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Abstract

Machine Learning as a Service (MLaaS) refers to a service that enables companies to
delegate their machine learning tasks to single or multiple untrusted but powerful third
parties, namely cloud servers. Thanks to MLaaS, the need for computational resources
and domain expertise required to execute machine learning techniques is significantly
reduced. Nevertheless, companies face increasing challenges with ensuring data privacy
guarantees and compliance with the data protection regulations. Executing machine
learning tasks over sensitive data requires the design of privacy-preserving protocols for
machine learning techniques.

In this thesis, we aim to design such protocols for MLaaS and study three machine
learning techniques: Neural network classification, trajectory clustering, and data aggre-
gation under privacy protection. In our solutions, our goal is to guarantee data privacy
while keeping an acceptable level of performance and accuracy/quality evaluation when
executing the privacy-preserving variants of these machine learning techniques. In order
to ensure data privacy, we employ several advanced cryptographic techniques: Secure
two-party computation, homomorphic encryption, homomorphic proxy re-encryption,
multi-key homomorphic encryption, and threshold homomorphic encryption. We have
implemented our privacy-preserving protocols and studied the trade-off between privacy,
efficiency, and accuracy/quality evaluation for each of them.
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Résumé

L’apprentissage automatique en tant que service (MLaaS) fait référence à un service
qui permet aux entreprises de déléguer leurs tâches d’apprentissage automatique à un
ou plusieurs serveurs puissants, à savoir des serveurs cloud. Néanmoins, les entreprises
sont confrontées à des défis importants pour garantir la confidentialité des données et
le respect des réglementations en matière de protection des données. L’exécution de
tâches d’apprentissage automatique sur des données sensibles nécessite la conception
de nouveaux protocoles garantissant la confidentialité des données pour les techniques
d’apprentissage automatique.

Dans cette thèse, nous visons à concevoir de tels protocoles pour MLaaS et étudions
trois techniques d’apprentissage automatique : les réseaux de neurones, le partitionnement
de trajectoires et l’agrégation de données. Dans nos solutions, notre objectif est de
garantir la confidentialité des données tout en fournissant un niveau acceptable de
performance et d’utilité. Afin de préserver la confidentialité des données, nous utilisons
plusieurs techniques cryptographiques avancées : le calcul bipartite sécurisé, le chiffrement
homomorphe, le rechiffrement proxy homomorphe ainsi que le chiffrement à seuil et le
chiffrement à clé multiples. Nous avons en outre implémenté ces nouveaux protocoles
et étudié le compromis entre confidentialité, performance et utilité/qualité pour chacun
d’entre eux.
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A.6 Clustering dans le scénario à deux serveurs . . . . . . . . . . . . . . . . . 160
A.7 PRIDA - Joueurs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
A.8 Toutes les techniques d’apprentissage automatique préservant la confi-
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Chapter 1

Introduction

The starting point of all achievement is desire.

Napoleon Hill

With the recent advances in the information technology, Internet of Things (IoT)
devices are found everywhere: At our homes, on our wrists or in our pockets, and the
development of user-friendly applications for these IoT devices have encouraged people
for their extensive usage and large amounts of data production. With the evolution of
cloud computing technologies, data-driven businesses, e.g., companies or service providers,
easily collect and store massive amount of data. Such abundance of data allows deriving
relevant information about their users through advanced analytics such as statistical
analysis (sum, average, etc.) or machine learning techniques (neural networks, clustering,
etc.). These analytical findings can help companies improve their existing customer
services or offer new ones. Companies are also attracted to share these data.

1.1 Machine Learning as a Service

The cloud computing technology and the success of machine learning techniques lead to
a paradigm shift in technological services that enable data-driven companies to delegate
their machine learning tasks to cloud servers that have domain-specific expertise in
machine learning and computational resources for the required analytics. One such
service is called Machine Learning as a Service (MLaaS) [1] illustrated in Figure 1.1.

MLaaS enables companies to easily and quickly get started with machine learning
techniques: Companies do not need to install several software systems to run the required
technique.
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Querier

Cloud Server

X
Y

Figure 1.1 – Machine Learning as a Service

1.2 Data Privacy vs Machine Learning Techniques

The privacy of an individual is one of his/her fundamental rights. Launching MLaaS
over data coming from individuals has become more and more attractive for data-driven
companies with the increasing ability of data processing (collect, perform some advanced
data analytics over the data, etc.). Yet, collected, stored, processed, or shared data are
usually privacy-sensitive data, and, in recent years, several data protection regulations
such as the European General Data Protection Regulation (GDPR) [2] or the ePrivacy
directive [3] have been emerged to protect individuals’ privacy. These data protection
regulations guarantee that the processed data to be protected and not to be disclosed
the privacy of any person. The privacy-by-design approach of the GDPR can be applied
by employing cryptographic techniques to support data protection and, at the same time,
the use of machine learning techniques over these protected data.

Machine learning techniques can be considered as a system designed to learn or solve
problems based on its environment observations [4]. Today, several machine learning
techniques are well-known. In this thesis, we focus on three techniques:

1. Neural networks are inspired from the human brain composed of many connected
neurons which serve some functionality for the human body [5,6]. A neural network
consists of two phases: A training phase (or called learning phase), where the
neural network model is built by learning/gaining new capabilities from data in
the training dataset; and a classification phase (or called prediction or querying
phase), in which the created neural network model is tested with new data from
the testing dataset (i.e., different from the data items in the training dataset).
The neural network model can be defined as the composition of several functions
taking input matrices and/or vectors that are built during the training phase:
These matrices and vectors are created by determining the influence of a given
neuron input on the output of that neuron. The classification phase uses the built
model by taking testing data and outputting a label over them. A neural network
generally consists of three different layers: Input layer, hidden layer(s), and output
layer. For hidden layers, the most used ones are the convolutional layer (if image
classification is needed), fully connected layer, activation layer, and pooling layer.
These layers can be considered as functions such as matrix-vector multiplication,
the Max computation, or the computation of Sigmoid.
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2. Clustering is a machine learning technique that allows the grouping of similar data
items in the same cluster. In particular, we focus on trajectory clustering, namely
TRACLUS which is a density-based clustering technique designed and optimised
for clustering trajectories [7]. TRACLUS consists of two phases: A partitioning
phase, in which trajectories are divided into sub-trajectories, namely line segments
(represented by two points) as close to the original trajectories as possible; and a
grouping phase (or called clustering phase), where segmented sub-trajectories are
grouped into some clusters according to their similarities, i.e., being neighbours of
some line segment(s). These phases of TRACLUS include several functions such as
the logarithm computation, the sine function, or division.

3. Data Aggregation is the process of regrouping data, presenting them in a summarised
form, and performing some statistical analysis such as a simple sum or mean
computation over these data. The underlying data usually come from multiple data
sources (who can be individuals or several data-driven companies’ data pools) to
bring them together. Data aggregation is one of the most used data processes in
the area of finance (retail, investment, etc.), the travel industry, sensor networks,
or search engines [8].

The collected/processed/shared data paradigm raises serious privacy concerns mainly
because of the high sensitivity of the data. When companies try to bring value out of them,
they face increasing challenges with ensuring data privacy guarantees and compliance
with the data protection regulations [2, 3]. Moreover, the collection, processing, and
sharing of the underlying data may cause breach of individuals’ privacy, e.g., leaking the
date, place, or participation of some social event. There exist recent examples of privacy
breaches originating from these kinds of application usage: According to two news of
the Guardian, (i) some documents provided by Edward Snowden in 2014 revealed that
NSA had used the mobile game Angry Birds to collect users’ data such as age, gender,
and location1; and (ii) the Facebook-Cambridge Analytica data scandal in early 2018
hit the headline when it was revealed that the consulting company had harvested the
Facebook data to profile US voters and used this information to have an impact on the
US voters’ decision2. As these kinds of personal information leakage affect a country’s
election result, companies’ future can be put in danger: They may suffer from reputation
damage, operational downtime, or financial loss (e.g., the data breaches cost is globally
£3.2M over five years3).

The private data should be confidential and private when companies employ machine
learning techniques (or as a task of MLaaS on some cloud platform) over them; however,
these techniques cannot work well without having an access to the underlying data.
Therefore, in order to keep the data confidential and, at the same time, to enable
these techniques to work properly over these privacy-sensitive data, one can leverage

1https://www.theguardian.com/world/2014/jan/27/nsa-gchq-smartphone-app-angry-birds-
personal-data

2https://www.theguardian.com/news/2018/mar/17/cambridge-analytica-facebook-influence-us-
election

3https://www.metacompliance.com/blog/5-damaging-consequences-of-a-data-breach/
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advanced cryptographic techniques such as homomorphic encryption or secure multi-party
computation.

1.3 Privacy-preserving protocols for Machine Learning Techniques

In order to design a privacy-preserving protocol for the previously mentioned machine
learning techniques, one should identify the main privacy requirements.

While developing a privacy-preserving protocol, we foresee the following requirements:

(i) Input privacy : Provided input should be confidential to only its actual owner.

(ii) Output privacy : The cloud server is not allowed to learn the output/result of the
ML techniques’ evaluation.

(iii) Model privacy : A private ML model which is also an asset should not be disclosed
to any party, except its owner.

(iv) The querier/data owner and the cloud server are semi-honest.

Performing machine learning techniques over confidential data usually requires the use
of cryptographic techniques such as homomorphic encryption (HE) or secure multi(two)-
party computation (MPC/2PC); however, these, unfortunately, incur a non-negligible
overhead with respect to computational and communication costs. To efficiently combine
the underlying cryptographic techniques with machine learning techniques, the design of
the latter needs to be revisited. The goal of privacy-preserving machine learning protocols
is to address the trade-off between privacy, efficiency, and accuracy/quality evaluation.
Therefore, we identify four challenges when designing privacy-preserving protocols for
neural network, (trajectory) clustering, and data aggregation:

– Challenge 1: Complex operations. Existing cryptographic techniques can be in-
compatible with some complex machine learning operations such as the Sigmoid
activation function in the neural network.

– Challenge 2: Optimisation of the underlying technique. A neural network contains
two phases: The training phase and the classification phase. Similarly, TRACLUS
involves the partitioning phase and the clustering (or grouping) phase. The training
(or partitioning) phase is composed of several iterations of the same functions’
process until having a good level of accuracy (a good level of clustering quality).
The training phase (or the partitioning) phase also consists of more complex
operations. While comparing it with the classification (or clustering) phase, the
training (or partitioning) phase performed by the cloud server requires the tuning
of neural network (or TRACLUS partitioning) parameters or the increase of the
number of activation functions. Therefore, such a need implies several interactions
between the data owner and the cloud server. When considering the integration of
this phase with cryptographic techniques, the underlying cryptographic technique
cannot support them easily. We, thus, focus on the grouping (or called clustering)
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phase and assume that the data owner has already run the partitioning phase over
plaintext trajectories and divided them into line segments.

Furthermore, a neural network is composed of multiple layers, multiple neurons in
these layers, and input and output vectors. These parameters, which define the size
of the neural network, have a significant impact on the complexity of the neural
network, and therefore, such parameters should be optimised while their integration
with cryptographic techniques.

Moreover, (trajectory) clustering algorithms usually have some specific parameters
like the number of clusters or the number of iterations. Such parameters have a
non-negligible impact on the complexity of the required clustering technique, and
further, the clustering quality evaluation. When designing its privacy-preserving
variant, these parameters should be chosen carefully.

– Challenge 3: Real numbers. Neural networks or trajectory clustering computes
several functions over real numbers whereas cryptographic techniques work over
binary or integer numbers.

– Challenge 4: Multiple data sources. Another challenge is the number of data sources.
The data collected from multiple sources raise data privacy challenges due to the
multiplicity of data sources, each of them requiring its own privacy, and their data,
therefore, should be protected individually.

We propose to study the privacy requirements with respect to two scenarios:

1. Privacy-preserving single-server machine learning techniques:

Consider a scenario that involves two parties: A querier (or a data owner) who
has a private input, and a cloud server, which is untrusted but powerful and
owns/receives a private ML model (or the cloud server owns/receives nothing, but
performs the required ML technique). The querier/data owner wishes to outsource
the evaluation of some MLaaS task to the cloud server. The first requirement to
achieve in this scenario is to guarantee input privacy against any unauthorised
parties during the processing lifetime of the data (i.e., from its collection to its
analysis). The unauthorised party can be the cloud server(s), querier(s)/data
owner(s), or an external party, who does not play any role during the protocol.
The second requirement is to ensure output privacy against any unauthorised
parties since the output of the required machine learning techniques over privacy-
sensitive input data can reveal some information about the query. Lastly, when the
machine learning technique is the neural network, the neural network model might
be confidential against any party except its owner since the underlying model can
disclose some privacy-sensitive information about the training data, and therefore,
this can indicate the identity of an individual. Note that in some cases, the model
should be kept private against even the cloud server itself.

2. Privacy-preserving two-server machine learning techniques
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A querier or data owner outsources its privacy-sensitive input data to two non-
colluding semi-honest cloud servers, which execute the privacy-preserving machine
learning technique tasks over the underlying data. The querier wishes to hide its
sensitive input data from both cloud servers as well as the corresponding privacy-
sensitive output. Moreover, when both cloud servers own/receive a private ML
model, they keep the underlying model confidential. We aim to decrease the
computational and communication burden of the MLaaS task of the querier and
delegate the expensive operations to these two untrusted but powerful cloud servers.
The previously enumerated privacy requirements should be ensured by this scenario
as well.

When designing privacy-preserving variants of machine learning techniques, one should
consider the security requirements, challenges or limitations in terms of computational
and communication costs for a querying party, namely the querier or the data owner,
and the computing party who is the cloud server. Furthermore, the complex operations
in the requested machine learning technique are needed to be approximated into some
linear functions if they cannot be easily compatible with cryptographic techniques.

1.4 Contributions

This thesis focuses on data confidentiality while executing privacy-preserving variants of
neural networks, trajectory clustering, and data aggregation as well as maintaining their
quality evaluation and efficiency. Also, we investigate the suitability of cryptographic
techniques to neural networks, trajectory clustering, and data aggregation, more specif-
ically the utilisation of secure two-party computation, homomorphic encryption, and
homomorphic proxy re-encryption. We develop privacy-preserving protocols for these
machine learning techniques by addressing the previously identified challenges. We divide
this thesis into two parts:

In the first part of this thesis, we describe the design, development, and implementation
of privacy-preserving machine learning techniques, namely neural networks and trajectory
clustering, in the scenario involving a single cloud server.

1. PAC is a solution for designing privacy-preserving neural network classification for
heart arrhythmia that keeps queriers’ heartbeat data confidential against the cloud
server and the neural network model confidential against the queriers. As a case
study, we have designed a new model based on the PhysioBank dataset4. This
model was built from scratch following the privacy-by-design approach in order to
be compatible with secure two-party computation (2PC) (See Section 4.4).

2. SwaNN is a privacy-preserving neural network classification combining the additively
homomorphic Paillier encryption scheme [9] with 2PC. Thanks to the use of
the Paillier encryption algorithm for linear operations and also the x2 activation
function, the solution achieves better computational cost compared to existing

4https://www.physionet.org/physiobank/database/mitdb/
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(Fully) Homomorphic Encryption ((F)HE)-based solutions. Different computation
optimisations have been implemented (See Section 4.5).

3. ProteiNN is a privacy-preserving neural network classification solution based on the
use of Homomorphic Proxy Re-Encryption (H-PRE) and additive encryption for
achieving data confidentiality for the model(s), the inputs, and the corresponding
results. Additionally, in ProteiNN, the model provider also has control over the
model outsourced to the cloud server, and we investigate collusions between the
ProteiNN players (See Section 4.6).

4. pp-TRACLUS is the first privacy-preserving trajectory clustering solution based on
2PC. We have designed an efficient protocol for trajectory clustering, in particular
TRACLUS, and applied it on several real-world datasets such as a Travel dataset
consisting of data over movements of people (See Section 5.4).

In the second part of this thesis, we investigate a scenario involving two non-colluding
cloud servers (named as the two-server scenario) which help the client(s) or data owner(s)
execute privacy-preserving neural network classification, trajectory clustering, and data
aggregation tasks without gaining or disclosing any information regarding the processed
data or its output. Thanks to these two cloud servers, the querier/data owner only
performs minimal operations. We present four solutions in this part, namely:

1. A second version of SwaNN which can be executed in case the querier lacks resources
(See Chapter 6).

2. pp-TRACLUS is a privacy-preserving trajectory clustering solution that combines
the additively homomorphic Paillier encryption scheme [9] with TRACLUS. A
second version of pp-TRACLUS based on 2PC is proposed since the Paillier encryp-
tion scheme incurs expensive in computational costs. In this solution, we employ
two-server to obtain more efficient privacy-preserving TRACLUS protocol and lower
the workload of the data owner in the 2PC-based solution with a single-server (See
Chapter 7).

3. PRIDA that is a privacy-preserving data aggregation solution combines multi-key
FHE with 2PC and threshold FHE with 2PC. Thanks to the use of these two
cryptographic building blocks with a setting involving two non-colluding cloud
servers (we name them as Aggregators in PRIDA), PRIDA supports scenarios with
more than one data analyser who is interested in receiving the aggregation result.
Furthermore, PRIDA enables data owners to have some control over which data
analyser can have access to the resulting aggregated information. Moreover, with
the introduction of an anonymous counting phase, data analysers can discover
the aggregation result only when a sufficient number of data owners (more than a
pre-defined threshold) authorise them (See Chapter 8).

To sum up, we believe that our proposed solutions meet the need for privacy-preserving
protocols for machine learning techniques, enable data privacy with the realistic threat
model, and achieve a good balance between privacy, efficiency, and accuracy/quality
evaluation.
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1.5 Organisation

The remaining of this thesis is organised as follows:
In Chapter 2, we introduce machine learning techniques, namely: Neural network,

(trajectory) clustering, and data aggregation that we study in our solutions.
In Chapter 3, we introduce the building blocks that the newly designed privacy-

preserving protocols discussed in the next chapters make use of, namely: Secure multi-
party computation, homomorphic encryption, homomorphic proxy re-encryption, multi-
key homomorphic encryption, and threshold homomorphic encryption.

The reader then can move on to Part I of this thesis whereby we study and identify the
challenges, review the state-of-the-art, and introduce our solutions for privacy-preserving
neural network classification and trajectory clustering in the scenario involving a single
cloud server in Chapters 4 and 5. In Part II, we investigate a scenario involving two
non-colluding cloud servers to reduce the computational and communication burden
of the queriers/data owners when performing the privacy-preserving variants of neural
network classification, trajectory clustering, and data aggregation in Chapters 6, 7, and 8.

Finally in Chapter 9, we conclude with the results of this dissertation and we discuss
future research avenues.
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Chapter 2

Machine Learning Techniques

Artificial Intelligence, deep learning, machine learning —whatever you’re doing if you
don’t understand it— learn it. Because otherwise you’re going to be a dinosaur within 3
years.

Mark Cuban

In this chapter, we introduce and study three machine learning techniques: Neural
network, (trajectory) clustering, and data aggregation.

Machine learning can be defined as designing a system that is able to learn and
solve problems based on the knowledge from its environment. Recent advances in
Information Technology enable several companies to become more and more data-driven
and collect/share/process more and more information about their clients. These data-
driven companies employ machine learning techniques to process these data, which makes
machine learning increasingly valuable. Machine learning techniques help these companies
easily utilise their abundant data originating from their clients to design a system that is
capable of solving problems, learning from the collected data, and so making (business
related) decisions (or predictions) such as speech recognition [10], forecasting [11], or
image classification [12], and improving their (customer) services.

The literature divides machine learning techniques into two subfields regarding the
nature of the underlying technique’s result/output: (i) supervised machine learning
techniques, which build a model on top of a set of data having labels; and (ii) unsupervised
machine learning techniques, which group unlabelled data into small groups regarding
their similarities.

Supervised machine learning (a.k.a supervised learning) can be defined as a mapping
from input data to some output data and further the computation of a mathematical
model based on this resulting map called building a learning model, i.e., creating the
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model from matching the input data indicated some label with the expected output label
until the model is fitted appropriately [4]. In order to make this matching, a dataset for
the supervised learning technique can be divided into three sub-datasets: (i) the training
dataset, which is used to create/train the machine learning model, i.e., the resulting
model learns from this dataset to optimise itself by checking the match of the input
label and the output label of data; (ii) the cross-validation dataset, which is utilised
to avoid/eliminate error in data that is not classified correctly by the currently trained
model; and (iii) the test dataset employed for checking how much accurate the trained
model is before its use for the real-life use cases. The datasets are usually split in the
ratio of 60 : 20 : 20, or even sometimes the dataset is split into two sub-datasets, namely
training and test datasets in the ratio of 80 : 20. Neural networks [6], support vector
machines [13], random forest [14], linear regression [15], logistic regression [16], etc., are
the examples of supervised learning techniques.

In an unsupervised machine learning technique (a.k.a unsupervised learning), the data
do not have any label showing that the underlying data belongs to some subset having
the same (or similar) properties in the supervised machine learning techniques such as
neural networks. The data in the neural network are used to train a neural network
model which can further be employed to classify new data. In unsupervised machine
learning technique, one does not train any model (or learn from data) but aims to detect
the hidden pattern(s), similarities, or differences among unlabelled data. Clustering is
one of the unsupervised learning techniques that we study in this thesis.

Moreover, we also investigate another simple but useful statistical technique in the
scope of this thesis, namely (iii) data aggregation, which gathers data from multiple
sources and enables one to perform some statistics (sum, average, etc.) over them. Note
that data aggregation is usually utilised as an initial step for machine learning techniques.

2.1 Neural Networks

This section focuses on the neural network as a supervised learning method; hence, we
define it and describe its underlying functions (or operations).

A neural network [6] is a layered machine learning technique consisting of intercon-
nected processing units called neurons that compute specific functions in each layer. The
first layer of the neural network is defined as the input layer and the last layer is the
output layer. The layers in between are named hidden layers. Each hidden layer evaluates
a function over the output of the previous layer and obtains a result which becomes the
input to the next layer. These hidden layers usually consist of either linear operations such
as matrix multiplications and additions (fully connected layers or convolutional layers)
or more complex operations such as Sigmoid [17] or Max [18] computation (activation or
pooling layers).

More formally, a hidden layer can be defined as follows: It takes an input X, evaluates
a function f on the input along with a weight matrix W (and a bias vector B), and
outputs Y to the subsequent layer. Figure 2.1 illustrates an overview of the neural
network structure.

Neural networks are usually designed and used in two phases: the training phase and
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Input Layer Output Layer

 

Hidden Layers

 

Figure 2.1 – An overview of the neural network structure

the classification (a.k.a. prediction) phase. The training phase is the learning process of
using many data (and also their labels) from the training dataset, developing the neural
network model which can learn from these data without any human intervention, and
deriving and optimising the model parameters (e.g., weight matrix W, bias vector B,
the number of hidden layers, each of them containing the number of neurons, etc.). The
increase on the number of data items in the training dataset or the number of iterations
(called epochs) make neural networks learn more and thus become more accurate; yet,
note that having more epochs may increase the complexity of the training phase. The
classification phase consists of performing predictions/classifications on future data items
using the trained model.

The research on neural networks dates back to 1980s [19], yet they had not been
commonly used due to their long training times. Thanks to the recent technological
advances and the adaptation of GPUs in computation systems, the training time for
neural networks is reduced significantly [20]. The improvement in performance triggered
the popularity of neural networks, which in turn provided an outstanding success in some
fields such as image classification [20,21], face recognition [22], and board games [4].

Below, we describe the most common hidden layers used in neural networks:

2.1.1 Convolutional Layer

The Convolutional Layer (Conv, optional layer) aims to slide a filter, or a kernel, over the
original input in order to obtain information about the similarity between the chunk of
the original input covered by the filter and the filter itself. Figure 2.2 shows the operation
of a convolutional filter on input X.

The Conv layer applies filter W (or called as the weight matrix) to submatrix X′ of
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Figure 2.2 – Convolutional filtering in convolutional layer

the original input X. W is slided every time to work on each index of the input matrix.
The size of the input can be adjusted to fit to the filter size by appending some border
values which is called padding. The operation performed in the Conv layer is a matrix
multiplication (�) as follows:

Conv(X,W) = X′ �W

=
∑

x′i,j · wi,j . (2.1)

2.1.2 Fully Connected Layer

The Fully Connected Layer (FC) connects each neuron in the current layer to each neuron
in the previous layer along with a weight value. The underlying operations can be defined
as a matrix multiplication and a vector addition as depicted in Equation 2.2:

FC(Xt, (W,B)) = Xt �W + B,

= Xt+1 (2.2)

where W is the weight matrix, and B is the bias vector, Xt is the input of the current
layer t, and Xt+1 is the input of the next layer t+ 1.

2.1.3 Activation Layer

The Activation Layer (Act) is a nonlinear function. The goal of the activation layer is to
check whether the pattern presents at a given position in the input data. In this layer, a
nonlinear activation function (Act(xi,j) = yi,j where yi,j is a neuron of the next layer) is
applied to each neuron (i.e. xi,j) of the input layer.

There exist different activation functions. We enumerate the commonly used ones in
Equations 2.3, 2.4, and 2.5:

Sigmoid: yi,j =
1

1 + e−xi,j
, (2.3)

Hyperbolic tangent (tanh): yi,j =
e2xi,j − 1

e2xi,j + 1
, (2.4)

12



Chapter 2. Machine Learning Techniques

Rectified Linear Units (ReLU): yi,j = max (0, xi,j). (2.5)

Note that the ReLU function is currently the mostly used activation function [5]. There
are also some variants [6], such as the parametric version (PReLU) and the Exponential
Linear Units (ELU).

2.1.4 Pooling Layer

The Pooling Layer (Pool) is a scaling layer which reduces the size of the input to make
the neural network more optimised (decreases the size of the previous layer’s output,
usually the Conv layer). Reduction is performed by sliding a filter on the input matrix
and performing the pooling operation on each area that is covered by the filter. Note
that unlike the Conv and FC layers, operations of the pooling layer are nonlinear.

The two common types of pooling are:
(i) Max pooling where the maximum value within the area covered by the filter is

selected; and
(ii) Average pooling where the average of the values within the area covered by the

filter is selected.

2.1.5 Complementary Functions in Neural Networks

This section defines the complementary neural networks functions employed during
training and/or classification phases.

Cost function

If once the learning process is completed, the error rate calculating from the matches of
the label of inputs and its corresponding outputs’ label is too high, the trained neural
network model needs to be revisited. For this aim, a cost (or loss) function is employed
to reduce this error rate and is periodically calculated during the training phase. An
example of a cost function is the Squared error loss L defined in Equation 2.6.

Squared error loss: L(yi,j , xi,j) = (yi,j − xi,j)2. (2.6)

Stochastic Gradient Descent

Backpropagation is a process of adjusting the neural network parameters, namely weight
matrices and bias vectors, in the existence of a non-negligible error rate during the
learning phase. This method simply takes the derivative of the defined cost function
for these underlying parameters and adjusts them accordingly using Stochastic Gradient
Descent (SGD) [5], which is an iterative calculation to optimise these neural network
parameters.
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Batch Normalisation

A batch normalisation (BN) [5] function applies batch normalisation usually before the
activation layer to normalise the neurons in the current layer to the next layer, to make
the NN model more stable while learning, and to reduce the number of epochs (i.e.,
each iteration of the current NN structure and its learnt parameters from the previous
iterations) during training. A batch normalisation layer can be defined in Algorithm 1 as
follows:

Algorithm 1 Batch Normalisation

Input: Neurons xi,j over a mini-batch B = {x1,j , . . . , xi,j , . . . , xm,j} and batch normalisa-
tion parameters γ and β

Output: yi,j = BNγ,β(xi,j)

µB ← 1
m

∑m
i=1 xi,j // mini-batch mean

σ2B ←
1
m

∑m
i=1(xi,j − µB)2 // mini-batch variance

x̂i,j ← xi,j−µB√
σ2
B+ε

// normalise

yi,j ← γx̂i,j + β // scale and shift

Softmax and Argmax

Neural networks employ some functions such as Softmax in Equation 2.7 or Argmax in
Equation 2.8. These functions are implemented as a neural network layer, just after the
output layer (but sometimes they can be considered as the output layer). Note that the
output layer should contain the same number of neurons as the number of labels in the
dataset. While Softmax computes a probability (Pr(.)) for every possible class of the
given dataset, Argmax results in 1 for the index of the largest neuron value in the output
layer; otherwise, 0. The Argmax function is usually used as an alternative to Softmax.

Softmax: Pr(xi,j) =
exi,j∑
exi,j

, (2.7)

Argmax: Argmax(x0,j , . . . , xi,j , . . . ) = (0, . . . , 0, 1, 0, . . . ). (2.8)

2.1.6 Neural Network Model Structure

The previously defined layers are assembled in the neural network model denoted by
M and previously depicted in Figure 2.1 as follows: (i) The neural network model
architecture can start with some number of convolutional layers or fully connected layers,
and each of them is followed by some nonlinear layer (an activation layer and/or a pooling
layer); (ii) This sequence of these underlying layers can be applied some number of
repetitions; and (iii) Once these are executed, the fully connected layer is usually applied
as the output layer and followed by a Softmax (or an Argmax) layer.

A neural network model M can be described as a composite function since the layers
of the model are created by composing one layer into another one: The outer function
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can be considered as the output layer operations, and the first function in the side of
the other functions will be the input layer operations. In other words, a neural network
seems a function taking weight matrices and bias vectors as inputs and a data X to
classify, and outputs the probability of each label for this data. For example, if one holds
a model M consisting of 1 FC layer, 1 ReLU the activation layer followed by 1 FC layer
and 1 Softmax function as an output layer. This model can be formulated as follows:

M(X) = Softmax(FC(ReLU(FC(X)))). (2.9)

If a neural network contains some convolutional (Conv) layer(s), then it is named
Convolutional Neural Network (CNN) as shown in Equation 2.10. Note that CNN usually
starts with a Conv layer and is employed for classifying images. The CNN architecture
can be defined as follows:

M′ = [[Conv→ Act]p → Pool]q → [FC]r, (2.10)

where p, q, and r are some integers. Note that the model notation in Equation 2.10 can
be used for the previous model M (formulated in Equation 2.9), which does not contain
any Conv layers: M = FC→ ReLU→ FC→ Softmax.

2.1.7 Neural Networks Accuracy Evaluation

The neural network as a supervised learning technique is built over a large number of data
with labels. In order to build an accurate neural network model as previously mentioned,
the dataset is divided into different sub-datasets. Generally, while the training dataset is
utilised when building the model, the test dataset defines how much accurate the created
model is. In order to come up with a model that accurately predicts the actual input
label, one first trains some models and evaluates the performance of the built models on
the training dataset. The evaluation results are used over the cross-validation dataset to
compare the performance between different NN models and choose the most efficient one.
Finally, performance tests of the chosen model are performed on the test dataset. One of
the performance evaluations of the underlying model is prediction accuracy, and it can
be defined as the determination of which class a given input belongs to and be computed
by multiplying 100 with the number of correct predictions divided by the total number
of predictions.

This PhD thesis employs the most frequently used method to calculate the accuracy
of our neural network models, namely a Confusion matrix.

Confusion Matrix

A confusion matrix (CM) summarises the prediction results of the neural network model:
This accuracy calculation method gives better understanding about the trained model if
making any error, and the overall accuracy of the underlying model is computed using
the following formula in Equation 2.11:
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∑
x∈Classes

freq(x)× P (predict = y/class = x). (2.11)

where freq(x) represents the frequency of the class x in the test dataset. For each
y ∈ Classes and x ∈ Classes, the confusion matrix presents the probability that the
model predicts the class y knowing that the input belongs to class x (i.e., P (predict =
y/class = x)).

2.2 Clustering

Clustering is an unsupervised machine learning technique that is a procedure of grouping
a set of elements into classes of similar elements. Clustering can be used to segment
customers of some company into alike demographics, or detect anomalies, or make very
large datasets simple by categorising them into small subgroups regarding their related
features. k-means [23], DBSCAN [24], and TRACLUS [7] are some clustering methods:
While the k-means algorithm is based on centroids which are computed by taking the
mean of all the elements in the underlying cluster, DBSCAN and TRACLUS rely on
the density of the dataset elements: clusters are arbitrarily shaped, and each of their
elements is connected to each other.

In this section, we introduce these three data clustering algorithms: namely, k-means,
DBSCAN, and finally TRACLUS; yet, it is worth to note that our main focus is TRACLUS
for this PhD thesis.

2.2.1 k -means

This algorithm is proposed by Macqueen et al. [23] and is one of the unsupervised
machine learning techniques. k-means iteratively divides the dataset into k subsets. As
the pseudocode depicts in Algorithm 2, it starts with randomly creating (or chosen from
the dataset) k cluster centroids c1, c2, . . . , ck which represent the centre of the k clusters.
Then, each data element in the dataset is assigned to the one among k clusters that have
a minimum distance between the centroid and itself. In general, the distance computation
is performed using the Euclidean distance; however, other distance measurements can
be used [25]. After all elements are assigned in the dataset, the k centroids are updated
by computing the arithmetic mean of the elements assigned to their clusters. The next
iteration again assigns the elements to the closest cluster and then updates the centroids
of each cluster. The algorithm stops if the centroids do not change anymore, or they may
change little, or a predetermined number of iterations is reached.

The complexity of k-means is calculated by O(kndI) where k is the number of clusters,
n is the number of points in dataset D, d is the dimension of the points, and I the number
of iterations that the algorithm ran.
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Algorithm 2 k -means algorithm

Input: Dataset D and the number of clusters k
Output: Set of clusters C = {c1, c2, . . . , ck} and set of corresponding centroids µ =

{µ1, . . . , µk}
Initialisation: Select k initial centroids
repeat
for each data point i ∈ D do

Find the closest centroid µj // Euclidean distance computation
Assign i to cluster cj

for each cluster cj do
Update the centroid µj // mean computation

until stop criterion // Maximum number of iterations is reached or centroids are not
significantly changed.

2.2.2 DBSCAN

Density Based Spatial Clustering of Applications with Noise (DBSCAN) proposed by
Ester et al. [24] is another clustering technique that identifies the class in datasets and
cannot only discover the arbitrarily shaped cluster but also identify the noise points.

This technique/algorithm takes two inputs: MinPts that indicates the minimum
number of points in a cluster, and threshold ε, indicating the maximum distance between
each point in a cluster. DBSCAN depicted in Algorithm 3 initiates with a random point
in a dataset of points D and then investigates its neighbourhood with a given threshold
value of ε, i.e., the neighbourhood around a point i can be defined as a sphere of radius
ε and its center, i : Nε(i) = {j ∈ D|dist(i, j) ≤ ε}, where dist(., .) is the Euclidean
Distance. If the neighbourhood around this point satisfies the minimum number of points
(|Nε(i)|≥ MinPts), i becomes a core point. Later, this neighbourhood with this core
point also becomes a cluster c, and further, the algorithm searches for other points until
all points around its neighbourhood join this cluster. There can be some points that are
not grouped: The algorithm selects ungrouped points and proceeds again for them. Once
all the searches finish, some points neither core points nor the neighbourhood of any core
point are labelled as noise.

If n points in dataset D, the complexity of the algorithm is O(n2). As previously
mentioned, DBSCAN is not the main focus of this thesis. It is presented in order to
easily introduce TRACLUS, a trajectory clustering technique that is based on DBSCAN.

2.2.3 TRACLUS

TRAjectory CLUStering (TRACLUS) is a density-based clustering algorithm particularly
optimised for clustering trajectories1 proposed by Lee et al. [7]. The idea behind TRA-
CLUS is based on the previously introduced DBSCAN, which segments the trajectories
into the line segments and then uses similar techniques as in DBSCAN to cluster these
line segments. TRACLUS uses line segments instead of points in DBSCAN. Therefore,

1Sequences of multidimensional points.
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Algorithm 3 DBSCAN algorithm

Input: Dataset D, the threshold ε, and MinPts
Output: Set of clusters C = {c1, c2, . . . , cl}
repeat
Initialisation: Select a point i
if |Nε(i)| ≥MinPts then

Label i as a core point of cluster c1
Check point j in Nε(i)
Add j in ci
Label j either as a core point or a border point
until No more points added to ci
if A point j is not either a core or border point then

Label j as a noise

MinPts is renamed as MinLns in TRACLUS and the functionality of ε remains the same
as in DBSCAN.

TRACLUS consists of two phases: Partitioning and Grouping ( a.k.a Clustering).
In the first phase, called partitioning phase, the algorithm divides trajectories into sub-
trajectories that are called line segments. Each line segment is represented by two points.
This partitioning phase should ensure that the output is close to the original trajectory
(preciseness) and that the number of line segments is as small as possible (conciseness).
The more line segments are created, the better line segments approximate the original
trajectory. However, preciseness and conciseness will contradict in this case. Therefore,
the partitioning part of TRACLUS aims at finding the best trade-off between preciseness
and conciseness.

The characteristic points, marking the course of the trajectory changing significantly,
play an important role to approximate the trajectory and thus build the best trade-off
between preciseness and conciseness. If characteristic points were used at each point
of the trajectory, this would make the line segments perfect; however, this further
would contradict with the conciseness that means using as few line segments as possible.
The characteristic points are calculated with the Minimum Description Length (MDL)
principle [26]. MDL consists of two components: L(H) and L(D|H): (i) L(H) in
Equation 2.12 sums up all the lengths of line segments and measures the conciseness; and
(ii) L(D|H) in Equation 2.13 analyses the difference between the original trajectory and
its partitions, and measures the preciseness.

L(H) =

pari−1∑
j=1

log2(len(pcjpcj+1)) (2.12)

where len(pcjpcj+1) describes the Euclidean distance between pcj and pcj+1 .
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L(D|H) =

pari−1∑
j=1

cj+1−1∑
k=cj

{log2(d⊥(pcjpcj+1 , pkpk+1
)) + log2(dθ(pcjpcj+1 , pkpk+1

)))} (2.13)

where D is the dataset, and d⊥ and dθ are parts of the distance metric that are explained
in the clustering phase.

To find the optimal trade-off between preciseness and conciseness, it is necessary to
evaluate the MDL cost for each possible subset of the characteristic points in a trajectory.
Since the partitioning algorithm aims at finding a local minimum for the MDL cost,
the algorithm compares the costs for creating a partition MDLpar(pi, pj) with for not
creating a partition MDLnopar(pi, pj) between two points pi and pj of a trajectory. If
MDLpar(pi, pj) is smaller than MDLnopar(pi, pj), this means that the cost of adding
a characteristic point at pj is less than the cost of not adding a characteristic point.
The partitioning phase in Algorithm 4 iterates through a trajectory and checks each
point of a trajectory from the initial point of it whether the partitioning becomes more
expensive than the non-partitioning. If the cost is not high, the algorithm takes the next
point of the trajectory and analyses its cost with respect to the initial point. Otherwise,
the algorithm adds a new characteristic point before the current ending point since
in this point non-partitioning is still more costly than partitioning. This newly added
characteristic point becomes the initial point of the new line segment.

Algorithm 4 Partitioning a trajectory

Input: Dataset D containing trajectories TRi = p1p2 . . . pj . . . plen1

Output: Set of characteristic points CP1 = {cp1, cp2, . . . , cpl}
Add p1 into the set CP1

start index = 1, length = 1
while start index+ length ≤ leni do
curr index = start index+ length
costpar = MDLpar(pstart index, pcurr index)
costnopar = MDLnopar(pstart index, pcurr index)
if costpar > costnopar then

Add pcurr index into the set CPi
start index = curr index− 1, length = 1

else
length = length+ 1

Add plen1 into the set CP1

Once the partitioning phase is done, line segments are clustered with a density-based
approach during the Clustering phase. TRACLUS uses DBSCAN (See Section 2.2.2),
and therefore, it also requires two parameters MinLns and ε. The optimum way for
the selection of these parameters is the heuristic defined in [7]. This heuristic consists
of finding out the optimal epsilon value using the simulated annealing algorithm [27]: ε
is set as the value that minimises the entropy of the clustering [7]. Note that entropy
investigates the consistency in discrimination between the line segments.

19



Chapter 2. Machine Learning Techniques

TRACLUS uses different distance metrics composed of a tripartite distance metric
and defined in Equations 2.14, 2.15, and 2.16 to measure the distance between line
segments (represented by two points, namely starting point si and ending point ei) in
Figure 2.3 instead of the Euclidean distance in DBSCAN [24]. Similarly to DBSCAN,
TRACLUS effectively identifies not only the arbitrary shape of clusters but also the noise
line segments.

si

sj

ej

Lj

Li

dθ
 

l⊥2θ 

l⊥1 

l||1

ei 

l||2

Figure 2.3 – Tripartite distance metric in TRACLUS

Equation 2.14 is the perpendicular distance based on Lehmer mean defined by

Lp(x1, x2, ..., xn) =
∑n

k=1 x
p
k∑n

k=1 x
p−1
k

that measures the vertical distances l⊥1 and l⊥2 between

two line segments, namely Li and Lj .

d⊥ =
l2⊥1 + l2⊥2
l⊥1 + l⊥2

(2.14)

The parallel distance in Equation 2.15 is the horizontal distances l‖1 and l‖2 between
two line segments Li and Lj .

d‖ = min(l‖1, l‖2) (2.15)

The last distance metric in Equation 2.16 is the angular distance dθ that measures the
directional difference between two line segments. The angle θ is the smaller intersection
angle between Li and Lj .

dθ =

{
‖Lj ‖ × sin (θ) if 0 ≤ θ < 90,
‖Lj‖ if 90 ≤ θ ≤ 180

(2.16)

TRACLUS uses this tripartite distance metric in Equation 2.17 inspired by the area
of pattern recognition [5] to determine close line segments and to regroup them into one
cluster.

The TRACLUS distance metric denoted by dist(Li, Lj) in Equation 2.17 is the result
of a weighted average of these three distance metrics, and w⊥, w‖, and wθ are the weights
assigned to each distance, that are set to 1 by default.
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dist(Li, Lj) = w⊥ · d⊥(Li, Lj) + w‖ · d‖(Li, Lj) + wθ · dθ(Li, Lj) (2.17)

TRACLUS provides some definitions for the neighbourhood notion to define a cluster:

Definition 2.2.3.1 The ε-neighborhood Nε(Li) of a line segment Li in dataset D is defined
by Nε(Li) = {Lj ∈ D|dist(Li, Lj) ≤ ε}.

Definition 2.2.3.2 A line segment Li ∈ D is called a core line segment with respect to ε
and MinLns if |Nε(Li)|≥MinLns.

Definition 2.2.3.3 A line segment Li ∈ D is directly density-reachable from a line segment
Lj ∈ D with respect to ε and MinLns if (1) Li ∈ Nε(Lj) and (2) |Nε(Lj)|≥MinLns.

Definition 2.2.3.4 A line segment Li ∈ D is density-reachable from a line segment Lj ∈ D
with respect to ε and MinLns if there is a chain of line segments Lj , Lj−1, ..., Li+1, Li ∈ D
such that Lk is directly density-reachable from Lk+1 with respect to ε and MinLns.

Definition 2.2.3.5 A line segment Li ∈ D is density-connected to a line segment Lj ∈ D
with respect to ε and MinLns if there is a line segment Lk ∈ D such that both Li and
Lj are density-reachable from Lk with respect to ε and MinLns.

Definition 2.2.3.6 A non-empty subset C ⊆ D is called a density-connected set with
respect to ε and MinLns if C satisfies the following two conditions:

1. Connectivity: ∀Li, Lj ∈ C, Li is density-connected to Lj with respect to ε and
MinLns.

2. Maximality: ∀Li, Lj ∈ D, if Li ∈ C and Lj is density-reachable from Li with
respect to ε and MinLns, then Lj ∈ C.

Definition 2.2.3.7 The set of participating trajectories of a cluster Ci is defined by
PTR(Ci) = {TR(Lj) | ∀ Lj ∈ Ci}. Here, TR(Lj) denotes the trajectory from which Lj
has been extracted. Then, |PTR(Ci)| is called the trajectory cardinality of the cluster Ci.

In this phase, the clustering algorithm in Algorithm 5 takes each unclassified line
segment and computes the distance from all other line segments that are in its neighbour-
hood after comparing their distance with ε. If this neighbourhood size is sufficiently large
(i.e., larger than or equal to MinLns), it is grouped as a cluster. Then, the algorithm
iterates through all neighbours that were already assigned to the new cluster. The
algorithm further calculates their neighbourhood to determine whether they are core line
segments. If so, they are added to the cluster and their neighbourhood will be checked.
After finishing the iteration through all line segments, the algorithm checks whether the
cardinality of the cluster is sufficient.

Whereas the complexity of the TRACLUS partitioning phase takes O(n) where n is
the number of points of one trajectory, the time complexity of the clustering phase is
O(n2) where n is the number of line segments in D.
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Algorithm 5 Clustering phase

Input : (1) A set of line segments D = {Li, ..., Lnumln
}

(2) Two parameters ε and MinLns
Output : A set of clusters C = {c1, ..., cnumclus

}
Set clusterId to be 0
Mark all the line segments in D as unclassified foreach L ∈ D do

if L is unclassified then
Compute Nε(L)if |Nε(L)|≥MinLns then

Assign clusterId to ∀X ∈ Nε(L);
Insert Nε(L)− {L} into the queue Q
Expand Cluster(Q, clusterId, ε, MinLns)
clusterID+ = 1;

else
Mark L as noise;

end

end

end
Allocate ∀L ∈ D to its cluster cclusterIdforeach c ∈ C do

if |PTR(c)|< MinLns then
Remove c from the set of C of clusters

end

end
ExpandCluster ((Q, clusterId, ε, MinLns))

while Q 6= ∅ do
Let M be the first line segment in Q
Compute Nε(M)if |Nε(M)|≥MinLns then

foreach x ∈ Nε(M) do
if x is unclassified or noise then

Assign clusterId to x
end
if x is unclassified then

Insert x into the queue Q
end

end
Remove M from the queue Q

end

end

end
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2.2.4 Clustering Quality Evaluation

To evaluate the quality of a clustering method, several quality assessment measures have
been proposed [28–30]. The commonly used clustering quality indices are the Silhouette
Coefficient, the Silhouette Coefficient with Noise, and the Density-Based Clustering
Validation which are defined in this section.

Silhouette Coefficient

As clustering is an unsupervised machine learning technique, a ground truth is usually
not available. The most frequently used methodology to evaluate the quality of the
clustering result is the silhouette analysis [28]. This methodology analyses the resulting
clusters by evaluating the similarity between the elements within the cluster and the
elements of other clusters. The analytical output is called the Silhouette Coefficient (SC)
which is close to 1 for a good clustering.

The silhouette coefficient of each data item i in a resulting cluster cj of the clustering
technique, 1 ≤ j ≤ l, is calculated as follows:

SC(i) =
b(i)− a(i)

max(a(i), b(i))
. (2.18)

where a(i) is the mean distance between element i and each of other elements within
the same cluster, and b(i) is the minimum mean distance between i and any of other
elements in different clusters.

Silhouette Coefficient with Noise

Some elements may remain unclustered after the execution of the clustering algorithm.
Such elements are considered as noise. Although SC allows powerful insights about how
tightly elements are clustered, it does not take outliers that remain noise into account.
Thus, an additional penalty measure is needed to evaluate the SC with noise as described
in [29], namely SCnoise.

The SC with noise penalty is calculated as in Equation 2.19:

SCnoise(i) = SC(i).

(
p− n
p

)
. (2.19)

where p, i, and n are dataset size, each data item in a resulting cluster cj , and the number
of noisy elements, respectively.

Density-Based Clustering Validation

Another method specifically designed to assess the quality of density-based clustering
algorithms is the Density-Based Clustering Validation (DBCV) [29,30]. In contrast to
the standard SC, DBCV also takes noise into account. Similar to the other evaluation
metrics, a higher DBCV indicates a good clustering quality.
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The DBCV score of the clustering algorithm is calculated as follows:

DBCV (C) =

l∑
i=1

|ci|
|P|

min
1≤j≤l,j 6=i

(DSPC(ci, cj))−DSC(ci)

max

(
min

1≤j≤l,j 6=i
(DSPC(ci, cj)), DSC(ci)

) . (2.20)

where C = {c1, c2, . . . , cl}, P = {L1, L2, . . . , Ln}, DSPC and DSC correspond to the
resulting clusters, the data items, the density separation for a pair of clusters, and density
sparseness of a cluster, respectively.

2.3 Data Aggregation

Data aggregation can be defined as a data analytics process of collecting data from
multiple sources (clients/users of some data-driven companies) and performing some
statistical analysis such as sum, average, etc., over these collected data. Data-driven
companies are always in competition to collect more and more information about their
clients (or users) and further utilise them to improve their services. However, companies
need the data to be gathered/expressed in a summary form. Thanks to data aggregation,
these companies (or a third party cloud server) assemble data and execute some statistical
analysis such as sum, average, etc.. Thus, this increasingly makes such aggregate data
essential and valuable for companies since the aggregate data is ready to bring answers to
analytical questions for groups of people or helps companies achieve insights about their
business analysis. For example, consider a scenario whereby some sports companies would
like to obtain some statistics (i.e., sum, average, etc.) over many customers’ consumption.
Customers can participate to these various statistics with their data such as the purchase
history of sports from some online marketing website or the sport-related data from
their smart device, a running app or a smartwatch: their location information from the
marketing website or location history from the app shows that fitness-conscious clients
go past near these sports companies when commuting between their home and office.
These kind of information would be collected by some cloud server(s) who can aggregate,
perform the required statistics over them, and send the aggregate result to corresponding
sports companies. Therefore, the underlying companies with this valuable information
would publish an advertisement to their target group and become more attractive to
them.

2.4 Summary of Machine Learning techniques

In this chapter, three particular machine learning techniques have been presented, namely
neural network, TRACLUS, and data aggregation. A neural network is composed of input,
hidden, and output layers, and these layers consist of many neurons, which are simply
some functions. These functions can contain some non-linear (or complex) operations
such as sigmoid, division, etc. Moreover, TRACLUS also involves complex operations
such as sine, division, etc. In the next chapters, we introduce some solutions to obtain
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efficient and accurate/qualified evaluation results when designing privacy-preserving
variants of these machine learning techniques based on cryptographic techniques.
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Chapter 3

Cryptographic Techniques

Lots of people working in cryptography have no deep concern with real application issues.
They are trying to discover things clever enough to write papers about.

Whitfield Diffie

In this chapter, we introduce the building blocks that the newly designed privacy-
preserving protocols discussed in the next chapters make use of, namely: Secure multi-
party computation, homomorphic encryption, homomorphic proxy re-encryption, multi-
key homomorphic encryption, and threshold homomorphic encryption.

3.1 Security Notions

This section defines the security notions.

A cryptosystem (or an encryption scheme) converts cleartext (or called plaintext, needs
to be protected) to ciphertext (encrypted plaintext) or ciphertext to plaintext to securely
encode or decode these messages by employing the encryption or decryption algorithm
with the key generation algorithm.

3.1.1 Notations

We write x ∈R X to represent an element x being randomly sampled from some domain

X, and x
$← X to represent an element x being uniformly sampled from some distribution

X.
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3.1.2 Ideal/Real Simulation paradigm.

In the simulation paradigm, the ideal security setting is outsourcing inputs of both
parties who run the protocol to a trusted third party who can perform the computations
and return the output. In the real-world setting, the security goal is to show that if
an adversary A can attack the protocol in the real world, then the attack can be also
performed by an adversary S in the ideal world. Since the attacks of S are not successful
in the ideal setting, the attacks in the real world also fail and the protocol is proved to be
secure in the real world. In Definitions 3.1.1 and 3.1.2, we provide the formal definitions
for security and indistinguishability from [31].

Definition 3.1.1 (Computational Indistinguishability). Let X(a, κ) and Y (a, κ) be two
probability ensembles where a ∈ {0, 1}∗ is the input of the parties and κ is the security

parameter. X(a, κ) and Y (a, κ) are computationally indistinguishable (i.e. X(a, κ)
c≡

Y (a, κ)) if there exists a negligible function µ(κ) for every nonuniform polynomial time
algorithm D, and for every a ∈ {0, 1}∗ such that

|Pr [D(X(a, κ)) = 1]− Pr [D(Y (a, κ)) = 1]| ≤ µ(κ). (3.1)

Definition 3.1.2 (Definition of Security). P1 and P2 are two parties who want to run a
protocol π over their inputs x and y, respectively to compute a functionality f(x, y)
which outputs f1(x, y) and f2(x, y) for P1 and P2, respectively. In the execution of π, the
view of parties are

viewπ
1 (x, y, κ) = (x, r1;m1,m2, · · · ,mt), (3.2)

viewπ
2 (x, y, κ) = (y, r2;m1,m2, · · · ,mt), (3.3)

where r1, r2 are the randomness of the parties, κ is the security parameter and mi’s are
the intermediary messages received by each party. The output of π is outputπ(x, y, κ) =
(outputπ1 (x, y, κ), outputπ2 (x, y, κ)), such that outputπ1 (x, y, κ) and outputπ2 (x, y, κ) are the
local outputs of P1 and P2. We say that π securely computes f(x, y) in the presence of semi-
honest, non-adaptive, computationally bounded adversaries, if there exist probabilistic
polynomial-time simulators S1 and S2 such that

{S1(1κ, x, f1(x, y)), f(x, y)} c≡{viewπ
1 (x, y, κ), outputπ(x, y, κ)} , (3.4)

{S2(1κ, y, f2(x, y)), f(x, y)} c≡{viewπ
2 (x, y, κ), outputπ(x, y, κ)} . (3.5)

3.1.3 Adversarial Models and Attacks

The adversarial models for a security protocol can be categorised into three groups [32]:

Semi-honest adversarial model. In this model, all parties follow the protocol steps
correctly but they can try to extract any information during the execution of the protocol.
This security model guarantees that no data is leaked. A semi-honest adversary is also
named honest-but-curious or passive.
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Malicious adversarial model. In this adversarial model, parties can act maliciously
to deviate from the protocol steps. This model guarantees that no adversarial attack can
be successful. A malicious adversary is also called active.

Adaptive adversarial model. An adversary arbitrarily chooses to corrupt some honest
party (act maliciously) at any time during the protocol execution. Once the party is
corrupted, it is assumed corrupted from that point on.

3.1.4 Chosen Plaintext Attack

An attacker can obtain ciphertexts for arbitrary plaintext information. If the attacker
cannot guess whether the given ciphertext is an encrypted plaintext m0 or m1 with a
probability more than 1/2, then this encryption scheme is called Chosen Plaintext Attack
(CPA)-secure. Moreover, the encryption scheme can be defined as indistinguishable,
and the encryption does not disclose any information regarding plaintexts. Even when
the same plaintext is encrypted two times, the encryption scheme outputs two different
ciphertexts; therefore, it is called semantically secure (or IND-CPA secure) [33].

3.2 Secure Multi-party Computation

Secure multi-party computation is introduced in early 1980s by Yao [34, 35] with the
definition of secure two-party computation (2PC) and defines Yao’s Millionnaire problem:
Two millionnaires want to learn who is richest one without disclosing their actual wealth.
They solve this problem by comparing their wealth using secure computation to ensure
that they learn only the richest one and nothing else is revealed. Then, the problem was
generalised to multiple parties by Goldreich et al. in [36].

Secure multi-party computation (MPC) is defined as a system in which a group of
data owners can jointly compute a function of their private inputs without disclosing the
underlying inputs, but the output of the function. Formally, let P1, . . . , Pn be n parties
and each of them having input x1, . . . , xn, respectively. As illustrated in Figure 3.1, these
parties want to jointly compute function f over all inputs {x1, . . . , xn} and learn the
output without revealing their input.

MPC should ensure the following two properties [37], at least: (i) input privacy, i.e.,
parties’ inputs should remain private and only the output of the function is learned; and
(ii) correctness, i.e., even if some parties maliciously act, the correct output is obtained.

Existing MPCs can leverage Oblivious Transfer (OT) [38], Yao’s Garbled circuits [34,
35], or secret sharing (additive or Boolean) [39] which are defined in the next section.

3.2.1 Oblivious Transfer

OT [38] is a fundamental cryptographic primitive that is used as a building block in
MPC. OT allows a party to choose and retrieve k out of n secrets from another party
without disclosing which secrets have been chosen. Usually, the 1-out-of-2 OT is used,
ensuring that one secret out of two is retrieved: Let Alice have two inputs x0 and x1,
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Figure 3.1 – Secure multiparty computation

and Bob select a bit b and want to obtain xb. OT ensures that Bob does not learn x1−b
and Alice does not discover b.

3.2.2 Yao’s Garbled Circuits

Yao’s sharing (a.k.a. Garbled Circuits (GC)) is a secure two-party computation that
allows two parties, Alice and Bob, each of them holding one input x1 or x2, to jointly
evaluate a function f(x1, x2) in the presence of a semi-honest adversary. Yao’s GC
protocol contains three steps: (i) Converting the function f into a Boolean circuit
composed of addition and/or multiplication gates (i.e., a gate is a circuit that realises a
Boolean operation such as AND); (ii) garbling the Boolean circuit; and (iii) evaluating
the garbled circuit. Let Alice be the Garbler and Bob be the Evaluator. While Steps (i)
and (ii) are performed by Alice, Bob computes the last step, namely Step (iii). In more
details, Alice builds a garbled version of a circuit for the function f by obfuscating all
possible outputs: Alice, the garbler, assigns two keys that correspond to bit values 0 and
1 for each wire of the circuit. Then, Alice computes four ciphertexts for each binary gate
with the input and output wires. After obtaining ciphertexts, Alice randomly orders (or
permutes) these four outcoming values. The resulting garbled circuit and Alice’s garbled
input GI(x1) are sent to Bob. Alice also provides a map from the garbled-circuit outputs
to the actual bit values. Once receiving this circuit, Bob, the evaluator, uses 1-out-of-2
OT [38] with Alice to obliviously obtain his garbled circuit value GI(x2) without revealing
it to Alice. Bob further evaluates the function f(x1, x2) using GI(x1) and GI(x2).
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3.2.3 Secret Sharing

Alternatively to Yao’s Garbled Circuits, MPC solutions based on secret sharing consist
of distributing secrets among parties involved in the system and further evaluating the
function defined as a circuit accordingly.

Boolean secret sharing

The GMW protocol [36] relies on Boolean shares and mainly support XOR operations
over single bits. The evaluated function is encoded as a Boolean circuit, and OT is
used during the evaluation of the circuit. The Boolean circuit takes as inputs bit x
from Alice and bit y from Bob. These bits are first secret-shared between the parties as
x = x1 ⊕ x2 and y = y1 ⊕ y2, where shares x1, y1 ∈R {0, 1} are distributed to Alice and
shares x2, y2 ∈R {0, 1} to Bob. Then, both parties evaluate the circuit gate by gate. For
instance, given shared values, an XOR gate with input bits x and y and output bit z is
evaluated locally (i.e. without communication) by each party by computing zi = xi ⊕ yi.
Value z can be retrieved by exchanging and XORing the shares. The evaluation of AND
gates is more challenging and requires Alice and Bob to interact.

When using Boolean shares, inputs are shared in mod 2 for the operations of addition
and multiplication. We denote it by BS .Share(p, d) returning 〈d〉1 , . . . , 〈d〉p such that
〈d〉1 + . . .+ 〈d〉p ≡ d mod 2.

Arithmetic secret sharing

Boolean secret sharing is extended to Additive secret sharing by representing functions as
arithmetic circuits: Inputs are additively shared for the operations, in particular addition
and multiplication. In other words, arithmetic secret sharing allows two (or multi) parties
to compute additions and/or multiplications over additively shared values in mod 2`

where ` denotes the bit size for the additive secret sharing. Addition and multiplication
gates correspond to XOR and AND gates, respectively. The addition over the shared
values is computed locally whereas performing the multiplication operation requires two
parties to interact. This can be performed with Beaver’s multiplication triplets [39].

We denote 〈.〉k , k = 1, .., p, to represent an Arithmetic secret share. A secret input
d is split into p shares, using AS .Share(p, d) which returns 〈d〉1 , . . . , 〈d〉p such that

〈d〉1 + . . .+ 〈d〉p ≡ d mod 2`.

3.2.4 Available Libraries

Several open-source implementations have been proposed to make 2PC/MPC systems
practical in recent years. Some [40,41] include high-level program description languages
and corresponding compilers used to specify a function to securely compute and translate
it into some Boolean or arithmetic secret sharings (BS .Share or AS . Share) while some
solutions [42–44] propose more comprehensive frameworks consisting of libraries, languages
and their compilers, runtime environments and OT tools. Some examples supporting 2PC
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are FairPlay1, JustGarble2, ABY3, TinyGarble4 while some support implementations for
MPC such as FairPlayMP5, SCAPI6, SCALE-MAMBA7, MP-SPDZ8, MOTION9, etc.

3.3 Homomorphic Encryption

Homomorphic encryption (HE) is a breakthrough cryptographic technique that allows an
untrusted third party such as a cloud server to perform the addition and/or multiplication
operations over ciphertexts without the need for decrypting or having access to the
underlying or resulting data [45–47]. HE is initially proposed by Rivest, Adleman, and
Dertouzos in 1978 [48] and further developed by Gentry in 2009 [49,50]. We denote [.]i
to represent an HE ciphertext encrypted using the key of party i.

A typical scenario can be described as follows: The party Alice can delegate some of
her computations over sensitive data to an untrusted third party, Bob. Alice encrypts her
data with her public key (in green in Figure 3.2) and sends it to Bob. When receiving the
data, Bob can evaluate a function over Alice’s encrypted inputs and obtain the encrypted
result. Bob sends the result back to Alice who is the only party able to decrypt it with
her private (or secret) key (in red in Figure 3.2). Note that a HE scheme can be either
symmetric or asymmetric; in this example, we illustrate the asymmetric one.

Alice

13C892ED03 
0EA24844F

048F91AB17 
9AE49C453

126218FA75B6 
BB1F9AB3Decrypt(                         ,    ) = 

Eval(+, (                          ,                          ))

6218FA75B6 
BB1F9AB3

13C892ED03 
0EA24844F

048F91AB17 
9AE49C453Encrypt(        ,     ) = 

5Encrypt(        ,     ) = 

7

Bob

Figure 3.2 – Illustration of asymmetric Homomorphic Encryption

Formally, a (an asymmetric) homomorphic encryption scheme is defined by the
following five probabilistic polynomial-time (PPT) algorithms:

• pp ← Setup(1κ): Given the security parameter κ, this algorithm outputs public

1https://www.cs.huji.ac.il/project/Fairplay/Fairplay.html
2https://github.com/irdan/justGarble
3https://github.com/encryptogroup/ABY
4https://github.com/esonghori/TinyGarble
5https://github.com/FaiplayMP/FairplayMP
6https://github.com/cryptobiu/libscapi
7https://github.com/KULeuven-COSIC/SCALE-MAMBA
8https://github.com/bristolcrypto/SPDZ-2
9https://github.com/encryptogroup/MOTION
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parameters pp.

• (pk, sk)← KeyGen(pp): This randomised algorithm takes the security parameter κ
as an input and outputs the public-secret keys pair (pk, sk).

• ct← Encrypt(m, pk): This randomised algorithm uses public key pk to transform
message m into ciphertext ct.

• ct∗ ← Eval(C, (ct1, . . . , ctl)): The evaluation algorithm takes a circuit C and ci-
phertexts ct1, . . . ctl such that cti = Encrypt(mi, pk) and outputs a ciphertext
ct∗ = Eval(C, (ct1, . . . , ctl)).

• m′ ← Decrypt(ct′, sk): The decryption algorithm uses secret key sk and a ciphertext
ct′ to output a decrypted message m′.

A symmetric HE can be defined by the same algorithms: The randomised KeyGen
algorithm outputs only sk; the randomised Encrypt uses sk to encrypt the plaintext m;
and the deterministic Decrypt algorithm finally utilises sk to output the plaintext m′.

An HE scheme should achieve the following properties [51]: (i) The correctness
property whereby an HE scheme correctly decrypts both ciphertexts computed by the
Encrypt algorithm and ciphertexts performed by the Eval algorithm; (ii) the compactness
property, which ensures the decrypted data evaluated by the Eval algorithm in the
message space, where all the defined plaintexts lie; and (iii) the circuit privacy property
that guarantees the results of the Eval algorithm of some circuit C over some ciphertexts
ct1, . . . , ctl and the Encrypt algorithm of the result of the same circuit C over the
plaintexts which are corresponding the ciphertexts ct1, . . . , ctl.

HE schemes can be categorised into three groups when considering their operations
or the number of operations supported over the encrypted data (i.e., which the circuits
HE schemes can evaluate):

3.3.1 Partially Homomorphic Encryption

A cryptosystem that enables a single operation (addition or multiplication) over encrypted
data is called a partially homomorphic encryption (PHE) scheme [46]. When a PHE
scheme enables additions over ciphertexts, it is called additively homomorphic [9,52], and
a PHE scheme that provides multiplications is defined as multiplicatively homomorphic
encryption scheme [52,53].

In this thesis, we utilise an additively homomorphic encryption scheme, namely the
Paillier cryptosystem and hence describe it as follows:

The Paillier cryptosystem

Pascal Paillier presents a probabilistic encryption scheme [9] based on composite residu-
osity problem, which searches an integer x satisfying xn = a mod n2 for a given integer
a. The Paillier cryptosystem supports additive homomorphism.

The semantically secure Paillier cryptosystem is defined by the following algorithms:
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• pp ← Setup(1κ): Given the security parameter κ, this algorithm outputs public
parameters pp.

• (pk, sk)← KeyGen(pp): This randomised algorithm takes the security parameter λ
as an input and outputs the public-secret keys pair (pk, sk) such that pk = (N, g),
where N is the product of two large primes p and q, and g ∈ Z∗N2 , and the private
key is sk = (λ, µ), where λ = lcm(p−1, q−1) and µ = (L(gλ mod N2))−1 mod N .

• ct← Encrypt(m, pk): This probabilistic algorithm uses public key pk to transform
message m ∈ ZN on modulus N into ciphertext ct = gm · rN mod N2, where
r ∈ Z∗N2 .

• ct∗ ← Eval(C, (ct1, . . . , ctl)): This algorithm takes circuit C that can be addi-
tion and/or scalar multiplication, and ciphertexts ct1, . . . , ctl such that cti =
Encrypt(mi, pk) and outputs a ciphertext
ct∗ = Eval(C, (ct1, . . . , ctl)).

• m′ ← Decrypt(ct′, sk): The decryption algorithm uses secret key sk and ciphertext
ct′ to output decrypted message m′ = L(ct′λ mod N2) · µ mod N .

As described in [54], the decryption function of the Paillier cryptosystem supports
threshold decryption. In our solution, namely SwaNN (see Section 6.3), we use a 2-out-of-
2 variant of the threshold decryption which distributes the private key among two parties.
The Decrypt algorithm requires both parties to compute the decryption function.

3.3.2 Somewhat Homomorphic Encryption

A cryptosystem whereby we can perform a limited number of both additions or multipli-
cations is named a somewhat homomorphic encryption (SwHE) scheme [45]. The SwHE
cryptosystems usually support an unlimited number of additions, but a limited number
of multiplications. In 2005, the Boneh-Goh-Nissim (BGN) encryption scheme [55] was
proposed where one can perform an arbitrary number of additions and one single multipli-
cation. Later, some cryptosystems are introduced to the state-of-the-art such as the Polly
Cracker scheme (both operations are supported, but due to the homomorphic operations,
the ciphertext size grows exponentially) [56] or a Polly Cracker with Noise cryptosystem
(Additions over ciphertexts do not increase the size of the resulting ciphertext whereas
multiplications double the size) [57].

3.3.3 Fully Homomorphic Encryption

Before defining Fully Homomorphic Encryption, we define Levelled Homomorphic Encryp-
tion: When an HE scheme supports both additive and multiplicative homomorphisms
over encrypted data, and takes an additional input d, namely the maximum depth of
circuits containing additions and multiplications which it can evaluate, for the KeyGen
algorithm, it is named a Levelled Homomorphic Encryption (LHE) scheme.

With each homomorphic operation (especially multiplications), the noise level in the
LHE-encrypted ciphertext increases, and if this noise level exceeds some threshold, the

34



Chapter 3. Cryptographic Techniques

underlying ciphertext can no longer be correctly decrypted. Therefore, Craig Gentry [50]
proposes the first fully homomorphic encryption (FHE) and uses an additional technique,
namely bootstrapping, to reduce the noise growth in the ciphertext originating from
computations over ciphertexts. With this aim, LHE schemes are used since they can
homomorphically evaluate their own Decrypt algorithm (thus, they are called bootstrap-
pable): The resulting noisy ciphertext can be homomorphically decrypted using the
encrypted secret key, and further, it is encrypted using a different (or the same) public
key to get a “fresh” ciphertext. Therefore, LHE schemes without a depth restriction (or a
multiplicative level) are called the FHE schemes. Note that the bootstrapping procedure
increases the computational and memory costs of FHE and can be thus considered as a
bottleneck for the practical use of FHE.

To decrease the computational time over ciphertexts, Smart et al. [58] propose to
encode several plaintexts into a single plaintext to perform them in batches without
bringing any additional cost. This procedure is called Single Instruction Multiple Data
(SIMD). Remark that SIMD can also be applicable for secure 2PC/MPC to enhance the
time for function evaluations.

The research on FHE has been continuing and thus new cryptosystems have been
proposed based on Gentry’s creative idea to improve its efficiency. As the result of the
research, a new HE cryptosystem, BGV, proposed by Brakerski et al. [59], and Fan-
Vercauteren [60] in 2012. In 2013, Gentry-Sahai-Waters [61] propose a new scheme having
a different way to represent keys, but it is not compatible with existing optimization due to
the key representation. Although all these proposed HE schemes are dedicated to integers,
the cryptosystem proposed by Cheon et al. [62] allowing to care out computations on
floating point numbers was introduced. Recently, the new generation has been introduced
with TFHE [63, 64] allowing to have the advantage of previous ones. These presented
FHE schemes, namely BFV, CKKS, TFHE, etc., are based on the Learning with Errors
(LWE) (or Ring Learning With Error (RLWE)) problem. Authors in [65] prove that both
Approximate Greatest Common Divisor problem and LWE problems are equivalent.

In this thesis, we utilise the following fully homomorphic encryption schemes:

The BFV cryptosystem

BFV is an FHE scheme based on RLWE [60, 66]. The semantically secure BFV cryp-
tosystem is defined by the following algorithms:

• pp ← Setup(1κ): Given the security parameter κ, this algorithm outputs public
parameters pp.

• (pk, sk)← KeyGen(pp): This randomised algorithm takes the security parameter

κ as an input and outputs the public-secret keys pair (pk, sk) where sk = s
$← R2,

where R2 is the Ring R mod 2 and pk = ([−(a.s+e)]q, a), where a
$← Rq where q =

q(κ) ≥ 2 is an integer, and e
$← X = X (κ).

• ct← Encrypt(m, pk): This probabilistic algorithm uses public key pk to transform
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message m into ciphertext ct =
(

[p0.u+ e1 + ∆.m]q, [p1.u+ e2]q

)
where u

$← R2,

e1, e2
$← X , and ∆ = bq/tc.

• ct∗ ← Eval(C, (ct1, . . . , ctl)): This algorithm takes circuit C that can be a set
of addition and/or multiplication, and ciphertexts ct1, . . . , ctl such that cti =
Encrypt(mi, pk) and outputs a ciphertext ct∗ = Eval(C, (ct1, . . . , ctl)).

• m′ ← Decrypt(ct′, sk): The decryption algorithm uses secret key sk and ciphertext

ct′ to output decrypted message m′ =
[ ⌊

t.[c0+c1.s]q
q

⌋ ]
t

where c0 = ct′[0] and

c1 = ct′[1].

The CKKS cryptosystem

CKKS [62] is a FHE scheme based on the BGV scheme [59]. The semantically secure
CKKS cryptosystem is defined by the following algorithms:

• pp ← Setup(1κ): Given the security parameter κ, this algorithm outputs public
parameters pp.

• (pk, sk)← KeyGen(pp): This randomised algorithm takes the security parameter κ
as an input and outputs the public-secret keys pair (pk, sk) where sk = (1, s) such

that s
$← RL and pk = (b, a) such that b = −a.s+ e mod qL where e

$← DG(σ2)10,
and a real value σ = σ(κ, qL).

• ct ← Encrypt(m, pk): This randomised algorithm uses public key pk to trans-
form message m into ciphertext ct = (ct0, ct1) = ν.pk + m + e0, e1) mod qL ←
Encrypt(m, pk) where ν

$← ZO(0.5)11 and e0, e1
$← DG(σ2).

• ct∗ ← Eval(C, (ct1, . . . , ctl)): This algorithm takes a circuit C that can be a set
of addition and/or multiplication, and ciphertexts ct1, . . . , ctl such that cti =
Encrypt(mi, pk) and outputs ciphertext ct∗ = Eval(C, (ct1, . . . , ctl)).

• m′ ← Decrypt(ct′, sk): The decryption algorithm uses secret key sk and ciphertext
ct′ to output decrypted message m′ = ct′1 + ct′0.s mod ql.

The TFHE cryptosystem

Chillotti et al. propose TFHE, a symmetric FHE scheme based on the torus variant
of the LWE [63,64,67]. The semantically secure TFHE cryptosystem is defined by the
following algorithms:

• pp ← Setup(1κ): Given the security parameter κ, this algorithm outputs public
parameters pp.

10DG(σ2) stands for the discrete Gaussian distribution of variance σ2.
11ZO(ρ) is a distribution in which each entry of the vector from {0,±1}N with a probability ρ for

being -1 and +1, and a probability 1− ρ for being 0.
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• (sk)← KeyGen(pp): This randomised algorithm takes the security parameter κ as

an input and outputs the public-secret keys pair (sk) where sk = s
$← {0, 1}n.

• ct← Encrypt(m, sk): This randomised algorithm uses the public key sk to transform

message m into ciphertext ct = (a, b) where b = a.s + ϕ mod 1, a
$← Tn, and

ϕ = m + Gaussian Error of parameter α.

• ct∗ ← Eval(C, (ct1, . . . , ctl)): This algorithm takes circuit C that can be a set
of addition and/or multiplication, and ciphertexts ct1, . . . ctl such that cti =
Encrypt(mi, pk) and outputs ciphertext ct∗ = Eval(C, (ct1, . . . , ctl)).

• m′ ← Decrypt(ct′, sk): The decryption algorithm uses secret key sk and ciphertext
ct′ to output decrypted message m′ is the nearest message in the message space by
rounding ϕ← Decrypt(ct′, sk) = b− s.a.

3.3.4 Available Libraries

There exist several open-source libraries for the implementation of homomorphic encryp-
tion schemes, mostly FHE schemes. Some HE libraries can be listed as follows: A C++
implementation SEAL12 supports BFV and CKKS; PALISADE13 supports BGV, BFV,
CKKS, FHEW, and TFHE based on C++; HElib 14 employs C++ to implement BGV
and CKKS; TFHE15 provides TFHE utilising the C/C++ languages; and lastly, Pyfhel16

builds its implementation on top of SEAL and PALISADE using the Python language.

3.4 Proxy Re-encryption

A Proxy Re-Encryption (PRE) scheme allows an untrusted third party such as a cloud
server to transform a ciphertext between keys without having access to both the secret
keys and the cleartext. In a typical scenario of PRE depicted in Figure 3.3, a proxy
converts a ciphertext encrypted under Alice’s public key for Bob with the help of a given
key, namely the re-encryption key rekA→B. Informally, consider a scenario whereby Alice
receives encrypted emails under her public key from several clients. When she leaves for
vacation, she wants to authorise Bob to read her emails without sharing her secret key
with Bob. Proxy Re-encryption can be useful in the case of when Alice is not available,
and on behalf of Alice, Bob could read these emails without the need for having her
secret key.

Formally, a proxy re-encryption scheme is defined by the following six algorithms:

• pp ← PRE .Setup(1κ): Given the security parameter κ, this algorithm outputs
public parameters pp.

12https://github.com/microsoft/SEAL
13https://gitlab.com/palisade/palisade-release
14https://github.com/shaih/HElib
15https://github.com/tfhe/tfhe
16https://github.com/ibarrond/Pyfhel
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ReEncrypt(ctA,rekA🡒B) = ctBProxy
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(skA,pkA)

ReKeyGen(skA,pkB) = rekA🡒B

(skB,pkB)

Decrypt(ctB,skB) = m

Figure 3.3 – Illustration of Proxy Re-Encryption

• (pk, sk)← PRE .KeyGen(pp): This randomised key generation algorithm takes an
input as the given security parameter κ as an input and outputs the public-secret
keys pair (pk, sk).

• reki→j ← PRE .ReKeyGen(ski, pkj): This re-encryption key generation procedure
takes public key pkj and secret key ski from parties Pi and Pj as inputs, and further
outputs a re-encryption key, reki→j .

• cti ← PRE .Encrypt(m, pki): The randomised encryption algorithm uses public
key pki to transform message m to cti.

• ctj ← PRE .ReEncrypt(cti, reki→j): The proxy re-encryption algorithm, namely
ReEncrypt (or Π), uses re-encryption key reki→j to transform ciphertext cti =
Encrypt(m, pki) into ciphertext ctj .

• m ← PRE .Decrypt(ctj , skj): The decryption algorithm uses secret key skj to
decrypt ciphertext ctj and obtain message m.

The concept of PRE is firstly introduced by Blaze et al. [68] as atomic proxy re-
encryption utilising the ElGamal encryption scheme and the Fiat-Shamir signature scheme.
Further, Ivan and Dodis [69] generalise this concept with strong security assumptions,
as well. With this scheme, some standard cryptographic scheme such as ElGamal [52],
RSA [53] or RSA Hash-and-Sign [70,71] can be transformed into a proxy function.

The early proposed PRE such as [68] suffers from the following shortcomings: Once
the proxy re-encrypts the ciphertext of Alice to Bob with re-encryption key rkA→B, Alice
is still able to decrypt the re-encrypted message. This is defined as the bidirectionality
property in [72]. This scheme is also vulnerable against a collusion between the proxy
and one of the two parties. Thus, the scheme considers the proxy fully trusted. To cope
with these weaknesses, Ateniese et al. [73] introduce a unidirectional, collusion-resistant,
and CPA-secure PRE scheme based on the decisional bilinear Diffie-Hellman (DBDH)
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assumption [74]. Moreover, in [75], authors propose an alternative scheme that is secure
against chosen ciphertext attacks.

3.4.1 Homomorphic Proxy Re-encryption

As its name indicates, a Homomorphic Proxy Re-encryption (H-PRE) is the combination
of two cryptographic constructions: (i) homomorphic encryption (HE) which enables
operations over encrypted data (See Section 3.3); and (ii) proxy re-encryption (PRE)
which allows a third-party proxy such as a cloud server to transform ciphertexts encrypted
with a public key into ciphertexts encrypted with another public key without learning any
information on the plaintext (See Section 3.4). Recently several works [76–82] studied the
combination of PRE and HE. We define such schemes as H-PRE schemes: Some existing
H-PRE are based on the Paillier cryptosystem [9] whereas some others are based on
their newly designed HE; and one study [80] proposes two examples of H-PRE, namely
BV-PRE and NTRU-ABD-PRE.

A scenario for H-PRE illustrated in Figure 3.4 can be described as follows: Several
clients want to send their data to Alice, who computes some operations such as the sum
over these data. Their data are very sensitive, and clients, therefore, encrypt their data
using Alice’s public key and send them to her. Unfortunately, Alice is not available and
delegates to Bob the computation of the sum over the received data. Alice generates the
re-encryption key rekA→B using her secret key and Bob’s public key and sends it to the
proxy, seen as a cloud server. When the data are sent to Alice, the proxy re-encrypts
them for Bob, computes the sum over them, and further sends the resulting sum to Bob.
When the sum is received, Bob can decrypt it by using his own secret key.

Proxy

rekA🡒B ctB

Alice

(skA,pkA)

ReKeyGen(skA,pkB) = rekA🡒B

*

Encrypt(m1,pkA) = ctB(1)

Encrypt(m ,pkA) = ctB( )

ReEncrypt(ctA   ,rekA🡒B) = ctB
( ) ( )

Eval(+,(ctB    ,..., ctB    ) = ctB( ) ( ) *

Bob

(skB,pkB)

Decrypt(ctB,skB) = m*

Figure 3.4 – Illustration of Homomorphic Proxy Re-Encryption

More formally, a H-PRE scheme consists of the following seven polynomial-time
algorithms:

• pp← H-PRE .Setup(1κ): Given the security parameter κ, this algorithm outputs
public parameters pp.
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• (pk, sk)← H-PRE .KeyGen(pp): This probabilistic key generation algorithm takes
the security parameter κ as input, and outputs a pair of public and secret keys
(pk, sk).

• reki→j ← H-PRE .ReKeyGen(ski, pkj): This re-encryption key generation algo-
rithm takes secret key ski and public key pkj as inputs and returns re-encryption
key, reki→j . This re-encryption key will further allow the proxy to re-encrypt a
message encrypted with pki to a message that can be decrypted by the party holding
secret key skj corresponding to public key pkj .

• ct ← H-PRE .Encrypt(m, pk): This randomised algorithm encrypts message m
using public key pk and returns the resulting ciphertext ct.

• ctj ← H-PRE .ReEncrypt(reki→j , cti): This re-encryption algorithm transforms
ciphertext cti into ciphertext ctj using re-encryption key reki→j .

• ct∗ ← H-PRE .Eval(C, (ct(1), · · · , ct(l))): Given circuit C and ciphertexts ct(1), · · · , ct(l)

where ct(i) = H-PRE .Encrypt(m(i), pkj), the algorithm outputs ciphertext ct∗

which corresponds to the encrypted evaluation of C over ciphertexts ct(1), · · · , ct(l).

• m′ ← H-PRE .Decrypt(sk, ct∗): This algorithm decrypts the received ciphertext
ct∗ using secret key sk and outputs the plaintext m′.

According to [49, 83], any FHE scheme can be transformed into a H-PRE scheme
and its correctness implies the correctness of the resulting H-PRE. Furthermore, the
same studies show that a H-PRE scheme is semantically (or indistinguishability under
chosen-plaintext attack (IND-CPA)) secure if the underlying HE scheme is semantically
secure. We note that some H-PRE schemes such as BFV-PRE are implemented in
PALISADE [84].

3.5 Multi-key Fully Homomorphic Encryption

In this thesis, we present a particular homomorphic encryption scheme that enables
one or multiple parties to encrypt or decrypt data under multiple keys. Two different
multi-key homomorphic encryption schemes have been proposed by the state-of-the-art
namely: (i) Asymmetric multi-key FHE whereby each party encrypts its data with its
own public key and some homomorphic operations are performed over multiple data
encrypted with multiple keys [85–87]; and (ii) symmetric multi-key FHE which is similar
to the previous scheme except that the encryption key is symmetric [88].

A typical scenario can be described with the following example: Several data owners
like DO1, DO2, and DO3 can delegate some computations over their sensitive data to an
untrusted third party, a cloud server. Each data owner DOi encrypts its data with its
public key pki (in green in Figure 3.5) and sends it to the cloud server. The cloud server
can evaluate a function (sum of them in this example) over each DOi’s encrypted input
[X]i to obtain the encrypted result [Y]1,2,3 thanks to the multi-key FHE. The cloud server
sends the result to them to partially decrypt using their secret key (in red in Figure 3.5).
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Figure 3.5 – Illustration of Multi-key Fully Homomorphic Encryption

Further, each DOi sends the partial decrypted result to other DOj and merges all partial
decrypted results to obtain the actual result. Note that a multi-key FHE scheme can be
either symmetric or asymmetric; we illustrate the asymmetric one in this example.

3.5.1 Asymmetric Multi-key Fully Homomorphic Encryption

Chen et al. [87] propose semantically secure, multi-key variants of BFV [60, 66] and
CKKS [62]. Basically, multiple parties individually encrypt their private data using their
own public key, and further homomorphic operations are performed over all these data.
All parties contribute to the decryption of the output.

An asymmetric multi-key fully homomorphic encryption (MK-FHE) scheme is defined
by seven PPT algorithms.

• pp← MK-FHE .Setup(1κ): Given the security parameter κ, this algorithm outputs
public parameters pp.

• (sk, pk) ← MK-FHE .KeyGen(pp): This randomised algorithm takes the public
parameters pp as input and outputs a pair of secret and public keys (sk, pk).

• ct← MK-FHE .Encrypt(m, pk): This randomised algorithm encrypts message m
with public key pk and returns ciphertext ct = (c0, c1).

• (ct∗, T ∗) ← MK-FHE .Pre-process(c̄t = (c0, . . . , cki), T = {id1, . . . , idki}): This
algorithm basically extends the input ciphertext with additional 0’s in order to be
able to perform the homomorphic operation over all the underlying k keys according
to the mapping defined in T ∗. Hence, the algorithm returns ct∗ = (c∗0, . . . , c

∗
k) such

that c∗0 = c0 and c∗i =

{
cj if i = idj for some 1 ≤ j ≤ ki,
0 otherwise.

41



Chapter 3. Cryptographic Techniques

• ct∗ ← MK-FHE .Eval(C, (ct∗1, . . . , ct∗l )): This algorithm evaluates circuit C over the
l ciphertexts encrypted with multiple keys.

• µi ← MK-FHE .PartialDecrypt(c∗i , skidi): This algorithm takes as input c∗i from
ciphertext ct∗ corresponding to the party holding secret key skidi and outputs a
partially decrypted information µi.

• m′ ← MK-FHE .Merge(c∗0, µ1, . . . , µk): This algorithm takes as input all the partial
decryptions derived from a ciphertext ct∗ and outputs the final plaintext m′.

3.5.2 Symmetric Multi-key Fully Homomorphic Encryption

Chen et al. [88] propose the multi-key version of TFHE, namely MK-TFHE, whereby
each party uses its symmetric secret key to encrypt and decrypt the data. Similar to
MK-FHE, the MK-TFHE scheme is defined by seven PPT algorithms:

• pp← MK-TFHE .Setup(1κ): This algorithm outputs public parameters pp given
security parameter κ.

• sk← MK-TFHE .KeyGen(pp): This algorithm randomly generates secret key sk
given the public parameters pp.

• ct← MK-TFHE .Encrypt(m, sk): This randomised algorithm encrypts message m
with secret key sk and outputs ciphertext ct = (b, a).

• (ct∗, T ∗) ← MK-TFHE .Pre-process(c̄t = (b, a1, . . . , aki), T = {id1, . . . , idki}):
Similar to the case of MK-FHE, this algorithm basically extends the input ci-
phertext with additional 0’s in order to be able to perform the homomorphic
operation over all the underlying k keys according to the mapping defined in
T ∗. Hence, the algorithm returns ct∗ = (b∗, a∗1 . . . , a

∗
k) such that b∗ = b and

a∗i =

{
aj if i = idj for some 1 ≤ j ≤ ki,
0 otherwise.

• ct∗ ← MK-TFHE .Eval(C, (ct∗1, . . . , ct∗l )): This algorithm evaluates circuit C over
the l ciphertexts encrypted with multiple keys.

• µi ← MK-TFHE .PartialDecrypt(a∗i , skidi): This algorithm takes as input a∗i from
ciphertext ct∗ corresponding to the party holding secret key skidi and outputs a
partially decrypted information µi.

• m′ ← MK-TFHE .Merge(b, µ1, . . . , µk): This algorithm takes as input all the partial
decryptions derived from a ciphertext ct∗ and outputs the final plaintext m′.

MK-TFHE has been implemented as a proof-of-concept in [89], and only the NAND
gate is utilised in this library.
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3.6 Threshold Fully Homomorphic Encryption

Threshold fully homomorphic encryption (Th-FHE, [90,91]) is a homomorphic encryption
scheme whereby multiple parties jointly generate a public-secret key pair using their
public and secret keys. The resulting secret key is not disclosed to any party. Each party
encrypts its private data using the common public key and operations are performed over
encrypted data. In order to decrypt the result, these parties partially decrypt with their
individual secret keys and merge the partially decrypted values in a similar manner to
MK-FHE.

A typical scenario can be described with the following example: Several data owners
like DO1, DO2, and DO3 can delegate some computations over their sensitive data to an
untrusted third party, a cloud server. Each data owner DOi encrypts its data with one
unique public key pk (in green in Figure 3.6) and sends it to the cloud server. The cloud
server can evaluate a function (sum of them in this example) over each DOi’s encrypted
input [X] to obtain the encrypted result [Y] thanks to the threshold FHE. The cloud
server sends the result to them to partially decrypt using their secret key (in red in Figure
3.6). Further, each DOi sends the partial decrypted result to other DOj and merges all
partial decrypted results to obtain the actual result.

DO3

DO2

Cloud Server

X

X

X

DO1
(pk,sk1)

(pk,sk2)

(pk,sk3)

Figure 3.6 – Illustration of Threshold Fully Homomorphic Encryption

A semantically secure Th-FHE scheme contains six PPT algorithms:

• pp ← Th-FHE .Setup(1κ): This algorithm outputs public parameters pp given
security parameter κ.

• (pk, skid1 , . . . , skidk) ← Th-FHE .KeyGen(pp): This randomised algorithm gener-
ates k secret keys skidi and common public key pk given the public parameters
pp.

• ct ← Th-FHE .Encrypt(m, pk): This randomised algorithm encrypts message m
with public key pk and outputs ciphertext ct.
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• ct∗ ← Th-FHE .Eval(C, (ct1, . . . , ctl)): This algorithm evaluates circuit C over the
l ciphertexts.

• µi ← Th-FHE .PartialDecrypt(ct∗, skidi): This algorithm takes as input ciphertext
ct∗ and the secret key skidi of party i and outputs a partially decrypted information
µi.

• m′ ← Th-FHE .Merge(µ1, . . . , µk): This algorithm takes as input all the partial
decryptions derived from a ciphertext ct∗ and outputs the final plaintext m′.

Note that some Th-FHE schemes for BFV and CKKS are implemented in PAL-
ISADE [84].

3.7 Hybrid Protocol

Some cryptographic implementations rely on a hybrid method that consists of a mixed
protocol by combining the use of arithmetic circuits with homomorphic encryption and/or
the use of Boolean circuits. This mixed approach can show better performance results
when comparing stand-alone use of 2PC/MPC or HE.

Some open-source libraries have been proposed. For example, TASTY17 can be
counted as a hybrid protocol library based on the use of Yao’s GCs and additively HE,
and some examples for the Hybrid protocol that utilise mixed 2PC/MPC protocols such
as secret sharing and Yao’s GCs are ABY, MOTION, etc.

3.8 Summary of Cryptographic techniques

In this chapter, cryptographic techniques we employ in our privacy-preserving MLaaS solu-
tions have been presented, namely secure two-party computation, partially homomorphic
encryption, homomorphic proxy re-encryption, multi-key homomorphic encryption, and
threshold homomorphic encryption. A PHE scheme is more efficient in consideration of
its reasonable computation costs whereas an FHE cryptosystem provides more flexibility
to perform any operations. The latter cryptosystem is more expensive in computations
than a partially homomorphic one. Furthermore, an HE scheme non-interactively enables
nonlinear operations and polynomials in the ML techniques over encrypted data. Unfor-
tunately, it results in high computational costs. However, an MPC/2PC scheme provides
more realistic computation performance; yet, it suffers from a higher bandwidth use due
to its interactive nature.

17https://github.com/tastyproject/tasty
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Chapter 4

Privacy-preserving Neural Network
Classification

Dance first.
Think later.
It’s the natural order.

Samuel Beckett

In this chapter, we study and identify the challenges of neural networks when in-
tegrating cryptographic techniques. We further review the state-of-the-art and finally
introduce our solutions for privacy-preserving neural network classification which are
based on different cryptographic techniques: The first solution based on 2PC, the second
solution based on PHE and 2PC, and the last solution based on schemes of FHE and
PRE, namely H-PRE.

4.1 Introduction

Consider a scenario whereby a client, or a querier, would like to classify its input X
utilising a NN model, namely M in the cloud, and a cloud server would classify the
underlying input and obtain the corresponding output Y, where Y = M(X). The NN
model M is usually trained and constructed over privacy-sensitive data sent by multiple
clients, and inputs and outputs for the prediction/classification phase are personal data.
They should, therefore, be kept confidential to any parties except their owners. In
order to guarantee data privacy, i.e., the privacy of the input X and the output Y
against the cloud server, and the NN model M against clients, some cryptographic
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technique such as multi(two)-party computation (MPC/2PC) [40,92] or homomorphic
encryption (HE) [9, 49,50,59] is employed. Indeed, the protection of data privacy in the
NN classification drew the attention of many researchers and several mechanisms that
provide privacy protection in neural network predictions are proposed. In these proposals,
the main goal is to delegate the classification operations to the cloud server. Therefore,
the already trained NN model is possessed by or is outsourced to the cloud server in the
cleartext/plaintext form or in the encrypted form.

Querier

Cloud Server

X
Y

M

Figure 4.1 – Plaintext model in the single-server scenario

Having studied existing proposals, we design three privacy-preserving NN prediction
solutions according to the scenarios, including the trained NN model being in the
plaintext or encrypted form in the cloud when ensuring privacy for all the underlying
data. While PAC and SwaNN classify input X over some model M which is plaintext
(i.e. no cryptography is applied) on the cloud, ProteiNN employs a model M in the
encrypted form for the prediction queries. Moreover, in PAC [93], we utilise 2PC to
preserve the privacy of the Electro-Cardiogram (ECG) data and SwaNN [94] switches the
computations between HE and 2PC during the image (hand-written digit) classification
in the previously mentioned scenario whereas ProteiNN [95] extends this scenario that
we name the one-to-one scenario depicted in Figure 4.1, by enabling a model provider to
securely outsource its model M to the cloud server and consider a one-to-many scenario
in Figure 4.2 whereby many clients can query the model. Additionally, while delegating
the M operations to the cloud server, the model provider still wishes to maintain the
control over the use of this model by legitimate and authorised clients, only.

4.2 Privacy vs. Neural Network

This section focuses on the neural network classification and its operations and identifies
the challenges to design the privacy-preserving variant of it.

As previously presented in Section 2.1, most of the neural network functions such as
Cost function, SGD or activation functions consist of complex (or non-linear) operations
even for machine learning researchers. The classification phase is much simpler than the
training phase regarding the NN phases containing complex operations. Moreover, the
need for classifying some inputs using some NN model is more demanded than training
a NN model when comparing the number of clients and data-driven companies. Since

48



Chapter 4. Privacy-preserving Neural Network Classification

Queriers

Model 
Provider

Cloud Server

X

X

X
Y

Y

Y

M

Figure 4.2 – Encrypted model in the single-server scenario

clients would like to take advantage of a cloud server and delegate the NN operations
to the cloud server, their inputs need to be protected via some cryptographic technique
before their outsourcing. Therefore, since the NN classification has more advantages,
we propose to design the neural network classification solutions when considering the
integration of the cryptographic technique(s) and their bottlenecks.

The main goal is to allow various clients to apply a neural network (NN) model that
belongs to some third party and own their sensitive output; at the same time, the third
party learns nothing about data, and the clients learn the classification results only and
nothing about the NN model. Hence, we aim at designing a solution where a third party
can execute the classification model without leaking and even discovering information
about the input data and the output data. On the other hand, the classification model
can also be considered as confidential against its clients who will send their queries
for the classification task. This model itself can also have some business value and
therefore needs to be protected. For this respect, we assume that the model should
be unknown to the parties querying it. Performing some operations over data while
these are kept confidential requires the use of cryptographic techniques such as HE or
MPC/2PC. While the integration of such techniques offers better privacy guarantees,
they, unfortunately, introduce some non-negligible overhead in terms of computation
and communication. Furthermore, these techniques may not always be compatible
with complex NN operations presented in Chapter 2. Therefore, we believe that to
design the privacy-preserving variant of the underlying classification technique, the actual
classification model should be revisited and built while taking the privacy requirements
into consideration, as well. Hence, we propose to follow a privacy-by-design approach
and consider privacy requirements at the design phase of the neural networks.

The following three challenges are identified when building a NN model customised
for the use of cryptographic techniques:

• Challenge 1: Size of the neural network. The size of a neural network is defined as
the size of the input and output vectors, the number of layers, and the number of
neurons in the model. Such parameters have a significant impact on the complexity
of the model. In order to efficiently integrate cryptographic techniques, the size
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of the neural network should be optimised. Therefore, while designing the neural
network compatible with the use of cryptographic techniques, one should reduce
the size of the input layer, the hidden layers, and the output layer.

• Challenge 2: Complex neural network operations. A neural network involves
various operations executed by each neuron during the classification phase. These
include sophisticated operations such as Sigmoid or tanh that existing cryptographic
techniques may not easily and efficiently support. Hence, the underlying operations
should be optimised and sometimes even transformed into simpler functions such
as the Square function (i.e., x2) or some low degree polynomial when designing
the privacy-preserving variant of the NN model.

• Challenge 3: Real numbers instead of integers. Most of the operations in NN
are executed over real numbers whereas cryptographic techniques usually support
integers. Therefore, there is a need for either supporting floating point numbers or
approximating them to integers. Nevertheless, such an approximation should not
have a significant impact on the accuracy of the NN model.

To reduce the overhead resulting from introducing the privacy-preserving variants of
the complex NN operations, the number of these operations, hence, the size of the neural
network has to be optimised. On the other hand, such optimisations should not have an
impact on the actual accuracy of the NN model and its performance evaluation.

4.3 Prior Work

In this section, we study existing privacy-preserving neural networks solutions and regroup
them into several categories according to the underlying cryptographic techniques, and
further we have proposed a Systematisation of Knowledge (SoK) paper [96] published in
IFIP Summer School on Privacy and Identity Management 2019.

4.3.1 2PC-based solutions

The first category consists of solutions based on secure two-party computation. Min-
iONN [97] is the first privacy-preserving neural network protocol based on 2PC between
a client and a cloud server: The client and the cloud server additively share each of their
input and output values for each layer of the neural network. To ensure data privacy,
MiniONN defines oblivious transformations for each CNN operation and implements the
transformations using the ABY framework [42]. Furthermore, Rouhani et al. [98] propose
DeepSecure which is based on Yao’s GCs to securely compute the deep learning model.
The authors are able to use Sigmoid and tanh as activation functions thanks to the
optimisation of garbled circuits. Ball et al. [99] propose an extension to DeepSecure that
is a secure evaluation of the NN classifier based on garbled circuits. Unlike DeepSecure,
authors in [99] make use of arithmetic circuits instead of Boolean circuits and further
use some improved techniques for the computation of matrix multiplication, activation
function, and Max pooling. Another study which uses 2PC is Chameleon by Riazi et
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al. [100]. Authors propose a protocol that switches among sharing circuits for secure
function evaluation, where the client and the cloud server jointly perform some compu-
tation without disclosing their inputs. Chameleon can be considered as an alternative
protocol to ABY [42]. TFEncrypted [101] is another framework which enables secure
computation in TensorFlow [102] using secret sharing and secure channels between the
parties. Similar to Chameleon, EzPC [103] is a cryptographic cost-aware secure 2PC
protocol generator and makes use of arithmetic and Boolean circuits for a secure NN
classification. XONN [104] is a privacy-preserving binarised NN classification solution
utilising Yao’s GCs. Dalskov et al. [105] study a quantised NN in presence of malicious
adversaries. Recently, CrypTFlow2 [106] proposes a 2PC-based NN classification defining
new protocols for ReLU, Max pooling, Argmax, and division.

4.3.2 HE-based solutions

In the second category, we analyse (fully) homomorphic encryption ((F)HE)-based
solutions. To the best of our knowledge, CryptoNets [107] is the first privacy-preserving
neural network protocol based on FHE and proposes to use x2 in the activation layer.
Authors in [107] use the SEAL library [108] to compute convolutional neural network
predictions on encrypted images. Similar to CryptoNets, CryptoDL [109], Chabanne et
al. [110] and Ibarrondo et al. [111] use FHE for the design of privacy-preserving neural
networks. The main difference of these approaches with CryptoNets is the fact that they
approximate nonlinear functions with higher degree polynomials using different techniques
such as Taylor series, numerical methods or Chebyshev polynomials. The use of batch
normalization is also proposed to obtain some performance gain. The goal of all these
solutions is to keep a good level of accuracy while using FHE to protect the input data.
Later on, Bourse et al. [112] uses a conversion of a trained neural network to a Discretised
Neural Network (DiNN) using TFHE [67]. Authors claim that DiNN can be used for
deep neural networks with large number of neurons. Similarly, TAPAS [113] also proposes
binary neural networks over TFHE-encrypted data. However, TAPAS differs from [112]
mainly due to the ability of the cloud server to update the neural network at any time
without the need for the data being re-encrypted by the client. More recent works ( [114]
and [115]) propose the idea of training neural networks over FHE-encrypted data and
classifying encrypted predictions. In these studies, the client supplies the training data
in its encrypted form using its own public key, and the cloud server trains this encrypted
data to build the encrypted model. This model is further used by its owner to classify a
new encrypted input. Because both the training data and the model are encrypted, the
cloud server cannot discover any information on both phases. Authors claim to achieve a
reasonable performance. Moreover, Faster CryptoNets [116] employs an FHE scheme
to protect the neural network model and data. Authors [116] propose some efficient
polynomial approximations for activation functions. This study also includes a training
phase that uses differential privacy to protect the data. CHET [117], a compiler, creates
FHE-based code for privacy-preserving NN classifications. Similarly CHET, nGraph-HE,
nGraph-HE2, and MP2ML [118–120] are compilers to run a HE-based inference over
TensorFlow.
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4.3.3 Hybrid solutions

Few early approaches, such as [121] and [122], also use the Paillier encryption scheme
and Yao’s GCs. Furthermore, authors in [121] and [122] do not provide any performance
results of their solution executed over the encrypted data. Additionally, Gazelle [123] is
a secure neural network inference scheme implemented under a dedicated lattice-based
additively homomorphic encryption scheme proposed in the paper. This solution also
makes use of Yao’s GCs to perform ReLU and to reduce the noise in the ciphertext. A
recent study, namely DELPHI [124] improves Gazelle by using planner to find the best
trade-off between efficiency (using polynomials) and accuracy (using Yao’s GCs).

4.3.4 Solutions based on other cryptographic techniques

Finally, there exist several works, such as [125], [126], and [127], which propose to combine
some machine learning techniques, including the neural network, with trusted hardware.

A recent work [128] reviews the state-of-the-art solutions and further reproduces
them, which have a public source code, to analyse them and discuss their deployment
issues if exist.

In the following sections, we introduce three solutions for the privacy-preserving neural
networks classification problem. These solutions differ with respect to the underlying
cryptographic technique.

4.4 PAC: Privacy-preserving Arrhythmia Classification with neu-

ral networks

In this section, we present PAC [93], in which we investigate the use of 2PC for the neural
network classification algorithm, and in particular the privacy-preserving arrhythmia
classification. This work was published in FPS 2019, 12th International Symposium on
Foundations and Practice of Security and awarded as “the best paper”.

Neural Networks (NN) is the most utilised machine learning technique to support
pharmacists and doctors in analysing patients’ data and quickly diagnosing a particular
disease such as heart arrhythmia that can cause sudden death. Nowadays, this disease
can be detected at very early stages with the help of smart wearable devices that can
record the heart rate data, which is called as Electro-Cardiogram (ECG). Nevertheless,
the ECG data is considered privacy-sensitive. There is an urgent need for cryptographic
techniques enabling the protection of such collected data while still performing predictive
analytics and improving individuals’ lives. These techniques will also help health analytics
companies be compliant with GDPR.

In PAC, we aim at addressing privacy concerns raised by the analysis of the ECG data
for arrhythmia classification. Our goal is to enable a cloud server to perform arrhythmia
classification without discovering the input ECG data to the NN operations. On the other
hand, we also look into the problem from the cloud server side as it cares about keeping
the design of its NN model confidential from its queriers. Queriers should not be able to
discover the details about the underlying NN model. The challenge often manifests as a
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choice between the privacy of the querier and the secrecy of the NN model parameters.
We propose to reconcile both parties, namely the cloud server and the queriers, and
combine the NN technique with 2PC. Since the 2PC protocols cannot efficiently support
all NN operations, we propose to revisit the underlying NN operations and design a
new, customised NN model that one can execute to classify arrhythmia accurately, and
this, without disclosing neither the input ECG data to the cloud server nor the model
parameters to the queriers.

4.4.1 Problem Statement

In this section, we introduce the problem of arrhythmia classification and identify the
main challenges to ensure the privacy of the ECG data at the same time.

As defined in [129], cardiac arrhythmias are abnormal heart rhythms, which cause
the heart to beat too fast (tachycardia) or too slow (bradycardia) and to pump blood
less effectively. These irregularities can be detected and classified by analysing the ECG
signals of a heart. Doctors classify arrhythmia into several types according to such
behaviours of the heart. Therefore, we focus on the classification of heartbeats extracted
from the ECG signals into different classes of arrhythmia, making the use of NN: Building
the arrhythmia classifier model involves the design of the architecture of NN, such as
the number of the layers, the size of the input, the number of neurons in each layer, and
the underlying operations that each neuron has to perform, and one should prepare a
dataset for the ECG heartbeats representing different arrhythmia types.

ECG signals representing patients’ heartbeats are considered as sensitive information.
Thus, outsourcing the arrhythmia classifier to cloud servers may put the privacy of the
patients at risk. Hence, we propose a solution for the arrhythmia classification problem
whereby a user (or a querier) can execute the NN model without leaking and even
discovering information about the input data and its output. Moreover, the NN model
also has some business value, and therefore it should be unknown to its queriers.

Thanks to the cryptographic techniques (see Chapter 3), one can execute NN op-
erations over data being kept confidential. Although such a technique offers better
privacy guarantees, it can result in some non-negligible computation and communication
overhead. Moreover, the underlying technique may be efficiently run over the complex
NN operations: The design and development of the privacy-preserving NN classification,
thus, is a must, and the operations in NN need to be revisited when considering the
privacy requirements. The revisited model should also address the trade-off between
privacy, accuracy, and performance. We propose a dedicated solution to address privacy
requirements raised by the analysis of the ECG data for arrhythmia classification. Since
the 2PC protocols cannot efficiently support all kinds of operations, we propose to design
a new and customised neural network model that can be executed to classify arrhythmia
accurately, and this, without disclosing the ECG data. The design of the new model
customised for the use of 2PC should not result in a significant decrease on the accuracy
of the classification. We remind that the goal of a neural network classification algorithm
is to determine to which class a given input data belongs to.
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4.4.2 PAC: Description

In order to guarantee data privacy during the arrhythmia classification phase, a dedicated
neural network model should be designed. Because cryptographic techniques add a
non-negligible overhead, one should optimise the complexity of the model as much as
possible. Hence, the primary goal while building a new classifier is to optimise the number
of neurons at each layer while keeping an adequate accuracy level.

Figure 4.3 – R-peak in a heartbeat

As previously mentioned, the cryptographic technique that we choose to ensure
data privacy is 2PC [92] whereby a querier holds its input, and a cloud server has the
NN prediction model, namely the weight matrices and bias vectors. Similarly to [107]
and [110], nonlinear NN operations such as activation functions should be replaced with
more efficient operations such as low degree polynomials. In this section, we describe our
privacy-by-design approach with a case study using the MIT-BIH arrhythmia dataset from
the PhysioBank database1. We present the resulting neural network model incrementally.

We first extract heartbeats from the ECG signals. Each heartbeat is composed of 180
samples with 90 samples before the R-peak (i.e., R-peak is an upward deflection in the
heartbeat as depicted in Figure 4.3), 1 sample for the R-peak, and 89 samples after the
R-peak. Once heartbeats are extracted, we perform various filtering operations to create
an appropriate dataset to build the neural network model. The PhysioBank database is
shown in Table 4.1 and contains 23 different annotations for the extracted heartbeats.

We have decided to consider only 16 out of 23 annotations representing meaningful
arrhythmia classes that have a significant number of instances in the dataset. Additionally,
we realised that normal beats dominate the dataset (67.3%) and hence, result in an
unbalanced dataset for model training purposes. We have reduced the number of normal
beats in order for the model to predict anomalies more accurately while keeping this
number sufficiently large so that it reflects reality. Moreover, we propose to use the
over-sampling method to enforce the learning of low frequent classes such as class “e”.
Table 4.1 provides details about the final dataset we are actually using. This dataset is
further split such that 80% of the heartbeats are used to train the network, and 20% of
the heartbeats are used to test the performance of the model. We propose a model with
two fully connected layers involving matrix multiplications, one activation function and a
final Softmax function that would provide the resulting arrhythmia class.

1MIT-BIH Arrhythmia Database: https://www.physionet.org/physiobank/database/mitdb/
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Table 4.1 – Heartbeats for Arrhythmia classification and their frequency in our dataset

Our Dataset PhysioBank Dataset

Arrhythmia Class Symbol # % # %

Normal beat N 14985 34.02% 59926 66.593%

Left bundle branch block beat L 6450 14.64% 6450 7.168%

Right bundle branch block beat R 5794 13.15% 5794 6.439%

Premature ventricular contraction V 5712 12.97% 5712 6.347%

Paced beat / 5608 12.73% 5608 6.232%

Atrial premature beat A 2042 4.64% 2042 2.269%

Rhythm change + 1005 2.28% 1005 1.117%

Fusion of paced and normal beat f 786 1.78% 786 0.873%

Fusion of ventricular and normal beat F 647 1.47% 647 0.719%

Ventricular flutter wave ! 378 0.86% 378 0.42%

Nodal (junctional) escape beat j 184 0.42% 184 0.204%

Non-conducted P-wave (blocked APB) x 155 0.35% 155 0.172%

Aberrated atrial premature beat a 123 0.28% 123 0.137%

Ventricular escape beat E 85 0.19% 85 0.094%

Nodal (junctional) premature beat J 68 0.15% 68 0.076%

Atrial escape beat e 26 0.06% 13 0.014%

Signal quality change V NA NA 508 0.565%

Comment annotation ” NA NA 352 0.391%

Isolated QRS-like artifact ” NA NA 112 0.124%

Unclassifiable beat Q NA NA 29 0.032%

Start of ventricular flutter/fibrillation [ NA NA 5 0.006%

End of ventricular flutter/fibrillation ] NA NA 5 0.006%

Premature or ectopic supraventricular beat S NA NA 2 0.002%

We also optimise the number of neurons in each layer to reduce the neural network
complexity:

Output layer. The number of neurons in the output layer corresponds to the number
of arrhythmia classes. Since we only consider taking the first 16 out of 23 arrhythmia
classes, the number of neurons in the output layer is set to 16.

Hidden layers. In order to choose the appropriate number of neurons within the hidden
layer namely FC, we have evaluated the accuracy of models on the test dataset whereby
the number of neurons varies from 2 to 100. We evaluate the overall accuracy and compute
the confusion matrix that indicates the accuracy with respect to each arrhythmia class.
We observe that 38 is a good choice as this implies less complexity in the model as well
as its corresponding confusion matrix shows better fairness toward less frequent classes.
The accuracy of our model is 96.51%. We represent the model’s performance on the test
dataset with the confusion matrix as illustrated in Figure 4.4.

Furthermore, in addition to the optimisation of the number of hidden neurons, we
have to select the most appropriate activation function that cryptographic techniques (in
our case 2PC) can support. Although Figure 4.5 shows better accuracy results when ReLU
is used, we opt for the use of the Square function mainly for performance reasons. Indeed,
the ReLU function involves comparison operations that can incur higher overhead compared
to the Square function, the resulting degradation is not very significant (0.34%). Finally,
we replace the Softmax function with a simple Argmax operation since the exponentiation
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Figure 4.4 – Confusion matrix of the model for each class in the test dataset

cannot be easily computed with 2PC. Note that this approximation does not incur any
accuracy loss.

Input layer. The other parameter that affects the complexity of the neural network
model is the size of the input layer. This inherently reduces the dimension of the first
matrix used for the fully connected (FC) layer. The main tool to adequately reduce
the number of neurons of the input layer is the principal component analysis technique
(PCA) [130]. PCA uses orthogonal linear transformations to find a projection of all input
data (ECG heartbeats) into k dimensions which are defined as the principal components.
The efficiency of using PCA for the ECG analysis domain has also been proved in [131].
It also helps reduce the noise in the ECG signals and hence improve the accuracy of the
model. In order to identify the appropriate number of eigenvalues, we run a simulation
with 100 hidden neurons and change the value of the input size n starting from n = 180 as
illustrated in Table 4.2. The same simulation is executed using the the Square function
as for the activation function. From this analysis, we choose to set the input size to 16,
mainly because the resulting prediction model provides good accuracy with acceptable
complexity. Hence, the number of neurons of the input layer is now set to 16.

The resulting model. To summarise, the developed model, compatible with the use
of 2PC, consists of 2 FC layers, one activation layer implementing the Square (i.e., x2)
function, and one Argmax function. The architecture of the proposed neural network
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Figure 4.5 – Accuracy of the model with different dimensions of the input vector

model is shown in Figure 4.6.
The first layer consists of a FC layer given in Equation 4.1:

Y ′h = XT .Wh +Bh. (4.1)

where X represents the input vector (PCA transformed of a heartbeat). This input vector
X of size 16 is multiplied with the weight matrix of the hidden layer, Wh, of size 16× 38.
This intermediate result is further added to the bias vector of the hidden layer, Bh, of
size 38.

The resulting vector Y ′h becomes the input of the activation layer which consists of
computing the square of each element y′hi of Y ′h described in 4.2.

Yh =


y′h1

2

y′h2
2

...

y′h38
2

 (4.2)

The resulting vector Yh is the final output of the hidden layer. This vector further
becomes the input for another FC layer as shown in 4.3:

Y ′ = Y T
h .Wo +Bo (4.3)

57



Chapter 4. Privacy-preserving Neural Network Classification

Table 4.2 – Simulation results for the prediction model with different input sizes

Activation Input Training accuracy Test accuracy

ReLU 180 98.10% 97.00%

ReLU 48 99.35% 97.32%

ReLU 16 98.63% 97.33%

ReLU 8 96.55% 96.10%

Square 180 97.61% 96.98%

Square 48 99.00% 96.70%

Square 16 97.68% 96.80%

Square 8 95.60% 95.00%

Wo, Bo Y
′ denote the weight matrix, the bias vector and the result of the output layer,

respectively. The output is the vector Y ′ of size 16. Finally, the Argmax function is
executed over the components y′j of Y ′. The result y in Figure 4.6 is the index of one of
the 16 arrhythmia classes.

In total, the prediction phase consists of: 16×38+38×16+38 = 1254 multiplications,
15× 38 + 38 + 37× 16 + 16 = 1216 additions, and 1 Argmax operation.

4.4.3 Discussion on Principle Component Analysis

As previously mentioned, the NN model is revised and designed from scratch in order to
be compatible with 2PC and remain as efficient as possible. To improve the performance
of the classification phase, the size of the input is reduced using Principle Component
Analysis (PCA).

PCA is a statistical method which identifies patterns, highlights similarity between
elements within the dataset and finally reduces the dimension of the feature space. More
formally, let D be a dataset and xi an element of it with dimension d. The first step of
PCA consists of computing the mean µ of all the elements xi. Then, the covariance matrix
A of S is computed. A has the dimension d× d. The eigenvectors and corresponding
eigenvalues of matrix A are further evaluated and the first k eigenvectors with the largest
eigenvalues are selected. Thus, the final output of this method is a d× k matrix of the
most relevant eigenvalues.

We propose to make use of the PCA method to decrease the size of the input vector.
Thus, the querier would transmit less data to the cloud server when sending the input to
the model. The cloud server first computes the mean µ of its dataset. Then, it computes
the covariance matrix from the training dataset (for this case study, 44048 heartbeats
consisting of 180 samples) and obtain the 180×16 matrix of the most relevant eigenvalues.
This matrix along with the vector µ is sent to the querier who reduces the dimension of
its input to 16 (instead of 180) by first normalising its signal by subtracting it with the
mean vector and further multiplying the result with the received matrix. Consequently,
this operation has already reduced the complexity of the proposed NN.
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Figure 4.6 – Architecture of the neural network model in PAC

Nevertheless, the use of the PCA transformation at the querier side can result in some
information leakage. We propose to analyse which information and how much information
is leaked, and introduce two design approaches to avoid towards the information leakage.
The leakage resulting from the use of PCA is represented by two components: the mean
of the dataset and the 180× 16 covariance matrix. The mean of all the signals in the
training dataset does not carry any valuable information since the labels of the training
signals are not included in the computation of the mean. On the other hand, the matrix
of 16 eigenvectors does not correspond to the entire matrix of eigenvalues. In addition to
that, without the knowledge of the eigenvalues there exist an infinite number of inverse
transformations back to the original covariance matrix. Therefore, one cannot discover
the training dataset and hence the model from this reduced and transformed matrix.
If we choose not to leak this information while designing the privacy-preserving NN
classification, then either we do not use PCA (high bandwidth and computational cost)
or include the PCA steps to the 2PC solution (additional overhead but less costly).
Accordingly, in PAC, we propose the following three design approaches (as shown in
Figure 4.7) and evaluate the performance for each of them:
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• Model 1: PCA is not integrated to 2PC (original and most efficient solution but
implies some leakage),

• Model 2: PCA is integrated to 2PC (less efficient but no leakage),

• Model 3: PCA is not used (worse performance but no leakage).

Start

Model 3 Model 2Model 1

Detect PeaksHeartbeat(s)

Use
PCA?

No Yes Integrated
PCA?

PCA

No

Truncation TruncationTruncation

2PC 2PC PCA and 2PC

Arrhythmia
Class

End

Yes

PCA and 2PC

Integrated
PCA?

Figure 4.7 – PAC - Overview

Model 1 and Model 2 are similar: the only difference among them is on the integration
of PCA into 2PC (no information leakage if Model 2 is used). Model 3 is customised
to support 2PC without disclosing any information. When implementing Model 3, one
can follow the similar idea of having less complex NN operations and less NN complexity
that we make use of when building models 1 and 2. The resulting model has the same
architecture as models 1 and 2 in terms of NN layers and the size of the output layer but
the size of the input (180-sample instead of 16) and the number of the hidden neurons
(40 instead of 38 neurons) are much higher. In the sequel of this section, we only describe
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the implementation of Model 1. Nevertheless, the three models for PAC are implemented
and performance results are provided in the next section.

4.4.4 SIMD circuits

Finally, in addition to reducing the size of the neural network and decreasing the cost of
the underlying operations, we also take advantage of Single Instruction Multiple Data
(SIMD) circuits which allow the packing of multiple data elements and the execution of
operations in parallel. We use this technique to perform the matrix multiplications and
additions more efficiently. In more details, since the number of hidden neurons is 38, the
querier creates the SIMD version of its input X (of size 16) repeated 38 times (i.e. the
size of the share is 38 ∗ 16 = 608). Similarly, the cloud server creates a SIMD version of
the weight matrices Wh (of size 16x38) and Wo (of size 38x16) by flattening them to two
vectors of 608 elements. Once these versions obtained, one single SIMD multiplication
gate can be used to perform component-wise multiplication. Next, to finalise the matrix
multiplication, some elements of the resulting vector should also be added. The cloud
server also creates a SIMD version of the bias vectors and adds them to the vector
resulting from the previous SIMD matrix multiplication. The Square activation function
can also be computed using one SIMD multiplication gate. To implement the Argmax
function, we transform the SIMD share of the previous layer to a non-SIMD share (i.e.,
the SIMD share is composed of 1 wire holding all the 16 values of Y ′ while the non-SIMD
share is composed of 16 wires each wire will hold one value of Y ′). Due to the inability of
a comparison gates to compare between negative and positive values, we use a comparison
gate to check the sign of the value by comparing it with the smallest negative number,
namely -1, and then, we replace negative values with a zero using a multiplexer gate.
Then, we loop on all the values (wires), and compare each of them with the max value
using a comparison gate. Eventually, in each iteration two multiplexer gates are used to
store the max value and max index relying on the result of the comparison gate. Hence,
Equation 4.1 involves 1 SIMD multiplication and 16 SIMD additions; the activation
function consists of 1 SIMD multiplication; further, Equation 4.3 is computed using 1
SIMD multiplication and 38 SIMD addition gates; finally, to evaluate the Argmax, 46
multiplexer gates and 31 comparison gates are used.

Moreover, we propose a secure computation of PCA in Model 2. As previously
described, the computation of the PCA can eventually introduce a limited leakage of the
training dataset. Therefore, a solution might be deployed by introducing the computation
of the PCA vector to the 2PC model. For this to happen, the cloud server shares the
mean of the dataset as well as the 16 eigenvectors using ABY (the same way it shares
the weights and biases). On the other hand, the querier shares its sampled heartbeat
signal. The two parties will first collaboratively compute PCA of the signal while the
rest part of the circuit remains unchanged. This PCA computation layer adds 181 SIMD
addition gates and 1 SIMD multiplication gate.
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4.4.5 Implementation

We use the ABY framework [42] which supports all basic operations in a flexible manner
using Arithmetic, Boolean or Yao’s circuits to compute 2PC. ABY supports Single
Instruction Multiple Data (SIMD) gates. Additionally, the ABY implementation also
supports floating point representation if Boolean circuits are used. Hence, we first
implement the privacy-preserving model using Boolean sharing, namely BS .Share [36].
Nevertheless, floating point representation and the use of BS .Share appear to be inefficient.
We therefore propose some improvements using fixed point representations that may result
in some truncations of the inputs or intermediate values in the circuit. Furthermore, since
operations executed over BS .Share are much more expensive than those executed over
arithmetic sharing, namely AS .Share, we propose to replace BS . Share with AS . Share
as much as possible; hence, we improve PAC and set the security parameter to 128 bits
in ABY.

We propose two truncation methods for the use of integers instead of real numbers:

(i) Truncation v1: The first method consists of applying truncation at intermediate stages
in the circuit and hence try to continuously keep a good accuracy level. In this truncation
approach, the precision of the inputs of the arithmetic circuits is in the order of the 6th

floating point: thus weight matrix’s and input vector’s values are multiplied by 224 and
the biases by 248. These are further converted to integers without having an impact on
the precision of the value. The intermediate shares of (Y ′h) are amplified by a factor of
248. Thanks to the initial truncation, this equation does not incur any overflow. However,
moving to the square function, the values need to be truncated once more. To make these
truncations efficient, we propose to use a simple shift operation. Hence, shares of Y ′h are
first transformed to Boolean shares and their bits are shifted by 24: This is equivalent
to dividing the values by 224. To implement the shift function, the wires of position
2, 3, . . . , 40 (wire 1 represent the most significant bit and wire 64 represent the least
significant bit) are moved to the position of the 40 most right wires (we do not move the
first wire since it represent the sign bit). Then the wires of position 2, 3, . . . , 24 are set to
the same value of the wire of position 1. This ensures correct binary representation of the
values and it is compatible with negative numbers since it respects the 2’s complement
representation. Note that this method is also implemented in SIMD form as we perform
the shift of the bits of all the values in the vector with a single operation. Once the
truncation is applied, the Boolean share is re-converted to an arithmetic share and the
arithmetic circuit corresponding to the activation function can be applied. Because of
the multiplication operation, the resulting shares of Yh will again be amplified by a factor
of 248. The same truncation method will thus be repeated. A truncation is not needed
at the fourth stage as the argmax operation only outputs the index and not the actual
value. Finally, we convert Y ′ again to a Boolean SIMD share since comparison operations
cannot be efficiently computed with arithmetic gates and implement the argmax function
the same way it was implemented before. This first truncation method is evaluated on
the test data and it showed good accuracy. The accuracy of the new model with the first
truncation method is 96.34% which is similar to what we get from the model with the
second truncation method presented next. Also, the confusion matrix of the results is
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the same as the one corresponding the original model.

(ii) Truncation v2: The second method truncates the inputs before the prediction process
starts, only. In this truncation approach, only the inputs to the circuits are truncated and
this before the actual execution of the circuit. In order to avoid overflows, we multiply X,
Wo and Wh by 103, Bh by 106 and Bo by 1015 and truncate the fractional part afterwards.
We observe that this method is as safe as the maximum number a signed 64-bit integer
variable can take is 9.223372037× 1018 and the upper bound for the values of Y ′ is 9223
and the lower bound is −9223. We observe that the risk of overflow is very low. Thanks
to this approach, the actual circuit only consists of arithmetic gates except at the last
stage where the Argmax operation needs to be executed. We have tested the accuracy of
the new model using the test dataset and we have achieved an accuracy of 96.34% which
is very close to the accuracy of the original model (96.51%). The confusion matrix of the
new model shows the same accuracy as presented in the original model (see Figure 4.4).

Furthermore, we propose to perform arrhythmia predictions in batches, namely, with
several heartbeat inputs. This can be justified as the classification of a single heartbeat
may not be sufficient to diagnose the disease for a patient and the doctor may need to
receive the classification of the n consecutive heartbeats.

Thanks to the use of Arithmetic circuits with Truncation v2, significant performance
improvements are observed. We also realise that, with this optimisation, the online time
remains very short and that 21.2% (82.2% in case of evaluation on the same machine)
of the Total time corresponds to the BaseOT phase. This phase is only processed once
the two parties initiate the protocol. Hence the overall time may again be decreased by
performing predictions in batches (i.e. performing prediction of many ECG signals at
once) using the SIMD technique, once again.

Indeed, the querier may first record N signals, prepare the inputs and further store
them in a matrix S(N) in Equation 4.4. Let xi,j be the value of the jth PCA component
of the signal belonging to the individual i in the dataset.

S(N) =


s1
s2
...
sN

 =


x1,1 x1,2 . . . x1,16
x2,1 x2,2 . . . x2,16

...
...

. . .
...

xN,1 xN,2 . . . xN,16

 (4.4)

The querier further creates the following vector X(N) from S(N):

X(N) =

[
s1 . . . s1︸ ︷︷ ︸

38

. . . sN . . . sN︸ ︷︷ ︸
38

]
︸ ︷︷ ︸

16× 38×N

(4.5)

On the other hand, the cloud server creates the weight matrix vector Wh(N) (illus-
trated in Equation 4.6) from the original weight matrix Wh of the hidden layer.
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Wh(N) =



wh1
...

wh38
...

wh1
...

wh38




16× 38×N where Whi =


wh1,i
wh2,i

...
wh16,i

 (4.6)

Similarly, the output layer’s SIMD weight vector Wo(N) transforms the weight matrix
of the output layer Wo as follows:

Wo(N) =



wo1
...

wo16
...
wo1

...
wo16




38× 16×N where Woi =


wo1,i
wo2,i

...
wo38,i

 (4.7)

The cloud server also creates the vectors Bh(N) and Bo(N) (in Equation 4.8) from
the two bias vectors Bh and Bo, respectively.

Bh(N) =



bh1
...

bh38
...
bh1
...

bh38




38×N, Bo(N) =



bo1
...

bo16
...
bo1
...

bo16




16×N (4.8)

The Arithmetic circuit of the NN model is implemented as described in Figure 4.8
whereby only the structure of the inputs and output differ (i.e., SIMD vectors result in
larger size). The number of SIMD multiplications does not change since all values are
regrouped in one SIMD share and the multiplication is further performed. The number
of SIMD additions also remains the same.

Finally, BS .Share which represents the Argmax function is also performed with SIMD
gates. Values of each class in each individual output in the vector Y (N) are grouped in
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Figure 4.8 – Arithmetic circuit representation of the model with Truncation v2

separate SIMD vectors. The same comparison and multiplexers gates described before
are used but this time the inputs are SIMD shares. The output of BS .Share is the vector
y(N) whereby each value represents the index of the class of the corresponding individual.

4.4.6 Security Evaluation

PAC performs privacy-preserving arrhythmia classifications in the presence of the semi-
honest adversarial model where the querier and the cloud server have to follow the NN
prediction protocol truly, yet they can try to extract information during the execution
of the protocol. The goal of the querier is to hide the input data and its corresponding
classification result from the cloud server. On the other hand, the cloud server does
not want to reveal the NN model parameters used during computations to the querier.
We employ 2PC, particularly AS . Share or BS .Share, that achieves indistinguishability
given that the shares are generated from a uniformly random distribution [132]. PAC is
secure and does not leak any private information about the inputs, the corresponding
results, and the NN model parameters while computing the privacy-preserving arrhythmia
classifications.

4.4.7 Performance Evaluation

To evaluate the computational and communication overhead of the model in a real setting,
experiments were carried out by a computer which has four 3.60 GHz Intel Core i7 7700
processors, 32GB of RAM acting as the cloud server and a laptop which has two 1.70
GHz Intel Core i5 4210U processors, 4 GB of RAM acting as the querier. On the other
hand, the querier and the cloud server communicate through a local area network (LAN).
The querier is connected to the LAN through a wireless access point. A simulation of the
bandwidth and the latency of the connection between the querier and the cloud server
showed the values of 39 Mbit/sec for the bandwidth and 3.36 ms for the latency. In ABY,
we set the security parameter to 128 bits.

Table 4.3 shows the performance results in terms of prediction time and bandwidth
consumption for the original BS .Share as well as for both truncation approaches (namely
Truncation v1 and v2) with PCA integrated and not integrated into the 2PC. We further
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evaluate the model implemented by making use of the Model 2 and not use of the PCA
method, Model 3. Thus, we implement Model 3 to compare with Model 2. Moreover, we
have repeated all evaluations on the local set-up, i.e., the localhost on one machine, to
give an insight about the overhead incured by the low bandwidth (the results are given
in Table 5 in [133]). Note that the Network time in the table of performance results
represents the time for the connection to be established. The Total time corresponds
to the Setup time and the Online time; moreover, the Setup time corresponds to the
OTExtension time and the Garbling time. Thus, the prediction time of one heartbeat is
the Total time added to the baseOT time.

Boolean Circuits Truncation v1 Truncation v2

Proposed neural network models Model 1 Model 1 Model 2
Model 1

without Argmax
Model 1 Model 2 Model 3

Circuit

Gates 553925 35477 36418 128 34329 34696 34660

Depth 4513 160 168 5 146 147 146

Time (ms)

Total 117571.82 1218.613 2776.862 735.357 1082.804 2641.846 4723.203

Init 0.046 0.076 0.071 0.056 0.062 0.037 0.033

CircuitGen 0.046 0.074 0.062 0.067 0.078 0.055 0.047

Network 272.867 268.39 94.142 248.92 51.391 89.46 34.221

BaseOTs 288.047 309.288 310.06 311.387 291.705 294.698 298.294

Setup 107481.557 851.397 2373.818 714.511 817.807 2354.391 4409.689

OTExtension 106645.796 847.424 2369.377 714.278 816.069 2351.584 4407.521

Garbling 812.573 2.502 3.268 0.002 1.405 1.851 1.252

Online 10090.26 367.21 403.042 20.844 264.995 287.453 313.512

Data Transfer (Sent/Rcv, in KB)

Total 319269 / 309573 2629 / 2252 7113 / 6651 1910 / 1900 2171 / 2095 6560 / 6461 12266 / 12139

BaseOTs 48 / 48 48 / 48 48 / 48 48 / 48 48 / 48 48 / 48 48 / 48

Setup 305915 / 304815 2240 / 2227 6591 / 6579 1881 / 1881 2086 / 2071 6406 / 6391 12025 / 12010

OTExtension 301095 / 304815 2057 / 2227 6377 / 6579 1881 / 1881 2053 / 2071 6373 / 6391 11992 / 12010

Garbling 4819 / 0 183 / 0 214 / 0 0 / 0 33 / 0 33 / 0 33 / 0

Online 13354 / 4757 389 / 25 522 / 72 29 / 19 85 / 24 154 / 70 240 / 129

Table 4.3 – Performance results for each model

We have also evaluated the performance of the prediction model without using any
cryptographic techniques and making use of TensorFlow [102]. It takes 7.29 ms to predict
one heartbeat in cleartext while this value becomes 117859 ms with PAC (without any
truncation). Nevertheless, from Table 4.3, we observe some significant performance gain
in terms of computational and communication cost by employing the truncation method.
Compared to the model built with BS .Share, the Total time with the second truncation
method is reduced by a factor of 108. As expected, the second truncation (Truncation v2)
method shows some improvement over the first truncation method in terms of time and
bandwidth consumption. This consumption resulted from the conversion of BS .Share
and AS . Share causes overhead to the model with Truncation v1.

According to the results in Table 4.3, Model 2 still provides better results than
Model 3, i.e., building the neural network model without the use of the PCA method:
The time and bandwidth consumption of Model 3 is larger with a factor of 1.8 than
Model 2. We have also implemented Model 2 without the Argmax layer (the output is a
vector of 16-value where its Argmax can be computed locally by the querier) to show the
size and performance of AS .Share without introducing any Boolean gates. Finally, the
time performance presented in the table is highly affected by the low bandwidth of the
communication channel between the querier and the cloud server. Moreover, we observe
that the time consumption of the model evaluated locally on the same machine can reach
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39.785 ms which is 27 times less than the remotely evaluated model. This limitation
comes from the core of the 2PC protocol which suffers from high bandwidth consumption.
We believe this problem can be easily solved by a decent connection between the querier
and the cloud server.

We have run experiments with different batch sizes using the local and remote setups.
The results are given in Table 4.4 for the remote setup (see Table 6 in the full paper [133]
for the local setup). We can observe that the number of gates y slightly increases with
respect to the number of heartbeats, which is much better than performing prediction
on signals individually which will cost y = 34329N gates. Also, the depth is constant
regardless of the number of input heartbeats the model predicts.

Table 4.4 – Performance results for the multi-signal model

# Input signals
1 10 100 200 400

Circuit

Gates 33741 39552 40918 42422 45426

Depth 148 148 148 148 148

Time (ms)

Total 1084.713 8002.287 77867.26 160114.6 314311

Init 0.061 0.09 0.062 0.059 0.058

CircuitGen 0.041 0.043 0.052 0.053 0.066

Network 7.115 7.681 7.513 5.34 4.307

BaseOTs 290.672 294.094 293.867 300.302 285.169

Setup 814.036 7575.32 75821.76 155921.4 306985

OTExtension 808.49 7509.797 75149.46 154673.2 304616

Garbling 5.056 62.455 650.642 1214.046 2310

Online 270.673 426.961 2045.492 4193.194 7325.77

Bandwidth (Rcv/Sent in KB)

Total 2095 / 2167 21010 / 21652 209912 / 216247 419805 / 432465 839588 / 864898

BaseOTs 48 / 48 48 / 48 48 / 48 48 / 48 48 / 48

Setup 2071 / 2084 20782 / 20936 207647 / 209107 415276 / 418186 830533 / 836342

OTExtension 2071 / 2053 20782 / 20612 207647 / 205947 415276 / 411876 830532 / 823732

Garbling 0 / 31 0 / 315 0 / 3159 0 / 6309 0 / 12609

Online 24 / 83 227 / 716 2264 / 7139 4528 / 14278 9055 / 28555

We observe that the Total time still increases linearly with the number of signals
but with a much better rate. More specifically, the batches model can decrease the time
consumption with a percentage of 27% (70% in case of local evaluation) compared to
performing prediction on signals one by one which takes t = 1082.8N ms (t = 39.7N in
case of local evaluation). Finally, the BaseOT time is approximately 290 ms and remains
constant regardless to the number of input signals the model predicts. This is, again,
much better than performing prediction on signals, one by one, where the BaseOT time
bt costs bt = 290 ms. Table 4.4 also shows that the bandwidth grows linear with the
number of signals.

Therefore, we can conclude that prediction in batches improves the performance in
terms of computational cost, but the size of the batch should be bounded according to
bandwidth limitations.
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4.4.8 Summary

We have presented PAC, a new Privacy-preserving Arrhythmia Classification that keeps
users’ ECG data confidential against service providers and the neural network model
confidential against users. As a case study, we have designed a new model based on the
PhysioBank dataset. The proposed model involves a customised two-layer neural network
with 54 neurons. This model has been built from scratch in order to be compatible
with 2PC. The solution is implemented with the ABY framework [42] which requires the
truncation of input values and model parameters since it is defined over integers. The
second truncation method combined with Arithmetic circuits consists of multiplying the
input values with 103 and shows significant improvement in terms of performance and
accuracy. PAC achieves an accuracy of 96.34% and experimental results show that the
prediction of one heartbeat takes 1 second in real world scenarios. We show that more
savings can be achieved with the use of SIMD for performing predictions in batches.

4.5 SwaNN: Switching among Cryptographic Tools for Privacy-

Preserving Neural Network Predictions

In this section, we propose SwaNN [94], a privacy-preserving neural network prediction
that uses an additively HE cryptosystem, namely the Paillier cryptosystem [9], and
combines it with 2PC. This work was presented as a poster in two different venues:
ICT.OPEN 2019 2 and PUT 2019 3 in which it was awarded as“the best poster”. Moreover,
SwaNN was published in SECRYPT 2020, 17th International Conference on Security
and Cryptography [94].

4.5.1 Problem Statement

The design for a privacy-preserving NN classification solution drew the attention of
researchers, and several solutions that provide privacy protection in NN predictions are
proposed (See Section 4.3). The existing solutions generally rely on either (F)HE or
2PC. (F)HE-based solutions enable the computation of linear operations and low-degree
polynomials of NN non-interactively, i.e., a cloud server could perform computations
without any interaction with the querier. However, the solutions usually incur high
computational costs due to the expensive nature of HE systems. Also, the restriction
of linear and low-degree polynomial operations degrades the accuracy of prediction.
2PC-based solutions, on the other hand, provide more realistic computation performance
and seem better at maintaining the accuracy of predictions. Nevertheless, the interactive
nature of 2PC-based solutions leads to a higher bandwidth usage compared to HE-based
alternatives. Therefore, in SwaNN, we investigate a balance between the computational
and communication costs to maintain a good level of prediction accuracy.

2https://ict-research.nl/ict-open/
3https://petsymposium.org/2019/workshop.php
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4.5.2 SwaNN: Description

This section presents SwaNN for privacy-preserving Convolutional Neural Network (CNN)
predictions in the single-server scenario. Our main goals are, on the one hand, to reduce
the computational cost of the querier and delegate this cost to the (powerful) cloud server
and, on the other hand, to provide privacy for the inputs, their classification results, and
the NN model.

In MLaaS, the querier has limited computation capabilities or knowledge of machine
learning. Thus, it outsources the necessary computations to the cloud server who has
expertise in performing machine learning with adequate computation power. We propose
to provide privacy guarantees for the NN predictions using an additively HE scheme,
namely Paillier [9], with 2PC. Our main goal is to minimise the computations at the
querier side and the overall computational cost while maintaining privacy. In SwaNN,
a querier shares a private input with a cloud server. The cloud server, which holds
the CNN model, computes the prediction result on the private input. The majority
of computations are performed by the cloud server, and the querier is involved when
intermediate decryptions are needed. The querier encrypts an input with its public key
and sends it to the cloud server, which computes the secret prediction result using the
CNN parameters. Depending on the operation performed by the cloud server, the querier
might be involved in the computations.

In SwaNN which is in the single-server scenario as in Figure 4.1, the majority of
computations are performed by the cloud server, and the querier is involved when
intermediary decryptions are needed. The querier encrypts its private input with its
public key and sends the encrypted input to the cloud server, which computes the private
result using the CNN model. Depending on the operation performed by the cloud server,
the querier might involve in the computations.

In Section 2.1, we summarise the common layers for neural networks and the necessary
operations to compute the functions in these layers. Below we explain how we can
compute these layers under privacy preservation in the single-server scenario. Essentially,
we separate the computations into two phases as non-interactive phase and interactive
phase: (i) In the non-interactive phase, the operations are performed by the cloud server
without the querier’s involvement; and (ii) the interactive phase, however, requires the
collaboration of the cloud server and the querier for computations. By definition, a CNN
model starts with a convolutional layer. Therefore, we assume that the computations
always start with an input encrypted under the Paillier cryptosystem by the querier.
This encrypted input is sent to the cloud server.

Non-interactive phase

In this phase, the cloud server, who has received the encrypted input, computes the linear
layers of the neural network as follows:

Convolutional Layer. The main operation in the convolutional layer is the dot product.
Given an input X and a weight matrix W, their dot product is computed as Y =∑
xi,j × wi,j . When the input is encrypted with the Paillier cryptosystem and the weight
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matrix is in plaintext, using the homomorphic property of encryption, the dot product is
computed as follows:

[Y] =
[∑

xi,jẇi,j

]
=
∏

[xi,j ]
wi,j . (4.9)

Since this computation does not require any decryption, it can be performed non-
interactively by the cloud server.

Fully Connected Layer. Fully connected layer requires to compute a matrix multipli-
cation. The underlying operation for matrix multiplication is the dot product, but it has
to be performed for each column and row pair. Given an encrypted input as input, the
fully connected layer is computed by performing Equation 4.9 repetitively.

Average Pooling Layer. Despite the computation of pooling layer is nonlinear, follow-
ing the convention in the state-of-the-art works [97,107], we use a linear approximation
of the mean pooling operation. Originally, the computation of Average pooling requires
the summation of the values within a subgroup and then a division by the subgroup
size. Following the approach in [97,107], we compute scaled Average pooling instead of
the Average pooling, where the summation is performed, but the division is omitted.
The scaled Average pooling can be computed by additive homomorphic property of the
Paillier cryptosystem without interaction.

Interactive phase

In this phase, the cloud server computes the nonlinear layers of the neural network in
collaboration with the querier as follows.

Activation Layer. Computing the nonlinear activation function in NN is a challenging
task when privacy preservation is required. Since the Paillier homomorphic encryption
scheme supports only additions, activation functions cannot be computed without per-
forming decryption. In the existing solution on privacy-preserving neural networks, there
are two approaches to compute the activation function.

The first approach is to compute a polynomial approximation of the function. Cryp-
toNets [107] and MiniONN [97] use the Square (i.e., x2) function as the approximation of
the Sigmoid function. In SwaNN, we propose two solutions to compute the approximation
function x2. Since the Paillier cryptosystem does not support multiplications, as a first
solution, we design an interactive secure Square function using the additively homomor-
phic property of the Paillier cryptosystem. Our solution adapts the secure multiplication
protocol in [134] to a secure Square protocol (see Protocol 1). Our second solution for
the computation of x2 uses a multiplication operation under arithmetic sharing. The
multiplication requires to switch the computations from homomorphic encryption to
arithmetic sharing. Later in this section, we explain how we can perform such a switching
operation.

In Protocol 1, to compute the square of the encrypted input [x], the cloud server
randomly chooses a number [r] from ZN , adds it to [x] to perform a secure decryption,
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Protocol 1 Secure Square Protocol

Querier (pk, sk) Cloud Server (pk)
[x], r ∈R ZN

[xr]←−−−−− [xr]← [x]·[r] (this is equal to [x+r])
xr ← Decrypt([xr], sk)
x2r ← xr · xr
[x2r ]← Encrypt(x2r , pk)

[x2r]−−−−−→
[x2] ← [x2r] ·

(
[r2] · [x]2r

)−1
(this is

equal to
[
x2r − r2 − 2xr

]
)

and then sends it to the querier. The querier decrypts [xr] and takes the square of it.
After square computation, the querier encrypts and sends it back to the cloud server.
Then, the cloud server subtracts the underlying random values in the protocol to get the
square of [x].

The second approach to compute the ReLU activation function using 2PC. Min-
iONN [97] and SecureML [135] are the state-of-the-art solutions which use arithmetic
circuits and Yao’s Garbled Circuits [34] to compute the ReLU activation function. In
SwaNN, we adapt a similar approach and use the circuit-based approach when the
computation of ReLU is required. We compute ReLU using a comparison gate under
Boolean sharing, BS . Share.

Max Pooling Layer. Unlike the Average pooling layer, we do not use an approximation
function for the computation of the Max pooling layer. Instead, we implement the Max
pooling using the comparison gates under BS .Share. We perform the Max pooling layer
right after the activation layer to reduce the number of switching operations between
2PC and PHE.

Protocol 2 PHE to 2PC Secure Switching Protocol

Querier (pk, sk) Cloud Server (pk)
[x], r ∈R ZN

[x+r]←−−− [x+ r]← [x] · [r]
x+ r ← Decrypt(([x+ r], sk)

〈x+ r〉q + 〈x+ r〉s ← AS . Share(2, x+ r)
〈x+r〉s−−−−→
〈r〉q←−− 〈r〉q + 〈r〉s ← AS . Share(2, r)

〈x〉q ← 〈x+ r〉q − 〈r〉q 〈x〉s ← 〈x+ r〉s − 〈r〉s

Switching between HE and 2PC. In the previous subsections, we describe how to compute
linear and nonlinear layers of neural networks using PHE and 2PC. Since linear and
nonlinear operations follow each other repetitively, we need a secure switching mechanism
between the two cryptographic techniques. We design a protocol for secure switching
which is similar to the secure decryption mechanism described in [136]. Protocol 2 and 3

71



Chapter 4. Privacy-preserving Neural Network Classification

demonstrate the steps of switching from PHE to 2PC and 2PC to PHE, respectively.
Switching from PHE to 2PC (Protocol 2) requires to perform a secure decryption by

masking the encrypted value with a random r. Once the querier securely decrypts the
masked value x+ r, it creates the secret shares of x for himself and for the cloud server
as 〈x+ r〉q and 〈x+ r〉s. In the mean time, the cloud server creates the secret shares of
the random r as 〈r〉q and 〈r〉s to remove the mask from the original value x. Finally
both parties perform a local subtraction on their shares 〈x+ r〉 and 〈r〉 to compute the
secret shared value 〈x〉 which is going to be used in 2PC computations.

Protocol 3 2PC to PHE Secure Switching Protocol

Querier (pk, sk) Cloud Server (pk)
〈x〉q 〈x〉s , r′ ∈R ZN

〈r′〉q←−−− 〈r′〉q + 〈r′〉s ← AS . Share(2, r′)

〈x+ r′〉q ← 〈x〉q + 〈r′〉q
〈x+r′〉s←−−−−− 〈x+ r′〉s ← 〈x〉s + 〈r′〉s

x+ r′ ← 〈x+ r′〉q + 〈x+ r′〉s
[x+ r′]← Encrypt(x+ r′, pk)

[x+r′]−−−−→
[x]← [x+ r′] · [r′]−1

Switching from 2PC to PHE (Protocol 3) reverses the former procedure. It starts
with a secret shared value 〈x〉. Similar to the previous protocol, to prevent the leakage of
the original value the parties reveal it after masking. Thus, the cloud server generates a
random mask r′ and sends a secret share of the random 〈r′〉q to the querier. Both parties
perform an addition operation to mask 〈x〉, and then the cloud server sends the masked
value 〈x+ r′〉s to the querier. The querier reveals x+ r′ by adding the two shares and
encrypts it with its public key. In the final step, the cloud server removes the random
mask from [x+ r′] with a homomorphic subtraction.

4.5.3 Security Evaluation

In SwaNN, one computes neural network predictions under the privacy preservation
assumption in the semi-honest adversarial model. We assume the semi-honest adversary
is non-adaptive and computationally bounded. In this security model, the two parties,
namely the querier and the cloud server should not be able to retrieve any additional
information from the protocol execution apart from their inputs, outputs, and intermediary
messages. SwaNN is secure thanks to the cryptographic techniques: Both the Paillier
cryptosystem and 2PC are proven to be secure.

In the non-interactive phase of SwaNN, the security is guaranteed by the semantic
security of the Paillier cryptosystem. The Paillier cryptosystem satisfies semantic security
against chosen plaintext attacks under the decisional composite residuosity assumption [9].
Thus, in the computation of convolutional, fully connected, and mean pool layers, the
cloud server cannot reveal any information from the encrypted messages on the condition
that the encryption is performed with a key that meets the current security requirements.
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The activation and Max pooling layers, on the other hand, requires interactive protocols
between two parties during which the computations might be switched from PHE to 2PC,
and vice versa. Besides the security of the Paillier cryptosystem, arithmetic secret sharing
((AS .Share) and Boolean secret sharing (BS .Share), which are used in the interactive
phase of SwaNN as the 2PC building blocks, achieve indistinguishability given that the
shares are generated from a uniformly random distribution [132]. Assuming that the
Paillier cryptosystem and 2PC are secure, the security of the interactive phase of SwaNN
can be deduced to the security of switching or decryption operations. In the rest of this
section, we provide a formal security proof using the simulation paradigm [31] to show
that the switching and decryption operations can be performed securely. We provide the
proof only for Protocol 2, which switches the operations from PHE to 2PC.

Protocol 2 is a protocol π between a querier and a cloud server which computes the
functionality f that switches the computations from PHE to 2PC. The querier does not
provide an input for π (i.e. its input is an empty string ⊥) apart from the auxiliary
inputs encryption and decryption keys (pk, sk). The input of the cloud server is an `-bit
value x which is encrypted under the Paillier cryptosystem [x]. Given [x], f computes

f (⊥, [x]) =
(
〈x〉q , 〈x〉s

)
which are secret shares of x for the querier and the cloud server.

Theorem 4.5.1. The switching protocol π (Protocol 2) securely computes the functionality

f (⊥, [x]) =
(
〈x〉q , 〈x〉s

)
in the presence of semi-honest, non-adaptive, computationally

bounded adversaries.

Proof. In the following, we prove Theorem 4.5.1 for a corrupted cloud server and querier
separately, by showing that the view of adversary A in the real world is computationally
indistinguishable from the simulated views of Si, where i ∈ {c, s} is for the querier and
the cloud server.

• Cloud server is corrupted by A: Ss is given the input and output of the cloud server
which are [x], 〈x〉s, and the security parameter 1κ. In simulation, we need to show that
Ss can generate the view of incoming messages to the cloud server, which is 〈x+ r〉s.
Ss works as follows:

1. Ss chooses a uniformly distributed random tape, r1.

2. Ss picks an `+ κ-bit random value r′ using the random tape r1.

3. Ss creates the secret shares 〈r′〉q and 〈r′〉s.
4. Using the output 〈x〉s, Ss computes 〈x+ r′〉s = 〈x〉s + 〈r′〉s.

The view of the cloud server in the real world is

viewπ
s (⊥, [x]) = ([x], rs; 〈x+ r〉s) , (4.10)

while the view generated by the simulator

Ss(1κ, [x], 〈x〉s) =
(
[x], r1;

〈
x+ r′

〉
s

)
. (4.11)
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Since Ss does not have access to the decryption key sk, it cannot simulate Decrypt([x+
r], sk). On the other hand, it can generate the intermediary message 〈x+ r′〉s, but if
r′ is uniformly sampled from r1, then

{Ss(1κ, [x], 〈x〉s), f (⊥, [x])} c≡
{

viewπ
s (⊥, [x]), outputπ

(
〈x〉q , 〈x〉s

)}
, (4.12)

If for every nonuniform polynomial time distinguisher D there exists a negligible
function µ(κ) such that∣∣∣Pr

[
D
((

[x], r1;
〈
x+ r′

〉
s

)
∧
(
〈x〉q , 〈x〉s

))
= 1
]
−

Pr
[
D
(

([x], rs; 〈x+ r〉s) ∧
(
〈x〉q , 〈x〉s

))
= 1
]∣∣∣≤ µ(κ). (4.13)

Equation 4.13 holds due to the security of secure two-party computation and the
uniformity of the random tape. The indistinguishability guarantees that a corrupted
cloud server has no advantage on differentiating 〈x+ r′〉s from 〈x+ r〉s.

• Querier is corrupted by A: Different from the cloud server, the querier does not have
an input for π. Sq is only provided the output 〈x〉q and the public and private keys
pk, sk. To simulate the intermediary messages [x+ r] and 〈r〉q, Sq works as follows:

1. Sq chooses uniformly distributed random values r1 and r2.

2. Sq picks an `-bit random value x′ and an (`+ κ)-bit random value r′ using the
random tapes r1, r2.

3. Sq calls to Encrypt x′ + r′ as [x′ + r′] using the public key pk.

4. Sq creates secret shares for r′ such that 〈r′〉q + 〈r′〉s ← AS . Share(2, r′).

The view of the querier the view generated by the simulator are

viewπ
q (⊥, [x]) =

(
⊥, rq; [x+ r], 〈r〉q

)
, (4.14)

Sq(1κ,⊥, 〈x〉q) =
(
⊥, r1, r2; [x′ + r′],

〈
r′
〉
q

)
, (4.15)

respectively. Then,{
Sq(1κ,⊥, 〈x〉q), f (⊥, [x])

}
c≡
{

viewπ
q (⊥, [x]), outputπ

(
〈x〉q , 〈x〉s

)}
(4.16)

in the existence of a negligible function µ(κ) for every nonuniform polynomial time
distinguisher D such that∣∣∣Pr

[
D
((
⊥, r1, r2; [x′ + r′],

〈
r′
〉
q

)
∧
(
〈x〉q , 〈x〉s

))
= 1
]
−

Pr
[
D
((
⊥, rq; [x+ r], 〈r〉q

)
∧
(
〈x〉q , 〈x〉s

))
= 1
]∣∣∣≤ µ(κ). (4.17)
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Equation 4.17 is correct when a semantically secure encryption scheme and secret
sharing scheme are used in securing messages [x + r] and 〈r〉q which eliminate the
advantage of distinguishing [x + r] from [x′ + r′] and 〈r〉q from 〈r′〉q. Using the
Paillier encryption scheme, which satisfies the semantic security under the decisional
composite residuosity assumption, and arithmetic secret sharing, which guarantees
information theoretic security, a corrupted querier cannot break the indistinguishability.
Furthermore, the adversary cannot reveal any information about x from the decryption
of [x+ r], given that a sufficiently large, uniformly random value (`+ κ bits) is selected
for masking x.

4.5.4 Performance Evaluation

We have implemented SwaNN to evaluate its performance in different settings and to
compare it with state-of-the-art solutions. We used the C++ programming language
for the implementation and the GMP 6.1.2 library for big integer operations. We used
the ABY framework [42] for the 2PC operations. For the homomorphic operations, we
used the Paillier implementation of ABY due to its efficiency. We selected 2048 bits
modulus size for the Paillier operations to meet the current security standards. For the
ABY operations, we selected 32-bit shares. The machine we used in the experiments runs
Ubuntu 16.04 operating system with Intel Core i5-3470 CPU 3.20 GHz.

Optimising Computations

In each layer of NNs, the same operations are repeated for each index of the input
independently. Thus, in our implementation, we use several optimisation techniques
which help to reduce the computational and communication cost by enabling simultane-
ous execution. To optimise the 2PC computations, we use single instruction multiple
data (SIMD) techniques [58] which are provided in ABY. SIMD techniques cannot be
fully utilised for computations with the Paillier cryptosystem. Therefore, to improve
the efficiency in homomorphic computations, we adapt two techniques to the Paillier
encryption, which enables simultaneous computation.

The first technique we use is data packing. It packs multiple data items into a single
ciphertext as described in [137]. Accordingly, we create slots of t+ κ bits for each data
item where κ is the security parameter and t is the length of the data item. Given the

plaintext modulus N , we can pack ρ =
⌊
log2N
t+κ

⌋
items in a single ciphertext as in (4.18).

[x̂] =

ρ−1∑
m=0

[xi,j ] · (2t+κ)m (4.18)

Using data packing we can use the full plaintext domain in the Paillier cryptosystem
and perform additions on the packed ciphertext. Furthermore, in the interactive phase,
using data packing helps reduce the bandwidth usage and the cost of decryption operations.
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The second technique we use to improve efficiency is using a multi-exponentiation
algorithm to simultaneously perform the operations in the form of

w∏
i=1

abii = ab11 · a
b2
2 . . . abww . (4.19)

Lim-Lee’s multi-exponentiation algorithm [138,139] enables to perform (4.19) simulta-
neously by modifying the binary exponentiation algorithm using several pre-computation
techniques. In our work, we can apply multi-exponentiation for the computation of dot
product (in Equation 4.9) over encrypted data thanks to the additive homomorphism of
the Paillier cryptosystem.

We summarise the optimisations used in each layer of (C)NN as follows:

– The Conv Layer: Multi-exponentiation technique is used to minimise the cost of
dot products.

– The Act Layer: Data packing is used before performing the activation function. If
activation is performed with 2PC operations, then SIMD optimisation is used.

– The Pool Layer: No optimisation technique is needed.

– The FC Layer: Multi-exponentiation technique is used to reduce the cost of matrix
multiplications.

Experiments

We run three experiments with respect to the activation function used in NNs. In the
first experiment, we used x2 as the activation function and re-trained the neural network
structure in CryptoNets [107]. In the second, we used ReLU as the activation function
and respectively re-trained the neural network structure for MNIST and Cifar-10 in
MiniONN [97]. In the final experiment, we use the same NN structure for the ECG
dataset in [93] to show the performance results of SwaNN. The properties of the neural
networks are detailed in Section 4.4.

Neural Network Structures. In our experiments, we use several neural network
structures of which two are previously trained by CryptoNets [107] and MiniONN [97] to
perform input classification on the MNIST data. Table 1 in CryptoNets [107] summarises
the structure of the proposed convolutional neural network (CNN). This network we
employ in our experiment contains 2 Conv, 2 activation of x2, 2 Scaled Mean pooling,
and 2 FC layers and achieves 98.95% of accuracy. Secondly, we employ the neural network
structure proposed in MiniONN (Figure 12 in [97]) for MNIST. The accuracy of the
network is 99.31%. The activation function of the network is ReLU. Max pooling is used
in the pooling layer. Finally, we utilise the NN structure trained by [93] to perform
the ECG signal classification. Table 4.6 represents the structure of the neural network
consisting of 2 FC layers and 1 x2 activation. This network achieves accuracy of 96.34%.
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Experiment 1. In the first experiment, we benchmark the performance of SwaNN with
x2 as an activation function as given in Table 4.5. We design two different cryptographic
techniques based settings: (i) The first setting is an only-PHE setting which is totally
based on the Paillier cryptosystem and implements x2 as described in Protocol 1; and
(ii) The second setting is a hybrid setting where the CNN predictions computation
switches between PHE and 2PC and which implements the secure switching protocols in
Protocols 2 and 3 with the activation function x2 implemented using the ABY framework.

Table 4.5 – Computation time per layer (in ms). The timings are provided for optimised
and non-optimised PHE-only setting and optimised hybrid setting.

Non-optimised - PHE only Optimised - PHE only Optimised - Hybrid

Layer Querier Cloud Server Querier Cloud Server Querier Cloud Server

Conv – 1831 – 892 – 917
Act 12651 15805 2487 19253 2292 566
Pool – 35 – 34 – 33
Conv – 2799 – 1329 – 1386
Pool – 37 – 38 – 37
FC – 6420 – 3809 – 3989
Act 1504 1879 314 2231 273 266
FC – 10 – 10 – 11

Total 42972 30399 9841

The results show that when no optimisations are used, the prediction of one input is
computed approximately in 43 seconds. However, when we use optimisation techniques,
we can reduce the computation time to 30 seconds. SwaNN in the hybrid setting reduces
this cost to 10 seconds (i.e., 75% less).

In Table 4.6, we show the details of the computation time for the activation layer in
the hybrid setting. The packing, decryption and unpacking operations are performed
during the switching from PHE to 2PC. The encryption algorithms are computed by
both parties when switching the operations from 2PC to PHE. While the querier takes
2.3 seconds for the computations, the cloud server takes approximately 581 milliseconds.

Table 4.6 – Computation time for the activation layer for the hybrid setting (in ms).

Operation Querier Cloud Server

Packing – 409
Decryption 72 –
Unpacking 0.1 –
ABY 11 14
Encryption 2220 158

Total 0000002884

As a final analysis, in Table 4.7 we compare SwaNN with the state-of-the-art works
CryptoNets [107] and MiniONN [97] with respect to computation time and bandwidth
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usage. The performance results of CryptoNets and MiniONN are taken from the respective
papers. CryptoNets employing FHE evaluates 297.5 seconds for one prediction. The
protocol enables simultaneous computation by packing 4096 inputs into a single ciphertext.
This is an advantage when the same querier has a very large number of prediction requests.
MiniONN can compute the prediction result for the same CNN model in 1.28 seconds.
However, this computation requires 47.6 MB bandwidth usage, whereas SwaNN enables
the same prediction result in 9.8 seconds with 1.69 MB bandwidth use.

Table 4.7 – Comparison with the state-of-the-art in Exp. 1.

Computation time (s) Bandwidth usage (MB)

CryptoNets [107] 297.5 372.2
MiniONN [97] 1.28 47.6
SwaNN 9.8 1.69

Experiment 2. As the second experiment, we benchmark the performance of SwaNN
with ReLU activation function for the CNN structure as in [97]. We employ the maximum
operation for pooling layers. We provide the timings for the Max pooling along with
ReLU function since we implemented them together. We measure the timings only with
optimisations. Table 4.8 details the computation time for each layer.

Table 4.8 – Computation time per layer (in ms).

Layer Querier Cloud Server

Conv – 10192
Act+Pool 6852 2593
Conv – 1148
Act+Pool 778 467
FC – 1325
Act 274 508
FC – 5

Total 24242

Due to larger number of input size in each NN layer, the computation cost of SwaNN
reaches to 24 seconds for one input classification. The first activation layer is the dominant
layer in the run time. As expected, the high computation cost is caused by the decryption
operations which are performed during the switching phase from PHE to 2PC.

In Table 4.9, we compare the performance of SwaNN with MiniONN. Clearly, Min-
iONN outperforms SwaNN almost 3-fold in computation time. However, in terms of
communication, SwaNN is more efficient with a bandwidth usage of 160 MB (compared
to 657 MB in MiniONN).

Experiment 3. As the third experiment, we measure the performance of SwaNN with the
NN architecture containing the Square activation function (namely, Model 1) described
in PAC [93].
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Table 4.9 – Comparison with the state-of-the-art in Exp. 2.

Computation time (s) Bandwidth usage (MB)

MiniONN [97] 9.32 657.5
SwaNN 24.00 160.9

In the third experiment, the querier perform some pre-computation: Multiplying
each entry of the ECG data with others, including itself, only once. Further, the querier
encrypts them and its ECG data and sends them to the cloud server. When receiving
the encrypted data, the cloud server computes the NN operations over them, obtains the
encrypted result, and sends it to the querier. Therefore, there is no interaction between
the querier and the cloud server for computing the Square layer. Therefore, we call this
setting Swann w/o interaction.

Table 4.10 – Comparison with the state-of-the-art in Exp. 3.

Computation time (s) Bandwidth usage (MB)

PAC (see Section 4.4) 1.37 4.36
SwaNN 8.19 0.03
SwaNN w/o interaction 1.51 -

In Table 4.10, we compare the performance of SwaNN with PAC [93]. According to
results from Table 4.10, PAC outperforms SwaNN almost 6-fold in computation time.
However, in terms of communication, SwaNN is more efficient with a bandwidth usage
of 0.03 MB (compared to 4.36 MB in PAC). Moreover, SwaNN w/o interaction is more
efficient than PAC regarding bandwidth usage and timing cost for SwaNN is close to
PAC.

4.5.5 Summary

We have designed a privacy-preserving neural network prediction protocol that combines
the additively homomorphic Paillier encryption scheme with 2PC. Thanks to the use of
the Paillier encryption algorithm for linear operations and also the x2 activation function,
the solution achieves better computational cost compared to existing HE-based solutions.
Different computation optimisations based on the use of data packing and the multi-
exponentiation algorithm have been implemented. Furthermore, the communication
cost is also minimised since 2PC is only used for nonlinear operations (Max and/or
ReLU). Experimental results show that SwaNN actually achieves the best of both worlds,
namely, better computational overhead compared to FHE-based solutions and, better
communication overhead compared to 2PC-based solutions.
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4.6 ProteiNN: Privacy-preserving one-to-many Neural Network
classification

In this section, we propose ProteiNN [95], a privacy-preserving neural network prediction
when the NN model is in the encrypted form in the cloud. This work was published in
SECRYPT 2020, 17th International Conference on Security and Cryptography.

4.6.1 Problem Statement

The problem of privacy-preserving neural networks (NN) classification has already been
studied by many researchers (see Section 4.3 for the state-of-the-art). Most of these
works consider that the party who performs the NN operations is the model provider
and is sufficiently powerful; therefore, the NN model is kept in plaintext form. On the
other hand, [114] and [115] allow the outsourcing of these operations to the cloud server
but the only querier, in this case, is the model provider. In both cases, the goal is to
perform NN operations over queriers’ data without leaking any information, including
the model. ProteiNN proposes to extend this scenario that we name the one-to-one
scenario, by enabling one model provider to securely outsource its model to a cloud
server and consider a one-to-many scenario whereby different queriers can query the
model. Additionally, while delegating the NN operations to the cloud server, the model
provider also wishes to maintain the control over the use of this model by legitimate and
authorised queriers only.

To further illustrate the importance of the one-to-many setting as illustrated in
Figure 4.2, we define a scenario whereby one party, such as a healthcare analytics
company, owns a NN model M to classify a particular disease. This company can later
use M to decide whether a particular patient suffers from this disease or not. Moreover,
this company wants to make M profitable to many of its customers (such as hospitals
or doctors) who are willing to diagnose the disease over their input denoted X using
M. With this aim, M is outsourced to the cloud server. Before outsourcing M, the
healthcare analytics company needs to encrypt M to protect its intellectual property.
Later on, customers who want to query M send their encrypted input X to the cloud
server. The cloud server basically applies encrypted M over encrypted X originating
from authorised customers.

4.6.2 Threat Model

Our threat model differs from the previous ones since the NN model is unknown to CS
and we also consider potential collusion attacks. More specifically, we assume that all
potential adversaries are semi-honest, i.e., parties adhere to the protocol steps but try to
obtain some information about the model, the input or the result. Moreover, given the
one-to-many setting and the introduction of the additional cloud server, we assume that
collusions between CS and Qi, between CS and MP, and between Qi and MP may exist.

In this threat model, queriers aim at keeping their input X and the corresponding
result Y secret from CS and MP. On the other hand, MP does not want to disclose M to
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CS and Qi. To summarise, ProteiNN considers the following potential adversaries: (i)
An external adversary (who does not participate in ProteiNN) who should not learn any
information about model M, input X, and result Y; (ii) Qi who should not learn any
information about model M even if Qi and CS collude. Note that similar to previous
works, we omit the attacks whereby Qi can try to re-build the model based on the
authorised results that it receives.; (iii) CS who should not discover model M (Apart
from its architecture), input X, and the corresponding result Y even if CS colludes with
MP or querier(s); (iv) MP who should not learn anything about input X and its result Y
even when it colludes with CS or querier(s).

Based on this threat model, we define the following privacy requirements: (i) Model
M is unknown to all parties in the protocol except MP. This requirement is usually not
addressed by state-of-the-art solutions. (ii) Input X and result Y are only known by the
actual querier Qi and this, only if authorised by MP.

4.6.3 ProteiNN: Description

We consider the following two main problems arose by the one-to-many scenario: (i)
each party uses a different public key to encrypt its data (model for MP and inputs for
Qi) and (ii) queries received from Qi should only be processed if MP authorises them.
This setting implies that both the model and the queries should be encrypted with the
same key at the classification step. With this aim, we introduce a Trusted Third Party
(TTP) and use its public key as the common encryption key for both the model and
the queries. TTP is considered as being offline: It does not play any role during the
classification phase; it only distributes keying materials. H-PRE is used towards the end
of the classification phase, i.e., when Qi needs to decrypt the actual result: Indeed, the
result encrypted with TTP’s public key needs to be re-encrypted with Qi’s public key.

A preliminary setup phase where each party reaches TTP in order to receive their
relevant keying material is first defined. TTP is considered offline during the subsequent
classification phase.

Setup Phase

During the setup phase depicted in Figure 4.9, all the relevant keying material is
distributed and the encrypted model is sent to the cloud server. Namely, each querier Qi
generates a pair of public-secret keys; TTP generates a pair of public-secret keys and a
set of re-encryption keys allowing re-encryption from TTP’s public key to queriers’ public
key (one for each querier). The reason why TTP generates re-encryption keys is to enable
MP to authorise a given classification request. Once public keys and re-encryption keys
are received, MP encrypts its model with the public key of TTP and sends it to CS.

In more details, the setup phase consists of the following steps:

1. For given public parameters pp,
TTP: (pkTTP, skTTP)← H-PRE .KeyGen(pp)
Qi: (pkQi

, skQi
)← H-PRE .KeyGen(pp) where 1 ≤ i ≤ n.

2. TTP: rekTTP→Qi
← H-PRE .ReKeyGen(skTTP, pkQi

), ∀ 1 ≤ i ≤ n.
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Queriers

Model 
Provider

Cloud Server

M

(pkQi,skQi)

(pkTTP,skTTP)

Trusted Third Party

rekTTP🡒Qi

Figure 4.9 – ProteiNN - Setup phase

3. MP: [M]TTP ← H-PRE .Encrypt(M, pkTTP)
Send [M]TTP to CS.

4. MP: Generate random vectors rij , r
′
ij ∈R ZN for Qi where 1 ≤ j ≤ l is the query

number.

5. MP: [rij ]TTP ← H-PRE .Encrypt(rij , pkTTP)
[r′ij ]TTP ← H-PRE .Encrypt(r′ij , pkTTP)
Store them locally.
Send them to Qi.

Classification Phase

The classification phase of ProteiNN that is described below is illustrated in Figure 4.10.
As previously mentioned, TTP is not involved in this phase.

1. Qi: [Xij ]TTP ← H-PRE .Encrypt(Xij , pkTTP).
Randomise [Xij ]TTP using H-PRE .Eval(+, ([Xij ]TTP, [rij ]TTP)).
Randomise [Xij ]TTP using H-PRE .Eval(·, ([Xij ]TTP, [r

′
ij ]TTP)).

Send [Xij + rij ]TTP and [Xij · r′ij ]TTP to CS.

2. CS: Randomise [Xij + rij ]TTP using H-PRE .Eval(+, ([Xij + rij ]TTP, [sij ]TTP)) where
sij ∈R ZN .
Forward [Xij + rij + sij ]TTP to MP with the identifier of the querier (idi).

3. MP: Perform the following homomorphic operations over the received query and
send the outcome to CS if Qi is authorised.
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[Y''ij + s'ij]TTP

[Y'''ij]Qi

[Xij +sij + r'ij]TTP

[Xij +rij + sij]TTP

[Xij +rij]TTP

[Yij]Qi

Figure 4.10 – ProteiNN - Classification phase

(a) [Xij + sij ]TTP ← H-PRE .Eval(−, ([Xij + rij + sij ]TTP, [rij ]TTP))

(b) [Xij + sij + r′ij ]TTP ← H-PRE .Eval(+, ([Xij + sij ]TTP, [r
′
ij ]TTP))

Note that if/whenever MP does not want to authorise querier Qi, MP can send a
reject message to CS, and thus, CS would terminate the protocol for Qi.

4. CS: [Xij + r′ij ]TTP ← H-PRE .Eval(−, ([Xij + sij + r′ij ]TTP, [sij ]TTP))
Perform the classification, i.e.,

[Y′ij ]TTP = [M(Xij + r′ij)]TTP = H-PRE .Eval(C, ([M]TTP, [Xij + rij ]TTP))

where C is the circuit containing the NN layers’ linear operations.
[Zij ]TTP ← H-PRE .Eval(C′, ([M]TTP, [Xij · r′ij ]TTP)) where where C′ is a circuit
containing some layers’ operations.
[Y′′ij ]TTP ← H-PRE .Eval(−, ([Y′ij ]TTP, [Zij ]TTP))
Randomise [Y′′ij ]TTP with [s′ij ]TTP using H-PRE .Eval(+, (.)) where s′ij ∈R ZN .
Send them to MP.

In case some revocation of Qi occurs, MP has, once again, the opportunity to reject
the query and will not do any re-encryption.

5. MP: [Z′ij ]TTP ← H-PRE .Eval(C′′, ([M]TTP, [Xij ·r′ij+s′′ij ]TTP)) where C′′ is a circuit
containing some layers’ operations to compute the correct result Yij requested by
Qi.
[Y′′′ij ]TTP ← H-PRE .Eval(−, ([Y′′ij + s′ij ]TTP, [Z

′
ij ]TTP))

[Y′′′ij ]Qi
← H-PRE .ReEncrypt(rekTTP→Qi

, [Y′′′ij ]TTP)
Send [Y′′′ij ]Qi

to CS.

6. CS: [Yij ]Qi
← H-PRE .Eval(−, ([Y′′′ij ]Qi

, s′ij ]TTP))
Send [Yij ]Qi

to Qi.

7. Qi: Yij ← H-PRE .Decrypt(skQi
, [Yij ]Qi

).
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4.6.4 Security Evaluation

We analyse the security of ProteiNN considering our newly introduced threat model and
show that it satisfies the privacy requirements defined in Section 4.6.1. We propose to
conduct this security analysis incrementally by taking each adversary into account, one
by one, and the potential collusions. As described in Section 4.6.1, all ProteiNN parties
are considered as semi-honest adversaries. Furthermore, we assume that the H-PRE
scheme that ProteiNN uses is semantically secure and that the encrypted addition of
random vectors rij , r

′
ij , sij , and s′ij is considered as perfectly secure.

Privacy against external adversaries. During the classification phase, all parties
encrypt their input, result, or model using H-PRE. Hence, an external adversary can only
obtain encrypted information exchanged among ProteiNN players. Given the semantical
security of H-PRE and the perfect secrecy of the simple additive encryption scheme, an
external adversary who does not participate in ProteiNN and who does not hold any
keying material cannot learn any information about M, X, and Y.

Privacy against adversary Qi. The goal is to achieve model privacy against Qi. In
ProteiNN, M is encrypted by with pkTTP. Assuming that the underlying H-PRE is
semantically secure and since Qi does not know skTTP, Qi cannot recover M in plaintext.
Furthermore, Qi can also try to learn the input of another querier Qt and the corresponding
result. In this case, Qi becomes an external adversary as it does not have any role in
the protocol executed between CS and Qt. Hence, ProteiNN is also secure in this case.
Finally, even if multiple queriers collude, they do not succeed in any leakage of the model.

Privacy against adversary CS. All the information that CS receives are encrypted
with pkTTP or pkQi

. Thanks to the security of underlying building blocks, a semi-honest
CS cannot discover M (apart from its architecture), X, and Y.

Privacy against adversary MP. A semi-honest MP can try to discover queriers’
inputs and the corresponding classification results. Since these randomised information
are encrypted with pkTTP and pkQi

, respectively, and since MP does not hold the
corresponding secret keys, MP cannot learn these inputs and results.

MP-CS collusions. We have already shown that ProteiNN is secure against MP and
CS, individually. The collusion of these two players do not help them discover additional
information since all inputs and results are encrypted using the semantically secure
H-PRE with pkTTP and pkQi

, and results are re-encrypted with rekTTP→Qi
.

Qi-CS collusions. Collusions between Qi and CS do not result in any leakage regarding
M, other queriers’ inputs, and results. Indeed, thanks to the use of random vectors rij
and r′ij at the classification phase, even if a malicious Qi shares its keying material with
CS to discover X from another legitimate Qt, both adversaries cannot retrieve it because
of its randomisation with rQtj

.

Qi-MP collusions. Collusions between Qi and MP do not result in any leakage regarding
other queriers’ inputs and results thanks to the randomisation of both input and result.
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More precisely, even if malicious Qi and MP collude to discover X and Y of legitimate
Qt, they cannot retrieve them because of the use of random vectors stj and s′tj .

Note on Qi-MP-CS collusions. We consider that all three players cannot collude
since in this case there is no need for privacy protection.

Note on Multiple MP case. ProteiNN can easily be extended to a many-to-many
scenario involving many model providers using multiple instances of ProteiNN for each
model provider and its queriers.

4.6.5 Performance Evaluation

We evaluate the performance of ProteiNN using the arrhythmia detection case study
described in Section 4.4 whereby MP owns a NN model M for the classification of heart
arrhythmia; Queriers’ inputs consist of the individuals’ Electro-Cardiogram (ECG) data
and the result is the actual arrhythmia type the patient suffers from. The underlying NN
model, namely Model 1 consists of two FC layers and one activation layer implemented
with the Square function: (i) It involves 16 input neurons, 38 hidden neurons, and 16
output neurons, and (ii) The model provides an accuracy of 96.34% (see Section 4.4.5).

Table 4.11 – Performance results for ProteiNN

Setup phase

ProteiNN Step Player Time (ms)

PRE .KeyGen TTP 20.02

PRE .KeyGen Qi 21.18

PRE .ReKeyGen TTP 267.57

PRE .Encrypt MP 1514.08

Random number generation & PRE .Encrypt MP 55.69

Classification phase of one input

ProteiNN Step Player Time (ms)

PRE .Encrypt Qi 31.74

PRE .Eval for random numbers Qi 80.18

PRE .Eval for input randomisation & random generation CS 27.14

PRE .Eval for random removal MP 1.95

PRE .Eval for random addition MP 1.93

PRE .Eval for random removal CS 1.77

PRE .Eval for classification CS 26898.37

PRE .Eval for random removal CS 59.49

PRE .Eval for result randomisation & random generation CS 31.78

PRE .Eval for random removal MP 69.26

PRE .ReEncrypt MP 30.12

PRE .Eval for random removal CS 1.84

PRE .Decrypt Qi 5.57

TOTAL 27209.40

Experimental setup

To implement ProteiNN, we have utilised the PALISADE library (v1.5.0) supports several
HE schemes and their PRE versions. The H-PRE scheme we employ for ProteiNN is
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H-BFVrns [140] mainly because it is the most efficient in PALISADE. We follow the
standard HE security recommendations (e.g., 128-bit security) indicated in [141] for
H-BFVrns. The ProteiNN steps for TTP and CS were carried out using a desktop
computer with 4.0 GHz Intel Core i7-7800X processor, 128 GB RAM, and the Ubuntu
18.04.3 LTS operating system whereas the steps for Qi and MP were performed using a
laptop with 1.8 GHz Intel Core i7-8550U processor, 32 GB RAM, and the Ubuntu 18.10
operating system.

We have evaluated the performance of both the setup and classification phases.
Detailed results are depicted in Table 4.11. These results correspond to the average from
the execution of 100 individual simulations. We observe that one ProteiNN classification
instance takes 27.2 s, approximately. Only the cloud server performs costly operations.
Indeed, the querier takes around 31 and 5 ms, to encrypt and decrypt its input and result,
respectively. The cost of ReEncrypt (about 30 ms) seems negligible when compared to
the cost of the classification phase. Among the operations performed by MP, the most
costly one is the encryption of M (about 1.5 s). It is worth to note that this operation is
performed during the setup phase and only once.

Table 4.12 – Performance results for ProteiNN players

Setup phase

ProteiNN Player Time (ms)

TTP 287.59

Qi 21.18

MP 1569.77

Classification phase

ProteiNN Player Time (ms)

Qi 85.75

MP 103.26

CS 27020.39

As shown in Table 4.12, we observe that while CS takes 27 s to classify a heartbeat,
MP and Qi only take 103 ms and 86 ms, respectively. We have also evaluated the
classification cost for MP in a one-to-one scenario in order to justify the need for the
cloud servers.

To summarise, our study shows that outsourcing machine learning operations in a
privacy-preserving manner, in a one-to-many scenario, is possible and that relieves the
computation burden from the model provider to the cloud server which is assumed more
powerful.

4.6.6 Summary

We have proposed ProteiNN, a privacy-preserving one-to-many NN classification solution
that is based on the use of H-PRE and a simple additive encryption. ProteiNN achieves
confidentiality for the model(s), the inputs, and the results. Additionally, the model
provider also has control over the model outsourced the cloud server. We have provided
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a detailed security analysis by considering all potential adversaries including collusions
among them. We have implemented ProteiNN as a proof-of-concept with a case study
and our work shows promising performance results and calls for future work to evaluate
the scalability of ProteiNN. We believe that with an appropriate batched classification
and a powerful cloud server, ProteiNN could provide better performance and be scalable
with respect to the number of queriers.

4.7 Conclusion of privacy-preserving neural network classification

In this chapter, we have introduced three privacy-preserving neural network (NN) pre-
diction solutions, namely PAC, SwaNN, and ProteiNN, that enable a cloud server to
efficiently classify an input coming from a querier on a neural network model and obtain
a sufficiently accurate prediction result without sacrificing the privacy of the underlying
data.

In these solutions, we implement the privacy-by-design approach and consider two
cases: (i) Whether the NN model is in the plaintext or encrypted form; and (ii) minimising
the cryptographic technique(s) incompatibilities without disclosing data privacy and
accuracy of the NN classification.

– PAC designs a neural network from scratch to be compatible with the cryptographic
technique, namely 2PC, and therefore, PAC balances the trade-off between privacy,
accuracy, and efficiency. As previously discussed, although 2PC supports nonlinear
operations, and they can, therefore, increase the accuracy, 2PC suffers from the
communication overhead. Moreover, in 2PC solutions, the client performs the same
NN operations as the cloud server (i.e., a powerful model provider). In other words,
the workload of the client is the same as the cloud server, but the computation
resource may not be the same as the latter.

– SwaNN employs the best worlds, namely the additively homomorphic scheme,
Paillier instead of fully homomorphic scheme thanks to the plaintext NN model in
the cloud, and arithmetic and Boolean sharings instead of Yao’s Garbled circuits.
We have presented how one can easily support each underlying NN operation using
these two schemes only. We have proposed a protocol to securely compute the
Square function and employ several optimisations consisting of some data packing
dedicated to the Paillier cryptosystem and the use of the multi-exponentiation
algorithm to reduce the cost of multiplications to minimise the computational cost.

– The two previous solutions mainly consider a one-to-one scenario where one querier
is querying the data, and one cloud server or a model provider is performing the NN
classification operations. ProteiNN enhances this scenario to one-to-many scenario
whereby a model provider outsources a NN model to a cloud server, encrypts its
model, and wants to keep it encrypted on the cloud. The client wants to classify
some input by using the encrypted model on the cloud and hiding the result from
any party and thus encrypts its input with its public key. The cloud helps the
model provider store the encrypted NN and apply it to some inputs coming from
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the different clients. For this aim, ProteiNN employs a homomorphic proxy re-
encryption and simple encryption to provide data privacy, minimise the model
provider’s workload, and maintain the accuracy of the NN prediction.
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Chapter 5

Privacy-preserving Clustering

The best preparation for tomorrow is doing your best today.

H. Jackson Brown, Jr

In this chapter, we focus on the privacy concerns arising from the trajectory data
analysis when employing cryptographic techniques. Further, we introduce a new privacy-
preserving trajectory clustering solution based on 2PC.

5.1 Introduction

As introduced in Section 2.2, clustering is an unsupervised machine learning technique
that partitions elements of a given dataset and groups them into some subsets, namely
clusters, with respect to their similarities. With the approach of Machine Learning as a
Service (MLaaS), the clustering tasks and hence the corresponding dataset are outsourced
to a cloud server to address the need of the companies possessing a large number of
data but not having sufficient computational resources and/or expertise in clustering
techniques such as k-means or TRACLUS (see Section 2.2). However, because the data
outsourced to the cloud server is usually privacy-sensitive, they need to be protected
before their outsourcing. Therefore, companies could become compliant with the data
protection regulation(s) while trying to infer valuable information out of their dataset.
In order to preserve the privacy of the data and consequently their corresponding owners,
we design a privacy-preserving protocol for TRACLUS.

Consider the scenario depicted in Figure 5.1 whereby a data owner (or a company)
having collected multiple trajectories coming from multiple individuals would like to
delegate the execution of the actual trajectory clustering algorithm called TRACLUS to
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an untrusted but powerful cloud server. Since data is privacy-sensitive, the data owner
must protect all the trajectory information before outsourcing them to the cloud server.
The underlying information should be kept secret, but still be useful to obtain meaningful
information from the protected them: Cryptographic techniques such as secure two-party
computation (2PC, see Section 3.2), or homomorphic encryption (HE, see Section 3.3)
can be employed to preserve the data privacy against any parties except its owner. Many
researchers have studied data privacy while executing some clustering algorithm, and
several privacy-preserving clustering solutions have been proposed in the state-of-the-art.

Data Owner

Cloud Server

Figure 5.1 – Clustering in the single-server scenario

Yet, the trajectory clustering algorithm TRACLUS was not studied. In the following
section, we introduce our solution for the privacy-preserving trajectory clustering problem,
namely pp-TRACLUS: In our privacy setting, a data owner wishes to cluster its input
(generally, a dataset consisting of line segments) and outsource this dataset and the
TRACLUS clustering phase operations to a cloud server. At the same time, the data
owner does not want to reveal its dataset and the corresponding result to the cloud server.
Further, the cloud server would compute the clusters over the underlying dataset without
discovering and disclosing any information.

5.2 Privacy vs. Clustering

This section identifies the challenges while combining the cryptographic technique(s) with
the clustering algorithm(s).

As discussed earlier in Section 2.2, TRACLUS consists of two phases: the Partitioning
phase and the Clustering phase. These phases mostly contain complex operations such as
division, logarithm, square root or sine function. Furthermore, the TRACLUS phases need
to be iterated as many times as possible to end up with some clustering of good quality
evaluation. On the other hand, the dataset should be protected by some cryptographic
technique. When considering the complex TRACLUS phases, their operations, and their
integration with some cryptographic technique, we propose to design a solution for the
clustering phase under privacy protection.

Our goal is to allow an untrusted third party named a cloud server to help a data
owner (or a company being abundant of the massive amount of data coming from its
clients/users) perform trajectory clustering and not to discover anything regarding the
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data of the data owner. Thus, we propose a solution whereby a data owner possesses a
set of data and wishes to make them into groups based on their similarities. However,
this data owner does not have domain-specific expertise (and so the data owner cannot
easily be confident about which clustering) and/or computational resources (powerful
machines or a person who can run the underlying clustering technique) to group them.
Therefore, some cloud server helps the data owner compute clustering without learning
anything about the input data. Yet, this could raise serious privacy problems since
the data being collected, stored, and processed is usually privacy-sensitive. Therefore,
it is a must to implement cryptographic techniques such as homomorphic encryption
or secure multi (or two)-party computation to be obedient with the data protection
regulations such as the General Data Protection Regulations (GDPR) [2] or ePrivacy [3].
Although combining the cryptographic technique(s) with the clustering algorithm ensures
data privacy, they result in some bottlenecks regarding the cost of computation and
communication. They also might not easily and efficiently support complex operations in
the clustering algorithm. Thus, when creating a privacy protection solution for clustering,
the underlying privacy-preserving clustering solution should be built from scratch by
taking the privacy-by-design approach into account.

We identify the following three challenges when guaranteeing data privacy with the
assembling of cryptographic techniques and clustering techniques:

• Challenge 1: Complex clustering operations. k-means, DBSCAN, and TRACLUS
consist of several complex operations such as division, square roots, sine, etc., and
these underlying operations thus should be revisited and built employing some
optimisation(s).

• Challenge 2: Optimisation of parameters. There are some clustering algorithm-
specific parameters such as the number of clusters and the number of iterations to
decide how many groups in the datasets when utilising k-means, or the parameters
of MinLns, ε, and the number of iterations for TRACLUS. Such parameters have
a non-negligible impact on the complexity of the clustering techniques and thus the
quality evaluation for their results. These parameters should be selected carefully
when designing the privacy-preserving variant of (trajectory) clustering algorithms.
Therefore, privacy-preserving variants of the underlying clustering techniques should
not sacrifice too much clustering quality evaluation.

• Challenge 3: Real numbers instead of integers. Although the clustering algorithms
are run mostly over real numbered dataset(s), integers are usually supported by
cryptographic techniques. Enabling floating point number arithmetic or transform-
ing them into integers thus is needed when using the underlying cryptographic
technique. Yet, transforming these numbers into integers can have a non-negligible
impact on the clustering quality evaluation.

The complex clustering algorithms’ operations should be customised to reduce the
overhead resulting from developing the privacy-preserving variants of the clustering
algorithm. Such customisation should not have an impact on the actual quality evaluation
and efficiency of the clustering algorithm and do not cause any loss in data privacy.
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5.3 Prior Work

The problem of privacy-preserving clustering has been firstly investigated by data science
researchers in a setting in which data is partitioned horizontally, vertically, and arbitrarily.
Then, cryptography researchers started to propose solutions for this topic thanks to
recent advances in cryptographic techniques.

5.3.1 k -means

For privacy-preserving k-means solutions, the work described in [142] proposes a solution
based on vertically partitioned data among two parties. The horizontally partitioned
data has been studied in [142–145]. Finally, the rest of the studies we reviewed [146, 147]
focus on the scenario of arbitrarily partitioned data consisting of a combination of the
vertical and horizontal partitioned dataset.

Solutions in [142, 143, 146, 147] make use of 2PC. In this approach, two parties
cooperatively execute the k-means algorithm on their joint datasets. The second approach
adopted by authors of [145] delegates the computational burden of k-means over a dataset
owned by a single or multiple parties to an untrusted cloud server by utilising FHE: The
cloud does not learn any information about the data and the clusters.

Most of the solutions studied in privacy-preserving k-means [142,143,146–148] employ
the secure function evaluation techniques such as the Paillier encryption scheme, Yao’s
protocol, and special secure function for addition, multiplication, and division. Some of
them invoke the Paillier homomorphic scheme [147,149]. Only one work proposes a TFHE-
based solution [145]. We highlight that several proposed solutions such as [142,146] leak
some information about intermediate cluster values, and the requirement of non-colluding
parties is ignored.

A very recent solution [150] propose to use 2PC for the outsourced privacy-preserving
k-means tasks, and this solution is assumed to be extendable to the MPC setting.

5.3.2 DBSCAN

The studies in [151,152] consider a scenario whereby two data owners who want to jointly
execute the DBSCAN algorithm over their private data: [151] may need for the existence
of a trusted third party. Moreover, the proposal [152] leaks the information leakage about
the clusters and their cardinality, and [151], similar to [152] leaks the size of clusters. [149]
propose a study based on additive masking and HE to preserve data privacy, and data is
vertically partitioned. The protocol uses FHE, but any performance evaluation is not
applied.

Moreover, two privacy-preserving DBSCAN protocols are proposed over horizontally
and vertically partitioned data in [153] who can extend the solution to the arbitrarily
partitioned data. Authors make use of Yao’s garbled circuits, but they leak the information
of cluster sizes or values of parameters. Two solutions [154,155] employ a differentially
private mechanism to preserve data privacy while running DBSCAN. The adding noise
to data affects the clustering quality result negatively.
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5.3.3 Trajectory Analysis

Very few previous studies investigate the problem of private trajectory analysis. Private-
Hermes [156] and Hermes++ [157] use anonymisation techniques to generate crafted,
realistic fake trajectories to allow users to securely query mobility (trajectory) datasets.
Other works such as [158–160] explore the problem of privacy-preserving ride sharing,
which consists of finding a match between parts of trajectories. These solutions mostly
use additively HE combined with private set-intersection.

A recent work [161] reviews the state-of-the-art solutions, re-implements four recent
solutions, and compares them concerning the trade-off between privacy, efficiency, and
quality evaluation results.

Note that no previous work has investigated private trajectory clustering. In the next
section, we propose our privacy-preserving TRACLUS protocol, which is the first solution
enabling private and efficient trajectory clustering technique, namely TRACLUS, between
a data owner and a cloud server.

5.4 pp-TRACLUS: Privacy-preserving TRAjectory CLUStering

This section presents pp-TRACLUS, a privacy-preserving trajectory clustering solu-
tion [162]. This work was published in ACM ASIACCS 2021, 16th ACM ASIA Conference
on Computer and Communications Security.

TRAjectory CLUStering (TRACLUS) based on DBSCAN is employed to group
trajectories containing sequences of (multidimensional) line segments (see Section 2.2.3).
Each trajectory can contain different numbers of line segments, and this can be a problem
for some clustering algorithms such as k-means since k-means expects to take some
numbered data items for the input. The application of TRACLUS can vary from the traffic
analysis, location-based social networks to the vacation recommendation [163]; therefore,
it can be attracted by some tourism agencies to obtain some results regarding when and
how many people travelling to where without sacrificing the privacy of individuals and
with taking advantage of Machine Learning as a Service and so the cloud computing.
Therefore, the privacy-preserving variant of TRACLUS can play a crucial role in the
analysis of location data collected by some data owner, and even this analysis usually
outsourced and being compliant with the data protection regulations [2, 3] can be used
for various applications such as controlling the spread of Covid-19 while ensuring data
privacy. In order to detect the similar routes which are used by (infected) people during
their visits and, at the same time, to preserve data privacy, we propose a solution for
TRACLUS by utilising secure two-party computation while maintaining good clustering
quality and efficient computation.

The next section introduces our design for the privacy-preserving TRACLUS based on
2PC.
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5.4.1 pp-TRACLUS: Description

This section presents our privacy-preserving protocol for TRACLUS, pp-TRACLUS,
which is the first solution enabling input (i.e. dataset) and result/output (i.e. clusters,
etc.) privacy and keeping the clustering quality as same as the plaintext version of it.

In pp-TRACLUS, a data owner holds a dataset of trajectories and assigns the
trajectory clustering operations over the underlying dataset to an untrusted cloud server.
We assume that the data owner has already run the partitioning phase and would like to
outsource the clustering phase by computing arithmetic shares of the line segments to
the cloud server. Hence, the cloud server would perform the TRACLUS clustering phase
in a privacy-preserving manner.

As described in Section 2.2.3 and illustrated in Figure 2.3, the tripartite TRACLUS
distance metric dist involves some complex operations. For instance, dist involves
divisions and sine computations which are relatively expensive in 2PC or HE. In order
to ensure data privacy and execute the clustering phase in an efficient manner, we
approximate this distance metric. As the Euclidean Distance (ED) is the most common
metric that is used for trajectory clustering [164], we propose to replace the original
TRACLUS distance metric with a combination of EDs because the perpendicular, parallel,
and angular distances in Equations 2.14, 2.15, and 2.16 are taken into account when
considering EDs between each pair of points of the two line segments Li and Lj (i, j are
two positive integers). We replace ED with the computation of its square, namely the
Squared Euclidean Distance (SED) in Equation 5.1, which is a common computation
to be easily compatible with 2PC [165], and thus results in more efficient computation
results. Whether two line segments Li and Lj are checked to be neighbours, while
one checks whether

∑
ED(Li, Lj) ≤ ε, within 2PC, one employs the computation of∑

SED(Li, Lj) ≤ ε2.

SED(Li, Lj) =

N∑
r=1

L2
ir + 2

N∏
r=1

Lir · Ljr +

N∑
r=1

L2
jr (5.1)

where Li and Lj are two line segments, and r = 1, . . . , N denotes the components of line
segments Li and Lj when Li and Lj can be multidimensional.

Given Li and Lj defined with starting points si = (xsi, ysi) and sj = (xsj , ysj) and
ending points ei = (xei, yei) and ej = (xej , yej), the approximated distance measure
dpptrac (depicted in Figure 5.2) for pp-TRACLUS is defined as follows:

dpptrac(Li, Lj) = SED(si, sj) + SED(si, ej) + SED(ei, sj) + SED(ei, ej) (5.2)

In pp-TRACLUS, the data owner initiates the privacy-preserving protocol by creating
the shares of line segments, ε2, and MinLns using AS . Share, and further by sending
one share of them to the cloud server. The data owner and the cloud server interactively
perform each operation of pp-TRACLUS: They compute the distance matrix using the
shares of line segments and ε2, and they compute the clusters using the shares of this
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SED1

SED2

SED3

SED4

Figure 5.2 – Approximated distance measure dpptrac

distance matrix and MinLns. Finally, each party obtains one share of the pp-TRACLUS
clusters’ result. The cloud server sends its share to the data owner who adds these shares
to get the final result.

To summarise, during the distance calculations phase of pp-TRACLUS, the data
owner and the cloud server jointly compute the four Squared Euclidean Distances between
each pair of line segments and sum them to obtain the distance metric dpptrac. This
distance is further compared to the threshold ε2 in order to check whether two line
segments are neighbours.

5.4.2 Security Evaluation

In pp-TRACLUS, we assumed that the data owner and the cloud server are semi-honest
where all parties in the pp-TRACLUS run are honest to correctly follow the pp-TRACLUS
steps; however, they are curious and may try to gain as much information as possible from
the data they receive. This means that they might store some data and later combine the
underlying data to obtain more information. The goal of the data owner is to hide its input
data, namely its dataset and its corresponding clustering result from the cloud server.
We employ 2PC, particularly AS . Share or BS .Share, that achieves indistinguishability
given that the shares are generated from a uniformly random distribution [132]. Thanks
to the security of 2PC, pp-TRACLUS is secure and ensures the privacy of the underlying
data while computing the privacy-preserving trajectory clustering.

5.4.3 Performance Evaluation

In this section, we evaluate the performance of our privacy-preserving clustering protocol
based on TRACLUS and 2PC using three different datasets related to a scenario in where
a data owner owns a dataset of line segments of several trajectories and wishes to learn
similarities or some pattern among them with the help of some cloud server. Due to the
nature of the dataset (i.e., usually privacy-sensitive), and thus before outsourcing, the
data owner splits all line segments into two shares and sends one share of them to the
cloud server. Then, the data owner and the cloud server run the pp-TRACLUS protocol
over their shares. Once all operations are performed, the cloud server sends its share
for the result to the data owner, and the data owner obtains the result by bringing the
shares of the clusters’ result.
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Datasets

We employ several datasets to evaluate the performance of pp-TRACLUS.

• Travel: This “synthetic” dataset (not related to real individuals) is a 2-dimensional
trajectory data corresponding to location of people’s mobile phones. It has been cre-
ated and provided by Orange S.A.1, a major telecom provider, based on anonymised
indicators of real trajectories. It consists of 40000 line segments.

• Hurricane: This dataset [7] contains 2-dimensional track data of Atlantic hurricanes
from 1950 to 2006. It has 608 trajectories with 18343 line segments.

• Deer: This dataset [7] corresponds to 2-dimensional movements of deers in 1995.
There exist 32 trajectories which correspond to 20033 line segments.

We highlight that Deer, Hurricane, and Travel datasets are already in integers;
therefore, they do not need to be approximated.

Experimental Setup

To implement our solution, we use the ABY framework [42] written in C++, and the
security level is set to 128-bit. The experiments are performed on two separate systems:
one desktop equipped with 4.0 GHz Intel Core i7-7800X processor with Ubuntu 18.04.3
LTS and 128 GB RAM, and one cloud server with the properties of 2.30 GHz Intel Xeon
Gold 6140 processor with Ubuntu 20.04 LTS and 64 GB RAM.

The pp-TRACLUS performance results are illustrated in Table 5.1. These results
correspond to the average from the execution of 10 individual simulations. We observe
that while the 2PC-based pp-TRACLUS, with the use of arithmetic sharing for the
distance computation and Boolean sharing for the clustering computations, clusters the
Travel dataset containing 400 line segments in 33.10 mins, it takes 34.28 mins for 400
line segments when using only Boolean sharing for both computations.

Table 5.1 – Performance evaluation for pp-TRACLUS on the Travel dataset with ε2 =
4.5× 109 and MinLns = 3

pp-TRACLUS # of Line Segments Time (mins) Bandwidth (GB)

Arithmetic &
Boolean
Sharing

100 2.66 0.49/0.49
400 33.10 10.27/10.27
1000 173.10 93.53/93.53

Boolean
Sharing

100 2.88 4.6/4.6
400 34.28 75.6/75.6
1000 210.58 501.16/501.16

Moreover, we compare the clustering quality evaluation based on the simplified
TRACLUS distance measure dpptrac and the original TRACLUS tripartite distance

1https://www.orange.fr
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metric dist on our tested datasets. We conduct experiments with various values for ε2

and MinLns for the Hurricane dataset, the Deer dataset, and the Travel dataset (we
name them Experiment 1 and Experiment 2 for each dataset). As in [7], the optimal
values for ε2 and MinLns are computed with simulated annealing. The ε2 values differ
for TRACLUS and pp-TRACLUS because of the different distance measures. Note that
all ε2 for Experiments 1 and 2 result in the same entropy level in simulated annealing.
As no ground truth is known for the trajectory datasets Hurricane, Deer, and Travel,
we rely for this on well-established clustering quality indices [28–30]: SC, SCnoise, and
DBCV as described in Section 2.2.4.

Table 5.2 depicts the results for the Hurricane dataset. In Experiment 1, TRACLUS
outputs one cluster less than pp-TRACLUS. Moreover, the number of elements marked
as noise and the number of clusters are larger with pp-TRACLUS than with the original
plaintext TRACLUS. Nevertheless, we observe that pp-TRACLUS outputs better results
with respect to SC, SCnoise, and DBCV than the original TRACLUS.

Table 5.2 – Clustering quality assessment for TRACLUS and pp-TRACLUS on the
Hurricane dataset. For all scores larger values are better (best marked in bold).

Dataset Score
Experiment 1 Experiment 2

TRACLUS pp-TRACLUS TRACLUS pp-TRACLUS

Hurricane

(ε2, MinLns) (24, 5) (5000, 5) (4, 5) (2250, 5)
# of Clusters 2 3 11 13
Noise 129 150 597 645
SC 0.27 0.87 0.44 0.79
SCnoise 0.27 0.86 0.42 0.76
DBCV 0.72 0.97 0.64 0.76

Results for the Deer dataset are given in Table 5.3. The number of clusters created
from the Deer dataset are equal with TRACLUS and pp-TRACLUS. When only one
cluster is found, SC and DBCV cannot be computed. Nevertheless, having only one
cluster does not necessarily mean that the quality of the clustering algorithm is low. It
simply says that the algorithm found only one group of similar elements.

Table 5.3 – Clustering quality assessment for TRACLUS and pp-TRACLUS on the Deer
dataset. For all scores larger values are better (best marked in bold).

Dataset Score
Experiment 1 Experiment 2

TRACLUS pp-TRACLUS TRACLUS pp-TRACLUS

Deer

(ε2, MinLns) (400, 3) (1× 106, 3) (282, 3) (550× 103, 3)
# of Clusters 1 1 2 2
Noise 1 480 20 1333
SC N/A N/A 0.089 0.36
SCnoise N/A N/A 0.089 0.34
DBCV N/A N/A 0.47 0.79

Tables 7.3 and 7.4 show the results of Experiments 1 and 2 of pp-TRACLUS and
TRACLUS for the Travel dataset. We notice the same behaviour with respect to the
quality evaluation metrics as for the Hurricane and Deer datasets shown in Tables 5.2
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and 5.3. In Experiment 1, the number of input records marked as noise by pp-TRACLUS
is larger than the number of elements marked as noise by the original plaintext TRACLUS.
However, when fine-tuning the values of ε2 and MinLns, it is possible to decrease the
number of elements marked as noise (See Table 7.4 and Section 5.4 in [7]).

To summarise, our simplified and approximated distance measure dpptrac tends to
create a larger number of clusters (resulting in smaller clusters in average) and marks
more elements as outliers. Nevertheless, our quality evaluation with well-established
clustering quality evaluation gives even better results for the three analysed datasets
showing that its quality evaluation is comparable to the original tripartite distance metric
of TRACLUS.

5.4.4 Summary

We have presented the first privacy-preserving trajectory clustering protocol based on
the TRACLUS algorithm and the use of 2PC named as pp-TRACLUS. TRACLUS is
a DBSCAN-based scheme optimised for the trajectories clustering and contains many
complex functions, for which we design and implement an approximated distance measure
by proposing the use of the combination of Euclidean Distance and its square for the
TRACLUS tripartite distance metric to efficiently integrate with 2PC. Moreover, with
lessening the iteration number, namely the solution of pp-TRACLUS′, we could obtain
more number of clusters, and this may be used as a solution for some applications such
as the Covid-19 tracking, which needs more precision.

5.5 Conclusion of privacy-preserving clustering

This chapter has introduced a new privacy-preserving trajectory clustering solution,
namely pp-TRACLUS containing a data owner and a cloud server, to efficiently group a
dataset of line segments coming from a data owner without scarifying the underlying
segments privacy.

pp-TRACLUS designs a privacy-preserving trajectory clustering solution from scratch
by considering the privacy-by-design approach to be compatible with the cryptographic
technique, namely 2PC: We propose to simplify the complex distance metric of TRACLUS
to an approximated distance measure dpptrac containing some Euclidean distances which
take all possible location differences (i.e., the horizontal, vertical, and angular distances)
among two line segments into account. Therefore, pp-TRACLUS balances the trade-off
between privacy, clustering quality, and efficiency. In 2PC-based solutions, the data
owner performs the same TRACLUS operations as the cloud server: The data owner’s
workload is the same as the cloud server, but the computation resource may not be the
same as the cloud server.
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Privacy-preserving two-server
machine learning techniques
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Chapter 6

Privacy-preserving Neural Network
Classification

In order to be irreplaceable one must always be different.

Coco Chanel

In the first part of this thesis, namely Chapters 4 and 5, we have described the design,
development, and implementation of privacy-preserving neural network and trajectory
clustering when operations are outsourced to a single cloud server. In the second part
of this thesis, we investigate a scenario whereby two non-colluding cloud servers help
querier(s) or data owner(s) execute privacy-preserving neural network classification, trajec-
tory clustering, and data aggregation tasks. In the two-server scenario, we mainly aim to
decrease the workload of the queriers/data owners when the underlying machine learning
tasks are requested. Moreover, we also show that using different cryptographic techniques
or the combination of them for designing neural network classification, trajectory clus-
tering, and data aggregation tasks affects the data privacy, the performance evaluation
(i.e., querier(s) or data owner(s) has/have little work to perform), and accuracy/quality
evaluation of the proposed solutions in the first part of this thesis.

In this chapter, we revisit the designs for the privacy-preserving neural network (NN)
classification while taking advantage of two cloud servers; and therefore, we decrease
the computation load of queriers, and further, allow two non-colluding cloud servers to
jointly perform the requested NN predictions.
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Figure 6.1 – Neural network classifications in the two-server scenario

6.1 Introduction

Consider a scenario where we employ two non-colluding and semi-honest cloud servers
and name it the two-server scenario whereby a querier can either split its private input X
into two shares and outsource one share to each cloud server as in Figure 6.1a or send one
private input X to each cloud server as in Figure 6.1b. These two cloud servers hold the
NN model M, which can be the same or different, and perform all heavy computations,
and the querier involves very little in the computation: The querier encrypts its input X
(or two shares of its input X) with its public key and sends the encrypted input X (or
shared-encrypted input X) to the two cloud servers, which jointly compute the private
prediction result using the NN model M. Similar to the solution described in Section 4.5,
depending on the operation performed by one cloud server, the other one (instead of
querier in Section 4.5) might be involved in the computations.

6.2 Prior Work

In this section, we briefly define the problem that we analyse and solve in two-server
aided our solution and review the prior work.

Similar to Section 4.2, one encounters several challenges when developing a privacy-
preserving NN prediction solution: (i) Size of NN which is defined as the number of
layers, the number of neurons in these layers, and the sizes of input and output layers.
Having a large size of them increase the complexity of NN, and this should be customised
when combining NN with cryptographic techniques; (ii) Complex NN operations which
cannot be easily supported by the employed cryptographic techniques, and therefore,
they are needed to be optimised; and (iii) Real numbers which can be another challenge

102



Chapter 6. Privacy-preserving Neural Network Classification

to be addressed since mostly cryptographic techniques support integers.
The design for a privacy-preserving NN classification solution drew the attention of

researchers, and several solutions that provide privacy protection in NN predictions are
proposed (See Section 4.3).

We analyse privacy-preserving neural network solutions consisting of more than one
cloud server which are based on the method of secure multi(two)-party computation
(MPC/2PC). In [135], SecureML designs a privacy-preserving neural network training
and classification method using 2PC, where queriers/clients secretly share their own
private data among two non-colluding cloud servers. SecureML builds the model with
the stochastic gradient descent method. Authors compute ReLU using Yao’s GCs and
implement polynomial approximations of nonlinear functions such as the Sigmoid and
Softmax functions. Additionally, a solution for switching between arithmetic and Yao’s
sharings is proposed. As an extension to SecureML, authors [166] propose ABY3, which
shares the private inputs between three non-colluding cloud servers. To securely share
sensitive data among three cloud servers, the authors redefine arithmetic, Boolean, and
Yao’s sharings of the ABY framework [42]. Moreover, a very recent scheme named
SecureNN [167] uses secure three-party computation for the training and classification
phases with convolutional neural networks using the MNIST dataset. SecureNN shares
the input and output among two parties employing 2-out-of-2 arithmetic shares, and
the third party joins the protocols during the online computation. CrypTFlow [168]
complies TensorFlow and runs MPC protocols for deep NN using Intel’s Software Guard
Extensions. ASTRA [169] and FLASH [170] contain four parties with a malicious party
focusing on the NN training based on secret sharing. Another work, namely Trident [171]
is a four-party framework based on Boolean, arithmetic and Yao’s sharings and supports
many machine learning techniques including (C)NNs. Recently, Banners [172] proposes
binarised NN classifications utilising replicated secret sharing.

6.3 Two-server SwaNN

In this section, we propose a new version of SwaNN utilising two-server for privacy-
preserving neural network prediction tasks, that uses an additively HE cryptosystem,
namely the Paillier cryptosystem [9], and combines it with 2PC. This work was presented
as a poster in two different venues: ICT.OPEN 2019 1 and PUT 2019 2 in which it was
awarded as “the best poster”. Moreover, SwaNN was published in SECRYPT 2020, 17th
International Conference on Security and Cryptography [94].

6.3.1 SwaNN: Description

In order to reduce the workload of the querier, we design SwaNN in a two-server
scenario where two semi-honest non-colluding cloud servers (CS1 and CS2) perform the
computations together. The querier splits its input and private key, provides one share

1https://ict-research.nl/ict-open/
2https://petsymposium.org/2019/workshop.php
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of the input and private key to CS1 and CS2. Thus, the computations on the querier side
are delegated to CS1 and CS2.

With a desirable scenario, the workload on the querier side can be reduced in the
presence of two non-colluding cloud servers: In the two-server scenario, the querier
outsources the input to both CS1 and CS2, and CS1 and CS2 perform the operations
and return the result to the querier. However, if only a single input is provided to the
CS1 and CS2, one of them is going to be idle during the non-interactive phase of the
computations. Thus, we propose to provide one different input to each cloud server to
fully utilise the computation capabilities of the cloud servers and classify two inputs at
once.

Cloud Server 1

M

Cloud Server 2

M

Querier 
 

Figure 6.2 – Two-server scenario with two input inputs in SwaNN

Figure 6.2 illustrates our scenario. The querier encrypts two inputs with its public
key and provides one input to each cloud server. Furthermore, the querier creates shares
of the private key using AS . Share (i.e., 〈sk〉1 + 〈sk〉2 ← AS .Share(2, sk)) for each cloud
server as described in [54] and sends one share (i.e., 〈sk〉i, i = 1, 2) to each cloud server.

We present the common layers for any neural network and their functions in these
layers in Section 2.1. Similar to the single-server scenario described in Section 4.5, we
divide the computations into two phases as non-interactive and interactive phases:

Non-interactive phase

Similar to Section 4.5.2, when the two cloud servers receive the encrypted input compute
the linear NN layers:

Convolutional Layer. The dot product, the operation in the convolutional (Conv)
layer, is performed over a given input X encrypted with the Paillier encryption scheme [9]
and a weight matrix W being plaintext on the cloud thanks to the homomorphic property
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of the underlying encryption scheme. Note that each cloud server can perform this layer
without the help of the other one since the decryption is not needed for the Conv layer.

Fully Connected Layer. The Fully Connected (FC) layer is composed of the matrix
multiplication of a weight matrix W being plaintext and the encrypted result of the
previous layer X′. Remind that the operation in the matrix multiplication is dot product
needed to be performed over each column and row pair, differently from the Conv layer.

Scaled Average Pooling Layer. This layer requires the sum of the values in the
submatrix of the encrypted matrix result of the previous layer with omitting the division
by the submatrix size. The additive homomorphism property of the Paillier cryptosystem
computes this layer without any interaction.

Interactive phase

While the non-interactive phase can be performed by each cloud server locally, the
interactive phase requires the involvement of both cloud servers. The two cloud servers
can execute this phase sequentially based on a predetermined order or execute it in
parallel, which improves the computation cost even further.

Activation Layer. The activation layer is also similar to the description in Section 4.5.2,
yet it differs in the decryption procedure. In the single-server scenario in Section 4.5,
the querier is responsible for performing the decryption operations. Nevertheless, in the
two-server scenario, the decryption procedure is delegated to Cloud Server 1 (CS1) and
Cloud Server 2 (CS2) along with their shares of the secret key sk. Therefore, the Decrypt
algorithm in Protocol 1 is performed by both cloud servers. Protocol 4 illustrates how
secure square protocol works when the computations are delegated to CS1 and CS2 which
are assumed to not collude.

Protocol 4 Secure Square Protocol in the two-server scenario

Cloud Server 1 (pk, sk1) Cloud Server 2 (pk, sk2)
[x], r ∈R {0, 1}`+κ
[xr]← [x] · [r] (this is equal to [x+ r])
[xr]
′ ← Decrypt([xr], 〈sk〉2)

[xr]′←−−−
xr ← Decrypt([xr]

′, 〈sk〉1)
x2r ← xr · xr
[x2r ]← Encrypt(x2r , pk)

[x2r]−−−→
[x2r ] ·

(
[r2] · [x]2r

)−1
[x2]←

[
x2r − r2 − 2xr

]
In Protocol 4, to compute the square of the encrypted input [x], CS2 randomly chooses

a number [r] from ZN , adds it to [x] to perform a secure decryption using its share of
secret key 〈sk〉2, and then sends it to CS1. CS1 decrypts [xr] once more and takes the
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square of it. After square computation, CS1 encrypts using the public key pk of the
querier and sends it back to CS2. Then, CS2 subtracts the underlying random values in
the protocol to get the square of [x].

We also use ReLU as an activation function, and CS1 and CS2 interactively perform
ReLU thanks to the comparison gate of Boolean sharing, BS . Share.

Max Pooling Layer. Similar to the Max pooling layer in Section 4.5.2, we do not
employ any approximation for Max. Further, the switching phases for computing Max are
computed similar to the description in Section 4.5.2, but the decryption procedure is
different like in Secure Square Protocol 4. Therefore, the Decrypt algorithm in Protocol 2
is performed by non-colluding CS1 and CS2.

6.3.2 Security Evaluation

SwaNN aims to compute neural network predictions under the privacy preservation
assumption in the semi-honest adversarial model where the parties do not collude, and
parties in the computation exactly follow the protocol steps. However, the querier and the
two non-colluding cloud servers are curious to obtain some information from outputs of
the computations and intermediary messages. We assume that the semi-honest adversary
is non-adaptive and computationally bounded. The querier’s goal is to hide the input
image and its corresponding classification result from the two cloud servers. On the other
hand, the two cloud servers do not want to reveal the NN model parameters used during
computations to the querier.

We achieve our security goal thanks to the security of the cryptographic techniques
we use in the design of SwaNN: In the non-interactive phase, the data privacy is ensured
by the semantical security of the Paillier cryptosystem under the decisional composite
residuosity assumption [9]. Therefore, the two non-colluding cloud servers CS1 and CS2
cannot discover any information about the underlying input of the queriers. Unlike
the non-interactive phase, the NN layers such as x2 require interactive computations
between CS1 and CS2. For this computations, we employ 2PC, particularly AS .Share
and BS .Share, that achieves indistinguishability given that the shares are generated from
a uniformly random distribution [132]. Note that the Paillier cryptosystem and 2PC are
secure, the security of the interactive phase of SwaNN can be deduced to the security of
switching or decryption operations. Similar to the security of SwaNN in the single-server
scenario 4.5.3, SwaNN in the two-server scenario is secure and does not leak any private
information about the inputs, the corresponding results, and the NN model parameters.

Theorem 6.3.1. The switching protocol π, i.e. Protocol 2, performed by CS1 and CS2,
securely computes the functionality f (⊥, [x]) = (〈x〉1 , 〈x〉2) in the presence of semi-honest,
non-adaptive, computationally bounded adversaries.

Proof. Theorem 6.3.1 for a corrupted CS1 and CS2 separately can be proved in a similar
way of the proof of Theorem 4.5.1 instead of the client and the cloud server. Thus, we
refer Section 4.5.3 for the details.
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6.3.3 Performance Evaluation

This section presents the performance evaluation of SwaNN in the two-server scenario
whereby a querier is responsible only for encryption and the final decryption procedures
and the two cloud servers compute all NN operations, and the comparison of our results
with the state-of-the-art solutions. We used the C++ programming language for the
implementation and the GMP 6.1.2 library for big integer operations. We used the ABY
framework [42] for the 2PC operations. For the homomorphic operations, we used the
Paillier implementation of ABY due to its efficiency. We selected 2048 bits modulus
size for the Paillier operations to meet the current security standards. For the ABY
operations, we selected 32-bit shares. The machine we used in the experiments runs
Ubuntu 16.04 operating system with Intel Core i5-3470 CPU 3.20 GHz.

SwaNN in the two-server scenario adapts several optimisations methods for the Paillier
encryption scheme and 2PC to minimise the computational cost and communication
overhead during privacy-preserving NN predictions similar to Section 4.5.4: Data packing
for the Act Layer, the Lim-Lee multi-exponentiation algorithm for the Conv and FC layers,
and SIMD for 2PC operations.

Experiments

We implement SwaNN in the two-server scenario in three experiments using x2 and ReLU
as activation functions.

Neural Network Structures. The underlying experiments use the following NN
structures: (i) one from CryptoNets [107], and MiniONN [97] is used to classify images
of the MNIST dataset. This network in our experiment contains 2 Conv, 2 activation of
x2, 2 Scaled Mean pooling, and 2 FC layers, and achieves 98.95% of accuracy; (ii) one
from MiniONN [97]. The structure is similar to the first network, yet the activation
function is ReLU, and Max pooling is used in the Pool layer. Its accuracy of the network
is 99.31%; and (iii) the last (and deeper) NN structure trained by [97] (in Figure 13 in
MiniONN) performs image classifications on the Cifar-10 dataset. Its structure consists
of 7 convolutional, 7 ReLU, 2 Max pooling, and 1 FC layer. The accuracy of this network
81.61%.

Experiment 1. Table 6.1 demonstrates the performance of SwaNN in the only-PHE and
hybrid settings for each layer of CNN described in CryptoNets [107]. For the only-PHE
setting, we provide the timings with and without optimisations. For the hybrid setting
which employs PHE and 2PC, we provide only optimised timing values.

SwaNN in the two-server scenario with a slight increase in computation time can
simultaneously process two input, particularly images. More particularly, in an optimised
hybrid setting, the two cloud servers can compute the prediction result for two images in
10 seconds simultaneously.

In Table 6.2, we provide the benchmarking for the Square activation function by
switching between PHE and 2PC for the computation of packing, decryption and un-
packing operations. In the two-server scenario, both cloud servers spend approximately 6
seconds for the computation of the activation layer of two images.
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Table 6.1 – Computation time per layer in the two-server scenario (in ms). The timings
are provided for optimised and non-optimised PHE-only setting and optimised hybrid
setting. The total timings marked with * show the simultaneous run time of SwaNN for
two images.

Non-optimised - PHE only Optimised - PHE only Optimised - Hybrid

Layer CS1 CS2 CS1 CS2 CS1 CS2

Conv 1883 1883 917 911 919 900
Act 33442 33319 23973 23941 2947 2984
Pool 34 34 34 33 33 34
Conv 2911 2948 1347 1344 1378 1364
Pool 37 37 38 37 37 39
FC 6579 6536 3802 3818 3973 3977
Act 3993 4009 2795 2797 607 573
FC 10 10 11 10 11 11

Total (ms) 48892* 32902* 9904*

Table 6.2 – Detailed computation time for the activation layer in the two-server scenario
for the hybrid setting (in ms).

Operation CS1 CS2

Packing 413 406
Decryption 147 146
Unpacking 0.1 0.1
ABY 28 28
Encryption 2373 2685

Total (ms) 0000003265*

Apart from the computation time, we also analyse the bandwidth usage of SwaNN
for different settings. Table 6.3 presents the communication cost in both scenarios for the
only-PHE setting and the hybrid setting. The packing technique used in the activation
layers helps reduce the bandwidth usage by half. Besides, due to the interactive nature
of 2PC, the bandwidth usage in the hybrid setting is higher than the only-PHE setting
for the single-server scenario and the two-server scenario.

Table 6.3 – Bandwidth usage of SwaNN in different settings (in MB).

Single-server Two-server

PHE only (w/o opt.) 0.97 0.96
PHE only (w/ opt.) 0.51 0.51
Hybrid (w/ opt.) 1.69 1.69

Table 6.4 compares SwaNN and two state-of-the-art solutions: one FHE-based solution,
CryptoNets [107] and one 2PC-based solution, MiniONN [97]. According to [107],
CryptoNets requires 297.5 seconds for one prediction. MiniONN computes one prediction
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in 1.28 seconds [97] (Note that the querier in MiniONN performs the same operations
as the cloud server, and thus it can need the same facilities (e.g. expertise in machine
learning and computation resources) as the cloud server already has). However, this
computation requires 47.6 MB bandwidth usage. SwaNN computes the two images
prediction in 10 seconds with the help of two cloud servers. Although the computation
time of SwaNN is higher than MiniONN, SwaNN achieves a 28-fold less bandwidth usage,
and the querier performs very little work: Encryption of the input, splitting the secret
key into two shares, and the decryption of the encrypted result.

Table 6.4 – Comparison with the state-of-the-art in Exp. 1.

Computation time (s) Bandwidth usage (MB)

CryptoNets [107] 297.5 372.2
MiniONN [97] 1.28 47.6
SwaNN 9.9 1.69

Experiment 2. In the second experiment, we benchmark the performance of SwaNN
with the ReLU activation function for the CNN model for MNIST described in [97]. We
use maximum operation for pooling layers. We provide the timings for the Max pooling
along with the ReLU function since we implemented them together. We measure the
timings in the single-server scenario and the two-server scenario only with optimisations.
Table 6.5 details the computation time for each layer.

Table 6.5 – Computation time per layer in the single-server and the two-server scenarios
(in ms).

Layer Querier Cloud Server Cloud Server 1 Cloud Server 2

Conv – 10192 10196 10195
Act+Pool 6852 2593 11968 10613
Conv – 1148 1150 1153
Act+Pool 778 467 1448 1411
FC – 1325 1332 1360
Act 274 508 801 866
FC – 5 5 6

Total (ms) 24242 26099*

The computation cost is 24 seconds in the single-server scenario whereas for the
two-server scenario, it becomes 26 seconds for two images since each layer has the larger
inputs’ size. Note that in the two-server scenario, the querier only does perform the
encryption of the input image and the final decryption of the corresponding result.
Therefore, the querier does spend any time for each layer during the classification of its
input.

Table 6.6 compares SwaNN and MiniONN. While MiniONN outperforms SwaNN in
computation time, SwaNN is more efficient with bandwidth usage in terms of communi-
cation cost.
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Table 6.6 – Comparison with the state-of-the-art in Exp. 2.

Computation time (s) Bandwidth usage (MB)

MiniONN [97] 9.32 657.5
SwaNN 26.00* 160.9

Experiment 3. In the third experiment, we measure the performance of SwaNN with
the ReLU activation function for a deeper neural network model for CIFAR-10 [97].

Table 6.7 – Comparison with the state-of-the-art in Exp. 3.

Computation time (s) Bandwidth usage (MB)

MiniONN [97] 544 9272
Gazelle [123] 12.9 1236
SwaNN 394.1 1939

In Table 6.7, we compare the performance of SwaNN with MiniONN and Gazelle.
Clearly, SwaNN outperforms MiniONN in computation time and bandwidth usage.
Nevertheless, Gazelle seems better than SwaNN. It is worth to note that these results
are taken for the reference paper [123] and were hard to reproduce in our environment.
Furthermore, in SwaNN, compared to Gazelle, we make use of simple mechanisms such
as Boolean sharing (BS .Share) for ReLU and Max pooling instead of Garbled Circuits.

6.3.4 Summary

We have designed SwaNN in the two-server scenario for the NN classification tasks based
on PHE and 2PC. On the one hand, we succeed in reducing the computational and
communication costs of queriers and delegate those costs to the two non-colluding cloud
servers, and, on the other hand, to ensure the privacy for the input data, its result, and
the NN model. For this respect, we also have investigated minimising the computations
at the cloud servers side and the overall computational cost for the proposed NN models.

6.4 Conclusion of privacy-preserving neural network classification

In this chapter, we have shown that a privacy-preserving neural network prediction
solution in the two-server scenario is as secure and accurate as privacy-preserving neural
network prediction solutions in the single-server scenario. Nevertheless, we have gained a
significant impact on reducing the queries’ workload during the classification, and they
do not need to perform any computations rather than their input encryption and the
corresponding results’ decryption. We have employed two non-colluding cloud servers to
compute all heavy operations of the neural network while private inputs are predicted
without disclosing any information.
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Privacy-preserving Clustering

Create the highest, grandest vision possible for your life because you become what you
believe.

Oprah Winfrey

This chapter investigates the privacy-preserving clustering solutions utilising two
non-colluding cloud servers to decrease the computation burden of the data owner(s).
Further, we present two solutions employing two different cryptographic techniques and
show the impact of the different cryptographic techniques on privacy, efficiency, and
quality evaluation.

In order to ultimately benefit from the advantage of cloud servers and lower the
workload of the data owners who outsource their dataset (and the clustering operations) to
two non-colluding cloud servers and investigate the suitability of cryptographic techniques,
we revise designing a privacy-preserving protocol for the trajectory clustering technique
in Section 5, namely TRACLUS, with the help of these two cloud servers: We propose
two solutions for TRACLUS under privacy preservation: One is based on the use of
the Paillier cryptosystem, and the other one is based on 2PC. Therefore, we decrease
the workload of data owners and allow these two cloud servers to perform TRACLUS
operations without any interaction from data owners.

7.1 Introduction

We consider two scenarios whereby a data owner can send one private dataset D to the
cloud server as in Figure 7.1a and the other cloud server helps the fist cloud server, or
split its private dataset D into two shares and outsource one share to each cloud server
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Figure 7.1 – Clustering in the two-server scenario

as in Figure 7.1b. These two cloud servers perform all heavy computations of TRACLUS,
and the data owner involves very little in the computation: Encryption or arithmetic
sharing.

7.2 Privacy vs. Clustering

This section briefly presents the problem of the clustering technique, which is outsourced
together with the dataset (or datasets) to two non-colluding cloud servers.

Similar to Section 5.2 that presents the challenges in the single-server scenario,
the two-server scenario has the same two challenges while ensuring data privacy with
the integration of cryptographic techniques with clustering techniques: (i) Clustering
algorithms contain complex operations, which are not easily and efficiently compatible
with the cryptographic techniques; and (ii) the suitable parameters should be selected
because they mainly affect the clustering quality evaluation.

This chapter describes a new scenario called a two-server scenario whereby the
dataset(s) and the clustering algorithm are efficiently performed by two untrusted, non-
colluding, and semi-honest cloud servers without any interaction between client and
two-server. In this scenario, privacy-preserving clustering tasks should preserve data
privacy, cluster privacy, and (full) privacy of the data processing, i.e., no intermediate
data or operations should not be disclosed to any party, including the two semi-honest
cloud servers.

Moreover, selecting the cryptographic technique can be crucial to obtain a private, effi-
cient, and qualified clustering evaluation clustering technique. Cryptographic techniques,
unfortunately, introduce some non-negligible overhead in terms of computational and
communication costs. For example, a partially homomorphic encryption (PHE) scheme
supports only additions or multiplications and incurs less expensive computation cost
when compared to fully homomorphic encryption (FHE) schemes; yet, FHE is flexible
to enable any linear operations to be processed over the encrypted data, but it is more
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expensive than PHE, or while MPC/2PC is efficient in terms of computational costs and
supports nonlinear operations over protected data, it is more expensive than an FHE
scheme in terms of communication cost.

In order to reduce the overhead of the privacy-preserving clustering algorithm and
meet the privacy requirements, one should propose the customised privacy-preserving
designs, and the underlying designs should not have a non-negligible impact on the actual
quality and performance evaluation of the requested clustering algorithm.

7.3 Prior Work

In this section, we investigate the privacy-preserving clustering solutions that contain
more than two parties namely the data owner and the cloud server.

Privacy-preserving collaborative k-means is considered in [173–175]. In these studies,
several parties cooperatively execute the k-means algorithm on their joint datasets. Vaidya
et al. [173] propose the first privacy-preserving k-means solution based on the secure
permutation of Du-Attallah [176] and Yao’s Garbled Circuits, in which the vertically
split data coming from three parties are aggregated to run k-means. However, this
solution does not mention whether these three parties are non-colluding. The study
proposed by Doganay et al. [174] can be considered as the extension of [173] with four
parties to minimise the communication and computation costs and use the Paillier-based
add-and-permute protocol. [177] clusters users in a social network utilising the Paillier
and DGK encryption schemes [9, 178] and a secure comparison based on Yao’s sharing.

Some solutions [179, 180] consist of multiple data owners who outsource their dataset
to some (non-colluding) cloud server(s). [179] and [180] make use of a Chinese Remainder
Theorem [181] based secret sharing over arbitrarily partitioned data and the Paillier
cryptosystem over horizontally partitioned data, respectively. [182] propose a PHE-based
privacy-preserving k-means protocol (accelerates the study of [183]) on the social networks.
This protocol contains three parties: users (or data owners), a cloud server, and a user
helper randomly selected among users and employs some optimisation techniques such
as data packing for efficient computations. Note that users in [177,182] join the secure
k-means computations.

A recent solution [184] proposes an FHE-based privacy-preserving k-means protocol
with the existence of two non-colluding cloud servers and uses data packing to provide
efficient FHE computations. Due to the encoding on the plaintext dataset, this solution
deviates the quality evaluation of the original k-means.

[185,186] aim for a privacy-preserving DBSCAN protocol based on HE [9,85] with
the presence of multiple data owners and an untrusted cloud server, but leaks some
information about the size of the final clusters.

While the privacy-preserving k-means algorithm is highly investigated, the proposal on
the privacy variant of DBSCAN is very few, and any solution on TRACLUS has not
been proposed yet in the state-of-the-art. Moreover, the presented solutions for clustering
techniques rely on the use of either MPC or FHE, and unfortunately, the workload of
the data owners in these solutions is heavy since usually multiple data owners (instead
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of the data owner(s) and the cloud server(s)) jointly do perform the required clustering
technique. Therefore, in the next sections, we propose two solutions that lower the
workload of the data owners and delegate this workload to two non-colluding cloud
servers.

7.4 Two-server pp-TRACLUS

This section presents our privacy-preserving trajectory clustering solutions in the two-
server scenario. One based on the Paillier cryptosystem, was an initial research solution
for pp-TRACLUS. The other one, which is based on 2PC [162], was published in ACM
ASIACCS 2021, 16th ACM ASIA Conference on Computer and Communications Security.

In this section, we show that when pp-TRACLUS can be useful for real-time use case
scenarios; for example, monitoring the people travelling from one place to another place
and giving some results regarding their travels without putting danger their data privacy,
and further, with keeping the clustering quality evaluation as good as the plaintext
TRACLUS and with obtaining the good performance evaluation. Therefore, we propose
two solutions for TRACLUS: We utilise two cloud servers to lower the workload of the
data owner and to demonstrate the suitability of the selected cryptographic techniques.

7.4.1 Problem Statement

As introduced in Section 2.2.3, the goal of trajectory clustering is to find similar travelling
routes in a set of trajectories. This requires clustering the trajectories based on the
location information. Since this can be a computationally expensive operation and be
needed for the expertise in machine learning, we consider a scenario where a data owner,
having collected multiple trajectories (i.e., a dataset), wishes to delegate the execution
of the actual TRAjectory CLUStering (TRACLUS) algorithm to two untrusted but
powerful cloud servers. Therefore, all trajectory information is needed to be protected
before their outsourcing to the two cloud servers. As discussed in Section 7.2, the dataset
can be protected by utilising cryptographic techniques. However, the combination of
TRACLUS and cryptographic techniques is not straightforward since TRACLUS involves
several complex operations, and those require to be simplified in order to be supported by
cryptographic techniques. Having a simplified version of TRACLUS may not be adequate
since the cryptographic technique one chose to employ has a critical role in obtaining an
efficient and high clustering quality evaluation. Therefore, in this section, we investigate
the suitability of the cryptographic techniques when integrating them with TRACLUS,
and also we show how we lessen the workload of the data owner(s).

The next two sections introduce our two-server aided designs for privacy-preserving
TRACLUS based on the additively homomorphic Paillier encryption scheme and 2PC.

7.4.2 PHE-based pp-TRACLUS: Description

We propose a privacy-preserving trajectory clustering that combines the Paillier encryption
scheme [9] and TRAjectory CLUStering (TRACLUS) [7] to find similar travelling routes.
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We consider a scenario whereby a data owner, having collected multiple trajecto-
ries partitioned into line segments (Note that the partitioning phase with the original
TRACLUS distance metric is assumed to be already performed by the data owner(s)),
wishes to delegate the execution of the actual TRACLUS to an untrusted but powerful
cloud server. Therefore, all trajectory information is needed to be protected before their
outsourcing to the cloud server. TRACLUS mainly consists of a number of distance
calculations (See Section 2.2.3). In order to perform these distance computations with
the Paillier encryption scheme, some operations need to be either transformed or ap-
proximated. Indeed, the Paillier encryption scheme supports only additions over the
encrypted data and some scalar multiplication, whereby the scalar is in the cleartext. We,
therefore, propose to simplify the original distance metrics defined in Section 2.2.3 and
replace them with the simple Squared Euclidean Distance (SED) as given in Equation 7.1.
Remind that the positional difference and directional difference are already included in
the combination of Euclidean Distances as in the perpendicular, parallel, and angular
distances of TRACLUS in Equations 2.14, 2.15, and 2.16.

SED(Li, Lj) =
N∑
r=1

L2
ir + 2

N∏
r=1

Lir · Ljr +
N∑
r=1

L2
jr (7.1)

where Li and Lj are two line segments, and r = 1, . . . , N denotes the components of line
segments when line segments Li and Lj can be multidimensional.

Moreover, we propose an approximated distance measure dpptrac for pp-TRACLUS
(illustrated in Figure 7.2) where given two line segments Li and Lj defined with starting
points si and sj and ending points ei and ej as in Equation 7.2:

dpptrac(Li, Lj) = SED(si, sj) + SED(ei, ej) (7.2)

SED1

SED2

Figure 7.2 – Approximated distance measure dpptrac

As shown in Equation 7.1, the computation of the Euclidean Distance involves
some multiplication operations that the Paillier encryption scheme cannot inherently
support. Therefore, we propose supporting multiplications with a newly designed protocol
executed between the cloud server and another cloud server we name EDServer. The
newly proposed solution is illustrated in Figure 7.3.

The data owner (DO) encrypts all line segments (e.g., the starting and ending points of
all line segments when line segments are 2-dimensional) and their square with the Paillier

115



Chapter 7. Privacy-preserving Clustering

Data Owner

Cloud ServerEDServer

Distance Calculation Encrypted Line Segments 

Figure 7.3 – pp-TRACLUS based on the Paillier cryptosystem

cryptosystem and sends them to the cloud server (CS). The encryption is performed
using the public key of EDServer. Then, CS starts to compute SEDs between these
segments: CS simply adds the encrypted squared coordinates depicted as the first and
last terms in Equation 7.1. When multiplication between two encrypted numbers is
needed, CS interacts with EDServer as follows: Let [a] and [b] be two encrypted numbers
using EDServer’s public key. In order to prevent EDServer from accessing the cleartext
numbers, CS performs a scalar multiplication with some random numbers ra and rb to
randomise the values and send these randomised results to EDServer. When these newly
computed values are received, EDServer can decrypt them, perform the multiplication,
and encrypt the multiplication result. CS can easily recover [a · b] thanks to its knowledge
of the random numbers ra and rb as illustrated in Equation 7.3 (This calculation is similar
to the Secure Square Protocol in SwaNN 4.5).

[a · b] = [a · b] + [a] · ra − [a] · ra + [b] · rb − [b] · rb + ra · rb − ra · rb
= [a+ ra] · [b+ rb]− [a] · ra − [b] · rb − ra · rb

(7.3)

After having calculated all distances between one line segment and all other not
clustered line segments, CS sends an array of all encrypted distances to EDServer, which
can decrypt and determine which distances are smaller than a given threshold ε2. As
EDServer does not know which distance belongs to which pair of line segments, it only
learns the number of not clustered line segments and how many elements belong to one
cluster. However, as the size of each cluster may be published, this information might
be considered as not a sensitive information leakage. EDServer denotes all positions in
the array that contain a distance smaller than ε2 with 1 and all others with 0. Once
CS distinguishes which line segments are neighbours of the one that is analysed, it can
create a cluster out of them. Then, it keeps to analyse each line segment in this cluster
to determine whether they are also a core line segment of this cluster, and the other
elements can be added. The process requires another SED calculation that can be run in
the same way as previously described.

Security Evaluation

This solution is assumed to be based upon the semi-honest security model. In this security
model, all parties, including the data owner, the cloud server, and EDServer, are honest
to follow the protocol correctly. Still, they are curious to gain as much information as
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possible while executing the privacy-preserving TRACLUS protocol. In other words,
they might store information from old exchanged data and combine them to obtain
more information. Moreover, we also assume that the cloud server and EDServer cannot
collude. The goal of the data owner is to keep the dataset and the resulting clusters
confidential to any parties including the cloud server and EDServer. Thanks to the
semantically secure Paillier cryptosystem and randomisation, our privacy requirements
are guaranteed.

Performance Evaluation

We present the experimental evaluation of PHE-based pp-TRACLUS using two public
datasets, and further, we compare our solution with the PHE-based k-means solution.

Datasets. Two datasets are used for evaluating the performance of the proposed solution.

• Hurricane: This dataset [7] contains the track data of Atlantic hurricanes from
1950 to 2006. It has 608 trajectories with 18343 line segments.

• Taxi Trip: This dataset originally containing 800000 taxi routes was extracted from
NYC Trip Sheet Data in January 20181. We prepared this dataset consisting of
13511 trajectories for 265 users.

Note that the values of datasets for Hurricane and Taxi are already integers.

Figure 7.4 – Comparison of pp-k-means and pp-TRACLUS with Hurricane trajectories

Experimental setup. To implement the PHE-based pp-TRACLUS, we have used
Python 3 library for the Paillier encryption scheme2. The protocol was carried out
employing a laptop with 2.5 GHz Intel Core i5-2410M processor and 8 GB RAM.

1https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page
2https://python-paillier.readthedocs.io/en/develop/
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We have run several experiments for the privacy-preserving k-means (pp-k-means)
of [182] and pp-TRACLUS over the Hurricane and Taxi datasets. For the Hurricane
dataset, we use 17 trajectories of hurricanes, and the resulting timing can be found in
Figure 7.4.

Moreover, we have timing results depicted in Figure 7.5 for 30 taxi trajectories created
from the NYC Taxi dataset.

Figure 7.5 – Comparison of pp-k-means and pp-TRACLUS with Taxi trajectories

According to the performance evaluation, the privacy-preserving k-means solution is
more efficient than pp-TRACLUS since one of the reasons is that k-means contains fewer
operations than TRACLUS, and another one is that the data packing was implemented for
k-means. This can also be seen in the complexity evaluation of PHE-based pp-TRACLUS
shown in Table 7.1 in terms of communication and computational costs and note that n
is the dataset size.

Data Owner Cloud Server EDServer

Encryption 8 · n 4 · (n2 − n)
Decryption 8 · (n2 − n)
Multiplication (8 + 12 + 12) · (n2 − n)
Exponentiation (8 + 4) · (n2 − n)
RNG3 8 · (n2 − n)
Communication 1 4 · (n2 − n) 4 · (n2 − n)

Table 7.1 – Computational and communication complexity of pp-TRACLUS

Summary

In this section, we have presented our PHE-based pp-TRACLUS solution. We propose to
approximate the TRACLUS distance metric with the use of Squared Euclidean Distance
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to be compatible with the Paillier encryption scheme. Moreover, since Paillier enables
additions and scalar multiplications, we present a secure multiplication protocol to
perform multiplications and thus the Euclidean distance computations. In order to show
the performance of our solution, we employ two datasets and compare our results with
the privacy-preserving k-means.

7.4.3 2PC-based pp-TRACLUS: Description

This section discusses the limitation of the PHE-based pp-TRACLUS and investigates
the approximated distance measure dpptrac once more. Further, we provide our two-server
aided and 2PC-based solution, which can be considered as a performance improvement
on the data owner(s) side in the solution presented in Section 5.4.

The previously presented solution for pp-TRACLUS based on PHE (see Section 7.4.2)
leaks some information that the cloud server learns the number of line segments and the
values of MinLns and ε. Moreover, although EDServer, which helps the cloud server
perform the Euclidean distance and comparison computations, can extract no information
about the coordinates of the line segments since the data randomisation/masking is
performed, EDServer can access to ε2 and MinLns and can get the information about
cluster sizes and which indices in the array belong to a cluster when it is analysing which
line segment belongs to a neighbourhood. One can improve this solution by employing
some permutations and some optimisation methods such as data packing in terms of
security and performance aspects. With implementing permutations, EDServer cannot
infer any information such as the cluster sizes.

SED1

SED2

SED3

SED4

Figure 7.6 – Approximated distance measure dpptrac

As described in Section 2.2.3 and illustrated in Figure 2.3, the computation of the
TRACLUS distance metric dist involves some complex operations. As in Section 5, in
order to ensure data privacy, to execute the clustering phase efficiently, and to obtain
a high quality evaluation of TRACLUS, we approximate this distance metric dist to
the combination of the Squared Euclidean Distance (SED), namely dpptrac as depicted
in Figure 7.6. This approximated distance measure is different than the approximated
distance measure in Section 7.4.2 and consists of four SEDs since we restudy the quality
evaluation of TRACLUS: We have conducted several simulations and discovered that the
combination of four SEDs results in a high quality evaluation as the plaintext TRACLUS
distance metric. Thus, the simplified distance measure for given two line segments Li
and Lj defined with starting points si and sj and ending points ei and ej is as follows:
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dpptrac(Li, Lj) = SED(si, sj) + SED(si, ej) + SED(ei, sj) + SED(ei, ej) (7.4)

Data Owner

Cloud Server 1

Cloud Server 2

Figure 7.7 – Clustering in the two-server scenario

Therefore, this section proposes a 2PC-based solution to handle the limitation of
the PHE-based solution. Similarly, employing two non-clouding servers in this solution
is to have an efficient solution that incurs very little work for the data owner. For the
2PC-based pp-TRACLUS, we consider the following scenario illustrated in Figure 7.7: A
data owner DO holds a dataset of line segments and delegates the trajectory clustering
operations to two untrusted (semi-honest), non-colluding cloud servers CS1 and CS2.
The reason for involving two non-colluding cloud servers instead of one is to move heavy
computations between DO and CS to the computations between two cloud servers, namely
CS1 and CS2. We assume that the data owner has already run the partitioning phase
over its dataset D and would like to outsource the clustering phase over D to CS1 and
CS2. DO first creates two secret shares using AS .Share (see Section 3.2.3) of the line
segments, ε2, and MinLns, and sends them to CS1 and CS2. Hence, non-colluding CS1
and CS2 would interactively execute each operation of the TRACLUS clustering phase
under privacy preservation: They compute the distance matrix using the shares of line
segments and ε2 and then compute the clusters using the shares of this distance matrix
and MinLns. Finally, each CS obtains one share of the pp-TRACLUS clusters’ result.
The cloud servers send their share to the data owner who adds them to get the final
result.
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Security Evaluation

In pp-TRACLUS based on 2PC, the data owner(s) and the two cloud servers are assumed
to be semi-honest: they have to run the protocol steps correctly, yet they may try to
collect exchanged information and further may use these information to obtain any
information about the input and output of pp-TRACLUS. pp-TRACLUS is secure and
ensures data privacy thanks to the use of 2PC.

Performance Evaluation

We evaluate the performance of the 2PC-based pp-TRACLUS related to a real-life use
case scenario in which a data owner DO, namely a telecommunication provider, collects
human movements trajectories for the analysis purposes related to the containment of
COVID-19 and have already run the partitioned phase of TRACLUS. Further, DO owns
the dataset of line segments and wishes to learn similarities or some pattern among them
by employing two non-colluding semi-honest cloud servers CS1 and CS2. Due to the
nature of the dataset (i.e., privacy-sensitive), and thus before outsourcing, DO splits all
line segments into two shares and sends one share to CS1 and one share to CS2. Once
CS1 and CS2 complete the protocol run, each holds the share of the result, which will be
sent to DO. Finally, DO obtains the clustering result.

To implement our solution, we use the ABY framework [42] written in C++, and the
security level is set to 128-bit. All experimental setup and the datasets are the same as
the 2PC-based pp-TRACLUS containing players of DO and CS in Section 5.4.3 except
we employ two separate cloud servers, each equipped with 2.30 GHz Intel Xeon Gold
6140 processor with Ubuntu 20.04 LTS and 64 GB RAM.

The pp-TRACLUS performance results are depicted in Table 7.2. These results
correspond to the average from the execution of 10 individual simulations. We observe
that a pp-TRACLUS instance on the Travel dataset takes 16.66 mins for 400 line segments
utilising arithmetic sharing for the distance computation and Boolean sharing for the
clusters whereas using only Boolean sharing, it takes 17.53 mins for 400 line segments.

Table 7.2 – Timing result for pp-TRACLUS on the Travel dataset with ε2 = 13.5× 109

and MinLns = 3

pp-TRACLUS # of Line Segments Time (mins) Memory (GB)

Arithmetic &
Boolean
Sharing

100 1.25 2
400 16.66 11
1000 53.20 62

Boolean
Sharing

100 1.10 2
400 17.53 11
1000 113.26 62

To summarise, our simplified and approximated distance measure dpptrac containing
the use of two-server lowers the DO’s workload and securely clusters line segments without
sacrificing data privacy and leaking any information about the clusters.
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This particular dataset (illustrating persons’ travel patterns) may need more precision
(i.e., more clusters). In other words, there might be more than one route between
two locations A and B, and these routes should not have been grouped into one: pp-
TRACLUS can group all line segments in one cluster because of the ExpandCluster
method in Algorithm 5. We propose to reduce the number of ExpandCluster to 1 in order
to take only the first-level neighbours into account and to obtain a larger variety of clusters
(containing trajectories that reach B by passing through different locations Li, 0 ≤ i)
and call this adaption pp-TRACLUS′. We run two experiments for pp-TRACLUS′,
namely Experiment 1 and 2 that have different ε2 values. Our results show that the
number of clusters increases with good quality evaluation by SC, SCnoise, and DBCV
when comparing TRACLUS and pp-TRACLUS.

Table 7.3 – Results of the clustering quality assessment for TRACLUS, pp-TRACLUS,
and pp-TRACLUS′ on the Travel dataset. The best results are marked in bold.

Experiment 1
TRACLUS pp-TRACLUS pp-TRACLUS′

(ε2, MinLns) (4200, 3) (450× 106, 3) (450× 106, 3)

# of Clusters 1 2 48

Noise 796 13092 13506

SC N/A 0.83 0.98

SCnoise N/A 0.56 0.65

DBCV N/A 0.67 0.37

Table 7.4 – Results of Experiment 2 of the clustering quality assessment for TRACLUS,
pp-TRACLUS, and pp-TRACLUS′ on the Travel dataset. The best results are marked
in bold.

Experiment 2
TRACLUS pp-TRACLUS pp-TRACLUS′

(ε2, MinLns) (47× 103, 3) (13.5× 109, 3) (13.5× 109, 3)

# of Clusters 1 1 2

Noise 0 359 361

SC N/A N/A 0.82

SCnoise N/A N/A 0.81

DBCV N/A N/A 0.98

We also evaluate the timing results for pp-TRACLUS′ shown in Table 7.5. These
results correspond to the average from the execution of 10 individual simulations. The
clustering on the Travel dataset takes 3.68 mins for 400 line segments utilising arithmetic
sharing for the distance computation and Boolean sharing for the clusters whereas using
only Boolean sharing for both computations, 400 line segments are clustered in 13.56
mins.

Our simplified and approximated distance measure dpptrac creates a larger number
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Table 7.5 – Timing result for pp-TRACLUS′ on the Travel dataset with ε2 = 13.5× 109

and MinLns = 3

pp-TRACLUS′ # of Line Segments Time (mins)

Arithmetic &
Boolean
Sharing

100 0.43
400 3.68
1000 25.23

Boolean
Sharing

100 0.66
400 13.56
1000 87.40

of clusters and marks more elements as outliers. Nevertheless, our clustering quality
evaluation gives even better results for the Travel dataset showing that its quality
evaluation is comparable to the original tripartite distance metric of TRACLUS.

7.5 Conclusion of privacy-preserving clustering

In this chapter, we have introduced new privacy-preserving trajectory clustering solutions,
namely PHE-based pp-TRACLUS and 2PC-based pp-TRACLUS, that allow two non-
colluding cloud servers to efficiently cluster a dataset coming from a data owner and obtain
a good clustering quality evaluation without scarifying the privacy of the underlying
data.

In these solutions, we implement the privacy-by-design approach and consider two
cases: (i) minimising the cryptographic technique incompatibilities; and (ii) providing
private trajectory clustering.

– PHE-based pp-TRACLUS proposes an approximate for the TRACLUS distance
metric with the use of Squared Euclidean Distance which is efficiently performed
by the Paillier encryption scheme. Moreover, we present a secure multiplication
protocol to perform multiplications and thus the Euclidean distance computations.
Moreover, we compare our performance results with the privacy-preserving k-means
that uses Squared Euclidean Distance.

– 2PC-based pp-TRACLUS also employs a similar distance measure as the PHE-based
pp-TRACLUS; however, the former clusters a given dataset without leaking any
information. Moreover, we evaluate the performance and also the clustering quality:
Our solution, pp-TRACLUS with dpptrac, enables efficient privacy preservation with
a good level of clustering quality.
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Chapter 8

Privacy-preserving Data Aggregation

The earth has music for those who listen.

George Santayana

In this chapter, we study the privacy challenges raised by data aggregation when
integrating cryptographic techniques. Then, we review the state-of-the-art solutions and
further present our solution consisting of two cloud servers for privacy-preserving data
aggregation based on multi-key fully homomorphic encryption, multi-key TFHE, and
threshold fully homomorphic encryption.

8.1 Introduction

According to The Economist1, data is stated as the new, most valuable resource of
the world. Data-driven companies are always in competition to collect/process more
and more information about their clients (or users) and further utilise them to improve
their services. However, companies being abundant of such data need the data to be
gathered/expressed in a summary form. Thanks to data aggregation which consists
of collecting data and performing some statistical analysis such as sum, average, etc.,
these companies can make correct decisions and improve their services quickly, and
this thus increasingly makes such aggregate data essential and valuable for companies
since the aggregate data is ready to bring answers to analytical questions for groups of
people or helps companies achieve insights about their business analysis. Nevertheless,
the sensitive nature of the data raises serious privacy and legal concerns. Therefore,

1https://www.economist.com/leaders/2017/05/06/the-worlds-most-valuable-resource-is-no-longer-
oil-but-data
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Figure 8.1 – Data aggregation setting

companies require the implementation of cryptographic techniques which, on the one
hand, should ensure data privacy and help comply with privacy regulations such as the
General Data Protection Regulations (GDPR) [2] and on the other hand, should be
compatible with the underlying data processing/data aggregation operations.

Furthermore, companies may need domain-specific expertise and/or computational
resources to perform the aggregation operations over protected data. Hence, they usually
rely on the existence of third party cloud servers for such analytics operations. In this
chapter, we name these cloud servers Aggregators. These can be considered as one
platform which offers aggregation operations for multiple stakeholders and over multiple
datasets collected from a large number of clients. This platform can help companies
boost their quality of service. With the existence of this new third-party Aggregator, the
implementation of cryptographic techniques becomes even more essential.

A privacy-preserving data aggregation protocol is defined as a protocol where an
Aggregator collects data from a large number of clients that we name Data Owners in a
privacy-preserving manner and obtains some aggregate information about these collected
data without leaking the individual data values. The aggregation operation usually
consists of the sum of the collected data. Moreover, there are some Data Analyser that
one Aggregator may serve with the data collected from several Data Owners. In this
chapter, we study the privacy challenges raised by this setting as illustrated in Figure 8.1
and propose PRIDA, a privacy-preserving data aggregation solution that, on the demand
of some stakeholders, allows untrusted third-party Aggregators to collect private data
from a large number of clients and perform some aggregation operation over these data.
PRIDA ensures that the aggregate result is only accessible to the actual stakeholder who
queried the aggregation operation.
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8.2 Privacy vs. Data Aggregation

This section focuses on data aggregation and its operations to identify the privacy
requirements/goals to design the privacy protection variant of it.

Privacy-preserving data aggregation solutions enable an untrusted cloud server to
collect data, gather or express the privacy-sensitive data in a summary form and perform
some statistical analysis such as sum, average, etc., over them. Companies, which are
interested in the aggregated result, utilise the services of Machine Learning as a Service
consisting of domain-specifically expert and/or computationally resourced cloud server(s)
(namely Aggregator(s)) to perform the aggregation operations over protected data. With
the existence of these outsourced services, the implementation of cryptographic techniques
becomes even more essential due to the data protection regulations [2, 3].

By definition, a privacy-preserving data aggregation protocol should ensure input
privacy : Each input to the aggregation operation that is collected from Data Owners
(DOs) should remain confidential to all parties except the actual DO. Furthermore,
because the newly proposed setting introduces multiple Data Analysers (DAs), given an
instance of the protocol, only authorised DAs should be able to have access to the actual
aggregate result. This can be defined as the need for output privacy.

Additionally, since the Aggregator (Agg) is serving multiple DAs interested in receiving
aggregate information, DOs can easily lose the control of the use of their data. Indeed,
DOs cannot easily control whether they have or not participated to an aggregation
operation requested by a certain DA. We believe that this problem has not been studied
in existing solutions since these consider a unique DA or Agg who is inherently authorised
to receive the result. Indeed, in prior solutions, if DO does not want to contribute to the
statistics, it simply does not send its input to Agg. This is no more possible when there
exists multiple DAs.

Finally, we believe that, in this new setting, DOs may also wish to remain anonymous
to DAs: DAs should not even identify which DO participated to the actual aggregation
operation. Existing works do not discuss this problem mainly because Agg knows all the
participating DOs.

8.3 Prior Work

This section overviews existing privacy-preserving data aggregation solutions based on
the cryptographic techniques.

8.3.1 DP (and HE)-based solutions

Rastogi and Nath [187] employ a distributed Laplace perturbation algorithm to add noise
in a distributed way to ensure differential privacy (DP) of inputs. Also, authors consider
potential collusions between some Data Owner (DO) and the Aggregator or collusions
between DOs. Thanks to DP, when collusions exit, colluding parties cannot disclose the
input data. However, [187] cannot be enough to meet the privacy requirements in the
many-to-many setting. Shi et al. [188], Kursawe et al. [189], and Chan et al. [190] utilise
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DP and Decisional Diffie-Hellman (DDH) for the input privacy against the semi-honest
Aggregator. [191,192] generalise the study of [188] by using the Paillier cryptosystem [9]
and Aggregator-oblivious encryption scheme, respectively. Note that these solutions [188–
192] need a trusted dealer for key distribution among DOs, and there is no other party,
namely a Data Analyser (DA), other than the Aggregator acting as DA. When the
many-to-many setting is considered, the data aggregation for another DA needs new
keys to be generated. [193] is an extension of [188, 191] since these solutions require a
trusted key dealer and key updates, and it enables DOs to generate their self-generated
keys, which a semi-trusted collector obtains. Later this collector constructs the key for
the Aggregator. Yet, [193] is not sufficient to be a solution for the challenges in the
many-to-many setting. Bilogrevic et al. [194] employ an encryption scheme and DP.
The aggregate result is open to Aggregator, and Aggregator can sell this result to some
Customer(s) as Data Analysers. Although the solution by [194] seems perfect to satisfy
the privacy requirements in the many-to-many setting, the result privacy is neglected, and
also, DOs do not control DAs. Moreover, PATE [195], [196], UnLynx [197], Drynx [198],
and SPINDLE [199] propose private learning over distributed datasets. Differently, [200]
and [201] present a secure shuffle model of DP whereby DOs send their private data
through a shuffler, which ensures the Aggregator not to identify which data sent by which
DOs.

8.3.2 HE-based solutions

Erkin [202] proposes to combine Chinese Remainder Theorem with the modified Paillier
cryptosystem. DOs are split into hierarchical groups using the public key of Utility
Provider as DA, and DOs in these groups are required to communicate with each other
for generating a secret key. The computation of aggregate data is performed over these
groups’ encrypted data by Aggregator. Then, DA receives the aggregate result. When
adopting this solution to the many-to-many setting, DOs cannot easily choose DAs, and if
Aggregator and DA collude, the input privacy is eliminated. Leontiadis et al. [203] propose
PUDA (needs a trusted dealer to generate keys) whereby DOs send their private using
DDH to Aggregator who computes and learns the aggregate result. Then, Aggregator
forwards this result to some DA. While considering the many-to-many setting, the output
privacy is eliminated. [204] uses DHH-based private set intersection (PSI) with the Paillier
scheme and consists of two parties: one obtains PSI, and the other receives the sum over
the PSI result. This solution cannot easily be modified since the many-to-many setting
poses a large number of parties, and PSI is not the scope of PRIDA.

8.3.3 MPC/2PC-based solutions

Many DOs of SEPIA [205] export their input data to the SEPIA input peers, and these
peers split inputs into shares using Shamir’s secret sharing [206] and send to the SEPIA
privacy peers as Aggregators. The result is sent back to DOs. However, in SEPIA, the
input is not private only to its owner. In Prio [207], many DOs use secret sharing to split
their data and send these shares to a set of servers as Aggregators. These Aggregators
compute data analytics over them and obtain the aggregate statistics, which is not
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confidential only to a (or many) DA(s). Moreover, Bonawitz et al. [208] utilise Shamir’s
secret sharing whereby many DOs generate various random masks for their private inputs
to add/subtract these random numbers to/from their input and send their secret keys
shares to Aggregator. When all the inputs are brought together, Aggregator can learn
the addition result. Since the need for collaboration between DOs is not wanted in the
many-to-many setting, [208] cannot be easily adapted. Tsaloli et al. [209] propose a
verifiable Shamir’s secret sharing based aggregation. Helen [210] is also an MPC-based
platform for collaborative learning. Additionally, SAFER [211] employs MPC to provide a
secure aggregation protocol performed by several Aggregators. F2ED-Learning [212] uses
a mean estimator, FilterL2 and secure aggregation (on top of [208]) for federated learning.
In [212], all DOs are split into many small groups that perform secure aggregation with
the help of a centralised Aggregator. Further, FilterL2 is used over the aggregated local
updates from different groups. Furthermore, FLGUARD [213] proposes secure 2PC
to guarantee input privacy. Prio+ [214] is a work on top of Prio [207], but DOs use
Boolean secret sharing to ensure some set of Aggregators for convincing their inputs used
in a correct form. Lastly, SAFELearn [215] is a federated learning solution based on
MPC or based on FHE. A recent study proposed by Karakoç et al. [216] use oblivious
programmable pseudo-random function. Nevertheless, with these MPC-based solutions,
DOs cannot choose which DAs can receive their input used to compute data aggregation,
and the anonymity of DOs cannot be provided.

8.3.4 Hybrid solutions

Some hybrid solutions [217,218] use the Paillier encryption and additive secret sharing.
Also, [219] utilise pairwise non-interactive key exchange (NIKE), outsource this NIKE to
the non-colluding Aggregators, and with a mask-then-encrypt technique, authors provide
the input privacy. Nevertheless, these solutions do not consider the existence of multiple
DAs and they cannot be easily extend to the challenges described in Section 8.4.1.

To summarise, most of the state-of-the-art solutions do not consider multiple DAs, and
do not provide flexibility for DOs, who can easily choose some DAs to have access to
the aggregate result. Therefore, most of the existing solutions can be considered as an
”‘all-or-nothing”’ whereby as soon as the DO participates to the aggregation, all DAs
can have access to the aggregate result. Additionally, only one work [187] studies the
effect of collusions between parties. Finally, the problem of DO anonymity is not tackled
in many solutions. Thus, we can conclude that by combining the use multi-party fully
homomorphic encryption (MP-FHE that contains multi-key FHE and threshold FHE)
and 2PC and introducing two non-colluding Aggregators, PRIDA succeeds in supporting
multiple DAs while ensuring input and output privacy, allowing DOs to have some control
on their data and keep their anonymity.
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8.4 PRIDA: PRIvacy-preserving data aggregation with multiple
Data Analysers

In this section, we propose PRIDA [220], a privacy-preserving data aggregation solution
with multiple data analysers. This work is under submission.

In this work, we consider a more realistic (and more generic) scenario where there
are more than one Data Analyser that one Aggregator may serve with the data collected
from several Data Owners.

8.4.1 Problem Statement

In this section, according to the identified privacy requirements/goals raised by the
extended setting in Section 8.2, we revise the threat model accordingly.

As input privacy is the traditional and essential privacy requirement for a privacy-
preserving data aggregation solution, the state-of-the-art satisfies this requirement. How-
ever, the new setting introducing many Data Analysers raises new challenges such as
the need for output privacy, the lack of control of DOs over DAs and DO anonymity.
Therefore, this new setting is needed to revisit the threat model of a privacy-preserving
data aggregation protocol involving multiple DAs. The introduction of multiple DAs
increases the risk of potential corruptions and collusions among parties which could
seriously endanger input and output privacy guarantees.

Similar to the majority of existing studies, we assume a semi-honest security model
where all parties have to follow the protocol steps correctly. Still, these can act curiously
to infer some information from the exchanged data. The potential adversaries in this
threat model are enumerated as follows:

• An external adversary who does not participate to the protocol may try to discover
information about inputs of DOs and/or results (or outputs) of DAs.

• The semi-honest Data Owner (DO) may try to learn information about the data
aggregation result(s) and other DOs’ inputs. Moreover, note that DOs should not
discover the other DOs who contribute the aggregate information.

• The Aggregator (Agg) may wish to discover input data of DOs and DAs’ aggregate
results.

• Data Analyser DA may try to discover information about inputs of DOs and other
DAs’ aggregate results. DA may also try to discover the identity of any DO.

As previously mentioned, the existence of multiple DAs can imply more power to the
adversaries with potential collusions. For example, if some DA and Agg collude, they can
discover the input of some DOs. Also, the output privacy guarantee can be in danger
since the result of other DA(s) can be disclosed by these two parties when they collude.
Therefore, the threat model should also consider the collusions between parties:

• When curious DO and Agg collude, the DO should not learn any information about
the data aggregation result(s) and other DOs’ inputs.
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Figure 8.2 – PRIDA - Players

• If DA and Agg collude, DA should not learn anything about inputs of DOs and
other DAs’ aggregation results.

• Finally, Agg should not discover the input of DOs and DAs’ results even if Agg
colludes with DA or DO.

In order to cope with the challenges identified in the previous section, namely (i) the
possible collusions between parties; (ii) the lack of control of DOs over DAs; and (iii) the
anonymity of DOs in addition to the traditional privacy requirements that are input and
output privacy, we propose a new solution named PRIDA that firstly introduces two
non-colluding Aggregators instead of one. This new setting protects against collusions
among different parties. Furthermore, to ensure both input and output privacy and
enable DO to have some control over DAs, we propose to combine the use of MP-FHE
whereby one can perform operations over data encrypted under multiple keys and secure
two-party computation whereby two parties jointly perform a function over their private
inputs without disclosing them. The 2PC protocol is implemented between the two
Aggregators and mainly ensures input and output privacy against Aggregators. On the
other hand, the use of MP-FHE enables DO to encrypt the data with multiple keys
corresponding to the Aggregators and DA, helps DOs have some control over DAs. We
believe that each cryptographic technique alone is not sufficient to achieve all privacy
goals identified for PRIDA: Indeed, if 2PC is used alone, unauthorised DAs can receive
some aggregate result when colluding with one Agg; on the other hand, if MP-FHE is
used alone, the inputs of DOs can be revealed, and DOs cannot easily control DAs when
there is collusion between Agg and DA.

Furthermore, in order to protect the anonymity of Data Owners, before the actual
privacy-preserving aggregation operation, we propose a preliminary privacy-preserving
counting scheme that ensures that aggregation takes place only if some threshold number
is reached.

To summarise, PRIDA involves the following three parties in Figure 8.2:

• Data Owner DO owns some confidential input data and outsources this confidential
data to the Aggregators once its data is first encrypted with MP-FHE and further
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secret shared. DO also secretly defines which Data Analyser can have access to the
aggregate result involving its input.

• Data Analyser DA obtains the data aggregation result over the inputs from many
DOs in cleartext if authorised using the decryption algorithm of MP-FHE.

• The two Aggregators (Agg1 and Agg2) are two non-colluding cloud servers which
collect the encrypted data from many DOs, perform the data aggregation requested
by DAs, and send the results to the authorised DA.

8.4.2 PRIDA: Detailed description

In this section, we present our solution named PRIDA, which combines the use of 2PC
with MP-FHE schemes in order to ensure that Data Owners (DOs) can choose which
Data Analyser (DA) can have access to the aggregate result involving their input, and,
at the same time, in order to protect against potential collusions among parties. As
previously mentioned, the only assumption we make is that the two Aggregators do not
collude.

PRIDA is defined in five phases: (i) the setup phase in which the keying material
is generated; (ii) the data protection phase whereby DO actually decides which DA can
have access to the aggregate result for which DO has participated and encrypts and
secret shared the relevant data accordingly; (iii) the preliminary counting phase in which
the two Aggregators find out which DA can receive the aggregate result is by counting
number of authorising DOs and verifying if this number exceeds a pre-defined threshold;
(iv) the aggregation phase which consists of the Aggregators jointly aggregating the data
collected from different DOs; and finally (v) the decryption phase whereby an authorised
DA decrypts the data aggregation result together with the two Aggregators.

We propose three versions of PRIDA which differ with respect to the underlying
MP-FHE scheme:

• PRIDA v1 makes use of the asymmetric MK-FHE [87] (see Section 8.4.2). Each DO
replicates its DAta as many times as the number of authorised DAs and encrypts
each instance with three public keys: The public keys of the two Aggregators and
the public key of the actual DA.

• PRIDA v2 is based on the symmetric MK-FHE, namely MK-TFHE [88] (see
Section 8.4.2). In this case, DOs need to establish pairwise symmetric keys with
each Aggregator.

• PRIDA v3 is based on Th-FHE [90,91] (see Section 8.4.2) and consists of each DO
encrypting the data with one common public key that is collaboratively generated
by one DA and the two Aggregators. The decryption involves the three secret keys
of each party corresponding to this common public key.

As previously mentioned, during the setup phase, parties generate their keying material
according to the underlying multi-party homomorphic encryption scheme. In the second
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phase, each DOi decides which DA is authorised to have access to the aggregate result in
which its input is involved. To this end, DOi first defines a binary choice vector cvi where
each element is mapped to a particular DA and the value corresponds to the authorisation
decision (0 if DA is not authorised and 1 if authorised). Each DO also defines a data vector
dvi of dimension m (same size with cv) where m is the total number of DAs. If the actual
DA is authorised, then the corresponding element is set to the input of DO. Otherwise,
DO generates a random number r which is set to the corresponding element of vector dv.
Finally, DO randomly generates two arithmetic secret shares for cv and dv and further
encrypts the two shares of dv. Each share is then sent to the corresponding Aggregator
(Aggk. k = 1 or 2). Then, in the preliminary counting phase Agg1 and Agg2 jointly add
the choice vectors received from each DO in 2PC and further obtain the resulting number
of DOs per DA, cvtotalj without discovering which DO authorised which DAj . If the
number of DOs authorising a particular DAj is greater than the pre-defined threshold t,
then the two Aggregators can start the actual aggregation phase described in Algorithm 6:
For an authorised DAj , Aggregators compute cvij ·[dvij ] for each DOi in 2PC and further
compute the sum of these intermediate values for all DOi to find the aggregate result
[sj ] for the authorised DAj . Finally, during the decryption phase, Aggregators partially
decrypt the aggregate result which is further sent to the corresponding authorised DA
who in its turn partially decrypts obtains the plaintext result sj .

Algorithm 6 Aggregation phase executed by Agg1 and Agg2

for i = 1 to n do
Compute [〈εi〉k]← Eval(+, ([〈dvi〉k],〈αi〉k)).
Calculate 〈δi〉k ← 〈cvi〉k + 〈βi〉k.
Agg1, Agg2: Exchange [〈εi〉k] and 〈δi〉k to compute [εi] and δi.
Use Eval to element-wise multiply [εi] and 〈cvi〉k.
Employ Eval to element-wise multiplies δi and [〈dvi〉k].
Add 〈γi〉k, [εi ? 〈cvi〉k], and [δi ? 〈dvi〉k] by making use of Eval.
Agg1: Send [〈γi〉k + εi ? 〈cvi〉k + δi ? 〈dvi〉k] to Agg2.
Agg2: Perform [〈γi〉 + εi ? 〈cvi〉 + δi ? 〈dvi〉] ← Eval(+, ([〈γi〉1 + εi ? 〈cvi〉1 + δi ?
〈dvi〉1], [〈γi〉2 + εi ? 〈cvi〉2 + δi ? 〈dvi〉2])).
Agg2: Compute [εi ? δi]← Eval(?, ([εi], δi)).
Agg2: Calculate [dvi ? cvi]← Eval(−, ([γi + εi ? cvi + δi ? dvi], [εi ? δi])).

Agg2: Call Eval to add all [dij · cij ] and finds aggregate result [sj ] for authorised DAj .

We now present the details of PRIDA depicted in Protocol 5, Protocol 6, and Protocol 7
which is based on 2PC and MK-FHE, MK-TFHE, and Th-FHE. In the next sections, we
will only highlight the main differences between each instantiation.

PRIDA v1: PRIDA with MK-FHE

PRIDA v1 presented in Protocol 5 combines secure two-party computation (2PC) and
asymmetric multi-key fully homomorphic encryption (MK-FHE) [87].

During the data protection phase of Protocol 5, each DOi first needs to secret share
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its data dvi and encrypt each share with three public keys: those of Agg1, Agg2, and
the actual DAj . Since the original MK-FHE only involves one public key, we propose
the following transformation (Step (b) to (f) in Protocol 5): DOi once again secret
shares 〈dvi〉k into three shares and encrypts each share with one of the three public keys;
then, MK-FHE .Pre-process is called for each of these encrypted shares and finally these
three values are summed using MK-FHE .Eval. The obtained result correspond to the
encryption of 〈dvi〉k with three keys, as expected.

PRIDA v2: PRIDA with MK-TFHE

This section shows that PRIDA also supports a symmetric multi-key FHE. As previously
mentioned in Section 3.5.2, a symmetric multi-key FHE, namely MK-TFHE, is constructed
as an extension of TFHE [63]. The main challenge to build on MK-TFHE relies on
the generation and distribution pairwise symmetric keys. The large number of parties
(DOs and DAs) results in a large number of pairwise keys. We therefore address this
problem by transforming ciphertexts encrypted with individual key sets to ciphertexts
encrypted with common group keys. More specifically, each DAj shares one common key
kj with all DOs and each DO establishes one pairwise key with each Aggregator; When
Agg1 and Agg2 receive individual ciphertexts encrypted with different sets of keys, they
partially decrypt them with the keys that they know and re-encrypt them with their
unique key only known by themselves. We introduce this new algorithm in Algorithm 7
as MK-TFHE .Post-process. Thanks to this new algorithm, the two Aggregators do not
need to execute MK-TFHE .Pre-process as double as the number of DOs.

The specification of PRIDA v2, executing MK-TFHE .Post-process is provided in
Protocol 6, and the main difference with Protocol 5 resulting from the use of MK-TFHE
instead of MK-FHE is highlighted with the blue colour.

PRIDA v3: PRIDA with Th-FHE

PRIDA v3 is constructed by using 2PC and threshold fully homomorphic encryption
(Th-FHE). As previously mentioned, Th-FHE requires each DA and the two Aggregators
to jointly generate one unique public key. Therefore, in the setup phase, they employ
Th-FHE .KeyGen to generate a public key for the use by DOs. The details are shown in
Protocol 7, and the different steps of Protocol 7 are coloured with blue when compared
to Protocol 5.
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Protocol 5 PRIDA based on asymmetric MK-FHE

Inputs. DOi, i ∈ {1, . . . , n}, inputs a choice vector cvi and a data vector dvi of size m.
Also, a pre-defined threshold t and the public parameters pp are published.
Output. If cvtotalj ≥ t, DAj obtains the aggregate result sj , j ∈ {1, . . . ,m}. Otherwise,
DAj obtains nothing.
Protocol steps:

1. Setup executed by DAj, Agg1, and Agg2.

(a) Generate (skp, pkp) ← MK-FHE .KeyGen(pp) where p =DAj , Agg1, and
Agg2.

2. Data protection executed by DOi.

(a) Generate (〈cvi〉1 , 〈cvi〉2)← AS . Share(2, cvi).

(b) Generate (〈dvi〉1 , 〈dvi〉2)← AS . Share(2,dvi).

(c) Generate
(
〈dvij〉k,DAj

, 〈dvij〉k,Agg1 , 〈dvij〉k,Agg2

)
← AS .Share(3, 〈dvij〉k) for

k = 1, 2.

(d) [〈dvij〉k,p] ← MK-FHE .Encrypt(〈dvij〉k,p , pkp) for k = 1, 2 and p =
DAj ,Agg1,Agg2.

(e) Call MK-FHE .Pre-process with all [〈dvij〉k,p] for T ∗ =
{idDAj , idAgg1, idAgg2}.

(f) [〈dvij〉k] ← MK-FHE .Eval(+, ([〈dvij〉k,1], [〈dvij〉k,2], [〈dvij〉k,3])), k = 1, 2.

(g) Generate random vectors αi, βi and compute γi such that γi = αi ? βi.

(h) Beaver’s triplets. Call AS .Share(2, .) for αi, βi, γi.

(i) Send [〈dvi〉k], 〈cvi〉k, 〈αi〉k, 〈βi〉k, and 〈γi〉k to Aggk, k = 1, 2.

3. Preliminary counting executed by Agg1 and Agg2.

(a) Obtain 〈cvtotal〉k such that
∑
〈cvi〉k.

(b) Agg1 and Agg2 exchange 〈cvtotal〉k to get cvtotal =
(cvtotal1 , . . . , cvtotalj , . . . , cvtotalm).

(c) DAj is labelled as authorised if cvtotalj ≥ t.
4. Aggregation executed by Agg1 and Agg2.

(a) Jointly compute [s] =
∑

[dvi ? cvi] for each authorised DAj . The details are
provided in Algorithm 6.

5. Decryption executed by Agg1, Agg2, and DAj.

(a) Agg2: Send the aggregate result vector [s] = (. . . , [sj ], . . .) to Agg1.

(b) Agg1,Agg2: Employ µk ← MK-FHE .PartialDecrypt where k = 1, 2.

(c) Agg1: Send µ1 to Agg2.

(d) Agg2: Send µ1 and µ2 to the authorised DAj .

(e) DAj : Call µ3 ← MK-FHE .PartialDecrypt.

(f) DAj : Run MK-FHE .Merge with µ1, µ2, µ3 to find sj .
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Algorithm 7 MK-TFHE .Post-process

Input: c̄t = (b, a1, . . . , ak), T = {id1, . . . , idl, . . . , idk}, old identity idl, new identity id∗l ,
and their respective secret keys

Output: ct∗, T ∗

b′ ← b− 〈al, skidl〉. // n.b., noise is added in the next step
b′ ← b− 〈al, skidl〉. // n.b., noise is added in the next step
(b∗, a∗l )← MK-TFHE .Encrypt(b′, skid∗l ).
ct∗ = (b∗, a1, . . . , a

∗
l , . . . , ak), T

∗ = {id1, . . . , id∗l , . . . , idk}.

8.4.3 Security Evaluation

We analyse the security of PRIDA, taking the previously introduced threat model into
account and show that PRIDA satisfies the privacy requirements defined in Section 8.4.1.
We incrementally study the security analysis by considering each PRIDA player as an
adversary and further investigating potential collusions. We remind that PRIDA aims to
compute privacy-preserving data aggregation in the semi-honest adversarial model as
mentioned in Section 8.4.1.

Both multi-party fully homomorphic encryption and secure two-party computation
are proven to be secure. Indeed, all the three multi-party fully homomorphic encryption
(MP-FHE) schemes are proved semantically secure [87, 88, 90, 91]. For the security of
the new Post-process algorithm, it is crucial to add some noise, which has to be done
with each partial key addition and/or removal. Note that in Algorithm 7, a fresh noise
is added as a part of the MK-TFHE .Encrypt algorithm, and it is sufficient to do that
once for both key addition and removal.

Input and output privacy against External Adversaries. Before sending any data,
each Data Owner (DO) secret shares its choice vector cv and data vector dv and further
encrypts the shares of dv using one of the MP-FHE schemes following the corresponding
protocol version. Thanks to the semantic security guarantees of the MP-FHE schemes
and the information-theoretical security of the arithmetic secret sharing, an external
adversary who does not participate in PRIDA cannot obtain any information regarding
inputs of Data Owners (DOs) and results of authorised Data Analysers (DAs).

Input and output privacy against Adversarial Data Owner. A semi-honest DO
may wish to learn other DOs’ inputs and the aggregate results of authorised DAs. Since
each input is secretly shared and further encrypted with the keys of DAs, Agg1, and
Agg2, and since DO does not have access to the corresponding secret keys, DO cannot
discover the inputs of other DOs and the results.

Input and output privacy against Adversary Aggregator. All information that
Agg1 (or Agg2) receives are encrypted under two additional keys than its key, i.e. the
keys of DA and Agg2 (or Agg1). Assuming that Agg1 cannot collude with Agg2, thanks to
the security guarantees of the underlying cryptosystems, an Aggregator acting curiously
can neither learn inputs of DOs nor the aggregate result of authorised DAs.
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Protocol 6 PRIDA based on MK-TFHE

Inputs. DOi, i ∈ {1, . . . , n}, inputs a choice vector cvi and a data vector dvi of size m.
Also, a pre-defined threshold t and the public parameters pp are published.
Output. If cvtotalj ≥ t, DAj obtains the aggregate result sj , j ∈ {1, . . . ,m}. Otherwise,
DAj obtains nothing.
Protocol steps:

1. Setup executed by DOi, DAj, Agg1, and Agg2.

(a) Generate skp ← MK-TFHE .KeyGen(pp) where p = DOi1 , DOi2 .

(b) Generate skp ← MK-TFHE .KeyGen(pp) where p = DAj , Agg1, Agg2.

2. Data protection executed by DOi.

(a) Generate (〈cvi〉1 , 〈cvi〉2)← AS . Share(2, cvi).

(b) Generate (〈dvi〉1 , 〈dvi〉2)← AS . Share(2,dvi).

(c) Generate
(
〈dvij〉k,DAj

, 〈dvij〉k,DOi1
, 〈dvij〉k,DOi2

)
← AS .Share(3, 〈dvij〉k) for

k = 1, 2.

(d) [〈dvij〉k,p] ← MK-TFHE .Encrypt(〈dvij〉k,p , skp) for k = 1, 2 and p =
DAj ,DOi1 ,DOi2 .

(e) Call MK-TFHE .Pre-process with all [〈dvij〉k,p] for T ∗ =
{idDAj , idDOi1

, idDOi2
}.

(f) [〈dvij〉k] ← MK-TFHE .Eval(+, ([〈dvij〉k,DAj
], [〈dvij〉k,DOi1

], [〈dvij〉k,DOi2
]))

for k = 1, 2.

(g) Generate random vectors αi, βi and compute γi such that γi = αi ? βi.

(h) Beaver’s triplets. Call AS .Share(., 2) for αi, βi, γi.

(i) Send [〈dvi〉k], 〈cvi〉k, 〈αi〉k, 〈βi〉k, and 〈γi〉k to Aggk, k = 1, 2.

3. Preliminary counting executed by Agg1 and Agg2.

(a) Locally add 〈cvi〉k to obtain 〈cvtotal〉k.
(b) Agg1 and Agg2 exchange 〈cvtotal〉k to get cvtotal =

(cvtotal1 , . . . , cvtotalj , . . . , cvtotalm).

(c) DAj is labelled as authorised if cvtotalj ≥ t.
4. Aggregation executed by Agg1 and Agg2.

(a) Call MK-TFHE .Post-process with known secret keys of DOik and Aggk to
change the part of [〈dvi〉k] related to DOik ’s secret key to Aggk’s secret key.

(b) Agg1 and Agg2 exchange the resulting samples and repeat Step (a) ending
up with samples encrypted with the keys of DAj , Agg1, Agg2.

(c) Jointly calculate the result [sj ] =
∑

[dvij · cvij ] for authorised DAj .

5. Decryption executed by Agg1, Agg2, and DAj.

(a) Agg2: Send the aggregate result vector [s] = (. . . , [sj ], . . .) to Agg1.

(b) Agg1,Agg2: Employ µk ← MK-TFHE .PartialDecrypt where k = 1, 2.

(c) Agg1: Send µ1 to Agg2.

(d) Agg2: Send µ1 and µ2 to the authorised DAj .

(e) DAj : Call µ3 ← MK-TFHE .PartialDecrypt.

(f) DAj : Run MK-TFHE .Merge with µ1, µ2, µ3 to find sj .
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Protocol 7 PRIDA based on Th-FHE
Inputs. DOi, i ∈ {1, . . . , n}, inputs a choice vector cvi and a data vector dvi of size m.
Also, a pre-defined threshold t and the public parameters pp are published.
Output. If cvtotalj ≥ t, DAj obtains the aggregate result sj , j ∈ {1, . . . ,m}. Otherwise,
DAj obtains nothing.
Protocol steps:

1. Setup executed by DAj, Agg1, and Agg2.

(a) (pk, skDAj , skAgg1, skAgg2)← Th-FHE .KeyGen(pp).

2. Data protection executed by DOi.

(a) Generate (〈cvi〉1 , 〈cvi〉2)← AS . Share(2, cvi).

(b) Generate (〈dvi〉1 , 〈dvi〉2)← AS .Share(2, dvi).

(c) [〈dvij〉k]← Th-FHE .Encrypt(〈dvij〉k , pk), k = 1, 2.

(d) Generate random vectors αi, βi and compute γi such that γi = αi ? βi.

(e) Beaver’s triplets. Call AS . Share(2, .) for αi, βi, γi.

(f) Send [〈dvi〉k], 〈cvi〉k, 〈αi〉k, 〈βi〉k, and 〈γi〉k to Aggk, k = 1, 2.

3. Preliminary counting executed by Agg1 and Agg2.

(a) Obtain 〈cvtotal〉k such that
∑
〈cvi〉k.

(b) Agg1 and Agg2 exchange 〈cvtotal〉k to get cvtotal =
(cvtotal1 , . . . , cvtotalj , . . . , cvtotalm).

(c) DAj is labelled as authorised if cvtotalj ≥ t.

4. Aggregation executed by Agg1 and Agg2.

(a) Jointly compute [s] =
∑

[dvi ? cvi] for each authorised DAj .

5. Decryption executed by Agg1, Agg2, and DAj.

(a) Agg2: Send the aggregate result vector [s] = (. . . , [sj ], . . .) to Agg1.

(b) Agg1, Agg2: Employ µk ← Th-FHE .PartialDecrypt to decrypt [s] where
k = 1, 2.

(c) Agg1: Send µ1 to Agg2.

(d) Agg2: Send µ1 and µ2 to the authorised DAj .

(e) DAj : Call µ3 ← Th-FHE .PartialDecrypt.

(f) DAj : Run Th-FHE .Merge with µ1, µ2, µ3 to find sj .
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Input and output privacy against Adversary Data Analyser. We now consider
a semi-honest DA who is interested in discovering either some DOs’ individual inputs or
some other DAs’ received outputs. We remind that all exchanged data in PRIDA are
secretly shared or shared-encrypted or multi-party encrypted. An adversarial DA cannot
discover the inputs of DOs thanks to the use of the semantically secure MP-FHE and the
information-theoretically secure Arithmetic secret sharing. The only information that
DA can decrypt is the outcome of the aggregation if authorised by at least t DOs. On
the other hand, if outputs and inputs are destined to other DAs and hence encrypted
with their keying material in addition to the two Aggregators’ keys, the adversarial DA
becomes an external adversary as it does not play any role in this aggregation protocol.

Control of Data Owners on Data Analysers. With a choice vector, cv, each DO
can easily decide which DA can receive its data while computing the data aggregation.
DO secret shares its choice vector cv into two and sends one share to one Aggregator.
Thanks to the preliminary counting phase, the non-authorised DA cannot receive the
aggregate result. Moreover, even if a non-authorised DA colludes with Agg2, they cannot
retrieve the aggregate result because Agg1 has already terminated the data aggregation
for this non-authorised DA. Further, the actual data aggregation result remains bogus
since bogus data is assigned to this specific element when cvij = 0 . Moreover, thanks to
MP-FHE, Agg2 and DA need Agg1 to partially decrypt the encrypted aggregate result
during the decryption phase.

Anonymity of Data Owners. A Data Analyser DAj can discover the aggregate result
without learning the individual DO if and only if the number of DOs should be at least
a pre-defined threshold t during the preliminary counting phase. Otherwise, DA learns
nothing.

Input and output privacy against collusions between Data Owner and Aggre-
gator. The collusions of Agg1 with one DO only results in discovering the individual input
of the actual DO and the other secret shared values. Hence all remaining information are
either secret shared, or shared-encrypted or multi-key encrypted with two keys for which
they do not have the corresponding secret key.

Collusions between Data Analyser and Aggregator. When an authorised DA and
Agg2 collude, they do not discover any leakage regarding inputs of DOs and/or outputs
of other DAs. Indeed, even if the Agg2 aggregates the result for an unauthorised DA and
forwards it, the only information that DA would be able to decrypt would be bogus (DOs
encrypt bogus data for unauthorised DAs).

8.4.4 Performance Evaluation

We propose to evaluate the performance of PRIDA using a use case scenario whereby
multiple Data Analysers (DAs) as pharmaceutical companies wish to discover the side
effects of some medicine on multiple patients who take the underlying medicine, using
some statistics such as sum, average, etc. over this target group. In this scenario, when
patients acting as Data Owners (DOs) are willing to participate in this discovery with their
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private data, patients use multi-party FHE and 2PC to protect their data before sending
them to the non-colluding two Aggregators. Once the Aggregators receive these protected
data, they jointly perform the required operations over these data and send the encrypted
aggregate result to the authorised pharmaceutical companies if chosen by enough patients.
Later on, these companies decrypt the result. Therefore, we conduct several experiments
with different numbers of DOs and DAs and analyse the computational cost at each party.

Experimental Setup

We have implemented each version of PRIDA. For Protocol 5. For PRIDA v1, we have
implemented the asymmetric MK-FHE solution described in [87] using the BFV [60,66]
and CKKS [62] schemes from the SEAL library v3.6.4 [108].

PRIDA v2, which is based on MK-TFHE, is implemented using an extended ver-
sion of the MK-TFHE library [89]: We have implemented all binary gates except for
the NAND gate, which was already available; moreover, we have revisited the original
MK-TFHE .Encrypt and MK-TFHE .Decrypt algorithms, because they require all the
keys from the very beginning. Thus, in order to prevent a significant increase in the number
of keys and consequently the size of the ciphertext. Accordingly, we have split the two algo-
rithms into MK-TFHE .Encrypt, MK-TFHE .Pre-process, MK-TFHE .PartialDecrypt
and MK-TFHE .Merge, and implemented the new MK-TFHE .Post-process algorithm.

In addition, we have implemented some optimisations: (i) We have implemented the
double-and-add algorithm for the multiplication of an MK-TFHE-encrypted number by
a known scalar; and (ii) we have implemented a variant of the addition algorithm, which
employs ternary logical gates and it only requires 2 bootstrappings instead of 5, hence
saving about a factor of 2.5 time.

Finally, PRIDA v3 based on Th-FHE is implemented with the PALISADE library
v1.10.6 [84]. Once again, similar to the implementation of Protocol 5, both BFV and
CKKS are used for Protocol 7.

We have followed the standard HE security recommendations (e.g., 128-bit security)
indicated in [221] for all three protocols. We implemented the 2PC protocol on our
own: Data is shared by generating a random number first and then computing the other
share accordingly: Additions of shares are performed locally, and multiplications are
implemented according to the Beaver triplets’ algorithm [39]. All experiments have been
carried out using a desktop computer with 3.5 GHz Intel Core i7-7800X processor, 128
GB RAM, and the Ubuntu 20.04.2 LTS operating system. All parties are emulated in
the same environment.

Performance results

We have first evaluated the computation cost of each PRIDA player in a scenario with
100 DOs and 2 DAs. We realised that the computation time resulting from PRIDA v2
was very significant and hence run Protocol 2 in a simpler scenario with 3 DOs and 2
DAs. The results are shown in Table 8.1. These values correspond to an average of
measurements from ten executions. We first observe that for the three versions of PRIDA,
only Aggregators perform costly operations. Indeed, while Aggregator2 takes 25.73
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Table 8.1 – Performance results for each player of PRIDA (computation time in s).

Protocols Data Owner Data Analyser Aggregator1 Aggregator2

Protocol 5 with MK-BFV 0.299 0.091 0019.878 0026.782

Protocol 5 with MK-CKKS 0.294 0.071 0020.234 0025.730

Protocol 6 with MK-TFHE 4.452 2.275 2632.251 3160.709

Protocol 7 with Th-BFV 0.009 0.224 0001.268 0001.294

Protocol 7 with Th-CKKS 0.009 0.345 0001.050 0001.096

(26.78) seconds within PRIDA v1 with MK-CKKS (with MK-BFV), 3160.71 seconds
with PRIDA v2 (i.e. with MK-TFHE), and 1.10 (1.29) seconds within PRIDA v3 with
Th-CKKS (or with Th-BFV), Aggregator1 takes 20.23 (19.88) seconds, 2632.25 seconds,
and 1.05 (1.10) seconds, respectively. We observe that there is a slight difference on the
computation time between Aggregator1 and Aggregator2. We believe that this difference
originates from the different workload attributed to each Aggregator: Aggregator2 indeed
performs additional operations to finalise the aggregation phase (see Algorithm 6).

Finally, the computation time of the DA corresponds to the time that DA takes to
execute the setup phase and the decryption of the aggregate result.

We also observe that PRIDA v2 takes more time than the two other protocols. We
believe that the overhead is caused mainly due to the additional layers of encryption, for
which the MK-TFHE library is not optimised yet. Also note that the MK-TFHE Library
is—unlike the SEAL or PALISADE Library—only an experimental code.

In order to study the scalability of PRIDA, we have also measured the time of the
actual aggregation operation in PRIDA (namely, the preliminary counting phase, the
aggregation phase, and the decryption phase) with respect to a larger number of DOs
and an increasing number of DA s. Since The PRIDA v2 cost is high, we propose to
study PRIDA v1 and PRIDA v3 only. Detailed results are shown in Fig. 8.32. We remind
that PRIDA enables DOs to select/control which DA can receive the aggregate result for
which they are contributing. For each experiment, the anonymity threshold t is set to be
50. In order to consider all possible scenarios with respect to the authorisation aspects,
we propose that in Fig. 8.3b, DOs authorise each DA uniformly randomly whereas, in
Fig. 8.3c, each DO authorises three out of five DA s (corresponding to a ratio of 50%).
Lastly, in Fig. 8.3d, DOs authorise nine DA s out of ten.

We observe that this computation time linearly increases with the number of DOs
and the number of DA s. We also observe that there is a significant difference between

2These results correspond to the average from three executions.

141



Chapter 8. Privacy-preserving Data Aggregation

100 200 300 400 500
Number of Data Owners

0

10

20

30

40

50

60

70
T

im
e 

(s
)

Th-BFV
Th-CKKS
MK-BFV
MK-CKKS

(a) with 1 DA

100 200 300 400 500
Number of Data Owners

0

20

40

60

80

100

120

140

T
im

e 
(s

)

Th-BFV
Th-CKKS
MK-BFV
MK-CKKS

(b) with 2 DAs

100 200 300 400
Number of Data Owners

0

50

100

150

200

250

T
im

e 
(s

)

Th-BFV
Th-CKKS
MK-BFV
MK-CKKS

(c) with 5 DAs

100 200
Number of Data Owners

0

50

100

150

200

250

T
im

e 
(s

)

Th-BFV
Th-CKKS
MK-BFV
MK-CKKS

(d) with 10 DAs

Figure 8.3 – Data aggregation time for Protocol 5 (MK-FHE) and Protocol 7 (Th-FHE)
using BFV and CKKS

the execution times of PRIDA v1 and PRIDA v3. We believe that one of the reasons for
this difference is due to the fact that PALISADE is implemented in a multi-threading
way, whereas SEAL is single-threaded. Furthermore, since PRIDA v1 relies on the
use of multiple keys, the execution time of the underlying MK-FHE .Eval algorithm
linearly increases with the number of keys. On the contrary, in PRIDA v3, the cost of
Th-FHE .Eval can be considered as approximately equal to Eval with one key only (i.e.,
the encryption algorithm uses one single public key). On the other hand, PRIDA v1
does not require a complicated setup phase since, as opposed to PRIDA v3, each party
independently generates its own keying material.

To study the scalability feature of PRIDA even more, we have run PRIDA v1
and PRIDA v3 with 1000 Data Owners and 1 or 2 Data Analysers. As depicted in
Fig. 8.4, we observe that privacy-preserving data aggregation operations remain possible.
Further, PRIDA is more realistic than the existing solutions and can be extended for the
applications of federated learning, which requires data aggregation.

To summarise, while the fastest PRIDA version is Th-FHE with 2PC based solution;
yet, it requires the two Aggregators and each Data Analyser to jointly generate a common
public key. On the other hand, PRIDA v1 and PRIDA v2 do not need a jointly generated
unique key, but on the other hand, DOs need to do more operations to protect their input
privacy. The cost of PRIDA v2 remains significant. We believe that this is mainly due to
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Figure 8.4 – PRIDA scalability

the experimental prototype of the MK-TFHE library and may be improved in the future.

8.5 Conclusion of privacy-preserving data aggregation

In this chapter, we have introduced our new privacy-preserving data aggregation solution,
namely PRIDA, that enable two non-colluding Aggregators (i.e., simply cloud servers) to
efficiently aggregate input data coming from many Data Owners and obtain the aggregate
information that is/are interesting for multiple Data Analysers.

PRIDA is implemented on top of the privacy-by-design approach for privacy-preserving
data aggregation that combines multi-party fully homomorphic encryption (MP-FHE)
with secure two-party computation. Thanks to the use of these two cryptographic building
blocks with a setting involving two non-colluding Aggregators, PRIDA supports scenarios
with more than one Data Analyser. MP-FHE is instantiated with three different schemes,
multi-key fully homomorphic encryption (PRIDA v1), multi-key TFHE (PRIDA v2),
and threshold fully homomorphic encryption (PRIDA v3). Furthermore, PRIDA enables
Data Owners to have some control over which Data Analyser can have access to the
resulting aggregated information. Moreover, with the introduction of an anonymous
counting phase, Data Analysers can discover the aggregation result only when a sufficient
number of Data Owners (i.e., more than a pre-defined threshold) authorise them. We have
provided a detailed security analysis of PRIDA considering different potential adversaries,
including potential collusions among parties. Our experimental results seem promising in
terms of scalability.

We introduce the notion of multi-party homomorphic encryption and further in-
stantiate it with three different advanced homomorphic encryption schemes: MK-FHE,
which allows the execution of operation over multiple data encrypted with different
keys; MK-TFHE, which is the symmetric version of multi-key homomorphic encryption
and therefore requires a dedicated key management setup phase; and Th-FHE, which
requires the collaboration of multiple parties to generate one unique public key. More-
over, we propose a new algorithm, MK-TFHE .Post-process, to lower the execution of
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MK-TFHE .Pre-process since each Data owners have two keys and the Aggregators need
to make all the encrypted data encrypted with all keys.
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Chapter 9

Conclusion Remarks and Future
Research

One of the most underrated secrets to success is to start before you’re ready.

Marie Forleo

9.1 Summary

In this thesis, we have studied the design of privacy-preserving variants of machine
learning techniques. We observe that such a design work is not straightforward even
when using advanced cryptographic techniques such as homomorphic encryption and
secure multiparty computation, and these learning techniques should be customised
to be compatible with the underlying cryptographic techniques. The modifications
performed on the original learning techniques usually have an impact on the efficiency
and utility/accuracy of these techniques. Hence, in this thesis, we have proposed to
design and develop new privacy-preserving machine learning techniques that keep data
confidential, and at the same time, features a good level of accuracy and performance.

We have investigated three machine learning techniques: (i) Neural networks, which
help build models to make accurate prediction or classification; (ii) (Trajectory) Clustering
techniques that allow the regrouping of similar (trajectory data) data items; and (iii)
Data Aggregation that enables any party to collect data from multiple sources and
perform some (statistical) analytics such as sum or average over the collected data. We
investigated the suitability of existing cryptographic techniques such as homomorphic
encryption or secure multiparty computation to the actual three ML techniques. We
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further came up with the design of their privacy-preserving variants. We studied data
privacy in two different scenarios:

The first one is a single-server scenario whereby a cloud server, or particularly a
model provider, has or receives a neural network model [93–96], and a querier wishes to
use the model to classify its input data. In the single-server scenario, we have designed
several solutions based on two cases: (i) The employed neural network model is either
in the clear form ( [93,94,96] based on 2PC or PHE and 2PC, see Chapter 4) or in the
encrypted form ( [95] based on H-PRE, see Chapter 4) to fully utilise the advantages of
the cloud server, and therefore, the workload of the model provider is minimised; and (ii)
a better look into the cryptographic techniques’ suitability when their integration with
neural networks without any impact on data privacy, the performance of the designs, and
accuracy of the proposed private solutions. In the single-server setting, we also proposed
a privacy-preserving trajectory clustering solution for TRACLUS [162] utilising 2PC: We
assume that a data owner has multiple trajectories and would like to cluster them into
similar line segments. Therefore, the data owner privately shares the underlying data
and outsources one share of them to a cloud server. They both run the private protocol
interactively to obtain the partial result. The cloud server sends its partial result to the
data owner, who can bring those results and find the clusters. Note that in this solution,
the data owner needs the same equipment, particularly expertise in machine learning
and cryptographic techniques and computational resources.

We study a second scenario that involves more than one cloud server, namely the two-
server scenario, to decrease the load of the clients’ or data owners’ duties expected from
the first scenario. We assume that a data owner (or a client) has some data and would
like to join some learning techniques (neural network classification, trajectory clustering,
or data aggregation), but this data owner has neither clustering-specific expertise nor
computational resources. Once again, we have designed privacy-preserving solutions
for neural network classification, TRACLUS, and data aggregation to meet the need of
the querier/data owner: The data owner privately shares the data and outsources them
to two non-colluding cloud servers. These two cloud servers run the private protocol
interactively to obtain the partial result. These partial results are sent to the data owner,
who can bring those results to obtain the learning result. In these solutions [94, 162,220],
we achieve the computational costs of the clients/data owners and envoy these costs to
the two cloud servers. We have also investigated enabling fully private machine learning
techniques and reducing the computations at the cloud servers’ side with a balance
between privacy, efficiency, and the result quality evaluation.

In order to put our solutions for neural network classification, TRACLUS, and data
aggregation into some colour and compare them, in Figures 9.1 and 9.2, we try to allocate
our solutions with respect to their privacy and accuracy/quality evaluation, and their
privacy and efficiency levels.

When considering the accuracy/quality evaluation of the proposed solutions, since
we use some approximations for complex operations and encodings, which enable the
underlying machine learning techniques to be compatible with cryptographic techniques,
PAC, SwaNN, and ProteiNN result in similar accuracy. Yet, for the privacy level,
the neural network model in PAC and SwaNN is in the cleartext form on the cloud
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Figure 9.1 – All the proposed privacy-preserving machine learning techniques in this
thesis regarding the trade-off between privacy and efficiency

ProteiNN
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Figure 9.2 – All the proposed privacy-preserving machine learning techniques in this
thesis regarding the trade-off between privacy and accuracy/quality evaluation

server whereas the model in ProteiNN is encrypted on the cloud server. The solutions
for TRACLUS use only approximations for the TRACLUS complex operations, and
therefore, the quality evaluation is better than PAC, SwaNN, and ProteiNN; however,
since the PHE-based pp-TRACLUS leaks some information regarding the clusters, the
privacy level is lower than the other solutions. Because PRIDA does not employ any
approximations or encodings, it is better in data privacy and accuracy/quality evaluations
than others. For the performance results, the neural network classification solutions seem
better than others while the PHE-based TRACLUS solution is the slowest one (due to
the several iterations when considering line segments being neighbours).
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9.2 Future Work

We employed several cryptographic techniques to develop privacy-preserving neural
network classification, privacy-preserving trajectory clustering, and privacy-preserving
data aggregation protocols. Possible future research directions to investigate can be listed
as below:

– The research studies in this thesis have been presented in the semi-honest security
model, and they can be extended to address more powerful adversaries such
as malicious adversaries. In order to design secure protocols against the latter
adversaries, zero-knowledge proofs can be utilised. By executing zero-knowledge
proofs for every message, parties involved in the protocol neither learn any more
information than the semi-honest security model nor malicious parties can cheat
thanks to soundness.

– Each designed and developed privacy-preserving protocol can be analysed with
formal methods. For example, the symbolic analysis using computer-aided cryptog-
raphy (such as employing analysis tool Tamarin [222]) can be studied: Potential
adversaries and/or possible collusions between involved parties can be easily defined.
Thus, more secure protocols can be designed according to the analysis tool(s).

– Lastly, defense mechanisms against attacks targeting model privacy (such as model
inversion, membership inference attacks, etc.) can be investigated. Such attacks
can help the adversary discover the underlying training data in the context of
neural networks, and hence, once again harm the privacy of some individuals that
are involved in this dataset.
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Appendix A

Résumé Français

What is done in love is done well.

Vincent van Gogh

L’utilisation des appareils de l’Internet des objets (IoT) partout : chez nous, sur nos
poignets ou dans nos poches, et le développement d’applications conviviales pour ces
appareils IoT ont encouragé les gens à une utilisation généralisée. De plus, avec l’évolution
des technologies de cloud computing, les entreprises axées sur les données, par exemple les
fournisseurs d’applications ou de services, collectent et stockent facilement une quantité
massive de données. Une telle abondance de données permet de dériver des informations
pertinentes sur leurs utilisateurs grâce à des analyses avancées telles que analyse statistique
(somme, moyenne, etc.) ou techniques d’apprentissage automatique (réseaux de neurones,
clustering, etc.). Les résultats analytiques peuvent aider les entreprises à améliorer leurs
services clients existants ou à en proposer de nouveaux.

Les entreprises sont également attirées par le partage de ces données avec leurs
partenaires tiers. Cependant, le paradigme données collectées/traitées/partagées soulève
de sérieux problèmes de confidentialité principalement en raison de la grande sensibilité
des données. Lorsque les entreprises essaient d’en tirer de la valeur, elles sont confrontées
à des défis croissants avec garantir les garanties de confidentialité des données et le respect
des réglementations sur la protection des données [2,3]. De plus, la collecte, le traitement
et le partage des données sous-jacentes peuvent entrâıner une violation de la vie privée
des individus (par exemple, la divulgation de la date, du lieu ou de la participation à un
événement social). Il existe des exemples récents d’atteintes à la vie privée provenant
de ce type d’utilisation d’applications: selon deux nouvelles du Guardian, (i) certains
documents fournis par Edward Snowden en 2014 ont révélé que la NSA avait utilisé le
jeu mobile Angry Birds pour collecter des données d’utilisateurs telles que comme l’âge,
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le sexe et l’emplacement1; et (ii) le scandale des données Facebook-Cambridge Analytica
au début de 2018 a fait la une des journaux lorsqu’il a été révélé que la société de conseil
avait collecté les données de Facebook pour profiler les électeurs américains2.

A.1 Apprentissage automatique en tant que service

La technologie du cloud computing et le succès des techniques d’apprentissage automa-
tique conduisent à un changement de paradigme dans les services technologiques qui
permettent aux entreprises axées sur les données de déléguer leurs tâches d’apprentissage
automatique à des serveurs cloud dotés d’une expertise spécifique au domaine en appren-
tissage automatique et en ressources de calcul pour les analyses requises. Apprentissage
automatique en tant que service (MLaaS) est l’un de ces services qui permet aux en-
treprises d’effectuer des tâches d’apprentissage automatique sur le serveur cloud. Le
MLaaS permet à ces entreprises d’externaliser leurs tâches d’apprentissage automatique
sur une plate-forme cloud [1].

A.2 Confidentialité des données vs techniques d’apprentissage au-

tomatique

La vie privée d’un individu est l’un des droits fondamentaux. Le MLaaS sur les données
provenant d’individus est devenu de plus en plus attrayant pour les entreprises axées
sur les données avec la capacité croissante de traitement des données (collecter, effectuer
des analyses de données avancées sur les données, etc.). Pourtant, les données collectées,
stockées, traitées ou partagées sont généralement des données sensibles à la confidentialité
et, ces dernières années, de nombreuses réglementations en matière de protection des
données telles que le règlement général européen sur la protection des données (RGPD)
ou ePrivacy [2,3] ont été a émergé pour protéger la vie privée des individus. Ces règles
de protection des données garantissent que les données traitées sont protégées et ne
divulguent la vie privée d’aucune personne. L’aspect privacy-by-design du RGPD peut
être appliqué en utilisant des techniques cryptographiques pour prendre en charge la
protection des données et, en même temps, l’utilisation de techniques d’apprentissage
automatique sur ces données protégées.

Les techniques d’apprentissage automatique peuvent être considérées comme un
système conçu pour apprendre ou résoudre des problèmes en fonction des observations
de son environnement. Les techniques d’apprentissage automatique sont des algorithmes
mathématiques capables de résoudre des problèmes complexes liés à l’informatique.
Aujourd’hui, plusieurs techniques d’apprentissage automatique telles que le réseau de
neurones ou le clustering sont bien connues de tous, qu’il soit data scientist ou non. Dans
cette thèse, nous nous concentrons sur trois techniques:

1https://www.theguardian.com/world/2014/jan/27/nsa-gchq-smartphone-app-angry-birds-
personal-data

2https://www.theguardian.com/news/2018 /mar/17/cambridge-analytica-facebook-influence-us-
election
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1. Réseau neuronal est inspiré du cerveau humain composé de nombreux neurones
connectés qui servent certaines fonctionnalités au corps humain [5,6]. Un réseau
de neurones se compose de deux phases : une phase d’apprentissage (ou phase
d’apprentissage), où le modèle de réseau de neurones est construit en apprenant/en
acquérant de nouvelles capacités à partir des données de l’ensemble de données
d’apprentissage ; et une phase de classification (ou appelée phase de prédiction ou
d’interrogation), dans laquelle le réseau neuronal créé est testé avec de nouvelles
données de l’ensemble de données de test (c’est-à-dire différentes des éléments de
données dans l’ensemble de données d’apprentissage). Le modèle de réseau de
neurones peut être défini comme la composition de plusieurs fonctions prenant
en entrée des matrices et/ou des vecteurs qui sont construits pendant la phase
d’apprentissage : Ces matrices et vecteurs sont créés en déterminant l’influence
d’une entrée de neurone donnée sur la sortie de ce neurone. La phase de classification
utilise le modèle construit en prenant des données de test et en produisant une
étiquette dessus. Dans cette thèse, nous utilisons le jeu de données d’arythmie MIT-
BIH3 pour classer les données de rythme cardiaque. De plus, nous nous concentrons
également sur les réseaux de neurones convolutifs (CNN) qui sont utilisés pour
classer les images à l’aide des ensembles de données MNIST et CIFAR-10 [223,224].
Un réseau de neurones se compose généralement de trois couches différentes : la
couche d’entrée, la ou les couches cachées et la couche de sortie. Pour les couches
cachées, les plus utilisées sont la couche convolutive (si une classification d’image
est nécessaire), la couche entièrement connectée, la couche d’activation et la couche
de mise en commun. Ces couches peuvent être considérées comme des fonctions
spéciales telles que la multiplication matrice-vecteur, le calcul de Max, ou le calcul
de Sigmoïde, vers un réseau de neurones. Notez que l’ensemble de données de test
permet également de déterminer la précision du réseau de neurones en utilisant
des éléments de données dans l’ensemble de données de test alimenté au réseau
de neurones construit dans la phase d’apprentissage pour mesurer sa précision,
c’est-à-dire comment classer correctement les données sous-jacentes. Pour plus de
détails, nous renvoyons les lecteurs aux Chapitres 2, 4 et 6.

2. Regroupement de trajectoires (TRACLUS) est un algorithme de clustering basé
sur la densité [7] conçu et optimisé pour le clustering de trajectoires. TRACLUS
se compose de deux phases : Une phase de partitionnement, dans laquelle les
trajectoires sont divisées en sous-trajectoires, à savoir des segments de droite
(représentés par deux points) aussi proches que possible des trajectoires d’origine ;
et une phase de regroupement (ou appelée phase de regroupement), où les sous-
trajectoires segmentées sont regroupées en certains groupes en fonction de leurs
similitudes, c’est-à-dire qu’elles sont voisines de certains segments de ligne. Ces
phases de TRACLUS contiennent plusieurs fonctions spéciales telles que le calcul
du logarithme, la fonction sinus, la division, etc. Pour TRACLUS, nous utilisons
plusieurs ensembles de données tels que les ensembles de données Hurricane, Deer,
Taxi ou Travel [7] pour regrouper des éléments de données dans le même cluster

3https://www.physionet.org/physiobank/database/mitdb/
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ou étiquetez-les comme bruit non-cluster. Pour évaluer la qualité de regroupement
de TRACLUS, nous utilisons plusieurs mesures d’évaluation de la qualité pour
déterminer que nos résultats sont significatifs (voir les Chapitres 2, 5 et 7).

3. Agrégation de données est le processus consistant à assembler des données, à les
présenter sous une forme résumée et à effectuer des analyses statistiques telles que
la somme ou la moyenne sur ces données. Les données sous-jacentes proviennent
généralement de plusieurs sources de données (pouvant être des individus ou des
pools de données de plusieurs entreprises axées sur les données) pour les réunir afin
d’essayer des résultats significatifs en utilisant des analyses de données statistiques.
L’agrégation de données est l’un des processus de données les plus utilisés dans
le domaine de la finance (commerce de détail, investissement, etc.), de l’industrie
du voyage, des réseaux de capteurs ou des moteurs de recherche [8]. Cette thèse
utilise l’agrégation de données pour obtenir l’opération de somme sur les données
provenant de plusieurs sources de données, et plusieurs analyseurs de données
souhaitent cette sommation (voir les Chapitres 2 et 8).

Les réglementations sur la protection des données telles que le RGPD imposent que les
données traitées soient confidentielles et privées lorsque les entreprises utilisent des tech-
niques d’apprentissage automatique (ou en tant que tâche de MLaaS sur une plate-forme
cloud) ; cependant, ces techniques ne peuvent pas fonctionner correctement sans avoir
accès aux données sous-jacentes. Par conséquent, afin de garder les données confidentielles
et, en même temps, de permettre à ces techniques de fonctionner correctement sur ces
données sensibles à la confidentialité, on peut tirer parti de techniques cryptographiques
telles que le cryptage homomorphe ou le calcul multipartite sécurisé.

A.3 Protocoles préservant la confidentialité pour les techniques

d’apprentissage automatique

Afin de construire un protocole de préservation de la confidentialité pour les techniques
d’apprentissage automatique mentionnées précédemment, il convient d’identifier les
principales exigences en matière de confidentialité. Nous considérons donc deux scénarios:

1. Techniques d’apprentissage automatique à serveur unique préservant la confiden-
tialité par lesquelles une partie, à savoir un demandeur (ou un propriétaire de
données), a une entrée (ou a déjà collecté des données provenant de ses clients). Le
demandeur/propriétaire des données souhaite déduire certaines informations pour
sa saisie en utilisant les services de MLaaS fournis par une partie non fiable mais
puissante, à savoir un serveur cloud. En raison du manque d’expertise spécifique au
domaine en matière d’apprentissage automatique et/ou de ressources de calcul, le
demandeur/propriétaire des données sous-traite ses entrées et les calculs pertinents
au serveur cloud. Une fois qu’ils les reçoivent, le serveur cloud effectue les calculs
requis sur les données externalisées et obtient une sortie qui sera envoyée à la partie
autorisée.
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2. Techniques d’apprentissage automatique à deux serveurs préservant la confidentialité
par lesquelles un demandeur (ou un propriétaire de données) a une entrée (ou a
déjà collecté des données provenant de ses clients). Le demandeur/propriétaire
des données souhaite obtenir des informations en utilisant son entrée à l’aide de
deux serveurs cloud mettant en œuvre les tâches MLaaS. Avec ces deux serveurs
cloud, nous visons à utiliser pleinement les avantages des serveurs cloud et, par
conséquent, à minimiser la charge du demandeur/propriétaire des données lors du
calcul de la technique d’apprentissage automatique requise.

Dans ces scénarios, pour être conforme aux réglementations sur la protection des
données et les données externalisées étant sensibles à la confidentialité, le deman-
deur/propriétaire des données doit être protégé. La première exigence à atteindre
est de garantir la confidentialité des entrées contre toute partie non autorisée pendant sa
durée de traitement (c’est-à-dire de sa collecte à son analyse). La partie non autorisée
peut être le serveur cloud, l’autre partie dans le protocole ou une partie externe, qui ne
joue aucun rôle pendant le protocole. La deuxième exigence est d’assurer la confidentialité
de sortie contre toute partie non autorisée, car la sortie des techniques d’apprentissage
automatique requises sur les données d’entrée sensibles à la confidentialité peut révéler
des informations sur le demandeur/propriétaire des données. Enfin, lorsque la technique
d’apprentissage automatique est le réseau de neurones, le modèle de réseau de neurones
doit rester privé contre toute partie, à l’exception de son propriétaire, car le modèle
sous-jacent peut divulguer des informations confidentielles sur les données d’entrâınement
et, par conséquent, cela peut indiquer l’identité de un individu. Notez que dans certains
cas (voir Section 4.6), le modèle doit rester privé même contre le serveur cloud lui-même.

La mise en œuvre de techniques d’apprentissage automatique sur des données con-
fidentielles nécessite l’utilisation de techniques cryptographiques telles que le cryptage
(entièrement) homomorphe (F(HE)) ou le calcul sécurisé multi(deux) parties (MPC/2PC) ;
cependant, ils encourent malheureusement un surcoût non négligeable en ce qui concerne
les coûts de calcul et de communication. Pour combiner efficacement les techniques
cryptographiques sous-jacentes aux techniques d’apprentissage automatique, la concep-
tion de ces dernières doit être revisitée : des techniques d’apprentissage automatique
personnalisées doivent être conçues. Étant donné que de telles personnalisations ont un
impact sur la précision (ou l’évaluation de la qualité) des techniques d’apprentissage
automatique sous-jacentes, l’objectif des protocoles d’apprentissage automatique préser-
vant la confidentialité est d’aborder le compromis entre la confidentialité, l’efficacité et
l’évaluation de la précision/qualité. Par conséquent, nous pouvons détailler quatre défis
lors de la construction de protocoles de préservation de la confidentialité pour le réseau
de neurones, TRACLUS et l’agrégation de données:

– Défi 1: Phases de la technique sous-jacente. Un réseau de neurones contient deux
phases, à savoir les phases d’apprentissage et de classification. Lors de l’examen de
leurs fonctions ou opérations complexes dans ces phases, nous nous concentrons sur
la classification des réseaux de neurones et supposons que le modèle a été construit
sur des données en clair pendant la phase d’apprentissage. La phase d’apprentissage
est composée de plusieurs itérations du processus des mêmes fonctions jusqu’à avoir
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un bon niveau de précision. Par rapport à la phase de classification, lors de la phase
de formation sur le cloud, il est parfois nécessaire de régler certains paramètres
ou d’augmenter le nombre de fonctions d’activation, et par conséquent, ce besoin
implique plusieurs interactions entre le propriétaire des données et le serveur cloud
pour permettre au propriétaire des données pour les décider. De plus, lorsque
l’on considère TRACLUS, la phase de partitionnement est plus complexe : elle
nécessite une interaction entre le propriétaire des données et le client. Nous nous
concentrons donc sur la phase de regroupement (ou appelée clustering) et supposons
que le propriétaire des données a déjà exécuté la phase de partitionnement sur des
trajectoires de texte en clair et les a divisées en segments de ligne.

– Défi 2: Plusieurs sources de données. Un autre défi est la multiplicité des sources de
données. Les données collectées à partir de plusieurs sources posent des problèmes
de confidentialité des données en raison de la multiplicité des sources de données,
et chacune d’entre elles nécessite sa propre confidentialité et doit être protégée
individuellement.

– Défi 3: Opérations complexes. Les techniques cryptographiques existantes sont
incompatibles pour prendre en charge les opérations complexes d’apprentissage
automatique telles que la fonction d’activation Sigmoid dans le réseau de neurones.
Afin de garantir la confidentialité des données, les opérations complexes sont
généralement approchées en certaines opérations linéaires (telles que des polynômes
de faible degré) que les techniques cryptographiques peuvent prendre en charge
efficacement.

– Défi 4: Nombres réels. Les réseaux de neurones ou TRACLUS calculent des nombres
sur des nombres réels alors que les techniques cryptographiques fonctionnent sur
des nombres binaires ou entiers. Par conséquent, ces nombres réels doivent être
approximés/codés dans les binaires ou les entiers pour être compatibles avec la
technique cryptographique sous-jacente. Cependant, des codages tels que des
troncatures limitant le nombre de parties fractionnaires peuvent avoir un impact
sur l’évaluation de la précision/qualité de la technique d’apprentissage automatique
requise.

Pour conclure, lors de la conception de variantes préservant la confidentialité des
techniques d’apprentissage automatique, il convient de prendre en compte les exigences
de sécurité ou les limitations en termes de coût de calcul et de communication pour
une partie interrogeant, à savoir le demandeur ou le propriétaire des données, et la
partie informatique qui est le cloud serveur. De plus, les opérations complexes de la
technique d’apprentissage automatique demandée doivent être approximées en certaines
fonctions linéaires si elles ne peuvent pas être facilement compatibles avec les techniques
cryptographiques. Au moment de décider du choix des techniques cryptographiques, les
solutions basées sur MPC (ou 2PC) sont efficaces en termes de coût de calcul, par exemple
pour les réseaux de neurones, tandis que les solutions basées sur (F)HE sont coûteuses
en temps de calcul. Dans les solutions basées sur (F)HE, il n’y a pas d’interaction entre
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le client et le serveur cloud. En revanche, dans les solutions basées sur MPC, le client
et le serveur cloud calculent ensemble en toute sécurité toutes les opérations du réseau
neuronal, et l’utilisation de MPC entrâıne des coûts de bande passante supplémentaires.
De plus, les solutions basées sur (F)HE ne prennent en charge que les opérations linéaires,
mais avec MPC, les opérations linéaires et non linéaires sont calculées. Ainsi, les solutions
basées sur (F)HE sont moins précises en raison de l’utilisation d’opérations linéaires
uniquement ; avec MPC, la précision est bien meilleure que les solutions basées sur (F)HE.
De plus, combiner (F)HE et MPC peut être une bonne solution pour obtenir de meilleurs
coûts de calcul et de communication et pour obtenir une meilleure précision tout en
garantissant la confidentialité des données (voir les Sections 4.5 et 6.3).

A.4 Contributions

Cette thèse étudie l’adéquation de plusieurs techniques cryptographiques aux réseaux
de neurones, TRACLUS et à l’agrégation de données, à savoir : le calcul sécurisé à
deux parties, le chiffrement homomorphe et le rechiffrement de proxy homomorphe, et
propose plusieurs protocoles de préservation de la confidentialité pour les techniques
d’apprentissage automatique sous-jacentes. en appliquant quelques approximations sur
leurs opérations sous-jacentes. Nous divisons nos solutions en deux scénarios différents
en fonction du nombre de serveurs cloud.

Dans la première partie de cette thèse, nous avons conçu, développé et mis en œuvre
une variante préservant la confidentialité assistée par un seul serveur des techniques
d’apprentissage automatique, à savoir les réseaux de neurones et le clustering de trajec-
toires. Nous présentons quatre solutions dans cette partie, à savoir:

1. PAC, comme le montre la Figure A.1, est une solution pour concevoir une classifi-
cation des arythmies préservant la confidentialité qui préserve la confidentialité des
données de battement de cœur des demandeurs par rapport au serveur cloud et du
modèle de réseau neuronal aux demandeurs. Comme étude de cas, nous avons conçu
un nouveau modèle basé sur l’ensemble de données PhysioBank. Ce modèle a été
construit à partir de zéro sur le concept de confidentialité par conception afin d’être
compatible avec 2PC. La solution est implémentée avec le framework ABY [42]
qui a nécessité la troncature des valeurs d’entrée et des paramètres du modèle. La
deuxième méthode de troncature combinée aux circuits arithmétiques consiste à
multiplier les valeurs d’entrée par 103 et montre une amélioration significative en
termes de performances et de précision. PAC atteint une précision de 96,34%, et
les résultats expérimentaux montrent que la prédiction d’un battement cardiaque
prend environ 1 s dans des scénarios réels. Nous montrons que plus d’économies
peuvent être réalisées avec l’utilisation de lots de pulsations pour effectuer des
prédictions (voir le Chapitre 4).

2. SwaNN, comme le montre la Figure A.1, est une classification de réseau de neurones
préservant la confidentialité combinant le schéma de cryptage Paillier à homomorphie
additive [9] avec 2PC. Grâce à l’utilisation de l’algorithme de chiffrement de Paillier
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Figure A.1 – Modèle de texte en clair dans le scénario du demandeur et du serveur cloud

pour les opérations linéaires et également de la fonction d’activation x2, la solution
atteint un meilleur coût de calcul par rapport aux solutions existantes à base de
(F)HE. Différentes optimisations de calcul basées sur l’utilisation du datapackage
et de l’algorithme de multi-exponentiation ont été implémentées. De plus, le coût
de communication est également minimisé puisque 2PC n’est utilisé que pour des
opérations non linéaires (le pooling Max et/ou RELU). Les résultats expérimentaux
montrent que SwaNN est meilleur en termes de coût de calcul par rapport aux
solutions basées sur (F)HE et meilleur en coût de communication par rapport aux
solutions basées sur 2PC (voir le Chapitre 4).

Queriers

Model 
Provider

Cloud Server

X

X

X
Y

Y

Y

M

Figure A.2 – Modèle crypté dans le scénario du demandeur et du serveur cloud

3. ProteiNN, comme le montre la Figure A.2, est une solution de classification de
réseau neuronal préservant la confidentialité basée sur l’utilisation du recryptage
homomorphique du proxy (H-PRE) et du cryptage additif simple. ProteiNN assure
la confidentialité du ou des modèles, des entrées et des résultats. De plus, le
fournisseur de modèle contrôle également le modèle sous-traité au serveur cloud.
Nous avons implémenté ProteiNN comme preuve de concept avec une étude de
cas, et notre travail montre des résultats de performance prometteurs (voir le
Chapitre 4).

4. pp-TRACLUS, comme le montre la Figure A.3, est la première solution de clustering
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Figure A.3 – Clustering dans le scénario du propriétaire des données et du serveur cloud

de trajectoires préservant la confidentialité basée sur 2PC. Nous avons conçu un
protocole efficace pour TRACLUS et l’avons appliqué sur plusieurs jeux de données,
y compris un jeu de données du monde réel, à savoir le jeu de données Travel
contenant les mouvements de personnes. Nous avons proposé une mesure de
distance approchée compatible 2PC pour les trajectoires et évalué sa qualité en
montrant qu’elle peut même offrir une meilleure qualité de clustering que la distance
TRACLUS d’origine (voir le Chapitre 5).

Dans la deuxième partie de cette thèse, nous étudions un scénario composé de
deux serveurs cloud sans collusion (appelés deux serveurs) qui aident le(s) client(s) ou
propriétaire(s) des données à exécuter une classification de réseau neuronal préservant la
confidentialité, un regroupement de trajectoires., et des tâches d’agrégation de données
sans obtenir ou divulguer aucune information concernant les données traitées ou leur
sortie. Nous présentons quatre solutions dans cette partie, à savoir:

Cloud Server 1

M

Cloud Server 2

M

Querier 
 

Figure A.4 – Scénario à deux serveurs avec deux images d’entrée dans SwaNN
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1. SwaNN avec deux serveurs, comme le montre la Figure A.4, peut être exécuté au
cas où le demandeur manque de ressources. Une solution hybride, SwaNN, atteint
le meilleur des deux mondes, à savoir une meilleure surcharge de calcul par rapport
aux solutions basées sur (F)HE et une meilleure surcharge de communication par
rapport aux solutions basées sur 2PC (voir le Chapitre 6).

Data Owner

Cloud ServerEDServer

Distance Calculation Encrypted Line Segments 

Figure A.5 – pp-TRACLUS basé sur le cryptosystème Paillier

2. pp-TRACLUS, comme le montre la Figure A.5, est un clustering de trajectoires
préservant la confidentialité combinant le schéma de cryptage de Paillier additif
homomorphe [9] et TRACLUS. Nous proposons d’utiliser la distance euclidienne
au carré comme métrique de distance au lieu de la métrique de distance complexe
TRACLUS ; par conséquent, la nouvelle métrique est facilement compatible avec
le cryptosystème Paillier. De plus, nous proposons un protocole de multiplication
sécurisé pour calculer le carré de la distance euclidienne sans divulguer aucune
information concernant les segments de ligne (voir le Chapitre 7).

Data Owner

Cloud Server 1

Cloud Server 2

Figure A.6 – Clustering dans le scénario à deux serveurs

160



Appendix A. Résumé Français

3. pp-TRACLUS basé sur 2PC, comme le montre la Figure A.6, est proposé car le
schéma de cryptage Paillier encourt des coûts de calcul élevés. Dans cette solution,
nous utilisons deux serveurs pour obtenir un protocole TRACLUS préservant la
confidentialité plus efficace et réduire la charge de travail du propriétaire des données
dans la solution basée sur 2PC avec un seul serveur (voir le Chapitre 7).

4. PRIDA, comme le montre la Figure A.7, est une solution d’agrégation de données
préservant la confidentialité qui combine FHE multi-clés avec 2PC et seuil FHE avec
2PC. Grâce à l’utilisation de ces deux blocs de construction cryptographiques avec
un paramètre impliquant deux serveurs cloud non-collaboratifs (nous les appelons
Agrégateurs dans cette solution), PRIDA prend en charge les scénarios avec plus
d’un analyseur de données. De plus, PRIDA permet aux propriétaires de données
d’avoir un certain contrôle sur l’analyseur de données qui peut avoir accès aux
informations agrégées résultantes. De plus, avec l’introduction d’une phase de
comptage anonyme, les analyseurs de données ne peuvent découvrir le résultat de
l’agrégation que lorsqu’un nombre suffisant de propriétaires de données (supérieur à
un seuil prédéfini) les autorise. Nos résultats expérimentaux semblent prometteurs
en termes d’évolutivité (voir Chapitre 8).

Data Owner

DOi

Data Analyser

DAj

RI
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I

R

RAggregator2Aggregator1

Figure A.7 – PRIDA - Joueurs

Parallèlement à ces chapitres, nous utilisons deux graphiques dans les Figures A.8
et A.9 qui localisent les protocoles de préservation de la confidentialité proposés pour la
classification des réseaux neuronaux, TRACLUS et l’agrégation de données concernant
leur confidentialité et évaluation de l’exactitude/qualité, et leurs niveaux de confidentialité
et d’efficacité.

Pour résumer, nous pensons que nos solutions proposées répondent au besoin de proto-
coles de préservation de la confidentialité pour les techniques d’apprentissage automatique,
permettent la confidentialité des données avec le modèle de thread réaliste et atteignent
un bon équilibre entre confidentialité, efficacité et évaluation de la précision/qualité.
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Figure A.8 – Toutes les techniques d’apprentissage automatique préservant la confi-
dentialité proposées par cette thèse concernant le compromis entre la confidentialité et
l’évaluation de la précision/de la qualité.
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Figure A.9 – Toutes les techniques d’apprentissage automatique préservant la confi-
dentialité proposées par cette thèse concernant le compromis entre confidentialité et
efficacité.
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“Scalable private learning with pate,” in ICLR, 2018.

[197] D. Froelicher, P. Egger, J. S. Sousa, J. L. Raisaro, Z. Huang, C. Mouchet, B. Ford,
and J.-P. Hubaux, “Unlynx: A decentralized system for privacy-conscious data
sharing,” Proceedings on Privacy Enhancing Technologies, 2017.

[198] D. Froelicher, J. R. Troncoso-Pastoriza, J. S. Sousa, and J. Hubaux,
“Drynx: Decentralized, secure, verifiable system for statistical queries and
machine learning on distributed datasets,” CoRR, 2019. [Online]. Available:
http://arxiv.org/abs/1902.03785

178

https://doi.ieeecomputersociety.org/10.1109/PRDC.2017.42
https://www.springerprofessional.de/secure-third-party-data-clustering-using-data-multi-user-order-p/16295950
https://www.springerprofessional.de/secure-third-party-data-clustering-using-data-multi-user-order-p/16295950
http://arxiv.org/abs/1902.03785


Bibliography

[199] D. Froelicher, J. R. Troncoso-Pastoriza, A. Pyrgelis, S. Sav, J. S. Sousa, J. Bossuat,
and J. Hubaux, “Scalable privacy-preserving distributed learning,” CoRR, 2020.
[Online]. Available: https://arxiv.org/abs/2005.09532

[200] B. Balle, J. Bell, A. Gascón, and K. Nissim,“Private summation in the multi-message
shuffle model,” CoRR, 2020. [Online]. Available: https://arxiv.org/abs/2002.00817

[201] J. Bell, K. A. Bonawitz, A. Gascón, T. Lepoint, and M. Raykova, “Secure single-
server aggregation with (poly)logarithmic overhead,” Cryptology ePrint Archive,
Report 2020/704, 2020.

[202] Z. Erkin, “Private data aggregation with groups for smart grids in a dynamic setting
using crt,” in Proceedings of the 2015 IEEE International Workshop on Information
Forensics and Security, WIFS, 2015.

[203] I. Leontiadis, K. Elkhiyaoui, M. Önen, and R. Molva, “PUDA - privacy and
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[213] T. D. Nguyen, P. Rieger, H. Y. Möllering, H. Fereidooni, S. Marchal, M. Miettinen,
A. Mirhoseini, A.-R. Sadeghi, T. Schneider, and S. Zeitouni, “Flguard: Secure and
private federated learning,” Cryptology ePrint Archive, Report 2021/025, 2021.

[214] S. Addanki, K. Garbe, E. Jaffe, R. Ostrovsky, and A. Polychroniadou, “Prio+:
Privacy preserving aggregate statistics via boolean shares,” Cryptology ePrint
Archive, Report 2021/576, 2021.

[215] H. Fereidooni, S. Marchal, M. Miettinen, A. Mirhoseini, H. Möllering, T. D. Nguyen,
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