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Abstract

This thesis deals with the problem of localization of dependent elderly people

using wireless sensor networks. Each person is equipped with a bracelet or a

medallion that consists of a sensor capable of measuring the WiFi signals and

communicating with the environment. We tackle the problem of localization by

zoning, where the objective is to determine the zone where the person resides,

instead of its exact position. It is formulated as a problem of multi-class classifi-

cation, which we treat by associating the flexibility of statistical learning methods

to the theory of Dempster-Shafer for fusion of information with uncertainty. The

interest of this theory is in its ability to model at the same time the uncertainty

and ambiguity of data, and the reliability and conflict of the sources. First, we

propose an observation model exploiting the power of the exchanged signals be-

tween the sensors with the fingerprinting technique. Afterwards, we extend the

proposed model, through hierarchical clustering, in order to cover larger surface

areas with higher number of zones. We then develop a method for selecting the

WiFi terminals in favor. This method helps enhancing the overall accuracy and

reducing the complexity of the localization method, by selecting the best subset

in terms of discriminative capacity and redundancy. We also propose mobility

models, which we combine with the observation model, in order to correct the

estimations by aggregating all available evidence. In addition, we present a de-

centralized approach of the localization method, to increase the robustness and

reduce the complexity. The performance of the proposed methods is validated

through experiments on real data, and evaluated in comparison with other well-

known methods in the domain.

Keywords :

• Sensor networks

• Location-based services

• Dempster-Shafer theory

• Signal processing

• Multisensor data fusion
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Résumé

Cette thèse porte sur le problème de localisation des personnes âgées dépendantes

à l’aide de réseaux de capteurs sans fil. Chaque personne est équipée d’un bracelet

ou médaillon, comprenant un capteur intelligent capable de mesurer les signaux

WiFi et de communiquer avec l’environnement. Nous abordons le problème de

localisation par zonage, où le but est de déterminer la zone où se trouve la per-

sonne, au lieu de sa position exacte. Il s’agit d’un problème de classification multi-

classes, que nous traitons en associant la flexibilité des méthodes d’apprentissage

statistique à la théorie de Dempster-Shafer pour la fusion de l’information avec

incertitude. L’intérêt de l’utilisation de cette théorie réside dans sa capacité à

modéliser à la fois l’incertitude et l’ambigüıté des données, ainsi que la fiabilité

et le conflit des sources. Nous proposons en premier un modèle d’observation

exploitant la puissance des signaux échangés entre les capteurs avec la technique

de fingerprinting. Nous développons ensuite le modèle proposé, au travers du

regroupement hiérarchique, dans le but de couvrir des surfaces plus grandes avec

un nombre de zones plus élevé. Nous élaborons ensuite une méthode de sélection

de paramètres, qui sont les bornes WiFi à privilégier. Cette méthode permet

d’améliorer la précision et de réduire la complexité de la méthode de localisation,

en choisissant le meilleur ensemble de paramètres en termes de la capacité de

discrimination et de la redondance. Nous proposons également des modèles de

mobilité que nous combinons au modèle d’observation, afin de corriger les estima-

tions en fusionnant toutes les preuves disponibles. D’autre part, nous présentons

une approche décentralisée de la méthode de localisation, pour accrôıtre la ro-

bustesse et diminuer la complexité. Les performances des méthodes proposées

sont validées par des expérimentations sur des données réelles, et évaluées en

comparaison avec d’autres méthodes très connues dans le domaine.

Mots-clés :

• Réseaux de capteurs (technologie)

• Services basés sur la localisation

• Théorie de Dempster-Shafer

• Traitement du signal

• Fusion multicapteurs
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A.1.1 Aperçu général des RCSFs . . . . . . . . . . . . . . . . . . 161

A.1.2 Localisation exacte . . . . . . . . . . . . . . . . . . . . . . 162

A.1.3 Localisation par zonage . . . . . . . . . . . . . . . . . . . . 163

xi



CONTENTS

A.1.4 Suivi de trajectoires . . . . . . . . . . . . . . . . . . . . . 164

A.1.5 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . 164

A.2 Fusion de données multi-capteurs . . . . . . . . . . . . . . . . . . 165
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1. INTRODUCTION

Wireless Sensor Networks (WSNs) have attracted intensive interest from both

academia and industry due to their wide applications. These networks consist

of spatially distributed autonomous devices that use sensors to monitor a cer-

tain area. They are tremendously being used in various fields to perform several

tasks ranging from medical and military applications, to monitoring homes, hos-

pitals and forests. This chapter introduces first the wireless sensor networks, their

topologies, and their applications. Next, the localization and tracking problems in

these networks are described, discussing some of the state-of-the-art techniques.

Finally, the organization of the manuscript is outlined.

1.1 Wireless Sensor Networks

With the recent technological advances in wireless communications, processor,

memory, radio, low power, highly integrated digital electronics, and micro electro-

mechanical systems, it has become possible to significantly develop tiny and small

size, low power, and low cost multi-functional sensor nodes. A wireless sensor net-

work (WSN) is a network that is made of tens to thousands of these sensor nodes

that are densely deployed in an unattended environment with the capabilities of

sensing, wireless communications and computations [Akyildiz et al., 2002]. As

a result, a WSN is the combination of sensor techniques, embedded techniques,

distributed information processing, and communication mechanisms [Zhou et al.,

2015]. Several types of WSNs exist and they are used for a wide range of appli-

cations, making them an interesting solution for various problems. Functionally,

smart sensor nodes are low power devices equipped with one or more sensors,

a processor, memory, power supply, and a radio interface. A key role is played

by the environment in determining the size, the topology, and the deployment

scheme of the WSN network. In indoor environments for example, fewer nodes

are required to construct a network in a limited space whereas in outdoor envi-

ronments, more nodes are needed to cover a larger area. In this section, we list

the types of the WSNs, an overview on their topologies, and a survey of some of

their applications.
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1.1 Wireless Sensor Networks

1.1.1 Types

Different types of WSNs can be deployed depending on the nature of the envi-

ronment. These types include terrestrial, underground, underwater, multimedia,

and mobile WSNs, presented in Figure 1.1.

• Terrestrial WSNs: In a terrestrial WSN, reliable communication in a

dense environment is a must. Sensor nodes must be able to effectively com-

municate data back to the basestation. While battery power is limited and

may not be rechargeable, terrestrial sensor nodes however can be equipped

with a secondary power source such as solar cells, it is important for sensor

nodes to conserve energy [Hancke, 2012].

• Underground WSNs: This type consists of a number of sensor nodes de-

ployed in caves, mines or underground. To enable information retrieval from

the underground sensor nodes to the base station, additional sink nodes are

located above ground [Akyildiz & Stuntebeck, 2006]. Wireless communica-

tion is a challenge in such environment due to high attenuation and signal

loss. Moreover, it is difficult to recharge or replace the batteries buried

underground, motivating the design of energy efficient communication pro-

tocols for prolonged lifetime. Underground WSNs are used for agriculture

monitoring and landscape management [Stuntebeck et al., 2006].

• Underwater WSNs: This type consists of sensors deployed underwater

Figure 1.1: The five main types of wireless sensor networks.
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1. INTRODUCTION

such as ocean environments. Only a few nodes are deployed due to their high

cost, and autonomous underwater vehicles are used to explore or gather data

from them. Such communication uses acoustic waves, presenting various

challenges such as limited bandwidth, long propagation delay, high latency,

and signal fading problems [Murad et al., 2015]. The nodes must be able to

adapt to extreme conditions, and are equipped with limited batteries that

cannot be replaced or recharged. Applications of underwater WSNs include

pollution monitoring and under-sea surveillance.

• Multimedia WSNs: Multimedia WSNs have been proposed in a variety

of areas including digital signal processing, communication, networking and

control systems. [Misra et al., 2008]. The deployed sensor nodes communi-

cate with each other via a wireless connection for data retrieval, processing,

correlation, and compression. They face various challenges such as high-

energy consumption, high bandwidth demand, data processing, and com-

pressing techniques. It is required to develop transmission techniques that

support high bandwidth and low energy consumption in order to deliver

multimedia content such as a video stream [Akyildiz et al., 2007].

• Mobile WSNs: This type consists of mobile sensor nodes that can move

on their own and interact with the physical environment. The mobile nodes

have the ability to reposition and organize themselves in the network. A

mobile WSN can start off with some initial deployment and nodes can then

spread out to gather information. Information gathered by a mobile node

can be communicated to another mobile node when they are within range

of each other. Mobile WSNs introduce significant challenges such as reli-

able data transfer, mobility management, localization with mobility, con-

tact detection, minimizing energy consumption, and maintaining network

connectivity [Di Francesco et al., 2011]. Mobile WSN applications include

environment monitoring and target tracking. A higher degree of coverage

and connectivity can be achieved with mobile sensor nodes as compared to

static nodes [Amundson & Koutsoukos, 2009].
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1.1 Wireless Sensor Networks

1.1.2 Topologies

Various resource constraints of WSNs depend on the network topology [Chen

et al., 2011]. The amount of communication required by the sensors to exchange

information is reduced in an efficient topology, thus saving energy. A topology

based on minimizing the distance between neighbor nodes for instance, reduces

the probability of losing a message during communication. Moreover, a well-

designed topology can also reduce radio interference and facilitate data aggrega-

tion, thus reducing the amount of processing cycles and elongating the network

lifetime [Velmani & Kaarthick, 2015]. Three main topologies have been proposed

in literature [Cota-Ruiz et al., 2016; Üney et al., 2016; Yan et al., 2017]:

• Centralized topology: In the centralized topology, sensors acquire data

measurements and transmit them to the fusion center for processing [Talebi

& Hemmatyar, 2014]. In such topology, the sensors are not required to carry

out complex computations. Although it can achieve high quality process-

ing, the centralized topology results in unnecessary energy costs due to the

transmission of all measurements even if many are not needed [Mamun,

2012].

• Distributed topology: The distributed topology treats equally all the

sensors. In such topology, the sensors perform computations and exchange

data with their neighboring sensors, located within their communication

range [Wang, 2008]. Since information processing is no longer limited to

a single fusion center, the network is more robust to failures. However,

developing relevant distributed algorithms remains a challenging issue.

• Decentralized topology: A combination between the two preceding

topologies, taking advantages from both of them, is the decentralized topol-

ogy, also called the clusterized topology, where the sensors are partitioned

into several sectors or clusters, each having its own fusion center [Mahfouz

et al., 2013]. Information is exchanged between the sensors of each sector

and transmitted to the local fusion center. The outputs of all fusion centers

are combined to yield a final decision. Such topology increases the scal-

ability of the network, and reduces the energy consumption leading to a
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1. INTRODUCTION

prolonged network lifetime [Üney et al., 2016].

The general structure of the three topologies, considering a set of sensors

{s1, . . . , sN}, is shown in Figure 1.2.

1.1.3 Applications

The number of potential applications for wireless sensor networks is huge. We

mention here some of the applications in the military, environmental, industrial,

and health-care domains.

• Military applications: Several areas of research are encompassed in the

use of WSNs in military applications. Acoustic detection and recognition

has been under research since the early fifties. An analysis of the complex

near-field pressure waves that occur within a foot of the blast is possible.

Another area of research is the signal processing of gunfire acoustics. The

focus is on the robust detection and length estimation of small caliber acous-

tic shockwaves and blasts.[Hussain & kyung Sup, 2009; Lee et al., 2009].

• Environmental applications: Some environmental applications of wire-

less sensor networks comprise agriculture, farming, mining, seismology, cli-

matology, volcanology, wildlife surveillance, and many others. WSNs fa-

cilitate the study of fundamental processes and the development of hazard

response systems. Indoor monitoring applications typically include build-

(a) Centralized topology. (b) Distributed topology. (c) Decentralized topology.

Figure 1.2: The three main topologies in wireless sensor networks.
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1.1 Wireless Sensor Networks

ings and offices monitoring. These applications involve sensing tempera-

ture, light, humidity, and air quality. Other important applications may

include detection of fire and civil structures. Outdoor monitoring appli-

cations include chemical hazardous detection, habitat monitoring, traffic

monitoring, earthquake detection, volcano eruption, flooding detection and

weather forecasting [Corke et al., 2010; Oliveira & Rodrigues, 2011].

• Home applications: As technology advances, smart sensor nodes and

actuators can be incorporated into appliances, such as vacuum cleaners,

micro-wave ovens, and refrigerators. These sensor nodes inside the devices

can communicate with each other and with the external network via the

Internet. They allow end users to control home devices locally and remotely

in an easier way and can be used as alarms for accidents at homes [Hussain

et al., 2009; Robles & Kim, 2010].

• Industrial applications: The application of WSN technology to the de-

sign of field-area networks for industrial communication and control systems

has the potential to provide major benefits in terms of flexible installation

and maintenance of field devices, support for monitoring the operations of

mobile robots, and reduction in costs and problems due to wire cabling. Of

these applications, we mention energy evaluation and condition monitoring,

motor condition monitoring, and low-cost measurements in the oil and gas

industry [Lin et al., 2008; Neuzil et al., 2014; Zhuang et al., 2007].

• Health-care applications: The medical applications of WSNs aim to

improve the existing healthcare and monitoring services especially for the

elderly, children and chronically ill. Numerous benefits are achieved with

these systems. Some of the applications involve providing interfaces for

the disabled, integrated patient monitoring, diagnosis, drug administration

in hospitals, telemonitoring of human physiological data, and tracking and

monitoring doctors and patients inside a hospital or a nursing home [Alem-

dar & Ersoy, 2010; Ko et al., 2010].
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1.1.4 WSNs for dependent elderly people

A key aspect when developing a new system is to find out the determinants of

its acceptance upon the target group. This is especially important for systems

designed for the elderly people, as most of them are not accustomed to modern

technology. Hence, any biases they may hold towards a technology are likely to

hinder its acceptance and adoption. For that reason, Steele et al. [2009] present

an exploratory study carrying out qualitative research into the perceptions, atti-

tudes and concerns of elderly people toward WSN technologies in terms of their

application to health-care. They have identified several concepts, such as in-

dependence, privacy, and cost, which have been further classified into themes

describing the determinants that may affect an elderly person’s acceptance of

WSNs for assisting health-care. They have found that the participants’ attitudes

towards the idea of WSNs for health monitoring are generally positive. Here, we

briefly explore the capabilities of WSNs to help elderly people.

• Monitoring of physiological data: The physiological data such as intra-

body temperature, heartbeat rate, and arterial blood pressure, collected by

sensor networks may be stored for a long period of time, and can be used

for medical investigations when needed [Mukhopadhyay, 2015].

• Drug administration in hospitals: WSNs can help minimize the side

effects of drugs by attaching sensor nodes to medication, thus identifying

possible allergies and prescribing adequate medication [Gara et al., 2015].

• Tracking and Monitoring: Each elderly person is equipped with a small

sensor in the form of a bracelet or a watch. The sensor runs a localiza-

tion algorithm to determine its location using measured data. Tsirmpas

et al. [2015] propose a navigation system considering scenarios that the

user might follow and suggest guidelines for elderly people in an unknown

built environment. The installed sensors may have more than one function,

and thus can also monitor and detect the behavior of the elderly people. A

health smart home was designed in Grenoble, France, for instance, to study

the feasibility of such systems [Noury et al., 2000].
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1.2 Position-based Localization

1.2 Position-based Localization

The localization of sensors from measurements collected by the nodes themselves

is one of the important topics when dealing with WSNs.

1.2.1 Problem description

Localization is an essential aspect in WSNs, since the knowledge of the sensor’s

location is critical to process the information originating from this sensor. Many

existing works have been proposed to tackle the position-based localization prob-

lem. The objective is to determine the position of the sensor node according to

some measured observations. A solution is to integrate a Global Positioning Sys-

tem or Global System for Mobile Communications (GPS-GSM) into sensor nodes.

This is widely used in vehicle tracking systems [Xiong et al., 2018]. However, it is

not always the optimal solution because of the costs of having a GPS receiver at

each node, especially when multiple objects are to be localized, as well as for the

limited spatial resolution. Moreover, this technology can not be efficiently used

for indoor applications due to the large attenuation caused by buildings’ walls

and ceilings. Its robustness against interference is also questionable [Oshin et al.,

2012].

For that reason, alternative solutions have been proposed. We consider the fol-

lowing approach. At first, two types of sensors are defined; anchor nodes (ANs),

also called beacon nodes, of known positions, and non-anchor nodes of unknown

position, to be localized. Since we consider, in the general setting, the case of

moving sensors, we will refer to the non-anchor nodes by mobile nodes (MNs).

The objective becomes to determine the position of any MN using collected mea-

surements and information exchanged with the ANs. The remaining issue is to

choose the appropriate enabling technology and the measurement technique. This

is extremely important as it plays a vital role in the accuracy of the localization

algorithm. The enabling technologies and techniques are discussed up next.
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1. INTRODUCTION

1.2.2 Enabling technologies

To extend the capability of mobile localization applications in indoor environ-

ments, researchers have been using alternative technologies to GPS such as vision,

infrared, ultrasound, Ultra-wideband, Bluetooth, WiFi, etc. A brief description

of these enabling technologies is presented in the following:

• Vision: This technology is based on the processing and evaluation of video

data. The video-based localization can be performed in two different ways:

– Fixed camera systems: The ANs in the environment are equipped

with cameras, and the objective is to locate the MN using images

captured by those cameras. Features of the object carrying the MN

to be localized are extracted. Once the features appear in the field

of view of the camera, its location is estimated based on its position

within the captured image, and the spatial distribution of its salient

features [Kim et al., 2001].

– Mobile camera systems: In such systems, either the MN is directly

equipped with a camera, or a drone with an equipped camera is used

to monitor its movement. The localization is performed by extracting

environment features, and involves two phases; an offline phase where

images of the environment are captured at predefined locations and

are processed to extract unique features, and an online phase where

the features of the new captured image are matched to the stored ones,

to estimate the location of the camera, and thus the position of the

MN [Ravi et al., 2006].

Nowadays, the increase in data transmission rate and computational capa-

bilities, as well as the development of high performance image processing

algorithms make this technology more efficient. Nevertheless, a major draw-

back of this technology is its high cost.

• Infrared: This technology uses the infrared radiation to localize sensors

through infrared emitters and receivers. The MN is equipped with a badge,
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1.2 Position-based Localization

carrying a unique identifier code (ID), that emits infrared signals at regu-

lar intervals via an infrared transmitter. Infrared receivers, placed at the

ANs, detect the ID and communicate it to a localization software to de-

termine the MN position based on the proximity between the transmitter

and the receiver. The infrared technology is characterized by the absence of

radio electromagnetic interference and the power of transmitted signal can

be easily adjusted to cover only the area of interest. However, multipath

errors, expensive system hardware and maintenance costs, and the neces-

sity of a line-of-sight (LoS) for proper functioning are all drawbacks of this

technology [Hauschildt & Kirchhof, 2010].

• Ultrasound: This technology uses the ultrasonic waves to measure the

distance between the ANs and the MN. The transmitter sends a radio sig-

nal and an ultrasonic wave at the same time. The radio signal reaches

the multiple receivers almost instantaneously, providing them with the syn-

chronization signal. The receivers then measure the time between the syn-

chronization signal and the detection of ultrasonic waves to calculate the

distance between the emitters and receivers. The advantages of this tech-

nology are the relative low cost and the capability to reflect most of the

indoor obstructions. However, disadvantages arise from the multipath re-

ception that might disturb measurements of the distance between emitter

and receivers, and the complexity of a large-scale implementation. In addi-

tion, the temperature has a significant influence on the sound speed, which

affects the accuracy of the localization [Moreno et al., 2002].

• Ultra-wideband: This technology is defined as a transmission from an

antenna for which the emitted signal bandwidth exceeds the lesser of 500

MHz. Unlike other radio systems operating on specific radio frequency,

Ultra-wideband (UWB) transmits a signal over an ultra-wide band of fre-

quencies. The signals are transmitted for a much shorter duration with

very low-power spectral density, thus consuming less power than the other

systems. UWB can be used in close proximity to other radio frequency

signals without suffering from interference. This technology is convenient

for indoor environments where the UWB signal can be easily transmitted,
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achieving interesting results in indoor localization applications [Shi & Ming,

2016]. However, A major drawback of this technology is the high cost of

the UWB equipment.

• Bluetooth: This technology is a standard for Wireless Personal Area Net-

works (WPANs) and operates in the 2.4 GHz band. Bluetooth has a short

range and is embedded in most devices such as mobile phones, laptops,

desktop, etc. For that reason, adding a new user to such network does

not require any additional hardware. Bluetooth is a low-cost technology,

and its tags are small in size, making it an efficient technology for indoor

localization. However, one of its drawbacks is that it runs the device dis-

covery procedure at each location estimation, significantly increasing the

localization latency and power consumption. This latency is unsuitable for

real-time localization applications [Zuo et al., 2018].

• WiFi: This technology uses the Wireless Local Area Network (WLAN)

to estimate the location of any MN within this network. Since WLAN

infrastructures are widespread in almost all indoor environments, due to

the increase in demand for wireless communications, this approach is widely

used for indoor localization. One of the main advantages of using WiFi over

other technologies is its cost effectiveness due to the possibility to localize

the position of almost every WiFi compatible device without installing any

additional software. Another advantage of using WLAN is that no LoS is

required. Nevertheless, it was found that WiFi signal strengths are unstable

and vary widely even at the same position with time, temperature, and

moving objects. Another limitation of the WiFi technology is the signal

attenuation of the static environment like walls, doors, and furniture [Zou

et al., 2017].

1.2.3 Position-based localization techniques

Generally, localization techniques are split into two categories, geometrical and

non-geometrical techniques.
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• Geometrical techniques: In these techniques, the position of the MN is

estimated by compiling one or more channel characteristics, such as An-

gle of Arrival (AoA), Time Difference of Arrival (TDoA), Time of Arrival

(ToA), or Received Signal Strength Indicator (RSSI) into a geometric out-

put. Equations relating the unknown position of the MN with the known

positions of the ANs are derived and solved to estimate the MN position.

Optimization routines such as the least squares algorithm are often used as

a metric to minimize the estimation error.

– Time of arrival (ToA): The ToA method requires a perfect synchro-

nization between the MN and the ANs, and a large bandwidth to

obtain a time delay resolution small enough for the desired localiza-

tion accuracy. Also, the algorithm implicitly requires a LoS for proper

functioning. This, however, is not always possible in indoor environ-

ments where the MN and the ANs are in Non-line-of-sight (NLoS).

The NLoS condition adds a positive delay bias to the real ToA and

can introduce severe localization errors if it is not corrected or removed

with specific treatments [Gezici et al., 2005].

– Time difference of arrival (TDoA): The TDoA techniques rely on the

time difference of arrival for signals arriving between all possible re-

ceivers. Its main advantage is that the synchronization between the

transmitters and receivers is not required. Nevertheless, such tech-

niques do not perform well in NLoS scenarios [Okello et al., 2011].

– Angle of arrival (AoA): The AoA techniques use the triangulation

approach and require at least two ANs. Each one of them must be

equipped with an antenna array to extract AoA of the impinging sig-

nals by an estimation algorithm. Information on the AoAs is then sent

through the network. There is no need for clock synchronization but

the technique suffers from a low accuracy due to the performance of

the angular estimator. Also, the triangulation technique fails in NLoS

scenarios [Rong & Sichitiu, 2006].
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– Received Signal Strength Indicator (RSSI): The RSSI-based techniques

exploit the attenuation of the signal strength with the traveled dis-

tance to estimate the distances separating the ANs from the MNs.

Typically, ANs broadcast signals in the network, while MNs detect

the broadcasted signals and measure their RSSIs. The distances sep-

arating the MNs from the ANs are then estimated using the mea-

sured RSSIs and the path-loss model [Patwari et al., 2005; Zanella &

Bardella, 2014]. RSSI-based techniques exhibit favorable properties

with respect to power consumption, size, and cost, since no additional

hardware is needed. However, distance estimation using RSSI is really

challenging, since the measurements of signals’ powers can be signif-

icantly altered by the presence of additive noise, multipath fading,

shadowing, and other interferences.

• Non-geometrical techniques: These techniques do not use lines of po-

sition deduced from the estimated geometrical characteristics of the multi-

paths to compute the MN location. We mention here the approach using

cooperative mobiles and the fingerprinting method.

– Cooperative Mobiles: The precision and coverage of the localization

technique can be improved by enabling the cooperation of the sen-

sors, known as cooperative mobiles, around the MN to be positioned.

In cooperative localization, the MNs can intercommunicate, removing

the need to have all MNs within the communication range of multi-

ple ANs. An advantage of this approach is that high ANs density or

long-range transmissions are no longer required. Since MNs can ob-

tain information from both ANs and other surrounding MNs, which

are within communication range, cooperative localization can offer in-

creased accuracy and coverage [Bahr et al., 2009].

– Fingerprinting: The fingerprinting techniques are alternatives to the

previous methods that are sensitive to the propagation conditions,

such as NLoS and multipath. Indeed, fingerprinting techniques can

be applied to any scenario and environment. In a preliminary step,
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often called offline, the area of interest is discretized into cells and

a database is built from the signal signatures. An example of such

signal signatures that can be used is the RSSIs. The database can

be assembled using measured data or simulated using a propagation

model. In the online step, the estimated signatures at each AN are

compared with the database fingerprints. This can be formulated as

a regression problem [Lv et al., 2015], where the idea is to construct

a model that takes the signature as an input and outputs the position

of the MN [Mahfouz et al., 2015]. The advantage of such approach

is that there is no need for a geometrical model that relates the sig-

nal strengths to traveled distances. Instead, a radio-cartography is

constructed by collecting measurements to cover the targeted area. It

must be emphasized that major drawbacks of fingerprinting are associ-

ated with database maintenance, sensitivity to environmental changes

and cumbersome learning. Furthermore, the offline step is often time

consuming, especially if it is based on measurements [Yiu et al., 2017].

1.3 Zoning-based Localization

The disadvantage of the described position-based localization algorithms using

fingerprinting is their need for a database with exact locations, whose construc-

tion is time-costly and complex. For that reason, researchers started to tackle

the localization problem by zoning, though very few approaches have yet been

proposed. Although position-based techniques can be used for zoning by select-

ing the zone constituting the location obtained by the positioning technique, it

is worthy searching for zoning-based techniques to avoid complex databases and

algorithms, and aim at a better accuracy for the specific zoning application.

1.3.1 Problem description

We focus in this section on zoning-based localization methods, where the zone

of the MN is of interest and not its exact position. This issue is important for

health-care applications for instance, where Alzheimer’s patients might be lost in
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their nursing home [Liu et al., 2013b]. Other applications include museums for

supporting guides and emergency management [Smirnov et al., 2012], large malls

to facilitate shopping [Wang et al., 2015], etc. Locating the sensor in a specific

zone of such environments is completely sufficient. To tackle the problem, the

targeted area is partitioned into several zones. These zones might be preexisting

such as rooms, corridors, and offices, or manually created by partitioning an area

into cells. A fingerprinting database is then constructed in an offline phase in each

zone by collecting measurements using one of the enabling technologies described

above. An advantage here as compared to position-based techniques is that no

exact reference positions are needed, and a random collection of measurements

inside each zone is sufficient. In an online phase, once a new measurement is

carried for localization by zoning, machine learning algorithms are used to match

the new measurement with the corresponding zone.

1.3.2 Zoning-based localization techniques

The issue of zoning-based localization has been scarcely studied in literature.

Lee & Chen [2007] propose a method called WHAM! (Where Am I) that aims

at determining the zone of the sensor. The signal strengths of WiFi Access

Points are periodically collected while the user is moving, thus generating a long

sequence of signal strength data. The latter is partitioned in order to separate

the collected data into different segments such that the data of each segment

are more likely to belong to the same zone. The maximum and minimum signal

strengths of each zone are considered as inputs to the system, which determines

the possible zones of each segment by calculating the mean value of the signal

strengths of each AN, and then assigning each zone with a score showing how

many mean values of the segment fall into the range of values of this zone. Khedo

et al. [2010] present an overlapping zone partitioning localization technique. A

set of RFID readers is installed in the targeted area, and the reading range is

used to estimate the MN zone. The coverage areas are partly overlapped by the

readers to reduce the approximated location area, and avoid blind regions that

are outside the range of the readers. Chriki et al. [2017] present a Support Vector

Machines (SVM) based technique for zoning localization using WiFi technology.
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The idea is to construct an SVM model, by learning the type and the parameters

of a polynomial or Gaussian kernel, to represent the RSSIs of each zone. Then,

a one-against-one or one-against-all approaches are used to distinguish between

the zones once a new measurement is carried for localization.

These methods match measurements to constructed fingerprint databases and

thus motivate the implementation of machine learning algorithms such as classi-

fication for this purpose. In what follows, the problem is formulated as a multi-

class classification, where the aim is to classify the zone of the mobile sensor

according to the measured observation. We provide here a succinct survey of

the classification methods that exist in literature, and can be used to solve the

problem. Researchers have proposed techniques that are based on the concept of

a perceptron, where a sum of weighted inputs is computed and the output is com-

pared to a threshold in order to choose a class [Kotsiantis et al., 2007]. However,

perceptrons work only for instances that are linearly separable. When this is not

the case, artificial neural networks are used to solve the problem [Rojas, 2013].

Another well-known non-linear method is the SVM that classifies the instances

using a decision surface or hyperplane that maximizes the margin between the

classes [Honeine et al., 2013]. The k-nearest neighbors algorithm determines the

class of an instance by examining the labels of its nearest neighbors and voting

for the most frequent one [Souza et al., 2014]. In addition, naive Bayes classifiers

assume independency between features to release probabilistic output [Narayanan

et al., 2013]. Logistic regression fits data into a logistic function and distributes

probabilities on classes according to the generated function [Liu et al., 2014]. In

another category, logic-based methods that use decision trees to create hierarchi-

cal partitions of the data, and then combine a sequence of logical tests to classify

a data intance at each node has been also proposed [Kotsiantis, 2013]. A related

approach is to use various rule-based algorithms induced from the training data

to create a set of rules [Polkowski, 2013]. A disadvantage of such propositional

classifiers is that they do not make use of any available background knowledge.

Inductive logic programming methods solve this issue by using a framework of

first order predicate logic [Sammut & Webb, 2011].
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Alternatives to the classical flat classification techniques, are the hierarchical

approaches. Random forests is an ensemble of trees, obtained by bootstrap sam-

pling and by randomly changing the feature set during learning [Breiman, 2001].

More precisely, at each node in the decision tree, a random subset of the in-

put attributes is taken, and the best feature is selected from this subset instead

of all attributes. Hierarchical methods can also be derived from classical tech-

niques. Hierarchical Support Vector Machines (HSVM) solves a series of max-cut

problems to recursively partition the classes into two-subsets, till pure leaf nodes

having only one class are obtained. Then, the classical SVM is applied to solve

the binary classification problem at each internal node [Chen et al., 2004].

1.4 Mobility-based Tracking

Tracking of sensors is another important research field in WSNs. The aim is to

determine the trajectory of the MN using a set of collected measurements.

1.4.1 Problem description

Although localization and tracking are usually treated as distinct problems, the

definition of a trajectory can be described as the solution of a set of localization

problems at successive time instants where the position of the sensor is expressed

as a function of time. The motion characteristics such as position, velocity, and

acceleration, can be either measured using corresponding sensors, or computed

from the knowledge of the time interval between two consecutive localizations of

the MN. From an algorithmic point of view, the main difference between local-

ization and tracking is that localization is a one-time detection procedure where

the accuracy of estimation of the MN location is the only issue, while tracking is

an on-time procedure, where the fast processing is an additional constraint that

is mandatory in real-time applications. The measurements to be collected at the

nodes to solve the two problems, as well as the underlying models relating the so-

lutions to those measurements are different. Consequently, not all position-based

localization approaches can be used for tracking purposes and vice versa.
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1.4.2 Mobility-based tracking techniques

The primary objective of target tracking is to estimate the trajectory of a mov-

ing target. Tracking methods assume that the target motion can be represented

by some known mathematical models that are sufficiently accurate. The most

commonly used models are known as state-space models. We will call them mo-

bility models hereafter, considering that they depend on the previous state of the

MN and the mobility to estimate the next state. It is important to note that

standalone mobility models are not recommended in practical applications, since

uncertainty increases with time, and it becomes nearly impossible to have a con-

fident estimation after a certain number of tracking trials. For that reason, the

estimation should be updated at each time using additional information. This in-

formation is obtained by acquiring measurements from the network such as WiFi

RSSIs for example, leading to an observation model. The problem of tracking

becomes a matter of an estimation using a mobility model, and an estimation

update using an observation model. Two types of mobility models exist; random

process mobility models, and kinematics mobility models.

• Random process mobility models: The simplest model for target track-

ing is the white-noise acceleration model. It assumes that the target ac-

celeration is an independent process. The main attractive feature of this

model is its simplicity. However, in practical applications, the acceleration

is rarely independent with respect to time, and hence it is only applied

when the movement is quiet small or random. Another simple model is

the Wiener-process acceleration model that assumes that the acceleration

is a process with independent increments, which means the acceleration is

supposed to be nearly constant. However, the assumption that the accel-

eration increment is independent with respect to time is hardly justifiable,

except for its simplicity and mathematical tractability. A more general

model is the polynomial one. It is well known that any continuous target

trajectory can be approximated by an n-th degree polynomial to an arbi-

trary accuracy. Such model amounts to assuming that the n-th derivative

of the position is nearly constant. The two previously described models

thus become special cases of the n-th degree polynomial model for n = 1
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and 2 respectively. This model in its general setting does not appear very

attractive for tracking, as it is difficult to develop an efficient method to

determine systematically the coefficients of the polynomial. These three

models have been thoroughly studied by Bar-Shalom et al. [2004]. When-

ever white-noise models are not good enough, it is natural to consider a

Markov process model. The Singer model assumes that the target accel-

eration is a zero-mean first-order stationary Markov process [Singer, 1970].

This model corresponds to a motion in between the nearly constant velocity

and the nearly constant acceleration models mentioned above, providing a

wider coverage than both of them. One disadvantage of the Singer model is

that the target acceleration has a zero mean at any moment. To solve the

problem, other sophisticated acceleration models are proposed such as the

mean-adaptive acceleration model or the asymmetrically distributed normal

acceleration model [Kendrick et al., 1981; Kumar & Zhou, 1984].

• Kinematics mobility models: The target tracking models are highly

dependent on the choice of the state components, and thus the respective

kinematic model. This is not a trivial problem, as the target dynamics, ac-

curacy of approximations, and sensor coordinate system, must all be taken

into account. The Kalman filter assumes that the posterior density of the

states at every time step is Gaussian, and thus it recursively computes the

mean and the covariance of the Gaussian posterior [Mahfouz et al., 2014]. It

is the optimal solution to the tracking problem when the assumptions of the

linear Gaussian environment holds. However, this posterior is not necessar-

ily Gaussian, and hence the filter is not certain to be optimal. Figure 1.3

shows the basic concept of Kalman filtering, where prior knowledge is used

to first predict the state. The observed measurements are then used over

time to update the state. On the other hand, grid-based methods provide

the optimal solution if the state space is discrete and consists of a finite

number of states. The preceding assumes the transitional densities and the

likelihood to be known, but does not constrain their particular form.

To address the non-linear cases, several approaches have been proposed

such as the extended Kalman filter (EKF) and the unscented Kalman filter

20



1.5 Content Organization

(UKF) [Zhang et al., 2013]. The main feature of these methods is that

they approximate the non-linear function in the state dynamic and the

observation model. The estimation error of the EKF is usually large due

to linearization. The UKF has a better tracking performance since it can

better approximate the non-linearity as compared to the EKF. However,

it is found that the estimation error of UKF increases when the target’s

range is far in practical applications. Another well-known method for target

tracking is the particle filter (PF) or the Monte-Carlo filter [Hong et al.,

2014]. The key idea is to recursively represent the posterior density function

by a set of random samples or particles with associated weights according to

the measurements. As the number of particles increases, the PF becomes an

equivalent representation of the usual functional description of the posterior

density, and thus approaches the optimal Bayesian estimate. The advantage

of such methods over the previously described ones is the ability to deal with

non-linear and non-Gaussian filtering.

1.5 Content Organization

This thesis tackles the problem of indoor localization in WSNs and carries several

contributions to the domain. First, we introduce a new zoning-based localization

method, through an observation model within a belief functions framework, us-

ing the WiFi RSSIs and the fingerprinting measurement technique. Second, we

propose a solution for localization in wide surface areas by extending the intro-

duced observation model. We also develop an Access Point selection algorithm

Figure 1.3: The basic concept of Kalman filtering.
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that aims at selecting the best subset of networks in the localization process. We

then, propose a novel tracking technique using the described observation model,

the sensors’ mobility, and the belief functions theory. Finally, we present an orig-

inal decentralized approach for a more robust and less complex localization.

1.5.1 Organization of the manuscript

The rest of the manuscript is organized as follows:

In the second chapter, we give a brief overview of the belief functions theory. Mul-

tisensor data fusion explores efficient methods to transform information retrieved

from different sources and at different points in time into a representation that

provides effective support for decision making. We generally go over some of the

data fusion techniques, motivating our usage of the belief functions theory. We

then, introduce some of the well-known concepts of the belief functions theory,

providing few examples, which are used throughout the manuscript.

In the third chapter, we propose a zoning-based localization method within the

belief functions framework. The idea is to construct an observation model based

on a fingerprinting database of WiFi RSSIs. For this purpose, the data acquisition

and the localization phases are first described. Then, a parametric and a kernel-

based model are proposed to represent the collected data. The belief functions

theory is used to assign masses, combine evidence, and associate a confidence

level to each zone. This amounts to a degree of confidence in the decision saying

that the MN resides in each zone. Finally, we present the experimental setup, and

analyze the performance of the method while comparing with other state-of-the-

art techniques. The limitations of the proposed model are also discussed.

In the fourth chapter, we extend the observation model of the already described

localization method. One major drawback of the latter is that a degradation of

accuracy of the localization algorithm occurs when the targeted area is constituted

of a large number of zones, due to failure in assigning discriminating evidence for

the different zones. For this purpose, the model is extended via hierarchical

clustering. The idea is to create a dendrogram of zones, through maximizing the

inter- and intra-cluster similarity measurements. This helps reduce the number
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of zones being classified at a time, and increase the discrepancy between the

obtained clusters. On the other hand, we develop an Access Point selection

algorithm to help select the best subset of networks in localization. The algorithm

searches for the subset that maximizes the discriminative capacity and minimizes

the redundancy at any level of the constructed hierarchy. The influence of each

phase of the extended observation model is evaluated through experiments.

In the fifth chapter, we propose a novel tracking technique that uses the mobility

of sensors with the already described observation model in the belief functions

framework to track the sensors in real time. Considering that the target popula-

tion is dependent elderly people, we can assume a maximum speed of movement

of sensors in the indoor environment. This allows a prediction of the next pos-

sible destinations of the mobile sensor, and hence leading to a mobility model.

The belief functions framework is used to propagate the previous step evidence

till the current one. We present three mobility models. The first one is based on

the original succession of zones. The second is based on the transition between

created sub-zones and necessitates a specific data acquisition phase. The third is

based on hidden Markov models, and aims at classifying trajectories between ad-

jacent zones. The influence of the mobility models, the assumed maximum speed,

and the number of points per trajectory are all studied experimentally.

In the sixth chapter, we present an original decentralized approach for zoning-

based localization. The aim is to obtain a scalable, more robust, and less complex

localization algorithm by partitioning the targeted area into several sectors and

assigning a calculator to each one, which locally estimates the sensor’s zone by

running a local localization algorithm. The final decision is then made by fusing

evidence from all calculators. We propose three decentralized architectures that

differ in the geographic structure and the decision fusion. The first is distinct

sectors with a local decision, the second is distinct sectors with local estimation,

and the third is overlapping sectors with local decision. Moreover, we present

a calculators placement method using circle packing and covering to reduce the

number of required calculators and optimally locate their positions. Compar-

isons between the proposed decentralized approaches, our previously described

centralized one, and other state-of-the-art techniques are provided.

23



1. INTRODUCTION

Finally, in the seventh chapter, we provide concluding remarks, and an outlook

on future research perspectives.
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The decision-making process in localization and tracking systems rely on data

coming from multiple sensors. Information retrieved from these sensors requires

robust fusion approaches to be processed. One of these approaches is the belief

functions theory (BFT), also called the Dempster-Shafer theory. This theory

deals with uncertainty and imprecision with a theoretically attractive evidential

reasoning framework. This chapter introduces first an overview on multisensor

data fusion, describing the system architecture, the challenging problems, and

some state-of-the-art algorithms. After that, the BFT is explained as a framework

for data fusion, discussing its general concepts and the notations that will be used

throughout the manuscript.

2.1 Introduction

Sensors are used to provide a system with useful information concerning some

features of interest in the system’s environment. Combining the results of mul-

tiple sensors can provide more accurate and reliable information than using a

single sensor. This allows either an improved accuracy using existing sensors or

the same performance using smaller or cheaper ones. The potential advantages

of multisensor data integration and fusion are described at the following levels.

First, multisensor systems have an inherent redundancy. The fusion of redundant

information can reduce the uncertainty, thus increasing the overall accuracy. This

can also serve in increasing the reliability and robustness in case of sensor error

or failure. In addition, complementary information from multiple sensors allows

perceiving certain features in the environment, which cannot be perceived us-

ing just the information from each individual sensor operating separately. Also,

more timely information may be provided by multiple sensors due to either the

actual speed of operation of each sensor, or the parallel processing that might be

achieved as part of the fusion process. Moreover, the use of multiple sensors al-

lows an increase in coverage, both spatial and temporal. In fact, multiple sensors

can observe a region larger than the one observable by a single sensor [Hall &

Llinas, 1997].
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2.2 System Architecture Issues

Two important issues to be studied in data fusion systems are sensors configura-

tion and level of fusion [Varshney, 1997].

2.2.1 Sensors configuration

There are three basic configurations in wireless sensor networks, that differ by

how the data are sensed. At first, we have the complementary configuration. A

sensor configuration is called complementary if the sensors do not directly de-

pend on each other, but can be combined in order to give a more complete image

of the phenomenon under observation. Complementary sensors help resolve the

problem of incompleteness. Another configuration is the competitive. A sensor

configuration is competitive if each sensor delivers an independent measurement

of the same property. The aim of competitive fusion is to reduce the effects of

uncertain and erroneous measurements. The third configuration is the coopera-

tive. A cooperative sensor configuration uses the information provided by two,

or more, independent sensors to derive information that cannot be available from

the single sensors. [Ruiz et al., 2003].

2.2.2 Level of fusion

This means the level at which fusion takes place. Data aggregation can take place

across sensors, across features, or across time.

• Fusion across sensors: In this situation, a number of sensors nominally

measure the same property.

• Fusion across features: In this situation, a number of sensors measure

different quantities associated with the same experimental situation.

• Fusion across time: In this situation, current measurements are fused

with historical information. Often the current information is not sufficient

to determine the system accurately and historical information has to be

incorporated to determine the system accurately.
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2.3 Challenging Problems

A number of problems confronts multisensor data fusion. These problems come

from the data to be combined, imperfection and diversity of the sensor tech-

nologies, and the nature of the application environment. They are summarized

in [Mahler, 2004; Rajive et al., 1999]. We limit the scope here to challenges

encountered in localization and tracking, providing examples from practical ex-

periences.

• Measurement: The data measured by the sensors are imperfect and im-

precise. For example, the antenna of the sensor to be localized and the

software used to scan the network and measure the RSSIs of the WiFi

signals provide uncertain measurements.

• Environment: The uncertainties in data do not come only from noisy

measurements, but also from the surrounding environment. The tempera-

ture, humidity, furniture, doors, among others, result in a wide variation in

the sensor’s measurements.

• Data dimensionality: To tackle the previous two challenges, it is impor-

tant to have redundant sources of information. They allow reducing the

effect of imperfect or missing data. However, this leads to higher dime-

nionality, thus increasing the complexity of the data fusion algorithm. The

same physical WiFi Access Point (AP) provides several networks that can

be used as different sources of information in localization. These networks

are redundant and the data fusion algorithm should deal with them.

• Data modality: The sensor network might collect homogeneous or het-

erogeneous data. An example of the former is receiving measurements from

several APs, and of the latter is aggregating information from APs and

motion sensors.

• Operational timing: The operation frequency of the sensors may be dif-

ferent leading to missing data. The APs send beacons at a certain frequency,

and so does the sensor scanning the network. The difference between the

two operations results in losing information at certain instants.
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• Static vs. dynamic phenomena: The phenomenon under observation

may be either time-invariant or varying with time. In the latter case, it is

necessary to incorporate a recent history of measurements into the fusion

process. An issue is raised here, often referred to by data freshness, con-

sidering how quickly data sources capture changes and update accordingly.

This plays a vital role in the validity of the fusion results. An illustration

of this problem is the indoor environment that changes with time. This

leads to out-of-date measurements that do not correspond to the databases

constructed at a previous time.

• Processing framework: The data fusion processing can be performed

in a centralized or decentralized manner. Choosing the right framework is

important and has a significant impact on the system’s performance. Since

data are processed locally, a decentralized approach is usually preferable in

WSNs. This is much more efficient as compared to the centralized approach

where high communication is required. In the latter, measurements are sent

to a central processing unit for fusion.

2.4 Multisensor Data Fusion Algorithms

Multisensor data fusion algorithms have been proposed to tackle the challenges

described above. We briefly describe here the probability theory [Durrant-Whyte

& Henderson, 2008], the fuzzy logic theory [Zadeh, 1965], the rough set theory

[Pawlak, 2012], and the belief functions theory [Shafer, 1976].

2.4.1 Probability theory

Probabilistic methods rely on the probability distribution to express data uncer-

tainty. At the core of these methods lies the Bayes estimator, which enables fusion

of pieces of data [Lillis et al., 2006]. The Bayes estimator provides a method for

computing the posterior probability distribution of the hypothetical state based

on a given set of measurements and the prior distribution. However, both the

prior distribution and the normalizing term contain integrals that cannot be eval-

uated analytically. An exceptional case is the Kalman filter that provides an exact
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analytical solution due to enforcing simplifying constraints on the system dynam-

ics to be linear-Gaussian [Mahfouz et al., 2014]. However, it is inappropriate for

applications whose error characteristics are not parameterized.

When dealing with non-linear system dynamics, the Monte Carlo simulation-

based techniques such as Sequential Monte Carlo (SMC) and Markov Chain

Monte Carlo (MCMC) are among the most powerful and popular methods of

approximating probabilities. They are also very flexible as they do not make any

assumption regarding the probability distributions to be approximated. Particle

filters provide an alternative for Kalman filtering when dealing with non-Gaussian

noise and non-linearity in the system [Fox et al., 2003]. The idea is to deploy

a weighted ensemble of randomly drawn samples as an approximation of the

probability distribution of interest. They are used to approximate the posterior

probability of the system state as a weighted sum of random samples. The ran-

dom samples are usually predicted from the prior distribution with their weights

updated according to the likelihood of the given measurement. However, they

are computationally expensive as they may require a large number of particles to

estimate the desired posterior probability density.

2.4.2 Fuzzy logic theory

The classical set theory allows elements to be either included in a set or not.

This is in contrast with human reasoning, which includes a measure of impreci-

sion or uncertainty. This approximate reasoning is modeled by fuzzy logic, which

is a multivalued logic that allows intermediate values to be defined between con-

ventional threshold values. Fuzzy systems allow the use of fuzzy sets to draw

conclusions and to make decisions [Stover et al., 1996]. Fuzzy sets differ from

classical sets by allowing an object to be a partial member of a set. In such

systems, the dynamic behavior is characterized by a set of linguistic fuzzy rules

based on the knowledge of a human expert. The fuzzy rules are a set of if-then

propositions containing linguistic variables. The antecedents of a fuzzy rule form

a combination of sets through the use of logic operations. The fuzzy sets and

rules are together the foundation of a rule-based inference system.
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2.4.3 Rough sets theory

The rough set theory allows the approximation of possible states of the system

based on the granularity of input data [Qian et al., 2014]. Once approximated as

rough sets, data pieces can be combined using fusion operators such as intersection

or union. In order to perform fusion successfully, data granules must be neither

too fine nor too rough. In the former case, they become singletons, and thus the

rough set theory reduces to the classical probabilistic one. In the latter case, they

become very large subsets, and thus the lower approximation of data is likely to be

empty, resulting in total ignorance. An advantage of this theory is that it does

not require any preliminary information such as membership function or data

distribution. The fusion of imprecise data is done based on the internal structure

or the granularity. However, the theory has not been often applied to data fusion

problems as it is still not well understood by the fusion community.

2.4.4 Belief functions theory

The belief function theory (BFT) is an appealing framework for reasoning under

uncertainty when imperfect data need to be aggregated through an informa-

tion fusion process [Hégarat-Mascle et al., 2003]. Indeed, imprecise and uncer-

tain pieces of evidence can be efficiently represented and aggregated as part of

the BFT. Combination rules are well-defined mathematical operators designed

for this purpose. The theory does not assign a priori probabilities to unknown

propositions. Instead, it assigns evidence only when the supporting information

is available. In fact, it allows for explicit representation of total ignorance by

assigning the entire mass to the frame of discernment at any time.

2.5 The Belief Functions Framework

The BFT was originally developed by Dempster [1967] and Shafer [1976]. It is

also known as the Dempster-Shafer theory or evidence theory [Yager & Liu, 2008].

Similar to the Bayesian probability theory, the BFT is a theory of quantified be-

liefs. It is based on the notion of evidence and how different pieces are combined to
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make inferences. The motivation behind using the BFT as a framework for mul-

tisensor data fusion in this thesis is its ability to handle the challenges described

in Section 2.3. In particular, it allows us to manipulate missing RSSI packets,

combine different types of sensors including redundant ones, model sensors relia-

bility, and deal with uncertainty. The BFT can be interpreted as a generalization

of the Bayesian probability theory that models correctly ambiguous data.

Ex 2.1. Suppose that someone tosses a coin and bet you on its outcome. If

you do not know the person, you cannot trust that the coin is fair. How-

ever, in the Bayesian framework, this factor is not taken into account, and thus

both outcomes of the coin are supposed to as equiprobable with P (heads) =

P (tails) = 1
2
. The Bayesian approach corresponds to a situation where the

coin has been tested before and found to be fair. In contrast, the belief func-

tions framework defines this state of ignorance explicitly by assigning all belief

masses to the disjunction of the possible outcomes. Hence, it only states that

P ({heads; tails}) = 1 and does not add any information regarding the true

probability distribution. If the coin is found to be fair later on, the belief is

updated using the new evidence.

2.5.1 Representation of information

Given a question of interest, let Θ be a finite set of possible answers to the

question, called frame of discernment. A hypothesis or proposition is a subset

A ⊆ Θ of the frame of discernment saying that the truth lies in A. It is an

element of the power set P (Θ),

P (Θ) = 2Θ = {A | A ⊆ Θ}. (2.1)

A hypothesis consisting of only one element A, such that |A| = 1, is called a

singleton, the operator | · | being the cardinal of the set A. The belief functions

framework assigns a belief value to each hypothesis based on one or more pieces of

evidence. In contrast to the Bayesian framework, the additivity of belief values is

not required. This means that the belief in a hypothesis and in its complement can

be less than 1. Instead of just having singletons with different probabilities as in

the Bayesian framework, the cardinality of each hypothesis with an assigned belief
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can vary. This provides the BFT with an additional dimension of uncertainty,

allowing it to take ignorance into account.

There are several representations to quantify the belief within the belief func-

tions framework, such as the mass function denoted by mS(·), the belief function
denoted by belS(·), the plausibility function denoted by plS(·), and the common-

ality function denoted by qS(·), all determined according to an information source

S. In the following, we introduce the various representations, and the rules for

converting between them.

2.5.1.1 Mass function

One fundamental function of the BFT is the mass function, also called the basic

belief assignment (BBA). A mass function mS(·) is a mapping from P (Θ) to the

interval [0, 1], defined according to a certain information source S. It satisfies:

∑

A∈P (Θ)

mS(A) = 1. (2.2)

The mass mS(A) given to A ∈ P (Θ) stands for the proportion of evidence that

is brought by the source S and assigned to hypothesis A. Such an assignment

to a set A implies ignorance about the mass distribution over subsets of A. In

Shafer’s original work [Shafer, 1976], there is an additional constraint requiring

that a mass function must not assign a positive value to the empty set,

mS(∅) = 0. (2.3)

A mass function that satisfies equation (2.3) is said to be normalized. This

constraint is not present in the works of Smets [1988, 1992], where the mass

assigned to ∅ usually represents the possibility that the true value is not included

in the frame of discernment. Smets [1992] argues that requiring mS(∅) = 0

corresponds to a closed-world assumption, while allowing mS(∅) > 0 corresponds

to an open-world assumption.

Often, one is only interested in the sets A ⊆ Θ with positive mass values,

m(A) > 0. Such sets are called focal sets. The set FmS
consisting of all fo-
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cal sets corresponding to a mass function mS is defined as follows,

FmS
= {A | A ⊆ Θ, mS(A) 6= 0}. (2.4)

Ex 2.2. Consider an area constituted of three zones Z1, Z2, and Z3, where the

objective is to determine the zone of a sensor at a certain instant. Suppose

that we use for this purpose an information source S1 that relates the measured

signal to the position of the sensor. After the source measures the signal from

the sensor, it decides that the latter is in the area constituted of the zones

Z1 and Z3, however it is sure about 60% of its decision. Thus the evidence

that can be retrieved by S1 is mS1({Z1, Z3}) = 0.6, which corresponds to the

percentage given above, and mS1({Z1, Z2, Z3}) = 0.4. Indeed, the remaining

mass is transferred to the whole set, meaning ignorance. Suppose that another

source S2 decides that the sensor is four times more likely to be in zone Z2 than

in the area constituted of the zones Z1 and Z3, according to some other mobility

measurements. Hence, the second piece of evidence suggests that mS2({Z2}) =
0.8 and mS2({Z1, Z3}) = 0.2.

This example shows how to transform human reasoning into mass functions in

the belief functions framework. We will use the same example throughout this

chapter to clarify other concepts.

2.5.1.2 Belief function

The term belief function is somewhat ambiguous since it is used both as a general

term, thus enclosing all the different representations, and as a specific term re-

ferring to this representation. In this thesis, the term is used in the general sense

unless explicitly stated otherwise. Here, we introduce the specific representation.

The total amount of belief committed to a hypothesis A ⊆ Θ by the information

source S, including all subsets Ai ⊆ A, is denoted by belS(A). The function

belS(·) : P (Θ) → [0, 1] is called a belief function, and is computed from the mass

function as follows,

belS(A) =
∑

Ai⊆A,Ai 6=∅
mS(Ai), ∀A ⊆ Θ, A 6= ∅. (2.5)
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The belief function belS(A) is interpreted as the lower bound for the probability

of having the state falling in A.. It is also possible to compute the mass function

from the belief function as follows,

mS(A) =
∑

Ai⊆A

(−1)|A\Ai|belS(Ai), ∀A ⊆ Θ, (2.6)

where |A\Ai| designs the cardinal of the difference between sets A and Ai.

2.5.1.3 Plausibility function

In this framework, the belief not committed to Ā, the negation of A, is not

automatically committed to A, but it does make A more credible or plausible.

Thus, it is intuitive to define the plausibility function plS(A) as the sum of beliefs

not committed to Ā,

plS(A) = 1− belS(Ā), ∀A ⊆ Θ. (2.7)

Whereas the belief functions can be viewed as a lower bound for an unknown

probability function under a lower- and upper probability interpretation, the

plausibility can be viewed as its upper bound. It is also possible to compute the

plausibility function from the mass function,

plS(A) =
∑

Ai∩A 6=∅
mS(Ai), ∀A ⊆ Θ. (2.8)

2.5.1.4 Commonality function

The commonality qS(A) represents the total mass committed to A and to all of

the supersets Ai, with A ⊆ Ai, by the source S. The commonality qS(A) therefore

expresses how much mass potentially supports the set A. A commonality function

qS : P (Θ) → [0, 1] is defined as,

qS(A) =
∑

A⊆Ai

mS(Ai), ∀A ⊆ Θ. (2.9)

In order to compute a mass function mS(·) from a given commonality function

qS(·), the following equation can be used,

mS(A) =
∑

A⊆Ai

(−1)|Ai\A|qS(Ai), ∀A ⊆ Θ. (2.10)
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Ex 2.3. Considering Ex. 2.2, we can compute the belief, plausibility, and com-

monality of all the zones and their subsets with respect to the two sources as

shown in Table 2.1.

2.5.2 Combination rules

The purpose of aggregation of information is to meaningfully summarize and

simplify a corpus of data whether the data is coming from a single source or

multiple sources. Familiar examples of aggregation techniques include arithmetic

averages, geometric averages, harmonic averages, maximum values, and minimum

values. Combination rules are the special types of aggregation methods for data

obtained from multiple sources. These multiple sources provide different assess-

ments for the same frame of discernment. In order to solve inference problems, the

mass functions representing different pieces of evidence need to be combined in a

meaningful way. This is why combination rules are a major building block of the

BFT. Typically, each piece of evidence is represented by a separate mass function.

Combination rules are then used to successively merge all these mass functions

in order to obtain a mass function representing all available evidence.

These rules can vary between conjunction, viewed as AND-based intersection,

and disjunction, viewed as OR-based union. In a situation where all sources are

considered reliable, a conjunctive operation is appropriate. In a case where there

Table 2.1: An example of different representation functions.

source S1 S2

subset belS1(·) plS1(·) qS1(·) belS2(·) plS2(·) qS2(·)

{Z1} 0 1 1 0 0.2 0.2

{Z2} 0 0.4 0.4 0.8 0.8 0.8

{Z3} 0 1 1 0 0.2 0.2

{Z1, Z2} 0 1 0.4 0.8 1 0

{Z2, Z3} 0 1 0.4 0.8 1 0

{Z1, Z3} 0.6 1 1 0.2 0.2 0.2

{Z1, Z2, Z3} 1 1 0.4 1 1 0
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is one reliable source among many, the use of a disjunctive combination operation

is justified. However, many combination rules lie between these two extremes.

Dubois & Prade [1992] describe these types of combinations as conjunctive pool-

ing, disjunctive pooling, and tradeoff. Surveys of different combination rules are

given in [Sentz & Ferson, 2002; Smets, 2007]. The most important one is arguably

Dempster’s rule. It strongly emphasizes the agreement between multiple sources

and ignores all the conflicting evidence through a normalization factor. Most

other combination rules are variations of Dempster’s rule and only differ in how

they handle conflicting evidence.

2.5.2.1 Dempster’s rule

The Dempster’s rule of combination was first introduced by Dempster [1967]

and then reinterpreted by Shafer [1976] as a basis for the BFT. It allows com-

bining normalized belief functions that are defined over the same frame of dis-

cernment and are based on independent arguments or bodies of evidence. The

Dempster’s rule of combination is purely a conjunctive operation (AND). Let

m1(·) and m2(·) be normalized mass functions induced by distinct pieces of evi-

dence that are defined over the same frame of discernment Θ. The mass function

m1
⊕

2(·) = m1(·)
⊕

m2(·) combined according to Dempster’s rule
⊕

is the con-

junctive combination followed by a normalized phase, computed as,

m1
⊕

2(A) =

∑

Ai∩Aj=Am1(Ai)m2(Aj)

1−∑Ai∩Aj=∅m1(Ai)m2(Aj)
, ∀A ∈ P (Θ), A 6= ∅, (2.11)

with m1
⊕

2(∅) = 0. Here, the denominator is a normalization assuring that

the resulting mass function is normalized. Since empty intersection indicates

a conflict,
∑

Ai∩Aj=∅m1(Ai)m2(Aj) measures the total amount of conflict. It

accounts for the products of mass values corresponding to all empty intersections

of sets. This combination rule is easily extended to a higher number of sources

by successively combining the pieces of evidence.

2.5.2.2 Conjunctive rule

The conjunctive rule of combination is an adaptation of the Dempster’s rule where

unnormalized belief functions are allowed. The only difference to the Dempster’s
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rule is that the normalization step performed by the latter is omitted. Let m1(·)
and m2(·) be two mass functions induced by distinct pieces of evidence and which

are defined over the same frame of discernment Θ. The mass function m1 ∩©2(·) =
m1(·) ∩©m2(·) resulting from the combination using the conjunctive rule ∩© is

defined as,

m1 ∩©2(A) =
∑

Ai∩Aj=A

m1(Ai)m2(Aj), ∀A ∈ P (Θ). (2.12)

2.5.2.3 Disjunctive rule

The disjunctive rule of combination is applied when only one of several pieces

of evidence holds. Whereas Dempster’s rule and the conjunctive rule correspond

to an AND-like operation, the disjunctive combination rule represents an OR-

like operation. Let m1(·) and m2(·) be two mass functions induced by distinct

pieces of evidence that are defined over the same frame of discernment Θ. The

mass function m1 ∪©2(·) = m1(·) ∪©m2(·) resulting from the combination using the

disjunctive rule ∪© is defined as,

m1 ∪©2(A) =
∑

Ai∪Aj=A

m1(Ai)m2(Aj), ∀A ∈ P (Θ). (2.13)

There is no need for normalization since no conflict results from the disjunctive

rule of combination. This is because the union Ai ∪Aj is only empty if both sets

are empty.

Ex 2.4. Considering Ex. 2.2, we try here to combine the evidence by the three

combination rules. Table 2.2 shows the assigned evidence to sets obtained by

conjunctive, disjunctive rules, and Dempster’s combination rules.

2.5.2.4 Dempster’s rule limitation

One of the reasons why new combination rules kept getting proposed over time

was Zadeh’s criticism of Dempster’s rule when significant conflict in the informa-

tion is encountered [Zadeh, 1984]. An example of this criticism in the domain of

zoning localization is given here.
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Ex 2.5. Suppose we have three different zones {Z1, Z2, Z3} and two sources of

information {S1, S2}, in the targeted area. Let the evidence retrieved from the

two sources be as follows,

mS1(Z1) = 0.99, mS1(Z2) = 0.01,

mS2(Z3) = 0.99, mS2(Z2) = 0.01.

The result of combining these evidence using Dempster’s rule is m⊕(Z2) = 1,

which means that there is absolute certainty that the mobile node is in zone

Z2. This has been interpreted as being counter intuitive because both sources

provide confidence that zone Z2 is highly unlikely. It should be noted that this

criticism is not only limited to the BFT, but can be used against the probability

theory as well. The conjunctive rule of combination leads to m ∩©(Z2) = 0.0001

and assigning the remaining mass to the empty set. Whereas the disjunctive rule

of combination leads to the following, m ∪©({Z1, Z2}) = 0.0099, m ∪©({Z1, Z3}) =
0.9801, m ∪©({Z2}) = 0.0001, and m ∪©({Z2, Z3}) = 0.0099.

As it can be noticed from the previous examples, the conjunctive rule is more

specialized and informative than the disjunctive rule. So is the Dempster’s rule

that also neglects the conflict between the sources through normalization. This

is noticed in Ex. 2.4 where the disjunctive rule assigns evidence to more general

subsets, while both the conjunctive and Dempster’s carry more important and

Table 2.2: An example of different combination rules.

m(·) combination rule

subset conjunctive disjunctive Dempster’s

{Z1} 0 0 0

{Z2} 0.32 0 0.615

{Z3} 0 0 0

{Z1, Z2} 0 0 0

{Z2, Z3} 0 0 0

{Z1, Z3} 0 0.12 0

{Z1, Z2, Z3} 0.2 0.88 0.385
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specific evidence. However, the disjunctive rule of combination generates the most

logical result when the sources are highly conflicting. This is clear in Ex. 2.5 where

the disjunctive rule assigns the highest evidence to {Z1, Z3}, while Dempster’s

rule assigns a counter intuitive evidence to {Z2}. Consequently, researchers have
modified the Dempster’s rule, attempting to represent the degree of conflict and

the allocation of the BBA associated with it in the final result.

2.5.3 Discounting

Up till now, the uncertainties in the evidence are either considered in the assump-

tions of the frame Θ, or taken into account by a function supporting this evidence.

However, one might have some doubts regarding the reliability of the source that

provides this information or piece of evidence. Such meta-knowledge can be con-

sidered using the discounting operation [Mercier et al., 2008]. The sources of

information might have the same or different degree of reliability, allowing to

model the error rate of each source.

Ex 2.6. Suppose one wants to measure the temperature T , and uses a ther-

mometer for this purpose, which indicates 37◦C. The thermometer might be

totally reliable, and thus the real temperature will be 37◦C. If the thermome-

ter is totally unreliable, no information can be retrieved from it, thus the real

temperature can be any possible one. Practically, the thermometer is partially

reliable with some incertitude on the measured values. If the incertitude of this

thermometer is equal to one degree for example, the real temperature will be in

the interval [36◦C, 38◦C].

The BFT allows to take into account these uncertainties by providing the nec-

essary adjustments. The obvious way to use discounting with combination rules

is to discount the functions before combining them. Shafer [1976] proves that

even a uniform discounting has advantages in eliminating the influence of a single

function conflicting with all others, provided that all others do not conflict too

much with each other, and the discount rate is neither too small nor too large. As

described in the previous section, conflict between different sources of evidence

is internal evidence that something is wrong in our assessment of one or more

of these sources. Yet Dempster’s rule for instance will sometimes ignore such
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evidence and allow one or a few of the strongest sources to dominate the others.

In this way, the final function after combination may approximate the strong,

and possibly erroneous, one based on these sources alone. If all the functions to

be combined are strongly conflicting, an average seems reasonable, whereas if one

of them strongly conflicts with others while others do not, then it is better to

eliminate the odd one than to allow it to dominate.

As previously indicated, it is appropriate to discount a function only if it fails

to take into account some particular uncertainty that affects the evidence as a

whole. In the case where the function is based on a statistical observation x,

it will be based on the empirical fact of occurrence of x, which is known with

less than certainty. We may think that we have observed x, but not for sure.

This is due to a very fallible process of adjustment and transcription. For that

reason, discounting the source of information is the most natural way to account

for such uncertainties. We distinguish between two types of discounting, classical

and contextual, described in the following.

2.5.3.1 Classical discounting of information

The reliability of a source of information is classically taken into account by the

discounting operation, which transforms the supporting function into a weaker,

less informative one. When a piece of information, represented by a mass function

mS(·), is received from the source S, the classical discounting operation by a

discount rate αS ∈ [0, 1] can be applied to account the degree of reliability of S.

It is defined as follows,

αmS(A) =











(1− αS)mS(A), if A ∈ P (Θ), A 6= Θ;

αS + (1− αS)mS(A), if A = Θ;

0, otherwise,

(2.14)

A discount rate αS equal to 1, means that the source is not reliable at all and

thus the piece of information it provides cannot be taken into account, so the

knowledge remains vacuous, αmS(Θ) = 1 and αmS(A) = 0 for A 6= Θ. On the

contrary, a null discount rate indicates that the source is fully reliable and the

piece of information is entirely accepted, αmS(·) = mS(·). In practice, however,
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the source has a certain degree of reliability βS = 1 − αS ∈ [0, 1] that is either

known before or evaluated through theoretical models or experiments. By doing

this, the amounts of evidence given to the subsets of Θ are reduced, and the

remaining evidence is given to the whole set Θ.

2.5.3.2 Contextual discounting of information

The main idea of contextual discounting is based on the fact that the reliability

of a source of information can be expected to vary according to the context itself,

rather than fixed for the source of information.

Ex 2.7. Suppose a thermometer measures temperatures between −300◦C and

+300◦C. The thermometer might have a reliability of β = 0.9 in cold environ-

ments [−300◦C, 0], and a reliability of β = 0.8 in warm environments [0,+300◦C].

We can make use of this information to assign different discount rates per con-

text.

Let W = {w1, . . . , wL} be a coarsening of Θ, which means that w1, . . . , wL form a

partition of Θ. In the contextual model, we hold belief on the degree of reliability

of the source of information conditionally on each wl, l ∈ {1, . . . , L}. For all

l ∈ 1, . . . , L, βl
S = 1 − αl

S represents the degree of reliability of the source S

knowing that the true answer of the question of interest belongs to wl. Mercier

et al. [2012] prove that a simple method to compute the contextual discounting
αmS(A) of a mass function mS(A) consists in using its expression through the

disjunctive rule of combination as in equation (2.13),

αmS(A) = mS ∪©m0
S(A), (2.15)

such that m0
S(A) is defined as follows,

m0
S(A) = m1

S ∪©m2
S ∪© . . . ∪©mL

S(A), (2.16)

where each ml
S(A), l ∈ {1, . . . , L}, is defined by,

ml
S(A) =











(1− αl
S), if A = ∅;

αl
S, if A = wl;

0, otherwise.

(2.17)
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Liu et al. [2011] argue that the weighting factors for sources of information should

be relative, not only with the support degree gained from the other sources, but

also with the weights of those other sources. In the discounting process, the

reliability discounting rule must be selected by the system designer according to

the application. Two adjustments for contextual discounting can be done [Elouedi

et al., 2010],

• Use of percentage of correct determination of context: This approach con-

sists in exploiting the reliability of the source for each context wl, l ∈
{1, . . . , L} such that the truth is wl. To this end, we construct a table

having as rows the decided context and as columns the true context. The

reliability rate is then obtained by looking at the column l of the table, that

shows the percentage of correct context determination such that the truth

is wl.

• Use of a distance: This approach consists in finding the reliability rate

of the source of information S by taking into account, for each context

wl, l ∈ {1, . . . , L}, all the decisions given by that source. The Euclidean

distance is proposed to measure the difference between the true context

and the decided one. The source S is said to be more reliable on context

wl if the Euclidean distance between the decisions of the source and wl is

smaller.

2.5.4 Decision making

Decision making under uncertainty is an important problem in real world ap-

plications. The BFT aims to model a decision maker’s subjective evaluation of

evidence. It allows one to express partial beliefs when complete information is

not available. Some methods for using the BFT in decision making have been

studied by Jaffray [1989], Yager [1992], Smets & Kennes [1994], and Strat [1990].

In order to make decisions based on the BFT, Smets [2002, 2005] argues that

beliefs first need to be transformed to probabilities. In fact, we try to select the

most likely hypothesis, which may be difficult to realize directly with the basics
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of the BFT where mass functions are given not only to singletons but also to sub-

sets of hypothesis. Some solutions exist to ensure the decision making within the

theory of belief functions. The best known is the pignistic probability proposed

by the Transferable Belief Model (TBM). Other criteria exist like the maximum

of commonality and the maximum of plausibility [Smets, 2002].

The TBM is a model developed to represent someone’s degree of beliefs. This

model is based on the use of belief functions and is closely related to the model

described by Shafer [1976]. Kennes & Smets [1990] detailed the TBM and com-

pared it with the classical Bayesian model. In the TBM, it is distinguished

between two aspects of beliefs, belief as weighted opinions, and belief for decision

making [Smets, 2002]. The two levels are the credal level, where beliefs are held,

and the pignistic level, where beliefs are used to make decisions. Only at the

pignistic level it is possible to compute an expected value of a utility function,

which is the basis for rational decision making. Decision making requires that we

derive a probability function that can be used to compute expected utilities of

each potential decision. It means that uncertainty at the pignistic level must be

quantified by a probability function. However, it does not mean that beliefs at

the credal level must also be quantified by a probability function. Usually these

two levels are not distinguished and probability functions are used to quantify

beliefs at both levels. Once these two levels are distinguished, as done in the

TBM, the classical arguments used to justify the use of probability functions do

not apply anymore at the credal level, where beliefs will be represented by belief

functions. What is required is a transformation between the representation at

the credal level and the probability function that must exist at the pignistic level.

The probability functions needed to compute expected utilities are called pignis-

tic probabilities to emphasize they do not represent beliefs, but are just induced

by them. The detailed justification of why this probability function is adequate

for decision making and its use to provide an operational definition to the belief

function is detailed by Smets & Kennes [1994].

Transforming a mass function into a pignistic probability function is done via

the pignistic transformation. Let mS(·) denote a mass function with frame of
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discernment Θ and let BetPS(·) denote the corresponding pignistic probability

function. The pignistic transformation of m(·) into BetP (·) is defined as

BetPS(A) =
∑

A⊆Ai

mS(Ai)

|Ai|
. (2.18)

This transformation causes all mass values assigned to sets A to be evenly dis-

tributed among the elements Ai ∈ A. Decisions are then achieved by computing

the expected utilities of the acts using BetP (·) as the probability function needed

to compute the expectations.

2.6 Conclusion

In this chapter, we provided a brief overview on multisensor data fusion, where

we described the important issues to be studied and the challenging problems

that confront it. After that, we highlighted some of the theories and algorithms

that are used for this aim. Then, we focused on the BFT, one of those fusion

algorithms, as a framework for evidence combination and association under uncer-

tainty. We first introduced the general concepts of the theory, and then explained

how it handles information through various representations. Afterwards, we de-

tailed the combination rules that allow the fusion and integration of the different

representations. Moreover, we explained the discounting operation that is used

to account the reliability of the sources of information. Finally, we defined the

decision making process carried by the BFT through the TBM.
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3. ZONING-BASED LOCALIZATION

Localization is an important issue in WSNs to assist elderly people in distress. In

this chapter, we propose a new zoning-based localization approach using the belief

functions theory. We first formulate the problem, describing the network config-

uration, the data collection phase, and the localization phase. We then explain

the proposed localization technique in the belief functions framework. Finally,

we examine the performance of the proposed approach and compare it with other

techniques.

3.1 Introduction

Massive advances in wireless communications and electronics have enables the

development of heavily distributed Wireless Sensor Networks constituted of hun-

dreds of sensor nodes. These networks help in monitoring elderly people in hos-

pitals, nursing homes, and health-care facilities [Liu et al., 2013b]. Each person

is equipped with a sensor in the form of bracelet, watch, or medallion. The ob-

jective becomes to localize the sensor, thus determining where the person resides.

We consider the zoning-based localization problem in indoor environments where

the aim is to find the zone of the sensor instead of its exact position. In fact, the

determination of the zone where the sensor resides is sufficient for localization of

elderly people. Once the zone of the sensor is determined, it is then easy to find

the elderly person carrying it and assist him. It is noteworthy that large zones

can be divided as convenient.

Zoning-based localization can be tackled by finding the exact locations of sensors

and then determine their zones using their estimated locations. Many existing

works have considered the exact localization problem. Indeed, the integration

of a GPS-GSM system into sensors is widely used in outdoor tracking systems

[Al-Khedher, 2011]. However, it has limitations in indoor environments [Oshin

et al., 2012]. For that reason, alternative solutions have been proposed. We

consider the following approach. At first, two types of sensors are defined; an-

chor nodes (ANs), also called beacon nodes, of known positions, and non-anchor

nodes of unknown positions, to be localized. Since we consider, in the general
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setting, the case of moving sensors, we will refer to the non-anchor nodes by mo-

bile nodes (MNs). The objective becomes to determine the position of any MN

using collected measurements and information exchanged with the ANs. The

remaining issue is to choose the appropriate type of signal and the measurement

technique. This is extremely important as it plays a vital role in the accuracy of

the localization algorithm.

Existing solutions consist in using signals that are available in closed environ-

ments, like ultra-wideband, WiFi, zigbee, Bluetooth, etc [Ahn & Yu, 2009; Bekke-

lien et al., 2012; Disha, 2013; Liu et al., 2007]. Typically, ANs broadcast signals

in the network that are received by the MNs. The position is then estimated as

a function of the received signals, using their strength, time of arrival, or any of

the techniques described in Section 1.2.3. One of the advantages of WiFi signals

over the others is its cost effectiveness due to the possibility to localize the po-

sition of almost every WiFi compatible device without installing any additional

software. In addition, one can rely only on the Access Points (APs) present inside

the building, with no additional hardware. Another advantage of using WLAN

is that no line-of-sight (LoS) is required. The localization process consists then

in finding the location of the MN according to the WiFi signals it collects from

APs.

Several localization algorithms using Received Signal Strength Indicators (RSSIs)

of WiFi signals have been developed. The RSSI-based techniques exploit the

attenuation of the signal strength with the traveled distance to estimate the

distances separating the APs from the MNs. They exhibit favorable properties

with respect to power consumption, size, and cost, since no additional hardware

is needed. Trilateration and connectivity-based methods have been applied for

localization using distance estimation with the pathloss model. However, distance

estimation using RSSI is really challenging, since the measurements of signals’

powers can be significantly altered by the presence of additive noise, multipath

fading, shadowing, and other interferences [Aruna et al., 2015; Mourad et al.,

2009; Pak et al., 2015; Sangthong et al., 2012].

To overcome these issues, techniques that employ fingerprinting have been widely
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implemented. They consist in collecting a database of exact reference locations,

coupled to their corresponding WiFi signals strengths, received from the APs.

Fingerprinting techniques are not sensitive to the propagation conditions, such

as Non-line-of-sight (NLoS) and multipath. Indeed, they can be applied to any

scenario and environment. They operate in two phases. In a preliminary phase,

often called offline, the area of interest is discretized into cells and a database is

built from the signal signatures, such as RSSIs. The database can be assembled

using measured data or simulated data using a propagation model. In the on-

line phase, the estimated signatures at each AP are compared to the database

fingerprints. The advantage of such approach is that there is no need for a geo-

metrical model that relates the signal strengths to the traveled distances. Instead,

a radio-cartography is constructed by collecting measurements to cover the tar-

geted area.

In a position-based localization approach, a huge database has to be constructed

with collected measurements at exact reference positions covering the whole tar-

geted area. This is time consuming especially if the targeted area is wide. More-

over, the WiFi signals are sensitive to the environmental conditions, which makes

measurements at reference positions not highly reliable for exact localization.

This also requires cumbersome learning models to achieve good accuracy. For

that reason, fingerprints of WiFi RSSIs and zones numbers are collected and

hence, the zoning problem can be addressed as a multi-class classification issue, to

be resolved using one of the techniques described in Section 1.3.2. However, pro-

posed approaches have not yet arrived to solve efficiently the localization problem

[Sánchez-Rodŕıguez et al., 2015]. For this reason, we aim to develop a localization

algorithm that solves these issues and achieves a good accuracy.

In this chapter, we propose an original zoning-based localization technique that

makes use of the belief functions theory (BFT) to combine evidence revealed at

each AP. At the preliminary phase, the proposed method consists in construct-

ing a fingerprinting database that associates to each zone a set of WiFi signals

strengths collected from the APs. Each AP is then considered as a source of

information and is used in the belief functions framework to set a mass function

over the zones. In the online phase, once the MN is in an unknown zone, the
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signals strengths are measured and the constructed mass functions are used to

estimate the MN’s zone. One advantage of this method is that it yields a set of

possible solutions, sorted in a descent order of priority. The performance of the

proposed approach is examined in a real experimental scenario, and is compared

with other techniques.

3.2 Problem Formulation

The localization approach proposed in this chapter is centralized, thus the net-

work has the topology illustrated in Figure 1.2(a). In such a topology, all collected

data are transmitted to the central fusion station, where all processing and com-

putations are conducted. Therefore, MNs only send and receive measurements,

and do not perform any computation.

3.2.1 Network configuration

Consider an environment is divided into NZ zones denoted by Zj , j ∈
{1, 2, . . . , NZ}. Having a MN moving within these zones, the objective of the

method is to find instantly the zone where it resides. This is done by us-

ing the RSSIs of WiFi signals collected by the MN from the neighboring APs.

Let NAP be the number of all available APs in the area of interest, denoted by

APk, k ∈ {1, 2 . . . , NAP}. Let ρt be the vector of size NAP of RSSI measurements

collected by the MN at the instant t from all these APs,

ρt = (ρt,1, . . . , ρt,NAP
), (3.1)

where ρt,k is the RSSI of the signal with respect to APk at instant t. Since not

all APs are detected at each instant, we denote IAP,t the set of indices of the APs

whose signals are detected by the MN at time t, and ρt,k, k ∈ IAP,t, their measured

RSSIs. The vector ρt is completed with zeros at positions where the APs are not

detected. It is worth noting that only one MN is considered here, however the

method can be applied in the same manner to as many MNs as needed. Table 3.1

lists the variables used in this chapter, along with their respective sizes.
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3.2.2 Approach description

The aim of the proposed zoning-based localization algorithm is to find an ob-

servation model O that associates a confidence level to each zone for an input

vector of RSSIs ρt at any instant t. This observation model is constructed in the

offline phase, before the localization process, using collected data and a training

process. The online phase follows later on once the model is identified and online

measurements are collected.

3.2.2.1 Offline phase

The offline phase starts with the fingerprinting process, that is a data collection

in order to acquire a description of the environment and construct a database of

measurements. The APs broadcast WiFi signals in the network. To construct

the database, a MN moves freely in each zone of the targeted area and measures

the RSSIs of WiFi signals from all APs. Suppose ρj,k,ℓ corresponds to the ℓ-th

RSSI measured inside zone Zj with respect to APk. Let Nj be the number of

RSSI measurements taken in zone Zj . This implies that for a certain zone and a

Table 3.1: List of the variables used in Chapter 3, with their respective sizes.

Notation Variable Size

NZ number of zones 1

NAP number of APs 1

ρ RSSI measurement 1

N,ND, o number of RSSI measurements 1

Z MN’s zone 1

AP Access Point 1

Q(·), I(·),K(·) functions 1

s significance level 1

α, ǫ error rate 1

m(·),αm(·), BetP (·) assigned evidence 1

D database ND ×NAP

ρ vector of RSSI measurement NAP × 1

IAP,t indices of detected APs (≤ NAP )× 1

O(·) observation model NZ × 1
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given AP, a set of Nj values is collected representing the variations of the RSSIs

in this zone with respect to that AP. Let ND =
∑NZ

j=1Nj be the total number of

measurements. A database D of ND × NAP RSSIs labeled to the zones is then

obtained. This database describes the variability of the RSSIs within and between

the zones. Figure 3.1 shows a grid of reference RSSI measurements collected in

uniform and random distributions.

Afterwards, the observation model O is constructed using the collected database.

This is a classification problem where the classifier takes the RSSIs vector as input

and yields the zone as output. Moreover, the proposed model gives a degree of

confidence of having the RSSI measured in each zone. By doing this, the model

allows a ranking of the results and hence an order to follow in selecting zones if the

first zone estimation is erroneous. Computations are done in the BFT framework

as will be shown in details in Section 3.3. The proposed model permits combining

several pieces of evidence, even if they are of different nature, as will be seen later

on in Chapter 5. By combining different types of evidence, we aim to enhance

the overall accuracy of the localization algorithm, detect an error generated by a

sensor, and correct erroneous estimations.

(a) Uniform distribution. (b) Random distribution.

Figure 3.1: Illustration of fingerprinting configuration - × designates reference

positions, � designates WiFi Access Points, and • designates a MN.
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3.2.2.2 Online phase

In the online phase, also called localization phase, the observation model O is

used to estimate the MN’s zone. The MN to be localized measures a set of RSSIs

from a certain number of APs, stores them in the vector ρt ∈ RNAP and broadcasts

ρt in the network. At the fusion center, the observation model O is applied to

the vector ρt to instantly affiliate a confidence level to each zone of the targeted

area,

O(ρt) = (mO,t(Z1), . . . , mO,t(ZNZ
)), (3.2)

where mO,t(Zj) is the level of confidence of having the MN of observation ρt

residing in the zone Zj at the instant t. The zone having the highest confidence

level is chosen, and considered to be the zone where the MN resides. Figure 3.2

illustrates the localization phase using the observation model O.

3.3 Observation Model using the BFT

In this section, the objective is to determine the observation model O : RNAP →
[0, 1]NZ . Let Z = {Z1, . . . , ZNZ

} be the set of all possible zones and let P (Z) = 2Z

be the set of all the subsets of Z, i.e., P (Z) = {∅, {Z1}, . . . ,Z}. The empty set

∅ denotes impossible zone, which means that the MN resides outside Z. The

cardinal of P (Z) is equal to 2|Z| = 2NZ , where |Z| denotes the cardinal of Z.

Figure 3.2: Illustration of the localization phase using the observation model O.
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3.3 Observation Model using the BFT

The observation model is constructed as follows. At first, the RSSIs collected in

the databaseD according to each AP are fitted into a distribution. We distinguish

between two types of distributions, parametric and non-parametric. Supersets of

single zones are also considered, and their RSSIs are also fitted. This allows us to

take ambiguous information into consideration in a belief functions framework.

This is important in our case especially that the used measurements are WiFi

signals that are unstable and ambiguous, leading to uncertain estimations and

decisions. The fitted distributions are then used to set mass functions over all the

subsets of P (Z). The APs, which are the sources of information, are discounted

according to their error rate. Their evidence is then combined via the belief

functions fusion rules, and a decision is taken by associating a confidence level

to each zone. Taking uni-dimensional distributions according to single APs then

combining their information allows the localization in case of missing data. This

is common when using WiFi, as packets might be lost or not received by the MN.

An additional advantage of the belief functions framework is that it allows com-

bining evidence from different types of sensors. This is beneficial in correcting the

estimations of the observation model. Moreover, it allows dynamic combination

of evidence, and not restricted to only static cases. This is advantageous for the

localization of MN as a function of time, where a previous evidence can be used

as an information at a current instant.

3.3.1 Statistical representation of data

Having a set of Nj×NAP observations ρj,k,ℓ, k ∈ {1, . . . , NAP}, ℓ ∈ {1, . . . , Nj}, col-
lected in zone Zj, the aim of this section is to fit these observations to statistical

distributions that represent the variation of the RSSIs inside the zone. Although

a multi-dimensional distribution can be used for this purpose, we consider here

the uni-dimensional case for the following reasons. 1 At first, the uni-dimensional

distributions are easier for analysis and computations, especially when the num-

ber of APs is large. In addition, they allow considering the reliability or error

rate of each AP to discount the assigned evidence. Moreover, uni-dimensional

1We will use the concept of multi-dimensional distribution in certain cases throughout the

manuscript, which will be explicitly specified and explained.
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distributions do not disable the process of localization when an AP, or more, are

not detected for some reasons. The localization can still be performed by fusion of

evidence of the detected APs only. The principle behind fitting data observations

to distributions is to find the type of distribution and the values of its parameters

that give the highest probability of producing the observed data. We distinguish

between two types of distributions, parametric and non-parametric.

3.3.1.1 Parametric modeling

Having the collected measurements of each zone in the offline phase, one approach

is to parametrically model the data, by fitting them into one of the known para-

metric distributions [Delignette-Muller & Dutang, 2015]. Since we are dealing

here with uni-dimensional distributions, we consider the set of Nj observations

ρj,k,ℓ, ℓ ∈ {1, . . . , Nj}, collected in zone Zj with respect to the source APk. Then,

we choose the types of distributions to be fitted. The set of candidate parametric

distributions is listed in Table 3.2. Afterwards, we estimate the parameters of

each considered distribution using the observations. Finally, we apply a statisti-

cal goodness of fit test to evaluate their fitting error. The problem is in the form

of hypothesis testing where the null and alternative hypotheses are:

H0: Sample data come from the stated distribution.

Ha: Sample data do not come from the stated distribution.

The Kolmogorov-Smirnov (K-S) test is used to test the hypotheses [Massey Jr,

1951]. For each considered distribution, the hypothesis H0 is rejected at a sig-

nificance level s if the test statistic is greater than a critical value obtained from

the K-S table [Facchinetti, 2009]. The significance level is chosen by convention,

and can be set to 0.01, 0.02, or up to 0.05 if available distributions fail to fit

with smaller levels. All the considered distributions are tested, and the accepted

ones are ranked according to their statistics, the best fitting one being selected.

This is done for each AP and for each zone, and also for each superset of single

zones by using the union of their observations, thus obtaining the distributions

QA,k(·), A ∈ P (Z), k ∈ {1, 2 . . . , NAP}. It is noteworthy that the observations of

each subset of P (Z) can be fitted to a different distribution type.
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3.3.1.2 Non-parametric modeling

The previously described parametric modeling approach is found to be effective

when the RSSI measurements really follow a certain statistical law, yet it might

fail to be representative elsewhere. When the assumptions of the parametric dis-

tribution fail, a more general non-parametric approach is required to estimate

the probability density function of the measurements [Elgammal et al., 2002].

One solution is to construct a histogram of the RSSIs [Moghtadaiee et al., 2011].

However, this depends on the starting position of the bins and their number, and

suffers from the curse of dimensionality as the number of bins grows exponen-

tially with dimensions, thus making this solution unsuitable for most applications

[Elgammal et al., 2002]. For that reason, the kernel density estimation (KDE)

is proposed to model the RSSI measurements. Figure 3.3 shows an example of

real data RSSI measurements represented by their histogram, a parametric trial

to fit them with a normal distribution, and a KDE with Gaussian kernel and

Table 3.2: List of parametric distributions.

Distribution pdf Parameters

Beta 1
B(α,β)

ρα−1(1− ρ)β−1 α, β

Exponential λe−λρ λ

Gamma 1
Γ(k)θk

ρk−1e−
ρ
θ k, θ, α, β

Generalized extreme value 1
σ
t(ρ)ξ+1e−t(ρ) µ, σ, ξ

Generalized Pareto 1
σ

(

1 + ξ ρ−µ

σ

)−( 1
ξ
+1)

µ, σ, ξ,

Inverse Gaussian
(

λ
2πρ3

)
1
2
e

−λ(ρ−µ)2

2µ2ρ λ, µ

Logistic e−
ρ−µ
s

s

(

1+e−
ρ−µ
s

)2 µ, s

Log-logistic
β
α
( ρ
α
)β−1

(1+( ρ
α
)β)

2 α, β

Lognormal 1
ρ

1
σ
√
2π
e−

(ln(ρ)−µ)2

2σ2 µ, σ

Nakagami 2mm

Γ(m)Ωm ρ2m−1e−
m
Ω
ρ2 m,Ω

Normal 1√
2πσ2

e−
(ρ−µ)2

2σ2 µ, σ

Rayleigh ρ

σ2 e
− ρ2

2σ2 σ

Rician ρ

σ2 e
− ρ2+ν2

2σ2 I0
(

ρν

σ2

)

ν, σ

t location-scale
Γ( ν+1

2 )
σ
√
νπΓ( ν

2 )

[

ν+(ρ−µ
σ )

2

ν

]−(ν+1
2 )

µ, σ, ν

Weibull k
λ

(

ρ

λ

)k−1
e−(

ρ
λ)

k

k, λ
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bandwidth h = 1.6. This is an example of failure of parametric modeling to

represent the variations of RSSIs, and the ability of non-parametric modeling to

better represent them.

Consider the computation of a uni-dimensional non-parametric distribution of

observations of zone Zj according to a single source APk. For an observed RSSI

v, let Sj,k(v) be a square with side hj,k, centered on v, enclosing oj,k(v) RSSI

measurements from the database. To find the number oj,k(·) of measurements

falling within Sj,k(·) according to APk for any uni- or multi-dimensional v, we

consider the indicator function I(u) defined as,

I(u) =

{

1, if |u| < 1
2
;

0, otherwise.
(3.3)

This function is known as a naive estimator. The quantity I

(

·−ρj,k,ℓ
hj,k

)

is then

equal to unity if ρj,k,ℓ is inside Sj,k(·) or 0 otherwise. The number of measurements

within Sj,k(·), centered on (·), is then computed as follows,

oj,k(·) =
Nj
∑

ℓ=1

I

( · − ρj,k,ℓ
hj,k

)

. (3.4)

The kernel density estimate Q{Zj},k(·) is obtained,

Q{Zj},k(·) =
oj,k(·)

Nj × hj,k

. (3.5)

Then, by substituting equation (3.4) in equation (3.5), we obtain,

Q{Zj},k(·) =
1

Nj × hj,k

Nj
∑

ℓ=1

I

( · − ρj,k,ℓ
hj,k

)

. (3.6)

This model solves the problem of bins locations of the histogram. However, the

resulting density is bumpy, yielding discontinuous density estimates. Instead of

assigning equal weights to all neighboring observations, the naive estimator is

replaced by a smoother kernel K(u), such as Epanechnikov or Gaussian kernels.

A list of kernel functions that can be used is provided in Table 3.3.
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3.3 Observation Model using the BFT

The kernel density estimate is then given by

Q{Zj},k(·) =
1

Nj × hj,k

Nj
∑

ℓ=1

K

( · − ρj,k,ℓ
hj,k

)

. (3.7)

These expressions can be easily applied for the estimation of the distribution

QA,k(·) of observations of any set A ∈ Z having more than one single zone, by

using the union of their observations as follows,

QA,k(·) =
1

∑

j,Zj∈A Nj × hA,k

∑

j
Zj∈A

Nj
∑

ℓ=1

K

( · − ρj,k,ℓ
hj,k

)

. (3.8)

Since the shape of the kernel has a small effect on the model [Eckert-Gallup &

Martin, 2016], the Gaussian kernel is often considered due to the facility of its

analytical derivations,

K(u) =
1√
2π

e−
1
2
u2

. (3.9)

Table 3.3: List of kernel functions for kernel density estimation.

Kernel shape Kernel function, K(u)

Uniform 1
2

Triangular 1− |u|
Epanechnikov 3

4
(1− u2)

Quadratic 15
16
(1− u2)

2

Triweight 35
32
(1− u2)

3

Tricube 70
81
(1− |u|3)3

Gaussian 1√
2π
e−

1
2
u2

Cosine π
4
cos
(

π
2
u
)

Logistic 1
eu+2+e−u

Sigmoid function 2
π

1
eu+e−u

Silverman kernel 1
2
e
− |u|√

2 sin
(

|u|√
2
+ π

4

)
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3. ZONING-BASED LOCALIZATION

In fact all these kernels have a comparable efficiency that is close to 100%, with

the efficiency eff defined as,

eff =

√

∫

u2K(u)du

∫

K(u)2du. (3.10)

Figure 3.4(a) demonstrates the influence of the kernel shape on the fitting of the

KDE. A Gaussian, a triangular, and an Epanechnikov kernels, all of bandwidth

h = 1.6, are presented. As the figure clearly displays, there is no significant

difference between the fitting distributions.

The problem is then to determine the bandwidth, or the smoothing parameter h.

In Figure 3.4(b), three different values of the bandwidth of the Gaussian kernel are

considered. As the figure shows, a small value of the bandwidth overfits the data

and makes them hard to interpret, while a large value over-smooths the KDE and

masks the structure of the data. A practical approach to estimate h, proposed by

Habbema & Hermans [1977], is to maximize the pseudo-likelihood leave-one-out

cross validation. If we consider the distribution of the observations of a zone Zj

according to APk, the bandwidth will then be hj,k = argmaxhMLj,k(h), where

the quantity MLj,k(h) is computed as,

MLj,k(h) =
1

Nj

Nj
∑

ℓ=1

log





∑

ℓ′ 6=ℓ

K

(

ρj,k,ℓ′ − ρj,k,ℓ
h

)



− log[(Nj − 1)h]. (3.11)

It has been proven in literature that this criterion leads to a KDE that is the

closest to the true model [Hall, 1982].

3.3.2 Mass assignment

The observation model consists in using the fitted RSSI distributions in the BFT

as a framework for mass association and evidence fusion. As described in Chap-

ter 2, a fundamental function of the BFT is the mass function, or BBA. A mass

function mAPk,t(·) is a mapping from P (Z) to the interval [0, 1], defined according

to a certain source APk, k ∈ {1, . . . , NAP}, and satisfying

∑

A∈P (Z)

mAPk,t(A) = 1. (3.12)
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3.3 Observation Model using the BFT

The mass mAPk,t(A) given to A ∈ P (Z) stands for the proportion of evidence,

brought by the source APk at instant t, saying that the observed variable belongs

to A.

The objective is to define the APs BBAs, using the fitted distributions either

parametrically, or non-parametrically. The distribution QA,k(·) represents, either
parametrically or non-parametrically, the variations of the RSSIs in subset A with

respect to APk. Then, having an observation ρt,k related to APk, k ∈ {1, . . . , NAP},
the mass mAPk,t(A) is computed as follows,

mAPk,t(A) =
QA,k(ρt,k)

∑

A′∈P (Z),A′ 6=∅QA′,k(ρt,k)
, A ∈ P (Z), A 6= ∅. (3.13)

In this work, we assume that Z covers all possible zones, that is, the node cannot

be outside Z. This means that mAPk,t(∅) = 0, for all APk, at any time t. By

taking all the subsets and not only the singletons, the proposed algorithm uses
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(a) Parametric distribution.
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(b) Non-parametric distribution.

Figure 3.3: Fitting of parametric normal distribution in (a), and a KDE of

Gaussian kernel in (b), of real data RSSIs of histogram in black.
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(a) Different kernel functions.
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(b) Different bandwidths.

Figure 3.4: Influence of kernel shape and bandwidth parameter on KDE fitting.
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3. ZONING-BASED LOCALIZATION

all available pieces of evidence, even if they are uncertain about a single element.

Note that mAPk,t(A) is not the probability of having ρt,k in A, but only an inter-

pretation of the information brought by the source APk by means of observation

ρt,k, that is, mAPk,t(A) can be higher than mAPk,t(B) even if A ⊂ B.

Ex 3.1. Consider an area constituted of two zones, such that Z = {Z1, Z2}.
The set Z has three non-empty subsets {Z1}, {Z2}, and {Z1, Z2}, represented
by their distributions in Figure 3.5. Consider two instant observations ρ

(1)
t and

ρ
(2)
t . The first is closer to the RSSI values of Z1 and the second has its value in

the middle of those of Z1 and Z2. By using equation (3.13), the observation ρ
(1)
t

is more likely to be of the entity Z1 with the mass of {Z1} being higher than

those of {Z2} and {Z1, Z2}. With respect to the observation ρ
(2)
t , the distribu-

tions of Z1 and Z2 are too close, leading to similar masses to both. Here, by

considering the subset {Z1, Z2} within the possibilities, a higher mass is asso-

ciated to {Z1, Z2} without dissociation, which represents better the ambiguity

by describing rationally the observed evidence. The mass assigned to {Z1, Z2}
is higher than those of singletons only for observations where the distributions

of singletons are two close, to avoid erroneous assignments and take advantage

even of ambiguous data.
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Figure 3.5: An example of mass assignments of some observations.
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3.3 Observation Model using the BFT

3.3.3 Discounting operation

The detected APs are not completely reliable. Indeed, each AP might yield

an erroneous interpretation of evidence for some observations. This is due to

the statistical modeling of the observations, based on their occurrence in the

database. Another reason is the nature of the WiFi signals that are unstable and

vary widely with various parameters. In order to correct this, one can discount

the BBAs of equation (3.13) by taking into account the error rate of the AP. We

discuss in the following two approaches to discount the evidence assigned by the

APs, classical discounting and contextual discounting.

3.3.3.1 Classical discounting

The reliability of a source is classically taken into account by the discounting op-

eration, which transforms the supporting function into a weaker, less informative

one. The discounted BBA αmAPk,t(·) related to APk having an error rate αk is

deduced from the BBA mAPk,t(·) as follows [Mercier et al., 2012],

αmAPk,t(A) =







(1− αk)mAPk,t(A), if A ∈ 2Z, A 6= Z;

αk + (1− αk)mAPk,t(A), if A = Z.
(3.14)

By doing this, the amounts of evidence given to the subsets of Z are reduced, and

the remaining evidence is given to the whole set Z.

To compute the error rate of a certain source APk, consider an observation ρ·,k

being truly in A. The source APk is assumed not reliable if, according to ρ·,k,

it associates more evidence to any subset other than A. Since the BBAs are

defined using the statistical distributions related to each subset, then an AP is

erroneous for all observations of A when QA,k(ρ·,k) is less than any QA′,k(ρ·,k), for

any A′ 6= A. Let ǫk(A) be the error rate related to A with respect to APk. Then,

ǫk(A) =

∫

DA,k

QA,k(ρ)dρ, (3.15)

such that DA,k is the domain of error of subset A according to APk, defined as,

DA,k = {ρ | QA,k(ρ) ≤ max
A′∈P (Z),A′ 6=A

(QA′,k(ρ))}. (3.16)
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3. ZONING-BASED LOCALIZATION

The error rate αk is then the average error of all subsets according to APk,

αk =

∑

A∈P (Z) ǫk(A)

|P (Z)| . (3.17)

The described discounting approach requires the calculation of integrals, which

might be computationally expensive. Alternatively, the error can be empirically

computed, by realizing experiments and recording the number of incorrect subset

estimations of each AP. The error rate αk is then the percentage of incorrect

estimations.

3.3.3.2 Contextual discounting

The described classical discounting approach assumes that each AP has an equal

error rate with respect to all subsets. However, this is not always the case in prac-

tice, since an AP has a certain reliability regarding each subset. An AP will be

more reliable to distinguish asymmetrical zones or areas, than symmetrical ones

for instance. This is because in the latter case, the areas are more likely to have

equal signals strengths, making them indistinguishable and thus increasing the

error rate. For that reason, we consider here a contextual discounting approach

to take into account the APs’ reliability.

Let A = {A1, . . . , AL} be a coarsening of Z, which means that A1, . . . , AL form a

partition of Z. In this contextual model, we consider the degree of reliability of an

AP conditionally on each subset Al, l ∈ {1, . . . , L}. For all l ∈ 1, . . . , L, βl
k = 1−

αl
k represents the degree of reliability ofAPk knowing that the observation belongs

to Al. Here, the considered partition is the set of single zones {{Z1}, . . . , {ZNZ
}},

and thus the reliability of APk with respect to the zone, or context, Zj will be β
j
k.

As explained in Section 2.5.3.2, computing the contextual discounting consists

in using its expression through the disjunctive rule of combination, leading to
αmAPk

(A) given by
αmAPk

(A) = mAPk,t ∪©m0
APk ,t

(A), (3.18)

such that m0
APk ,t

(A) is defined as follows,

m0
APk,t

(A) = m1
APk,t

∪©m2
APk ,t

∪© . . . ∪©mNZ

APk,t
(A), (3.19)
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3.3 Observation Model using the BFT

where each mj
APk,t

, j ∈ {1, . . . , NZ}, is defined as,

mj
APk,t

=











(1− αj
k), if A = ∅;

αj
k, if A = Al;

0, otherwise.

(3.20)

The error rate αj
k(A) of subset A such that the truth is Zj with respect to APk is

computed as,

αj
k(A) =

∫

DA,k

QA,k(ρ)dρ, (3.21)

such that DA,k is the domain of error of subset A according to APk, defined as,

DA,k = {ρ | Q{Zj},k(ρ) ≤ max
A′∈P (Z),A′ 6=A

(QA′,k(ρ))}. (3.22)

However, computing these multi-dimensional integrals might be computationally

expensive. For that reason, the reliability rate βj
k = 1 − αj

k, ofAPk, is obtained

by finding the percentage of correct subset determination such that the truth is

Zj . To this end, we construct a confusion matrix that describes the performance

of the AP on a set of N l measurements to be tested in each zone. A confusion

matrix C = cmn, m ∈ {1, . . . , NZ} and n ∈ {1, . . . , NZ}, is a table where each line

m corresponds to a decision in favor to Zm, and each column n corresponds to

the case where the truth is Zn. The general term cmn is equal to the number of

tested measurements of Zn that have been assigned to Zm byAPk. The reliability

rate is the percentage of correct estimations, computed as βm
k = cmn

Nn . The error

rate is thus αm
k = 1− cmn

Nn .

3.3.4 Fusion of evidence

The mass functions αmAPk ,t(·) are defined according to the RSSI vector ρt,k, k ∈
IAP,t retrieved from a certain number of APs. Combining the evidence consists in

aggregating the information coming from all the APs [Kurdej & Cherfaoui, 2013].

The mass functions can then be combined using any of the methods described in

Section 2.5.2. If there is a prior knowledge that the APs are reliable, and that

the conflict between them is not large, the Dempster’s rule of combination can
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3. ZONING-BASED LOCALIZATION

be considered, and thus the combined mass is computed as follows,

m⊕

,t(A) =

∑

A(k)∈P (Z)

∩kA
(k)=A

∏

k∈IAP,t

αmAPk,t(A
(k))

1−∑A(k)∈P (Z)

∩kA
(k)=∅

∏

k∈IAP,t

αmAPk,t(A
(k))

, (3.23)

for all the subsets A ∈ P (Z), where A(k) is the subset A with respect to the source

APk. This fusion rule leads to a more informative and specialized mass function

[Shafer, 1976]. The conjunctive rule can be also applied by considering only the

numerator of equation (3.23), avoiding the normalization factor.

However, if the APs are conflicting, the previous rules generate counter-intuitive

results. For that reason, we consider the disjunctive rule to combine the obtained

evidence. By using the disjunctive rule, it is enough that at least one AP is

reliable to acquire logical results. Therefore, the aggregated mass attributed to

each subset A is computed as,

m ∪©,t(A) =
∑

A(k)∈P (Z)

∪kA
(k)=A

∏

k∈IAP,t

αmAPk ,t(A
(k)), (3.24)

Since the union ∪kA
(k) is never empty unless all the subsets A(k) are empty, there

is no conflict resulting from the disjunctive rule of combination and therefore

there is no need for normalization.

3.3.5 Confidence-based zone estimation

The computed mass function or BBA consists in an interpretation of the infor-

mation brought by the observations at a given time t. It is a kind of belief or

evidence, which is not a probability measure. An adequate notion of the BFT to

attribute a confidence level to singleton sets is the pignistic level [Smets, 1993a].

Smets [1993b] argues that in order to make decisions, the belief represented by

the BBA and held at the credal level, must induce a probability function at

the pignistic level, as explained in Section 2.5.4. This is known as the pignistic

transformation. It is defined as follows,

BetPt(A) =
∑

A⊆A′

m⊕

,t(A
′)

|A′| , (3.25)
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where A is a singleton of P (Z). The mass obtained by Dempster’s rule is shown

in equation (3.25), but the conjunctive and disjunctive rules can be equivalently

used. This probability function is used to make decisions using expected utilities

theory. Its justification is based on rationality requirements and detailed by Smets

& Kennes [1994]. The pignistic level is equivalent to the probability of having

the observation belonging to the considered subset. One can also compute the

pignistic level of higher-cardinal subsets. However, only the singletons are taken

into consideration, as we are interested in determining a level of confidence for

the original zones only. Hence, the level of confidence associated to each zone by

the basic observation model at each instant t can be computed as follows,

mO,t(Zj) = BetPt({Zj}), j ∈ {1, . . . , NZ}. (3.26)

The observation model O is therefore deduced,

O(ρt) = (mO,t(Z1), . . . , mO,t(ZNZ
)), (3.27)

The zone having the highest confidence is thus selected. We also obtain a sorted

list of zones to be used if needed. Figure 3.6 illustrates the different steps to

construct the observation model O.

Ex 3.2. We consider here a numerical example, assuming an area constituted

of three zones Z1, Z2, and Z3. Suppose we receive a new RSSI measurement

belonging in reality to Z2, and the following evidence, m(Z1) = 0.25, m(Z2) =

0.2, and m(Z3) = 0.02 is assigned. In this case, we select Z1 as the associated

zone since m(Z1) > m(Z2) even after normalizing the obtained masses. Whereas

taking into account all available evidence, m({Z1, Z2}) = 0.2, m({Z1, Z3}) =

Figure 3.6: The block diagram of the observation model O.

69

zoning_based_localization/figures/block_diagram_observation_model.eps


3. ZONING-BASED LOCALIZATION

0.02, m({Z2, Z3}) = 0.3, and m({Z1, Z2, Z3}) = 0.01, we get a confidence of

mO(Z1) = 0.363, mO(Z2) = 0.453, and mO(Z3) = 0.183. As we can see, the

confidence level of Z2 is now greater, and hence Z2 is chosen. The computation

of these confidence levels by the observation model is done by using the pignistic

transformation. Hence, using the BFT to pass from the attributed masses to

the confidence level through considering all evidence assigned to all subsets of

P (Z), enhances the decision making process.

3.4 Experimental Results

To evaluate the performance of the proposed method, real experiments were con-

ducted in a sector of the University of Technology of Troyes, France. In the

following, the experimental setup is first introduced. The illustration of the pro-

posed method and its comparison to other techniques are shown afterwards.

3.4.1 Experimental setup

The real experiments are realized in a WLAN environment at the first floor of the

statistical and operational research department at the University of Technology

of Troyes, France. As shown in Figure 3.7, the considered sector of approximated

area of 190 m2 is partitioned into six offices, from both sides of a corridor that is

divided into two zones, according to its architecture. This leads to eight zones in

the considered area. A personal computer, with a “WiFi Scanner” software, dis-

tinguishes the APs of the network throughout their MAC addresses. It measures

then the RSSIs of their transmitted signals. We used six of the APs detected at

the considered area. A set of 30 measurements is taken in each zone, of which

some are randomly used to construct the databases, and the others are kept

for test and validation. The measurements are taken in random positions and

orientations of the personal computer. Computations are conducted on version

7.11.2(R2010B) of Matlab on laptop with Microsoft Windows 7 and Intel Core i7

CPU. Table 3.4 summarizes the experimental setup parameters.
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3.4.2 Illustration of the proposed method

In order to illustrate the proposed method, 70% of the collected RSSIs are first

randomly selected at each zone to construct the database, which are 21 mea-

surements, keeping 9 for testing per zone. Then, the RSSIs database is used to

compute the mass functions by statistically fitting the parametric distributions

listed in Table 3.2 and ranking the results. The Gaussian distribution was found

to be the best fit for these zones. This leads to six graphs, each corresponding to

an AP. Within each graph, eight functions represent the variations of RSSIs in the

eight zones. Figure 3.8 represents the Gaussian distributions of the eight zones

with respect to the first AP. As the figure shows, the overlapping between the

functions representing the variations of the RSSIs in each zone is wide and hence,

the zones’ masses can be easily miscalculated considering only one AP. However,

when considering all the APs and using the BFT framework to combine evidence,

Figure 3.7: A sector of the first floor of the statistical and operational research

department of the University of Technology of Troyes.

Table 3.4: Experimental setup parameters.

Parameter Notation Value

Number of zones NZ 8

Number of APs NAP 6

Number of measurements per zone Nj 30
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3. ZONING-BASED LOCALIZATION

we acquire interesting results.

Having 70% of the collected RSSIs in the database, we test the proposed method

using Dempster’s rule of combination and contextual discounting, localizing the

30% remaining measurements, that is 9 test points per zone. Table 3.5 shows the

number of incorrect estimated zones if only the zone having the highest confidence

level (1st choice) is considered and also in case the zone having the second highest

confidence level (+2nd choice) is considered as well. The table shows also the total

number of erroneous estimations over the 72 total test points in both cases. The

results are encouraging, with an accuracy of 91.67% and thus 8.33% of erroneous

estimations if the first choice is only considered. This is totally corrected if the

second choice zone is also selected.

3.4.2.1 Influence of discounting and combination

Two important concepts for zoning-based localization in a belief functions frame-

work are the discounting and the combination of APs’ evidence. In this para-

graph, we measure the influence of the discounting technique, classical or contex-

tual, and the combination rule, Dempster’s, conjunctive, or disjunctive, on the

performance of the proposed approach. Table 3.6 indicates the overall accuracy of

the proposed method, obtained by the various combinations of discounting tech-

niques and combination rules. As the table shows, the contextual discounting

carries an enhancement of 3 to 4% as compared with the classical discounting.
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Figure 3.8: Gaussian functions of the eight zones with respect to the first AP.

72

zoning_based_localization/figures/normaldistribution1.eps
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This is due to considering the reliability of the APs per area or zone, which is

important in the case of localization using RSSIs as aforementioned. On the other

hand, a slight advantage to the Dempster’s rule is recorded when evaluating the

combination rules. This is because the used APs are found to be not highly con-

flicting. In fact, each pair of the used APs corresponds to the same physical AP,

but on a different network. In addition, the three physical APs are installed at a

centric position from the targeted area, providing similar information. By having

non-conflicting APs, the Dempster’s rule results in a more informative evidence

assigned to the zones and their subsets.

Table 3.5: Number of incorrect estimated zones.

Zone number 1st choice +2nd choice

1 0 −
2 1 0

3 2 0

4 0 −
5 0 −
6 1 0

7 1 0

8 1 −
Total 6 0

Table 3.6: Influence of the discounting techniques and the combination rules on

the overall accuracy (%) of the 1st zone choice.

Combination rule
Discounting

Classical Contextual

Dempster’s 87.50 91.67

Conjunctive 87.50 90.27

Disjunctive 84.72 88.89
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3.4.2.2 Influence of number of reference positions

In order to measure the performance of the method under low data availability,

the ratio of the measurements used to construct the database is reduced to 60%,

then to 50%, while testing over the other 40% and 50%, respectively. Table 3.7

shows the number of errors as a function of the ratio of the training-test database.

As expected, the percentage of erroneous estimations increases with the 1st choice

zone when the constructed database is reduced to 60%, then to 50%, leading to

11.46% of erroneous estimations in the former case and 14.17% in the latter. It

is noticed that 2 out of the 120 measurements are not recovered by the second

choice, rather by the third one. These erroneous points, located in zones 7 and 8,

are estimated to be in zones 5 and 6 respectively as a 1st choice then in zones 2

and 3 as a 2nd choice. This is due to the insufficient built database that made it

difficult to represent the variations of the small zones 7 and 8 as compared with

the neighboring zones in the best possible way. The zones 7 and 8 constitute the

corridor between the zones, and the estimated zones are adjacent and close to

their actual positions.

3.4.2.3 Influence of modeling and reference positions

As discussed in Section 3.3.1.2, the parametric modeling might not be always

appropriate to represent the variations of the observations in a certain zone with

respect to some AP. For that reason, we measure the influence of a non-parametric

modeling or a KDE on the performance of the proposed approach in this para-

graph. Table 3.8 provides a comparison of the performance of the proposed

approach between a parametric and a KDE modeling. As the table shows, the

Table 3.7: Influence of number of reference positions on the number of errors.

Ratio of training-test Number of errors Total test points

70%− 30%
1st choice 6 72

2nd choice 0 72

60%− 40%
1st choice 11 96

2nd choice 0 96

50%− 50%
1st choice 17 120

2nd choice 2 120
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KDE does not have a huge influence on the overall accuracy. This is more clearly

seen in a uniform distribution of reference position setting, where the variations

of the RSSI measurements are found to follow a Gaussian distribution at a better

significance level than in the case of a random distribution setting. It is worthy

noting that this is not always true where, as will be seen later, the KDE strongly

outperforms the parametric modeling in terms of accuracy.

As a result, it is important to try first a parametric modeling using the distri-

butions of Table 3.2 and verify if the obtained results are satisfactory. If not, a

KDE can be adopted using one of the kernel shapes indicated in Table 3.3, and

computing the bandwidth through equation (3.11). In the cases where the obser-

vations closely follow a parametric distribution, the KDE is not worthy using as

it adds unnecessary complexity, while it can be of significant importance if the

conditions of the parametric distributions were not satisfied.

We now consider a random distribution of the reference positions instead of a

uniform grid. An illustration of such distribution is shown in Figure 3.1(b). Ta-

ble 3.8 shows the overall accuracy of the proposed approach in case of random dis-

tribution of reference positions, considering both parametric and non-parametric

modeling. Compared with the results obtained when a uniform distribution of

reference positions is considered, one can see that the overall accuracy decreases

with the use of random distributions. This can be explained by the fact that a

uniform grid allows a better coverage of the region of interest, while a random

Table 3.8: Influence of type of modeling and distribution of reference positions

on the overall accuracy (%).

Technique Type of modeling

Parametric KDE

Uniform
1st choice 91.67 91.67

2nd choice 100.00 100.00

Random
1st choice 87.50 90.28

2nd choice 95.83 97.22

75



3. ZONING-BASED LOCALIZATION

distribution does not always guarantee a good coverage of the region. Neverthe-

less, the results are still satisfactory, and random distributions can still be used

for accurate localization when uniform grids are not applicable.

3.4.2.4 Influence of number of zones

To study the influence of the number of zones NZ on the performance of the

proposed approach, we consider the whole floor of the sector, as shown in Fig-

ure 3.9. The new considered floor has an area of 500 m2 and is constituted

of NZ = 21 zones. In the new experimental setup, the overall accuracy of the

method falls to 77.78%, considering a uniform distribution of reference positions,

a 70%−30% database split, and parametric modeling. This is due to the inability

of the proposed observation model to assign discriminating evidence to the widely

overlapping mass functions representing the different zones.

3.4.3 Comparison to other classification techniques

Since we are tackling the problem of zoning localization as a multi-class classi-

fication, we compare in this section the proposed method with two well-known

classification techniques that are the naive Bayes (NB) and the Multinominal

Logistic Regression (MLR). The NB classifiers are among the simplest probabilis-

tic classifiers that assume independency between features to release probabilistic

output [Liu et al., 2013a]. The MLR is a natural extension of binary logistic re-

gression to multi-class classification problems [Mauša et al., 2012]. Both methods

Figure 3.9: The first floor of the statistical and operational research department

at the University of Technology of Troyes, France.
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use the maximum likelihood estimation to evaluate the probability of the MN’s

zone. In addition, both methods yield probabilistic outputs, leading to first and

second choice zones. Table 3.9 shows the overall accuracy over the test points

obtained with our proposed method, compared with both NB and MLR as a

function of the number of reference positions. The numbers in bold correspond

to the best performing methods for a 1st choice zones. The results show that

the proposed method outperforms the other classification techniques in terms of

overall accuracy for different training-test ratios.

3.5 Conclusion

In this chapter, we proposed a new observation model for zoning-based local-

ization in a belief functions framework using WiFi fingerprints. Different types

of modeling were considered, namely the parametric and non-parametric distri-

butions, to statistically describe the variation of the RSSI observations. The

obtained distributions were used to define mass functions over the zones with

respect to the available APs in the network. Once a new observation was carried

for localization, the constructed mass functions were used to assign a mass for

each zone with respect to each AP. The evidence attributed by each AP was

Table 3.9: Comparison of the proposed method to NB and MLR methods, in

terms of overall accuracy (%), as a function of number of reference positions.

Technique Ratio of training-test

70%− 30% 60%− 40% 50%− 50%

NB
1st choice 86.11 83.33 79.17

2nd choice 95.83 93.75 90.83

MLR
1st choice 88.89 84.38 82.50

2nd choice 97.22 94.79 92.50

Proposed
1st choice 91.67 87.50 85.83

2nd choice 100.00 100.00 98.33

77



3. ZONING-BASED LOCALIZATION

then discounted according to its error rate. Pieces of evidence were combined

afterwards using fusion rule, and a confidence level was assigned to each zone

through the pignistic transformation. The zone having the highest confidence

was supposed to be the zone where the MN resides. The ranking of results al-

lowed a second zone choice in case of erroneous first estimation. Experimental

results showed that the proposed approach achieves a good overall accuracy, out-

performing other classification techniques such as NB and MLR. However, the

proposed observation model was found to be vulnerable to the number of zones

in the targeted area. Therefore, in the next chapters, we introduce further im-

provements of this model, by extending it through hierarchical clustering and

AP selection in Chapter 4, combining it to mobility models in Chapter 5, and

providing a decentralized version of it in Chapter 6.
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4. EXTENDED OBSERVATION MODEL

In this chapter, we aim at enhancing the zoning-based localization technique pro-

posed in Chapter 3. The previously proposed technique is an observation model

that is based on the belief functions theory and uses a fingerprinting database to

assign confidence levels to the zones of the targeted area. A major drawback of

the presented observation model is that it is vulnerable to the increase in the num-

ber of zones. To this end, we extend the model through hierarchical clustering to

tackle large surface areas with a higher number of zones. We then develop an

AP selection technique to choose the best subset of APs that helps increasing the

overall accuracy and reducing the complexity of the localization approach. The

performance of the new proposed model, which will be referred to as “extended

observation model”, is evaluated and compared with the previously described one,

which will be referred to as “basic observation model”. In addition, comparisons

to other well-known techniques are provided.

4.1 Introduction

In Chapter 3, we proposed an observation model for zoning-based localization.

The proposed model is based on the BFT and uses a fingerprinting database to

assign a confidence level to each zone of the targeted area. The APs are consid-

ered as sources of information, yielding an amount of evidence about having the

MN in each zone. Mass functions are thus constructed at the offline phase using

the collected RSSI measurements. Then in the online phase, once a new observa-

tion is carried for localization, constructed masses are used to assign evidence to

each zone. We will refer to the proposed approach by a basic observation model

(BOM). The advantage of this approach is that evidence can be associated to

a set of zones rather than to singleton ones only. This allows to represent how

strongly evidence supports a certain set, which is important especially in case

of insufficient information regarding single zones. In addition, the BOM permits

the use of any piece of evidence, even if it were unreliable. Indeed, a discounting

technique is applied to correct such imperfect information, since received mea-

surements are RSSIs that might be imprecise and incomplete due to packet loss

and high variation of signals strengths. However, the performance of the BOM
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degrades as the number of zones increases, as studied in Section 3.4.2.4. More-

over, when increasing the number of zones, a larger number of APs is required to

cover the area and provide more evidence to achieve good performance. However,

not all APs are useful, where some might be erroneous or redundant.

In this chapter, we propose an extended observation model (EOM) that solves all

these problems of the BOM, through hierarchical clustering and AP selection, as

follows. Given the database D of labeled RSSI observations, the zones are merged

into clusters using an agglomerative hierarchical clustering method, leading to

a dendrogram of clusters. An optimal level of clustering is selected from the

obtained dendrogram, by optimizing the inter- and intra-clusters scatters. The

hierarchy is reformed into two levels, the first consisting of the optimal selected

clusters, and the second of the original zones in each cluster. Reducing the

hierarchy to only two levels decreases considerably the complexity of the method,

compared with classic hierarchical methods, with more robustness against error

propagation. It also reduces the considered zones at a level, which makes it more

efficient than flat techniques. Afterwards, the objective of the algorithm becomes

to determine the correct cluster and the correct zone at the first and second levels

respectively. Moreover, since APs might be beneficial in discriminating between

some clusters, or zones, but harmful in others, an Access Point selection technique

is carried at each level of the hierarchy, by maximizing the discriminative capacity,

and minimizing the redundancy of the ensemble of APs. This creates a framework

for the BFT that associates masses and combines evidence to determine a level

of confidence of having the MN residing in each zone.

In this chapter, we have the same network configuration and objective as of

Chapter 3. For that reason, we start by providing an overview on clustering

analysis, discussing its general terms and some of the methods used in literature.

We then describe the concept of feature selection, explaining its usage and some

of its well-known approaches. Afterwards, we present the extended observation

model by detailing the two-level hierarchy, the AP selection algorithm, and the

confidence-based zone estimation. Finally, we evaluate the performance of the

EOM as compared with the BOM and to other well-known techniques.
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4.2 Clustering

The aim of clustering analysis is to organize a set of data items in clusters, in a

way that data items that are in the same cluster are more similar or dissimilar

to each other than they are to data items that are in other clusters [Shahbaba &

Beheshti, 2014]. In the following, we attempt to briefly review a few concepts of

cluster analysis, and some of the clustering methods used in literature.

4.2.1 Definition

The aim of cluster analysis is to partition a set of objects into clusters. Cluster-

ing is a mathematical tool for discovering structures in a dataset, where the data

assigned to each cluster show some degree of similarity. This notion of similarity

is defined in several ways, and varies as a function of the objective of the study.

Clustering is often carried out without any knowledge regarding the belonging

of data items to predefined classes, making it one of the most investigated ap-

proaches in unsupervised learning. Clustering analysis is used for vast number

of applications, such as medical imaging, anomaly detection, robotics and track-

ing systems, human genetic clustering, etc. Surveys of these applications can be

found in [Jain et al., 1999; Kaufman & Rousseeuw, 2009]. Cluster analysis is

an iterative process that requires a criterion in order to group data. Usually, a

similarity metric is used, although on many occasions a dissimilarity measure is

considered in accordance the application. A traditional way to measure distances

is the Minkowski distance. The Manhattan, Euclidean and Chebyshev distances

are special cases of the Minkowski distance. As an example of similarity/dissimi-

larity we have the cosine similarity, the Hellinger, Mahalanobis, Kullback-Leibler,

and Hamming distances. A comprehensive survey on these measures is found in

[Cha, 2007].

4.2.2 State-of-the-art methods

It is distinguished between two categories of clustering, hierarchical and flat.

• A hierarchical clustering algorithm yields a dendrogram representing the

nested grouping of patterns and similarity levels at which groupings change.
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The dendrogram can be broken at different levels to yield various clusterings

of the data. Hierarchical clustering builds a hierarchy of clusters driving two

strategies, agglomerative or divisive. Agglomerative hierarchical clustering

algorithms, or the bottom-up approaches, merge a pair of clusters at each

iteration [Murtagh & Contreras, 2012]. Most algorithms are variants of the

single-link [Johnson, 1967], complete-link [Defays, 1977], and minimum-

variance algorithms [Ward Jr, 1963]. In these methods, two clusters are

merged based on minimum distance criteria. On the contrary, the divisive

hierarchical clustering algorithm is a top-down clustering method [Sasirekha

& Baby, 2013]. It works in a similar way to agglomerative clustering but in

the opposite direction. This method starts with a single cluster containing

all objects, and then successively splits resulting clusters until only clusters

of individual objects remain. In the same manner, the single-link, complete-

link, and minimum-variance algorithms are used. However, a cluster here

is partitioned into smaller entities according to similarity metrics.

• A flat clustering algorithm obtains a single partition of the data instead of

a clustering structure such as the dendrogram produced by a hierarchical

technique. Flat methods have advantages in applications involving large

data sets for which the construction of a dendrogram is computationally

prohibitive. A problem accompanying the use of a flat algorithm is the

choice of the number of desired output clusters. Dubes [1987] provides

guidance on this key design decision. The flat clustering techniques generate

clusters by optimizing a criterion function defined either locally or globally.

Combinatorial search of the set of possible labelings for an optimum value of

a criterion is clearly computationally prohibitive. In practice, the algorithm

is typically run multiple times with different starting states, and the best

configuration obtained from all the runs is used as the output clustering.

The two clustering approaches are illustrated in Figures 4.1 and 4.2, where

{a, b, c, d, e, f, g, h} is a set of clusters, C1, C2, and C3 are parent nodes, and

R is a root node.
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4.3 Feature Selection

The existing approaches that aim at improving an intelligent system’s perfor-

mance can be categorized into two groups. The first focuses on designing new

machine learning algorithms for different applications at a higher level. The

second focuses on crafting and selecting distinctive features, which lead to a sig-

nificant improvement in the performance at a lower level of the system. Feature

selection is considered an effective way to reduce the computational cost and im-

prove the quality of features. In this section, we describe the concept of feature

selection, explaining its usage and some of its well-known approaches.

4.3.1 Definition

Feature selection is an important step in data preprocessing for designing intel-

ligent systems. This is especially important in high-dimensional datasets, where

the goal is to seek the relevant features with the most predictive information from

the original feature set. Often, many features in the datasets are irrelevant, thus

introducing a prediction error. They might also be redundant, thus increasing

the dimensionality of the algorithm. Feature selection reduces the dimension-

C1 C2 C3

R

a b c d e f g h

Cluster

Parent node

First level hierarchy

Second level hierarchy

Root node

Figure 4.1: Hierarchical clustering.

R

a b c d e f g h

Figure 4.2: Flat clustering.
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ality of datasets by eliminating many irrelevant and redundant features, which

improves the performance of the learnt model and avoids overfitting. Moreover,

this reduction helps to speed up the learning process and leads to a simple and

understandable predictor model.

4.3.2 State-of-the-art methods

Feature selection algorithms are divided into two major categories, filter methods

and wrapper methods.

• In filter methods [Gheyas & Smith, 2010; John et al., 1994], a complete order

of the features is provided using a relevance index. Methods for comput-

ing ranking indices include correlation coefficients, which assess the degree

of dependence of individual variables with the outcome. More generally,

methods that select features without optimizing the performance of a pre-

dictor are referred to as filter methods. These methods are called univariate

filter models and can effectively identify and remove the irrelevant features

independently of any learning algorithms. However, they are unable of re-

moving redundant features. Since the possible dependency between features

is disregarded, these methods lead to a weak learning model. On the other

hand, multivariate filter models can handle both irrelevant and redundant

features, thus improving the accuracy of the learning model as compared

with the univariate filter methods. Nevertheless, the search strategy of the

multivariate filter model involves only a single iteration and can easily be

trapped into local optimum.

• In wrapper methods [Kohavi & John, 1997; Narendra & Fukunaga, 1977],

the learning algorithm is used as a black box to score subsets of features

according to their predictive power. For each subset of the original features,

prediction scores can be regarded as evaluation outcomes. The best subset

is consequently obtained by optimizing the objective function. Generally,

wrapper methods are classified into greedy and random search approaches.

The greedy search approach is based on the hill-climbing algorithm where a

single feature is added or removed iteratively using greedy strategies, such
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as sequential backward selection and sequential forward selection; whereas

the random search approach applies randomness into its search strategy to

explore a large portion of the solution space.

The interaction with the learning algorithm in the wrapper methods makes them

outperform filter methods in terms of prediction accuracy. However, they con-

tinuously use the learning algorithm in the search process and thus they are

computationally more expensive [Tabakhi & Moradi, 2015].

4.4 Extended Observation Model

The extended observation model (EOM) extends the basic observation model

(BOM) presented in Chapter 3 by creating a two-level hierarchy and selecting

the best APs at each level. This model is used when the number of zones in the

targeted area is large. In this case, both the basic representation of the zones and

the assignment of a discriminating evidence to each one become more difficult

than in the case of small number of zones. A clustering technique is developed,

leading to a two-level hierarchy composed of clusters, and the original zones in

each cluster. Moreover, when increasing the number of zones, a larger number of

APs is required to cover the area and provide more evidence to achieve good per-

formance. However, not all APs are useful, where some might be erroneous, thus

decreasing the overall accuracy, and others might be redundant, thus increasing

the complexity of the localization algorithm. For that reason, an AP selection al-

gorithm is developed and applied at each level of the created hierarchy. The same

belief functions framework presented in Chapter 3 is created to associate masses,

discount APs, and combine evidence. The model finally determines a level of

confidence of having the MN residing in each zone. Table 4.1 lists the variables

used in this chapter, along with their respective sizes. In the following, we present

the clustering algorithm, the AP selection algorithm, and the confidence-based

zoning approach.
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4.4.1 Clustering algorithm

The idea behind developing a clustering algorithm is to reduce the number of

zones being distinguished or classified at a certain time. Besides, the algorithm

should group the zones in a way that facilitates discriminating between them in

the online localization phase. Although no theoretical evidence or proof whether

hierarchical or flat clustering models are better for classification [Babbar et al.,

2013], experiments throughout previous studies have shown that a better accuracy

can be obtained by the former especially for a large number of classes [Dumais

& Chen, 2000; Silla Jr & Freitas, 2011]. However, a large number of levels in

the dendrogram causes slowness in the classification procedure, in addition to

the risk of propagating any error in a top level all along the hierarchy [Babbar

et al., 2013; Dumais & Chen, 2000]. For that reason, we consider a hierarchical

clustering approach to create a dendrogram of zones. Here, the agglomerative

strategy is adopted since it is less complex than the divisive case with compara-

ble performance [Manning et al., 2008]. The latter is conceptually more complex

Table 4.1: List of the variables used in Chapter 4, with their respective sizes.

Notation Variable Size

NZ number of zones 1

NAP number of APs 1

NC number of clusters 1

Zj zone 1

APk Access Point 1

Ci cluster 1

h bandwidth 1

DKL(·) Kullback-Leibler divergence 1

E(·) error function 1

R(·) redundancy function 1

η trade-off parameter 1

ρ, ρj,k,l RSSI measurement 1

Q(·) distribution 1

mO(·), BetPC(·), BetP i(·) assigned evidence 1

ρ,ρj,l vector of RSSI measurements NAP × 1

F set of APs NAP × 1

Fs subset of selected APs (≤ NAP )× 1

87



4. EXTENDED OBSERVATION MODEL

since we need a second flat clustering algorithm as a subroutine to split each

cluster. This step is recursively applied till we reach the individual units. The

agglomerative strategy is shown in Figure 4.3. In order to avoid having observa-

tions of the same zone in different clusters, the proposed method considers the

zones as units. Indeed, a distribution is assigned to each zone, by modeling its

corresponding observations either parametrically or non-parametrically.

4.4.1.1 Dissimilarity measure

As explained in Section 4.2, clustering requires a distance metric as a criterion

to be performed. Similarity measures such as Minkowski distance are used for

this purpose. The Manhattan, Euclidean and Chebyshev distances are special

cases of the Minkowski distance. In contrary to the traditionally used similarity

measures, we need a dissimilarity metric between clusters. In fact, we are inter-

ested in maximizing the distance between the zones rather than minimizing it.

By maximizing the divergence between the zones, or clusters, it will be easier

to distinguish between them later on in the localization phase. For that reason,

statistical measures such as the Kullback-Leibler divergence, Hellinger distance,

or total variation distance that measure the dissimilarity between statistical dis-

tribtions can be used [Basseville, 2013]. Among these, the Kullback-Leibler diver-

gence is of significant interest due to its simplicity and mathematical properties.

In addition the error between probability distributions can be defined in its terms.

The Kullback-Leibler divergence or relative entropy of two distributions QZj′ and

QZj
of a continuous random variable ρ is defined as,

DKL(QZj′ ||QZj
) =

∫

ρ

log

(

QZj′ (ρ)

QZj
(ρ)

)

QZj′ (ρ)dρ. (4.1)

The relative entropy is asymmetric, i.e., DKL(u||v) 6= DKL(v||u) in general, al-

ways positive and equal to zero when the two distributions are identical. The

J-divergence symmetrizes the Kullback-Leibler divergence as follows [Nielsen &

Nock, 2017],

DJ(QZj′ ||QZj
) = DKL(QZj′ ||QZj

) +DKL(QZj
||QZj′ ). (4.2)
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In order to determine the dissimilarity between the zones, or clusters, all the mea-

surements of a certain zone, or cluster, should be taken together. For that reason,

the multi-dimensional distribution is considered to represent the variations of the

observations in each zone, or cluster. Two zones that are similar with respect to

one AP for instance, might be totally different with respect to the whole set of

APs.

The proposed clustering method employs the J-divergence as the dissimilarity

measure to construct the dendrogram. The methods starts by considering each

zone as an independent cluster. At each iteration, it merges the two clusters

whose distributions have the maximal divergence. Merging two clusters means

here a merge of all the observations of the clusters and a computation of a new

distribution according to the new set of observations. By maximizing the diver-

gence, the clusters will be dissimilar, which helps in discriminating between zones

of each cluster. The algorithm is iterated until all the zones are merged into one

cluster. We discussed in Section 3.3.1 two types of modeling, parametric and

non-parametric. In the following, we present the proposed clustering algorithm

in each of the two cases.

In the case of parametric modeling, the observations of each zone are fitted to

a multi-dimensional parametric distribution. This is done as explained in Sec-

tion 3.3.1.1 and using the whole set of APs, instead of only one AP. The com-
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Figure 4.3: Agglomerative hierarchical clustering.
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putation of the Kullback-Leibler divergence is then done using equation (4.7).

This is a computation of a multi-dimensional integral that might be complex,

especially for high number of APs. Fortunately, researchers have been working

on deriving and approximating this divergence in the cases of each parametric

distribution, and expressing it through only its parameters. Such studies can be

found in [Barron & Sheu, 1991; Hershey & Olsen, 2007; Pérez-Cruz, 2008].

In the case of non-parametric or KDE modeling, it is not straightforward to

compute the Kullback-Leibler divergence between the KDEs. We have shown

using equation (3.7) that the univariate KDE of the RSSI observations of any

zone Zj with respect to APk is obtained as,

QZj ,k(·) =
1

Nj × hj,k

Nj
∑

ℓ=1

K

( · − ρj,k,ℓ
hj,k

)

. (4.3)

The KDE is easily extended to the multivariate case for all NAP APs,

QZj
(·) = 1

Nj × hNAP

j

Nj
∑

ℓ=1

K

( · − ρj,ℓ

hj

)

. (4.4)

However, the same bandwidth is taken here on all axes, weighting all APs equally.

When considering different bandwidths hj,k, j ∈ {1, . . . , NZ}, k ∈ {1, . . . , NAP},
that vary according to each APk in the zone Zj , the KDE is obtained as follows,

QZj
(·) = 1

Nj

Nj
∑

ℓ=1

1

hj,1 . . . hj,NAP

K

( · − ρj,1,ℓ
hj,1

, . . . ,
· − ρj,NAP ,ℓ

hj,NAP

)

, (4.5)

By using the product kernel K(u) = K(u1) × · · · ×K(uNAP
), equation (4.5) can

be expressed as,

QZj
(·) = 1

Nj

Nj
∑

ℓ=1

1

hj,1 . . . hj,NAP

NAP
∏

k=1

K

( · − ρj,k,ℓ
hj,k

)

, (4.6)

such that the bandwidth hj,k is associated to zone Zj with respect to APk using

equation (3.11). It is noteworthy that by considering the product of kernels, we

only assume kernels independence, which does not imply that we assume APs

independence.
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The hierarchy is built based on the Kullback-Leibler divergence between the dis-

tributions representing the zones or clusters. However, since a kernel density

estimation is adopted here, the evaluation of the DKL(·) is not trivial. The

DKL(·) between QZj
(ρ) and QZj′ (ρ) is defined as [Harmouche et al., 2016],

DKL(QZj
||QZj′ ) =

∫

ρ

log

(

QZj
(ρ)

QZj′ (ρ)

)

QZj
(ρ)dρ. (4.7)

The expected value of log

(

QZj
(ρ)

QZ
j′ (ρ)

)

with respect to QZj
(ρ) is given by,

EQZj
(ρ)

[

log

(

QZj
(ρ)

QZj′ (ρ)

)]

=

∫

ρ

log

(

QZj
(ρ)

QZj′ (ρ)

)

QZj
(ρ)dρ. (4.8)

Anderson et al. [2000] approximate the expected value as follows,

EQZj
(ρ)

[

log

(

QZj
(ρ)

QZj′ (ρ)

)]

≈ 1

Nj

Nj
∑

ℓ=1

log

(

QZj
(ρj,ℓ)

QZj′ (ρj,ℓ)

)

. (4.9)

The DKL(·) is then deduced using equations (4.8) and (4.9),

DKL(QZj
||QZj′ ) = EQZj

(ρ)

[

log
QZj

(ρj,ℓ)

QZj′ (ρj,ℓ)

]

; (4.10)

≈ 1

Nj

Nj
∑

ℓ=1

log
QZj

(ρj,ℓ)

QZj′ (ρj,ℓ)
;

≈ 1

Nj

Nj
∑

ℓ=1

logQZj
(ρj,ℓ)− logQZj′ (ρj,ℓ).

It is then easy to compute DKL(·) by replacing QZj
(·) and QZj′ (·) with their

kernel models obtained using equation (4.6). The divergence DJ(·), which is the

symmetric divergence of DKL(·) as expressed in equation (4.2), is computed by

replacing Z with the obtained cluster.

To construct the dendrogram of clusters, the algorithm starts by considering

each zone as a separate cluster. The symmetric divergence, in either parametric

or non-parametric case, is then computed between all pairs of clusters. The pair

of clusters having the highest divergence are merged together, to form a parent
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4. EXTENDED OBSERVATION MODEL

node as shown in Figure 4.3. This is recursively done all along the hierarchy

until obtaining a final cluster that constitutes all the observations of the initial

set of zones Zj, j ∈ {1, . . . , NZ}. However, the usage of the whole dendrogram is

computationally complex. In addition, an error in any node is propagated over

the whole hierarchy. For that reason, the dendrogram is cut based on an optimal

number of clusters criteria as explained in the next section.

4.4.1.2 Two-level hierarchy

After the dendrogram is created, it should be cut based on the desired number

of clusters. However, since there is no prior knowledge regarding this parameter,

it is calculated by solving an optimization problem that takes into account both

inter- and intra- clusters scatters. Several indices have been proposed to solve this

problem [Islam et al., 2015; Rokach & Maimon, 2005; Tibshirani et al., 2001]. For

the sake of simplicity and without loss of generality, we describe the embedding

of the method proposed by Krzanowski & Lai [1988] to find the optimal number

of clusters NC as follows,

NC = argmax
r

∣

∣

∣

∣

DIFF (r)

DIFF (r + 1)

∣

∣

∣

∣

, (4.11)

such that

DIFF (r) = (r − 1)
2

NAP W (r − 1)− (r)
2

NAP W (r), (4.12)

where W (r), the within cluster sums of squares, is computed as follows,

W (r) =

r
∑

i=1

∑

j
Zj∈Ci

Nj
∑

ℓ=1

||ρj,ℓ − µi||2, (4.13)

where ρj,ℓ is an RSSI measurement taken in zone Zj , r takes its first value as

NZ − 1 and decreases by 1 at each iteration, µi is the mean of the observations of

the cluster Ci, and || · || is the Euclidean norm operator. Equation (4.12) indicates

the gain in within-cluster compactness resulting from the change from r− 1 to r

clusters. Equation (4.11) serves to maximize the in between-cluster distance. In

this way, both inter- and intra-cluster distances are optimized.
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4.4 Extended Observation Model

The dendrogram is cut at a certain level where NC clusters are obtained, denoted

by Ci with i ∈ {1, . . . , NC}. All clusters of each selected parent cluster are

merged yielding a set of zones for each cluster, as it is shown in Figure 4.4. The

set Ii denotes the set of indices of the zones included in the cluster Ci, that is,

Zj ∈ Ci, ∀j ∈ Ii. As a result, the output of the clustering algorithm is a two-

level hierarchy. The first level is a set of NC clusters, {C1, . . . , CNC
}, and the

second level is a group of zones belonging to each cluster, Zj ∈ Ci, ∀j ∈ Ii, Ii

being the set of indices of the zones included in the cluster Ci. The objective

of the localization algorithm becomes to determine, for any new observation, the

correct cluster at the first level, and the correct zone of the cluster at the second

level.

4.4.2 Access Point selection algorithm

The APs are the sources of information, and hence the choice of reliable ones is

indispensable for the localization process. Practically, a given installed physical

WiFi AP transmits signals on different terminals, each to give access to a certain

population (staff, residents, visitors, etc) and on different channel bands (2.4 GHz,

5 GHz, etc). The emitted power on each terminal is controlled and changed by

the IT services as needed. Although information carries some redundancy, we

aim here at using all available evidence to reach the best decision. Hence, what is

meant here by AP selection is the choice of terminals and not only physical APs.

The observations have NAP components, each one being related to a certain AP, of

the set F = {AP1, . . . , APNAP
}. Having the two-level hierarchy, the AP selection

is applied at the cluster level, and also at the zones level within each cluster, the

C1 C2 Ci CNC

Z1 Z2 Z3Z4 Z5 Z7Z10 Z11ZNZ
ZNZ−1
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Figure 4.4: The two-level hierarchy and AP selection at each level.
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4. EXTENDED OBSERVATION MODEL

aim being to select the most useful APs that are capable of discriminating zones

of each cluster and between clusters.

The AP selection algorithm is applied equivalently at zones of each cluster and

between clusters. For the sake of simplicity, unique notations for clusters and

zones are considered in the following, that is, let z denote either a cluster or a

zone within a cluster, and let Nz denote their numbers. A greedy AP selection

method is adopted to maximize the discriminative capacity and minimize the

redundancy of the selected APs. The APs cannot be treated independently, since

one that might be useless by itself can provide a significant improvement in the

performance when taken with others [Guyon & Elisseeff, 2003]. Let F ′ ⊆ F

denote one non-empty subset of F , the set of NAP APs. All the observations at

the APs of F ′ belonging to each entity zj are thus taken and fitted to a distribution

denoted Qzj ,F ′(·), j ∈ {1, . . . , Nz}. The distribution Qzj ,F ′(·) is either univariate
or multivariate depending on the cardinal of F ′. In what follows, we explain

the aim of the AP selection algorithm at the discriminative and the redundancy

levels, then we describe the bi-objective optimization to select the best subset of

APs.

4.4.2.1 Discriminative capacity

On one hand, having erroneous APs harms the performance of localization. But

since the computation of the exact error rate is cumbersome especially for high

dimensions, we use the discriminative capacity of APs, which is inversely pro-

portional to the error rate [Jahromi, 2007]. Indeed, the farther the distributions

Qz1,F ′(·), . . . , QzNz ,F
′(·) are one from another, the more discriminative the AP

subset F ′ is, and thus the less error rate is obtained. The Kullback-Leibler diver-

gence is used to measure such quantity. The discriminative capacity of a subset

of APs F ′ ⊆ F is then defined as the cumulative distance between all zones or

clusters according to F ′,

DisC(F ′) =
Nz
∑

a=1

Nz
∑

b=1

DKL(Qza,F ′||Qzb,F
′), (4.14)

DKL(Qza,F ′||Qzb,F
′) being the Kullback-Leibler divergence measured between the

distributions of the observations belonging to zones or clusters za and zb, while
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considering only the APs of F ′. Jahromi [2007] proved that the error rate to

distinguish between two distributions is inversely proportional to the Kullback-

Leibler divergence between them, and thus can be approximated for a subset F ′

as,

E(F ′) = 2−DisC(F ′). (4.15)

Using equations (4.14) and (4.15), the larger the divergence DKL(Qza,F ′||Qzb,F
′),

the less is the risk of error to distinguish between za and zb.

4.4.2.2 Redundancy

On the other hand, redundancy reduction is an important factor in AP selection.

Having redundant APs leads to a higher dimensionality and thus more complexity.

Here, the coefficient of multiple correlation is used as it is a measure of how much

an AP is dependent upon other ones. The square of the multiple correlation

coefficient of APk in a set of APs F ′ with respect to all APs of F ′ except itself,

F ′ \ {APk}, is defined as follows,

R2
k = cTkR

−1
xx,kck, (4.16)

where ck is the column vector with entries dAPk′APk
for APk′ ∈ F ′ \{APk}, dAPk′APk

being the correlation between APk′ and APk computed using their observations, cTk

being the transpose of ck, and R−1
xx,k the inverse of the matrix of entries dAPk′APk′′

for all pairs APk′ and APk′′ belonging to F ′ \ {APk}. The redundancy between all

the APs of a set F ′ is the average multiple correlation coefficient of all APk ∈ F ′,

namely

R(F ′) =
∑

k

Rk

|F ′| , where |F ′| is the cardinal of F ′. (4.17)

4.4.2.3 Bi-objective optimization

The aim of the AP selection technique is to find the optimal subset Fs ⊆ F such

that both E(Fs) and R(Fs) are simultaneously minimized. This can be solved

using any multi-objective optimization technique such as Pareto front [Ngatchou

et al., 2005]. Yet these solutions require the knowledge of E(·) and R(·) for all

subsets, which is computationally unfeasible for large number of APs. For this
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4. EXTENDED OBSERVATION MODEL

purpose, a greedy search algorithm with backward elimination strategy is applied

to choose this subset. One starts with the whole set of APs and progressively

eliminates an AP, whose elimination satisfies a function that considers the two

objectives mentioned above. Let Fy be the subset of APs chosen at iteration

y ≥ 1, with F0 = F and the cardinal of Fy, |Fy| = NAP − y. The algorithm starts

with the whole set of features F = F0. At each iteration y ≥ 1, all the subsets

of Fy−1 having all but one elements, that is, NAP − y elements, are considered.

Let F
(λ)
y , λ = 1, . . . , NAP − y + 1, denote these subsets. We define the function

gy
(

F
(λ)
y

)

as follows,

gy(F
(λ)
y ) = η

E(Fy−1)− E(F
(λ)
y )

max(E(Fy−1),E(F
(λ)
y ))

+ (1− η)
R(Fy−1)− R(F

(λ)
y )

max(R(Fy−1),R(F
(λ)
y ))

, (4.18)

where η ∈ [0, 1] is a tradeoff parameter chosen by the user to assign a weight

for each objective. A positive value of gy
(

F
(λ)
y

)

means that the subset F
(λ)
y is

better than Fy−1 in optimizing the objectives. The greater gy(·) is, the better the
subset is. This leads to a selected subset at iteration y, Fy = argmaxλ gy

(

F
(λ)
y

)

.

A negative value of gy(F
(λ)
y ) means that there is no significant improvement in

the objectives for the considered parameters and hence iterations stop when all

gy
(

F
(λ)
y

)

, λ = 1, . . . , NAP − y + 1, are negative and one chooses the set of APs

Fs = Fy−1. This algorithm is applied at the clusters level to yield Fs and at

the zones level of each cluster Ci to yield Fs,i, i ∈ {1, . . . , NC}, as shown in

Figure 4.4.

4.4.3 Confidence-based zone estimation

The clustering and the AP selection algorithms lead to a two-level hierarchy,

where the first level is a set of created clusters Ci, i ∈ {1, . . . , NC}, and the

second level is the set of zones Zj ∈ Ci, ∀j ∈ Ii, Ii be the set of indices of

the zones included in cluster Ci. Moreover, a selected subset of APs, Fs, at the

clusters level, and selected subsets, Fs,i, at the zones level of cluster Ci. The

masses assigned by the selected APs are discounted using either of the techniques

presented in Section 3.3.3 to obtain αmAPk,t(·). For the fusion of evidence, the

combination rules discussed in Section 3.3.4 are applied at the two levels of the
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hierarchy, yielding unified mass functions. The unified mass functions are mC
⊕,t(·)

that work on the subsets of {C1, . . . , CNC
}, and also other functions mi

⊕,t(·) that
work on the subsets of {Zj, j ∈ Ii}, with i ∈ {1, . . . , NC}. This is the case if

the Dempster’s rule of combination is used. The unified mass functions become

mC
∩©,t(·) and mi

∩©,t(·) if the conjunctive rule is used, and mC
∪©,t(·) and mi

∪©,t(·) if
the disjunctive rule is used. After computing the masses of all clusters and zones

within each cluster using either of the combination rules, equation (3.25) is applied

at both levels, leading respectively to the functions BetPC
t (·) and BetP i

t (·) on

the clusters and zones levels respectively. In order to compute pignistic levels for

singletons, the equation (3.26) is used, yielding BetPC
t ({Ci}), i ∈ {1, . . . , NC},

and BetP i
t ({Zj}), j ∈ Ii. Finally, to attribute a confidence level by the extended

observation model to each zone at any instant t, the pignistic levels of zones and

clusters are combined as follows,

mO,t(Zj) = BetPC
t ({Ci})×BetP i

t ({Zj}), (4.19)

with j ∈ Ii, i ∈ {1, . . . , NC}.

4.5 Experimental Results

The performance of the proposed method is evaluated through two experimental

scenarios for localization. The experimental setups are first introduced, and the

method is illustrated afterwards. The performance of the method is also compared

with state-of-the-art classification techniques. Finally, to validate our proposed

method, which serves also as a classification technique, we apply it in the domain

of image processing for facial recognition using public databases, and compare its

performance with well-known techniques.

4.5.1 Experimental setups

Real experiments are realized in a WLAN environment at the first floor of the

statistical and operational research department, and the first floor of the Living

Lab at the University of Technology of Troyes, France. Figure 4.5 shows the

layout plans of the two scenarios, which we will refer to as Experiment 1 and
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Experiment 2 respectively. The layout plan of Figure 4.5(a) has an approximated

area of 500 m2, and is partitioned into 21 zones, with 23 detected APs. The

layout plan of Figure 4.5(b) has an area of 550 m2 and is partitioned to 19 zones,

with 38 detected APs. Sets of 30 measurements are taken in each zone in random

positions and orientations of the personal computer, and are used to construct

each database. A new set of 20 measurements in each zone is collected after a

month to test the proposed method, as measurements from the same day may

be dependent. Table 4.2 summarizes the parameters of the two experimental

setups.

4.5.2 Illustration of the proposed method

The collected RSSIs of the database are fitted parametrically or using the KDE.

The basic observation model is then constructed by using the fitted distributions

in the belief functions framework. This model is extended through the cluster-

(a) Layout plan 1. (b) Layout plan 2.

Figure 4.5: The first floor of the statistical and operational research department

in (a) and the Living Lab in (b) at the University of Technology of Troyes, France.

Table 4.2: Experimental setup parameters.

Parameter Notation Value

Experiment 1 Experiment 2

Number of zones NZ 21 19

Number of APs NAP 23 38

Number of measurements per zone Nj 30 30

98

Extended_observation_model/figures/capture.eps
Extended_observation_model/figures/plan_masse_complete.eps
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ing algorithm presented in Section 4.4.1. By optimizing the intra-inter cluster

distances, the dendrogram of clusters is cut at 7 and 6 clusters level, in Experi-

ments 1 and 2 respectively. The clusters with the initial zones constituting them

are considered, forming a two-level hierarchy. At each level, the AP selection

technique presented in Section 4.4.2 is applied to determine the most useful APs.

The proposed method EOM associates confidence levels to the zones of the tar-

geted area. Table 4.3 compares the performance of the method as a function

of the type of modeling. In both experiments, the performance achieved using

KDE modeling is better, even though this comes at the cost of a higher compu-

tational complexity. The WiFi scanner software scans the network and measures

the RSSIs at a 0.75 second interval. For that reason, we care more here about

the overall accuracy, as the online execution time is less than the time needed by

the software to scan the network.

We study the influence of the user-defined parameter η employed in the AP

selection technique on the performance of the method. Table 4.4 shows the overall

accuracy and the online time of the localization algorithm for η ∈ {0.25, 0.5, 0.75}.
The first row of the table corresponds to the performance of the method using the

whole set of APs, without applying the AP selection algorithm. As the parameter

η increases, a larger weight is given to the discriminative capacity objective.

This however adds redundant sources to the subset of APs, thus increasing the

complexity and hence the online processing time. Decreasing the value of η leads

to removing redundant APs, thus reducing the complexity. However, the overall

accuracy is severely affected especially for very low values of η.

Tables 4.5 and 4.6 show the results of applying the EOM to 420 and 380 test

Table 4.3: Influence of modeling on the overall accuracy and the processing time

of the localization algorithm in Experiments 1 and 2.

Experiment 1 Experiment 2

Modeling accuracy (%) online time (s) accuracy (%) online time (s)

Parametric 84.50 0.2183 85.42 0.2577

KDE 88.78 0.2418 90.21 0.2955
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points in Experiments 1 and 2 respectively, and the influence of each phase on

the overall accuracy and the processing time in both experiments. The accuracy

over training data is considered alongside the accuracy over new data to show

the highest accuracy the method can attain, and verify if there is an overfitting.

In fact, if a significant difference between the accuracies on training data and on

new data is noticed, this means there is overfitting in the used model. Besides,

it is beneficial to keep an eye on the offline training time, since the computa-

tionally expensive training algorithms are not preferred. An estimation is said

to be correct if the algorithm assigns the highest confidence level to the correct

zone. As the table shows, modeling the data with associating and combining

masses lead to an accuracy of less than 80% over new data. This low accuracy

percentage is due to the wide overlapping of the various functions representing

the distributions of the data in the different zones. In fact, this corresponds to

the basic observation model previously discussed. However, when the two-level

hierarchical clustering is carried out, a great enhancement in the overall accuracy

is noted. This amelioration is at the expense of the processing time. It is clear

that both the offline training time and the online localization time are almost

doubled. In addition, the AP selection phase has a significant impact on the per-

formance. An accuracy of around 90% is reached with a slight gain in the online

test time, yet with an increase in the offline training time. Moreover, discounting

the APs evidence raises the overall accuracy to 93% without a huge impact on

the processing time.

Table 4.4: Influence of the parameter η on the overall accuracy and the

processing time of the localization algorithm in Experiments 1 and 2.

Experiment 1 Experiment 2

η accuracy (%) online time (s) accuracy (%) online time (s)

- 85.62 0.2674 86.44 0.3168

0.25 79.74 0.1872 83.89 0.2117

0.5 83.50 0.2259 86.11 0.2619

0.75 88.78 0.2418 90.21 0.2955
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4.5.3 Comparison to state-of-the-art methods

In this section, the proposed method is compared to some of the well-known

classification techniques. Flat classification methods such as k-nearest neighbors,

naive Bayes, multinomial logistic regression (MLR), neural networks, and sup-

port vector machines (SVM) are considered. A 10-folded cross validation is used

on the training database to train the classifiers and tune their parameters. The

parameters that minimize the average error of all folds are considered. This aims

to enhance the ability of the classifiers to generalize, with a better classifica-

tion accuracy on the new data. For k-nearest neighbors, the optimal number of

neighbors used to estimate the class membership is found to be 19 and 23 in

Experiment 1 and Experiment 2 respectively. For naive Bayes and MLR, the

maximum likelihood estimate is used to evaluate the probability of having the

data instance belong to each class. As for neural networks, radial basis functions

are used as activation functions for a one single hidden layer. The Gaussian kernel

is used for SVM.

Table 4.5: Influence of each phase of the extended observation model on the

accuracy and the complexity of the localization algorithm in Experiment 1.

Experiment 1 Accuracy (%) Time (s)

EOM training data new data offline online

without clustering, AP selection, and discounting 78.85 76.63 21 0.1007

without AP selection and discounting 87.21 84.26 56 0.2317

without discounting 88.52 86.73 76 0.2184

as it is 90.68 88.78 79 0.2418

Table 4.6: Influence of each phase of the extended observation model on the

accuracy and the complexity of the localization algorithm in Experiment 2.

Experiment 2 Accuracy (%) Time (s)

EOM training data new data offline online

without clustering, AP selection, and discounting 83.90 81.61 39 0.1324

without AP selection and discounting 86.90 85.88 92 0.2736

without discounting 88.90 86.38 115 0.2577

as it is 92.68 90.21 119 0.2955
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Moreover, the proposed method is compared with hierarchical techniques such as

hierarchical support vector machines (HSVM) and random forests. Chen et al.

[2004] develop an HSVM technique that solves a series of max-cut problems to

recursively partition the classes into two-subsets, till pure leaf nodes that have

only one class are obtained. Then, the classical SVM is applied to solve the binary

two-subsets classification problem at each internal node. In addition, a random

forest model is proposed in [Górak & Luckner, 2016] to localize sensors in indoor

networks. Random forests is an ensemble of trees, obtained both by bootstrap

sampling, and by randomly changing the feature set during learning [Breiman,

2001]. More precisely, at each node in the decision tree, a random subset of the

input attributes is taken, and the best feature is selected from this subset instead

of the set of all attributes. Górak & Luckner [2016] propose a straightforward

random forest model and another modified one by defining a localization model

for each AP that predicts the localization only when a signal is detected from

that AP.

Tables 4.7 and 4.8 show the overall accuracy and the processing time of the pro-

posed technique in the two experiments compared with these described methods.

The proposed method outperforms all the other ones in terms of localization ac-

curacy. On the other hand, its processing time is considered to be competitive

to the others, yet with a clear advantage to naive Bayes for instance, and k-

nearest neighbors that has no training phase. The indicated time for the latter is

only to store the training data and calculate the optimal k by a ten-folded cross

validation.

4.5.4 Application in facial image recognition

The proposed method is in fact a classification technique. In the case of local-

ization, the classes are the zones and the features are the APs. In the case of

facial image recognition, the classes become the subjects whose faces are to be

classified, and the features become a set of image pixels extracted from the images

themselves.

Facial image recognition has gained a great attention in the recent years due to its
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wide applications in video surveillance, database image matching, and security

Table 4.7: Comparison of performance between methods in terms of overall

accuracy and processing time in Experiment 1.

Experiment 1 Accuracy (%) Time (s)

Technique training data new data offline online

K-nearest neighbors 83.42 82.83 11 0.1089

Naive Bayes 82.21 81.66 31 0.0883

Multinomial logistic regression 84.52 82.58 54 0.1198

Neural networks 85.68 84.72 68 0.1466

Support vector machines 88.68 85.55 79 0.1559

Hierarchical support vector machines 89.68 86.38 112 0.3771

Random forests 88.68 86.66 124 0.3966

Basic observation model 79.68 77.77 26 0.1018

Extended observation model 90.68 88.78 97 0.2418

Table 4.8: Comparison of performance between methods in terms of overall

accuracy and processing time in Experiment 2.

Experiment 2 Accuracy (%) Time (s)

Technique training data new data offline online

K-nearest neighbors 80.42 78.82 14 0.1311

Naive Bayes 76.90 76.76 42 0.1042

Multinomial logistic regression 84.52 82.94 76 0.1559

Neural networks 86.81 85.82 88 0.1866

Support vector machines 88.77 86.47 96 0.1912

Hierarchical support vector machines 89.24 86.89 135 0.4077

Random forests 90.54 88.90 153 0.4667

Basic observation model 79.81 78.91 41 0.1374

Extended observation model 92.68 90.21 119 0.2955
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measurements. The Extended Yale B [Lee et al., 2005], the ORL [Samaria &

Harter, 1994], and the AR [Martinez, 1998] face databases are used to evaluate

the proposed classification method. Many state-of-the-art methods have been

targeting these databases to solve the facial image recognition problem. In order

to study the influence of the classification method only, the same data partition

and feature extraction technique of each state-of-the-art method are taken.

The Extended Yale B database consists of 2414 frontal-face images for 38 indi-

viduals taken under various lighting conditions. Yang et al. [2013] investigate the

use of Gabor features for sparse representation based classification with a learned

Gabor occlusion dictionary. The authors randomly select half of the images for

training (32 images per subject) and use the other half for testing. All images

are cropped to 192×168. They demonstrate the results of the method versus the

feature dimension while comparing to the classification techniques SVM, near-

est neighbor, and linear regression classification. Khorsandi & Abdel-Mottaleb

[2015] present a classification method based on a weighted sparse representation

with dictionary learning. They also crop the images to 192 × 168, and use half

of the images for training and the others for testing. The method uses the mu-

tual information between the query sample and the training samples to give a

weight for the latter to each class in the dictionary. We compare the results of

these methods with those obtained by our proposed method using the same data

portion and the same feature extraction technique. The results are presented in

Tables 4.9 and 4.10.

The AR face dataset consists of more than 4000 images of 126 distinct subjects.

Following the work of Huang et al. [2015], a subset of 1680 images for 120 subjects

is constructed, where each image is 50×40 pixels. The authors propose a specific

sparse representation-based classifier that incorporates the class information in

the learning process. The method defines classes as groups that compete to

represent the test sample. It considers L1 and L2 norm constraints to the classes

and samples and is solved using convex optimization. Table 4.11 shows the results

of different classification approaches.

The ORL database consists of 400 images of 40 subjects. Wang & Sun [2013]
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propose a multiple kernel local Fisher discriminant analysis for face recognition.

The authors present a method that searches for maximum discrimination between

inter- and intra- classes scatters, producing nonlinear discriminant features with

multiple base kernels. They select different numbers of images per individual to

form the training set, and the rest for testing. The experiments are repeated 50

times and the average recognition accuracy is computed. All images are cropped

and resized to 32 × 32 pixels, with 256 Grey levels per pixel. Each image is

represented by a 1024-dimensional vector in the image space. The comparison

results are shown in Table 4.12.

The results in the shown tables prove the competence of the proposed method as

compared with well-known facial recognition techniques.

4.6 Conclusion

In this chapter, we extended the observation model presented in Chapter 3 to

tackle the problem of zoning-based localization in wide surface areas with large

number of zones. We proposed a clustering algorithm that aims at creating a

two-level hierarchy of zones through agglomerative hierarchical clustering and

Table 4.9: Average face recognition accuracy (%) on the Extended Yale B

database based on the Gabor feature robust representation. First and second best

results are highlighted in bold.

Method Feature dimension

56 120 300 504

Nearest neighbors 81.4 89.2 91.9 92.0

Sparse representation classification 92.6 95.6 97.4 97.9

Support vector machines 92.6 95.3 96.3 96.4

Linear regression classification 94.1 94.7 95.4 95.7

Yang et al. [2013] 92.7 95.6 97.9 99.0

Proposed method 93.9 96.2 98.3 98.7
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optimization of the inter- and intra-cluster measures. We studied the parametric

and KDE modeling and the execution of the clustering algorithm in each case.

Table 4.10: Average face recognition accuracy (%) on the Extended Yale B

database based on weighted sparse representation. First and second best results

are highlighted in bold.

Method Feature dimension

30 56 120 504

Nearest neighbors 69.3 72.8 78.5 79.5

Nearest subspace 79.6 84.1 88.7 90.8

Sparse representation classification 75.7 84.8 93.9 96.8

Khorsandi & Abdel-Mottaleb [2015] 78.5 86.7 95.3 97.9

Proposed method 83.1 87.8 95.8 96.9

Table 4.11: Average face recognition accuracy (%) on the AR database.

Method Accuracy

Support vector machines 68.10

Linear regression classification 68.75

Sparse representation classification 63.87

Collaborative classification representation 68.25

Huang et al. [2015] 77.14

Proposed method 79.64

Table 4.12: Average face recognition accuracy (%) on the ORL database.

Method Number of training images

2 4 6 8

Linear discriminant analysis 78.2 84.9 88.6 95.5

Locality preserving protection 80.5 85.4 89.2 95.8

Marginal Fisher analysis 89.3 91.5 92.7 96.5

Local Fisher discriminant analysis 92.4 93.8 94.3 97.1

Wang & Sun [2013] 95.6 96.7 97.3 98.4

Proposed method 93.2 96.9 96.8 98.6

106



4.6 Conclusion

We then developed an AP selection algorithm, to be applied at each level of the

created hierarchy, to choose the best subset of APs in terms of overall accuracy

and redundancy. Afterwards, we described the confidence-based zone estimation

by combining the obtained evidence at all levels in the belief functions framework.

Finally, we illustrated the performance of the proposed method through experi-

ments in two real scenarios, providing comparisons with other techniques. The

proposed method, which is a classification technique at its core, was also validated

in the domain of facial image recognition using well-known public databases.

Two main limitations of the proposed model are noticed at the accuracy and

complexity levels. A major problem leading to most of the erroneous estimations

are zones and areas that are symmetric to each other with respect to the APs.

In such cases, the APs assign similar confidence levels to these zones, yielding

erroneous estimations. To solve this issue, we present in Chapter 5 mobility mod-

els to be combined with the proposed observation model. In this way, erroneous

estimations by the observed model can be corrected by taking into consideration

the movement of the sensor, its next possible destinations, its trajectory, etc. In

addition, the algorithm is more complex than other classical techniques in the

domain, requiring at average double the time needed by them, which might be a

serious issue especially in case of adjacent buildings and multi-floors, and dense

APs networks. For such cases, we aim in Chapter 6 to enhance the basic ob-

servation model through a decentralized configuration instead of the hierarchical

approach proposed here.
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In this chapter, we propose a novel tracking technique that uses the mobility of

sensors (MNs) with the previously described observation models in the belief func-

tions framework to track the MNs in real time. Assuming a maximum speed of

movement of MNs in the indoor environment, the next possible destinations of the

MN are predicted, leading to a mobility model. The belief functions framework is

used to propagate the previous step evidence till the current one. The mobility of

the MN, along with information from the network, are used to obtain an accurate

estimation of its position. The performance of the method is studied for different

experimental scenarios.

5.1 Introduction

The primary objective of MN tracking is to estimate the trajectory of a mov-

ing MN. As explained in Chapter 1, the tracking can be viewed as a sequential

localization problem. Thus, it requires a real-time recursive location estimation

algorithm. In Chapters 3 and 4, we performed localization using only RSSI infor-

mation collected from the network. However, it is interesting to take advantage

of additional information, to correct the estimated location. Such additional in-

formation can be inertial information, such as knowledge of past location and

instantaneous speed, acceleration, or trajectory of the MN being tracked.

Tracking methods assume that the target motion can be represented by some

known mathematical models that are sufficiently accurate. The most commonly

used models are known as state-space models. We will call them here mobility

models, considering that they depend on the previous state of the MN and the

mobility to estimate the next state. It is noted that standalone mobility models

are not recommended in practical applications, since uncertainty increases with

time, and it becomes nearly impossible to have a confident estimation after a

certain number of tracking trials. For that reason, the estimation should be

updated at each time using information obtained by acquiring measurements

from the network, referred to as an observation model. The problem of tracking

becomes a matter of an estimation using a mobility model, and an estimation

update using an observation model.
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5.1 Introduction

The simplest model for target tracking is the white-noise acceleration model. It

assumes that the target acceleration is an independent process. The main at-

tractive feature of this model is its simplicity. However, in practical applications,

the acceleration is rarely independent with respect to time, and hence it is only

applied when the movement is quiet small or random. Another simple model

is the Wiener-process acceleration model that assumes that the acceleration is

a process with independent increments, which means that it is supposed to be

nearly constant. However, the assumption that the acceleration increment is in-

dependent with respect to time is hardly justifiable, except for its simplicity and

mathematical tractability. A more general model is the polynomial one. The

continuous trajectory can be approximated by an n-th degree polynomial to an

arbitrary accuracy. Such a model amounts to assuming that the n-th derivative of

the position is nearly constant. The two previously described models thus become

special cases of the n-th degree polynomial model for n = 1 and 2 respectively.

This model in its general setting does not appear very attractive for tracking,

as it is difficult to develop an efficient method to determine systematically the

coefficients of the polynomial. These three models have been thoroughly studied

by Bar-Shalom et al. [2004]. Whenever white-noise models are not good enough,

it is natural to consider a Markov process model. The Singer model assumes

that the target acceleration is a zero-mean first-order stationary Markov process

[Singer, 1970]. This model corresponds to a motion in between the nearly con-

stant velocity and the nearly constant acceleration models [Kendrick et al., 1981;

Kumar & Zhou, 1984].

The tracking models are highly dependent on the choice of the state components,

and thus the respective kinematic model. This is not a trivial problem, as the

target dynamics, accuracy of approximations, and coordinate system, must all

be taken into account. The Kalman filter assumes that the posterior density of

the states at every time step is Gaussian, and thus it recursively computes the

mean and the covariance of the Gaussian posterior [Mahfouz et al., 2014]. It is

the optimal solution to the tracking problem when the assumptions of the linear

Gaussian environment holds. However, this posterior is not necessarily Gaussian,

and hence the filter is not certain to be optimal. To address the non-linear cases,
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several approaches have been proposed such as the extended Kalman filter (EKF)

and the unscented Kalman filter (UKF) [Zhang et al., 2013]. The main feature

of these methods is that they approximate the non-linear function in the state

dynamic and the observation model. The estimation error of the EKF is usually

large due to linearization. The UKF has a better tracking performance since it

can better approximate the non-linearity as compared with the EKF. However, it

is found that the estimation error of UKF increases when the target’s range is far

in practical applications. Another well-known method for target tracking relies

on the particle filter (PF) or the Monte-Carlo filter [Hong et al., 2014]. The key

idea is to recursively represent the posterior density function by a set of random

samples or particles with associated weights according to the measurements. As

the number of particles increases, the PF becomes an equivalent representation

of the usual functional description of the posterior density, and thus approaches

the optimal Bayesian estimate.

In this chapter, we adapt the localization frameworks introduced in Chapters

3 and 4 in order to perform tracking in WSNs. Compared with the previous

chapters, we now take advantage of the MN’s mobility to enhance the obtained

location estimate. The proposed tracking approach uses the belief functions the-

ory to estimate the MNs zones by combining the evidence related to the MNs

mobility and observations, as described in the following. The method makes use

of the MNs mobility by assuming a maximum speed of movement of MNs in in-

door environments. This allows a prediction of the next possible destinations of

the MN, and hence leads to a mobility model. The belief functions framework

is used to propagate the previous step evidence till the current one. Moreover,

the MN measures its RSSI vector, and using the models described in Chapters

3 and 4, evidence is assigned to each zone of the targeted area. Mobility and

observation evidence are then combined in the belief functions framework to de-

termine a level of confidence of having the MN residing in each zone. To this

end, three mobility-based tracking models are proposed. An enhancement in the

overall accuracy of the zone estimates is recorded.
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5.2 Problem Statement

The tracking problem consists in estimating the MN’s zone in real time using its

mobility and the signals strengths it collects from the surrounding APs. We adopt

the same network configuration and notations as in the previous two chapters,

where NZ is the number of zones of the targeted area, denoted by Zj, j =

1, 2, . . . , NZ , NAP is the number of APs, denoted by APk, k = 1, 2 . . . , NAP , and

ρt is the vector of RSSI measurements collected by the MN at the instant t from

surrounding APs. We suppose here vmax to be the maximum speed of the MN

in the indoor environment. In our application, vmax is the maximum expected

speed of movement of dependent elderly people in indoor networks. The aim

of the proposed algorithm is to find a function T : RNAP → [0, 1]NZ such that

T(ρt) = (Wt(Z1), . . . ,Wt(ZNZ
)), where Wt(Zj) is the level of confidence of having

the MN of observation ρt residing in the zone Zj at the instant t. It is worth

noting that only one MN is considered here; however, the method can be applied

in the same manner to as many MNs as needed.

On one hand, the method makes use of the mobility of the MN to track it in real

time in indoor environments. Here, the MN is assumed to displace at a speed less

than or equal a maximum speed vmax. By using this notion, one can have a clear

idea about the next possible destinations of the MN depending on the architecture

of the targeted area and the localization execution time. The first proposed

mobility model is based on the original succession of zones and does not require

any data acquisition phase. The second mobility model necessitates dividing the

zones into sub-zones and collecting RSSI measurements in each one. The third

mobility model is based on a hidden Markov model and uses the trajectory of the

MN to update the zone estimate. All three mobility models thus affiliate some

evidence mM,t(·) to each zone.

On the other hand, the observation models described in Chapter 3 and 4 assign

another evidence mO,t(·) using the belief functions theory and the RSSI of the

received signals. In a belief functions framework, all evidence is combined to

determine at each instant a level of confidence Wt(·) in each zone. Figure 5.1 il-

lustrates the general framework of the proposed tracking technique, and Table 5.1
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lists the variables used in this chapter, along with their respective sizes. In the

following, we present the three mobility models, each with its architecture, mass

association, and confidence-based zone estimation through combination with the

observation models.

Mobility model Observation model

Mass combination

New observation (ρt)

New step (t)

Previous confidence Wt−1

mM,t(Z1) mM,t(Z2) mM,t(ZNZ
) mO,t(Z1) mO,t(Z2) mO,t(ZNZ

)

Wt(Z1) Wt(Z2) Wt(ZNZ
)

Figure 5.1: Belief functions framework to combine evidence from both

observations and mobility.

Table 5.1: List of the variables used in Chapter 5, with their respective sizes.

Notation Variable Size

NZ number of zones 1

NS number of states of HMM 1

R, S sequences α

α length of sequence 1

d distance 1

vmax maximum speed 1

Q(·) distribution 1

A transition matrix NS ×NS

B emission model NS × 1

π initial state probabilities NS × 1

g, h forward and backward probabilities NS × 1

mO(·), mM(·),W(·) assigned evidence NZ × 1

T(·) tracking model NZ × 1

114

Mobility_based_tracking/figures/online.eps


5.3 First Mobility-based Tracking Model

5.3 First Mobility-based Tracking Model

The first mobility-based tracking model uses the maximum speed of the MN and

the original succession of the zones in the targeted area, without any additional

data acquisition phase, to determine the zone of the MN. We first describe the

architecture of the mobility model, and then we explain how it assigns evidence

to each zone. Finally, we show how the evidence assigned by the mobility model

is combined with that of the observation model to determine a level of confidence

of having the MN residing in each zone.

5.3.1 Architecture

Let ∆tloc denote the time interval in which the localization algorithm is executed,

and dmin,ij denote the minimal geographical distance between two zones Zi and

Zj . The distance dmin,ij is the shortest distance the MN is forced to travel to

reach a point in one of the two zones, from where it then must travel to the other

zone. In other words, it is the smallest of all the distances from a point in zone

Zi to the closest point in the other zone Zj. The maximum distance that the

MN can travel is then deduced as dmax = vmax ×∆tloc. Figure 5.2 illustrates the

architecture of the first mobility-based tracking model, where the MN is in zone

Zi at instant t− 1, and we are interested in determining its zone Zj at instant t.

zone

Zj

neighboring zone

Zj−1

Zj+1

Figure 5.2: Illustration of the architecture of the first mobility model.
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5.3.2 Mass association

Let pij , i, j ∈ {1, . . . , NZ}, denote the coefficient of transition from zone Zi to

zone Zj within the localization period ∆tloc. Then,

pij =

{

0, if dmax < dmin,ij;

1, if dmax ≥ dmin,ij.
(5.1)

Being in a zone Zi at instant t − 1, the MN can be at instant t in any zone

Zj, j ∈ {1, ..., NZ}, of the ones having pij = 1. These zones are called the following

zones of Zi. The confidence Wt−1(Zi) at time t − 1 is then propagated to time

t by distributing it equally to its following zones, each one having Wt−1(Zi)
∑

j pij
. The

mobility evidence given to a zone Zj at time t is the aggregation of all evidence

deduced from its preceding ones having pij = 1, ∀i ∈ {1, ..., NZ}. This leads to a

mobility mass at time t computed in the following manner,

mM,t(Zj) =

NZ
∑

i=1

pij ×
Wt−1(Zi)
∑NZ

f=1 pif
. (5.2)

5.3.3 Confidence-based zone estimation

As described in Chapters 3 and 4, the observation model O assigns an evidence

mO,t(·) for each zone. The assigned evidence by the mobility model and the

observation model are combined by aggregating the evidence of the two models

to yield a confidence level Wt(·) of having the MN residing in each zone at each

instant t as follows,

Wt(Zj) = mM
⊕

O,t(Zj) =
mO,t(Zj)×mM,t(Zj)

∑NZ

χ=1mO,t(Zχ)×mM,t(Zχ)
. (5.3)

The advantage of this tracking model is that it is simple and does not require

any additional data acquisition phase. In addition, one does not need inertial

measurement units to keep track of the mobility of the MN. Prior knowledge about

the maximum speed corresponding to the practical application can be considered.

Inertial measurement units might be only used to collect this information in an

offline phase in case it is not known.
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5.4 Second Mobility-based Tracking Model

The accuracy of the first mobility model can be enhanced by taking advantage

of our application, which is tracking of dependent elderly people. Although this

model can be used for any other application, the maximum speed in our particular

application is relatively low, allowing us to create transition zones between each

pair of original consecutive zones. The model is designed in a way that the MN

cannot move from a zone to another without passing through a transition zone

within a localization period.

5.4.1 Architecture

Each zone Zi is divided into NXi
sub-zones Xi.ℓ according to its layout, NXi

− 1

connection sub-zones and one main sub-zone Xi.NXi
. Each connection sub-zone

is a section area in front of a doorway connecting Zi with neighbor zones, as

shown in Figure 5.3. Its dimensions are defined in a way to cover all possible

positions in the zone Zi at which the MN can cross the doorway to go to a

neighboring zone within the localization period. The main sub-zone Xi.NXi
is

the remaining section area in Zi. A MN being in the main sub-zone of zone Zi

at time t − 1, will remain in the same zone at time t. In the data acquisition

phase, RSSI values are collected in each sub-zone and fitted to a multi-dimensional

statistical distribution. Let Qi.ℓ(·) be the distribution representing the data of the

connection sub-zone Xi.ℓ, ℓ ∈ {1, . . . , NXi
− 1}, and Qi.NXi

(·) be the distribution

representing the main sub-zone Xi.NXi
.

Main sub-zone

Xk.3

connection sub-zone

neighboring zone

Zk−1

Zk+1

dmax

Xk.1

Xk.2

Figure 5.3: Illustration of the architecture of the second mobility model.
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5.4.2 Mass association

Having the previous observation ρt−1, membership weights qt−1(Xi.ℓ), i ∈
{1, . . . , NZ} and ℓ ∈ {1, . . . , NXi

}, are computed to quantify the membership

of the MN to any sub-zone of each zone Zi at t − 1. This is performed by eval-

uating the probability resulting from each fitted distribution with respect to the

previous observation followed by a normalization phase,

qt−1(Xi.ℓ) =
Qi.ℓ(ρt−1)

∑NXi

χ=1Qi.χ(ρt−1)
. (5.4)

The confidence of each zone Zi at t− 1 is then converted to its sub-zones,

W
∗
t−1(Xi.ℓ) = Wt−1(Zi)× qt−1(Xi.ℓ). (5.5)

Let ri.ℓ,j be the coefficient of transition from the connection sub-zone Xi.ℓ, ℓ ∈
{1, . . . , NXi

} of zone Zi, i ∈ {1, . . . , NZ}, to original zone Zj, j ∈ {1, . . . , NZ},

ri.ℓ,j =

{

0, if dmax < dmin,i.ℓ,j;

1, if dmax ≥ dmin,i.ℓ,j,
(5.6)

where dmin,i.ℓ,j is the minimal distance between connection sub-zone Xi.ℓ and zone

Zj. The mass associated to each zone by the mobility model can be thus deduced,

mM,t(Zj) = W
∗
t−1(Xj.NXj

) +

NZ
∑

i=1

NXi
−1

∑

ℓ=1

ri.ℓ,j ×
W

∗
t−1(Xi.ℓ)

∑NZ

f=1 ri.ℓ,f
. (5.7)

The mass assigned to Zj at time t is the aggregation from t− 1 of the confidence

of its main zone and a part of the confidence of the connection sub-zones of other

zones that are capable of leading to it.

5.4.3 Confidence-based zone estimation

In the same manner as in the first model, the confidence level Wt(·) of having the

MN resides in each zone is obtained as follows,

Wt(Zj) = mM
⊕

O,t(Zj) =
mO,t(Zj)×mM,t(Zj)

∑NZ

χ=1mO,t(Zχ)×mM,t(Zχ)
. (5.8)
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5.5 Third Mobility-based Tracking Model

In this tracking approach, we construct our mobility model using a hidden Markov

model (HMM). The idea is to create, for each transition between two consecutive

zones, a trajectory that the MN follows to move from one zone to another. A

HMM is constructed for each trajectory, yielding a probability that the MN has

followed it. This probability is then combined with the evidence assigned by the

observation model to determine a level of confidence that the MN resides in each

zone. At first, we provide a general overview of the HMMs. We then present

the architecture of the proposed mobility model, the way we use it to assign

evidence, and the confidence-based zone estimation through combination with

the observation model.

5.5.1 Hidden Markov Models

We provide here a general overview of the HMM, its definition, its parameters,

and its statistical theory.

5.5.1.1 Definition

A stochastic system is said to be a Markov process if the next state depends

only on the present state. A HMM is a probabilistic model that can be used

for representing a sequence of observations, and these observations can be either

discrete or continuous, and can be either time dependent or independent [Eddy,

1996]. We start by presenting the following example.

Ex 5.1. Let us assume that someone is inside a closed room with no information

about the weather outside. He receives postal mails through the mail slot every

day of the week. The only way by which he can guess the weather is by looking

at the state of the mails. For example, he expects the mails to be dry on a sunny

day, and to be wet on a rainy day. Suppose that the aim is to model the weather

as being sunny, soggy, or rainy based on the condition of the received mail.

A three-state HMM model can be used. Here, the weather forms the states

“sunny”, “soggy”, or “rainy”. These can be represented by a set of hidden

discrete states S = {sunny, soggy, rainy}. These states are shown as circles in
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Figure 5.4. The reason why the states are described as hidden is because the

observer is unaware of the nature of the states. In this example, assuming that

the system is a Markov process, means that the weather of the next day depends

only on today’s weather.

With the states being hidden and the next state depending only on the previous

state, the model in the above example is thus a HMM of the first order. A second

order HMM assumes that the present state depends on the two previous states,

and the third order HMM considers three previous states and so on.

5.5.1.2 Parameters

Suppose we have an NS-state HMM model Λ, where NS is the total number

of states denoted S = {s1, s2, . . . , sNS
}. Whenever a sequence of length α,

R = {R1, R2, . . . , Rα}, is observed, the objective of the HMM is to determine

the corresponding state sequence S = {s1, s2, . . . , sα}. One of the three primary

parameters of any HMM is the transition probability, which designates the prob-

ability of arriving at the next states for each present state. In Ex 5.1, it denotes

Figure 5.4: Illustration of a three state HMM - Transition probabilities.

Table 5.2: Illustration of a three state HMM - Emission probabilities.

probability weather

mail sunny soggy rainy

dry 0.9 0.3 0.1

wet 0.1 0.7 0.9
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for instance, the probability of tomorrow being “rainy” if today is “sunny”, which

is 0.1 in Figure 5.4. These probabilities can be obtained from the data of weather

patterns for the past years. Since it is a first order Markov process, we can rep-

resent the probability of all possible transitions from one state to another as a

matrix A, which is termed as the transition matrix.

Ex 5.2. For the above example, the matrix A will be,

A =







0.6 0.3 0.1

0.3 0.4 0.3

0.1 0.3 0.6







where each row corresponds to a present state, and each column corresponds to

a next state of the HMM.

Since the model is a HMM, the actual states are hidden from the observer. In

Ex 5.1, the observer is in a closed room and is unaware of the actual weather

outside, and the only observable data is the dampness of the mails received each

day. The observer classifies the mail as either being “Dry” or “Wet”, and further

proceeds on to model the possible state of weather for that day. One can generate

a probability of each type of observation in each state. These probabilities are

termed as emission probabilities and form matrix B.

Ex 5.3. In the emission probability matrix given below

B =

(

0.9 0.3 0.1

0.1 0.7 0.9

)

the rows correspond to the condition of the mail and the columns correspond to

the three states of the weather outside.

Another parameter of the HMM is π, which is the set of probabilities of starting

at different states. π can be either uniform, random, or any vector generated

from prior knowledge. Therefore, any HMM can be defined as Λ = (A,B, π).

We denote A = {aij}NS

i,j=1 the transition probability from state i to j, and B =

{bi(R)}NS

i=1 the output probability distribution [Oudelha & Ainon, 2010].
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5.5.1.3 Statistical Theory of HMM

HMMs have a strong statistical basis and are used in different aspects. We cover

here one aspect, which will be used in our application. Given a NS-state HMM

model Λ, and an observation sequence R, the aim is to evaluate the probability

of observing the sequence P (R|Λ). This is a problem of evaluating the observed

sequence when we know the parameters of the HMM. In the simplest form, we

can break down the evaluation of P (R|Λ) as follows. Given a state sequence

S = {s1, . . . , sα}, 1 ≤ α ≤ NS, we can compute the joint probability of the

observed sequence and the state sequence,

P (R, S|Λ) = P (R|S,Λ)× P (S|Λ). (5.9)

This is the product of the probability of the observation sequence R given S,

and the probability of the state sequence S given the model. The first term is

obtained from the emission matrix B as,

P (R|S,Λ) =
α
∏

f=1

bsf (Rf ). (5.10)

The second term is obtained from the transition matrix A as,

P (S|Λ) =
α
∏

f=1

asf−1sf . (5.11)

We can then derive P (R|Λ) as the summation of P (R, S|Λ) over all possible state
sequences S [Yen et al., 1997],

P (R|Λ) =
∑

for all S

P (R, S|Λ) =
∑

for all S

α
∏

f=1

asf−1
asf bsf (Rf ). (5.12)

The total number of state paths increases quickly with the length of the sequence,

and thus becomes computationally expensive and not feasible depending on α.

However, there exists a forward–backward algorithm that can be used to obtain

P (R|Λ), and reduces the computational burden. The expression in equation

(5.12) can be transformed as follows,

P (R|λ) =
NS
∑

y=1

P (R1, . . . , Rf , sf = y|Λ).P (Rf+1, . . . , Rα|sf = y,Λ). (5.13)
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The probability of observing the sequence can thus be determined using forward

and backward probabilities,

gf(y) = P (R1, . . . , Rf , sf = y|Λ). (5.14)

hf(y) = P (Rf+1, . . . , Rα|sf = y,Λ). (5.15)

The probabilities in equations (5.14) and (5.15) can be computed recursively,

gf+1(y) =

[

NS
∑

x=1

gf (x)axy

]

by(Rf+1); (5.16)

hf (y) =

NS
∑

x=1

ayxbx(Rf+1)hf+1(x). (5.17)

Therefore, the probability P (R|Λ) is given by,

P (R|Λ) =
NS
∑

y=1

gf(y)hf(y). (5.18)

This is the probability of observing a sequence R of length α given an NS-states

HMM Λ.

5.5.2 Architecture

In this tracking approach, we make use of the trajectory of the MN in indoor

environments. The objective is to detect a transition of the MN from any zone

to another in a period of time. For that reason, we use the HMMs to determine

a probability or likelihood that the MN has followed a certain trajectory. Each

HMM Λ is defined by three parameters, Λ = (A,B, π), where A is the transition

matrix, B is the emission model, and π is the vector of initial state probabilities.

As a state sequence S = {s1, . . . , sα} is determined, we can observe a sequence

R = {R1, . . . , Rα} since the states are hidden, corresponding to a vector of RSSI

measurements at each state. We are interested in determining the probability

P (R|Λ), which is the probability of observing the sequence R, given the HMM

model Λ. This probability is used as an evidence to be combined with that
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obtained by the observation model O(·) to determine a level of confidence of

having the MN residing in each zone.

We construct a set of HMMs denoted as Λij, i, j ∈ {1, . . . , NZ}, where Λij is an

NS-state HMM corresponding to a transition region or trajectory between zones

Zi and Zj. The parameter NS is the number of states chosen by the user in each

transition region. In the offline phase, a transition region between each pair of

neighboring zones is created as shown in Figure 5.5(a). This region is divided into

NS states. At each state, a set of RSSI measurements is collected. Trajectories or

sequences are constructed by randomly selecting a measurement from each state,

as shown in Figure 5.5(b). All these constructed trajectories are considered as a

database for each HMM.

The parameters of each HMM Λij = (A,B, π) are calculated as follows:

• Since at each state, except for the first and the last where there is only two

options, the MN can equiprobably stay in its position, move to the state

upfront, or move to the state behind, we define the NS × NS transition

zone

Zj

neighboring zone

Zj−1

Zj+1

transition zone

(a) Construction of transition region be-

tween neighboring zones.

state 1

state NS

transition zone

(b) Creation of NS-state HMM from trajec-

tories in each transition region.

Figure 5.5: Illustration of the architecture of the third mobility model.
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matrix A as,
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• The emission model of each sequence is computed by modeling the offline

collected RSSI measurements of each sequence with a multi-dimensional

distribution as discussed in Section 3.3.1.

• Unless there is a prior knowledge regarding the starting state of the MN,

the vector π is defined as π = [ 1
NS

, . . . , 1
NS

].

5.5.3 Mass association

The objective of the proposed mobility model is to assign a mass or evidence

that the MN has followed a trajectory, which is a transition between a zone and

another. After constructing a HMM Λij for each transition between two zones as

explained in the previous paragraph, it is time to use these HMMs to estimate

the trajectory of the MNs. Once a sequence R = {R1, . . . , Rα} is detected,

each HMM Λij assigns a probability or likelihood that the MN has followed the

state sequence corresponding to that HMM. The probabilities P (R|Λij), i, j ∈
{1, . . . , NZ}, are computed for each HMM using the equations (5.9) till (5.18).

Thus, the probability of transitioning from any zone to another is computed. For

pairs of zones where no transition is possible, the probability is zero. We define

the transition coefficient pij, i, j ∈ {1, . . . , NZ}, from Zi to Zj as follows,

pij =

{

P (R|Λij), if i 6= j;

1−∑NZ

j=1 P (R|Λij), if i = j.
(5.19)

The reason why we compute pij for i = j as such, is because we consider that

the probability of the MN staying in the same zone, is the complement of all the

probabilities that the MN move from that zone to all other zones. We cannot use

the obtained derivations to determine a massmM,t(·) as we did in the previous two

mobility models. This is because the obtained probabilities resemble a transition

125



5. MOBILITY-BASED TRACKING

from a zone to another only and not evidence that the MN is any zone at the

current instant. In addition, the determination of pij for i = j, as done here

is not valid, except by the way we are transferring this probability to the next

instant, and its combination with the observation model. In fact, if there is no

transition, we will obtain large transition coefficients pii, for all i ∈ {1, . . . , NZ},
which results in false estimations.

5.5.4 Confidence-based zone estimation

The propagation of the probability assigned by the HMMs to the next instant is

essential, especially that it allows the calculation of the transition coefficient as

explained. The level of confidence assigned by the tracking model T to each zone

Zj is computed as follows,

Wt(Zj) =

NZ
∑

i=1

mO,t−1(Zi)× pij , (5.20)

where mO,t−1(Zi) is the mass associated by the observation model O(·) at instant
t − 1. If there is no transition from a zone to another, the coefficient pij for

i = j will be large as mentioned in the previous paragraph. This does not cause

a problem when used in equation (5.20) because, if there is no transition, all

coefficients pij for i = j will be large, and thus the mass mO,t−1(·) is the deciding
evidence. The zone already having a high confidence in the previous instant will

still have high confidence, relative to the other zones.

5.6 Experimental Results

In this section, we evaluate the performance of the proposed tracking approaches

through experiments in a real environment. We study the influence of each of the

three mobility models when combined with each of the two observation models.

We then study the influence of the parameters of the mobility models, which are

vmax and α.
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5.6.1 Experimental Setup

Experiments are realized in the same WLAN environment described in Chapter 4,

which are the statistical and operational research department, and the Living Lab

at the University of Technology of Troyes, France. The layout plans of the two

environments are shown in Figure 4.5. The layout plan of Experiment 1 has an

approximated area of 500 m2, and is partitioned into 21 zones, with 23 detected

APs. The layout plan of Experiment 2 has an area of 550 m2 and is partitioned

to 19 zones, with 38 detected APs. As described previously in Chapter 4, we refer

to the observation model proposed in Chapter 3, as a basic observation model

(BOM), and to the observation model proposed in Chapter 4, as an extended

observation model (EOM).

5.6.2 Evaluation of performance

To evaluate the performance of the mobility-based tracking approaches, 10 tra-

jectories of 50 observations each are considered. An important parameter in our

models is the maximum speed of movement vmax. In our application, we aim to

track dependent elderly people. For that reason, we use information regarding

this group of people. Bohannon [1997] studies the comfortable and maximum

walking speeds of 230 healthy adults aged 20-79 years. The corresponding tech-

nical term used to express the comfortable speed of the person is the gait speed.

The study finds the following results. The mean comfortable gait speed for women

in their 70s is 1.27m/s, while it is 1.33m/s for men. The maximum gait speed for

the same age group is 1.74m/s for women, while it is 2.07m/s for men. Montero-

Odasso et al. [2004] study the gait speed of 100 elderly patients aged above 75

years. A maximum gait speed is found to be 0.8m/s. Graham et al. [2010] study

the walking speed of 174 in-hospital elderly people aged above 65 years. The

study reports a maximum speed of 1.3m/s for relatively healthy people, while

0.7m/s for people suffering from poor health. We consider here vmax = 1m/s, as

a maximum average speed of dependent elderly people in indoor networks; the

influence of this parameter is studied in Section 5.6.2.2 with several values.
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5.6.2.1 Influence of mobility models

We study here the influence of the mobility models on the performance of the

tracking approach when combined with the observation models BOM and EOM,

for a maximum speed vmax = 1m/s. The time of execution of the localization

algorithm is ∆tloc = 0.75s, which is the time needed by the software to scan the

network and measure the RSSIs of the surrounding WiFi APs. In each transition

region between neighboring zones, an 10-state HMM is created for the third

mobility model. There is no general rule to determine the best number of states

in our application. However, it is not important to determine it exactly. Any

number of states that cover the transition region between the zones is acceptable.

What really counts, is the chosen length of the observed sequence α. We consider

here a sequence length α = 8. This means that after receiving a sequence of 8

observations, we use the HMMs to determine the probability that the MN has

followed the 8-state sequence of the 10-state HMMs.

Table 5.3 shows the influence of the three mobility models on the performance

of the tracking approach when combined with the BOM and EOM. As the table

shows, an enhancement in the overall accuracy is noted when the observation

models are combined with the proposed mobility models, yet at the expense of

the processing time. The enhancement carried by the first mobility model is

due to the presence of diametrically opposite erroneous zones with respect to

APs, which are recovered by this model. A significant amelioration in the overall

accuracy is noted upon using the second mobility model. The advantage of the

latter is in the high accuracy achieved in assigning masses for sub-zones, due to

the large number of APs selected inside each region. The third mobility model

carries the most important enhancement on the overall accuracy. However, it

adds a non-negligible computational complexity to the tracking algorithm.

5.6.2.2 Influence of vmax

In this paragraph, we study the influence of the assumed maximum speed. In the

previous section, it was supposed to be vmax = 1m/s. Here, we vary the maximum

speed from 0.5m/s to 2.5m/s, and study the performance of the first and second

mobility models. Tables 5.4 and 5.5 show the influence of the maximum speed
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vmax on the overall accuracy, for Experiments 1 and 2 respectively. As the tables

show, the overall accuracy of the tracking algorithm decreases as the maximum

speed increases. This is due to the fact that the MN is supposed to cover larger

distances in a shorter time, thus increasing the ambiguity of its next possible

destinations. This makes the proposed method more convenient for tracking of

dependent elderly people, where the maximum speed is supposed to be low.

5.6.2.3 Influence of α

In this paragraph, we study the influence of the length of the sequence α. We vary

α from 2 to 8, and study the performance of the third mobility model. Table 5.6

shows the influence of the sequence length α on the overall accuracy and the

execution time. As the table shows, the overall accuracy of the tracking algorithm

generally increases as the sequence length increases. This is due to augmenting

the amount of information used by the HMMs to determine the likelihood that

the MN has followed the different trajectories. However, enlarging the sequence

length increases the execution time.

Table 5.3: Influence of the mobility models on the overall accuracy and the

processing time of the tracking algorithm in Experiments 1 and 2.

Experiment 1 Experiment 2

Model accuracy (%) online time (s) accuracy (%) online time (s)

BOM 77.77 0.1018 78.91 0.1374

BOM + 1st mobility model 78.54 0.1327 82.52 0.1616

BOM + 2nd mobility model 82.44 0.1561 84.71 0.1844

BOM + 3rd mobility model 84.91 0.1944 86.88 0.2078

EOM 88.78 0.2418 90.21 0.2955

EOM + 1st mobility model 90.38 0.2782 91.58 0.3162

EOM + 2nd mobility model 92.96 0.2956 93.40 0.3449

EOM + 3rd mobility model 94.48 0.3548 95.21 0.3911
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Table 5.4: Influence of the maximum speed vmax(m/s) on the accuracy (%) of

the first and second mobility-based tracking approach in Experiment 1.

Experiment 1 vmax(m/s)

Model 0.5 1 1.5 2 2.5

BOM + 1st mobility model 79.89 78.54 78.32 77.24 76.84

BOM + 2nd mobility model 84.18 82.44 81.69 80.03 78.87

EOM + 1st mobility model 91.85 90.38 89.98 89.11 88.95

EOM + 2nd mobility model 94.07 92.96 91.12 90.87 89.19

Table 5.5: Influence of the maximum speed vmax(m/s) on the accuracy (%) of

the first and second mobility-based tracking approach in Experiment 2.

Experiment 2 vmax(m/s)

Model 0.5 1 1.5 2 2.5

BOM + 1st mobility model 83.47 82.52 82.48 81.91 81.73

BOM + 2nd mobility model 85.28 84.71 83.56 82.36 81.97

EOM + 1st mobility model 92.30 91.58 91.33 90.92 90.30

EOM + 2nd mobility model 94.79 93.40 92.88 91.19 90.57

Table 5.6: Influence of the sequence length α on the performance of the third

mobility-based tracking approach in Experiments 1 and 2.

Experiment 1 Experiment 2

α accuracy (%) online time (s) accuracy (%) online time (s)

2 88.95 0.2658 90.46 0.3055

4 90.35 0.2969 91.62 0.3287

6 92.77 0.3288 93.75 0.3569

8 94.48 0.3548 95.21 0.3911

10 94.62 0.3967 95.83 0.4344
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5.7 Conclusion

In this chapter, we presented mobility-based algorithms for tracking for sensors in

indoor wireless networks. At first, we proposed three tracking models that make

use of the mobility of the sensor to propagate the evidence from a previous instant

to the current one. The first mobility model is based on the original succession of

the zones and uses the maximum speed to track the sensor. The second mobility

model is similar to the first one but requires creating sub-zones and a new data

acquisition phase to collect RSSI measurements in each created sub-zone. The

third mobility model creates transition regions and construct hidden Markov

models for each trajectory or sequence corresponding to a transition region. We

also described how the associated evidence by the mobility models should be

combined with observation models proposed in Chapters 3 and 4. Finally, we

illustrated the performance of the tracking approaches through experiments in

two real scenarios. The realized experiments demonstrated an enhancement in

the overall accuracy carried by the mobility models to track the sensors in real

time. We also showed that the accuracy of the first and second mobility-based

tracking models decreases when the maximum speed increases. In addition, the

accuracy of the third mobility-based tracking model increases as the sequence

length increases. In addition to the enhancement in the overall accuracy, an

important advantage of the proposed approaches, as compared with the state-

of-the-art tracking methods, is that no inertial measurement units are needed to

perform the tracking.
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In this chapter, we propose a decentralized approach for sensors localization. The

localization methods presented earlier are centralized, where all information are

sent to one fusion center. Information processing is thus limited to only one

entity. We introduce here an extension of the proposed centralized localization

approach that allows us to localize mobile nodes in a decentralized framework,

where several entities participate in the localization process. The targeted area

is partitioned into several sectors, each of which having a local fusion center,

namely a calculator, capable of receiving, processing, and emitting data. Each

calculator runs then a local localization algorithm, using any of the observation

and mobility models described in Chapters 3, 4, and 5, to estimate the zones

of the mobile nodes. The fusion of all calculators estimates yields a final zone

estimate. Various decentralized approaches are described, and their performance

is evaluated through experiments, and compared against the state of the art.

6.1 Introduction

The sensors deployed in the WSN, where localization and tracking are to be real-

ized, are smart and have the capability of acquiring and processing data. These

sensors are highly communication-intensive systems, as they keep communicat-

ing with each other and interacting with the environment [Zhou et al., 2015].

However, they have limited resources regarding processing, memory, energy, and

communication bandwidth [Nikolov & Haas, 2018]. The network topology is a

key concept in designing such intelligent systems in WSNs, as it plays a vital role

in minimizing various resource constraints [Chen et al., 2011]. An efficient topol-

ogy reduces the amount of communication required by the sensors to exchange

information, and hence saves energy. A topology based on minimizing the dis-

tance between neighbor nodes, for instance, reduces the probability of losing a

message during communication. Moreover, a well-designed topology can also re-

duce radio interference and facilitate data aggregation, thus reducing the amount

of processing cycles and elongating the network lifetime [Velmani & Kaarthick,

2015]. Other important issues influenced by the topology are the robustness, the

scalability, the performance, and the complexity of the designed system.
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Three main topologies have been proposed in literature for localization in WSNs,

outlined in the following; for more details, see [Cota-Ruiz et al., 2016; Üney et al.,

2016; Yan et al., 2017]. On one hand, there exists the centralized topology where

sensors acquire data measurements and transmit them to the fusion center for

processing [Talebi & Hemmatyar, 2014]. In such a topology, the sensors are not

required to carry out complex computations. Although it can achieve high quality

processing, the centralized topology results in unnecessary energy costs due to the

transmission of measurements over long distances [Mamun, 2012]. On the other

hand, the distributed topology treats equally all the sensors, each working as a

local fusion center. In such topology, the sensors perform computations and ex-

change data with their neighboring sensors, located within their communication

range. Since information processing is no longer limited to a single fusion center,

the network is more robust to failures. However, developing relevant distributed

algorithms remains a challenging issue. The third topology is the decentralized

topology, also called clusterized topology, which takes the advantages of the pre-

ceding two topologies by partitioning the sensors into several clusters, each having

its own fusion center or cluster head [Iliev & Paprotny, 2015]. Information is ex-

changed between the sensors of each cluster and transmitted to the local fusion

center. The outputs of all fusion centers are combined to yield a final decision.

Such a topology increases the scalability of the network, and reduces the energy

consumption leading to a prolonged network lifetime [Üney et al., 2016]. An il-

lustration of the general structure of the centralized and decentralized topologies,

considering a set of sensors {s1, . . . , sN}, is shown in Figure 6.1.

(a) Centralized topology. (b) Decentralized topology.

Figure 6.1: The general structure of the centralized and decentralized topologies

for localization in WSNs.
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In Chapter 3, we presented an observation model for localization of mobile sensors

(MNs) in indoor environments, where the objective was to find the zone of the

MN at each instant. The high precision of the model decreases as a function of

the surface of the targeted area. In fact, as the number of zones increases, the pro-

posed model fails to distinguish between the different zones, thus degrading the

accuracy. For that reason, an extended observation model was proposed in Chap-

ter 4. The advantage of the latter is that it manages to keep a high accuracy even

in case of large number of zones due to its hierarchical approach. However, the

centralized architecture adopted there is computationally complex and requires

at average double the time needed by similar methods in the domain. The need

for a fast, more scalable and robust, yet precise, method for real time localization

applications, motivated our research for a decentralized approach.

In this chapter, we investigate decentralized architectures for zoning-based local-

ization. Inspired by the decentralized topology, the proposed approach is decen-

tralized for zoning-based localization. At first, we partition the targeted area into

several sectors, depending on the environment characteristics, and then assign a

calculator for each sector, which locally estimates the MN’s zone. Each calcula-

tor performs a local localization algorithm, which can be only the zoning-based

localization method proposed in Chapter 3, or the mobility-based tracking tech-

nique proposed in Chapter 5 by combining the basic observation model to any

of the mobility models. It can also be the extended observation model proposed

in Chapter 4 in case each considered sector consists itself of a large number of

zones. The decision is then made by combining evidence from all calculators. In

addition, we present a calculator placement technique to determine the optimal

number of calculators and their positions.

In the following, we first formulate the problem. We then describe the decentral-

ized approach by proposing three different architectures. Afterwards, we present

an optimal calculators placement technique using two strategies. Then, we ex-

plain the local localization algorithm executed by each calculator. Finally, we

evaluate the performance of the proposed approach against the previously de-

scribed centralized approaches and the state of the art.

136



6.2 Problem Formulation

6.2 Problem Formulation

The objective of the proposed algorithm is to determine the zone of a mobile

node in a decentralized architecture. This is done by assigning a confidence level

Cft(·) to each zone at each instant t. Suppose the targeted area is partitioned

into NC sectors, each having its own calculator, thus obtaining NC calculators

in total, denoted Ci, i ∈ {1, ..., NC}. Let Zj , j ∈ Ji, be the set of zones of the

i-th sector, Ji being the set of indices of zones constituting sector i. As defined

in the centralized approaches before, we denote APk, k ∈ {1, . . . , NAP}, the APs

installed in the network. At the offline phase, a set of Nj RSSI measurements

ρj,k,ℓ, ℓ ∈ {1, . . . , Nj}, are collected in the zone Zj with respect to AP APk. Then

in the online phase, a MN to be localized uses the vector of RSSIs ρt ∈ RNAP at

time t. Since not all APs are detected at each instant, we denote IAP,t the set of

indices of the APs whose signals are detected by the mobile node at time t and

ρt,k, k ∈ IAP,t, their measured RSSIs. The vector ρt is completed with zeros at

positions where APs are not detected. The calculators within its neighborhood

receive the RSSIs vector and use it with the offline database to assign an evidence

to each zone. Local estimations are then combined to reach a final decision of

the MN’s zone. In the following, IC,t denotes the set of indices of the calculators

within the communication range of the MN at time t. Figure 6.2 shows two MNs

s1 and s2 trying to communicate with the surrounding calculators. As the figure

shows, the MN s1 can communicate with C1 and C2 since they are in its sensing

range, while s2 can communicate with C3 only. In these cases, IC,t = {1, 2} for

s1, while IC,t = {3} for s2.

Figure 6.2: Illustration of communication between MNs and calculators.
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6.3 Decentralized Approach

In this section, we present three decentralized approaches that differ by the geo-

graphic structure of the sectors and the fusion of evidence.

6.3.1 First decentralized approach

In this approach, we assign distinct sectors to each calculator, which means that

the zones constituting a certain sector are totally different than those constituting

another one; i.e., in any two sectors i, i′ ∈ {1, . . . , NC} with i 6= i′, we have Zj 6=
Zj′, ∀j ∈ Ji, j

′ ∈ Ji′. An example of such architecture is shown in Figure 6.3(a),

where calculator C1 is responsible for the blue sector constituted of four zones,

C2 for the red sector of two zones, and C3 for the green sector of three zones. The

Access Points are the sources of information for localization and are installed in

the network. The mobile node moves inside the environment, collects observation

measurements from APs, and sends the information to surrounding calculators.

Let ηi,t be the strength of the signal received by calculator Ci from the mobile

node. Each Ci performs a local localization algorithm that will be explained in

Section 6.5 and assigns certain evidence to each zone of its sector. Letmi,t(Zj), j ∈
Ji, be the assigned evidence by the local localization algorithm to the zones of

sector i at time t. Here, the calculator decides locally through normalizing mi,t(·)
on all zones of the sector, as follows,

m̃i,t(Zj) =
mi,t(Zj)

∑

q∈Ji mi,t(Zq)
. (6.1)

If only one calculator receives the node’s message, the final decision will be iden-

tical to the local one, and hence the confidence assigned to each zone will be

equal to the normalized mass, i.e., Cft(Zj) = m̃i,t(Zj). However, if more than one

calculator detect the node’s message, evidence is put together to reach a final

decision. Since sectors are distinct, each zone has only one affiliated evidence.

Thus, the fusion is all about weighting calculators decisions, followed by a final

normalization phase on the whole set of zones. Since the strength of the signal

decreases with the traveled distance, more confidence is given to calculators re-

ceiving stronger signals. The confidence attributed to each zone of the sector i is
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then computed,

Cft(Zj) =

1
wi,t

× m̃i,t(Zj)
∑

p∈IC,t

∑

q∈Jp
1

wi,t
× m̃p,t(Zq)

, (6.2)

such that wi,t =
ηi,t

∑

x∈IC,t
ηx,t

is the weight given to each calculator Ci.

In addition to its simplicity, an important advantage of such an approach is its

scalability. Any expansion of the targeted area can be easily treated by adding the

new calculators to the expanded area without any modification on the already ex-

isting architecture. Moreover, it reduces energy consumption, as mobile nodes are

required to send information to calculators in their range. It also increases robust-

ness, since the existence of several calculators renders the network more resistant

to failures that are fatal in the case of a centralized approach. However, a major

drawback of the described strategy is that it introduces a significant localization

error when more than one calculator detect the MN’s message. Specifically, the

normalization phase of equation (6.1) made by the calculator corresponding to the

sector where the MN does not really reside assigns comparatively high confidence

values for zones that are, in fact, out-of-interest.

(a) Distinct sectors. (b) Overlapping sectors.

Figure 6.3: Network architectures - △ designates calculators, � designates

Access Points, • designates a MN.
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6.3.2 Second decentralized approach

To overcome the localization error problem introduced by making a local decision

on each calculator level before fusion, we consider here another strategy. We

adopt the same architecture as of the previous one, but instead of performing the

normalization of masses at each calculator, the local estimations predicted by all

calculators are combined first, then a final decision is made based on the obtained

combined evidence. In the same manner, if only one calculator detects the node’s

message, the confidence associated to each zone is equal to the normalized mass

computed by equation (6.1). If more than one calculator detect the sensor’s

message, the attributed confidence is obtained by normalizing over all the zones,

Cft(Zj) =

1
wi,t

×mi,t(Zj)
∑

p∈IC,t

∑

q∈Jp
1

wp,t
×mi,t(Zj)

. (6.3)

The advantage of this strategy, over the previous one, is that it does not assign

unwanted high evidence for zones of sectors where the mobile node does not

really reside. Indeed, only an estimation is predicted locally at each calculator

level without making a decision, which then is combined with all other calculators

estimations to reach a final decision. A disadvantage of this proposed approach

is noted if the localization algorithm degrades in accuracy when increasing the

number of zones. More precisely, for this strategy to achieve a high accuracy, the

localization algorithm should be able to assign discriminating evidence on wider

areas, hence for larger number of zones.

6.3.3 Third decentralized approach

In the previous two approaches, distinct sectors have been studied. Here, we

associate overlapping sectors to calculators, which means that certain zones cor-

respond to more than one sector; i.e., In two sectors i, i′ ∈ {1, . . . , NC}, i 6=
i′, ∃j ∈ Ji, j

′ ∈ Ji′ , such that j = j′. Such architecture is shown in Figure 6.3(b),

where sectors 1 and 3, for instance, overlap at zones Z2 and Z5, while the three

sectors 1, 2 and 3 overlap at zone Z5.

The design of such an architecture is done in the offline phase when collecting

measurements and constructing databases. In each zone, the mobile node sends a
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certain number of messages to surrounding calculators. The ones that receive the

MN’s messages are supposed to have their corresponding sector constituting the

zone from which the message originated. In the same example of Figure 6.3(b),

messages sent within Z1 for instance are only detected by C1, hence it is the first

zone of sector 1. Therefore, the database constructed in Z1 is only included in

that sector. Messages originating from Z4 are detected by C1 and C2, thus both

sectors 1 and 2 cover that zone.

At the decision level, there is no difference with respect to the two preceding

architectures if only one calculator detects the node’s message in the online phase,

where the confidence assigned to each zone is equal to m̃i,t(Zj), computed using

equation (6.1) for one specific i. However, if more than one calculator detect

the MN’s message, only zones at the intersection of all the sectors refereed in

IC,t are considered. Local computations are carried out at the calculators. Then

information is combined in the following manner,

mF,t(Zj) =
∏

i∈IC,t

m̃i,t(Zj), ∀j ∈
⋂

i∈IC,t

Ji. (6.4)

The quantity mF,t(Zj) is null for all the zones that are not at the intersec-

tion of the sectors corresponding to the detected calculators; i.e., mF,t(Zj) =

0 ∀Zj such that j /∈ ⋂i∈IC,t
Ji. The confidence assigned to each zone is calculated

by normalizing all combined evidence,

Cft(Zj) =
mF,t(Zj)

∑

p∈IC,t

∑

q∈Jp mF,t(Zq)
. (6.5)

This approach takes the advantages of both previous ones while solving their

inconveniences. In fact, this strategy avoids assigning high confidence for out-of-

interest zones as the first approach does, since a message received by the calculator

indicates here for sure that the MN resides in one of the zones of its corresponding

sector. Yet, it continues to profit of the local decision made at the calculators

level. On the other hand, it does not introduce a localization error as in the case

of the second approach, since there is no need to assign discriminating evidence

to large number of zones. A local decision is being made instead, yet with bene-

fiting of the fusion of evidence of several calculators as introduced in the second

approach.
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6.4 Calculators Placement

The calculators are the smart devices capable of exchanging information with the

environment, through reception, processing, and transmission of signals. Since

neither the number of required calculators nor their places are known a priori, it

is important to develop a certain strategy to place them. One possible solution is

to develop an accuracy-based algorithm-dependent strategy. The user measures

the efficiency of the local localization algorithm by progressively increasing the

number of zones and specifying an accuracy threshold. Once the overall accuracy

falls below the threshold, no more zones are added, and thus sectors of approx-

imately the same resulting number of zones or surface area are considered for

each calculator. Calculators are then distributed in the same manner to cover

the whole targeted area. However, such solutions incorporate randomness in the

construction of the network and are case dependent.

Here, we do not adopt such strategy, and we rather propose a more systematic

solution based on the minimal number of required calculators criterion. The

problem is formulated as follows. Suppose, without loss of generality, the targeted

area is a rectangle of dimensions L×H . Other forms are treated by considering

the larger rectangle then removing parts that do not exist in the original area.

Let δ be the sensing range of the mobile node. If the sensing range is not circular,

we consider the largest circle inscribed in the scope. The objective is to minimize

the number of calculators NC needed to cover the whole area, and determine their

placements. For that reason, we pass from circle around MN to circle around

calculator, since for a distance less than or equal to δ, the MN belongs to the disk

centered at the calculator of radius δ.

This problem can be tackled as either packing of circles in a plane or covering

a region with circles, which are treated in the domain of mathematics. The

difference between the two is that the former prohibits overlapping between the

circles [He & Dosh, 2017], while the latter completely covers the targeted area

[Bánhelyi et al., 2015]. Both approaches serve in generating an overlapping-

sectors architecture, as discussed in Section 6.3.3. To generate a distinct-sectors

architecture, it is then enough to assign manually the overlapping zones to a
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corresponding sector. Examples of the two tiling arrangements are shown in

Figures 6.4(a) and 6.4(b). In the following, we discuss the calculators’ placement

technique in each of the two cases.

6.4.1 Circle packing

A circle packing is an arrangement of circles inside a given boundary where no

couple of circles is allowed to overlap, with some or all of them being mutually

tangent [He & Dosh, 2017]. It has been proved that the hexagonal tiling with

circles inscribed in the hexagon, shown in Figure 6.5(a), is the optimal of all

(a) Circles packing. (b) Circles covering the region.

Figure 6.4: Tiling arrangements for optimal calculators placement.

(a) Hexagonal tiling for circle packing. (b) Hexagonal tiling for circle covering.

Figure 6.5: Hexagonal tilings.
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possible plane packing strategies [Hales, 2000]. Let the radius of each circle be

δ = 1 unit, then its area is equal to π. As it is noted from the figure, the hexagon

touches the circle at the midpoints of its sides, hence the distance between the

midpoints of opposite sides is 2 units, thus the length of each hexagon side is 1√
3
.

The area of the hexagon can be found by splitting it into six equilateral triangles

and therefore the total area is equal to 6 · 1√
3
· 1 = 2

√
3 square units. The number

NC of required circles, hence calculators, is computed as follows,

π

2
√
3
=

NC × πδ2

L×H
=⇒ NC = ceil

(

L×H

2
√
3× δ2

)

, (6.6)

where ceil(·) is a function that rounds the number into the upper integer. The

packing density D is the ratio of the area covered by the circles to the total area,

D =
number of circles × area of a circle

Total area
=

NC × πδ2

L×H
≈ 0.907. (6.7)

This leads to a coverage of 90.7%. To deploy the circles, B packs are placed

horizontally, each containing A circles. In a Cartesian coordinate system of origin

the bottom left corner of the rectangle, the position [xa, yb] of the center of the

circle a of pack b, 1 ≤ a ≤ A, 1 ≤ b ≤ B, is determined as,

[xa, yb] =

{

[√
3(a− 1)δ, (2b− 1)δ

]

, if a is odd;
[√

3(a− 1)δ, 2(b− 1)δ
]

, if a is even.
(6.8)

6.4.2 Circle covering

A circle covering is an arrangement that aims at filling the whole plane with

circles without leaving any gap neither between the circles nor between them and

the boundary [Bánhelyi et al., 2015]. It has been found that the optimal covering

of a plane with circles is to circumscribe the circles about hexagons of a regular

hexagon network [Kershner, 1939]. Such tiling is shown in Figure 6.5(b), where

the circles are circumscribed around the hexagons, instead of being inscribed.

Here, the minimum required number of circles is [Kershner, 1939],

NC = ceil

(

2
√
3L×H

9× δ2

)

. (6.9)
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In this case, the distance between the centers of any two adjacent circles is equal

to
√
3δ. To cover the plane, A packs are placed vertically, each containing B

circles. The position [xa, yb] of the circle b of pack a, 1 ≤ a ≤ A, 1 ≤ b ≤ B, is,

[xa, yb] =

{

[

3
2
(a− 1)δ,

√
3(b− 1)δ

]

, if a is odd;
[

3
2
(a− 1)δ, (

√
3(b− 1) + 1)δ

]

, if a is even.
(6.10)

The density of this tiling strategy is D = NC×πδ2

L×H
= 2π

√
3

9
≈ 1.209.

6.4.3 Packing versus covering

The advantage of the circle packing approach is that it assigns fewer numbers of

calculators than the circle covering approach. The former requires 11 calculators

for instance to cover a 30m× 30m = 900m2 region for MNs with 5m as sensing

range, while the latter requires 14. However, the packing strategy keeps gaps

making the MN undetected by any calculator in certain positions. Yet, since the

sensing range is practically not circular, and here is supposed to be the greatest

circle included in the antenna’s lobe, then the 90.7% coverage will be practically

acceptable especially for large surface areas. Though the circle covering approach

leads to more calculators, it guarantees a 100% plane coverage, ensuring that all

MNs are detected by at least one calculator at any position.

6.5 Local Localization Algorithm

Each calculator runs a local localization algorithm to localize MNs in its corre-

sponding sector. The objective here is to determine a function Ii(·) : RNAP →
[0, 1]|Ji| for each calculator Ci such that Ii(ρt) =

(

mi,t(Zj1), . . . , mi,t(Zj|Ji|
)
)

,

where Ji = {j1, . . . , j|Ji|}, and mi,t(Zj) is the evidence assigned to zone Zj at

time t due to new observation vector ρt ∈ RNAP .

A first solution to determine the function Ii(·) : RNAP → [0, 1]|Ji|, is to use the basic

observation model proposed in Chapter 3. In this case, the function Ii(·) denotes
the basic observation model O(·), the number of zones |Ji| is NZ , and the evidence

mi,t(·) assigned to the zones of sector Ci is mO,t(·). The calculator Ci is thus

responsible for assigning evidence to the zones of its sector. This is done by using
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the offline database of RSSI measurements corresponding to only these zones. The

measurements are modeled to represent the variability of the RSSIs in each zone

with respect to all APs. Afterwards, the belief functions framework is created

in the corresponding sector to assign the evidence mO,t(Zj), j ∈ {1, . . . , NZ},
which represents here mi,t(Zj), j ∈ Ji. The advantage of this model, in addition

to its simplicity, is that it yields a good accuracy on areas with small number

of zones, which can result in an efficient decentralized localization approach on

both accuracy and complexity levels.

However, if the sectors formed by the calculators’ placement technique are by

themselves large, another more relevant solution will be to use the extended

observation model proposed in Chapter 4 as a local localization algorithm to

obtain a good accuracy. In this case, the clustering algorithm is used to group the

zones of the sector Ci to obtain a two-level hierarchy. The AP selection algorithm

in each sector is also applied to choose locally the best subset of APs in terms of

accuracy and redundancy. In the same manner as for the basic observation model,

Ii(·) denotes the extended observation model O(·), and the number of zones |Ji|
denotes NZ . The evidence mi,t(Zj), j ∈ Ji, will be equal to the confidence level

mO,t(Zj), j ∈ {1, . . . , NZ}, assigned by O to the zones of its sector.

A third solution is to use both the observation and mobility models to localize the

MNs locally in each sector, as described in the tracking technique of Chapter 5.

In this case, the function Ii(·) denotes the tracking model T(·), the number of

zones |Ji| denotes NZ , and the evidence mi,t(·) assigned to the zones of sector i

is equal to Wt(·).

6.6 Experiments

To evaluate the performance of the proposed method, real experiments are con-

ducted in a WLAN environment. In the following, the experimental setup is first

introduced. The performance of the proposed method is then evaluated, and is

compared with the previously proposed centralized approaches, and against the

state-of-the-art afterwards.
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6.6.1 Experimental setup

Experiments are realized in the Living Lab of the University of Technology of

Troyes, France. The targeted area of dimensions 22m × 25m, constituted of 21

zones, is shown in Figure 6.6. The MNs to be localized have a sensing range of

δ = 6m. The MNs scan the network and distinguish APs through their MAC

addresses. They then measure the RSSIs and send the information to the corre-

sponding fusion center. It is noted that 23 different AP networks are detected and

hence are used as sources of information. To develop a decentralized localization

algorithm, the three approaches described in Section 6.3 are used. To this end,

the optimal placement technique presented in Section 6.4 is applied to determine

the number and the position of the calculators, resulting in NC = 4.4 ≈ 5 cal-

culators using the circle packing strategy, and NC = 5.8 ≈ 6 calculators using

the circle covering strategy. Since there is no big difference in the number of

calculators between the two strategies, the latter is adopted as it guarantees a

100% coverage. Figure 6.6 shows in red the regions of the calculators using the

circle covering approach. The sectors corresponding to each calculator constitute

all zones totally or partially included in the red region of the calculator. Each

calculator then runs the local localization algorithm described in Section 6.5 to

assign evidence to each zone of its sector. A set of 50 RSSI measurements is taken

in each zone of which 30 are used to construct the kernel-based model, and 20 for

testing in the online phase. An estimation is said to be correct if the algorithm

assigns the highest evidence to the zone where the MN actually resides.

6.6.2 Evaluation of performance

The performance of the proposed decentralized approaches are evaluated by com-

paring them to the previously described centralized methods, which are the basic

observation model (BOM) proposed in Chapter 3 and the extended observation

model (EOM) proposed in Chapter 4. The BOM uses the BFT to merge all ev-

idence using one calculator, while the EOM creates a hierarchy of clusters from

the original zones using divergence similarity. Table 6.1 compares the overall

accuracy of the various decentralized approaches with that of the BOM and the

EOM. A kernel-based model and the AP selection technique are used for all the
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methods. The third approach attains an accuracy of 91.43%, while the first and

the second approaches suffer from high evidence assignment for out-of-interest

zones, and low accuracy over large areas respectively.

To evaluate the robustness of the various techniques, the accuracy is recorded

as a function of the number of failing fusion centers or calculators. For each

new observation, a random set of calculators is supposed to have failed. The

overall accuracy is then determined by the average of the obtained accuracy on

all observations with respect to a certain number of failing calculators. Table 6.2

displays the overall accuracy of both decentralized and centralized approaches.

The centralized approaches, BOM and EOM, will not be able to perform any

localization if one or more calculators fail. In fact, there is only one calculator in

such architectures and hence its failure means the failure of the whole network.

On the other hand, the decentralized approaches can still manage to localize the

MNs upon failure of a certain number of calculators, even though the overall

accuracy degrades. This robustness is a clear advantage of the decentralized

techniques as it allows localization upon calculators’ failure, which cannot be

achieved by the centralized methods.

Figure 6.6: The Living Lab of the University of Technology of Troyes, France; A

section area of 22m× 25m covered by calculators with MNs of sensing range

δ = 6m.
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6.6.3 Comparison to state-of-the-art methods

In this paragraph, the proposed methods are compared with well-known localiza-

tion techniques. Koyuncu & Yang [2011] present a weighted k-nearest neighbors

algorithm (WKNN) for indoor localization. To estimate the position of the MN,

the new received measurement is compared with the elements in the fingerprint

database using Euclidean distances. A set of k smallest Euclidean distances is

selected and the k-nearest neighbors algorithm is then applied. The algorithm

averages the coordinates of the k-nearest neighbors of the MN, weighting each

distance by a factor previously determined according to a mathematical model,

Table 6.1: Comparison between the decentralized and centralized localization

approaches in terms of overall accuracy (%).

Technique NC Overall accuracy (%)

Basic observation model 1 78.91

Extended observation model 1 90.21

First decentralized approach 6 82.14

Second decentralized approach 6 86.90

Third decentralized approach 6 91.43

Table 6.2: Influence of fusion center failure on the overall accuracy of the

decentralized and centralized approaches.

Technique Number of failed fusion centers

0 1 2 3 4 5 6

Basic observation model 78.91 - - - - - -

Extended observation model 90.21 - - - - - -

First decentralized approach 82.14 76.19 64.28 52.30 28.57 23.54 -

Second decentralized approach 86.90 78.57 65.48 54.28 28.81 23.54 -

Third decentralized approach 91.43 81.67 70.24 58.33 29.76 22.62 -
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to give its location estimate. Shang et al. [2004] propose a connectivity-based

localization algorithm. The advantage of connectivity-based algorithms is that

they do not rely on collected measurements. The MN’s location is given as the

intersection of the ranges of the APs detected by the MN. On the other hand,

conventional classification techniques such as neural network (NN) [Dai et al.,

2016] and Support Vector Machines (SVM) [Zhang et al., 2017] are applied. Ta-

ble 6.3 compares the overall accuracy and the localization processing time of the

various described techniques. As the table shows, the third approach outperforms

other state-of-the-art techniques in terms of accuracy and processing time. The

proposed method in all three approaches gains advantage of the simplicity of the

local localization algorithm, which results in a relatively low complexity, and thus

low processing time.

An important factor to take into account is the dependency of the localization

method on the number of APs, which are the sources of information. A method

that requires a high density of APs is not favored, as it is practically unfeasible

in most of the cases due to the unavailability of sufficient APs in the network, or

Table 6.3: Comparison between various localization techniques in terms of

overall accuracy (%) and processing time (s).

Technique accuracy (%) online time (s)

Weighted K-nearest neighbors 84.28 0.1265

Connectivity 86.67 0.1338

Neural networks 85.82 0.1866

Support vector machines 86.47 0.1912

Basic observation model 78.91 0.1374

Extended observation model 90.21 0.2955

First decentralized approach 82.14 0.0725

Second decentralized approach 86.90 0.0831

Third decentralized approach 91.43 0.0977
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due to the installation cost. Table 6.4 shows the overall accuracy as a function

of the number of available APs. It is noted that both WKNN and connectivity

methods are highly sensitive to the density of APs, while the proposed method

is less sensitive at this level with a maximum decrease of 8% in overall accuracy,

upon a decrease in the number of detected APs from 23 to 5.

6.7 Conclusion

In this chapter, we presented a decentralized algorithm for localization of sensors

in indoor wireless networks. At first, we proposed three decentralized approaches

that differ in the geographic structure and the fusion of evidence. After that, we

presented a calculator placement technique to optimally determine the number

and the positions of the calculators responsible for the decentralized localization.

Afterwards, we described the local localization algorithm that should be run by

each calculator. This algorithm can be the basic observation model presented

Table 6.4: Influence of the number of detected APs on the overall accuracy (%)

of the localization techniques.

Technique Number of detected APs

5 10 15 23

Weighted K-nearest neighbors 67.14 72.62 74.05 84.28

Connectivity 65.48 69.29 76.67 86.67

Neural networks 79.05 81.19 84.76 85.82

Support vector machines 80.71 82.62 85.43 86.47

Basic observation model 74.52 76.90 77.62 78.91

Extended observation model 81.42 83.33 86.67 90.21

First decentralized approach 76.19 80.95 81.66 82.14

Second decentralized approach 78.10 81.43 83.81 86.90

Third decentralized approach 82.38 84.76 87.14 91.43
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in Chapter 3, the extended observation model presented in Chapter 4, or the

tracking technique presented in Chapter 5. Finally, we illustrated the perfor-

mance of the proposed approaches through experiments conducted in Living Lab

facilites. The realized experiments demonstrated the robustness of the proposed

approach, its lower complexity as compared with the centralized techniques, and

its competitiveness in terms of overall accuracy as compared with state-of-the-

art localization methods. We also demonstrated the reliability of the proposed

approaches against the density of APs in the network by studying their influence

on the overall performance.
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This thesis addressed the problem of localization of sensors in indoor environ-

ments. First, a zoning-based localization method was proposed within the frame-

work of the belief functions theory. This method was then extended using hierar-

chical clustering, allowing us to consider large-scale environments. In addition,

an Access Point selection algorithm was presented to avoid erroneous and redun-

dant sources. Next, information of the mobility of the sensors was considered

to yield more accurate zone estimates. Finally, a decentralized version of the

proposed localization method was described, to increase the robustness and scala-

bility, and to reduce the complexity of the method. In this chapter, a summary of

contributions is provided, along with some future research perspectives.
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7.1 Summary of Contributions

The presented work in this thesis tackled the problem of indoor localization in

wireless sensor networks, and carried several contributions to the domain, sum-

marized in the following.

In Chapter 3, we introduced a zoning-based method for localization in WSNs

within the belief functions framework. An observation model was constructed to

allow to estimate the sensor’s zone using the RSSIs of the signals received from

surrounding WiFi APs. Several configurations were investigated for the definition

of the model. Different types of modeling of observations, discounting of APs

decision, and combination of evidence were studied. The experimental results

showed that the proposed method outperforms other classification techniques in

terms of overall accuracy.

To improve the performance of the method when the number of zones in the tar-

geted area is large, an extended observation model was proposed in Chapter 4. A

two-level hierarchy of zones was created by optimizing the inter- and intra-cluster

measures. An AP selection algorithm was also developed to choose the best sub-

set of APs in terms of overall accuracy and redundancy. The results showed that

this model yields a better accuracy, yet at the expense of a higher computational

complexity. A main limitation of the extended model, is the erroneous estima-

tions in the zones that are symmetric with respect to the APs, where similar

RSSIs are received.

In order to overcome this problem, we proposed in Chapter 5 a tracking technique

to take advantage of the mobility of sensors in indoor environments. Different

mobility models were combined with the observation models of Chapters 3 and

4 in the belief functions framework. In this way, the erroneous estimations were

corrected by taking into account the movement of the sensors, its next possible

destinations, and its trajectory. The results showed that this combination gives

more accurate zone estimates.

Finally, in Chapter 6, we presented a decentralized algorithm for localization.

Several decentralized approaches that vary in the geographic structure and the
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fusion of evidence were introduced. A calculator placement technique was de-

scribed to optimally determine the number and the positions of the calculators

responsible for the decentralized localization. The results demonstrated the ro-

bustness of the algorithm, its scalability, its lower complexity as compared to the

centralized approaches, and its effectiveness in terms of overall accuracy.

7.2 Perspectives

In this thesis, several solutions were provided for localization of sensors in indoor

wireless sensor networks. As part of future research, we would like to investigate

the following aspects concerning improvements of our proposed methods.

• Improving the observation models

In the definition of the extended observation model, a two-level hierarchy

was proposed. In cases where the targeted area is too large, such as multi-

floors and adjacent buildings, more than two levels in the constructed hier-

archy will be required to obtain a good accuracy. Future work will search

for solutions to systematically determine the number of levels needed to

reform the hierarchy.

• Improving the WiFi RSSI fingerprinting approach

The WiFI RSSI fingerprinting approaches, including our proposed meth-

ods, depend on the power of the received signal to determine the position

of the sensor to be localized. An important factor in such algorithms is the

position of the Access Points. Until now, Access Points are placed in build-

ings based only on the coverage and quality of service criteria. However,

this installation method is not optimal for localization, where the power of

signals in the zones is similar. It is important in the design of the WLAN

to consider both criteria, coverage and localization. An example of such

solution can be a bi-objective optimization function to maximize the cover-

age and minimize the error resulting from the position of the Access Points.

Another solution can be to add Access Points to already installed WLANs,

in a manner that is useful in localization.
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• Improving the Access Point selection algorithm

In the proposed Access Point selection algorithm, a trade-off parameter was

defined. The role of the parameter was to assign a weight for each of the two

objectives, maximizing the discriminative capacity and reducing the redun-

dancy. However, the parameter was user-defined and chosen manually by

the user according to the application. It is wiser to search for an algorithm

that automatically determines the trade-off parameter in an optimal way.

Moreover, in cases of dense Access Points networks, the proposed iterative

greedy algorithm will be computationally complex and might fall in local

minima. For that reason, solutions such as Gibbs sampling can be proposed

to solve the problem.

• Updating the databases

The RSSIs collected in each zone with respect to each WiFi AP vary with

time. This is due to changes in the initial emitted power of the signals,

change of atmospheric conditions, displacement of objects, etc. This leads

to a database that does not correspond to the real situation. One solution

is to manually collect new observations every period of time to keep the

database updated. Another more appropriate solution is to develop an

algorithm that automatically updates the database. The algorithm selects

measurements that have high confidence of their zones, adds them to the

database, and removes older measurements.

• Improving the mobility models

The proposed mobility models assume a maximum speed of the sensors

in the indoor environment. As the maximum speed increases, less accu-

rate estimations are expected to be obtained if we need fast localization

algorithms, which is naturally the case. In fact, when the maximum speed

increases, the sensor can travel larger distances in the localization execution

time, thus increasing the ambiguity, and therefore decreasing the efficiency

of the mobility models. It is then important to equip the sensors with iner-

tial units to collect real-time information about the mobility of the sensor.

A model should then be created to relate the inertial information with the

amount of belief assigned to each zone of the targeted area.
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• Considering other technologies

The problem of localization can be solved by camera-based solutions. In this

case, image processing algorithms are to be proposed. The usage of other

types of sensors such as thermal and infrared detectors is also of significant

interest. Another possible solution is to use different radio signals such as

Ultra-wideband or Bluetooth and combine them with the proposed WiFi

models to enhance the overall accuracy.

• Adapting the proposed solutions to suit more dependent elderly people

This project is realized in collaboration with the retirement home “Louis

Pasteur” in Romilly-sur-Seine, France. The home welcomes elderly peo-

ple and takes care of them. Implementing the proposed solutions requires

equipping the elderly people with sensors in the form of bracelets, medal-

lions, watches, etc. An important issue to study is the acceptability of the

equipment by the elderly people. In addition, experiments should be real-

ized using real data in such environments to validate the proposed methods.

In addition, specific models that correspond to a population of people such

as Alzheimer’s patients can be considered.
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Résumé de la thèse
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A.5.2 Premier modèle de mobilité . . . . . . . . . . . . . . . 182
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A.1 Introduction

Les réseaux de capteurs sans fil jouent un rôle de plus en plus important dans un

grand nombre d’applications. L’une des problématiques principales des réseaux de

capteurs sans fil est la géolocalisation des capteurs qui s’avère primordiale pour

la plupart des applications. Dans ce manuscrit, nous abordons le problème de la

localisation des capteurs et le problème du suivi de trajectoires dans les réseaux

de capteurs sans fil. Nous appliquons et adaptons les solutions proposées pour

localiser des personnes âgées dépendantes, accueillies dans des EHPADs. Les

solutions proposées, basées sur des données de fingerprinting et de mobilité, se

situent dans le cadre de la théorie des fonctions de croyance. Cette partie résume

les travaux effectués autour de ces deux problèmes.

A.1 Introduction

Les réseaux de capteurs sans fil (RCSFs) sont des réseaux composés d’un grand

nombre de capteurs intelligents [Akyildiz et al., 2002]. Les capteurs, collabo-

rant entre eux, révolutionnent le recueil et le traitement de l’information dans

plusieurs domaines d’applications tels que le domaine militaire, environnemental,

industriel, médical, etc. Dans ce qui suit, nous donnons un aperçu général des

RCSFs. Nous exposons ensuite le problème de géolocalisation des capteurs par

localisation exacte, zonage et suivi de trajectoires.

A.1.1 Aperçu général des RCSFs

Les capteurs constituant un RCSF sont des capteurs intelligents. Ils sont mu-

nis d’un capteur physique, d’une unité de traitement et de stockage de données,

d’une interface de communication sans fil et d’une source d’énergie [Zhou et al.,

2015]. Différents types de RCSFs peuvent être mis en œuvre selon la nature

de l’environnement, y compris les réseaux terrestres, souterrains, sous-marins,

multimédias et mobiles. La figure 1.1 illustre les cinq types principaux des

RCSFs.

Un point essentiel dans le fonctionnement des réseaux de capteurs est le choix de

la topologie. Il existe principalement trois types de topologies dans les RCSFs
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définissant la façon dont les capteurs communiquent ensemble : centralisée, dis-

tribuée, et décentralisée [Cota-Ruiz et al., 2016; Üney et al., 2016; Yan et al.,

2017]. Dans le cas d’une topologie centralisée, les capteurs acheminent toutes

les données mesurées vers la station de fusion centrale où elles seront stockées et

traitées. Ce genre de réseaux fournit une haute qualité de traitement mais tout

en consommant énormément d’énergie [Mamun, 2012]. Dans une topologie dis-

tribuée, les capteurs ont la capacité de traiter localement les données mesurées; ils

n’échangent ainsi avec leurs voisins que des données traitées, d’habitude de taille

réduite. Ce type de réseaux est beaucoup plus robuste à la défaillance que le

mode centralisé; en effet, la panne d’un capteur en mode distribué n’affectera pas

tout le réseau contrairement à une panne fatale du centre de fusion en mode cen-

tralisé. Toutefois, la topologie distribuée nécessite des algorithmes distribués qui

sont souvent plus difficile à développer [Wang, 2008]. La topologie décentralisée

se trouve aux juste milieu des deux autres topologies. Elle consiste à partition-

ner le réseau en des groupes de capteurs, appelés clusters, chacun ayant une tête

de cluster ou cluster head chargée du traitement des données. Cette topologie

permet d’assurer un équilibre entre la consommation d’énergie et la capacité de

traitement, ce qui convient donc à des réseaux à grandes échelles [Üney et al.,

2016]. La figure 1.2 illustre ces trois principales topologies.

A.1.2 Localisation exacte

La localisation exacte des capteurs dans les RCSFs est essentielle pour le traite-

ment des données provenant de ces capteurs. Il s’agit de la détermination de

leurs positions exactes dans l’environnement de surveillance. Une solution in-

tuitive à ce problème est d’équiper tous les capteurs de GPS. Cependant, cette

solution n’est pas optimale dans les milieux couverts, le service GPS y étant

de qualité médiocre. Cette technologie reste limitée à une utilisation dans des

environnements extérieurs [Oshin et al., 2012].

Une solution alternative consiste à considérer deux types de capteurs, les ancres

et les nœuds mobiles (MNs). Les ancres ont des positions connues, alors que

les MNs ont des positions inconnues. Le problème de localisation se résume

ainsi à estimer les positions des MNs en se basant sur les données échangées
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avec les ancres. Il existe de nombreuses méthodes de localisation à base d’ancres

répondant aux exigences des réseaux de capteurs sans fil. Entre autres, nous

citons les techniques géométriques telles que l’angle d’arrivée ou le temps d’arrivée

des signaux. Ces techniques nécessitent une synchronisation entre les capteurs

et du matériel plus cher [Gezici et al., 2005]. D’autres approches sont basées sur

la mesure de la puissance des signaux reçus ou received signal strength indicator

(RSSI). Comparées aux méthodes géométriques, les méthodes basées sur les RSSIs

sont largement utilisées en raison de leur faible consommation en termes d’énergie

et de leur faible coût, puisqu’aucun dispositif supplémentaire n’est nécessaire pour

les capteurs. Cependant, ces méthodes sont sensibles à la présence du bruit et

des interférences, surtout si elles estiment les distances inter-capteurs à partir des

RSSIS [Patwari et al., 2005; Zanella & Bardella, 2014]. Basées sur les RSSIs,

les méthodes de fingerprinting consistent à collecter des données de RSSIs dans

l’environnement surveillé et d’estimer les positions des capteurs en exploitant

cette base de données [Mahfouz et al., 2015]. Il s’agit de réaliser une cartographie

de l’environnement au préalable pour pouvoir y situer ultérieurement les MNs

grâce à leurs mesures de RSSIs.

A.1.3 Localisation par zonage

L’inconvénient majeur des approches de localisation exacte basées sur le finger-

printing est la nécessité d’une grande base de données avec des points de référence

exacts, ce qui est coûteux en temps et en ressources informatiques. Une autre

approche pour aborder le problème de localisation est le zonage. La surface cible

est partitionnée aux plusieurs zones; ensuite, une base de données est constru-

ite à partir des mesures de RSSIs prises aléatoirement dans chaque zone. Le

problème de localisation par zonage est formulé comme un problème de classi-

fication multi-classes, où le but est d’identifier la zone où se trouve le MN en

fonction de l’observation mesurée. Parmi les méthodes de classification, nous

citons les machines à vecteur de support [Honeine et al., 2013], les réseaux de

neurones [Rojas, 2013], le Bayesien näıf [Narayanan et al., 2013], la régression

logistique [Liu et al., 2014], les k-plus proches voisins [Souza et al., 2014], les
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arbres de décision [Kotsiantis, 2013], et les forêts d’arbres décisionnels [Breiman,

2001].

A.1.4 Suivi de trajectoires

Une des applications les plus prometteuses des RCSFs est le suivi de trajectoires

ou tracking. Le suivi de trajectoires est vu comme un problème de localisa-

tion séquentielle. L’objectif est de déterminer de manière récursive la position

du MN. Les caractéristiques de la mobilité telles que la position, la vitesse ou

l’accélération. peuvent être mesurées en utilisant les capteurs correspondants.

Une première solution est d’estimer le mouvement du MN en utilisant des modèles

de mobilité [Mahfouz et al., 2014]. Toutefois, ces modèles ne peuvent pas être

utilisés seuls, à cause de l’erreur de tracking qui s’accumule avec le temps. Pour

cette raison, l’estimation par le modèle de mobilité doit être complétée par un

modèle d’observation basé, par exemple, sur les mesures de RSSIs. Le problème

de suivi de trajectoires consiste ainsi en une prédiction par le modèle de mobilité,

suivie d’une correction par le modèle d’observation.

A.1.5 Contributions

Dans cette thèse, nous nous intéressons à la géolocalisation indoor des capteurs

par zonage. Nous abordons la problématique du zonage en raison de l’application

qui consiste à localiser des personnes âgées dépendantes accueillies dans des EH-

PADS et où une localisation par zones est suffisante. Les méthodes sont basées

sur les puissances des signaux WiFi échangés entre les capteurs. D’abord, en

utilisant la théorie des fonctions de croyance et la technique de fingerprinting,

nous obtenons une estimation de la zone du MN. Nous développons ensuite les

méthodes proposées, au travers du clustering, dans le but de couvrir des surfaces

plus grandes avec un nombre de zones plus élevé. Nous élaborons ensuite une

méthode de sélection de paramètres, qui sont les bornes WiFi à privilégier.

Nous revisitons ensuite le travail proposé pour l’adapter au suivi de trajectoires.

Pour cela, nous proposons des modèles de mobilité des capteurs. Les informations
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obtenues par ces modèles sont combinées avec celles des méthodes de fingerprint-

ing dans le cadre de la théorie des fonctions de croyance. Cette approche permet

d’améliorer l’estimation de la zone du MN, en fusionnant toutes les informations

disponibles.

D’autre part, nous présentons une approche décentralisée de la méthode de lo-

calisation, pour accrôıtre la robustesse et diminuer la complexité de la solution.

Les performances des méthodes proposées sont validées par des expérimentations

sur des données réelles et comparées avec d’autres méthodes très connues dans le

domaine.

A.2 Fusion de données multi-capteurs

L’observation de certains phénomènes nécessitent la combinaison d’informations

variées provenant d’un réseau hétérogène de capteurs au lieu de les utiliser d’une

manière séparée. La combinaison de ces données permet, en général, l’obtention

d’une information beaucoup plus riche et plus précise du phénomène observé à un

certain instant. Différentes approches sont envisageables pour le faire. En effet,

il est possible de fusionner des informations différentes recueillies à un même

instant, ou alors un même type d’information recueilli à des instants différents. Il

est également possible de combiner des données provenant de différents capteurs à

des connaissance a priori provenant de bases de données collectées antérieurement

ou à des résultats antérieurs de fusion [Hall & Llinas, 1997].

A.2.1 Aperçu général de la fusion des données

Il existe trois principaux types d’architecture de fusion, qui varient en fonction du

niveau d’abstraction des informations. Le premier type est la fusion des mesures;

il s’agit d’une fusion directe des données multi-capteurs. Le deuxième est la fusion

de primitives; c’est une représentation des données mesurées par des vecteurs

caractéristiques qui sont alors fusionnés. Le troisième est la fusion de décisions,

où l’on arrive à des décisions de plus haut niveau, obtenues à partir d’un calcul

sur les données et qui sont ensuite fusionnées [Varshney, 1997].
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Plusieurs approches ont été proposées pour la fusion de données multi-capteurs.

L’approche par la théorie des probabilité utilise le théorème de Bayes pour

mettre à jour la probabilité d’occurrence d’une hypothèse en fonction de ses

précédentes occurrences et de ses nouvelles observations [Durrant-Whyte & Hen-

derson, 2008]. L’approche par la théorie des ensembles flous est employée afin de

tenir compte explicitement des informations imprécises au sein d’un système de

décision. L’incertitude d’une donnée est modélisée par un ensemble de fonctions

d’appartenance à différentes classes, permettant de représenter les différentes

hypothèses à définir. Les fonctions d’appartenance sont définies pour chaque

élément provenant d’une source à fusionner et les combinaisons sont ensuite

réalisées [Zadeh, 1965]. L’approche par la théorie des fonctions de croyance

permet de représenter l’incertitude en considérant des événements qui ne sont

pas obligatoirement exclusifs ni exhaustifs. Cette théorie est une généralisation

de l’inférence Bayésienne et nécessite la définition d’un ensemble d’hypothèse,

nommé cadre de discernement. L’objectif du problème consiste à identifier une

situation parmi ce cadre de discernement [Shafer, 1976]. Cette dernière approche

présente l’avantage de mieux représenter l’ambigüıté existante dans les mesures,

que la théorie probabiliste. Nous la présentons plus en détails ci-dessous.

A.2.2 Théorie des fonctions de croyance

La théorie des fonctions de croyance (TFC) est appelée aussi la théorie de

Dempster-Shafer ou encore la théorie de l’évidence [Shafer, 1976]. Cette théorie

permet de tenir compte de l’imprécision de l’information et de son incertitude. Les

imprécisions correspondent à une difficulté dans l’énoncé de la connaissance, parce

que des connaissances numériques sont mal connues. Ceci est dû principalement à

l’incapacité de l’instrument de mesures à fournir une mesure exacte. L’incertitude

fait référence à la qualité de l’information. La source délivrant l’information peut

être peu sûre d’elle ou susceptible de commettre des erreurs ou encore de donner

de manière intentionnelle des informations erronées. L’information peut alors être

complète et précise mais fausse. La TFC est un cadre qui permet la modélisation

à la fois de l’imprécision et de l’incertitude.
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A.2.2.1 Représentation de l’information

Soit une question à laquelle on cherche une réponse et soit Θ un ensemble fini

contenant des solutions possibles à cette question. Cet ensemble est appelé cadre

de discernement et les éléments le constituant sont exclusifs. Une hypothèse ou

proposition est un sous-ensemble A ⊆ Θ de cadre de discernement disant que

la vérité se trouve dans A. C’est un élément de l’ensemble P (Θ) de tous les

sous-ensembles de Θ,

P (Θ) = 2Θ = {A | A ⊆ Θ}. (A.1)

Une fonction mS(·), appelée fonction de masse ou basic belief assignment,

représente une connaissance imparfaite sur Θ. Cette fonction est définie de P (Θ)

à valeurs dans [0, 1] selon une source S, avec comme contrainte,

∑

A∈P (Θ)

mS(A) = 1. (A.2)

La quantité mS(A) représente la croyance sur le fait que A contienne la réponse à

la question. Il s’agit d’une interprétation de l’information apportée par la source

S sur cette hypothèse. La croyance peut être allouée à d’autres fonctions qui

sont liées à la fonction de masse mS(·), comme la fonction de croyance belS(·), la
fonction de plausibilité plS(·) ou la fonction de communalité qS(·).

A.2.2.2 Combinaison des fonctions de croyance

La fusion de données est une solution intéressante pour l’obtention d’informations

plus pertinentes. La phase de combinaison, dans le cadre de la théorie des fonc-

tions de croyance, consiste donc à synthétiser, sous forme d’une fonction de

croyance unique, l’ensemble des connaissances fournies par plusieurs fonctions.

Une première règle de combinaison est la règle de Dempster représentée par
⊕

[Dempster, 1967]. La fonction de masse m1
⊕

2(·) = m1(·)
⊕

m2(·), combinant

deux fonctions de masse m1(·) et m2(·), est obtenue comme suit [Dempster, 1967],

m1
⊕

2(A) =

∑

Ai∩Aj=A m1(Ai)m2(Aj)

1−∑Ai∩Aj=∅m1(Ai)m2(Aj)
, ∀A ∈ P (Θ), A 6= ∅. (A.3)
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Le dénominateur sert à normaliser la fonction de masse obtenue. Cette règle,

équivalente à l’intersection, permet l’obtention d’une fonction de masse plus in-

formative que les fonctions de masses d’origine. Alternativement, la règle de com-

binaison conjonctive est équivalente à la règle de Dempster mais sans la phase de

normalisation. Ces deux règles nécessitent que toutes les sources d’informations

soient fiables et donc non conflictuelles. Puisque cette contrainte n’est pas tou-

jours vérifiable, d’autres règles ont été proposées afin de tenir compte de la nature

des sources d’informations [Smets, 2007]. C’est dans ce contexte que s’inscrit la

règle de combinaison disjonctive [Dubois & Prade, 1992].

A.2.2.3 Affaiblissement des fonctions de masse

L’affaiblissement est une étape nécessaire lorsqu’on possède une information sur la

fiabilité des sources d’information existantes. Elle consiste à modifier les fonctions

de masse en utilisant les coefficients de fiabilité des sources [Mercier et al., 2008].

L’affaiblissement classique consiste à pondérer chaque source S par un coefficient

α comme suit :

αmS(A) =











(1− αS)mS(A), si A ∈ P (Θ), A 6= Θ;

αS + (1− αS)mS(Θ), si A = Θ;

0, sinon.

(A.4)

Un facteur αS égal à 1 signifie que la source S n’est pas du tout fiable, et donc

l’information qu’elle produit ne peut pas être prise en compte. Contrairement,

un facteur αS = 0 signifie que la source S est complètement fiable, et donc

l’information est entièrement acceptée. Pratiquement, la source a un certain

degré de fiabilité βS = 1 − αS ∈ [0, 1], qui est soit connu a priori, soit évalué à

partir de modèles théoriques ou des expérimentations.

Une autre approche d’affaiblissement utilisée pour corriger l’information fournie

par une source à partir d’une méta-connaissance, est l’affaiblissement contextuel.

L’idée principale de ce dernier consiste à varier la fiabilité d’une source selon

le contexte envisagé et donc selon les réponses considérées [Mercier et al.,

2012].
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A.2.2.4 Prise de décision

Tout comme toutes les théories de fusion de données, la TFC a ont pour finalité

la prise de décision. En ce qui concerne la partie décisionnelle, elle correspond

au niveau pignistique [Smets, 2005]. La phase de décision s’appuie sur la distri-

bution pignistique, notée BetP (·) obtenue à partir de la fonction de masse finale

m(·). Elle est aussi appelée probabilité pignistique pour le jeu de probabilité sur

les singletons qu’elle génère. La probabilité pignistque, notée BetP (·), consiste à

repartir de manière équiprobable la masse d’une proposition Ai sur les hypothèses

contenues dans Ai [Kennes & Smets, 1990]. Formellement, la probabilité pignis-

tique BetP (·) est définie par :

BetP (A) =
∑

A⊆Ai

m(Ai)

|Ai|
. (A.5)

Il s’agit d’une estimation de la probabilité que la bonne réponse tombe dans

A, étant donné les informations mesurées. Enfin, l’ensemble A ayant la plus

grande probabilité pignistique est choisi. D’autres méthodes de prise de décision

consistent à maximiser les fonctions de masses, les fonctions de croyance, les

fonctions de plausibilité, etc.

A.3 Localisation par zonage

La localisation des capteurs dans un RCSF est primordiale pour un grand nom-

bre d’applications. Nous nous intéressons dans cette thèse à la localisation des

personnes âgées dépendantes. Dans cette application, la détermination de la

zone où se trouve la personne âgée est suffisante, sans besoin de localisation ex-

acte. Pour cette raison, nous abordons le problème de localisation par zonage.

Les méthodes de localisation basées sur les RSSIs sont considérées les plus pop-

ulaires puisqu’elles présentent de nombreux avantages du point de vue de leur

simplicité ainsi que du coût de matériel. Certaines de ces techniques exploitent

l’atténuation de la puissance du signal avec la distance parcourue pour estimer

les distances séparant les capteurs. Cependant, ces techniques ne sont pas tou-

jours efficaces, puisque les signaux sont sensibles à la présence du bruit et des

interférences. D’autres méthodes s’appuient sur la technique du fingerprinting
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qui consiste à collecter des informations du réseau pour construire une base de

données à utiliser pour la localisation.

Dans cette section, nous proposons une approche de localisation par zonage basée

sur la théorie des fonctions de croyance et la technique du fingerprinting. Nous

utilisons les signaux reçus des points d’accès WiFi (APs) et mesurons leurs puis-

sances (RSSIs). Par la suite, nous définissons dans le cadre de la théorie des

fonctions de croyance un modèle d’observation qui prend en entrée la puissance

du signal échangé entre les APs et le MN et donne en sortie une estimation de la

zone du MN en question.

A.3.1 Problématique

Nous considérons un environnement partitionné en NZ zones, notées Zj, j ∈
{1, 2, . . . , NZ}, et NAP APs de positions fixes, notées APk, k ∈ {1, 2, . . . , NAP}.
L’approche proposée est centralisée; ainsi, toutes les données recueillies sont

acheminées vers la station centrale de fusion, où tous les traitements et calculs

seront effectués. Basée sur la technique du fingerprinting, notre méthode consiste

à construire une base de données en offline, à utiliser par la suite en temps réel,

pour estimer la zone du MN. Notons que plusieurs nœuds peuvent être localisés

à la fois, puisqu’ils sont localisés chacun indépendamment des autres.

Pour construire la base de données, nous considérons Nj positions de référence

dans chaque zone, notées ρj,k,ℓ, ℓ ∈ {1, . . . , Nj}, et générées de façon uniforme

ou aléatoire dans la région. Les APs diffusent régulièrement des signaux dans la

région étudiée.

Soit ρt le vecteur des RSSIs de taille NAP reçu par le MN à l’instant t de tous les

APs,

ρt = (ρt,1, . . . , ρt,NAP
), (A.6)

où ρt,k est la puissance du signal reçu de APk à l’instant t. Puisque tous les APs

ne sont pas nécessairement détectés à tout moment, on note IAP,t l’ensemble des

indices des APs pour lesquels les signaux sont détectés par le MN à l’instant t et

ρt,k, k ∈ IAP,t, leurs RSSIs mesurées. Le vecteur ρt est complété par des zéros aux

positions où les APs ne sont pas détectés. La méthode de localisation consiste

170



A.3 Localisation par zonage

par la suite à trouver un modèle O : RNAP → [0, 1]NZ qui prend en entrée un

vecteur RSSI ρt, et donne en sortie une confiance mO,t(Zj) pour chaque zone Zj

à l’instant t.

A.3.2 Représentation statistique des données

Le modèle d’observation est construit comme suit. Soit Z = {Z1, . . . , ZNZ
}

l’ensemble de toutes les zones et P (Z) = 2Z l’ensemble de tous les sur-ensembles

de Z, c’est à dire, P (Z) = {∅, {Z1}, . . . ,Z}. D’abord, les RSSIs de tous les

sous-ensembles de P (Z) sont modélisées par une distribution statistique. On

distingue deux types de distributions, paramétriques et non-paramétriques. Les

deux types de modélisation sont détaillés dans la Section 3.3.1. L’utilisation de

l’un ou l’autre des deux types mène à une distribution statistique QA,k(·), A ∈
P (Z), k ∈ {1, 2 . . . , NAP}, qui représente les variations des RSSIs de chaque sous-

ensemble A par rapport à chaque APk.

A.3.3 Affectation des masses

Une fonction de masse mAPk,t(·) est une fonction de P (Z) à l’intervalle [0, 1],

définie selon une source APk, k ∈ {1, . . . , NAP}, et satisfaisant
∑

A∈P (Z)

mAPk ,t(A) = 1. (A.7)

La masse mAPk ,t(A) est évaluée comme suit,

mAPk,t(A) =
QA,k(ρt,k)

∑

A′∈P (Z),A′ 6=∅QA′,k(ρt,k)
, A ∈ P (Z), A 6= ∅. (A.8)

A.3.4 Affaiblissement

Nous considérons une approche d’affaiblissement contextuel parce que nous sup-

posons que la fiabilité des APs varie selon les zones. En effet, un AP est plus

fiable quand il distingue des zones asymétriques par rapport à lui, que dans le

cas de zones symétriques.

Soit {A1, . . . , AL} une partition de Z. Dans ce modèle contextuel, nous con-

sidérons le degré de chaque AP conditionné à chaque un sous-ensemble Al, l ∈
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{1, . . . , L}. Pour tout l ∈ {1, . . . , L}, βl
k = 1−αl

k represente le degré de fiabilité de

APk sachant que l’observation appartienne à Al. La partition que nous considérons

est l’ensemble de singletons {{Z1}, . . . , {ZNZ
}}, et ainsi la fiabilité APk par rap-

port au contexte Zj est βj
k. La masse αmAPk

(A) obtenue après l’affaiblissement

contextuel de la source APk est calculée comme suit,

αmAPk
(A) = mAPk,t ∪©m0

APk ,t
(A), (A.9)

où m0
APk ,t

(A) est définie comme suit,

m0
APk,t

(A) = m1
APk,t

∪©m2
APk ,t

∪© . . . ∪©mNZ

APk,t
(A), (A.10)

où chaque mj
APk,t

, j ∈ {1, . . . , NZ}, est calculée par

mj
APk,t

=











(1− αj
k), si A = ∅;

αj
k, si A = Al;

0, sinon.

(A.11)

Le taux d’erreur αj
k(A) d’un sous-ensemble A telle que la vérité est Zj par rapport

à APk est calculé comme suit,

αj
k(A) =

∫

DA,k

QA,k(ρ)dρ, (A.12)

où DA,k est le domaine d’erreur du sous-ensemble A par rapport à APk, défini par

DA,k = {ρ | Q{Zj},k(ρ) ≤ max
A′∈P (Z),A′ 6=A

(QA′,k(ρ))}. (A.13)

A.3.5 Fusion de l’information

Les fonctions de masse αmAPk,t(·) sont définies selon le vecteur de RSSIs ρt,k, k ∈
IAP,t récupéré d’un certain nombre d’APs. La fusion de l’information consiste à

combiner les masses de tous les APs [Kurdej & Cherfaoui, 2013]. Les fonctions

de masses peuvent être combinées par une des méthodes décrites dans la Sec-

tion 2.5.2. La masse obtenue par la règle de Dempster est calculée comme suit,

m⊕

,t(A) =

∑

A(k)∈P (Z)

∩kA
(k)=A

∏

k∈IAP,t

αmAPk,t(A
(k))

1−∑A(k)∈P (Z)

∩kA
(k)=∅

∏

k∈IAP,t

αmAPk,t(A
(k))

, (A.14)
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pour tous les sous-ensembles A ∈ P (Z), oùA(k) est le sous-ensemble A par rapport

à la source APk. L’avantage de l’utilisation de la TFC réside dans la modélisation

de l’ambigüıté en affectant des masses à la fois aux singletons et à tous leurs

sur-ensembles.

A.3.6 Estimation de la confiance

Pour attribuer un niveau de confiance aux singletons, la transformation pignis-

tique est utilisée dans le cadre de la TFC [Smets, 1993a]. Elle est définie par

BetPt(A) =
∑

A⊆A′

m⊕

,t(A
′)

|A′| , (A.15)

où A est un singleton de P (Z). Le niveau de confiance associé à chaque zone par

le modèle d’observation à l’instant t peut être calculé comme suit,

mO,t(Zj) = BetPt({Zj}), j ∈ {1, . . . , NZ}. (A.16)

Le modèle d’observation O est ainsi déduit,

O(ρt) = (mO,t(Z1), . . . , mO,t(ZNZ
)). (A.17)

La zone ayant la plus grande confiance est alors sélectionnée.

A.3.7 Expérimentations

Dans cette sous-section, nous évaluons les performances de la méthode pro-

posée par des expérimentations dans un secteur de l’Université de Technologie

de Troyes, France. Le secteur d’une surface de 190 m2 est divisé en huit zones,

comme le montre la figure 3.7. Un PC avec le logiciel WiFi scanner peut dis-

tinguer les APs par leurs adresses MAC. Le logiciel mesure les RSSIs des signaux

émis. Nous utilisons six APs parmi tous les APs détectés dans la région cible. Un

ensemble de 30 mesures est pris dans chaque zone, une partie étant sélectionnée

pour la construction de la base de données, et le reste pour le test et la validation.

Le tableau 3.4 résume les paramètres de la configuration expérimentale.
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A.3.7.1 Illustration de la méthode proposée

Pour illustrer la méthode proposée, 21 mesures de RSSIs recueillies dans chaque

zone sont sélectionnées pour la construction de la base de données et 9 mesures

pour le test. Afin d’estimer la zone du MN qui se déplace, nous utilisons

le modèle d’observation proposé pour différentes techniques de modélisation,

d’affaiblissement et de fusion de l’information. Le tableau 3.5 montre le nom-

bre des estimations erronées dans le cas d’une modélisation paramétrique, af-

faiblissement contextuel et la règle de combinaison de Dempster. Le tableau 3.6

montre l’influence de la technique d’affaiblissement et la règle de combinaison sur

la performance de la méthode proposée. Nous pouvons voir que la plus faible

erreur est obtenue avec la technique de Dempster et l’affaiblissement contextuel.

Le tableau 3.8 compare les performances de la méthode pour des modélisations

paramétrique et non-paramétrique. Puisqu’il n’y a pas une amélioration sig-

nificative, la modélisation paramétrique est considérée parce qu’elle est moins

complexe. Nous analysons la performance de la méthode pour une distribution

aléatoire des positions de référence, comme le montre la figure 3.1(b). Nous

observons une légère augmentation de l’erreur dans le tableau 3.8. Ceci peut

être expliqué par le fait qu’une distribution uniforme permet une meilleure cou-

verture de la région d’intérêt, tandis qu’une distribution aléatoire ne garantit

pas toujours une bonne couverture. Néanmoins, les résultats sont toujours sat-

isfaisants, et les distributions aléatoires permettent d’avoir une localisation par

zonage assez exacte quand les distributions uniformes ne sont pas applicables.

Pour étudier l’influence du nombre de zones sur la performance de l’approche

proposée, nous considérons une surface de 500 m2, constituée de 21 zones. La

précision de la méthode diminue à 77.78% pour une modélisation paramétrique

et une distribution uniforme de positions de références. L’approche proposée se

trouve vulnérable à l’augmentation du nombre de zones.

A.3.7.2 Comparaison à d’autres méthodes

L’objectif de ce paragraphe est de fournir une comparaison de l’approche proposée

à l’égard de deux techniques de classification multi-classes : le classifieur Bayésien

näıf (NB) [Liu et al., 2013a] et la régression logistique (MLR) [Mauša et al., 2012].
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Le tableau 3.9 montre les erreurs d’estimation pour différents nombres de points

de références pour NB, MLR et la méthode proposée. Les résultats montrent que

la méthode proposée est plus précise que les deux autres.

A.4 Modèle d’observation avancé

Dans la section précédente, nous avons proposé un modèle d’observation pour la

localisation des capteurs par zonage, en utilisant la TFC et la technique de fin-

gerprinting. Nous appelons ce modèle, un modèle d’observation basique (BOM).

Comme nous avons montré dans la partie d’expérimentations, la performance du

BOM se dégrade lors de l’augmentation du nombre de zones. Dans cette sec-

tion, nous développons un modèle d’observation avancé (EOM), qui résout les

problèmes du BOM au travers du clustering hiérarchique et sélection des APs.

Le but du EOM est de couvrir des surfaces plus grandes avec un nombre de zones

plus élevé. Les zones sont regroupés dans des clusters, en utilisant la méthode

du clustering ascendant hiérarchique, formant un dendrograme. Le nombre opti-

mal des clusters est déterminé en optimisant les distances inter- et intra-clusters.

L’hiérarchie est ensuite réformée sur deux niveaux, le premier comprenant les clus-

ters sélectionnés et le deuxième comprenant les zones de chaque cluster. L’objectif

de la méthode est ainsi de déterminer le cluster correct et la zone correcte dans

le premier et le deuxième niveau respectivement. Nous développons ensuite une

méthode de sélection de paramètres, qui sont les bornes WiFi à privilégier. Cette

méthode permet d’améliorer la précision et de réduire la complexité de la méthode

de localisation, en choisissant le meilleur ensemble de paramètres en termes de la

capacité de discrimination et de la redondance.

A.4.1 Algorithme de clustering

L’objectif du développement d’un algorithme de clustering est de réduire le nom-

bre de zones à classifier en un instant. Par ailleurs, l’algorithme doit grouper les

zones de façon qui facilite la discrimination entre elles dans la phase de localisa-

tion. Plusieurs approches de clustering ont été proposées, la plus utile dans notre

cas étant le clustering hiérarchique ascendant [Babbar et al., 2013; Manning et al.,
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2008]. Le clustering hiérarchique ascendant ou hierarchical agglomerative cluster-

ing consiste à regrouper successivement des clusters en fonction d’une mesure

de distance qui caractérise leur similarité ou leur dissimilarité. C’est un procédé

itératif, partant d’un certain nombre de clusters initial. A chaque itération, les

deux clusters les plus éloignés sont regroupés en un, et la distance avec les autres

clusters est mise à jour. L’algorithme s’arrête lorsqu’il ne reste plus qu’un cluster

ou lorsqu’un critère d’arrêt est atteint (par exemple, lorsque la distance décidant

du prochain regroupement atteint un seuil). L’algorithme est illustré par la figure

4.3.

Nous nous intéressons à maximiser la distance entre les zones, pour que ça soit

plus facile de les distinguer. Nous utilisons la distance de Kullback-Leibler pour

évaluer la distance entre les différentes entités (clusters ou zones). La divergence

de Kullback-Leibler de deux distributions QZj′ and QZj
d’une variable continue

ρ est définie comme suit,

DKL(QZj′ ||QZj
) =

∫

ρ

log

(

QZj′ (ρ)

QZj
(ρ)

)

QZj′ (ρ)dρ. (A.18)

Cette distance est non-symétrique, c’est à dire, DKL(u||v) 6= DKL(v||u). La J-

divergence symétrise la distance de Kullback-Leibler comme suit [Nielsen & Nock,

2017],

DJ(QZj′ ||QZj
) = DKL(QZj′ ||QZj

) +DKL(QZj
||QZj′ ). (A.19)

Le calcul de cette divergence entre les distributions paramétriques et non-

paramétriques se trouve dans la section 4.4.1.1.

Cependant, la considération de tout le dendrograme est coûteux en ressources

informatiques. De plus, ça risque de propager l’erreur tout au long de l’hiérarchie.

Pour cela, le dendrograme est découpé basé selon un nombre optimal de clusters.

Étant donné qu’il n’existe aucune connaissance préalable de ce nombre, il est

calculé en résolvant un problème d’optimisation qui prend en compte les distances

intra- et inter-clusters. Krzanowski & Lai [1988] proposent une technique pour

trouver le nombre optimal de clusters NC comme suit,

NC = argmax
r

∣

∣

∣

∣

DIFF (r)

DIFF (r + 1)

∣

∣

∣

∣

, (A.20)
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telle que,

DIFF (r) = (r − 1)
2

NAP W (r − 1)− (r)
2

NAP W (r), (A.21)

où W (r) est la somme des carrés des distances intra-clusters, calculée par

W (r) =

r
∑

i=1

∑

j
Zj∈Ci

Nj
∑

ℓ=1

||ρj,ℓ − µi||2, (A.22)

où ρj,ℓ est la mesure de RSSI dans la zone Zj.

Le dendrograme est découpé au niveau des NC clusters, notés Ci, i ∈ {1, . . . , NC}.
Soit Ii l’ensemble des indices des zones inclues dans le cluster Ci, c’est à dire,

Zj ∈ Ci, ∀j ∈ Ii. L’hiérarchie obtenue est ainsi de deux niveaux, le premier étant

un ensemble de NC clusters, {C1, . . . , CNC
} et le deuxième étant un ensemble de

zones appartenant à chaque cluster, Zj ∈ Ci, ∀j ∈ Ii. La méthode se résume à

déterminer, pour toute nouvelle observation, le cluster correct au premier niveau

et la zone correcte au sein du cluster au second niveau. L’hiérarchie de deux

niveaux est illustrée dans la figure 4.4.

A.4.2 Algorithme de sélection de paramètres

L’objectif de la sélection de paramètres est de déterminer le meilleur ensemble

parmi les 2NAP − 1 sous-ensembles candidats de l’ensemble des APs qui satisfait

les deux objectifs : la minimisation de l’erreur de localisation et la réduction

de la dépendance entre les paramètres Tabakhi & Moradi [2015]. Soient F =

{AP1, . . . , APNAP
} l’ensemble de tous les APs, z une entité qui désigne une zone

ou un cluster et Nz le nombre de ces entités. Nous proposons un algorithme

de sélection de paramètres qui maximise la capacité discriminatoire et réduit la

redondance des APs sélectionnés. Soient F ′ ⊆ F un ensemble non vide de F et

Qzj ,F ′(·) une distribution representant les variations des RSSIs de l’entité zj par

rapport à l’ensemble de paramètres F ′.

D’une part, l’erreur de classification est inversement liée à la capacité discrimi-

natoire des paramètres définie par [Jahromi, 2007]

DisC(F ′) =
Nz
∑

a=1

Nz
∑

b=1

DKL(Qza,F ′||Qzb,F
′), (A.23)
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DKL(Qza,F ′||Qzb,F
′) est la distance de Kullback-Leibler entre les distributions des

entités za et zb. L’erreur de l’ensemble F ′ est ainsi déduite comme suit,

E(F ′) = 2−DisC(F ′). (A.24)

D’autre part, la dépendance est un facteur essentiel de la sélection pour avoir un

sous-ensemble réduit. Le coefficient de corrélation multiple permet de mesurer le

degré de dépendance d’une caractéristique par rapport aux autres. Le coefficient

de la corrélation multiple d’une caractéristique APk de F ′ par rapport aux autres

éléments de F ′ \ {APk} est défini par

R2
k = cTkR

−1
xx,kck, (A.25)

où ck est un vecteur colonne d’éléments dAPk′APk
pour APk′ ∈ F ′ \ {APk}, dAPk′APk

étant la corrélation entre APk′ et APk, c
T
k étant le vecteur transposé de ck et R−1

xx,k

est l’inverse de la matrice d’éléments dAPk′APk′′ pour toutes les paires APk′ et APk′′

appartenant à F ′ \ {APk}. La redondance de tous les APs de F ′ est la moyenne

des coefficients de corrélation multiple pour tout APk ∈ F ′,

R(F ′) =
∑

k

Rk

|F ′| , où |F ′| est le cardinal de F ′. (A.26)

L’objectif de la sélection de paramètres est de trouver l’ensemble Fs ⊆ F tel que

E(Fs) et R(Fs) sont simultanément minimisées. Une recherche exhaustive étant

très coûteuse, un algorithme glouton est utilisé avec une stratégie d’élimination

régressive. Commençant par l’ensemble complet des paramètres, nous supprimons

successivement le paramètre le moins utile. Soit Fy le sous-ensemble choisi à

l’itération y ≥ 1, avec F0 = F et le cardinal de Fy égal à |Fy| = NAP − y. A

chaque itération y ≥ 1, tous les sous-ensembles de Fy−1 ayant NAP − y éléments

sont considérés. Soit F
(λ)
y , λ = 1, . . . , NAP − y + 1, le terme désignant ces sous-

ensembles. La fonction bi-objective gy
(

F
(λ)
y

)

est alors définie comme suit,

gy(F
(λ)
y ) = η

E(Fy−1)− E(F
(λ)
y )

max(E(Fy−1),E(F
(λ)
y ))

+ (1− η)
R(Fy−1)− R(F

(λ)
y )

max(R(Fy−1),R(F
(λ)
y ))

, (A.27)

où η ∈ [0, 1] contrôle le compromis entre les deux fonctions objectives. L’ensemble

F
(λ)
y qui a la plus grande valeur positive de gy(F

(λ)
y ) est sélectionné à l’itération y.
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Si toutes les valeurs sont négatives, alors il n’y a plus d’amélioration possible, et

donc l’ensemble final est Fs = Fy−1. Le sous-ensemble optimal obtenu sera utilisé

dans la suite pour la classification. Cet algorithme est appliqué au niveau des

clusters pour générer Fs et au niveau des zones de chaque cluster pour générer

Fs,i, i ∈ {1, . . . , NC}, comme le montre la figure 4.4.

A.4.3 Estimation de la confiance

La TFC est appliquée au premier niveau de l’hiérarchie pour générer les niveaux

pignistiques BetPC
t ({Ci}), i ∈ {1, . . . , NC} correspondant aux clusters et au

second niveau de l’hiérarchie pour générer les niveaux pignistiques BetP i
t ({Zj}),

j ∈ Ii correspondant aux zones de chaque cluster Ci. Le EOM attribue un

niveau de confiance à chacune des zones en combinant les niveaux pignistiques

des clusters et des zones,

mO,t(Zj) = BetPC
t ({Ci})×BetP i

t ({Zj}). (A.28)

A.4.4 Expérimentations

Nous évaluons les performances de la méthode proposée par des expérimentations

au premier étage de l’équipe M2S et au Living Lab de l’Université de Tech-

nologie de Troyes, France. Les deux plans sont illustrés dans la figure 4.5. Le

tableau 4.2 résume les paramètres des deux installations expérimentales. Le

Tableau 4.3 évalue les performances de la méthode en fonction du type de

modélisation. Dans les deux expérimentions, une meilleure performance est at-

teinte par la modélisation non-paramétrique. Nous étudions également l’influence

du paramètre η. Le tableau 4.4 montre la précision et le temps d’exécution de

la méthode de localisation pour η ∈ {0.25, 0.5, 0.75}. Nous évaluons ensuite

l’influence de chaque phase de l’EOM sur la performance de la méthode. Les

tableaux 4.5 et 4.6 montrent l’amélioration apportée par chaque phase et son

influence sur le temps d’exécution.

La méthode proposée est comparée à d’autres méthodes de classification multi-

classes. Les méthodes de classification telles que les k-plus proches voisins, le

Bayésien näıf, la régression logistique et les machines à vecteur support sont
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considérées. De plus, la méthode proposée est comparée avec les approches

hiérarchiques telles que les machines à vecteur support hiérarchique et les forêts

d’arbres décisionnels. Les tableaux 4.7 et 4.8 montrent la précision de l’approche

proposée dans les deux expérimentations en comparaison avec les méthodes de

classification mentionnées. La méthode proposée surpasse les autres en termes de

précision avec un temps d’exécution compétitif.

A.5 Suivi de trajectoire

Le suivi de trajectoires est une application très populaire des RCSFs. Le suivi de

trajectoire consiste à estimer de manière récursive la position du MN. En utilisant

un modèle de mobilité qui décrit le mouvement du MN, nous pouvons d’abord

prédire son état futur à partir de son état actuel. Ensuite, l’état prédit est mis

à jour en utilisant les observations du réseau, à savoir, un modèle d’observation.

Plusieurs méthodes de fusion de données peuvent être utilisées pour combiner

les informations de mobilité et les observations. Le filtre de Kalman (KF) peut

être utilisé dans le cas d’un modèle d’observation linéaire. Dans le cas de la

non-linéarité, le filtre de Kalman étendu (EKF) et le filtre de Kalman sans par-

fum (UKF) peuvent être utilisés. Cependant, de telles approches effectuent des

linéarisations et des approximations conduisant à une performance sous-optimale

et parfois à la divergence. Le filtre particulaire (PF) est également utilisé pour

le suivi de trajectoires. Un tel filtre a plus de potentiel que le filtre de Kalman

dans le cas de bruits non gaussiens et de modèles non linéaires. Cependant, la

génération d’échantillons et l’étape de ré-échantillonnage rendent les algorithmes

employant ce filtre plus complexes en termes de calculs que le filtre de Kalman.

Plusieurs techniques de suivi utilisant des informations de mobilité ont été pro-

posées dans la littérature. En plus des mesures de RSSIs, ces techniques emploient

un modèle de mobilité pour affiner l’estimation de la position grâce à sa position

antécédente.

Dans cette section, nous effectuons le suivi de trajectoire en utilisant les tech-

niques de localisation introduites aux sections précédentes. Ainsi, en utilisant la

TFC et la technique de fingerprinting, nous définissons les modèles d’observation
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pour donner une première estimation de la zone du MN. Ensuite, nous combinons

cette première estimation à un modèle de mobilité pour obtenir une estimation

plus affinée de la zone du MN. Dans ce but, trois modèles de mobilité sont pro-

posés.

A.5.1 Problématique

Nous considérons la même configuration et les mêmes notations des sections

précédentes, où NZ est le nombre de zones de la région cible, notées Zj , j =

1, 2, . . . , NZ , NAP est le nombre de APs, notés APk, k = 1, 2 . . . , NAP et ρt est

le vecteur de RSSI reçu par le MN à l’instant t des APs détectés. Soit vmax la

vitesse maximale du MN dans le milieu couvert. Dans notre application, vmax

est la vitesse maximale prévue du mouvement des personnes âgées dépendantes

à l’intérieur. L’objectif de l’algorithme proposé est de trouver une fonction

T : RNAP → [0, 1]NZ telle que T(ρt) = (Wt(Z1), . . . ,Wt(ZNZ
)), où Wt(Zj) est

le niveau de confiance d’avoir le MN dans chacune des zones Zj, j = 1, 2, . . . , NZ

à l’instant t.

D’une part, la méthode profite de la mobilité du MN pour donner une première

estimation de sa zone. Le MN est supposé se déplacer avec une vitesse inférieure

ou égale à la vitesse maximale vmax. Sur cette base, nous pouvons avoir une

idée des destinations possibles du MN selon l’architecture de la région cible et

le temps d’exécution de l’algorithme de localisation. Le premier modèle de mo-

bilité est basé sur la succession originale des zones et ne nécessite aucune phase

d’acquisition de données supplémentaire. Le deuxième modèle de mobilité divise

les zones en des sous-zones et requiert une phase additionnelle d’acquisition de

données dans chaque souos-zone. Le troisième modèle de mobilité est basé sur les

modèles de Markov cachés et utilise la trajectoire du MN pour le suivre. Chacun

de ces trois modèles attribue une masse mM,t(·) à chaque zone.

D’autre part, les modèles d’observation décrits dans les sections précédentes at-

tribuent une autre masse mO,t(·). Dans le cadre de la TFC, la masse du modèle

de mobilité est combinée avec celle du modèle d’observation pour attribuer un

niveau de confiance Wt(·) à chaque zone.
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A. RÉSUMÉ DE LA THÈSE

A.5.2 Premier modèle de mobilité

Soit ∆tloc l’intervalle de temps dans lequel l’algorithme de localisation est exécuté

et dmin,ij la distance géographique minimale entre Zi et Zj . La distance maximale

que le MN peut couvrir est ainsi déduite, dmax = vmax × ∆tloc. La figure 5.2

illustre l’architecture du premier modèle de mobilité. Soit pij , i, j ∈ {1, . . . , NZ},
le coefficient de transition de la zone Zi à la zone Zj pendant la période de

localisation ∆tloc,

pij =

{

0, si dmax < dmin,ij;

1, si dmax ≥ dmin,ij.
(A.29)

La masse attribuée par le modèle de mobilité est calculée par

mM,t(Zj) =

NZ
∑

i=1

pij ×
Wt−1(Zi)
∑NZ

f=1 pif
. (A.30)

La confiance associée à chacune des zones est alors déterminée par

Wt(Zj) = mM
⊕

O,t(Zj) =
mO,t(Zj)×mM,t(Zj)

∑NZ

χ=1mO,t(Zχ)×mM,t(Zχ)
. (A.31)

A.5.3 Deuxième modèle de mobilité

Dans ce modèle, chaque zone est divisée à NXi
sous-zones Xi.ℓ selon son ar-

chitecture, qui sont les NXi
− 1 sous-zones de connexion et une sous-zone

principale Xi.NXi
, comme le montre la figure 5.3. Soit Qi.ℓ(·) la distribution

représentant les variations des RSSIs dans chacune des sous-zones de connexion

Xi.ℓ, ℓ ∈ {1, . . . , NXi
− 1} et Qi.NXi

(·) la distribution représentant les variations

des RSSIs dans la sous-zone principale Xi.NXi
. Des poids d’appartenance du MN

à chacune des sous-zones sont calculés :

qt−1(Xi.ℓ) =
Qi.ℓ(ρt−1)

∑NXi

χ=1Qi.χ(ρt−1)
. (A.32)

La confiance de chaque zone Zi à t− 1 est transférée à ses sous-zones,

W
∗
t−1(Xi.ℓ) = Wt−1(Zi)× qt−1(Xi.ℓ). (A.33)
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Soit ri.ℓ,j le coefficient de transition de la sous-zone de connexion Xi.ℓ, ℓ ∈
{1, . . . , NXi

} de la zone Zi, i ∈ {1, . . . , NZ}, à la zone originale Zj, j ∈ {1, . . . , NZ},

ri.ℓ,j =

{

0, si dmax < dmin,i.ℓ,j;

1, si dmax ≥ dmin,i.ℓ,j,
(A.34)

où dmin,i.ℓ,j est la distance minimale entre la sous-zone de connexion Xi.ℓ et la

zone Zj . La masse associée à chaque zone par le modèle de mobilité est ainsi

déduite,

mM,t(Zj) = W
∗
t−1(Xj.NXj

) +

NZ
∑

i=1

NXi
−1

∑

ℓ=1

ri.ℓ,j ×
W∗

t−1(Xi.ℓ)
∑NZ

f=1 ri.ℓ,f
. (A.35)

La confiance associée à chacune des zones est alors déterminée par

Wt(Zj) = mM
⊕

O,t(Zj) =
mO,t(Zj)×mM,t(Zj)

∑NZ

χ=1mO,t(Zχ)×mM,t(Zχ)
. (A.36)

A.5.4 Troisième modèle de mobilité

Dans ce modèle, nous profitons de la trajectoire du MN pour le suivre. L’objectif

est de détecter une transition d’une zone à une autre dans une période de

temps. Pour ce faire, nous utilisons les modèles de Markov cachés (HMM) pour

déterminer une probabilité que le MN a suivi une certaine trajectoire. Chaque

HMM Λ est définie par trois paramètres, Λ = (A,B, π), où A est la matrice de

transition, B est le modèle d’émission et π est le vecteur d’états initiaux. Quand

une séquence d’états S = {s1, . . . , sα} est déterminée, nous pouvons observer une

séquence R = {R1, . . . , Rα}. Nous nous intéressons à la probabilité P (R|Λ), qui
désigne la probabilité d’observer la séquence R pour un modèle Λ donné. Le

calcul détaillé de cette probabilité se trouve dans la section 5.5.1.3.

Nous construisons des HMMs, notés Λij, i, j ∈ {1, . . . , NZ}, où Λij est un HMM de

NS-états correspondant à une transition de la zone Zi à la zone Zj. Le paramètre

NS est le nombre d’états et est choisi par l’utilisateur. Dans la phase offline, une

région de transition est construite entre chaque paire de zones voisines, comme le

montre la figure 5.5(a). Cette région est divisée en NS états. A chaque état, des

mesures de RSSIs sont recueillies. Les trajectoires sont créées en sélectionnant
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aléatoirement une mesure dans chaque état, comme le montre la figure 5.5(b).

Les paramètres de chaque HMM Λij = (A,B, π) sont calculés comme suit :

• La matrice de transition A de taille NS ×NS est définie comme suit,

A =

















1
2

1
2

0 0 . . . 0
1
3

1
3

1
3

0 . . . 0

0 1
3

1
3

1
3

. . . 0
...

...
...

...
. . .

...

0 0 0 . . . 1
2

1
2

















• Le modèle d’émission de chaque séquence est calculé en modélisant

les mesures de RSSIs de chaque séquence par une distribution multi-

dimensionnelle comme discuté dans la section 3.3.1

• Le vecteur π est défini par π = [ 1
NS

, . . . , 1
NS

].

L’objectif de ce modèle est d’associer une masse ou preuve indiquant que le MN

a suivi une certaine trajectoire, qui est une transition d’une zone à une autre.

Une fois une séquence R = {R1, . . . , Rα} est détectée, chaque HMM Λij attribue

une probabilité que le MN a suivi la trajectoire correspondante à cet HMM. Les

probabilités P (R|Λij), i, j ∈ {1, . . . , NZ}, sont calculées en utilisant les équations

(5.9) à (5.18). Ainsi, la probabilité de transition entre toutes paires de zones

est déterminée. Nous définissons le coefficient pij , i, j ∈ {1, . . . , NZ}, de Zi à Zj

comme suit,

pij =

{

P (R|Λij), si i 6= j;

1−∑NZ

j=1 P (R|Λij), si i = j.
(A.37)

Enfin, les probabilités associées par les HMMs sont propagées à l’instant suivant.

La confiance attribuée par ce modèle de suivi T à chaque zone Zj est calculée

comme suit,

Wt(Zj) =

NZ
∑

i=1

mO,t−1(Zi)× pij , (A.38)

où mO,t−1(Zi) est la masse associée par le modèle d’observation O(·) à l’instant

t− 1.
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A.5.5 Expérimentations

Cette sous-section évalue les performances de la méthode de suivi de trajectoires

que nous venons de proposer. Nous considérons 10 trajectoires de 50 observations

chacune. Dans notre application, nous nous intéressons à la localisation des

personnes âgées dépendantes. Pour cela, nous considérons une vitesse maximale

vmax = 1m/s, un nombre d’états NS = 10 et une longueur de séquence α = 8.

Le choix de ces valeurs est motivé dans les sections 5.6.2 et 5.6.2.1. Le tableau

5.3 montre l’influence de chacun des modèles de mobilité lors de la combinaison

avec les modèles d’observation, sur les performances de la méthode de suivi de

trajectoires. Nous pouvons voir que la plus faible erreur est obtenue avec le

troisième modèle de mobilité pour les deux expérimentations.

Nous étudions l’impact des différents paramètres des modèles de mobilités. En

premier lieu, nous varions la vitesse maximale de 0.5m/s à 2.5m/s et nous

analysons les performances des premiers deux modèles de mobilité. Les tableaux

5.4 et 5.5 montrent l’influence de vmax sur la précision de l’approche de suivi dans

les deux expérimentations. Comme le tableau le montre, la précision de l’approche

proposée diminue en augmentant la vitesse maximale. Quant à l’impact de la

longueur de la séquence α, nous remarquons tout d’abord que la précision de

l’approche proposée augmente lors de l’augmentation de la taille de la séquence

observée α. Cependant, l’augmentation de la taille de la séquence induit une

augmentation de la complexité du calcul.

A.6 Localisation décentralisée

Dans cette section, nous explorons les architectures décentralisées pour la lo-

calisation par zonage. Inspirée par la topologie décentralisée, nous proposons

l’approche décentralisée suivante. Tout d’abord, nous partitionnons la région

cible en différents secteurs, et nous assignons un calculateur à chaque secteur.

Chacun des calculateurs estime la zone du MN en appliquant un algorithme de

localisation local. Nous prenons la décision ensuite en combinant les décisions de

tous les calculateurs. En plus, nous présentons une stratégie pour déterminer le

nombre optimal de calculateurs et leurs positions.
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A.6.1 Problématique

L’objectif de la méthode proposée est de déterminer la zone du MN dans une

architecture décentralisée, en associant une confiance Cft(·) à chacune des zones

à l’instant t. Supposons que la région cible est partitionnée en NC secteurs, notés

Ci, i ∈ {1, ..., NC}. Soit Zj , j ∈ Ji, l’ensemble de zones constituant le secteur i.

Les calculateurs qui détectent le signal émis par le MN reçoivent le vecteurs des

RSSIs de tous les APs détectés. Les estimations locales sont ainsi combinées afin

d’estimer la zone du MN. Dans ce qui suit, IC,t représente l’ensemble des indices

des calculateurs à portée de la communication du MN à l’instant t.

A.6.2 Première approche décentralisée

Dans cette approche, nous assignons des secteurs distincts à chaque calculateur,

c’est à dire, dans deux secteurs i, i′ ∈ {1, . . . , NC} avec i 6= i′, nous avons Zj 6=
Zj′, ∀j ∈ Ji, j

′ ∈ Ji′. Un exemple de cette architecture est illustré par la figure

6.3(a). Soit ηi,t la puissance du signal reçu par le calculateur Ci du MN. Chaque Ci

exécute l’algorithme de localisation local et assigne une certaine preuve à chacune

de zones de son secteur.

Soit mi,t(Zj), j ∈ Ji, la masse assignée par l’algorithme de localisation local aux

zones du secteur i à l’instant t. La masse mi,t(·) est normalisée sur toutes les

zones de ce secteur,

m̃i,t(Zj) =
mi,t(Zj)

∑

q∈Ji mi,t(Zq)
. (A.39)

La confiance associée à chacune des zones du secteur i est ainsi calculée,

Cft(Zj) =

1
wi,t

× m̃i,t(Zj)
∑

p∈IC,t

∑

q∈Jp
1

wi,t
× m̃p,t(Zq)

, (A.40)

où wi,t =
ηi,t

∑

x∈IC,t
ηx,t

est le poids de chaque calculateur Ci.

A.6.3 Deuxième approche décentralisée

Dans cette approche, nous considérons des secteurs distincts comme dans

l’approche précédente. Par contre, au lieu de prendre une décision par chaque
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calculateur, nous prenons uniquement les estimations des calculateurs. Les esti-

mations des calculateurs sont ainsi combinées pour arriver à une décision finale

de la zone du MN. La confiance associée à chaque zone est obtenue par

Cft(Zj) =

1
wi,t

×mi,t(Zj)
∑

p∈IC,t

∑

q∈Jp
1

wp,t
×mi,t(Zj)

. (A.41)

A.6.4 Troisième approche décentralisée

Dans cette approche, nous associons des secteurs de chevauchement aux calcula-

teurs, c’est à dire, dans deux secteurs i, i′ ∈ {1, . . . , NC}, i 6= i′, ∃j ∈ Ji, j
′ ∈ Ji′,

tel que j = j′. Un exemple de cette architecture est illustré dans la figure 6.3(b).

La masse obtenue par combiner les décisions de tous les calculateurs est calculaée

par

mF,t(Zj) =
∏

i∈IC,t

m̃i,t(Zj), ∀j ∈
⋂

i∈IC,t

Ji. (A.42)

La quantité mF,t(Zj) est nulle pour toutes les zones qui ne sont pas à l’intersection

des secteurs correspondants aux calculateurs détectés; c’est à dire, mF,t(Zj) =

0 ∀Zj telle que j /∈ ⋂

i∈IC,t
Ji. La confiance associée à chacune des zones est

calculée en normalisant toutes les preuves combinées,

Cft(Zj) =
mF,t(Zj)

∑

p∈IC,t

∑

q∈Jp mF,t(Zq)
. (A.43)

A.6.5 Placement des calculateurs

Les calculateurs sont des dispositifs intelligents capables d’échanger des infor-

mations avec l’environnement. Puisqu’il n’existe aucune connaissance préalable

du nombre ou des positions des calculateurs, il est important de développer une

stratégie pour les placer. Nous proposons une solution basée sur le nombre op-

timal de calculateurs requis pour couvrir toute la région cible. Supposons que

la région cible est un rectangle de dimensions L × H . D’autres formes sont

traitées en considérant le plus grand rectangle et en enlevant les parties qui ne

sont pas dans la région originale. Soit δ la portée de détection du MN. Si sa

portée n’est pas circulaire, nous considérons le plus grand cercle inscrit dans la

portée. L’objectif est de minimiser le nombre de calculateurs NC requis pour
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couvrir toute la région et de déterminer leurs positions. Pour ce faire, nous pro-

posons la technique d’empilement de cercles. Nous citons l’empilement compact

de cercles dans cette sous-section. L’autre stratégie des circles covering the region

est similaire. La seule différence est que la dernière ne laisse aucun espace non

couvert, nécessitant un nombre plus élevé de calculateurs. Les détails de ces deux

stratégies se trouvent dans la section 6.4.

L’empilement compact de cercles est un arrangement de cercles dans une région

où aucun chevauchement est permis [He & Dosh, 2017]. Hales [2000] démontrent

que le pavage hexagonal est le plus optimal de tous les pavages, comme le montre

la figure 6.5(a). Le nombre NC de cercles requis est calculé par

π

2
√
3
=

NC × πδ2

L×H
=⇒ NC = ceil

(

L×H

2
√
3× δ2

)

, (A.44)

où ceil(·) est la fonction qui arrondi le chiffre à la partie entière par excès. Pour

déployer les cercles, B paquets sont placés horizontalement, chacun comprenant A

cercles. Dans un système de coordonnées cartésiennes d’origine au coin inférieur

gauche du rectangle, la position [xa, yb] du centre du cercle a du paquet b est

déterminée par

[xa, yb] =

{

[√
3(a− 1)δ, (2b− 1)δ

]

, si a est impair;
[√

3(a− 1)δ, 2(b− 1)δ
]

, si a est pair.
(A.45)

A.6.6 Algorithme de localisation local

Chaque calculateur exécute un algorithme de localisation local pour déterminer

la zone du MN dans son secteur correspondant. L’objectif est de trouver une

fonction Ii(·) : RNAP → [0, 1]|Ji| pour tout calculateur Ci tel que Ii(ρt) =
(

mi,t(Zj1), . . . , mi,t(Zj|Ji|
)
)

, où Ji = {j1, . . . , j|Ji|} et mi,t(Zj), est la masse at-

tribuée à Zj à l’instant t pour une nouvelle observation ρt ∈ RNAP .

Une première solution est d’utiliser les modèles d’observation. Dans ce cas,

la fonction Ii(·) désigne le modèle d’observation O(·), le nombre de zones |Ji|
est NZ et les masses mi,t(Zj), j ∈ Ji attribuées aux zones du secteur Ci seront

mO,t(Zj), j ∈ {1, . . . , NZ}, associées par O aux zones de son secteur.
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Une deuxième solution est d’utiliser les modèles d’observation et de mobilité,

comme expliqué dans la section précédente. Dans ce cas, la fonction Ii(·)
désigne le modèle de suivi de trajectoire T(·), le nombre de zones |Ji| est NZ

et les masses mi,t(Zj) attribuées aux zones du secteur i seront les confiances

Wt(Zj), j ∈ {1, . . . , NZ}.

A.6.7 Expérimentions

Dans cette sous-section, nous utilisons une portée de communication de δ = 6m.

Le nombre optimal de calculateurs obtenu par l’empilement compact de cercles

par circle covering the plane est de NC = 4.4 ≈ 5 et NC = 5.8 ≈ 6 respective-

ment.. Puisqu’il n’y a pas une grande différence dans le nombre de calculateurs,

nous prenons 6 calculateurs pour garantir une couverture complète de la région

cible. Le Tableau 6.1 compare la précision des approches décentralisées à celle du

BOM et du EOM décrits dans les sections précédentes. Nous pouvons voir que la

troisième approche atteint une meilleure performance que toutes les autres. Nous

analyserons ensuite la robustesse des approches proposées. Le tableau 6.2 montre

l’impact du nombre de calculateurs en panne sur les performances des méthodes.

Les approches centralisées, BOM et EOM, n’arrivent pas à effectuer la localisation

si le calculateur tombe en panne. Par contre, les approches proposées peuvent

toujours localiser les MNs, bien que la performance se dégrade.

Ce paragraphe compare l’approche proposée à deux techniques de localisation

bien connues : la localisation basée sur les connectivités [Shang et al., 2004] et la

localisation utilisant l’algorithme des k-plus proches voisins pondérés [Koyuncu

& Yang, 2011]. Nous comparons aussi l’approche proposée aux techniques con-

ventionnelles de classification multi-classes, telles que les machines à vecteur sup-

port et les réseaux de neurones. Le tableau 6.3 compare les performances des

différentes méthodes. Nous pouvons voir que la plus faible erreur est obtenue

avec la troisième approche décentralisée. L’avantage des approches proposées est

la simplicité de l’algorithme de localisation local, ce qui réduit la complexité de

l’approche et ainsi le temps d’exécution.
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A.7 Conclusion et perspectives

Cette thèse a abordé le problème de localisation des capteurs dans les réseaux de

capteurs sans fil. Tout d’abord, nous avons proposé une méthode de localisation

par zonage dans le cadre de la théorie des fonctions de croyance. Cette méthode a

été développée au travers du clustering hiérarchique, pour effectuer la localisation

dans le but de couvrir des surfaces plus grandes avec un nombre de zones plus

élevé. Ensuite, nous avons proposée une technique de sélection de paramètres,

qui sont les bornes WiFi à privilégier. Nous revisitons ensuite ce travail pour

l’adapter au suivi de trajectoire. Cette méthode permet d’améliorer l’estimation

de la zone en tenant compte du mouvement du capteur. Finalement, une version

décentralisée a été présentée, pour accroitre la robustesse et l’applicabilité, et

réduire la complexité de la méthode proposée. Cette section résume les contribu-

tions majeures de cette thèse et propose quelques perspectives futures.

A.7.1 Contributions principales

Dans la section A.3, nous avons introduit une méthode de localisation par zonage

dans le cadre de la théorie des fonctions de croyance. Un modèle d’observation

a été construit pour estimer la zone du capteur mobile en utilisant les mesures

de RSSIs reçues des APs WiFi. Plusieurs configurations ont été explorées pour

la définition du modèle. Différents types de modélisation des observations, af-

faiblissement des sources et des règles de combinaison de l’information ont été

étudiées. Les résultats expérimentaux ont montré que la méthode proposée sur-

passe d’autres technique de classification en termes de précision.

Pour améliorer la performance de la méthode pour un nombre élevé de zones, un

modèle d’observation élaboré a été proposé dans la section A.4. Une hiérarchie de

deux niveaux a été construite par optimiser les distances inter- et intra-clusters.

Une technique de sélection de APs a été également développée pour choisir le

meilleur ensemble de APs en termes de précision et redondance. Les résultats

obtenus ont montré que ce modèle atteint une précision plus grande, mais au

prix d’une augmentation significative de la complexité du calcul.
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Dans la section A.5, nous avons proposé une technique de suivi de trajectoires qui

profite de la mobilité des capteurs dans le milieu couvert. Plusieurs modèles de

mobilité ont été proposés dans le cadre de la théorie des fonctions de croyance et

combinés avec les modèles d’observation déjà décrits. Les résultats obtenus ont

montré l’efficacité de ces modèles pour améliorer les estimations des zones.

Finalement, dans la section A.6, nous avons présenté un algorithme décentralisé

pour la localisation par zonage. Plusieurs approches décentralisées ont été

étudiées. Une stratégie optimale pour placer les calculateurs a été décrite en

utilisant l’empilement compact de cercles. Les résultats obtenus ont montré la

robustesse de l’approche, sa faible complexité par rapport aux approches cen-

tralisées et son efficacité en termes de précision.

A.7.2 Perspectives

Dans le cadre de travaux futures, nous tenons à étudier les aspects suivants con-

cernant l’amélioration des méthodes proposées.

• Amelioration des modèles d’observation

Dans la définition du modèle d’observation avancé, une hiérarchie de deux

niveaux a été proposée. Dans les cas où la région cible est très large,

comme les immeubles à plusieurs étages, plus que deux niveaux sont requis.

Les travaux futurs comprendront une sélection systématique du nombre de

niveaux optimal.

• Amélioration de l’approche de fingerprinting

Les approches de fingerprinting par RSSIs se basent sur les puissances des

signaux reçus pour déterminer la position du capteur mobile. Un facteur

important dans ces algorithmes est les positions des APs. Jusqu’à main-

tenant, les APs sont installés selon le critère de couverture. Nous pouvons

développer un algorithme d’optimisation pour maximiser la couverture et

minimiser l’erreur résultant des positions des APs. Une autre solution con-

siste à ajouter des APs d’une manière efficace pour la localisation.
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• Amélioration de l’algorithme de sélection des APs

Dans l’algorithme de sélection des APs, un paramètre de compromis a

été défini. Le rôle de ce paramètre est d’attribuer un poids à chacune

des fonctions objectives : la maximisation de la capacité discriminatoire

et la minimisation de la redondance. Toutefois, le paramètre a été défini

par l’utilisateur manuellement. Nous pouvons chercher un algorithme qui

détermine le paramètre de compromis de manière automatique.

• Mise à jour de la base de données

Les RSSIs recueillis dans chaque zone varient avec le temps. C’est à

cause des changements de la puissance initiale émise, les conditions at-

mosphériques, etc. Nous pouvons développer un algorithme qui sélectionne

de nouvelles mesures, ayant une grande confiance, et qui les ajoute à la base

de données.

• Amélioration des modèles de mobilité

Les modèles de mobilité proposés supposent une vitesse maximale des cap-

teurs. Lorsque cette vitesse augmente, des estimations moins précises sont

obtenues si on a besoin d’un algorithme de localisation rapide, qui est na-

turellement le cas. Nous pouvons ainsi équiper les capteurs par des unités

de mesure inertielles qui peuvent collecter des informations plus précises sur

la mobilité des capteurs en temps réel afin d’améliorer la localisation.
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fusion using Dempster-Shafer evidence theory. Integrated Computer-Aided En-

gineering , 10, 9–22. 33

Hershey, J.R. & Olsen, P.A. (2007). Approximating the Kullback-Leibler di-

vergence between Gaussian mixture models. In IEEE International Conference

on Acoustics, Speech and Signal Processing (ICASSP), IV–317, IEEE. 90

Honeine, P., Noumir, Z. & Richard, C. (2013). Multiclass classification

machines with the complexity of a single binary classifier. Signal Processing ,

93, 1013–1026. 17, 163

Hong, F., Zhang, Y., Zhang, Z., Wei, M., Feng, Y. & Guo, Z. (2014).

WaP: Indoor localization and tracking using WiFi-assisted particle filter. In

IEEE Conference on Local Computer Networks (LCN), 210–217, IEEE. 21,

112

198



BIBLIOGRAPHY

Huang, S., Yang, Y., Yang, D., Huangfu, L. & Zhang, X. (2015). Class

specific sparse representation for classification. Signal Processing , 116, 38–42.

104, 106

Hussain, M.A. & kyung Sup, K. (2009). WSN research activities for military

application. In International Conference on Advanced Communication Tech-

nology (ICACT), 271–274, IEEE. 6

Hussain, S., Schaffner, S. & Moseychuck, D. (2009). Applications of

wireless sensor networks and RFID in a smart home environment. In Annual

Communication Networks and Services Research Conference (CNSR), 153–157,

IEEE. 7

Iliev, N. & Paprotny, I. (2015). Review and comparison of spatial localization

methods for low-power wireless sensor networks. IEEE Sensors Journal , 15,

5971–5987. 135

Islam, M.A., Alizadeh, B.Z., van den Heuvel, E.R., Bruggeman, R.,

Cahn, W., de Haan, L., Kahn, R.S., Meijer, C., Myin-Germeys, I. &

van Os, J. (2015). A comparison of indices for identifying the number of clus-

ters in hierarchical clustering: A study on cognition in schizophrenia patients.

Communications in Statistics: Case Studies, Data Analysis and Applications ,

1, 98–113. 92

Jaffray, J.Y. (1989). Linear utility theory for belief functions. Operations Re-

search Letters , 8, 107–112. 45

Jahromi, O.S. (2007). Multirate statistical signal processing . Springer Science

& Business Media. 94, 95, 177

Jain, A.K., Murty, M.N. & Flynn, P.J. (1999). Data clustering: a review.

ACM Computing Surveys , 31, 264–323. 82

John, G.H., Kohavi, R. & Pfleger, K. (1994). Irrelevant features and the

subset selection problem. In Machine Learning Proceedings 1994 , 121–129, El-

sevier. 85

199



BIBLIOGRAPHY

Johnson, S.C. (1967). Hierarchical clustering schemes. Psychometrika, 32, 241–

254. 83

Kaufman, L. & Rousseeuw, P.J. (2009). Finding groups in data: an intro-

duction to cluster analysis , vol. 344. John Wiley & Sons. 82

Kendrick, J.D., Maybeck, P. & Reid, J. (1981). Estimation of aircraft tar-

get motion using orientation measurements. IEEE Transactions on Aerospace

and Electronic Systems , 2, 254–260. 20, 111

Kennes, R. & Smets, P. (1990). Fast algorithms for Dempster-Shafer theory.

In International Conference on Information Processing and Management of

Uncertainty in Knowledge-Based Systems (IPMU), 14–23, Springer. 46, 169

Kershner, R. (1939). The number of circles covering a set. American Journal

of Mathematics , 61, 665–671. 144

Khedo, K.K., Sathan, D., Elaheebocus, R., Subramanian, R.K. &

Rughooputh, S. (2010). Overlapping zone partitioning localisation technique

for RFID. International Journal of Ubiquitous Computing , 1, 20–32. 16

Khorsandi, R. & Abdel-Mottaleb, M. (2015). Classification based on

weighted sparse representation using smoothed L0 norm with non-negative

coefficients. In IEEE International Conference on Image Processing (ICIP),

3131–3135, IEEE. 104, 106

Kim, B.H., Roh, D.K., Lee, J.M., Lee, M.H., Son, K., Lee, M., Choi,

J. & Han, S. (2001). Localization of a mobile robot using images of a moving

target. In IEEE International Conference on Robotics and Automation (ICRA),

253–258, IEEE. 10

Ko, J., Lu, C., Srivastava, M.B., Stankovic, J.A., Terzis, A. & Welsh,

M. (2010). Wireless sensor networks for healthcare. Proceedings of the IEEE ,

98, 1947–1960. 7

Kohavi, R. & John, G.H. (1997). Wrappers for feature subset selection. Arti-

ficial Intelligence, 97, 273–324. 85

200



BIBLIOGRAPHY

Kotsiantis, S.B. (2013). Decision trees: a recent overview. Artificial Intelli-

gence Review , 39, 261–283. 17, 164

Kotsiantis, S.B., Zaharakis, I. & Pintelas, P. (2007). Supervised machine

learning: A review of classification techniques. Emerging Artificial Intelligence

Applications in Computer Engineering , 160, 3–24. 17

Koyuncu, H. & Yang, S.H. (2011). A 2D positioning system using WSNs

in indoor environment. International Journal of Electrical and Computer Sci-

ences , 11, 70–77. 149, 189

Krzanowski, W.J. & Lai, Y. (1988). A criterion for determining the number

of groups in a data set using sum-of-squares clustering. Biometrics , 23–34. 92,

176

Kumar, K. & Zhou, H. (1984). A current statistical model and adaptive algo-

rithm for estimating maneuvering targets. Journal of Guidance, Control, and

Dynamics , 7, 596–602. 20, 111

Kurdej, M. & Cherfaoui, V. (2013). Conservative, proportional and opti-

mistic contextual discounting in the belief functions theory. In International

Conference on Information Fusion (FUSION), 2012–2018, IEEE. 67, 172

Lee, D.L. & Chen, Q. (2007). A model-based WiFi localization method. In In-

ternational conference on Scalable information systems (ICSIS), 40–47, ICST.

16

Lee, K.C., Ho, J. & Kriegman, D.J. (2005). Acquiring linear subspaces

for face recognition under variable lighting. IEEE Transactions on Pattern

Analysis and Machine Intelligence, 27, 684–698. 104

Lee, S.H., Lee, S., Song, H. & Lee, H.S. (2009). Wireless sensor network

design for tactical military applications: Remote large-scale environments. In

IEEE Military communications conference (MILCOM), 1–7, IEEE. 6

201



BIBLIOGRAPHY

Lillis, D., Toolan, F., Collier, R. & Dunnion, J. (2006). Probfuse: a

probabilistic approach to data fusion. In ACM International Conference on

Research and Development in Information Retrieval (SIGIR), 139–146, ACM.

31

Lin, M., Wu, Y. & Wassell, I. (2008). Wireless sensor network: Water dis-

tribution monitoring system. In IEEE Radio and Wireless Symposium (RWS),

775–778, IEEE. 7

Liu, D., Li, T. & Liang, D. (2014). Incorporating logistic regression to

decision-theoretic rough sets for classifications. International Journal of Ap-

proximate Reasoning , 55, 197–210. 17, 163

Liu, H., Darabi, H., Banerjee, P. & Liu, J. (2007). Survey of wireless

indoor positioning techniques and systems. IEEE Transactions on Systems,

Man, and Cybernetics, Part C: Applications and Reviews , 37, 1067–1080. 51

Liu, L., Shao, L. & Rockett, P. (2013a). Human action recognition based

on boosted feature selection and naive Bayes nearest-neighbor classification.

Signal Processing , 93, 1521–1530. 76, 174

Liu, Y.C., Ou, Y.K., Lin, S.N. & Fang, C.W. (2013b). A study of the indoor

walking navigation system for patients with early-stage Alzheimer’s disease. In

International Conference on Computer, Networks and Communication Engi-

neering (ICCNCE), Atlantis Press. 16, 50

Liu, Z.g., Dezert, J., Pan, Q. & Mercier, G. (2011). Combination of

sources of evidence with different discounting factors based on a new dissimi-

larity measure. Decision Support Systems , 52, 133–141. 45

Lv, X., Mourad-Chehade, F. & Snoussi, H. (2015). Decentralized localiza-

tion using radio-fingerprints and accelerometer in WSNs. IEEE Transactions

on Aerospace and Electronic Systems , 51, 242–257. 15

Mahfouz, S., Mourad-Chehade, F., Honeine, P., Farah, J. & Snoussi,

H. (2013). Decentralized localization using fingerprinting and kernel methods

202



BIBLIOGRAPHY

inwireless sensor networks. In European Signal Processing Conference (EU-

SIPCO), 1–5, IEEE. 5

Mahfouz, S., Mourad-Chehade, F., Honeine, P., Farah, J. & Snoussi,

H. (2014). Target tracking using machine learning and Kalman filter in wireless

sensor networks. IEEE Sensors Journal , 14, 3715–3725. 20, 32, 111, 164

Mahfouz, S., Mourad-Chehade, F., Honeine, P., Farah, J. & Snoussi,

H. (2015). Kernel-based machine learning using radio-fingerprints for localiza-

tion in WSNs. IEEE Transactions on Aerospace and Electronic Systems , 51,

1324–1336. 15, 163

Mahler, R.P. (2004). “Statistics 101” for multisensor, multitarget data fusion.

IEEE Aerospace and Electronic Systems Magazine, 19, 53–64. 30

Mamun, Q. (2012). A qualitative comparison of different logical topologies for

wireless sensor networks. Sensors , 12, 14887–14913. 5, 135, 162

Manning, C.D., Raghavan, P., Schütze, H. et al. (2008). Introduction to

information retrieval , vol. 1. Cambridge university press Cambridge. 87, 175

Martinez, A.M. (1998). The AR face database. CVC Technical Report , 24.

104

Massey Jr, F.J. (1951). The Kolmogorov-Smirnov test for goodness of fit.

Journal of the American statistical Association, 46, 68–78. 58
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