.3 Reformulation of the problem

As stated in Section 3.2, problem (2.6) is not jointly convex and cannot be solved easily with

constraints (2.6a) and (2.6b). In this section, we propose to rewrite constraints (2.6a) and (2.6b),

in order to de�ne a new equivalent optimization problem that can be solved with well-known

techniques.

3.3.1 Reformulation of the constraint (2.6a)

In this section, we show that the constraints (2.6a) can be reformulated as a constraint over the

space of orthogonal matrices in R(N−1)×(N−1)
. Although such transformation does not change

the convexity of the feasible set, we will see in Section 4.3 that there exist e�cient algorithms

that perform optimization over such manifold.

De�nition 2.10. (Orthogonal group) – The space of orthogonal matrices in RN×N , called orthog-
onal group, is the space:

Orth(N) = {X ∈ RN×N |Xᵀ
X = IN} .

Lemma 2.1. – GivenX,X0 ∈ RN×N two orthogonal matrices, both having their �rst column
equal to 1√

N
1N (constraint (2.6a)), we have the following equality

X = X0

[
1 0

ᵀ
N−1

0N−1 [X
ᵀ
0X]2:,2:

]
,

with [X
ᵀ
0X]2:,2: denoting the submatrix ofXᵀ

0X containing everything but the �rst row and column
of itself. Furthermore, [Xᵀ

0X]2:,2: is in Orth(N − 1).

The above lemma allows us to build an equivalent formulation of Problem (2.6) given by the

following proposition.

Proposition 2.3. – GivenX0 ∈ RN×N an orthogonal matrix with �rst column being equal to
1√
N

1N , an equivalent formulation of optimization problem (2.6) is given by

min
H,U ,Λ

∥∥∥∥∥Y −X0

[
1 0

ᵀ
N−1

0N−1 U

]
H

∥∥∥∥∥
2

F

+ α‖Λ1/2H‖2F + β‖H‖S , f(H,U ,Λ) , (2.7)
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s.t.



U
ᵀ
U = IN−1 , (a’)(
X0

[
1 0

ᵀ
N−1

0N−1 U

]
Λ

[
1 0

ᵀ
N−1

0N−1 U
ᵀ

]
X

ᵀ
0

)
k,`

≤ 0 k 6= ` , (b’)

Λ = diag(0, λ2, . . . , λN ) � 0 , (c)
tr(Λ) = N ∈ R+

∗ . (d)

The latter proposition says that since the �rst column ofX is �xed and known, it is su�cient to

look for an optimal rotation of a valid matrixX0 that preserves the �rst column. Such a rotation

matrix is given above and is parametrized by a U in Orth(N − 1). Note that in practice, to

�nd a matrixX0 satisfying (2.6a), we build the Laplacian of any graph with a single connected

component and take its eigenvectors.

3.3.2 Log-barrier method for constraint (2.7b’)

In order to deal with constraint (2.7b′), we propose to use a log-barrier method. This barrier

function allows us to consider an approximation of problem (2.7) where the inequality constraint

(2.7b’) is made implicit in the objective function. Denoting by f(·) the objective function of (2.7),

we want to solve

min
H,U ,Λ

f(H,U ,Λ) +
1

t
φ(U ,Λ) s.t. (2.7a’), (2.7c), (2.7d) , (2.8)

where t is a �xed positive constant and φ(·) is the log-barrier function associated to the constraint

(2.7b′).

De�nition 2.11. (Log-barrier function) – Let the following matrix in RN×N :

h(U ,Λ) = X0

[
1 0

ᵀ
N−1

0N−1 U

]
Λ

[
1 0

ᵀ
N−1

0N−1 U

]ᵀ
X

ᵀ
0 ,

involved in the constraint (2.7b′). The associated log-barrier function φ : R(N−1)×(N−1) ×
RN×N −−→ R is de�ned by:

φ(U ,Λ) = −
N−1∑
k=1

N∑
`>k

log
(
− h(U ,Λ)k,`

)
, (2.9)

with dom(φ) =
{

(U ,Λ) ∈ R(N−1)×(N−1) × RN×N | ∀1 ≤ k < ` ≤ N,h(U ,Λ)k,` < 0
}

, i.e.

its domain is the set of points that strictly satisfy the inequality constraints (2.7b’).

This barrier function allows us to perform block-coordinate descent on three easier to solve

subproblems, as we discuss in the next section.

4 Resolution of the problem: IGL-3SR

In this section, we describe our method, the Iterative Graph Learning for Smooth and Sparse Spectral
Representation (IGL-3SR), and its di�erent steps to solve Problem (2.8). Given a �xed t > 0, we

propose to use a block-coordinate descent onH ,U , and Λ, which permits to split the problem in

three partial minimizations that we discuss in this section. One of the main advantages of IGL-3SR

is that each subproblem can be solved e�ciently and as the objective function is lower-bounded

by 0, this procedure ensures convergence. The summary of the method is presented in Algorithm

2.1.
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4.1 Optimization with respect toH

For �xed U and Λ, the minimization Problem (2.8) with respect toH is

min
H
‖Y −XH‖2F + α‖Λ1/2H‖2F+β‖H‖S , whereX = X0

[
1 0

ᵀ
N−1

0N−1 U

]
. (2.10)

When ‖ · ‖S is set to ‖ · ‖2,0 (resp. ‖ · ‖2,1), this problem is a particular case of what is known as

Sparsify Transform Learning [Ravishankar and Bresler, 2012] (resp. is a particular case of the

Group Lasso [Yuan and Lin, 2006] known as Multi-Task Feature Learning [Argyriou et al., 2006]).

Moreover, asX is orthogonal, we are able to �nd closed-form solutions (Proposition 2.4).

Proposition 2.4. (Closed-form solution for the `2,0 and `2,1-norms) – The solutions of Problem
(2.10) when ‖ · ‖S is set to ‖ · ‖2,0 or ‖ · ‖2,1, are given in the following.

• Using the `2,0-norm, the optimal solution of (2.10) is given by the matrix Ĥ ∈ RN×n where
for 1 ≤ i ≤ N,

Ĥ i,: =

{
0 if 1

1+αλi
‖(Xᵀ

Y )i,:‖22 ≤ β ,
1

(1+αλi)
(X

ᵀ
Y )i,: else . (2.11)

• Using the `2,1-norm, the optimal solution of (2.10) is given by the matrix Ĥ ∈ RN×n, where
for 1 ≤ i ≤ N,

Ĥ i,: =
1

1 + αλi

(
1− β

2

1

‖(Xᵀ
Y )i,:‖2

)
+

(X
ᵀ
Y )i,: , (2.12)

where (t)+ , max{0, t} is the positive part function.

4.2 Optimization with respect to Λ

For �xedH and U , the optimization Problem (2.8) with respect to Λ is

min
Λ

α tr(HH
ᵀ
Λ)

‖Λ1/2H‖2F

+
1

t
φ(U ,Λ) s.t.

{
Λ = diag(0, λ2, . . . , λN ) � 0 , (c)
tr(Λ) = N ∈ R+

∗ . (d)
(2.13)

This objective function is di�erentiable and convex with respect to Λ, and the constraints de�ne a

Simplex. Thus, several convex optimization solvers can be employed, such as those implemented in

CVXPY [Diamond and Boyd, 2016]. Popular algorithms are interior-point methods or projected

gradient descent methods [Maingé, 2008]. Using one algorithm of the latter type, we compute the

gradient of 2.13 and project each iteration onto the Simplex [Duchi et al., 2008].

4.3 Optimization with respect to U

For �xedH and Λ, the optimization Problem (2.8) with respect to U is:

min
U

∥∥∥∥∥Y −X0

[
1 0

ᵀ
N−1

0N−1 U

]
H

∥∥∥∥∥
2

F

+
1

t
φ(U ,Λ) s.t. U

ᵀ
U = I(N−1) . (a’) (2.14)
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Figure 2.6: The principle of the manifold gradient descend given schematically. TXOrth(N) is the

tangent space of Orth(N) at X . The red line corresponds to a curve in Orth(N) passing through the

point X in the direction of the arrow. At each iteration, considering that X is the point of the current

solution, a search direction belonging to TXOrth(N) is �rst de�ned, and then a descent along a curve of

the manifold is performed (at the direction of the black arrow along the red line).

The objective function is not convex but twice di�erentiable and the constraint (a’) involves

the set of orthogonal matrices Orth(N − 1) which is not convex. Orthogonality constraint is

central to many machine learning optimization problems including Principal Component Analysis

(PCA), Sparse PCA, and Independent Component Analysis (ICA) [Hyvärinen and Oja, 2000; Zou

et al., 2006; Shalit and Chechik, 2014]. Unfortunately, optimizing over this constraint is a major

challenge since simple updates such as matrix addition usually break orthonormality. One class

of algorithms tackles this issue by taking into account that the orthogonal group Orth(N) is a

Riemannian submanifold embedded in RN×N . In this work, we focus on manifold adaptation of

descent algorithms to solve Problem (2.14).

The generalization of gradient descent methods to a manifold consists in selecting, at each

iteration, a search direction belonging to the tangent space of the manifold de�ned at the current

pointX , and then performing a descent along a curve of the manifold. Figure 2.6 provides pictures

this principle.

De�nition 2.12. (Tangent space at a point of Orth(N)) – LetX ∈ Orth(N). The tangent space
ofOrth(N) at pointX , denoted by TXOrth(N) is a 1

2N(N − 1) dimensional vector space de�ned
by:

TXOrth(N) =
{
XΩ | Ω ∈ RN×N is skew-symmetric

}
.

When we endow each tangent space with the standard inner product, we are able to de�ne a

notion of Riemannian gradient that allows us to �nd the best direction for the descent. For an

objective function f̄ : RN×N→ R, the Riemannian gradient de�ned over Orth(N) is given by:

gradf̄(X) = PX(∇X f̄(X)) , (2.15)

where PX is the projection onto the tangent space atX , which is equal to PX(ξ) = 1
2X(X

ᵀ
ξ−

ξ
ᵀ
X), and ∇X is the standard Euclidean gradient. At each iteration, the manifold gradient

descent computes the Riemannian gradient (2.15) that gives a direction in the tangent space. Then

the update is given by applying a retraction onto this direction, up to a step-size. A retraction

consists in an update mapping from the tangent space to the manifold. Note that there are many

possible ways to perform this update [Edelman et al., 1998; Absil et al., 2009; Arora, 2009; Meyer,

2011]. Finally, from the last equation, we see that in order to solve problem (2.14) with this

method, we need the Euclidean gradient of the objective function, namely those of f(·) and φ(·).

These are given in the following proposition.
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Proposition 2.5. (Euclidean gradient with respect to U ) – The Euclidean gradient of f(·) and
φ(·) with respect to U are:

∇Uf(H,U ,Λ) = −2
[
(HY

ᵀ
X0)2:,2:

]ᵀ
+ 2U(HH

ᵀ
)2:,2: ,

∇Uφ(U ,Λ) = −
N−1∑
k=1

N∑
`>k

(
Bk,` +B

ᵀ
k,`

)
UΛ2:,2:

h(U ,Λ)k,`
,

with ∀1 ≤ k, ` ≤ N,Bk,` =
(
X

ᵀ
0eke

ᵀ
`X0

)
2:,2:

, and h(·) from De�nition 2.11.

4.4 Log-barrier method and initialization

Choice of the t parameter. The quality of the approximation of Problem (2.7) by Problem

(2.8) improves as t > 0 grows. However, taking a too large t at the beginning may lead to

numerical issues. As a solution, we use the path-following method, which computes the solution

for a sequence of increasing values of t until the desired accuracy. This method requires an initial

value for t, denoted t(0)
, and a parameter µ such that t(`+1) = µt(`). For an in-depth discussion

we refer to [Boyd and Vandenberghe, 2004].

Initialization. At the beginning, our IGL-3SR method requires a feasible solution to initialize

the algorithm. One possible choice is to take U as the identity matrix IN−1 and to replace

(X0,Λ) by the eigenvalue decomposition of the complete graph with trace equals to N . Indeed,

its eigenvalue decomposition will always satisfy the constraints and belong to the domain of the

barrier function. The initialization ofH is not needed as we start directly with theH-step.

IGL-3SR is summarized in Algorithm 2.1.

4.5 Computational complexity of IGL-3SR

Considering a graph with N nodes and n > N graph signals:

• H-step (non-iterative) – The closed-form solution requires to compute the matrix product

X
ᵀ
Y , which is of complexity O(nN2).

• Λ-step (iterative) – When using a projected gradient descent method, the complexity of

each iteration is O(nN2) to compute the gradient and O(N log(N)) for the projection

[Duchi et al., 2008]. Hence, denoting by τΛ the number of iterations in each Λ-step, the

complexity is O(τΛ nN
2).

• X-step (iterative) – The complexity of each iteration is O(nN2) to compute the Rieman-

nian gradient and O(N3) when we use the QR factorization as retraction [Boyd and

Vandenberghe, 2018]. Hence, denoting by τX the number of iterations in each X-step, the

complexity is O(τX · nN2).

Overall – The complexity to go through the big loop of IGL-3SR once (i.e. once through each of

theH , Λ, andX steps) is of order O(max(τΛ, τX) · nN2). However, recall that τΛ and τX can

be large in practice for reaching a good solution. In the following, we propose a relaxation for a

faster resolution that relies on closed-form solutions.
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Algorithm 2.1 The IGL-3SR algorithm with `2,1-norm

1: Input: Y ∈ RN×n, α, β
2: Input of the barrier method: t(0), tmax, µ – see Section 4.4

3: Output: Ĥ , X̂ , Λ̂
4: Initialization: L0 (e.g. with a complete graph) – see Section 4.4

5: t←− t(0)

6: (X0,Λ)←− SVD(L0)
7: U ←− IN−1

8: while t ≤ tmax do
9: while not convergence do

10: B H-step: Compute the closed-form solution of Proposition (2.4)

11: for 1 = 1, . . . , N do

12: H i,: ←−
1

1 + αλi

(
1− β

2

1

‖(Xᵀ
Y )i,:‖2

)
+

(X
ᵀ
Y )i,:

13: end for

14: B Λ-step: Solve Problem (2.13)

15: Λ←− arg min
Λ

α tr(HH
ᵀ
Λ)+

1

t
φ(U ,Λ) s.t.

{
Λ = diag(0, λ2, . . . , λN ) � 0 ,
tr(Λ) = N ∈ R+

∗

16: B U -step: Solve Problem (2.14)
17: while not convergence do
18: U ←− retraction(U(

[
(HY

ᵀ
X0)2:,2:

]
U −Uᵀ[

(HY
ᵀ
X0)2:,2:

]ᵀ
))

19: end while

20: end while
21: t←− µt
22: end while

5 A relaxation for a faster resolution: FGL-3SR

In this section, we propose another algorithm called Fast Graph Learning for Smooth and Sparse
Spectral Representation (FGL-3SR) to approximately solve the initial Problem (2.6). FGL-3SR has

a signi�cantly reduced computational complexity due to a well-chosen relaxation. As in the

previous section, we use a block-coordinate descent onH ,X , and Λ, which permits to decompose

the problem in three partial minimizations. FGL-3SR relies on a simpli�cation of the minimization

step inX by removing the constraint (2.6b). This simpli�cation allows us to compute a closed-

form on this step which greatly accelerates the minimization. However, the constraints (2.6a)

and (2.6b) are equally important to obtain a valid Laplacian matrix at the end, and reducing the

problem does not ensure that the constraint (2.6b) will be satis�ed. The following proposition

explains why we can get rid of constraint (2.6b) at the X-step, while still being able to ensure

that the matrix will be a proper Laplacian at the end of the algorithm.

Proposition 2.6. (Feasible eigenvalues) – Given anyX ∈ RN×N being an orthogonal matrix
with �rst column being equal to 1√

N
1N (constraint (2.6a)), there always exists a matrix Λ ∈ RN×N
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such that the following constraints are satis�ed:
(XΛX

ᵀ
)i,j ≤ 0 i 6= j , (2.6b)

Λ = diag(0, λ2, . . . , λN ) � 0 , (2.6c)
tr(Λ) = c ∈ R+

∗ . (2.6d)

In Proposition 2.7 of the next section, we will see that, by ignoring constraint (2.6b) at the

X-step, we can compute a closed-form solution to the optimization problem. For this reason,

we propose to use the closed-form solution that we derive to learn X , and right after always

optimize with respect to Λ. Hence, we are sure that we will obtain a proper Laplacian at the end

of the process (Proposition 2.6). The initialization and the optimization with respect toH are not

concerned by this relaxation and can therefore be performed as in IGL-3SR (see Sections 4.1 and

4.4).

5.1 Optimization with respect toX

As already explained, during the X-step, we solve the program

min
X
‖Y −XH‖2F s.t. X

ᵀ
X = IN , x1 =

1√
N

1N , (2.6a) (2.16)

where the constraint (2.6b) is missing. The closed-form solution is given next.

Proposition 2.7. (Closed-form solution of Problem (2.16)) – LetX0 be any matrix that belongs
to the constraints set (2.6a), andM = (X

ᵀ
0Y H

ᵀ
)2:,2: the submatrix containing everything but the

input’s �rst row and �rst column. Finally, let PDQᵀ be the SVD ofM . Then, the problem admits
the following closed form solution:

X̂ = X0

[
1 0

ᵀ
N−1

0N−1 PQ
ᵀ

]
. (2.17)

In practice,X0 can be �xed to the current value ofX .

5.2 Optimization with respect to Λ

With respect to Λ, the optimization Problem (2.6) becomes:

min
Λ

α tr(HH
ᵀ
Λ)

‖Λ1/2H‖2F

s.t.


(XΛX

ᵀ
)i,j ≤ 0 i 6= j , (b)

Λ = diag(0, λ2, . . . , λN ) � 0 , (c)
tr(Λ) = N ∈ R+

∗ , (d)
(2.18)

which is a linear program that can be solved e�ciently using linear cone programs. Note that

this will involve an optimization over N parameters with
1
2N(N − 1) +N + 1 constraints.

FGL-3SR is summarized in Algorithm 2.2.

5.3 Computational complexity of FGL-3SR

Considering a graph with N nodes and n graph signals:
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Algorithm 2.2 The FGL-3SR algorithm with `2,1-norm

1: Input : Y ∈ RN×n, α, β
2: Output : Ĥ , X̂ , Λ̂
3: Initialization: L0 (e.g. with a complete graph) – see Section 4.4

4: (X,Λ)←− SVD(L0)
5: for t = 1, 2, . . . do

6: B H-step: Compute the closed-form solution of Proposition (2.4)

7: for 1 = 1, . . . , N do

8: H i,: ←−
1

1 + αλi

(
1− β

2

1

‖(Xᵀ
Y )i,:‖2

)
+

(X
ᵀ
Y )i,:

9: end for

10: B X-step: Compute the closed-form solution of Proposition (2.7)

11: M ←− (X
ᵀ
Y H

ᵀ
)2:,2:

12: (P ,D,Q
ᵀ
)←− SVD(M)

13: X ←−X
[

1 0
ᵀ
N−1

0N−1 PQ
ᵀ

]
14: B Λ-step: Solve the linear Program (2.18)

15: Λ←− arg min
Λ

α tr(HH
ᵀ
Λ) s.t.


(XΛX

ᵀ
)i,j ≤ 0 i 6= j

Λ = diag(0, λ2, . . . , λN ) � 0
tr(Λ) = N ∈ R+

∗
16: end for

• H-step (non-iterative) – The closed-form solution requires to compute the matrix product

X
ᵀ
Y , which is of complexity O(nN2).

• X-step (non-iterative) – The closed-form solution requires to compute the SVD of (X
ᵀ
0Y H

ᵀ
)2:,2: ∈

R(N−1)×(N−1)
, which is of complexity O(N3) [Cline and Dhillon, 2006].

• Λ-step – Solving the LP can be done with interior-point methods or with the ellipsoid

method [Vandenberghe, 2010]. For accuracy ε, the ellipsoid method yields a complexity

of O(max(m,N) · N3 log (1/ε)), where m = 1
2N(N − 1) + N + 1 is the number of

constraints [Bubeck, 2015].

Overall – As m > N , the complexity for FGL-3SR is of order O(N5) when using the ellipsoid

method. In contrast, the most competitive related algorithm of the literature (ESA-GL [Sardellitti

et al., 2019]) relies on a semi-de�nite program and is of order at least O(N8) (see Section 7). As

will be clearly demonstrated in Section 8, in practice the empirical execution time of FGL-3SR is

lower than IGL-3SR and ESA-GL.

5.4 Di�erences between IGL-3SR and FGL-3SR

The two proposed algorithms are based on a modi�cation of the initial optimization problem

(2.6). Indeed, both of them relax the constraint (2.6b), ∀k 6= `, (XΛX
ᵀ
)k,` ≤ 0, but with two

di�erent approaches.



6. A PROBABILISTIC INTERPRETATION 47

IGL-3SR approximates the initial optimization problem through the use of a log-barrier function.

The advantage of the barrier is twofold. First, it allows to overcome the technical constraint

(2.6b) and solve the program using a block-coordinate descent algorithm. Second, the use of the

barrier makes the block-variables separable over the constraint set allowing the convergence

of the objective function of IGL-3SR. In addition, IGL-3SR always keep the set of variables in

the initial set of constraints, essential for the matrix XΛX
ᵀ

to be a proper Laplacian. On the

other hand, FGL-3SR does not use a log-barrier function to relax the constraint (2.6b), but instead,

removes it at theX-step. Recall that we are able to do that because we know from Lemma 2.6

that for anyX returned by the X-step (5.1), there exist a Λ makingXΛX
ᵀ

a Laplacian. This

relaxation has the advantage to drastically speed-up the X-step while loosing the convergence

property and the decreasing over the initial constraints set.

6 A probabilistic interpretation

In this section, we introduce a new representation model adapted to smooth graph signals with

sparse spectral representation. The goal of this model is to provide a probabilistic interpretation

of Problem (2.6) and link its objective function to a maximum a posteriori estimation (Proposition

2.8).

Given a Laplacian matrix L = XΛX
ᵀ
, we propose the following Factor Analysis Framework

to model a graph signal y

y = Xh+my + ε , (2.19)

wheremy ∈ RN is the mean of the graph signal y and ε is a Gaussian noise with zero mean and

covariance σ2IN . Here, the latent variable h ∈ RN controls y through the eigenvector matrix

X of L. The choice of the representation matrixX is particularly adapted since it re�ects the

topology of the graph and provides a spectral embedding of its vertices. Moreover, as seen in

Section 3,X can be interpreted as a graph Fourier basis, which makes it an intuitive choice for

the representation matrix. In a noiseless scenario withmy = 0N , h actually corresponds to the

GFT of y.

To comply with the spectral sparsity assumption (Assumption 2.2), we now propose a distribu-

tion that allows h to admit zero-valued components. To this end, we introduce independent latent

Bernoulli variables γi with success probability pi ∈ [0, 1]. Knowing γ1, . . . , γN , the conditional

distribution for h is

h|γ ∼ N (0N , Λ̃
†
) , (2.20)

where Λ̃
†

is the Moore-Penrose pseudo-inverse of the diagonal matrix containing the values

{λi · 1{γi = 1}}Ni=1. In this model, γi controls the sparsity of the i-th element of h. Indeed, if

γi = 0, then hi = 0 almost surely. In the other hand, if γi = 1 then hi follows a Gaussian

distribution with zero-mean and variance equal to 1/λi. This is adapted to the smoothness

hypothesis as for high value of λi (high frequency), the distribution of hi concentrates more

around 0, leading to small value of λih
2
i . The associated probability of success pi can be chosen a

priori. One way to chose it is to take pi inversely proportional to λi. Indeed, this would increase

the probability to be sparse at dimensions where the associated eigenvalue is high. Note that,

since λ1 = 0, h1 follows a centered degenerate Gaussian, i.e h1 is equal to 0 almost surely.

Furthermore, if pi = 1 for all i, our model reduces to the one proposed by Dong et al. [2016],

which was only focused on the smoothness assumption.
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De�nition 2.13. (Prior and conditional distributions) – The following equations summarize the
prior and important conditional distributions of our model:

p(hi|γi, λi) ∝ exp(−λih2
i ) · 1{γi = 1}+ 1{hi = 0, γi = 0} , (2.21)

p(y|h,X) ∝ exp(− 1

σ2
‖y −Xh−my‖22) , (2.22)

p(γi) ∝ pγii (1− pi)1−γi . (2.23)

For simplicity, in the following we consider thatmy = 0N and p1 = 0.

Lemma 2.2. – Assume the proposed Model (2.19). If p1 = 0 and pi ∈ (0, 1), ∀i ≥ 2, then:

− log(p(h|y,X,Λ)) ∝ 1

σ2
‖y −Xh‖22 +

1

2
h
ᵀ
Λh

+
N∑
i=1

1{hi 6= 0}
(
pi log(

λi√
2π

)− log(pi)− log(
λi√
2π

)

)
.

De�nition 2.14. (Lambert W-Function) – The Lambert W -Function, denoted by W (·), is the
inverse function of f : W 7−→WeW . In particular, we considerW to be the principal branch of the
Lambert function, de�ned over [−1/e,∞).

Proposition 2.8. (A posteriori distribution of h) – Let C > 0, and assume for all i ≥ 2 that
pi = e−C if λi =

√
2π, whereas pi = −W

(
− e−C log(λi/

√
2π)

λi/
√

2π

)
1

log(λi/
√

2π)
otherwise. Then,

pi ∈ (0, 1) and there exist constants α, β > 0 such that:

− log(p(h|y,X,Λ)) ∝ ‖y −Xh‖22 + αh
ᵀ
Λh+ β‖h‖0 .

This proposition tells us that for a given Laplacian matrix, the maximum a posteriori estimate of h
would corresponds to the minimum of Problem (2.6).

7 Related work on GSP-based graph learning methods

We now detail the two state-of-the-art methods for graph learning in the GSP context that are

closer to our work and that will be used for our experimental comparison in Section 8.

1. GL-SigRep [Dong et al., 2016]:
This method supposes that the observed graph signals are smooth with respect to the underlying

graph, but do not consider the spectral sparsity assumption. To learn the graph, they propose

to solve the optimization problem:

min
L,Ỹ
‖Y − Ỹ ‖2F + α‖L1/2Ỹ ‖2F + β‖L‖2F s.t.


Lk,` = L`,k ≤ 0 k 6= ` ,
L1 = 0N ,
tr(L) = N ∈ R+

∗ .
(2.24)

Remark that since no constraints are imposed on the spectral representation of the signals, the

Laplacian matrix is directly learned. The optimization procedure to solve (2.24) consists in an

alternating minimization over L and Ỹ . With respect to Ỹ the problem has a closed-form

solution whereas for L, the authors propose to use a Quadratic Program solver involving

1
2N(N − 1) parameters and

1
2N(N − 1) +N + 1 constraints.
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2. ESA-GL [Sardellitti et al., 2019]:
This is a two-step algorithm where the signals are supposed to admit a sparse representation

with respect to the learned graph. The di�erence to our work is two-fold. First, ESA-GL does

not include the smoothness assumption while learning the Fourier basis X . This brings a

di�erent two-step optimization program. Second, the complexity of the ESA-GL algorithm (at

least O(N8)) is much higher than ours (O(N5) for FGL-3SR - see Section 5.3), and hence is

prohibitive for large graphs. The �rst step consists in �tting an orthonormal basis such that

the observed graph signals Y admit a sparse representation with respect to this basis. They

consider the problem

min
H,X
‖Y −XH‖2F s.t.

{
X

ᵀ
X = IN , x1 = 1√

N
1N ,

‖H‖2,0 ≤ K ∈ N ,
(2.25)

which is solved using an alternating minimization. Once estimates forH andX have been

computed, they solve a second optimization problem in order to learn the Laplacian L associ-

ated to the learned basis X̂ . This is done by minimizing

min
L∈RN×N ,CK∈RK×K

tr(Ĥ
T

KCKĤK) + µ‖L‖2F s.t.


Lk,` = L`,k ≤ 0 k 6= ` ,
L1N = 0N ,

LX̂K = X̂KCK , CK � 0 ,
tr(L) = N ∈ R+

∗ ,
(2.26)

where CK ∈ RK×K and X̂K corresponds to the columns of X̂ associated to the non-zero

rows of Ĥ denoted ĤK . Thus, the second step aims at estimating a Laplacian that enforces

the smoothness of the learned signal representation X̂Ĥ . This semi-de�nite program requires

the computation of over
1
2N(N − 1) + 1

2K(K − 1) parameters that, as we show empirically

in the next section, can be di�cult to compute for graphs with large number of nodes. For

more details on the optimization program and the additional matrix CK , the readers shall

refer to the aforementioned paper.

8 Experimental evaluation

The two proposed algorithms, IGL-3SR and FGL-3SR, are now evaluated and compared with

the two state-of-the-art methods presented earlier, GL-SigRep and ESA-GL. The results of our

empirical evaluation are organized in three subsections: Section 8.2 and 8.3 use synthetic data

for �rst comparing the di�erent methods and then study the in�uence of the hyperparameters;

Section 8.4 displays several examples on real-world data.

All experiments were conducted on a personal laptop with 4-core 2.5GHz Intel CPUs and

Linux/Ubuntu OS. For the Λ-step of both algorithms, we use the Python’s CVXPY pack-

age [Diamond and Boyd, 2016]. For theX-step of IGL-3SR, we use the conjugate gradient descent

solver combined with an adaptive line search, both provided by Pymanopt [Townsend et al.,

2016], a Python toolbox for optimization on manifolds. Note that this package only requires

the gradients given in Proposition 2.5. The source code of our implementations is available at

https://github.com/pierreHmbt/GL-3SR.
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8.1 Evaluation metrics

We provide visual and quantitative comparisons of the learned Laplacian L̂ and its weight matrix

Ŵ using the performance measures: Recall, Precision, and F1-measure, which are standard for

this type of evaluation [Pasdeloup et al., 2017]. The F1-measure evaluates the quality of the

estimated support – the non-zero entries – of the graph and is given by:

F1 =
2× precision× recall
precision+ recall

.

As in Pasdeloup et al. [2017], theF1-measure is computed on a thresholded version of the estimated

weight matrix Ŵ . This threshold is equal to the average value of the o�-diagonal entries of Ŵ
(same process as in [Sardellitti et al., 2019]).

In addition, we compute the correlation coe�cient ρ(L, L̂) between the true Laplacian entries

Li,j and their estimates L̂i,j

ρ(L, L̂) =

∑
ij(Lij − Lm)(L̂ij − L̂m)√∑

ij(Lij −Lm)2
√∑

ij(L̂ij − L̂m)2
, (2.27)

where Lm and L̂m are the average values of the entries of the true and estimated Laplacian

matrices, respectively. This ρ(·) function evaluates the quality of the weights distribution over

the edges.

8.2 Experiments on synthetic data

We now evaluate and compare all algorithms on several types of synthetic data. Details about

graphs, associated graph signals, and evaluation protocol used for the experiments, are detailed

in the sequel.

Graphs and signals. We carried out experiments on graphs with 20, 50, and 100 vertices,

following: i) a Random Geometric (RG) graph model with a 2-D uniform distribution for the

coordinates of the nodes and a truncated Gaussian kernel of width size 0.5 for the edges, where

weights smaller than 0.75 were set to 0; ii) an Erdős-Rényi (ER) model with edge probability 0.2.

Given a graph, the sampling process was made according to Model (2.21) that we presented in

Section 6. The mean value of each signal was set to 0, the variance of the noise was set to 0.5, and

the sparsity was chosen to obtain observations with k-sparse spectral representation, where k is

equal to half the number of nodes (i.e 10, 20, 50). For each type of graph, we ran 10 experiments

with 1000 graph signals generated as explained above. For all the methods, the hyperparameters

α and β are set by maximizing the F1-measure on the thresholded Ŵ , as explained in Section 8.1.

Choice of ‖ · ‖S . In the following we make all experiments for IGL-3SR and FGL-3SR with the

`2,1-norm. This is motivated by an important fact brought by the closed-form solutions given in

Proposition 2.4. Indeed, for `2,1-norm, the sparsity of Ĥ is only controlled by β (Equation (2.12)).

On the contrary, when using the `2,0-norm, the value of α also in�uences the sparsity (Equation

(2.11)). This is an important behavior, as the tuning of β and α becomes independent – at least

with respect to the H-step – and therefore, as we will see in Section 8.3.1, easier to tune.
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RG graph model ER graph model

N Metrics IGL-3SR FGL-3SR ESA-GL GL-SigRep IGL-3SR FGL-3SR ESA-GL GL-SigRep

20

Precision ↑ 0.973 (±0.042) 0.952 (±0.042) 0.899 (±0.054) 0.929 (±0.068) 0.952 (±0.045) 0.819 (±0.080) 0.931 (±0.045) 0.704 (±0.125)

Recall ↑ 0.974 (±0.018) 0.985 (±0.023) 0.968 (±0.052) 0.967 (±0.028) 0.927 (±0.046) 0.824 (±0.105) 0.951 (±0.041) 0.899 (±0.075)

F1-measure ↑ 0.974 (±0.028) 0.968 (±0.027) 0.929 (±0.032) 0.947 (±0.040) 0.938 (±00.028) 0.816 (±0.068) 0.941 (±0.038) 0.779 (±0.071)

ρ(L,L) ↑ 0.938 (±0.052) 0.903 (±0.029) 0.925 (±0.050) 0.786 (±0.037) 0.917 (±0.035) 0.730 (±0.063) 0.897 (±0.045) 0.199 (±0.074)

Time ↓ < 1min < 10s < 5s < 5s < 1min < 10s < 5s < 5s

50

Precision ↑ 0.901 (±0.022) 0.817 (±0.041) 0.845 (±0.088) 0.791 (±0.055) 0.820 (±0.027) 0.791 (±0.047) 0.854 (±0.038) 0.476 (±0.037)

Recall ↑ 0.902 (±0.018) 0.807 (±0.036) 0.910 (±0.040) 0.720 (±0.059) 0.812 (±0.042) 0.740 (±0.049) 0.830 (±0.051) 0.856 (±0.023)

F1-measure ↑ 0.901 (±0.014) 0.812 (±0.017) 0.868 (±0.036) 0.750 (±0.001) 0.815 (±0.021) 0.761 (±0.031) 0.841 (±0.021) 0.610 (±0.026)

ρ(L,L) ↑ 0.863 (±0.020) 0.743 (±0.031) 0.832 (±0.033) 0.549 (±0.022) 0.783 (±0.026) 0.728 (±0.020) 0.816 (±0.058) 0.058 (±0.002)

Time ↓ < 17mins < 40s < 60s < 40s < 17mins < 40s < 60s < 40s

100

Precision ↑ 0.713 (±0.012) 0.711 (±0.029) 0.667 (±0.022) – 0.677 (±0.044) 0.640 (±0.033) 0.654 (±0.038) –

Recall ↑ 0.751 (±0.067) 0.584 (±0.011) 0.743 (±0.017) – 0.580 (±0.021) 0.543 (±0.027) 0.637 (±0.023) –

F1-measure ↑ 0.732 (±0.034) 0.641 (±0.010) 0.703 (±0.012) – 0.623 (±0.009) 0.586 (±0.016) 0.589 (±0.019) –

ρ(L,L) ↑ 0.612 (±0.045) 0.483 (±0.015) 0.596 (±0.033) – 0.551 (±0.016) 0.512 (±0.0223) 0.644 (±0.023) –

Time ↓ < 50mins < 2mins < 4mins – < 50mins < 2mins < 4mins –

Table 2.1: Comparison of the four methods on �ve quality metrics (avg ± std) for graphs of N =
{20, 50, 100} nodes, and for �xed number of n = 1000 graph signals.

Quantitative results. Average evaluation metrics and their standard deviation are collected

in Table 2.1. The results show that the use of the sparsity constraint improves the quality of

the learned graphs. Indeed, the two proposed methods IGL-3SR and FGL-3SR, as well as ESA-GL,

have better overall performance in all the metrics than GL-SigRep that only considers the smooth-

ness aspect. This had to be expected as our methods match perfectly to the sparse (bandlimited)

condition.

Comparing the results across the di�erent types of synthetic graphs, our methods are robust while

being more e�cient on RG graphs. In general, IGL-3SR, and FGL-3SR present similar performance

to ESA-GL. However IGL-3SR seems preferable in the case of RG graphs. For 100 nodes, the

computational resources necessary for GL-SigRep was already too demanding, therefore only the

results for the rest three methods are reported. We can see that, while IGL-3SR has better results

than FGL-3SR, the time necessary to estimate the graph is much longer. In addition, examples

of learned graphs are displayed in Figure 2.7 with the ground-truth on the left and the learned

weighted adjacency matrices (after thresholding). The evolution of the F1-measure regarding the

value of the threshold is also displayed and shows that a large range of threshold could have been

used to obtain similar performance. All these results, combined with those of Table 2.1, indicate

that in this sampling process the proposed FGL-3SR method managed to infer accurate graphs

despite the relaxation.

Speed performance. Figure 2.8 displays the evolution of the empirical computation time as

the number of nodes increases. For each algorithm, time per iteration is: i) for IGL-3SR and

FGL-3SR, the time needed for the computation of the 3 steps one time; ii) for ESA-3SR,the time

needed for the computation of the quadratic program; iii) for GL-SigRep, the time needed for

the computation of its two steps one time. FGL-3SR appears to be much faster than the other

methods. Furthermore, we observe that our methods are scalable over a wider range of graph

sizes than the competitors. Indeed, even quite small graphs of 100 and 150 nodes, respectively,

were already too ‘large’ for the two competitors to be able to produce results, and they even led

to memory allocation errors.
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(a) Graph learning on RG synthetic graphs.
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(b) Graph learning on ER synthetic graphs.

Figure 2.7: Graph learning results on random synthetic graphs of 20 nodes: (a) for a RG graph, and (b)

for an ER graph. Each of the two sub�gures presents: (top row) the evolution of the F1-measure with

respect to di�erent threshold values and the dashed line indicates the chosen threshold value; (bottom

row) shows as leftmost the ground truth adjacency matrix, followed by the respective learned adjacency

matrices (thresholded) by the compared methods.

IGL-3SR v.s. FGL-3SR. In terms of numerical performance, IGL-3SR is better than FGL-3SR

(Table 2.1). Indeed, except for graphs of size 20, metrics relative to the recovery of the true graph

give better results. On the contrary, in terms of computational time aspect FGL-3SR is better than

IGL-3SR (see Figure 2.8). Indeed, no matter the size of the graph, FGL-3SR has a time per iteration

lower than IGL-3SR. This is due to the fact that contrary to IGL-3SR which solves two out of

three sub-problems with iterative methods, FGL-3SR solves two sub-problems via closed-form

solutions which are e�ciently computable. In conclusion, when the number of nodes is small,

IGL-3SR is preferred. If not, one should use FGL-3SR.
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(a) Standard scale. (b) Semi-log scale.

Figure 2.8: Average and standard deviation of the computation time over 10 trials for IGL-3SR, FGL-3SR,

ESA-GL, and GL-SigRep, as the number of nodes increases. GL-SigRep and ESA-GL failed to produce a

result for graphs with more than 100 and 150 nodes, respectively. (a) The total computation times, and (b)

the time needed for a single iteration of each algorithm.

8.3 In�uence of the hyperparameters

We now study how hyperparameters of IGL-3SR and FGL-3SR in�uence their overall performance,

with respect to the F1-measure. This study is made on a RG graph with N = 20 nodes and

10-bandlimited signals Y in R20×1000
.

8.3.1 In�uence of α and β

We �rst highlight the in�uence of α and β on FGL-3SR. We run and collect the F1-measure for

20 values of α (resp. β) in [10−5, 100] (resp. [10−5, 60]). The resulting heatmaps are displayed in

Figure 2.9. The most important observation is that the value of α does not seem to impact the

quality of the resulted graphs. Indeed, for a �xed value of β, the F1-measure is stable when α
varies. However, it is interesting that the convergence curve of FGL-3SR (Figure 2.10) is directly

impacted by α: large values for α tend to produce oscillations on the convergence curves. Thus,

setting to a small value α > 0 is suggested. Contrary to α, tuning the parameter β is critical since

high β values cause a drastic decrease in F1-measure. This sharp decrease appears when the

chosen β imposes too much sparsity for the learned Ĥ . One may note that the best β corresponds

to the value just before the sharp decrease, and this is the value that should be chosen. Although

the previous analysis has been done on FGL-3SR, during our experimental studies, α and β
in�uenced the F1-measure similarly when using IGL-3SR.

8.3.2 In�uence of t

We now highlight the in�uence of t on IGL-3SR. Figure 2.11 shows the learned graphs for several

values of t ∈ [10, 104]. This experiment brings two main messages: �rst, when t is too low, the

learned graph is very close to the complete graph, whereas when t increases the learned graph

becomes more structured and tends to be sparse. This result was expected since a larger t brings

the barrier closer to the true constraint, i.e. we allow elements of the resulting Laplacian matrix

to be closer to 0. Second, it appears that α also in�uences the �nal results in a similar way to

t. Again, this was expected as the minimization of the objective function during the Λ-step of

Problem (2.8) is equivalent to the minimization of tr(HH
ᵀ
Λ) + 1

α tφ(U ,Λ).
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Figure 2.9: Evolution of the average (a)(c) and standard deviation (b)(d) of the F1-measure over 10 runs

of FGL-3SR on RG graphs with 20 nodes. At the top �gure row β ∈ [0, 100], and at the bottom row

β ∈ [20, 70].

(a) Low α value. (b) Medium α value. (c) High α value.

Figure 2.10: Convergence curves of the objective function as the number of iterations increases, using

FGL-3SR with (a) α = 10−5, (b) α = 10−1, (c) α = 1.

For a discussion on the initial value of t, t(0)
, and the step size µ such that t(`+1) = µt(`), both

relative to the barrier method, we refer the reader to [Boyd and Vandenberghe, 2004]. However,

recall that t is not a hyperparameter to tune in practice, and should be taken as large as possible.

The mere goal is to prevent numerical issues. Fortunately, a wide range of values for t(0)
and µ

achieves that goal [Boyd and Vandenberghe, 2004].
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Figure 2.11: Learned graphs with increasing t values: (top row) α = 10−4, (bottom row) α = 10−3.

Tuning the hyperparameters. The hyperparameter α does not seems to have a substantial

impact on theF1-measure. However, a low value of it may be preferred in FGL-3SR for convergence

purpose (Figure 2.10). The parameter t always needs to be maximal provided that it does not

cause numerical issues. Classical heuristics and methods, like the one presented in Section 4.4,

can be used to tune t [Boyd and Vandenberghe, 2004]. Hence, according to our experiments, it

remains only β as a critical hyperparameter to tune for both these methods. Based on Figure 2.9,

one way to �x it is to �nd the largest β value that leads to satisfying results in terms of signal

reconstruction. Alternatively, if we have an idea about the number of clusters k that resides on

the graph, we could select a β value that produces a k-sparse spectral representation. Bearing in

mind that other related works require the tuning of two hyperparameters, our approach turns out

to be of higher value for practical application on real data where these parameters are unknown

and must be tuned.

8.4 Temperature data

We used hourly temperature (C
◦
) measurements on 32 weather stations in Brittany, France, during

a period of 31 days [Chepuri et al., 2017]. The dataset contains 24 × 31 = 744 multivariate

observations, i.e. Y ∈ R32×744
, that are assumed to correspond to an unknown graph, which

is our objective to infer. For our two algorithms, we set α = 10−4
, and β is chosen so that we

obtain a 2-sparse spectral representation, which this last assumes that there are two clusters of

weather stations.

The graphs obtained with each of the method are displayed in Figure 2.12 (a-b). They are in

accordance with the one found in Chepuri et al. [2017] on the same dataset. Both the proposed

methods provide similar results, which shows that the relaxation used in FGL-3SR has a moderate

in�uence in practice in this real-world problem. Although ground-truth is not available for this

use-case, the quality of the learned graph can be assessed when using it as input in standard tasks

such as graph clustering or sampling. For instance, when applying spectral clustering [Ng et al.,

2001] with two clusters on the resulting Laplacian matrices, it can be seen that both methods

split the learned graph in two parts corresponding to the north and the south of the region of

Britanny (Figure 2.12 (c-d)), which is an expected natural segmentation.
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(a) Learned graph by IGL-3SR. (b) Learned graph by FGL-3SR.

(c) Graph clustering on IGL-3SR’s result. (d) Graph clustering on FGL-3SR’s result.

Figure 2.12: (Top row) Learned graph with (a) IGL-3SR and (b) FGL-3SR. The node color corresponds to

the average temperature in C
◦

during all the period of observation. (Bottom row) Graph segmentation in

two parts (red vs. green nodes) with spectral clustering using the Laplacian matrix learned by (c) IGL-3SR

and (d) FGL-3SR.

The learned graphs can be also employed in the graph sampling task. Indeed, due to the

constraints used in the optimization problem, the graph signals are bandlimited with respect to

learned graphs. For instance, in this example the graph signals are 2-bandlimited. This property

means that it is possible to select only 2 nodes and to reconstruct the graph signal values of the 30
remaining nodes using linear interpolation. Figure 2.13 displays an example of such reconstruction:

thanks to the learned graph structure, the use of only 2 nodes allows to reconstruct su�ciently

well the whole data matrix with a mean absolute error of 0.614. Again, this is a very interesting

result that indirectly shows the quality of the learned graph.

8.5 Cancer genome data

In this second experiment, we consider the RNA-Seq Cancer Genome Atlas Research Network

dataset [Weinstein et al., 2013]. The data set contains the information of 801 individuals, each of

them characterized by a set of 20531 genetic features and being labeled by one out of 5 types

of cancer: breast carcinoma (BRCA), colon adenocarcinoma (COAD), kidney renal clear-cell

carcinoma (KIRC), lung adenocarcinoma (LUAD), and prostate adenocarcinoma (PRAD).

The goal of the considered task is to learn a graph of the N = 801 individuals (the nodes) using

the n = 20531 genetic features (the samples seen here as graph signals) and determine if this

graph is able to group the individuals according to their tumor type. The number of nodes being
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Figure 2.13: (a) The 2 nodes kept for the signal interpolation are shown in black. (b) The true signal at

the target node (in red) shown on the left and its reconstruction using only the 2 selected nodes shown on

the left (in black).

large, we propose to use FGL-3SR and, as previously, to use spectral clustering [Ng et al., 2001]

on the learned graph the �nd the cluster mapping.

As the number of nodes of the graph is too large, ESA-GL and Sig-Rep are not able to run in

reasonable time. Therefore, we compare FGL-3SR to two other state-of-the-art methods, which are

however not GSP-oriented but rather specialized to obtain a graph that facilitates data clustering.

The two competitors are namely the Constrained Laplacian Rank (CLR) algorithm [Nie et al.,

2016] that builds a special graph from the available data, and the Structured Graph Learning (SGL)

algorithm [Kumar et al., 2019, 2020] that take as input the sample covariance matrix of the data.

As quality measure we use the clustering accuracy, which has also been used in the associated

papers of the competitors from where we obtain their reported results. The results for the three

methods are respectively:

FGL-3SR: 0.9887, CLR: 0.9862, SGL: 0.9987.

The �rst interesting result is that FGL-3SR presents similar accuracy to CLR and SGL, even though

it is not a graph learning method specially designed for clustering like the competitors. Secondly,

while FGL-3SR comes second in terms of accuracy after SGL, two important remarks need to be

made about the SGL method: 1) it must �x the right number of clusters of the learned graph a

priori to obtain such result; 2) it has an additional hyperparameter to tune compared to FGL-3SR.

Therefore comparably, bearing in mind the above results, the fact that SGL is �ne-tailored for the

undertaken clustering tasks and that it has higher tuning complexity, and �nally the limitations

of ESA-GL and Sig-Rep that prevent them from being applied in this scenario, FGL-3SR seems to

be a promising alternative for large-scale graph-based learning applications.

8.6 Results on the ADHD dataset

In this third experiment, we consider the Attention De�cit Hyperactivity Disorder (ADHD) dataset

[Bellec et al., 2017] composed of functional Magnetic Resonance Imaging (fMRI) data. ADHD is

a mental pathophysiology characterized by an excessive activity [Boyle et al., 2011]. We study

the resting-state fMRI of 20 subjects with ADHD and 20 healthy subjects available from Nilearn
[Abraham et al., 2014]. Each of the 40 fMRI consists in a series of images measuring the brain

activity. These images are processed as follows. We split the brain into N = 39 Regions Of

Interest (ROIs) with the Multi-Subject Dictionary Learning atlas [Varoquaux et al., 2011] (see

Figure 2.14a). Each ROI de�nes a node and the signal value at a certain node is the aggregation of
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Figure 2.14: (a) Indicative ROIs from the Multi-Subject Dictionary Learning atlas extracted in Varoquaux

et al. [2011] with sparse dictionary learning. Results: Graphs returned by FGL-3SR, separately for (b) an

ADHD patient and (c) a healthy subject, where darker edges indicate larger weights of connection.

the pixel values over the associated ROI. Each image is thereby transformed into a graph signal.

For each of the 40 subjects, we therefore have access to a matrix in Rn×39
, where n is the number

of images in the fMRI of the subject (i.e. the number of graph signals).

We propose to estimate a graph for each subject independently. Examples of learned graphs

with FGL-3SR for an ADHD subject and a healthy subject are displayed in Figure 2.14. Visually,

they reveal strong symmetric links between the right and left hemisphere of the brain. This

phenomenon is common in resting-state fMRI where one hemisphere tends to correlate highly

with the homologous anatomical location in the opposite hemisphere [Damoiseaux et al., 2006;

Smith et al., 2009]. Pointing out di�erences, though, the graph from the ADHD subject seems less

structured and contains several spurious links (diagonal and north-south connections).

Aiming to better highlight the potential value of quality learned graphs for such studies, we

proceed and use the Laplacian matrices of the brain graphs to classify the subjects, as proposed in

several resting-state fMRI studies [Abraham et al., 2017; Dadi et al., 2019]. First, we subtract the
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average graph for all subjects, which in fact removes the symmetrical connections common to all

subjects), and then we use a 3-Nearest Neighbors classi�cation algorithm. We use the correlation

coe�cient of Equation (2.27) as distance metric between Laplacian matrices, and a leave-one-out

cross-validation strategy. The classi�cation accuracy of the described approach reaches 65%. This

level shall be compared with the performance obtained using simple correlation graphs [Abraham

et al., 2017] that, on these 40 subjects, leads to an accuracy of 52.5%. It appears that in this

context the use of a more sophisticated graph learning process allows a subject characterization

that goes beyond considering basic statistical correlation e�ects. Interestingly, this score is also

comparable with state-of-the-art results reported in [Sen et al., 2018] for the same task, but on a

larger database (67.3% of accuracy), using more sophisticated and specially-tailored processing

steps, as well as carefully chosen classi�ers.

9 Electroencephalography microstates analysis through graphs

In this preliminary experiment, we are interested in multichannel ElectroEncephaloGraphy (EEG).

EEG is an important method to access real-time information about the global function of neuronal

networks. Traditionally, its analysis relies on the study of the di�erent frequency bands present in

each channel. However, due to the time-frequency uncertainty principle, studying the frequency

inherently sacri�ces the high temporal resolution of the EEG. To overcome this issue and analyze

short-lasting �uctuations of neuronal activity, several methods in the time domain have been

proposed. These methods are based on the seminal work of Lehmann et al. [1987] which �rst

considers the temporal evolution of the topography of the scalp electric �eld instead of the

frequencies. With this idea, they obtain a global measure of the brain activity with high temporal

resolution. They show that the topography does not change randomly and continuously over

time but instead remains stable for 80 to 120 milliseconds. These periods of quasi-stability are

termed EEG microstates and are a window to better understand the behavior of the brain activity

(see e.g. [Musso et al., 2010; Van de Ville et al., 2010]). A full review and introduction can be

found in [Michel and Koenig, 2018] and [Poulsen et al., 2018]. In this experiment, we aim to study

the microstates during a general anesthesia. For a better understanding of these microstates, we

�rst extract them from the EEG signals and then learn their underlying graphs with FGL-3SR.

Dataset. The data consists in 32 EEG signals recorded at 250 Hz during a General Anesthesia

(GA) for 10 patients. Signals are �rst �ltered using a bandpass �lter between 1 and 20Hz, to

remove the potential drift below 1Hz, and to keep the frequencies below 20Hz that characterize

GA [Brown et al., 2010]. We also remove some artifacts using Independent Component Analysis

(ICA) and set the reference to average – an important parameter to study microstates. Finally, for

each patient, we crop the signals to only keep times relative to the “Anesthesia state” [Brown

et al., 2010].

Segment the signals and graph learning of themicrostates. EEG microstate segmentation

is performed based on a standard procedure. The local maxima of the global �eld power (GFP)

[Lehmann and Skrandies, 1980] are extracted from the EEG. Then, several runs of the modi�ed K-
means algorithm are performed [Pascual-Marqui et al., 1995], using di�erent random initializations.

The run resulting in the best segmentation, as measured by the Global Explained Variance (GEV)

[Poulsen et al., 2018] is kept. Through this segmentation, we extract and group the similar

temporal parts of the EEG, hence satisfying the i.i.d. hypothesis of the factor analysis model

introduced in Section 6. Furthermore, as the topography remains stable during a few milliseconds,
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Figure 2.15: Left: The learned graph with k being the sparsity obtained. Middle: The topography of the

microstate. Right: The topography of the second eigenvector of the learned graph.

the assumption that the signal is stationary during this short period of time is valid. We then learn

with FGL-3SR the structure of each found microstate using the signals relative to each cluster.

Hyperparameters are set in order to obtain visually relevant graphs.

Results. We extract 6 microstates from the signal and learn their associated graphs (see Figure

2.15). They explain 80% of the variance i.e. GEV equals 0.80 and are consistent with those of

Shi et al. [2020]. All graphs returned by FGL-3SR are structured, well re�ecting the topology of

microstates. This underlines the pertinence of our approach for the visualization and the study of

microstates with graphs. One other advantage of this approach is that, unlike standard methods,

graphs allow us to �nely analyze the spatial relationships between the EEG channels (the links

between the nodes). In other terms, we do not only analyze the topography, which is a partial

information (averaging). Thus, instead of only comparing the topology of microstates, we can

compare their structure via appropriate metrics on graphs [Maretic et al., 2019]. Furthermore,

these graphs allow to apply a wide range of other useful methods such as �ltering, sampling,

spectral clustering, blind source separation of graph signals [Miettinen et al., 2020], and even

computation of similarity between the topography using the Wasserstein distance between the

underlaying graphs [Maretic et al., 2019]. Note that for the 6 learned graph, the hyperparameter

β was set to the same value and led to the same sparsity for H . To conclude, we believe that

the graph representation may allow a thinner analysis of the structure of the microstates during

anesthesia.
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10 Conclusion

This chapter presented a data-driven graph learning approach by employing a combination of

two assumptions. The �rst is standard in the related literature and concerns the smoothness of

graph signals with respect to the underlying graph structure. The second is the spectral sparsity
assumption, a consequence of the presence of clusters in real-world graphs. We proposed two

algorithms to solve the corresponding optimization problem. The �rst one, IGL-3SR, e�ectively

minimizes the objective function and has the advantage to decrease at each iteration. To address

its low speed of convergence, we propose FGL-3SR that is a fast and scalable alternative. The

�ndings of our empirical evaluation on synthetic data showed that the proposed approaches are as

good or better performing than the reference state-of-the-art algorithms in term of reconstructing

the unknown underlying graph and of computational cost (running time). Experiments on

real-world benchmark use-cases suggest that our algorithms learn graphs that are useful and

promising for any graph-based machine learning methodology, such as graph clustering and

subsampling, etc. Finally, by including the two assumptions in a probabilistic model, we link

our optimization problem to a maximum a posteriori estimation and pave the way for further

statistical understanding.

11 Technical proofs

This section provides the technical proofs of the di�erent propositions exposed above.

Recall that lower case variables refer vectors/scalars while bold upper case variable denote

matrices. The table below provides the main notations used in the technical discussion that that

follows.

xᵀ,M
ᵀ

Transpose of vector x, matrixM .

tr(M) Trace of matrixM .

diag(x) Diagonal matrix containing the vector x.

Mk,l (k, l)-th element of the matrixM .

Mk,: k-th row ofM .

M :,l l-th column ofM .

Mk:,l: Submatrix containing the elements ofM from the k-th row to the last

row, and from the l-th column to the last column.

M � 0 M is a positive semi-de�nite matrix.

M †
The Moore-Penrose pseudoinverse ofM .

ek Vector containing zeros except a 1 at position k.

In Identity matrix of size n.

0n Vector of size n containing only zeros.

1n Vector of size n containing only ones.

1A(·) The indicator function over the set A.

‖x‖0 The number of non-zero elements of a vector x.

‖ · ‖F The Frobenius norm.

‖ · ‖2,0 The `2,0-norm, with ‖M‖2,0 =
∑

i=1 1{‖Mi,:‖2 6=0}.

‖ · ‖2,1 The `2,1-norm, with ‖M‖2,1 =
∑

i=1‖M i,:‖2.

∇f Gradient of the function f .

〈·, ·〉 Inner product function.

Orth(N) The set of all orthogonal matrices of size N ×N .

Table 2.2: Table of notations used throughout the chapter.
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Lemma 2.1 – GivenX,X0 ∈ RN×N two orthogonal matrices with �rst column equals to 1√
N

1N

(constraint (2.6a)), we have the following equality:

X = X0

[
1 0

ᵀ
N−1

0N−1 [X
ᵀ
0X]2:,2:

]
,

with [X
ᵀ
0X]2:,2: denoting the submatrix ofXᵀ

0X containing everything but the �rst row and column
of itself. Furthermore, remark that [X

ᵀ
0X]2:,2: is in Orth(N − 1).

Proof. Let considerX,X0 ∈ RN×N two orthogonal matrix with �rst column equals to
1√
N

1N .

We have the following equalities:

X0

[
1 0

ᵀ
N−1

0N−1 [X
ᵀ
0X]2:,2:

]
=


.
.
.

.

.

.

X0(:,1) X0(:,2:)[X
ᵀ
0X]2:,2:

.

.

.

.

.

.

 =


.
.
.

.

.

.

1√
N

1N X :,2:

.

.

.

.

.

.

 = X .

Furthermore, thanks to the orthogonality of X and X0, we have

[X
ᵀ
0X]2:,2:

[
[X

ᵀ
0X]2:,2:

]ᵀ
= X

ᵀ
0,(2:,:)X :,2:

[
X

ᵀ
0,(2:,:)X :,2:

]ᵀ
= X

ᵀ
0,(2:,:)X :,2:X

ᵀ
:,2:[X

ᵀ
0,(2:,:)]

ᵀ
= IN−1.

By symmetry we conclude that [X
ᵀ
0X]2:,2: ∈ Orth(N − 1).

Proposition 2.3 – GivenX0 ∈ RN×N an orthogonal matrix with �rst column equals to 1√
N

1N ,
an equivalent formulation of optimization problem (2.6) is given by:

min
H,U ,Λ

∥∥∥∥∥Y −X0

[
1 0

ᵀ
N−1

0N−1 U

]
H

∥∥∥∥∥
2

F

+ α‖Λ1/2H‖2F + β‖H‖S , f(H,U ,Λ) ,

s.t.



U
ᵀ
U = IN−1 , (a’)(
X0

[
1 0

ᵀ
N−1

0N−1 U

]
Λ

[
1 0

ᵀ
N−1

0N−1 U
ᵀ

]
X

ᵀ
0

)
k,`

≤ 0 k 6= ` , (b’)

Λ = diag(0, λ2, . . . , λN ) � 0 , (c)
tr(Λ) = N ∈ R+

∗ . (d)

Proof. From the previous lemma, we know thatX can be decompose into two orthogonal matrices

X0 andU = [X
ᵀ
0X]2:,2:. Hence, we can optimize with respect toU instead ofX and the second

part of the constraint (2.6a) is automatically satis�ed. To make the equivalence, we just replace

X from the main optimization problem toX0

[
1 0

ᵀ
N−1

0N−1 U

]
where U is now imposed to be

orthogonal.
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Proposition 2.4 (Closed-form solution for the `2,0 and `2,1-norms) – The solutions of problem
(2.10) when ‖ · ‖S is set to ‖ · ‖2,0 or ‖ · ‖2,1 are given in the following.

• Using the `2,0-norm, the optimal solution of (2.10) is given by the matrix Ĥ ∈ RN×n where
for 1 ≤ i ≤ N,

Ĥ i,: =

{
0 if ‖(Xᵀ

Y )i,:‖22/(1 + αλi) ≤ β ,
(X

ᵀ
Y )i,:/(1 + αλi) else .

• Using the `2,1-norm, the optimal solution of (2.10) is given by the matrix Ĥ ∈ RN×n where
for 1 ≤ i ≤ N,

Ĥ i,: =
1

1 + αλi

(
1− β

2

1

‖(Xᵀ
Y )i,:‖2

)
+

(X
ᵀ
Y )i,: ,

where (t)+ , max{0, t} is the positive part function.

Proof. In the following, we suppose that Y 6= 0 since in this trivial case, the solution is simply

given by Ĥ = 0.

Closed-form solution for the `2,0. Recall that ‖H‖2,0 =
∑

i=1 1{‖Hi,:‖2 6=0}, the objective func-

tion can be written as:

f(X,Λ,H) = ‖Xᵀ
Y −H‖2F + α‖Λ1/2H‖2F + β‖H‖2,0

= ‖Y ‖2F +
N∑
i=1

(
n∑
j=1

(
H2
i,j − 2(X

ᵀ
Y )i,jH i,j + αλiH

2
i,j

)
+ β1{‖Hi,:‖2 6=0}

)

= ‖Y ‖2F +

N∑
i=1

(
‖H i,:‖22 − 2〈(Xᵀ

Y )i,:,H i,:〉+ αλi‖H i,:‖22 + β1{‖Hi,:‖2 6=0}

)

= ‖Y ‖2F +

N∑
i=1

(
(1 + αλi)‖H i,:‖22 − 2〈(Xᵀ

Y )i,:,H i,:〉+ β1{‖Hi,:‖2 6=0}

)

= ‖Y ‖2F +
N∑
i=1

f̃i(X,Λ,H i,:) .

Our objective function is written as a sum of independent objective functions, each associated

with a di�erentH i,:. Hence, we can optimize the problem for each i. Our problem for a given i is:

min
Hi,:∈Rn

(1 + αλi)‖H i,:‖22 − 2〈(Xᵀ
Y )i,:,H i,:〉+ β1{‖Hi,:‖2 6=0} .

When we restrict the minimization to ‖H i,:‖2 = 0, the unique solution is Ĥ i,: = 0n and

f̃i(X,Λ, Ĥ i,:) = 0.

When ‖H i,:‖2 6= 0, the objective function is convex and di�erentiable, thus it su�ce to take the

following derivative equal to 0

∂

∂H i,:
f̃i(H i,:) = 2(1 + αλi)H i,: − 2(X

ᵀ
Y )i,: = 0 ,

Ĥ i,: = (X
ᵀ
Y )i,:/(1 + αλi) .
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With this solution, the objective function f̃i is equal to:

f̃(X,Λ, Ĥ i,:) = (1 + αλi)‖(Xᵀ
Y )i,:/(1 + αλi)‖22 − 2〈(Xᵀ

Y )i,:, (X
ᵀ
Y )i,:/(1 + αλi)〉+ β

=
1

1 + αλi
‖(Xᵀ

Y )i,:‖22 −
2

1 + αλi
‖(Xᵀ

Y )i,:‖22 + β

= β − 1

1 + αλi
‖(Xᵀ

Y )i,:‖22 .

Hence, whenever

1

1 + αλi
‖(Xᵀ

Y )i,:‖22 ≤ β, the objective function is positive, making Ĥ i,: = 0

a better choice for the minimization and conversely. In conclusion, for all 1 ≤ i ≤ N, the solution

is:

Ĥ i,: =

{
0 if ‖(Xᵀ

Y )i,:‖22/(1 + αλi) ≤ β ,
(X

ᵀ
Y )i,:/(1 + αλi) else .

Closed-form solution for the `2,1. Similarly to the `2,0 case, the objective function can be decom-

posed by a sum of independent objectives functions.

f(X,Λ,H) = ‖Xᵀ
Y −H‖2F + α‖Λ1/2H‖2F + β‖H‖2,1

= ‖Y ‖2F +
N∑
i=1

(
n∑
j=1

(
H2

i,j − 2(X
ᵀ
Y )i,jH i,j + αλiH

2
i,j

)
+ β

√∑
j=1

H2
i,j

)

= ‖Y ‖2F +

N∑
i=1

(
‖H i,:‖22 − 2〈(Xᵀ

Y )i,:,H i,:〉+ αλi‖H i,:‖22 + β‖H i,:‖2
)

= ‖Y ‖2F +
N∑
i=1

(
(1 + αλi)‖H i,:‖22 − 2〈(Xᵀ

Y )i,:,H i,:〉+ β‖H i,:‖2
)

= ‖Y ‖2F +
N∑
i=1

f̃i(X,Λ,H i,:) .

Again, we can optimize the problem for each row i ofH independently. Our problem for a given

i is:

min
Hi,:∈Rn

(1 + αλi)‖H i,:‖22 − 2〈(Xᵀ
Y )i,:,H i,:〉+ β‖H i,:‖2 . (2.28)

Although non-di�erentiable atH i,: = 0n, this function is convex and we need to �ndH i,: such

that the vector 0n belongs to the subdi�erential of f̃i denoted by ∂f̃i(H i,:) and is equal to

∂f̃i(H i,:) =

 B2

(
− 2(XTY )i,:, β

)
ifH i,: = 0n ,

2
(
1 + αλi +

β

2

1

‖H i,:‖2
)
H i,: − 2(X

ᵀ
Y )i,: otherwise ,

where B2 stand for the `2-norm bowl.

Remark that when ‖(Xᵀ
Y )i,:‖2 ≤ β

2 , 0n ∈ B2

(
−2(XTY )i,:, β

)
and thus in this case Ĥ i,: = 0n.
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On the contrary, when ‖(Xᵀ
Y )i,:‖2 > β

2 , we must �ndH i,: such that:(
1 + αλi +

β

2

1

‖H i,:‖2
)
H i,: = (X

ᵀ
Y )i,: .

By taking the norm of the previous equation, we obtain(
1 + αλi +

β

2

1

‖H i,:‖2
)
‖H i,:‖2 = ‖(Xᵀ

Y )i,:‖2

⇐⇒(1 + αλi)‖H i,:‖2 +
β

2
= ‖(Xᵀ

Y )i,:‖2

⇐⇒‖H i,:‖2 =
(
‖(Xᵀ

Y )i,:‖2 −
β

2

)
/(1 + αλi) > 0 .

We can now replace ‖H i,:‖2 in the initial equation and getH i,:.(
1 + αλi +

β(1 + αλi)

2‖(Xᵀ
Y )i,:‖2 − β

)
H i,: =

(1 + αλi)‖(Xᵀ
Y )i,:‖2

‖(Xᵀ
Y )i,:‖2 − β/2

H i,: = (X
ᵀ
Y )i,:

⇐⇒Hi,: =
‖(Xᵀ

Y )i,:‖2 − β/2
(1 + αλi)‖(Xᵀ

Y )i,:‖2
(X

ᵀ
Y )i,: =

1

1 + αλi

(
1− β

2

1

‖(Xᵀ
Y )i,:‖2

)
(X

ᵀ
Y )i,: ,

which concludes the proof.

Proposition 2.5 (Euclidean gradient with respect to U ) – The Euclidean gradient of f and φ
with respect to U are

∇Uf(H,U ,Λ) = −2
[
(HY

ᵀ
X0)2:,2:

]ᵀ
+ 2U(HH

ᵀ
)2:,2: ,

∇Uφ(U ,Λ) = −
N−1∑
k=1

N∑
`>k

(
Bk,` +B

ᵀ
k,`

)
UΛ2:,2:

h(U ,Λ)k,`
.

with ∀1 ≤ k, ` ≤ N,Bk,` =
(
X

ᵀ
0eke

ᵀ
`X0

)
2:,2:

, and h(·) from De�nition 2.11.

Proof. We begin by computing the gradient of the main objective, with respect to U . Recall the

objective function with respect to U :

f(H,U ,Λ) = −2tr

(
Y

ᵀ
X0

[
1 0

ᵀ
N−1

0N−1 U

]
H

)
+ tr

(
H

ᵀ
[

1 0
ᵀ
N−1

0N−1 U
ᵀ
U

]
H

)
.

The corresponding gradient is the following.

∇Uf(H,U ,Λ) = −2∇U tr

(
Y

ᵀ
X0

[
1 0

ᵀ
N−1

0N−1 U

]
H

)
+∇U tr

(
H

ᵀ
[

1 0
ᵀ
N−1

0N−1 U
ᵀ
U

]
H

)

= −2∇U tr

(
HY

ᵀ
X0

[
1 0

ᵀ
N−1

0N−1 U

])
+∇U tr

(
HH

ᵀ
[

1 0
ᵀ
N−1

0N−1 U
ᵀ
U

])
= −2∇U

(
(HY

ᵀ
X0)1,1 · 1 + tr

(
(HY

ᵀ
X0)2:,2:U

))
+∇U

(
(HH

ᵀ
)1,1 · 1 + tr

(
(HH

ᵀ
)2:,2:U

ᵀ
U
))

= −2
[
(HY

ᵀ
X0)2:,2:

]ᵀ
+ 2U(HH

ᵀ
)2:,2: .
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We now derive the gradient of the barrier function φ(U ,Λ) with respect to U :

∇Uφ(U ,Λ) = −
N−1∑
k=1

N∑
`>k

∇U log
(
− h(U ,Λ)k,`

)

= −
N−1∑
k=1

N∑
`>k

1

h(U ,Λ)k,`
∇Uh(U ,Λ)k,` .

We can write the h function as:

h(U ,Λ)k,` =
〈
eke

ᵀ
` ,h(U,Λ)

〉
=
〈
X

ᵀ
0eke

ᵀ
`X0,

[
1 0

ᵀ
N−1

0N−1 U

]
Λ

[
1 0

ᵀ
N−1

0N−1 U

]ᵀ 〉
=
〈
X

ᵀ
0eke

ᵀ
`X0,

[
λ1 0

ᵀ
N−1

0N−1 UΛ2:,2:U
ᵀ

]〉
= tr

(
X

ᵀ
0e`e

ᵀ
kX0

[
0 0

ᵀ
N−1

0N−1 UΛ2:,2:U
ᵀ

])
=
(
X

ᵀ
0e`e

ᵀ
kX0

)
1,1
· 0 + tr

((
X

ᵀ
0e`e

ᵀ
kX0

)
2:,2:
UΛ2:,2:U

ᵀ
)

= tr

(
B

ᵀ
k,`UΛ2:,2:U

ᵀ
)
.

In conclusion we have∇Uh(U ,Λ)k,` =
(
Bk,` +B

ᵀ
k,`

)
UΛ2:,2:, which �nishes the proof.

Proposition 2.6 (Feasible eigenvalues) – Given anyX ∈ RN×N being an orthogonal matrix
with �rst column equals to 1/

√
N (constraint (2.6a)), there always exist a matrix Λ ∈ RN×N such

that the following constraints are satis�ed:
(XΛX

ᵀ
)i,j ≤ 0 i 6= j , (3b)

Λ = diag(0, λ2, . . . , λN ) � 0 , (3c)
tr(Λ) = c ∈ R+

∗ . (3d)

Proof. Let us consider a positive real value c > 0. Taking Λ = diag(0, c, . . . , c)/(N − 1) leads

to tr(Λ) = c and ∀i 6= j, (XΛX
ᵀ
)i,j = −c/N < 0. However, this solution with constant

eigenvalues actually corresponds to the complete graph. For our purpose, it is the worst case

scenario as it contains no structural information between the nodes.

Proposition 2.7 (Closed-form solution of problem (2.16)) – Consider the optimization problem
(2.16). LetX0 be any matrix that belongs to the constraints set (a), andM = (X

ᵀ
0Y H

ᵀ
)2:,2: the

submatrix containing everything but the input’s �rst row and �rst column. Finally, let PDQᵀ be
the SVD ofM . Then, the problem admits the following closed form solution

X̂ = X0

[
1 0

ᵀ
N−1

0N−1 PQ
ᵀ

]
.

Proof. One can observe that the relaxed optimization problem is equivalent to �nding:

Ĝ = argmin

G

∥∥∥∥∥Y −X0

[
1 0

ᵀ
N−1

0N−1 G

]
, G̃

H

∥∥∥∥∥
2

F

, (2.29)
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s.t. G
ᵀ
G = IN−1. This is obtained by replacingX withX0G̃.

Solving the above Equation (2.29) is equivalent to �nding:

Ĝ = arg max
G

tr

(
HY

ᵀ
X0G̃

)
= arg max

G
tr

(
M

ᵀ
G
)
,

s.t. G
ᵀ
Ĝ = IN−1. Then, as proved in Zou et al. [2006], we �nally have G∗ = PQ

ᵀ
, which

completes the proof.

Lemma 2.2 – Assume the proposed Model (2.19). If p1 = 0 and pi ∈ (0, 1), ∀i ≥ 2, then,

− log(p(h|y,X,Λ)) ∝ 1

σ2
‖y −Xh‖22 +

1

2
h
ᵀ
Λh

+

N∑
i=1

1{hi 6=0}

(
pi log(

λi√
2π

)− log(pi)− log(
λi√
2π

)

)
.

Proof. Based on the Factor Analysis model and the independence of hi’s,

log(p(h|y,X,Λ)) ∝ log (p(y|h,X,Λ)) + log (p(h|X,Λ))

∝ − 1

2σ2
‖y −Xh‖22 +

N∑
i=1

log (p(hi|λi)) . (2.30)

Let us now focus on log (p(hi|λi)), for which we have

log (p(hi|λi)) = log

 ∑
γi={0,1}

p(hi, γi|λi)


= log

 ∑
γi={0,1}

p(hi, γi|λi)
p(γi|hi, λi)
p(γi|hi, λi)


≥
(=)

∑
γi={0,1}

p(γi|hi, λi) log

(
p(hi, γi|λi)
p(γi|hi, λi)

)
.

The last equality is obtain using the concavity of the logarithm and Jensen inequality. For this

particular case, it correspond to an equality. Then we have:

log (p(hi|λi)) =
∑

γi={0,1}
p(γi|hi, λi) log (p(hi, γi|λi)) (?)

−
∑

γi={0,1}
p(γi|hi, λi) log (p(γi|hi, λi)) . (??)

Before computing the previous two sums, we need to observe that:

p(γi = 1|hi) =

{
1 if hi 6= 0 ,
pi if hi = 0 .
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We can now compute (?) and (??) as follows:

(?) =
∑

γi={0,1}
p(γi|hi, λi) [log (p(hi|γi, λi)) + log (p(γi|λi))]

=
(
1{hi 6=0} + pi1{hi=0}

) [
log

(
λi√
2π

)
− 1

2
λih

2
i + log (pi)

]
+
(
(1− pi)1{hi=0}

) [
log
(
1{hi=0}

)
+ log (1− pi)

]
(??) = [pi log(pi) + (1− pi) log(1− pi)]1{hi=0} .

Finally we can compute log (p(hi|λi)):

log (p(hi|λi)) = (?)− (??)

= 1{hi 6=0}

(
log

(
λi√
2π

)
− 1

2
λih

2
i + log (pi)

)
+ pi log

(
λi√
2π

)
1{hi=0}

= 1{hi 6=0}

(
log

(
λi√
2π

)
+ log (pi)− pi log

(
λi√
2π

))
+ pi log

(
λi√
2π

)
− 1

2
λih

2
i

∝ 1{hi 6=0}

(
log

(
λi√
2π

)
+ log (pi)− pi log

(
λi√
2π

))
− 1

2
λih

2
i .

Note that with our parametrization, the particular case i = 1 leads to log (p(h1|λ1)) = 0. Now

plugging our result in equation (2.30) and multiplying on both side by −1, we get our �nal

result.

Proposition 2.8 (A posteriori distribution of h) – Let C > 0, and assume for all i ≥ 2 that
pi = e−C if λi =

√
2π and pi = −W

(
− e−C log(λi/

√
2π)

λi/
√

2π

)
/ log(λi/

√
2π) if not. Then, pi ∈ (0, 1)

and there exist constants α, β > 0 such that:

− log(p(h|y,X,Λ)) ∝ ‖y −Xh‖22 + αh
ᵀ
Λh+ β‖h‖0 .

Proof. To show that the pi’s are well-de�ned and belongs to (0, 1), it su�ces to apply Lemma 2.3

with x = λi/
√

2π.

We now proof the main result of the proposition. If λi =
√

2π, then pi = e−C < 1 and

pi log(
λi√
2π

)− log(pi)− log(
λi√
2π

) = − log(pi) = C .
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If λi 6=
√

2π, then −pi log(λi/
√

2π) = W
(
− e−C log(λi/

√
2π)

λi/
√

2π

)
. Since W corresponds to the

inverse function of f(W ) = WeW , we have:

− pi log(λi/
√

2π)e−pi log(λi/
√

2π) = −e
−C log(λi/

√
2π)

λi/
√

2π

⇐⇒
∣∣∣−pi log(λi/

√
2π)e−pi log(λi/

√
2π)
∣∣∣ =

∣∣∣∣∣−e−C log(λi/
√

2π)

λi/
√

2π

∣∣∣∣∣
⇐⇒ log

(
pi

∣∣∣log(λi/
√

2π)
∣∣∣ e−pi log(λi/

√
2π)
)

= log

(
e−C

∣∣log(λi/
√

2π)
∣∣

λi/
√

2π

)
⇐⇒ log(pi) + log

(∣∣∣log(λi/
√

2π)
∣∣∣)− pi log(λi/

√
2π)

= −C + log
(∣∣∣log(λi/

√
2π)
∣∣∣)− log(λi/

√
2π) .

Same as the case where λi =
√

2π, the �nal equality gives us:

pi log(
λi√
2π

)− log(pi)− log(
λi√
2π

) = C . (2.31)

Plugging the equation (2.31) into the �nal result of proposition 1, we obtain:

− log(p(h|y,X,Λ)) ∝ 1

2σ2
‖y −Xh‖22 +

1

2
h
ᵀ
Λh+ C‖h‖0

∝ ‖y −Xh‖22 + αh
ᵀ
Λh+ β‖h‖0 ,

taking α = σ2
and β = 2Cσ2

. This concludes the proof.

Lemma 2.3. Let C > 0. For any x > 0,

0 ≤ −W
(
−e
−C log(x)

x

)
/ log(x) ≤ 1 . (2.32)

Proof. First, we show that this function is decreasing for x > 0. The derivative of the function is

given by

∂

∂x

[
−W

(
−e
−C log(x)

x

)
/ log(x)

]
=
W
(
− e−C log(x)

x

)(
W
(
− e−C log(x)

x

)
+ log(x)

)
x log2(x)

(
W
(
− e−C log(x)

x

)
+ 1
) .

(2.33)

For x > 0 and C > 0,

−1/e < −e−(C+1) = min
x>0
−e
−C log(x)

x
≤ −e

−C log(x)

x
. (2.34)

As W (·) is strictly increasing for x > −1/e, we have W
(
− e−C log(x)

x

)
> W (−1/e) = −1.

Hence, the bottom part of the previous equation is always positive.
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For 0 < x ≤ 1, W
(
− e−C log(x)

x

)
is positive. Furthermore,

−e−C log(x)

x
< − log(x)

x
⇐⇒W

(
−e−C log(x)

x

)
< W

(− log(x)

x

)
= − log(x) (2.35)

⇐⇒W

(
−e−C log(x)

x

)
+ log(x) < 0 . (2.36)

Hence, when 0 < x ≤ 1, the upper part of the previous equation is negative.

For 1 < x ≤ e, W
(
− e−C log(x)

x

)
is negative. Furthermore,

−1

e
≤ − log(x)

x
< −e−C log(x)

x
⇐⇒W

(
− log(x)

x

)
= − log(x) < W

(
−e−C log(x)

x

)
(2.37)

⇐⇒W

(
−e−C log(x)

x

)
+ log(x) > 0 . (2.38)

Hence, when 1 < x ≤ e, the upper part of the previous equation is negative again.

For x > e, W
(
− e−C log(x)

x

)
is negative. Furthermore, W

(
− e−C log(x)

x

)
> −1 and log(x) > 1.

Hence, the addition is positive and the upper part of the previous equation is negative again.

We just have shown that the derivative is negative for x > 0. Hence, the initial function is

decreasing on this interval. We now go back to the initial inequality (2.32). The left part of the

inequality is straightforward as for x large enough, the function corresponds to the product of

two positive functions. The function being decreasing, the lower bound follows. For the upper

bound, let us remind that for y > e, we have the inequalityW (y) < log(y) [Hoorfar and Hassani,

2007]. Let f(x) = − e−C log(x)
x , for x small enough we have:

W (f(x)) < log(f(x)) ⇔ −W (f(x)) > − log(f(x))

⇔−W (f(x)) / log(x) < − log(f(x))/ log(x) .

Taking the limit when x −→ 0+ conclude the proof,

lim
x→0+

− log(f(x))/ log(x) = lim
x→0+

− log(−e
−C log(x)

x
)/ log(x)

= lim
x→0+

−
(

log(e−C) + log(− log(x))− log(x)
)
/ log(x)

= lim
x→0+

C

log(x)
+

log(log(1/x))

log(1/x)
+ 1 = 1 .



3
Tensor-based convolutional dictionary
learning with CP low-rank activations

Abstract

The goal of this chapter is to provide algorithms for Convolutional Dictionary Learning

(CDL) taking into account the underlying linear structure of the multivariate input signals.

In this view, we add to the initial CDL problem a tensor constraint enforcing the activation

maps to be sparse and Canonical Polyadic (CP) low-rank. We propose two algorithms, called

T-ConvADMM and T-ConvFISTA, for the minimization. Based on a 2-steps alternating

procedure, they both rely on an optimization in the Fourier domain to e�ciently solve

the problem despite the increasing complexity induced by the tensor representation. Their

bene�ts in term of convergence, complexity, and interpretability of the learned dictionary and

activations are discussed in details. Then, we evaluate these two algorithms on a wide range

of synthetic data. Experiments show that (i) the low-rank model entails a better robustness

to noise and perturbations, resulting in accurate, sparse and interpretable encoding of the

signals, (ii) algorithms are computationally faster than previous ones in several cases. Finally,

multiple real-data applications, ranging from image processing to electroencephalogram

analysis, are performed, highlighting the important advantages and versatility of this tensor

CP low-rank formulation.
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P. Humbert, L. Oudre, N. Vayatis, and J. Audi�ren. Tensor Convolutional Sparse Coding with

Low-Rank activations, an application to EEG analysis. (Submitted).

1 Introduction

The linear decomposition of a signal into few atoms of a learned dictionary instead of a prede�ned

one such as discrete cosine transform, wavelets, curvelets, etc., has led to state-of-the-art results

in a wide range of topics, including image denoising [Elad and Aharon, 2006], image classi�cation

[Raina et al., 2007; Mairal et al., 2009; Yang et al., 2009], and other signal processing tasks [Huang

and Aviyente, 2007; Févotte et al., 2009; Peyré, 2009; Mairal et al., 2010]. Recently, its convolutional

counterpart known as Convolutional Dictionary Learning (CDL) or Convolutional Sparse Coding

(CSC), has gained renewed interest. The central idea behind CDL is to replace the traditional

patch-based representation with a global shift-invariant one. Various algorithms built around the

Alternating Direction Method of Multipliers (ADMM) or the Fast Iterative Shrinkage-Thresholding

Algorithm (FISTA) have been suggested to e�ciently handle the associated CDL problem. But in-

terestingly, they mainly focused on a resolution for univariate signals or images [Garcia-Cardona

and Wohlberg, 2018a] while multivariate data with a natural tensor structure are encountered in

many scienti�c areas.

One approach to still apply vector-based algorithms on multivariate data is to vectorized them by

stretching their elements. However, this naive processing ignores the multidimensional structure

of the input and is frequently sub-optimal. A powerful idea to e�ectively exploit the structural

information is to use multilinear analysis and low-rank tensor decomposition techniques [Kolda

and Bader, 2009]. Indeed, by providing essential tools for handling multivariate data they naturally

simplify the adaptation of machine learning and statistical methods to tensors. Until recently, a

lot of works have considered with great success the tensor framework e.g. in regression [Zhou
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Figure 3.1: Spectrograms of a stereo audio jazz signal.

et al., 2013; Rabusseau and Kadri, 2016; Li et al., 2017; He et al., 2018], image completion [Liu et al.,

2012], decomposition of spectrograms or scalograms of EEG data [Cong et al., 2015], processing

of audio signals [Wang et al., 2013].

Contributions. In this chapter, we provide two algorithms based on ADMM or FISTA for CDL

taking into account the underlying structure of the multivariate/tensor signals. Unlike previous

works, we do not rely on a low-rank constraint on the atoms. Instead, we extend the standard

minimization CDL problem to a tensorial one with an additional CP low-rank decomposition

constraint on the activation maps. The idea of enforcing low-rank constraints in CDL is not novel:

Rigamonti et al. [2013] and Sironi et al. [2014] used the idea of separable �lters for learning a

low-rank collection of atoms in order to improve computational runtime. More recent publications

including [Quesada et al., 2018; Silva et al., 2018; Quesada et al., 2019] have also successfully used

low-rank (or even rank-1) constraints on 2-D dictionary. Yet, in all these approaches, the low-rank

constraints have been enforced on the dictionary/atoms. However, in several applicative contexts,

the low-rank structure naturally appears in the activations rather than in the atoms/dictionary.

To illustrate the relevance of our new approach, we display in Figure 3.1 an example of two

spectrograms obtained from a stereo music recording. Both spectrograms exhibit a low-rank

structure. This is a known property for such time-frequency representations, which is commonly

used for signal decomposition or source separation. Some repetitive patterns (highlighted in

red and orange) are also visible on the spectrograms which suggests that a CDL model may

appear as natural for such data. However, the strong low-rank structure of the data is here

transferred into the activations tensors rather than into the observed patterns. In other words,

although the time-frequency atoms may be complex (and thus without a low-rank structure),

the activations (i.e. the time/frequency/channel positions where these atoms appear) clearly are

low-rank. In this example, this phenomenon may be explained by the harmonic structure of

the audio signals, to the tempo grid used by the instruments or to the fact that both channels

approximately capture the same audio scene. Such observations can also be made for sequences of

images, where the structure lies in the locations of the patterns rather that in the individual atoms.
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The organization of this chapter is as follow. We �rst recall the standard CDL model and the

most important algorithms to solve the associated problem in Section 2. Then, we introduce our

multivariate CDL problem, referred to as Kruskal Convolutional Dictionary Learning (K-CDL) in

Section 3. We propose two algorithms based on ADMM or FISTA to solve it (Section 4). Their

properties are analyzed and discuss in details. Finally, in Section 6, we conduct multiple empirical

analysis on synthetic and real data to highlight the performances of our approach.

2 Convolutional dictionary learning

The Dictionary Learning problem (DL) was introduced in the context of modeling receptive

�elds in human vision by Olshausen and Field [1996, 1997]. As their results were considered

impressive by the scienti�c community, DL enjoyed early success and found many applications

in image processing (e.g. for discovering and visualizing the underlying structure of natural

image patches). However, DL is mostly a patch-based method, and thereby does not capture the

correlation between local neighborhoods. To circumvent this drawback, following the work of

Lewicki and Sejnowski [1999] in discrete 1D time-varying signals, Grosse et al. [2007] introduced

its extension called Convolutional Dictionary Learning (CDL). This work was generalized to

images by Mørup et al. [2008]. The main idea behind CDL is to replace the traditional patch-based

model with a global shift-invariant one. In this way, a dictionary of patterns/atoms (small signals)

is learned so that the input signals can be represented approximately by a superposition of only a

small number of them, called “active”. For any input signal, these active basis functions produce a

sparse signal representation that concisely represents that signal.

Formally, given a �nite set of N signals y1, . . . ,yN in RM and a scalar λ > 0, the `1-regularized

CDL problem is

min
{dk}Kk=1,{zn,k}N,K

n,k=1

1

2

N∑
n=1

(
‖yn −

K∑
k=1

dk ©? zn,k‖22 + λ

K∑
k=1

‖zn,k‖1
)
, (3.1)

s.t. ‖dk‖2 ≤ 1 ∀k = 1, . . . ,K

where the dk ∈ RW are the atoms, the zn,k ∈ RM are the activation maps, and ©? denotes

the (circular) convolutional operator (see Appendix for more details). An example of such

representation is given in Figure 3.2.

For clarity, in the sequel, we will drop the index k or nwhen obvious e.g. {dk}Kk=1 will be denoted

by {dk}.

In its simplest form, the CDL problem (3.1) involves two important components: a sparsity

regularization and a unit-norm constraint.

The sparsity regularization. A natural regularization to encourage sparsity of the activations

maps is the `0-regularization. However, with this (semi)-norm, the problem is often intractable

and research has either focus for an approximate solution using a greedy algorithm, or for a

convex relaxation. A typical convex relaxation for this problem is the equation (3.1), where a

`1-regularization is preferred. This relaxation can be shown to consistently estimate the solution

of the `0 problem under some assumptions on the sparsity of the solution and the design of the
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Figure 3.2: Two atoms are displayed in (a) and (b). The �rst one in blue is a sinusoidal and the second one

in orange is the “Mexican hat function”. For each atom, the corresponding activation map is represented in

(c). The resulting signal from the CSC model is displayed in (d).

dictionary [Donoho and Elad, 2003; Fuchs, 2004]. While other sparsity-based penalties may be

considered e.g. group sparsity, in this chapter, we will focus on the most frequently employed,

the `1-regularization (see [Mairal et al., 2014] for a complete review).

The unit-norm constraint. The most common constraint imposed on the atoms is to have

a unit norm as in equation (3.1). This is an important constraint since multiplying an atom dk
by a scalar a > 1 and all {zn,k}Nn=1 by 1/a, does not change the value of the objective function

even if the `1-norm is decreased by a factor 1/a. Thus, without the unit norm constraint, the

{zn,k}Nn=1 tend to 0 and the norm of dk explodes. Other constraints have also been proposed,

such as smoothness constraints enforced by regularizing the gradient with its `2-norm.

Even though the CDL problem is not jointly convex in ({dk}, {zn,k}), it is convex with respect

to each variable when the other one is �xed. A natural optimization scheme for minimizing

the objective function is therefore to alternate between the minimization with respect to the

atoms {dk} when the activation maps {zn,k} are �xed and vice versa. This strategy known as

alternating minimization or block coordinate descent [Ortega and Rheinboldt, 2000] has proven to

be very e�ective in solving a wide range of optimization problems such as iteratively reweighted

least squares, robust regression, or sparse recovery [Daubechies et al., 2010]. Note that, we

consider an optimization problem for which it is not possible, in general, to guarantee that we are

going to obtain the global minimum. Furthermore, this problem exhibits several symmetries and

admits multiple global optima which can be an issue in practice [Mairal et al., 2014]. Optimizing

with respect to {zn,k} is often referred as Convolutional Sparse Coding (CSC) and will be our

main focus in this chapter.
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2.1 Convolutional sparse coding

As the activation maps are independent across the signals y1, . . . ,yN , we can solve the CSC

problem for only one of them.

Given a signal y, the CSC problem is

min
{zk}

1

2
‖y −

K∑
k=1

dk ©? zk‖22 + λ
K∑
k=1

‖zk‖1 , (3.2)

where ©? is the circular convolution (see Appendix).

In the sequel, without further information, we will always use this convolution and focus on the

CSC instead of the CDL. Several algorithms have been proposed to solve the CSC problem. The

work of Kavukcuoglu et al. [2010] extends to CSC the coordinate descent methods introduced

by Friedman et al. [2007]. The Feature Sign Search algorithm proposed in Grosse et al. [2007]

solves at each step a quadratic sub-problem for an active set of the estimated nonzero coe�cients.

More recently, Papyan et al. [2017a] and Zisselman et al. [2019] have introduced respectively

the Slice-Based Dictionary Learning (SBDL) and the Local Block Coordinate Descent (LoBCoD)

algorithms. The two most important algorithms remain the ones of [Bristow et al., 2013] and

[Chalasani et al., 2013] which are described below.

2.1.1 Convolutional sparse coding with ADMM

Zeiler et al. [2010] were the �rst to propose an e�cient algorithm for the CSC problem (3.2) by

introducing an auxiliary variable to separate the convolution from the `1-regularization. This

important idea of separating the �delity term from the sparsity term is now widely used in contem-

porary methods. To do so, solvers often rely on the Alternating Direction Method of Multipliers

(ADMM) [Glowinski and Marroco, 1975; Gabay and Mercier, 1976] in the Fourier domain for the

computational convenience of convolutions [Bristow et al., 2013; Wohlberg, 2014, 2015]. The

algorithm who popularize ADMM for both the CSC and CDL is called Fast Convolutional Sparse

Coding (FCSC) [Bristow et al., 2013]. In this paper, authors have shown remarkable improvements

in e�ciency by exploiting the Parseval’s equality and the convolutional theorem for solving (3.2).

The steps to solve the CSC problem with ADMM are straightforward. We �rst consider the

splitting

f({zk}) =
1

2
‖y −

K∑
k=1

dk ©? zk‖22 , ψ({zk}) = λ

K∑
k=1

‖zk‖1 , (3.3)

where f is the �delity term which control the di�erence between the input and its reconstruction,

and ψ is the regularization term. Then, by introducing K auxiliary variables {tk}, we rewrite the

main equation (3.2)

min
{tk,zk}

f({zk}) + ψ({tk})

s.t. zk = tk ∀k = 1, . . . ,K .
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The corresponding iterations of the ADMM algorithm with a scalar ρ > 0 and the {uk} as dual

variables are given by

{z(s+1)
k } = arg min

{zk}
f({zk}) +

ρ

2

K∑
k=1

‖zk − t(s)k + u
(s)
k ‖22 , (3.4)

{t(s+1)
k } = arg min

{tk}
ψ({tk}) +

ρ

2

K∑
k=1

‖z(s+1)
k − tk + u

(s)
k ‖22 , (3.5)

{u(s+1)
k } = u

(s)
k + z

(s+1)
k − t(s+1)

k . (3.6)

Subproblem (3.5) admits the well-known closed-form solution [Tibshirani, 1996]

∀k = 1, . . . ,K, t
(s+1)
k = Sλ/ρ(z(s+1)

k + u
(s)
k ) ,

where Sγ(·) is the soft-thresholding operator i.e. for a vector x ∈ Rm

Sγ(x)[i] = sign(xi) max(|xi| − γ, 0) .

Subproblem (3.4) also admits a closed-form solution (in certain conditions). However, �nding the

solution is a computationally demanding process due to the size of the matrices involved. As

proposed by Bristow and Lucey [2014], one way to address this issue is to use both the Parseval’s

and convolution theorems in order to take advantage of the convolutional structure of the problem.

Forgetting the iteration index, rewriting the objective function of (3.4) in the Fourier domain

gives

1

2M
‖ŷ −

K∑
k=1

d̂k ∗ ẑk‖22 +
ρ

2M

K∑
k=1

‖ẑk − t̂k + ûk‖22 , (3.7)

where ·̂ denotes the frequency representation of a signal, ∗ is the component-wise product, and

each d̂k is in CM . As u ∗ v = diag(u)v, the component-wise product is rewritten in a matrix

product. Then, by introducing the matrix D̂ = [diag(d̂1), . . . , diag(d̂K)] in CM×KM , and the

three vectors ẑ = [ẑ
ᵀ
1, . . . , ẑ

ᵀ
K ]

ᵀ
, t̂ = [̂t

ᵀ

1, . . . , t̂
ᵀ

K ]
ᵀ
, and û = [û

ᵀ
1, . . . , û

ᵀ
K ]

ᵀ
in CKM , the �rst

term of (3.7) becomes ‖ŷ − D̂ẑ‖22 and its minimum is given by the solution in ẑ of(
D̂
H
D̂ + ρI

)
ẑ =

(
D̂
H
ŷ + ρ(̂t− û)

)
, (3.8)

where (·)H stands for the Hermitian transpose. Here, the matrix

(
D̂
H
D̂ + ρI

)
is of size KM ×

KM and can be expensive to inverse (when possible). Fortunately, as D̂ is block diagonal, D̂
H
D̂

is a particular diagonal block matrix known as band matrix (see Figures 3.3a and 3.3c). Hence, it

is possible to permute rows and columns in order to only solve M independent K ×K linear

systems (see Figures 3.3b and 3.3d). More precisely, this system is actually composed of M
independent system, which correspond to each frequency computed by the FFT. The solution of

the initial problem can then be retrieved using the inverse Fourier transform. The full algorithm

to solve the CSC based on ADMM is described in Algorithm 3.1.

Remark 3.1. In the general case, the necessity to �nd such permutation comes from the graph
community where they want to exhibit adjacency matrices with small bandwidth. Two popular
algorithms are the reverse Cuthill-McKee algorithm [Cuthill and McKee, 1969] later improved by the
GPS algorithm [Gibbs et al., 1976].
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(a) (b) (c) (d)

Figure 3.3: Visualization of the Gram matrix D̂
H
D̂ before and after a reordering. The two left matrices (a,

b) correspond to the Gram matrix without reordering (a) and with reordering (b). The two right matrices

(c, d) also correspond to the Gram matrix without reordering (c) and with reordering (d) but for a higher

dimension.

Algorithm 3.1 ADMM for CSC

Input: signal y, dictionaryD, regularization and ADMM parameters λ, ρ, tolerance ε
Initialization: z(0)

Precompute ŷ and D̂ using the FFT

t(0) ←− z(0)

u(0) ←− (0, · · · , 0)
repeat

B Update of z via equation (3.4)

Compute ẑ(s), t̂
(s)

and û(s)
using the FFT

Solve the linear systems

(
D̂
H
D̂ + ρI

)
ẑ =

(
D̂
H
ŷ + ρ(̂t

(s)
+ û(s))

)
Compute z(s+1)

using the inverse FFT

B Update of t via equation (3.5)

t(s+1) ←− Sλ/ρ(z(s+1) + u(s))

B Update of u via equation (3.6)

u(s+1) ←− u(s) + z(s+1) − t(s+1)

until ‖z(s+1) − z(s)‖∞ ≤ ε

Convergence and complexity The ADMM algorithm is proven to converge to the optimal

solution [Gabay, 1983]. Furthermore, in practice, this algorithm often gives an estimate with

su�cient accuracy within tens of iterations. Indeed, with alternate minimization, each iteration

does not need to �nd an optimal point, but a point with medium accuracy. Unfortunately, simple

examples show that ADMM can be very slow to converge to high accuracy [Boyd et al., 2011].

The complexity of ADMM-based solvers such as FCSC are easily obtained by the analysis of

each step. The �rst step requires the FFT which gives a complexity of O(KM log(M)). Then, as

already mentioned, we need to solve M independent linear systems of size K ×K which gives a

complexity of O(K3M) when using direct method such as Gaussian elimination or Cholesky

decomposition. Finally, the soft-threshold part and the dual variable updates give a complexity of

O(KM).
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2.1.2 Convolutional sparse coding with FISTA

Using the Fast Iterative Soft Thresholding Algorithm (FISTA) [Beck and Teboulle, 2009] to solve

the CSC problem (3.2) was �rst proposed by Chalasani et al. [2013]. Based on the Iterative Soft

Thresholding Algorithm (ISTA) [Daubechies et al., 2004], this popular proximal method has

the advantage of being a simple gradient-based algorithm involving very simple computations.

Furthermore, compared to ISTA, FISTA performs an extra step known as the Nesterov’s momentum
which accelerates its convergence.

The steps to solve the CSC problem with FISTA are straightforward. We �rst consider the same

splitting (3.3) used in ADMM (Section 2.1.1). Then we alternate between i) a gradient descent

step on the �delity term f i.e.

z
(s+1/2)
k = z

(s)
k − η∇f

(
{z(s)

k }Kk=1

)
with η > 0 , (3.9)

ii) the proximal operator of η · ψ(·)

∀k = 1, . . . ,K, z
(s+1)
k = proxη·ψ

(
z

(s+1/2)
k

)
= Sηλ

(
z

(s+1/2)
k

)
,

where Sγ(·) is the soft-thresholding operator introduced earlier, and iii) the Nesterov’s momentum

relative to FISTA (see Algorithm 3.2). Once again, we can take advantage of the FFT and perform

the descent step in the frequency domain. The descent step is thus given by

ẑ
(s+1/2)
k = ẑ

(s)
k − η′∇f̂

(
{ẑ(s)

k }Kk=1

)
with η′ > 0 .

To express the gradient in a nice formulation, and forgetting the iteration index, we introduce the

matrix D̂ = [diag(d̂1), . . . , diag(d̂K)] in CM×KM , and the vector ẑ = [ẑ
ᵀ
1, . . . , ẑ

ᵀ
K ]

ᵀ
in CKM .

The �delity term becomes ‖ŷ − D̂ẑ‖22 and the gradient with respect to ẑ is now given by

∇f̂
(
{ẑk}Kk=1

)
= ∇f̂(ẑ) = −D̂H

(ŷ − D̂ẑ) = D̂
H

(D̂ẑ − ŷ) ,

where (·)H stands for the Hermitian transpose.

Convergence and complexity FISTA has an optimal theoretical convergence rate guarantee

of O(1/t2) [Beck and Teboulle, 2009] which makes it very e�cient to solve the CSC problem.

The proof of convergence and the convergence rates do not depend on the particular structure

of the CSC problem and can also be proven. Unlike for the simple proximal scheme (ISTA), we

cannot guarantee that the sequence of iterates generated by the accelerated version (FISTA) is

itself convergent. Furthermore, it should be noted that accelerated schemes are not necessarily

descent algorithms, in the sense that the objective does not necessarily decrease at each iteration

[Bach et al., 2012].

The complexity of FISTA-based solvers are easily obtained by the analysis of each step. The

pre-computations of ŷ and {d̂k} is of complexity O((K + 1)M log(M)). Then, the �rst step of

FISTA requires the FFT which gives a complexity of O(KM log(M)). The computation of the

gradient only relies on simple matrix multiplications and have a complexity of O(KM) instead

of O(KM2) due to the diagonal-block structure of D̂. Finally, the soft-threshold part and the

dual variable updates give a complexity of O(KM).
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Algorithm 3.2 FISTA for CSC

1: Input: signal y, dictionaryD, regularization and step parameters λ, η′ (η′ = 1/L, the inverse

of Lipschitz constant if calculate), tolerance ε
2: Initialization: z(0)

3: Precompute ŷ and D̂ using the FFT

4: t(0) ←− 1
5: w(0) ←− z(0)

6: repeat

7: B Update of w via a proximal gradient step (ISTA)
8: Compute ẑ(s)

using the FFT

9: ŵ(s+1/2) ←− ẑ(s) − 1

L
D̂
H

(D̂ẑ(s) − ŷ)

10: Compute w(s+1/2)
using the inverse FFT

11: w(s+1) ←− Sηλ
(
w

(s+1/2)
k

)
B λ/L and not λ

12: B Nesterov momentum step (FISTA)

13: t(s+1) ←− 1 +
√

1 + 4 · t(s)2
2

14: z(s+1) ←− w(s+1) +
t(s) − 1

t(s+1) + 1
(w(s+1) −w(s))

15: until ‖z(s+1) − z(s)‖∞ ≤ ε

2.2 Dictionary update

We now quickly focus on the problem of learning a dictionary.

Given the activation maps {zn,k}, the CDL problem becomes

min
{dk}Kk=1

1

2

N∑
n=1

‖yn −
K∑
k=1

dk ©? zn,k‖22 (3.10)

s.t. ‖dk‖2 ≤ 1 ∀k = 1, . . . ,K .

Conversely to the sparse coding, here the activation maps are �xed and we want to �nd a common

dictionary for all the signals {yn}. In the past years, a lot of algorithms have been proposed to

solve this problem. In the following, we quickly present some of them.

2.2.1 Proximal gradient descent

Since in equation (3.10) the constraint on the atoms is convex, it is possible to use a proximal

gradient descent to solve the CDL. Let us denote by IΩ the indicator function of the constraint

set Ω = {x | ‖x‖2 ≤ 1} i.e. Ω is the unit ball. Problem (3.10) is then equivalent to

min
{dk}

1

2

N∑
n=1

‖yn −
K∑
k=1

dk ©? zn,k‖22 + IΩ(D) , (3.11)

where the constraint is now a penalization-term. The proximal operator of IΩ is the projection

projΩ onto Ω. As Ω is the `2 unit ball, this operator is separable for each atom and can be computed
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Algorithm Time complexity

Deconvolutional Networks[Zeiler et al., 2010] T ( KM

Conjugate gradient

· KMW

Spatial convolutions

+ KD

Shrinkage

)

Fast CSC[Bristow et al., 2013] T ( K3M

Linear systems

+ KM log(M)

FFTs

+ KM

Shrinkage

)

Fast and Flexible CSC[Heide et al., 2015] K3M + (T − 1)K2M

Linear systems

+ T ( KM log(M)

FFTs

+ KM

Shrinkage

)

(Wolbergh) FCSC-ShM[Wohlberg, 2015] T ( KM

Linear systems

+ KM log(M)

FFTs

+ KM

Shrinkage

)

ConvFISTA CSC[Chalasani et al., 2013] T ( KM

Gradient

+ KM log(M)

FFTs

+ KM

Shrinkage

)

SBDL (CSC + CDL)[Papyan et al., 2017a] T ( KMW +M(k3 +Kk2)

LARS

+ MK2

Gram

+ Mk(W +K) +WK2

K-SVD

)

LoBCoD (CSC + CDL)[Zisselman et al., 2019] T ( KMW +M(k3 +Kk2)

LARS

+ MK2

Gram

+ M(W +Wk +K)

Stochastic-LoBCoD

)

Table 3.1: T is the number of iteration, K the number of atoms, M the size of the signal, W the size of

the atoms, and k is the maximum number of nonzeros per “needle” (see [Zisselman et al., 2019]). Note

that, in the worst case, k = K . FCSC-ShM is FCSC with an iterative application of the Sherman-Morrison

equation.

via a closed-form

projΩ(dk) =
dk

max (‖dk‖2, 1)
.

At each iteration, the proximal/projected gradient descent algorithm performs a gradient step for

the smooth and convex �delity term i.e. the left term in 3.11. Then, it used the proximal operator

of IΩ i.e. the projection, to compute the next point. Like ISTA, this algorithm can be accelerated

using the Nesterov’s momentum and is called Accelerated Proximal Gradient Descent.

2.2.2 Alternate direction method of multipliers

In their paper, Bristow et al. [2013] also introduced a method for the dictionary update based on

ADMM. As for the proximal gradient descent algorithm, this method �rst introduces the indicator

function IΩ for the constraint. Then, it splits the objective function in two groups of variables

{dk}, {d̃k} and constrains these variables to be equal. Problem (3.10) becomes

min
{dk},{d̃k}

1

2

N∑
n=1

‖yn −
K∑
k=1

dk ©? zn,k‖22 + IΩ(D̃)

s.t. dk = d̃k ∀k = 1, . . . ,K .

The update is made as for ADMM-based solver for CSC (see Subsection 2.1.1).
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Figure 3.4: Evolution of the complexity (in semi-log) for data in Rn1×n2×3
(color images) when (a) n1, n2

vary and K = 64 (b) K varies and n1 = n2 = 500. Only the Fourier-based methods are reported.

2.2.3 Block coordinate descent, K-SVD

Mairal et al. [2010] proposed an algorithm based on the block coordinate descent. The block

coordinate descent updates at each iteration only one of the dictionary atoms with all the other

�xed. The atoms are updated using the coordinate-wise proximal gradient descent step.

Aharon et al. [2006] proposed a method based on the computation of K Singular Value Decom-

position to update the dictionary. This algorithm can be seen as an extension of the K-Means

algorithm and it has been adapted for convolutional dictionary learning in [Yellin et al., 2017].

2.3 Comparison of the solvers in the convolutional setting

While we only present the two leading CSC solvers in the above sections, there exist other

algorithms build upon them which improve their theoretical algorithmic complexity. We collected

all of them in Table 3.1. We also displayed the evolution of their theoretical complexity for typical

dimension in Figure 3.4.

Up to date, the most e�ective algorithm in term of theoretical complexity is due to Wohlberg [2015]

and is based on ADMM. They show that the complexity of solving the linear system (3.8) can be

reduced to O(KM) with a careful analysis of the matrices involved and the use of the Sherman-

Morrison formula [Sherman and Morrison, 1950]. However, the comparative review made by

Garcia-Cardona and Wohlberg [2018a] indicates a very wide range of performances across the

existing methods. For example, their results show that FISTA with frequency domain computation

of the gradient is a viable alternative to ADMM-based solvers. In term of scalability, they show

that methods based on FISTA or with parallel implementation are scalable to relatively large

training sets, e.g. 100 images of 512× 512 pixels. Finally, they note that while the computation

time seems to only increase linearly with the number of training inputs and the number of

dictionary atoms, the increase is more than linear with the size of the inputs, preventing the use

of these methods for large inputs.

2.4 Theoretical guarantees for convolutional representation

Since the convolutional setting is equivalent to the vectorial case, previous works on DL can

be directly applied for CDL. The objective function of the DL is not jointly convex. Thus, the
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alternate minimization approach is not guarantee in general to converge to a global minimum.

Furthermore, the problem has several symmetries and admits multiple global optima (possibility

of arbitrary permutation, sign ambiguities, etc.) [Mairal et al., 2014]. The �rst theoretical studies

of alternate minimization for DL were for vectorial data. Agarwal et al. [2016] show that, under

certain conditions (enough samples and observed signals do not have noise or outliers), if data are

generated using a dictionary, there exists a polynomial time algorithm which permits to estimate

this dictionary. Under presence of noise and outlier points, Gribonval et al. [2015] show the

sample complexity of dictionary retrieval methods and quantify the e�ect of the assumptions

made in the model. These results can be improved for CDL by taking into account the particular

structure of the data. Papyan et al. [2017b] introduce quantities which extend the di�erent

concepts used in sparse coding literature to convolutional settings and highlights the properties of

dictionary elements critical for the uniqueness of the coding signal. In their second paper, Papyan

et al. [2016] study the recovery capacities of classical convolutional sparse coding algorithms for

noisy observations. Note that recent advances on deconvolution model also provide theoretical

guarantees of reconstruction but only when there is a single atom (see e.g. [Zhang et al., 2017;

Kuo et al., 2019; Lau et al., 2019; Qu et al., 2019b,a; Qu et al.; Shi and Chi, 2019, 2020]).

3 Tensor-based convolutional dictionary learning

Although the CDL problem for univariate data or images is widely study and well understood, its

ability to take into account multivariate data is not well established. The generalization of the CDL

problem to more dimensions can naturally be studied through the lens of tensor algebra. Indeed,

this particular algebra provides an e�cient framework to manipulate such data (see Appendix 9

for some remainders). One of the most important notion from tensor algebra is undoubtedly the

generalization of the matrix rank which allows to e�ciently take into account (or constrained)

the underlaying structure of the tensor. However, this extension to multivariate signals is not

trivial and several issues appear e.g. non-unity of the notion of rank, apparition of symmetries,

non-convexity of the CSC problem. To deal with these issues, in the following, we carefully de-

scribe each component of our optimization problem. It includes additional constraints mandatory

to obtain good results. Furthermore, as the number of parameters increases exponentially with

the number of modes, we describe e�cient procedure to reduce the complexity of the algorithms

and handle such amount of data.

We now present how we extend the CDL problem to tensor data in order to take advantage of the

underlying structure of this particular object.

Let Y1, . . . ,YN ∈ Y , Rn1×···×np
be N tensor inputs of order p > 0 i.e. multidimensional

signals. We de�ne the regularized Kruskal Convolutional Dictionary Learning problem (K-CDL)

as

min
{DkZn,k}

1

2

N∑
n=1

(∥∥∥∥Yn −
K∑
k=1

Dk ©? 1,··· ,p Zn,k

∥∥∥∥2

F

(3.12)

+ ϕ (Zn,1, · · · ,Zn,K ;α) + ψ (Zn,1, · · · ,Zn,K ;β)

)
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s.t.

{
CP-rank(Zn,k) ≤ R ∀n, k , (a)
Dk ∈ D, ‖Dk‖F ≤ 1 ∀k , (b)

with ϕ(·) a sparsity regularization, ψ(·) a regularization explained below, and α,β � 0
two vectors of hyperparameters.

In this formulation, the {Zn,k} ∈ Y are (multivariate) sparse activation maps which specify

where the (multivariate) atoms {Dk}, in D , Rw1×···×wp , (w1 ≤ n1, · · · , wp ≤ np), are placed

in the input signals. To take advantage of the tensor structure, we add a Canonical Polyadic

(CP) low-rank constraint (3.12 a) on the activation maps. The formulation of the K-CDL problem

therefore relies on four important constraints and regularizations explained bellow.

TheCP low-rank constraint (a). This constraint controls the linear links between the di�erent

modes of the activations maps and thus takes into account the structure of the data. In the

following, we choose to embed this constraint using the Kruskal operator [[ · ]] (see De�nition

3.4 in Appendix). Hence, each activation Zn,k is replaced by [[Zn,k,1, · · · ,Zn,k,p]] where the

{Zn,k,q} are in Rnq×R
. This approach is the generalization of the Burer-Monteiro heuristic for

matrix [Burer and Monteiro, 2003].

The unit-ball constraints (b). The constraint on the {Dk} prevents the scaling indetermi-

nacy between the atoms and the activations as in the standard CDL. While in this chapter we

only consider the unit-ball constraint, it can be easily modi�ed to learn dictionaries with other

structures.

The sparsity regularization ϕ(·). The regularization ϕ(·) on the activations is here to advan-

tage sparse solutions. There is multiple ways to induce this sparsity. One popular choice in tensor

regression is to add an `1-norm over the Kruskal operator of each activations in the objective

function. However, this may leads to a complicated optimization problem [Chen et al., 2012; Tan

et al., 2012]. Another popular choice is to impose sparsity on each Rank-1 component of the CP

decomposition of the activations i.e.

ϕ : (Zn,1,1, · · · ,Zn,K,p;α)

∼= (Zn,1, · · · ,Zn,K ;α)

7−−→
K∑
k=1

R∑
r=1

αk,r ‖Zn,k,1(r, :) ◦ · · · ◦Zn,k,p(r, :)‖1 with α � 0 ,

(3.13)

where the {Zn,k,q} ∈ Rnq×R
are the one from the CP decomposition. This constraint can be

bene�cial in multiple ways as discuss by He et al. [2018]. Nevertheless, as the CP decomposition

may not be unique, the problem may su�er from parameter identi�ability issues [Mishra et al.,

2017]. Moreover, this is not a separable function with respect to the CP components {Zn,k,q}.
Regarding these issues, we propose a regularization constraint called Mode sparsity constraint,
de�ned by

ϕ : (Zn,1,1, · · · ,Zn,K,p;α) 7−−→
K∑
k=1

p∑
q=1

αk,q ‖Zn,k,q‖1 with α � 0 . (3.14)

This constraint induces the sparsity of each element of the CP-decomposition for every activations

independently. The sparsity in each mode is therefore controlled without the impact of the other



4. RESOLUTION OF THE PROBLEM 85

modes i.e. the regularization (and not the objective function) is separable in each {Zn,k,q}. One

additional advantage is that the multi-convolutional operator is well-adapted to such property of

separability. When necessary, we can also add a positive constraint on the activation maps.

Identi�ability and the ψ(·) constraint. The CP decomposition is known to be unique when

it satis�es the Kruskal condition [Kruskal, 1989], but only up to permutation of the normalized

factor matrices. In other words, the CP decomposition is unchanged by scaling or permutation,

and the {Zn,k,q} that solve equation (3.12) may not be unique. The scaling indeterminacy

makes the optimization di�cult as there is a continuous manifold of equivalent solutions. This

di�culty is handled in (3.12) via ψ(·), a ridge-based penalization (e.g.

∑p
q=1

∑K
k=1 βn,k,q‖Zk,q‖2F ,

(β1,1, · · · ,βK,p) � 0) to (3.12) (see [Acar et al., 2011] and [Paatero, 1997]). On the contrary, the

minimizers up to a permutation are isolated equivalent minimizers, and thus do not negatively

impact the optimization [Acar et al., 2011].

Remark 3.2. When R = 1, the representation induced by the K-CDL is closed to the “Low rank
tensor deconvolution” from Phan et al. [2015].

Remark 3.3. In recent tensor regression works, some authors prefer to add a combination of trace
norm and `1-norm in the objective function to automatically infer the rank [Song and Lu, 2017].
However, Bengua et al. [2017] showed that the trace norm may not be appropriate for capturing the
global correlation of a tensor leading us to our solution. Furthermore, we will see that the use of the
Kruskal operator allows to split the K-CDL problem into smaller problems with less complexity and
parameters to infer.

In the following we are mostly interesting in solving the K-CDL problem with atoms �xed i.e. the

Kruskal-CSC (K-CSC) problem.

Given a signal Y , and with regard to the previous remarks, the elastic-net K-CSC problem is

min
{[[Zk,1,··· ,Zk,p]]}

k

1

2

∥∥∥∥Y − K∑
k=1

Dk ©? 1,··· ,p [[Zk,1, · · · ,Zk,p]]

∥∥∥∥2

F

(3.15)

+

p∑
q=1

αq

K∑
k=1

‖Zk,q‖1 +

p∑
q=1

βq

K∑
k=1

‖Zk,q‖2F ,

where the {Zk,q} are in Rnq×R
and the ‖ · ‖2F is added to improve the minimization process,

as previously discussed.

For simplicity, for all q we have set α1,q = · · · = αK,q , and β1,q = · · · = βK,q . Furthermore, in

the following we set N = 1.

4 Resolution of the problem

Even though the K-CDL problem (3.12) is not convex, it is convex with respect to each of the

Z-block {(Z1,q, · · · ,ZK,q)}pq=1 , or D-block (D1, · · · ,DK) when the other ones are �xed. Fur-

thermore, the two regularizations are separable with respect to these blocks. A natural optimiza-

tion scheme for minimizing the objective function is therefore to use a block-coordinate strategy
or alternating minimization [Hildreth, 1957; Ortega and Rheinboldt, 2000; Nikolova and Tan,

2017]. The main idea is to split the main non-convex problem into several convex subproblems;
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1) by freezing the D-block and all except one Z-block at a time (referred as Z-step) 2) by only

freezing all the Z-blocks (referred as D-step). Although this algorithm monotonically decreases

the objective function, a stationary point is not guaranteed to be a local minimum (it can be a

saddle point). Fortunately, we will see that in practice the block relaxation algorithm almost

always converges to at least a local minimum.

The Z-step or activations update. To solve (3.15), we also use an iterative strategy. For q
varying between 1 and p, we consider

min
Z1,q ,··· ,ZK,q

1

2

∥∥∥∥∥Y −
K∑
k=1

Dk ©? 1,··· ,p [[Zk,1, · · · ,Zk,q, · · ·Zk,p]]

∥∥∥∥∥
2

F

(3.16)

+αq

K∑
k=1

‖Zk,q‖1 + βq

K∑
k=1

‖Zk,q‖2F .

One basic solution is to rewrite the problem as a regression one (without the convolution) and

to use tensor regression solvers [Zhou et al., 2013; Li et al., 2017; He et al., 2018]. However, it

requires the construction of a very large circulant tensor which is not tractable in practice due to

memory limitation. In the following, we propose two e�cient algorithms based on either ADMM

or FISTA to solve (3.16).

Let �rst introduce two functions and three important properties which will be useful in the

following.

f
(
{Zk,q}K,pk,q=1

)
=

1

2

∥∥∥∥∥Y −
K∑
k=1

Dk ©? 1,··· ,p [[Zk,1, · · · ,Zk,p]]

∥∥∥∥∥
2

F

, (3.17)

g
(
{Zk,q}Kk=1

)
= αq

K∑
k=1

‖Zk,q‖1 + βq

K∑
k=1

‖Zk,q‖2F . (3.18)

In this equation, f is the �delity term that controls the di�erence between the input and its

reconstruction, and g is the summation of the regularizations.

Lemma 3.1. (Mode-wise DFT) – Given the CP-decomposition of a tensor X = [[X1, · · · ,Xp]],
the DFT can be performed mode-wise, i.e.

X̂ =

R∑
r=1

x̂(1)
r ◦ · · · ◦ x̂(p)

r , [[X̂1, · · · , X̂p]] . (3.19)

The complexity of computing (X̂1, · · · , X̂p) using the FFT goes fromO(
∏p
i=1 ni log(

∏p
i=1 ni)) to

O(R
∑p

i=1 ni log(ni))). Notice that the DFT is only performed on the second dimension of each
factor matrix, i.e. X̂q = [X̂q(:, 1) | . . . | X̂q(:, R)].

We see from this lemma the important advantage of separable signals over non-separable ones in

term of complexity.
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Theorem 3.1. (Equality in the Fourier domain) – The orthogonality of the Fourier basis implies a
Plancherel formula. Therefore, in the Fourier domain, the �delity term f(·) is equal to

f
(
{Zk,q}K,pk,q=1

)
=

1

2
∏p
i=1Ni

∥∥∥∥∥Ŷ −
K∑
k=1

D̂k ∗ [[Ẑk,1, · · · , Ẑk,p]]

∥∥∥∥∥
2

F

(3.20)

,
1∏p

i=1Ni
f̂
(
{Ẑk,q}K,pk,q=1

)
, (3.21)

where ·̂ denotes the frequency representation of a signal, ∗ is the component-wise product, and f̂

denotes the �delity term in the Fourier domain up to the factor
1∏p

i=1Ni
.

Corollary 3.1. (A compact vectorized formulation) – The following equality holds

f̂
(
{Ẑk,q}K,pk,q=1

)
=

1

2

∥∥∥ŷ(q) − Γ̂(Â⊗ I)ẑ(q)
∥∥∥2

F
, (3.22)

where ŷ(q) is the vectorization of the folding of Ŷ along the dimension q, ẑ(q) = [ẑ
(q)ᵀ

1 , . . . , ẑ
(q)ᵀ

K ]
ᵀ

where ∀k, ẑ(q)
k is the vectorization of the matrix Ẑk,q ,Γ̂ = [diag(d̂1

(n)
), . . . , diag(d̂K

(n)
)] with

d
(q)
k the vectorization of the folding of D̂k along the dimension q, and

Â =

B̂1

. . .
B̂K

 where B̂k = (
←↩
�
p

i=1,i 6=q Ẑk,i) . (3.23)

Here, Γ̂ ∈ Cn1···np×Kn1···np , Â ∈ CK
∏p

1,i 6=q ni×KR, I ∈ Rnq×nq , and ẑ(q) ∈ CKRnq . Thus, the
design matrix Γ̂(Â⊗ I) is in Cn1···np×KRnq .

4.1 T-ConvADMM: ADMM-based solver for K-CSC

We now introduce an ADMM-based solver for the K-CSC (3.15). Considering the previous splitting

of the objective function, the iterations of the ADMM algorithm with a scalar ρ > 0 and {Uk} as

dual variables are given by

{Z(s+1)
k,q } = arg min

{Zk,q}
f ({Zk,q}) +

ρ

2

K∑
k=1

‖Zk,q − T (s)
k +U

(s)
k ‖2F , (3.24)

{T (s+1)
k } = arg min

{T k}
g ({T k}) +

ρ

2

K∑
k=1

‖Z(s+1)
k,q − T k +U

(s)
k ‖2F , (3.25)

{U (s+1)
k } = U

(s)
k +Z

(s+1)
k,q − T (s+1)

k . (3.26)

As g is fully separable, subproblem (3.25) admits the closed-form solution

∀k = 1, . . . ,K, T
(s+1)
k =

1

1 + 2βq/ρ
Sαq/ρ(Z

(s+1)
k,q +U

(s)
k ) ,

where Sγ(·) is the soft-thresholding operator. Subproblem (3.24) also admits a closed-form

solution (with conditions). However, this solution is di�cult to compute due to the size of the
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Algorithm 3.3 T-ConvADMM, ADMM for K-CSC

1: Input: signal Y , dictionary D1, · · · ,DK , regularization and ADMM parameters λ, ρ, toler-

ance ε
2: Precompute Ŷ and {D̂k}
3: repeat
4: for q in {1, · · · , p} do
5: ŷ(q), {d̂(q)

k } ←− vec(Ŷ
(q)

), {vec(D̂
(q)

k )}
6: Precompute {Ẑk,i}K,pk=1,i=1,i 6=q ←− {DFT(Zk,i)}K,pk=1,i=1,i 6=q
7: D̂ ←− Γ̂(Â⊗ I)
8: repeat

9: B Update of Z via equation (3.24)

10: Ẑ
(s)
, T̂

(s)
, Û

(s) ←− DFT(Z(s)),DFT(T (s)),DFT(U (s))

11: ẑ(s), t̂
(s)
, û(s) ←− vec(Ẑ

(s)
), vec(T̂

(s)
), vec(Û

(s)
)

12: ẑ(s+1) ←− Solve

(
D̂
H
D̂ + ρI

)
ẑ =

(
D̂
H
ŷ + ρ(̂t

(s)
+ û(s))

)
13: Ẑ

(s+1) ←−Matricization of ẑ(s+1)

14: Z(s+1) ←− IDFT(Ẑ
(s+1)

)

15: B Update of T via equation (3.25)

16: T (s+1) ←− proxρ,αq ,βq
(Z(s+1) +U (s))

17: B Update of u via equation (3.26)

18: U (s+1) ←− U (s) +Z(s+1) − T (s+1)

19: until ‖Z(s+1) −Z(s)‖∞ ≤ ε
20: end for
21: until ‖Z(s+1) −Z(s)‖∞ ≤ ε

matrices involved. One way to solve it e�ciently is to exploit the Parseval’s and convolution

theorems (3.1) in order to take advantage of the convolutional structure of the problem (as in the

univariate case). Using the previous propositions, the solution of (3.24) in the Fourier domain is

given by the solution in ẑ of(
(Â

H ⊗ I)Γ̂
H

Γ̂(Â⊗ I) + ρI
)
ẑ =

(
(Â

H ⊗ I)Γ̂
H
ŷ + ρ(̂t− û)

)
, (3.27)

where (·)H stands for the Hermitian transpose. The matrix

(
(Â

H ⊗ I)Γ̂
H

Γ̂(Â⊗ I) + ρI
)

is of

size KRnq ×KRnq which can be expensive to inverse. Fortunately, it has a particular diagonal

block structure (see Figures 3.5a and 3.5c). Hence, we can permute rows and columns to only

solve nq independent KR×KR linear systems (see Figures 3.5b and 3.5d).

Complexity of T-ConvADMM. The complexity of T-ConvADMM is easily obtained by the

analysis of each step. The pre-computation of the tensor Ŷ and {D̂k} is of complexity O((K +
1)(M log(M))) with M =

∏p
i=1 ni. Then, given a particular mode q, we pre-compute the

FFT of the remaining Ẑk,i, (i 6= q). By Lemma (3.1), these operations have a complexity of

O(KR(p− 1)
∑p

i=1,i 6=q ni log(ni)). Finally, as in the standard ADMM-based solvers, an analysis

of the matrices involved leads to solve nq linear systems of size KR. When using Gaussian
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(a) (b) (c) (d)

Figure 3.5: Visualization of (Â
H ⊗ I)Γ̂

H
Γ̂(Â⊗ I) before and after a reordering. The two left matrices

(a, b) correspond to the Gram matrix without (a) and with reordering (b). The two right matrices (c, d) also

correspond to the Gram matrix without (c) and with reordering (d) but for a higher dimension.

elimination or Cholesky decomposition the complexity is therefore of O((KR)3nq). However,

it is possible to take advantage of iterative methods to reduced the complexity. Finally, the

soft-threshold part and the dual variable updates are of complexity O(Knq). As we have this

complexity for every modes, the overall complexity is O((KR)3
∑p

i=1 ni).

4.2 T-ConvFISTA: FISTA-based solver for K-CSC

To solve the K-CSC (3.15) with FISTA, we introduce the following splitting

f
(
{Zk,q}Kk=1

)
=

1

2

∥∥∥∥∥Y −
K∑
k=1

Dk ©? 1,··· ,p [[Zk,1, · · · ,Zk,p]]

∥∥∥∥∥
2

F

+ βq

K∑
k=1

‖Zk,q‖2F (3.28)

= f1

(
{Zk,q}Kk=1

)
+ f2

(
{Zk,q}Kk=1

)
(3.29)

ϕ
(
{Zk,q}Kk=1

)
= αq

K∑
k=1

‖Zk,q‖1 , (3.30)

and alternate between i) a gradient descent on f(·), ii) the proximal operator over ϕ(·), and iii)

the Nesterov’s momentum. As ϕ is separable, its proximal operator is given for each Zk,q by the

soft-thresholding operator. The gradient descent step is performed in the Fourier domain. This

“trick” decreases the complexity of the gradient computation. A nice formulation of the gradient

in the Fourier domain is given by the following lemma.

Corollary 3.2. The partial derivative of f1 with respect to Z`,q is given by

∂

∂Z`,q
f1 ({Zk,q}) = IDFT

[((
Ŷ

(q) −
K∑
k=1

D̂
(q)

k ∗ [[Ẑk,1, · · · , Ẑk,p]]

)
∗ D̂

(q)

`

)
B`

]
. (3.31)

Using proposition (3.1), we also have a vectorial formulation for the gradient given by

∇vec({Zk,q})f1 ({Zk,q}) = IDFT
[
(Â

H ⊗ I)Γ̂
H
(
Γ̂(Â⊗ I)ẑ(q) − ŷ(q)

)]
. (3.32)

Signi�cant speed-up. There are several ways to improve the speed of this algorithm in a

given implementation. For instance, the computation of (Â ⊗ I)ẑ(q)
can be performed in

O(KR
∏p
i=1 ni) operations instead of O(KRnq

∏p
i=1 ni) (naive computation) by noticing that

(Â⊗ I)ẑ(q) = (Â⊗ I)vec([Ẑ1,q | · · · | ẐK,q]) = vec([Ẑ1,q | · · · | ẐK,q]Â
ᵀ
) .
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In addition, we can exploit distributed computation by using a parallel matrix-vector multiplication.

In our speci�c case where

∏p
i=1 ni � KRnq , we can precompute the Gram matrix (Â

H ⊗
I)ΓHΓ(Â⊗ I) and (Â

H ⊗ I)Γ̂
H
ŷ(q)

to improve e�ciency. All the work being in computing

this Gram matrix which is now done only once.

These computations are also parallelizable using an all-reduce method. This means, for

example, that the Gram matrix can be computed only keeping a single (Â
H ⊗ I)Γ̂

H
)i,: in

working memory at a given time, so it is feasible to solve a lasso problem with extremely large∏p
i=1 ni on a single machine, as long as KRnq is modest [Parikh et al., 2014].

Proposition 3.1. The matrix (Â
H ⊗ I)Γ̂

H
Γ̂(Â⊗ I) is composed ofK2 blocks equal to(

(
←↩
�
p

i=1,i 6=q Ẑk,i)
H ⊗ I

)
diag(d̂k

(q)
)diag(d̂`

(q)
)

(
(
←↩
�
p

i=1,i 6=q Ẑ`,i)⊗ I
)
. (3.33)

Each of these blocks can be computed inO(R2
∏p
i=1,i 6=q ni). Hence, the full matrix can be computed

in O((KR)2
∏p
i=1,i 6=q ni) operations. Furthermore, this matrix is a (KRnq × KRnq) banded

matrix (as explained before). Its product with ẑ(q) can therefore be made in only O((KR)2nq)
operations.

Complexity of T-ConvFISTA. The complexity of T-ConvFISTA is easily obtained by the

analysis of each step. The pre-computation of the tensor Ŷ and {D̂k} is of complexity O((K +
1)(M log(M))) with M =

∏p
i=1 ni. Then, given a particular mode q, we pre-compute the

FFT of the remaining Ẑk,i, (i 6= q). By Lemma (3.1), these operations have a complexity of

O(KR(p − 1)
∑p

i=1,i 6=q ni log(ni)). Finally, we perform the gradient step in the frequency

domain. Each computation of the gradient is of complexity O((KR)2nq) if the Gram matrix

is precomputed. The overall complexity is therefore dominating by O((KR)2nq) for typical

value of parameters. As we do this process for every mode, we obtain an overall complexity of

O((KR)2
∑p

i=1 ni).

4.3 Some additional remarks

Comparison of the complexity with previous CSC solvers. We collect the theoretical com-

plexity of our two solvers in Table 3.2. In addition, a comparison of the evolution of the complexity

between the standard Fourier-based solvers is displayed in Figure 3.6. The theoretical complexity

of our tensor-based solvers is much smaller than the complexity of the other methods with a dom-

inant term O((KR)2 max(ni)) instead of O(KM log(M)) = O(K
∏p
i=1 ni log(

∏p
j=1 nj)) for

FCSC with iterative application of the Sherman-Morrison equation (FCSC-ShM) [Wohlberg, 2015]

or evenO(K
∏p
i=1 ni

∏p
i=1wi) for LoBCoD (CSC) while being the most recent solver. As an exam-

ple, for a multispectral images of size (n1×n2×n3) = (128×128×128) with 12 atoms and a rank

set to R = 3, (KR)2(n1 + n2 + n3) = 497, 664 while Kn1n2n3 log(n1n2n3) = 366, 316, 018.

Originality and advantages of the low-rank method To date, most works have focused

only on the 2-D case with a low-rank constraint enforced on the atoms, i.e in the patterns observed

in the data [Garcia-Cardona and Wohlberg, 2018b]. However, in several applicative contexts, data

are multilinear and the low-rank structure naturally appears in the activations rather than in the

atoms/dictionary. To take these observations into account, in the K-CDL we extend the standard
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Algorithm 3.4 T-ConvFISTA (sub-problem)

Input: signal Y , dictionary D1, · · · ,DK , regularization and step parameters α, β, η (η = 1/L,

the inverse of Lipschitz constant if calculate), tolerance ε
Initialization: Z(0)

Precompute: Ŷ , {D̂k},G and (Â⊗ I)ŷ(q)

t(0) ←− 1
repeat

B Update of W via a proximal gradient step (ISTA)
Compute Ẑ

(s)
using the FFT

ẑ(s) ←− vec(Ẑ
(s)

)

ŵ(s+1/2) ←− ẑ(s) − η
(
Gẑ(s) − (Â⊗ I)ŷ(q)

)
Ŵ

(s+1/2) ←−Matricization of ŵ(s+1/2)

ComputeW (s+1/2)
using the IFFT

B Update of W via a proximal step (ISTA)
W (s+1) ←− proxη,α,β

(
W

(s+1/2)
k

)
B Nesterov momentum step (FISTA)

t(s+1) ←− 1 +
√

1 + 4 · t(s)2
2

Z(s+1) ←−W (s+1) +
t(s) − 1

t(s+1) + 1
(W (s+1) −W (s))

until ‖Z(s+1) −Z(s)‖∞ ≤ ε

CDL problem to a tensorial one with an additional low-rank CP decomposition constraint on the

activation maps. This is an important modi�cation both in term of representation and complexity

implying �ve main advantages:

1. First, the low-rank constraint allows to exploit the underlying structural information of the

input signals. This has already been proved to be very e�ective in various contexts from

image processing to EEG signals decomposition (see e.g. [Guo et al., 2012; Liu et al., 2013]). In

image processing for example, previous works have shown that the vectorization of an image

removes the inherent spatial structure of it while a low rank tensor regression produces more

interpretable results [Zhou et al., 2013].

2. Second, because the activations are decomposed in each mode, they are much more inter-

pretable than those of the standard CDL. This is a mandatory property when working on

complex data such as EEG recordings.

3. Third, low-rank constraints on activations entail a better robustness with respect to noise

[Zhou et al., 2013; Zhao et al., 2011; Cong et al., 2015; Rabusseau and Kadri, 2016], which is

one of the main weakness of the activation learning part of CDL [Simon and Elad, 2019].
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Algorithm Time complexity (Z-step)

T-ConvADMM T ( (KR)3nq

Linear system

+ KRnq log(M)

FFTs

+ KRnq

Shrinkage

)

T-ConvFISTA T ( (KR)2nq

Gradient

+ KRnq log(M)

FFTs

+ KRnq

Shrinkage

)

Table 3.2: T is the number of iterations, K the number of atoms, M =
∏np

i=1 ni, and R the CP-rank.

4. A fourth advantage is the drastic reduction of the number of unknown activation parameters.

Indeed, it goes from K
∏p
i=1 ni (unconstrained model) to KR

∑p
i=1 ni. This reduction in

dimension, and consequently in computational cost, is substantial.

5. Finally, the low-rank constraint imposes that each activation Zk can be written as the sum

of at most R separable �lters (product of multiple one dimensional �lters). The K-CDL is

therefore a separable convolution problem. This property allows to signi�cantly speed up the

calculus of the convolution and of the solvers (Section 4). Indeed, �ltering an (n1 × n2) image

with a (w1 × w2) non-separable atom is O(n1n2(w1 + w2)). By contrast, it is instead of

O(n1n2w1w2) for a non-separable atom. This cost reduction becomes even more desirable

when dealing with higher order inputs.

How to do the initialization? The initialization of the factor matrices {Zk,q} can highly

impact the performance of the algorithms. While there are many possible ways to do this initial-

ization, one easy and e�ective approach is to choose random factor matrices, a strategy already

used in the CP-ALS algorithm [Battaglino et al., 2018]. Notice that, unlike the standard initial-

ization of FISTA with vector of zeros, we must choose random factor matrices without to much

sparsity. Indeed, at each step of the algorithms, we construct a “new dictionary”

(
Γ̂(Â⊗ I)

)
based on the factors. Hence, if some initial factors are too sparse, this new dictionary contains a

lot of zeros and we may not be able to solve our problem properly. One extreme case is when

we choose all factor matrices equal to zeros. The new dictionary is then �lled with zeros and

we cannot �nd a solution of the global problem. In the following we initialize the {Zk,q} with

random Uniform matrices.

Simultaneously sparse and low-rank. It has been shown in [Richard et al., 2012] that, being

low-rank is not an equivalent of sparsity for matrices, but that being low-rank and sparse can

actually be seen as two orthogonal concepts. However, while the estimation of simultaneously

sparse and low-rank matrices could be desirable, a balance between the two constraints has to be

found as the two regularizations may have adversarial in�uence. In our setting, this is achieved

by using a Ivanov regularization for the rank (CP-rank ≤ R) and a Tykhonov regularization for

the sparsity (e.g.

∑
k,q αk,q‖Zk,q‖1). This means that the solution should be as sparse as possible

while having a CP-rank less than or equal to R.
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Figure 3.6: Evolution of the theoretical complexity (in semi-log) for data in Rn1×n2×3
(color images)

when (a) n1, n2 vary and K = 36, R = 1, (b) K varies and n1 = n2 = 500, R = 1, (c) K = R varies and

n1 = n2 = 500, and (d) K = R varies and n1 = n2 = n3 = 500 (multispectral image). For (c) and (d), we

set the number of iterations of standard methods to 1000 and for our methods to 500 for the number of

inner iterations and 20 for the other. Recall that all complexity are given without taking into account the

sparsity. This is therefore the worst complexity possible. Only the Fourier-based methods are reported.

4.4 Dictionary update,D-step.

Given the activations {Zn,k}, the dictionary update aims at improving how the model reconstructs

the inputs Y1, · · · ,YN by solving

min
∀k,Dk∈D, ‖Dk‖F≤1

1

2

N∑
n=1

∥∥∥Yn −
K∑
k=1

Dk ©? 1,··· ,p Zn,k

∥∥∥2

F
. (3.34)

This step presents no signi�cant di�erence with existing methods. The problem is smooth and

convex and can be solved using the algorithms presented in Section 2.

5 Related works

We now brie�y present some methods related to the CDL problem or its variants to better

understand where our contribution lies in this vast literature. We collect on Table 3.3 a selective

list of algorithms. We divided this list in three categories. The �st one contains algorithms for

the standard CDL problem of Section 2. Complete reviews are provided in [Wohlberg, 2015] and

[Garcia-Cardona and Wohlberg, 2018a]. The second category contains very recent algorithms

taking into consideration the separability/rank of a (2-D) dictionary. Finally, the last category

contains our two algorithms.
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Method Solver Rank constraint Application

Category 1 – Standard

(Lewicki and Sejnowski [1999] 1999) None Representation of 1-D speech data

FS-EXACT (Grosse et al. [2007] 2007) Feature Search None Classi�cation of 1-D audio signals

DeconvNet (Zeiler et al. [2010] 2010) None 2-D image representation/denoising

Kavukcuoglu et al. [2010] Coordinate Descent None 2-D image representation

ConvFISTA (Chalasani et al. [2013] 2013) FISTA None 2-D image representation

FCSC (Bristow et al. [2013] 2013) Kong and Fowlkes 2014) ADMM None 2-D image representation

FCSC-SM (Wohlberg [2014, 2015] 2014, 2016) ADMM None 2-D image representation

FFCSC (Heide et al. [2015] 2015) ADMM None 2-D image representation

ALS-CTD (Huang and Anandkumar [2015] 2015) Alternating Least-Square None 1-D synthetic data

CONSENSUS (Šorel and Šroubek [2016] 2016) ADMM None 2-D image representation

SBDL (Papyan et al. [2017a] 2017) Local-ADMM None 2-D image inpainting/separation

DICOD (Moreau et al. [2018] 2018) Coordinate Descent None 1-D synthetic data

LoBCoD (Zisselman et al. [2019] 2019) Coordinate Descent None 2-D image inpainting/fusion

Category 2 – Rank constraint on the dictionary

SEP-COMB (Rigamonti et al. [2013] 2013) Tensor: CP-rank N -D signal representation

SEP-COMB + SEP-TD (Sironi et al. [2014] 2014) Tensor: CP-rank N -D signal representation

(Silva et al. [2017] 2017) FISTA / ADMM Matrix: rank 2-D image representation

(Quesada et al. [2018] 2018) Matrix: rank 2-D image representation

Pair-SepF (Silva et al. [2018] 2018) Accelerated Proximal Gradient Matrix: rank 2-D image representation

(Dupré La Tour et al. [2018] 2018) Coordinate descent Matrix: rank Electromagnetic Brain Signals

Comb-SepF (Quesada et al. [2019] 2019) Matrix: rank 2-D image representation

Our methods – Rank constraint on the activations

T-ConvADMM (2020) ADMM Tensor: CP-rank N -D signal representation

T-ConvFista (2020) FISTA Tensor: CP-rank N -D signal representation

Table 3.3: Selective list of CDL/CSC solvers.

Standard CDL. The notion of translation invariant representation of a signal was proposed by

Simoncelli et al. [1992] after they observed that block-based wavelet algorithms were sensitive

to translation and scaling of the input signal. Later, Lewicki and Sejnowski [1999] proposed an

algorithm to �nd this e�cient representation by inferring the best temporal positions of given 1-D

functions in a kernel basis i.e. dictionary. Their main idea was to infer the values and temporal

locations of the non-zero coe�cients and then to re�ne the result through a modi�ed conjugate

gradient local search. The generalization of the work of Lewicki and Sejnowski [1999] to a 2-D

convolution is due to Grosse et al. [2007] and is now referred as the (multivariate) CDL problem

presented in Section 2 (in contrast to the univariate CDL for 1-D atoms). In their paper, they �rst

expressed the problem with a `1-norm regularization and convolutional constraints. Then, they

used a frequency domain method combined with the feature sign search minimization algorithm

[Lee et al., 2007]. While the e�ciency of this representation has led to a wide range of applications,

the large-scale nature of them has placed great demands on the computational e�ciency of the

algorithms. This has given rise to a range of optimization approaches for CSC and CDL. For

instance, Chalasani et al. [2013] introduced a convolutional extension of the FISTA algorithm for

sparse inference called ConvFISTA (see Section 2). Then, Bristow et al. [2013] proposed the FCSC

algorithm, a Fourier method based on ADMM (see Section 2). The FCSC has been progressively

improved in [Wohlberg, 2014, 2015; Šorel and Šroubek, 2016]. Up to now, the state-of-the-art

algorithms always operate in the frequency domain to exploit the convolutional structure of the

problem. However, while this is the �rst step towards making CDL practical, these frequency

methods can introduce boundary artifacts. To address this issue, Heide et al. [2015] proposed to

incorporate a particular matrix in the optimization problem. They derive a �exible formulation
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and propose an e�cient ADMM-based solution called FFCSC which splits the objective into a sum

of simpler convex functions. Very recently, Papyan et al. [2017a]; Moreau et al. [2018]; Zisselman

et al. [2019] proposed more localized strategies. Note that while their algorithms operate in the

batch mode (i.e., all the samples have to be accessed in each iteration), recent works study online

learning to improve scalability [Degraux et al., 2017; Liu et al., 2017; Wang et al., 2018b; Liu et al.,

2018].

Standard CDL with a low-rank constraint on the dictionary. The idea of learning separa-

ble atoms in the multivariate CDL was �rst introduced in tensorial computer vision by Rigamonti

et al. [2013] and Sironi et al. [2014]. They proposed two methods to learn high-order CP low-rank

dictionary: a �rst one learns low-rank atoms thanks to a nuclear norm, the other learns low-rank

atoms a posteriori. However, note that (i) both methods cannot be directly applied to learn low-

rank activations as there is an additional sparsity constraint, (ii) in their formulation this is the

full dictionary (called �lters bank) which is assumed to be low-rank. Thus, the original atoms are

approximated by a weighted sum of shared rank-1 atoms e.g. several two-dimensional atoms are

stacked together to form a 3-dimensional tensor and this resulting tensor is decomposed in a sum

of rank-1 tensors. Interestingly, in these two papers, they empirically showed that using separable

atoms as dictionaries in CSC or convolutional neural network applications provides signi�cant

improvements in computational performance with respect to non-separable implementations,

while giving little loss in accuracy or reconstruction quality. From this observation, very recently,

some papers have re-focused on the 2-D multivariate CDL problem and assumed or learned

separable/low-rank 2-D �lter banks [Silva et al., 2017; Quesada et al., 2018; Silva et al., 2018; Dupré

La Tour et al., 2018]. The �rst one, [Silva et al., 2017], introduced a computationally e�cient

algorithm when the dictionary atoms are given and already separable. The two others, [Quesada

et al., 2018; Silva et al., 2018], proposed to directly learn the separable 2-D atoms. A slightly

modi�cation of this separable CDL problem is proposed by Quesada et al. [2019] where they

empirically showed that this alternative formulation provides a reduction in computation time

over the stantard CSC and CDL algorithms.

Tensor and dictionary. Instead of trying to extend the multivariate CDL to tensor, another

approach is to use a tensor-based representation including particular tensor operations. In Bibi

and Ghanem [2017], authors used the t-product (see de�nition in [Kilmer and Martin, 2011])

to provide another tensor CDL formulation that has the potential to uncover high dimensional

correlation among channels, but is also computationally expensive. Finally, Jiang et al. [2018] and

Gong et al. [2020] exploit other products such as the t-linear combination but do not consider

convolutional models.

Relation between K-CDL and CDL With speci�c choices on the parameters or on the dimen-

sion values, the K-CDL problem reduces to well-known CDL ones. Hence, it can be seen as a

generalization of several approaches in the literature.

• For vector-valued atoms and signals (p = 1), the K-CDL reduces to the 1-D CDL, known as

univariate CDL, presented in Section 2.

• When p > 1 and R = +∞ (i.e. no low-rank constraint), the K-CDL also reduces to the CDL

presented in Section 2, known as Multivariate CDL.

• When p = 2, R < +∞ and w2 = 1, the K-CDL reduces to models which impose a matrix rank

structure on the dictionary.
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• Finally, when R = 1, the representation induced by the K-CDL is closed to the Low rank tensor
deconvolution model from Phan et al. [2015] which is, however, not proposed as a CDL model.

6 Experiments

To illustrate and compare the e�ectiveness and e�ciency of our two tensor-based solvers, we

consider in this section a wide range of synthetic and real data. To make comparisons that are as

fair as possible, each algorithm is implemented in Python using Tensorly [Kossai� et al., 2019]

(for tensor algebra in Python), Sporco [Wohlberg, 2017] (a Python package for convolutional

sparse representations with some C/C++ modules), and standard python libraries. Furthermore,

to save memory and reduce the time complexity, both methods are implemented with sparse ma-

trix packages. We also compare our methods to the two leading batch CDL algorithms presented

in the previous sections: FCSC with iterative application of the Sherman-Morrison equation

[Bristow et al., 2013; Wohlberg, 2015], and ConvFISTA in the Fourier domain [Chalasani et al.,

2013; Wohlberg, 2015]. They are both implemented in Sporco. All subsequent simulations are

run on a machine through Linux/Ubuntu with 16-core of 2.5GHz Intel CPUs and 64GB of RAM.

For the convenience of the reader, we list here the CDL algorithms compared and the acronyms

we use throughout this section: ADMM with tensor-based rank constraint (T-ConvADMM) of

Section 4.1, FISTA with tensor-based rank constraint (T-ConvFISTA) of Section 4.2, FCSC with

iterative application of the Sherman-Morrison equation (FCSC-ShM or FCSC for short) [Bristow

et al., 2013; Wohlberg, 2015], FISTA in the Fourier domain (ConvFISTA) [Chalasani et al., 2013;

Wohlberg, 2015]. Note that, based on the previous analysis of the complexity, we choose to use

T-ConvFISTA with precomputation of the Gram matrix. For the dictionary update, we also use

ADMM with iterative application of the Sherman-Morrison equation [Wohlberg, 2015].

6.1 Evaluation on synthetic data

We now present a large range of results on synthetic data.

Dataset. Small-scale and large-scale experiments are performed by considering two main

di�erent datasets:

• A small-scale dataset which contains 10 independent input signals of size (25× 25× 25). Each

signal is generated as follows. We draw K = 3 atoms of size (5 × 5 × 5) according to an

Uniform distribution with values in [−1, 1] and normalize them. Then, we set the maximal

CP-rank to R∗ = 2 and draw sparse activations from a Bernoulli-Uniform distribution with

Bernoulli parameter equal to 0.2, and range of values in [−1, 1]. Finally, we generate the input

tensor according to the convolutional model induced by the K-CDL (3.12).

• A large-scale dataset which is generated as the small-scale dataset but with input signals of

size (128× 128× 128) and Bernoulli parameter equal to 0.02.

• These two dataset are extended with their noisy counterpart called noisy small-scale dataset and

noisy large-scale dataset. Following Wohlberg [2015], for each input, we construct noisy input

signals by adding Multivariate Gaussian noise of progressively high variance to obtain a Signal

to Noise Ratio (SNR) with respect to the original input of 25.5, 9.5, and 3.0dB corresponding

to a noise’s variance approximatively equals to 5.29e−6, 2.25e−4 and, 9.00e−4 ; (standard
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CSC Small-scale dataset Large-scale dataset

CP-rank Metrics T-ConvADMM T-ConvFISTA T-ConvADMM T-ConvFISTA

R = 1 RMSE(Y) ↓ 0.016 (±0.005) 0.016 (±0.005) 0.025 (±0.002) 0.025 (±0.002)

RMSE(Z) ↓ 0.013 (±0.003) 0.013 (±0.003) 0.016 (±0.003) 0.016 (±0.003)

#{RMSE(Y) < 1.e−6} ↑ 0% 0% 0% 0%

#{RMSE(Z) < 1.e−6} ↑ 0% 0% 0% 0%

R = 2 RMSE(Y) ↓ 1.346 · e−7 (±8.996 · e−8) 1.966 · e−8 (±6.716 · e−9) 7.575 · e−11 (±5.528 · e−12) 2.804 · e−10 (±2.672 · e−10)

RMSE(Z) ↓ 8.041 · e−8 (±5.312 · e−8) 1.261 · e−8 (±4.025 · e−9) 4.476 · e−11 (±2.556 · e−12) 1.736 · e−10 (±1.723 · e−10)

#{RMSE(Y) < 1.e−6} ↑ 94% 96% 80% 85%

#{RMSE(Z) < 1.e−6} ↑ 96% 98% 90% 90%

R = 3 RMSE(Y) ↓ 3.195 · e−7 (±4.351 · e−7) 7.126 · e−7 (±2.348 · e−7) 6.439 · e−10 (±3.972 · e−10) 1.771 · e−8 (±7.898 · e−8)

RMSE(Z) ↓ 1.954 · e−7 (±2.533 · e−7) 4.266 · e−7 (±1.355 · e−7) 4.253 · e−10 (±2.833 · e−10) 1.200 · e−8 (±4.459 · e−9)

#{RMSE(Y) < 1.e−6} ↑ 72% 44% 90% 60%

#{RMSE(Z) < 1.e−6} ↑ 96% 96% 90% 56%

R = 4 RMSE(Y) ↓ 4.154 · e−7 (±1.494 · e−7) 9.290 · e−7 (±2.851 · e−7) 8.893 · e−10 (±4.922 · e−10) 4.365 · e−8 (±1.030 · e−8)

RMSE(Z) ↓ 2.646 · e−7 (±9.219 · e−8) 5.512 · e−7 (±1.796 · e−7) 5.248 · e−10 (±2.771 · e−10) 2.689 · e−8 (±5.989 · e−9)

#{RMSE(Y) < 1.e−6} ↑ 72% 20% 100% 100%

#{RMSE(Z) < 1.e−6} ↑ 98% 100% 100% 100%

CSC Small-scale dataset Large-scale dataset

CP-rank Metrics FCSC-ShM [Bristow et al., 2013] ConvFISTA [Chalasani et al., 2013] FCSC-ShM [Bristow et al., 2013] ConvFISTA [Chalasani et al., 2013]

– RMSE(Y) ↓ 3.072 · e−5 (±7.682 · e−6) 3.211 · e−5 (±5.364 · e−6) 2.840 · e−5 (±3.403 · e−6) 1.630 · e−5 (±1.000 · e−6)

RMSE(Z) ↓ 2.031 · e−5 (±4.601 · e−6) 8.746 · e−5 (±5.234 · e−6) 1.873 · e−5 (±2.128 · e−6) 1.435 · e−5 (±1.376 · e−6)

#{RMSE(Y) < 1.e−6} ↑ 0% 0% 0% 0%

#{RMSE(Z) < 1.e−6} ↑ 0% 0% 0% 0%

Table 3.4: Results return on the CSC task on dataset without noise. For T-ConvADMM and T-ConvFISTA,

R = 1, 2, 3, or 4. Mean and standard deviation are reported. For the RMSE the lowest the better. For the

other ones, the higher the better.

deviation ∼ 0.0023, 0.015, and 0.03). Recall that the de�nition of the SNR between a signal

yref and a comparison one ynoisy = yref + ε is

SNR(yref ,ynoisy) = 10 log10

(
Var(yref )

MSE(yref ,ynoisy)

)
, (3.35)

where MSE denotes the Mean Squared Error. SNR is an asymmetric decibel measurement (dB)

used to compare the level of a signal to the level of background noise.

Metrics. We use four metrics to evaluate our methods:

• The Root Mean Square Error (RMSE) between the true input signal (resp. the true activation

maps) and the reconstruction. The lower the better. We denote them RMSE(Y) and RMSE(Z).

• The number of times a method reaches a “correct” minimizers among all the initializations e.g.

RMSE under ε = 1.e−6. This metric re�ects the sensitivity of an algorithm to its initializations.

The higher the better. We denoted them #{RMSE(Y) < ε} and #{RMSE(Z) < ε}.

6.1.1 Evaluation of the K-CSC (known dictionary)

In this experiment, we only compare the performances of the methods on the CSC as this is where

stands our major contribution. The true dictionary is therefore given at the begining. The {Zk,q}
are initialized with random Uniform matrices.
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CSC R = 2 Noisy small-scale dataset Noisy large-scale dataset

SNR Metrics T-ConvADMM T-ConvFISTA T-ConvADMM T-ConvFISTA

25.5dB RMSE(Y) ↓ 3.988 · e−4 (±4.121 · e−5) 3.999 · e−4 (±4.427 · e−5) 6.523 · e−5 (±5.970 · e−7) 7.606 · e−5 (±1.253 · e−6)

RMSE(Z) ↓ 2.397 · e−4 (±2.331 · e−5) 2.403 · e−4 (±2.528 · e−5) 3.820 · e−5 (±4.431 · e−7) 4.469 · e−5 (±1.1666 · e−6)

#{RMSE(Y) < 1.e−3} ↑ 98% 94% 86% 90%

#{RMSE(Z) < 1.e−3} ↑ 98% 96% 86% 90%

9.5dB RMSE(Y) ↓ 2.513 · e−3 (±1.046 · e−4) 2.492 · e−3 (±9.024 · e−5) 4.254 · e−4 (±9.016 · e−6) 4.958 · e−4 (±7.733 · e−6)

RMSE(Z) ↓ 1.509 · e−3 (±6.113 · e−5) 1.495 · e−3 (±5.066 · e−5) 2.504 · e−4 (±8.241 · e−6) 2.913 · e−4 (±7.194 · e−6)

#{RMSE(Y) < 2.5e−3} ↑ 84% 84% 84% 88%

#{RMSE(Z) < 2.5e−3} ↑ 96% 98% 84% 90%

3.0dB RMSE(Y) ↓ 5.224 · e−3 (±3.302 · e−4) 4.847 · e−3 (±3.166 · e−4) 8.835 · e−4 (±2.140 · e−5) 9.918 · e−4 (±1.529 · e−5)

RMSE(Z) ↓ 3.147 · e−3 (±2.039 · e−4) 2.894 · e−3 (±1.805 · e−4) 5.187 · e−4 (±1.708 · e−5) 5.828 · e−4 (±1.434 · e−5)

#{RMSE(Y) < 5.e−3} ↑ 41% 52% 84% 88%

#{RMSE(Z) < 4.e−3} ↑ 84% 86% 84% 88%

CSC Noisy small-scale dataset Noisy large-scale dataset

SNR Metrics FCSC-ShM [Bristow et al., 2013] ConvFISTA [Chalasani et al., 2013] FCSC-ShM [Bristow et al., 2013] ConvFISTA [Chalasani et al., 2013]

25.5dB RMSE(Y) ↓ 2.292 · e−3 (±1.220 · e−5) 2.109 · e−3 (±2.547 · e−4) 1.732 · e−3 (±8.707 · e−6) 1.732 · e−3 (±8.703 · e−6)

RMSE(Z) ↓ 1.454 · e−3 (±7.326 · e−5) 1.311 · e−3 (±2.027 · e−4) 1.050 · e−3 (±2.794 · e−6) 1.050 · e−3 (±2.791 · e−5)

#{RMSE(Y) < 1.e−3} ↑ 0% 0% 0% 0%

#{RMSE(Z) < 1.e−3} ↑ 0% 0% 10% 10%

9.5dB RMSE(Y) ↓ 6.734 · e−3 (±7.117 · e−4) 6.673 · e−3 (±6.847 · e−4) 6.689 · e−3 (±3.344 · e−5) 6.689 · e−3 (±3.344 · e−4)

RMSE(Z) ↓ 4.393 · e−3 (±6.060 · e−4) 4.367 · e−3 (±5.919 · e−4) 4.405 · e−3 (±3.011 · e−3) 4.406 · e−3 (±3.010 · e−3)

#{RMSE(Y) < 2.5e−3} ↑ 0% 0% 0% 0%

#{RMSE(Z) < 2.5e−3} ↑ 0% 0% 0% 0%

3.0dB RMSE(Y) ↓ 1.215 · e−2 (±1.252 · e−3) 1.209 · e−2 (±1.202 · e−3) 1.211 · e−2 (±6.243 · e−4) 1.211 · e−2 (±6.242 · e−4)

RMSE(Z) ↓ 7.800 · e−3 (±1.033 · e−3) 7.774 · e−3 (±1.009 · e−3) 7.812 · e−3 (±5.252 · e−4) 7.813 · e−3 (±5.251 · e−4)

#{RMSE(Y) < 5.e−3} ↑ 0% 0% 0% 0%

#{RMSE(Z) < 4.e−3} ↑ 0% 0% 0% 0%

Table 3.5: Results return on the CSC task on dataset with noise. For T-ConvADMM and T-ConvFISTA, R
is set to the true value, R∗ = 2. Mean and standard deviation are reported. With SNR= −17dB, the best

result with T-ConvADMM and T-ConvFISTA was obtained by the tensor full of zero (no activations) for

the small-scale dataset. For the two standard methods, the best result was obtained by the tensor full of

zero regardless the size of the data.

Noiseless scenario. We start with the noiseless case. For each one of the 20 input signals, we

run our methods with R = 1, 2, 3, 4 and for �ve di�erent initializations. This makes a total of

400 runs. The metric #{RMSE(·) < ε} is therefore calculated on 50 initializations. Each time,

the reconstruction giving the lowest RMSE(Y) among the �ve tries is kept.

Quantitative results are collected in Table 3.4. Both T-ConvADMM and T-ConvFISTA give

competitive results with RMSE under 1.e − 7 as soon as R ≥ 2. Furthermore, as expected,

the best results are obtained when the estimated rank R is equal to the true one, i.e. when

R = R∗ = 2. Notice that, although surprising, an overestimation of the rank does not penalize

the performance and still leads to very low RMSE – under 1.e− 7. We also collected results of the

standard methods in Table 3.4 (bottom). With RMSE only around 1.e−5, we clearly outperformed

FCSC-ShM and ConvFISTA. This was expected as they do not take into account the underlying

rank structure, i.e. the separability of the activations. In addition, for the two datasets we display

on Figures 3.7 and 3.8 the values of the objective function (average on all the runs) in term

of times or iterations. Curves with respect to times slightly advantage T-ConvADMM against

T-ConvFISTA. Furthermore, they show the advantage of correctly estimating R∗ as, with a high

R, methods are more expensive (at least at the beginning). This is in line with the complexity

section. Nevertheless, note that our implementation takes into account the sparsity of the matrices

involved. Hence, thanks to a proper tuning of the hyperparameters, even if R is too large our

methods quickly converge – the unnecessary column of the activation maps being set to 0. In

comparison, results obtained in Table 3.4 take∼ 500 seconds for both FCSC-ShM and ConvFISTA

against ∼ 200 seconds for our methods. This gives a di�erence of more than a factor 2. Another
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(d) T-ConvFISTA

Figure 3.7: Average curves with standard deviation of the convergence of our two methods on the

small-scale dataset with respect to (a, b) the times and (c, d) the number of iterations and for R = 2, 3, 4.

very interesting result is the convergence in term of iterations. Curves with respect to iterations

do not present signi�cant di�erence between our two methods. More importantly, they also do

not present signi�cant di�erence between the two datasets and converge in approximatively 10
iterations.

Results with noise. We now study the noisy case. This is an important experiment as while

the CSC model has been successfully used for image processing problems, it still falls behind tra-

ditional patch-based methods on simple tasks such as denoising [Simon and Elad, 2019]. For each

input signal, we run our methods with �ve di�erent initializations. The metric #{RMSE(·) < ε}
is therefore calculated on 50 initializations. Each time, the reconstruction giving the lowest

RMSE(Y) among the �ve tries is kept. We set R = R∗ = 2 during all the experiment.

Quantitative results are collected in Table 3.5. The most remarkable result is that, even under

strong noise, T-ConvADMM and T-ConvFISTA yield very good reconstructions. Figure 3.9

provides a visual example of this important property. We see that T-ConvADMM reconstructs

the input signal with high accuracy when SNR ∼ 3.0dB while FCSC is completely defective

and mostly over�ts the noise. This was expected because the noise does not share the low-rank

structure of the signal. The K-CSC model, which includes a low-rank constraint, succeeds to not

capture it and thus recovers the true signal with accuracy. In other words, taking into account

the low-rank structure of the signal eliminates the noise and allows a better recovery of the

activations. Furthermore, notice that since for both datasets R∗ = 2 , the larger the signal, the

more “restrictive” the rank constraint is. This leads to lower RMSEs on the large-scale dataset
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Figure 3.8: Average curves with standard deviation of the convergence of our two methods on the

large-scale dataset with respect to (a, b) the times and (c, d) the number of iterations and for R = 2, 3, 4.

than on the small-scale dataset.

6.1.2 Evaluation of the K-CDL (unknown dictionary)

We now quickly evaluate our algorithms on the full K-CDL. We use the datasets of the previous

section, setR = 2, and use T-ConvFISTA combined with the FCSC solver with Sherman–Morrison

iterates for the D-step [Wohlberg, 2015]. This solver is preferred to T-ConvADMM as it provides

similar results on the K-CSC without the necessity of tuning the ρ parameter (we calculate the

Lipschitz constant instead). The activations {Zk,q} and the atoms {Dk} are initialized with

random Uniform matrices or tensors. Then, we normalize the atoms to satisfy the `2 constraint.

Results. On noiseless signals, we obtain a range of RMSEs comparable to those obtained with

standard methods when R ≥ R∗. However, on noisy signals, we observe that T-ConvFISTA

returns better results than FCSC-ShM and ConvFista even if the number of active coe�cients is

lower (see Figure 3.10, for an example on the same signal of Figure 3.9). We now compare the

time performance of T-ConvFISTA with the other solvers. To be as fair as possible, we employ

the strategy proposed in [Mairal et al., 2010] and re-implemented the other two methods in

pure Python. Their code now share an important part with our algorithm, and we can draw

meaningful comparisons, which would have been di�cult otherwise. Figure 3.11 shows the

average time until convergence (i.e. until the relative convergence tolerance becomes lower than

1e−4 [Boyd et al., 2011]). While it is important to remark that the relative speeds of each methods

are dependent of their choice of hyperparameters as well as on the sparsity of the signals, we

observe that (i) T-ConvFISTA with the optimizations discussed in Section 4.2 is signi�cantly faster
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Figure 3.9: One tube of 3-rd order of: (Top) input + noise (SNR of 3.0dB), input, and reconstruction with

T-ConvADMM. (Bottom) input + noise (SNR of 3.0dB), input, and reconstruction with FCSC-ShM.

Figure 3.10: One tube of 3-rd order of: input + noise (SNR of 3.0dB), input, and reconstruction with

T-ConvFISTA.

than its regular counterpart and (ii) T-ConvFISTA is faster than FCSC-ShM and ConvFista, even if

the advantage decreases as R increases. This is in line with the time complexity of each algorithm

(see Table 3.2).

6.2 Examples on real data

In this section, we use T-ConvFISTA on a wide range of real data. We start with images and

show that it is possible to accurately reconstruct them even with CP low-rank activations. Then,

we extract time-frequency patterns related to musical instruments in audio signals. Finally, we

consider multichannel ElectroEncephaloGram (EEG) and ElectroCardioGram (ECG) signals. We

show that the separability of the activations is an important property allowing to segment the

signal or to easily understand its underlying structure. Hyperparameters are set in order to bring

enough sparsity while not deteriorating the reconstructions.
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Figure 3.11: Time until convergence of T-ConvFISTA on the dictionary learning process (Z + D steps),

with and without the optimizations discussed in Section 4.2. The standard deviation are indicated using

black lines.
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Figure 3.12: Black and white satellite view of an airport. In the middle, the reconstruction of the initial

image with our method. On the right with classical method.

6.2.1 Gray images – 2rd order tensor (matrix).

We �rst consider the matrix case with a black and white satellite view of an airport of size

(150× 250) from Hearn and Reichel [2014] (see Figure 3.12 (a)). As this image admits obvious

low-rank activation maps due to its redundancy and to its patterns alignment (e.g. planes or cars),

we set R = 3 and learn 6 atoms.

Interestingly, even with this very low-rank constraint we are able to e�ciently reconstruct the

initial image (Figure 3.12 (b)) and �nd relevant atoms (Figure 3.13). This is an important behavior

since this means that even if the image does not present a global low-rank structure (i.e. the

matrix representing the image is not low-rank), it exists patterns with low-rank activations. We

display the full results in Figure 3.14. Note that, activations are rank-1 and not 3 as �nd by

T-ConvFISTA. In addition, we also display results for the same image but of size (500× 800) in

order to highlight the capacity of the algorithm to treat large data (Figure 3.14).
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Figure 3.13: Illustration of the reconstruction with T-ConvFISTA on the medium scale image. On top, a

partial reconstruction and the learn dictionary. Then, four atoms with their activation maps.
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Figure 3.14: Illustration of the reconstruction with T-ConvFISTA on the large scale image. On top, a

partial reconstruction and the learn dictionary. Then, four atoms with their activation maps.
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(a) True (b) T-ConvFISTA (c) FCSC

Figure 3.15: On the left, the Lena image. On the middle, the reconstruction obtained with T-ConvFISTA.

On the middle, the reconstruction obtained with FCSC.

(a) T-ConvFISTA (b) RMSE: 0.0230 (c) Activations (d) Dictionary

(e) FCSC (f) RMSE: 0.0232 (g) Activations (h) Dictionary

Figure 3.16: From left to right. The full reconstruction, the reconstruction on the �ltered image, the

activations, and the learned dictionary.

Color images – 3rd order tensor. We now consider the famous Lena image encoded in the

RGB space (Figure 3.15 (a)). We set R = 10 and learn 25 color atoms of size (12× 12× 3).

Results for T-ConvFISTA and FCSC are displayed on Figures 3.15 (b, c) and 3.16. While the image

seems less structured than the previous one, we see that our method stills e�ciently reconstruct

it. To compare the sparsity, we force the two methods to return equivalent RMSEs. From 3.16 (c)

and (g), we see that to reconstruct the image with an RMSE of ∼ 0.023, T-ConvFISTA need much

less activations than FCSC: 0.16% against 0.28%. We therefore clearly see that, even if this image

does not have an obvious structure, our algorithm is able to �nd it and to learn it. Interestingly,

although we set R = 10, it always returns activations with CP-rank smaller than 6.
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(a) Left stereo audio: True

0.0 0.64 1.25 1.89 2.5 3.14 3.78 4.38 5.02
Times (s)

0

156

312
453

609

766

Fr
eq

ue
nc

y 
(H

z)

(b) Right stereo audio: True
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(c) Left stereo audio: Reconstruct
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(d) Right stereo audio: Reconstruct
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(e) Left stereo audio: Activations
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(f) Right stereo audio: Activations

Figure 3.17: Results on the jazz signal. On top the true spectrograms of the left and right channels. On

the middle, the reconstructions. On the bottom, the activations obtained by adding up the activations of all

atoms.

6.2.2 Audio signal – 3rd order tensor with low-rank structure.

Identifying recurring patterns in audio signal is an important problem in many scienti�c domains.

A popular model to achieve this is nonnegative matrix factorization (NMF) [Lee and Seung, 1999].

A more recent model is the convolutive nonnegative matrix factorization (CNMF) [O’grady and

Pearlmutter, 2006]. It extends the classic NMF by introducing a convolutional structure into the

low-rank model reconstruction and thus, captures short-term temporal dependencies in the data.

However, these two methods never deal with stereo or multidimensional signals. In this example,

we propose to use T-ConvFISTA to learn a dictionary (i.e. short-lived temporal patterns) on a

stereo audio signal. This stereo signal is 5 seconds long and recorded at 8000Hz, for a total of

2× 40000 = 80000 points. For each signal (one per channel), we compute a short-time Fourier

transform to obtain its spectrogram. Window size is set to 512 samples with 50% overlap : only

the �rst 50 bins have been conserved (0 − 781.25 Hz). The �nal data consists in a third order

tensor of size (2× 50× 158). We reconstruct the input using K = 25 frequency-time atoms of

size (1× 4× 8) (i.e. atoms with 46.875 Hz bandwidth of 0.224 seconds). The maximal CP-rank

of each associated activation is set to R = 5.

We obtain a RMSE of 3.415e−3 with 0.17% active coe�cients while with FCSC we obtain a

RMSE of 4.048e−3 with more than 0.34% active coe�cients. For reference, the RMSE is equal to

1.060e−2 when the reconstruction is full of 0. The results are displayed on Figure 3.17. Atoms

and activations returned by our method are displayed Figure 3.18. Since in this audio signal the

di�erent instruments play at di�erent frequency we can isolate them: the �rst two atoms of

Figure 3.18(e) correspond to the drums and the two last ones (Figure 3.18 (f)) to the guitar.
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(b) Right stereo audio: atom of drums
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(c) Left stereo audio: atom of drums

0.0 0.64 1.25 1.89 2.5 3.14 3.78 4.38 5.02
Times (s)

0

156

312
453

609

766

Fr
eq

ue
nc

y 
(H

z)

Right channel

(d) Right stereo audio: atom of drums
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(f) Right stereo audio: atom of guitar
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(g) Left stereo audio: atom of guitar
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(h) Right stereo audio: atom of guitar

Figure 3.18: On each of the four group of images: From left to right, the learned atom, the activations

relative to the �rst dimension (channel), the activations relative to the second dimension (frequency), and

the activations relative to the third dimension (time). Then, the two spectrograms corresponding to the

reconstruction.
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Figure 3.19: EEG recording (in µV ) of a patient during GA (sampling frequency: 250Hz). On top the raw

signal of one channel and on bottom its spectrogram.

6.3 Signals recorded during a general anesthesia

6.3.1 A study of multichannel electroencephalography signals

We now consider multichannel EEG signals that record brain activity with sensors covering a

large part of the head. Note that, this is a di�culet dataset because there is a lot of noise, impulsion

noise, and de�cient measures. This two-dimensional measurement is stored in a matrix X in

RNs×Nt
where Ns is the number of sensors and Nt is the number of samples.

Justi�cation of the model. Assuming a static propagation, the X matrix can be factorized

into a lead-�eld matrix A and a signal matrix of Nr sources, denoted S ∈ RNr×Nt
, such that

X = AS [Becker et al., 2015]. The goal is now to �nd a transformation allowing to produce a

relevant data tensor fromX . A frequently used idea is to compute a short-time Fourier transform

on each channel to obtain a Space-Time-Frequency (STF) representation Y [Miwakeichi et al.,

2004; Mørup et al., 2006; Becker et al., 2010, 2014; Zhao et al., 2011]. In previous methods, authors

assume that the time and frequency variables separate in order to justify a CP decomposition

of the tensor. While no theoretical validation that justi�es this application has been performed

[Becker et al., 2014], all these works show that tensor decomposition inherently exploits the

interactions among multiple modes. Here, we adopt a slightly di�erent point of view as we

do not assume that the full tensor Y is tri-linear. Instead, we only assume that it results from

the summation of K relevant atoms with associated tri-linear activations. The sparsity of the

activations is supported by recent results on neuroscience which postulate that neural activity

consists more of transient bursts of isolated events rather than rhythmically sustained oscillations

[van Ede et al., 2018]. Such activities could be described not only by their frequency and amplitude

but also by their rate, duration, and shape suggesting that multivariate CDL is well-adapted to

analyze them.

Data and parameters. The data consists in 32 EEG signals recorded at 250 Hz during a General

Anesthesia (GA). We crop the full signal to keep only an important phase of the GA known as

the “Recovery of Consciousness” (RoC) [Purdon et al., 2013]. Each signal is then of 1000 seconds

(see Figure 3.19). With all channels included, it corresponds to 8, 000, 000 points. To construct
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Figure 3.20: (a) Three atoms of interest with their activations. From left to right: the time-frequency

atom, the channel activations (mode 1), the frequency activations (mode 2), and the time activations (mode

3). (b) The activations obtained by adding up the activations of all atoms. Topographies are made with

MNE-Python [Gramfort et al., 2013].

the STF representation, the signal is �rst �ltered using a bandpass �lter between 1 and 20Hz, to

remove the potential drift below 1Hz, and to keep the frequencies below 20Hz that characterize

GA [Brown et al., 2010]. Then, on each channel a short time Fourier transform is used with

window size equals to 1024 samples and 50% overlap: only the �rst 82 bins have been conserved

(0− 20 Hz). We stack the 32 spectrograms in a �nal tensor Y of size (32× 82× 490). During a

GA, patients are static and EEG signals do not present many patterns. As a consequence, we set

R = 2, and only learn K = 5 atoms of size (1× 15× 5) corresponding to time-frequency atoms

covering 8.19 seconds and a band of frequencies of 3.42Hz. To reconstruct the 1-D initial signal

from the spectrograms we apply the inverse short time Fourier transform.
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Figure 3.21: Evolution of the time activations for the �rst and second atoms of Figure 3.20 which are

relative to the δ and α waves.
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Figure 3.22: The �rst column shows the atoms learn with T-ConvFISTA on EEG signals. The three other

columns show the corresponding activation map for each dimension.

Learned dictionary and activations. Three learned atoms with their activations are displayed

in Figure 3.20. One important property is the high interpretability of our results. Indeed, as we

decompose the activations into the modes (channels × frequencies × times), we can study each

one of them independently. For example, from the frequency activations (mode 2), we see that

the �rst two atoms are relative to important frequencies in anesthesia referred as α and θ-waves.

Regarding their time activations (mode 3), they decrease with time (see Figure 3.21). This is a

common behavior that occurs during a GA induced by propofol [Purdon et al., 2013]. Indeed, it

is known that when sedation begins, α and θ-waves appear. Then, during the ROC stage, they

gradually disappear and fade away. The third atom corresponds to important spikes which may

be explain by impulsional noise. From the channel activations (mode 1), we see that most of its

contribution is on one channel. However, due to the propagation of the electricity on all the

scalp, the other sensors also record these spikes at the same time. The activation tensor relative

to this particular atom is therefore rank-1 (as found by the algorithm). Notice that, thanks to

its identi�cation, we can remove its contribution from the �nal reconstruction in order to not

observe the spikes (Figure 3.22).

Robustness to noise and reconstruction. Via the channel activations (mode 1) of one learned

atom we identify three de�cient channels: 10 (CP1), 21 (CP2), and 28 (F4) (Figure 3.23). In a
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Figure 3.23: (a) Spatial activations before removing the bad channels. (b) Raw signal at one of the bad

channel.
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Figure 3.24: On top, raw signal of a good channel (blue), a bad channel (green), and a reconstruction of

the bad channel with T-ConvFISTA (orange). The other two �gures are more focused on signals.

clinical context, these channels are at spatial positions where the cap can come o�. The sensors

then only pick up noise at these positions. Fortunately, as show in the synthetic experiments,

due to the low-rank constraint, the model assumes links between the channels and is robust to

strong noise. In our case, this lead to an automatic reconstruction of the bad channels using the

good ones. in Figure 3.24 for instance, we see a bad channel (in green) presenting a lot of noise,

especially after 8 seconds. Using the other channels (e.g. the blue one), our algorithm reconstructs

the initial signal (in orange).
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Figure 3.25: On top, one time activation map with threshold (orange dash line). On bottom, result of the

EKG signal detection on a small part of it. Each vertical orange dash line is obtained automatically.

6.3.2 Electrocardiogram: automatic detection of the P-QRS-T complex

An ElectroCardioGram signal (EKG) is characterized by �ve main events referred as P, QRS

complex (three events) and T. Each one has a speci�c role during the cardiac cycle and their

abnormalities will lead to di�erent diagnoses [Thakor and Zhu, 1991; Taillefer et al., 1997]. To

date, the gold-standard of EKG analysis remains human analysis, except in speci�c situations such

as continuous ST-segment monitoring during anesthesia of high-risk cardiac patients [Landesberg

et al., 2002]. The PR interval is known to be linked to the autonomic nervous system [Shouldice

et al., 2003]. Drugs used during anesthesia are blocking the autonomous tone, explaining in a

large part the side-e�ects of anesthesia [Gelman and Mushlin, 2004]. An automatic and real time

detection of the PR interval appears potentially interesting. In this example, we show how to use

T-ConvFISTA to detect P-QRS-T complexes easily.

The EKG signal is recorded at 600Hz during∼ 25 minutes for a total of 1, 070, 000 points. Before

applying our method, we decompose it with a short-time Fourier transform to obtain a Time-

Frequency (TF) representation. Window size is set to 64 samples with 50% overlap so that we

keep a high temporal accuracy while drastically reducing the signal in time. Only the �rst 10
bins have been conserved. The �nal signal is of size (10× 33439). As the spectrogram exhibits a

lot of regularity and small variability, we set R = 2 and K = 1. To reduce the time complexity,

we learn the atom on the beginning of the signal. When the atom is learned, we only perform the

CSC on the full EKG signal and therefore enjoy an important reduction in complexity. Finally, to

detect the complex, we apply a threshold on the time activations map (3.25 (a)). An illustration of

the �nal segmentation is given in Figure 3.25 (b). Note that, as standard methods do not allow

to independently control the sparsity in dimension, the activations are spread on the frequency

axis. Hence, we obtain a poor quality atom compared to the one return by T-ConvFISTA and the

reconstruction becomes noisy (Figure 3.26 (c, d)).
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Figure 3.26: Results on EKG signals. (a, b) are the reconstruction with T-ConvFISTA. (c, d) are the

reconstruction with FCFC.

7 Conclusion

In this chapter, we generalized the CDL problem to multivariate signals. More particularly, using

tensor algebra we supposed that the activation maps are sparse and CP low-rank. We proposed

two algorithms based on ADMM and FISTA to e�ciently solve the associated minimization

problem. The two algorithms are evaluated and compared on both synthetic and real data. We

showed that they provide better results than conventional algorithms in term of reconstruction,

sparsity, and interpretability. On real data we showed that the ability of our methods to split the

activation maps in each mode allows a better comprehension of the input signal.
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8 Appendix

8.1 Proofs of the chapter

Lemma 3.2. (Mode-wise DFT) – Given the CP-decomposition of a tensor X = [[X1, · · · ,Xp]],
the DFT can be performed mode-wise i.e.

X̂ =
R∑
r=1

x̂(1)
r ◦ · · · ◦ x̂(p)

r . (3.36)

The complexity of the computation of X̂ using the FFT goes from O(
∏p
i=1 ni log(

∏p
i=1 ni)) to

O(R
∑p

i=1 ni log(ni))).

Proof. Using the de�nition of the CP-decompositions, the proof is straightforward. Furthermore,

as we only perform 1-D FFT, we obtain the given complexity.

Theorem 3.2. (Equality in the Fourier domain) – In the Fourier domain, the �delity term f(·) is
equal to

f
(
{Zk,q}Kk=1

)
=

1

2
∏p
i=1Ni

∥∥∥∥∥Ŷ −
K∑
k=1

D̂k ∗ [[Ẑk,1, · · · , Ẑk,p]]

∥∥∥∥∥
2

F

, (3.37)

where ·̂ denotes the frequency representation of a signal, and ∗ is the component-wise product.

Proof. The proof rests on several equalities and properties.

‖Y −
K∑
k=1

Dk ©?
R∑
r=1

z
(1)
k,r ◦ · · · ◦ z

(p)
k,r‖2F

=
1

2
∏p
i=1Ni

‖Ŷ −
K∑
k=1

DFT(Dk ©?
R∑
r=1

z
(1)
k,r ◦ · · · ◦ z

(p)
k,r)‖2F (Parseval’s theorem – Plancherel)

=
1

2
∏p
i=1Ni

‖Ŷ −
K∑
k=1

D̂k ∗
R∑
r=1

DFT(z
(1)
k,r ◦ · · · ◦ z

(p)
k,r)‖2F (convolution theorem)

=
1

2
∏p
i=1Ni

‖Ŷ −
K∑
k=1

D̂k ∗
R∑
r=1

ẑ
(1)
k,r ◦ · · · ◦ ẑ

(p)
k,r‖2F (separable)

=
1

2
∏p
i=1Ni

‖Ŷ −
K∑
k=1

D̂k ∗ [[Ẑk,1, · · · , Ẑk,p]]‖2F (Kruskal operator) .

Corollary 3.3. (A compact vectorized formulation) – The following equality holds

f
(
{Zk,q}Kk=1

)
=

1

2

∥∥∥ŷ(q) − Γ̂(Â⊗ I)ẑ(q)
∥∥∥2

F
, (3.38)

where ŷ(q) is the vectorization of the folding of Ŷ along the dimension q, ẑ(q) = [ẑ
(q)ᵀ

1 , . . . , ẑ
(q)ᵀ

K ]
ᵀ

where ∀k, ẑ(q)
k is the vectorization of the matrix Zk,q , Γ̂ = [diag(d̂1

(n)
), . . . , diag(d̂K

(n)
)] with
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d
(q)
k the vectorization of the folding of D̂k along the dimension q, and

Â =

B̂1

. . .
B̂K

 where B̂k = (
←↩
�
p

i=1,i 6=q Ẑk,i) . (3.39)

Here, Γ̂ ∈ Cn1···np×Kn1···np , Â ∈ CK
∏p

1,i 6=q ni×KR, I ∈ Rnq×nq , and ẑ(q) ∈ CKRnq . Thus, the
design matrix Γ̂(Â⊗ I) is in Cn1···np×KRnq .

Proof. The proof mainly rests on the proposition (3.4) and on the formulation of the previous

theorem.

‖Ŷ −
K∑
k=1

D̂k ∗ [[Ẑk,1, · · · , Ẑk,p]]‖2F = ‖Ŷ (q) −
K∑
k=1

D̂
(q)

k ∗ Ẑk,q

(
←↩
�
p

i=1 Ẑ
(i)

k

)ᵀ

‖2F (matricization)

= ‖ŷ(q) −
K∑
k=1

d̂
(q)

k ∗
(
←↩
�
p

i=1 Ẑ
(i)

k ⊗ I
)

vec(Ẑk,q)‖2F (vectorization)

= ‖ŷ(q) −
K∑
k=1

diag(d̂
(q)

k )

(
←↩
�
p

i=1 Ẑ
(i)

k ⊗ I
)

vec(Ẑk,q)‖2F (x ∗ y = diag(x)y)

= ‖ŷ(q) −
K∑
k=1

diag(d̂
(q)

k )Ĉkẑk‖2F ,

where the last line is just notations. To obtain the �nal equality, we stack the matrices {diag(d̂
(q)

k )}
and construct a block-diagonal matrix such that the block are the {Ck}. Finally we obtain the

following equality.Ĉ1

.
.
.

ĈK

 =

B̂1 ⊗ I
.
.
.

B̂K ⊗ I

 =

B̂1

.
.
.

B̂K

⊗ I ,
where B̂k = (

←↩
�
p

i=1,i 6=q Ẑk,i). This end the proof.

Proposition 3.2. The matrix (Â
H ⊗ I)Γ̂

H
Γ̂(Â⊗ I) is composed ofK2 blocks equals to(

(
←↩
�
p

i=1,i 6=q Ẑk,i)
H ⊗ I

)
diag(d̂k

(q)
)diag(d̂`

(q)
)

(
(
←↩
�
p

i=1,i 6=q Ẑ`,i)⊗ I
)
. (3.40)

Each of these blocks can be computed in O(R2
∏p
i=1 ni). Hence, the full matrix can be computed in

O((KR)2
∏p
i=1 ni) operations. Furthermore, this matrix is a (KRnq ×KRnq) banded matrix (as

explain before). Its product with ẑ(q) can therefore be made in onlyO((KR)2nq) operations.

Proof. The �rst step of the proof requires to write Γ̂
H

as the Kronecker product of two speci�c

matrices in order to use the equality (A ⊗B)(C ⊗D) = (AC ⊗BD). Recall that Γ̂
H

is a

block-diagonal matrix, i.e. Γ̂
H

= [diag(d̂1
(q)

), · · · , diag(d̂K
(q)

)]. Hence, we can decompose each
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diagonal-block diag(d̂k
(q)

) into smaller diagonal matrices as follow

diag(d̂k
(q)

) =

N\q∑
i=1

diag(ei)⊗∆k,i with N\q =

p∏
i=1,i 6=q

ni ,

with diag(ei) ∈ RN\q×N\q and ∆k,i ∈ Cnq×nq
being the i-th diagonal block of diag(d̂k

(q)
)

(i.e. ∆k,i = diag(d̂k
(q)

)(i·nq :(i+1)·nq),(i·nq :(i+1)·nq)). As (diag(ei) ⊗ ∆k,i) is decomposed in two

matrices of the proper dimension, we can used the equality (A⊗B)(C ⊗D) = (AC ⊗BD)
and we have(

(�pi=1,i 6=qẐk,i)
H ⊗ I

)
diag(d̂k

(q)
)diag(d̂`

(q)
)
(

(�pi=1,i 6=qẐ`,i)⊗ I
)

=
(
B̂
H

k ⊗ I
) N\q∑
i=1

(
diag(ei)⊗∆k,i

) N\q∑
j=1

(diag(ej)⊗∆`,j)
(
B̂` ⊗ I

)

=

N\q∑
i=1

N\q∑
j=1

(
B̂
H

k ⊗ I
) (

diag(ei)⊗∆k,i

)
(diag(ej)⊗∆`,j)

(
B̂` ⊗ I

)

=

N\q∑
i=1

N\q∑
j=1

(
B̂
H

k diag(ei)diag(ej)B̂` ⊗∆k,i∆`,j

)

=

N\q∑
i=1

(
B̂
H

k diag(ei)diag(ei)B̂` ⊗∆k,i∆`,i

)

=

N\q∑
i=1

(
(diag(ei)B̂k)

H
diag(ei)B̂` ⊗∆k,i∆`,i

)
=

N\q∑
i=1

(
B̂k(i, :) ◦ B̂`(i, :)⊗∆k,i∆`,i

)
.

The outer product of two vectors in C1×R
is of complexity O(R2). This product is made for

each 1 ≤ i ≤ N\q and for eachK2
blocks. Hence, the overall complexity isO((KR)2

∏p
i=1,i 6=q ni).

9 Notation and preliminaries on tensor

In the sequel, we recall the tensor algebra concepts which allowed us to extend the CDL to

multivariate signals. Please refer to [Kolda and Bader, 2009; Sidiropoulos et al., 2017] for a more

in-depth introduction on the tensor algebra topic.

9.1 Some important de�nitions and formulas

A tensor is a multidimensional array extending the notion of vectors and matrices. Formally, a

p-th order tensor is an element of the tensor product of p ∈ N∗ vector spaces, denoted X ∈ X ,
Rn1×···×np

and addressed by p indexes. Whereas in matrices we can extract rows or columns, in

tensors we can extract slices, �bers, or elements. A slice of a tensor is the matrix obtained by

�xing all its indexes except two, while a �ber is a vector obtained by �xing all its indexes except

one. Slice, �ber, or element are denoted in equivalent ways X :,:,··· ,ip , X :,··· ,ip , or X i1,··· ,ip .
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9.1.1 Some products

In this section, we review some useful products and their properties, as they pertain to tensor

computations. These operations greatly facilitates the understanding of this particular algebra

and lightens the notations. We start by three important matrix products.

De�nition 3.1. (Kronecker, Khatri-Rao, and Hadamard product) – The Kronecker product between
A ∈ Rm×n andB ∈ Rk×` is denotedA⊗B. The result is a matrix of size (mk)× (n`) such that

A⊗B =

a1,1B · · · a1,nB
...

. . .
...

am,1B · · · am,nB

 .

The Khatri-Rao product [Smilde et al., 2005] betweenA ∈ Rm×k andB ∈ Rn×k is denotedA�B.
The result is a matrix of size (mn)× (k) such that

A�B = [a:,1 ⊗ b:,1, · · · ,a:,k ⊗ b:,k] .

The Hadamard product, or component-wise product, betweenA ∈ Rm×n andB ∈ Rm×n is denoted
A ∗B. The result is also a matrix of sizem× n such that (A ∗B)i,j = Ai,j ·Bi,j .

De�nition 3.2. (Inner product and induced norm) – Let X and Y be two tensors in X. The inner
product between X and Y is given by

〈X ,Y〉 =

n1∑
i1=1

· · ·
np∑
ip=1

X i1,··· ,ipY i1,··· ,ip = vec(X )
ᵀvec(Y) .

The norm induced by this inner product is the Frobenius norm denoted ‖ · ‖F , and such that
‖X‖F = 〈X ,X 〉1/2 i.e. the square root of the sum of the squares of all the elements of X .

Multiplication between tensors and matrices is de�ned using the m-mode product.

De�nition 3.3. (Mode-m product) – Form ∈ {1, · · · , p} andA in Rnm×nq , the mode-m product
between X andA is given by

(X ×m A)i1,··· ,im−1,j,im+1,··· ,p =

nm∑
k=1

X i1,··· ,im−1,k,im+1,··· ,pAk,j .

The mode product of X with two proper matrices U ,V admits the two following fundamental

properties

X ×m U ×n V = X ×n V ×m U (m 6= n)

X ×m U ×m V = X ×m UV .

An illustration of this product is given in Figure 3.27.
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Figure 3.27: Illustration of the Mode-2 product with a third order tensor.

9.1.2 Canonical Polyadic Decomposition and tensor rank

Tensor algebra has many similarities but also many striking di�erences with matrix algebra. One

of the main di�erence is related to the de�nition of the rank which is not unique as in the matrix

case. Many de�nitions exist in the literature which are not equivalent in general. The most well

known is called the Canonical Polyadic rank (CP-rank) of a tensor.

Proposition 3.3. (Canonical Polyadic Decomposition/PARAFAC and CP-rank) – For any tensor
X ∈ X, there exist R > 0, and, x(i)

r ∈ Rni , 1 ≤ i ≤ p, 1 ≤ r ≤ R, such that

X =

R∑
r=1

x(1)
r ◦ · · · ◦ x(p)

r . (3.41)

The smallest R for which such decomposition exists is called the Canonical Polyadic rank of X
(CP-rank(X ) or rank(X ) for short), and in this case (3.41) is referred to as the CP decomposition of
X .

De�nition 3.4. (Kruskal operator [Kruskal, 1977]) – With the notation of Proposition 3.3, the
Kruskal operator [[ · ]] is de�ned as

[[X1, · · · ,Xp]] ,
R∑
r=1

x(1)
r ◦ · · · ◦ x(p)

r ,

whereXi =
[
x

(i)
1 | . . . | x

(i)
R

]
∈ Rni×R, 1 ≤ i ≤ p.

Remark 3.4. A CP-decomposition is always possible for a (possibly) non-optimal R by considering
the canonical basis.

9.1.3 Matricization and vectorization

Matricization, also known as unfolding or �attening, is the process of reordering the elements of

a tensor into a matrix. For instance, we can rearranged a tensor in Rn1×n2×n3
into a matrix in

R(n1·n2)×n3
. The matricization operation permits a better comprehension of the tensor object

and is very useful in practice (e.g. optimization). Before the introduction of a proper de�nition,

we recall that a slice of a tensor is the matrix obtained by �xing all its indexes except two. As

an illustration let us consider a third order tensor X in Rn1×n2×n3
. A slice i is here denoted by

X (i, :, :) or X i::. The two other slices are de�ned equally.

De�nition 3.5. (q-mode matricization of a tensor) – LetX be a tensor in Rn1×···×np . The q-mode
matricization of X is a matrix in Rnq×

∏p
i=1,i 6=q nq denotedX(q) and obtained by stacking all slices

of X except the q-th.
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Converting a tensor to a matrix is useful both computationally and theoretically as there exist

connections between the matricization, and the Kruskal operator. One of the most important

proposition is given in the following.

Proposition 3.4. (Matricization of the Kruskal operator) – Let X be a tensor in X with CP-
decomposition [[X1, · · · ,Xp]]. Then,

X(q) = Xq (Xp � · · · �Xq+1 �Xq−1 � · · · �X1)
ᵀ

= Xq

(
←↩
�
p

i=1,i 6=q Xi

)ᵀ

,

where� is the Khatri–Rao product (see de�nition 3.1) and
←↩
�
p

i=1 denotes the product of p Khatri–Rao
products in reverse order. We can also vectorized this formula which gives us

vec(X(q)) = (Xp � · · · �Xq+1 �Xq−1 � · · · �X1 ⊗ I) vec(Xq)

=

(
←↩
�
p

i=1,i 6=q Xi ⊗ Inq

)
vec(Xq) ,

where Inq is the identity matrix of size (nq × nq).
We now go back to the CDL. As we want to extend it to tensor signals, we are confronted to

the problem of a correct de�nition of the convolutional operator. Fortunately, the convolutional

operator for multidimensional signals is well de�ned and does not di�er much from the one for

one-dimensional signals. We recall its properties in the next section.

9.2 How to perform the convolution for discrete signals?

The CDL equation (3.1) contains the convolution operator ?. However, for discrete signals (seen

as vectors), there exists several ways to perform such convolution. In this section, we address

this issue by presenting the di�erent ways to proceed.

The standard adaptation of the convolution for discrete signals leads to the following de�nition.

De�nition 3.6. (Discrete convolution) – Let consider two discrete functions f, g de�ned on all the
set of integer Z i.e. with in�nite support. The convolution between this two functions is called the
discrete convolution and is given by

(f ? g)[n] =
+∞∑

k=−∞
f [k]g[n− k] .

Here, we use the notation f [·] to highlight the discrete structure of the functions.
In this de�nition, we have considered discrete signals with in�nite support i.e. f [n] is de�ned

for all n in Z. However, in practice, f is usually known over a �nite domain, (e.g. 0 ≤ n < N )

and the convolution must be modi�ed to take into account this border e�ects. To compute the

discrete convolution between two discrete functions f, g with �nite support, one approach is to

assume that values outside the domain of consideration are 0 (also referred as Dirichlet boundary
[Bristow and Lucey, 2014]). Another popular approach is to extend f, g with a periodization by

introducing two functions f̃ and g̃ such that

f̃ [n] = f [n mod N ] , g̃[n] = g[n mod N ] .

Here, f̃ and g̃ are two discrete functions with period N (see Figure 3.28 for an example). This

strategy leads to the de�nition of the circular convolution.
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Figure 3.28: Periodization of the “�nite” function f draw in orange.

De�nition 3.7. (Circular discrete convolution) – Let consider two functions f̃ , g̃ de�ned on
{0, . . . , N − 1} with period N . The circular convolution between f̃ and g̃ is given by

(f̃ ©? g̃)[n] =

N−1∑
k=0

f̃ [k]g̃[n− k] .

The premise behind the circular convolution approach is to develop a relation between the

Convolution theorem and the Discrete Fourier Transform in order to calculate the convolution

between two �nite-extent, discrete-valued signals. Indeed, remark that, f̃ ©? g̃ is a signal of period

N . It can therefore be decomposed in a Fourier basis like classical periodic signals which gives

rise to the following important theorem.

De�nition 3.8. (Discrete Fourier Transform (DFT)) – Let consider a function f de�ned on
{0, . . . , N − 1} with period N . The Discrete Fourier Transform (DFT) of f is given by

f̂ [k] =
N−1∑
n=0

f [n] exp

(
− i2πkn

N

)
,

and the Inverse DFT (IDFT) of f̂ is given by

f [n] =
1

N

N−1∑
k=0

f̂ [k] exp

(
i2πkn

N

)
,

where ·̂ denotes the frequency representation of a signal.

Theorem 3.3. (Discrete convolution theorem) – If f and g have period N , then the DFT of
h = f ©? g is

ĥ[n] = f̂ [n] · ĝ[n] , or in vector notation ĥ = f̂ ∗ ĝ ,
where ·̂ denotes the frequency representation of a signal, and ∗ is the component-wise product.

This theorem is the core of most methods that solve the CDL problem as it allows to take advantage

of the Fast Fourier Transform (FFT) to signi�cantly reduces the complexity of the algorithms.

Indeed, a direct computation of ĥ – with the summation – requires O(N2) multiplications. With

the FFT the complexity reduces to O(N log(N)).

Remark 3.5. If f and g do not have the same support, we extend the one with the lowest support
with zeros (zero-padding).
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Figure 3.29: Illustration of the multidimensional convolution (Dirichlet boundary version) with 3-th order

tensors, where each cube represents a dimension and each axis an order. Notice that the result has one

additional dimension in each order.

9.3 How to perform the convolution for multidimensional signals?

The standard adaptation of the convolution for multivariate discrete signals (seen as tensors)

leads to the following de�nition.

De�nition 3.9. (Discrete convolution) – Let consider two p-dimensional discrete functions F ,G
de�ned on all the set of integer Zp i.e. with in�nite support. The convolution between this two
functions is called the discrete convolution and is given by

(F ? G)[n1, · · · , np] =
+∞∑

k1=−∞
· · ·

+∞∑
kp=−∞

F [k1, · · · , kp]G[n1 − k1, · · · , np − kp] .

When the convolution is only performed on some dimensions, we use the symbol ?1,2,··· where

the subscript numbers are the dimension involved (see Figure 3.29).

Remark 3.6. For unidimensional signal, ?1 reduces to the 1-D discrete convolutional operator.

In this de�nition, we have considered discrete multidimensional signals with in�nite support.

To compute the discrete convolution between two discrete function F ,G with �nite support,

one approach is to assume that values outside the domain of consideration are 0 (also referred as

Dirichlet boundary [Bristow and Lucey, 2014]). However, as in the univariate case (see Section

9.2), to develop a relation between the Convolution theorem and the DFT, we use the circular

convolution for multivariate discrete signals.

Let consider the periodization of F and G,

F̃ [n1, · · · , np] = F [n1 mod N1, · · · , np mod Np]

G̃[n1, · · · , np] = G[n1 mod N1, · · · , np mod Np] .

Here, F̃ and G̃ are now two discrete functions with period (N1, · · · , Np) (each of the modes are

periodic one-dimensional signals). The circular convolution is de�ned as follow.

De�nition 3.10. (Circular discrete convolution) – Let consider two functions F ,G de�ned on
{0 . . . , N1−1}×· · ·×{0 . . . , Np−1}with both a period of (N1, · · · , Np). The circular convolution
between F̃ and G̃ is given by

(F̃ ©? G̃)[n1, · · · , np] =

N1−1∑
k1=0

· · ·
Np−1∑
kp=0

F̃ [k1, · · · , kp]G̃[n1 − k1, · · · , np − kp] .
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Figure 3.30: (c) Illustration of a two dimensional separable function F = f1 ◦ f2 with f1 and f2 being

the atoms (a) and (b). (c) Illustration of a two dimensional multi-separable function F =
∑4

k=1 f1,k ◦ f1,k
with {f1,k} and {f2,k} being di�erent dilatations of the atoms (a) and (b).

F̃ ©? G̃ is a signal of period (N1, · · · , Np) and can be decomposed in a Fourier basis like classical

periodic signals which give rises to the following important theorem.

Theorem 3.4. (Discrete convolution theorem) – If F and G have period (N1, · · · , Np), then the
DFT of H = F ©? G is

Ĥ[n1, · · · , np] = F̂ [n1, · · · , np] ∗ Ĝ[n1, · · · , np] , or in tensor notation Ĥ = F̂ ∗ Ĝ ,

where ·̂ denotes the frequency representation of a signal, and ∗ is the component-wise product.

Remark 3.7. If F and G do not have the same support, we extend the one with the lowest support
with zeros (zero-padding).

A direct computation of Ĥ with the summation requires O(
∏p
i=1N

2
i ) multiplications. With the

p-dimensional FFT the complexity becomesO(
∑p

i=1Ni log(
∑p

i=1Ni)). We have extensively use

this theorem to accelerate our algorithms.

9.4 Separable signals

One important di�erence of multivariate signals over the univariate ones is the notion of separa-
bility. With this notion, we can avoid the complexity introduced by the additional dimensions.

This not only simpli�es formulas, but also leads to fast numerical algorithms.
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De�nition 3.11. (Separable discrete signal) – A discrete signal F is said to be separable if it can
be write as the outer product of univariate signals i.e.

F = f1 ◦ · · · ◦ fp , (3.42)

where the {fi}pi=1 are univariate discrete signals.

When F is write as a tensor, we see that F is separable if its CP-rank is equal to 1. We can

easily extend this de�nition to “multi”-separable function by considering signals equals to the

summation of multiple separable signals, i.e. tensor with CP-rank > 1. This extension allows to

consider separable signals with more complex structure (see examples in Figure 3.30).
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graph signals

Abstract

In this chapter, we present an approach for processing and subsampling multivariate

time-vertex graph signals. The main idea is to model the relationships within each dimension

(time, space, feature space) with di�erent graphs and to merge these structures with graph

products. Our technique based on a tensor formalism aims at identifying the frequency

support of the graph signal in order to preserve its content after subsampling. Results are

provided on real electroencephalogram signals.
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1 Introduction

Graph Signal Processing (GSP) [Shuman et al., 2013; Ortega et al., 2018] has emerged as a powerful

�eld to analyze structured data as it allows, for instance, to handle complex signal such as those

recorded with sensor networks. Indeed, by assuming that each component of the signal lies on a

graph node, complex spatial interactions or dependencies can be taken into account for several

tasks such as sampling, �ltering, or reconstruction [Sandryhaila and Moura, 2013; Chen et al.,

2015b,c,d; Marques et al., 2016].

In most works, this type of signal, called graph signal, only refers to a single time instance (e.g.

its acquisition time) and hence encodes the variation of an instantaneous observation over an

underlying graph structure. Therefore, very often the time variations are not taken into account

in the processing of such signals: studies consider either one time-sample [Wagner et al., 2005;

Jain et al., 2014; Mohan et al., 2014], where only the spatial dimension is analyzed, or an average

on a time window. In order to deal with temporal graph signals, recent works have introduced the

notion of time-vertex signal processing, where both spatial and temporal interactions are modeled

[Grassi et al., 2018]. In this context, another Graph Fourier Transform (GFT), called Joint Fourier

Transform (JFT), has been introduced [Sandryhaila and Moura, 2014; Loukas and Foucard, 2016]

and e�ciently used in several examples such as video inpainting, seismic epicenter localization

[Grassi et al., 2018], and recovery of high-dimensional processes evolving over a graph (spread

modeling) [Loukas and Perraudin, 2019].

In the case of multivariate sensor networks, or feature-based representations, one solution may

consist in treating each feature or modality individually. However, the underlying assumption is

that all variables are independent, which is not true in a lot of typical situations, such as meteoro-

logical data which could be composed of several correlated variables (temperature, atmospheric

pressure, rainfalls) over time and space. In this situation, a third graph layer is needed to also

model the links between the di�erent modalities. As a result, multivariate time-vertex graph

signals should be modeled with three types of interactions: one in time, one in space, and one in

feature space. By combining the notion of graph product with the tensor formalism, we show in

this chapter that it is possible to extend the notion of GFT to multivariate graph signals, and to

provide e�cient algorithms for processing them.

This chapter provides a framework for processing multivariate time-vertex graph signals, based

on the notion of graph product and the de�nition of three graphs that each model the interactions

within one dimension (time, space, feature space). By using the tensor formalism, several sparsity

methods are provided, that can be speci�ed so as to work only on one dimension (i.e. selection

of the best time samples, sensors or features). These approaches are tested on real ElectroEn-

cephaloGram (EEG) signals in order to assess the sampling and interpolation performances of the

proposed framework.

2 Background and notations

We �rst recall the notations used in this chapter and introduce the product graph.

2.1 Tensor algebra

Let d1, d2, . . . , dp ∈ N∗ and Y = Rd1 × . . . × Rdp , Rd1×···×dp be the product of p R-vector

spaces. Recall that an element of Y ∈ Y is called a tensor of order p. In the following, Y will

be used indi�erently to denote the multilinear form in Y∗ and its representation in the canonic
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Figure 4.1: Illustration of the product graph G between two graphs G1 and G2. � represents either a

Cartesian (only colored edges), a Kronecker (only gray edges) or a strong product (all edges) between these

two graphs. Figure modi�ed from the original one in [Ortiz-Jiménez et al., 2018].

base of Y, the choice being clear from the context. The mode-m matrix product between a

tensor Y and a matrixX ∈ Rj×dm in coordinate notation is (Y ×mX)i1,··· ,im−1,j,im−1,··· ,ip ,∑dm
k=1 Y i1,··· ,im−1,k,im−1,··· ,nXj,k and is equivalent to Y ×mX ⇔XY(m)

where Y(m)
denotes

the tensor Y unfolded along axis m. The operator ⊗ represent the Kronecker product. When

multiple products are necessary, we use the upper version of these notations,×and

⊗
. See

Appendix 9 for a complete presentation.

2.2 Product graph

LetG = (V, E) be a directed weighted graph with nodesV = {1, · · · , N}, edges E = {(i, j, wij), i, j ∈
V}, and weights wij ∈ R+

. As stated in the previous chapter, the Laplacian matrixL of the graph

is de�ned as L = D −W , whereD is the degree matrix andW the weights matrix (De�nition

2.5). For simplicity, we assume that L is diagonalizable. Its eigendecomposition is L = XΛX−1
,

with Λ = diag(λ1, . . . , λN ) a diagonal matrix with the eigenvalues and X = (x1, . . . ,xN ) a

matrix with the eigenvectors as columns. If L is not diagonalizable, Jordan decomposition into

generalized eigenvectors is used.

Let G1 = (V1, E1) and G2 = (V2, E2) be two graphs with N1 and N2 vertices and Laplacian

L1 = X1Λ1X
−1
1 , L2 = X2Λ2X

−1
2 , respectively. A product graph of G1 and G2, denoted by

the symbol � , is the graph with Laplacian equal to

L̄ = (X1 ⊗X2)Λ�(X
−1
1 ⊗X−1

2 ) , (4.1)

where Λ� depends of the choice of the product [Imrich and Klavzar, 2000; Hammack et al., 2011;

Leskovec et al., 2010; Sandryhaila and Moura, 2014] (see Figure 4.1).

2.3 Graph signal processing

A bivariate graph signal can be represented as a matrix Y ∈ RN1×N2
, where Yi,j is the value at

the i-th node of G1 and j-th node of G
(i)
2 . Using the Graph Fourier Transform (GFT) it is possible

to create a spectral representationH of Y de�ned as

H = Y ×1 X
−1
1 ×2 X

−1
2 . (4.2)

The eigenvalues can be interpreted as distinct frequencies, the components of H as Fourier

coe�cients, and the eigenvectors as a decomposition basis. Notice that if G1 is a cycle graph,X1

is the Discrete Fourier Transform matrix, and the GFT formula (4.2) is exactly the JFT. Hence, the

JFT could be seen as a particular case of the multidimensional GFT.
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With the tensor formalism used in (4.2), it is straightforward to extend the previous de�nitions to

product graph with more than two related graphs. Given a collection ofM graphs (Gm)Mm=1 with

(Nm)Mm=1 vertices and Laplacian (Lm = XmΛmX
−1
m )Mm=1, the Laplacian of the (full) product

graph is

L̄ = (

M⊗
m=1

Xm)Λ�(
M⊗
m=1

X−1
m ) , (4.3)

where Λ� is a matrix which depends of the choice of the product. As an example, if we choose

the cartesian product, Λ� =
M⊕
m=1

Λm where

⊕
is the Kronecker sum [Merris, 1998].

The GFT of a tensor graph signal Y ∈ RN1×···×NM
is therefore

H = Y
M×
m=1

X−1
m . (4.4)

This de�nition is the most important one as this is from it that we can identify the spectral support

of multivariate signals.

3 Method

In this section, we propose to use tensor algebra to represent multivariate time-vertex graph

signals. Using the extended version of GFT, we propose a subsampling technique that aims at

recovering the whole signals by using a subset of features, time samples, or sensors.

3.1 Framework for processing multivariate time-vertex graph signals

In the context of graph signals obtained from multivariate sensor networks, data can be stored

in a tensor Y in RF×T×S , where F is the number of features recorded by the sensor, T is the

number of time samples, and S is the number of sensors. Interactions between the di�erent

dimensions can be modelled with three di�erent graphs that each encodes the interactions for

one dimension:

• GF – This graph quanti�es the similarity between the di�erent features or modalities of the

data. There are several techniques to build such a graph. An intuitive approach is to consider a

weighted correlation graph where the weights between two nodes corresponds to the absolute

Pearson correlation coe�cient between the modalities or features.

• GT – This graph controls the interactions between time samples. One common choice is to

use a directed cycle graph of size T , which links each sample to the next sample. This type of

dependencies can be seen as a Markov process where the value of a sample only depends on

the previous sample. This graph is widely used in the GSP community since, for this graph,

the Graph Fourier Transform corresponds to the classical Fourier Transform. The weight

(adjacency) matrix of GT is a circulant matrix which is known to have as eigenvector matrix

the discrete Fourier transform matrix [Huang et al., 2016; Loukas and Foucard, 2016; Segarra

et al., 2016; Ortega et al., 2018]. Although GT is directed, its Laplacian is still well de�ned by

LT = IT −W T , where IT is the identity matrix of size (T × T ).
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Element-wise sparsity

Row-wise sparsity

unfolding

Figure 4.2: Illustration of the di�erence between the two sparsity norms. On the top, the element-wise

sparsity norm. On the bottom, the row-wise sparsity norm. A black square means zero-value.

• GS – In a sensor network, this graph models the interactions between the sensors. When

dealing with a physical network, this graph can be based on physical links that exist between

the sensors. When these interactions are unknown, an intuitive choice consists in building

the graph in order to re�ect the spatial closeness of each sensor. In general case, this graph is

undirected and the edge weights can be built with the Gaussian function

W S(i, j) = exp
(
− ‖si − sj‖22/σ2

)
, (4.5)

where si is the spatial position of the i-th node of GS .

Notice that since GF and GS are undirected, with no self-loops, and with a single connected

component, their Laplacian are symmetric positive semi-de�nite andX−1
F = X

ᵀ
F , andX−1

S =
X

ᵀ
S .

3.2 Identifying the support of the tensor graph signal

Most graph signal subsampling techniques are based on the assumption that the signal represen-

tation in the GFT domain is sparse [Narang et al., 2013; Anis et al., 2014; Chen et al., 2015b,d].

A graph signal with this property is called bandlimited with respect to its graph. When the

frequency support of a graph signal is not known, we need to identify it in order to design a

proper sampling and interpolation procedure. This problem leads to the following sparse signal

reconstruction minimization

min
H

‖Y
M×
m=1

X−1
m −H‖2F + Ω(H) , (4.6)

where Ω is a regularization function imposing some sparsity on H. There are several valid choices

for Ω. However, to obtain bandlimited tensor graph signal, we need to design a function which

imposes sparsity on slices. We propose to use the two following functions, illustrated on Figure

4.2:

1. General Sparsity (GS) constraint:

Ω : (H, α) 7−−→ α‖H‖0 . (4.7)
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Notice that H can be complex (e.g. if the graph is directed). In this case, ‖ · ‖0 is naturally

de�ned as the number of non-negative coe�cients

(
Re(Hi1,··· ,ip)2 + Im(Hi1,··· ,ip)2

)
i.e. both

the real and the imaginary parts are equal to zero. This function is the equivalent of the

vectorial zero semi-norm for tensor object. When using this semi-norm, the solution of (4.6) is

given by the hard-threshold operator Sα

H∗ = Sα
(
Y

M×
m=1

X−1
m

)
. (4.8)

Although this sparsity constraint is very simple to implement, it does not allow us to control

in which dimension the sparsity occurs. In particular, this behavior is not adapted to the

bandlimitedness assumption.

2. Controlled Sparsity (CS) constraint:

Ω : (H, (αm)Mm=1) 7−−→
M∑
m=1

αm‖H(m)‖2,0 . (4.9)

This function imposes zeros on the rows of the unfolding H which make it more adapted for

the bandlimitedness assumption (see Figure 4.2). Considering each norm/mode independently,

the solution of the subproblem is obtained by sorting the rows of

(
Y×M

m=1X
−1
m

)(m)
by

their `2-norm and then selecting the rows with norms lower than αm (row/column-wise hard

thresholding) [Baraniuk et al., 2010]. The complexity of this sorting process is O(
∏M
k=1Nk +

Nm log(Nm)). Following this observation, we propose the following optimization problem

and the algorithm 4.1 to solve it

min
H

‖Y
M×
m=1

X−1
m −H‖2F (4.10)

s.t.

(
‖H(m)‖2,0 ≤ Km

)M
m=1

, (4.11)

where each Km ∈ R control the sparsity of the m-th dimension. Contrary to the previous

constraint, this one is adapted to the bandlimited property. Indeed, thanks to the parameters

Km it is possible to impose di�erent sparsity constraints for the three di�erent domains (time,

space, feature space).

3.3 Selecting the best nodes and reconstruction

The sparsity in the frequency domain allows to subsample graph signals by selecting few elements

from each graph domain. This task is referred to as subsampling. Sampling a subset of nodes

from multiple graph (Gm)Mm=1 is equivalent to selecting a subset of rows and columns from each

associated Xm. Fortunately, as the support of the tensor graph signal is now estimated (see

previous section), the columns which need to be kept are known and we only need to select the

best subset of rows for eachXm. When only one graph is considered, several methods exist in

order to e�ciently �nd a proper subset. For high-dimensional data, greedy methods (algorithms

that select one node at a time) are very useful. Several authors have proved submodularity of

di�erent optimality criteria such as D-optimality [Shamaiah et al., 2010], and frame potential
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Algorithm 4.1 CS constraint

1: Input : Y , (Lm)Mm , and (Km)Mm .

2: Output : H
3: form = 1, · · · ,M do
4: Xm ←− eigen(Lm)
5: end for
6: H←− Y×M

m=1X
−1
m

7: form = 1, · · · ,M do
8: for j = 1, · · · , Nm− do
9: yj ←− ‖H(m)

:,j ‖2F
10: end for
11: s←− argsort(y)[0 : Km]
12: H(m)[s]←− 0
13: end for

Figure 4.3: Weight matrix of the graph GS and template 2-D layouts of the sensors.

[Ranieri et al., 2014]. We can also follows ideas of Ortiz-Jiménez et al. [2018, 2019] which proposed

low-complexity greedy algorithms based on submodular functions to sample signals that reside

on the vertices of a product graph.

4 Results

In this section, we test our di�erent strategies on real EEG data.

4.1 Data

Dataset. The dataset consists of S = 32 EEG signals collected at 250 Hz during a general

anesthesia with electrodes attached on the brain of a patient. For each EEG signal, we compute

the spectrogram through Short-Time Fourier-Transform with time-windows of 256 samples and

with 50% overlap. Then, we compute the energies in F = 12 frequency bands equally spaced

between 0.1 Hz and 12 Hz (in order to retrieve the delta, theta and alpha waves that are relevant

for anesthesia [Brown et al., 2010; Purdon et al., 2013]). The �nal tensor graph signal Y is in

RF×T×S = R12×233×32
.
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Graph construction. As explained in the previous section, we construct three graphs,GF , GT , GS ,

respectively as a weighted correlation graph, a cycle graph, and a spatially weighted graph. The

graph GS related to the spatial component is constructed using the spatial position of each

channels in 3-D space; low weights are removed (see Figure 4.3).

4.2 Subsampling and reconstruction

The di�erent techniques described in this work are tested on the EEG data. Then, for a given

percentage of removed nodes, we reconstruct the data and compute the Root Mean Square Error

(RMSE). Results with four di�erent sparsity constraints are displayed in solid lines in Figure 4.4:

• General Sparsity (GS) with a total of 74560 nodes. The conserved nodes can appear in any

time/space/feature space positions.

• Controlled Sparsity (CS) on the feature space dimension F with a total of 12 nodes. Only a

few energy signals are kept and other are reconstructed by using the correlations between

the modalities.

• Controlled Sparsity (CS) on the time dimension T with a total of 233 nodes. Only a few

time samples are kept for the reconstruction: this task is linked with signal interpolation

and to the classical de�nition of signal subsampling.

• Controlled Sparsity (CS) on the spatial dimension S with a total of 32 nodes. Only a few

EEG sensors are used to reconstruct others, based on their spatial interactions.

The performances of the GS constraint con�guration are very satisfactory since it is possible

to reconstruct the whole data set with a 0.02 RMSE by removing up to 80% of the nodes. This

means that the data is actually very sparse in the frequency domain and that the information

can be well represented in sparse domains. However, the main drawback of this approach is that,

since the selected nodes can appear in any domain (time, space, feature space), subsampling may

be di�cult to implement.

The results obtained with Controlled Sparsity (CS) constraints are very contrasted. To obtain

a 0.04 RMSE, it is equivalent to remove 30% of the time samples or 60% of the sensors or of

the frequency bands. It therefore appears that the graph structure is especially relevant in the

subsampling process for this two last dimensions. For the F and S dimensions, results appear

similar up to ∼ 10% of removed nodes but di�er for larger percentages. Indeed, removing

more sensors seems to have a slightly stronger e�ect than removing more modalities (before

80%). This is probably due to the fact that the main phenomena occurring during anesthesia

appear in the alpha band between 8 Hz and 12 Hz which spans several of the 10 considered

frequency bands. Therefore, a strong correlation exists between modalities that enables a fairly

good reconstruction. For the T dimension, the RMSE increases linearly with the number of

removed nodes, which is probably due to the relatively weak interactions modeled in the GT
graph. Although the performances of the Controlled Sparsity con�guration appear to be worse

than the General Sparsity, it is interesting to notice that for this con�guration, the subsampling

experiment can directly be used to select sensors, lower the sampling frequency or to choose the

relevant frequency band to monitor during anesthesia.
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Figure 4.4: Evolution of the RMSE with the percentage of removed dimensions for a) General Sparsity

(GS) or Controlled Sparsity (CS) on the b) Feature space F c) Time T d) Spatial S dimensions. The dotted

plots correspond to con�gurations where all graphs have been replaces by random ER graphs.

4.3 Importance of the graph structure

Intuitively, the structure of the graphs used for sampling and reconstruction is crucial. To prove

this point, we propose in this experiment to replace one or all of the graphs GF , GT , GS with a

random Erdős–Rényi (ER) graph. For the General Sparsity (GS) constraint, all graphs are random

and for the Controlled Sparsity (CS) constraint only the graph of interest is random. The resulting

reconstruction performances are displayed in dotted lines on Figure 4.4.

For the General Sparsity constraint, the performances decrease with the use of random graphs: for

80% of removed nodes, the RSME is now 0.03 instead of 0.02. As far as the Controlled Sparsity

constraints are concerned, and as seen in the previous subsection, the graph structure is especially

important for the F and S dimensions. In particular, when considering the spatial dimension,

the RMSE is signi�cantly larger with the random graph, which shows that the proposed spatial

modeling is here useful for the sampling/reconstruction process. Interestingly, although the

directed cycle graph has been a very common model for dealing with the temporal aspects of

time-vertex signals [Loukas and Foucard, 2016; Grassi et al., 2018], it here appears that this graph

does not bring the necessary structure for the sampling task: results are here similar when this

graph is replaced by a random graph. Instead of the simple Markov formulation, a more structured

graph (learned via bandlimited signals for example) could probably better model the relationships

between time samples.
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5 Conclusion

In this chapter, we imposed with three di�erent graphs relationships between the three dimensions,

time, space, and feature space of multivariate time-vertex graph signals. To be able to sample

these signals, we provided an e�cient algorithm which identify their graph frequency support. In

addition, we introduced a way to assess the relevance of the graphs chosen a priori by comparing

our results with those obtained when random graphs are taken into account. The results showed

the importance of the graphs in this algorithm and support for the relevance of the controlled

sparsity constraints to recover multivariate bandlimited signals.



5
Apprenticeship learning for a predictive

state representation of anesthesia

Abstract

In this chapter, we present a decision support algorithm which assists anesthesiologists

in administering anesthetics in order to maintain an optimal DoA. (DoA). Derived from a

Transform Predictive State Representation algorithm, our model learns by observing anes-

thesiologists in practice. This framework, known as apprenticeship learning, is particularly

useful in the medical �eld as it is not based on an exploratory process – a prohibited behavior

in healthcare. The model only relies on four commonly monitored variables: Heart Rate,

Mean Blood Pressure, Respiratory Rate, and concentration of anesthetic drug. The perfor-

mances of the model is analyzed with metrics derived from the Hamming distance and cross

entropy. They demonstrate that low rank dynamical system had the best performances on

both predictions and simulations. Then, a confrontation of our agent to a panel of six real

anesthesiologists demonstrate that 95.7 % of the actions are valid. These results strongly

support the hypothesis that TPSR based models convincingly embed the behavior of anes-

thesiologists including only four variables that are commonly assessed to predict the DoA.

The proposed approach could be of great help for clinicians by improving the �ne tuning of

the DoA. Furthermore, the possibility to predict the evolutions of the variables would help

preventing side e�ects such as low blood pressure. A tool that could autonomously help the

anesthesiologist would thus improve safety-level in the surgical room.
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The material of this chapter is based on the following publication:

P. Humbert, C. Dubost, J. Audi�ren, and L. Oudre. Apprenticeship Learning for a Predictive

State Representation of Anesthesia. In IEEE Transactions on Biomedical Engineering (TBME) .

1 Introduction

In the early 2010’s, the 4th National Audit Project (NAP4) estimated that 2.9 million General

Anesthesia (GA) were performed annually in the UK [Woodall and Cook, 2010]. As this prac-

tice carries risks (cardiovascular complication [Golubovic et al., 2018], cognitive dysfunction

[Punjasawadwong et al., 2018] and postoperative delirium [Fritz et al., 2016]), a sustained and

intense attention of the anesthesiologists is imperative to evaluate the level of consciousness of

the patient, also referred to as the Depth of Anesthesia (DoA). However, its precise estimation

remains an open problem and a constant monitoring of many physiological variables such as

heart rate or blood pressure is needed to prevent complications. Since this large amount of

information is intractable for the human brain, modern monitors provide multiple auditory and

visual warnings, to inform and alert anesthesiologists when physiological variables begin to

deteriorate. Unfortunately, those additional indications, while originally meant to help, tend to

cause information overload [Stevenson et al., 2013], and often fail to be fully processed. Moreover,

due to the global problematic of cost e�ciency and human resource limitations, it has become

common for anesthesiologists to manage two surgical rooms at the same time [Merry et al.,

2010]. In this context, the development of autonomous agents
1

which assist the anesthesiologists

managing the delivery of drugs during a GA has become crucial to ease the decision making

process, reduce the daily workload and personalize the anesthetic administration, all of this

allowing a potentially signi�cant improvement in care.

Several methods have been introduced to fully automate a particular task using closed-loop

control models. These methods are used in many �elds and cover a wide range of applications

[Zhang et al., 1993; Wang et al., 2010; Herrero et al., 2018; Romero-Ugalde et al., 2018]. The

automation of the delivery of drugs in anesthesia is one of them [Gentilini et al., 2001; Ionescu

et al., 2008; Sawaguchi et al., 2008; Dumont, 2012]. Conventional control techniques have been

proposed, such as proportional integral-derivative control [O’hara et al., 1991]. However, these

methods perform poorly when applied to processes with variable time delays, nonlinearities, and

non-negligible process noise [Tang et al., 2001]. More advanced techniques commonly associated

with intelligent systems were studied, including bayesian �ltering [Ching et al., 2013], fuzzy

control [Moore et al., 2009], and reinforcement learning algorithms as markov decision processes

[Borera et al., 2012; Moore et al., 2014]. The latter are receiving signi�cant interest in the medical

community [Prasad et al., 2017; Moore et al., 2011] as they provide e�cient models and strong

training patterns for autonomous agent that are mathematically sound and have already proven

1

In the chapter we de�ne agents as Apprenticeship Learning based models.
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MONITOR

Figure 5.1: Diagram of the agent and the speci�c environment. The environment (i.e. the patient) provides

observable data (i.e. physiological variables). The monitor records this data and transmits it to the agent.

The anesthesiologist chooses an action based on the action suggested by the agent, the values given by the

monitor and the behavior of the patient.

their usefulness in other areas (e.g. robotic programming [Kaelbling et al., 1996; Kober et al.,

2013]). However, the de�nition of a proper and accurate reward function – a mandatory part

of reinforcement learning methods – is nearly intractable for complex problems [Kuderer et al.,

2015]. Moreover, while the free exploration of the policies space is a key part of the learning

process in reinforcement learning algorithms, this is a prohibitive behavior in healthcare. We

refereed to [Yu et al., 2019] for a complete survey on reinforcement learning in healthcare.

The use of apprenticeship learning (also called learning by watching, imitation learning, learning

from demonstration)
2

[Abbeel and Ng, 2004] permits to overcome these drawbacks as the learning

process in this framework only need observations of experts without the need for exploration.

Moreover, models derived from Predictive State Representations (PSRs) [Littman and Sutton,

2002], such as Transformed PSRs (TPSRs) [Rosencrantz et al., 2004], rely entirely on observable

quantities – an especially desirable property when the underlying latent state (in this case, con-
sciousness) is complex and poorly understandood. Based on spectral learning algorithms, TPSR

increases the compactness of the space of relevant states. From a mathematical perspective, many

theoretical results demonstrate the rich expressiveness of these models. For instance, [Littman and

Sutton, 2002] – in�uenced by [Rivest and Schapire, 1994] – showed that PSRs are as �exible and

powerful as partially observable markov decision process while providing much more compact

representations.

In this study, we introduce a novel decision support tool that predicts in real-time whether

anesthesiologists should reduce the drug dose, do nothing or increase the drug dose given previous

sequences of actions and observations (see Figure 5.1 for an illustration). To this end, we combine

Apprenticeship Learning principles and TPSR model to solve major problems of control tech-

niques. The resulting approach presents signi�cant advantages, including the fact that the model

learns “how anesthesiologists do”, instead of trying to learn a complex model of consciousness

and deducing “how anesthesia should work”. Another major contribution is that our model only

relies on a high-resolution recording of the Heart Rate (HR), the Mean Blood Pressure (MBP), the

2

A slight di�erence is now made between apprenticeship learning and imitation learning in the literature.
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Respiratory Rate (RR) and the concentration of anesthetic drug (AAFi). These four variables are

constantly in�uenced by the drug and are mandatory monitored, making the resulting model

suitable for daily use. We also introduce a simple algorithm to homogenize the acquired physio-

logical data and decrease the intra-patient variability. Indeed, the patient’s age and gender, as well

as disease and surgical intervention are known to a�ect response to anesthetics [Schnider et al.,

1998]. Finally, models were evaluated 1) quantitatively with metrics derived from the Hamming

distance and cross entropy 2) with a confrontation to six real anesthesiologists on three cases.

This confrontation provides additional metrics to fully evaluate our model and is a mandatory

prerequisite for medical application.

This work is organized as follows. We recall the PSR model and its learning process in Section 2.

Then, we introduce our main contribution, the construction of a TPSR-based autonomous agent

to assist the anesthesiologists managing the delivery of drugs during a GA. (Section 3). We also

de�ne and discuss our methodology and preprocessing choices. In Section 3.3 we assess the

performance of the model with respect to multiple di�erent metrics (Section 3.4) and with three

evaluations done by a panel of experts in anesthesiology (Section 3.5). Finally, the performances,

advantages and drawbacks of our approach are discussed in the last section (Section 5).

2 Predictive state representation

From the angle embraced in this work, we consider a GA as a discrete-time dynamical sys-

tem where at each time step, the environment (i.e. the patient) generates observable data (i.e.

physiological variables) from a set O. Recorded by a medical device, these data are trans-

mitted to the agent which takes an action from a set of possible actions A = {0, 1, 2} =
{reduce the drug dose, do nothing, increase the drug dose}. Finally, the environment moves to an

(unknown) hidden state and produces new observations.

In the present work, we used PSR based models to learn this system. The algorithm of PSR

was �rst introduced by [Littman and Sutton, 2002]. The authors showed the advantages of this

model over Markovian approaches and discussed the improvement brought by possible non-

linear models. Following this idea, [Singh et al., 2003; Rudary and Singh, 2004] have focused on

improving the learning process of the PSR models. The algorithm used in this chapter, called

Transformed Predictive State Representations (TPSR), was introduced in [Rosencrantz et al.,

2004], where the authors presented the multiple advantages over PSRs, namely removing the

problems of local minima in the associated minimization problem and producing a more compact

representation. This mathematical model is described below; we refer to [Rivest and Schapire,

1994; Littman and Sutton, 2002; Rosencrantz et al., 2004; Boots et al., 2011] for an in depth

presentation.

2.1 Background on PSR and TPSR

A linear PSR can be seen as a complete description of a dynamical system. Formally, it consists of

two in�nite countable setsH and T and a system-dynamics matrix D de�ned as follows:

• The elements of H (resp. T ), called histories (resp. tests) and referring to the past (resp. the

future), are de�ned by

H :=
{
h ∈ (A×O)k | k ∈ N

}
,
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Figure 5.2: Illustration of the PSR framework. On the left the system-dynamic matrixD. The gray columns

involved in the construction of the matrix on the right are core tests.

T :=
{
τ ∈ (A×O)` | ` ∈ N∗

}
.

In other words, they consist in an ordered sequences of action-observations pairs (a,o) ∈ A×O,

denoted by h = a1o1a2o2 · · · akok (resp. τ = a1o1a2o2 · · · a`o`).

• The system-dynamics matrix D, containing an in�nite number of columns and rows, has its

elements equal to

D(τi, hj) = Dj,i := p(τi | hj) =
p(hj , τi)

p(hj)
, (5.1)

where p denotes the probability associated with the law of the dynamical system for all pairs

(τ, h) in (T × H) – in other words, p(τi | hj) denotes the probability of observing τi in the

future given that hj was observed in the immediate past. If p(hj) = 0 we set p(τi | hj) = 0.

The rank of D characterizes the complexity of the system and is commonly referred to as its

linear dimension.

• Any family Q := {q1, · · · , qk}, k ∈ N, of linearly independent columns of D is called a

su�cient set of core tests (core set for short) if |Q| = rank(D) (|·| denotes the cardinality of a

set). The elements of the core set form a base of the vector space spawned by the columns of

D. Therefore, for any τ ∈ T , there exists an unique weight vectormτ such that for all h

D(τ, h) = p(τ | h) = mT
τ p(Q | h) . (5.2)

In this equation, p(Q | h) is called the belief vector and is de�ned as
p(Q | h) :=

(
p(q1 | h), . . . , p(q|Q| | h)

)T
if h 6= ∅ ,

p(Q | ∅) := mT
0 otherwise ,

(5.3)

withm0 denoting the (unknown) initial condition of the system and ∅ being the empty history.

Similarly, we de�ne D(Q) as the submatrix of D that contains the columns relative to the core

set i.e. [D(Q, h)T ]i = [p(Q | h)T ]i = p(qi | h) (see Figure 5.2).

Discovery problem Finding a core set is called the discovery problem. This is important as for

any such Q, the knowledge of D(Q) – as well as the initial distributionm0– is enough to fully

describe the dynamical system [Singh et al., 2004].
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Basically, there are two main approaches to solve this problem and learn PSRs [Hamilton et al.,

2014]. The �rst one is a discovery-based technique (see e.g. [Wolfe et al., 2005; James and

Singh, 2004; James et al., 2005]) leading to an explicit knowledge of Q. The second one is a

subspace-based technique which is used here and referred to as Transformed PSRs (TPSRs). The

latter uses spectral methods to �nd a subspace isomorph to the vector space generated by Q
instead of determining Q exactly. To use TPSR model, we applied the spectral algorithm intro-

duced by Boots et al. [2011] which learns several matrices (namely Bao, b∞ and b∗, de�ned

below) from sequences of action-observation pairs. This algorithm provides compact and accu-

rate models and permits to predict the most likely future sequences of actions and states e�ciently.

We now recall the matrices involved in this algorithm. ForH ⊂ H and T ⊂ T , two �nite subsets,

let de�ne

• PH ∈ R|H| that contains the probability of every event inH i.e. PH(hj) = [PH]j := p(hj).

• PT ,H ∈ R|T |×|H| where entry (i, j) is the joint probability of (hj , τi) i.e. PT ,H(τi, hj) =
[PT ,H]i,j := p(hj , τi).

• PT ,ao,H ∈ R|T |×|H| (one matrix for each unique pair ao) where entry (i, j) of PT ,ao,H is

the probability of the history hj , the next action-observation pair ao, and the subsequent

test τi i.e. PT ,ao,H(τi, hj) = [PT ,ao,H]i,j := p(hj , ao, τi).

Let k ∈ N and a1o1 . . . akok ∈ (A×O)k . For any t ≤ k, let ht = a1o1 . . . atot and bt =
p(Q|ht) the associated belief vector. Thus, the belief vector at time (t+ 1) can be expressed as

bt+1 = p(Q | htaot). The equation binding bt and bt+1 is called the update rule and is given by

bt+1 =
Baotbt

bT∞Baotbt
, (5.4)

where 
Baot = UTPT ,aot,H(UPT ,H)† is a transition matrix,

bT∞ = P TH(UTPT ,H)† is a normalizer (∀h, bT∞p(Q | h) = 1) ,

b∗ = UTPT ,H1|H| is the initial state.

(5.5)

Here, 1|H| is the ones-vector of length |H|, † denotes the Moore–Penrose pseudo inverse and

U contains the left singular vectors of PT ,H.

Predictions With the previously de�ned matrices, for any sequence of u (action, observation)

pairs (u ∈ N∗), we have


p(at+1ot+1 | ht) = bT∞Baot+1bt (for u = 1) ,

p(at+1ot+1, · · · , at+uot+u | ht) = bT∞Baot+u · · ·Baot+1bt .
(5.6)
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Figure 5.3: a) Sequence of action in A and sequence of observations in O. Each shade of red (resp. blue)

represent a di�erent action (resp. observation). b) Extraction of unique tuples of (actions, observations) of

size 2, 3 and 4. c) Example of estimation of the probability of a test of size 2 given all possible histories.

This equation is the key to provide an estimator of the probability p(·).

For further discussion on those equations, we refer the reader to the work of Boots et al. [2011]

where theoretical aspects and relation to the matrices of PSRs were discussed. The methodology

to predict actions and/or observations in GA is discussed Section 3.

2.2 Methodological choices.

In this subsection, we present our strategy to adapt the TPSR to the problem of closed-loop control

of anesthesia. Namely, the introduction of new variables to control the maximum length of each

sequence and the use of speci�c algorithms to compute the di�erent matrices.

Maximal length of a sequence. The computation of the matrices T andH is intractable in

practice as they are indexed over an in�nite set. To circumvent this problem, we introduced

MH ∈ N∗ (resp. MT ∈ N∗) the maximal length of each history (resp. each test) and restricted

ourselves to the learning ofHMH :=
{
h ∈ (A×O)k | k ∈ N6MH

}
and TMT :=

{
τ ∈ (A×O)` |

` ∈ N6MT \{0}
}

. With such a restriction we assumed thatHMH was su�cient i.e. it allowed to

solve the discovery problem – this hypothesis was validated by our experimental results (Section

3.3). In the following, we referred those two sets byH and T to simplify the notation. It is worth

noting that

|H| ≈ ((nth + 1)4|A|)MH ,

and that the same can be stated for T . Consequently, both sets grow exponentially with MH and

MT . The two numbers MH and MT were considered as parameters of the problem.

Learning problem. We computed the estimators P̂H, P̂T ,H and

(
P̂T ,ao,H

)
ao

of the true TPSR

matrices using the entire training set (in other words, all observed combinations were processed).

Then, we used a randomized SVD algorithm [Halko et al., 2011] to compute the Singular Value

Decomposition (SVD) of P̂T ,H and obtain its left singular vectors Û . Algorithm 5.1 summarizes

the learning problem and an illustration is provided in Figure 5.3.
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Algorithm 5.1 Learning problem

1: Input : M preprocessed trajectories (Ŝ1, · · · , ŜM ), integers MH, MT , R
2: Output : bT∞, b∗ and

(
Bao

)
ao

3: N ←−
M∑
m=1

MH∑
`=1

|Ŝm|−`∑
k=1

1

4: for j ∈ {1, · · · , |H|} do

5: p̂(hj)←−
1

N

M∑
m=1

MH∑
`=1

|Ŝm|−`∑
k=1

1{Ŝm(k:k+`)=hj}

6: [P̂H]j ←− p̂(hj)
7: end for
8: for (i, j) ∈ {1, · · · , |T |} × {1, · · · , |H|} do
9: [P̂T ,H]i,j ←− p̂(hj , τi)

10: for all ao do
11: [P̂T ,ao,H]i,j ←− p̂(hj , ao, τi)
12: end for
13: end for
14: Û ←− randomize-SVD(P̂T ,H, R)

15: b̂
T

∞ ←− P̂ TH(ÛT P̂T ,H)†

16: b̂∗ ←− ÛT P̂T ,H1|H|
17: for all ao do
18: B̂ao ←− ÛT P̂T ,aot,H(Û P̂T ,H)†

19: end for

The agent predictions were made using a maximum likelihood approach on the distribution given

by equation (5.6). 
arg max p(at+1ot+1 | ht) (for u = 1) ,

arg max p(at+1ot+1, · · · , at+uot+u | ht) .
(5.7)

Ties were broken at random.

2.3 Toy example

Here, we give some intuition of the inner working of the TPSR on a simple toy example.

The source-code of this example is accessible at https://reine.cmla.ens-cachan.fr/p.humbert/
TPSR_implementation. The dataset consisted on a sequence of actions

−→a and a sequence of

observations
−→o display in Figure 5.4.

The sequence of action
−→a presents two interesting features. First, the pattern (0, 1, 2) is repeated

almost all the way. Moreover 0 are always followed by 1 i.e p(1 | 0) = 1. On the contrary, 1
are never followed by 0 i.e p(0 | 1) = 0. Second, there is a “breakpoint” in the repetition of the

pattern with six “2′′. A visualization of these two sequences is displayed in blue Figure 5.5 b).

To emphasize the importance of the observations sequence
−→o , we considered two distinct datasets.

https://reine.cmla.ens-cachan.fr/p.humbert/TPSR_implementation
https://reine.cmla.ens-cachan.fr/p.humbert/TPSR_implementation
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−→a = ( 0, 1, 2

pattern

, 0, 1, 2, 2, 2, 2, 2, 2, 2

“rupture”

, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2) ,
−→o = (0, 2, 1, 0, 0, 0, 1, 1, 1, 2, 2, 2, 0, 1, 2, 0, 1, 1, 2, 1, 2, 0, 1, 2) .

Figure 5.4: Sequence of actions and of observations constituting the dataset. At each color is associated 0,

1 or 2.

Model (A) Model (B)

Figure 5.5: For each �gure, on the top are represented the actions and on the bottom the observations.

Figures on the left: Resulting curves when considering model (A). Figures on the right: Resulting curves

when considering model (B). The blue dot curves are the true sequences. The red curves are predicted by

the TPSR model.

• model (A) – Dataset was composed of
−→a and a sequence of observations uniquely composed

of 0 which does not bring any information (Figure 5.5 Model (A)),

• model (B) – Dataset was composed of
−→a and

−→o (Figure 5.5 Model (B)).

In both cases, we considered history and test with a maximal size of 2 (i.e. MH = MT = 2)

and computed estimators of the di�erent matrices P̂H, P̂T ,H and

(
P̂T ,ao,H

)
ao

(learning part of

the algorithm). Then, the core test was found via an SVD (discovery problem). Finally, at any

given time t, the agent provided the most probable pair (action, observation) at time t+ 1 using

equation (5.6) and a maximum likelihood approach.

On Figure 5.5, we displayed in red the results of the prediction. For the model (A), we observe that

the TPSR learned to predict the pattern (0, 1, 2), but cannot anticipate the “breakpoint” sequence

of “2” – as no information is brought by the observation in this model. On the other hand, in

model (B), we see that the TPSR used the observation information to predict the “breakpoint”.

Note that since the most present action in the dataset is “2” this is the action predicted at t = 0.

This underlines the importance of observations for acute prediction of actions.
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Sex (F/M) Age (year) Weight (kg) Height (cm)

10/21 60± 20 82± 14 176± 7

Table 5.1: Demographic description of the participants. The values presented are means and standard

deviations.

3 Methods

The goal of our model is to maintain the patient under a deep anesthesia state quali�ed as “surgical

anesthesia”. The anesthesia usually requires the use of two types of drugs: morphinomimetic in

order to control the pain and hypnotic drugs to ensure that the patient remains asleep. In our

model we only focused on the administration of the hypnotic agent (which is made continuously

under general anesthesia), in this case the gas sevo�urane. This gas is administered to the patient

thanks to the endotracheal tube and rapidly reaches the brain. It is the actions to do on the gas

administration that we aimed at modeling, among the three possibilities: decrease, do nothing, or

increase the gas concentration.

3.1 Dataset

Study participants. The study has been approved by the ethics committee of the French society

of anesthesiology (SFAR) under the number IRB 00010254-2016-018. Patients were included from

March to May 2017 in a single observational center, the Begin military teaching hospital, Saint-

Mandé, France. They were included if they were scheduled for an outgoing surgery for inguinal

hernia repair under GA, if they gave their consent to the study and if their comorbidity score was

low (classi�ed ASA 1 or 2 [Daabiss, 2011]). They were excluded if they presented complications

during the surgery (cardiac arrhythmias, variation of the blood pressure or cardiac frequency

more than 20 % compared to the baseline value, or unplanned hospitalization). A summary on

the 31 participants is available in Table 5.1.

Anesthesia protocol. The anesthesia protocol was in accordance with the declaration of

Helsinki. Four anesthesiologists were included in the study. All the patients were pre-oxygenated

via face-mask by 100% oxygen for at least 3 minutes before induction. Sufentanil 0.3 µg/kg
of ideal-body weight was injected rapidly followed 3 minutes later by 2 − 4 mg/kg propofol

in combination with ketamine 20 mg. When required for the surgery, patients were paralyzed

following induction with a bolus of 0.17 mg/kg of cisatracurium. After tracheal intubation,

patients were ventilated with tidal volume of 6 mg/kg ideal-body weight, 5 cmH2O Positive

end-expiratory Pressure (Peep) and a respiratory rate between 10 and 14 to maintain EtCO2

between 30 and 40 mmHg. Anesthesia was maintained with sevo�urane MAC age-adjusted (e.g.

1.0), a volatile anesthetic agent [Patel and L. Goa, 1996]. Dose adjustments were made by the

anesthesiologist in charge of the patient depending on clinical variables available. Once asleep,

patients received a single bolus of local anesthesia when indicated for the surgery.

Data. During the surgery, patients were continuously monitored with a multiparametric device,

the Carescape monitor B850, from General Electrics (GE) HealthcareTM Finland Oy, Helsinki,

Finland. Variables were recorded synchronously with a sampling frequency of 1Hz during the

anesthesia. We selected 4 standard physiological variables (listed in Table 5.2) providing a dataset
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Variables Units abbreviation

Basics Module – 1 Hz

Heart Rate /min HR

Mean arterial blood pressure mmHg MBP

Gaz Analysis Module – 1 Hz

Respiratory Rate /min RR

AA Inspiratory Concentration /100 % AA FI

Table 5.2: Selected variables classi�ed by modules. For each of the variables, sampling frequency, unit

and abbreviation are provided.

of 4 trajectories for each patient. The anesthetics drugs in�uence all the organs and especially

the cardiopulmonary system. Therefore, the four variables that we selected are all constantly

in�uenced by the drug [De Hert and Moerman, 2015]. Moreover, they are mandatory monitored,

making the resulting model suitable for daily use since no additional sensors are needed. All these

variables are in accordance with the recommendation of the American Society of Anesthesiologists.

This choice was also motivated by our aim to provide a decision support tool. Additionally, it

should be noticed that the dimension of the system-dynamics matrix D from the TPSR increases

exponentially with the number of variables considered. Therefore, the choice of a restricted

number of variables reduce the complexity of the learning problem, acting as an additional

regularization.

3.2 Preprocessing

To homogenize the data, noise and trend of all trajectories were removed via a Simple Moving

Average �lter (SMA) with a windows size n of {5, 15, 30} seconds and no overlap. The random

process underlying each physiological variable was assumed to be locally stationary, as their

variations were relatively slow, which justi�ed the use of SMA for small values of n.

Observations. Each observation o ∈ O consisted of quadruplets

(
HR, MBP, RR, AAFi

)
dis-

cretized using nth thresholds (nth ∈ N>2) and taking their values in the set {0, 1, · · · , nth} –

where 0 represents low values, and nth high values. The discretization was calculated using

Ckmeans, a clustering algorithm based on K-means which has been proven to outperform it in

the one-dimensional case [Wang and Song, 2011]. We made an exception for AAFi, which was

discretized according to common anesthetic heuristics (i.e. with thresholds between 1% and 3%).

The purpose of this calibration procedure was 1) to reduce the inter-patient variability while keep-

ing the intra-patient variability by mapping similar physiological states into the same discretized

state– a key part of the problem, as incoherent discretization led to contradictory events, 2) to

train a model that automatically adapts to the demographic characteristics of patients (e.g. age,

height, weight, BMI). The number of thresholds used in the discretization is a parameter of the

model and is evaluated in our experiments. To allow real-time use of the model, preprocessing

parameters were estimated during a calibration phase. An example of discretization is displayed

Figure 5.6.
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Figure 5.6: Example of a discretization on the four variables, HR, MBP, RR and AAFi with nth = 3.

For each variable, on the top the raw signal recorded by the monitor during the GA. On the bottom, its

discretization in four classes via CKmean.

Names Symbols

Window of the SMA n

Number of thresholds nth

Prior on the rank of D R

Maximal length of a history MH

Maximal length of a test MT

Table 5.3: Name and symbol of each adjustable parameters of the model.

Actions. The actions were derived from the AAFi variable which represents the amount of

drug administrated to a patient. The considered set of possible actions was A = {0, 1, 2} ={
Reduce drug dose, Do nothing, Increase drug dose

}
formally de�ned by

• action 0 (Reduce drug dose) – Signi�cant decrease of the AAFi (by at least 10%),

• action 1 (Do nothing) – No signi�cant increase or decrease of the AAFi,

• action 2 (Increase drug dose) – Signi�cant increase of the AAFi (by at least 10%).

More precisely, actions are labeled as follows. Between two regularly spaced sampling points

(distant by e.g. 30 s), the action is labeled 2 (resp 0) if the AAFi has increased by at least 10%
(resp decreasing by at least 10%). Otherwise, the action is labelled 1. The data pipeline we used

for our model is illustrated in Figure 5.7.
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Figure 5.7: On the left: Preprocessing and discretization procedure for the HR variable. The raw signal

(trajectory) is �ltered and discretized via the combination of the SMA and CKmean to obtain a sequence of

observations. On the right: Extraction of the action from the AAFi variable. The raw signal (trajectory) is

�ltered and actions are extracted to obtain a sequence of actions. Then, a sequence actions/observations is

made in order to �t in the TPSR framework.

3.3 Evaluation process

We now present the di�erent experiments made to evaluate the performances of our model. First,

we conducted an extensive analysis of the di�erent parameters and their respective in�uence to

identify the best set of parameters, using cross-validation and multiple metrics (see Section 3.4).

Second, we compared the performance of the resulting model with a Spectral Hidden Markov

Model (SHMM) [Hsu et al., 2012; Minh et al., 2012], i.e. HMM learned with a spectral algorithm.

Finally, our model and its associated agent were confronted to a panel of six anesthesiologists

assessing three cases.

3.4 Quantitative analysis setup

Prior to any evaluations, the dataset was randomly split into a Training-set (60%), a Validation-set

(20%) and a Test-set (20%). We repeated this procedure �ve times, and average the results over

the �ve random splits.

Classical metrics. In the �rst experiment, we evaluated the discrepancy between actions

predicted by the agent and actions of the experts. The agent predictions were selected using a

maximum likelihood approach on the distribution given by equation (5.6) – ties were broken at

random. The metric used in this experiment was the averaged Hamming Distance (HD) between

two sequences (τ, τ̂) of length µ – a classical metric for PSRs, closely related to the One-Step

Prediction Accuracy [Downey et al., 2017] – (Equation 5.8).

HD(τ, τ̂) =
1

µ

µ∑
i=1

1τ [i]6=τ̂ [i] . (5.8)
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TPSR SHMM

Metrics n = 30 n = 15 n = 5 n = 30 n = 15 n = 5

HD-A 0.416(±0.022) 0.438(±0.042) 0.458(±0.016) 0.592(±0.064) 0.542(±0.122) 0.599(±0.057)

CE-A0,2 1.087(±0.129) 1.407(±0.141) 1.595(±0.054) – – –

SCE-A0,2 0.628(±0.056) 0.782(±0.153) 1.108(±0.095) – – –

HD-O

HR 0.390(±0.032) 0.445(±0.070) 0.479(±0.070) 0.759(±0.049) 0.741(±0.057) 0.820(±0.034)

Mean BP 0.342(±0.041) 0.345(±0.026) 0.526(±0.082) 0.799(±0.052) 0.735(±0.106) 0.741(±0.081)

RR 0.199(±0.008) 0.293(±0.038) 0.389(±0.085) 0.729(±0.085) 0.712(±0.120) 0.732(±0.060)

AAFi 0.197(±0.051) 0.174(±0.034) 0.156(±0.041) 0.688(±0.089) 0.787(±0.093) 0.797(±0.040)

Mean HD-O 0.271(±0.024) 0.284(±0.031) 0.377(±0.054) 0.717(±0.021) 0.757(±0.035) 0.734(±0.016)

Table 5.4: Results of the quantitative analysis with respect to the n parameter – all the other parameters

were optimized with cross validation. For every metrics, the best values were the smallest ones. Metrics

reported are the Hamming Distance of Action (HD-A) and Observation (HD-O), the Mean HD-O, the Cross

Entropy of Action 0 and 2 (CE-A0,2) and the Sliding Cross Entropy of Action 0, 2 (SCE-A0,2). On the

left, results for our TPSR model, on the right, results for the SHMM. For more details on the metrics, see

Subsection 3.4

We also computed the distance of actions or observations sequences separately. Let τ |a be

the sequence of actions provided by the dataset and τ̂ |a the one found with the algorithm e.g.

τ |a = (a1a2a3a4a5a6a7a8a9) = (1, 1, 1, 2, 1, 1, 1, 0, 1). We de�ned the HD of Actions (HD-A)

by

HD-A(τ, τ̂) := HD(τ |a, τ̂ |a).
The HD of Observations (HD-O) is de�ned similarly. Finally, we used the cross entropy measure

in Action 0 –Reduce drug dose– or 2 –Increase drug dose– and referred it by CE-A0,2. This metric

is de�ned as follows. Suppose that at time t the expert takes the action i ∈ {0, 2}, then

CE-A0,2(t, i) = − log
(
p(τ̂ |a(t) = i ∈ {0, 2})

)
. (5.9)

Metric taking into account a delay. Due to anesthetics latency, the action of an anesthesiol-

ogist will only be noticed on the recorded variables after a short time delay. Indeed, the time to

reach equilibrium point after a modi�cation of the concentration of sevo�orane is approximately

1 minute (considering a supply of fresh gas of 0.4 L/mn) [Philip et al., 2012]. This phenomenon is

not captured by HD-A, HD-0 or CE-A0,2. We introduce here a new metric called Sliding Cross

Entropy on Action 0 –Reduce drug dose– or 2 –Increase drug dose– (SCE-A0,2) to address this

problem. SCE-A
(δ)
0,2 is de�ned as follows. Suppose that at time t the expert takes the action

i ∈ {0, 2}, then let

pt,i,δ = p
(
∃s ∈ [t− δ, t+ δ] s.t. ∀s > s′ ≥ t− δ ,

τ̂ |a(s
′) = 1 and τ̂ |a(s) = i ∈ {0, 2}

)
.

In other words, pt,i,δ represents the probability of the event where the agent takes the correct

action, but with a possible time latency of δ – and that the agent only do neutral action (i.e. action
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1) before this. Then SCE-A0,2 is simply de�ned as

SCE-A
(δ)
0,2(t, i) = − log(pt,i,δ) . (5.10)

When no delay is considered (δ = 0), SCE-A0,2 is CE-A0,2. During experiments, the delay was set

to 1 minute.

SHMM comparison. In a third step, we compared our TPSR model with the best set of param-

eters to a tuned SHMM. We used the same metrics as in the previous experiments.

3.5 Real expert evaluation method

The evaluation of reinforcement learning algorithms in healthcare is complex and special care

needs to be taken [Gottesman et al., 2018, 2019]. Hence, for an exhaustive and thorough evaluation

of our method, we confronted the best model of the quantitative analysis and its corresponding

agent with a panel of six anesthesiologists from the anesthesia-intensive care department of the

Begin military teaching hospital. This experiment provides additional metrics to fully evaluate

a generative model and is a mandatory prerequisite for medical application. The evaluation

was conducted as follows. To begin the confrontation, each anesthesiologist was presented

with sequences where only the previous actions and the four discretized selected variables were

displayed. Then, the three following experiments were conducted and results collected.

• Experiment 1 – At each time, and given the real previous sequences, the anesthesiologist

chose an action in A =
{
Reduce drug dose, Do nothing, Increase drug dose

}
.

Those actions were recorded and we measured the disagreement rate between the actions taken

by the anesthesiologist and the actions predicted by the agent. This experiment quanti�es the

capacity of the agent to make the right decisions at the right time.

• Experiment 2 – At each time, and given the real previous sequences, the agent predicted an

action in A =
{
Reduce drug dose, Do nothing, Increase drug dose

}
and the anesthesiologist

labeled it as

– good: the action is the best choice,

– acceptable: the action is not optimal but still a good choice,

– dangerous: the action may lead to future complications.

We measured the frequency of each label. This experiment provides a qualitative evaluation

of the actions of the agent, even if they di�er from the real anesthesiologist. Indeed, due to

anesthetic latency and the nature of our problem, actions that di�er from the anesthesiologist

might still be valid choices.

• Experiment 3 –At each time, and given the previous generated sequences, the anesthesiologist

chose an action in A =
{
Reduce drug dose, Do nothing, Increase drug dose

}
and predicted the

evolutions of each variables.

For each variable, we measured the agreement rate between the prediction made by the

anesthesiologist to the one made by the agent. This experiment qualitatively evaluate the

capacity of our trained model to predict a plausible evolution of the dynamical system given

an action.
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It should be noted that agreement with human experts in experiment 2 may have been in�uenced

by the lack of a blind evaluation. That is why the other two experiments were carefully design to

avoid this problem, and their results are in concordance with experiment 2.

4 Results

4.1 Quantitative analysis

Results of the quantitative analysis. We evaluated the ability of each set of parameters to

predict the right pairs (action, observations) with the metrics de�ned in Section 3.4. For each

parameter, the following values were compared: n ∈ {5, 15, 30}, nth ∈ {3, 4, 5}, MH ∈ {2, 3, 6},
MT ∈ {2, 3, 6} and R was set to {50, 100, 300, 400}. It is important to note that n played a very

crucial role in our model as it signi�cantly modi�ed the data during the preprocessing. Results of

the best set of parameters for each value of n are displayed in Table 5.4.

The best result was obtained for (n = 30, nth = 3,MH = 6,MT = 3, R = 400) (an example

of agent sequence is displayed in Figure 5.8). This model was used for the confrontation with

anesthesiologists. It is interesting to note that the agent tended to predict action and observation

with a slight time delay. This aspect was emphasized by the evaluation with the SCE-A0,2.

Furthermore, the curves of Figure 5.8 illustrate that the prediction of physiological variables was

accurate and generally di�ered because of a slight delay.

Contribution of the variables.

• Contribution of AAFi – The AAFi variable is used both as an observation and for the computa-

tion of the actions. Hence, the question of whether AAFi in�uences the model by making the

prediction obvious is crucial. To highlight the fact that our model is able to predict the action

without simply relying on previous AAFi levels, we conducted additional experiments where

AAFi was not included in the model. As a baseline, we also computed the results when no

variables were included in the model. These results are presented in Table 5.5. These additional

experiments showed that the removal of the AAFi variable in the model only mildly reduced

out model performance in term of the SCE-A0,2 metric: around 0.722 instead of 0.628 for

the original model (with AA�). In comparison, removing all observations (i.e only relying on

actions) leads to a SCE-A0,2 of 0.913. This additional experiment suggests that while AAFi is an

important variable for the prediction, it does not trivially contain all the required information.

The good results obtained by the agent are therefore not explained by the presence of the AAFi

variable in the observations.

• Contribution of RR – The RR is an important variable for monitoring the patient’s state.

However, in our protocol, the patient is arti�cially ventilated, i.e. RR is regulated to maintain

EtCO2 at a certain level. To study the importance of this variable, we have computed extra

results without the RR variable in the model (see Table IV). It turns out that for n = 30,

SCE-A0,2 was equal to 0.635 (against 0.628 when RR is in the model and 0.722 when AAFi is

not in the model). This shows that the importance of this variable in our model remains limited.

However, we believe that the presence of this variable still makes sense in a clinical setting,

especially in critical situations. Indeed, under general anesthesia when the depth of anesthesia

is appropriate to perform surgery, patients stop breathing spontaneously. The breathing is

thus performed arti�cially by a ventilator, where the RR is set by the anesthesiologist. In such
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TPSR with AAFi TPSR without AAFi TPSR without RR TPSR with no obs.

Metrics n = 30 n = 30 n = 30 n = 30

HD-A 0.416(±0.022) 0.439(±0.012) 0.419(±0.001) 0.456(±0.012)

CE-A0,2 1.087(±0.129) 1.145(±0.071) 1.124(±0.018) 1.161(±0.015)

SCE-A0,2 0.628(±0.056) 0.722(±0.029) 0.635(±0.021) 0.913(±0.013)

Table 5.5: Additional results of the quantitative analysis. For every metrics, the best values were the

smallest ones. Metrics reported are the Hamming Distance of Action (HD-A), the Cross Entropy of Action

0 and 2 (CE-A0,2) and the Sliding Cross Entropy of Action 0, 2 (SCE-A0,2). For more details on the metrics,

see Subsection 3.4

Figure 5.8: Result of the model with the most promising parameters on one patient. At the top, the two

graphs show the results of the prediction of actions. (a) – comparison of the real actions (blue dotted

line) with those predicted by our agent (red line); (b) – cumulative sum of the real sequence of actions

(blue dotted line) and of the predicted (red line). The next four graphs are the results of the prediction

of physiological variables. For each graph, in blue dotted line the real sequences and in red line the

predictions.

a condition, the stability of the RR represents the good tolerance of the patient towards the

mechanical ventilation and becomes an important indicator of under dosage of anesthesia

when the variability increases. In our current experiment, the dataset does not contain any

critical situations as every surgery have been unremarkable as regard as the anesthesia. Hence,

the RR does not signi�cantly contribute to the model performance at this time. However,

we anticipate that this is an important indicator of awakening. Thus, RR can be considered

an alert variable, which could be used to introduce hard coded behavior in the model: for

instance, when it exceeds a certain threshold, the algorithm could send an alarm and exit the

closed-loop system, handing the matter back to the anesthesiologist. This is classical approach

to closed-loop system.

SHMM. We evaluated the performances of the SHMM for each of our discretization size and

for a maximal rank of 400. The results were reported in Table 5.4. We also present in Figure 5.9

the prediction of the best SHMM model on the same patient as Figure 5.8. Figure 5.8 c) is a good
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Figure 5.9: Result of the best SHMM model on the same patient of Figure 5.8. At the top, the two graphs

show the results of the prediction of actions. (a) – comparison of the real actions (blue dotted line) with

those predicted by our agent (red line); (b) – cumulative sum of the real sequence of actions (blue dotted

line) and of the predicted (red line). The next four graphs are the results of the prediction of physiological

variables. For each graph, in blue dotted line the real sequences and in red line the predictions.

representation of the performance of models – the closer the two curves are, the better the model

is. It appears that TPSR signi�cantly outperformed SHMM in all the experiments.

4.2 Real expert evaluation

We asked six consultants anesthesiologists to evaluate our best model. Results from the three

experiments introduced in Subsection 3.5 are presented in the Table 5.6. The results were in

accordance with those of the paragraph 4.1.

• Experiment 1 showed an accuracy rate close to the one found in the quantitative evaluation

section.

• Experiment 2 showed that 95.7 % of the actions were considered valid by the experts. This

high rate of concordance was expected due to the long-latency of the anesthetics drugs.

• Experiment 3 demonstrated that the agent can predict the evolution of the variables in the

upcoming minutes secondary to any given action.
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Exp-1 Exp-2 Exp-3

0.371 Good 0.632 HR 0.914

Acceptable 0.325 Mean BP 0.879

Dangerous 0.043 RR 0.789

AAFi 0.828

Table 5.6: Evaluation of the best models (n = 30, nth = 3,MH = 6,MT = 3, R = 400) by a panel

of anesthesiologists. Experiment 1: Rate of disagreement between agent and anesthesiologist actions.

Experiment 2: rate on actions classify as (good/acceptable/dangerous). Experiment 3: Rate of agreement

between agent and anesthesiologists observations. See Section 3.5 for more details on the three experiments.

5 Discussion and future works

Linear dimension. Interestingly, the distribution of the singular values of P̂T ,H (which is

linked to the linear dimension of the TPSR) was found to be similar regardless of the number of

included patients. Furthermore, the number of singular values close to zero was signi�cant for

several values of horizons, justifying the low rank approximation of the matrix PT ,H. Our experi-

ments revealed that models with low rank dynamical system demonstrate strong performances

on both predictions and simulations. These results justify the choice of TPSRs over regular PSRs.

Moreover, they may have signi�cant consequences in the medical �eld as the evaluation of DoA

through physiological variables could require much less information than presumed i.e. the space

of latent states relative to a patient under GA could actually be relatively small.

In�uence of parameters. Throughout our experiments, we observed that di�erent values

of MH and MT yield similar performances. There might be four possible explanations for this

phenomenon.

1. The dynamic system does not have a very long memory. This hypothesis is reasonable, as

generally, anesthesiologists do not concentrate on a long period of time, partly because of

all the simultaneous tasks required.

2. The population included is homogeneous as we only included patients undergoing inguinal

hernia repair under GA. No patient in the population had any signi�cant past medical

history nor underwent any side-e�ect during the GA.

3. Values of the horizon parameters that have a signi�cant impact are large, and thus require

signi�cantly larger dataset to observe.

4. The discretization process and the values of the parameter n reduce the long time range

dependency of the dynamic system.

Future works might try to evaluate each of these hypotheses.

Additionally, the experiments showed that nth = 3 is the best choice for this parameter as it

achieve the best trade-o� between a) the generalization of the discretization which reduces the

inter-patient variability and b) the accuracy of the physiological variable trajectories. Recall that

the research of the best set of parameters is more indicative on the behavior of the algorithm than
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on which parameters need to be actually set for a clinical use. Indeed, the number of patients

included is not large enough to properly optimize all the hyperparameters of the models, and

current values may change on a larger cohort.

Action and observation prediction. In our experiments, the agent was able to accurately

predict the evolution over time of the physiological variables. This performance was expected for

discrete AAFi and RR, which exhibit very small variations. However, the small errors on all the

observations imply that the agent has learned the complete dynamic system properly. Conversely,

predictions were slightly less accurate on actions. This might be explained by the multiplicity

of the strategy (policy) exhibited by the experts. Nevertheless, simulations have shown that the

actions taken by the agent were validated by the experts. Furthermore, in the �rst experiments,

a signi�cant part of the error was due to small time latency – the agent taking action a few

seconds before or after the expert. This behavior was highlighted by the SCE-A0,2, a speci�c

metric relevant in our GA scenario. Since those actions would have produced similar results, the

good results of the SCE-A0,2 demonstrated that the HD metric arti�cially under estimated the

global performance of the agent. The labels of the actions in our model may be seen as relatively

inaccurate, since they are restricted to three basics action and that the exact dose of AAFi to be

added if necessary is not predicted. Such precision, while theoretically possible by using the

continuous extension of the TPSR model [Hefny et al., 2017] would require a signi�cantly larger

cohort of patient to be properly calibrated.

SHMM comparison. These experiments highlighted the advantage of our approach over the

SHMM. This observation was in line with previous results (see e.g. [Singh et al., 2004; Boots

et al., 2013]). One explanation is that, contrary to TPSR, SHMM tends to scale poorly with the

complexity of the system to be modeled. However, the implementation of PSRs requires more

computational power.

Anesthesiologists feedback. The confrontation with the experts in anesthesiology showed

that our agent was coherent and followed an expected policy most of the time. Moreover, all the

experts agreed that n = 30 appears to be the most realistic value for this parameter. Nevertheless,

they also highlighted that there was a latency of the AAFi variable in some situations, particularly

when using low �ow of fresh gas.

Clinical relevance. The interest of our agent is double: helping at maintaining a patient at

the optimal DoA and predict the occurrence of cardiovascular side-e�ects (with the idea to avoid

them). The workload in the surgical theater imposes that an anesthesiologist is often in charge

of two surgery rooms plus the post-anesthesia care unit. A tool that could autonomously help

the anesthesiologist would thus improve the safety-level in the surgical room. With such a

workload, for a low-risk patient undergoing a low-risk surgery, the anesthesiologist in charge

may eventually remember a few characteristics of the patient and usually the pre-induction values

of HR and MBP. Once anesthesia level is stabilized and surgery has started, it seems reasonable to

consider that the anesthesiologist will leave the patient under the nurse-anesthetist care and will

only watch the patient every 10-minute. If we consider that the anesthesiologist will remember

the pre-induction, post-induction HR, MBP, RR and AAFi, for one patient we end with: 4 values,

every 10-minute meaning 24 values every hour to assess the DoA and status of the patient. As

opposed, our agent will take into account all the variables available every second. For a low-risk

patient with MBP assesses every 5 minutes this will represent 10.820 values every hour.
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Limitations. Despite the strong performances of our model during our experimental evalu-

ations, the PSR approach of the GA setting su�er several drawbacks. First, the model is very

dependent on the discretization. Indeed, it is a key component that in�uences the entire learning

process as a too �ne or too wide discretization leads to an incorrect estimation of the matrices

involved in the model. Second, the lack of a preexisting e�cient simulator, as well as a gold-

standard for the DoA, greatly limit the possibility to improve the performances above what is

observed in the expert trajectories.

In its current state, our method is merely a proof of concept for the feasibility of maintaining

the anesthesia using carefully trained multimodal algorithm. More experiments and recordings

including patients in multiple settings and hospitals will be needed before considering this method

as fully valid. It is the authors’ belief that the clinical sta� will be likely to accept this new ap-

proach, as automatic closed-loop anesthesia protocols are already existing, based on the bispectral

index [Liu and Rinehart, 2016]. Our method can be seen as an improvement over the exiting

protocols, as it takes into account multiple physiological signals as input.

Future works. Beyond the in�uence of the horizon parameter, we believe that the recording

of other relevant physiological variables with additional sensors (e.g. electroencephalogram,

muscular sensors, galvanic skin response, ...) could improve the performance of the model.

Moreover, a wider range of surgery type in the dataset could bring valuable information on the

behavior of the agent. The next step will aim at increasing the population in order to test the

generalization of our algorithm in other settings such as in intensive care unit.

6 Conclusion

In the present chapter, we combined apprenticeship learning techniques and model derived

from existing PSR, known as TPSR. The resulting agent learned a policy of maintaining the

optimal DoA using expert trajectories. The use of machine learning models based on observable

variables during GA is pertinent due to the high number of information intractable for the human

brain. The performances of the resulting model are promising and convincingly embedded the

general behavior of an anesthesiologist. These preliminary results are very encouraging and

demonstrate that cardio-pulmonary changes induced by GA can relatively easily be predicted by

apprenticeship-learning based algorithm allowing a potentially signi�cant improvement in care.
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Conclusion and perspectives

In this thesis, �ve contributions were proposed. The �rst one was the construction and deploy-

ment of a complete protocol and recording chain that has enabled us to build a large database of

patients under routine General Anesthesia (GA). This contribution was motivated by the privi-

leged applicative context of this work which was the study of patients under anesthesia. Then,

because signals recorded during GA are mainly multivariate, e.g. multichannel ElectroEncephalo-

gram (EEG) recordings, three contributions focused on methods processing multivariate signals

e�ciently. More speci�cally, in Chapters 2, 3, and 4, we proposed several methods built on graphs

and tensors which are known to exploit the underlying multivariate data structure. Finally, in the

last chapter, we made a more prospective contribution consisting in a �rst attempt at automatic

and individual administration of anesthetics for patients under GA relying on reinforcement

learning techniques. We further summarized and gave some future perspectives of each chapter

in the following.

In Chapter 2, we introduced an optimization problem to learn the underlying graph from a set

of graph signals supposed to share the same structure. This graph learning task being ill-posed,

two constraints known as smoothness and sparse spectral representation were included. Borrowed

from graph signal processing, these two constraints allow to learn a graph which re�ects the

topology of the data. The main idea behind the inclusion of the second constraint was to �nd

a graph which makes signals bandlimited over it. This important feature being known to carry

information related to the cluster structure of the graph, makes this graph a good candidate in

the initialization of spectral clustering methods. A �rst algorithm, called IGL-3SR, was proposed

to solve this problem by combining barrier methods, alternating minimization, and manifold

optimization. A relaxed algorithm, called FGL-3SR, was also introduced, which allows to scale

in time with the graph dimensions. The numerical experiments of this chapter showed that

both algorithms display competitive results with regards to previous methods. Three interesting

directions of research would be (i) to prove the convergence of these algorithms to at least a local

minimum, (ii) to derive concentration bounds on the estimated Laplacian matrix, (iii) to consider

dynamic graph topologies i.e. network structures which change over time. To date, several works

have already addressed these questions but on other related settings. For instance, [Kumar et al.,

2019, 2020] introduced provably convergent algorithms when considering Gaussian graphical

models and studied structural constraints on the eigenvalues of the Laplacian. In Sardellitti

et al. [2019], authors studied the conditions under which the Laplacian matrix can be recovered

uniquely when signals are considered sparse over the underlying graph. However, their results

are only deterministic, and providing statistical properties based on probabilistic model could

be of interest. Beside these questions, several researches in multitask learning [Argyriou et al.,

2006; Jacob et al., 2009] may be useful to propose more e�cient learning algorithms. A more

applicative direction would be to conduct further experiments to see whether learned graphs
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from EEG signals provide a better overview of the di�erent states occurring during GA. This was

already a fruitful idea in the analysis of brain activity [Richiardi et al., 2013; Huang et al., 2016,

2018], but graphs were then given a priori.

Chapter 3 introduced a multivariate Convolutional Dictionary Learning (CDL) problem, called

Kruskal CDL, K-CDL for short, where the multivariate activations are assumed to be CP low-rank.

By taking into account the structure of the activations, this model has two major advantages over

the standard CDL. First, as it decomposes the activations into the sum of rank-1 tensors, results

are highly interpretable. Second, it turned out that the CP low-rank constraint allows to entail a

better robustness with respect to noise, one of the main weaknesses of the activation learning

part of CDL methods. In this chapter, two algorithms, called T-ConvADMM and T-ConvFISTA,

were proposed for the K-CDL problem. We proved that by acting in the frequency domain and by

using the particular structure of the matrices involved in the optimization at our advantage, they

have a theoretical complexity which increases quadratically in the number of atoms and with

the rank. Overall, experiments on synthetic and real data showed that the K-CSC is a valuable

alternative to CDL when signals are multivariate. Interestingly, this has also been the case even if

signals seem to have a richer structure like images. In the future, it would be interesting to study

the statistical in�uence of the sparse and CP low-rank assumptions on the estimator, especially

on its robustness to noise. This has already been a subject of interest in numerous other settings

with sparse or low-rank matrix and tensor recovery [Fazel, 2003; Rohde et al., 2011; Donoho et al.,

2014; Yang et al., 2016; de Morais Goulart, 2016; Rauhut et al., 2017; Li et al., 2020], compressed

sensing [Candès et al., 2006; Donoho, 2006], matrix and tensor completion [Candès and Recht,

2009; Koltchinskii et al., 2011; Negahban and Wainwright, 2011; Recht, 2011; Liu et al., 2012; Gandy

et al., 2011], etc. It would also be interesting to focus on how to overcome the non-convexity of

the vast majority of the tensor decomposition/factorization problems [Hae�ele and Vidal, 2015].

Another important line of research would be to study other sparsity-induced structure and rank

constraints in convolutional representation. Note that this is already done in tensor regression

with e.g. sparsity constraint on each rank-1 tensor of the CP decomposition [He et al., 2018],

Tucker low-rank constraint [Li et al., 2018], multilinear rank constraint [Rabusseau and Kadri,

2016; Sun and Li, 2017], etc. A generalization of these decompositions, known as tensor network
models, could also be investigated [Orús, 2014; Cichocki et al., 2016; Li and Sun].

Chapter 4 proposed a method to recover the spectral support of bandlimited multivariate

time-vertex graph signals de�ned on a product of graphs. By taking into account the three dimen-

sions time, space, and feature of a multichannel EEG signal, we highlighted the importance of the

underlying graphs for sampling. In addition, we introduced a simple way to assess the relevance

of the graphs chosen a priori by comparing our results with those obtained when random graphs

are choose instead. Results showed the importance of graphs in this algorithm and support for the

relevance of controlled sparsity constraint to recover multivariate sparse (bandlimited) signals. An

interesting direction of research would be to learn the di�erent graphs constituting the product

graph with the method proposed in Chapter 2. This idea has already been investigated when

the multivariate graphs signals are only assumed smooth with respect to the underlying product

graph [Kadambari and Chepuri, 2020; Lodhi and Bajwa, 2020]. A more applicative contribution

would be to use this method for the selection of relevant EEG channels. By identifying the scalp

area providing valuable information about brain activity under GA, we could select the most

optimal EEG channel to characterize the DoA. This would be of great help to the anesthesiologist

who could only rely on a subset of these channels [Dubost et al., 2019]. Furthermore, this could be

an interesting way to answer the more general question of channel selection (see e.g. [Arvaneh
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et al., 2011; Alotaiby et al., 2015]).

Finally, Chapter 5 is a �rst attempt to propose a decision support tool based on a predictive

state representation model which assists anesthesiologists in administering anesthetics during

a general anesthesia and to maintain the optimal Depth of Anesthesia (DoA). This algorithm

based on a predictive state representation model exhibits interesting quantitative results. In

addition, because a precise evaluation of the quantitative performances of reinforcement learning

algorithms are di�cult to obtain in healthcare applications [Gottesman et al., 2018, 2019; Yu

et al., 2019], a confrontation with real anesthesiologists was performed. These results strongly

support the hypothesis that this model convincingly embedded the behavior of anesthesiologists.

Nevertheless, this model could be improved in several ways (i) by assuming continuous and not

discrete observations using e.g. a kernel density estimation method from Boots et al. [2011]),

and (ii) by increasing the number of available actions as in Moore et al. [2014]. Several recent

works on apprenticeship learning (or imitation learning), especially the ones focusing on how to

e�ectively learn from imperfect demonstrations, could also be considered [Ho and Ermon, 2016;

Wu et al., 2019]. However, great care must be taken. In particular, we strongly believe that these

types of approaches should only be considered as part of a support system to accompany the

anesthesiologists, not a replacement.

Developing these models, we strove to make their codes available online with documentation

to facilitate their use in the community. Indeed, as re-implementing recent technical methods is a

major time-consuming task. We believe open-source projects are of major interest. Moreover, we

plan to release the database to bene�t the community at large.

On a concluding note, we would like to stress that questions that motivated this thesis

lie beyond the GA. Indeed, multivariate data are now present in multiple datasets and will

undoubtedly become increasingly complex. The methods and algorithms described in this work

have therefore a great potential, and can already be successfully used in countless situations as

shown throughout this thesis.
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Résumé en français

1 Contexte de la thèse

Contexte général. Le corps humain est dans un état constant d’équilibre appelé homéostasie.

Si cette stabilité est fondamentale, elle nécessite une régulation constante et précise des organes

vitaux par le cerveau. Lors d’une Anesthésie Générale (AG), une partie de cette stabilité est mise à

mal par les anesthésiques. Les anesthésistes doivent alors soutenir eux même certaines fonctions

vitales, comme le système respiratoire, en personnalisant l’anesthésie.

L’objectif d’une anesthésie personnalisée est double : (i) éviter une narcose associée à un risque

plus élevé de dysfonctionnement cognitif postopératoire et de réveil tardif, (ii) prévenir un sous-

dosage, associé à un risque de mémorisation. Les anesthésistes doivent donc déduire, en temps

réel, le niveau de conscience du patient, également appelé profondeur de l’anesthésie (DoA en

anglais) et ainsi adapter leurs dosages. Depuis peu, ils peuvent s’appuyer sur une large gamme

de variables physiologiques mesurées par de nombreux capteurs. Ce remarquable changement

dans le domaine médical est en parti due à l’amélioration des capteurs et à leur utilisation

systématique. Une conséquence directe est la disponibilité de grande quantité de données. Les

exemples les plus connus de ces données sont les signaux mesurés par électrocardiographie (ECG),

électroencéphalographie (EEG) ou encore toutes les variables physiologiques. Ce changement

est particulièrement notable dans le domaine de l’anesthésie clinique, où la quantité de données

était très limitée. La question principale est maintenant de savoir comment les mathématiques

peuvent nous aider à transformer ces signaux bruts en des données où il est possible d’extraire

des connaissances. Cette question au carrefour des mathématiques et de la médecine est d’autant

plus cruciale en ce qu’elle pourrait conduire à d’importants avancées dans la manière de soigner

les patients mais aussi dans notre compréhension de la physiologie humaine.

Collaboration avec l’unité médicale du Centre Borelli. Au cours de cette thèse, j’ai col-

laboré avec l’unité médicale du Centre Borelli (ex Cognac-G). Ce centre est une équipe de recherche

regroupant des mathématiciens (statisticiens, spécialistes de l’apprentissage automatique, etc.) et

des chercheurs en médecine, tous réunis autour de la quanti�cation du comportement humain.

J’ai notamment travaillé en étroite collaboration avec le docteur Clément Dubost, chef du service

de réanimation de l’Hôpital d’Instruction des Armées Bégin. Ensemble nous avons conçu un

protocole complet - de la chaîne d’enregistrement à l’analyse des données - dans le but de proposer

des méthodes mathématiques utiles à l’étude des patients sous anesthésie. Par le passé, le Centre

Borelli a déjà développé plusieurs protocoles expérimentaux pour des problèmes cliniques allant

de la locomotion humaine aux mouvements oculaires des nourrissons. La quanti�cation du

phénomène d’intérêt a toujours été faite grâce à l’analyse de signaux enregistrés avec plusieurs

capteurs. Le premier objectif étant d’extraire les informations pertinentes de ces signaux pour
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(a) Rang faible (b) Parcimonie groupée et rang faible

Figure 7.1: Illustration de (a) l’hypothèse de rang faible, (b) la combinaison des hypothèses de rang faible

et de parcimonie.

en comprendre les mécanismes physiologiques qui les ont produits. Le second objectif étant

d’automatiser le processus de quanti�cation a�n de fournir des outils utilisables en routine.

2 Motivations

2.1 Comprendre les données brutes par leurs structures multivariées

Repenser la médecine ne peut se faire sans changements importants dans la façon dont nous

analysons les données médicales. En e�et, les données issus des recherches actuelles sont souvent

beaucoup plus volumineux et plus complexes que celles d’autrefois. Ce phénomène est en partie

dû à la démocratisation des capteurs bon marché et faciles à manipuler qui simpli�ent la collecte

systématique de nombreuses données sur les patients. Par conséquent, désormais, de multiples

signaux, tels que les signaux ECG ou EEG, sont enregistrés presque quotidiennement. Or, leur

grande diversité et leur volume important nécessitent inévitablement des améliorations dans les

techniques de stockage et de manipulation de données, ainsi que des avancées dans les méthodes

d’analyse. Pour étudier e�cacement ces données, plusieurs approches ont été adoptées. Dans

un premier temps, la tendance était de se focaliser sur l’analyse des données univariées avec des

modèles comprenant une seule variable à expliquer. Les recherches se sont surtout concentrés

sur l’intégration de connaissances préalables sur les données soit en faisant des hypothèses sur

la classe de modèles pour en restreindre la complexité, soit par le biais de contraintes et de

régularisations. Un exemple classique illustrant cette dernière approches est la régression ridge

proposée pour la première fois par Tikhonov [1963]. Dans ce cas, un modèle linéaire est supposé

et une régularisation `2, c’est-à-dire une hypothèse de régularité, est ajoutée a�n d’éviter des

coe�cients trop grands. Un autre exemple important est la régression lasso [Tibshirani, 1996] où

une régularisation `1, c’est-à-dire une hypothèse de parcimonie, est ajoutée. D’autres modèles

existent pour ajouter des connaissances préalables sur la structure des signaux. C’est par exemple

le cas des représentations convolutives [Garcia-Cardona and Wohlberg, 2018a], qui permettent

d’extraire des motifs récurrents non sinusoïdaux et conduisent ainsi à la découverte de structures

locales dans des signaux non stationnaires comme les séries temporelles [Lewicki and Sejnowski,

1999; Grosse et al., 2007].

Bien que toutes ces idées aient conduit à des avancées tant théoriques que pratiques, un écart existe

entre les résultats obtenus dans le cas univarié et ce que l’on peut attendre de modèles statistiques

bien dé�nis. En e�et, les signaux à expliquer sont souvent multivariés et les relations entre

leurs variables, ou dimensions, doivent être prises en compte si l’on veut les analyser de manière

adéquate. Pour combler cette lacune, les statisticiens se sont penché sur l’analyse multivariée

et ont développé des techniques permettant, par exemple, la présence de plus d’une variable

de sortie [Van Steen and Molenberghs; Hidalgo and Goodman, 2013]. Pour aller au-delà du cas

univarié, une première étape naturelle est de considérer le cas bivarié où la variable à expliquer
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est matricielle. De nombreuses stratégies ont été proposées pour incorporer les relations entre

les di�érentes dimensions de ces données, mettant en évidence ce qu’une analyse multivariée

peut apporter en termes de performance et d’interprétabilité. Un intéret du cas bivarié est qu’il

nous permet de considérer des propriétés et des structures jusqu’alors indisponibles. C’est le

cas de la structure de rang faible exploitée dans de nombreuses méthodes comme l’Analyse en

Composantes Principales (ACP) de rang faible [Vidal et al., 2016], la reconstruction de matrice

[Fazel, 2003; Rohde et al., 2011] (matrix recovery en anglais), et la complétion de matrice [Candès

and Recht, 2009; Koltchinskii et al., 2011; Negahban and Wainwright, 2011; Recht, 2011]. La

combinaison des structures de rang faible et de parcimonie est également apparue pertinente

dans un certain nombre d’applications. Selon la combinaison (voir �gure 7.1), cela donne lieu à

des méthodes plus robustes et interprétables telles que l’ACP parcimonieuse [Zou et al., 2006], la

classi�cation non-supervisée de sous-espaces [Vidal, 2011; Udell et al., 2016; Hae�ele and Vidal,

2019], et la classi�cation non-supervisée de sous-espaces parcimonieux avec valeurs aberrantes

[Elhamifar and Vidal, 2013].

Analyse multivariée à l’aide de graphes. Outre les notions de rang faible et de parcimonie,

une autre façon d’exploiter la structure des données multivariées consiste à utiliser la notion de

graphe. En e�et, le graphe peux apporter des connaissances précieuses sur le processus qui génère

les données (par ex. deux nœuds liés sont fortement corrélés ou ont des valeurs très proches), ce

qui le rend utile dans bon nombre de domaines et d’applications allant de la biologie [Barabasi

and Oltvai, 2004] aux neurosciences [Richiardi et al., 2013; Preti et al., 2017], en passant par la

classi�cation non-supervisé [Belkin and Niyogi, 2002; Von Luxburg, 2007], l’apprentissage par

représentation [William et al., 2017], l’apprentissage multitâche [Chen et al., 2015a; Nassif et al.,

2020], etc. [Zhu, 2005; Kolaczyk and Csárdi, 2014]. Construire des modèles ou des algorithmes

d’apprentissage en tenant compte de la structure de graphe des données, est donc un élément

clé pour améliorer les performances. Il reste à trouver un moyen d’incorporer ces informations

structurelles dans les modèles et les méthodes. Une possibilité est de considérer des modèles

graphiques probabilistes non dirigés où un ensemble de variables aléatoires est représenté par

les di�érents nœuds d’un graphe [Koller and Friedman, 2009]. Dans cette représentation, une

arête entre deux nœuds indique la dépendance conditionnelle entre les deux variables aléatoires

correspondantes, sachant les autres. Plus récemment, le Traitement des Signaux sur Graphes (GSP

en anglais) [Shuman et al., 2013; Ortega et al., 2018; Djuric and Richard, 2018], est apparu comme

une puissante alternative pour extraire des informations de signaux multivariées. Pour prendre en

compte la structure du signal, l’idée est de le considérer comme dé�ni sur les nœuds d’un graphe

et d’encoder les relations entre ses variables via les arêtes. Dans ce formalisme, le graphe dé�nit

un support, et les signaux, désormais appelés signaux sur graphes, sont dé�nis sur ce support. Cela

permet de capturer la structure sur laquelle un signal évolue, fournissant ainsi plus d’informations

que si l’on considère le signal seul. De plus, en généralisant les concepts standards du traitement

du signal aux signaux sur graphes, le GSP fournit des contraintes intuitives pour la modélisation.

Par exemple, la régularité des observations par rapport au vrai graphe sous-jacent est l’une des

hypothèses la plus courante qui demande à ce que les signaux aient de petites variations entre les

nœuds adjacents. [Daitch et al., 2009; Egilmez et al., 2016; Kalofolias, 2016; Chepuri et al., 2017;

Dong et al., 2019]. Cette propriété très naturelle est exploitée dans beaucoup d’applications. On

peut citer l’estimation multi-tâche sur graphe [Nassif et al., 2020] où le graphe capture le lien

entre plusieurs tâches permettant aux agents de coopérer entre eux. Cette coopération peut être

encouragée par une régularisation qui impose un certain degré de proximité entre les di�érentes

règles de décision de chaque agent [Nassif et al., 2018]. Bien souvent, la connaissance du graphe
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est une hypothèse de base. C’est le cas par exemple pour la classi�cation spectral non-supervisée

[Von Luxburg, 2007]. Malheureusement, dans la plupart des situations, aucun graphe ne peut être

dé�ni. Une approche consiste donc à le déduire d’un ensemble de signaux supposés admettre le

même graphe sous-jacent. Cette tâche, souvent appelée apprentissage de graphes (ou inférence

de topologie de graphe), a fait l’objet d’une attention toute particulière dans divers domaines

tels que la statistique, le traitement du signal, la biologie, etc. [Friedman et al., 2008; Hecker

et al., 2009; Lim et al., 2015; Moscu et al., 2020]. Une revue de la littérature des méthodes récentes

d’apprentissage de graphes est disponible dans [Dong et al., 2019].

Analyse multivariée à l’aide de tenseurs L’extension naturelle du cas bivarié est le cas

multivarié où la variable à expliquer est maintenant tensorielle. Comme pour le passage de la

première à la deuxième dimension, de nouvelles possibilités, et donc de nouvelles stratégies, sont

disponibles pour exploiter la structure de ces données multivariées. Un grand nombre de travaux

se sont concentrés sur les méthodes tensorielles. Cet intérêt croissant est principalement dû à

leur capacité à mieux exploiter l’aspect multivarié des données. En e�et, en partie poussée par les

travaux pionniers de Cattell [1944] en psychométrie, l’application des méthodes tensorielles a eu

du succès en traitement du signal [Zhou et al., 2013; Cichocki et al., 2015], vision par ordinateur

[Shashua and Hazan, 2005; Liu et al., 2012], apprentissage spectral de modèles à variables latentes

[Anandkumar et al., 2014; Janzamin et al., 2019], neurosciences [Beckmann and Smith, 2005;

Miwakeichi et al., 2004; Mørup et al., 2006; Becker et al., 2015], etc. Des études approfondies de ces

méthodes sont disponibles dans Kolda and Bader [2009]; Grasedyck et al. [2013] et Sidiropoulos

et al. [2017]. Dans cette vaste littérature, l’une des stratégies les plus utilisées consiste à appliquer

directement une décomposition tensorielle aux données. Cela conduit souvent à des résultats

plus interprétables et à de meilleures performances. En e�et, en factorisant les données dans un

espace de dimension inférieure, les décompositions tensorielles introduisent une base qui peut

décrire les données de manière plus concise. Un exemple important d’une telle décomposition

est la Décomposition Canonique Polyadique (DCP) [Hitchcock, 1927], également connue sous le

nom de Parafac ou CANDECOMP [Harshman, 1970; Carroll and Chang, 1970]. Celle-ci exprime

un tenseur comme une somme minimale de tenseurs de rang un. D’autres décompositions,

telles que la décomposition de Tucker [Tucker, 1963], ou la décomposition en valeurs singulières

d’ordre supérieur [De Lathauwer et al., 2000], se sont avérées e�caces. Ces décompositions

ont notamment conduit à des progrès signi�catifs en complétion tensorielle [Gandy et al., 2011;

Liu et al., 2012; Goulart and Favier; Rauhut et al., 2017]. Une autre stratégie consiste à imposer

des structures tensorielles dans des méthodes déjà existantes par le biais de contraintes et de

régularisations supplémentaires. Dans Zhou et al. [2013], les auteurs ont proposé une famille

de modèles de régression tensorielle où une contrainte de rang CP faible est ajoutée. Ils ont

également étendu ces modèles aux contraintes de rang de Tucker faible [Li et al., 2018]. D’autres

se sont intéressés aux contraintes de rang multilinéaires [Rabusseau and Kadri, 2016; Sun and Li,

2017], aux contraintes de parcimonie sur chaque tenseur de rang 1 de la DCP [He et al., 2018],

etc. L’idée d’imposer une structure particulière par des contraintes est également utilisée dans

plusieurs modèles d’apprentissage de dictionnaires multivariés [Hawe et al., 2013; Sironi et al.,

2014; Dantas et al., 2018; Schwab et al., 2019] ou même pour accélérer les réseaux de neurones

convolutifs [Lebedev et al., 2015; Kim et al., 2016; Astrid and Lee, 2017]. Globalement, si tous ces

modèles apportent inévitablement plusieurs di�cultés dues à la grande complexité des objets

manipulés, ils ont prouvé leur utilité et montré, une fois de plus, qu’il est important de bien

prendre en compte la structure des données pour obtenir de meilleurs résultats.
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Figure 7.2: Représentation de 32 canaux EEG d’un patient. Sur l’axe y de chaque signal est annoté le nom

du canal correspondant.

2.2 Analyse de la conscience pendant une anesthésie générale

Cette thèse s’est également construite autour de la nécessité d’analyser des données enregistrées

lors d’une Anesthésie Générale (AG). AG est un état réversible induit qui comprend des traits com-

portementaux et physiologiques spéci�ques (inconscience, amnésie, analgésie et akinésie) [Brown

et al., 2010]. Cet état non naturel est obtenu principalement par l’utilisation de di�érentes drogues

(par exemple, des anesthésiques hypnotiques inhalés - le sévo�urane - ou des anesthésiques in-

traveineux - le propofol) qui agissent sur les récepteurs inhibiteurs GABA du cerveau. Cependant,

bien que l’AG soit une pierre angulaire de la médecine moderne, et qu’elle soit cruciale dans de

nombreuses procédures chirurgicales [Purdon et al., 2013], elle peut comporter certains risques

(par exemple, dysfonctionnement cognitif [Punjasawadwong et al., 2018], délire postopératoire

[Fritz et al., 2016]). Une surveillance permanente de l’état de conscience du patient – également

appelée profondeur d’anesthésie (DoA en anglais) – est donc nécessaire. Bien qu’il n’existe pas

de dé�nition consensuelle du DoA, elle a été dé�nie par les experts comme “la probabilité de non-

réponse à une stimulation, calibrée en fonction de la force du stimulus, de la di�culté à supprimer

la réponse et de la probabilité de non-réponse induite par le médicament à des concentrations

dé�nies au site d’e�et” [Shafer and Stanski, 2008]. Sa connaissance précise est essentielle pour

permettre un titrage précis des anesthésiques administrés. Les principaux objectifs sont d’éviter

une narcose, associée à un risque plus élevé de dysfonctionnement cognitif postopératoire et de
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Figure 7.3: En haut, signal temporel pendant au réveil. En bas, signal temporel pendant l’anesthésie.
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Figure 7.4: A gauche, spectre d’un signal EEG au réveil. A droite, spectre d’un signal EEG pendant

l’anesthésie.

réveil tardif, et de prévenir un sous-dosage, associé à un risque de mémorisation [Sebel et al.,

2004].

Fonctionnement du cerveau pendant une anesthésie. L’analyse des signaux mesurés par

ElectroEncéphaloGraphie (EEG) reste la référence pour évaluer la DoA (voir �gure 7.2). En e�et,

ces signaux sont une mesure directe de la principale cible des anesthésiques, le cerveau [Merry

et al., 2010]. Ainsi, bon nombre des changements se produisant dans le cerveau peuvent y être

facilement observés [Tong and Thakor, 2009; Sanei and Chambers, 2013; Cohen, 2014]. Fort de

ce constat, depuis les années 2000, l’EEG est largement utilisée pour étudier les phénomènes

survenant lors d’une AG [Purdon et al., 2015; Liu and Rinehart, 2016]. Les recherches ont ainsi

montré que l’AG induit certains comportements dans les signaux EEG qui peuvent être décrits

en fonction de cinq états : L’éveil, la Perte de Conscience (PdC), L’anesthésie, le Rétablissement

de la Conscience (RdC), et en�n, l’émergence. Lorsque l’anesthésie s’approfondit, le schéma

le plus connu et le plus courant est une augmentation progressive de bandes de fréquences

spéci�ques et de l’amplitude du signal. La �gure 7.3 illustre ce phénomène en montrant le canal

EEG frontal d’un patient réveillé puis sous anesthésie. On y voit clairement des changements dans

les données brutes avec l’apparition de petites ondes de grandes amplitudes. Ces changements

visuels, présents chez presque tous les patients, entraînent une modi�cation du spectre du signal

EEG (voir Figure 7.4). Dans une importante étude menée par Purdon et al. [2013], les chercheurs
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Figure 7.5: Spectrogramme d’un patient sous anesthésie générale induite par propofol et sévo�urane.

ont montré que la puissance des ondes α et δ (respectivement dans les bandes 8-13 Hz et 1-3Hz)

est un bon indicateur des di�érents états d’un patient pendant une AG lorsqu’elle est induite

par du propofol. En e�et, ils ont montré que la puissance de ces deux bandes de fréquences

tend à augmenter à mesure que la quantité de drogue augmente. En conséquence, leur suivi

permet de dé�nir précisément dans quel état un patient est le plus susceptible de se trouver. A

l’aide d’un spectrogramme, l’évolution de la puissance de chaque fréquence au cours du temps

est représentée sur la �gure 7.5. Ils constatent également que ces modi�cations au niveau d’un

canal sont combinées à une modi�cation spatiale appelée “antériorisation”. Plus précisément,

alors qu’à l’état d’éveil, les ondes alpha sont principalement présentes à l’arrière du crâne, après

induction du propofol, ces ondes migrent lentement vers le front. Ce processus s’inverse lorsque

la quantité de propofol diminue. Par cet exemple, nous comprenons l’importance d’aller au-delà

d’une analyse univariée pour décrire et comprendre pleinement les mécanismes globaux.

A routine clinical context. Si ces études permettent de mieux comprendre l’AG, elles sont,

pour la plupart, menées dans un environnement idéal. En clinique, la réalité est tout autre. Tout

d’abord, les anesthésistes utilisent non pas un, mais plusieurs anesthésiques pour induire l’AG.

L’analyse devient alors plus di�cile car chacun d’eux induit ses propres comportement temps-

fréquence [Purdon et al., 2015]. Deuxièmement, les méthodes d’analyse des signaux EEG sont peu

robuste aux bruits. Un problème courant surtout lorsque les données sont enregistrées pendant

des interventions chirurgicales. En e�et, même s’il n’y a pas d’artefact dû aux contractions

musculaires (les patients sont curarisés), les signaux EEG sont toujours sujets à un faible rapport

signal/bruit, à un bruit impulsif dû à des dysfonctionnements du capteur et à des artefacts causés,

par exemple, par des appareils utilisés pour couper et cautériser les tissus (voir �gure 7.6) [Tong

and Thakor, 2009]. Il devient donc très di�cile d’utiliser les méthodes standard qui supposent

une con�guration théorique idéale. Troisièmement, l’utilisation des méthodes d’EEG prend du

temps, ce qui les rend inutilisables au quotidienne. Ces trois exemples nous montrent que d’autres

méthodes, pas nécessairement basées sur l’EEG, doivent être étudiées.

Pour surmonter toutes ces di�cultés, plusieurs systèmes de surveillance ont été proposés pour

l’évaluation de la DoA au cours d’une intervention chirurgicale. Tous présentent quelques limites

et il n’existe pas encore de “gold-standard” de surveillance de la DoA. Le système sans doute le

plus utilisé est l’indice BiSpectral (BIS) [Kissin, 2000; Avidan et al., 2008]. Il fournit une valeur
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Figure 7.6: EEG enregistré pendant une anesthésie générale présentant beaucoup de bruit. L’unité de

l’axe des y est µV .

numérique de 0 à 100 (de l’absence d’activité cérébrale à l’éveil). Cependant, bien qu’il soit souvent

utilisé, en particulier aux États-Unis, il présente de nombreux inconvénients tels qu’une grande

variabilité inter-individuelle [Whitlock et al., 2011], de faibles performances avec les anesthésiques

volatils [George Mychaskiw et al., 2001], et une latence élevée. En somme, l’EEG semble être

la meilleure méthode pour évaluer la DoA, bien qu’elle nécessite des capteurs supplémentaires,

présente certaines limites et prend du temps. C’est pourquoi, en clinique, la meilleure évaluation

de la DoA est, la plupart du temps, celle réalisée par l’anesthésiste sur la base des variables

physiologiques du patient.

En résumé, dans la pratique, un monitoring idéal de l’AG devrait être capable de donner une

évaluation sans EEG. En outre, alors que l’analyse de l’AG est souvent centrée sur d’anciennes

méthodes d’analyse, telles que la représentation temps-fréquence, nous pensons que les progrès

récents en matière de statistiques et d’apprentissage automatique pourraient grandement con-

tribuer à une compréhension plus �ne des mécanismes complexes qui se produisent pendant

l’AG.

3 Contributions

Nous détaillons ici les di�érentes contributions de cette thèse. A�n de souligner leur polyvalence,

chaque contribution est accompagné d’une grande variété d’expériences, dont au moins une

liée à l’anesthésie générale. De plus, pour chaque algorithme, un code Python open-source est

disponible en ligne.

3.1 Une base de données de patients sous anesthésie générale

Fruit d’une collaboration avec le docteur Clément Dubost, la première contribution de cette thèse

est la construction et le déploiement d’une chaîne de mesures nous ayant permis de constituer

une base de données de patients sous AG. Aidés par Brian Berthet-Delteil, Arno Benizri et

Gaël de Rocquigny, nous avons enregistré en continue et de manière synchrone les variables

physiologiques de routine d’une anesthésie ainsi que 32 canaux EEG. De février 2016 à mai 2018,

88 sujets, tous issus de “l’Hôpital d’Instruction des Armées Bégin, Saint-Mandé, France”, ont été

inclus dans la base de données. Notons qu’à notre connaissance, il s’agit de la première base de

données de patients sous AG où à la fois des EEG multicanaux et des variables physiologiques

sont enregistrés de manière synchrone depuis l’entrée en salle d’opération et jusqu’à trois heures

après la �n de l’intervention.
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3.2 Apprentissage de graphes

Pour deuxième contribution, nous considérons le problème de l’apprentissage d’un graphe à partir

de signaux multivariés sur graphes. Comme nous l’avons déjà expliqué, ces signaux sont associés

à un graphe inconnu, que nous souhaitons apprendre. L’idée de cette contribution vient d’une

observation simple. En général, nous ne disposons pas d’un graphe adapté au signal d’intérêt.

Une idée possible est donc de l’apprendre. Cependant, comme il s’agit d’un problème mal posé,

nous devons supposer plusieurs propriétés sur les signaux observés et le graphe associé. Dans

notre approche, ces propriétés s’inspirent du domaine du Traitement des Signaux sur Graphes

(GSP en anglais) [Shuman et al., 2013; Ortega et al., 2018]. Ce domaine fournit des contraintes

structurelles intuitives induites par les graphes, et a déjà fait ses preuves dans de nombreuses

applications, notamment en neurosciences avec l’analyse du cerveau. En e�et, Huang et al. [2018]

montrent qu’en construisant un graphe à partir de la connectivité structurelle et en considérant

l’activité cérébrale comme des signaux sur graphes, il est possible de capturer des propriétés

cérébrales pertinentes (par exemple, des caractéristiques cognitives) avec des concepts du GSP.

Plus précisément, nous élaborons un problème d’optimisation pour apprendre le Laplacien du

graphe sous-jacent. Pour rendre identi�able ce problème mal posé, les signaux observés sont

supposés se comporter de manière régulière/lisse sur le même graphe et admettre une représenta-

tion parcimonieuse dans le domaine spectral de ce graphe. Cette dernière propriété de largeur
de bande faible est connue pour porter des informations liées au nombre de clusters du graphe

[Von Luxburg, 2007; Sardellitti et al., 2019]. Le graphe appris est donc un bon candidat dans

l’initialisation des méthodes de classi�cation spectral non-supervisée. Notez que ces deux pro-

priétés sont également des hypothèses de base dans un grand nombre de méthodes comme par

exemple l’échantillonnage sur graphes, ou l’interpolation sur graphes. Pour résoudre ce problème

d’apprentissage, nous proposons deux algorithmes appelés IGL-3SR et FGL-3SR. Basés sur une

procédure alternée, les deux algorithmes s’appuient sur des méthodes de minimisation standard –

telles que la descente du gradient sur variétés riemanniennes ou l’optimisation linéaire. Alors

que IGL-3SR est assuré de converger, FGL-3SR est une relaxation du problème de base et est donc

signi�cativement plus rapide que les autres méthodes. Pour mettre en évidence l’e�cacité de

nos méthodes, nous fournissons de nombreux exemples allant de la météorologie à l’analyses de

signaux EEG.

3.3 Apprentissage de dictionnaires convolutifs tensorielles

La troisième contribution résulte de la combinaison de deux familles de méthodes d’analyse

de signaux multivariés. La première famille de méthodes est l’apprentissage de dictionnaires

convolutifs (CDL en anglais) [Wohlberg, 2015; Garcia-Cardona and Wohlberg, 2018a]. Elle consiste

à apprendre des atomes - ou motifs - locaux permettant une reconstruction parcimonieuses des

signaux. Ainsi, contrairement aux méthodes considérant des bases de Fourier ou d’ondelettes,

ici, les atomes ne sont pas prédé�nis et sont appris à partir du signal lui-même. Cette idée

de fournir une décomposition linéaire d’un signal en quelques atomes locaux appris, au lieu

d’atomes prédé�nis, a conduit à des résultats signi�catifs dans de nombreux domaine comme la

classi�cation d’images, la restauration d’images et le traitement du signal (voir [Wohlberg, 2015;

Garcia-Cardona and Wohlberg, 2018a]). Néanmoins, bien que ces méthodes aient des propriétés

intéressantes, elles sont principalement axées sur le traitement de signaux univariés [Garcia-

Cardona and Wohlberg, 2018b], et ne prennent donc pas pleinement en compte l’interaction

possible entre les di�érents dimensionss des signaux multivariés. De plus, elles sont bien souvent
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Activation in time Activation in time

Figure 7.7: Deux spectrogrammes obtenus à partir d’un signal musical stéréo. Certains atomes se répètent

(surlignés en rouge et orange) tout en étant visibles sur les deux spectrogrammes. Cette observation

suggère que le modèle de CDL est pertinent sur ces données. De plus, une structure de rang faible se

retrouve dans les tenseurs d’activations (et non dans les atomes). En d’autres termes, bien que les atomes

temps-fréquence sont complexes (et donc sans structure de rang faible), les activations (c’est-à-dire les

positions temps/fréquence/canal où ces atomes apparaissent) présentent clairement une structure de rang

faible.

vulnérables au bruit et aux perturbations telles que le bruit impulsionnel [Simon and Elad, 2019;

Wang et al., 2020].

En prenant en compte ces inconvénients, nous introduisons un modèle CDL tensoriel où les

activations et les atomes sont représentés par des tenseurs. Plus précisément, nous proposons de

combiner les approches CDL avec une seconde famille de méthodes qui incluent des contraintes

de rang CP faible dans leur modélisation. En plus d’ajouter au problème CDL initial une contrainte

de rang CP faible pour chaque activation, nous contraignons ces activations à être parcimonieuses.

Nous prenons ainsi en compte la structure multivariée des données et obtenons de meilleurs

résultats aussi bien en terme de reconstruction que d’interprétabilité. Il est à noter que l’idée

d’imposer des contraintes de rang faible dans le CDL n’est pas nouvelle mais est principalement

imposée sur le dictionnaire et non sur les activations. Néanmoins, contraindre les activations

à être de rang faible apporte deux avantages majeurs. Premièrement, dans de nombreux con-

textes, la structure de rang faible apparaît naturellement dans les activations plutôt que dans

les atomes/le dictionnaire (voir la �gure 7.7). Deuxièmement, les contraintes de rang faible sur

les activations impliquent une meilleure robustesse au bruit, une des principales faiblesses du

problème d’apprentissage d’activations du CDL [Simon and Elad, 2019]. Le succés d’un grand

nombre de travaux s’appuyant sur une représentation tensorielle de séries temporelles multivar-

iées (voir par exemple l’importante littérature sur le traitement des signaux EEG [Miwakeichi

et al., 2004; Mørup et al., 2006; De Vos et al., 2007; Becker et al., 2010, 2014, 2015; Dauwels et al.,

2011; Mørup, 2011; Zhao et al., 2011; Mahyari et al., 2016]) est également source de motivation.

Dans ces travaux, les signaux sont généralement analysés en calculant une transformée de Fourier

à court terme pour chaque “canal”, ce qui donne un tenseur d’ordre 3 espace-temps-fréquence.

Ce tenseur est alors étudié à travers le prisme de la décomposition canonique polyadique pour
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Figure 7.8: Illustration d’un produit de graphe G entre deux graphes G1 et G2. � représente un produit

Cartésien (seulement les arêtes colorées), un produit de Kronecker (seulement les arêtes grises) ou un

“strong product” (toutes les arêtes) entre ces deux graphes. Figure inspirée de [Ortiz-Jiménez et al., 2018].

exploiter les interactions entre les multiples modes. Notons que notre approche est légèrement

di�érent car nous n’appliquons pas directement les décompositions tensorielles aux données.

Néanmoins, la combinaison de la représentation CDL avec une contrainte de rang faible aboutit

également à des représentations (locales) qui sont (i) plus robustes au bruit et (ii) plus faciles à

comprendre [Zhao et al., 2011; Zhou et al., 2013; Cong et al., 2015; Rabusseau and Kadri, 2016].

3.4 Produit de graphes pour l’analyse de signaux multivariés sur graphes

Dans cette quatrième contribution, nous proposons une approche simple pour identi�er le support

fréquentielle des signaux multivariés temporels sur graphes. Ces signaux sont liés à la notion du

traitement des signaux temporels sur graphes où les interactions spatiales et temporelles sont

modélisées [Grassi et al., 2018]. Bien que ce cadre ait été initialement introduit pour les signaux

matricielles, nous l’étendons au cas multivarié (par exemple en considérant les relations entre

les dimensions, temps, espace, variables). À cette �n, un graphe par dimension est dé�ni. Ces

graphes sont alors fusionnés à l’aide d’un produit de graphes [Imrich and Klavzar, 2000; Hammack

et al., 2011; Leskovec et al., 2010; Sandryhaila and Moura, 2014]. Un exemple est donné par

la �gure 7.8. Il apparaît que la structure complexe qui en résulte peut être facilement étudiée

à travers le formalisme tensoriel. Ainsi, pour identi�er le support fréquentiel d’un signal sur

graphe, nous choisissons (a priori) un graphe par dimension, puis nous introduisons un problème

d’optimisation incluant des régularisations tensorielles adaptées à l’hypothèse de largeur de bande

faible. Ces régularisations parcimonieuses peuvent être spéci�ées de manière à ne considérer

qu’une seule dimension (c’est-à-dire la sélection uniquement des meilleurs nœuds temporels ou

canaux ou variables). De plus, en comparant les résultats obtenus avec les graphes choisis a priori

à ceux obtenus à partir de graphes aléatoires, nous fournissons un moyen simple d’évaluer leur

pertinence. Nous appliquons notre méthode à une représentation tensorielle de signaux EEG

en mettant en évidence ses performances pour l’échantillonnage et la compression. Bien que

cette contribution se concentre sur les signaux temporels sur graphes, elle peut être appliquée à

n’importe quel signal multivarié sur graphe.

3.5 Support décisionnel grâce à l’apprentissage par mimétisme.

Dans cette cinquième et dernière contribution, nous proposons un algorithme qui aide les anesthé-

sistes à administrer les anesthésiques pour maintenir une DoA optimale. Dérivé d’un algorithme

appelé Transform Predictive State Representation (TPSR) [Littman and Sutton, 2002; Rosencrantz

et al., 2004; Boots et al., 2011], notre modèle apprend en observant les anesthésistes dans la

pratique. Ce cadre, connu sous le nom d’apprentissage par mimétisme [Abbeel and Ng, 2004], est
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particulièrement utile dans le domaine médical car il ne repose pas sur un processus exploratoire

– un comportement prohibé dans le cas présent [Gottesman et al., 2018]. Le TPSR est une classe

de modèles particulièrement puissante et �exible utilisée dans le domaine de la prédiction séquen-

tielle. L’idée principale de cette classe de modèles est que les données observées sont souvent la

manifestation d’une dynamique sous-jacente cachée. En modélisant la structure de transition

entre di�érents états cachés et les probabilités d’occurrence des observations, on peut obtenir

un modèle prédictif succinct et puissant. Notons que, bien que les contributions précédentes

soient principalement liées à l’analyse des signaux EEG, ici, pour fournir un outil utilisable en

pratique par les anesthésistes, nous nous basons uniquement sur les quatre variables couramment

surveillées pendant la chirurgie : La fréquence cardiaque, la pression artérielle, la fréquence

respiratoire et la concentration expirée d’anesthésique. Ce choix est motivé par le fait que, bien

qu’une analyse des signaux EEG soit obligatoire pour comprendre précisément le comportement

de l’activité cérébrale, nous pensons qu’un outil pratique devrait être basé uniquement sur des

variables physiologiques couramment surveillées et visualisées par les anesthésistes. Cette ap-

proche pourrait être d’une grande aide pour les anesthésistes a�n de prédire l’évolution des

variables et ainsi prévenir les e�ets secondaires tels que l’hypotension artérielle. En résumé, ce

support décisionnel pourrait aider l’anesthésiste à améliorer le soin et la sécurité des patients.
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Titre: Tenseurs et graphes pour l’analyse multivariée – application aux neurosciences.
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Résumé: Comment extraire l’information
contenue dans des données multivariées est de-
venue une question fondamentale ces dernières
années. En effet, leur disponibilité croissante
a mis en évidence les limites des modèles stan-
dards et la nécessité d’évoluer vers des méthodes
plus polyvalentes. L’objectif principal de cette
thèse est de fournir des méthodes et des algo-
rithmes prenant en compte la structure des sig-
naux multivariés. Des exemples bien connus de
tels signaux sont les images, les signaux audios

stéréo, et les signaux d’électroencéphalographie
multicanaux. Parmi les approches existantes,
nous nous concentrons spécifiquement sur celles
basées sur la structure induite par les graphes
ou les tenseurs qui ont déjà attiré une atten-
tion croissante en raison de leur capacité à
mieux exploiter l’aspect multivarié des données
et leur structure sous-jacente. Bien que cette
thèse prenne l’étude de l’anesthésie générale
comme contexte applicatif privilégié, les méth-
odes développées sont adaptées à un large spec-
tre de données structurées multivariées.

Title: Multivariate analysis with tensors and graphs – application to neuroscience
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Abstract: How to extract knowledge from
multivariate data has emerged as a fundamental
question in recent years. Indeed, their increas-
ing availability has highlighted the limitations of
standard models and the need to move towards
more versatile methods. The main objective of
this thesis is to provide methods and algorithms
taking into account the structure of multivari-
ate signals. Well-known examples of such sig-
nals are images, stereo audio signals, and multi-

channel electroencephalography signals. Among
the existing approaches, we specifically focus on
those based on graph or tensor-induced struc-
ture which have already attracted increasing at-
tention because of their ability to better exploit
the multivariate aspect of data and their under-
lying structure. Although this thesis takes the
study of patients under general anesthesia as a
privileged applicative context, methods devel-
oped are also adapted to a wide range of multi-
variate structured data.

Université Paris-Saclay
Espace Technologique / Immeuble Discovery
Route de l’Orme aux Merisiers RD 128 / 91190 Saint-Aubin, France


	Introduction
	Context of the thesis
	Motivations
	From data to knowledge by leveraging multivariate structures
	Analysis of consciousness during a general anesthesia

	Contributions
	A database of patients recorded during a general anesthesia
	Graph learning on multivariate signals
	Tensor-based convolutional dictionary learning approach
	Graph Product for multivariate graph signals
	Apprenticeship learning for a predictive state representation of anesthesia

	Outline of the thesis
	Publications

	Learning Laplacian matrix from graph signals with sparse spectral representation
	Introduction
	Background on graphs
	Definitions from graph theory
	Definitions from GSP
	Graph learning task in GSP

	Problem statement
	Setup and working assumptions
	Graph learning for smooth and sparse spectral representation
	Reformulation of the problem

	Resolution of the problem: IGL-3SR
	Optimization with respect to bold0mu mumu bold0mu mumu HH2005/06/28 ver: 1.3 subfig packageHHHHbold0mu mumu HH2005/06/28 ver: 1.3 subfig packageHHHH2005/06/28 ver: 1.3 subfig packagebold0mu mumu HH2005/06/28 ver: 1.3 subfig packageHHHHbold0mu mumu HH2005/06/28 ver: 1.3 subfig packageHHHHbold0mu mumu HH2005/06/28 ver: 1.3 subfig packageHHHHbold0mu mumu HH2005/06/28 ver: 1.3 subfig packageHHHH
	Optimization with respect to bold0mu mumu bold0mu mumu 2005/06/28 ver: 1.3 subfig packagebold0mu mumu 2005/06/28 ver: 1.3 subfig package2005/06/28 ver: 1.3 subfig packagebold0mu mumu 2005/06/28 ver: 1.3 subfig packagebold0mu mumu 2005/06/28 ver: 1.3 subfig packagebold0mu mumu 2005/06/28 ver: 1.3 subfig packagebold0mu mumu 2005/06/28 ver: 1.3 subfig package
	Optimization with respect to bold0mu mumu bold0mu mumu UU2005/06/28 ver: 1.3 subfig packageUUUUbold0mu mumu UU2005/06/28 ver: 1.3 subfig packageUUUU2005/06/28 ver: 1.3 subfig packagebold0mu mumu UU2005/06/28 ver: 1.3 subfig packageUUUUbold0mu mumu UU2005/06/28 ver: 1.3 subfig packageUUUUbold0mu mumu UU2005/06/28 ver: 1.3 subfig packageUUUUbold0mu mumu UU2005/06/28 ver: 1.3 subfig packageUUUU
	Log-barrier method and initialization
	Computational complexity of IGL-3SR

	A relaxation for a faster resolution: FGL-3SR
	Optimization with respect to bold0mu mumu XX2005/06/28 ver: 1.3 subfig packageXXXX
	Optimization with respect to bold0mu mumu bold0mu mumu 2005/06/28 ver: 1.3 subfig packagebold0mu mumu 2005/06/28 ver: 1.3 subfig package2005/06/28 ver: 1.3 subfig packagebold0mu mumu 2005/06/28 ver: 1.3 subfig packagebold0mu mumu 2005/06/28 ver: 1.3 subfig packagebold0mu mumu 2005/06/28 ver: 1.3 subfig packagebold0mu mumu 2005/06/28 ver: 1.3 subfig package
	Computational complexity of FGL-3SR
	Differences between IGL-3SR and FGL-3SR

	A probabilistic interpretation
	Related work on GSP-based graph learning methods
	Experimental evaluation
	Evaluation metrics
	Experiments on synthetic data
	Influence of the hyperparameters
	Temperature data
	Cancer genome data
	Results on the ADHD dataset

	Electroencephalography microstates analysis through graphs
	Conclusion
	Technical proofs

	Tensor-based convolutional dictionary learning with CP low-rank activations
	Introduction
	Convolutional dictionary learning
	Convolutional sparse coding
	Dictionary update
	Comparison of the solvers in the convolutional setting
	Theoretical guarantees for convolutional representation

	Tensor-based convolutional dictionary learning
	Resolution of the problem
	T-ConvADMM: ADMM-based solver for K-CSC
	T-ConvFISTA: FISTA-based solver for K-CSC
	Some additional remarks
	Dictionary update, bold0mu mumu DD2005/06/28 ver: 1.3 subfig packageDDDD-step.

	Related works
	Experiments
	Evaluation on synthetic data
	Examples on real data
	Signals recorded during a general anesthesia

	Conclusion
	Appendix
	Proofs of the chapter

	Notation and preliminaries on tensor
	Some important definitions and formulas
	How to perform the convolution for discrete signals?
	How to perform the convolution for multidimensional signals?
	Separable signals


	Subsampling of multivariate time-vertex graph signals
	Introduction
	Background and notations
	Tensor algebra
	Product graph
	Graph signal processing

	Method
	Framework for processing multivariate time-vertex graph signals
	Identifying the support of the tensor graph signal
	Selecting the best nodes and reconstruction

	Results
	Data
	Subsampling and reconstruction
	Importance of the graph structure

	Conclusion

	Apprenticeship learning for a predictive state representation of anesthesia
	Introduction
	Predictive state representation
	Background on PSR and TPSR
	Methodological choices.
	Toy example

	Methods
	Dataset
	Preprocessing
	Evaluation process
	Quantitative analysis setup
	Real expert evaluation method

	Results
	Quantitative analysis
	Real expert evaluation

	Discussion and future works
	Conclusion

	Conclusion and perspectives
	Résumé en français
	Contexte de la thèse
	Motivations
	Comprendre les données brutes par leurs structures multivariées
	Analyse de la conscience pendant une anesthésie générale

	Contributions
	Une base de données de patients sous anesthésie générale
	Apprentissage de graphes
	Apprentissage de dictionnaires convolutifs tensorielles
	Produit de graphes pour l'analyse de signaux multivariés sur graphes
	Support décisionnel grâce à l'apprentissage par mimétisme.


	Bibliography

