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Résumé

Le récent essor de l’apprentissage profond, qui s’est d’abord expliqué par ses divers
succès dans l’apprentissage supervisé avec par exemple la classification d’images, trouve
également sa source dans les nombreuses avancées scientifiques qu’il a permises en ap-
prentissage non supervisé, plus particulièrement en termes d’apprentissage de représen-
tations et de modèles génératifs. Ces percées contribuent au développement constant
des systèmes autonomes acquérant leurs capacités de manière auto-supervisée, car
elles leur permettent d’appréhender leur environnement. Dans leur grande majorité,
ces progrès ont cependant été obtenus sur des données textuelles et visuelles dont
l’évolution à travers le temps est moins étudiée et leur confère une certaine complexité.
C’est pourquoi, malgré des efforts de recherche précoces et soutenus dans cette direction,
les données temporelles demeurent un défi pour l’apprentissage non supervisé, surtout
concernant les données spatio-temporelles complexes telles que les vidéos. Compte
tenu de leur importance pour l’automatisation croissante de multiples tâches comme la
conduite dans un environnement en perpétuelle évolution, de plus en plus de travaux
s’intéressent à cette problématique.

Dans cette thèse, nous nous inscrivons dans cette tendance en étudiant et améliorant
plusieurs aspects de la temporalité et des systèmes dynamiques dans les réseaux de
neurones profonds pour l’apprentissage non supervisé de représentations et de modèles
génératifs. Dans la première partie de notre travail, nous présentons une méthode
générale d’apprentissage de représentations non supervisée pour les séries temporelles
prenant en compte les besoins pratiques d’efficacité et de flexibilité de telles techniques.
Dans un second temps, nous nous intéressons plus spécialement à l’apprentissage pour les
séquences structurées de nature spatio-temporelle, couvrant les vidéos et phénomènes
physiques. Nous y montrons la corrélation entre la découverte de représentations
pertinentes et séparables d’un côté, et de l’autre la fabrique de modèles prédictifs
performants sur ces données. Par ce biais, nous soulignons le rôle crucial des équations
différentielles pour la modélisation et le plongement adaptés de ces suites temporelles
dans les espaces latents de modèles génératifs profonds. Enfin, nous analysons plus
généralement dans une troisième partie l’un des modèles génératifs les plus employés,
les réseaux antagonistes génératifs, à travers le prisme des systèmes dynamiques en
considérant l’évolution temporelle des réseaux impliqués pendant leur entraînement.
Leur dynamique pouvant être écrite sous la forme d’une équation différentielle grâce
à la théorie des réseaux neuronaux à largeur infinie, nous en déduisons une meilleure
compréhension théorique et empirique de ce type de modèle génératif.
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Abstract

The recent rise of deep learning, first supported by various supervised learning suc-
cesses on e.g. image classification, has also been motivated by numerous scientific
breakthroughs in unsupervised learning, particularly regarding representation learning
and generative modeling. These advances have participated in the development of
autonomous, knowledgeable and self-supervised systems, since they contribute to the
ability of these systems to understand their environment. However, most of these
achievements have been obtained on image or text data, whose evolution through time
is less considered and confers to the considered tasks a new layer of complexity. That is
why, despite early and steady research in this direction, temporal data, and especially
complex spatiotemporal data like videos, remain challenging on unsupervised tasks for
current methods. Given their importance for autonomous systems such as self-driving
vehicles to adapt in a constantly evolving environment, these challenges have been
actively investigated in a growing body of work.

In this thesis, we follow this line of work and simultaneously investigate and improve
several underexplored aspects of temporality and dynamical systems in deep unsuper-
vised representation learning and generative modeling. In the first part of this work, we
present a general-purpose deep unsupervised representation learning method for time
series tackling scalability and adaptivity issues arising in practical applications. We
then further study in a second part representation learning for sequences by focusing
on structured and stochastic spatiotemporal data: videos and physical phenomena. We
show in this context that performant temporal generative prediction models help to
uncover meaningful and disentangled representations, and conversely. We highlight
to this end the crucial role of differential equations in the successful modeling and
embedding of these natural sequences within sequential generative models. Finally, we
more broadly analyze in a third part a popular class of generative models, generative
adversarial networks, under the scope of dynamical systems. We study the evolution of
the involved neural networks with respect to their training time by describing it with a
differential equation thanks to the theory of infinite-width neural networks, allowing us
to gain novel theoretical and empirical insights on this generative model.
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Part I.

Motivation

1





We motivate and contextualize our work in this part by firstly introducing in Chapter 1
the scientific context of this thesis and summarizing our contributions, and by secondly
exposing in Chapter 2 the technical background and state of the literature for the
notions studied throughout this document.
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Chapter 1.

Introduction

1.1. Context
Within the broad field of Artificial Intelligence, machine learning aims at designing
systems that automatically improve based on observational data (Russell and Norvig,
2020, Part V). Extending and amplifying the development of machine learning that
began two decades ago, the rise of deep learning, i.e. the use of deep artificial neural
networks usually optimized via gradient descent techniques (Goodfellow, Y. Bengio, and
Courville, 2016), has been a pivotal element behind numerous scientific and technologic
breakthroughs since 2012 when the neural network AlexNet (Krizhevsky, Sutskever, and
Hinton, 2012) won the ImageNet Large Scale Visual Recognition Challenge (Russakovsky
et al., 2015).

Since then, deep learning has benefited from extensive computational improvements
with Graphics Processing Units (GPUs) and Tensor Processing Units (Jouppi et al.,
2017), software creation (Abadi et al., 2016; Paszke et al., 2019) and the availability of
large-scale datasets (Goodfellow, Y. Bengio, and Courville, 2016, Chapter 1). From
this, researchers could rapidly achieve significant advances in many domains such as
computer vision (Szegedy et al., 2017), Natural Language Processing (NLP) (Yonghui
Wu et al., 2016) and games (Silver, A. Huang, et al., 2016) in a supervised learning
context. Many of these advances illustrate the singular ability of deep neural networks
to learn representations and decision-making systems from raw data.

Unsupervised Representation Learning and Generative Modeling
Nonetheless, the need for machine learning models that could learn with no or little
human supervision has emerged, because of the dataset size increase coupled with the
limits and cost of human intervention required for creating such datasets (M. Chen,
2020). This need is especially relevant when considering the current development of
autonomous, knowledgeable and self-learning systems in technological domains, e.g.
autonomous driving and automated human assistance. It even becomes the central
issue when it comes to creating models able to outperform human abilities, by definition.
Several domains, including few-shot, weakly supervised, transfer and reinforcement
learning, address this challenge.
Among them, the broad field of unsupervised learning deals with machine learning

models in the absence of human annotations. Research in this direction has allowed
the community to push back the limits of the so-called intelligent systems, find new
applications and sometimes even improve or help supervised methods (Silver, Hubert,
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et al., 2017; Lample et al., 2018; T. Brown et al., 2020; Van Gansbeke et al., 2020). In
this regard, the growth of deep learning has been crucial, thanks to now standard and
popular techniques: unsupervised representation learning and deep generative models.

Both techniques have indeed shown their relevance by driving many of the scientific
and technological advances that deep learning has made possible. On the one hand,
unsupervised representation learning has for example been widely leveraged through
pretrained (then used for downstream tasks) or dedicated models: e.g., word2vec and
BERT in NLP (Mikolov, Sutskever, et al., 2013; Devlin et al., 2019), or the ones of
Finn, Goodfellow, and Levine (2016) and Bachman, Hjelm, and Buchwalter (2019) in
computer vision and robotics. On the other hand, deep generative models, by learning
to imitate real-world distributions and producing new data points, have also provided
the field of unsupervised learning with numerous successful applications, such as data
augmentation (Antoniou, Storkey, and Edwards, 2017), generating realistic images
(Karras, Laine, Aittala, et al., 2020), aligning distributions without supervision (J.-Y.
Zhu et al., 2017; Lample et al., 2018) and representation learning (Kingma and Welling,
2019).

Temporal Data
However, most of these recent advances deal with text and image data, leaving temporal
data behind. Admittedly, many achievements have also been attained on this data type,
whether for unsupervised learning or other settings (Schmidhuber, 2015). They have
been mainly based on longstanding sequential architectures called Recurrent Neural
Networks (RNNs), like the Long Short-Term Memory units (LSTMs) of Hochreiter and
Schmidhuber (1997). These networks have been widely used when it comes to modeling
temporal data such as videos, speech, or more generally time series. Nonetheless, apart
from such general-purpose networks, unsupervised learning advances for temporal data
have largely remained compartmentalized, with innovations in some domains being
scarcely transferred to other ones. For instance, while the non-RNN WaveNet has
been successfully operated for speech synthesis (van den Oord, Yazhe Li, Babuschkin,
et al., 2018), it has not been extensively adopted for other types of data. Moreover,
many improvements concerning learning on videos have leveraged earlier innovations
in computer vision for images (M. Mathieu, Couprie, and LeCun, 2016; Kalchbrenner
et al., 2017; Kumar et al., 2020). Transformers (Vaswani et al., 2017), after their
successes in NLP and computer vision, are increasingly used for temporal data as well,
e.g. for videos (Weissenborn, Täckström, and Uszkoreit, 2020) and audio (N. Li et al.,
2019), but remain distanced by RNNs for this type of data.

Such innovation delay and complexity are not surprising given the complex nature
of temporal data. Temporality indeed brings an additional layer of complexity com-
pared to already challenging static data. Another particularity of time series is their
diversity: from daily-life information (e.g., trajectories in an environment) to industrial
applications (sensor data, videos for autonomous driving) by way of medical data
(electroencephalograms, vital signs), many applications of artificial intelligence involve
time by nature. In NLP as well, the evolution through time of corpora may be relevant
for some applications (Delasalles, Lamprier, and Denoyer, 2019). In a nutshell, handling
temporal data is of crucial importance in order to create autonomous and intelligent

6
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systems in a constantly evolving environment (Nagabandi et al., 2019).
This omnipresence, complexity and necessity thus make temporal data an important

subject of study in the deep learning community, especially for representation learning
and generative modeling in an unsupervised learning context. Given the diversity of
sequential data, the development of general-purpose principled models for handling
temporality is essential for the community. While RNNs have fulfilled this need as they
have been for a long time a fundamental building block of most temporal models, there
have been multiple trends in recent years to discover more performant and convenient
temporal models.

Dynamical Systems
Among them, a recent research direction consists in modeling time series as dynamical
systems, in the physical meaning of the term, i.e. with an evolution described by a
differential equation. First considered when injecting prior knowledge in the modeling
of physical phenomena (Pajot, 2019), the use of neural dynamical systems has then
spread to handle the temporal evolution of more general data since the seminal article of
R. T. Q. Chen, Rubanova, et al. (2018). One of the advantages of relying on differential
equations is the extensive mathematical and physical literature on the subject. This
allows the community to leverage strong preexisting results in order to propose novel
and performant models, intrinsically presenting many advantages over RNNs. Besides
these new potential developments, and for the same reasons, the theory of dynamical
systems can also serve as a powerful tool to analyze, instead of the dynamics of the
data, the very training dynamics of deep neural networks (Kovachki and Stuart, 2021),
thereby better understanding the reasons behind their successes.

1.2. Subject and Contributions of this Thesis

In this thesis, we follow the above-mentioned lines of work by investigating several
aspects of temporality in deep unsupervised representation learning and generative
modeling. Our contributions tackle novel applications and issues, mainly articulated
around the role of dynamical systems in the improvement and understanding of
unsupervised deep learning methods.
We more specifically consider three main research directions:

• general-purpose scalable representation learning for time series;

• the combination of generative modeling and representation learning within a
dynamical system framework for the forecasting of complex spatiotemporal data
such as natural videos and physical phenomena;

• the theoretical and empirical study of the training dynamics of a standard
generative model through the lens of differential equations.

We introduce and summarize our contributions in the following, and then detail the
organization of this document.

7
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1.2.1. General-Purpose Unsupervised Representation Learning for
Time Series

While supervised learning and forecasting for time series are active and profuse research
directions, unsupervised representation learning for this data type remains an under-
explored problem. Yet, developing general-purpose unsupervised methods for time
series is important with regards to the scarcity and cost of acquiring human-labeled
data in most applications, in particular those involving industrial and real-life data.
The challenging and noisy nature of real-life time series also makes it preferable for
representation learning methods to apply to series of unequal and high lengths. Still,
existing unsupervised representation learning methods remain limited with respect to
these considerations, besides lacking strong and thorough experimental evaluation.
Tackling these issues, we propose in this thesis a general-purpose unsupervised

scalable representation learning method that can handle time series of unequal and high
lengths. To this end, we train a deep neural network encoder outputting a fixed-length
representation regardless of the size of the input time series thanks to a novel triplet
loss relying on time-based positive and negative sampling. The efficiency and flexibility
of the chosen encoder, based on dilated convolutions, coupled with the triplet loss
requiring no decoder, ensure the generality and scalability of the proposed method. We
then assess the quality of learned representations on downstream tasks on standard
datasets, thereby showing their transferability and general applicability across different
data domains and tasks.

This contribution, detailed in Part II of this document, led to the following publication
in an international conference.

Jean-Yves Franceschi, Aymeric Dieuleveut, and Martin Jaggi (2019). “Un-
supervised Scalable Representation Learning for Multivariate Time Series”.
In: Advances in Neural Information Processing Systems. Ed. by Hanna
Wallach, Hugo Larochelle, Alina Beygelzimer, Florence d’Alché-Buc, Emily
Fox, and Roman Garnett. Vol. 32. Curran Associates, Inc., pp. 4650–4661.

1.2.2. Dynamical Systems and Representation Learning for
Complex Spatiotemporal Data

Moving on from general-purpose representation learning, we then more particularly
study representation learning for complex structured spatiotemporal data. The latter
arise in large-scale applications involving the observation of moving human subjects,
objects and physical entities; typical examples of such data include videos and physical
phenomena. They still constitute a challenge for neural networks due to their complexity
and the need for high computational power to handle them, thus motivating advances
that could improve existing models with reasonable resources requirements.
We consider two main types of data: videos and physical phenomena. Videos have

numerous applications with respect to autonomous systems, including robotics and
self-driving cars. They necessitate predictive models which should generate realistic
images and take into account the inherent stochasticity of the observed phenomena.
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The applicability of these models highly depends on their representation learning
abilities. Indeed, the latter are essential for downstream tasks like planning and action
recognition, allowing autonomous systems to benefit from small-scale representations
of the environment. The prediction of physical phenomena, possibly less random
but more chaotic, is a recent application field of deep learning that still struggles to
achieve results equivalent to more classical prediction methods relying on physical
models. Representation learning is especially interesting for the latter to understand
the prediction mechanisms of data-driven approaches for partially observable data.

Therefore, in this thesis, we explore representation learning for this type of sequence
via generative modeling and forecasting. For both considered applications, we design
temporal generative prediction models for spatiotemporal data relying on learning
meaningful and disentangled representations. We show that the long-term predictive
performance and representation learning abilities of these models mutually benefit
from each other. An influential modeling choice in this regard is the inspiration from
dynamical systems for the design of the proposed temporal evolution models. More
precisely, our models are based on discretizations of differential equations parameterized
by neural networks, which we show to be particularly adapted to the learning of
continuous-time dynamics typically involved in videos and physical phenomena.
These contributions, developed in Part III of this document, were presented in the

hereunder two international conference publications.

Jean-Yves Franceschi, Edouard Delasalles, Mickaël Chen, Sylvain Lamprier,
and Patrick Gallinari (July 2020). “Stochastic Latent Residual Video Pre-
diction”. In: Proceedings of the 37th International Conference on Machine
Learning. Ed. by Hal Daumé III and Aarti Singh. Vol. 119. Proceedings of
Machine Learning Research. PMLR, pp. 3233–3246.

Jérémie Donà, Jean-Yves Franceschi, Sylvain Lamprier, and Patrick Galli-
nari (2021). “PDE-Driven Spatiotemporal Disentanglement”. In: Interna-
tional Conference on Learning Representations.

1.2.3. Study of Generative Adversarial Networks via their Training
Dynamics

After highlighting the valuable role of dynamical systems for deep generative predictive
models, we then leverage differential equations within a novel theoretical framework
to analyze and explain the training dynamics of a popular but still misunderstood
generative model: Generative Adversarial Networks (GANs).

We point out a fundamental flaw in previous theoretical analyses of GANs that leads
to ill-defined gradients for the discriminator. Indeed, within these frameworks that
neglect its architectural parameterization as a neural network, the discriminator is
insufficiently constrained to ensure the existence of its gradients. This oversight raises
important modeling issues as it makes these analyses incompatible with standard GAN
practice using gradient-based optimization. We overcome this problem which impedes
a principled study of GAN training, solving it within our framework by taking into
account the discriminator’s architecture and training.

9
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To this end, we leverage the theory of infinite-width neural networks for the discrimi-
nator via its Neural Tangent Kernel (NTK) in order to model its inductive biases as a
neural network. We thereby characterize the trained discriminator for a wide range
of losses by expressing its training dynamics with a differential equation. From this,
we establish general differentiability properties of the network that are necessary for
a sound theoretical framework of GANs, making ours closer to GAN practice than
previous analyses.

Thanks to this adequacy with practice, we gain new theoretical and empirical insights
about the generated distribution’s flow during training, advancing our understanding
of GAN dynamics. For example, we find that, under the integral probability metric
loss, the generated distribution minimizes the maximum mean discrepancy given by the
discriminator’s NTK with respect to the target distribution. We empirically corroborate
these results via a publicly released analysis toolkit based on our framework, unveiling
intuitions that are consistent with current GAN practice and opening new perspectives
for better and more principled GAN models.

This contribution, explained in Part IV of this document, corresponds to the following
preprint and is currently under review at an international conference.

Jean-Yves Franceschi, Emmanuel de Bézenac, Ibrahim Ayed, Mickaël Chen,
Sylvain Lamprier, and Patrick Gallinari (2021). “A Neural Tangent Kernel
Perspective of GANs”. In: arXiv: 2106.05566.

1.2.4. Outline of this Thesis
This document is organized as follows. Chapter 2 explains the state of the literature
and the necessary background for the exposition of our contributions. The latter
are presented in Chapters 3 to 6: Chapter 3 describes the proposed unsupervised
representation learning method for time series, Chapters 4 and 5 respectively introduce
our video prediction model and our predictive spatiotemporal disentangling method,
and Chapter 6 details our analysis of GAN training dynamics. Finally, Part V, with
Chapters 7 and 8, concludes this document with a discussion of the perspectives offered
by the exposed contributions. An appendix containing supplementary material for
Chapters 3 to 6 is given in Appendices A to D.

10

https://arxiv.org/abs/2106.05566


Chapter 2.

Background and Related Work

In this chapter, we expose and contextualize the principal notions that are employed and
explored in the rest of this document. We first address in Section 2.1 the architectural
choices to make neural networks handle sequential data, from standard RNNs to neural
differential equations. We then briefly expose in Section 2.2 the state of the art of
representation learning for sequences, made possible by these sequential architectures.
We finally introduce in Section 2.3 the main deep generative models considered in the
literature and how they may be adapted to sequential data.

2.1. Neural Architecture for Sequence Modeling
We review in this section the various neural network architectures designed to deal
with sequential inputs and outputs. We begin this review by introducing RNNs in
Section 2.1.1, and then present temporal models based on differential equations in
Section 2.1.2 as one of the main investigated notions in this manuscript. We finally
broach other types of sequential architectures in Section 2.1.3.

2.1.1. Recurrent Neural Networks
RNNs constitute a broad class of models introduced several decades ago (Rumelhart,
Hinton, and R. J. Williams, 1986). They have been widely used by the community
for many applications (Greff et al., 2017), in fields as diverse as e.g. video prediction
(Srivastava, Mansimov, and Salakhudinov, 2015) and language modeling (Mikolov,
Karafiát, et al., 2010).

2.1.1.1. Principle

The typical basic RNN can be recursively described as follows (Goodfellow, Y. Bengio,
and Courville, 2016, Chapter 10), with sequential inputs x = (xt)t∈N, outputs y = (yt)t
and hidden states h = (ht)t:

ht = tanh
(
Wpxt +Whht−1 + bh

)
, (2.1)

yt = Woht + bo. (2.2)

Here, weight matrices Wp, Wh, Wo and bias vectors bh, bo are the RNN parameters.
The first hidden state may be initialized depending on modeling choices, for instance
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to the null vector. Note that xt can also depend on the previous outputs, for example
with xt = yt−1 when considering an autoregressive prediction task. This formalization,
with shared parameters through time, allows this architecture to handle sequences of
arbitrary length.

This RNN may be extended by stacking recurrent transformations of Equation (2.1)
over L ∈ N∗ layers, with layer-dependent hidden states h(l) for layers l ∈ J1, LK, and
h(0) = x:

h
(l)
t = tanh

(
W (l)

p h
(l−1)
t +W

(l)
h h

(l)
t−1 + b

(l)
h

)
. (2.3)

Nonetheless, even a shallow RNN of the type of Equation (2.1) is, in theory, a powerful
sequential model, as it can compute any function also computable by a Turing machine
(Siegelmann and E. D. Sontag, 1994).

2.1.1.2. Refinements

Despite the theoretical power of their architectures, standard RNNs may be challenging
to learn. Because of their recurrent nature, their optimization is hindered by vanishing
and exploding gradients, thereby making their learning of long-term dependencies in
the data slow or complex (Goodfellow, Y. Bengio, and Courville, 2016, Chapter 10).
To circumvent this issue and improve the quality of RNNs on other aspects, several
solutions have been proposed.
A widely adopted solution is the introduction of gating mechanisms, which allow

recurrent networks to accumulate information like in Equation (2.1) but also forget
it when it is not needed anymore. This is the principle of LSTMs, as proposed by
Hochreiter and Schmidhuber (1997), refined by Gers, Schmidhuber, and Cummins
(2000) and popularized in its modern form by Graves and Schmidhuber (2005), which
replace the recurrent mechanism of Equation (2.3) with:

i
(l)
t = σ

(
W

(l)
i,ph

(l−1)
t +W

(l)
i,hh

(l)
t−1 + b

(l)
i

)
,

f
(l)
t = σ

(
W

(l)
f,ph

(l−1)
t +W

(l)
f,hh

(l)
t−1 + b

(l)
f

)
,

g
(l)
t = tanh

(
W (l)

g,ph
(l−1)
t +W

(l)
g,hh

(l)
t−1 + b(l)

g

)
,

o
(l)
t = σ

(
W (l)

o,ph
(l−1)
t +W

(l)
o,hh

(l)
t−1 + b(l)

o

)
,

c
(l)
t = f

(l)
t � c

(l)
t−1 + i

(l)
t � g

(l)
t ,

h
(l)
t = o

(l)
t � tanh c

(l)
t ,

(2.4)

where i, f and o are respectively the input, forget and output gates, c is the cell state
and σ is the sigmoid function. This model is illustrated in Figure 2.1(a). Intuitively,
the cell state c corresponds to a memory state, helping to compute the hidden state h
at each time (via the output gate), that is partly propagated through time (the extent
of the propagation is controlled by the forget gate), and partly renewed at each time
step (through the input gate).
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(a) LSTM (Equation (2.4)).

(b) GRU.

Figure 2.1.: Illustration of LSTM and GRU recurrent cells. σ and th respectively
denote the sigmoid and tanh functions. Inputs to non-linearities are first
transformed by a linear layer. Diagrams are adapted from Madsen (2019),
licensed under Creative Commons Attribution CC-BY 4.0.
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While LSTMs have become a standard recurrent network that most often outperforms
simpler RNNs, other variants and gated networks have been proposed and investigated
(Greff et al., 2017). One of the most commonly employed alternatives is the Gated
Recurrent Unit (GRU) of Cho et al. (2014), schematically illustrated in Figure 2.1(b),
which removes the cell states and merges the forget and input gates of the LSTM.
Besides gating mechanisms, other orthogonal axes of improvement have been explored
in the literature.

Bidirectional RNNs, for instance, that combine two parallel recurrent networks, one
processing inputs forward in time and the other one backward in time, have been
proposed by Schuster and Paliwal (1997) to make the output yt depend on the whole
input x and not only the past inputs x≤t. This bidirectional principle can be applied to
many RNN variants with success, like LSTMs (Graves and Schmidhuber, 2005). Many
other variants of recurrent networks have been suggested (S. Chang et al., 2017; Chung,
Ahn, and Y. Bengio, 2017), answering various issues of otherwise standard RNNs.

As presented until now in this document, recurrent networks are mostly fit to vectorial
inputs such as multivariate time series or embedded textual data, with internal states
being vectors evolving through time. Some adaptation may be needed to make them
more efficiently handle other data types (Ganea, Bécigneul, and Hofmann, 2018; Seo
et al., 2018). For image-like structured data, Shi et al. (2015) propose the Convolutional
LSTM, also named ConvLSTM, by replacing linear operations in Equation (2.4) with
convolutional layers and vectorial hidden states and gates with two-dimensional tensors.
Besides such adaptations of existing recurrent networks, another line of research

rather considers neural networks as discretizations of continuous-time dynamical models.
Recent works have thus developed the links between neural networks and solvers of
differential equations to find new sequential architectures that are potentially better
adapted to some input data – in our context of Part III, natural data such as videos
and physical phenomena.

2.1.2. Neural Differential Equations

We give in this section an overview of differential equations used together with neural
networks in the context of temporal modeling, a topic that has been increasingly studied
during the extent of the presented thesis.

2.1.2.1. ODEs and PDEs

Ordinary Differential Equations (ODEs) are differential equations whose unknown is a
function y of a single real univariate variable – that we consider in this document to be
the time variable t – to a Banach space and whose expression involves t, y(t) and its

derivatives
dky

dtk
(t) (up to a finite maximal order n ∈ N, with k ≤ n), also denoted by

∂kt yt. We are mainly interested in explicit ODEs, expressed as:

dny

dtn
(t) = f

(
t, y(t),

dy

dt
(t), . . . ,

dn−1y

dtn−1
(t)

)
, (2.5)

14



2.1. Neural Architecture for Sequence Modeling

Figure 2.2.: Illustration (in dashed lines) of the continuous flow of an ODE, with a
particular solution that is plotted with a solid thicker line. The black
arrow represents the tangent to the highlighted solution, which is fully
determined by its derivative and initial condition according to variants of
the Cauchy-Lipschitz theorem (Demailly, 2006, Chapter V, Section 3.4). In
this example, f is defined as f : (t, y) 7→ 1

t (cos t− y), the ODE admitting
as solutions over I = (0,+∞) functions yC : t 7→ C

t + sinc t for all C ∈ R.

where f is a function of n variables, usually defined over an open set (in particular,
with t belonging to an open interval I). For the sake of clarity, the latter equation is
often abbreviated as:

dny

dtn
= f

(
t, y,

dy

dt
, . . . ,

dn−1y

dtn−1

)
. (2.6)

Note that an n-th order explicit ODE can be written as a first-order ODE by grouping
y and its first n− 1 derivatives into a single n-dimensional y. Therefore, we mainly
consider in this document without loss of generality first-order ODEs with an arbitrary
number of dimensions of the form:

dy

dt
= f(t,y). (2.7)

ODEs have various applications in multiple domains such as physics and biology,
resulting in a diverse field of study with extensive accumulated knowledge (Polyanin
and Zaitsev, 2002). In the context of our work, we are mainly interested in general
results about Equation (2.7). More particularly, we often rely on the existence and
uniqueness of solutions to ODEs. While there exist more general but weaker results,
we leverage the Cauchy-Lipschitz theorem stating that there exists a unique solution y

15



Chapter 2. Background and Related Work

to Equation (2.7) defined over I under any initial condition y(0) = y0, provided that
f is continuous with respect to its first input t and Lipschitz-continuous with respect
to its second input y (Benzoni-Gavage, 2010, Theorem 5.9). This result implies that
Equation (2.7) defines a time-dependent flow, as illustrated in Figure 2.2.
While we lean on ODEs in most of this document, we are also interested in Partial

Differential Equations (PDEs), which appear in many scientific applications as well.
They are inherently more complex than ODEs as their unknown u is a function of
multiple variables, typically time t and spatial coordinates x, y, etc. Consequently,
existence and uniqueness theorems for PDEs are not as universal as for ODEs, but
there exist multiple resolution techniques for specific types of PDEs (Le Dret and
Lucquin, 2016).

2.1.2.2. Differential Equations and Neural Networks

The numerous applications of differential equations motivate their potential combination
with neural networks. As recently popularized by R. T. Q. Chen, Rubanova, et al. (2018)
and inspired by control theory, ODEs may be leveraged to model the temporal evolution
of a system given an initial condition by learning them through the parameterization
of f in Equation (2.7) as a neural network fθ:

dy

dt
= fθ(t,y). (2.8)

This is made possible thanks to the existence and uniqueness of properties given by
the Cauchy-Lipschitz theorem since a neural network fθ with standard architecture is
Lipschitz-continuous. This results in a continuous-time model which may be used to
model latent dynamics and that is more adapted to physical phenomena than standard
RNNs, given its grounding in differential equations.

A more rarely used framework, although already present in the early continuous-time
RNNs (Pineda, 1988; Almeida, 1990; Funahashi and Nakamura, 1993; Hasani et al.,
2021), is to integrate an input x directly into the neural differential equation and not
only through its initial condition:

dy

dt
= fθ

(
t,y,x(t)

)
, (2.9)

in which case this system acts as a sequence-to-sequence model like standard RNNs.
Multiple methods to learn such systems have been found. In particular, if one

can compute gradients for θ or the initial condition y0 with respect to some learning
objective, they can then be used to compute gradients for other parts of the learning
system by using standard backpropagation (Rumelhart, Hinton, and R. J. Williams,
1986). The central proposition of R. T. Q. Chen, Rubanova, et al. (2018) to compute
these gradients is to solve Equation (2.8) forward in time with any solver which can
return an arbitrarily close approximation to the real solution of the ODE; then the
associated gradients are computed by finding that they result from another differential
equation, which is solved backward in time. This technique called the adjoint state
method – from the foundational work of Pontryagin et al. (1962) and Lions (1971), see
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also the review of Plessix (2006) – takes advantage of ODEs reversibility and can be
seen as a continuous-time version of standard backpropagation (le Cun, 1988). This
adjoint method is convenient because it is memory-efficient, similarly to e.g. Gomez
et al. (2017), and allows to learn models that are as close as continuous-time as possible.
However, it is prone to numerical errors of ODE solvers (Gholaminejad, Keutzer, and
Biros, 2019; Zhuang et al., 2020).

Another widespread possibility is to discretize the ODE through a numerical solver
and backpropagate through the finite number of operations in the latter, like backprop-
agation through time for RNNs. When using the simple Euler scheme with step size
∆t, this gives:

yt+∆t = yt + ∆t · fθ(t,yt). (2.10)

With ∆t = 1 and integer time steps k, one then retrieves an instantiation of residual
networks (K. He et al., 2016):

yk+1 = yk + fk,θ(yk). (2.11)

This correspondence has been noticed by Y. Lu et al. (2018), Haber and Ruthotto
(2018), and Ruthotto and Haber (2020) and led authors to propose new architectures by
leveraging more involved ODE solving schemes or changing the ODE of Equation (2.8)
(Sander et al., 2021). Similarly, Tallec and Ollivier (2018) and De Brouwer et al. (2019)
find that GRUs and LSTMs can be seen, in part, as discretizations of ODEs. In that
sense, any discretization of a neural-parameterized ODE such as in Equation (2.10) can
be interpreted as a recurrent cell defining a new type of recurrent network. Accordingly,
B. Chang et al. (2019), Voelker, Kajić, and Eliasmith (2019), and Rusch and Mishra
(2021), for example, introduced new recurrent cells based on specific forms of differential
equations. Note that, while we study them to model temporal data, neural ODEs have
also been applied to static data like in image classification and generation (R. T. Q.
Chen, Rubanova, et al., 2018; Dupont, Doucet, and Teh, 2019; Grathwohl et al., 2019).
In this case, time t is not bound to the data and is rather a continuous abstraction of
the depth of a neural network: inputs are given at time t = 0 and outputs are returned
at some time t = T .

The case of PDEs is more scarcely studied in the literature as it is more difficult to
introduce general methods. A number of works have noticed the links between spatial
derivatives in PDEs and convolutional networks (Z. Long, Y. Lu, X. Ma, et al., 2018;
Z. Long, Y. Lu, and Dong, 2019; Ruthotto and Haber, 2020) due to the relationships
between convolutions and finite difference approximation methods, thereby explaining
the utility of convolutions even in latent spaces when it comes to predicting complex
spatiotemporal phenomena (Shi et al., 2015; Ayed et al., 2020). For specific phenomena,
physics-informed deep learning methods may be designed for more accurate predictions
grounded in physical knowledge (de Bézenac, Pajot, and Gallinari, 2018; You Xie et al.,
2018; Raissi, Perdikaris, and Karniadakis, 2019; R. Wang et al., 2020). In computer
vision, the differential equation describing constant illumination in a scene (Horn and
Schunck, 1981) has been the founding principles of many methods relying on motion
and optical flow methods (D. Sun et al., 2008; Dosovitskiy, Fischer, et al., 2015; Finn,
Goodfellow, and Levine, 2016; J. J. Yu, Harley, and Derpanis, 2016).
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Finally, even though this is out of the scope of this thesis, we notice an emerging
trend of combining Stochastic Differential Equations (SDEs) and neural networks.
SDEs complement usual ODEs with Brownian white noise via Wiener processes, and
sometimes Poisson processes to incorporate jumps in the dynamics as well. They are
the basis of various physics, biology and finance models (Ryder et al., 2018), and an
appealing modeling choice thanks to their integration of noise directly in the temporal
model. Although they may be challenging to articulate with neural networks, research
in this direction has been conducted in a line of works – e.g. non-exhaustively of Ha
et al. (2018), Ryder et al. (2018), and X. Li et al. (2020) – since they are particularly
adapted to some data types as a stochastic continuous dynamical model.

2.1.2.3. ODEs and Neural Network Optimization

We would like to note in this introduction that the use of ODEs in deep learning is not
restricted to neural-parameterized sequence modeling, as it has also been independently
leveraged to analyze, and even sometimes improve, the very training dynamics of neural
networks with respect to training time.

Let us indeed consider a network fθ with parameters θ, optimized by plain gradient
descent with learning rate λ to minimize the loss function Lθ. A gradient descent
iteration for optimization step k consists in:

θk+1 = θk − λ
∂Lθk
∂θk

, (2.12)

which is the Euler discretization with step size ∆t = 1 of the following ODE:

dθt
dt

= −λ ∂Lθt
∂θt

, (2.13)

where t here denotes the training time.
This usual observation has been used to analyze neural network optimization algo-

rithms (Barakat and Bianchi, 2021), but also standard gradient-based optimization
procedures (Belotto da Silva and Gazeau, 2020; Su, S. Boyd, and Candès, 2016; A. A.
Brown and Bartholomew-Biggs, 1989); even mini-batch training may be studied through
the lens of SDEs. Other ODEs describing the evolution of the parameterized function
fθt as well as the loss Lθt can then be derived from the description of the parameter
evolution through time by Equation (2.13). Jacot, Gabriel, and Hongler (2018) thereby
derive from these ODEs the theory of NTKs for infinite-width neural networks, which
simplifies these differential equations and their subsequent analysis. We base one of our
contributions, in Chapter 6, on this theory and the resulting training ODEs in order to
theoretically and empirically study GAN training. Note that numerous authors have
also considered ODEs, but never in this specific setting nor with the same generality,
to analyze and improve GANs (Mescheder, Nowozin, and A. Geiger, 2017; Nagarajan
and Kolter, 2017; Balduzzi et al., 2018; C. Wang, H. Hu, and Y. M. Lu, 2019), with
the most recent example (Qin et al., 2020) transforming the Euler discretization of
Equation (2.12) into a more involved ODE higher-order solving scheme.
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2.1.3. Alternatives
We close this summary of neural architectures for sequential data by mentioning two
common alternatives to the approaches described hereinabove.

2.1.3.1. Convolutional Neural Networks

Convolutional Neural Networks (CNNs) (LeCun, Boser, et al., 1989) have been one of
the core architectural advances that have driven the many successes of deep learning in
computer vision (Krizhevsky, Sutskever, and Hinton, 2012; M. Tan and Le, 2019). Their
advantages are numerous (Goodfellow, Y. Bengio, and Courville, 2016, Chapter 9): they
implement translation-equivariant functions, learn sparse and local correlations, can be
adaptable to varying input dimensions, and are efficiently implementable. Their use,
however, is not restricted to static inputs as a temporal dimension can also be included in
convolutional operations, and the aforementioned advantages are proven to be useful for
temporal applications. While less widespread than RNNs for sequential inputs, CNNs
have a long history of applications to sequential data, for example in NLP (Collobert
and Weston, 2008; X. Zhang, Zhao, and LeCun, 2015; Gehring et al., 2017) and, in
early work labeled as time-delay neural networks, speech recognition (Waibel et al.,
1989; Bottou et al., 1990) and videos (Wöhler and Anlauf, 2001). More recently, three-
dimensional convolutions, including one temporal and two spatial dimensions, have also
been applied to synthesize videos, both in the generator and discriminator networks
of GANs (A. X. Lee, R. Zhang, et al., 2018; Y.-L. Chang et al., 2019; Yin et al., 2020).

Close to the issues investigated in Chapter 3, CNNs have also been adopted for time
series classification and generation (Cui, W. Chen, and Y. Chen, 2016; Zhiguang Wang,
Z. Yan, and Oates, 2017) – cf. the exhaustive review of Ismail Fawaz et al. (2019).
Time series generation and forecasting have partly been influenced by the causal CNN
architecture, popularized by van den Oord, Dieleman, et al. (2016), and used for instance
by Y. Bai, T. Ma, and Risteski (2019), van den Oord, Yazhe Li, Babuschkin, et al. (2018),
and Aksan and Hilliges (2019). This architecture implements a sequence-to-sequence
function with the peculiar property that the i-th output only depends on the first to i-th
inputs, hence the causal attribute. This property is achieved by stacking exponentially
dilated convolutions (see e.g. F. Yu and Koltun (2016)). The aforementioned works show
that such dilated convolutions help to build networks for sequential tasks outperforming
recurrent neural networks in terms of both efficiency and prediction performance. We
refer to Chapter 3 for more details on this kind of architecture.

2.1.3.2. Transformers

Transformer networks, proposed by Vaswani et al. (2017) and based on a self-attention
mechanism, have proven to be a seminal architecture for textual data. Their introduc-
tion, their application to different tasks (Ott et al., 2018; Z. Yang et al., 2019) and
their central role in large-scale general-purpose models (Devlin et al., 2019; T. Brown
et al., 2020) motivate their swift adoption by the NLP community.

Based on their impressive performance in NLP, the transformer architecture consti-
tutes a good candidate for other applications on temporal data, besides its successful
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use on static data in computer vision (Dosovitskiy, Beyer, et al., 2021). Although
self-attention is not a sequential operation – it is invariant with respect to the order of
its inputs, i.e. permutation-invariant –, transformers include two operations tackling the
temporality of the data. Firstly, they combine their input with positional embeddings
ensuring that the input of the network takes into account the elements’ positions in
the sequence. Secondly, the transformer decoder is used in an autoregressive manner,
by producing each output at a time conditioned on the previously generated outputs.

To this day, the use of transformers on temporal data has only just begun but already
shows promising results. They have been applied and adapted, for instance, to video
processing (Weissenborn, Täckström, and Uszkoreit, 2020; Bertasius, H. Wang, and
Torresani, 2021; Y.-F. Wu, Yoon, and Ahn, 2021), audio generation (N. Li et al., 2019),
time series (Nambiar et al., 2020; N. Wu et al., 2020), dynamical systems (Geneva
and Zabaras, 2020), and even reinforcement learning (Lili Chen et al., 2021; Janner,
Q. Li, and Levine, 2021). Finally, the computational bottleneck of self-attention, with a
quadratic computational cost with respect to the input’s length, has been investigated
to improve their scalability for long sequences (Katharopoulos et al., 2020).

2.2. Unsupervised Representation Learning for
Temporal Data

We succinctly summarize in this section the state of the literature for unsupervised
representation learning on temporal data. Given the wide range of this topic, both on
the representation learning and temporal data sides, this presentation is not meant
to be exhaustive, but rather contextualizes our contributions in the next chapters by
highlighting the two main research orientations on this matter: contrastive learning in
Section 2.2.1 and autoencoding in Section 2.2.2.

2.2.1. Contrastive Learning

Contrastive learning has been, for some years, the basis for multiple advances in self-
supervised representation learning on image and sequential data (T. Wang and Isola,
2020). In opposition to autoencoding methods which require a decoder to train the
encoder, contrastive learning removes the need for decoders as it consists in learning
representations of data points by comparing them with the representations of others.
More specifically, it posits the knowledge of pairs of positive and negative examples.
Contrastive learning then aims, as much as possible, at matching the representations of
elements of positive pairs – assumed to be similar samples of the training distribution –
while dissociating the representations of negative pairs, supposed to be dissimilar ele-
ments. This high-level description has been implemented in various forms, usually involv-
ing triplet losses (Mikolov, Sutskever, et al., 2013; Balntas et al., 2016; Logeswaran and
H. Lee, 2018) originating in the early Siamese networks principle (Bromley et al., 1994).

Usually, this means that a data point xref (anchor, or reference) is provided with pos-
itive and negative samples, respectively xpos and xneg. An encoder fθ with parameters
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θ would then be trained using contrastive learning via, for instance, the minimization
of a triplet margin loss (Balntas et al., 2016):

max

(∥∥∥∥fθ(xref
)
− fθ(xpos)

∥∥∥∥2

2

−
∥∥∥∥fθ(xref

)
− fθ(xneg)

∥∥∥∥2

2

+ µ, 0

)
, (2.14)

where µ > 0 is a scalar margin parameter scaling the ideal distance separating positive
and negative examples pairs. This specific triplet loss encourages fθ to satisfy:∥∥∥∥fθ(xref

)
− fθ(xneg)

∥∥∥∥2

2

≥
∥∥∥∥fθ(xref

)
− fθ(xpos)

∥∥∥∥2

2

+ µ, (2.15)

in which case its minimum is attained, thereby respecting the preexisting knowledge of
positive and negative example pairs.
The challenge of contrastive learning is to have access to some notion of pairwise

similarity between samples in order to construct positive and negative pairs, especially
in the unsupervised, or self-supervised, setting. For this reason, sequential data like
text, video and audio are interesting data types for contrastive learning, because the
information provided by the temporality of the sequences can be used to propose
performant heuristics of positive and negative pairs selection (van den Oord, Yazhe Li,
and Vinyals, 2018). The notion of locality in time often serves to design such heuristics
(Hyvarinen and Morioka, 2016; Sermanet et al., 2018; Jansen et al., 2018), similarly to
locality in images which can be used in the static case (T. Chen et al., 2020) via random
cropping. Intuitively, temporally close elements should have similar representations,
and the opposite should hold for elements that are temporally far from each other.

However, this often requires some part of supervision or labeling (Bredin, 2017; Han,
W. Xie, and Zisserman, 2020), more particularly to select pairs of positive examples.
For instance, Sermanet et al. (2018) learn video representations by relying on the
availability of multiple viewpoints for the same clip: frames displaying the same action
from different viewpoints are taken as positive examples pairs. Prior to this thesis, the
vast majority of contrastive representation learning methods for time series were fully
or semi-supervised. In Chapter 3, we tackle this issue and propose a fully unsupervised
contrastive representation learning technique focusing on time series.

2.2.2. Learning from Autoencoding and Prediction

Like for static data (Y. Bengio, Courville, and P. Vincent, 2013), representations
for sequences can be learned by embedding the data points into a lower-dimensional
space through autoencoding techniques. They require the training of a decoder jointly
with the encoder, making them potentially more computationally intensive than the
previously presented contrastive techniques. However, this frees them from the incentive
to take advantage of human supervision, in opposition to contrastive learning.

In the following, we first summarize in Section 2.2.2.1 how autoencoding techniques
are adapted to sequential data. We then cover in Section 2.2.2.2 the efforts at learning
disentangled representations of temporal inputs within this autoencoding framework.
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2.2.2.1. Learning Methods

Autoencoding techniques may solely involve sequence-to-sequence models based on
RNNs (Srivastava, Mansimov, and Salakhudinov, 2015; Malhotra et al., 2017; Lyu
et al., 2018; Hsieh et al., 2018). They rely on an RNN-based encoder, whose final
hidden state serves as a representation of the sequence. This representation is then fed
to an RNN-based decoder which reconstructs the encoded sequence. Both networks are
usually trained jointly via a standard reconstruction loss, such as the Mean Squared
Error (MSE).
Other autoencoding methods rather rely on sequential latent variational models,

which are sequential generative models described in Section 2.3.2.3. They differ from
standard RNNs by replacing deterministic hidden states with stochastic states and
are learned via variational inference. Nevertheless, they also involve autoencoding
mechanisms enabling them to learn representations, improved by the regularization
properties provided by the characteristics of their generative training. We refer to
Section 2.3.2 for a more detailed exposition. Among these models, state-space models,
where the representation corresponding to any time step should completely represent
the whole system at this moment, are especially advantageous. This has been explored,
for instance, by Fraccaro, Kamronn, et al. (2017), Karl et al. (2017), Yingzhen and
Mandt (2018), Gregor et al. (2019), and A. X. Lee, Nagabandi, et al. (2020) for various
data types such as videos, audio and physical simulations. In this thesis, we leverage
such a technique in Chapter 4 with a novel and improved temporal model.
Along the same lines, some other works learn representations by teaching a model

to predict the evolution of sequences conditioned by a few past time steps, rather
than observing the whole sequences to autoencode them. This approach is chosen
in the absence of sequential latent variational models and may benefit the learned
representations by constraining them to contain the necessary information in order to
predict the unseen future of the sequence (Srivastava, Mansimov, and Salakhudinov,
2015). This choice seems relevant for high-dimensional data, for which the dimen-
sionality reduction performed by representation learning is necessarily more drastic.
Examples include Villegas, J. Yang, Hong, et al. (2017) for video prediction, but also
several methods tackling physical phenomena which rely on learning to predict for the
retrieval of physically meaningful system states (Mrowca et al., 2018; R. T. Q. Chen,
Rubanova, et al., 2018; Samuel Greydanus, Dzamba, and Yosinski, 2019; Ayed et al.,
2020; Norcliffe et al., 2021). We follow this line of research in Chapter 5 in the context
of high-dimensional spatiotemporal data.

2.2.2.2. Disentangled Representations

Seeking disentanglement properties in neural network models has received significant
attention in the deep learning community (Y. Bengio, Courville, and P. Vincent, 2013),
despite discussions concerning its rigorous definition (Higgins, D. Amos, et al., 2018;
Locatello et al., 2019). Disentanglement for temporal data has mostly been approached
together with autoencoding techniques. Indeed, it usually aims at separating factors
of variation within the data dynamics, which is necessarily modeled via sequential
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architectures in autoencoding techniques, in opposition to contrastive methods.
In the sequential case, disentangling the dynamics implies separating it into smaller

components which are individually easier to model than if they were combined. This
is also the basis of a research direction to improve forecasting models, based on the
sequential architectures of Section 2.1 and sometimes on the generative modeling
techniques of Section 2.3.2: this is because it simplifies their handling of data dynamics
by separating it into distinct building blocks. Several types of disentanglement have
been considered in the literature, like distinguishing individual components and their
eventual interaction (Hsieh et al., 2018; van Steenkiste et al., 2018), expressing the
dynamics at different time scales (Hsu, Yu Zhang, and Glass, 2017; Yingzhen and Mandt,
2018), extracting physical dynamics (Le Guen and Thome, 2020) and constructing
structured frame representations (Villegas, J. Yang, Zou, et al., 2017; Minderer et al.,
2019; Z. Xu et al., 2019).

A commonly used kind of disentanglement, that is explored in Part III of this
thesis, is to extract from the temporal model static features which do not need to
be incorporated in the complex sequential network. By entirely removing potentially
complex information from temporal models, such disentanglement can drastically
decrease the latent dimensionality of sequential generative models. Accordingly, this
should reduce the difficulty of learning these temporal models. A particularly interesting
application case is videos, for which static components may include visual appearance
and background (Vondrick, Pirsiavash, and Torralba, 2016), at least for short sequences.
As such, some works have taken advantage of variational inference – like most state-of-
the-art static disentanglement methods Locatello et al. (2019) – and adversarial losses,
presented in the forthcoming section, to achieve such spatiotemporal disentanglement
(Denton and Birodkar, 2017; Villegas, J. Yang, Hong, et al., 2017; Hsieh et al., 2018;
Tulyakov et al., 2018), sometimes with data-specific assumptions (Kosiorek et al., 2018;
Jaques, Burke, and Hospedales, 2020).

2.3. Deep Generative Modeling

Generative modeling broadly consists in finding a generated distribution α, which can
be sampled through a generative model, to approximate a target distribution β that is
assumed to be unknown but partially accessible through samples (Jebara, 2008). The
generated α is thus a means to artificially generate new samples from β.

A typical application case, which we shall follow in the rest of this chapter, is where
β is the underlying distribution of the data pdata which is only accessed through the
training dataset. Deep generative models typically frame α as a learnable distribution
pθ parameterized by neural network parameters θ. For ease of exposition, we suppose
in this section that both pdata and pθ are continuous distributions over some space X
and admit density functions.
We first describe in Section 2.3.1 how different standard classes of deep generative

models learn pθ to approximate pdata. We then discuss in Section 2.3.2 how these
models have been adapted for sequential data in the literature, in part thanks to the
sequential architectures of Section 2.1.
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2.3.1. Families of Deep Generative Models

Generative models are traditionally learned by maximizing the log-likelihood of the
training data via the model:

Ex∼pdata log pθ(x). (2.16)

Indeed, doing so is equivalent to minimizing the Kullback-Leibler Divergence (KLD)
DKL (Kullback and Leibler, 1951) between pdata and pθ (Goodfellow, 2016, Section 2.1),
since:

DKL(pdata ‖ pθ) = Ex∼pdata
log

pdata(x)

pθ(x)
= −Ex∼pdata log pθ(x)−H(pdata), (2.17)

where the entropy H(pdata) is constant with respect to θ.
However, this optimization objective requires to compute the generative model’s

likelihood, which is generally intractable when parameterizing it with neural networks.
This is because deep generative models, in order to gain modeling capacity, only
implicitly define this likelihood. Indeed, they usually specify transformations from
a sampled z of a latent space Z = Rd to X with complex neuronal transformations,
making the likelihood intractable in the general case. More formally, the model
generates samples x by first sampling z ∈ Z from a prior p(z) = pz, and then sampling
x conditionally to z via pθ(x | z), yielding:

pθ(x) =

∫
z

pθ(x | z)p(z) dz. (2.18)

In this general framework, the prior pz is simple – typically, a standard Gaussian – and
pθ(x | z) is a distribution G (e.g. Gaussian or Dirac) whose parameters (e.g. location
and variance) are computed via a generator neural network gθ:

pθ(x | z) = G
(
gθ(z)

)
= N

(
µθ1(z), σθ2(z)

2
)
, N

(
µθ1(z),diag

(
σθ2(z)

2
))

, (2.19)

in the factorized Gaussian case. In the Dirac case, this would instead correspond to:

x = gθ(z). (2.20)

As a result, pθ(x | z) can be analytically calculated, but the complexity of the involved
transformation makes the marginalization pθ(x) of pθ(x | z) by pz overly complex to
compute.
The complexity of this neural network generator and the resulting intractability of

the log-likelihood maximization objective motivate the introduction of the two main
generative models described and implemented in this thesis: Variational Autoencoders
(VAEs) and GANs. After introducing them in the following, we then briefly address
other deep generative models tackling Equations (2.16) and (2.18) by adapting the
generator architecture.
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2.3.1.1. Variational Autoencoders

The principle of VAEs (Kingma and Welling, 2014; Rezende, Mohamed, and Wierstra,
2014) consists in, instead of directly optimizing the intractable Equation (2.16), maxi-
mizing a lower bound of the latter. To this end, another φ-parameterized distribution
qφ(z | x), called the inference or recognition network, is introduced as an approximation
of the inaccessible true posterior pθ(z | x). This enables the following derivation:

log pθ(x) = Ez∼qφ(z | x) log pθ(x | z)−DKL

(
qφ(z | x)

∥∥ p(z)
)

+DKL

(
qφ(z | x)

∥∥ pθ(z | x)
)
.

(2.21)

Since KLD is non-negative, the following so-called Evidence Lower Bound (ELBO)
appears:

log pθ(x) ≥ Ez∼qφ(z | x) log pθ(x | z)︸ ︷︷ ︸
reconstruction term

−DKL

(
qφ(z | x)

∥∥ p(z)
)︸ ︷︷ ︸

KLD term

, LELBO(θ, φ). (2.22)

The latter lower bound is then maximized with respect to both θ and φ.
This is possible thanks to a proper choice of distribution qφ(z | x). Canonically, the

latter is chosen as a factorized Gaussian distribution whose mean and variance are
computed by encoder networks µφ1

, σφ2
from the data point x:

qφ(z | x) = N
(
µφ1

(x), σφ2
(x)

2
)
. (2.23)

In this case, and when the prior is Gaussian as well, the KLD term is analytically
computable thanks to the closed-form expression of the KLD between Gaussian dis-
tributions. Moreover, the reconstruction term can be approximated via Monte-Carlo
sampling, with unbiased and low-variance gradient estimates via backpropagation by
sampling from qφ(z | x) using the reparameterization trick. The latter consists in
applying a gradient-tracking transformation to a sample from a constant distribu-
tion instead of directly sampling from the learned Gaussian of Equation (2.23) where
backpropagation is impossible. z is then sampled as follows:

ε ∼ N (0, Id), z = µφ1
(x) + ε� σφ2

(x), (2.24)

where � denotes the Hadamard product.
Interpreting qφ(z | x) as an encoding mechanism, coupled with the generator function

of Equation (2.19), supports the denomination of VAEs as autoencoders. This is because
the reconstruction term of the ELBO of Equation (2.22) favors the successful decoding
of z as a representation of x into x itself, through the expected log-likelihood. This
is especially perceptible when pθ(x | z) is a Gaussian as in Equation (2.19), since
increasing the reconstruction term then amounts to decreasing the MSE between the
data points and their reconstructions.
Therefore, besides being a generative model, VAEs are also a popular basis for

representation learning, more particularly in a disentangled latent space (Locatello
et al., 2019; E. Mathieu et al., 2019) – partly thanks to the KLD term in Equation (2.22)
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that regularizes the autoencoding part of the model. The interesting properties of
learned representations through a VAE make them fit to better understand the data
and control the generation process through the disentangled factors of variation, as
pointed out by Kingma and Welling (2019).
VAEs also come with disadvantages and learning challenges, as also noted by the

latter authors. Namely, they require a careful and more involved design than presented
above to face recurring issues. For example, the blurriness of their outputs in the
context of image generation has penalized VAEs in comparison to other generative
models. Furthermore, they can be subject to optimization issues like posterior collapse
occurring when qφ(z | x) ≈ pz, which is a difficult state to escape once attained.
Numerous works have analyzed these problems and proposed solutions, such as Alemi
et al. (2018), Tomczak and Welling (2018), Dai and Wipf (2019), Loaiza-Ganem and
Cunningham (2019), and Vahdat and Kautz (2020), including theoretical analyses,
optimization improvements and sophistication of the considered distributions for priors
and posteriors.
While some of these solutions have been considered in related works of our con-

tributions, we do not employ them in this document. We only leverage the now
standard β-VAE (Higgins, Matthey, et al., 2017) that modifies the ELBO objective by
multiplying the KLD term of Equation (2.22) with a constant hyperparameter β:

L(β)
ELBO(θ, φ) , Ez∼qφ(z | x) log pθ(x | z)− β ·DKL

(
qφ(z | x)

∥∥ p(z)
)
. (2.25)

Note that this remains a lower bound of the log-likelihood if β ≥ 1. β-VAEs have been
shown to improve the quality and disentanglement of learned representations as well as
the flexibility of VAEs (Alemi et al., 2018), especially for image generation.

2.3.1.2. Generative Adversarial Networks

GANs, introduced by Goodfellow, Pouget-Abadie, et al. (2014), take the opposite
view of VAEs: they cannot optimize the log-likelihood of the data, even indirectly
like VAEs with the ELBO. Instead, they rely on adversarial training to optimize the
generator, which we assume to have the form of Equation (2.20). In this regard, the
optimization objective of the generator is defined with respect to a discriminator, whose
own objective is adverse to the generator’s one.

Indeed, the goal of the discriminator f (with scalar outputs) is to distinguish between
samples from the generated and target distribution. In the original formulation of Good-
fellow, Pouget-Abadie, et al. (2014), f accordingly solves the following maximization
problem, as a binary classifier:

max
f∈F

Ex∼pθ
[
log
(
1− (σ ◦ f)(x)

)]
+ Ey∼pdata

[
log(σ ◦ f)(y)

]
= max

f∈F
Ez∼pz

[
log
(

1− (σ ◦ f)
(
gθ(z)

))]
+ Ey∼pdata

[
log(σ ◦ f)(y)

]
= max

f∈F
LGAN(f, gθ),

(2.26)
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with:

LGAN(f, g) , Ez∼pz
[
log
(

1− (σ ◦ f)
(
g(z)

))]
+ Ey∼pdata

[
log(σ ◦ f)(y)

]
, (2.27)

where σ is the sigmoid function and F the family of investigated discriminators. In
turn, the generator adopts the opposite objective, yielding the following minimax
optimization problem:

min
g∈G

max
f∈F

LGAN(f, g), (2.28)

where G is the family of generators considered during training.
In practice, both F and G are families of neural networks respectively parameterized

by ϑ and θ. To keep the cost of computing the discriminator reasonable and to
avoid sigmoid saturation and gradient vanishing, the actual optimization of fϑ and gθ
differs from the minimax problem of Equation (2.28). Instead of computing a different
discriminator from scratch for each generator gθ, the vast majority of GANs jointly
optimize a single fϑ together with gθ in an alternating fashion. In other words, an
optimization step of a GAN model, repeated until convergence, consists of the following:

• perform a few gradient ascent steps on fϑ with objective Ldiscr(fϑ, gθ), with gθ
frozen;

• perform a gradient descent step on gθ with objective Lgen(fϑ, gθ), with fϑ frozen.

In the initial formulation of Goodfellow, Pouget-Abadie, et al. (2014), Ldiscr = Lgen =
LGAN. Nevertheless, since the second term of LGAN in Equation (2.27) does not depend
on gθ, this also amounts to having:

Ldiscr = LGAN, Lgen(f, g) = Ez∼pz
[
log
(

1− (σ ◦ f)
(
g(z)

))]
. (2.29)

This initial formulation was originally justified by observing that, in the minimax
expression of Equation (2.28), an optimal discriminator with infinite capacity would
make the generator’s loss to minimize equal to the Jensen-Shannon divergence between
pθ and pdata. However, GANs are notoriously hard to train: their optimization is
challenging, they necessitate extensive hyperparameter tuning, and their generation
results suffer from issues such as mode collapse (Goodfellow, 2016; M.-Y. Liu et al.,
2021). This has led the community to propose a plethora of variants (Zhengwei Wang,
She, and Ward, 2021).
Among them, Arjovsky, Chintala, and Bottou (2017) point out possible gradient

issues with the hereinabove model and consequently proposed Wasserstein GANs
(WGANs), provably providing the discriminator with good gradients by linking it to the
optimal critic of the dual representation of theW1 Wasserstein distance. Corresponding
objectives, as popularized by Gulrajani et al. (2017), are defined as:

LIPM(f, g) = Ez∼pz
[
f
(
gθ(z)

)]
− Ey∼pdata

[
f(y)

]
, (2.30)

Lgen(f, g) = LIPM(f, g), or equivalently Ez∼pz
[
f
(
gθ(z)

)]
, (2.31)

Ldiscr(f, g) = LIPM(f, g) + GPg(f), (2.32)
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where LIPM(f, g) is the Integral Probability Metric (IPM) formula (Müller, 1997), and
GPg(f) is a gradient penalty on f constraining it to be close to 1-Lipschitz over the
support of pdata and pθ.

Inspired gradient constraints, together with architectural advances and model changes,
have led to high-performing models scaling to complex and high-dimensional image
datasets (Brock, Donahue, and Simonyan, 2019; Karras, Laine, Aittala, et al., 2020).
As things stand, even though they may lack latent space manipulation properties of
e.g. VAEs, GANs constitute the most successful and popular generative model when it
comes to synthesize realistic images.

2.3.1.3. Other Categories

Besides VAEs and GANs, there are multiple other types of deep generative models in
the literature, like deep Boltzmann machines (Salakhutdinov and Hinton, 2009) and
score-based models (Y. Song et al., 2021). We succinctly describe hereinbelow two
likelihood-based models that are relevant in our setting as they have been used to
handle sequences – cf. Section 2.1.

Autoregressive models. Such models rely on the assumption that the data is struc-
tured, i.e. a data point x can be decomposed in components x = (x1, . . . , xc). They
consequently factorize their likelihood in an autoregressive manner as:

pθ(x) =

c∏
i=1

pθ(xi | x1, . . . , xi−1) ⇔ log pθ(x) =

c∑
i=1

log pθ(xi | x1, . . . , xi−1),

(2.33)

and explicitly compute each term of the latter sum by choosing as pθ(xi | x1, . . . , xi−1)
a simple distribution whose parameters are computed from (x1, . . . , xi−1) via a neural
network parameterized by θ. This technique is especially convenient for data with
discrete values because the previous conditional probabilities become, without loss
of generality, categorical distributions. This explains their prominent use in NLP for
e.g. language modeling (Devlin et al., 2019). They have, nevertheless, also found
applications to other data types like for images, by considering their pixel values to
belong to their original integer range J0, 255K (Oord, Kalchbrenner, and Kavukcuoglu,
2016).

Autoregressive generative models, by nature, require to model sequences of data
components, thereby demanding complex dedicated architectures (Larochelle and
Murray, 2011; van den Oord, Kalchbrenner, et al., 2016; Vaswani et al., 2017) which
can induce a high computational cost. These architectures generally involve standard
sequential architectures, which we describe in Section 2.1.

Normalizing flows. Methods based on normalizing flows (Kobyzev, Prince, and
Brubaker, 2020) choose the setting of Equation (2.20) but additionally ensure that the
generator is invertible, inducing an analytical expression of the model log-likelihood:

log pθ(x) = log pz(z)− log det Jgθ (z), z = g−1
θ (x), (2.34)

28



2.3. Deep Generative Modeling

where Jgθ denotes the Jacobian matrix of gθ and det Jgθ (z) its determinant. Note that
the data and latent dimensions should be equal in this case.
The main challenge of these methods deals with how to efficiently compute this

Jacobian while ensuring that the generator is sufficiently powerful for the considered
task. As for autoregressive models, this implies constraining the generator for these
techniques to be applicable. Propositions in this regard facilitate the computation of
the Jacobian determinant by specifically adapting the structure of the Jacobian matrix
(Dinh, Sohl-Dickstein, and S. Bengio, 2017; Kingma and Dhariwal, 2018) to be e.g.
triangular.
On the other hand, other invertible models circumvent this analytic computation

thanks to numerical approximation methods, with for instance the works of Behrmann
et al. (2019) and Grathwohl et al. (2019). Both leverage the ODE connection with
neural networks established in Section 2.1. On the one hand, Grathwohl et al. (2019)
propose as invertible transformation an ODE parameterized by neural networks whose
invertibility is ensured by the Cauchy-Lipschitz theorem, with a likelihood computed
by integrating another ODE. On the other hand, Behrmann et al. (2019) remain
in discrete-time by using as invertible transformation a bijective residual network,
obtained by constraining the Lipschitzness of the residuals. This prevents the model
from being hindered by numerical errors in ODE integration which could invalidate
the invertibility of the discretized ODE.

2.3.2. Sequential Deep Generative Models

The generative models presented until now in the context of static data have also been
used for sequential data. The general formulation that we adopt for their presentation
is directly applicable to such temporal data. However, the nature and complexity of
the latter call for specifically designed models.

For example, a desirable property of temporal generative models would be to generate
longer sequences than those they have been trained on, which is only possible when
specific architectures are used. There are abundant neural network architectures that
are specially adapted for sequential data, mostly based on RNNs or any other sequential
architecture of Section 2.1. They can be used as a direct replacement for the generator
gθ or any network involved during the training of the latter. We more specifically
discuss these architectures in Section 2.1 and instead focus in the rest of this discussion
on specific generative modeling advances towards better handling time series.
Their breadth of application being immense with multiple sources and types of

temporal data, a thorough review of generative models in this setting would be outside
of the scope of this document. We instead opt for highlighting general research axes in
the literature of sequential generative modeling, listed in the following.

2.3.2.1. Temporally Aware Training Objectives

One of the manners to adapt existing methods such as those of Section 2.3.1 is to
further specialize their training objective to take into account the temporality of the
data, without necessarily changing the structure of the generative model. This is
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beneficial because objectives tailored for static data can bias generative models towards
producing undesirable effects (M. Mathieu, Couprie, and LeCun, 2016; Le Guen and
Thome, 2019), such as blurry outputs for videos.

Proposed adaptations of training objectives can be generally applicable to any kind of
time series by nature. For instance, T. Xu et al. (2020) adapt the WGAN objective by
replacing the optimal transport view of W1 with a causal optimal transport paradigm,
thus constraining the adversarial objective to account for the causality brought by the
temporality of the data. Nonetheless, proposed methods are most often specifically
tailored for the considered data, such as videos (T.-C. Wang et al., 2018), audio
(Dhariwal et al., 2020) and low-dimensional data (Cuturi and Blondel, 2017). For
example, the general GAN discriminator is replaced by T.-C. Wang et al. (2018) with
two discriminators of different architectures and nature: a first one acting on video
frames only to assess their individual quality and a second one taking as input the
whole video to consider the temporal consistency of the produced sequence.

While this research direction is promising, we rather deal in this thesis with structural
changes – i.e., modifications of pθ – to obtain temporal generative models, which we
discuss in the rest of this section.

2.3.2.2. Stochastic and Deterministic Models for Sequence-to-Sequence Tasks

A standard extension of generative models presented earlier is to tackle conditional
generation problems (Mirza and Osindero, 2014; Sohn, H. Lee, and X. Yan, 2015),
where the goal is to generate data points x under some condition c, i.e. the generative
model instead corresponds to the conditional probability pθ(x | c) trained to imitate
pdata(x | c). For static data, a typical example is class-conditional generation, e.g.
synthesizing an image of a given object (Odena, Olah, and Shlens, 2017).
For sequential data, conditional generation is also applied to sequence-to-sequence

tasks, for which an input sequence conditions the output sequence. This includes
sequence transformations (van den Oord, Dieleman, et al., 2016; T.-C. Wang et al.,
2018) as well as prediction tasks, consisting in forecasting the next future time steps of
a series based on some previous conditioning steps.

Sequence conditioning may be strong enough to fully or almost completely determine
the corresponding output for some data types because conditioning steps contain
decisive information about the dynamics of the observed series. In this case, the true
conditional pdata(x | c) is a Dirac, or close to a Dirac. This happens, for instance, in fully
observable physical phenomena driven by ODEs, where the latter ensure that sufficient
observations can determine the whole process, or in videos where visual features and
movements can be predictable in the short term. This has led authors in fields where
this observation stands to choose, often implicitly, a Dirac as pθ(x | c) that is centered
at the point outputted by the generator. In this setting, the generator becomes a simple
deterministic regressor, trained to predict a function of its inputs. While this can be
achieved via usual loss functions like the MSE, some peculiar techniques of generative
modeling can also be applied in this case to improve the prediction quality, such as
adversarial losses (M. Mathieu, Couprie, and LeCun, 2016; Vondrick and Torralba,
2017).
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(a) Example of a state-space model: a deep
Markov model (Krishnan, Shalit, and D. Sontag,
2017).

(b) VRNN model (Chung, Kastner, et al., 2015).
Green dashed arrows highlight the observation-
autoregressive feedback loop.

Figure 2.3.: Graphical representations of the factorization of pθ for two standard
sequential latent variable models. Diamonds and circles represent, respec-
tively, deterministic and stochastic states, conditionally to parent states.

This determinacy assumption simplifies learning, but it may also be a crude ap-
proximation of the observed phenomena. Indeed, real-world data most often present
some form of stochasticity, whether from observation noise or because the underlying
phenomenon includes unpredictable events. Thus, a longstanding research direction
for sequence modeling is to design generative methods that can take into account the
stochasticity of the data (Schuster, 2000; Graves, 2013; Babaeizadeh et al., 2018; J. Jia
and Benson, 2019). This may necessitate a more involved model design to adapt VAEs
and GANs, for instance, to stochastic temporal data. We address this related work in
the following.

2.3.2.3. Latent Generative Temporal Structure

Apart from autoregressive models which inherently present a temporal structure as
noted in Section 2.3.1.3, the specification of generative models relying on transforming
latent variables like in Equations (2.19) and (2.20) is not sequential. The main response
to this issue lies in sequential latent variable models, which we concisely summarize
here; we refer to the work of Fraccaro (2018) for a detailed exposition. Most of these
methods relying on deep neural networks are trained via variational inference within
the VAE framework.

In the static case, the latent variable z, instead of being Gaussian, can be decomposed
in a hierarchy of z1, z2, etc., with learned conditional non-linear priors pθ(zi+1 | zi)
whose factorization yields a particular development of the ELBO – see e.g. the work of
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(a) Smoothing: the whole input sequence is used
for inference.

(b) Filtering: only the present and the past steps
are used for inference.

Figure 2.4.: Graphical representations of two possible factorizations of qφ for the deep
Markov model of Figure 2.3(a).

C. K. Sønderby, Raiko, et al. (2016). Similarly, such a hierarchy of latent variables
may be leveraged in a temporal fashion.

A representative example is deep Markov models (Krishnan, Shalit, and D. Sontag,
2017), whose factorization of pθ is illustrated in Figure 2.3(a) and described as follows:

pθ(x, z) = p(z1)

T∏
t=2

pθ(zt | zt−1)

T∏
t=1

pθ(xt | zt), (2.35)

where T is the length of x. As a consequence of its temporal nature, an advantage
of this type of model is that it applies to any sequence length T by relying on its
transition – pθ(zt | zt−1) – and emission – pθ(xt | zt) – processes. To efficiently train
such a model, the recognition network qφ (see Section 2.3.1.1) is designed to mirror the
factorization of pθ, with for example, following Krishnan, Shalit, and D. Sontag (2017)
and as illustrated in Figure 2.4(a):

qφ(z | x) = qφ(z1 | x)

T∏
t=2

qφ(zt | zt−1,x), (2.36)

yielding a specific development of the ELBO of Equation (2.22):

log pθ(x) ≥ Ez∼qφ(z | x)

T∑
t=1

log pθ(xt | zt)−DKL

(
qφ(z1 | x)

∥∥ p(z1)
)

− Ez∼qφ(z | x)

T∑
t=2

DKL

(
qφ(zt | zt−1,x)

∥∥ pθ(zt | zt−1)
)
.

(2.37)

Note that in the latter equation, qφ(zt | zt−1,x) makes the inference of zt depend on
the whole sequence x, which is called smoothing. In another setting called filtering
that we adopt in Chapter 4, one can choose to make it only depend on the past and
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present steps x1:t as illustrated in Figure 2.4(b), i.e.:

qφ(zt | zt−1,x) = qφ(zt | zt−1,x1:t), (2.38)

where xt:t′ corresponds to the following subsequence of x:

xt:t′ = (xt,xt+1, . . . ,xt′). (2.39)

While smoothing should yield a better likelihood thanks to the received information via
qφ from both the past and future time steps, filtering endows the model with increased
flexibility, as the latter can be employed in an online setting where the future is not
available.
The previously described model belongs to the family of state-space models, where

each observation xt is decoded from a single state zt independently of the other
observations; more formally, the state-space hypothesis requires the likelihood pθ to
admit a factorization of the form of Equation (2.35). This type of generative structure
has received substantial attention because it implies that the latent state of each
time step zt contains the information necessary to represent and decode xt as well
as forecast x>t (Karl et al., 2017), without relying on past or future states. Such
representation learning paves the way for interesting downstream applications leveraging
these complete representations of a system, like in reinforcement learning (Gregor et al.,
2019).

Another line of research investigates, in opposition to state-space modeling, what we
call in this document observation-autoregressive models, where the past predictions
x1:t are fed back in the state temporal model to produce the future state zt+1 and
subsequently its corresponding next prediction xt+1. It has become especially popular
since the work of Bayer and Osendorfer (2014) that initiated the introduction of RNNs
in sequential latent variable models. The observation-autoregressivity then arises from
the hidden state of the RNN which takes as inputs the observations and is used to
produce the latent states z. A popular model of this kind is the Variational Recurrent
Neural Network (VRNN) of Chung, Kastner, et al. (2015), whose generative process is
specified in Figure 2.3(b). It features a deterministic hidden state ht+1 taking as input
ht, zt as well as xt in an autoregressive manner to produce the next state zt+1 and
observation xt+1. This observation-autoregressive feedback loop facilitates learning by
inputting real observations during training.
We point out that the presented latent variables models historically originate from

Kalman filters (Kalman, 1960), whose transition function between z variables is linear
and Gaussian. This enables as a consequence exact inference contrary to the deep
Markov model of Figure 2.3(a), besides offering missing input computation abilities.
Despite their simplicity, Kalman filters remain relevant within the field of deep learning
when coupled with other generative techniques (Krishnan, Shalit, and D. Sontag, 2015).
Among its numerous other applications, its analytically computable likelihood allows
authors to employ it in a latent space by combining it with likelihood-based models
such as VAEs (Fraccaro, Kamronn, et al., 2017) and normalizing flows (de Bézenac,
Rangapuram, et al., 2020).
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Part II.

Time Series Representation
Learning
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We present in the upcoming chapter our first contribution, which deals with unsu-
pervised representation learning for time series, and led to the following publication in
an international conference:

Jean-Yves Franceschi, Aymeric Dieuleveut, and Martin Jaggi (2019). “Un-
supervised Scalable Representation Learning for Multivariate Time Series”.
In: Advances in Neural Information Processing Systems. Ed. by Hanna
Wallach, Hugo Larochelle, Alina Beygelzimer, Florence d’Alché-Buc, Emily
Fox, and Roman Garnett. Vol. 32. Curran Associates, Inc., pp. 4650–4661.
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Chapter 3.

Unsupervised Scalable Representation
Learning for Time Series

3.1. Introduction

We investigate in this chapter the topic of unsupervised general-purpose representation
learning for time series. In spite of the increasing amount of work about representation
learning in fields like natural language processing (Young et al., 2018) or videos
(Denton and Birodkar, 2017), as described in Section 2.2, few articles explicitly deal
with unsupervised representation learning for time series without structural assumption
on non-temporal data.

This problem is indeed challenging for various reasons. First, real-life time series are
rarely or sparsely labeled. Therefore, unsupervised representation learning would be
strongly preferred. Second, methods need to deliver compatible representations while
allowing the input time series to have unequal lengths. Third, scalability and efficiency
both at training and inference time are crucial, in the sense that the techniques must
work for both short and long time series encountered in practice.

Hence, we propose in the following an unsupervised method to learn general-purpose
representations for multivariate time series that comply with the issues of varying
and potentially high lengths of the studied time series. To this end, we introduce a
novel unsupervised loss training a scalable encoder, shaped as a deep convolutional
neural network with dilated convolutions (van den Oord, Dieleman, et al., 2016) and
outputting fixed-length vector representations regardless of the length of its input. This
loss is built as a triplet loss employing time-based negative sampling, taking advantage
of the encoder resilience to time series of unequal lengths. To our knowledge, it is the
first fully unsupervised triplet loss in the literature of time series.
We assess the quality of the learned representations on various datasets to ensure

their universality. In particular, we test how our representations can be used for
classification tasks on the standard datasets in the time series literature, compiled
in the UCR repository (Dau et al., 2018). We show that our representations are
general and transferable, and that our method outperforms concurrent unsupervised
methods and even matches the state of the art of non-ensemble supervised classification
techniques. Moreover, since UCR time series are exclusively univariate and mostly
short, we also evaluate our representations on the recent UEA multivariate time series
repository (Bagnall, Dau, et al., 2018), as well as on a real-life dataset including very
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long time series, on which we demonstrate scalability, performance and generalization
ability across different tasks beyond classification.
This chapter is organized as follows. Section 3.2 specifies the context of this work

beyond Chapter 2 with respect to unsupervised representation learning and triplet
losses for time series in the literature. Section 3.3 describes the unsupervised training
of the encoder, while Section 3.4 details the architecture of the latter. Section 3.5
then provides results of the experiments that we conducted to evaluate our method,
while Section 3.6 more lightly discusses some details of our approach. Finally, the
supplementary material referenced in this chapter is available in Appendix A.

3.2. Related Work

Unsupervised learning for time series. To our knowledge, apart from those dealing
with videos or high-dimensional data (Srivastava, Mansimov, and Salakhudinov, 2015;
Denton and Birodkar, 2017; Villegas, J. Yang, Hong, et al., 2017; van den Oord, Yazhe
Li, and Vinyals, 2018), few recent works tackle unsupervised representation learning for
time series, especially at the time this work was developed. Fortuin et al. (2019) deal
with a related but different problem to this work, by learning temporal representations
of time series that represent well their evolution. Hyvarinen and Morioka (2016) learn
representations on evenly sized subdivisions of time series by learning to discriminate
between those subdivisions from these representations. Lei et al. (2019) expose an
unsupervised method designed so that the distances between learned representations
mimic the standard distance Dynamic Time Warping (DTW) between time series.
Malhotra et al. (2017) design an encoder as a recurrent neural network, jointly trained
with a decoder as a sequence-to-sequence model to reconstruct the input time series from
its learned representation. Finally, L. Wu et al. (2018) compute feature embeddings
generated in the approximation of a carefully designed and efficient kernel.

However, these methods either are neither scalable nor suited to long time series (due
to the sequential nature of a recurrent network, or to the use of DTW with a quadratic
complexity with respect to the input length), are tested on no or few standard datasets
and with no publicly available code, or do not provide sufficient comparison to assess
the quality of the learned representations. Our scalable model and extensive analysis
aim at overcoming these issues, besides outperforming these methods.

Triplet losses. Triplet losses have recently been widely used in various forms for
representation learning in different domains (Mikolov, Sutskever, et al., 2013; Schroff,
Kalenichenko, and Philbin, 2015; L. Y. Wu et al., 2018) and have also been theoretically
studied (Saunshi et al., 2019). However, they have not found much use for time series
apart from audio (Bredin, 2017; R. Lu et al., 2017; Jansen et al., 2018), and rarely, to
our knowledge, in a fully unsupervised setting, as existing works assume the existence
of class labels or annotations in the training data.

Closer to our work even though focusing on a different, more specific task, Jansen et al.
(2018) and Turpault, Serizel, and E. Vincent (2019) learn audio embeddings respectively
in an unsupervised and semi-supervised setting. In particular, they circumvent the
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yi

yj

Time

xneg

xpos xref

yl

Figure 3.1.: Choices of xref , xpos and xneg, respectively reference, positive and negative
examples, in the introduced triplet loss.

absence of labels with slight modifications of reference data points xref with audio-
adapted transformations to create close audio clips xpos, providing a label-free method
to mine positive example pairs. Additionally, Logeswaran and H. Lee (2018) train a
sentence encoder to recognize, among randomly chosen sentences, the true context of
another sentence, which is a difficult method to adapt to time series.
Our method instead relies on a more general choice of positive samples, learning

similarities using subsampling. This resembles, in the context of time series, other
unsupervised learning works on images leveraging random crops to create positive
samples (T. Wang and Isola, 2020).

3.3. Unsupervised Training

We seek to train an encoder-only architecture, avoiding the need to jointly train it
with a decoder like in autoencoder-based standard representation learning methods as
done by Malhotra et al. (2017). To this end, we introduce a novel triplet loss for time
series, inspired by the seminal word representation learning method known as word2vec
(Mikolov, Sutskever, et al., 2013). The proposed triplet loss uses original time-based
sampling strategies to overcome the challenge of learning on unlabeled data. As far as
we know, this work is the first in the time series literature to rely on a triplet loss in a
fully unsupervised setting.
The objective is to ensure that similar time series obtain similar representations,

with no supervision to learn such similarity. Triplet losses help to achieve the former
(Schroff, Kalenichenko, and Philbin, 2015), but require to provide pairs of similar inputs,
thus challenging the latter. While previous supervised works for time series using
triplet losses assume that data is annotated, we introduce an unsupervised time-based
criterion to select pairs of similar time series taking into account time series of varying
lengths, by following word2vec’s intuition. The assumption made in the CBOW model
of word2vec is twofold. The representation of the context of a word should probably
be, on the one hand, close to the one of this word (Goldberg and Levy, 2014), and,
on the other hand, distant from the ones of randomly chosen words, since they are
probably unrelated to the original word’s context. The corresponding loss then pushes
pairs of (context, word) and (context, random word) to be linearly separable. This is
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Algorithm 1: Choices of xref , xpos and
(
xneg
k

)
k ∈J1,KK for an epoch over the

dataset (yi)i∈J1,NK. len(x) denotes the length of the time series x.

1 for i ∈ J1, NK with li = len(yi) do
// Choosing the length of positive and reference points

2 sample lpos = len(xpos) in J1, siK uniformly at random;
3 choose lref = len

(
xref

)
in Jlpos, liK uniformly at random;

// Choosing positive and anchor points
4 sample xref uniformly at random among subseries of yi of length lref ;
5 sample xpos uniformly at random among subseries of xref of length lpos;

// Negative Sampling: choosing random subseries in the dataset
6 for k ∈ J1,KK do
7 sample jk ∈ J1, NK uniformly at random;
8 sample lneg

k = len
(
xneg
k

)
in J1, len

(
yjk
)
K uniformly at random;

9 sample xneg
k uniformly at random among subseries of yk of length lneg

k .

called negative sampling.
We adapt this principle to time series as follows, and illustrate it in Figure 3.1.

Let us consider a random subseries – i.e. a subsequence of a time series composed of
consecutive time steps – xref of a given time series yi from the dataset. Then, on the
one hand, the representation of xref should be close to the one of any of its subseries
xpos (a positive example). On the other hand, if we consider another subseries xneg (a
negative example) chosen at random (in a different random time series yj if several
series are available, or in the same time series if it is long enough and not stationary),
then its representation should be distant from the one of xref . Following the analogy
with word2vec, xpos corresponds to a word, xref to its context, and xneg to a random
word. To improve the stability and convergence of the training procedure as well as
the experimental results of our learned representations, we introduce, as in word2vec,
several negative samples

(
xneg
k

)
k∈J1,KK, chosen independently at random.

The objective corresponding to these choices to minimize during training can be
thought of the one of word2vec with its shallow network replaced with a deep network
fθ with parameters θ, or formally:

− log σ

(
fθ

(
xref

)>
fθ(x

pos)

)
− 1

K

K∑
k=1

log σ

(
−fθ

(
xref

)>
fθ
(
xneg
k

))
, (3.1)

where σ is the sigmoid function. This loss pushes the computed representations to
distinguish between xref and xneg, and to assimilate xref and xpos. Overall, the
training procedure consists in traveling through the training dataset for several epochs
(possibly using mini-batches), picking tuples

(
xref ,xpos,

(
xneg
k

)
k

)
at random as detailed

in Algorithm 1, and performing a minimization step on the corresponding loss for each
pair, until training ends. The overall computational and memory cost is O

(
K · c(f)

)
,
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where c(f) is the cost of evaluating and backpropagating through f on a time series.
Therefore, this unsupervised training is scalable as long as the encoder architecture is
scalable as well.
We highlight that this time-based triplet loss leverages the ability of the chosen

encoder to take as input time series of different lengths. By training the encoder on
a range of input lengths going from one to the length of the longest time series in
the train set, it becomes able to output meaningful and transferable representations
regardless of the input length, as shown in Section 3.5. The length of the negative
examples is chosen at random in Algorithm 1 for the most general case; however, their
length can also be the same for all samples and equal to the length of xpos. The former
case is used when time series in the dataset do not have the same lengths. The latter
case is suitable when all time series in the dataset have equal lengths, as it speeds up
the training procedure thanks to computation factorizations and does not empirically
affect performances.
This training procedure is interesting in that it is efficient enough to be run over

long time series (see Section 3.5) with a scalable encoder (see Section 3.4), thanks to
its decoder-less design and the separability of the loss, on which a backpropagation per
term can be performed to save memory. We use the latter optimization for multivariate
time series of lengths larger than 10 000.

3.4. Encoder Architecture

We explain and present in this section our choice of architecture for the encoder, which
is motivated by three requirements: it must extract relevant information from time
series; it needs to be time- and memory-efficient, both for training and testing; and
it has to allow variable-length inputs. We choose to use deep neural networks with
exponentially dilated causal convolutions to handle time series. While they have been
popularized in the context of sequence generation (van den Oord, Dieleman, et al.,
2016), they have never been used for unsupervised time series representation learning.
They offer several advantages.

Compared to RNNs, which are inherently designed for sequence-modeling tasks and
thus sequential, these networks are scalable as they allow efficient parallelization on
modern hardware such as GPUs. Besides this demonstrated efficiency, exponentially
dilated convolutions have also been introduced to better capture, compared to full
convolutions, long-range dependencies at constant depth by exponentially increasing
the receptive field of the network (van den Oord, Dieleman, et al., 2016; F. Yu and
Koltun, 2016; S. Bai, Kolter, and Koltun, 2018).
CNNs have also been demonstrated to be performant on various aspects for sequential

data. For instance, while the issue of exploding and vanishing gradients of RNNs
has received significant attention and workarounds, as mentioned in Section 2.1.1.2,
recurrent networks are still outperformed by convolutional networks on this aspect
(S. Bai, Kolter, and Koltun, 2018). On the specific domains of time series classification,
which is an essential part of our experimental evaluation, and forecasting, deep neural
networks have recently been successfully used as well (S. Bai, Kolter, and Koltun, 2018;
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Time

Dilation 21 = 2

Dilation 20 = 1

Dilation 22 = 4

Input

Output

Figure 3.2.: Illustration of three stacked dilated causal convolutions. Lines between
each sequence represent their computational graph. Red solid lines highlight
the dependency graph for the computation of the last value of the output
sequence, showing that no future value of the input time series is used to
compute it.

Ismail Fawaz et al., 2019).
Our model is particularly based on stacks of dilated causal convolutions like in the

model of van den Oord, Dieleman, et al. (2016) and as shown in Figure 3.2, which map
a sequence to a sequence of the same length, such that the i-th element of the output
sequence is computed using only values up until the i-th element of the input sequence,
for all i. It is thus called causal, since the output value corresponding to a given time
step is not computed using future input values. An interesting consequence of this choice
is that causal convolutions alleviate the disadvantage of not using recurrent networks at
testing time. Indeed, recurrent networks can be used in an online fashion, thus saving
memory and computation time during testing. In our case, causal convolutions organize
the computational graph so that, in order to update its output when an element is
added at the end of the input time series, one only has to evaluate the highlighted
graph shown in Figure 3.2 rather than the full graph.

Inspired by S. Bai, Kolter, and Koltun (2018), we build each layer of our network as
a combination of causal convolutions, weight normalizations (Salimans and Kingma,
2016), leaky ReLUs and residual connections (see Figure 3.3(a)). Each of these layers
is given an exponentially increasing dilation parameter (2i for the i-th layer); in the
example of Figure 3.2 with a convolutional kernel size of 3, the receptive field of an
output of the resulting causal CNN with d layers would be of the order of 2d+1. The
output of this causal network is then given to a global max pooling layer squeezing the
temporal dimension and aggregating all temporal information in a fixed-size vector (as

44



3.4. Encoder Architecture

Causal Convolution 1
Dilation 2i

Weight Norm

Leaky ReLU

Causal Convolution 2
Dilation 2i

Weight Norm

Leaky ReLU

Convolution
Kernel size 1
(if needed for
up- or down-

sampling)

(a)

Time

Layer 2 (dilation 21 = 2)

Layer 1 (dilation 20 = 1)

Global Max Pooling

Output

Linear Layer

Input

(b)

Figure 3.3.: (a) Composition of the i-th layer of the chosen architecture. (b) Example
of the whole encoder architecture with two causal convolution layers.
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proposed by Zhiguang Wang, Z. Yan, and Oates (2017) in a supervised setting with
full convolutions). A linear transformation of this vector is then the output of the
encoder, with a fixed size, that is independent of the input length. An illustration of
this architecture is provided in Figure 3.3(b).

3.5. Experimental Results

We review in this section experiments conducted to investigate the relevance of the
learned representations. The code corresponding to these experiments is publicly
available.1 The full training process and hyperparameter choices are detailed in
Appendix A.1. We use Python 3.6.8 for the implementation, with PyTorch 0.4.1
(Paszke et al., 2019) for neural networks and scikit-learn (Pedregosa et al., 2011) for
Support-Vector Machines (SVMs). Each encoder is trained using the Adam optimizer
(Kingma and Ba, 2015) on a single Nvidia Titan Xp GPU with CUDA 9.0, unless
stated otherwise.

Hyperparameter choices. Selecting hyperparameters for an unsupervised method is
challenging. Indeed, it would be possible to choose them based on the performance of
the representations in downstream tasks. However, the plurality of downstream tasks is
usually supervised, hence this method of selection would indirectly introduce supervision
in our encoder learning procedure. Therefore, like L. Wu et al. (2018), we choose
for each considered dataset archive a single set of hyperparameters regardless of the
downstream task. As a consequence, we highlight that we perform no hyperparameter
optimization of the unsupervised encoder architecture and training parameters for any
task, unlike other unsupervised works such as TimeNet (Malhotra et al., 2017).
Such a fixed set of hyperparameter values for all datasets especially impacts the

choice of the depth of the causal CNN in the encoder, since it cannot be easily adapted
to the length of the time series in the training dataset. To circumvent this problem,
we opt for a causal CNN depth allowing its last output to have a receptive field of
the order of 5000. This corresponds to a balance between the short time series of a
hundred time steps and the long ones of up to dozens or hundreds of thousands steps.

3.5.1. Classification

We first assess the quality of our learned representations on supervised tasks in a
standard manner (W. Xu, X. Liu, and Gong, 2003; Dosovitskiy, Springenberg, et al.,
2014) by using them for time series classification. In this setting, we show that:

• our method outperforms state-of-the-art unsupervised methods, and notably
achieves performance close to the supervised state of the art;

• strongly outperforms supervised deep learning methods when data is only sparsely
labeled;

1https://github.com/White-Link/UnsupervisedScalableRepresentationLearningTimeSeries.
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• produces transferable representations.

For each considered dataset with a train / test split, we unsupervisedly train an
encoder using its training set. We then train an SVM with radial basis function kernel
on top of the learned features using the training labels of the dataset and output
the corresponding classification score on the testing set. As our training procedure
encourages representations of different time series to be separable, observing the
classification performance of a simple SVM on these features enables is to check their
quality (L. Wu et al., 2018). Using SVMs also allows, when the encoder is trained, an
efficient training procedure both in terms of time (training is a matter of minutes in
most cases) and space.
As K has a significant impact on the performance, we present a combined version

of our method, where representations computed by encoders trained with different
values of K are concatenated (see Appendix A.1.3 for more details). This enables our
learned representations with different parameters to complement each other and to
remove some noise in the classification scores. The proposed combination also acts
as an ensembling strategy, which is also adopted by most baselines considered in this
experimental study.

3.5.1.1. Univariate Time Series

We present accuracy scores for all 128 datasets of the new iteration of the UCR archive
(Dau et al., 2018), which is a standard set of varied univariate datasets. We report in
Table 3.1 scores for only some UCR datasets, while scores for all datasets are reported
in Appendix A.2.
We first compare our scores to the two concurrent methods of this work, TimeNet

(Malhotra et al., 2017) and RWS (L. Wu et al., 2018), which are two unsupervised
methods also training a simple classifier on top of the learned representations, and
reporting their results on a few UCR datasets.

We also perform comparisons on the first 85 datasets of the archive2 to the four best
classifiers of the supervised state of the art studied by Bagnall, Lines, et al. (2017):
COTE – replaced with its improved version HIVE-COTE (Lines, Taylor, and Bagnall,
2018) –, ST (Bostrom and Bagnall, 2015), BOSS (Schäfer, 2015) and EE (Lines and
Bagnall, 2015). HIVE-COTE is a powerful ensemble method using many classifiers
in a hierarchical voting structure; EE is a simpler ensemble method; ST is based on
shapelets and BOSS is a dictionary-based classifier.3 We add DTW – one-nearest-
neighbor classifier with the standard distance DTW (Berndt and Clifford, 1994) as
measure – as a baseline. HIVE-COTE includes ST, BOSS, EE and DTW in its ensemble,
and is thus expected to outperform them.

2The new UCR archive includes 43 new datasets on which no reproducible results of state-of-the-art
methods were produced at the time that this work was conducted. Still, we provide complete
results for our method on these datasets in Appendix A.2, Table A.4, along with those of DTW,
the only other method for which they are available.

3While ST and BOSS are also ensembles of classifiers, we choose not to qualify both of them as
ensembles since their ensemble only includes variations of the same proposed classification method,
like in our case with multiple values of K.
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Figure 3.4.: Critical difference diagram of the average ranks of the compared classifiers
for the Nemenyi test, obtained with Orange (Demšar et al., 2013).

Additionally, we compare our method to the ResNet method of Zhiguang Wang,
Z. Yan, and Oates (2017), which is the best supervised neural network method studied
in the review of Ismail Fawaz et al. (2019). We compile their results separately from
the other baselines in the following because a fraction of the models produced by
Ismail Fawaz et al. (2019) are trained on the old version of the archive, whereas our
model and the other baselines are trained on its most recent release where some datasets
are altered.

Performance. Comparison with the unsupervised state-of-the-art (with full results
in Appendix A.2, Table A.3), indicates that our method consistently matches or
outperforms both unsupervised methods TimeNet and RWS (on 11 out of 12 and 10
out of 11 UCR datasets), showing its performance. Unlike our work, code and full
results on the UCR archive are not provided for these methods, hence the incomplete
results.

When comparing to the supervised non-neural-network state of the art, we observe
in Figures 3.4 and 3.5 that our method is globally the second-best one (with average
rank 2.92), only beaten by HIVE-COTE (1.71) and equivalent to ST (2.95). Thus, our
unsupervised method beats several recognized supervised classifier. It is only preceded
by a powerful ensemble method; this is expected since the latter takes advantage of
numerous classifiers and data representations. Additionally, Figure 3.6 shows that our
method has the second-best median for the ratio of accuracy over maximum achieved
accuracy, behind HIVE-COTE and above ST. We emphasize in particular that our
method, by matching the performance of ST, is at the level of the best performing
method included in HIVE-COTE. While it could be integrated to HIVE-COTE to
improve the performance of the latter, this is beyond the scope of this work and requires
significant technical work, as HIVE-COTE is implemented in Java and ours in Python.
Finally, results reported from the study of Ismail Fawaz et al. (2019) for the fully

supervised ResNet (Appendix A.2,Table A.3) show that it expectedly outperforms our
method on 63% out of the 71 UCR datasets for which their model is comparable to
ours. Nonetheless, this natural discrepancy between our unsupervised method and
this supervised model is remarkable as the latter outperforms ours only by a moderate
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Figure 3.5.: Distribution of ranks of compared methods for the first 85 UCR datasets.

Figure 3.6.: Boxplot of the ratio of the accuracy versus maximum achieved accuracy
(higher is better) for compared methods on the first 85 UCR datasets.
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Figure 3.7.: Accuracy of ResNet and our method with respect to the ratio of labeled
data on the TwoPatterns dataset. Error bars correspond to the standard
deviation over five runs per point for each method.

margin. Moreover, relying on an encoder trained without labels comes with other
advantages, as evidenced in the rest of this section.

Sparse labeling. Taking advantage of their unsupervised training, we show that our
representations can be successfully used on sparsely labeled datasets compared to
supervised methods, since only the SVM is restricted to be learned on the small portion
of labeled data. Figure 3.7 shows that an SVM trained on our representations of a
randomly chosen labeled set consistently outperforms the supervised neural network
ResNet trained on a labeled set of the same size, especially when the percentage of
labeled data is small. For example, with only 1.5% of labeled data, we achieve an
accuracy of 81%, against only 26% for ResNet, whose performance then equates the
one of a random classifier. Moreover, we exceed 99% of accuracy starting from 11% of
labeled data, while ResNet only achieves this level of accuracy with more than 50%
of labeled data. This shows the relevance of our method in semi-supervised settings,
compared to fully supervised methods.

Representations metric space. Besides being suitable for classification purposes, the
learned representations may also be used to define a meaningful measure between time
series. Indeed, we train, instead of an SVM, a one-nearest-neighbor classifier with
respect to the `2 distance on the same representations, and compare it to DTW, which
uses the same classifier on the raw time series. As shown in Appendix A.2 and Table A.1,

51



Chapter 3. Unsupervised Scalable Representation Learning for Time Series

30 20 10 0 10 20
30

20

10

0

10

20

(a) DiatomSizeReduction.

30 20 10 0 10 20 30

20

10

0

10

20

(b) FordB.

10 5 0 5 10 15

20

10

0

10

20

(c) OSULeaf.

Figure 3.8.: Two-dimensional t-SNE (van der Maaten and Hinton, 2008) with perplexity
30 of the learned representations of three UCR test sets. Elements classes
are distinguishable using their respective marker shapes and colors.

this version of our method outperforms DTW on 66% of the UCR datasets, showing
the advantage of the learned representations even in a non-parametric classification
setting. We also include quantitative experiments to assess the usefulness of comparing
time series using the `2 distance between their representations with dimensionality
reduction (Figure 3.8) and clustering (Figure 3.9) visualizations.

Transferability. We include in the comparisons the classification accuracy for each
dataset of an SVM trained on this dataset using the representations computed by
an encoder, which was trained on another dataset (FordA, with K = 5), to test the
transferability of our representations. These scores are reported in Tables 3.1 and A.1.
We observe that the scores achieved by this SVM trained on transferred representations
are close to the scores reported when the encoder is trained on the same dataset as
the SVM, showing the transferability of our representations from a dataset to another,
and from time series to other time series with different lengths. More generally, this
transferability and the performance of simple classifiers on the representations we learn
indicate that they are universal and easy to make use of.

3.5.1.2. Multivariate Time Series

To complement our evaluation on the UCR archive which exclusively contains univariate
series, we evaluate our method on multivariate time series. This can be done by simply
changing the number of input filters of the first convolutional layer of the proposed
encoder. We test our method on all 30 datasets of the UEA archive (Bagnall, Dau,
et al., 2018). Full accuracy scores are presented in Appendix A.3, Table A.5.

The UEA archive has been designed as a first attempt to provide a standard archive
for multivariate time series classification such as the UCR one for univariate series.
As it has only been released recently, we could not compare our method to state-
of-the-art classifiers for multivariate time series. However, we provide a comparison

52



3.5. Experimental Results

Figure 3.9.: Minute-averaged electricity consumption for a single day from the IHEPC
dataset, with respect to the hour of the day. Vertical lines and colors divide
the day into six clusters, obtained with k-means clustering based on repre-
sentations computed on a day-long sliding window. The clustering divides
the day into meaningful portions (night, morning, afternoon, evening).

with DTWD as baseline using results provided by Bagnall, Dau, et al. (2018). DTWD
(dimension-dependent DTW) is an extension of DTW in the multivariate setting and
the best baseline studied by Bagnall, Dau, et al. (2018). Overall, our method matches
or outperforms DTWD on 69% of the UEA datasets, which indicates good performance.

3.5.2. Evaluation on Long Time Series

We show the applicability and scalability of our method on long time series without
labeling for regression tasks, which could correspond to an industrial application and
complements the performed tests on the UCR and UEA archives, whose datasets mostly
contain short time series.
The Individual Household Electric Power Consumption (IHEPC) dataset from the

UCI Machine Learning Repository (Dheeru and Karra Taniskidou, 2017) is a single
time series of length 2 075 259 monitoring the minute-averaged electricity consumption
of one French household for four years. We split this time series into training (first
5× 105 measurements, approximately a year) and testing (remaining measurements)
series. The encoder is trained over the training time series on a single Nvidia Tesla
P100 GPU in no more than a few hours, showing that our training procedure is scalable
to long time series.
We apply the learned encoder on two regression tasks involving two different input

scales. We compute, for each time step of the time series, the representations of the
last window corresponding to a day (1440 measurements) and a quarter (12 · 7 · 1440
measurements) using the same encoder. An example of application of the day-long
representations is shown in Figure 3.9. The considered tasks consist in, for each time
step, predicting the discrepancy between the mean value of the series for the next
period (either a day or quarter) and the one for the previous period. We compare
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Table 3.2.: Results obtained on the IHEPC dataset for daily and quarterly forecasting
tasks by learning a linear regressor over either our learned representations
or the raw time series values.

Task Metric Representations Raw values

Day Test MSE 8.92 × 10−2 8.92 × 10−2

Wall time 12 s 3min 1 s

Quarter Test MSE 7.26× 10−2 6.26 × 10−2

Wall time 9 s 1 h 40min 15 s

linear regressors, trained using gradient descent, to minimize the mean squared error
between the prediction and the target, applied either on the raw time series or the
previously computed representations.

Results and execution times on an Nvidia Titan Xp GPU are presented in Table 3.2.4
On both scales of inputs, our representations induce only a slightly degraded perfor-
mance but provide a large efficiency improvement, due to their small size compared
to the raw time series. This shows that a single encoder trained to minimize our
time-based loss is able to output representations for different scales of input lengths
that are also helpful for other tasks than classification, corroborating their universality.

3.6. Discussion

We briefly discuss in this section several notable aspects of the proposed method.

3.6.1. Behavior of the Learned Representations Throughout
Training

Numerical stability. The risk R is defined as the expectation (taken over the random
selection of the sequences

(
xref ,xpos,xneg

)
) of the loss defined in Equation (3.1). This

risk may decrease if all the representations fθ are scaled by a positive large number.
For example, if for some θ0, for (almost surely) any sequence triplet

(
xref ,xpos,xneg

)
,

fθ0
(
xref

)>
fθ0(xpos) ≥ 0 and fθ0

(
xref

)>
fθ0(xneg) ≤ 0, then:

R(λ, θ0) , Exref ,xpos,xneg

[
− log σ

(
λ2fθ0

(
xref

)>
fθ0(xpos)

)

− log σ

(
−λ2fθ0

(
xref

)>
fθ0(xneg)

)]
(3.2)

4While acting on representations of the same size, the quarterly linear regressor is slightly faster
than the daily one because the number of quarters in the considered time series is smaller than the
number of days.
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Figure 3.10.: Evolution of the test accuracy during the training of the encoder on
the CricketX dataset from the UCR archive (with K = 10), with respect
to the number of completed epochs. The testing labels were only used
for monitoring purposes and the test accuracy was computed after each
mini-batch optimization. The vertical line marks the epoch at which 2000
optimization steps were performed, at which point training is stopped in
our tests. Test accuracy clearly increases during training.

is a decreasing function of λ, thus λ could diverge to infinity in order to minimize
the loss. In other words, the parameters in θ0 corresponding to the last linear layer
could be linearly scaled up, and the representations’ norm would indefinitely increase
during training. Such a phenomenon is not observed in practice given the capacity of
experimented networks, as the mean representation Euclidean norm lies around 20. We
posit two possible explanations for this observation: either the condition above is not
satisfied (more generally, the loss is not reduced by increasing the representations), or
the use of the sigmoid function, that has vanishing gradients, results in an increase
of the norm of the representations that is too slow to be observed, or negligible with
respect to other weight updates during optimization.

Classification accuracy evolution during training. As shown in Figure 3.10, our
unsupervised training clearly makes the classification accuracy of the trained SVM
increase with the number of optimization steps.

3.6.2. Influence of K

As mentioned in Section 3.5, the number K of negative examples in the triplet loss can
have a significant impact on the performance of the encoder. We notably observe that
K = 1 leads to slightly lower scores compared to scores obtained when trained with
K > 1 on the UCR datasets, justifying the use of several negative examples during
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Table 3.3.: Results of our training method combined with the proposed causal CNN
encoder on the one hand, and with an LSTM encoder on the other hand
(K = 5). Bold scores indicate the best performing method.

Dataset Causal CNN LSTM

Adiac 0.703 0.269
Computers 0.676 0.492
CricketX 0.700 0.136
DistalPhalanxTW 0.662 0.662
Earthquakes 0.748 0.748
HandOutlines 0.908 0.646
NonInvasiveFetalECGThorax1 0.904 0.169
PhalangesOutlinesCorrect 0.795 0.613
RefrigerationDevices 0.547 0.411
UWaveGestureLibraryX 0.806 0.357
Wafer 0.993 0.896

training. We did not observe any clear statistical difference between values of K above
1 on the whole archive; however, we notice important differences between different
values of K when studying individual datasets. Therefore, we choose to combine several
encoders trained with different values of K in order to avoid selecting it as a fixed
hyperparameter.

3.6.3. Discussion of the Choice of Encoder

One of the aims of this work is to propose a representation learning method for time
series that is scalable. For this reason, and as explained in Section 3.4, we did not
consider using an LSTM as encoder fθ. Nonetheless, we experiment with such an
encoder on a small set of UCR datasets in order to get an indication of its performance
versus the proposed encoder in this chapter. We use the standard hyperparameters
like those used to train the causal CNN encoder and choose a two-layer LSTM with
hidden size 256 in order to compare both networks with similar computational time
and memory usage. Corresponding results are compiled in Table 3.3.
We observe on this restricted set of experiments that not only does the proposed

encoder outperform the LSTM encoder, but it does so by a large margin. This indicates
that the proposed causal CNN encoder is more adapted to the considered task and
training method.
While we could not produce similar results by replacing the causal CNN with a

transformer encoder network, which is also a sequence-to-sequence model but whose
introduction was recent at the time we worked on this project, preliminary results
indicates that both network options could lead to approximately the same numerical
performance. However, using transformer networks significantly remains computa-
tionally heavier than using CNNs, thus further motivating our choice of encoder. A
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promising future work could consist in investigating the effect of opting for lighter
transformer architectures, like sparse transformers (Child et al., 2019).

3.6.4. Reproducibility
Confidence intervals. All UCR datasets are provided with a unique train / test split
that we used in our experiments. Compared techniques (DTW, ST, BOSS, HIVE-
COTE and EE) are also tested on 100 random train / test splits of these datasets by
Bagnall, Lines, et al. (2017) to produce a strong state-of-the-art evaluation, but we
do not perform similar resamples as this is beyond the scope of this work and would
require significantly more computations. Note that the scores for these methods used in
this article are the ones corresponding to the original train / test split of the datasets.

As our method is based on random sampling, the reported scores may vary depending
on the random seed. While we do not report standard deviation, the large number of
tested datasets prevents large statistical error in the global evaluation of our method.
The order of magnitude of accuracy variation between different runs of the combined
version of our method is below 0.01. For instance, on four different runs, the corre-
sponding standard variations for, respectively, datasets DiatomSizeReduction, CricketX
and UWaveGestureLibraryX are 0.0056, 0.0091 and 0.0053.

Reproducibility report. An extensive reproducibility study (Liljefors, Sorkhei, and
Broomé, 2020), conducted subsequently to the publication of this work, shows that the
results presented in this chapter are indeed reproducible, thanks to detailed descriptions
and provided hyperparameters in Appendix A.1.3. We refer to the corresponding
publication for more detail.

3.7. Conclusion
We present an unsupervised representation learning method for time series that is
scalable and produces high-quality and easy-to-use embeddings. They are generated
by an encoder formed by dilated convolutions that admits variable-length inputs, and
trained with an efficient triplet loss using novel time-based negative sampling for time
series. Conducted experiments show that these representations are universal and can
easily and efficiently be used for diverse tasks such as classification, for which we achieve
state-of-the-art performance, and regression.
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Part III.

State-Space Predictive Models
for Spatiotemporal Data
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We tackle in this part the challenging problem of forecasting complex structured
high-dimensional data like videos and physical phenomena. We do so through the
prism of representation learning, by designing state-space predictive models which, as
explained in Section 2.3.2.3, learn complete state representations for each time step of
input sequences. This state-space nature, coupled with a temporal model design based
on ODEs, allows us to design performant prediction models also offering a meaningful
latent space, compared to other autoregressive and recurrent models.

In the next chapter, we focus on predicting the future of videos. This task demanding
the prediction model to be stochastic in order to account for the uncertainty of the
filmed scene, we propose a novel specifically designed state-space model integrating both
stochasticity and links with differential equations to better model natural motion in
these videos. This work led to the following publication in an international conference:

Jean-Yves Franceschi, Edouard Delasalles, Mickaël Chen, Sylvain Lamprier,
and Patrick Gallinari (July 2020). “Stochastic Latent Residual Video Pre-
diction”. In: Proceedings of the 37th International Conference on Machine
Learning. Ed. by Hal Daumé III and Aarti Singh. Vol. 119. Proceedings of
Machine Learning Research. PMLR, pp. 3233–3246.

In the second chapter of this part, we more generally consider spatiotemporal data,
including videos and physical phenomena, to study spatiotemporal disentanglement,
i.e. the separation of spatial and temporal features. While we already consider it in the
previous contribution on videos, we explicitly analyze here its signification and suggest
grounding it into the formalism of differential equations by interpreting it as a separation
of variables in a PDE, yielding a simple and performant disentangled prediction model.
This work led to the following publication in an international conference:

Jérémie Donà, Jean-Yves Franceschi, Sylvain Lamprier, and Patrick Galli-
nari (2021). “PDE-Driven Spatiotemporal Disentanglement”. In: Interna-
tional Conference on Learning Representations.

61





Chapter 4.

Stochastic Latent Residual Video
Prediction

4.1. Introduction

Being able to predict the future of a video from a few conditioning frames in a
self-supervised manner has many applications in fields such as reinforcement learning
(Gregor et al., 2019) or robotics (Babaeizadeh et al., 2018). More generally, it challenges
the ability of a model to capture visual and dynamic representations of the world.
Video prediction has received a lot of attention from the computer vision community.
However, most proposed methods are deterministic, reducing their ability to capture
video dynamics, which are intrinsically stochastic (Denton and Fergus, 2018).

Stochastic video prediction is a challenging task that has been tackled by recent
works. Most state-of-the-art approaches are based on image-autoregressive models
(Denton and Fergus, 2018; Babaeizadeh et al., 2018), built around RNNs like VRNN
as explained in Section 2.3.2.3, where each generated frame is fed back to the model
to produce the next frame. However, performances of their temporal models innately
depend on the capacity of their encoder and decoder, as each generated frame has to be
re-encoded in a latent space. Such autoregressive processes induce a high computational
cost and strongly tie the frame synthesis and temporal models, which may hurt the
performance of the generation process and limit its applicability (Gregor et al., 2019;
Rubanova, R. T. Q. Chen, and Duvenaud, 2019).
An alternative approach consists in separating the dynamics of the state represen-

tations from the generated frames, which are independently decoded from the latent
space: as seen in Section 2.3.2.3), this corresponds to state-space models. In addition
to removing the aforementioned link between frame synthesis and temporal dynamics,
this is computationally appealing when coupled with a low-dimensional latent space.
Moreover, as also mentioned in the introductory chapters, such models can be used to
shape a complete representation of the state of a system, e.g. for reinforcement learning
applications (Gregor et al., 2019), and are more interpretable than autoregressive
models (Rubanova, R. T. Q. Chen, and Duvenaud, 2019). Yet, these state-space models
are more difficult to train as they require non-trivial inference schemes (Krishnan,
Shalit, and D. Sontag, 2017) and a careful design of the dynamic model (Karl et al.,
2017). This leads most successful ones to only be evaluated on small or artificial toy
tasks.
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In this chapter, we introduce a novel stochastic dynamic model for the task of
video prediction which successfully leverages structural and computational advantages
of state-space models that operate on low-dimensional latent spaces. Its dynamic
component determines the temporal evolution of the system through residual updates
of the latent state, conditioned on learned stochastic variables. This formulation allows
us to implement an efficient training strategy and process in an interpretable manner
complex high-dimensional data such as videos. This residual principle can be linked to
the recent advances relating residual networks and ODEs highlighted in Section 2.1.2.2.
This interpretation opens new perspectives such as generating videos at different
frame rates, as demonstrated in our experiments. The proposed approach outperforms
state-of-the-art models on the task of stochastic video prediction, as demonstrated by
comparisons with competitive baselines on representative benchmarks.
This chapter is organized as follows. Section 4.2 contextualizes this work beyond

Chapter 2 with respect to stochastic video prediction methods as well as state-space and
observation-autoregressive predictors, which motivates the introduction of the proposed
prediction model specified in Section 4.3. This model is consequently evaluated via
thorough experiments in Section 4.4. Finally, the supplementary material referenced in
this chapter is given in Appendix B.

4.2. Related Work

Video synthesis covers a range of different tasks, such as video-to-video translation
(T.-C. Wang et al., 2018), super-resolution (Caballero et al., 2017), interpolation
between distant frames (H. Jiang et al., 2018), generation (Tulyakov et al., 2018), and
video prediction, which is the focus of this chapter.

Deterministic models. Inspired by prior sequence generation models using RNNs
(Graves, 2013), a number of video prediction methods (Srivastava, Mansimov, and
Salakhudinov, 2015; Villegas, J. Yang, Hong, et al., 2017; van Steenkiste et al., 2018;
Wichers et al., 2018; Jin et al., 2020) rely on LSTMs, or, like Ranzato et al. (2014),
De Brabandere et al. (2016), and J. Xu, Ni, Zefan Li, et al. (2018), on derived networks
such as ConvLSTMs (Shi et al., 2015). Indeed, computer vision approaches are usually
tailored to high-dimensional video sequences and propose domain-specific techniques
such as pixel-level transformations and optical flow (Shi et al., 2015; Walker, Gupta,
and Hebert, 2015; Finn, Goodfellow, and Levine, 2016; De Brabandere et al., 2016;
Walker, Doersch, et al., 2016; Vondrick and Torralba, 2017; Liang et al., 2017; Z. Liu,
Yeh, et al., 2017; Lotter, Kreiman, and Cox, 2017; C. Lu, Hirsch, and Schölkopf, 2017;
H. Fan, Linchao Zhu, and Y. Yang, 2019; H. Gao et al., 2019) that help to produce
high-quality predictions. Such predictions are, however, deterministic, thus hurting
their performance as they fail to generate sharp long-term video frames (Babaeizadeh
et al., 2018; Denton and Fergus, 2018). Following M. Mathieu, Couprie, and LeCun
(2016), some works proposed to use adversarial losses on the model predictions to
sharpen the generated frames (Vondrick and Torralba, 2017; Liang et al., 2017; C. Lu,
Hirsch, and Schölkopf, 2017; J. Xu, Ni, and X. Yang, 2018; Yue Wu et al., 2020).
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Nonetheless, adversarial losses are notoriously hard to train (Goodfellow, 2016), and
lead to mode collapse, thereby preventing diversity of generations.

Stochastic and image-autoregressive models. Some approaches rely on exact likeli-
hood maximization, using pixel-level autoregressive generation (van den Oord, Kalch-
brenner, et al., 2016; Kalchbrenner et al., 2017; Weissenborn, Täckström, and Uszkoreit,
2020) or normalizing flows through invertible transformations between the observation
space and a latent space (Kingma and Dhariwal, 2018; Kumar et al., 2020). However,
they require careful design of complex temporal generation schemes manipulating
high-dimensional data, thus inducing a prohibitive temporal generation cost.

More efficient continuous models rely on VAEs for the inference of low-dimensional
latent state variables. Except Xue et al. (2016) and Z. Xu et al. (2019) who learn a one-
frame-ahead VAE, they model sequence stochasticity by incorporating a random latent
variable per frame into a deterministic RNN-based image-autoregressive model, like
VRNN. Babaeizadeh et al. (2018) integrate stochastic variables into the ConvLSTM
architecture of Finn, Goodfellow, and Levine (2016). Concurrently with J. He et
al. (2018), Denton and Fergus (2018) use a prior LSTM conditioned on previously
generated frames in order to sample random variables that are fed to a predictor
LSTM; performances of such methods were improved in follow-up works by increasing
networks capacities (Castrejon, Ballas, and Courville, 2019; Villegas, Pathak, et al.,
2019). Finally, A. X. Lee, R. Zhang, et al. (2018) combine the ConvLSTM architecture
and this learned prior, adding an adversarial loss on the predicted videos to sharpen
them at the cost of a diversity drop.

Yet, all these methods are image-autoregressive, as they feed their predictions back
into the latent space, thereby tying the frame synthesis and temporal models and
increasing their computational cost. Concurrently to our work, Minderer et al. (2019)
propose to use the autoregressive VRNN model (Chung, Kastner, et al., 2015) on
learned image key-points instead of raw frames. It remains unclear to which extent this
change could mitigate the aforementioned problems. We instead tackle these issues
by focusing on video dynamics and propose a model that is state-space and acts on a
small latent space. This approach yields better experimental results despite weaker
video-specific priors.

State-space models. Many latent state-space models have been proposed for sequence
modeling (Bayer and Osendorfer, 2014; Fraccaro, S. K. Sønderby, et al., 2016; Fraccaro,
Kamronn, et al., 2017; Krishnan, Shalit, and D. Sontag, 2017; Karl et al., 2017; Hafner
et al., 2019), usually trained by deep variational inference. These methods, which
use locally linear or RNN-based dynamics, are designed for low-dimensional data as
learning such models on complex data is challenging, or focus on control or planning
tasks.
In contrast, our fully latent method is the first one to be successfully applied to

complex high-dimensional data such as videos, thanks to a temporal model based on
residual updates of its latent state. It falls within the scope of the recent trend linking
differential equations with neural networks in neural network architectures. However,
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y1 y2 y3

x1 x2 x3

z2 z3

(a) Generative model p.

y1 y2 y3

x1 x2 x3

z2 z3

(b) Inference model q.

Figure 4.1.: Proposed generative and inference models. Diamonds and circles represent,
respectively, deterministic and stochastic states, conditionally to parent
states. See also the diagrams of Figures 2.3 and 2.4 for references of other
sequential latent variable models.

R. T. Q. Chen, Rubanova, et al. (2018)’s model as well as follow-ups and related works
(Rubanova, R. T. Q. Chen, and Duvenaud, 2019; Yıldız, Heinonen, and Lähdesmäki,
2019; Le Guen and Thome, 2020) are either limited to low-dimensional data, prone to
overfitting or unable to handle stochasticity within a sequence. Another line of works
considers SDEs with neural networks (Ryder et al., 2018; De Brouwer et al., 2019),
but are limited to continuous Brownian noise, whereas video prediction additionally
requires to model punctual stochastic events.

4.3. Model

We consider the task of stochastic video prediction, consisting in approaching, given a
number of conditioning video frames, the distribution of possible future frames.

4.3.1. Latent Residual Dynamic Model

Let x1:T be a sequence of T video frames. We model their evolution by introducing
latent variables y that are driven by a dynamic temporal model. Each frame xt is
then generated from the corresponding latent state yt only, making the dynamics
independent of the previously generated frames.
We propose to model the transition function of the latent dynamics of y with a

stochastic residual network. State yt+1 is chosen to deterministically depend on the
previous state yt, conditionally to an auxiliary random variable zt+1. These auxiliary
variables encapsulate the randomness of the video dynamics. They have a learned
factorized Gaussian prior that depends on the previous state only. The model is
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Chapter 4. Stochastic Latent Residual Video Prediction

depicted in Figure 4.1(a), and defined as follows:
y1 ∼ N (0, Id),

zt+1 ∼ N
(
µθ(yt), σθ(yt)

)
,

yt+1 = yt + fθ(yt, zt+1),

xt ∼ G
(
gθ(yt)

)
,

(4.1)

where µθ, σθ, fθ and gθ are θ-parameterized neural networks, and G
(
gθ(yt)

)
is a

probability distribution parameterized by gθ(yt). In our experiments, G is a normal
distribution with mean gθ(yt) and constant diagonal variance. Note that y1 is assumed
to have a standard Gaussian prior, and, in our VAE setting, will be inferred from
conditioning frames for the prediction task, as shown in Section 4.3.3.
The residual update rule takes inspiration in the Euler discretization scheme of

differential equations. The state of the system yt is updated by its first-order movement,
i.e. the residual fθ(yt, zt+1). Compared to a regular RNN, this simple principle makes
our temporal model lighter and more interpretable. Equation (4.1), however, differs
from a discretized ODE because of the introduction of the stochastic discrete-time
variables z. Nonetheless, we propose to allow the Euler step size ∆t to be smaller than
1, as a way to make the temporal model closer to a continuous dynamics. The updated
dynamics becomes, with 1/∆t ∈ N to synchronize the step size with the video frame rate:

yt+∆t = yt + ∆t · fθ
(
yt, zbtc+1

)
. (4.2)

For this formulation, the auxiliary variable zt is kept constant between two integer time
steps. Note that a different ∆t can be used during training or testing. This allows our
model to generate videos at an arbitrary frame rate since each intermediate latent state
can be decoded in the observation space. This ability enables us to observe the quality of
the learned dynamic as well as challenge its ODE inspiration by testing its generalization
to the continuous limit in Section 4.4. In the following, we consider ∆t as a hyperpa-
rameter. For the sake of clarity, we consider that ∆t = 1 in the rest of this section;
generalizing to a smaller ∆t is straightforward as Figure 4.1(a) remains unchanged.

Let us finally highlight the decomposition of the dynamics in Equation (4.1), involving,
besides the stochastic variables z, the conditionally deterministic y. This is unlike the
deep Markov model of Figure 2.3(a), where model states are stochastic. A simpler
alternative, closer to the latter, would be to choose:

(yt+1 − yt) ∼ N
(
µθ(yt), σθ(yt)

)
, (4.3)

which resembles the Euler-Maruyama approximation scheme of SDEs (Kloeden and
Platen, 1992). Besides this connection to SDEs which are unfit for video modeling as
argued in Section 4.2, Karl et al. (2017) suggest that such direct stochastic transition
penalizes the prediction ability of the system, which we experimentally confirmed
by preliminary experiments. In contrast, our choice of Equation (4.1) circumvents
this issue because it constrains the inference model, presented in Section 4.3.3, to
backpropagate a gradient through the whole sequence of states y by the deterministic
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transitions, in opposition to the deep Markov model of Figure 2.4(a). This can actually
be retrieved in the VRNN model of Figure 2.3(b) as well, although in a different setting
and without the state-space assumption, where the RNN hidden states h ensure the
presence of such a gradient path.

4.3.2. Content Variable
Some components of video sequences can be static, such as the background or shapes
of moving objects, and may not impact the dynamics. Therefore, we model them
separately, similarly to Denton and Birodkar (2017), Yingzhen and Mandt (2018) and
other works leveraging spatiotemporal disentanglement as seen in Section 2.2.2.2. We
compute a content variable w that remains constant throughout the whole generation
process and is fed together with yt into the frame generator. It enables the dynamical
part of the model to focus only on movement, hence being lighter and more stable.
Moreover, it allows us to leverage architectural advances in neural networks like skip
connections (Ronneberger, Fischer, and Brox, 2015) to produce more realistic frames.

This content variable is a deterministic ψ-parameterized function cψ of a fixed number
k < T of frames x(k)

c =
(
xi1 , . . . ,xik

)
:w = cψ

(
x

(k)
c

)
= cψ

(
xi1 , . . . ,xik

)
xt ∼ G

(
gθ(yt,w)

)
.

(4.4)

During testing, x(k)
c are the last k conditioning frames (usually between 2 and 5).

This content variable is not endowed with any probabilistic prior, contrary to the
dynamic variables y and z. Thus, the information it contains is not constrained in
the loss function (see Section 4.3.3), but only architecturally. To prevent temporal
information from leaking in w, we design cψ as a permutation-invariant function
(Zaheer et al., 2017), consisting in an Multilayer Perceptron (MLP) fed with the sum
of individual frame representations, following Santoro et al. (2017). Additionally, we
propose to uniformly sample the k encoded frames within x1:T during training.
This absence of prior and its architectural constraint allow w to contain as much

non-temporal information as possible while preventing it from containing dynamic
information. On the other hand, due to their strong standard Gaussian priors, y
and z are encouraged to discard unnecessary static information. Therefore, y and z
should only contain temporal information that could not be captured by w. Note that
this content variable can be removed from our model, yielding a more classical deep
state-space model; an experiment in this setting is presented in Appendix B.5.

4.3.3. Variational Inference and Architecture
Following the generative process depicted in Figure 4.1(a), the conditional joint proba-
bility of the full model, given a content variable w, can be written as:

p(x1:T , z2:T ,y1:T | w) = p(y1)

T∏
t=2

p(zt,yt | yt−1)

T∏
t=1

p(xt | yt,w), (4.5)
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with:

p(zt,yt | yt−1) = p(zt | yt−1)p(yt | yt−1, zt). (4.6)

According to the expression of yt+1 in Equation (4.1):

p(yt | yt−1, zt) = δ
(
yt − yt−1 − fθ(yt−1, zt)

)
, (4.7)

where δ is the Dirac delta function centered on 0. Hence, in order to optimize
the likelihood of the observed videos p(x1:T | w), we need to infer latent variables
y1 and z2:T . This is done by deep variational inference using the inference model
parameterized by φ and shown in Figure 4.1(b), which comes down to considering a
variational distribution qZ,Y defined and factorized as follows:

qZ,Y , q(z2:T ,y1:T | x1:T ,w) = q(y1 | x1:k)

T∏
t=2

q(zt | x1:t) q(yt | yt−1, zt)︸ ︷︷ ︸
=p(yt | yt−1,zt)

, (4.8)

with q(yt | yt−1, zt) = p(yt | yt−1, zt) being the aforementioned Dirac delta function.
This yields the following ELBO, whose full derivation starting from the general ELBO
of Equation (2.22) is provided in Appendix B.1:

log p(x1:T | w) ≥ L(x1:T ;w, θ, φ)

, E(z2:T ,y1:T )∼qZ,Y

 T∑
t=1

log p(xt | yt,w)−
T∑
t=2

DKL

(
q(zt | x1:t)

∥∥ p(zt | yt−1)
)

−DKL

(
q(y1 | x1:k)

∥∥ p(y1)
)
.
(4.9)

Note that the dependency of p and q in parameters θ and φ is hidden in the previous
equations, for the sake of clarity; in particular, while p only depends on θ, q depends
on both θ and φ since the transition function in Equation (4.8) between yt and zt+1

on the one hand and yt+1 on the other hand is shared by p and q.
The sum of KLD expectations implies considering the full past sequence of inferred

states for each time step, due to the dependence on conditionally deterministic variables
y2:T . However, optimizing L(x1:T ;w, θ, φ) with respect to model parameters θ and
variational parameters φ can be done efficiently by sampling a single full sequence of
states from qZ,Y per example, and computing gradients by backpropagation trough
all inferred variables, using the reparameterization trick (Kingma and Welling, 2014).
We classically choose q(y1 | x1:k) and q(zt | x1:t) to be factorized Gaussian so that all
KLDs can be computed analytically.
We include an `2 regularization term on residuals fθ applied to y which stabilizes

the temporal dynamics of the residual network, as noted by Behrmann et al. (2019),
Rousseau, Drumetz, and Fablet (2019), and de Bézenac, Ayed, and Gallinari (2021).
Given a set of videos X , the full optimization problem, where L is defined as in
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Equation (4.9), is then given as:

arg max
θ,φ,ψ

∑
x∈X

E
x

(k)
c
L
(
x1:T ; cψ

(
x(k)

c

)
, θ, φ

)

−λ · E(z2:T ,y1:T )∼qZ,Y

T∑
t=2

∥∥fθ(yt−1, zt)
∥∥

2

.
(4.10)

Figure 4.2 depicts the full architecture of our temporal model, also showing how
the model is applied during testing. The first latent variables are inferred with the
conditioning frames and are then predicted with the dynamic model. In contrast,
during training, each frame of the input sequence is considered for inference, which is
done as follows. Firstly, each frame xt is independently encoded into a vector-valued
representation x̃t, with x̃t = eφ(xt). y1 is then inferred using an MLP on the first
k encoded frames x̃1:k. Each zt is inferred in a feed-forward fashion with an LSTM
on the encoded frames. Inferring z with such a filtering procedure experimentally
performs better than smoothing by inferring them from the whole sequence x1:T ; we
hypothesize that this follows from the fact that this filtering scheme is closer to the
prediction setting, where the future is not available.

4.4. Experiments
This section exposes the experimental results of our method on four standard stochastic
video prediction datasets.1 We compare our method with state-of-the-art baselines
on stochastic video prediction. Furthermore, we qualitatively study the dynamics and
latent space learned by our model.2
We used Python 3.7.6 and PyTorch 1.4.0 (Paszke et al., 2019) to implement our

model. Each model was trained on Nvidia GPUs with CUDA 10.1 using mixed-precision
training (Micikevicius et al., 2018) thanks to the Apex library.3 Training details are
described in Appendix B.3.

4.4.1. Evaluation and Comparisons
The stochastic nature and novelty of the task of stochastic video prediction make it
challenging to evaluate (A. X. Lee, R. Zhang, et al., 2018): since videos and models
are stochastic, comparing the ground truth and a predicted video is not adequate. We
thus adopt the common approach (Denton and Fergus, 2018; A. X. Lee, R. Zhang,
et al., 2018) consisting in, for each test sequence, sampling from the tested model a
given number (here, 100) of possible futures and reporting the best performing sample
with respect to the true video. We report this measure for three commonly used
1Code and datasets are available at https://github.com/edouardelasalles/srvp. Pretrained models
are downloadable at https://data.lip6.fr/srvp/.

2Animated video samples are available at https://sites.google.com/view/srvp/.
3https://github.com/nvidia/apex.
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metrics that are computed frame-wise and averaged over time: Peak Signal-to-Noise
Ratio (PSNR) (higher is better), Structured Similarity (SSIM) (higher is better), and
Learned Perceptual Image Patch Similarity (LPIPS) (lower is better, R. Zhang et al.,
2018). PSNR greatly penalizes errors in predicted dynamics, as it is a pixel-level
measure derived from the `2 distance, but might also favor blurry predictions. SSIM
rather compares local frame patches to circumvent this issue but loses some dynamics
information. LPIPS compares images through a learned distance between activations of
deep CNNs trained on image classification tasks and has been shown to better correlate
with human judgment on real images. Finally, the recently proposed Fréchet Video
Distance (FVD) (lower is better, Unterthiner et al., 2018) aims at directly comparing
the distribution of predicted videos with the ground truth distribution through the
representations computed by a deep CNN trained on action recognition tasks. It has
been shown, independently of LPIPS, to better capture the realism of predicted videos
than PSNR and SSIM. We treat all four metrics as complementary, as they capture
different scales and modalities.

We present experimental results on a simulated dataset and three real-world datasets,
that we briefly present in the following and detail in Appendix B.2. For the sake of
concision, we only display a handful of qualitative samples in this section and refer to
Appendix B.6 and our website for additional samples. We compare our model against
several variational state-of-the-art models: SV2P (Babaeizadeh et al., 2018), SVG
(Denton and Fergus, 2018), SAVP (A. X. Lee, R. Zhang, et al., 2018), and StructVRNN
(Minderer et al., 2019). Note that SVG has the closest training and architecture to ours
among the state of the art. Therefore, we use the same neural architecture as SVG for
our encoders and decoders in order to perform fair comparisons with this method.
All baseline results are presented only on the datasets on which they were tested

in the original articles. They are obtained with pretrained models released by the
authors, except those of SVG on the Moving MNIST dataset and StructVRNN on the
Human3.6M dataset, for which we train models using the code and hyperparameters
provided by the authors (see Appendix B.2). Note that we choose the learned prior
version of SVG for all datasets but KTH, for which we select the fixed prior version, as
done by its authors (Denton and Fergus, 2018). Unless specified otherwise, our model
is tested with the same ∆t as in training (see Equation (4.2)).

4.4.2. Datasets and Prediction Results

4.4.2.1. Stochastic Moving MNIST

This dataset consists of one or two MNIST digits (LeCun, Bottou, et al., 1998) moving
linearly and randomly bouncing on walls with new direction and velocity sampled
randomly at each bounce (Denton and Fergus, 2018).

Figure 4.4 (left) shows quantitative results with two digits. Our model outperforms
SVG on both PSNR and SSIM; LPIPS and FVD are not reported as they are not
relevant for this synthetic task. Decoupling dynamics from image synthesis allows
our method to maintain temporal consistency despite high-uncertainty frames where
crossing digits become indistinguishable. For instance in Figure 4.3, the digits shapes
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Figure 4.3.: Conditioning frames and corresponding ground truth and best samples
with respect to PSNR from SVG and our method for an example of the
Stochastic Moving MNIST dataset.
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Figure 4.4.: Mean PSNR scores with respect to t for all tested models on the Moving
MNIST dataset, with their 95%-confidence intervals. Dark vertical bars
mark the length of training sequences.

Table 4.1.: Time-averaged numerical results (mean and 95%-confidence interval) for
PSNR and SSIM of tested methods on the two-digits Moving MNIST dataset.
Bold scores indicate the best performing method for each metric and, where
appropriate, scores whose means lie in the confidence interval of the best
performing method.

Models
Stochastic Deterministic

PSNR SSIM PSNR SSIM

SVG 14.50± 0.04 0.7090± 0.0015 12.85± 0.03 0.6185± 0.0011
Ours 16.93 ± 0.07 0.7799 ± 0.0020 18.25 ± 0.06 0.8300 ± 0.0017
Ours - MLP 16.55± 0.06 0.7694± 0.0019 16.70± 0.05 0.7876± 0.0015
Ours - GRU 15.80± 0.05 0.7464± 0.0016 13.17± 0.03 0.6237± 0.0011
Ours - w/o z — — 14.99± 0.03 0.4757± 0.0019
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Table 4.2.: FVD scores for all tested methods on the KTH, Human3.6M and BAIR
datasets with their 95%-confidence intervals over five different samples from
the models. Bold scores indicate the best performing method for each
dataset.

Method KTH Human3.6M BAIR

SV2P 636± 1 — 965± 17
SAVP 374± 3 — 152 ± 9
SVG 377± 6 — 255± 4
StructVRNN — 556± 9 —
Ours 222 ± 3 416 ± 5 163± 4
Ours - ∆t

2 244± 3 415 ± 3 222± 42
Ours - MLP 255± 4 582± 4 162± 4
Ours - GRU 240± 5 1050± 20 178± 10

change after they cross in the SVG prediction, while our model predicts the correct
digits. To evaluate the predictive ability on a longer horizon, we perform experiments
on the deterministic version of the dataset (Srivastava, Mansimov, and Salakhudinov,
2015) with only one prediction per model to compute PSNR and SSIM. We show the
results up to t+ 95 in Figure 4.4 (right). We can see that our model better captures the
dynamics of the problem compared to SVG as its performance decreases significantly
less over time, especially at a long-term horizon.
We also compare to two alternative versions of our model in Figure 4.4, where the

residual dynamic function is replaced with an MLP or a GRU. Our residual model
outperforms these two versions on both modalities of the dataset, especially on the
deterministic version of the latter, showing its intrinsic advantage at modeling long-term
dynamics. Finally, on the deterministic version of Moving MNIST, we compare to an
alternative version of our method where z is entirely removed, resulting in a temporal
model close to the one presented by R. T. Q. Chen, Rubanova, et al. (2018). The
loss of performance of this alternative model is significant, showing that our stochastic
residual sequential variable model offers a substantial advantage even when used in a
deterministic environment.

4.4.2.2. KTH Action Dataset

This dataset is composed of real-world videos of people performing a single action
per video in front of different backgrounds (Schüldt, Laptev, and Caputo, 2004).
Uncertainty lies in the appearance of subjects, the actions they perform, and how they
are performed.

We substantially outperform on this dataset every considered baseline for each metric,
as shown in Figure 4.5 and Table 4.2. In some videos, the subject only appears after
the conditioning frames, requiring the model to sample the moment and location of the
subject appearance, as well as its action. This critical case is illustrated in Figure 4.6.
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Figure 4.6.: Conditioning frames and corresponding ground truth, best samples from
SVG, SAVP and our method, and worst sample from our method, for a
video of the KTH dataset. Samples are chosen according to their LPIPS
with respect to the ground truth. SVG fails to make a person appear,
unlike SAVP and our model. The latter better predicts the subject pose
and produces more realistic predictions.

Table 4.3.: Time-averaged numerical results (mean and 95%-confidence interval, when
relevant) for PSNR, SSIM, and LPIPS of tested methods on the KTH
dataset. Bold scores indicate the best performing method for each metric
and, where appropriate, scores whose means lie in the confidence interval of
the best performing method.

Models PSNR SSIM LPIPS

SV2P 28.19± 0.31 0.8141± 0.0050 0.2049± 0.0053
SAVP 26.51± 0.29 0.7564± 0.0062 0.1120± 0.0039
SVG 28.06± 0.29 0.8438± 0.0054 0.0923± 0.0038
Ours 29.69 ± 0.32 0.8697 ± 0.0046 0.0736 ± 0.0029
Ours - ∆t

2 29.43 ± 0.33 0.8633± 0.0049 0.0790± 0.0034
Ours - MLP 28.91± 0.34 0.8527± 0.0051 0.0799± 0.0032
Ours - GRU 29.14± 0.33 0.8590± 0.0050 0.0790± 0.0032
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Figure 4.7.: Conditioning frames and corresponding ground truth, best samples from
StructVRNN and our method, and worst sample from our method, with
respect to LPIPS, for a video of the Human3.6M dataset. Our method
better captures the dynamics of the subject and produces less artefacts
than StructVRNN.

There, SVG fails to even generate a moving person; only SAVP and our model manage
to do so, and our best sample is closer to the subject’s poses compared to SAVP.
Moreover, the worst sample of our model demonstrates that it captures the diversity
of the dataset by making a person appear at different time steps and with different
speeds. An additional experiment on this dataset in Section 4.4.3 studies the influence
of the encoder and decoder architecture on SVG and our model.
Finally, Tables 4.2 and 4.3 compare our method to its MLP and GRU alternative

versions, leading to two conclusions. Firstly, it confirms the structural advantage of
residual dynamics observed on Moving MNIST. Indeed, both MLP and GRU lose on
all metrics, and especially in terms of realism according to LPIPS and FVD. Secondly,
all three versions of our model (residual, MLP, GRU) outperform prior methods.
Therefore, this improvement is due to their common inference method, latent nature
and content variable, strengthening our motivation to propose a non-autoregressive
model.

4.4.2.3. Human3.6M

This dataset is also made of videos of subjects performing various actions (Ionescu,
F. Li, and Sminchisescu, 2011; Ionescu, Papava, et al., 2014). While there are more
actions and details to capture with fewer training subjects than in KTH, the video
backgrounds are less varied, and subjects always remain within the frames.

As reported in Figure 4.5 and Table 4.2, we significantly outperform, with respect to
all considered metrics, StructVRNN, which is the state of the art on this dataset and
has been shown to surpass both SAVP and SVG by Minderer et al. (2019). Figure 4.7
shows the challenges of the dataset; in particular, both methods do not correctly
capture the subject appearance. Nonetheless, our model better captures its movements
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Table 4.4.: Time-averaged numerical results (mean and 95%-confidence interval, when
relevant) for PSNR, SSIM, and LPIPS of tested methods on the Human3.6M
dataset. Bold scores indicate the best performing method for each metric
and, where appropriate, scores whose means lie in the confidence interval of
the best performing method.

Models PSNR SSIM LPIPS

StructVRNN 24.46± 0.17 0.8868± 0.0025 0.0557± 0.0013
Ours 25.30 ± 0.19 0.9074 ± 0.0022 0.0509 ± 0.0013
Ours - ∆t

2 25.14 ± 0.21 0.9049± 0.0024 0.0534± 0.0015
Ours - MLP 25.00± 0.19 0.9047± 0.0021 0.0529± 0.0013
Ours - GRU 23.54± 0.18 0.8868± 0.0022 0.0683± 0.0014

and produces more realistic frames.
Comparisons to the MLP and GRU versions demonstrate once again the advantage

of using residual dynamics. GRU obtains low scores on all metrics, which is coherent
with similar results for SVG reported by Minderer et al. (2019). While the MLP version
remains close to the residual model on PSNR, SSIM and LPIPS, it is largely beaten
by the latter in terms of FVD.

4.4.2.4. BAIR Robot Pushing Dataset

This dataset contains videos of a Sawyer robotic arm pushing objects on a tabletop
(Ebert et al., 2017). It is highly stochastic as the arm can change its direction at any
moment. Our method achieves similar or better results compared to state-of-the-art
models in terms of PSNR, SSIM and LPIPS, as shown in Figure 4.5, except for SV2P
that produces very blurry samples, as seen in Appendix B.6, yielding good PSNR but
prohibitive LPIPS scores. Our method obtains the second-best FVD score, close to
SAVP whose adversarial loss enables it to better model small objects, and outperforms
SVG, whose variational architecture is closest to ours, demonstrating the advantage of
non-autoregressive methods. Recent advances (Villegas, Pathak, et al., 2019) indicate
that performance of such variational models can be improved by increasing networks
capacities, but this is out of the scope of this work.

4.4.3. Illustration of Residual, State-Space and Latent Properties
We qualitatively and quantitatively illustrate in the rest of this section the advantages
of the peculiar properties of our video prediction model introduced in the previous
sections.

4.4.3.1. Generation at Varying Frame Rate

We challenge here the ODE inspiration of our model. Equation (4.2) amounts to
learning a residual function fzbtc+1

over t ∈
[
btc, btc+ 1

)
. We aim at testing whether
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Table 4.5.: Time-averaged numerical results (mean and 95%-confidence interval, when
relevant) with respect to PSNR, SSIM, and LPIPS of tested methods on the
BAIR dataset. Bold scores indicate the best performing method for each
metric and, where appropriate, scores whose means lie in the confidence
interval of the best performing method.

Models PSNR SSIM LPIPS

SV2P 20.39 ± 0.27 0.8169 ± 0.0086 0.0912± 0.0053
SAVP 18.44± 0.25 0.7887± 0.0092 0.0634± 0.0026
SVG 18.95± 0.26 0.8058± 0.0088 0.0609± 0.0034
Ours 19.59± 0.27 0.8196 ± 0.0084 0.0574 ± 0.0032
Ours - ∆t

2 19.45± 0.26 0.8196 ± 0.0082 0.0579 ± 0.0032
Ours - MLP 19.56± 0.26 0.8194 ± 0.0084 0.0572 ± 0.0032
Ours - GRU 19.41± 0.26 0.8170 ± 0.0084 0.0585 ± 0.0032

(a) Cropped KTH sample (training ∆t = 1/2).

(b) Cropped Human3.6M sample (training ∆t = 1/2).

(c) Cropped BAIR sample (training ∆t = 1).

Figure 4.8.: Generation examples at doubled or quadrupled frame rate, using a halved
∆t compared to training. Frames including a bottom red dashed bar are
intermediate frames.
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Figure 4.9.: Video (bottom right) generated from the dynamic latent state y inferred
with a video (top) and the content variable w computed with the condi-
tioning frames of another video (left). The generated video keeps the same
background as the bottom left frames, while the subject moves accordingly
to the top frames.

this dynamics is close to its continuous generalization:

dy

dt
= fzbtc+1

(y), (4.11)

which is a piecewise ODE. To this end, we refine this Euler approximation during
testing by halving ∆t; if this maintains the performance of our model, then the dynamics
of the latter is close to the piecewise ODE. As shown in Figure 4.5 and Table 4.2,
prediction performances overall remain stable while generating twice as many frames
(cf. Appendix B.4 for further discussion). Therefore, the justification of the proposed
update rule is supported by empirical evidence. This property can be used to generate
videos at a higher frame rate, with the same model, and without supervision. We show
in Figure 4.8 and Appendix B.4 frames generated at a double and quadruple frame
rate on KTH, Human3.6M and BAIR.

4.4.3.2. Disentangling Dynamics and Content

Let us show that the proposed model actually separates content from dynamics as
discussed in Section 4.3.2. To this end, two sequences xs and xt are drawn from
the Human3.6M testing set. While xs is used for extracting our content variable ws,
dynamic states yt are inferred with our model from xt. New frame sequences x̂ are
finally generated from the fusion of the content vector and the dynamics. This results
in a content corresponding to the first sequence xs and a movement following the
dynamics of the second sequence xt, as observed in Figure 4.9. More samples for KTH,
Human3.6M, and BAIR are presented in Appendix B.6.

4.4.3.3. Interpolation of Dynamics

Our state-space structure allows us to learn semantic representations in yt. To highlight
this feature, we test whether two deterministic Moving MNIST trajectories can be
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Figure 4.10.: From left to right, xs, x̂s (reconstruction of xs by the VAE of our model),
results of the interpolation in the latent space between xs and xt, x̂t and
xt. Each trajectory is materialized in shades of grey in the frames.
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Figure 4.11.: PSNR, SSIM, and LPIPS scores with respect to t, with their 95%-
confidence intervals, on the KTH dataset for SVG and our model with
two choices of encoder and decoder architecture for each model: DCGAN
and VGG. Dark vertical bars mark the length of training sequences.

interpolated by linearly interpolating their inferred latent initial conditions. We begin
by generating two trajectories xs and xt of a single moving digit. We infer their
respective latent initial conditions ys

1 and yt
1. We then use our model to generate frame

sequences from latent initial conditions linearly interpolated between ys
1 and yt

1. In
the case of a meaningful latent space, the resulting trajectory should also be a smooth
interpolation between the directions of reference trajectories xs and xt, and this is
what we observe in Figure 4.10. Additional examples can be found in Appendix B.6.

4.4.3.4. Autoregressivity and Impact of the Encoder and Decoder Architecture.

Figure 4.11 and Table 4.6 expose the numerical results on KTH of our model trained
with ∆t = 1 and SVG (architecturally closest to ours among the considered baselines)
for two choices of encoder and decoder architectures: DCGAN and VGG. We refer
to Appendix B.3.1 for more details about encoder and decoder architectural choices.
Since DCGAN is a less powerful architecture than VGG, results of each method with
VGG are expectedly better than those of the same method with DCGAN. Moreover,
our model outperforms SVG for any choice of encoder and decoder architecture, which
is coherent with Figure 4.5.
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Table 4.6.: FVD scores for SVG and our method on KTH, trained either with DCGAN
or VGG encoders and decoders, with their 95%-confidence intervals over
five different samples from the models.

SVG Ours

VGG DCGAN VGG DCGAN

377± 6 542± 6 220± 2 371± 3

We observe, however, that the difference between a method using VGG and its
DCGAN counterpart differs depending on the model. Ours shows more robustness to
the choice of encoder and decoder architecture, as its performance decreases less than
SVG when switching to a less powerful architecture. In this case, SVG particularly
suffers in terms of PSNR, which is the metric that most penalizes dynamics errors.
This shows that reducing the capacity of the encoders and decoders of SVG not only
hurts its ability to produce realistic frames as expected, but also substantially lowers
its ability to learn a good dynamic. We assume that this phenomenon is caused by the
image-autoregressive nature of SVG, which makes it reliant on the performance of its
encoders and decoders. This supports our motivation to propose a non-autoregressive
model for stochastic video prediction.

4.5. Conclusion
We introduce a novel dynamic latent model for stochastic video prediction which,
unlike prior image-autoregressive models, decouples frame synthesis and dynamics.
This temporal model is based on residual updates of a small latent state that is shown
to perform better than RNN-based models. This endows our method with several
desirable properties, such as temporal efficiency and latent space interpretability. We
experimentally demonstrate the performance and advantages of the proposed model,
which outperforms prior state-of-the-art methods for stochastic video prediction. This
work is, to the best of our knowledge, the first to propose a latent dynamic model that
scales for video prediction. The proposed model is also novel with respect to the recent
line of work dealing with neural networks and ODEs for temporal modeling; it is the
first such residual model to scale to complex stochastic data such as videos.
We believe that the general principles of our model (state-space, residual dynamic,

static content variable) can be generally applied to other models as well. Interesting
future works include replacing the VRNN of Minderer et al. (2019) with our residual
dynamics in order to model the evolution of key-points, supplementing our model
with more video-specific priors, or leveraging its state-space nature in model-based
reinforcement learning.
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Chapter 5.

PDE-Driven Spatiotemporal
Disentanglement

5.1. Introduction

Following the previous chapter, we delve deeper into the spatiotemporal disentan-
glement implemented in our video prediction model as a content variable removing
information from the temporal model thanks to ad hoc inductive biases. Prediction via
spatiotemporal disentanglement was first studied in video prediction works, in order to
separate static and dynamic information (Denton and Birodkar, 2017) for prediction
and interpretability purposes. Existing models are particularly complex, involving
either adversarial losses or variational inference (see Section 2.2.2.2). Furthermore, their
reliance on RNNs hinders their ability to model spatiotemporal phenomena (Yıldız,
Heinonen, and Lähdesmäki, 2019; Ayed et al., 2020), as also shown in Chapter 4. Our
proposition addresses these shortcomings with a simplified and improved model by
grounding spatiotemporal disentanglement in the PDE formalism, in line with the
growing amount of work at the interface between neural networks and dynamical
systems, as discussed in Section 2.1.2.2. This allows us to generalize our results for
more general spatiotemporal data beyond videos.
Spatiotemporal phenomena obey physical laws like Newton’s laws of motion that

lead to describe the evolution of the system through PDEs, thereby motivating our
approach. Practical examples include the conservation of energy for physical systems
(Hamilton, 1835), or the equation describing constant illumination in a scene (Horn and
Schunck, 1981) for videos that has had a longstanding impact in computer vision with
optical flow methods (Dosovitskiy, Fischer, et al., 2015; Finn, X. Y. Tan, et al., 2016).
We propose to model the evolution of partially observed spatiotemporal phenomena
with unknown dynamics by leveraging a formal method for the analytical resolution of
PDE: the functional separation of variables (Miller, 1988). Our framework formulates
spatiotemporal disentanglement for prediction as learning a separable solution, where
spatial and dynamic information are represented in separate variables. Besides offering
a novel interpretation of spatiotemporal disentanglement, it confers simplicity and
performance compared to existing methods: disentanglement is achieved through
the sole combination of a prediction objective and regularization penalties, and the
temporal dynamics is defined by a learned ODE. We experimentally demonstrate the
applicability, disentanglement capacity and forecasting performance of the proposed
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model on various spatiotemporal phenomena involving standard physical processes and
synthetic video datasets against prior state-of-the-art models.
Our work lies within the field of data-driven PDE-based spatiotemporal models,

which exploit for the most part some prior physical knowledge. The latter can induce the
structure of the prediction function (Brunton, Proctor, and Kutz, 2016; de Avila Belbute-
Peres et al., 2018) or specific cost functions, thereby improving model performances.
For instance, de Bézenac, Pajot, and Gallinari (2018) shape their prediction function
with an advection-diffusion mechanism, and Z. Long, Y. Lu, X. Ma, et al. (2018)
and Z. Long, Y. Lu, and Dong (2019) estimate PDEs and their solutions by learning
convolutional filters proven to approximate differential operators. Samuel Greydanus,
Dzamba, and Yosinski (2019), Z. Chen et al. (2020), and Toth et al. (2020) introduce
non-regression losses by taking advantage of Hamiltonian mechanics (Hamilton, 1835),
while Tompson et al. (2017) and Raissi, Yazdani, and Karniadakis (2020) combine
physically inspired constraints and structural priors for fluid dynamic prediction. Our
work deepens this literature by establishing a novel link between a resolution method
for PDEs and spatiotemporal disentanglement, thereby introducing a data-agnostic
model leveraging any static information in observed phenomena.
This chapter is organized as follows. Section 5.2 exposes the core principle of the

separation of variables for PDEs, followed by Section 5.3 where we take inspiration from
this framework to derive a spatiotemporal disentangled prediction method. Section 5.4
then evaluates the proposed model in terms of both prediction and disentanglement
performance. Finally, the supplementary material referenced in this chapter is available
in Appendix C.

5.2. Background: Separation of Variables

Solving high-dimensional PDEs is a difficult analytical and numerical problem (Bungartz
and Griebel, 2004). Variable separation aims at simplifying it by decomposing the
solution, e.g. as a simple combination of lower-dimensional functions, thus reducing
the PDE to simpler differential equations.

5.2.1. Simple Case Study

Let us introduce this technique through a standard application, with proofs in Ap-
pendix C.1.1, on the one-dimensional heat diffusion problem (Fourier, 1822), consisting
in a bar of length L, whose temperature at time t and position p is denoted by u(p, t)
and satisfies:

∂u

∂t
= c2

∂2u

∂p2
, u(0, t) = u(L, t) = 0, u(p, 0) = f(p). (5.1)

Suppose that a solution u is product-separable, i.e. it can be decomposed as:

u(p, t) = u1(p) · u2(t). (5.2)
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Combined with Equation (5.1), it leads to:

c2
u′′1(p)

u1(p)
=
u′2(t)

u2(t)
. (5.3)

The left- and right-hand sides of this equation are respectively independent of t and p.
Therefore, both sides are constant with respect to t and p, and solving both resulting
ODEs gives solutions of the form, with µ ∈ R and n ∈ N:

u(p, t) = µ sin

(
nπ

L
p

)
× exp

(
−
(
cnπ

L

)2

t

)
. (5.4)

The superposition principle and the uniqueness of solutions under smoothness con-
straints allow then to build the set of solutions of Equation (5.1) with linear combina-
tions of separable solutions (Le Dret and Lucquin, 2016). Besides this simple example,
separation of variables can be more elaborate.

5.2.2. Functional Separation of Variables
The functional separation of variables (Miller, 1988) generalizes this method. Let
u be a function obeying a given arbitrary PDE with respect to time t and spatial
variables s (corresponding to p in the previous heat equation example). The functional
variable separation method amounts to finding a parameterization ω, a functional U ,
an entangling function ξ, and representations φ and ψ such that:

ω = ξ
(
φ(s), ψ(t)

)
, u(s, t) = U(ω). (5.5)

With trivial choices ξ = u and U , φ and ψ chosen as identity functions, one ensures
the validity of this reformulation. Finding smarter options for φ, ψ, U , and ξ with
regards to the initial PDE can facilitate its resolution by inducing separate simpler
PDEs on φ, ψ, and U . For instance, product-separability is retrieved with U = exp.
General results on the existence of separable solutions have been proven (Miller, 1983),
though their uniqueness depends on the initial conditions and the choice of functional
separation (Polyanin, 2020).
Functional separation of variables finds broad applications. It helps to solve re-

finements of the heat equation, such as generalizations with an advection term (see
Appendix C.1.2) or with complex diffusion and source terms forming a general transport
equation (H. Jia et al., 2008). Besides the heat equation, functional separation of
PDEs is also applicable in various physics fields like reaction-diffusion with non-linear
sources or convection-diffusion phenomena (Polyanin, 2019; Polyanin and Zhurov, 2020),
Hamiltonian physics (Benenti, 1997), or even general relativity (Kalnins, Miller, and
G. C. Williams, 1992).
We notice that reparameterizations such as Equation (5.5) implement a separation

of spatial and temporal factors of variations, i.e. spatiotemporal disentanglement. We
introduce in the following a learning framework based on this general method and
intuition.
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5.3. Proposed Method

We propose to model spatiotemporal phenomena using the formalism of functional
variable separation. We first describe our notations and then derive a principled model
and constraints from this method.

5.3.1. Problem Formulation Through Separation of Variables

We consider a distribution P of observed spatiotemporal trajectories and corresponding
observation samples x = (xt0 ,xt0+∆t, . . . ,xt1), with xt ∈ X ⊆ Rm and t1 = t0 + ν∆t.
Each sequence x ∼ P corresponds to an observation of a dynamical phenomenon,
assumed to be described by a hidden functional ux (also denoted by u for the sake of
simplicity) of time t ∈ R and space coordinates s. ux then characterizes the trajectory of
x. More precisely, ux describes an unobserved continuous dynamics and x corresponds
to instantaneous discrete spatial measurements associated to this dynamics. Therefore,
we consider that xt results from a time-independent function ζ of the mapping ux(·, t):

xt = ζ
(
ux(·, t)

)
. (5.6)

For example, x might consist in temperatures measured at some points of the sea
surface, while ux would be the complete ocean circulation model. In other words, x
provides partial information about ux and is a projection of the full dynamics. Note
that this modeling entails the absence of stochasticity in the data and their evolution,
in contrast with Chapter 4; this allows us to simplify the framework of analysis of
spatiotemporal disentanglement and to fairly compare our model with respect to prior
works on a wide range of spatiotemporal data.

We seek to learn a model which, when conditioned on prior observations, can predict
future observations. To this end, we posit that the state u of each observed trajectory
x is driven by a hidden PDE, shared among all trajectories; this is motivated by the
extensive line of work at the crossroads of neural networks and differential equations
as told in Section 2.1.2. Learning such a PDE and its solutions would then allow
us to model observed trajectories x. However, directly learning solutions to high-
dimensional unknown PDEs is a complex task (Bungartz and Griebel, 2004; Sirignano
and Spiliopoulos, 2018). We aim in this work at simplifying this resolution. We propose
to do so by relying on the functional separation of variables of Equation (5.5), in
order to leverage a potential separability of the hidden PDE. Therefore, analogously to
Equation (5.5), we propose to formulate the problem as learning observation-constrained
φ, ψ and U , as well as ξ and ζ, such that:

ω = ξ
(
φ(s), ψ(t)

)
, u(s, t) = U(ω), xt = ζ

(
u(·, t)

)
, (5.7)

with φ and ψ allowing to disentangle the prediction problem. In the formalism of the
functional separation of variables, this amounts to decomposing the full solution u,
thereby learning a spatial PDE on φ, a temporal ODE on ψ, and a PDE on U , as well
as their respective solutions.
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5.3.2. Fundamental Limits and Relaxation

Directly learning u is, however, a restrictive choice. Indeed, when formulating PDEs
such as in Equation (5.1), spatial coordinates (abscissa, ordinate, depth, longitude,
latitude, etc.) and time t appear as variables of the solution. Yet, unlike in fully
observable phenomena studied by Sirignano and Spiliopoulos (2018) and Raissi (2018),
directly accessing these variables in practice can be costly or infeasible in our partially
observed setting. In other words, the nature and number of these variables are unknown.
For example, the dynamics of the observed sea surface temperature is highly dependent
on numerous unobserved variables such as temperature at deeper levels or wind intensity.
Explicitly taking into account these unobserved variables can only be done with prior
domain knowledge. To maintain the generality of the proposed approach, we choose to
not make any data-specific assumption on these unknown variables.

We overcome these issues by eliminating the explicit modeling of spatial coordinates
by learning dynamic and time-invariant representations accounting respectively for
the time-dependent and space-dependent parts of the solution. Indeed, Equation (5.7)
induces that these spatial coordinates, hence the explicit resolution of PDEs on u or U ,
can be ignored, as it amounts to learning φ, ψ and g such that:

xt = (ζ ◦ U ◦ ξ)
(
φ(·), ψ(t)

)
= g
(
φ, ψ(t)

)
. (5.8)

In order to manipulate functionals φ and ψ in practice, we respectively introduce
learnable time-invariant and time-dependent representations of φ and ψ, denoted
similarly to Chapter 4 by w and y, such that:

φ ≡ w ∈ S ⊆ Rd,
ψ ≡ y: t 7→ yt ∈ T ⊆ Rp,

(5.9)

where the dependence of ψ ≡ y on time t is modeled using a temporal ODE following
the separation of variables, and the function φ, and consequently its spatial PDE,
are encoded into a vectorial representation w. Besides their separation of variables
basis, the purpose of w and y is to capture spatial and motion information of the data.
For instance, like in Chapter 4, w could encode static information such as objects
appearance, while y typically contains motion variables.
w and yt0 , because of their dependence on x in Equations (5.8) and (5.9), are inferred

from an observation history of size τ + 1, i.e. τ + 1 conditioning frames, xt0::τ , where
xt::τ = (xt,xt+∆t, . . . ,xt+τ∆t), using respectively encoder networks eS and eT . We
parameterize g of Equation (5.8) as a neural network that acts on both w and yt, and
outputs the estimated observation x̂t = g(w,yt).

Unless specified otherwise, w and yt are fed concatenated into g, which then learns
the parameterization ξ of their combination. In the rest of this chapter and for the sake
of simplicity, we make neural network parameterization explicit by using notations eSθ ,
eTθ and gθ instead of eS , eT and g; θ is only the abstraction of parameterization and
all introduced networks use different sets of parameters in practice, like in Chapter 4.
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5.3.3. Temporal ODEs

The separation of variables allows us to partly reduce the complex task of learning
and integrating PDEs to learning and integrating an ODE on ψ, which has been
extensively studied in the literature, as explained in Section 2.1.2. Therefore, we model
the evolution of yt, thereby the dynamics of our system, with a first-order ODE:

∂yt
∂t

= fθ(yt) ⇔ yt = yt0 +

∫ t

t0

fθ(yt′) dt′. (5.10)

Following R. T. Q. Chen, Rubanova, et al. (2018), fθ is implemented by a neural
network and Equation (5.10) is solved with an ODE resolution scheme. In this work, we
implement this integration using a simple Euler solving scheme with backpropagation
through time (see Appendix C.5), but this could be replaced with any other solving
scheme since the hereinabove formulation is general.
Suppose initial ODE conditions w and yt0 have been computed with eSθ and eTθ .

This leads to the following simple forecasting scheme, enforced by the corresponding
regression loss:

x̂t = gθ

(
w,yt0 +

∫ t

t0

fθ(yt′) dt′

)
, Lpred =

1

ν + 1

ν∑
i=0

1

m
‖x̂t0+i∆t − xt0+i∆t‖22,

(5.11)

where ν + 1 is the number of observations and m is the dimension of the observed
variables x.

Equation (5.11) ensures that the evolution of y is coherent with the observations;
but we should also enforce its consistency with eTθ . Indeed, the dynamics of yt is
modeled by Equation (5.10), while only its initial condition yt0 is computed with eTθ .
However, there is no guaranty that yt, computed via integration, matches eTθ (xt::τ ) at
any other time t, while they should in principle coincide. We introduce the following
autoencoding constraint mitigating their divergence, thereby stabilizing the evolution
of y:

LAE =
1

m

∥∥∥∥gθ(w, eTθ (xt0+i∆t::τ )
)
− xt0+i∆t

∥∥∥∥2

2

, with i ∼ U
(
J0, ν − τK

)
. (5.12)

5.3.4. Spatiotemporal Disentanglement

As indicated hereinabove, the spatial PDE on φ is assumed to be encoded into w.
Nonetheless, since w is inferred from an observation history, we need to explicitly
enforce its time independence. In the PDE formalism, this is equivalent to:

∂eSθ (xt::τ )

∂t
= 0 ⇔

∫ t1−τ∆t

t0

∥∥∥∥∥∂eSθ (xt::τ )

∂t

∥∥∥∥∥
2

2

dt = 0. (5.13)
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However, enforcing Equation (5.13) raises two crucial issues. Firstly, in our partially
observed setting, there can be variations of observable content, for instance when an
object conceals another one. Therefore, strictly enforcing a null time derivative is not
desirable as it prevents eSθ to extract accessible information that could be obfuscated
in the sequence. Secondly, estimating this derivative in practice in our setting is
unfeasible and costly because of the coarse temporal discretization of the data and the
computational cost of eSθ ; see Appendix C.2 for more details. We instead introduce a
discretized penalty in our minimization objective, discouraging variations of content
between two distant time steps, with d being the dimension of w:

LSreg =
1

d

∥∥∥eSθ (xt0::τ )− eSθ (xt1−τ∆t::τ )
∥∥∥2

2
. (5.14)

It allows us to overcome the previously stated issues by not enforcing a strict invariance
of w and removing the need to estimate any time derivative. Note that this formulation
actually originates from Equation (5.13) using the Cauchy-Schwarz inequality (see
Appendix C.2 for a more general derivation).

Abstracting the spatial ODE on φ from Equation (5.7) into a generic representation
w leads, without additional constraints, to an underconstrained problem where spa-
tiotemporal disentanglement cannot be guaranteed. Indeed, eSθ can be set to zero to
satisfy Equation (5.14) without breaking any prior constraint, because static informa-
tion is not prevented to be encoded into y. Accordingly, information in w and y needs
to be segmented.

Thanks to the design of our model, it suffices to ensure that w and y are disentangled
at initial time t0 for them be to be disentangled at all t. Indeed, the mutual information
between two variables is preserved by invertible transformations. Equation (5.10) is an
ODE and f , as a neural network, is Lipschitz-continuous, so the ODE flow yt 7→ yt′ is
invertible. Therefore, disentanglement between w and yt, characterized by a low mutual
information between both variables, is preserved through time; see Appendix C.3 for a
detailed discussion. We thus only constrain the information quantity in yt0 by using a
Gaussian prior to encourage it to exclusively contain necessary dynamic information:

LTreg =
1

p
‖yt0‖

2
2 =

1

p

∥∥∥eTθ (xt0::τ )
∥∥∥2

2
. (5.15)

5.3.5. Loss Function

The minimized loss is a linear combination of Equations (5.11), (5.12), (5.14) and (5.15):

L(x) = Ev∼P
[
λpred · Lpred + λAE · LAE + λSreg · LSreg + λTreg · LTreg

]
, (5.16)

as illustrated in Figure 5.1. In the following, we conventionally set ∆t = 1. Note that
the presented approach could be generalized to irregularly sampled observation times
thanks to the dedicated literature (Rubanova, R. T. Q. Chen, and Duvenaud, 2019),
but this is out of the scope of this work.
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5.3.6. Discussion of Differences with Chapter 4’s Model

The model presented in this section contrasts with Chapter 4’s model, denoted in the rest
of this chapter as SRVP, in its exclusively regression-based training procedure, whereas
their overall architectures framed in Figures 4.2 and 5.1 share their state-space nature
and their separation of a content variable w from a dynamic, time-dependent, variable
y. These similarities actually originate from the separation of variables inspiration
introduced in this chapter, thus supporting part of the spatiotemporal disentanglement
view of Chapter 4. Similarly, this also explains the substantial discrepancies between
their training procedures: the training of this chapter’s model is grounded in PDE
formalism, while SRVP’s separation of content and dynamics described in Section 4.3.2
is ad hoc and only intuitively tackles the problem of spatiotemporal disentanglement.
The forthcoming experiments show the advantage of this chapter’s model at such
disentanglement, thus justifying our approach.
However, we highlight that the training procedures of both models, while far from

identical, could share some similarities when interpreting Equation (5.16)’s terms.
Indeed, Equation (5.15) is similar to the KLD penalty on y1 in Equation (4.9) because
it constrains the temporal model’s initial condition to only contain necessary pieces of
information for the dynamics. Equation (5.12), as an autoencoding loss, recalls the
reconstruction term of Equations (2.22) and (4.9) with Gaussian posteriors. Finally,
Equation (5.14) seeks to enforce content variable invariance like Equation (4.4)’s
permutation-invariant network, additionally taking into account the potential variability
of observable content in the observed sequences. We hypothesize that this analogy
explains the satisfying spatiotemporal disentanglement of SRVP that is already observed
in Section 4.4.3 but more rigorously evaluated in the following experiments.

5.4. Experiments

We study in this section the experimental results of our model on various spatiotemporal
phenomena with physical, synthetic video and real-world datasets, which are briefly
presented in this section and in more detail in Appendix C.4. We demonstrate the
relevance of our model with ablation studies, and its performance by comparing it with
more complex state-of-the-art models. Performances are assessed thanks to standard
metrics (Denton and Fergus, 2018; Le Guen and Thome, 2020) MSE (lower is better) or
its alternative PSNR (higher is better), and SSIM (higher is better); see also Section 4.4
for more information.
We use Python 3.8.1 and PyTorch 1.4.0 (Paszke et al., 2019) to implement our

model. Each model is trained on an Nvidia GPU with CUDA 10.1. Training is
done, like in Section 4.4, with mixed-precision training. We refer to Appendix C.6 for
more experiments and prediction examples and to Appendix C.5 for complete training
information.1

1Our source code is publicly released at the following URL: https://github.com/JeremDona/
spatiotemporal_variable_separation.
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Figure 5.2.: Example of predictions of compared models on SST. Content swap pre-
serves the location of extreme temperature regions which determine the
movement while modifying the magnitude of all regions, especially in tem-
perate areas.
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Table 5.1.: Forecasting performance on WaveEq-100, WaveEq and SST of compared
models with respect to indicated prediction horizons in terms of MSE and
SSIM. Bold scores indicate the best performing method.

Models

WaveEq-100 WaveEq SST

MSE MSE SSIM

t+ 40 t+ 40 t+ 6 t+ 10 t+ 6 t+ 10

PKnl — — 1.28 2.03 0.6686 0.5844
PhyDNet — — 1.27 1.91 0.5782 0.4645
SVG — — 1.51 2.06 0.6259 0.5595
MIM — — 0.91 1.45 0.7406 0.6525

Ours 4.33 × 10−5 1.44 × 10−4 0.86 1.43 0.7466 0.6577
Ours (w/o w) 1.33× 10−4 5.09× 10−4 0.95 1.50 0.7204 0.6446

5.4.1. Physical Datasets: Wave Equation and Sea Surface
Temperature

We first investigate two synthetic dynamical systems and a real-world dataset in order to
show the advantage of PDE-driven spatiotemporal disentanglement for the forecasting
of physical phenomena. To analyze our model, we first lean on the wave equation,
occurring for example in acoustic or electromagnetism, with source term like Saha,
Dash, and Mukhopadhyay (2020), to produce the WaveEq dataset consisting in 64× 64
normalized images of the phenomenon. We additionally build the WaveEq-100 dataset
by extracting 100 pixels, chosen uniformly at random and shared among sequences,
from WaveEq frames; this experimental setting can be thought of as measurements from
sensors partially observing the phenomenon. We also test and compare our model on
the real-world dataset SST, derived from the data assimilation engine NEMO (Madec
and NEMO System Team, 2019) and introduced by de Bézenac, Pajot, and Gallinari
(2018), consisting in 64×64 frames showing the evolution of the sea surface temperature.
Modeling its evolution is particularly challenging as its dynamic is highly non-linear,
chaotic, and involves several unobserved quantities (e.g. forcing terms). Results are
compiled in Table 5.1 and an example of prediction is depicted in Figure 5.2.
We compare our model on these three datasets to its alternative version with w

removed and integrated into y, thus also removing LSreg and LTreg. We also include the
state-of-the-art PhyDNet (Le Guen and Thome, 2020), MIM (Y. Wang, Jianjin Zhang,
et al., 2019), SVG (Denton and Fergus, 2018) and SST-specific PKnl (de Bézenac,
Pajot, and Gallinari, 2018) in the comparison on SST; only PhyDNet and PKnl were
originally tested on this dataset by their authors. On the one hand, like SVG which is
also investigated in Chapter 4, PhyDNet and MIM are video prediction methods; but
unlike SVG, they are deterministic and operate with high-dimensional latent spaces
with specific networks to model their evolution. On the other hand, PKnl incorporates
physical knowledge to specifically tackle datasets of the kind of SST, by introducing an

93



Chapter 5. PDE-Driven Spatiotemporal Disentanglement

Table 5.2.: Prediction and content swap scores of all compared models and ablations
on Moving MNIST in terms of PSNR and SSIM. Bold scores indicate the
best performing method.

Models
Pred. (t+ 10) Pred. (t+ 95) Swap (t+ 10) Swap (t+ 95)

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

SVG 18.18 0.8329 12.85 0.6185 — — — —
MIM 24.16 0.9113 16.50 0.6529 — — — —
DrNet 14.94 0.6596 12.91 0.5379 14.12 0.6206 12.80 0.5306
DDPAE 21.17 0.8814 13.56 0.6446 18.44 0.8256 13.25 0.6378
PhyDNet 23.12 0.9128 16.46 0.3878 12.04 0.5572 13.49 0.2839
SRVP 22.55 0.9201 18.25 0.8300 17.81 0.8193 16.17 0.7736

Ours 21.70 0.9088 17.50 0.7990 18.42 0.8368 16.50 0.7713
- (w/o w) 20.46 0.8867 14.95 0.6707 — — — —
- (���LAE ) 21.61 0.9058 16.58 0.7611 18.21 0.8309 15.79 0.7399
- (

�
��LSreg ) 15.99 0.6900 12.31 0.5702 13.73 0.5476 12.07 0.5556

- (
�
��LTreg ) 15.63 0.7369 14.02 0.7253 14.91 0.7154 13.95 0.7234

- (GRU) 21.66 0.9088 15.45 0.4888 17.70 0.8178 14.77 0.4718

advection-diffusion mechanism in the network.
On these three datasets, our model produces more accurate long-term predictions

with w than without it. This indicates that learning an invariant component facilitates
training and improves generalization. The influence of w can be observed by replacing
the w of a sequence with another one extracted from another sequence, changing the
aspect of the prediction, as shown in Figure 5.2 (swap row, see the caption); this
corresponds to the same content swap experiment performed in Section 4.4.3. We
provide in Appendix C.6 further samples showing the influence of w in the prediction.
Even though there is no evidence of intrinsic separability in SST, our trained algorithm
takes advantage of its time-invariant component. Indeed, our model outperforms PKnl
– despite the data-specific structure of the latter – as well as the stochastic SVG and
the high-capacities PhyDNet and MIM models, whereas removing its static component
suppresses our advantage.
We highlight that MIM is a computationally-heavy model that manipulates in an

autoregressive way 64 times larger latent states than ours, hence its better reconstruction
ability at the first time step. However, its sharpness and movement gradually vanish,
explaining its lower performance than ours. We refer to Appendix C.6.2 for additional
discussion on the application of our method and its performance on SST.

5.4.2. A Synthetic Video Dataset: Moving MNIST

We also assess the prediction and disentanglement performance of our model on the
deterministic Moving MNIST dataset, like in Section 4.4. We compare our model to
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Figure 5.3.: Predictions of compared deterministic models on Moving MNIST, and
content swap experiment for our model.

competitive baselines: the non-disentangled SVG and MIM, forecasting models with
spatiotemporal disentanglement abilities DrNet (Denton and Birodkar, 2017), DDPAE
(Hsieh et al., 2018) and PhyDNet, as well as the SRVP model previously introduced in
Chapter 4. We highlight that all these models leverage powerful machine learning tools
such as adversarial losses, VAEs and high-capacity temporal architectures, whereas the
one proposed in this chapter is solely trained using regression penalties and small-size
latent representations. We perform as well a full ablation study of our model to confirm
the relevance of the introduced method.
Results reported in Table 5.2 and illustrated in Figure 5.3 correspond to two tasks:

prediction and disentanglement, at both short and long-term horizons. In opposition
to Section 4.4 where disentanglement is only qualitatively assessed, we quantitatively
evaluate it in this chapter. To this end, we use the same task of content swapping,
which consists in replacing the content representation of a sequence with the one of
another sequence. In the case of a perfectly disentangled model, this should result
in swapping digits of both sequences. Numerical results are then obtained by taking
advantage of the synthetic nature of this dataset that allows us to implement the
ground truth content swap and compare it to the generated swaps of the model.
Reported results show the advantage of our model against all baselines but SRVP.

Long-term prediction challenges them as their performance and predictions collapse
in the long run. This shows that the baselines, including high-capacity models MIM
and PhyDNet that leverage powerful ConvLTSMs (Shi et al., 2015), have difficulties in
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separating content and motion. Indeed, a model that is correctly separating content and
motion should maintain digits appearance even when it miscalculates their trajectories,
like DDPAE which alters only marginally the digits in Figure 5.3. In contrast, ours
manages to produce consistent samples even at t+ 95, making it reach state-of-the-art
performance. Moreover, we significantly outperform all baselines in the content swap
experiment, showing the clear advantage of the proposed PDE-inspired simple model
for spatiotemporally disentangled prediction.
Comparison against SRVP, with the same encoder and decoder architectures, high-

lights the advantages of our model with its PDE inspiration. Both SRVP and this
chapter’s model outperform the other baselines on long-term forecasting and disentan-
glement, which, as noted in Section 5.3.6, can be explained by the similarities between
both models. We observe as expected that SRVP outperforms our model on the fore-
casting task, which stems from SRVP’s reliance on a powerful VAE model. However,
SRVP falls short on disentanglement for both short- and long-term horizons, despite its
good prediction performance which provides it with an a priori numerical advantage
over our model. This signifies that, despite its simplicity, we achieve state-of-the-art
disentanglement performance thanks to the PDE inspiration that allows our model to
outperform SRVP, thus justifying our approach with respect to the latter.
Ablation studies also developed in Table 5.2 confirm that the advantage evidenced

in the previous comparisons is due to the constraints motivated by the separation of
variables. Indeed, the model without w fails at long-term forecasting, and removing
any non-prediction penalty of the training loss substantially harms performances. In
particular, the invariance loss on the static component and the regularization of initial
condition yt0 are essential, as their absence hinders both prediction and disentanglement.
The auto-encoding constraint makes predictions more stable, allowing accurate long-
term forecasting and disentanglement. This ablation study also confirms the necessity
to constrain the `2 norm of the dynamic variable (see Equation (5.15)) for the model
to disentangle. Comparisons of Table 5.2 actually show that enforcing this loss on the
first time step only is sufficient to ensure state-of-the-art disentanglement, as advocated
in Section 5.3.4. Finally, we assess whether the temporal ODE of Equation (5.10)
induced by the separation of variables is advantageous by replacing the dynamic model
with a GRU. Results reported in Table 5.2 show substantially better prediction and
disentanglement performance for the original model grounded on the separation of
variables, indicating the relevance of our approach.

5.4.3. A Multi-View Dataset: 3D Warehouse Chairs

We perform an additional disentanglement experiment on the 3D Warehouse Chairs
dataset (Aubry et al., 2014). This dataset contains 1393 three-dimensional models of
chairs seen under various angles. Since all chairs are observed from the same set of
angles, this constitutes a multi-view dataset enabling quantitative disentanglement
experiments. We create sequences from this dataset for our model by assembling
adjacent views of each chair to simulate its rotation from right to left. We then evaluate
the disentanglement properties of our model with the same content swap experiments
as for Moving MNIST. It is similar to one of Denton and Birodkar (2017)’s experiments
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Figure 5.4.: Fusion of content (first column) and dynamic (first row) variables in our
model on 3D Warehouse Chairs.

Table 5.3.: Prediction MSE (×100× 32× 32× 2) of compared models on TaxiBJ, with
best MSE highlighted in bold.

Ours
PhyDNet MIM E3D C. LSTM PredRNN ConvLSTM

w/ w w/o w

39.5 43.7 41.9 42.9 43.2 44.8 46.4 48.5

who qualitatively test their model on a similar, but smaller, multi-view chairs dataset.
We achieve 18.70 PSNR and 0.7746 SSIM on this task, outperforming DrNet which only
reaches 16.35 PSNR and 0.6992 SSIM. This is corroborated by qualitative experiments
in Figures 5.4 and C.6. We highlight that the encoder and decoder architectures of both
competitors are identical, validating our PDE-grounded framework for spatiotemporal
disentanglement of complex three-dimensional shapes.

5.4.4. A Crowd Flow Dataset: TaxiBJ

We finally study the performance of our spatiotemporal model on the real-world TaxiBJ
dataset (Junbo Zhang, Zheng, and Qi, 2017), consisting of taxi traffic flow in Beijing
monitored on a 32 × 32 grid with an observation every thirty minutes. It is highly
structured as the flows are dependent on the infrastructures of the city, and complex
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Figure 5.5.: Example of ground truth and prediction of our model on TaxiBJ. The
middle row shows the scaled difference between our predictions and the
ground truth.

since methods have to account for non-local dependencies and model subtle changes in
the evolution of the flows. It is a standard benchmark in the spatiotemporal prediction
community (Y. Wang, Jianjin Zhang, et al., 2019; Le Guen and Thome, 2020).

We compare our model in Table 5.3 against PhyDNet and MIM, as well as powerful
baselines E3D-LSTM (E3D, Y. Wang, L. Jiang, et al., 2019), Causal LSTM (C. LSTM,
Y. Wang, Z. Gao, et al., 2018), PredRNN (Y. Wang, M. Long, et al., 2017) and
ConvLTSM (Shi et al., 2015), using results reported by Y. Wang, Jianjin Zhang,
et al. (2019) and Le Guen and Thome (2020). An example of prediction is given in
Figure 5.5. We observe that we significantly overcome the state of the art on this complex
spatiotemporal dataset. This improvement is notably driven by the disentanglement
abilities of our model, since we observe in Table 5.3 that the alternative version of our
model without w achieves results comparable to E3D and worse than PhyDNet and
MIM.

5.5. Conclusion
We introduce a novel method for spatiotemporal prediction inspired by the separation of
variables PDE resolution technique that induces time invariance and regression penalties
only. These constraints ensure the separation of spatial and temporal information. We
experimentally demonstrate the benefits of the proposed model, which outperforms
prior state-of-the-art methods on physical and synthetic video datasets. We believe that
this work, by providing a dynamical interpretation of spatiotemporal disentanglement,
could serve as the basis of more complex models further leveraging the PDE formalism.
Another direction for future work could be extending the model with more involved
tools such as VAEs to improve its performance, or adapt it to the prediction of natural
stochastic videos like in the previous chapter.

98



Part IV.

Analysis of GANs’ Training
Dynamics
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The last contribution of this thesis more generally tackles generative modeling
for any data type. We are interested in theoretically and empirically analyzing the
training dynamics of the most widespread deep generative model, GANs. We study
the role of the discriminator in GAN training by modeling its optimization using
differential equations and the theory of NTKs. We then consider the consequences of
this framework on the evolution of the generated distribution during training. This
contribution, detailed in the forthcoming chapter, is currently under review at an
international conference and available in the following preprint.

Jean-Yves Franceschi, Emmanuel de Bézenac, Ibrahim Ayed, Mickaël Chen,
Sylvain Lamprier, and Patrick Gallinari (2021). “A Neural Tangent Kernel
Perspective of GANs”. In: arXiv: 2106.05566.
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Chapter 6.

A Neural Tangent Kernel Perspective
of GANs

6.1. Introduction

Following the steady increase of GANs applications (see Section 2.3), much effort has
been put in gaining a better understanding of their training process, resulting in a vast
literature on theoretical analyses of GANs. A large portion of them focus on studying
GAN loss functions to conclude about their comparative advantages.

Yet, empirical evaluations (Lucic et al., 2018; Kurach et al., 2019) have shown that
different GAN formulations can yield approximately the same performance in terms of
sample quality and stability of the training algorithm, regardless of the chosen loss.
This indicates that by focusing exclusively on the formal loss function, theoretical
studies might not model practical settings adequately.
In particular, the discriminator being a trained neural network is not taken into

account, nor are the corresponding inductive biases which might considerably alter the
generator’s loss landscape. Moreover, we show that neglecting this constraint hampers
the analysis of gradient-based learning of the generator on finite training sets, since the
gradient from the associated discriminator is ill-defined everywhere. These limitations
thus hinder the potential of theoretical analyses to explain the empirical behavior of
GANs.
In this work, we provide a framework of analysis for GANs solving these issues by

explicitly incorporating the discriminator’s architecture. To this end, we leverage the
recent developments in the theory of deep learning driven by NTKs (Jacot, Gabriel,
and Hongler, 2018), and develop theoretical results demonstrating the relevance of
our approach. We first characterize the trained infinite-width discriminator under
mild conditions on its architecture and loss. Then, we establish its differentiability by
proving novel regularity results on its NTK. This confirms that our framework does
overcome the limitations of previous analyses, making it closer to GAN practice.

This more accurate formalization enables us to derive new insights about the generator.
We formulate the dynamics of the generated distribution via the generator’s NTK,
and discuss its consequences by linking it to gradient flows on probability spaces. We
deduce that, under the IPM loss, the generated distribution minimizes its Maximum
Mean Discrepancy (MMD) given by the discriminator’s NTK with respect to the target
distribution. Moreover, we release the Generative Adversarial Neural Tangent Kernel
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ToolKit GAN(TK)2 based on our framework, which we use to empirically validate our
analysis; for example, we study the role of the ReLU activation in GAN architectures.
This chapter is organized as follows. Section 6.2 gives an overview of the literature

in GAN analysis and NTKs to highlight the novelty and benefits of our contribution.
Section 6.3 proceeds by pointing out the gradient issues in previous GAN analyses.
The latter are resolved in our NTK-based framework introduced in Section 6.4, whose
ability to apprehend GAN training is theoretically demonstrated. Sections 6.5 and 6.6
subsequently explore the theoretical and empirical consequences of these results on
various GAN settings, leveraging the proposed framework and providing new insights
on generative adversarial training. Finally, the supplementary material referenced in
this chapter is located in Appendix D.

6.2. Related Work

GAN theory. A first line of research, started by Goodfellow, Pouget-Abadie, et al.
(2014) and pursued by many others (Nowozin, Cseke, and Tomioka, 2016; Z. Zhou et al.,
2019; R. Sun, Fang, and Schwing, 2020), studies the loss minimized by the generator.
Assuming that the discriminator is optimal and can take arbitrary values, different
families of divergences can be recovered. However, as noted by Arjovsky and Bottou
(2017), these divergences should be ill-suited to GAN training, contrary to empirical
evidence. Our framework addresses this discrepancy, as it properly characterizes the
generator’s loss and gradient.
Another line of work analyzes the dynamics and convergence of the generated

distribution (Nagarajan and Kolter, 2017; Mescheder, Nowozin, and A. Geiger, 2017;
Mescheder, A. Geiger, and Nowozin, 2018). As the studied dynamics are highly non-
linear, this approach typically requires strong simplifying assumptions, e.g. restricting to
linear neural networks or reducing datasets to a single data point. The most advanced
analyses taking into account the discriminator’s parameterization are specialized to
specific models (Y. Bai, T. Ma, and Risteski, 2019), such as a linear one, or random
feature models (S. Liu, Bousquet, and Chaudhuri, 2017; Balaji et al., 2021). In contrast
to these works, our framework of analysis provides a more comprehensive modeling
as we establish generally applicable results about the influence of the discriminator’s
architecture on the generator’s dynamics.

NTKs. NTKs were introduced by Jacot, Gabriel, and Hongler (2018), who showed
that a trained neural network in the infinite-width regime equates to a kernel method,
thereby making the dynamics of the training algorithm tractable and amenable to
theoretical study. This fundamental work has been followed by a thorough line of
research generalizing and expanding its initial results (Arora, Du, W. Hu, et al., 2019;
Bietti and Mairal, 2019; J. Lee, Xiao, et al., 2019; C. Liu, Libin Zhu, and Belkin, 2020;
Sohl-Dickstein et al., 2020), developing means of computing NTKs (Novak et al., 2020;
G. Yang, 2020), further analyzing these kernels (Z. Fan and Zhichao Wang, 2020; Bietti
and Bach, 2021; Lin Chen and S. Xu, 2021), studying and leveraging them in practice
(Z. Zhou et al., 2019; Arora, Du, Zhiyuan Li, et al., 2020; J. Lee, Schoenholz, et al.,
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2020; Littwin, Myara, et al., 2020; Tancik et al., 2020), and more broadly exploring
infinite-width networks (Littwin, Galanti, et al., 2020; G. Yang and E. J. Hu, 2021;
Alemohammad et al., 2021). These prior works validate that NTKs can encapsulate
the characteristics of neural network architectures, providing a solid theoretical basis
to study the effect of architecture on learning problems.

Other works have studied the regularity of NTKs (Bietti and Mairal, 2019; G. Yang
and Salman, 2019; Basri et al., 2020) but, as far as we know, ours is the first to state
general differentiability results for NTKs and infinite-width networks. While Jacot,
Gabriel, Ged, et al. (2019) sought to improve generators by investigating checkerboard
artifacts in the light of NTKs and Chu, Minami, and Fukumizu (2020) introduced
preliminary results in a simplified setting for the generator only, our contribution is
the first to employ NTKs to theoretically study GAN training.

6.3. Limits of Previous Studies
We present in this section the usual GAN formulation and learning procedure and
illustrate the limitations of prior analyses to motivate our framework.
First, we introduce some notations. Let Ω ⊆ Rn be a closed convex set, P(Ω) the

set of probability distributions over Ω, and L2(µ) the set of square-integrable functions
from the support suppµ of µ to R with respect to measure µ, with scalar product
〈·, ·〉L2(µ). If Λ ⊆ Ω, we write L2(Λ) for L2(λ), with λ the Lebesgue measure on Λ.

6.3.1. Generative Adversarial Networks
GAN algorithms seek to produce samples from an unknown target distribution β ∈
P(Ω). To this extent, a generator function g ∈ G:Rd → Ω parameterized by θ is
learned to map a latent variable z ∼ pz to the space of target samples such that the
generated distribution αg and β are indistinguishable for a discriminator network f ∈ F
parameterized by ϑ. The generator and the discriminator are trained in an adversarial
manner as they are assigned conflicting objectives.
Many GAN models consist in solving the following optimization problem, with

a, b, c:R→ R:

inf
g∈G

{
Cf?αg

(
αg
)
, Ex∼αg

[
cf?αg (x)

]}
, (6.1)

where cf = c ◦ f , and f?αg is chosen to solve, or approximate, the following optimization
problem:

sup
f∈F

{
Lαg (f) , Ex∼αg

[
af (x)

]
− Ey∼β

[
bf (y)

]}
. (6.2)

For instance, Goodfellow, Pouget-Abadie, et al. (2014) used a(x) = log
(
1− σ(x)

)
,

b(x) = c(x) = − log
(
σ(x)

)
; in Least Squares GAN (LSGAN) (Mao et al., 2017),

a(x) = −(x+ 1)
2, b(x) = (x− 1)

2, c(x) = x2; and for IPMs (Müller, 1997) leveraged
e.g. by Arjovsky, Chintala, and Bottou (2017), a = b = c = id. Many more fall under
this formulation (Nowozin, Cseke, and Tomioka, 2016; Lim and Ye, 2017).
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Equation (6.1) is then solved using gradient descent on the generator’s parameters,
with at each step j ∈ N:

θj+1 = θj − ηEz∼pz

∇θgθj (z)
>∇x cf?αgθj

(x)

∣∣∣∣
x=gθj (z)

. (6.3)

This update is obtained via the chain rule from the generator’s loss Cf?αg
(
αg
)
in

Equation (6.1). However, we highlight that the gradient applied in Equation (6.3)
differs from ∇θCf?αg

(
αg
)
: the terms taking into account the dependency of the optimal

discriminator f?αgθ on the generator’s parameters are discarded. This is because the
discriminator is, in practice, considered to be independent of the generator in the usual
setting of alternating optimization between the generator and the discriminator.

Since ∇xcf?α(x) = ∇xf?α(x) · c′
(
f?α(x)

)
in Equation (6.3), and as highlighted e.g. by

Goodfellow, Pouget-Abadie, et al. (2014) and Arjovsky and Bottou (2017), the gradient
of the discriminator plays a crucial role in the convergence of GANs. For example, if
this vector field is null on the training data when α 6= β, the generator’s gradient is zero
and convergence is impossible. For this reason, the following sections are devoted to
developing a better understanding of this gradient field and its consequences when the
discriminator is a neural network. In order to characterize the discriminator’s gradient
field, we must first study the discriminator itself.

6.3.2. On the Necessity of Modeling Discriminator
Parameterization

For each GAN formulation, it is customary to elucidate which loss is implemented
by Equation (6.2), often assuming that F = L2(Ω), i.e. the discriminator can take
arbitrary values. Under this assumption, the original GAN yields the Jensen-Shannon
divergence between αg and β, and LSGAN a Pearson χ2-divergence, for instance.

However, as pointed out by Arora, Ge, et al. (2017), the discriminator is trained in
practice with a finite number of samples: both fake and target distributions are finite
mixtures of Diracs, which we respectively denote as α̂g and β̂. Let γ̂g = 1

2 α̂g + 1
2 β̂ be

the distribution of training samples.

Assumption 1 (Finite training set). γ̂g ∈ P(Ω) is a finite mixture of Diracs.

In this setting, the Jensen-Shannon and χ2-divergence are constant since α̂g and β̂
generally do not have the same support. This is the theoretical reason given by Arjovsky
and Bottou (2017) to introduce new losses, such as in WGAN (Arjovsky, Chintala, and
Bottou, 2017). However, this is inconsistent with empirical results showing that GANs
can be trained even without the latter losses.

Actually, perhaps surprisingly, in the alternating optimization setting used in practice
– as described by Equation (6.3) – the constancy of Lα̂g , or even of Cf?αg , does not imply
that ∇xcf?αg in Equation (6.3) is zero on these points. This stems from the gradient of
Equation (6.3) ignoring the dependency of the optimal discriminator on the generator’s
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parameters: while ∇θCf?αg
(
αg
)
might be null, the gradient of Equation (6.3) differs

and may not be zero, thereby changing the actual loss optimized by the generator. We
refer to Section 6.5.2 and Appendix D.2.2 for further discussion.

Yet, in the previous theoretical frameworks where the discriminator can take arbitrary
values, this gradient field is not even defined for any loss Lα̂g . Indeed, when the
discriminator’s loss Lα̂g (f) is only computed on the empirical distribution γ̂g (as it
is the case for most GAN formulations), the discriminator optimization problem of
Equation (6.2) never yields a unique optimal solution outside γ̂g. This is illustrated by
the following straightforward result.

Proposition 1 (Ill-Posed Problem in L2(Ω)). Suppose that F = L2(Ω), supp γ̂g ( Ω.
Then, for all f, h ∈ F coinciding over supp γ̂g, Lα̂g (f) = Lα̂g (h) and Equation (6.2)
has either no or infinitely many optimal solutions in F , all coinciding over supp γ̂g.

In particular, the set of solutions, if non-empty, contains non-differentiable dis-
criminators as well as discriminators with null or non-informative gradients. This
underspecification of the discriminator over Ω makes the gradient of the optimal
discriminator in standard GAN analyses ill-defined.
This signifies that the loss alone does not impose any constraint on the values that

fα̂g takes outside supp γ̂g, and more particularly that there are no constraints on the
gradients. Therefore, an analysis beyond the loss function is necessary to precisely
determine the learning problem of the generator defined by the discriminator.

6.4. NTK Analysis of GANs
To tackle the aforementioned issues, we notice that in practice, the inner optimization
problem of Equation (6.2) is not solved exactly. Instead, using an alternating optimiza-
tion procedure, a proxy neural discriminator is trained using several steps of gradient
ascent for each update of the generator (Goodfellow, 2016). For a learning rate ε and a
fixed generator g, this results in the following optimization process, from i = 0 to N :

ϑgi+1 = ϑgi + ε∇ϑLα̂g (fϑi), f?α̂g = fϑgN . (6.4)

This parameterization and training of the discriminator as a neural network solve the
underspecification of its gradient highlighted in the previous section, but this makes a
theoretical analysis of its impact unattainable. We propose to facilitate this theoretical
analysis thanks to the theory of NTKs, that we develop in Sections 6.4.1 to 6.4.3. We
then leverage these results to analyze the dynamics of the generated distribution via
the generator’s NTK in Section 6.4.4.

6.4.1. Modeling Inductive Biases of the Discriminator in the
Infinite-Width Limit

We study the continuous-time version of Equation (6.4):

∂tϑ
g
t = ∇ϑLα̂g

(
fϑgt

)
, (6.5)
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which we consider from now on in the infinite-width limit of the discriminator, making
its analysis more tractable.

In the limit where the width of the hidden layers of ft , fϑgt tends to infinity, Jacot,
Gabriel, and Hongler (2018) show that its so-called NTK kϑgt remains constant during
a gradient ascent such as Equation (6.5), i.e. there is a limiting kernel k such that:

∀τ ∈ R+, ∀x,y ∈ Rn, ∀t ∈ [0, τ ], kϑgt (x,y) , ∂ϑft(x)
>
∂ϑft(y) = k(x,y). (6.6)

In particular, k only depends on the architecture of f and the initialization distribution
of its parameters. The constancy of the NTK of ft during gradient descent holds for
many standard architectures, typically without bottleneck and ending with a linear layer
(C. Liu, Libin Zhu, and Belkin, 2020), which is the case of most standard discriminators
in the setting of Equation (6.2). We discuss in more detail the applicability of this
approximation in Appendix D.2.1. We more particularly highlight that, under the same
conditions, the discriminator’s NTK remains constant over the whole GAN optimization
process of Equation (6.3), and not only under a fixed generator.

Assumption 2 (Kernel). k: Ω2 → R is a symmetric positive semi-definite kernel with
k ∈ L2

(
Ω2
)
.

The constancy of the NTK simplifies the dynamics of training in the functional
space. In order to express these dynamics, we must first introduce some preliminary
definitions and assumptions.

Definition 1 (Functional gradient). Whenever a functional L:L2(µ)→ R has sufficient
regularity, its gradient with respect to µ evaluated at f ∈ L2(µ) is defined in the usual
way as the element ∇µL(f) ∈ L2(µ) such that for all ψ ∈ L2(µ):

lim
ε→0

1

ε

(
L(f + εψ)− L(f)

)
=
〈
∇µL(f), ψ

〉
L2(µ)

. (6.7)

Definition 2 (RKHS with respect to µ and kernel integral operator (Sriperumbudur,
Gretton, et al., 2010)). If k follows Assumption 2 and µ ∈ P(Ω) is a finite mixture of
Diracs, we define the Reproducing Kernel Hilbert Space (RKHS) Hµk of k with respect
to µ given by the Moore–Aronszajn theorem as the linear span of functions k(x, ·) for
x ∈ suppµ. Its kernel integral operator from Mercer’s theorem is defined as:

Tk,µ:L2(µ)→ Hµk , h 7→
∫
x

k(·,x)h(x) dµ(x). (6.8)

Note that Tk,µ generates Hµk , and elements of Hµk are functions defined over all Ω as
Hµk ⊆ L2(Ω).

In the infinite-width limit, the results of Jacot, Gabriel, and Hongler (2018) imply
that the discriminator ft trained by Equation (6.5) obeys the following differential
equation in-between generator updates:

∂tft = Tk,γ̂g
(
∇γ̂gLα̂(ft)

)
. (6.9)
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Within the alternating optimization of GANs at step j, f0 would correspond to the
previous discriminator step f?αgθj

, f j , and f j+1 = fτ , with τ being the training time
of the discriminator in-between generator updates.
In this section, we rely on this differential equation to gain a better understanding

of the discriminator during training and its implications for training the generator.
Firstly, under mild assumptions on the discriminator loss function, we prove that
Equation (6.9) admits a unique solution for a given initial condition, thereby solving
the indeterminacy issues. We then study the differentiability of neural networks in this
regime, a necessary condition for trainability of GANs. These results are not specific to
GANs but generalize to all neural networks trained under empirical losses of the form
of Equation (6.2), e.g. any pointwise loss such as binary classification and regression.
Finally, we expose the consequences of this analysis on the generated distribution’s
dynamics. Presented in the context of a discrete distribution γ̂g but generalizable to
broader distributions, all results are proved in Appendix D.1.

6.4.2. Existence, Uniqueness and Characterization of the
Discriminator

The following is a positive result on the existence and uniqueness of the discriminator
that also characterizes its general form, amenable to theoretical analysis.

Assumption 3 (Loss regularity). a and b from Equation (6.2) are differentiable with
Lipschitz derivatives over R.

Theorem 1 (Solution of gradient descent). Under Assumptions 1 to 3, Equation (6.9)
with initial value f0 ∈ L2(Ω) admits a unique solution f·:R+ → L2(Ω). Moreover, the
following holds for all t ∈ R+:

∀t ∈ R+, ft = f0 +

∫ t

0

Tk,γ̂g
(
∇γ̂gLα̂g (fs)

)
ds = f0 + Tk,γ̂g

(∫ t

0

∇γ̂gLα̂g (fs) ds

)
.

(6.10)

As for any given training time t, there exists a unique ft ∈ L2(Ω), defined over
all of Ω and not only the training set, the aforementioned issue in Section 6.3.2 of
determining the discriminator associated to γ̂g is now resolved. It is now possible to
study the discriminator in its general form thanks to Equation (6.10). It involves two
terms: the previous discriminator state f0 = f j , as well as the kernel operator of an
integral. This integral is a function that is undefined outside supp γ̂g, as by definition
∇γ̂gLα̂g (fs) ∈ L2

(
γ̂g
)
. Fortunately, the kernel operator behaves like a smoothing

operator, as it not only defines the function on all of Ω but embeds it in a highly
structured space.

Corollary 1 (Training and RKHS). Under Assumptions 1 to 3, ft − f0 belongs to the
RKHS Hγ̂gk for all t ∈ R+.

109



Chapter 6. A Neural Tangent Kernel Perspective of GANs

In our setting, this space is generated from the NTK k, which only depends on the
discriminator architecture, and not on the considered loss function. This highlights
the crucial role of the discriminator’s implicit biases, and enables us to characterize its
regularity for a given architecture.

6.4.3. Differentiability of the Discriminator and its NTK
We study in this section the smoothness, i.e. infinite differentiability, of the discriminator.
It mostly relies on the differentiability of the kernel k, by Equation (6.10), which is
obtained by characterizing the regularity of the corresponding conjugate kernel (J. Lee,
Bahri, et al., 2018). Therefore, we prove the differentiability of the NTKs of standard
architectures, and then conclude about the differentiability of ft.

Assumption 4 (Discriminator architecture). The discriminator is a standard archi-
tecture (fully connected, convolutional or residual). The activation can be any standard
activation function: tanh, softplus, ReLU-like, sigmoid, Gaussian, etc. A detailed
assumption on activations is provided in Appendix D.1.1.

Assumption 5 (Discriminator regularity). The activation function is smooth.

Assumption 6 (Discriminator bias). Linear layers have non-null bias terms.

We first prove the differentiability of the NTK under these assumptions.

Proposition 2 (Differentiability of k). Let k be the NTK of an infinite-width architec-
ture following Assumption 4. For any y ∈ Ω:

• if Assumption 5 holds, then k(·,y) is smooth everywhere over Ω;

• if Assumption 6 holds, then k(·,y) is smooth almost everywhere over Ω.

From Proposition 2, NTKs satisfy Assumption 2. We can thus use Corollary 1 and
conclude about the differentiability of ft.

Theorem 2 (Differentiability of ft). Suppose that k is the NTK of an infinite-width net-
work following Assumption 4. Then ft is smooth everywhere over Ω when Assumption 5
holds, or almost everywhere when Assumption 6 holds.

Remark 1 (Bias-free ReLU networks). ReLU networks with hidden layers and no
bias are not differentiable at 0. However, by introducing non-zero bias, this non-
differentiability at 0 disappears in the NTK and the infinite-width discriminator. This
observation explains some experimental results in Section 6.6.
Note that Bietti and Mairal (2019) state that the bias-free ReLU kernel is not

Lipschitz even outside 0. However, we find this result to be incorrect. We further
discuss this matter in Appendix D.2.3.

This result demonstrates that, for a wide range of GAN formulations, e.g. vanilla GAN
and LSGAN, the optimized discriminator indeed admits gradients almost everywhere,
making the gradient flow given to the generator well-defined in our framework. This
supports our motivation to bring the theory closer to empirical evidence indicating
that many GAN models do work in practice while their theoretical interpretation until
now has been stating the opposite (Arjovsky and Bottou, 2017).
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6.4.4. Dynamics of the Generated Distribution
The previous differentiability results allow us to study Equation (6.3), by ensuring
the existence of ∇f?α̂g . We consider Equation (6.3) in its continuous-time version like
Equation (6.5), with training time ` as well as g` , gθ` and α` , αg` . The theory of
NTKs enables us to describe the generated distribution’s dynamics.

Proposition 3 (Dynamics of α`). Under Assumptions 4 and 5, Equation (6.3) is
well-posed and yields in continuous-time, with kg` the NTK of the generator g`:

∂`g` = −Tkg` ,pz

(
z 7→ ∇x cf?α̂g` (x)

∣∣∣∣
x=g`(z)

)
. (6.11)

Equivalently, the following continuity equation holds for the joint distribution αz` of(
z, g`(z)

)
under z ∼ pz:

∂`α
z
` = −∇x ·

αz` Tkg` ,pz
(
z 7→ ∇x cf?α̂g` (x)

∣∣∣∣
x=g`(z)

), (6.12)

where in particular α` is the marginalization of αz` over z ∼ pz.

In the infinite-width limit of the generator, the generator’s NTK is also constant:
kg` = kg; this is the setting that we consider to study the implications of the latter
proposition. Suppose that there exists a functional C over L2(Ω) such that:

cf?α̂ = ∂α̂C (α̂). (6.13)

Standard results in gradient flows theory (see Ambrosio, Gigli, and Savaré (2008,
Chapter 10), or Arbel et al. (2019, Appendix A.3) for a summary) state that ∇cf?α̂ is
in this case the strong subdifferential of C (α̂) for the Wasserstein geometry.
When kg

(
z, z′

)
= δz−z′In with δ a Dirac centered at 0, we have Tkg,pz = id. Then,

from Equation (6.12), αz` follows the Wasserstein gradient flow with cf?α̂ as potential.
This implies that C (α̂`) is a decreasing function of the generator’s training time `.
In other words, the generator g is trained to minimize C

(
α̂g
)
, which is the implicit

objective induced by the discriminator.
In the general case, Tkg,pz introduces interactions between generated particles as a

consequence of the neural parameterization of the generator. Then, Equation (6.12)
amounts to following the same gradient flow as before, but in a Stein geometry (Duncan,
Nüsken, and Szpruch, 2019) – instead of a Wasserstein geometry – determined by the
generator’s integral operator, directly implying that in this case C (α̂`) also decreases
during training. This geometrical understanding opens interesting perspectives for
theoretical analysis, e.g. we see that GAN training in this regime generalizes Stein
variational gradient descent (Q. Liu and D. Wang, 2016), with the KLD minimization
objective between generated and target distributions being replaced with C (α̂).

Improving our understanding of Equation (6.12) is fundamental towards elucidating
the open problem of the neural generator’s convergence. Our study enables us to shed
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light on these dynamics and highlights the necessity of pursuing the study of GANs via
NTKs to obtain a more comprehensive understanding of them, which is the purpose
of the rest of this chapter. In particular, the non-interacting case where Tkg,pz = id
already yields particularly useful insights, that we explore in Section 6.6. Moreover,
we discuss in the following section standard GAN losses and attempt to determine the
minimized functional C in these cases.

6.5. Fined-Grained Study for Specific Losses
Armed with the general framework of the previous section, we derive in this section
more fine-grained results thanks to additional assumptions on the loss function covering
standard GAN models. Proofs are detailed in Appendix D.1.

6.5.1. The IPM as an NTK MMD Minimizer
We study the case of the IPM loss, with the following remarkable discriminator
expression, from which we deduce the objective minimized by the generator.

Proposition 4 (IPM discriminator). Under Assumptions 1 and 2, the solutions of
Equation (6.9) for a = b = id are the functions of the form ft = f0 + tf∗α̂g , where f

∗
α̂g

is the unnormalized MMD witness function (Gretton, Borgwardt, M. J. Rasch, et al.,
2012) with kernel k, yielding:

f∗α̂g = Ex∼α̂g
[
k(x, ·)

]
− Ey∼β̂

[
k(y, ·)

]
, Lα̂g (ft) = Lα̂g (f0) + t ·MMD2

k

(
α̂g, β̂

)
.

(6.14)

The latter result signifies that the direction of the gradient given to the discriminator
at each of its optimization step is optimal within the RKHS of its NTK, stemming
from the linearity of the IPM loss. The connection with MMD is especially interesting
as it has been thoroughly studied in the literature (Muandet et al., 2017). If k is
characteristic, a hypothesis discussed in Appendix D.2.5, then it defines a distance
between distributions. Moreover, the statistical properties of the loss induced by the
discriminator directly follow from those of the MMD: it is an unbiased estimator with
a squared sample complexity that is independent of the dimension of the samples
(Gretton, Borgwardt, M. Rasch, et al., 2007).

Remark 2 (Link with instance smoothing). It is possible to show for IPMs that mod-
eling the discriminator’s architecture amounts to smoothing out the input distribution
using the kernel integral operator Tk,γ̂g and can thus be seen as a generalization of the
regularization technique for GANs called instance noise (C. K. Sønderby, Caballero,
et al., 2017). This is discussed in further details in Appendix D.2.4.

Suppose that the discriminator is reinitialized at every step of the generator, with
f0 = 0 in Equation (6.9); this is possible with the initialization scheme of Yaoyu Zhang
et al. (2020). Then, as c = id and from Proposition 4, ∇cfα̂ = τ∇f∗α̂g , where τ is the
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training time of the discriminator. The latter gradient constitutes the gradient flow of
the squared MMD, as shown by Arbel et al. (2019) with convergence guarantees and
discretization properties in the absence of a generator. This signifies that:

C (α̂) = τMMD2
k

(
α̂g, β̂

)
, (6.15)

using the notations of Section 6.4.4.
Therefore, in the IPM case, the discriminator leads the generator to be trained to

minimize the MMD between the empirical generated and target distributions, with
respect to the NTK of the discriminator. This is the subject of study of Mroueh and
Nguyen (2021), who derive convergence results about the generator trained in such
conditions, considerations about the discriminator’s NTK aside. This is, to the best of
our knowledge, the first work considering the use of NTKs as kernels for the MMD,
concurrently with Cheng and Yao Xie (2021).

Remark 3 (IPM and WGAN). Along with a constraint on the set of functions, the
IPM loss is involved in distances like the earth mover’s distance W1 (Villani, 2009)
– used in WGAN and StyleGAN (Karras, Laine, and Aila, 2019), and close to the
hinge loss of BigGAN (Brock, Donahue, and Simonyan, 2019) –, the MMD – used in
MMD GAN (C.-L. Li et al., 2017) –, the total variation, etc. In Proposition 4, we
solely consider the IPM loss without additional constraint, besides having a neural
discriminator. Our analysis implies that this natural constraint sufficiently constrains
the discriminator in order to ensure the existence of its gradients, which we also show
to be relevant given the aforementioned convergence results.

This is in contradiction with the recurrent assertion that the 1-Lipschitz constraint of
WGAN (Arjovsky, Chintala, and Bottou, 2017), taken from the earth mover’s distance,
is necessary to remove the gradient issues of prior approaches. This is because the
ill-definition of the gradients actually originates from the inadequacy of the conducted
analyses, as we show in this work. Hence, while WGAN tackles the issues of previous
analyses by changing the loss, we fundamentally address them with a refined framework.
An analysis of WGAN, that we leave for future work, would require combining the
neural discriminator and 1-Lipschitz constraints.

6.5.2. LSGAN, Convergence, and Emergence of New Divergences
The optimality of the discriminator can be proved when assuming that its loss function
is well-behaved. Consider as an example the case of LSGAN, for which Equation (6.9)
can be solved by slightly adapting the results from Jacot, Gabriel, and Hongler (2018)
in the context of regression.

Proposition 5 (LSGAN discriminator). Under Assumptions 1 and 2, the solutions of
Equation (6.9) for a = −(id + 1)

2 and b = −(id− 1)
2 are the functions defined for all

t ∈ R+ as:

ft = exp
(
−4tTk,γ̂g

)(
f0 − ρg

)
+ ρg, ρg =

d
(
β̂ − α̂g

)
d
(
β̂ + α̂g

) . (6.16)
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In the previous result, ρg is the optimum of Lα̂g over L2
(
γ̂g
)
. When k is positive

definite over γ̂g (see Appendix D.2.5 for more details), ft tends to the optimum for
Lα̂g as its limit is ρg over supp γ̂g. Nonetheless, unlike the discriminator with arbitrary
values of Section 6.3.2, f∞ is defined over all Ω thanks to the integral operator Tk,γ̂g .
It is also the solution to the minimum norm interpolant problem in the RKHS (Jacot,
Gabriel, and Hongler, 2018), therefore explaining why the discriminator does not overfit
in scarce data regimes (see Section 6.6), and consequently has bounded gradients
despite large training times, assuming its NTK is well-behaved. We also prove a more
detailed generalization of this result for concave bounded losses in Appendix D.1.5, for
which the same optimality conclusion holds.

Following the discussion initiated in Section 6.3.2 and applying it to the case of
LSGAN using Proposition 5, similarly to the Jensen-Shannon, the resulting generator
loss on discrete training data is constant when the discriminator is optimal. However,
the gradients received by the generator are not necessarily null; see for instance the
empirical analysis of Section 6.6. This is because the learning problem of the generator
induced by the discriminator makes the generator minimize another loss C , as explained
in Section 6.4.4. This raises the question of determining C for LSGAN and other
standard losses. Furthermore, the same problem arises for gradients obtained from
incompletely trained discriminators ft. Unlike the IPM case for which the results of
Arbel et al. (2019) who leverage the theory of Ambrosio, Gigli, and Savaré (2008)
have lead to a remarkable solution, this connection remains to be established for other
adversarial losses. We leave this as future work.

6.6. Empirical Study with GAN(TK)2

In this section, we present a selection of empirical results for different losses and
architectures and evaluate the adequacy and practical implications of our theoretical
framework in different settings. All experiments were designed and performed with the
proposed Generative Adversarial Neural Tangent Kernel ToolKit GAN(TK)2, that we
publicly release1 in the hope that the community leverages and expands it for principled
GAN analyses. It is convenient to evaluate novel architectures and losses based on
different visualizations and analyses. GAN(TK)2 is implemented in Python (tested on
versions 3.8.1 and 3.9.2 and on Nvidia GPUs with CUDA 10.2 and 11.2) and based
on JAX (Bradbury et al., 2018) for tensor computations and Neural Tangents (Novak
et al., 2020) for NTKs.
We focus in this work on particular experiments for the sake of clarity and as an

illustration of the potential of analysis of our framework, but GAN(TK)2 is a general-
purpose toolkit centered around the infinite-width regime of the discriminator and could
be leveraged for an even more extensive empirical analysis. We specifically consider the
IPM and LSGAN losses for the discriminator since they are the two losses for which
we derive in the previous section the analytic behavior of the discriminator in the
infinite-width limit, but other losses can be studied as well in GAN(TK)2. We leave a

1GAN(TK)2 is available at https://github.com/emited/gantk2.
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large-scale empirical study of our framework, which is out of the scope of this work, for
future work.

Given the expression of the discriminator in Equation (6.10), f0 is usually considered
to be the final state of the discriminator from the previous generator update, as explained
in Section 6.4.1. However, taking into account this dependency is computationally
infeasible because of the analytical expressions manipulated in the infinite-width regime.
Therefore, for the sake of efficiency and for these experiments only, we assume that
f0 = 0 – for instance, using the antisymmetrical initialization (Yaoyu Zhang et al.,
2020). This also allows us to ignore residual gradients from the initialization, which
can introduce some noise in the optimization process.

6.6.1. Adequacy for Fixed Distributions
Firstly, we analyze the case where generated and target distributions are fixed. In
this setting, we qualitatively study the similarity between the finite- and infinite-width
regimes of the discriminator and its gradients. Figure 6.1 shows cf? and its gradients
on one- and two-dimensional data for LSGAN and IPM losses with a three-layer ReLU
MLP with varying widths. We find the behavior of finite-width discriminators to be
close to their infinite-width counterpart for commonly used widths, and converges
rapidly to the given limit as the width becomes larger.

6.6.2. Convergence of Generated Distribution
We now empirically study the convergence of the generated distributions within our
framework for various architectures, losses and datasets.

Experimental setting. We consider a target distribution β̂ and alleviate the complexity
of the analysis by following Equation (6.12) with Tkg` ,pz = id, similarly to Mroueh,
Sercu, and Raj (2019) and Arbel et al. (2019), thereby modeling the generator’s
evolution by considering a finite number of samples α̂`. We study three different choices
of pairs of initial distribution α̂0 and target distribution β̂:

• the 8 Gaussians problem, where β̂ consists in 8 Gaussians evenly distributed on
a centered sphere and α̂0 is a standard Gaussian (see Figure 6.2, bottom left) ;

• the Density problem with more complex shapes, illustrated in Figure 6.3, bottom
left;

• the AB problem, where α̂0 and β̂ are uniformly distributed in, respectively,
A-shaped and B-shaped surfaces (see Figure 6.4, bottom left).

The Density and AB problems are examples taken from the Geomloss library (Feydy
et al., 2019).
For both IPM and LSGAN losses, we evaluate the convergence of the generated

distribution for an MLP discriminator in the finite- and infinite-width involving:

• ReLU activations, with bias terms;
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Figure 6.4.: Initial generator (l) and target (×) samples for the AB problem.

• ReLU activations, without bias terms;

• sigmoid-like activations, with bias terms.

It is also possible to comparatively evaluate the advantages of this architecture by
considering the case where the infinite-width loss is not given by an NTK, but by
the popular Radial Basis Function (RBF) kernel, which is characteristic and presents
attractive properties (Muandet et al., 2017). Figures 6.2 and 6.3 illustrate the conver-
gence of α̂` for some of the studied cases, and Table 6.1 compiles a complete numerical
evaluation supporting our analysis.

Adequacy. We observe that performances between the finite- and infinite-width
regimes are correlated, performances of ReLU networks being considerably better in
the infinite-width regime. Remarkably, for the infinite-width IPM, generated and
target distributions perfectly match. This can be explained by the high capacity of
infinite-width neural networks and their idealized setting; it has already been shown
that NTKs benefit from low-data regimes (Arora, Du, Zhiyuan Li, et al., 2020).

Impact of bias. The bias-free version of the discriminator performs worse than with
bias, for both regimes and both losses. This is in line with findings of e.g. Basri et al.
(2020), and can be explained in our theoretical framework by comparing their NTKs.
Indeed, the NTK of a bias-free ReLU network is not characteristic, whereas its bias
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counterpart was proven to present powerful approximation properties (Ji, Telgarsky,
and Xian, 2020). Furthermore, results of Section 6.4.3 state that the ReLU NTK
with bias is differentiable at 0, whereas its bias-free version is not, which can disrupt
optimization based on its gradients: note in Figure 6.2 the abrupt streaks of the
discriminator directed towards 0 and their consequences on convergence.

ReLU vs. sigmoid. We observe that the sigmoid baseline is consistently outperformed
by the RBF kernel and ReLU activation (with bias) for all regimes and losses. This is
in accordance with common experimental practice, where internal sigmoid activations
are found less effective than ReLU because of the potential activation saturation that
they can induce. These results are consistent with the qualitative underperformance of
sigmoid via our framework shown in Section 6.6.3.

NTK vs. RBF kernel. We observe the superiority of the ReLU NTK with respect
to the RBF kernel. This highlights that the gradients of a ReLU network with bias
are particularly well adapted to GANs. Visualizations of the gradients given by the
ReLU architecture in the infinite-width limit are available in Section 6.6.3 and further
corroborate these findings. More generally, for the same reasons, we believe that the
NTK of ReLU networks could be of particular interest for kernel methods requiring
the computation of a spatial gradient, like Stein variational gradient descent (Q. Liu
and D. Wang, 2016).

Qualitative MNIST and CelebA experiment. An experimental analysis of our frame-
work on complex image datasets is out the scope of our study – we leave it for future
work. Nonetheless, we present experiments on MNIST (LeCun, Bottou, et al., 1998)
and CelebA (Z. Liu, Luo, et al., 2015) images in a similar setting as the experiments on
two-dimensional point clouds of this section. For each dataset, we make a point cloud α̂,
initialized to a standard Gaussian, move towards a subset of the dataset following the
gradients of the IPM loss in the infinite-width regime. Qualitative results are presented
in Figure 6.5.
We notice, similarly to the two-dimensional experiments, that the ReLU network

with bias outperforms its bias-free counterpart and a standard RBF kernel in terms
of sample quality. The difference between the RBF kernel and ReLU NTK is even
more flagrant in this complex high-dimensional setting, as the RBF kernel is unable to
produce accurate samples.

6.6.3. Visualizing the Gradient Field Induced by the Discriminator

We raise in Sections 6.4.4 and 6.5 the open problem of studying the convergence of the
generated distribution towards the target distribution with respect to the gradients of
the discriminator. We aim in this section at qualitatively studying these gradients in a
simplified case that could shed some light on the more general setting and explain some
of our experimental results. These gradient fields can be plotted using the provided
GAN(TK)2 toolkit.
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(a) RBF kernel: blurry digits on MNIST, prohibitively noisy images on CelebA.

(b) ReLU: sharp digits on MNIST, high-quality images on CelebA.

(c) ReLU (no bias): mostly sharp digits with some artifacts and blurry images on MNIST, blurry and
noisy images on CelebA.

Figure 6.5.: Uncurated samples from the results of the descent of a set of 1024 particles
over a subset of 1024 elements of MNIST and CelebA, starting from a
standard Gaussian. Training is done using the IPM loss in the infinite-
width kernel setting.
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Figure 6.6.: Gradient field ∇cf?α̂x
(x) for a generated x ∈ R2. See Figure 6.7 for a

detailed description.
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Figure 6.7.: Same plot as Figure 6.6 but with underlying points x,y ∈ R512. This
figure and Figure 6.6 show the gradient field ∇cf?α̂x

(x) for a generated x
(i.e. α̂ = δx) initialized to x0 with respect to its coordinates in Span{x0,y}
where y is the target × (i.e. β̂ = δy), with ‖y‖ = 1. Arrows reflect the
movement of x in Span{x0,y} following ∇cf?α̂x

(x); scales are specific for
each pair of loss and network. The ideal case is the convergence of x
along this gradient field towards the target y. Note that in the chosen
orthonormal coordinate system from Span{x0,y}, without loss of generality,
y has coordinate (1, 0); moreover, the gradient field is symmetrical with
respect to the horizontal axis.
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6.6.3.1. Setting

By Theorem 1, for any loss and any training time, the discriminator can be expressed
as f?α̂g = Tk,γ̂g (h0), for some h0 ∈ L2

(
γ̂g
)
. Thus, there exists h1 ∈ L2

(
γ̂g
)
such that:

f?α̂g =
∑

x∈supp γ̂g

h1(x)k(x, ·). (6.17)

Consequently:

∇f?α̂g =
∑

x∈supp γ̂g

h1(x)∇k(x, ·), ∇cf?α̂g =
∑

x∈supp γ̂g

h1(x)∇k(x, ·)c′
(
f?α̂g (·)

)
. (6.18)

Dirac GAN setting. The latter linear combination of gradients indicates that, by
examining gradients of cf?α̂g for pairs of (x,y) ∈ supp α̂g × supp β̂, one could already
develop potentially valid intuitions that can hold even when multiple points are
considered. This is especially the case for the IPM loss, as h0, h1 have a simple form:
h1(x) = 1 if x ∈ supp α̂g and h1(y) = −1 if y ∈ supp α̂g (assuming points from α̂g and
β̂g are uniformly weighted); moreover, note that c′

(
f?α̂g (·)

)
= 1. Thus, we study here

∇cf?α̂g when α̂g and β̂g are only comprised of one point, i.e. the setting of Dirac GAN

(Mescheder, A. Geiger, and Nowozin, 2018), with α̂g = δx , α̂x and β̂g = δy.

Visualizing high-dimensional inputs. Unfortunately, the gradient field is difficult to
visualize when the samples live in a high-dimensional space. Interestingly, the NTK
k(x,y) for any architecture starting with a fully connected layer only depends on
‖x‖, ‖y‖ and 〈x,y〉 (G. Yang and Salman, 2019), and therefore all the information
of ∇cf?α̂x

is contained in Span{x,y}. From this, we show in Figures 6.6 and 6.7
the gradient field ∇cf?α̂x

(x) in the two-dimensional space Span{x,y} for different
architectures and losses in the infinite-width regime described in Section 6.6 and in
this section. Figure 6.6 corresponds to two-dimensional x,y ∈ R2, and Figure 6.7 to
high-dimensional x,y ∈ R512. Note that in the plots, the gradient field is symmetric
with respect to the horizontal axis. For this reason, we restrict the illustration to the
case where the second coordinate is positive.

Convergence of the gradient flow. In the last paragraph, we have seen that the
gradient field in the Dirac-GAN setting lives in the two-dimensional Span{x,y}, inde-
pendently of the dimensionality of x,y. This means that when training the generated
distribution, the position of the particle x always remains in this two-dimensional space,
and hence convergence in this setting can be easily checked by studying this gradient
field. This is what we do in the following, for different architectures and losses.

6.6.3.2. Qualitative Analysis of the Gradient Field

x is far from y. When generated outputs are far away from the target, it is essential
that their gradient has a large enough magnitude in order to pull these points towards
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the target. The behavior of the gradients for distant points can be observed in the
plots. For ReLU networks, for both losses, the gradients for distant points seem to
be well behaved and large enough. Note that in the IPM case, the magnitude of the
gradients is even larger when x is further away from y. This is not the case for the
RBF kernel when the variance parameter is too small, as the magnitude of the gradient
becomes prohibitively small. We highlight that we select a large variance parameter in
order to avoid such a behavior, but diminishing magnitudes can still be observed. Note
that choosing an overly large variance may also have a negative impact on the points
that are closer to the target.

x is close to y. A particularity of the NTK of ReLU discriminators with bias that
arises from this study is that the gradients vanish more slowly when the generated x
tends to the target y, compared to NTKs of ReLU without bias and sigmoid networks,
and to the RBF kernel. We hypothesize that this is another distinguishing feature
that helps the generated distribution to converge more easily to the target distribution,
especially when they are not far apart. On the contrary, this gradient vanishes more
rapidly for NTKs of ReLU without bias and sigmoid networks, compared to the RBF
kernel. This can explain the worse performance of such NTKs compared to the RBF
kernel in our experiments (see Table 6.1). Note that this phenomenon is even more
pronounced in high-dimensional spaces such as in Figure 6.7.

x is close to 0. Finally, we highlight gradient vanishing and instabilities around the
origin for ReLU networks without bias. This is related to its differentiability issues at
the origin exposed in Section 6.4.3, and to its lack of representational power discussed
in Appendix D.2.5. This can also be retrieved on larger scale experiments of Figures 6.2
and 6.3 where the origin is the source of instabilities in the descent.

Sigmoid network. Figures 6.2 and 6.3 provide a clear explanation of the aforemen-
tioned underperformance of the sigmoid activation: as stated above, the magnitudes of
the gradients become too small when x→ y, and heavily depend on the direction from
which x approaches y. Ideally, the induced gradient flow should be insensitive to the
direction in order for the convergence to be reliable and robust, which seems to be the
case for ReLU networks.

6.7. Conclusion and Discussion
Leveraging the theory of infinite-width neural networks, we propose a framework of
analysis of GANs explicitly modeling a large variety of discriminator architectures. We
show that the proposed framework models more accurately GAN training compared to
prior approaches by deriving properties of the trained discriminator. We demonstrate
the analysis opportunities of the proposed modeling by further studying the generated
distribution for specific GAN losses and architectures, both theoretically and empirically,
notably using our public GAN analysis toolkit. We believe that this work will serve as a
basis for more elaborate analyses, thus leading to more principled, better GAN models.
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Conclusion

127





We conclude this document with an overview of the work performed during this
thesis in Chapter 7, and an opening in Chapter 8 describing potential future work.
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Chapter 7.

Overview of our Work

This thesis started in September 2018. The previous chapters cover the work produced
during this time on this topic. In conclusion, we summarize our contributions in
Section 7.1 and then highlight in the rest of this chapter some work and context that
was not covered in the previous chapters. More precisely, we emphasize in Section 7.2
our efforts at ensuring the reproducibility of our research, acknowledge in Section 7.3
the people who participated in producing the presented contributions as well as related
fundings, and succinctly expose in Section 7.4 other work performed during this thesis
but not directly related to the topics covered by this document.

7.1. Summary of Contributions
We briefly summarize in this section the contributions of this thesis; a more detailed
summary per chapter is available in Section 1.2.
During this thesis, we have worked on multiple aspects of temporality in neural

networks through the prism of representation learning and generative modeling, with a
focus on dynamical systems and differential equations.

This has led us to first design a general-purpose unsupervised representation learning
method for time series, aiming at embedding them into a fixed-size representation in a
scalable way via a time-based triplet loss. We have then tackled representation learning
for temporal data by learning a low-dimensional state per time step of a sequence and
in-between transitions in a state-space manner. This equivalence between learning to
represent and learning to predict has motivated the introduction of prediction models
based on state-space representations. We have highlighted, to this end, the crucial role
of designing appropriate transition functions between representations, which we have
shown to be most useful when obeying differential equations parameterized by neural
networks. We have applied these generative methods to spatiotemporal data like videos
and physical phenomena by considering the challenges and possibilities they introduce,
such as stochastic forecasting and spatiotemporal disentanglement. Finally, we have
more broadly addressed generative modeling for all kinds of data by theoretically
and empirically studying the training dynamics of the state-of-the-art generative
models, GANs. In particular, we have described the evolution of the neural network
discriminator of GANs with respect to its training time with a differential equation
thanks to the theory of NTKs, and its consequences on the generated distribution’s
flow throughout training. Such modeling of the architecture and optimization of the
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discriminator have allowed us to better apprehend the training of GANs, thus showing
the benefits of studying neural networks as dynamical systems even when the data are
not temporal.

7.2. Reproducibility
Throughout this document, we mention our efforts at producing reproducible research.
The machine learning community has increasingly addressed this issue since the begin-
ning of this thesis (Pineau et al., 2021), especially because of the explosion of empirical
advances in the field. We have tried to follow this necessary evolution for each of our
contributions, answering positively to all reproducibility requirements of our articles’
submissions to international conferences.
More particularly, we have taken the following actions in this direction:

• algorithms and theoretical results have been precisely described and proved when
necessary;

• we have detailed and made available whenever possible the considered datasets,
in both this document and the original articles, as well as in the released source
code;

• the source code of all proposed models, frameworks and experiments has been
publicly released under a free license and with detailed instructions;

• we have made sure to answer any request and question about our code in their
Git repositories, pre- and post-publication;

• all infrastructures and hyperparameters for our experiments have been specified,
in both this document and the original articles, as well as in the released source
code with easy-to-launch commands;

• when possible with the available computational resources, we have complemented
our numerical results with error bars and variance;

• we have explicated how we have produced the results of all the considered baselines
in our experiments.
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We would like to highlight that the presented contributions have been made in col-
laboration with other Ph.D. students and researchers who share their paternity, in
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from other researchers that have helped us to improve our articles, including the anony-
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Cordonnier, Andreas Loukas, François Fleuret, Matthias Minderer and Vincent Le
Guen, as well as all members of the MLIA team of the LIP6 laboratory within the time
frame of this thesis.
Moreover, we acknowledge the fundings that have supported this thesis and the

produced work. First of all, the École Normale Supérieure de Lyon, Sorbonne Université
and the Ministère de l’Enseignement Supérieur, de la Recherche et de l’Innovation have
funded this thesis. This work was granted access to the HPC resources of IDRIS under
allocations 2020-AD011011360 and 2021-AD011011360R1 made by GENCI (Grand
Équipement National de Calcul Intensif), which have been crucial to the research
presented in Chapters 4 to 6. The study of Chapter 5 has been conducted using E.U.
Copernicus Marine Service Information. Finally, the work of this thesis has benefited
from the SFA-AM ETH Board initiative, the LOCUST ANR project (ANR-15-CE23-
0027), CLEAR (Center for LEArning and data Retrieval, joint laboratory with Thales),
the European Union’s Horizon 2020 research and innovation programme under grant
agreement 825619 (AI4EU), and the 2019 ANR AI Chairs program via the DL4CLIM
project.

7.4. Other Works
We would finally like to succinctly mention the work performed during this thesis but
that could not be included in the previous chapters.

Beyond producing research papers, this thesis has been the opportunity to peer-review
other research papers, present and discuss our or other’s work at various conferences
and seminars, partially manage a reading group on machine learning for spatiotemporal
data, and fulfill the role of teaching assistant at Sorbonne Université for undergraduate
students in Computer Science.
Furthermore, we have thought about, and sometimes worked on, follow-ups of the

presented contributions and possible future works. We deal with this unreleased content
and perspectives in the next and last chapter of this document.
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Chapter 8.

Perspectives

We expose in this chapter perspectives for future work based on the contributions
presented in the previous chapters. We first present in Section 8.1 some ideas that have
been worked on during this thesis but have not resulted in significant advances yet,
because of a lack of time or results. We then list in Section 8.2 other possible research
directions that are yet to explore.

8.1. Unfinished Projects

8.1.1. Adaptive Stochasticity for Video Prediction

Deep Markov models and VRNN, seen in Section 2.3.2.3, as well as the SRVP model of
Chapter 4, are all able to perform stochastic predictions, but fundamental differences
in their design distinguish them and impact their performance. Nonetheless, they
share a common modeling choice: stochasticity only intervenes once per observation xt,
and both are synchronized; in the continuous-time view of SRVP in Equation (4.11),
sampling a new z occurs at regular time stamps. One may consider multiplying the
number of z between each observation to synchronize the sampling steps with the Euler
step size, but this would maintain the synchronization with the observations, although
with a different frequency.

We believe that such synchronization raises modeling issues. Indeed, sampling a
z variable represents a possible change of dynamics, and there is no reason for this
change to occur synchronously with the observation rate. Let us take as an example the
Moving MNIST dataset from the experiments of Chapters 4 and 5. Bounces may occur
between observations, and not necessarily at the precise moment of the observation.
Yet, all latent variables models consider this change of movement only at the moment
of the observation, making them unable to assimilate the true dynamics of the dataset.
The continuous-time view of SRVP in Equation (4.11) provides, in opposition to

previous models, an opportunity to tackle this issue. This is because it allows us to
draw variables (zi+1)i at learned time stamps (ti)i rather than at integer ones like in
SRVP, with the state yt following an ODE in-between each pair of consecutive time
stamps:

dy

dt
= fθ(yt, zi+1) for t ∈ [ti, ti+1]. (8.1)

Learning the time stamps would make the model decide when a change of dynamics
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occurs, potentially improving its modeling and prediction abilities. Besides, its potential
ability to automatically detect these changes of dynamics and possibly skip unnecessary
updates may be beneficial for interpretability and computational efficiency purposes.

We have more particularly investigated an instance of such a general principle where,
given previous states y≤ti and variables z≤i+1, the next time stamp is computed by
determining the delay until the new dynamics based on the current state and variable:

τi = dϑ(yti , zi+1) > 0, ti+1 = ti + τi, (8.2)

where dϑ is a ϑ-parameterized neural network with positive outputs (e.g. with a final
softplus activation). Learning delays enables the temporal model to work in relative
rather than absolute time, which facilitates its specification.

A practical issue of such a model for batch training is that all sequences of a batch are
desynchronized, with different delays and time stamps. This forbids efficient parallel
computations with different ODEs in-between time stamps like in Equation (8.1) since
ODE solvers are hardly batch-parallelizable. We have circumvented this issue by
replacing these ODEs with simple residual dynamics between time stamps, similarly to
the Euler discretization:

yt = yti + (t− ti)fθ(yti , zi+1). (8.3)

This maintains the continuous-time view allowing the existence of the proposed adaptive
stochastic model, while enabling us to perform batch-parallel computations thanks to
the residual operation of Equation (8.3) which can be synchronized with the index i.
This residual version also provides the opportunity for the temporal model to learn the
optimal Euler discretization of Equation (8.1) by seeing the step size τi as the Euler
step size ∆t. Since τi may be greater than 1, unlike in SRVP, it paves the way for
a lighter temporal model, which would save computations whenever no event in the
input sequence requires a change of dynamics. With the Moving MNIST dataset, for
instance, such a model would ideally synchronize the time stamps ti with the digits’
bounces and jump to the next bounce instead of allocating several superfluous residual
operations in-between bounces.
However, learning this adaptive model has proved to be challenging. Indeed, varia-

tional learning is poorly adapted to this adaptive sampling strategy because the number
of variables to infer vary depending on the training sequences and model parameters.
Let us iteratively derive a possible ELBO for this model; we ignore the content variable
w for the sake of clarity. First, we can infer the initial condition y1 like in SRVP:

log p(x) ≥ Ey1∼q(y1 | x)

[
log p(x | y1)

]
−DKL

(
q(y1 | x)

∥∥ p(y1)
)
. (8.4)

We can then infer the first random variable z2:

log p(x | y1) ≥ Ez2∼q(z2 | x,y1)

[
log p

(
x
∣∣ y1,yt2 = y1 + dϑ(y1, z2)fθ(y1, z2)

)]
−DKL

(
q(z2 | x,y1)

∥∥ p(z2 | y1)
)
.
(8.5)

136



8.1. Unfinished Projects

A similar ELBO can then be derived for any log p
(
x
∣∣ ytk , k ∈ J1, iK

)
, with t1 = 1.

We can iterate over these ELBOs until log p
(
x
∣∣ ytk , k ∈ J1, iK

)
can be analytically

computed, i.e. when ti ≥ T , where T is the length of the sequence. This gives the
following ELBO:

log p(x) ≥ Ey1=yt1 ,(zi,yti)i>1
∼qZ,Y

such that ti−1<T≤ti

 log p
(
x
∣∣∣ (ytk)k∈J1,iK

)

−
i∑

k=2

DKL

(
q
(
zk
∣∣ x,ytk−1

) ∥∥∥ p(zk ∣∣ ytk−1

))
−DKL

(
q(y1 | x)

∥∥ p(y1)
)
.

(8.6)
Note that, unlike in SRVP, the inference of zi necessitates both the data x and the
current state yti−1 , because the temporal model may not know the state of the system
yti corresponding to zi when, in an adaptive setting, the time stamp of zi varies
throughout learning. The ELBO of Equation (8.6) is atypical as it involves a variable
number of KLDs depending on the data point and the model parameters. We believe
that this unusual variational inference has raised a number of optimization problems
that could explain the difficulty that we have encountered to make this model work as
intended, as described in the rest of this subsection.

We have indeed implemented the described model in various forms but have failed to
prove its relevance in practice. The first encountered issue with the above model is its
instability. Indeed, variational inference benefits during the first stage of training from
increasing the number of variables to infer z for a better reconstruction of x, which the
model is able to do by decreasing the delays τi, leading to prohibitive time and memory
costs. This has incited us to complement this adaptive model with a regularization
term to minimize that penalizes overly small τi, of the form:

λ1

∑
i

1

τλ2
i

, (8.7)

where λ1 and λ2 are positive hyperparameters. Besides solving the aforementioned
computational cost explosion issue, the weighting of this penalty offers the possibility
to balance the performance of a model with a soft constraint on the budget of the
number of residual steps.

However, the experimental results of the model with this regularization have not been
satisfying. Whatever the tested hyperparameter values, allocated budget and resulting
number of residual steps used by the adaptive model, its performance on Moving MNIST
has remained under SRVP. Moreover, we have not noticed any possibility of saving
computations by learning large step sizes τi > 1: the model tends to allocate many small
residual steps at regular moments in the sequence, especially at its beginning, even with
a large λ1. This low prediction performance occurs even though the adaptive model does
perform well when it comes to sequence reconstruction during training. This highlights
the particularity of sequential latent variable models which are tested in our context
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for prediction but trained with a different objective due to their variational training.
We believe that introducing adaptive stochasticity in the investigated model widens
the gap between training and testing even further, thereby penalizing its downstream
prediction performance.
Nonetheless, we have found the results encouraging because qualitative analysis

indicates that, despite its observed flaws, the adaptive model does detect bounces in
the Moving MNIST data and is able, although not consistently, to increase the delays
τi in-between bounces. Therefore, we would be interested in further investigating this
research direction, especially as it has received some attention since then, with a few
other concurrent adaptive ODE-based works in a deterministic and more simplistic
setting than video prediction (R. T. Q. Chen, B. Amos, and Nickel, 2021; Sam
Greydanus, S. Lee, and Fern, 2021).

8.1.2. GAN Improvements via the GAN(TK)2 Framework

Along with the development of our GAN(TK)2 framework in Chapter 6, we have
attempted to leverage the new understanding provided by our framework in order
to directly improve GANs. We have investigated with preliminary experiments two
possibilities of improvement, exposed in the following.

8.1.2.1. New Discriminator Architectures

We have studied in Section 6.6 the NTK of some standard discriminator architec-
tures. Subsequently, we have also tried to derive new, more performant, discriminator
architectures by studying the properties of their NTKs.

We have been more specifically interested in the activations used in the discriminators.
Indeed, the NTK k of a ReLU network, given in Equation (D.133), resembles no
standard kernel: it is not translation-invariant and k(·,y) does not reach its maximum
in the vicinity of y, but it can rather be unbounded when its input norm tends to
infinity. We have shown in Section 6.6 that this unusual kernel endows its corresponding
discriminator with interesting generative properties. Still, we have wondered whether
complementing it with other activation functions in a multi-branch architecture could
improve its ability to drive the generator.

We have noticed, for example from the Neural Tangents library (Novak et al., 2020),
that using sine-like activations leads to an NTK resembling an RBF, which could be
interesting to combine with a ReLU NTK. Preliminary experiments have shown that
using sine-like activations in conjunction with ReLU does give promising results on our
two-dimensional problems introduced in Section 6.6.2: it experimentally removes the
need for the discriminator to have non-null bias terms for the generated distribution
to converge towards the target. However, we have not found conclusive evidence that
such improvement transfers in the finite-width regime to widespread state-of-the-art
discriminator architectures for images like DCGAN (Radford, Metz, and Chintala,
2016) and BigGAN (Brock, Donahue, and Simonyan, 2019). We have not been able
to confirm the reason for this absence of results, given that such architectures are
significantly more costly to manipulate in the infinite-width regime.
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Nonetheless, we hope that more involved theoretical and experimental analyses of the
NTKs of such architectures could lead to the discovery of more performant architectures.
Regarding the introduction of sine-like activations, we believe that the recent advances
that they have made possible in other domains thanks to their interesting properties
support our motivation to introduce them in a GAN setting; see for example the works
of Tancik et al. (2020) who also leverage the NTK theory, and of Sitzmann et al. (2020).

8.1.2.2. New NTK-Based GAN Model

In Section 6.5.1, we discover that, in the infinite-width regime of the discriminator,
the generator under the IPM loss is actually trained to minimize the MMD between
the generated and target distribution with respect to the NTK of the discriminator’s
architecture. We have sought to determine how such a generator trained with the NTK
MMD witness function as a discriminator instead of a trained neural network would
perform in practice.
Such a GAN model raises the issue of the computational cost of kernels compared

to neural network discriminators. Indeed, in this case, the discriminator must be
computed from scratch for each new instantiation of generator parameters. Moreover,
this computation relies on a Monte-Carlo estimation using mini-batches of the generated
and target distribution because of the quadratic cost in the number of samples to
compute this MMD witness function. Preliminary tests of this model on MNIST have
shown that this high-variance estimation hurts the performance of the generator. In
particular, while increasing the size of the mini-batches improves its performance, we
could not match the results of a standard DCGAN (Radford, Metz, and Chintala, 2016)
within a reasonable computational budget.

Nevertheless, we believe that such an NTK MMD model is promising. We have found
that it leads to a significantly more stable generator training since it removes the need
of solving via gradient descent the inner optimization problem of the discriminator, i.e.
it removes the adversarial component of GAN optimization. This finding is consistent
with how NTKs have been used in a meta-learning setting (Y. Zhou et al., 2021).
Should its computational issues be mitigated, this NTK GAN model could become
a performant discriminator-free generative model. To this end, one may consider
exploring various preexisting strategies to more efficiently compute the MMD witness
functions (Gretton, Borgwardt, M. J. Rasch, et al., 2012; Muandet et al., 2017).

8.2. Future Directions

8.2.1. Temporal Data and Text
We take inspiration in Chapter 3 from a standard NLP technique to propose a represen-
tation learning method for time series. This inspiration from NLP has been beneficial
but rests on word2vec (Mikolov, Sutskever, et al., 2013), which has become obsolete
since then. In particular, the versatility of the transformer architecture mentioned in
Section 2.1.3.2 constitutes a solid motivation to adapt them for applications on temporal
data, especially given recent advances illustrating their ability to simultaneously work
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on both modalities (Pashevich, Schmid, and C. Sun, 2021). More generally, advances in
NLP might be a fruitful source of inspiration for machine learning research on temporal
data due to the sequential nature of language. Conversely, we would be interested in
applying some of the ideas in predictive and generative modeling developed in this
document to textual data in order to evaluate the utility of differential equations at
modeling them.

8.2.2. Spatiotemporal Prediction

We consider in this subsection axes of improvement for the spatiotemporal prediction
models of Chapters 4 and 5.

8.2.2.1. Merging the Video and PDE-Based Models

Both chapters explore two different aspects of learning on spatiotemporal data and
share similarities in model structures. Given the disentanglement improvements made
in Chapter 5 compared to the more complex model of Chapter 4, we think that an
interesting future work would be to merge these models by proposing a sequential
latent variable model with a PDE-inspired spatiotemporal disentanglement system.

8.2.2.2. Scaling Models

Despite its state-of-the-art performance when released, the SRVP model of Chapter 4
has now been surpassed by other prediction methods. However, the motivation behind
SRVP is not exclusively to achieve state-of-the-art results but also to present a new
learning principle for video prediction with more advantages than prior methods.
Another way to study the advantages of SRVP would be to scale it with higher-

capacity networks and architectures so as to determine whether its residual and
state-space principles also benefit computationally costly methods. A positive result
would be in accordance with the study of Castrejon, Ballas, and Courville (2019) and
Villegas, Pathak, et al. (2019) who show that the older SVG model from Denton and
Fergus (2018) does present a significantly increased performance when properly scaled.

8.2.2.3. Relaxing the Constancy of the Content Variable

We introduce in both chapters a content variable w, representing the static content
in a sequence. However, this assumption of a static component in the dynamics of
a sequence usually holds for short or specific sequences only, because most partially
observed spatiotemporal phenomena may involve the addition of new content in the
course of a sequence. For example in videos, a new subject may appear or entirely new
visuals might be introduced when a video is edited, which invalidates the purpose of
this content variable. Indeed, it is likely that our models would not perform satisfyingly
on more complex video datasets such as Kinetics-600 (Carreira et al., 2018) that is
already challenging for high-capacity models (Weissenborn, Täckström, and Uszkoreit,
2020), partly because of this content variable.
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A possible improvement would be to relax the constancy assumption of this variable.
An idea would consist in making it evolve through time, although at a lesser rate than
the state y via regularization strategies. Another possibility to explore would be to
allow it to abruptly change at learned specific time steps, corresponding to abrupt
changes of content in a video for instance, but forbid it to evolve the rest of the time.

8.2.3. NTKs for the Analysis of Generative Models
Finally, we consider here two possible follow-ups for our work on GAN analysis with
NTKs in Chapter 6.

8.2.3.1. Analysis of GANs’s Generators

Chapter 6 focuses on studying the discriminator because, as argued in Section 6.3.1,
it is the basic building block of GANs. Furthermore, we show in the chapter that
understanding the role of the generator in GAN optimization remains an open problem.
Improving our understanding of the dynamics of the generated distribution through a
further study of Equation (6.12), even for specific GAN losses, would be a significant
step towards elucidating GANs’ behavior.

8.2.3.2. Analysis of Other Models

A more exploratory direction could consist in studying other generative models through
the prism of NTKs. Some might share similarities with GANs, which could enable us
to transfer some results from Chapter 6. For example, score-based generative modeling
involves in recent developments generated samples following the gradient of a neural
network trained on a specific task (Y. Song et al., 2021). NTKs might prove useful to
better understand the influence of neural networks architectures in such models.
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Appendix A.

Supplementary Material of Chapter 3

In this appendix chapter of Chapter 3, we provide our detailed training procedure for
classification tasks, choices of hyperparameters, as well as the full experimental results of
our method, compared to those of concurrent methods. Appendix A.1 further specifies
the training process for classification tasks and details the choices of hyperparameters
in all presented experiments. Appendix A.2 reports accuracy scores of all variants of
our method on the whole UCR archive (Dau et al., 2018) as well as comparisons with
concurrent methods, when available. Appendix A.3 provides accuracy scores for our
method on the whole UEA archive (Bagnall, Dau, et al., 2018).

A.1. Training Details

A.1.1. Input Preprocessing

We preprocess datasets of the UCR archive that are not already normalized in their
original version, as well as the IHEPC dataset, so that the set of time series values for
each dataset has zero mean and unit variance. For each UEA dataset, each dimension
of the time series is preprocessed independently of the other dimensions by normalizing
in the same way its mean and variance.

A.1.2. SVM Training

In order to train an SVM on the computed representations of the elements of the train
set, we perform a hyperparameter optimization for the penalty C of the error term
of the SVM by cross-validating it over the representations of the train set, thus only
using the train labels. Note that if the train set or the number of training samples per
class are too small, we choose a penalty C =∞ for the SVM (which corresponds to no
regularization).

A.1.3. Hyperparameters

We train our models with the following parameters for time series classification. We
emphasize that no hyperparameter optimization was performed on the encoder hyper-
parameters.
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• Optimizer: Adam (Kingma and Ba, 2015) with learning rate α = 0.001 and decay
rates β = (0.9, 0.999).

• SVM: penalty C ∈
{

10i | i ∈ J−4, 4K
}
∪ {∞}.

• Encoder training:
– number of negative samples: K ∈ {1, 2, 5, 10} for univariate time series,
K ∈ {5, 10, 20} for multivariate ones;

– batch size: 10;
– number of optimizations steps: 2000 for K ≥ 10 (i.e., 20 epochs for a dataset

of size 1000), 1500 otherwise.

• Architecture:
– number of channels in the intermediary layers of the causal network: 40;
– number of layers (depth of the causal network): 10;
– kernel size of all convolutions: 3;
– negative slope of the leaky ReLU activation: 0.01;
– number of output channels of the causal network (before max pooling): 320;
– dimension of the representations: 160.

For the Individual Household Electric Power Consumption dataset, changes are the
following:

• number of negative samples: K = 10;

• batch size: 1;

• number of optimization steps: 400;

• number of channels in the intermediary layers of the causal network: 30;

• number of output channels of the causal network (before max pooling): 160;

• dimension of the representations: 80.

A.2. Univariate Time Series
Full results corresponding to the first 85 UCR datasets for our method are presented in
Table A.1, while comparisons with DTW, ST, BOSS, HIVE-COTE and EE are shown
in Figures 3.4 and 3.5 and Table A.2,1 and comparisons with ResNet,2 TimeNet and
RWS are shown in Table A.3. Table A.4 compiles the results of our method and of
DTW3 for the newest 43 UCR datasets (except DodgerLoopDay, DodgerLoopGame
and DodgerLoopWeekend which contain missing values).
1Scores taken from http://www.timeseriesclassification.com/singleTrainTest.csv.
2Scores taken from https://github.com/hfawaz/dl-4-tsc/blob/master/results/results-uea.csv
(first iteration).

3Scores taken from https://www.cs.ucr.edu/~eamonn/time_series_data_2018/.
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A.2. Univariate Time Series
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A.2. Univariate Time Series
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A.3. Multivariate Time Series
Full results corresponding to the UEA archive datasets for our method as well as the
ones of DTWD as reported by Bagnall, Dau, et al. (2018) are presented in Table A.5,
for the unique train / test split provided in the archive.

162



A.3. Multivariate Time Series

T
ab

le
A
.5
.:

A
cc
ur
ac
y
sc
or
es

of
va
ri
an

ts
of

ou
r
m
et
ho

d
on

al
lU

E
A

da
ta
se
ts
,c

om
pa

re
d
to

D
T
W

D
.
B
ol
d
sc
or
es

in
di
ca
te

th
e

be
st

pe
rf
or
m
in
g
m
et
ho

d.

D
at
as
et

U
ns
up

er
vi
se
d

O
ur
s

D
T
W

D
K

=
5

K
=

1
0

K
=

2
0

C
om

bi
ne
d

A
rt
ic
ul
ar
yW

or
dR

ec
og
ni
ti
on

0.
96
7

0.
97
3

0.
94
3

0.
98

7
0.

98
7

A
tr
ia
lF
ib
ri
lla

ti
on

0.
20

0
0.
06
7

0.
13
3

0.
13
3

0.
20

0
B
as
ic
M
ot
io
ns

1.
00

0
1.

00
0

1.
00

0
1.

00
0

0.
97
5

C
ha

ra
ct
er
T
ra
je
ct
or
ie
s

0.
98
6

0.
99
0

0.
99
3

0.
99

4
0.
98
9

C
ri
ck
et

0.
95
8

0.
97
2

0.
97
2

0.
98
6

1.
00

0
D
uc
kD

uc
kG

ee
se

0.
60
0

0.
67

5
0.
65
0

0.
67

5
0.
60
0

E
ig
en
W
or
m
s

0.
87
0

0.
80
2

0.
84
0

0.
87

8
0.
61
8

E
pi
le
ps
y

0.
97

1
0.

97
1

0.
97

1
0.
95
7

0.
96
4

E
ri
ng

0.
13

3
0.

13
3

0.
13

3
0.

13
3

0.
13

3
E
th
an

ol
C
on

ce
nt
ra
ti
on

0.
28
9

0.
25
1

0.
20
5

0.
23
6

0.
32

3
Fa

ce
D
et
ec
ti
on

0.
52
2

0.
52
5

0.
51
3

0.
52
8

0.
52

9
F
in
ge
rM

ov
em

en
ts

0.
55
0

0.
49
0

0.
58

0
0.
54
0

0.
53
0

H
an

dM
ov
em

en
tD

ir
ec
ti
on

0.
31
1

0.
29
7

0.
35

1
0.
27
0

0.
23
1

H
an

dw
ri
ti
ng

0.
44
7

0.
46
4

0.
45
1

0.
53

3
0.
28
6

H
ea
rt
be

at
0.

75
6

0.
73
2

0.
74
1

0.
73
7

0.
71
7

In
se
ct
W

in
gb

ea
t

0.
15
9

0.
15
8

0.
15
6

0.
16

0
—

Ja
pa

ne
se
V
ow

el
s

0.
98
4

0.
98
6

0.
98

9
0.

98
9

0.
94
9

Li
br
as

0.
87
8

0.
88

3
0.

88
3

0.
86
7

0.
87
0

LS
ST

0.
53
5

0.
55
2

0.
50
9

0.
55

8
0.
55
1

M
ot
or
Im

ag
er
y

0.
53
0

0.
54
0

0.
58

0
0.
54
0

0.
50
0

N
A
T
O
P
S

0.
93
3

0.
91
7

0.
91
7

0.
94

4
0.
88
3

P
E
M
S-
SF

0.
63
6

0.
67
1

0.
67
6

0.
68

8
0.
71
1

P
en
D
ig
it
s

0.
98

5
0.
97
9

0.
98
1

0.
98
3

0.
97
7

163



Appendix A. Supplementary Material of Chapter 3

T
ab

le
A
.5
.:

A
cc
ur
ac
y
sc
or
es

of
va
ri
an

ts
of

ou
r
m
et
ho

d
on

al
lU

E
A

da
ta
se
ts
,c

om
pa

re
d
to

D
T
W

D
.
B
ol
d
sc
or
es

in
di
ca
te

th
e

be
st

pe
rf
or
m
in
g
m
et
ho

d.

D
at
as
et

U
ns
up

er
vi
se
d

O
ur
s

D
T
W

D
K

=
5

K
=

1
0

K
=

2
0

C
om

bi
ne
d

P
ho

ne
m
e

0.
21
6

0.
21
4

0.
22
2

0.
24

6
0.
15
1

R
ac
ke
tS
po

rt
s

0.
77
6

0.
83
6

0.
85
5

0.
86

2
0.
80
3

Se
lfR

eg
ul
at
io
nS

C
P
1

0.
79
5

0.
82
6

0.
84
3

0.
84

6
0.
77
5

Se
lfR

eg
ul
at
io
nS

C
P
2

0.
55
0

0.
53
9

0.
53
9

0.
55

6
0.
53
9

Sp
ok
en
A
ra
bi
cD

ig
it
s

0.
90
8

0.
89
4

0.
90
5

0.
95
6

0.
96

3
St
an

dW
al
kJ

um
p

0.
33
3

0.
40

0
0.
33
3

0.
40

0
0.
20
0

U
W
av
eG

es
tu
re
Li
br
ar
y

0.
88
4

0.
86
9

0.
87
5

0.
88
4

0.
90

3

164



Appendix B.

Supplementary Material of Chapter 4

In this appendix chapter of Chapter 4, we provide supplementary details, explanations
and discussions as well as additional experiments. Appendix B.1 derives in detail
the model’s ELBO of Equation (4.9). Appendix B.2 presents the skimmed datasets
used in Section 4.4 and associated technical details. Appendix B.3 provides the
full training details and hyperparameter choices required to reproduce our results.
Appendix B.4 extends the discussion started in Section 4.4.3 on the ability of our model
to produce predictions at arbitrary framerates. Appendix B.5 introduces an additional
experiment involving our model without content variable for sequence modeling, instead
of prediction in the main chapter. Finally, Appendix B.6 contains additional prediction
samples for all datasets and compared methods in Section 4.4.

B.1. Evidence Lower Bound
We develop in this section the computations of the variational lower bound for the
proposed model.
Using the original ELBO of Kingma and Welling (2014) and Equation (2.22) in

Equation (B.1):

log p(x1:T | w)

≥ E(z2:T ,y1:T )∼qZ,Y log p(x1:T | z2:T ,y1:T ,w)−DKL

(
qZ,Y

∥∥ p(y1:T , z2:T | w)
)
(B.1)

= E(z2:T ,y1:T )∼qZ,Y log p(x1:T | z2:T ,y1:T ,w)

−DKL

(
q(y1, z2:T | x1:T )

∥∥ p(y1, z2:T )
)

(B.2)

= E(z2:T ,y1:T )∼qZ,Y

T∑
t=1

log p(xt | yt,w)−DKL

(
q(y1, z2:T | x1:T )

∥∥ p(y1, z2:T )
)
,

(B.3)

where:

• Equation (B.2) is given by the forward and inference models factorizing p and q
in Equations (4.5), (4.6) and (4.8) and illustrated by, respectively, Figures 4.1(a)
and 4.1(b):
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– the z variables and y1 are independent of w with respect to p and q;

– the y2:T variables are deterministic functions of y1 and z2:T with respect to
p and q;

• Equation (B.3) results from the factorization of p(x1:T | y1:T , z1:T ,w) in Equa-
tion (4.5).

From there, by using the integral formulation of DKL:

log p(x1:T | w)

≥ E(z2:T ,y1:T )∼qZ,Y

T∑
t=1

log p(xt | yt,w)

+

∫
· · ·
∫
y1,z2:T

q(y1, z2:T | x1:T ) log
p(y1, z2:T )

q(y1, z2:T | x1:T )
dz2:T dy1

(B.4)

= E(z2:T ,y1:T )∼qZ,Y

T∑
t=1

log p(xt | yt,w)−DKL

(
q(y1 | x1:T )

∥∥ p(y1)
)

+ Ey1∼q(y1 | x1:T )

[∫
· · ·
∫
z2:T

q(z2:T | x1:T ,y1) log
p(z2:T | y1)

q(z2:T | x1:T ,y1)
dz2:T

]
(B.5)

= E(z2:T ,y1:T )∼qZ,Y

T∑
t=1

log p(xt | yt,w)−DKL

(
q(y1 | x1:k)

∥∥ p(y1)
)

+ Ey1∼q(y1 | x1:k)

[∫
· · ·
∫
z2:T

q(z2:T | x1:T ,y1) log
p(z2:T | y1)

q(z2:T | x1:T ,y1)
dz2:T

]
(B.6)

= E(z2:T ,y1:T )∼qZ,Y

T∑
t=1

log p(xt | yt,w)−DKL

(
q(y1 | x1:k)

∥∥ p(y1)
)

+ Ey1∼q(y1 | x1:k)

∫ · · · ∫
z2:T

T∏
t=2

q(zt | x1:t)

T∑
t=2

log
p(zt | y1, z2:t−1)

q(zt | x1:t)
dz2:T


(B.7)

= E(z2:T ,y1:T )∼qZ,Y

T∑
t=1

log p(xt | yt,w)−DKL

(
q(y1 | x1:k)

∥∥ p(y1)
)

− Ey1∼q(y1 | x1:k)DKL

(
q(z2 | x1:t)

∥∥ p(z2 | y1)
)

+ Ey1∼q(y1 | x1:k)
z2∼q(z2 | x1:2)

∫ · · · ∫
z3:T

T∏
t=3

q(zt | x1:t)

T∑
t=3

log
p(zt | y1, z2:t−1)

q(zt | x1:t)
dz3:T

,
(B.8)
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(B.9)

where:

• Equation (B.6) follows from the inference model of Equation (4.8), where y1 only
depends on x1:k;

• Equation (B.7) is obtained from the factorizations of Equations (4.5), (4.6)
and (4.8).

By iterating Equation (B.8)’s step on z3, . . . ,zT and factorizing all expectations, we
obtain:

log p(x1:T | w)

≥ E(z2:T ,y1:T )∼qZ,Y

T∑
t=1

log p(xt | yt,w)−DKL

(
q(y1 | x1:k)

∥∥ p(y1)
)

− Ey1∼q(y1 | xc)

(
Ezt∼q(zt | x1:t)

)T
t=2

T∑
t=2

DKL

(
q(zt | x1:t)

∥∥ p(zt | y1, z1:t−1)
)
,

(B.10)

and we finally retrieve Equation (4.9) by using the factorization of Equation (4.8):

log p(x1:T | w)

≥ E(z2:T ,y1:T )∼qZ,Y

T∑
t=1

log p(xt | yt,w)−DKL

(
q(y1 | x1:k)

∥∥ p(y1)
)

− E(z2:T ,y1:T )∼qZ,Y

T∑
t=2

DKL

(
q(zt | x1:t)

∥∥ p(zt | yt−1)
)
.

(B.11)

B.2. Datasets Details
We detail in this section the datasets used in our experimental study.

B.2.1. Data Representation
For all datasets, video frames are represented by greyscale or RGB pixels with values
within [0, 1] obtained by dividing by 255 their original values lying in J0, 255K.

B.2.2. Stochastic Moving MNIST
This monochrome dataset consists in one or two training MNIST digits (LeCun, Bottou,
et al., 1998) of size 28 × 28 moving linearly within a 64 × 64 frame and randomly
bouncing against its border, sampling a new direction and velocity at each bounce
(Denton and Fergus, 2018). We use the same settings as Denton and Fergus (2018):
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we train all models on 15 time steps, condition them at testing time on 5 frames,
and predict either 20 (for the stochastic version) or 95 (for the deterministic version)
frames. Note that we have adapted the dataset to sample more coherent bounces: the
original dataset computes digit trajectories that are dependent on the chosen framerate,
unlike our corrected version of the dataset. We consequently retrain SVG on this
dataset, obtaining comparable results as those originally presented by Denton and
Fergus (2018). Testing data are produced by generating a trajectory for each testing
digit, and randomly pairwise combining these trajectories to produce 5000 testing
sequences, each containing two digits.

B.2.3. KTH Action Dataset (KTH)
This dataset is composed of real-world 64 × 64 monochrome videos of 25 people
performing one of six actions (walking, jogging, running, boxing, handwaving and
handclapping) in front of different backgrounds (Schüldt, Laptev, and Caputo, 2004).
Uncertainty lies in the appearance of subjects, the action they perform and how it is
performed. We use the same settings as Denton and Fergus (2018): we train all models
on 20 time steps, condition them at testing time on 10 frames, and predict 30 frames.
The training set is formed with actions from the first 20 subjects, the remaining five
being used for testing. Training is performed by sampling sub-sequences of size 20 in
the training set. The test set is composed of 1000 randomly sampled sub-sequences of
size 40.

B.2.4. Human3.6M
This dataset is also made of videos of subjects performing various actions (Ionescu,
F. Li, and Sminchisescu, 2011; Ionescu, Papava, et al., 2014). While there are more
actions and details to capture with fewer training subjects than in KTH, the video
backgrounds are less varied, and subjects always remain within the frames. We use the
same settings as Minderer et al. (2019) to train both our model and StructVRNN, for
which there is no available pretrained model. We train all models on 16 time steps,
condition them at testing time on 8 frames, and predict 45 frames. Videos used in
our experiment are subsampled from the original videos at 6.25Hz, center-cropped
from 1000× 1000 to 800× 800 and resized to 64× 64 using the Lanczos filter of the
Pillow library.1 The training set is composed of videos of subjects 1, 5, 6, 7, and 8, and
the testing set is made from subjects 9 and 11; videos showing more than one action,
marked by “ALL” in the dataset, are excluded. Training is performed by sampling
sub-sequences of size 16 in the training set. The test set is composed of 1000 randomly
sampled sub-sequences of size 53 from the testing videos.

B.2.5. BAIR Robot Pushing Dataset (BAIR)
This dataset contains 64 × 64 videos of a Sawyer robotic arm pushing objects on a
tabletop (Ebert et al., 2017). It is highly stochastic as the arm can change its direction
1https://pillow.readthedocs.io/
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at any moment. We use the same settings as Denton and Fergus (2018), train all
models on 12 time steps, condition them at testing time on 2 frames, and predict 28
frames. Training and testing sets are the same as those used by Denton and Fergus
(2018).

B.3. Training Details
We expose in this section further information needed for the reproducibility of our
results.

B.3.1. Architecture
Encoder and decoder architecture. Both gθ and eφ are chosen to have the same
mirrored architecture that depends on the dataset. We use the same architectures
as Denton and Fergus (2018): a DCGAN discriminator and generator architecture
(Radford, Metz, and Chintala, 2016) for Moving MNIST, and a VGG16 architecture
(Simonyan and Zisserman, 2015) – mirrored for eφ – for the other datasets. In both
cases, the output of eφ (i.e. x̃) is a vector of size 128, and gθ and eφ weights are
initialized using a centered Gaussian distribution with a standard deviation of 0.02
(except for biases initialized to 0, and batch normalization layers weights drawn from a
Gaussian distribution with unit mean and a standard deviation of 0.02). Additionally,
we supplement gθ with a last sigmoid activation in order to ensure that its outputs lie
within [0, 1] like the ground truth data.

Note that, during testing, predicted frames are directly generated by gθ(yt,w)
without sampling from the observation probability distribution:

G
(
gθ(yt,w)

)
= N

(
gθ(yt,w), νIn

)
. (B.12)

This is a common practice for Gaussian decoders in VAEs that is adopted by our
competitors (A. X. Lee, R. Zhang, et al., 2018; Denton and Fergus, 2018; Minderer
et al., 2019).

Content variable. For the Moving MNIST dataset, the content variable w is obtained
directly from x̃ and is a vector of size 128. For KTH, Human3.6M, and BAIR, we
supplement this vectorial variable with skip connections from all layers of the encoder
gθ that are then fed to the decoder eφ to handle complex backgrounds. For Moving
MNIST, the number of frames k used to compute the content variable is 5; for KTH
and Human3.6M, it is 3; for BAIR, it is 2.
The vectorial content variable w is computed from k input frames:

x(k)
c =

(
xi1 , . . . ,xik

)
, (B.13)

using cψ defined as follows:

w = cψ

(
x(k)

c

)
= c

(2)
ψ

 k∑
j=1

c
(1)
ψ

(
x̃ij
). (B.14)
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In other words, cψ transforms each frame representation using c(1)
ψ , sums these trans-

formations and outputs the application of c(2)
ψ to this sum. Since frame representations

x̃ij = eφ
(
xij
)
are computed independently of each other, cψ is indeed permutation-

invariant. In practice, c(1)
ψ consists in a linear layer of output size 256 followed by a

rectified linear unit (ReLU) activation, while c(2)
ψ is a linear layer of output size 256

(making w of size 256) followed by a hyperbolic tangent activation.

LSTM architecture. The LSTM used for all datasets has a single layer of LSTM cells
with a hidden state size of 256.

MLPs architecture. All MLPs used in inference (with parameters φ) have three linear
layers with hidden size 256 and ReLU activations. All MLPs used in the forward model
(with parameters θ) have four linear layers with hidden size 512 and ReLU activations.
Any MLP outputting Gaussian distribution parameters (µ, σ) additionally includes a
softplus (Dugas et al., 2001) applied to its output dimensions that are used to obtain σ.
Weights of fθ are orthogonally initialized with a gain of 1.2 for KTH and Human3.6M,
and 1.41 for the other datasets (except for biases which are initialized to 0), while the
other MLPs are initialized with the default weight initialization of PyTorch.

Sizes of latent variables. The sizes of the latent variables in our model are the
following: for Moving MNIST, y and z have size 20; for KTH, Human3.6M, and BAIR,
y and z have size 50.

Euler step size Models are trained with ∆t = 1 on Moving MNIST, and with ∆t = 1/2
on the others datasets.

B.3.2. Optimization
Models are trained using the Adam optimizer (Kingma and Ba, 2015) with learning
rate 3× 10−4, and decay rates β1 = 0.9 and β2 = 0.999.

Loss function. The batch size is chosen to be 128 for Moving MNIST, 100 for KTH
and Human3.6M, and 192 for BAIR. The regularization coefficient λ is always set to 1.
Logarithms used in the loss are natural logarithms.

For the Moving MNIST dataset, we follow Higgins, Matthey, et al. (2017) by weighting
the KLD terms on z (i.e. the sum of KLDs in Equation (4.9)) with a multiplication
factor β = 2.

Variance of the observation. The variance ν considered in the observation probability
distribution G

(
gθ(y,w)

)
= N

(
gθ(yt,w), νIn

)
is chosen as follows:

• for Moving MNIST, ν = 1;

• for KTH and Human3.6M, ν = 4× 10−2;
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Table B.1.: Numerical results for PSNR, SSIM, and LPIPS on BAIR of our model
trained with ∆t = 1/2 and tested with different values of ∆t.

Step size ∆t PSNR SSIM LPIPS

∆t = 1 18.95± 0.25 0.8139± 0.0081 0.0640± 0.0036
∆t = 1/2 19.59± 0.27 0.8196± 0.0084 0.0574± 0.0032

∆t = 1/3 19.49± 0.25 0.8201± 0.0082 0.0574± 0.0032
∆t = 1/4 19.45± 0.26 0.8196± 0.0082 0.0579± 0.0032
∆t = 1/5 19.46± 0.26 0.8197± 0.0082 0.0584± 0.0032

• for BAIR, ν = 1
2 .

Number of optimization steps. The number of optimization steps for each dataset is
the following:

• Stochastic Moving MNIST: 1 000 000 steps, with additional 100 000 steps where
the learning rate is linearly decreased to 0;

• Deterministic Moving MNIST: 800 000 steps, with additional 100 000 steps where
the learning rate is linearly decreased to 0;

• KTH: 150 000 steps, with additional 50 000 steps where the learning rate is linearly
decreased to 0;

• Human3.6M: 325 000 steps, with additional 25 000 steps where the learning rate
is linearly decreased to 0;

• BAIR: 1 000 000 steps, with additional 500 000 steps where the learning rate is
linearly decreased to 0.

Furthermore, the final models for KTH and Human3.6M are chosen among several
checkpoints, computed every 5000 iterations for KTH and 20 000 iterations for Hu-
man3.6M, as the ones obtaining the best evaluation PSNR. This evaluation score differs
from the test score as we extract from the training set an evaluation set by randomly
selecting 5% of the training videos from the training set of each dataset. More precisely,
the evaluation PSNR for a checkpoint is computed as the mean best prediction PSNR
for 400 (for KTH) or 200 (for Human3.6M) randomly extracted sequences of length 30
(for KTH) or 53 (for Human3.6M) from the videos of the evaluation set.

B.4. Influence of the Euler step size
Table B.1 details the numerical results of our model trained on BAIR with ∆t = 1/2 and
tested with different values of ∆t. It shows that, when refining the Euler approximation,
our model maintains its performances in settings unseen during training.
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Table B.2.: Numerical results for PSNR, SSIM, and LPIPS on KTH of our model
trained with ∆t = 1 and tested with different values of ∆t.

Step size ∆t PSNR SSIM LPIPS

∆t = 1 29.77± 0.33 0.8681± 0.0046 0.0742± 0.0029

∆t = 1/2 29.18± 0.35 0.8539± 0.0054 0.0882± 0.0040
∆t = 1/3 29.05± 0.36 0.8509± 0.0056 0.0924± 0.0043
∆t = 1/4 28.98± 0.37 0.8496± 0.0057 0.0939± 0.0045
∆t = 1/5 28.95± 0.37 0.8490± 0.0058 0.0948± 0.0045

Table B.3.: Numerical results for PSNR, SSIM, and LPIPS on KTH of our model
trained with ∆t = 1/2 and tested with different values of ∆t.

Step size ∆t PSNR SSIM LPIPS

∆t = 1 28.80± 0.25 0.8495± 0.0053 0.0994± 0.0044
∆t = 1/2 29.69± 0.32 0.8697± 0.0046 0.0736± 0.0029

∆t = 1/3 29.52± 0.33 0.8656± 0.0048 0.0777± 0.0033
∆t = 1/4 29.43± 0.33 0.8633± 0.0049 0.0790± 0.0034
∆t = 1/5 29.35± 0.34 0.8615± 0.0050 0.0811± 0.0036

Tables B.2 and B.3 detail the numerical results of our model trained on KTH with,
respectively, ∆t = 1 and ∆t = 1/2, and tested with different values of ∆t. They show
that if ∆t is chosen too high when training (here, ∆t = 1), the model performance
drops when refining the Euler approximation. We assume that this phenomenon arises
because the Euler approximation used in training is too rough, making the model adapt
to an overly discretized dynamic that cannot be transferred to smaller Euler step sizes.
Indeed, when training with a smaller step size (here, ∆t = 1/2), results in the training
settings are equivalent while results obtained with a lower ∆t are now much closer, if
not equivalent, to the nominal ones. This shows that the model learns a continuous
dynamics if learned with a small enough step size.

Note that the loss of performance using a higher ∆t in testing than in training, like in
Tables B.1 and B.3, is expected as it corresponds to loosening the Euler approximation
compared to training. However, even in this challenging setting, our model maintains
state-of-the-art results, demonstrating the quality of the learned dynamic as it can be
further discretized if needed at the cost of a reasonable drop in performance.

B.5. Pendulum Experiment
We test the ability of our method to model the dynamics of a common dataset used
in the literature of state-space models (Karl et al., 2017; Fraccaro, Kamronn, et al.,
2017), Pendulum (Karl et al., 2017). It consists of noisy observations of a dynamic
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Table B.4.: ELBO, in nats, achieved by DVBF, KVAE and our model on the Pendulum
dataset. The bold score indicates the best performing method.

DVBF KVAE Ours

798.56 807.02 806.12

torque-controlled pendulum; it is stochastic as the information of this control is not
available. We test our model, without the content variable w, in the same setting as
DVBF (Karl et al., 2017) and KVAE (Fraccaro, Kamronn, et al., 2017) and report the
corresponding ELBO scores in Table B.4. The encoders and decoders for all methods
are MLPs.

Our model outperforms DVBF and is merely beaten by KVAE. This can be explained
by the nature of the KVAE model, whose sequential model is learned using a Kalman
filter rather than a VAE, allowing exact inference in the latent space. On the contrary,
DVBF is learned, like our model, by a sequential VAE, and is thus closer to our model
than KVAE. This result then shows that the dynamic model that we propose in the
context of sequential VAEs is more adapted on this dataset than the one of DVBF, and
achieve results close to a method taking advantage of exact inference using adapted
tools such as Kalman filters.

B.6. Additional Samples

This section includes additional samples corresponding to experiments described in
Section 4.4.

B.6.1. Stochastic Moving MNIST

We present in Figures B.1 to B.4 additional samples from SVG and our model on
Stochastic Moving MNIST.
In particular, Figure B.3 shows SVG changing a digit shape in the course of a

prediction even though it does not cross another digit, whereas ours maintain the digit
shape. We assume that the advantage of our model comes from the latent nature of
its dynamic and the use of a static content variable that is prevented from containing
temporal information. Indeed, even when the best sample from our model is not close
from the ground truth of the dataset, like in Figure B.4, it still maintains the shapes of
the digits.

B.6.2. KTH

We present in Figures B.5 to B.9 additional samples from SV2P, SVG, SAVP and our
model on KTH, with additional insights.
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B.6.3. Human3.6M
We present in Figures B.10 and B.11 additional samples from StructVRNN and our
model on Human3.6M, with additional insights.

B.6.4. BAIR
We present in Figures B.12 to B.14 additional samples from SV2P, SVG, SAVP and
our model on BAIR.

B.6.5. Oversampling
We present in Figure B.15 additional examples of video generation at a doubled and
quadrupled frame rate by our model.

B.6.6. Content Swap
We present in Figures B.16 to B.20 additional examples of content swap as in Figure 4.9.

B.6.7. Interpolation in the Latent Space
We present in Figures B.21 and B.22 additional examples of interpolation in the latent
space between two trajectories as in Figure 4.10.
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(a) Cropped KTH sample, centered on the subject (training ∆t = 1/2).

(b) Cropped Human3.6M sample, centered on the subject (training ∆t = 1/2).

(c) Cropped BAIR sample, centered on the robot arm (training ∆t = 1).

Figure B.15.: Generation examples at doubled or quadrupled frame rate, using a halved
∆t compared to training. Frames including a bottom red dashed bar are
intermediate frames.
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Figure B.17.: Additional example of content swap (cf. Figure B.16). In this example,
the extracted content is the video background, which is successfully
transferred to the target video.
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Figure B.18.: Additional example of content swap (cf. Figure B.16). In this example,
the extracted content is the video background and the subject appearance,
which are successfully transferred to the target video.
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Figure B.19.: Additional example of content swap (cf. Figure B.16). This example
shows a failure case of content swapping.
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Figure B.20.: Additional example of content swap (cf. Figure B.16).

(a) Ref. 1 (b) Rec. 1 (c) Interpolation (d) Rec. 2 (e) Ref. 2

Figure B.21.: From left to right, xs, x̂s (reconstruction of xs by the VAE of our model),
results of the interpolation in the latent space between xs and xt, x̂t and
xt. Each trajectory is materialized in shades of grey in the frames.
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(a) Ref. 1 (b) Rec. 1 (c) Interpolation (d) Rec. 2 (e) Ref. 2

Figure B.22.: Additional example of interpolation in the latent space between two
trajectories (cf. Figure B.21).
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Appendix C.

Supplementary Material of Chapter 5

In this appendix chapter of Chapter 5, we provide supplementary details, explanations
and discussions as well as additional experiments. Appendix C.1 details and proves
the resolution of PDEs mentioned in Section 5.2. Appendix C.2 further discusses the
spatial constraint of Equation (5.14). Appendix C.3 justifies in detail the introduction
of the penalty on the initial condition of Equation (5.15) based on our differential
equations point of view. Appendix C.4 presents the datasets leveraged in Section 5.4
and associated technical details. Appendix C.5 provides the full training details and
hyperparameter choices required to reproduce our results. Finally, Appendix C.6
contains new experimental results as well as additional prediction samples for all
datasets and compared methods in Section 5.4.

C.1. Proofs

C.1.1. Resolution of the Heat Equation
In this section, we succinctly detail a proof for the existence and uniqueness of the
solution to the two-dimensional heat equation. It shows that product-separable solutions
allow building the entire solution space for this problem, highlighting our interest in
the research of separable solutions.

Existence through separation of variables. Consider the heat equation problem:

∂u

∂t
= c2

∂2u

∂p2
, u(0, t) = u(L, t) = 0, u(p, 0) = f(p). (C.1)

Assuming product separability of u with u(p, t) = u1(p)u2(t) in Equation (C.1) gives:

c2
u′′1(p)

u1(p)
=
u′2(t)

u2(t)
. (C.2)

Both sides being independent of each other variables, they are equal to a constant
denoted by −α. If α is negative, solving the right side of Equation (C.2) results to
non-physical solutions with exponentially increasing temperatures, and imposing border
condition of Equation (C.1) makes this solution collapse to the null trivial solution.
Therefore, we consider that α > 0.
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Both sides of Equation (C.2) being equal to a constant leads to a second-order ODE
on u1 and a first-order ODE on u2, giving the solution shapes, with constants A, B
and D: {

u1(p) = A cos
(√
αp
)

+B sin
(√
αp
)

u2(t) = De−αc
2t

. (C.3)

Link with initial and boundary conditions. We now link the above equation to the
boundary conditions of the problem. Because our separation is multiplicative, we can
omit D for non-trivial solutions and set it without loss of generality to 1, as it only
scales the values of A and B.
Boundary conditions u(0, t) = u(L, t) = 0, along with the fact that for all t > 0,

u2(t) 6= 0, give:

A = 0, Be−αc
2t sin

(√
αL
)

= 0, (C.4)

which means that, for a non-trivial solution (i.e., B 6= 0), we have for some n ∈ N:√
α = nπ/L. We can finally express our product-separable solution to the heat equation

without initial conditions as:

u(p, t) = B sin

(
nπ

L
p

)
exp

(
−
(
cnπ

L

)2

t

)
. (C.5)

Considering the superposition principle, because the initial problem is homogeneous,
all linear combinations of Equation (C.5) are solutions of the heat equation without
initial conditions. Therefore, any following function is a solution of the heat equation
without initial conditions.

u(p, t) =

+∞∑
n=0

Bn sin

(
nπ

L
p

)
exp

(
−
(
cnπ

L

)2

t

)
. (C.6)

Finally, considering the initial condition u(p, 0) = f(p), a Fourier decomposition of f
allows to choose appropriate values for all coefficients Bn, showing that, for any initial
condition f , there exists a solution to Equation (C.1) of the form of Equation (C.6).

Uniqueness. We present here elements of proof to establish the uniqueness of the
solutions of Equation (C.1) that belong to C2

(
[0, 1]× R+

)
. Detailed and rigorous proofs

are given by Le Dret and Lucquin (2016).
The key element consists in establishing the so-called Maximum Principle which

states that, considering a sufficiently smooth solution, the minimum value of the
solution is reached on the boundary of the space and time domains.
For null border conditions as in our case, this means that the norm of the solution

u is given by the norm of the initial condition f . Finally, let us consider two smooth
solutions U1 and U2 of Equation (C.1). Then, their difference v = U1 − U2 follows the
heat equation with null border and initial conditions (i.e, v(p, 0) = 0). Because v is as
regular as U1 and U2, it satisfies the previous fact about the norm of the solutions, i.e.
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the norm of v equals the norm of its initial condition: ‖v‖ = 0. Therefore, v is null
and so is U1 − U2 = 0, showing the uniqueness of the solutions.
This shows that solutions of the form of Equation (C.6) shape the whole set of

smooth solutions of Equation (C.1).

C.1.2. Heat Equation with Advection Term

Consider the heat equation with a complementary advection term, for p ∈ (−1, 1),
t ∈ (0, T ) and a constant c ∈ R+.

∂u

∂t
+ c

∂u

∂p
= χ

∂2u

∂p2
. (C.7)

We give here details for the existence of product-separable solutions of Equation (C.7).
To this end, let us choose real constants α and β, and consider the following change of
variables for u:

u(p, t) = v(p, t)eαp+βt. (C.8)

The partial derivatives from Equation (C.7) can be rewritten as functions of the new
variable v:

∂u

∂t
=
∂v

∂t
eαp+βt + βveαp+βt, (C.9)

∂u

∂p
=
∂v

∂p
eαp+βt + αveαp+βt, (C.10)

∂2u

∂p2
=
∂2v

∂p2
eαp+βt + 2α

∂v

∂p
eαp+βt + α2veαp+βt. (C.11)

Using these expressions in Equation (C.7) and dividing it by eαp+βt lead to:

∂v

∂t
+
(
β + cα− α2χ

)
v + (c− 2αχ)

∂v

∂p
= ν

∂2v

∂p2
. (C.12)

α and β can then be set such that:

β + cα− α2χ = 0, c− 2αχ = 0, (C.13)

to retrieve the standard two-dimensional heat equation of Equation (C.1) given by:

∂v

∂t
= χ

∂2v

∂p2
, (C.14)

which is known to have product-separable solutions as explained in the previous section.
This more generally shows that all solutions of Equation (C.7) can be retrieved from
solutions to Equation (C.1).
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C.2. Accessing Time Derivatives of w and Deriving a
Feasible Weaker Constraint

Explicitly constraining the time derivative of eSθ (xt::τ ) as explained in Section 5.3.4 is
a difficult matter in practice. Indeed, eSθ takes as input neither the time coordinate
t nor spatial coordinates like abscissa and ordinate as done by Raissi (2018) and
Sirignano and Spiliopoulos (2018), which allows them to directly estimate the networks’
derivatives with respect to these coordinates thanks to automatic differentiation. In our
case, eSθ rather takes as input a finite number of observations, making this derivative
impractical to compute.
To discretize Equation (5.13) and find a weaker constraint, we choose to leverage

the Cauchy-Schwarz inequality. We present and use in Chapter 5 a version where we
apply this inequality on the whole integration domain, i.e. from t0 to t1 − τ∆t. We
highlight that this inequality can also be applied on subintervals of the integration
domain, generalizing our proposition. Indeed, let p ∈ N∗ and consider a sequence of
t(k) for k ∈ J0, pK such that t0 = t(0) ≤ t(1) ≤ . . . ≤ t(p) = t1 − τ∆t. Then, using the
Cauchy-Schwarz inequality, we obtain:

∫ t1−τ∆t

t0

∥∥∥∥∥∂eSθ (xt::τ )

∂t

∥∥∥∥∥
2

2

dt =

k=p∑
k=0

∫ t(k)

t(k−1)

∥∥∥∥∥∂eSθ (xt::τ )

∂t

∥∥∥∥∥
2

2

dt

≥
k=p∑
k=0

1

t(k) − t(k−1)

∥∥∥∥∥∥
∫ t(k)

t(k−1)

∂eSθ (xt::τ )

∂t
dt

∥∥∥∥∥∥
2

2

≥
k=p∑
k=0

1

t(k) − t(k−1)

∥∥∥eSθ (xt(k)::τ )− eSθ (xt(k−1)::τ )
∥∥∥2

2
.

(C.15)

Our constraint is a special case of this development, with p = 1. Nevertheless, we
experimentally find that our simple penalty is sufficient to achieve state-of-the-art
performance at a substantially reduced computational cost. We notice that other
invariance constraints such as the one of Denton and Birodkar (2017) can also be
derived thanks to this framework, showing the generality of our approach.

C.3. Of Spatiotemporal Disentanglement

C.3.1. Separation of Variables Preserves the Mutual Information of
w and y through Time

C.3.1.1. Invertible Flow of an ODE

As argued in Section 2.1.2.1, the Cauchy-Lipschitz theorem ensures the existence and
uniqueness of a solution to the ODE of Equation (5.10) given an initial condition.
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Consequently, the flow of this ODE, denoted by Φt and defined as:

Φ:R× Rp → Rp

(t0,yt0) 7→ Φt(yt0) = yt0+t

is a bijection for all t. Indeed, let yt0 be fixed and t0, t1 be two time steps. Thanks to
the existence and uniqueness of the solution to the ODE with this initial condition,
the following holds:

Φt0+t1 = Φt0 ◦ Φt1 = Φt1 ◦ Φt0 . (C.16)

Therefore, Φt is a bijection and Φ−1
t = Φ−t. Moreover, the flow is differentiable if

fθ is continuously differentiable as well, which is not a restrictive assumption if it is
implemented by a neural network with differentiable activation functions.

C.3.1.2. Preservation of Mutual Information by Invertible Mappings

To justify the introduction of Equation (5.15), we leverage the result stating that
invertible transformations of random variables preserve their mutual information. A
proof of this result is given by Kraskov, Stögbauer, and Grassberger (2004).
We indicate below the major steps of the proof. Let X and Y be two random

variables with marginal densities µX and µY . Let F be a diffeomorphism acting on Y ,
with Y ′ = F (Y ). If JF is the determinant of the Jacobian of F , we have:

µ′
(
x, y′

)
= µ(x, y)JF

(
y′
)
.

Then, expressing the mutual information I in integral form, with the change of variable
y′ = F (y) (F being a diffeomorphism), results in:

I
(
X,Y ′

)
=

∫∫
x,y′

µ′
(
x, y′

)
log

µ′
(
x, y′

)
µX(x)× µY ′(y′)

dx dy′

=

∫∫
x,y

µ(x, y) log
µ(x, y)

µX(x)× µY (y)
dxdy

I
(
X,Y ′

)
= I(X,Y ),

which is the desired result.

C.3.2. Ensuring Disentanglement at any Time
As noted by X. Chen et al. (2016) and Achille and Soatto (2018), mutual information
I is a key metric to evaluate disentanglement. We show that our model naturally
preserves the mutual information between w and y through time thanks to the flow
of the learned ODE on y. Indeed, with the previous result of mutual information
preservation by diffeomorphisms, and Φt being a diffeomorphism as demonstrated
above, we have, for all t and t′:

I(w,yt) = I
(
w,Φt′−t(yt)

)
= I(w,yt′). (C.17)
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Hence, if w and yt are disentangled, then so are w and yt′ .
The flow Φt being discretized in practice, its invertibility can no longer be guaranteed

in general. Some numerical schemes (Z. Chen et al., 2020) or residual networks
with Lipschitz-constrained residual blocks (Behrmann et al., 2019) provide sufficient
conditions to concretely reach this invertibility. In our case, we did not observe the
need to enforce invertibility. We can also leverage the data processing inequality to
show that, for any t ≥ t0:

I(w,yt0) ≥ I(w,yt), (C.18)

since yt is a deterministic function of yt0 . Since we constrain the very first y value
yt0 (i.e. we do not need to go back in time), there is no imperative need to enforce
the invertibility of Φt in practice: the inequality also implies that, if w and yt0 are
disentangled, then so are w and yt for t ≥ t0. Nevertheless, should the need to
disentangle for t < t0 appear, the aforementioned mutual information conservation
properties could allow, with further practical work to ensure the effective invertibility
of Φt, to still regularize yt0 only. This is, however, out of the scope of this work.

C.4. Datasets

C.4.1. WaveEq and WaveEq-100
These datasets are based on the two-dimensional wave equation on a functional w(x, y, t):

∂2w

∂t2
= c2∇2w + f(x, y, t), (C.19)

where in this context x and y are spatial coordinates, ∇2 is the Laplacian operator with
respect to x and y, c denotes the wave celerity, and f is an arbitrary time-dependent
source term. It has several applications in physics, modeling a wide range of phenomena
ranging from mechanical oscillations to electromagnetism. Note that the homogeneous
equation, where f = 0, admits product-separable solutions.
We build the WaveEq dataset by solving Equation (C.19) for t ∈ [0, 0.298] and

x, y ∈ [0, 63]. Sequences are generated using c drawn uniformly at random in [300, 400]
for each sequence to imitate the propagation of acoustic waves, with initial and Neumann
boundary conditions:

w(x, y, 0) = w(0, 0, t) = w(32, 32, t) = 0. (C.20)

Following Saha, Dash, and Mukhopadhyay (2020), we make use of the following source
term:

f(x, y, t) =

{
f0e−

t
T0 if (x, y) ∈ B

(
(32, 32), 5

)
0 otherwise

, (C.21)

with T0 = 0.05 and f0 ∼ U
(
[1, 30]

)
. The source term is taken non-null in a circular

central zone only in order to avoid numerical differentiation problems in the case of a
punctual source.
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We generate 300 sequences of 64 × 64 frames of length 150 from this setting by
assimilating pixel (i, j) ∈ J0, 63K × J0, 63K to a point (x, y) ∈ [0, 63] × [0, 63] and
selecting a frame per time interval of size 0.002. This discretization is used to solve
Equation (C.19) as its spatial derivatives are estimated thanks to finite differences; once
computed, they are used in an ODE numerical solver to solve Equation (C.19) on t.
Spatial derivatives are estimated with finite differences of order 5, and the ODE solver
is the fourth-order Runge-Kutta method with the 3/8 rule (Kutta, 1901; Hairer, Nørsett,
and Wanner, 1993) and step size 0.001. The data are finally normalized following a
min-max [0, 1] scaling per sequence.

The dataset is then split into training (240 sequences) and testing (60 sequences) sets.
Sequences sampled during training are random chunks of length ν + 1 = 25, including
τ + 1 = 5 conditioning frames, of full-size training sequences. Sequences used during
testing are all possible chunks of length τ + 1 + 40 = 45 from full-size testing sequences.
Finally, WaveEq-100 is created from WaveEq by selecting 100 pixels uniformly at

random. The extracted pixels are selected before training and are fixed for both
training and testing. Therefore, training and testing sequences for WaveEq-100 consist
of vectors of size 100 extracted from WaveEq frames. Training and testing sequences
are chosen to be the same as those of WaveEq.

C.4.2. Sea Surface Temperature (SST)

SST is composed of sea surface temperatures of the Atlantic ocean generated using
E.U. Copernicus Marine Service Information thanks to the state-of-the-art simulation
engine NEMO. The use of a so-called reanalysis procedure implies that these data
accurately represent the actual temperature measures. For more information, we refer
to the complete description of the data by de Bézenac, Pajot, and Gallinari (2018).
The data history of this engine is available online at the Copernicus Marine Service.1
Unfortunately, due to recent maintenance, data history is limited to the last three
years; prior histories should be manually requested.

The dataset uses daily temperature acquisitions from Thursday 28th December, 2006
to Wednesday 5th April, 2017 of a 481× 781 zone, from which 29 zones of size 64× 64
zones are extracted. We follow the same setting as de Bézenac, Pajot, and Gallinari
(2018) by training all models with τ + 1 = 4 conditioning steps and ν − τ = 6 steps
to predict, and evaluating them only on zones 17 to 20. These zones are particularly
interesting since they are the places where cold waters meet warm waters, inducing
more pronounced motion.
We normalize the data in the same manner as de Bézenac, Pajot, and Gallinari

(2018). Each daily acquisition of a zone is first normalized using the mean and standard
deviation of measured temperatures in this zone computed for all days with the same
date of the year from the available data (daily history climatological normalization).
Each zone is then normalized so that the mean and variance over all acquisitions
correspond to those of a standard Gaussian distribution. These normalized data are

1It can be found at the following URL: https://resources.marine.copernicus.eu/?option=com_
csw&view=details&product_id=GLOBAL_ANALYSIS_FORECAST_PHY_001_024.
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finally fed to the model; MSE scores reported in Table 5.1 are computed once the
performed normalization of the data and model prediction is reverted to the original
temperature measurement space, in order to compute physically meaningful scores.

Training sequences correspond to randomly selected chunks of length ν = 10 in the
first daily 2987 acquisitions (corresponding to 80% of total acquisitions), and testing
sequences to all possible chunks of length ν = 10 in the remaining 747 acquisitions.

C.4.3. Moving MNIST
We use the same version of the dataset as in Chapter 4. We train all models in the
same setting as Denton and Birodkar (2017), with τ + 1 = 5 conditioning frames and
ν− τ = 10 frames to predict. In the case of variational-based models (SVG and SRVP),
we use the same training procedure as in the original works by training the networks to
reconstruct sequences of 15 frames, like in standard VAE training. We test all models
by making them predict either 10 or 95 frames ahead.
To evaluate disentanglement with content swapping, we report PSNR and SSIM

metrics between the swapped sequence produced by our model and a ground truth.
However, having two digits in the image, there is an ambiguity as to in which order
target digits should be swapped in the ground truth. To account for this ambiguity
and thanks to the synthetic nature of the dataset, we instead build two ground truth
sequences for both possible digit swap permutations, and report the lowest metric
between the generated sequence and both ground truths (i.e. we choose the closest
ground truth to compare to with respect to the considered metric).

C.4.4. 3D Warehouse Chairs
This multi-view dataset introduced by Aubry et al. (2014) contains 1393 three-
dimensional models of chairs seen under the same periodic angles. We resize the
original 600× 600 images by center-cropping them to 400× 400 images, downsample
them to 64 × 64 frames using the Lanczos filter of the Pillow library,2 and linearly
transform their pixel values from the integer range J0, 255K to [0, 1].

We create sequences from this dataset for our model by assembling the views of each
chair to simulate its rotation from right to left until it reaches its initial position. This
process is repeated for each existing angle to serve as initial position for all chairs. We
choose this dataset instead of Denton and Birodkar (2017)’s multi-view chairs dataset
because the latter contains too few objects to allow both tested methods to generalize
on the testing set, preventing us to draw any conclusion from the experiment. We
train models on this dataset with τ + 1 = 5 conditioning frames and ν − τ = 10 frames
to predict, and test them to predict 15 frames within the content swap experiment.
Training and testing data are constituted by randomly selecting 85% of the chairs
for training and 15% of the remaining ones for testing. Disentanglement metrics are
computed similarly to the ones on Moving MNIST, but with only one reference ground
truth corresponding to the chair given as content input with the orientation of the
chair given as dynamic input.
2https://pillow.readthedocs.io/
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C.4.5. TaxiBJ

This crowd flow dataset provided by Junbo Zhang, Zheng, and Qi (2017) consists in
two-channel 32× 32 frames representing the inflow and outflow of taxis in Beijing, each
pixel corresponding to a square region of the city. Observations are registered every
thirty minutes. It is highly structured as the flows are dependent on the infrastructure
of the city, and complex since methods have to account for non-local dependencies and
model subtle changes in the evolution of the flows.

We follow the preprocessing steps of Y. Wang, Z. Gao, et al. (2018) and Le Guen and
Thome (2020) by performing a min-max normalization of the data to the [0, 1] range.
We train models on this dataset with τ+1 = 4 conditioning frames and ν−τ = 4 frames
to predict, and test them to predict 4 frames like our competitors on the last four weeks
of data which are excluded from the training set. MSE on this dataset is reported in
the [0, 1]-normalized space and multiplied by a hundred times the dimensionality of a
frame, i.e. by 100× 32× 32× 2.

C.5. Training Details

Along with the public release of our code, we provide in this section sufficient details
in order to replicate our results.

C.5.1. Baselines

PKnl. We retrain PKnl (de Bézenac, Pajot, and Gallinari, 2018) on SST using the
official implementation and the indicated hyperparameters.

SVG, MIM and DDPAE. We train SVG (Denton and Fergus, 2018), MIM (Y. Wang,
Jianjin Zhang, et al., 2019) and DDPAE (Hsieh et al., 2018) on our version of Moving
MNIST using the official implementation and the same hyperparameters that the
original authors use for the original version of Moving MNIST.

We train MIM on SST using the recommended hyperparameters of the authors, and
SVG by retaining the same hyperparameters as those used on KTH.

DrNet. We train DrNet (Denton and Birodkar, 2017) on our version of Moving
MNIST using the same hyperparameters originally used for the first version of the
dataset (with digits of different colors). To this end, we reimplement the official Lua
code into a Python code in order to train it with a more recent infrastructure. We
also train DrNet on 3D Warehouse Chairs using the same hyperparameters used by its
authors on the smaller multi-view chairs dataset of the original article.

PhyDNet. We train PhyDNet (Le Guen and Thome, 2020) on SST and our version
of Moving MNIST using the official implementation and the same hyperparameters
that the authors use for SST and the original version of Moving MNIST. We remove
the skip connections used by the authors on the Moving MNIST dataset in order to
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perform a fair comparison with other models, such as ours, that do not incorporate
skip connections on this dataset.

C.5.2. Model Specifications

C.5.2.1. Architecture

Combination of w and y. As explained in Section 5.3, the default choice of combina-
tion of w and y as decoder inputs is the concatenation of both vectorial variables: it is
generic and allows the decoder to learn an appropriate combination function ζ as in
Equation (5.7).

Nonetheless, further knowledge of the studied dataset can help to narrow the choices
of combination functions. Indeed, we choose to multiply w and y before giving them as
input to the decoder for both datasets WaveEq and WaveEq-100, given the knowledge
of the existence of product-separable solutions to the homogeneous version of equation
(i.e. without source). This shows that it is possible to change the combination function
of w and y, and that existing combination functions in the PDE literature could be
leveraged for other datasets.

Encoders eSθ and eTθ , and decoder gθ. For WaveEq, the encoder and decoder outputs
are considered to be vectors; images are thus flattened before encoding and reshaped
after decoding to 64× 64 frames. The encoder is an MLP with two hidden layers of
size 1200 and internal ReLU activation functions. The decoder is an MLP with three
hidden layers of size 1200, internal ReLU activation functions, and a final sigmoid
activation function. The encoder and decoder used for WaveEq-100 are similar to those
used for WaveEq, but with two hidden layers each, of respective sizes 2400 and 150.
We use for SST a VGG16 architecture (Simonyan and Zisserman, 2015), mirrored

between the encoder and the decoder, complemented with skip connections integrated
into S (Ronneberger, Fischer, and Brox, 2015) from all internal layers of the encoder to
corresponding decoder layers, also leveraged by de Bézenac, Pajot, and Gallinari (2018)
in their PKnl model. We adapt this VGG16 architecture without skip connections for
the 32×32 frames of TaxiBJ by removing the shallowest upsampling and downsampling
operations in the VGG encoder and decoder. For Moving MNIST, the encoder and its
mirrored decoder are shaped with the DCGAN discriminator and generator architecture
(Radford, Metz, and Chintala, 2016), with an additional sigmoid activation after the
very last layer of the decoder; this encoder and decoder DCGAN architecture is also
used by DrNet, DDPAE and SRVP. We highlight that we leverage in both SST and
Moving MNIST architectural choices that are also used in compared baselines, enabling
fair comparisons.

For the two-dimensional latent space experiments on SST (see Appendix C.6.2), we
use a modified version of the VGG encoder / decoder network by removing the two
deepest maximum pooling layers, thus preserving the two-dimensional latent structures.
The decoder mirrors the encoder complemented with skip connections.

Regarding 3D Warehouse Chairs, we also follow the same architectural choices as
DrNet with a ResNet18-like architecture for the encoder, and a DCGAN architecture
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followed by a sigmoid activation after the last layer for the decoder.
Encoders eSθ and eTθ taking as input multiple observations, we combine them by

either concatenating them for the vectorial observations of WaveEq-100, or grouping
them on the color channel dimensions for the other datasets where observations are
frames. Each encoder and decoder layer was initialized from a normal distribution with
standard deviation 0.02 (except for biases initialized to 0, and batch normalizations
weights drawn from a Gaussian distribution with unit mean and a standard deviation
of 0.02).

ODE solver. We use a residual network as an integrator for Equation (5.10). This
residual network is composed of a given number K of residual blocks, each block
i ∈ J1,KK implementing the application id +hi, where hi is an MLP with a two hidden
layers of size H and internal ReLU activation functions. The parameter values for each
dataset are:

• for WaveEq and WaveEq-100: K = 3 and H = 512;

• for SST (with linear latent states): K = 3 and H = 1024;

• for Moving MNIST, 3D Warehouse Chairs and TaxiBJ: K = 1 and H = 512.

Each MLP is orthogonally initialized with the following gain for each dataset:

• for WaveEq, WaveEq-100, SST (with linear latent states), 3D Warehouse Chairs
and TaxiBJ: 0.71;

• for Moving MNIST: 1.41.

For SST with two-dimensional states, the MLPs are replaced with convolutional
layers with kernel size 3, padding 1 and a number of hidden channels equal to H = 128.
We set K = 2 and choose an orthogonal initialization gain of 0.2. ReLU activations are
replaced with Leaky ReLU activations and preceded by batch normalization layers.

Latent variable sizes. w and y have the following vectorial dimensions for each
dataset:

• for WaveEq and WaveEq-100: 32;

• for SST, respectively 196× 16× 16 and 64× 16× 16; for the linear version, both
are set to 256.

• for Moving MNIST and TaxiBJ: respectively, 128 and 20;

• for 3D Warehouse Chairs: respectively, 128 and 10.

Note that, in order to perform fair comparisons, the size of y for baselines without
static component w is chosen to be the sum of the vectorial sizes of w and y in the
full model. The skip connections of w for SST cannot, however, be integrated into y,
as its evolution is only modeled in the latent space, and it is out of the scope of this
work to leverage low-level dynamics.
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C.5.3. Optimization
Optimization is performed using the Adam optimizer (Kingma and Ba, 2015) with
initial learning rate 4× 10−4 for WaveEq, WaveEq-100, Moving MNIST, 3D Warehouse
Chairs and SST and 4× 10−5 for TaxiBJ, and with decay rates β1 = 0.9 (except for
the experiments on Moving MNIST where we choose β1 = 0.5) and β2 = 0.99.

Loss function. Chosen coefficients values of λpred, λAE, λSreg, and λTreg are the following:

• λpred = 45;

• λAE = 45 for TaxiBJ; 10 for SST (linear)and Moving MNIST; 1 for WaveEq,
WaveEq-100 and 3D Warehouse Chairs; 0.1 for SST;

• λSreg = 100 for SST; λSreg = 45 for WaveEq, WaveEq-100, SST (linear) and Moving
MNIST; 1 for 3D Warehouse Chairs; 0.0001 for TaxiBJ;

• λTreg = 1
2p × 10−3 for WaveEq, WaveEq-100, Moving MNIST, 3D Warehouse

Chairs and TaxiBJ (where p is the dimension of T ); 1
2p× 10−2 for SST (linear);

5× 10−6 for SST.

The batch size is chosen to be 128 for WaveEq, WaveEq-100, Moving MNIST and
3D Warehouse Chairs, and 100 for SST and TaxiBJ.

Training length. The number of training epochs for each dataset is:

• for WaveEq and WaveEq-100: 250 epochs;

• for SST: 30 epochs; for SST (linear): 80 epochs;

• for Moving MNIST: 800 epochs, with an epoch corresponding to 200 000 trajec-
tories (the dataset being infinite), and with the learning rate successively divided
by 2 at epochs 300, 400, 500, 600, and 700;

• for 3D Warehouse Chairs: 120 epochs;

• for TaxiBJ: 550 epochs, with the learning rate divided by 5 at epochs 250, 300,
350, 400 and 450.

C.5.4. Prediction Offset for SST
Using the formalism of our work, our algorithm trains to predict x = (xt0 , . . . ,xt1)
from conditioning frames xt0::τ . Therefore, it first learns to reconstruct xt0::τ .
However, the evolution of SST data is chaotic and predicting above a horizon of 6

with coherent and sharp estimations is challenging. Therefore, for the SST dataset only,
we chose to supervise the prediction from t = t0 + (τ + 1)∆t, i.e our algorithm trains
to forecast xt0+(τ+1)∆t, . . . ,xt1 from xt0::τ . It simply consists in making the dynamic
representation eTθ (xt0::τ ) temporally match the observation xt0+(τ+1)∆t instead of xt0 .
This index offset does not change our interpretation of spatiotemporal disentanglement
through the separation of variables.
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Table C.1.: FVD score of compared models on KTH. The bold score indicates the best
performing method.

Ours PhyDNet SVG DrNet SRVP

330 384 375 383 222

C.6. Additional Results and Samples

C.6.1. Preliminary Results on KTH

The application of our method to natural videos is an interesting perspective but
would motivate further adaptation of the model (cf. Sections 5.5 and 8.2), in particular
regarding the integration of stochastic dynamics. Tackling this issue would require in-
corporating stochasticity in our model, for example leveraging variational autoencoders
like in Chapter 4, or supplementing it with adversarial losses on the image space, for
instance like M. Mathieu, Couprie, and LeCun (2016) and A. X. Lee, R. Zhang, et al.
(2018). These changes are feasible but are out of the scope of this chapter and we leave
them as future work.
Nonetheless, we investigate the realistic video dataset KTH that we also study in

Chapter 4. We train our model, SVG, DrNet, PhyDNet and SRVP on this dataset.
DrNet and PhyDNet are powerful deterministic approaches, while SVG is a standard
stochastic video prediction model; SRVP corresponds to the performant model intro-
duced in Chapter 4. We compare all models in terms of FVD (lower is better) similarly
to Chapter 4.
Results are reported in Table C.1. We observe that our model substantially out-

performs the considered baselines, even though it expectedly remains outmatched by
SRVP since the latter is specifically designed for the forecasting of stochastic videos.
These significant results against powerful deterministic baselines, and even the standard
stochastic method SVG, confirm our advantage at modeling complex dynamics and
support our claim that our model lays the foundations for domain-specific methods,
such as a stochastic version for natural videos.

Reproducibility. We use the following training parameters for KTH:

• we follow the same dataset processing and evaluation procedure as Denton and
Fergus (2018);

• we train our model on 125 epochs with batch size 100, with an epoch being
defined as 100 000 training sequences;

• we set the learning rate to 2× 10−4 and the same optimizer parameters as for
SST;

• λpred = 45, λAE = 10 = λSreg = 10, λTreg = p× 10−4;
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Table C.2.: Forecasting performance on SST of PKnl, PhyDNet and our model with
respect to indicated prediction horizons in terms of MSE and SSIM. Bold
scores indicate the best performing method.

Models
MSE SSIM

t+ 6 t+ 10 t+ 6 t+ 10

PKnl 1.28 2.03 0.6686 0.5844
PhyDNet 1.27 1.91 0.5782 0.4645
SVG 1.51 2.06 0.6259 0.5595
MIM 0.91 1.45 0.7406 0.6525

Ours 0.86 1.43 0.7466 0.6577
Ours (without w) 0.95 1.50 0.7204 0.6446

Ours (linear) 1.15 1.80 0.6837 0.5984
Ours (linear, without w) 1.46 2.19 0.6200 0.5456

• the size of w and y are respectively 128 and 50;

• the ODE is solved with a flat latent architecture and parameters K = 1 and
H = 512;

• the encoder and decoder architecture is VGG16 with skip connections integrated
into y from eSθ to gθ, and with the decoder output being given to a final sigmoid
activation.

We reproduced SVG, DrNet and PhyDNet using the recommended hyperparameters
of their authors. We train PhyDNet for 125 epochs, like our model, to obtain a fair
evaluation despite its low efficiency (six times slower than ours).

C.6.2. Modeling SST with Separation of Variables
We present in Table C.2 results of Table 5.1 for SST, complemented with an alternative
version of our model obtained using vectorial representation for w and y and MLPs to
compute the derivative of y. The latter setting corresponds to a strictly enforced sepa-
ration of spatial and dynamical variables This alternative version already significantly
outperforms powerful methods PhyDNet, PKnl and SVG thanks to this separation,
as attested by the corresponding ablation without a static component, and despite its
reduced capacity compared to the original model.
However, sea surface temperature exhibits a highly local structure that can be

assimilated to a flow in a coarse approximation. For example, there is a transport
of large bodies of hot and cold water. Accordingly, performances may be enhanced
by considering local dependencies in the dynamics, as also implemented by MIM and
PhyDNet. We do so in the original model by considering like the latter methods
two-dimensional latent states for the static w and the dynamic y, and convolutional
networks to model the derivative of y.
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Figure C.1.: Example of predictions of our model on WaveEq.

Figure C.2.: Evolution of the scaled difference between the forecast of a sequence and
the same forecast with a spatial code coming from another sequence for
the WaveEq dataset.

Accounting for such locality in the dynamics amounts to implementing another
separation than the usual separation between t and spatial variables. Indeed, it rather
excludes unknown content variables from the dynamics. The resulting dynamics is then
a PDE over time t as well the observation abscissa and ordinate that we implement using
convolutional neural networks, following Z. Long, Y. Lu, X. Ma, et al. (2018) and Ayed et
al. (2020). This different kind of separation of variables simplifies learning by estimating
a PDE that is simpler than the original one, since it acts on fewer variables. It highlights
the generality of our intuition of using the separation of variables, which may be used
in other settings that strict spatiotemporal disentanglement. This approach, while still
maintaining disentangling properties, significantly improves prediction performances.

Note that our proposition remains computationally much lighter than the alternatives
MIM, PhyDNet and SVG.

C.6.3. Additional Samples

C.6.3.1. WaveEq

We provide in Figure C.1 a sample for the WaveEq dataset, highlighting the long-term
consistency in the forecasts of our algorithm.

We also show in Figure C.2 the effect on forecasting of changing the spatial code w
with the one of another sequence.

C.6.3.2. SST

We provide an additional sample for SST in Figure C.3.
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Figure C.3.: Example of predictions of compared models on SST.
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Figure C.4.: Example of predictions of compared models on Moving MNIST.

C.6.3.3. Moving MNIST

We provide two additional samples for Moving MNIST in Figures C.4 and C.5.

C.6.3.4. 3D Warehouse Chairs

We provide a qualitative comparison for the content swap experiment between our model
and DrNet for 3D Warehouse Chairs in Figure C.6. We notice that DrNet produces
substantially more blurry samples than our model and has difficulties capturing the
exact dynamics of the chairs.
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Figure C.5.: Example of predictions of compared models on Moving MNIST.

(a) DrNet. (b) Ours.

Figure C.6.: Fusion of content (first column) and dynamic (first row) variables in
DrNet and our model on 3D Warehouse Chairs.
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Appendix D.

Supplementary Material of Chapter 6

In this appendix chapter of Chapter 6, we provide complete proofs (in Appendix D.1),
discussions (in Appendix D.2) and experimental details (in Appendix D.3) for the
material presented in Chapter 6.

In the course of this chapter, we drop the subscript g for γ̂g, α̂g and other notations
when the dependency on a fixed generator g is clear and indicated in the main paper,
for the sake of clarity.

D.1. Proofs of Theoretical Results and Additional
Results

We prove in this section all theoretical results mentioned in Sections 6.4 and 6.5.
Appendix D.1.2 is devoted to the proof of Theorem 1, Appendix D.1.3 focuses on
proving the differentiability results skimmed in Section 6.4.3, Appendix D.1.4 contains
the demonstration of Proposition 3, and Appendices D.1.5 and D.1.6 develop the results
presented in Section 6.5.

We will need in the course of these proofs the following standard definition. For any
measurable function T and measure µ, T]µ denotes the push-forward measure which is
defined as T]µ(B) = µ

(
T−1(B)

)
, for any measurable set B.

D.1.1. Recall of Assumptions

Assumption 1 (Finite training set). γ̂ ∈ P(Ω) is a finite mixture of Diracs.

Assumption 2 (Kernel). k: Ω2 → R is a symmetric positive semi-definite kernel with
k ∈ L2

(
Ω2
)
.

Assumption 3 (Loss regularity). a and b from Equation (6.2) are differentiable with
Lipschitz derivatives over R.

Assumption 4 (Discriminator architecture). The discriminator is a standard archi-
tecture (fully connected, convolutional or residual). Any activation φ in the network
satisfies the following properties:

• φ is smooth everywhere except on a finite set D;
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• for all j ∈ N, there exist scalars λ(j)
1 and λ(j)

2 such that:

∀x ∈ R \D,
∣∣∣φ(j)(x)

∣∣∣ ≤ λ(j)
1 |x|+ λ

(j)
2 , (D.1)

where φ(j) is the j-th derivative of φ.

Assumption 5 (Discriminator regularity). D = ∅, i.e. φ is smooth.

Assumption 6 (Discriminator bias). Linear layers have non-null bias terms. Moreover,
for all x, y ∈ R such that x 6= y, the following holds:

Eε∼N (0,1)φ(xε)
2 6= Eε∼N (0,1)φ(yε)

2
. (D.2)

Remark 4 (Typical activations). Assumptions 4 to 6 cover multiple standard activation
functions, including tanh, softplus, ReLU, leaky ReLU and sigmoid.

D.1.2. On the Solutions of Equation (6.9)

The methods used in this section are adaptations to our setting of standard methods
of proof. In particular, they can be easily adapted to slightly different contexts, the
main ingredient being the structure of the kernel integral operator. Moreover, it is also
worth noting that, although we relied on Assumption 1 for γ̂, the results are essentially
unchanged if we take a compactly supported measure γ instead.
We decompose the proof into several intermediate results. Theorem 3 and Propo-

sition 6, stated and demonstrated in this section, correspond when combined to
Theorem 1.

Let us first prove the following two intermediate lemmas.

Lemma 1. Let δT > 0 and FδT = C
(

[0, δT ], BL2(γ̂)(f0, 1)
)
endowed with the norm:

∀u ∈ FδT , ‖u‖ = sup
t∈[0,δT ]

‖ut‖L2(γ̂). (D.3)

Then FδT is complete.

Proof. Let (un)n be a Cauchy sequence in FδT . For a fixed t ∈ [0, δT ]:

∀n,m, ‖unt − umt ‖L2(γ̂) ≤ ‖u
n − um‖, (D.4)

which shows that (unt )n is a Cauchy sequence in L2(γ̂). L2(γ̂) being complete, (unt )n
converges to a u∞t ∈ L2(γ̂). Moreover, for ε > 0, because (un) is Cauchy, we can choose
N such that:

∀n,m ≥ N, ‖un − um‖ ≤ ε. (D.5)

We thus have that:
∀t,∀n,m ≥ N, ‖unt − umt ‖L2(γ̂) ≤ ε. (D.6)
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Then, by taking m to ∞, by continuity of the L2(γ̂) norm:

∀t,∀n ≥ N, ‖unt − u∞t ‖L2(γ̂) ≤ ε, (D.7)

which means that:
∀n ≥ N, ‖un − u∞‖ ≤ ε. (D.8)

so that (un)n tends to u∞.
Moreover, as:

∀n, ‖unt ‖L2(γ̂) ≤ 1, (D.9)

we have that ‖u∞t ‖L2(γ̂) ≤ 1.
Finally, let us consider s, t ∈ [0, δT ]. We have that:

∀n, ‖u∞t − u∞s ‖L2(γ̂) ≤ ‖u
∞
t − unt ‖L2(γ̂) + ‖unt − uns ‖L2(γ̂) + ‖u∞s − uns ‖L2(γ̂). (D.10)

The first and the third terms can then be taken as small as needed by definition of u∞
by taking n high enough, while the second can be made to tend to 0 as t tends to s by
continuity of un. This proves the continuity of u∞ and shows that u∞ ∈ FδT .

Lemma 2. For any F ∈ L2(γ̂), we have that F ∈ L2(α̂) and F ∈ L2
(
β̂
)
with:

‖F‖L2(α̂) ≤
√

2‖F‖L2(γ̂) and ‖F‖L2(β̂) ≤
√

2‖F‖L2(γ̂). (D.11)

Proof. For any F ∈ L2(γ̂), we have that

‖F‖2L2(γ̂) =
1

2
‖F‖2L2(α̂) +

1

2
‖F‖2L2(β̂), (D.12)

so that F ∈ L2(α̂) and F ∈ L2
(
β̂
)
with:

‖F‖2L2(α̂) = 2‖F‖2L2(γ̂) − ‖F‖
2
L2(β̂) ≤ 2‖F‖2L2(γ̂) (D.13)

and ‖F‖2L2(β̂) = 2‖F‖L2(γ̂) − ‖F‖L2(α̂) ≤ 2‖F‖2L2(γ̂), (D.14)

which allows us to conclude.

From this, we can prove the existence and uniqueness of the initial value problem
from Equation (6.9).

Theorem 3 (Existence and Uniqueness). Under Assumptions 1 to 3, Equation (6.9)
with initial value f0 admits a unique solution f· : R+ → L2(Ω).

Proof.
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A few inequalities. We start this proof by proving a few inequalities.
Let f, g ∈ L2(γ̂). We have, by the Cauchy-Schwarz inequality, for all z ∈ Ω:∣∣∣∣∣

(
Tk,γ̂

(
∇γ̂Lα̂(f)

)
− Tk,γ̂

(
∇γ̂Lα̂(g)

))
(z)

∣∣∣∣∣
≤
∥∥k(z, ·)

∥∥
L2(γ̂)

∥∥∥∇γ̂Lα̂(f)−∇γ̂Lα̂(g)
∥∥∥
L2(γ̂)

.

(D.15)

Moreover, by definition:〈
∇γ̂Lα̂(f)−∇γ̂Lα̂(g), h

〉
L2(γ̂)

=

∫ (
a′f − a′g

)
hdα̂−

∫ (
b′f − b′g

)
hdβ̂, (D.16)

so that:∥∥∥∇γ̂Lα̂(f)−∇γ̂Lα̂(g)
∥∥∥2

L2(γ̂)

≤
∥∥∥∇γ̂Lα̂(f)−∇γ̂Lα̂(g)

∥∥∥
L2(γ̂)

(∥∥∥a′f − a′g∥∥∥
L2(α̂)

+
∥∥∥b′f − b′g∥∥∥

L2(β̂)

)
,

(D.17)

and then, along with Lemma 2:∥∥∥∇γ̂Lα̂(f)−∇γ̂Lα̂(g)
∥∥∥
L2(γ̂)

≤
∥∥∥a′f − a′g∥∥∥

L2(α̂)
+
∥∥∥b′f − b′g∥∥∥

L2(β̂)

≤
√

2

(∥∥∥a′f − a′g∥∥∥
L2(γ̂)

+
∥∥∥b′f − b′g∥∥∥

L2(γ̂)

)
.

(D.18)

By Assumption 3, we know that a′ and b′ are Lipschitz with constants that we denote
K1 and K2. We can then write:

∀x,
∣∣∣a′(f(x)

)
− a′

(
g(x)

)∣∣∣ ≤ K1

∣∣f(x)− g(x)
∣∣ (D.19)

and ∀x,
∣∣∣b′(f(x)

)
− b′

(
g(x)

)∣∣∣ ≤ K2

∣∣f(x)− g(x)
∣∣, (D.20)

so that:∥∥∥a′f − a′g∥∥∥
L2(γ̂)

≤ K1‖f − g‖L2(γ̂),
∥∥∥b′f − b′g∥∥∥

L2(γ̂)
≤ K2‖f − g‖L2(γ̂). (D.21)

Finally, we can now write, for all z ∈ Ω:∣∣∣∣∣
(
Tk,γ̂

(
∇γ̂Lα̂(f)

)
− Tk,γ̂

(
∇γ̂Lα̂(g)

))
(z)

∣∣∣∣∣ ≤ √2(K1 +K2)‖f − g‖L2(γ̂)

∥∥k(z, ·)
∥∥
L2(γ̂)

,

(D.22)
and then:∥∥∥∥Tk,γ̂(∇γ̂Lα̂(f)

)
− Tk,γ̂

(
∇γ̂Lα̂(g)

)∥∥∥∥
L2(γ̂)

≤ K‖f − g‖L2(γ̂), (D.23)
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where

K =
√

2(K1 +K2)

√∫ ∥∥k(z, ·)
∥∥2

L2(γ̂)
dγ̂(z) (D.24)

is finite as a finite sum of finite terms from Assumptions 1 and 2. In particular, putting
g = 0 and using the triangular inequality also gives us:∥∥∥∥Tk,γ̂(∇γ̂Lα̂(f)

)∥∥∥∥
L2(γ̂)

≤ K‖f‖L2(γ̂) +M, (D.25)

where M =
∥∥∥Tk,γ̂(∇γ̂Lα̂(0)

)∥∥∥
L2(γ̂)

.

Existence and uniqueness in L2(γ̂). We now adapt the standard fixed point proof to
prove the existence and uniqueness of a solution to the studied equation in L2(γ̂).

We consider the family of spaces FδT = C
(

[0, δT ], BL2(γ̂)(f0, 1)
)
. FδT is defined, for

δT > 0, as the space of continuous functions from [0, δT ] to the closed ball of radius 1
centered around f0 in L2(γ̂) which we endow with the norm:

∀u ∈ FδT , ‖u‖ = sup
t∈[0,δT ]

‖ut‖L2(γ̂). (D.26)

We now define the application Φ where Φ(u) is defined as, for any u ∈ FδT :

Φ(u)t = f0 +

∫ t

0

Tk,γ̂
(
∇γ̂Lα̂(us)

)
ds. (D.27)

We have, using Equation (D.25):∥∥Φ(u)t − f0

∥∥
L2(γ̂)

≤
∫ t

0

(
K‖us‖L2(γ̂) +M

)
ds ≤ (K +M)δT. (D.28)

Thus, taking δT =
(
2(K +M)

)−1 makes Φ an application from FδT into itself. More-
over, we have:

∀u, v ∈ FδT ,
∥∥Φ(u)− Φ(v)

∥∥ ≤ 1

2
‖u− v‖, (D.29)

which means that Φ is a contraction of FδT . Lemma 1 and the Banach-Picard theorem
(Banach, 1922) then tell us that Φ has a unique fixed point in FδT . It is then obvious
that such a fixed point is a solution of Equation (6.9) over [0, δT ].

Let us now consider the maximal T > 0 such that a solution ft of Equation (6.9) is
defined over [0, T ). We have, using Equation (D.25):

∀t ∈ [0, T ), ‖ft‖L2(γ̂) ≤ ‖f0‖L2(γ̂) +

∫ t

0

(
‖fs‖L2(γ̂) +M

)
ds, (D.30)

which, using Grönwall’s lemma (Grönwall, 1919), gives:

∀t ∈ [0, T ), ‖ft‖L2(γ̂) ≤ ‖f0‖L2(γ̂)e
KT +

M

K

(
eKT − 1

)
. (D.31)
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Define gn = fT− 1
n
. We have, again using Equation (D.25):

∀m ≥ n, ‖gn − gm‖L2(γ̂) ≤
∫ T− 1

m

T− 1
n

(K‖fs‖+M) ds

≤
(

1

n
− 1

m

)(
‖f0‖L2(γ̂)e

KT +
M

K

(
eKT − 1

))
,

(D.32)

which shows that (gn)n is a Cauchy sequence. L2(γ̂) being complete, we can thus
consider its limit g∞. Clearly, ft tends to g∞ in L2(γ̂). By considering the initial
value problem associated with Equation (6.9) starting from g∞, we can thus extend
the solution ft to [0, T + δT ), thus contradicting the maximality of T , which proves
that the solution can be extended to R+.

Existence and uniqueness in L2(Ω). We now conclude the proof by extending the
previous solution to L2(Ω). We keep the same notations as above and, in particular, f
is the unique solution of Equation (6.9) with initial value f0.
Let us define f̃ as:

∀t, ∀x, f̃t(x) = f0(x) +

∫ t

0

Tk,γ̂
(
∇γ̂Lα̂(fs)

)
(x) ds, (D.33)

where the right-hand side only depends on f and is thus well-defined. By remarking
that f̃ is equal to f on supp γ̂ and that, for every s,

Tk,γ̂
(
∇γ̂Lα̂

(
f̃s

))
= Tk,γ̂

(
∇γ̂Lα̂

(
f̃s

∣∣∣
supp γ̂

))
= Tk,γ̂

(
∇γ̂Lα̂(fs)

)
, (D.34)

we see that f̃ is solution to Equation (6.9). Moreover, from Assumption 2, we know that,
for any z ∈ Ω,

∫
k(z,x)

2
dΩ(x) is finite and, from Assumption 1, that

∥∥k(z, ·)
∥∥2

L2(γ̂)
is

a finite sum of terms k(z,xi)
2 which shows that

∫ ∥∥k(z, ·)
∥∥2

L2(γ̂)
dΩ(z) is finite, again

from Assumption 2. We can then say that f̃s ∈ L2(Ω) for any s by using the above
with Equation (D.22) taken for g = 0.

Finally, suppose h is a solution to Equation (6.9) with initial value f0. We know
that h|supp γ̂ coincides with f and thus with f̃

∣∣∣
supp γ̂

in L2(γ̂) as we already proved

uniqueness in the latter space. Thus, we have that
∥∥∥∥hs|supp γ̂ − f̃s

∣∣∣
supp γ̂

∥∥∥∥
L2(γ̂)

= 0 for

any s. Now, we have:

∀z ∈ Ω,∀s,

∣∣∣∣∣∣
(
Tk,γ̂

(
∇γ̂Lα̂(hs)

)
− Tk,γ̂

(
∇γ̂Lα̂

(
f̃s

)))
(z)

∣∣∣∣∣∣
=

∣∣∣∣∣∣
Tk,γ̂(∇γ̂Lα̂(hs|supp γ̂

))
− Tk,γ̂

(
∇γ̂Lα̂

(
f̃s

∣∣∣
supp γ̂

))(z)

∣∣∣∣∣∣ ≤ 0,

(D.35)
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by Equation (D.22). This shows that ∂t
(
f̃ − h

)
= 0 and, given that h0 = f̃0 = f0, we

have h = f̃ which concludes the proof.

There only remains to prove for Theorem 1 the inversion between the integral over
time and the integral operator. We first prove an intermediate lemma and then conclude
with the proof of the inversion.

Lemma 3. Under Assumptions 1 to 3,∫ T

0

(∥∥a′∥∥
L2((fs)]α̂) +

∥∥b′∥∥
L2((fs)]β̂)

)
ds (D.36)

is finite for any T > 0.

Proof. Let T > 0. We have, by Assumption 3 and the triangular inequality:

∀x,
∣∣∣a′(f(x)

)∣∣∣ ≤ K1

∣∣f(x)
∣∣+M1, (D.37)

where M1 =
∣∣a′(0)

∣∣. We can then write, using Lemma 2 and the inequality from
Equation (D.31):

∀s ≤ T,
∥∥a′∥∥

L2((fs)]α̂) ≤ K1

√
2‖fs‖L2(γ̂) +M1

≤ K1

√
2

(
‖f0‖L2(γ̂)e

KT +
M

K

(
eKT − 1

))
+M1,

(D.38)

the latter being constant with respect to s and thus integrable on [0, T ]. We can then
bound

∥∥b′∥∥
L2((fs)]β̂) similarly, which concludes the proof.

Proposition 6 (Integral inversion). Under Assumptions 1 to 3, the following integral
inversion holds:

ft = f0 +

∫ t

0

Tkf ,γ̂
(
∇γ̂Lα̂,β̂(fs)

)
ds = f0 + Tkf ,γ̂

(∫ t

0

∇γ̂Lα̂,β̂(fs) ds

)
. (D.39)

Proof. By definition, a straightforward computation gives, for any function h ∈ L2(γ̂):〈
∇γ̂Lα̂(f), h

〉
L2(γ̂)

= dLα̂(f)[h] =

∫
a′fhdα̂−

∫
b′fhdβ̂. (D.40)

We can then write:∥∥∥∇γ̂Lα̂(ft)
∥∥∥2

L2(γ̂)
=
〈
∇γ̂Lα̂(ft),∇γ̂Lα̂(ft)

〉
L2(γ̂)

=

∫
a′ft∇

γ̂Lα̂(ft) dα̂−
∫
b′ft∇

γ̂Lα̂(ft) dβ̂,

(D.41)
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so that, with the Cauchy-Schwarz inequality and Lemma 2:∥∥∥∇γ̂Lα̂(ft)
∥∥∥2

L2(γ̂)
≤
∫ ∣∣∣a′ft∣∣∣∣∣∣∇γ̂Lα̂(ft)

∣∣∣ dα̂+

∫ ∣∣∣b′ft∣∣∣∣∣∣∇γ̂Lα̂(ft)
∣∣∣dβ̂

≤
∥∥∥a′ft∥∥∥

L2(α̂)

∥∥∥∇γ̂Lα̂(ft)
∥∥∥
L2(α̂)

+
∥∥∥b′ft∥∥∥

L2(β̂)

∥∥∥∇γ̂Lα̂(ft)
∥∥∥
L2(β̂)

≤
√

2
∥∥∥∇γ̂Lα̂(ft)

∥∥∥
L2(γ̂)

[∥∥∥a′ft∥∥∥
L2(α̂)

+
∥∥∥b′ft∥∥∥

L2(β̂)

]
,

(D.42)
which then gives us:∥∥∥∇γ̂Lα̂(ft)

∥∥∥
L2(γ̂)

≤
√

2

[∥∥a′∥∥
L2((ft)]α̂) +

∥∥b′∥∥
L2((ft)]β̂)

]
. (D.43)

By the Cauchy-Schwarz inequality and Equation (D.43), we then have for all z:∫ t

0

∫
x

∣∣∣k(z,x)∇γ̂Lα̂(fs)(x)
∣∣∣ dγ̂(x) ds ≤

∫ t

0

∥∥k(z, ·)
∥∥
L2(γ̂)

∥∥∥∇γ̂Lα̂(fs)
∥∥∥
L2(γ̂)

ds

≤
√

2
∥∥k(z, ·)

∥∥
L2(γ̂)

∫ t

0

[∥∥a′∥∥
L2((fs)]α̂) +

∥∥b′∥∥
L2((fs)]β̂)

]
ds.

(D.44)
The latter being finite by Lemma 3, we can now use Fubini’s theorem (Fubini, 1907) to
conclude that:∫ t

0

Tkf ,γ̂
(
∇γ̂Lα̂(fs)

)
ds =

∫ t

0

∫
x

k(·,x)∇γ̂Lα̂(fs)(x) dγ̂(x) ds

=

∫
x

k(·,x)

[∫ t

0

∇γ̂Lα̂(fs)(x) ds

]
dγ̂(x)

= Tkf ,γ̂

(∫ t

0

∇γ̂Lα̂(fs)(x) ds

)
.

(D.45)

D.1.3. Differentiability of Infinite-Width Networks and their NTKs
Given Theorem 1, establishing the desired differentiability of ft can be done by
separately proving similar results on both ft − f0 and f0.
In both cases, this involves the differentiability of the following activation kernel
Kφ(A) given another differentiable kernel A:

Kφ(A):x,y 7→ Ef∼GP(0,A)

[
φ
(
f(x)

)
φ
(
f(y)

)]
, (D.46)

where GP(0, A) is a univariate centered Gaussian Process (GP) with covariance function
A. Indeed, the kernel-transforming operator Kφ is central in the recursive computation
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of the neural network conjugate kernel sss which determines the NTK (involved in
ft − f0 ∈ H

γ̂g
k ) as well as the behavior of the network at initialization (which follows a

GP with the conjugate kernel as covariance).
Hence, our proof of Theorem 2 relies on the preservation of kernel smoothness through
Kφ, proved in Appendix D.1.3.1, which ensures the smoothness of the conjugate kernel,
the NTK and, in turn, of ft as addressed in Appendix D.1.3.2 which concludes the
overall proof.
Before developing these two main steps, we first need to state the following lemma

showing the regularity of samples of a GP from the regularity of the corresponding
kernel.

Lemma 4 (GP regularity). Let A:Rn × Rn → R be a symmetric kernel. Let V an
open set such that A is C∞ on V × V . Then the GP induced by the kernel A has a.s.
C∞ sample paths on V .

Proof. Because A is C∞ on V × V , we know, from Theorem 2.2.2 of Adler (1981) for
example, that the corresponding GP f is mean-square smooth on V . If we take α
a k-th order multi-index, we also know, again from Adler (1981), that ∂αf is also a
GP with covariance kernel ∂αA. As A is C∞, ∂αA then is differentiable and ∂αf has
partial derivatives which are mean-square continuous. Then, by the Corollary 5.3.12 of
Scheuerer (2009), we can say that ∂αf has continuous sample paths a.s. which means
that f ∈ Ck(V ). This proves the lemma.

D.1.3.1. Kφ Preserves Kernel Differentiability

Given the definition of Kφ(A) in Equation (D.46), we choose to prove its differentiability
via the dominated convergence theorem and Leibniz integral rule. This requires to derive
separate proofs depending on whether φ is smooth everywhere or almost everywhere.
The former case allows us to apply strong GP regularity results leading to Kφ

preserving kernel smoothness without additional hypothesis in Lemma 5. The latter
case requires a careful decomposition of the expectation of Equation (D.46) via two-
dimensional Gaussian sampling to circumvent the non-differentiability points of φ,
yielding additional constraints on kernels A for Kφ to preserve their smoothness in
Lemma 6; these constraints are typically verified in the case of neural networks with
bias (cf. Appendix D.1.3.2).
In any case, we emphasize that these differentiability constraints may not be tight

and are only sufficient conditions ensuring the smoothness of Kφ(A).

Lemma 5 (Kφ with smooth φ). Let A:Rn × Rn → R be a symmetric positive semi-
definite kernel and φ:R → R. We suppose that φ is an activation function following
Assumptions 4 and 5; in particular, φ is smooth.

Let y ∈ Rn and U be an open subset of Rn such that x 7→ A(x,x) and x 7→ A(x,y)
are infinitely differentiable over U . Then, x 7→ Kφ(A)(x,x) and x 7→ Kφ(A)(x,y) are
infinitely differentiable over U as well.

219



Appendix D. Supplementary Material of Chapter 6

Proof. In order to prove the smoothness results over the open set U , it suffices to prove
them on any open bounded subset of U . Let then V ⊆ U be an open bounded set.
Without loss of generality, we can assume that its closure clV is also included in U .

We define B1 and B2 from Equation (D.46) as follows, for all x ∈ V :

B1(x) , Kφ(A)(x,y) = Ef∼GP(0,A)

[
φ
(
f(x)

)
φ
(
f(y)

)]
,

B2(x) , Kφ(A)(x,x) = Ef∼GP(0,A)

[
φ
(
f(x)

)2]
.

(D.47)

In the previous expressions, Lemma 4 tells us that we can take f to be C∞ over clV
with probability one. Hence, B1 and B2 are expectations of smooth functions over V .
We seek to apply the dominated convergence theorem to prove that B1 and B2 are, in
turn, smooth over V . To this end, we prove in the following the integrability of the
derivatives of their integrands.
Let α = (α1, . . . , αn) ∈ Nn. Using the usual notations for multi-indexed partial

derivatives, via a multivariate Faà di Bruno formula (Leipnik and Pearce, 2007), we
can write the derivatives ∂α(ψ ◦ f) at x ∈ V for ψ ∈

{
φ, φ2

}
as a weighted sum of

terms of the form:
ψ(j)

(
f(x)

)
g1(x) · · · gN (x), (D.48)

where the gis are partial derivatives of f at x. As A is C∞ over V , each of the gis
is thus a GP with a C∞ covariance function by Lemma 4. We can also write for all
x ∈ V :∣∣∣ψ(j)

(
f(x)

)
g1(x) · · · gN (x)

∣∣∣ ≤ sup
z∈clV

∣∣∣ψ(j)
(
f(z)

)
g1(z) · · · gN (z)

∣∣∣
≤ sup
z0∈clV

∣∣∣ψ(j)
(
f(z0)

)∣∣∣ sup
z1∈clV

∣∣g1(z1)
∣∣ · · · sup

zN∈clV

∣∣gN (zN )
∣∣.

(D.49)
For each i, because the covariance function of gi is smooth over the compact set clV ,

its variance admits a maximum in clV and we take σ2
i the double of its value. We then

know from Adler (1990), that there is an Mi such that:

∀m ∈ N,Ef∼GP(0,A)

[
sup
zi∈clV

∣∣gi(zi)∣∣m] ≤Mm
i E|Yi|m, (D.50)

where Yi is a Gaussian distribution which variance is σ2
i , the right-hand side thus being

finite.
We also have, by Assumption 4 from Appendix D.1.1, that:

sup
z∈clV

∣∣∣φ(j)
(
f(z)

)∣∣∣2 ≤ sup
z∈clV

(
λ

(j)
1

∣∣f(z)
∣∣+ λ

(j)
2

)2

, (D.51)

which is shown to be integrable over f by the same arguments as for the gis. Moreover,
the Faà di Bruno formula decomposes ψ(j) when ψ = φ2 as a weighted sum of terms
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of the form φ(l)φ(l′) with l, l′ ∈ N. Therefore, thanks to similar arguments, for any
ψ ∈

{
φ, φ2

}
:

Ef∼GP(0,A)

[
sup
z∈clV

∣∣∣ψ(j)
(
f(z)

)∣∣∣2] <∞. (D.52)

Now, by using the Cauchy-Schwarz inequality, we have that:

E

[
sup

z0∈clV

∣∣∣ψ(j)
(
f(z0)

)∣∣∣ sup
z1∈clV

∣∣g1(z1)
∣∣ · · · sup

zN∈clV

∣∣gN (zN )
∣∣]

≤

√√√√E

[
sup

z0∈clV

∣∣∣ψ(j)
(
f(z0)

)∣∣∣2]
√√√√E

[
sup

z1∈clV

∣∣g1(z1)
∣∣2 · · · sup

zN∈clV

∣∣gN (zN )
∣∣2]. (D.53)

By iterated applications of the Cauchy-Schwarz inequality and using the previous
arguments, we can then show that:

sup
z0∈clV

∣∣∣ψ(j)
(
f(z0)

)∣∣∣ sup
z1∈clV

∣∣g1(z1)
∣∣ · · · sup

zN∈clV

∣∣gN (zN )
∣∣ (D.54)

is integrable over f . Additionally, note that by the same arguments for the case of
ψ = φ, a multiplication by φ

(
f(y)

)
preserves this integrability.

We can then write for all x ∈ V , by a standard corollary of the dominated convergence
theorem:

∂αB1(x) = Ef∼GP(0,A)

[
∂α (φ ◦ f)

∣∣
x
φ
(
f(y)

)]
,

∂αB2(x) = Ef∼GP(0,A)

[
∂α
(
φ2 ◦ f

)∣∣∣∣
x

]
,

(D.55)

which shows that B1 and B2 are C∞ over V . This in turn means that B1 and B2 are
C∞ over U .

Lemma 6 (Kφ with piecewise smooth φ). Let A:Rn × Rn → R be a symmetric
positive semi-definite kernel and φ:R→ R. We suppose that φ is an activation function
following Assumptions 4 and 6 (cf. Appendix D.1.1). Let us define the matrix Σx,yA as:

Σx,yA ,

(
A(x,x) A(x,y)
A(x,y) A(y,y)

)
. (D.56)

Let y ∈ Rn and U be an open subset of Rn such that x 7→ A(x,x) and x 7→ A(x,y)
are infinitely differentiable over U . Then, x 7→ Kφ(A)(x,x) and x 7→ Kφ(A)(x,y) are
infinitely differentiable over U ′ ,

{
x ∈ U

∣∣ Σx,yA is invertible
}
.

Proof. Since det Σx,yA is smooth over U and U ′ =
{
x ∈ U

∣∣ det Σx,yA > 0
}
, U ′ is an

open subset of U . Hence, similarly to the proof of Lemma 5, it suffices to prove the
smoothness of B1 and B2 defined in Equation (D.47) on any open bounded subset of U ′.
Let then V ⊆ Rn be an open bounded set such that clV ⊆ U ′. Note that det Σx,yA > 0
implies that A(x,x) > 0 and A(y,y) > 0.
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We will conduct in the following the proof that B1 is smooth over V . Like in the proof
of Lemma 5, the smoothness of B2 follows the same reasoning with little adaptation;
in particular, it relies on the fact that A(x,x) > 0 for all x ∈ U ′, making its square
root smooth over clV .
Since the dominated convergence theorem cannot be directly applied from Equa-

tion (D.47) because of φ’s potential non-differentiability points D, let us decompose its
expression for all x ∈ U ′:

B1(x) = Ef∼GP(0,A)

[
φ
(
f(x)

)
φ
(
f(y)

)]
= E(z,z′)∼N((0,0),Σx,y

A )

[
φ(z)φ

(
z′
)]

(D.57)

= Ez′∼N(0,A(y,y))

φ(z′)E
z∼N

(
A(x,y)
A(y,y)

z′,A(x,x)−A(x,y)2

A(y,y)

)[φ(z)
] (D.58)

= Ez′∼N(0,A(y,y))

[
φ
(
z′
)
h
(
z′,x

)]
, (D.59)

where h is defined as:

h
(
z′,x

)
,
∫ +∞

−∞
φ(z) · 1

σ(x)
√

2π
e
− 1

2

(
z−µ(x)z′
σ(x)

)2

dz, (D.60)

and:

µ(x) =
A(x,y)

A(y,y)
, σ(x) =

√
det Σx,yA
A(y,y)

. (D.61)

Now, if D = {c1, . . . , cL} with L ∈ N and c1 < · · · < cL, the cls constitute the
non-differentiability points of φ; we can then decompose the integration of φ in Equa-
tion (D.60) as a sum of L+ 1 integrals with differentiable integrands, using c0 = −∞
and cL+1 = +∞:

h(ε,x) =
1√
2π

L∑
l=0

∫ cl+1

cl

φ(z)

σ(x)
e
− 1

2

(
z−µ(x)z′
σ(x)

)2

dz. (D.62)

Therefore, it remains to show the smoothness of all applications B1,l for l ∈ J0, LK
defined as:

B1,j(x) = Ez′∼N(0,A(y,y))

∫ cl+1

cl

φ
(
z′
)
φ(z)

σ(x)
√

2π
e
− 1

2

(
z−µ(x)z′
σ(x)

)2

dz

. (D.63)

The rest of this proof unfolds similarly to the one of Lemma 5. Indeed, the integrand
of Equation (D.63) is smooth over clV . There remains to show that all derivatives
of this integrand are dominated by an integrable function of z and z′. Consider the
following integrand:

ι
(
z, z′,x

)
=
φ
(
z′
)
φ(z)

σ(x)
√

2π
e
− 1

2

(
z−µ(x)z′
σ(x)

)2

. (D.64)

222



D.1. Proofs of Theoretical Results and Additional Results

By applying the multivariate Faà di Bruno formula and noticing that σ and µ are
smooth over the closed set clV , we know that the derivatives of ι

(
z, z′,x

)
with respect

to x for any derivation order are weighted sums of terms of the form:

zkz′
k′
κ(x)

φ
(
z′
)
φ(z)

σ(x)
√

2π
e
− 1

2

(
z−µ(x)z′
σ(x)

)2

, (D.65)

where κ is a smooth function over clV and k, k′ ∈ N. Moreover, because σ, µ and κ
are smooth over the closed set clV with positive values for σ, there are constants a1,
a2 and a3 such that:∣∣∣∣∣∣zkz′k′κ(x)

φ
(
z′
)
φ(z)

σ(x)
√

2π
e
− 1

2

(
z−µ(x)z′
σ(x)

)2
∣∣∣∣∣∣ ≤

∣∣∣zkz′k′φ(z′)φ(z)
∣∣∣a3e

− 1
2

(
z−a1z

′
a2

)2

, (D.66)

which is integrable over z via Assumption 4 and Equation (D.1). Finally, let us notice
that for some constants b1, b2 and b3:∫ cl+1

cl

∣∣∣zkz′k′φ(z′)φ(z)
∣∣∣a3e

− 1
2

(
z−a1z

′
a2

)2

≤ b1Ez∼N (b2z′,b3)

∣∣∣zkz′k′φ(z′)φ(z)
∣∣∣, (D.67)

which is also integrable with respect to Ez′∼N(0,A(y,y)) by similar arguments (see
also the integrability of Equation (D.50) in Lemma 5). This concludes the proof of
integrability required to apply the dominated convergence theorem, allowing us to
conclude about the smoothness of all B1,j and, in turn, of B1 over U ′.

Remark 5 (Relaxed condition for smoothness). The invertibility condition of Lemma 6
is actually stronger than needed: it suffices to assume that the rank of Σx,yA remains
constant in a neighborhood of x.

D.1.3.2. Differentiability of Conjugate Kernels, NTKs and Discriminators

From the previous lemmas, we can then prove the results of Section 6.4.3. We start by
demonstrating the smoothness of the conjugate kernel for dense networks, and conclude
in consequence about the smoothness of the NTK and trained network.

Lemma 7 (Differentiability of the conjugate kernel). Let kc be the conjugate kernel
(J. Lee, Bahri, et al., 2018) of an infinite-width dense non-residual architecture such as
in Assumption 4. For any y ∈ Rn, the following holds for A ∈

{
kc,Kφ′(kc)

}
:

• if Assumption 5 holds, then x 7→ A(x,x) and x 7→ A(x,y) are smooth everywhere
over Rn;

• if Assumption 6 holds, then x 7→ A(x,x) and x 7→ A(x,y) are smooth over an
open set whose complement has null Lebesgue measure.
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Proof. We define the following kernel:

CφL(x,y) = E
f∼GP

(
0,CφL−1

)[φ(f(x)
)
φ
(
f(y)

)]
+ β2 = Kφ

(
CφL−1

)
+ β2, (D.68)

with:
Cφ0 (x,y) =

1

n
x>y + β2. (D.69)

We have that kc = CφL, with L being the number of hidden layers in the network.
Therefore, Lemma 5 ensures the smoothness result under Assumption 5.

Let us now consider Assumption 6 (cf. the detailed assumption in Appendix D.1.1);
in particular, β > 0. We prove by induction over L in the following that:

• B1:x 7→ CφL(x,y) is smooth over U =
{
x ∈ Rn

∣∣ ‖x‖ 6= ‖y‖};
• B2:x 7→ CφL(x,x) is smooth;

• for all x,x′ ∈ Rn with ‖x‖ 6=
∥∥x′∥∥, B2(x) 6= B2

(
x′
)
.

The result is immediate for L = 0. We now suppose that it holds for some L ∈ N and
prove that it also holds for L+ 1 hidden layers. Let us express B2:

B2(x) = Eε∼N (0,1)

[
φ

(
ε

√
CφL(x,x) + β2

)2
]
. (D.70)

Using Lemma 6 and Remark 5, the fact that β > 0 and the induction hypothesis
ensures that B2 is smooth. Moreover, Assumption 6, in particular Equation (D.2),
allows us to assert that ‖x‖ 6=

∥∥x′∥∥ implies B2(x) 6= B2

(
x′
)
.

Finally, in order to apply Lemma 6 to prove the smoothness of B1 over U , there
remains to show that the following matrix is invertible:

Σx,yβ ,

(
CφL(x,x) + β2 CφL(x,y) + β2

CφL(x,y) + β2 CφL(y,y) + β2

)
. (D.71)

Let us compute its determinant:

det Σx,yβ =
(
CφL(x,x) + β2

)(
CφL(y,y) + β2

)
−
(
CφL(x,y) + β2

)2

= det Σx,y0 + β2
(
CφL(x,x) + CφL(y,y)− 2CφL(x,y)

)
.

(D.72)

CφL is a symmetric positive semi-definite kernel, thus:

det Σx,yβ − det Σx,y0 = β2 ·
(
1 −1

)
Σx,y0

(
1
−1

)
≥ 0. (D.73)

Hence, if det Σx,y0 > 0, then det Σx,yβ > 0. Besides, if det Σx,y0 = 0, then:

det Σx,yβ = β2
(√

B2(x)−
√
B2(y)

)2

> 0, (D.74)
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for all x ∈ U . This proves that B1 is indeed smooth over U , and concludes the induction.
Note that U is indeed an open set whose complement in Rn has null Lebesgue

measure. Overall, the result is thus proved for A = kc; a similar reasoning using the
previous induction result also transfers the result to A = Kφ′(kc).

Proposition 2 (Differentiability of k). Let k be the NTK of an infinite-width archi-
tecture following Assumption 4. For any y ∈ Rn:

• if Assumption 5 holds, then k(·,y) is smooth everywhere over Rn;

• if Assumption 6 holds, then k(·,y) is smooth almost everywhere over Rn, in
particular over an open set whose complement has null Lebesgue measure.

Proof. According to the definitions of Jacot, Gabriel, and Hongler (2018), Arora, Du, W.
Hu, et al. (2019), and K. Huang et al. (2020), the smoothness of the kernel is guaranteed
whenever the conjugate kernel kc and its transform Kφ′(kc) are smooth; the result of
Lemma 7 then applies. In the case of residual networks, there is a slight adaptation of
the formula which does not change its regularity. Regarding convolutional networks,
their conjugate kernels and NTKs involve finite combinations of such dense conjugate
kernels and NTKs, thereby preserving their smoothness almost everywhere.

Theorem 2 (Differentiability of ft). Let ft be a solution to Equation (6.9) under
Assumptions 1 and 3 by Theorem 1, with k the NTK of an infinite-width neural network
and f0 an initialization of the latter.
Then, under Assumptions 4 and 5, ft is smooth everywhere. Under Assumptions 4

and 6, ft is smooth almost everywhere, in particular over an open set whose complement
has null Lebesgue measure.

Proof. From Theorem 1, we have:

ft − f0 = Tk,γ̂

(∫ t

0

∇γ̂Lα̂(fs) ds

)
. (D.75)

We observe that Tk,γ̂(h) has, for any h ∈ L2(γ̂), a regularity which only depends
on the regularity of k(·,y) for y ∈ supp γ̂. Indeed, if k(·,y) is smooth in a certain
neighborhood V for every such y, we can bound ∂αk(·,y) over V for every y and any
multi-index α and then use dominated convergence to prove that Tk,γ̂(h)(·) is smooth
over V . Therefore, the regularity of k(·,y) transfers to ft − f0. Given Proposition 2,
there remains to prove the same result for f0.
The theorem then follows from the fact that f0 has the same regularity as its

conjugate kernel kc thanks to Lemma 4 because f0 is a sample from the GP with
kernel kc. Lemma 7 shows the smoothness almost everywhere over an open set of
applications x 7→ kc(x,y); to apply Lemma 4 and concludes this proof, this result must
be generalized to prove the smoothness of kc with respect to both its inputs. This
can be done by generalizing the proofs of Lemmas 5 and 6 to show the smoothness of
kernels with respect to both x and y, with the same arguments than for x alone.
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Remark 6. In the previous theorem, f0 is considered to be the initialization of
the network. However, we highlight that, without loss of generality, this theorem
encompasses the change of training distribution γ̂ during GAN training. Indeed,
as explained in Section 6.4.1, f0 after j steps of generator training can actually be
decomposed as, for some hk ∈ L2(γ̂k), k ∈ J1, jK:

f0 = f0 +

j∑
k=1

Tk,γ̂k(hk), (D.76)

by taking into account the updates of the discriminators over the whole GAN op-
timization process. The proof of Theorem 2 can then be applied similarly in this
case by showing the differentiability of f0 − f0 on the one hand and of f0, being the
initialization of the discriminator at the very beginning of GAN training, on the other
hand.

D.1.4. Dynamics of the Generated Distribution
We derive in this proposition the differential equation governing the dynamics of the
generated distribution.

Proposition 3 (Dynamics of α`). Under Assumptions 4 and 5, Equation (6.3) is
well-posed. Let us consider its continuous-time version with discriminators trained on
discrete distributions as described above:

∂`θ` = −Ez∼pz

[
∇θg`(z)

>∇x cf?α̂g` (x)

∣∣∣∣
x=g`(z)

]
. (D.77)

This yields, with kg` the NTK of the generator g`:

∂`g` = −Tkg` ,pz

(
z 7→ ∇x cf?α̂g` (x)

∣∣∣∣
x=g`(z)

)
. (D.78)

Equivalently, the following continuity equation holds for the joint distribution αz` ,
(id, g`)]pz:

∂`α
z
` = −∇x ·

αz` Tkg` ,pz
(
z 7→ ∇x cf?α̂g` (x)

∣∣∣∣
x=g`(z)

). (D.79)

Proof. Assumptions 4 and 5 ensure, via Proposition 2 and Theorem 2 that the trained
discriminator is differentiable everywhere at all times, whatever the state of the
generator. Therefore, Equation (6.3) is well-posed.
By following Mroueh, Sercu, and Raj (2019, Equation (5))’s reasoning on a similar

equation, Equation (D.77) yields the following generator dynamics for all inputs z ∈ Rd:

∂`g`(z) = −Ez′∼pz

[
∇θ`g`(z)

>∇θ`g`
(
z′
)
∇x cf?α̂g` (x)

∣∣∣∣
x=g`(z′)

]
. (D.80)
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We recognize the NTK kg` of the generator as:

kg`
(
z, z′

)
, ∇θ`g`(z)

>∇θ`g`
(
z′
)
. (D.81)

From this, we obtain the dynamics of the generator:

∂`g` = −Tkg` ,pz

(
z 7→ ∇x cf?α̂g` (x)

∣∣∣∣
x=g`(z)

)
. (D.82)

In other words, the transported particles
(
z, g`(z)

)
have trajectories X` which are

solutions of the ODE:
dX`

d`
=
(
0, v`(X`)

)
, (D.83)

where:

v` = −Tkg` ,pz

(
z 7→ ∇x cf?α̂g` (x)

∣∣∣∣
x=g`(z)

)
. (D.84)

Then, because αz` , (id, g`)]pz is the induced transported density, following Am-
brosio and Crippa (2014), whenever the ODE above is well-defined and has unique
solutions (which is necessarily the case for any trained g), αz` verifies the continuity
equation with the velocity field v`:

∂`α
z
` = −∇z,x ·

αz`
0, Tkg` ,pz

(
z 7→ ∇x cf?α̂g` (x)

∣∣∣∣
x=g`(z)

)


= −∇x ·

αz` Tkg` ,pz
(
z 7→ ∇x cf?α̂g` (x)

∣∣∣∣
x=g`(z)

).
(D.85)

This yields the desired result.

D.1.5. Optimality in Concave Setting
We derive an optimality result for concave bounded loss functions of the discriminator
and positive definite kernels.

D.1.5.1. Assumptions

We first assume that the NTK is positive definite over the training dataset.

Assumption 7 (Positive definite kernel). k is positive definite over γ̂.

This positive definiteness property equates for finite datasets to the invertibility of
the mapping

Tk,γ̂
∣∣
supp γ̂

:L2(γ̂)→ L2(γ̂)

h 7→ Tk,γ̂(h)
∣∣
supp γ̂

, (D.86)
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that can be seen as a multiplication by the invertible Gram matrix of k over γ̂. We
further discuss this hypothesis in Appendix D.2.5.
We also assume the following properties on the discriminator loss function.

Assumption 8 (Concave loss). Lα̂ is concave and bounded from above, and its
supremum is reached on a unique point y? in L2(γ̂).

Moreover, we need for the sake of the proof a uniform continuity assumption on the
solution to Equation (6.9).

Assumption 9 (Solution continuity). t 7→ ft|supp γ̂ is uniformly continuous over R+.

Note that these assumptions are verified in the case of LSGAN, which is the typical
application of the optimality results that we prove in the following.

D.1.5.2. Optimality Result

Proposition 7 (Asymptotic optimality). Under Assumptions 1 to 3 and 7 to 9, ft
converges pointwise when t→∞, and:

Lα̂(ft) −−−→
t→∞

Lα̂(y?), f∞ = f0 + Tk,γ̂
(
Tk,γ̂

∣∣−1

supp γ̂

(
y? − f0|supp γ̂

))
, (D.87)

with:
f∞|supp γ̂ = y? = arg max

y∈L2(γ̂)

Lα̂(y). (D.88)

This result ensures that, for concave losses such as LSGAN, the optimum for Lα̂ in
L2(Ω) is reached for infinite training times by neural network training in the infinite-
width regime when the NTK of the discriminator is positive definite. However, this also
provides the expression of the optimal network outside supp γ̂ thanks to the smoothing
of γ̂.
In order to prove this proposition, we need the following intermediate results: the

first one about the functional gradient of Lα̂ on the solution ft; the second one about
a direct application of positive definite kernels showing that one can retrieve f ∈ Hγ̂k
over all Ω from its restriction to supp γ̂.

Lemma 8. Under Assumptions 1 to 3 and 7 to 9, ∇γ̂Lα̂(ft)→ 0 when t→∞. Since
supp γ̂ is finite, this limit can be interpreted pointwise.

Proof. Assumptions 1 to 3 ensure the existence and uniqueness of ft, by Theorem 1.
t 7→ f̂t , ft|supp γ̂ and Lα̂ being differentiable, t 7→ Lα̂(ft) is differentiable, and:

∂tLα̂(ft) =
〈
∇γ̂Lα̂(ft), ∂tf̂t

〉
L2(γ̂)

=

〈
∇γ̂Lα̂(ft), Tk,γ̂

(
∇γ̂Lα̂(ft)

)〉
L2(γ̂)

, (D.89)

using Equation (6.9). This equates to:

∂tLα̂(ft) =

∥∥∥∥Tk,γ̂(∇γ̂Lα̂(ft)
)∥∥∥∥2

Hγ̂k

≥ 0, (D.90)
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where ‖·‖Hγ̂k is the semi-norm associated to the RKHS Hγ̂k . Note that this semi-norm
is dependent on the restriction of its input to supp γ̂ only. Therefore, t 7→ Lα̂(ft) is
increasing. Since Lα̂ is bounded from above, t 7→ Lα̂(ft) admits a limit when t→∞.
We now aim at proving from the latter fact that ∂tLα̂(ft) → 0 when t → ∞. We

notice that ‖·‖2Hγ̂k is uniformly continuous over L2(γ̂) since supp γ̂ is finite, ∇γ̂Lα̂ is
uniformly continuous over L2(γ̂) since a′ and b′ are Lipschitz-continuous, Tk,γ̂

∣∣
supp γ̂

is
uniformly continuous as it amounts to a finite matrix multiplication, and Assumption 9
gives that t 7→ ft|supp γ̂ is uniformly continuous over R+. Therefore, their composition
t 7→ ∂tLα̂(ft) (from Equation (D.90)) is uniformly continuous over R+. Using Barbălat’s
Lemma (Farkas and Wegner, 2016), we conclude that ∂tLα̂(ft)→ 0 when t→∞.
Furthermore, k is positive definite over γ̂ by Assumption 7, so ‖·‖Hγ̂k is actually a

norm. Therefore, since supp γ̂ is finite, the following pointwise convergence holds:

∇γ̂Lα̂(ft) −−−→
t→∞

0. (D.91)

Lemma 9 (Hγ̂k determined by supp γ̂). Under Assumptions 1, 2 and 7, for all f ∈ Hγ̂k ,
the following holds:

f = Tk,γ̂
(
Tk,γ̂

∣∣−1

supp γ̂

(
f |supp γ̂

))
. (D.92)

Proof. Since k is positive definite by Assumption 7, then Tk,γ̂
∣∣
supp γ̂

from Equa-

tion (D.86) is invertible. Let f ∈ Hγ̂k . Then, by definition of the RKHS in Definition 2,
there exists h ∈ L2(γ̂) such that f = Tk,γ̂(h). In particular, f |supp γ̂ = Tk,γ̂

∣∣
supp γ̂

(h),

hence h = Tk,γ̂
∣∣−1

supp γ̂

(
f |supp γ̂

)
.

We can now prove the desired proposition.

Proof of Proposition 7. Let us first show that ft converges to the optimum y? in L2(γ̂).
By applying Lemma 8, we know that ∇γ̂Lα̂(ft) → 0 when t → ∞. Given that the
supremum of the differentiable concave function Lα̂:L2(γ̂)→ R is achieved at a unique
point y? ∈ L2(γ̂) with finite supp γ̂, then the latter convergence result implies that
f̂t , ft|supp γ̂ converges pointwise to y? when t→∞.

Given this convergence in L2(γ̂), we can deduce convergence on the whole domain Ω

by noticing that ft − f0 ∈ Hγ̂k , from Corollary 1. Thus, using Lemma 9:

ft − f0 = Tk,γ̂
(
Tk,γ̂

∣∣−1

supp γ̂

(
(ft − f0)

∣∣
supp γ̂

))
. (D.93)

Again, since supp γ̂ is finite, and Tk,γ̂
∣∣−1

supp γ̂
can be expressed as a matrix multiplication,

the fact that ft converges to y? over supp γ̂ implies that:

Tk,γ̂
∣∣−1

supp γ̂

(
(ft − f0)

∣∣
supp γ̂

)
−−−→
t→∞

Tk,γ̂
∣∣−1

supp γ̂

(
y? − f0|supp γ̂

)
. (D.94)
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Finally, using the definition of the integral operator in Definition 2, the latter conver-
gence implies the following desired pointwise convergence:

ft −−−→
t→∞

f0 + Tk,γ̂
(
Tk,γ̂

∣∣−1

supp γ̂

(
y? − f0|supp γ̂

))
. (D.95)

We showed at the beginning of this proof that ft converges to the optimum y? in
L2(γ̂), so Lα̂(ft)→ Lα̂(y?) by continuity of Lα̂ as claimed in the proposition.

D.1.6. Case Studies of Discriminator Dynamics

We study in the rest of this section the expression of the discriminators in the case
of the IPM loss and LSGAN, as described in Section 6.5, and of the original GAN
formulation.

D.1.6.1. Preliminaries

We first need to introduce some definitions.
The presented solutions to Equation (6.9) leverage a notion of functions of linear

operators, similarly to functions of matrices (Higham, 2008). We define such functions
in the simplified case of non-negative symmetric compact operators with a finite number
of eigenvalues, such as Tk,γ̂ .

Definition 3 (Linear operator). Let A:L2(γ̂)→ L2(Ω) be a non-negative symmetric
compact linear operator with a finite number of eigenvalues, for which the spectral
theorem guarantees the existence of a countable orthonormal basis of eigenfunctions
with non-negative eigenvalues. If ϕ:R+ → R, we define ϕ(A) as the linear operator
with the same eigenspaces as A, with their respective eigenvalues mapped by ϕ; in
other words, if λ is an eigenvalue of A, then ϕ(A) admits the eigenvalue ϕ(λ) with the
same eigenspace.

In the case where A is a matrix, this amounts to diagonalizing A and transforming its
diagonalization elementwise using ϕ. Note that Tk,γ̂ has a finite number of eigenvalues
since it is generated by a finite linear combination of linear operators (see Definition 2).
We also need to define the following Radon–Nikodym derivatives with inputs in

supp γ̂:

ρ =
d
(
β̂ − α̂

)
d
(
β̂ + α̂

) , ρ1 =
dα̂

dγ̂
, ρ2 =

dβ̂

dγ̂
, (D.96)

knowing that

ρ =
1

2
(ρ2 − ρ1), ρ1 + ρ2 = 2. (D.97)

These functions help us to compute the functional gradient of Lα̂, as follows.
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Lemma 10 (Loss derivative). Under Assumption 3:

∇γ̂Lα̂(f) = ρ1a
′
f − ρ2b

′
f = ρ1 ·

(
a′ ◦ f

)
− ρ2 ·

(
b′ ◦ f

)
. (D.98)

Proof. We have from Equation (6.2):

Lα̂(f) = Ex∼α̂
[
af (x)

]
− Ey∼β̂

[
bf (y)

]
=
〈
ρ1, af

〉
L2(γ̂)

−
〈
ρ2, bf

〉
L2(γ̂)

, (D.99)

hence by composition:

∇γ̂Lα̂(f) = ρ1 ·
(
a′ ◦ f

)
− ρ2 ·

(
b′ ◦ f

)
= ρ1a

′
f − ρ2b

′
f . (D.100)

D.1.6.2. LSGAN

Proposition 5 (LSGAN discriminator). Under Assumptions 1 and 2, the solutions of
Equation (6.9) for a = −(id + 1)

2 and b = −(id− 1)
2 are the functions defined for all

t ∈ R+ as:

ft = exp
(
−4tTk,γ̂

)
(f0 − ρ) + ρ = f0 + ϕt

(
Tk,γ̂

)
(f0 − ρ), (D.101)

where:
ϕt:x 7→ e−4tx − 1. (D.102)

Proof. Assumptions 1 and 2 are already assumed and Assumption 3 holds for the given
a and b in LSGAN. Thus, Theorem 1 applies, and there exists a unique solution t 7→ ft
to Equation (6.9) over R+ in L2(Ω) for a given initial condition f0. Therefore, there
remains to prove that, for a given initial condition f0,

g: t 7→ gt = f0 + ϕt
(
Tk,γ̂

)
(f0 − ρ) (D.103)

is a solution to Equation (6.9) with g0 = f0 and gt ∈ L2(Ω) for all t ∈ R+.
Let us first express the gradient of Lα̂. We have from Lemma 10, with af = −(f + 1)

2

and bf = −(f − 1)
2:

∇γ̂Lα̂(f) = ρ1a
′
f − ρ2b

′
f = −2ρ1(f + 1)− 2ρ2(f − 1) = 4ρ− 4f. (D.104)

So Equation (6.9) equates to:

∂tft = 4Tk,γ̂(ρ− ft). (D.105)

Now let us prove that gt is a solution to Equation (D.105). We have:

∂tgt = −4
(
Tk,γ̂ ◦ exp

(
−4tTk,γ̂

))
(f0 − ρ) = −4

(
Tk,γ̂ ◦ exp

(
−4tTk,γ̂

))
(f0 − ρ).

(D.106)
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Restricted to supp γ̂, we can write from Equation (D.103):

gt = f0 +

(
exp
(
−4tTk,γ̂

∣∣
supp γ̂

)
− idL2(γ̂)

)
(f0 − ρ), (D.107)

and plugging this in Equation (D.106):

∂tgt = −4Tk,γ̂(gt − ρ), (D.108)

where we retrieve the differential equation of Equation (D.105). Therefore, gt is a
solution to Equation (D.105).
It is clear that g0 = f0. Moreover, Tk,γ̂ being decomposable in a finite orthonormal

basis of elements of operators over L2(Ω), its exponential has values in L2(Ω) as well,
making gt belong to L2(Ω) for all t. With this, the proof is complete.

D.1.6.3. IPMs

Proposition 4 (IPM discriminator). Under Assumptions 1 and 2, the solutions of
Equation (6.9) for a = b = id are the functions of the form ft = f0 + tf∗α̂, where f

∗
α̂ is

the unnormalized MMD witness function, yielding:

f∗α̂ = Ex∼α̂
[
k(x, ·)

]
− Ey∼β̂

[
k(y, ·)

]
, Lα̂(ft) = Lα̂(f0) + t ·MMD2

k

(
α̂, β̂

)
. (D.109)

Proof. Assumptions 1 and 2 are already assumed and Assumption 3 holds for the given
a and b of the IPM loss. Thus, Theorem 1 applies, and there exists a unique solution
t 7→ ft to Equation (6.9) over R+ in L2(Ω) for a given initial condition f0. Therefore,
in order to find the solution of Equation (6.9), there remains to prove that, for a given
initial condition f0,

g: t 7→ gt = f0 + tf∗α̂ (D.110)

is a solution to Equation (6.9) with g0 = f0 and gt ∈ L2(Ω) for all t ∈ R+.
Let us first express the gradient of Lα̂. We have from Lemma 10, with af = bf = f :

∇γ̂Lα̂(f) = ρ1a
′
f − ρ2b

′
f = −2ρ. (D.111)

So Equation (6.9) equates to:

∂tft = −2Tk,γ̂(ρ) = 2

∫
x

k(·,x)ρ(x) dγ̂(x) =

∫
x

k(·,x) dα̂(x)−
∫
y

k(·,y) dβ̂(y),

(D.112)
by definition of ρ (see Equation (D.96)), yielding:

∂tft = f∗α̂. (D.113)

Clearly, t 7→ gt = f0 + tf∗α̂ is a solution of the latter equation, g0 = f0 and gt ∈ L2(Ω)
given that supp γ̂ is finite and k ∈ L2

(
Ω2
)
by assumption. The set of solutions for the

IPM loss is thus characterized.
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Finally, let us compute Lα̂(ft). By linearity of Lα̂ for a = b = id:

Lα̂(ft) = Lα̂(f0) + t · Lα̂(f∗α̂) = Lα̂(f0) + t · Lα̂
(
Tk,γ̂(−2ρ)

)
. (D.114)

But, from Equation (D.99), Lα̂(f) = 〈−2ρ, f〉L2(γ̂), hence:

Lα̂(ft) = Lα̂(f0) + t ·
〈
−2ρ, Tk,γ̂(−2ρ)

〉
L2(γ̂)

= Lα̂(f0) + t ·
∥∥Tk,γ̂(−2ρ)

∥∥2

Hγ̂k
. (D.115)

By noticing that Tk,γ̂(−2ρ) = f∗α̂ and that
∥∥f∗α̂∥∥Hγ̂k = MMDk

(
α̂, β̂

)
since f∗α̂ is the

unnormalized MMD witness function, the expression of Lα̂(ft) in the proposition is
obtained.

D.1.6.4. Vanilla GAN

Unfortunately, finding the solutions to Equation (6.9) in the case of the original GAN
formulation, i.e. a = log(1− σ) and b = − log σ, remains to the extent of our knowledge
an open problem. We provide in the rest of this section some leads that might prove
useful for more advanced analyses.
Let us first determine the expression of Equation (6.9) for vanilla GAN.

Lemma 11. For a = log(1− σ) and b = − log σ, Equation (6.9) equates to:

∂tft = Tk,γ̂
(
ρ2 − 2σ(f)

)
. (D.116)

Proof. We have from Lemma 10, with af = bf = f :

∇γ̂Lα̂(f) = ρ1a
′
f − ρ2b

′
f = −ρ1

σ′(f)

1− σ(f)
+ ρ2

σ′(f)

σ(f)
. (D.117)

By noticing that σ′(f) = σ(f)
(
1− σ(f)

)
, we obtain:

∇γ̂Lα̂(f) = ρ1a
′
f − ρ2b

′
f = −ρ1σ(f) + ρ2

(
1− σ(f)

)
= ρ2 − 2σ(f). (D.118)

By plugging the latter expression in Equation (6.9), the desired result is achieved.

Note that Assumption 3 holds for these choices of a and b. Therefore, under
Assumptions 1 and 2, there exists a unique solution to Equation (D.116) in R+ → L2(Ω)
with a given initialization f0.

Let us first study Equation (D.116) in the simplified case of a one-dimensional
ordinary differential equation.

Proposition 8. Let r ∈ {0, 2} and λ ∈ R. The set of differentiable solutions over R
to this ordinary differential equation:

dyt
dt

= λ
(
r − 2σ(yt)

)
(D.119)
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is the following set:

S =

{
y: t 7→ (1− r)

(
W
(

e2λt+C
)
− 2λt− C

) ∣∣∣∣∣ C ∈ R

}
, (D.120)

where W the is principal branch of the Lambert W function (Corless, Gonnet, et al.,
1996).

Proof. The theorem of Cauchy-Lipschitz ensures that there exists a unique global
solution to Equation (D.119) for a given initial condition y0 ∈ R. Therefore, we only
need to show that all elements of S are solutions of Equation (D.119) and that they
can cover any initial condition.
Let us first prove that y: t 7→ (1− r)

(
W
(
e2λt+C

)
− 2λt− C

)
is a solution of Equa-

tion (D.119). Let us express the derivative of y:

1

1− r
dyt
dt

= 2λ

(
e2λt+CW ′

(
e2λt+C

)
− 1

)
. (D.121)

W ′(z) = W (z)

z(1+W (z))
, so:

1

1− r
dyt
dt

= 2λ

(
W
(
e2λt+C

)
1 +W

(
e2λt+C

) − 1

)
= − 2λ

1 +W
(
e2λt+C

) . (D.122)

Moreover, W (z) = ze−W (z), and with r − 1 ∈ {1,−1}:

1

1− r
dyt
dt

= − 2λ

1 + e2λt+Ce−W(e2λt+C)
= − 2λ

1 + e(r−1)yt
. (D.123)

Finally, we notice that, since r ∈ {0, 2}:

λ
(
r − 2σ(yt)

)
= − 2λ(1− r)

1 + e(r−1)yt
. (D.124)

Therefore:
dyt
dt

= λ
(
r − 2σ(yt)

)
(D.125)

and yt is a solution to Equation (D.119).
Since y0 = (1− r)

(
W
(
eC
)
− C

)
and z 7→W (ez)− z can be proven to be bijective

over R, the elements of S can cover any initial condition. With this, the result is
proved.

Suppose that f0 = 0 in Equation (D.116) and that ρ2 has values in {0, 2} – i.e. α̂
and β̂ have disjoint supports (which is the typical case for distributions with finite
support). From Proposition 8, a candidate solution would be:

ft = ϕt(x)(ρ2 − 1) = −ϕt(x)(ρ), (D.126)
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where:
ϕt:x 7→W

(
e2tx+1

)
− 2tx− 1, (D.127)

since the initial condition y0 = 0 gives the constant value C = 1 in Equation (D.120).
Note that the Lambert W function of a symmetric linear operator is well-defined, all
the more so as we choose the principal branch of the Lambert function in our case; see
the work of Corless, Ding, et al. (2007) for more details. Note also that the estimation
of W (ez) is actually numerically stable using approximations from Iacono and J. P.
Boyd (2017).
However, Equation (D.126) cannot be a solution of Equation (D.116). Indeed, one

can prove by following essentially the same reasoning as the proof of Proposition 8
that:

∂tft = 2

(
Tk,γ̂ ◦

(
ψt
(
Tk,γ̂

))−1
)

(ρ2 − 1), (D.128)

with:
ψt:x 7→ 1 +W

(
e2tx+1

)
> 0. (D.129)

However, this does not allow us to obtain Equation (D.116) since in the latter the
sigmoid is taken coordinate-wise, where the exponential in Equation (D.128) acts on
matrices.

Nonetheless, for t small enough, ft as defined in Equation (D.128) should approximate
the solution of Equation (D.116), since sigmoid is approximately linear around 0 and
ft ≈ 0 when t is small enough. We find in practice that for reasonable values of t, e.g.
t ≤ 5, the approximate solution of Equation (D.128) is actually close to the numerical
solution of Equation (D.116) obtained using an ODE solver. Thus, we provide here a
candidate approximate expression for the discriminator in the setting of the original
GAN formulation – i.e. for binary classifiers. We leave for future work a more in-depth
study of this case.

D.2. Discussions and Remarks

We develop in this section some remarks and explanations referenced in Chapter 6.

D.2.1. From Finite to Infinite-Width Networks

The constancy of the neural tangent kernel during training when the width of the
network becomes increasingly large is broadly applicable. As summarized by C. Liu,
Libin Zhu, and Belkin (2020), typical neural networks with the building blocks of
multilayer perceptrons and convolutional neural networks comply with this property,
as long as they end with a linear layer and they do not have any bottleneck – indeed,
this constancy needs the minimum internal width to grow unbounded (Arora, Du,
W. Hu, et al., 2019). This includes, for example, residual convolutional neural networks
(K. He et al., 2016). The requirement of a final linear activation can be circumvented
by transferring this activation into the loss function, as we did for the original GAN
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formulation in Section 6.3. This makes our framework encompass a wide range of
discriminator architectures.

Indeed, many building blocks of state-of-the-art discriminators can be studied in this
infinite-width regime with a constant NTK, as highlighted by the exhaustiveness of the
Neural Tangents library (Novak et al., 2020). Assumptions about the used activation
functions are mild and include many standard activations such as ReLU, sigmoid and
tanh. Beyond fully connected linear layers and convolutions, typical operations such
as self-attention (Hron et al., 2020), layer normalization and batch normalization (G.
Yang, 2020). This variety of networks affected by the constancy of the NTK supports
the generality of our approach, as it includes powerful discriminator architectures such
as BigGAN (Brock, Donahue, and Simonyan, 2019).
There are nevertheless some limits to this approximation, as we are not aware of

works studying the application of the infinite-width regime to some operations such as
spectral normalization, and networks in the regime of a constant NTK cannot perform
feature learning as they are equivalent to kernel methods (M. Geiger et al., 2020; G.
Yang and E. J. Hu, 2021). However, this framework remains general and constitutes
the most advanced attempt at theoretically modeling the discriminator’s architecture
in GANs.

D.2.2. Loss of the Generator and its Gradient
We highlight in this section the importance of taking into account discriminator
gradients in the optimization of the generator. Let us focus on an example similar to
the one of Arjovsky, Chintala, and Bottou (2017, Example 1) and choose as β a single
Dirac centered at 0 and as αg = αθ single Dirac centered at xθ = θ (the generator
parameters being the coordinates of the generated point). Let us focus for the sake of
simplicity on the case of LSGAN since it is a recurring example in this work, but a
similar reasoning can be done for other GAN instances.
In the theoretical min-max formulation of GANs considered by Arjovsky, Chintala,

and Bottou (2017), the generator is trained to minimize the following quantity:

Cf?αθ (αθ) , Ex∼αθ
[
cf?αθ

(x)
]

= f?αθ (xθ)
2
, (D.130)

where:

f?αθ = arg max
f∈L2( 1

2αθ+ 1
2β)

{
Lαθ (f) , Ex∼αθ

[
af (x)

]
− Ey∼β

[
bf (y)

]}
= arg min
f∈L2( 1

2αθ+ 1
2β)

{(
f?αθ (xθ) + 1

)2

+
(
f?αθ (0)− 1

)2
}
.

(D.131)

Consequently, f?αθ (0) = 1 and f?αθ (xθ) = −1 when xθ 6= 0, thus in this case:

Cf?αθ (αθ) = 1. (D.132)

This constancy of the generator loss would make it impossible to be learned by gradient
descent, as pointed out by Arjovsky, Chintala, and Bottou (2017).
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However, the setting does not correspond to the actual optimization process used in
practice and represented by Equation (6.3). We do have ∇θCf?αθ (αθ) = 0 when xθ 6= 0,
but the generator never uses this gradient in standard GAN optimization. Indeed,
this gradient takes into account the dependency of the optimal discriminator f?αθ in
the generator parameters, since the optimal discriminator depends on the generated
distribution. Yet, in practice and with few exceptions such as Unrolled GANs (Metz
et al., 2017) and as done in Equation (6.3), this dependency is ignored when computing
the gradient of the generator, because of the alternating optimization setting – where
the discriminator is trained in-between generator’s updates. Therefore, despite being
constant on the training data, this loss can yield non-zero gradients to the generator.
However, this requires the gradient of f?αθ to be defined, which is the issue addressed
in Section 6.3.2.

D.2.3. Differentiability of the Bias-Free ReLU Kernel

Remark 1 contradicts the results of Bietti and Mairal (2019) on the regularity of the
NTK of a bias-free ReLU MLP with one hidden layer, which can be expressed as follows
(up to a constant scaling the matrix multiplication in linear layers):

k(x,y) = ‖x‖‖y‖κ
(
〈x,y〉
‖x‖‖y‖

)
, (D.133)

where:
κ: [0, 1]→ R

u 7→ 2

π
u(π − arccosu) +

1

π

√
1− u2

. (D.134)

More particularly, Bietti and Mairal (2019, Proposition 3) claim that k(·,y) is not
Lipschitz around y for all y in the unit sphere. By following their proof, it amounts to
prove that k(·,y) is not Lipschitz around y for all y in any centered sphere. We highlight
that this also contradicts empirical evidence, as we did observe the Lipschitzness of
such NTK in practice using the Neural Tangents library (Novak et al., 2020).
We believe that the mistake in the proof of Bietti and Mairal (2019) lies in the

confusion between functions κ and k0, with:

k0:x,y 7→ κ

(
〈x,y〉
‖x‖‖y‖

)
. (D.135)

Their proof relies on the fact that κ is non-Lipschitz in the neighborhood of u = 1.
However, this does not imply that k0 is not Lipschitz or not derivable, because κ and
k0 have different geometries. We can prove that it is actually at least locally Lipschitz.
Indeed, let us compute the following derivative for x 6= y ∈ Rn \ {0}:

∂k0(x,y)

∂x
=
y‖x‖ − x

‖x‖ 〈x,y〉

‖x‖2‖y‖
κ′(u) =

1

‖x‖‖y‖

(
y − 〈x,y〉 x

‖x‖2

)
κ′(u), (D.136)
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where u = 〈x,y〉
‖x‖‖y‖ and:

π · κ′(u) =
u√

1− u2
+ 2(π − arccosu). (D.137)

Note that κ′(u) ∼u→1−
πu√
1−u2

∼u→1−
π√

2
√

1−u . Therefore:

π√
2
· ∂k0(x,y)

∂x
∼x→y

1

‖y‖2

(
y − 〈x,y〉 x

‖x‖2

) √
‖x‖‖y‖√

‖x‖‖y‖ − 〈x,y〉

∼x→y
‖x‖2y − 〈x,y〉x

‖y‖3
√
‖x‖‖y‖ − 〈x,y〉

∼x→y
‖y‖2 − 〈x,y〉

‖y‖3
√
‖y‖2 − 〈x,y〉

y −−−→
x→y

0,

(D.138)

which proves that k0 is actually Lipschitz around points (y,y), as well as differentiable,
and confirms our remark.

D.2.4. Integral Operator and Instance Noise
Instance noise (C. K. Sønderby, Caballero, et al., 2017) consists in adding random
Gaussian noise to the input and target samples. This amounts to convolving the data
distributions with a Gaussian density, which will have the effect of smoothing the
discriminator. In the following, for the case of IPM losses, we link instance noise with
our framework, showing that smoothing of the data distributions already occurs via
the NTK kernel, stemming from the fact that the discriminator is a neural network
trained with gradient descent.
More specifically, it can be shown that if k is an RBF kernel, the optimal discrim-

inators in both case are the same. This is based on the fact that the density of a
convolution of an empirical measure µ̂ = 1

N

∑
i δxi , where δz is the Dirac distribution

centered on z, and a Gaussian density k̃ with associated RBF kernel k can be written
as k̃ ∗ µ̂ = 1

N

∑
i k(xi, ·).

Let us consider the following regularized discriminator optimization problem in L2(R)

smoothed from L2(Ω) with instance noise, i.e. convolving α̂ and β̂ with k̃.

sup
f∈L2(R)

{
Ex∼k̃∗α̂

[
f(x)

]
− Ey∼k̃∗β̂

[
f(y)

]
− λ‖f‖2L2

}
(D.139)

The optimum f IN can be found by taking the gradient:

∇f
(
Lk̃α̂
(
f IN
)
− λ
∥∥∥f IN

∥∥∥2

L2

)
= 0 ⇔ f IN =

1

2λ

(
k̃ ∗ α̂− k̃ ∗ β̂

)
. (D.140)

If we now study the resolution of the optimization problem in Hγ̂k as in Section 6.5.1
with f0 = 0, we find the following discriminator:

ft = t
(
Ex∼α̂

[
k(x, ·)

]
− Ey∼β̂

[
k(y, ·)

])
= t
(
k̃ ∗ α̂− k̃ ∗ β̂

)
. (D.141)
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Therefore, we have that f IN ∝ ft, i.e. instance noise and regularization by neural
networks obtain the same smoothed solution.
This analysis was done using the example of an RBF kernel, but it also holds for

stationary kernels, i.e. k(x,y) = k̃(x− y), which can be used to convolve measures.
We remind that this is relevant, given that NTKs are stationary over spheres (Jacot,
Gabriel, and Hongler, 2018; G. Yang and Salman, 2019), around where data can be
concentrated in high dimensions.

D.2.5. Positive Definite NTKs
Optimality results in the theory of NTKs usually rely on the assumption that the
considered NTK k is positive definite over the training dataset γ̂ (Jacot, Gabriel, and
Hongler, 2018; Yaoyu Zhang et al., 2020). This property offers several theoretical
advantages.

Indeed, this gives sufficient representational power to its RKHS to include the optimal
solution over γ̂. Moreover, this positive definiteness property equates for finite datasets
to the invertibility of the mapping

Tk,γ̂
∣∣
supp γ̂

:L2(γ̂)→ L2(γ̂)

h 7→ Tk,γ̂(h)
∣∣
supp γ̂

, (D.142)

that can be seen as a multiplication by the invertible Gram matrix of k over γ̂. From
this, one can retrieve the expression of f ∈ Hγ̂k from its restriction f |supp γ̂ to supp γ̂ in
the following way:

f = Tk,γ̂ ◦ Tk,γ̂
∣∣−1

supp γ̂

(
f |supp γ̂

)
, (D.143)

as shown in Lemma 9. Finally, as shown by Jacot, Gabriel, and Hongler (2018) and
in Appendix D.1.5, this makes the discriminator loss function strictly increase during
training.
One may wonder whether this assumption is reasonable for NTKs. Jacot, Gabriel,

and Hongler (2018) proved that it indeed holds for NTKs of non-shallow MLPs with
non-polynomial activations if data is supported on the unit sphere, supported by the
fact that the NTK is stationary over the unit sphere. Others, such as Z. Fan and
Zhichao Wang (2020), have observed positive definiteness of the NTK subject to specific
assumptions on the networks and data. We are not aware of more general results of
this kind. However, one may conjecture that, at least for specific kinds of networks,
NTKs are positive definite for any training data.

Indeed, besides global convergence results (Allen-Zhu, Yuanzhi Li, and Z. Song, 2019),
prior work indicates that MLPs are universal approximators (Hornik, Stinchcombe,
and White, 1989; Leshno et al., 1993). This property can be linked in our context to
universal kernels (Steinwart, 2001), which are guaranteed to be positive definite over
any training data (Sriperumbudur, Fukumizu, and Lanckriet, 2011). Universality is
linked to the density of the kernel RKHS in the space of continuous functions. In the
case of NTKs, previously cited approximation properties can be interpreted as signs of
expressive RKHSs, and thus support the hypothesis of universal NTKs. Furthermore,
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beyond positive definiteness, universal kernels are also characteristic (Sriperumbudur,
Fukumizu, and Lanckriet, 2011), which is interesting when they are used to compute
MMDs, as we do in Section 6.5.1. Note that for the standard case of ReLU MLPs, Ji,
Telgarsky, and Xian (2020) showed universal approximation results in the infinite-width
regime, and works such as the one of Lin Chen and S. Xu (2021) observed that their
RKHS is close to the one of the Laplace kernel, which is positive definite.

Bias-free ReLU NTKs are not characteristic. As already noted by Leshno et al.
(1993), the presence of bias is important when it comes to the representational power of
MLPs. We can retrieve this observation in our framework. In the case of a ReLU shallow
network with one hidden layer and without bias, Bietti and Mairal (2019) determine
its associated NTK as follows (up to a constant scaling the matrix multiplication in
linear layers):

k(x,y) = ‖x‖‖y‖κ
(
〈x,y〉
‖x‖‖y‖

)
, (D.144)

with in particular k(x,0) = 0 for all x ∈ Ω; suppose that 0 ∈ Ω. This expression
of the kernel implies that k is not positive definite for all datasets: take for example
x = 0 and y ∈ Ω \ {0}; then the Gram matrix of k has a null row, hence k is not
strictly positive definite over {x,y}. Another consequence is that k is not characteristic.
Indeed, take probability distributions µ = δy

2
and ν = 1

2

(
δx + δy

)
with δz being the

Dirac distribution centered on z ∈ Ω, and where x = 0 and y ∈ Ω \ {0}. Then:

Ez∼µk(z, ·) = k

(
1

2
y, ·
)

=
1

2
k(y, ·) =

1

2

(
k(y, ·) + k(x, ·)

)
= Ez∼νk(z, ·), (D.145)

i.e. kernel embeddings of µ and ν 6= µ are identical, making k not characteristic by
definition.

D.3. Experimental Details

We detail in this section the experimental parameters needed to reproduce our experi-
ments.
All two-dimensional experiments require only a few minutes of computations on a

single GPU. Experiments on MNIST were run using simultaneously four GPUs for
parallel computations, for at most a couple of hours.

D.3.1. Datasets

8 Gaussians. The target distribution is composed of 8 Gaussians with their means
being evenly distributed on the centered sphere of radius 5, and each with a standard
deviation of 0.5. The input fake distribution is drawn at initialization from a standard
normal distribution N (0, 1). We sample in our experiments 500 points from each
distribution at each run to build α̂ and β̂.
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AB and Density. These two datasets are taken from the Geomloss library examples
(Feydy et al., 2019).1 To sample a point from a distribution based on these greyscale
images files, we sample a pixel (considered to lie in [−1, 1]2) in the image from a
distribution where each pixel probability is proportional to the darkness of this pixel,
and then apply a Gaussian noise centered at the chosen pixel coordinates with a
standard deviation equal to the inverse of the image size. We sample in our experiments
500 points from each distribution at each run to build α̂ and β̂.

MNIST and CelebA. We preprocess each MNIST image by extending it from 28× 28
frames to 32 × 32 frames (by padding it with black pixels). CelebA images are
downsampled from a size of 178× 218 to 32× 39 and then center-cropped to 32× 32.

For both datasets, we normalize pixels in the [−1, 1] range. For our experiments, we
consider a subset of 1024 elements of each dataset, which are randomly sampled for
each run.

D.3.2. Parameters
Sinkhorn divergence. The Sinkhorn divergence is computed using the Geomloss
library (Feydy et al., 2019), with a blur parameter of 0.001 and a scaling of 0.95,
making it close to the Wasserstein W2 distance.

Sigmoid activation. We introduce in Section 6.6 a sigmoid-like activation σ̃, that we
abbreviate to sigmoid in this experimental study for readability purposes. We choose
σ̃ instead of the actual sigmoid σ for computational reasons, since σ̃, contrary to σ,
allows for analytic computations of NTKs in the Neural Tangents library (Novak et al.,
2020). σ̃ is defined in the latter using the error function erf scaled in order to minimize
a squared loss with respect to σ over [−5, 5], with the following expression:

σ̃:x 7→ 1

2

(
erf

(
x

2.402 056 353 171 979 6

)
+ 1

)
. (D.146)

RBF kernel. The RBF kernel used in our experiments is the following:

k(x,y) = e
‖x−y‖2

2n , (D.147)

where n is the dimension of x and y, i.e. the dimension of the data.

Architecture. We used for the neural networks of our experiments the standard NTK
paramaterization (Jacot, Gabriel, and Hongler, 2018), with a scaling factor of 1 for
matrix multiplications and, when bias in enabled, a multiplicative constant of 1 for
biases (except for sigmoid where this bias factor is lowered to 0.2 to avoid saturating
1They can be downloaded at https://github.com/jeanfeydy/geomloss/tree/master/geomloss/
examples/optimal_transport/data: AB corresponds to files A.png (source) and B.png (target),
and Density corresponds to files density_a.png (source) and density_a.png (target).
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the sigmoid, and for CelebA where it is equal to 4). All considered networks are
composed of 3 hidden layers and end with a linear layer. In the finite-width case, the
width of these hidden layers is 128. We additionally use antisymmetrical initialization
(Yaoyu Zhang et al., 2020), except for the finite-width LSGAN loss.

Discriminator optimization. Discriminators in the finite-width regime are trained
using full-batch gradient descent without momentum, with one step per update to the
distributions and the following learning rates ε:

• for the IPM loss: ε = 0.01;

• for the IPM loss with reset and LSGAN: ε = 0.1.

In the infinite-width limit, we use the analytic expression derived in Section 6.5 with
training time τ = 1 (except for MNIST and CelebA where τ = 1000).

Point cloud descent. The multiplicative constant η over the gradient applied to each
data point for two-dimensional problems is chosen as follows:

• for the IPM loss in the infinite-width regime: η = 1000;

• for the IPM loss in the finite-width regime: η = 100;

• for the IPM loss in the finite-width regime and discriminator reset: η = 1000;

• for LSGAN in the infinite-width regime: η = 1000;

• for LSGAN in the finite-width regime: η = 1.

We multiply η by 1000 when using sigmoid activations, because of the low magnitude
of the gradients it provides. We choose for MNIST η = 100.
Training is performed for the following number of iterations:

• for 8 Gaussians: 20 000;

• for Density and AB: 10 000;

• for MNIST: 50 000.
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