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Abstract (in english)

The research topics described in this Ph.D. thesis lie at the intersection of Machine

Learning (ML) and Mathematical Programming (MP). The main contributions concern

the algorithm configuration problem and the distance geometry problem.

In the first part of the manuscript, we provide introductions to MP and ML

In the second part, we survey the literature on algorithm configuration. We consider

configurable algorithms Ac, where c is an array of parameters that modify the behavior

of the algorithm. For brevity, since we assume that all of the algorithms in this thesis

are configurable, we dispense from the c suffix and only write A instead of Ac.

Given a target algorithm A and an input π for A, we address the issue of identifying

the parameter configuration c∗ of A ensuring the best algorithmic performance pA(π, c)

in solving π. This question, known as Algorithm Configuration Problem (ACP), can be

formulated as an optimization problem, where the constraints define the set of feasible

configurations, and the objective optimizes the performance function pA. Since most

algorithms have a very large number of configurable parameters, finding their optimal

values for specific algorithmic executions is usually a very hard task to tackle in practice.

Therefore, the development of strategies for solving it automatically can benefit several

domains.

We propose two novel MP-driven methodologies, using ML paradigms as elements

appearing in an MP formulation, to address the ACP. Since algorithmic performance

is usually a black-box function (i.e., its closed form expression is unknown), we first

train an ML predictor to estimate the behaviour of A. Notably, we learn either: a) an

approximation of pA, or b) an approximation of a function mapping π and a required

performance level to any configuration achieving it. In a second phase, we translate

the mathematical properties underlying the learned approximation into MP terms. We

embed these components into an MP formulation. Its objective optimizes the ML-

derived predictor; its constraints encode dependency/compatibility conditions over the

parameters, required for a configuration to be feasible, and, potentially, other conditions

on the learned approximation. This allows us to formulate the ACP by MP and to

optimize it, upon the arrival of a new instance π̄, to retrieve the algorithmic configuration

c∗ achieving the best (estimated) algorithmic performance for π̄. Hopefully, c∗ is a good
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configuration for actually solving the instance π̄ with A. This framework can be adapted

to work with many ML paradigms, as long as one is capable of encoding the learned

approximation by MP.

The most prominent methodologies in the literature, treating the ACP as a black-

box problem, can only find configurations that are good for a set of instances with

similar characteristics. While black-box methodologies may not scale well to settings

where the set of feasible configurations is large and c∗ depends on the instance at hand,

MP solution algorithms should be more efficient, since they exploit the structure of the

problem.

Because of our interest in MP, our work in algorithm configuration is motivated by

the problem of finding the best parametrization of an MP solution algorithm, deployed

on a given problem. Specifically, we employ our approaches for tuning the parameters

of an optimization solver, deployed on instances of a hard mixed-integer linear program-

ming problem (see Sec. 2.6). In particular, we investigate how implementation choices

in the learning phase affect not only the accuracy of the trained predictor, but also the

cost of solving the derived MP, yielding nontrivial trade-offs.

In the third part of the manuscript, we consider a methodology for finding a realiza-

tion of a simple, undirected, weighted graph, in a Euclidean space of given dimension,

where the edges are realized as straight segments of length equal to the edge weights.

This is known as the distance geometry problem. A customary approach to it is to solve

an MP formulation to determine the position of the vertices in the given Euclidean space.

We propose a new MP formulation where, instead, we consider the cycles of the graph,

and we decide the length of the segments modelling the edges of each cycle. Our research

is partly motivated by the fact that it can serve as a graph embedding methodology, in

view of applying vector-based ML paradigms to graphs.

The thesis closes with a brief outline of several possible future research directions,

stemming from some of the subjects discussed in this thesis, which were investigated

during my Ph. D.



Abstract (en français)

Les sujets de recherche décrits dans cette thèse de doctorat se situent à l’intersection du

Machine Learning (ML) et de la Programmation Mathématique (PM). Les principales

contributions concernent le problème de la configuration des algorithmes et le problème

de la géométrie de la distance.

Dans la première partie du manuscrit, nous présentons la PM et le ML.

Dans la deuxième partie, nous passons en revue la littérature sur la configuration

des algorithmes. Nous considérons des algorithmes configurables Ac, où c est un tableau

de paramètres qui modifient le comportement de l’algorithme. Par souci de concision,

puisque nous supposons que tous les algorithmes de cette thèse sont configurables, nous

renonçons au suffixe c et écrivons seulement A au lieu de Ac.

Étant donné un algorithme cible A et une entrée π pour A, nous abordons la ques-

tion de l’identification de la configuration de paramètres c∗ de A assurant la meilleure

performance algorithmique pA(π, c) dans la résolution de π. Cette question, connue

sous le nom de Algorithm Configuration Problem (ACP), peut être formulée comme

un problème d’optimisation, où les contraintes définissent l’ensemble des configurations

admissibles, et l’objectif optimise la fonction de performance pA. Comme la plupart

des algorithmes ont un très grand nombre de paramètres configurables, trouver leurs

valeurs optimales pour des exécutions algorithmiques spécifiques est généralement une

tâche très difficile à réaliser en pratique. Par conséquent, le développement de stratégies

permettant de la résoudre automatiquement peut profiter à plusieurs domaines.

Nous proposons deux nouvelles méthodologies basées sur la PM, utilisant les paradigmes

de ML comme éléments apparaissant dans une formulation PM, pour aborder l’ACP.

Comme la performance algorithmique est généralement une fonction bôıte-noire (c’est-à-

dire que son expression analytique est inconnue), nous entrâınons d’abord un prédicteur

ML pour estimer le comportement de A. En particulier, nous apprenons soit : a) une ap-

proximation de pA, soit b) une approximation d’une fonction associant π et un niveau de

performance requis à toute configuration permettant de l’atteindre. Dans une deuxième

phase, nous traduisons les propriétés mathématiques sous-jacentes à l’approximation ap-

prise en termes de PM. Nous intégrons les composants qui en résultent dans une formula-

tion de PM. Son objectif optimise le prédicteur dérivé par ML ; ses contraintes encodent
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les conditions de dépendance/compatibilité sur les paramètres, requises pour qu’une con-

figuration soit admissible, et, potentiellement, d’autres conditions sur l’approximation

apprise. Cela nous permet de formuler l’ACP à travers la PM et de l’optimiser, à

l’arrivée d’une nouvelle instance π̄, afin de récupérer la configuration algorithmique c∗

réalisant la meilleure performance algorithmique (estimée) pour π̄. On espère que c∗

est une bonne configuration pour résoudre effectivement l’instance π̄ avec A. Ce cadre

peut être adapté pour fonctionner avec de nombreux paradigmes de ML, tant que l’on

est capable de codifier l’approximation apprise par la PM.

Les méthodologies les plus importantes de la littérature, traitant l’ACP comme un

problème de bôıte-noire, permettent uniquement de trouver des configurations qui sont

bonnes pour un ensemble d’instances ayant des caractéristiques similaires. Tandis que

les méthodologies de type bôıte-noire risquent de ne pas être adaptées à des situations

où l’ensemble des configurations réalisables est vaste et où c∗ dépend de l’instance en

question, les algorithmes de solution pour la PM devraient être plus efficaces, puisqu’ils

exploitent la structure du problème.

En raison de notre intérêt pour la PM, notre travail sur la configuration des al-

gorithmes est motivé par le problème de la recherche de la meilleure paramétrisation

d’un algorithme de solution de PM, déployé sur un problème donné. Plus précisément,

nous utilisons nos approches pour régler les paramètres d’un solveur d’optimisation,

déployé sur des instances d’un problème difficile de programmation linéaire en vari-

ables entières et non (voir Sec. 2.6). En particulier, nous étudions comment les choix

d’implémentation dans la phase d’apprentissage affectent non seulement la précision du

prédicteur entrâıné, mais aussi le coût de la résolution du program mathémathique que

nous en dérivons, donnant lieu à des compromis non triviaux.

Dans la troisième partie du manuscrit, nous considérons une méthodologie pour

trouver une réalisation d’un graphe simple, non dirigé et pondéré, dans un espace eu-

clidien de dimension donnée, où les arêtes sont réalisées comme des segments droits de

longueur égale aux poids des arêtes. Ce problème est connu sous le nom de problème de

géométrie de la distance. Une approche habituelle de ce problème consiste à résoudre

une formulation de PM pour déterminer la position des sommets dans l’espace euclidien

donné. Nous proposons une nouvelle formulation PM où, à la place, nous considérons

les cycles du graphe, et nous décidons de la longueur des segments modélisant les arêtes

de chaque cycle. Notre recherche est en partie motivée par le fait qu’elle peut servir de

méthodologie de plongement de graphes, afin d’appliquer aux graphes des paradigmes

de ML basés sur les vecteurs.

La thèse se termine par un bref aperçu de plusieurs directions de recherche futures

possibles, découlant de certains des sujets discutés dans cette thèse, qui ont été étudiés

pendant mon doctorat.



Acronyms

Below, we provide a table with with the acronyms used in the thesis.

extended name shorthand

Algorithm Configuration Problem ACP

Algorithm Selection Problem ASP

Branch-and-Bound B&B

Configuration Space Search Problem CSSP

Convex Programming CP

Cross-Validation CV

Decision Tree DT

Design Of Experiments DOE

Distance Geometry Problem DGP

Empirical Risk Minimization ERM

Euclidean Distance Geometry Problem EDGP

Feature Selection FS

In-Sample IS

Hydro Unit Commitment HUC

Karush-Kuhn-Tucker KKT

Knowledge-Encoding Process K-EP

Linear Programming LP

Local Search Heuristic LSH

Logistic Regression LR

Mixed-Integer Linear Programming MILP

Mixed-Integer Nonlinear Programming MINLP

Machine Learning ML

Mathematical Programming MP

MultiStart MS

Nested Cross-Validation NCV

Neural Network NN

Nonlinear Programming NLP

Out-Of-Sample OS

Performance As Input PaI

Performance As Onput PaO

Per-Problem PP

Per-Instance PI

Quadratic Programming QP

Regularized Risk Minimization RRM

Structural Risk Minimization SRM

Support Vector Regression SVR

Unit Commitment Problem UCP

Vapnik-Chervonenkis VC

Variable Neighborhood Search VNS

Table 1: Thesis acronyms
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Chapter 1

Introduction

In this thesis, we are going to consider research topics at the interface of MP and ML.

MP, discussed in Ch. 2, is a language for formally stating and solving optimization

problems; its sentences are called “formulations”. A “problem” is an infinite collection

of couples of the type (Q,A), all sharing certain structural properties, whereby Q is an

input question and A is the output answer to that question [99]. We assume that any

problem can be always represented by a collection of strings, thereby, parameterized by

a set of symbols. In this setting, an “instance” is the assignment of values to the input

symbols (i.e., a specific question), while a “solution” is the assignment of values to the

output symbols, for a given instance.

In some problems, called “decision problems”, the solution can only be YES or NO.

A sample decision problem is deciding whether a natural number is prime. In this thesis,

we address “optimization problems”, whose solution is the best answer out of a set of

feasible ones. One widely investigated optimization problem is the Travelling Salesman

Problem (TSP). The TSP question is formulated as follows: given a set of locations and

the distances between them, which is the shortest route for visiting all the locations

once, and returning to the first city at the end of the route? The TSP is considered as

an infinite collection of all finite, labelled graphs.

We remark that the structural properties shared by problem members, notably,

the relationship between questions and answers, are usually represented by a sentence,

parametrized by the symbols of Q and A. Since the problems we treat in this thesis

can all be cast as optimization problems and, thereby, translated into MP, we call

“formulation” the sentence characterizing a problem. Then, solving a problem involves

interpreting its formulation according to the values of a specific instance, in order to

find the corresponding solution.

ML is a set of techniques for devising and implementing algorithms, in order to con-

struct hypotheses from data (see Ch. 3). We consider an algorithm either as pseudo-code

or, more formally, as written in a high-level programming language. The ML problem

13



14 CHAPTER 1. INTRODUCTION

instances are data points. Its solutions, the hypotheses, are functions, parametrized by

an array of coefficients, approximating some properties of the data. Since the distribu-

tion of the ML problem instances is almost always unknown (otherwise, there would be

no need to solve it), the only way to build and assess a hypothesis is by using a known

subset of the data, called “training set”, appropriately sampled. Given a training set,

the purpose of the associated “training problem” is to learn the optimal coefficients of

a hypothesis, i.e., such that the hypothesis can achieve maximum generalization. A hy-

pothesis is said to “generalize” well when it provides reasonably accurate approximation

estimates, even at points outside the training set.

This thesis often refers to ML “paradigms” and “predictors”. A ML paradigm is

a framework for learning hypotheses, comprising (learning) algorithms, methods (for

overall use) and methodologies (for application to practical cases). A trained predictor

is the solution of the training problem, i.e., a hypothesis equipped with the optimal

coefficients, learned by training. We also investigate the “inference problem”, related

to computation of a trained ML predictor for a given input. Given a training problem

and its solution, the inference problem aims at determining a set of statements, writ-

ten as arithmetical expressions in equalities/inequalities, or as memberships in certain

sets of numbers (integer, real, etc..), encoding the predictor as accurately as possible:

evaluating the system for a given input yields the predictor approximation estimate for

that input.

Thus, the inference problem is a “meta-problem”, in the sense that its input is

another problem.

Since the training and inference problems are both optimization problems, they can

be formulated by MP.

Given a configurable algorithm and its input, the main problem we consider in this

thesis aims at finding the configuration which ensures the best algorithmic performance

when the algorithm is run on its input. This is known as the ACP, and we survey the

relevant literature in Ch. 4. Although the ACP clearly stands out as an optimization

problem, the informal definition given above has many ambiguous terms: configurable

algorithm, algorithmic performance, and what it means for an algorithmic performance

to be “best”. In the Turing Machine (TM) computational model, algorithms simply

run on the TM with the input written on the tape. In most cases, part of the input

of algorithms does not necessarily represent an instance of the problem being solved,

but rather instructions to the algorithm itself, encoded by parameters. For example, an

algorithm might be configured to print out its outputs to screen rather than send it to

the printer. Then, the part of the input we single out as “algorithmic configuration” is

an instantiation of the parameters of the target algorithm, determining the arrangement

and interactions of its internal components. Accordingly, the algorithmic configuration

itself may be a complicated array of data of different type: boolean, numeric, cate-
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gorical. More relevant to the case in point, an algorithm for solving an optimization

problem represented as an MP formulation, called “solver”, is usually a collection of

different (implemented) algorithms, each of which can be deployed together with other

algorithms, or alternately to them. Since each instance may need ad-hoc solution pro-

cedures, a good solver configuration may enhance its performance, i.e., speed up the

solution process or improve the quality of the solution returned by the solver within a

given time limit. More in general, the “performance” of an algorithm is the outcome

of executing it on an instance and with a specific configuration; it can be measured in

terms of CPU time, quality of the returned solution, etc.

The implementation of an approach to the ACP requires dealing with two issues:

the (potentially very large) size of the configuration set (which grows at least as an

exponential function of the number of parameters), and the fact that the algorithmic

performance is generally black-box (i.e. no explicit algebraic representation of it is

available) and very costly to measure. The first issue requires procedures that can

search large sets efficiently. The second one requires a performance estimate that can

guide the exploration of the set of feasible algorithmic configurations: this is achieved

by sampling the performance at a small set of carefully selected points (i.e., running

the algorithm on a handful of instances and configurations) and/or by deploying more

sophisticated ML techniques. In this thesis, we propose two novel methodologies for

addressing the ACP, based on a combination of MP and ML. We present them in Ch. 5

and 6).

This thesis also considers simple, undirected graphs, whereby the vertex positions

are unknown and the edges are labeled by a weight/length function. Given an integer

K, the Distance Geometry Problem (DGP) on such a graph aims at reconstructing the

position of the graph vertices, in a Euclidean space of dimensionK, from the known edge

weights, i.e., at finding a “realization” of the graph. In the DGP, a realization is obtained

by mapping the graph to a set of vectors of dimension K such that, for any two vertices

incident on an edge, their distance must be close as possible to the corresponding edge

weight. This issue is discussed in Ch. 7. We propose a novel methodology for solving the

DGP. Although there is a vast literature for solving the DGP, MP-based methodologies

allow very robust solutions. Our contribution is a novel MP formulation. Our research

is partly motivated by the fact that it can be instrumental in applying vector-based

ML techniques to graphs. In fact, several ML paradigms applied on graphs require an

embedding of the input graph into some topological space. MP formulations of the

DGP may achieve this in a much more efficient way than other solution strategies.

1.1 List of publications

The thesis is based on the research presented in the following papers:
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Chapter 2

An overview of mathematical

programming

2.1 Introduction

A decision problem P encodes a formal YES/NO question, parametrized by a set of

input and output symbols which can be assigned values. The assignment of values to

the input symbols is an instance, and decision problems are assumed to have an infinite

number of instances. The assignment of values to the output symbols is a solution of

P .

Mathematical optimization is a field of mathematics [65] related to optimization

problems, whereby a solution is selected from a feasible (i.e., admissible) set of out-

put assignments. The interest in mathematical optimization comes from the fact that

countless practical applications, arising from diverse fields such as engineering, finance,

economics, chemistry, computer science, etc., can be cast as optimization problems.

MP is a formal language for describing optimization problems and a framework

for solving them. Each formal MP sentence, called formulation, is recursively built

from a set of entities: index sets and parameters (encoding the problem input), de-

cision variables (encoding the solution for a specific instance), objective function (for

assessing variable assignments), and constraints of various types (defining the avail-

able decisions). In the following, we will be adopting the abbreviation “MP” both for

“mathematical programming” (the language/framework) and “mathematical program”

(an MP formulation), whenever the context allows for unambiguous use of the term.

This chapter is devoted to providing some basic notions about MP. Aside from

the fact that Ph.D. theses are required to contain an introduction to whatever subject

they are about, we are further motivated by three observations. Firstly, we see both

the ACP and the DGP as optimization problems: the former finds the configuration

offering the best algorithmic performance, the latter searches for a realization of a

19
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graph in a given Euclidean space. Further, the methodologies proposed by the authors

of this Ph. D. thesis to address the ACP and the DGP adopt MP algorithms to try

to solve them; in this chapter, we discuss some of these algorithms. In particular, our

ACP approaches involve training ML predictors, which requires solving optimization

problems. Secondly, we study the application of the ACP to solution algorithms for

MP. From the point of view of MP as a formal language, we use the MP syntax (the

formulations) in order to represent the ACP; and we apply the ACP to the algorithms

that provide the semantics of MP (i.e., solvers, deciding the assignment of optimal values

to the decision variables).

2.2 The components of a mathematical program

The MP formulation of an optimization problem is as follows:

min
x∈D

f(x)

∀i ∈ I gi(x) ≤ 0

∀j ∈ E hj(x) = 0 ,

(2.1)

whereby |I| = m and |E| = m′, f : Rd −→ R , gi : Rd −→ Rd and hj : Rd −→ Rd. The

formulation in Eq. (2.1) is the standard form of an MP. Its domain is the closed set

D = dom f ∩
⋃
i∈I

dom gi ∩
⋃
j∈E

domhj .

Throughout this chapter, we assume that we are always optimizing over closed sets, and

will always refer to D as the domain of an MP formulation.

The components of the problem in Eq. (2.1) are [115]:

• decision variables: a set of quantities x, representing decisions to be taken and

encoding an output solution;

• constraints: a set of statements defining the domain and feasible values of the

variables. The constraints of an MP formulation are of two types: explicit and

implicit. Explicit constraints are written by means of arithmetical expressions

of variables, parameters, equality/inequality symbols and/or optimization oper-

ators (e.g., “2x1 − 3x42 = 0”). Implicit constraints are statements expressed as

membership in certain classes of sets (e.g., “x ∈ Z”);

• objective function: a couple, containing an optimization operator (i.e., min or max)

and an arithmetical expression f(x) of variables, parameters and/or optimization

operators. An optimization operator defines the optimization direction: it specifies

whether an expression must be minimized or maximized. The purpose of the

objective function is to allow the assessment of different value assignments to

variables, in order to determine an optimal one;
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• parameters: a set of given input coefficients, univocally identifying a problem

instance. In Eq. (2.1), the parameters are: a function f , the finite index sets

of the inequality and equality constraints I, E the constraint functions gi, for all

i ∈ I and hj , for all j ∈ E ;

A point x̂ is feasible with respect to the problem in Eq. (2.1) if it satisfies all the

constraints, for given input parameters. We let

F = {x ∈ D | ∀i ∈ I gi(x) ≤ 0, ∀j ∈ E hj(x) = 0} (2.2)

be the feasible set of Eq. (2.1), containing the points satisfying all the constraints, so

that Eq. (2.1) can be rewritten, compactly, as

min
x∈F

f(x) .

If F = ∅, we say that the MP in Eq. (2.1) is infeasible. Instead, we say that Eq. (2.1)

is unbounded if, for all objective function values m, there always exists a point x′ ∈ F
such that f(x′) < m. If an MP is not infeasible nor unbounded, and there an optimal

solution, we call p∗ the optimal value of that solution. We remark that symbols denoting

optimal objective function values might be assigned two special symbols, ∅ or ∞, which

means that the underlying MP is, respectively, unbounded or infeasible.

For a feasible solution x̂ of Eq. (2.1) to be a local optimum, x̂ must be such that

there exist ε > 0 and a neighbourhood Uε(x̂)∩F where, for all x ∈ Uε(x̂), f(x̂) ≤ f(x).

If, instead, f(x̂) ≤ f(x) for all x ∈ F , then x̂ is also a global minimum of Eq. (2.1).

In MP, it is common to resort to reformulation techniques. A reformulation Q of

a problem P is an auxiliary problem having some properties in common with P . For

a detailed account of reformulations, we refer to [114]. Reformulations are customarily

applied in MP to cast the original problem into one that is easier to solve. In fact, the

formulation adopted for Q can capture and encode some useful structural properties

of P , which can then be exploited by appropriate solution algorithms. Q may: a)

preserve all or some of the (local/global) optimality properties of P , b) be obtained

from P by removing some of its constraints (relaxations), or c) approximate some of the

components of P (approximations, which may or may not supply optimality guarantees).

Relaxations and approximations are especially important, because they yield bounds

on the optimal value of the objective function of P . These bounds can then be exploited

by optimization algorithms — such as the Branch-and-Bound (B&B) [107] — to solve

diverse problems in several different MP classes, such as Mixed-Integer Linear Program-

ming (MILP), Nonlinear Programming (NLP) and Mixed-Integer Nonlinear Program-

ming (MINLP). Another widely used reformulation is the “dual” Q of an MP P (here,

the “primal”). In the words of [118], the dual Q is such that the “decision variables of

P are used to index the constraints of Q, and the constraints of P are used to index the
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variables of Q”. Solving the dual is also conductive to the computation of the duality

gap. We let p̂ the primal objective function value at a primal-feasible point x̂, q̂ the

dual objective function value at a dual-feasible point ŷ, and we define the duality gap

as

∥p̂− q̂∥ ≥ 0 . (2.3)

Moreover, for any primal-dual feasible couple, duality provides a bound on the primal

formulation, a property called weak duality. For minimization problems such as the one

formulated by Eq. 2.1, weak duality corresponds to:

q̂ − p̂ ≤ 0 , (2.4)

i.e., q̂ is a lower bound on any primal solution value. For maximization problems, solving

the dual formulation supplies an upper bound on primal solution values. Unboundedness

of the dual (sometimes represented as q̂ = +∞), implies infeasibility of the primal, and

viceversa.

There are several algorithms for solving optimization problems in one or more MP

classes. Solvers are software applications implementing one or more of such algorithms.

They accept a problem instance and, possibly, a formulation of the problem and specific

operating instructions (conditioning their behaviour) as inputs. Their outputs are: a)

an optimal feasible solution (or a set thereof), which solvers attempt to compute for the

given input; b) possibly, information about the solution process. Solvers provide the

semantics of MP formulations, by deciding the optimal value assignment values to the

decision variables.

Optimization algorithms usually start from a (possibly, feasible) point, then itera-

tively explore the feasible set, searching for a point capable of improving on solution

value. Many of these algorithms, especially those capable of providing optimality guar-

antees, depend on the gap in Eq. (2.3) to assess the improvement at each iteration. In

fact, their termination criterion is usually

∥p̂− q̂∥ ≤ ϵ ,

where ϵ > 0 is a tolerance parameter; in this case, we say that an ϵ-optimal solution has

been attained. Strong duality applies when the gap in Eq. (2.3) is zero, which occurs at

any globally optimal primal-dual solution.

In the following sections, we give an overview of some important classes of MP. Since

an extensive treatment of them is beyond the scope of this manuscript, we will avoid

any proofs and provide bibliographic references for further study.

2.3 Convex Programming

Solving an MP is, in general, difficult: it has been shown that MP is uncomputable (as a

class) [97, 116] and that even those MPs that are decidable are still NP-hard. However



2.4. LAGRANGIAN DUALITY AND OPTIMALITY CONDITIONS 23

for at least one MP class, Convex Programming (CP), it is always possible to guarantee

the existence of a solution with certain desirable properties. Some problems in this

class are still NP-hard [48, 160], but many others are tractable. Notably, although

exact solution algorithms running in polynomial time only exist for two CP classes —

namely, Linear Programming (LP) (presented in Sec. 2.5) and Quadratic Programming

(QP, i.e., minimizing a quadratic function over linear constraints) [29, §4] — it is always

possible to compute an approximate solution of a CP in polytime [148].

The MP defined in Eq. (2.1) is a CP if f and F are convex. For this to be true,

it is sufficient that [150, §12.4]: a) for all j ∈ E , hj(x) := a⊤j x + bj , i.e., the equality

constraints are affine (hence, convex); b) for all i ∈ I, gi(x) are convex. The main

property of a CP is the equivalence of local and global optimality: any local minimum

is also a global minimum. For this reason, local algorithms for convex optimization are

guaranteed to work globally.

The reason why CP is important for this thesis is that many optimization problems

can be formulated as CPs [29], including many arising in ML such as support vector

machines, logistic regression, ridge regression, and others [33]. Moreover, some well-

known DGP formulations are convex; see, e.g., Eq. (7.6) in Sec. 7.4. The interested

reader will find further details in textbooks such as, say, [29] or [146].

2.4 Lagrangian duality and optimality conditions

We would like to know under which conditions the gap in Eq. (2.3) is zero, i.e., when

strong duality applies. Lagrangian duality (see, e.g., [20, §6]) allows us to derive these

conditions: it is a reformulation technique for transforming constrained optimization

problems into (partially) unconstrained ones, by placing the constraints in the objective

function and penalizing any violations to them.

We apply Lagrangian duality to Eq. (2.1).

The first step is to build the Lagrangian function, i.e., the map

L : Rd × Rm × Rm′ −→ R
L(x, λ, µ) = f(x) +

∑
i∈I′

λigi(x) +
∑
j∈E ′

µjhj(x) , (2.5)

where E ′ ⊆ E , I ′ ⊆ I, the coefficients {λi}i∈I′ and {µj}j∈E ′ are the Lagrangian multi-

pliers and, for all i ∈ I ′, λi ≥ 0.

Then, we define the Lagrangian dual function as the concave map

q : Rm × Rm′ −→ R
q(λ, µ) = inf

x∈F
L(x, λ, µ) .

(2.6)

Eq. (2.6) is the Lagrangian relaxation of the MP in Eq. (2.1), providing a lower bound

on its optimal value p∗. The Lagrangian relaxation can be seen as an infinite family of
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problems, parametrized by the Lagrangian multipliers. In fact, the tightest lower bound

is achieved by solving the Lagrangian dual

max
λ,µ

q(λ, µ)

λ ≥ 0 ,
(2.7)

a convex MP formulation, whose optimal value we call q∗, when it exists.

The Karush-Kuhn-Tucker (KKT) conditions (well described in, say, [15, §3] or [150,
§12]) for the problem in Eq. (2.1) are as follows:

∀i ∈ I gi(x) ≤ 0 (primal feasibility I)

∀j ∈ E hj(x) = 0 (primal feasibility II)

∀i ∈ I λi ≥ 0 (dual feasibility)

∇xL(x, λ, µ) = 0 (stationarity)

∀i ∈ I λigi(x) = 0 , (complementary slackness)

(2.8)

We assume that the objective and all constraint functions of the MP in Eq. (2.1) are

continuously differentiable in a neighbourhood of x. ∇ is the function vector

∇f =

(
∂f(x)

∂x1
,
∂f(x)

∂x2
, · · · , ∂f(x)

∂xd

)
, (2.9)

representing the gradient of a function and x being the vector (x1, x2, . . . , xd). We will

employ the shorthand ∇f(x̄) to refer to Eq. (2.9), evaluated at x̄ ∈ Rd.

Eq. (2.8) allow us to make some statements about the optimality of Eq. (2.1). Firstly,

if there exists a primal feasible point x∗ and dual feasible Lagrangian multipliers (λ∗, µ∗)

at which strong duality holds, then the KKT conditions are satisfied at those points

(necessity). Secondly, if there exists primal-dual feasible points x∗, λ∗, µ∗ satisfying the

KKT conditions in Eq. (2.8), then x∗, λ∗, µ∗ are primal-dual optimal (sufficiency).

A remarkable result of Eq. 2.8 is that it provides sufficient conditions for global

optimality (and, thereby, strong duality), if the corresponding primal formulation is

a CP, or local optimality, otherwise. However, this relies on the assumption that a

KKT-compliant point exists, which may not always be the case; notably, a dual optimal

point may not satisfy the complementary slackness conditions of Eq. 2.8. For such a

primal-dual optimal point to exist, specific constraint qualification conditions must be

satisfied. Among the many applicable constraint qualification conditions, the Slater’s

conditions [15, §5], for example, require that: a) for all i ∈ I, the gi are convex, b) for

all j ∈ E , the hj are affine, and c) there exists a point x̂ in the interior of D, such that

all gi(x̂) < 0 and all hj(x̂) = 0. Slater’s conditions holding at a primal feasible optimum

are sufficient to ensure the existence of an optimal Lagrangian multipliers, satisfying

the KKT conditions in Eq. (2.8) and achieving local/global optimality.

We remark that, if the MP at hand is nonconvex, the KKT conditions are necessary

for local optimality. However, information from the gradient may not be enough to
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ascertain in which directions the objective function increases/decreases. Therefore, in

order to identify a point as optimal, second-order conditions are required, to analyze

the curvature of the Lagrangian function in Eq. (2.5) in undecided directions. These

conditions “examine the terms of the second derivative in the Taylor series expansions

of f, gi and hj , to see if this extra information resolves the issue of increase or decrease

of f”. See, [150, §12.4] for further details).

2.5 Linear Programming

LP is a subfield of convex optimization, for formulating problems characterized by a

linear objective and linear constraints. A generic LP has the following formulation:

min
x∈Rd

⟨c, x⟩

Ax = b

∀i ≤ d x ≥ 0 ,

(2.10)

for a matrix A ∈ Rm×d, m > 0, c ∈ Rd, b ∈ Rm. The LP in Eq. (2.10) has an optimum

only if it is feasible and bounded. The associated dual

max
y∈Rm

⟨y, b⟩

yA⊤ ≤ c

∀j ≤ m y ≥ 0

(2.11)

is also an LP. Weak duality always applies to Eq. (2.10)–(2.11), for any feasible primal-

dual couple (x̄, ȳ), i.e.:

⟨ȳ, b⟩ ≤ ⟨c, x̄⟩ .

Strong duality is attained by any feasible primal (or dual) optimal solutions x̂, ŷ satis-

fying the complementary slackness conditions

ŷ(b−Ax̂) = 0 .

The main families of solution algorithms for LP are the simplex one and the interior point

one [150, §13–14]: they can solve large instances (up to millions of constraints/variables)

quickly and efficiently. In terms of worst-case behaviour, the simplex algorithm has been

proven to have exponential complexity on some problem classes. However, its average

running time is polynomially bounded [170, §11], which means that it is extremely fast

in practice on most problems. Interior-point methods, instead, have been demonstrated

to have polynomial complexity, although they are often faster only on large and sparse

problems [158, 6].
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2.6 Mixed-Integer Linear Programming

MILP comes from allowing integer variables into the LP in Eq. (2.10). A generic MILP

formulation is as follows:

min ⟨c, x⟩
Ax = b

∀w ∈ W xw ≥ 0

∀u ∈ U xu ∈ Z ,

(2.12)

for a matrix A ∈ Rm×dx+dz , dw being the number of continuous variables and du being

the number of integer variables. MILP has been shown to be NP-complete [170, 102];

the main challenge it raises lies in the nonconvexities generated by the integrality con-

straints.

We are interested in this MP class because a wealth of practical problems can be cast

as MILPs, including many nonlinear problems, which can be approximated with suffi-

cient accuracy by MILP formulations. A well-known example of a hard-to-solve MINLP

which can be formulated as a MILP is the Unit Commitment Problem (UCP) [154, 180],

a broad family of optimization problems. The UCP is also one of the major problems

in the field of electricity management/production. Recognising the importance of this

problem, we decided to use UCP instances as a benchmark set in the computational

experiments conducted to test our ACP approaches. These experiments are discussed

in finer detail in Ch. 5 and 6; the selected UCP formulation is an MILP (see Sec. 5.5.1),

approximating the nonlinearities through linear constraints.

Theoretical results and common algorithmic methodologies for LP are commonly

applied to MILP: the solution of an MILP often involves solving smaller subproblems,

formulated by LP and approximating the initial MILP. The purpose of these subprob-

lems is to to quickly derive bounds on the objective function value of the MILP. They

are solved efficiently, by deploying the fast LP algorithms mentioned in Sec. 2.5. For

this reason, in general, MILP formulations are easier to solve than the MINLP ones.

In Sec. 5.5.4, we will discuss MILP and MINLP formulations for the ACP, and observe

that the former can be solved considerably quicker.

A customary approach to address an MILP P is to relax the integrality constraints

and then consider the derived continuous relaxation Q. Q is an LP, hence it can be

solved efficiently. As a relaxation, Q supplies a lower bound on the objective function

value of P , when P is a minimization problem, or an upper bound if P is a maximization

problem. If an optimal solution of Q is also integer — i.e., feasible for P — it is also

an optimal solution for P . Further, under certain conditions on the structure of Q (for

example, total unimodularity [170, §19]), we can be certain that its solutions are all

integer. Such properties are famously exploited in the B&B algorithmic framework,

which is at the core of all the most advanced MILP solvers are all based on.
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2.6.1 Common solution algorithms

In this section we overview some common algorithmic techniques for solving MILP

formulations.

2.6.1.1 B&B

The B&B [107] is a divide et impera type algorithm, which explores the search space of

an MILP formulation through the enumeration of all possible solutions to the problem

in question by a tree. Each node of the tree contains a subproblem; after solving the

subproblem at a node, the B&B processes the children nodes recursively.

At the current subproblem, a lower and an upper bound on the optimal objective

function value are computed. The former comes from solving a relaxation — usually the

continuous one — whose solution, however, is not guaranteed to be feasible. The latter is

usually produced by some heuristic, searching for a feasible solution. In addition to these

local bounds, globally valid upper and lower bounds are kept during the tree exploration;

the global bounds are computed at the root node and updated at the subproblem nodes,

when possible. We call the globally valid upper bound the incumbent bound, and the

related solution incumbent.

If the lower bound at the current node is larger than the incumbent one (e.g., the

subproblem is infeasible), the sub-tree rooted in that node is discarded, as it is incapable

of improving upon the incumbent and provide a global optimum. Instead, if the current

lower bound is smaller than the incumbent one, the difference between the bounds at

the current node is smaller or larger than a user-defined threshold. In the first case, the

current subproblem produces an approximate global optimum, whose approximation

depends on the threshold; the incumbent, incumbent bound and globally valid lower

bound may be updated, if necessary. Otherwise, the search continues by branching on

the current subproblem’s feasible region, which is partitioned into two (or more) subsets

(say, by imposing constraints on a variable), that are recursively explored at the children

nodes.

The B&B is run until all of the subproblems have been processed, or until some

termination criterion (e.g., a time or iteration limit) is verified.

Branching, for decomposing the relaxation into two subproblems, is one of the two

main constraint enforcement techniques. Constraint enforcement is a family of tech-

niques for eliminating relaxation solutions that are infeasible for the original problem.

The other important constraint enforcement technique is refinement, for tightening the

relaxation via cutting planes. The Branch-and-Cut algorithm is the most widely used

variant of the B&B, and is is based on refinement. It is employed when the LP solution

of the continuous relaxation is not MILP-feasible: it introduces additional constraints

(called “cutting planes” or, simply, “cuts”) to the continuous relaxation, and then tries
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to solve it again.

Our argument for mentioning the B&B is that the most popular algorithms for

treating (MI)NLP problems are based on variations of this algorithmic framework.

2.6.1.2 Cutting planes

Cutting planes are at the heart of the Branch-and-Cut. We let X ⊆ Rn be a set of

points and

conv(X) = {x̄ =
∑

i xiβi | ∀i, βi ≥ 0 and
∑

i βi = 1} (2.13)

be the convex hull of X, that is, the (convex) set of all convex combinations of points in

X. Eq. (2.13) is a polyhedron [29, §2], i.e., the set constructed by intersecting a finite

number of of halfspaces (linear inequalities) and hyperplanes (linear equalities).

Given an MILP P , with feasible region F , it is known that optimizing over

F̃ = conv(F)

gives the same optimal solutions as P . Furthermore, this means solving an LP, owing

to the structure of Eq. (2.13). We refer to this LP as Q. However, to actually formulate

it, one needs to know all of the points in F , which makes describing Q hard. Moreover,

even assuming that such information is available (which, typically, is unlikely), if F
contained (infinitely) many points, Q might be “too large” to be treated efficiently

(although algorithmic strategies have been developed to tackle with this issue, e.g., the

Danzig-Wolfe algorithm [47]).

To overcome this challenge, one can approximate Q by first computing a continuous

relaxation Q̄ of P — with feasible region F̄ — and then “slicing” Q̄, to tighten it. The

slicing is obtained by adding constraints such that the related hyperplane is close to F̃
or belongs to it (i.e., it defines one of its facets). This is accomplished by solving the

separation problem, i.e., given x̄ ∈ F̄ , by finding a cutting plane dx − δ, such that the

inequality

dx ≤ δ (2.14)

is satisfied by all points of Q and only violated by x̄ (i.e., dx̄ > δ). Eq. (2.14), called

valid inequality of Q for separating x̄ from Q, is always guaranteed to exist [170, §23].
A cutting plane algorithm is a procedure which, iteratively: solves the continuous

relaxation Q̄ and tests the obtained solution for belonging to F̃ . If it does not, a cut

is produced (by solving the separation problem), and added to Q̄; then, Q̄ is solved.

These steps are repeated until an optimal MILP-feasible solution is found.

2.6.1.3 Local search heuristics

Many problems in combinatorial optimization can be cast as MILPs. A combinatorial

optimization problem is an optimization problem where the set of solutions is finite,
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i.e., the feasible region F is discrete. Although F typically has a concise representation

(e.g., a graph), its size may be very large [171, §1], hence exhaustively searching it

is generally not possible. Instead, approximate algorithms, tailored to the problem

at hand, are usually deployed. These algorithms, called local search heuristics (LSH),

do not provide guarantees on the global optimality of the attained solutions, but are

generally capable of producing a good feasible solution in a reasonable time.

The reason why we discuss LSHs is that many methodologies for addressing the

ACP, that we will survey in Ch. 4, rely on them (and on metaheuristics, described in

the next section), to explore the feasible region of an ACP instance, i.e., the set of

combinations of parameter values of a given algorithm.

LSHs are iterative algorithms which, at each iteration, will: a) take a putative

feasible starting point in input, b) start exploring the neighbourhood of that point, and

c) return, as output, a locally optimal point, which is “close” to the starting point and

has better objective function value. The search terminates when step c) cannot improve

the objective function value. A key element of an LSH is the definition of “closeness”,

by a neighbourhood function [67, §5]

I : F −→ 2|F| , (2.15)

where F is the feasible set of the problem. The function I in Eq. (2.15) decides the

membership of a feasible point x′ ∈ F in the neighbourhood I(x) of a given x. An LSH

produces a sequence of feasible points {x0, x1, . . . , } such that, at each iteration t ≥ 1:

xt = ς(xt−1) and ς(x) = arg min
y∈I(x)

f(y) ,

whereby “min f” is the objective function of the main problem. Optimizing over I(x) is

easier than optimizing over the whole F . In general, I(x) is chosen to be much smaller

than F ; however, if I(x) is large, one can decide to use local algorithms to compute

ς(x).

An alternative, commonly used local search strategy is to iteratively solve LP re-

laxations of the original problem and try to improve/tighten them by fixing variables,

adding cuts, branching, etc. Heuristics of this type, customarily employed to tackle

MILPs, are: the relaxation induced neighbourhood search [64], the feasibility pump [61]

and local branching [63], just to name a few.

2.6.1.4 Metaheuristics

The disadvantage of LSHs is that, optimizing over a (small) subset of F , they might

miss the global optima of the problem, even when the size of the neighbourhood defined

by in Eq. (2.15) is large, and only produce locally optimal solutions of the problem. To

overcome this issue, metaheuristics employ LSHs as components of a broader algorith-

mic framework, which also performs techniques for escaping solutions found during the



30 CHAPTER 2. MATHEMATICAL PROGRAMMING

search, whenever there is reason to believe that they are not global. These procedures

are applied to problems formulated both via MILP and MINLP. In Ch. 4, we will discuss

how metaheuristics are exploited in ACP approaches.

LSHs promote intensification mechanisms: only the most promising search regions

(containing the best solutions found so far) are explored. Metaheuristics, instead, com-

bine intensification and diversification mechanisms. Notably, diversification leads the

search into unexplored regions, so that the entire set of of solutions can be examined

uniformly [182]. Metaheuristics owe their name to the fact that they are generic, high-

level strategies. Since metaheuristics seldom employ assumptions about the problem

at hand, they can be performed, without specific adaptations, to solve a multitude of

different problems and to enhance the performance of diverse LSHs (or even to pick one

from a portfolio).

Commonly used metaheuristics for (linear and nonlinear) optimization are: Multi-

Start (MS), simulated annealing [132], tabu search [188], genetic algorithms. In partic-

ular, MS algorithms execute an LHS at many different starting points, sampled (partly

or completely) at random, and choose the best solution out of the ones found. Another

widely used metaheuristic for MILP is Variable Neighbourhood Search (VNS)[143],

which is, basically, a local search where the neighborhood size is dynamically modified

at each iteration.

An exhaustive description of metaheuristics is beyond the scope of this thesis, but

the interested reader will find a detailed treatment in, say, [71].

2.7 Mixed-Integer Nonlinear Programming

MINLPs [152, 53] are MPs with nonlinearities in the objective function or in constraints,

and whereby some of the variables are forced to take discrete integer values. MINLPs

are often described by the following formulation:

min f(x)

∀j ∈ J gj(x) ≤ 0

∀i ∈ I xi ∈ Z ,

(2.16)

where f : Rd −→ R, g : Rd −→ Rd, and I is the set of indices labelling the integer

variables.

MINLP is a broad MP class — actually, it includes all other MP classes — with many

practical applications, requiring optimization over integer variables and the treatment of

nonlinear, possibly nonconvex functions. An MINLP containing no nonlinear functions

is an MILP, which, as we mentioned earlier, has been proved to be NP-complete. An

MINLP without integrality constraints (i.e., containing only continuous variables) is an

NLP, which has been shown to be NP-hard [103]. Thus, MINLP is hard to solve: in
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general, the inclusion of MILP in MINLP is sufficient to make it NP-complete, but

some MINLP can even be undecidable [98, 116].

The reason why we care about MINLP is that the DGP naturally belongs to this

class; moreover, we provide formulations approximating the ACP, which are also MINLP.

The ACP corresponds to the following statement: given a target algorithm, select

the algorithmic parameter configuration that will optimize the performances of that

algorithm (see Ch. 4). What is the structure of the MP corresponding to this statement?

Its objective function, optimizing the behaviour of the target algorithm, is almost always

unknown, which is why one often tries to approximate it from known data; in most cases,

only nonlinear functions can provide a sufficiently accurate approximation. Its feasible

set, containing admissible parameter values and permitted configurations, is often a

discrete set. In fact, even assuming that the logical dependence relations between the

parameters can be described by linear constraints — which may not always be the case

— the feasible set presents nonconvexities.

Instead, given a graph, the DGP seeks to find the position of the graph vertices in a

Euclidean space of given dimension. Nonlinearities often arise from enforcing conditions

on the distances between adjacent vertices, usually by a norm. See Ch. 7 for more details.

2.7.1 Common solution algorithms

The major algorithmic strategies for tackling MINLP problems, as discussed in [152],

are:

2.7.1.1 Relaxations

Relaxations share the same function and similar implementation as in MILP. They are

auxiliary formulations, constructed from the MINLP in Eq. (2.16) by processing some of

its constraints, with a feasible set usually larger than the original problem, and yielding

a (globally valid) lower bound on its optimal objective function value. It is desirable

for a relaxation to be easier to solve than the MINLP itself.

The MP in Eq. (2.16) can be relaxed by: disregarding variable integrality (continuous

relaxation); constructing a piecewise linear underestimator of the convex constraints

(polyhedral relaxation); building a convex underestimator of the nonconvex constraints

(convex relaxation); combining the previous techniques. Continuous relaxations are used

in B&B type algorithms for nonlinear problems; polyhedral relaxations are employed

in outer-approximation type algorithms [52]; convex relaxations of nonconvex NLPs are

deployed in a variant of the B&B, called spatial B&B (sB&B) [152, §5]. The sB&B

computes convex relaxations of the subproblems resulting from branching at continuous

variables; in this way, it produces a guaranteed lower bound on the optimal objective

function value.
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2.7.1.2 Constraint enforcement techniques and metaheuristics

The main constraint enforcement techniques are branching and refinement, which are

deployed to tighten relaxations. Instead, metaheuristics can find a feasible solution,

yielding an upper bound on the optimal objective function value of Eq. (2.16); they

almost never provide global optimality guarantees on the solution found. Both con-

straint enforcement techniques and heuristics are borrowed from MILP and appropri-

ately adapted to MINLP. We treated them in Sec. 2.6.1.

Commonly used metaheuristics for MINLP are: MS, tabu search and simulated an-

nealing. We remark that the difference between the use of metaheuristics in MILP/MINLP

and NLP lies in the structure of the neighbourhood function I in Eq. (2.15). Selecting

a neighbourhood when the feasible set is discrete is typically non-trivial, because there

is no information about the objective function at points close to the current local opti-

mum. One would have to compute the objective function at all points to know which

ones are best suited to be chosen by I. Since this is too computationally demanding,

this process often involves an element of random choice. Instead, NLPs have a continu-

ous (or partially continuous) feasible set, so the neighbourhood is simply the topological

sphere. Therefore, the gradient of the objective function can be used to move around

the current local optimum, and find its decreasing directions. In Sec. 2.8, we will see

how information about the objective function can be used to move around the current

local optimum, when searching for a solution to unconstrained optimization problems.

Finally, we note that, since MILP ⊂ MINLP and NLP ⊂ MINLP, all the main

approaches for solving MINLP incorporate algorithms for treating MILP and NLP

subproblems. Furthermore, algorithmic approaches distinguish between convex and

nonconvex MINLP problems (i.e., cMINLP and nMINLP). A nMINLP has nonconvex

objective and/or constraint functions.

A commonly employed strategy for nMINLP is to approximate the nonconvexities

in the objective or in the constraints by piecewise linear functions, and then solve the

resulting MILP [191]. However, the workhorse for nMINLP is sB&B.

Since a detailed description of the aforementioned algorithmic techniques is not our

purpose, we refer to, notably, [152] and [76] for an in-depth discussion.

2.8 Some words about unconstrained optimization

Constrained optimization problems can be reformulated as unconstrained problems,

whereby constraints are multiplied by a penalty term and summed to the objective func-

tion. The Lagrangian function in Eq. (2.5) is an example of this technique. Moreover, in

all ML paradigms, training a predictor involves solving an unconstrained optimization

problem, in which a “loss” function, measuring the error of the predictor, is minimized
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(see Sec. 3.3).

In unconstrained optimization [150, 82], we deal with continuous variables, whose

values are not limited, i.e.:

x∗ := argmin
x∈D

f(x) , (2.17)

where f : Rd −→ Rs. Since finding global solutions of Eq. (2.17) is generally problem-

atic, most algorithmic strategies for unconstrained optimization are designed to iden-

tify local optima, through an iterative procedure that generates a sequence of iterates

{xk}k∈N from a starting point x0, such that

f(x0) ≥ f(x1) ≥ · · · ≥ f(xK) . (2.18)

Alternatively, Eq. (2.18) can be relaxed by requiring that f improves every few iterations

instead of every iteration, i.e., f(xk−k′) ≥ f(xk), for some k′. The sequence in Eq. (2.18)

terminates if no objective function improvements are produced for a prescribed number

of iterations, although other termination criteria are can be used. At each iteration k,

xk+1 is chosen in function of the information available about f at points {xt}t≤k: its

gradient, Hessian (if f is smooth), or an approximation thereof.

2.8.1 Line search and trust-region methods

Iterative methods for unconstrained optimization are categorised into line search and

trust region algorithms [150, §2].

2.8.1.1 Line Search algorithm

At each iteration k ≥ 0 of a line search algorithm, a search direction γk ∈ Rd and a

step-size α ∈ R are chosen.

The vector γk must be such that, when moving along it from xk, the objective

function value decreases, i.e., the new iterate

xk+1 = xk + αγk

must satisfy

f(xk+1) ≤ f(xk) .

The scalar α, which determines how far along γk to move, is the solution of

argmin
α>0

f(xk + αγk) . (2.19)

The problem in Eq. (2.19) is usually solved by local algorithms or approximately [150,

§2].
One of the most common choices for γk is the negative gradient of the objective

function, i.e.,

γk = −∇f(xk) ,
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which gives rise to the steepest descent (or gradient descent) method.

Other customary choices for γk are the Newton direction, requiring the computation

of the Hessian of the objective function; several quasi-Newton directions, that are based

on approximations of the Hessian; conjugate gradient directions.

2.8.1.2 Trust-region algorithm

A trust-region algorithm is based on a function mk, approximating f near xk, usually

by a second-order approximation model. Since the accuracy of mk decreases by getting

farther from xk, at each iteration, a new iterate

xk+1 = xk + γ

is searched in some neighbourhood of xk, by approximately solving the problem

arg min
∥γ∥≤τ

mk(x
k + γ) , (2.20)

where τ defines a trust-region. Clearly there are more complicated strategies for defining

the trust-region than simply constraining ∥γ∥. If, given a user-defined threshold ϵ > 0,

f(xk) − f(xk+1) > ϵ , τ is reduced; then, Eq. (2.20) is solved again, with the updated

trust-region.

2.9 Solvers

MP solvers are complex machines, capable of handling instances of different structure.

To achieve this, most state-of-the-art general-purpose MP solvers implement and com-

bine a wide range of algorithmic components within the B&B algorithmic framework,

to address the steps of the solution process: pre-processing procedures, reformulations

of various types (notably, relaxations and convexifications), heuristics, cutting planes,

etc. The functioning of these components is modifiable through the accompanying al-

gorithmic parameters, that the user can set to appropriate values.

Good solvers have default parameter configurations, which are chosen by the devel-

opers so that the solver can run satisfactorily on as many instances as possible. However,

default parameter configurations might be suboptimal on specific problem instances; in

these cases, finding an ad-hoc configuration becomes a necessity.

Since the list of exposed parameters is often long (hence, the set of possible algorith-

mic configurations is large), and it is not possible to measure in advance the performance

of the solver with different configurations, solving the ACP efficiently for MP solvers is

nontrivial. This is especially true for MILP solvers, that nowdays operate an extremely

large range of algorithmic strategies (see, e.g., [78]). Moreover, tuning a solver requires

in-depth knowledge of the optimization problem at hand, and extensive expertise with
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the solver itself. Thus, many research efforts have been spent in the last tens of years

to try to automate the solution of the ACP.

In this thesis, we propose a general methodology for finding good configurations for

optimization solvers, and we test our approach on MILP solvers.

2.9.1 MILP solvers

In recent decades, there have been enormous strides in our ability to solve MILP, even

large instances. This has resulted in the development of efficient and robust solvers,

such as IBM ILOG CPLEX (or, simply, CPLEX [91]), Gurobi [78], SCIP [69], just to

name a few.

All general-purpose MILP solvers operate some variation of the B&B, and execute

the following three major phases:

1. Preprocessing: the problem at hand is simplified and its size shrunk, when possi-

ble, by eliminating variables and constraints, tightening the bounds on the vari-

ables or fixing some of them. This phase is usually fast and does not require many

computational resources.

2. Root node: initial lower and upper bounds on the objective function value, to-

gether with a preliminary feasible primal solution, are produced by solving a first

continuous relaxation of the problem and performing some LSH/metaheuristic

(typically exploiting information about the relaxation). Next, the solver tries to

improve the computed estimates, by a) generating cuts and solving the derived

LPs, and b) performing other heuristics. The root-node phase usually requires

a considerable amount of time and computational resources, and it is the most

important stage in the solution process.

3. Tree exploration: the solver explores the decision tree, by branching from the root

node, and tries to refine the bounds yielded by the previous phase. This generally

involves solving further continuous relaxations, cuts and heuristics until optimality

is attained within a certain tolerance. However, since most of the computational

effort is only really done at the root node, cuts and “costly” heuristics are seldom

invoked at this stage. We remark that this phase can be easily parallelized.

Many MILP solvers incorporate algorithms for addressing some well-known and

common NLP (usually, CP) problems, such as Conic Programming [29, §4] problems

(in, e.g., CPLEX), or QP problem (in, e.g., Gurobi).
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2.10 Conclusions

In this chapter, we gave an overview of MP, a formal language for describing optimization

problems and a framework for solving them.

MP is important for this thesis mainly because it allows us to formally describe

the main research problems addressed by this thesis, i.e., the ACP and the DGP, and

it supplies algorithms to solve them. Further, one of the main contributions of this

Ph.D. thesis is to devise new methodologies to deal with the ACP, and our interest in

MP motivated us to test them methodologies to tune MP solvers. Finally, our ACP ap-

proaches are based on ML paradigms, and MP plays a key role in their implementation,

because constructing ML-based approximations requires solving optimization problems.

In the chapter, we first described the main components of an MP formulation. Then,

we introduced its main classes: LP, MILP and MINLP. For each MP class, we also

discussed some of the most commonly employed solution algorithms: in particular, we

focused on those algorithms that are not only important to the MP community, but

also well known to ML practitioners and/or recurrent in the ACP literature.



Chapter 3

On machine learning

3.1 Introduction

ML is a branch of computer science, whose purpose is to conceive, design, and implement

algorithms which are capable of constructing hypotheses from data, i.e., functions which

can approximate some property underlying the data. The ML problem aims at finding

the hypothesis providing the best such approximation. Since the data is an infinite

collection of instances, hypotheses are constructed from a known subset called “training

set”. The characteristics of the training set determine which of the two main ML

frameworks should be used:

• Supervised Learning: an instance is a pair (input, output). The training points

represent the “ground truth”. The training set is used to build a function capable

of mapping an input to the (approximately) correct output, i.e., of approximat-

ing the ground truth. Supervised learning may be applied to classification or

regression tasks (see Sec. 3.6, i.e., to predict discrete or continuous outputs;

• Unsupervised Learning: an instance is an unlabelled input, that is, no output is

given and the patterns underlying the problem instances need to be identified.

The training set is used to construct a representation of the input structure.

This encompasses tasks such as clustering, anomaly detection and dimensionality

reduction (see Sec. 3.5.4), just to name a few [81, Ch. 14].

Sometimes, one wants to learn how to solve sequential decision problems. In these

cases, the reference framework is reinforcement learning. In reinforcement learninng,

an agent interacts with a potentially unknown environment, by performing actions,

watching the environment react accordingly, and receiving feedback. This feedback

promotes actions which contribute to the achievement of some prescribed goals. The

purpose of this framework is to identify a policy optimizing such feedback. This setting

is typically modeled as a Markov decision process.

37
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In this chapter, we will present several ML paradigms within the supervised learning

framework, and we will see how they are used for approximating arbitrary functions.

We will also discuss several techniques for improving the approximation provided by a

class of hypotheses. This is instrumental for the analysis of the experiments presented

in the second part of this thesis, dedicated to the ACP. In particular, in Ch. 4 we will

discuss several uses of ML techniques in the ACP literature. Then, in Ch. 5 and 6, we

will illustrate our two MP formulations for the ACP, where the approximation functions

learned by the ML paradigms presented here appear as arithmetic expressions in closed

form.

Finally, in Ch. 7 we will present the DGP. This optimization problem has many

practical applications (see Sec. 7.2), and one of them is relevant for ML. In fact, solving

the DGP is equivalent to computing the embedding of a graph in a Euclidean space; this

is useful, in ML, when training data arrives in some structured form, such as graphs,

but the chosen learning paradigm can only process “flat” input data (typically, vectors

and matrices). In this case, the most direct application would be to compute the DGP

embedding for a set of training input graphs, and then give them in flat form to the

chosen ML paradigm. Moreover, computing the DGP embedding can be instrumental

in the execution of dimensionality reduction strategies, treated in Sec. 3.5.4, which are

often necessary to improve the approximation accuracy of ML hypotheses.

The following section will introduce one of the best known frameworks for supervised

learning, namely, the statistical learning theory. The focus will be on the regression task.

3.2 An introduction to statistical learning theory

The statistical learning theory [189] is a framework for supervised learning, providing

the theoretical foundations for building prediction functions with good generalization

capabilities. Generalization (discussed in Sec. 3.4) is the ability of a predictor to learn,

from the given training data, an output approximation function with high prediction

accuracy, as measured at points outside the training set. The components of supervised

learning theory are:

• an input set X ⊆ Rd, containing points drawn independently from a fixed but

unknown probability distribution function F (x);

• an output set Y ⊆ Rt, containing the images y = f(x) by an unknown function f ,

for all x ∈ X . The points of Y are drawn from an unknown conditional distribution

F (y|x);

• a training set

S =
{
(xi, yi) | i ∈ {1, . . . , s}

}
⊆ X × Y (3.1)
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of independent and identically distributed (i.i.d.) observations. The set in Eq. (3.1)

is sampled by the unknown joint probability density function

F (x, y) = F (x)F (y|x) (3.2)

characterising the sample space of the phenomenon to be learned. In the following,

we let S = {1, . . . , s} and |S| = s and assume that the probability distribution of

the training set S is representative of the true distribution in Eq. (3.2). In fact, a

careful sampling of S is a critical requirement for the reliability/robustness of an

ML predictor;

• a learning algorithm, which selects a function

hθ : X −→ Y , (3.3)

parametrized by a coefficient vector θ ∈ Θ, from a hypothesis set H. Each hy-

pothesis hθ ∈ H maps an input x ∈ X to an approximation of y = f(x). H is

partitioned into hypothesis classes; each class contains functions with the same

structure and different coefficients θ.

3.3 The training and inference problems

The hypothesis coefficients θ∗ allowing the best generalization are determined by solving

the training problem, an optimization problem. In Sec. 3.6 we will see how the training

problem is formulated for different ML approaches.

The training problem minimizes a loss function for a given hypothesis class; its

constraints describe the structure of the hypotheses in that class. The loss function

ℓ : Y × Y −→ R (3.4)

maps a couple
(
f(x), hθ(x)

)
to the positive error committed by hθ in approximating f

at a point x. In general, it is a dissimilarity function that approaches zero as its two

arguments get closer.

An important choice for solving the training problem is that of a hypothesis hyper-

parameters. Each θ of hθ is a vector of two components:

θ = (θhyper, θpar) .

The subvector θhyper contains the hyperparameters of hθ, which control the structure

of the training problem and the solution algorithm used to solve it. The subvector

θpar contains the proper parameters of hθ, which are obtained by solving the training

problem, for given θhyper and S. Therefore, while θhyper is provided as an input to the

training problem, θpar is its output.
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Hyperparameters are typically selected by solving the training problem several times,

each time for different θhyper, and evaluating the prediction error incurred on a dedicated

subset of the training set, called validation set. Then, the validation set will be ignored

during training. In the rest of this chapter, we will use the abbreviation Sval to denote

the validation set. This procedure, called “Cross-Validation” (CV) and described in

detail in Sec. 3.5.3, selects the θ∗hyper with the best prediction performance on Sval.

Afterwards, θ∗hyper is input to the training problem, which is solved using the whole S
(including the Sval) to select θpar∗ . One can assess the generalization capabilities of the

fully trained predictor h(θ∗hyper,θ∗par) by computing its prediction error on a test set T ; T
is such that T ∪ S = ∅.

Given the optimal solution θ∗ of the training problem, one can represent the learned

approximation hθ∗ of f through a a set of statements, written as arithmetical expressions

in equalities/inequalities, or as memberships in certain sets of numbers (integer, real,

etc..), which we call the inference problem. While in the training problem we optimize

over Θ, in the inference problem the parameters are fixed, i.e., θ = θ∗. The inference

problem always contains at least one equation, describing the actual prediction function

hθ∗(x). The other equations encode additional constraints necessary to represent hθ∗ .

Given an input x ∈ X , hθ∗(x) is computed by statically evaluating all the equations

of the inference problem. Later in this chapter, we describe the inference problem of

several ML paradigms. The issue of how to best encode the inference problem is relevant

for this thesis, because the approaches we implemented to address the ACP employ

ML paradigms. Notably, we formulate the inference problem of the trained predictors

by closed-form equations, thus we can treat them as “white-box”. This allows us to

embed ML predictions into our MP formulations of the ACP, and directly solve these

formulations with MP algorithms. Clearly, we are interested in finding the encoding

of the inference problem resulting in the ACP formulation that is easier to solve; we

will discuss this issue in Ch. 5. We remark that this strategy is unprecedented in the

algorithm configuration literature, although it has been investigated in the optimization

community in the last years (see, e.g., [106] and the references cited therein).

3.4 Risk and generalization

The loss function is instrumental in the definition of the expected risk (or generalization

error) R(hθ) of a learning hypothesis hθ ∈ H:

R(hθ) = E(x,y)∼F (x,y)[ℓ(y, hθ(x))]

=

∫
ℓ(y, hθ(x))dF (x, y) .

(3.5)

R in Eq. (3.5) is the loss expectation of hθ — that is, the probability of hθ incurring a

loss — over couples (x, y) drawn from F (x, y).
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With the definitions above, the supervised learning problem is formulated as follows:

h∗ = arg min
hθ∈H

R(hθ) . (3.6)

However, F (x, y) is almost always unknown, therefore computing the expected risk is

impossible and Eq. (3.6) cannot be solved. Then, since the training set S encodes the

only available information about F , the expected risk is replaced in practice by the

surrogate empirical risk

R̂S(hθ) =
1

s

∑
i∈S

ℓ(yi, hθ(xi)) , (3.7)

measuring the average loss at the points in S. In other words, one can solve the Empirical

Risk Minimization (ERM) problem

h∗S = arg min
hθ∈H

R̂S(hθ) , (3.8)

instead of solving Eq. (3.6).

The issue of Eq. (3.8) is that, if H contains a hypothesis which is capable of mem-

orizing all (or most of) the training points, that hypothesis will be chosen as h∗S , as its

empirical error is (close to) zero. However, such h∗S would be unable to generalize: in

fact, training set data always contains some noise, and h∗S would perfectly fit the noise

in S, and it would commit large prediction errors at points outside it. This phenomenon

is known as overfitting.

Another phenomenon associated with poor generalization, although not as common

as overfitting, is underfitting. Underfitting occurs when h∗S is too simple to adequately

process the complexity of the training data, and it therefore fails to correctly capture

the underlying patterns. For example, adopting a linear function to model complicated

nonlinear relations may result in underfitting.

The usual behaviour of the training and validation/test errors is represented in

Fig. 3.1: in practice we observe that, while the training error decreases in function of the

time/iterations spent solving the training problem, the validation/test error (computed

on held-out data, not used for training purposes) reduces at first, and then goes up as

the hypothesis begins to overfit/underfit the data.

3.5 The path to improving generalization

The techniques performed to address overfitting/underfitting concern the treatment of

H and that of S.
There are basically two ways of acting on H (see Sec. 3.5.1 and 3.5.2): both are

designed to reduce its complexity, by restricting the set of potential solutions of the

ERM problem in Eq. (3.8) to a subset of H. The first strategy is to manually select a

class H′ ⊂ H; the second is to penalize overly complex hypotheses, by modifying the
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Figure 3.1: Training and generalization error of a predictor, as a function of the predic-

tor’s complexity [90]: overfitting (“underdetermination”) and underfitting (“overdeter-

mination”)

objective function of the ERM problem with an additional penalty term. On the concept

of “complexity”, we briefly remark that it is related to how complicated the functions

approximated by a hypothesis can get. There have been several attempts to provide a

formal definition. For example, the Vapnik-Chervonenkis (VC) theory [187], only valid

for binary classification tasks, defines complexity as the largest set of points that can be

perfectly classified by a given hypothesis, for all possible output labeling assignments.

An alternative definition is that of Rademacher complexity [144, 13, §3], related to the

ability of a class of H to fit random noise in the data. However, an extensive treatment

of complexity theories is beyond the scope of this thesis; the subject is treated in greater

detail in texts such as, e.g., [28].

Instead, techniques targeting the training set S (see Sec. 3.5.3 and 3.5.4), seek to

increase its size (by re-sampling, generation of additional data, data augmentation,

etc.), or involve some processing of S to eliminate redundancies, or rely on the use of a

validation set (already discussed in Sec. 3.3). Strategies of the first type are implemented

in cases where S is not representative of the phenomenon to be learned — for example,

when the training set is too small — which would lead to poor generalization.

3.5.1 Structural risk minimization

In practice, the ERM problem in Eq. (3.8) is generally solved for a given class H′ ⊂ H;

in this section, we call its solution h∗S,H′ .

However, selecting H′ is typically challenging in practice, as it involves a trade-off.

To show this, consider the excess error of a given hθ ∈ H′, i.e., the difference between
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the expected risk of hθ and that of h∗:

R(hθ)−R(h∗) = R(hθ)−R(h∗S,H′)︸ ︷︷ ︸
estimation error

+ R(h∗S,H′)−R(h∗)︸ ︷︷ ︸
approximation error

. (3.9)

Eq. (3.9) consists of two terms, that we call estimation error and approximation error.

The estimation error measures the cost of choosing hθ over the best-in-class. For a large

enough training set, the estimation error can be sometimes approximated by substituting

R with R̂. In fact, the VC and Rademacher complexity theories show that, for a given

H′, the empirical risk converges to the expected risk as the training set size grows [144,

§4.1-4.2]. The approximation error assesses the generalization of the chosen class —

represented by its “best performing” member h∗S,H′ — compared to h∗. However, the

expected error can never be computed, so h∗ and the approximation error are unknown.

The trade-off of picking H′, as represented in Eq. (3.9), is as follows: a larger H′

is more likely to contain complex functions, with expected error close to that of h∗

(defined in Eq. (3.6)); however, if H′ is too large, the issue of finding h∗S,H′ might be

computationally intractable. Thus, a larger H′ is likely to reduce the approximation

error, but also to increase the estimation error.

Structural Risk Minimization (SRM) is a procedure for selecting H′. It uses: a) a

function

ω : H −→ R+ , (3.10)

mapping a hypothesis hθ to a positive real number measuring its complexity (often

chosen to be a norm of θ), and b) coefficients

c1 ≤ c2 ≤ · · · ≤ cr, c1, . . . , cr ∈ R ,

to define a hierarchical structure of nested subsets

H1 ⊂ H2 ⊂ · · · ⊂ Hr ⊂ H

such that

∀1 ≤ i ≤ r Hi = {hθ ∈ H | ω(hθ) ≤ ci} .

The purpose of SRM is to find, for 1 ≤ r′ ≤ r, the class Hr′ providing the tightest upper

bound on the excess error. Then, the SRM procedure finds h∗S,Hr′
over the chosen Hr′ .

3.5.2 Regularized risk minimization

The major downside of SRM is that the cost of calculating the bounds on the excess

error can be too high [144, §4.3]. For this reason, it is sometimes preferable [28] to solve

a “regularized” variant of the SRM problem:

arg min
hθ∈Hi
1≤i≤r

R̂(hθ) + λω(hθ) . (3.11)
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The coefficient λ > 0, encoding the trade-off between complexity and empirical risk, is a

hyperparameter; it is usually chosen by a procedure called “cross-validation” (illustrated

in the next section), although other methods may be used [30].

The Regularized Risk Minimization (RRM) approach implements a special case of

the problem in Eq. 3.11. The RRM is obtained by solving the regularized SRM problem

in Eq. (3.11) with respect to only one hypothesis class:

arg min
hθ∈H′

R̂S(hθ) + λω(hθ) . (3.12)

The RRM is famously used, for example, in the SVR training problem (see Sec. 3.6.4).

There are other approaches to regularization, such as, say, early stopping [22, §5],
which is often used to train Neural Networks (NNs), for which we refer to Sec. 3.6.3.

3.5.3 Cross-validation

CV is a family of techniques for assessing the predictions of a hypothesis hθ for given

hyperparameters. Basically, it uses a validation set (introduced in Sec. 3.3) to evaluate

the generalization of hθ, when the hypothesis is applied to predict new data. Given

0 < α < 1, the validation set is obtained by partitioning S as

{Sptr ∪ Sval} such that S = Sptr ∪ Sval , (3.13)

such that

|Sptr| = αs and |Sval| = (1− α)s . (3.14)

We recall that s = |S|; moreover, we remark that the shorthand “ptr” in Sptr stands for

“proper training set”, to distinguish it from the training set S. CV is thus applied to

select the best hyperparameters of a given hypothesis, using Sptr for training with several

candidate hyperparameters, and Sval to assess the empirical risk of the candidates. This

is accomplished by solving the following problem, for a given class H′ ⊂ H [144, §4]:

h∗Sval
= arg inf

hθ̄∈H′
R̂Sval

(hθ̄) , (3.15)

where: θ̄ = (θhyper, θ̄par), such that θhyper is a given hyperparameter vector, and θ̄par is

the solution of the ERM training problem with Sptr and θhyper as inputs; R̂Sval
is the

empirical risk on Sval. We call θ∗hyper the hyperparameter vector corresponding to h∗Sval
.

Usually, the described CV procedure is repeated on several partitions {Sptr,Sval};
the results on the different partitions are then aggregated to select θ∗hyper. There are

many strategies for creating partitions of S and applying CV iteratively. In K-fold

CV [81, §7.10], for K ∈ N+, a partition with K subsets is computed. Then, at each

iteration, one subset is used for validation purposes and the remaining K − 1 ones

are used for training purposes. An alternative to K-fold CV is, for example, to apply
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repeated random sub-sampling, which at each iteration creates a random partition of

the training set.

This set-up is sometimes used in a larger evaluation schema, called Nested Cross-

Validation [38, 190] (NCV). In NCV, S is first partitioned K times as {Shs,Stest}, i.e.,
“hyperparameter selection set“ and “test set”. Then, the CV problem in Eq. (3.15) (or

one of its variants with multiple partitions) is solved on each Shs, and the error of the

resulting solution is calculated on the corresponding test set Stest. Finally, the average

prediction error is computed over the K test sets. The purpose of this procedure is to

assess the generalization capabilities of the chosen hypothesis class H′.

3.5.4 The feature space

The methodologies presented above select a class of hypotheses H′ ⊂ H for a fixed

training set. Given H′, instead, it is possible to act on S in order to construct more

accurate predictors. Methodologies based on this strategy first process the input set

X ⊆ Rd by a feature function

Φ : X −→ F , (3.16)

which maps it into a different feature set F , and then train a predictor with the training

set (F ,Y), rather than (X ,Y).

In the following, we discuss some common approaches to construct Φ.

3.5.4.1 Dimensionality reduction techniques

Dimensionality reduction techniques are a family of methodologies for shrinking the

vectors in the input set X .

Feature selection (FS) is a subset of dimensionality reduction techniques for selecting

the components of input set vectors, so as to identify a minimal set of input vector

components conveying the essential information contained in the data. The elimination

of redundancies and noise in the data usually improves training times and decreases

prediction errors.

Formally, we let I be a set with the following characteristics:

I ⊂ {1, 2, . . . d} s.t. |I| = d′ and 0 < d′ < d .

Further, we let

x[I] ∈ Rd′ (3.17)

be the vector obtained by selecting the components of x ∈ X according to the indices

in I. The purpose of an FS methodology is to choose I for a given training set S. Thus,
the accompanying feature function will be

ΦI(x) = x[I] ∈ Rd′ .
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For an overview of the different types of FS, see [79] and references therein.

FS is just one of the possibilities for performing dimensionality reduction. Other

commonly used methods are, for example: principal component analysis [174] and ran-

dom projection [21], i.e., mathematical methods operasting linear transformations of

the input set vectors; autoencoders [73], performing a new encoding of the input set

vectors by means of an NN.

For the ML-based computational experiments described in this thesis — notably, in

Ch. 5 and 6 — we tested both principal component analysis and FS. However, since

the former produced no significant improvements on our ML predictors, we will only

present results with FS.

3.5.4.2 Feature manipulation and extraction

Feature manipulation and feature extraction are families of methodologies for construct-

ing the function Φ in Eq. (3.16).

The first performs transformations of the individual components of the input set

vectors, by computing, for each component, statistics over all points of the training

set. Some examples are: scaling into a prescribed range; standardization, so that the

component has zero mean and unit variance; logarithmic transformation.

The second applies transformations to single input components, or transformations

involving several input components, to produce new prediction variables, to be added

to each input vector. Usually, feature extraction techniques are deployed before dimen-

sionality reduction is performed.

3.6 Some regression paradigms

This section covers the supervised ML paradigms used for regression purposes in the

experiments reported in Ch. 5 and 6. For each one, we will formulate the associated

training problem and the inference problem.

3.6.1 Logistic Regression

Logistic Regression (LR) is a supervised ML paradigm, devised for binary classification

tasks [42]. Once trained, the LR maps input vectors x ∈ X to an output scalar in [0, 1].

In this sense, LR approximates a binary scalar; binary values are retrieved by rounding,

if necessary.

Let X = (X1, . . . ,Xs) be a vector of random variables, and let Y be a Bernoulli

distributed random variable depending on X . Following [100], and denoting P(X = x)

by P(x) and P(Y = y) by P(y), the probability P(1|x) that Y = 1 can be written as the

composition of a logistic sigmoid function and a linear function of the input x. Since
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P(0|x) = 1− P(1|x), we have:

P(1|x) =
P(x|1)P(1)

P(x)
=

P(x|1)P(1)
P(x|1)P(1) + P(x|0)P(0)

=
1

1 + P(x|0)P(0)
P(x|1)P(1)

=
1

1 + e−z
= σ(z) , (3.18)

where

z = ln
P(x|1)
P(x|0)

+ ln
P(1)

P(0)
.

Furthermore, we assume that z depends linearly on x, i.e.,

∃w ∈ Rd, b ∈ R z = ⟨w, x⟩+ b . (3.19)

The purpose of LR is to learn, for an input x ∈ X , the approximation of P(1|x) according
to Eq. (3.18). We note that w, b are the parameters of the LR paradigm, and their

optimal values w∗, b∗ are found by solving the LR training problem.

3.6.1.1 The training problem

In some cases w∗, b∗ can be computed explicitly. For example, if we assume that the

conditional probabilities P(x|y) are multivariate Gaussians with means µy and identical

covariance matrices Σ, and use the above expression for P(1|x), we obtain

P(1|x) = 1

1 + e−⟨w∗,x⟩−b∗
,

where w∗ = Σ−1(µ1−µ0) and b∗ = 1
2(µ0 + µ1)

⊤Σ−1(µ0−µ1)+ln(P(1)/P(0)). In general,

however, explicit formulæ cannot always be given, and w∗, b∗ must be calculated from

sampled data. In these cases, the LR training problem is typically formulated by the

maximum likelihood estimation method [73, §5], i.e., the maximization of the likelihood

function

L(w, b) =
∏
i∈S

h(xi, w, b)
yi(1− h(xi, w, b))

1−yi . (3.20)

The maximization of the likelihood function in Eq. (3.20) is performed considering w, b

as variables, rather than as parameters. Since the logarithmic function is monotone in

its argument, maximizing ln (L(w, b)) yields the same optima as maximizing L(w, b).

Thus, maximum likelihood estimation is customarily formulated as:

max
w,b

∑
i∈S

[
yi ln

(
1

1 + e−(⟨w,xi⟩+b)

)
+ (1− yi) ln

(
1− 1

1 + e−(⟨w,xi⟩+b)

)]
. (3.21)

We recall that the functions

ln

(
1

1 + e−z

)
and ln

(
1− 1

1 + e−z

)
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are concave [29, Ex. 3.49(a)]. Since 0 ≤ yi ≤ 1 for each i ∈ S, Eq. (3.21) maximizes the

sum of convex combinations of concave functions. Thus, it is a CP, which can be solved

by local unconstrained optimization methods, such as gradient descent (see Sec. 2.8.1 or

stochastic gradient descent (see Sec. 3.6.3.4, able to deal even with large-scale instances.

Sometimes, following the strategies outlined in Sec. 3.5.2, a “regularized” variant of

Eq. (3.21) is implemented, whereby a term penalizing w, b (usually, in the form of an

absolute-value norm, a euclidean norm or a convex combination of the two) is added to

the problem.

3.6.1.2 The inference problem

Since we only consider two class labels {0, 1}, the LR models the probability that Y = y,

conditional to X = x, by a Bernoulli distribution P(y |x). Given x̄ ∈ X , its goal is to

learn an approximation

hw∗,b∗(x̄) =
1

1 + e−⟨w∗,x̄⟩−b∗
. (3.22)

of P(1|x̄), such that, for y ∈ {0, 1},

hw∗,b∗(x̄)
y(1− hw∗,b∗(x̄))

1−y (3.23)

is as close as possible to P(y | x̄).
Eq. (3.22) is the LR inference problem.

3.6.2 Decision Trees

A Decision Tree (DT) [31] is a supervised ML paradigm, capable of predicting any type

of output, thereby suited to both classification and regression tasks. A DT is represented

by a full binary tree, i.e., a nonempty, directed graph T = (V,A) such that:

• V , the vertex set, is partitioned as {o, VI , VL}, i.e., {root vertex, intermediate

vertices, leaf vertices}. Vertex o has zero incoming arcs and two outgoing arcs;

vertices in VI have one incoming arc and two outgoing arcs; vertices in VO have

one incoming arc and no outgoing arcs. For each vertex in {o} ∪ VI , we call

left and right children the two nodes adjacent to, respectively, the left and right

outgoing arcs. In the following, the left and right children will be identified by

the abbreviations lx and rx. We assume that the DTs we handle are processed in

a depth-first fashion, from left to right;

• for each vertex v ∈ {o} ∪ VI , a threshold function

τv : {o} ∪ VI −→ R

and an index function

ρv : {o} ∪ VI −→ {1, 2, . . . , d}
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are defined;

• a vertex labeling function

λ : VI ∪ VL −→ R

is defined at each vertex v ∈ VI ∪ VL.

3.6.2.1 The training problem

The training problem is to find a training set partition

S = {Sv}v∈VL
, (3.24)

such that training points i with similar outputs yi belong to the same subset, and

are grouped at the same leaf vertex. For each v ∈ VL, we call Sv the set of indices

associated to the training points in Sv. Solving the training problem yields the optimal

values τ∗, ρ∗, λ∗ of the threshold, index and vertex labeling functions.

In practice, the partition in Eq. (3.24) is obtained by implementing a branching

algorithm (introduced in Sec. 2.6.1.1). The algorithm begins at the root vertex, where

S is partitioned into two subsets by imposing the following constraints on the input set

vectors x ∈ X :

∀v ∈ {o} ∪ VI

{
x[ρv] ≤ τv at the left child vlx of v

x[ρv] > τv at the right child vrx of v .
(3.25)

We note that x[ρv] is the ρv-th component of x. Eq. (3.25) give the partition Sv =

Svlx ,Svrx , where

Svlx = {(xi, yi) | xi[ρv] ≤ τv} , Svrx = {(xi, yi) | xi[ρv] > τv} .

The algorithm assigns each subset of the partition thus produced to one of the children,

and recursively processes each child in the same way as the root.

When, at a vertex, the procedure stops because some termination criterion is satis-

fied, that vertex is labelled as “leaf”; the subset at that leaf, which can no longer be split,

becomes one of the components of the final partition in Eq. (3.24). Commonly adopted

termination criteria are conditions on the maximum tree depth or on the minimum size

of the |Sv|.
Several candidate splits are evaluated at branching decision, by considering different

input components and values, i.e., different couples (τv, ρv). The optimal one is found

by solving (usually, approximately) the following problem:

(ρ∗v, τ
∗
v ) = arg min

ρv ,τv

|Svlx |
s

∑
i∈Svlx

ℓ(yi, λvlx) +
|Svrx |
s

∑
i∈Svrx

ℓ(yi, λvrx) (3.26)

where, for all v ∈ VI ∪ VL,

λv = avg
i∈Sv

yi (3.27)
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and ℓ is, often, the loss function defined by Eq. (3.4).

Eq. (3.26) also yields, for all vertices in VI ∪ VL, the optimal labels λ∗
vlx
, λ∗

vrx .

3.6.2.2 The inference problem

Given a input x̄ ∈ X , the learned tree T ∗ = ({o∗}∪V ∗
I ∪V ∗

L , A
∗) and the optimal training

parameters (ρ∗, τ∗, λ∗), the inference problem is the computation of a path from o∗ to

one of the leaves. This is accomplished by checking, at each vertex in {o∗} ∪ V ∗
I ,

whether x̄ satisfies the branching constraints by Eq. (3.25). The leaf label at the end of

the computed path provides an approximation of f(x̄).

To formally describe the DT inference problem, we define the binary coefficients

wuv =

1 if v = ulx

0 if v = urx .
(3.28)

With them, the inference problem is the following system of equations:∑
(o∗,v)∈A∗, v∈V ∗

I

yov = 1 (3.29)

∀(u, v) ∈ A∗, v ∈ V ∗
I yuv =

∑
(v,j)∈A∗

yvj (3.30)

∀(u, v) ∈ A∗, u ∈ V ∗
I (2wuv − 1)(2yuv − 1)(x[ρ∗u]− τ∗u) ≤ 0 (3.31)

hρ∗,τ∗,λ∗(x) =
∑

(u,v)∈A∗, v∈V ∗
L

yuvλ
∗
v (3.32)

∀(u, v) ∈ A∗ yuv ∈ {0, 1} . (3.33)

The variables yuv encode the decision “use arc (u, v)” (yuv = 1) or “do not use arc

(u, v)” (yuv = 0). Eq. (3.29) ensure that there is exactly one path from root to leaf;

Eq. (3.30) are flow conservation constraints; Eq. (3.31) enforce the learned branching

constraints. Eq. (3.32) supplies the DT approximation of f(x̄). Since x,w, τ∗, ρ∗, λ∗ are

given when the inference problem is computed, Eq. (3.29)–(3.33) are all linear.

Training several DTs — potentially, on different subsets of the training set S and

with different features — and averaging the predictions of the trained predictors gives

a random forest [81, §15].

3.6.3 Neural Networks

A NN N is a computable approximation of an unknown function f , encoded by a

nonempty digraph G = (V,A) such that:

• the vertex set V is partitioned as V = {I,H,O}, i.e., input, hidden and output

vertices. H may be empty, and we assume that |O| = 1;
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• an arc function

w : A −→ R ,

called weight, and a vertex function

b : V ∖ I −→ R ,

called bias, are defined on G;

• an activation function

σu : R −→ R

labels each vertex u ∈ H ∪O.

The tuple (G, σ) is the network’s architecture. Further, G is such that |I| = d and

|O| = t; we recall that d, t are, respectively, the size of input and output set vectors.

3.6.3.1 The training problem

Given an architecture (G, σ), the optimal w∗, b∗ are the solution of the training problem

min
w,b

∑
i∈S

∑
u∈O

ℓ(yiu, ziu)

∀i ∈ S, ∀u ∈ I ziu = xi[u]

∀i ∈ S, u ∈ H ∪O ziu = σu(bu +
∑

(v,u)∈A

wvuziv) ,

(3.34)

where: ℓ is the loss function defined in Eq. (3.4); for all u ∈ I, the xi[u] is the u-th

component of input xi; for i ∈ S and u ∈ V , the ziu are auxiliary decision variables

encoding the activation of each vertex. The argument of σ is known as preactivation.

The training problem may be highly nonconvexity and/or nonlinear, depending on the

activation function σ. However, it has been proven [2, 149] that, for large enough N ,

there always exist many local minima capable of providing high generalization.

However, global optima in NN are sometimes associated with overfitting. RRM

and early stopping techniques (treated in Sec. 3.5.2) are often applied to regularize the

problem in Eq. (3.34). However, the most popular regularization method for NNs is the

dropout [68]: it consists of solving the training problem multiple times, each time on a

different subgraph of N , obtained by randomly removing some of its vertices.
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3.6.3.2 The inference problem

The approximation produced by the trained N is encoded by the following system of

equations, with |V | equations and |V |+ d variables:

∀u ∈ I zu = xu

u ∈ H zu = σu(b
∗
u +

∑
(v,u)∈A

w∗
vuzv)

hw∗,b∗(x) = σo(b
∗
o +

∑
(v,o)∈A

w∗
vozv) ,

(3.35)

where o ∈ O.

Given an input x̄ ∈ X , Eq. (3.35) becomes a |V | × |V | determined system, with a

unique solution. The approximation of f(x̄) is the vector (zo1 , . . . , zos) associated with

the output vertex set O.

In this thesis, we will refer to simple feed-forward NNs (FNN), where: G is a k-

partite, directed acyclic graph; each partition is called layer, the cardinality of each

layer is its width and the number of layers is the network’s depth; each arc can only link

vertices in subsequent layers. If G is a directed acyclic graph, Eq. (3.35) can be solved

by exploring it in topological forward order, from I (with no incoming arcs) to O (with

no outgoing arcs). A reference text to explore the diverse NN formulations is, e.g., [73].

3.6.3.3 Back-propagation

Eq. (3.34) is usually solved by some line search type algorithm, discussed in Sec. 2.8.1),

which iteratively minimizes the loss function. Back-propagation [165] is an algorithm

for computing the gradient at each iteration (or epoch) of gradient-based unconstrained

optimization algorithms. This is accomplished in two consecutive steps:

• the forward pass: given w, b, the algorithm computes the output zu, u ∈ O of the

network, for one or more inputs {xi}i∈S , by evaluating Eq. (3.35). Here, the loss

is seen as a function of the training inputs, parametrized by w, b;

• the backward pass: here, instead, the loss is seen as a function of w, b, parametrized

by the training input values. This function, that we call E(w, b), measures the

changes in the loss as w, b vary, for fixed training inputs. The backward pass

calculates the partial gradient of E with respect to w, b, given the training couples

{(xi, yi)}i∈S employed in the forward pass.

To describe the backward pass, we redefine the vector (w, b) as “w” and, for all u ∈ H∪O,

zu as “(zu1, zu2, . . . zus, 1)”, for ease of notation. With this shorthand, we can represent

the preactivation

bu +
∑

(v,u)∈A

wvuzv
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of Eq. (3.34) as the inner product

au = (wv1u, wv2u, . . . , bu)︸ ︷︷ ︸
wvu

⊤ (zv1 , zv2 , . . . , 1)︸ ︷︷ ︸
zv

. (3.36)

Moreover, in the equations below, we follow the notation of [75].

The back-propagation algorithm calculates the quantity

∀(v, u) ∈ A such that u ∈ H ∪O : ∂E
∂wvu

. (3.37)

The calculations begin at those arcs such that u ∈ O, and proceed by following the

reverse direction of the arcs, i.e.: one layer at a time, backwards, from the output layer

to the input layer. The chain rule for derivatives yields the following reformulation of

Eq. (3.37):

∂E

∂wvu
= δu

∂au
∂wvu

, where δu =
∂E

∂au
. (3.38)

The quantity δu measures the variations in the error with respect to variations in the

activation at vertex u. Because of the definition of au in Eq. (3.36), we have that

∂au
∂wvu

= zv ,

so Eq. (3.38) becomes:

∂E

∂wvu
= δuzv . (3.39)

Since zv is known at the beginning of the backward pass, the algorithm only needs to

compute δu:

• for all u ∈ O

δu =
∂E

∂zu

∂zu
∂au

,

by the chain rule for derivatives. Notably, ∂zu
∂au

is the derivative of σ′
u(au) with

respect to au;

• for all u ∈ H,

δu =
∑

(u,v)∈A

∂E

∂av

∂av
∂au

=
∑

(u,v)∈A

∂E

∂av

∂zu
∂au

wuv (by Eq. (3.36))

= ∂zu
∂au

∑
(u,v)∈A

δvwuv .
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3.6.3.4 Loss optimization algorithms

If gradient descent is the algorithm chosen to minimize the loss, the k-th iteration is:

wk+1 = wk − γ∇wE(wk), such that E(wk) =
1

s

∑
i∈S

Ei(wk) , (3.40)

where γ is treated as a hyperparameter of the NN and Ei is the error for a given training

input xi.

However, gradient descent might show slow convergence, so stochastic gradient de-

scent [162] is sometimes preferred, where E is computed for a single, randomly sampled

point (xi, yi) ∈ S. This algorithm is less frequently trapped in plateaus (i.e., areas

where the gradient is close to zero) or saddle points [27, 166, 198], and is potentially

faster because it performs only one update at a time. However, it may provide an in-

accurate approximation of E, yielding large fluctuations of the weights at each epoch

and slow convergence, especially if γ is not carefully tuned. A compromise between the

two algorithms, the mini-batch gradient descent algorithm calculates E(wk) for subsets

of S. Both the stochastic and the mini-batch implementations of gradient descent are

easy to parallelize.

Alternatives to gradient descent type algorithms are: [165] and Nesterov acceler-

ated method [73, §8], which try to improve the loss optimization performance in valleys

(i.e., areas such that E increases swiftly in some directions and slowly in others) [177];

Adagrad and its extension Adadelta, RMSprop, adaptive moment estimation (see, for

example, [27, 164] and references therein), i.e., line search type algorithms, using differ-

ent step sizes for different components of w and updating them dynamically during the

optimization.

3.6.4 Support Vector Regression

SVR is a supervised learning paradigm used for regression tasks. In this section, we

adopt the notation of [176].

3.6.4.1 The training problem

In its simplest form, the SVR hypothesis is a linear regression function

hw,b(x) = ⟨w, x⟩+ b , (3.41)

for w ∈ Rd and b ∈ R. This single-line system of equations is the linear SVR inference

problem.

The optimal coefficients w∗, b∗ are the solution of the SVR training problem, i.e.,
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the convex QP:

min
w∈Rd, ξ,ξ̂∈R

1

2
∥w∥22 + λ

∑
i∈S

(ξi + ξ̂i) (3.42)

i ∈ S yi − ⟨w, xi⟩ − b ≤ ε+ ξi (3.43)

i ∈ S ⟨w, xi⟩+ b− yi ≤ ε+ ξ̂i (3.44)

i ∈ S ξi, ξ̂i ≥ 0 . (3.45)

Constraints (3.43)–(3.44) encode the approximation accuracy required of hw,b, by per-

mitting a maximum deviation of ε > 0 from the training labels. Thus, they define an

ε-tube around hw,b, within which there is no penalty. This requirement is relaxed by the

slack variables ξ, ξ̂ ≥ 0, which allow prediction errors larger than ε, and are penalised

in the objective (3.42) by a coefficient λ > 0. λ and ε are hyperparameters of the SVR,

usually selected by CV in the training process. The learned function must be as “flat”

as possible to avoid overfitting. This is achieved by placing the regularization term

∥w∥22 (a squared euclidean norm) in the objective, although other methods are possible

(see, e.g., [201]). The solution of Eq. (3.42)–(3.44) comes with strong global optimality

guarantees, unlike other ML methodologies.

3.6.4.2 Dual formulation

Solution algorithms for the SVR exploit results from the duality theory outlined in

Sec. 2.3. The Lagrangian function associated with the primal formulation in Eq. (3.42)–

3.45 is
L(w, b, ξ, ξ̂, η, η̂, α, α̂) = 1

2 ||w||
2
2 + λ

∑
i∈S

(ξ + ξ̂i)−∑
i∈S

(ηiξ + η̂iξ̂i)−
∑
i∈S

αi(ε+ ξ − yi + ⟨w, xi⟩+ b)

−
∑
i∈S

α̂i(ε+ ξ̂i + yi − ⟨w, xi⟩ − b) ,

(3.46)

with Lagrangian multipliers α, α̂, η, η̂ ≥ 0. Since the primal formulation is convex,

there exists a unique optimum
(
w∗, b∗, ξ∗, ξ̂∗, α∗, α̂∗

)
satisfying the KKT conditions

[35], i.e.:

∀i ∈ S


yi − ⟨w∗, xi⟩ − b∗ ≤ ε+ ξ∗i

⟨w∗, xi⟩+ b∗ − yi ≤ ε+ ξ̂∗i

ξ∗i , ξ̂
∗
i ≥ 0

(3.47)

∀i ∈ S α∗
i , α̂

∗
i ≥ 0 (3.48)

∇bL =
∑
i∈S

(α̂∗
i − α∗

i ) = 0 (3.49)

∇wL = w∗ −
∑
i∈S

(α∗
i − α̂∗

i )xi = 0 (3.50)
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∀i ∈ S

{
∇ξL = C − α∗

i − η∗i = 0

∇ξ̂i
L = C − α̂∗

i − η̂∗i = 0
(3.51)

∀i ∈ S


α∗
i (ε+ ξ∗i − yi + ⟨w∗, xi⟩+ b∗) = 0

α̂∗
i

(
ε+ ξ̂∗i + yi − ⟨w∗, xi⟩ − b∗

)
= 0

(C − α∗
i )ξ

∗
i = 0

(C − α̂∗
i )ξ̂

∗
i = 0 .

(3.52)

Notably, from constraints (3.47) and (3.52) we gather that αi = 0 (resp. α̂i = 0) implies

ξi = 0 (resp. ξ̂i = 0), and hence yi − hθ(xi) ≤ ϵ (resp. hθ(xi) − yi ≤ ϵ). The training

points lying outside the ε-tube, i.e., the ones with positive multipliers α, are called

support vectors. Furthermore, αi and α̂i cannot both be nonzero, as this would mean

that xi is over and under the ε-tube at the same time.

With the above KKT conditions, the dual SVR formulation is as follows:

max
α

L(α)∑
i∈S

(αi − α̂i) = 0

i ∈ S αi, α̂i ∈ [0, C] ,

(3.53)

where

L(α) = −1

2

∑
i,j∈S

(αi − α̂i)(αj − α̂j)⟨xi, xj⟩

−ε
∑
i∈S

(αi + α̂i) +
∑
i∈S

yi(αi − α̂i)

is obtained by enforcing the KKT stationarity conditions (3.49)–(3.51) on the function

(3.46). The dual constraints directly follow from the KKT conditions (3.48), (3.49) and

(3.51).

The dual solution α∗, α̂∗, together with Eq. (3.50), supply the optimal w∗, i.e.,

w∗ =
∑
i∈S

(α̂∗
i − α∗

i )xi . (3.54)

In particular, w∗ is completely defined by a linear combination of the training inputs,

so it needs not be computed explicitly. The optimal value b∗, instead, follows from the

constraints in Eq. (3.47) and (3.52):

max
i∈S

{yi − ⟨w∗, xi⟩ − ε | α∗
i < C or α̂∗

i > 0} ≤ b∗

≤ min
i∈S

{yi − ⟨w∗, xi⟩ − ε | α∗
i > 0 or α̂∗

i < C} .

An alternative way to find b∗ is by using interior point methods to solve Eq. (3.42)–(3.45)

[176].

The optimal w∗ and b∗ give

hw∗,b∗(x) =
∑
i∈S

(α̂∗
i − α∗

i )⟨xi, x⟩+ b∗ . (3.55)
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3.6.4.3 The kernel trick

Duality theory allows the application of the kernel trick, a methodology for extending

the linear SVR to make it capable of learning even complicated nonlinear functions.

The kernel trick reduces problematic nonlinear transformations of vectors in X to the

simpler computation of inner products. It is based on a feature function Φ, such as the

one defined by Eq. (3.16) in Sec. 3.5.4, but where the feature set F is a Hilbert space.

Given Φ, a kernel is a function

κ : X × X −→ R (3.56)

such that

∀x1, x2 ∈ X , κ(x1, x2) = ⟨Φ(x1),Φ(x2)⟩F ,

where ⟨·, ·⟩F is the inner product in F . The kernel function is symmetric and, in fact,

the accompanying Gram matrix

K =
(
κ(xi, xj)

)
i,j∈S

is positive semi-definite for any choice of Φ. We add that this is a necessary and sufficient

condition for a function to be a kernel [84]. The alternative for constructing a nonlinear

SVR without a kernel would be to first use a nonlinear Φ on X and, next, learn a linear

hypothesis on the points of F . However, computing the actual coordinates of Φ can

be extremely costly. Instead, since SVR relies on inner products between the training

points, one can compute the kernel function in Eq. (3.56) without even knowing Φ. This

is the kernel trick. Its cost amounts to the calculation of (half of) the Gram matrix,

which only involves cheap operations on the training inputs.

The Gaussian kernel

i ∈ S k(xi, x) = exp
(
−γ∥xi − x∥22

)
, (3.57)

adds one hyperparameter to SVR (γ ∈ R+) and is the default choice in absence of any

other meaningful prior on S. Other kernels, and some methods to create new ones, are

presented in [44].

The kernel formulation of SVR is obtained by replacing ⟨xi, xj⟩ in Eq. (3.55) with

⟨Φ(xi),Φ(xi)⟩. This gives the kernel-based SVR hypothesis

hα∗,b∗(x) =
∑
i∈S

(α̂∗
i − α∗

i )κ(xi, x) + b∗ . (3.58)

3.7 Conclusions

In this chapter we presented a framework for supervised ML. We also described, in

terms of MP, the training problem, i.e., the question of how to construct a computable
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approximation of a function whose analytical expression is unknown, but which can be

sampled on a set of points (called training set). We then discussed several techniques

that are customarily adopted to improve the accuracy of the produced approximations.

Further, we presented the ML paradigms deployed in the computational experiments

that we performed to test our ACP approaches, described in Ch. 5 and 6. For each of

these paradigms, we considered the issue of how to encode the mathematical properties

of the learned approximation, and provided the corresponding formulation.



Part II

Algorithm configuration problem
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Chapter 4

The algorithm configuration

problem

4.1 Introduction

Automatic configuration of algorithmic parameters is an area of active research [77, 105],

going back to the foundational work [161], published in 1976. The ACP focuses on

configurable algorithms, deployed to solve instances of a given decision or optimization

problem. It concerns the issue of how to identify the setup of algorithmic parameters

delivering the best algorithmic performance, when the algorithm is run on its input.

Formally, we let A be a parametrized target algorithm. Its input consists of an

instance of the problem being solved and an array of parameters. We call the latter

“algorithmic configuration”.

The inputs of the ACP are:

• Π: the decision/optimization problem to be solved by A, consisting of a (poten-

tially) infinite set of instances. Each instance is an input string for the problem;

among the many encodings available for instance data, the most common one is

a vector of discrete/continuous values, containing the most important attributes

of the instance. In the following, we assume that several encodings can be trans-

formed into each other efficiently (i.e., without too much loss of information) and

we refer to Π as the set of encoded instances;

• CA: the set of parameter configurations ofA, i.e., an array of data of different types

(boolean, numeric, categorical), usually encoded by vectors of q continuous and/or

discrete/categorical values. Not all possible parameter values may be admissible,

due to logical conditions concerning multiple parameters. Thus, for simplicity, we

assume that CA only contains feasible algorithmic configurations;

61



62 CHAPTER 4. ALGORITHM CONFIGURATION

• pA: the performance function of A

pA : Π× CA −→ R (4.1)

mapping a pair (π, c) (instance, parameter configuration) to the outcome of run-

ning A, configured by c, to solve an instance π. The encoding of pA is a single

continuous or discrete value. The performance pA related to running A could be

a cost measure (e.g., CPU time, number of iterations performed, etc.), or a qual-

ity measure (e.g., the accuracy achieved by a Machine Learning (ML) predictor

at a certain iteration of the training process, the integrality gap reported by an

optimization solver within a certain time limit, etc.). Depending on the case at

hand, one aims at appropriately minimizing or maximizing it.

With the specifications given above, the ACP is formally defined as follows:

Definition 4.1.1 (ACP). Given a tuple (A, π̄, pA), π̄ ∈ Π, find the algorithmic config-

uration c∗π̄ ∈ CA providing the optimal performance pA of A on π̄.

A variant of the ACP is the Algorithm Selection Problem (ASP), where one seeks

to pick, from a given set of configured algorithms, the best one for solving a specific

instance. However, one can see the choice of which algorithm to pick as the one single

parameter of a meta-algorithm for solving Π, and therefore the ASP is a special case

of the ACP. The ACP is generally very hard both in theory and in practice, especially

when, as it often happens, algorithms have a large number of configurable parameters.

Yet, it has a large number of very relevant applications, such as the configuration for

of constraint programming or mathematical optimization solvers, the hyperparameter

tuning of ML pipelines, the administration of ad-hoc medical treatments, and many

others; the interested reader is referred, e.g.,to [57, 105] and the references therein for

a more detailed treatment of the subject.

In this chapter, we review the ACP literature. Notably, we supply a comprehensive

framework for describing any approach to the ACP: we identify the core building com-

ponents for designing an ACP solution strategy, and discuss their possible use patterns

and implementation (Sec. 4.1–4.4). In the second part of the chapter, we illustrate

how these components are combined and deployed in the various ACP methodologies

(Sec. 4.5–4.7). Lastly, we introduce the approaches we devised to address the ACP and

place them within the descriptive framework discussed in the first part of the chapter.

This will allow us to compare our approaches with the other works in the literature,

and outline our main contributions (Sec. 4.8).

Note that, despite the existence of surveys on the subject (in particular, the one in

[104]), the framework we describe here offers a novel stance on the ACP. In fact, part

of the content of this chapter has been accepted for publication as an entry in the next

edition of the “Encyclopedia of Optimization” (whose last published version is [65]).
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4.2 An algorithmic schema

Research efforts on the ACP have focused on developing methodologies to solve it effi-

ciently in an automated fashion. Although this has been implemented in several different

ways, all approaches share the same goal, i.e., the construction of a recommender:

Definition 4.2.1 (recommender). The recommender is a function

ΨM : Π → CA (4.2)

which, given an instance π ∈ Π, is capable of selecting a configuration c∗π ∈ CA for

solving π more efficiently than with other configurations of A.

Thus, c∗π is, hopefully, a good approximation of the optimal configuration for π, with

respect to the performance function pA.

In other words, a recommender is a heuristic for the ACP. The fundamental con-

straint is that the recommender should be able to produce its output in a “short” time,

so as not to offset the advantages due to choosing a better configuration.

Our notation underlines the fact that the structure of ΨM is usually determined

by a model M encoding some knowledge about pA. In fact, an important phase of

all ACP methodologies is devoted to the building of M. It is in general difficult (if

at all possible) to construct accurate enough analytical models of the performances of

complex algorithms. Thus, most practical M are “data-driven”, in the sense that they

are constructed from experiments. For the recommender to be able to choose the right

c∗π for a given π, it should be able to assess pA anywhere on the set Π×CA. However, an
exhaustive evaluation of pA over Π×CA is almost always impossible in practice. In fact,

Π is an infinite set, and CA usually grows exponentially in the number of parameters,

which can be large. Furthermore, since pA itself is typically a black-box function (i.e.,

it has no analytic form), the only way to evaluate it is to directly run A, which can be

extremely costly. Therefore, a significant component of ACP approaches is how the set

Π× CA is explored.

Given the difficulty of assessing algorithmic performance on Π × CA exhaustively,

the construction of ΨM in Eq. (4.2) always involves the selection of sets Π′ ⊂ Π and

C′
A ⊆ CA. Of these, Π′ is meant to be “representative” of Π, usually in the sense that

it preserves the characteristics and information of Π. Sometimes, this can instead be

taken as the fact that Π′ contains the most “difficult” instances for A, in that all others

are solved efficiently and do not require a dedicated algorithmic configuration. Since

there is no automatic way of choosing Π′, most ACP approaches take it as given and

rely on existing libraries, hand-picked by problem experts. Therefore, we assume that

Π′ is always available, or can be easily generated, for deploying an ACP methodology.

Further, we assume that Π′ is specified before the construction ofM, and never updated.
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Moreover, the algorithmic performance of different configurations is typically unknown

before launching an ACP approach, otherwise, there would be no need to even construct

a recommender ΨM. This means that C′
A is often selected during the construction of

ΨM, instead of being picked a priori, as in the case of Π′; we remark that the (partly

constructed) model M can also be useful in this context.

In all approaches in the literature, solving the ACP fits into the same two-stage

framework (see Fig. 4.1), encompassing the ordered execution of:

a) a Knowledge-encoding Process (for brevity, K-EP). The K-EP builds M and the

accompanying ΨM. A critical step in the computation of M is the sampling of

the performance function, i.e., the evaluation of pA over pairs (π, c) ∈ Π′ × CA.
Since CA may be quite large, in most cases computing pA on all the configurations

is too expensive. Thus, in all ACP approaches, the selection of an appropriate

subset of CA in the K-EP is a crucial task, which may require the use of M or

additional models. Instead, when CA is small, all the c ∈ CA can be considered;

b) a Recommendation Phase. The recommendation phase deploys ΨM, in order

to produce a suitable configuration for a given instance. Thus, ΨM supplies a

solution of the ACP for that instance.

Since, as we noted above, most M are data-driven, the K-EP can demand consider-

able computational resources. The recommendation phase can also be computationally

expensive, in that exploiting M to produce the output configuration may involve, e.g.,

the solution of a nontrivial optimization problem in itself.

Knowledge-encoding Process

∀t ∈ {0, 1, 2, . . . }, execute:
samplet, evaluatet, updatet

A Π′ CA

M
Recommendation

Phase
π̄

ΨM(π̄) = c∗π̄

Figure 4.1: Algorithmic schema of ACP approaches

The K-EP is an iterative procedure. It cycles through three phases at each iteration

t ∈ {0, . . . , T}, until an allotted computational budget (quantified, e.g., in terms of

allowed target algorithm runs, CPU/GPU time and power, memory usage, number of

K-EP iterations) is used up, or M has attained a desired accuracy:
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1. samplet: picks a set

St ⊂ Π′ × CA s.t. St ∩
⋃
h<t

Sh = ∅ , (4.3)

i.e., St only contains previously unsampled couples. This selection is nontrivial,

as it requires addressing the trade-off between uniformly exploring Π′ × CA, so
that no promising area is left unexplored (diversification), and concentrating on

the areas containing the most promising candidates, so as to find better solutions

(intensification);

2. evaluatet: executes (possibly, in parallel) the target algorithm A on all the points

picked by samplet, to compute pA at those points and build the set

St =
{ (

π, c, pA(π, c)
)
| (π, c) ∈ St

}
; (4.4)

3. updatet: updates the models employed in the K-EP, i.e., the model M of ΨM

and, potentially, other models used for sampling purposes. For instance, it may

entail training or re-training an ML model. This phase exploits the set
⋃

h≤t Sh,

the performance values computed at the points of that set and, sometimes, some

other information collected in the evaluatet phase.

The data generated by the recommendation phase may be employed in an adaptive

“meta-sampling” loop whereby: a) when a new instance π̄ ∈ Π∖Π′ is given (either by

the user of the recommender, or by a dedicated process aimed at improving its quality),

one computes ΨM(π̄); b) the recommended configuration and/or π̄ are fed into the

K-EP, which can be performed again to improve M. One example of this approach is

presented in [96].

The implementation of the K-EP and the recommendation phase depends on the

choice of the following components:

• a model M and the associated recommender ΨM;

• whether ΨM actually depends on a specific instance or always provides the same

answer for a set of instances: we call Per-Instance (PI) ACP approaches of the

former type, and Per-Problem (PP) approaches of the second type;

• whether one commits to building M before actually solving an unknown instance

by A (offline ACP methodologies) or M is constructed during an algorithm run

(online methodologies).

4.3 The construction of M

In the literature, the model M built in the K-EP is one of the following:
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(a) a function

ζA : Π −→ CA , (4.5)

mapping an instance encoding to the configuration recommended for that instance.

The function in Eq. (4.5) is usually constructed by ML techniques [24, 19, 25, 94];

(b) a function

p̄A : Π× CA −→ R , (4.6)

computing an approximation of the performance function pA defined by Eq. (4.1),

also generally built by ML techniques [17, 23, 86, 93]. Sometimes [36], p̄A is

aggregated (e.g., averaged) over the instances in Π′, which yields an estimate

χA : CA −→ R (4.7)

of the performance of single configurations over Π. The functions p̄A or χA are

then used as a proxy to recommend a configuration for the new instance, typically,

by solving an optimization problem having them in the objective;

(c) a partition

PA = {Π′
i ⊆ Π′}i∈C (4.8)

of Π′ into C disjoint subsets (or “clusters”) Π′
i, whereby each Π′

i is specified

by choosing the corresponding recommended configuration c∗i and, for instance,

a representative instance πi. When a new instance π̄ ∈ Π has to be solved, the

cluster to which it belongs is determined (e.g., by finding the closest representative

πi, under some appropriate distance metric) and the corresponding c∗i is retrieved.

We remark that there are two “extreme” cases of Eq. (4.8):

• one in which C = |Π′|, i.e., each Π′
i contains exactly one instance, [14, 156].

We refer to this case as “PA,|Π′|”;

• one whereby Π′
0 = Π′ and C = 1, i.e., the partition is trivial and a single

configuration c∗0 will be recommended regardless of the input π̄. This is

customary in PP approaches [3, 7, 9, 10, 45, 36, 88, 89, 147, 138]. We refer

to this case as “PA,1”.

Moreover, we refer to intermediate case, whereby 1 < C < |Π′|, as “PA,C”.

It should be noted that this choice of M is typically strongly coupled with the

samplet phase in the K-EP, in the sense that it is often the direct result of the

algorithmic decisions there.

The strategy implemented to construct PA is that of solving the problem

c∗i = argmin{ aggπ∈Πi
pA(π, c) | c ∈ CA } , (4.9)
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where agg is some aggregation function (say, the average). The issue here is to

find the configuration providing the best aggregated performance with respect to

the subset Π′
i at hand. Since CA is often very large and pA is “black-box”, the

problem in Eq. (4.9) is typically treated by heuristic search algorithms, such as

local searches, evolutionary algorithms or other metaheuristics, providing a local

solution. Further, such heuristic algorithms can themselves naturally identify

clusters on the fly, even in the extreme cases; for instance, evolutionary algorithms

produce a population of the fittest individuals, each of which can be used to define

a cluster representative πi.

We remark that the strategy of building PA by solving Eq. (4.9), usually adopted

by offline ACP methodologies, quite naturally extends to the online setting. In

the online ACP, further evaluations of pA are often triggered by the arrival of a

new π, that restarts the optimization process.

Some ACP methodologies combine more than one model; the possible combinations are

shown in Tab. 4.1.

Below, we provide further details about the samplet and updatet phases, executed

during the K-EP and introduced in Sec. 4.2. Moreover, we see how the implementation

of each of these phases changes in function of the selected model M.

4.3.1 The samplet phase

The purpose of the samplet phase is to pick the set St of Eq. (4.3). This is usually

accomplished by random sampling or by more sophisticated techniques, i.e., Design Of

Experiments (DOE) [43]. In particular, DOE is a family of methods for the design and

implementation of experiments, whose purpose is to model the relationship between

a set of input variables (the so-called “factors”) and outputs. These methods involve

systematically varying the inputs, i.e., according to a specific “design”, and observing

the resulting changes in the outputs. However, in some cases, alternative strategies are

used in samplet. For instance, at iteration t = 0, St is sometimes selected manually; this

is possible only when the expertise of someone knowledgeable about the problem Π or

the target algorithm A is available. Otherwise, at iteration t > 0, samplet might employ

one the models M described in Sec. 4.3 — instead of random sampling or DOE — for a

set of sampled instances, to select the configurations in St. The possible scenarios are

as follows:

• samplet with ζA (Eq. (4.5)): for each sampled π, select the configuration ζA(π)

(see, e.g., [32]);
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• samplet with p̄A (Eq. (4.6)): for each sampled π, select the configuration(s) solving

the problem (see, e.g., [88, 86, 36])

argmax
c∈C′

A

p̄A
(
π, c
)
. (4.10)

If χA (Eq. (4.7)) is used instead of p̄A, a single configuration solving the problem

argmax
c∈C′

A

χA(c) . (4.11)

over all sampled instances, is selected (see, e.g., [147]).

In the ACP literature, Eq. (4.10) and (4.11) are often tackled by algorithms which are

local and/or approximate, owing to the size of the problems and their possibly black-box

nature.

4.3.2 The updatet phase

The evaluatet phase concerns the construction of the set St (defined by Eq. (4.4)),

which is implemented by computing pA at all points of St. Then, the updatet phase is

dedicated to the initialization and update of the (one or more) M models built in the

K-EP. We discuss the possible scenarios below:

• updatet with ζA (Eq. (4.5)) or p̄A (Eq. (4.6)): M is an ML predictor, learned

from the training set S0 at iteration t = 0; at subsequent iterations, if samplet and

evaluatet are run again to update the training set, M is re-trained using
⋃

h≤t Sh,

in the hope of improving its generalization capabilities.

If, instead of or in addition to p̄A, the K-EP also employs χA (Eq. (4.7)), the

model is typically initialized as a uniform distribution, and immediately used in

sample0 to pick new points. In this case, the updatet (for t ≥ 0) may be used to

carry out adjustments of the distribution parameters, so as to focus subsequent

samplings around the currently best performing configurations;

• updatet with PA (Eq. (4.8)): for each cluster Π′
i ∈ Π′, the saved configuration c∗i is

updated, if necessary, by looking at the algorithmic performance data in
⋃

h≤t Sh.

4.4 Computing ΨM

Given an instance π̄ ∈ Π, the implementation of ΨM(π̄) depends on the model M built

during the K-EP:

(a) If M is the one in Eq. (4.5), then ΨM(π̄) := ζ(π̄);
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(b) if M is the one in Eq. (4.6), then

ΨM(π̄) := argmin{ p̄A(π̄, c) | c ∈ CA } . (4.12)

The problem in Eq. (4.12) may be a hard one, calling for heuristic solution algo-

rithms akin to those possibly employed in the K-EP, i.e., treating the approxima-

tion p̄A as a “black box” (e.g., [17, 86, 195, 197, 36, 137]). However, exploiting the

mathematical structure of p̄A is also possible, allowing the use of exact approaches

[93];

(c) if M is specified by a set of clusters Π′
i⊆ Π′ as in Eq. (4.8), then ΨM(π̄) is

implemented by first solving

h(π̄) = argmini dist(Π
′
i, π̄) , (4.13)

for some appropriate distance function dist(·, ·), and then returning c∗h(π̄). If the

clusters are specified via a representative instance, say, πi for cluster Πi, then

dist(Π′
i, π̄) = ∥π̄ − πi∥ ,

for some appropriate norm ∥ · ∥. When the number of clusters is low, as it usually

happens, Eq. (4.13) can be quickly solved by direct enumeration. In the extreme

case with only one cluster, instead, the problem is trivial.

We describe special cases, where more than one model M is computed in the K-EP,

in Sec. 4.6–4.7.

4.5 Classifying algorithm configuration approaches

PP approaches search for the configuration with the best overall performance over a

problem set; they are usually based on one of the models M described at point (c)

of Sec. 4.3. The main risk of PP approaches is that they produce suboptimal ACP

solutions when the performance of the target algorithm varies considerably between

instances of a problem. This is to be expected for large problem classes, e.g. MILP,

where instances can represent very different problems that are hard for very different

reasons (say, having very few feasible solutions, so that finding even one is challenging,

or very many feasible solutions with very close objective, so that finding the optimal

one is challenging).

When the risk of selecting suboptimal configurations, PI methodologies, which as-

sume that the ACP-optimal algorithmic configuration depends on the instance at hand,

are likely to achieve better results.

An ACP methodology is offline if it commits to building M before the recommen-

dation phase, during which, therefore, M is fixed. Instead, an online methodology
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performs the entire K-EP during the execution of A. In this case, recommendation

phase and K-EP coincide, and the information retrieved by running A is dynamically

exploited, on-the-fly, to build M. Online methods can only be employed when the tar-

get algorithm is launched to solve a sequence of instances, or is tasked with making a

series of decisions during its run.

An online procedure can be used as a component of a larger offline/online approach.

One way to accomplish this would be to construct, online, M through experiments on

Π′, and, then, deploy it as a recommender for instances similar to those in Π′. A very

straightforward implementation of this approach would be to, say, run an optimization

solver on a sequence of instances Π′, within a prescribed time limit, trying different

parameter configurations on each of them. This would allow the selection and storage

of a set of parameter values ensuring high solver performance (as in model PA in

Eq. (4.8)); they could be reused to configure the solver, and to run it on different

instances in Π. For example, the CPLEX Tuning Tool [91, Ch. 10], of the IBM ILOG

CPLEX solver, implements this procedure.

Another way to reuse an online M could be to employ it in the update0 phase of

a subsequent K-EP, to initialize the construction of a new model. Yet another option

may be to use the points (instance, configuration, related performance), sampled to

construct M online (by the samplet and the evaluatet phases), in the sample0 phase of

a following K-EP.

Since the purpose of online approaches is to solve the ACP on-the-run, they are

usually based on simple algorithms, which allow for rapid decision-making. However,

these approaches are often impractical to scale to large configuration sets. For this

reason, they are ordinarily used for solving the ASP, rather than the ACP.

PI PP

M offline online offline

ζA (Eq. (4.5)) [24]∗, [19, 25], [94]

p̄A (Eq. (4.6)) [17, 23, 86], [93]

PA,C (Eq. (4.8)) [40, 96]∗, [101]

PA,1 (Eq. (4.8)) [14]

[3, 7, 9, 10, 45]

[89, 147, 138]

PA,|Π′| + χA (Eq. (4.8) + (4.7)) [156]

PA,1 + p̄A (Eq. (4.8) + (4.6)) [137, 195, 197] [137] [88]

PA,1 + χA (Eq. (4.8) + (4.7)) [36]

Table 4.1: A schematic summary of the ACP literature; ∗ indicates ASP approaches.

In Tab. 4.1, we give an overview of the main ACP approaches in the literature,

subdividing them into PI, PP, offline and online, and classifying them by the models

M produced in the K-EP. We have highlighted our contributions in bold.

From the rightmost column of the table, we gather that all PP methodologies are
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based on the model PA described by Eq. (4.8), notably, on its PA,1 variant. Instead,

the PA,C and PA,|Π′| variants are always used in the PI setting. Further, most PI

approaches rely on the ML-derived models p̄A of Eq. (4.6) and ζA of Eq. (4.5). In fact,

PI methodologies are required to capture/encode the complicated, possibly nonlinear

relationships between pA, CA and Π, and several ML paradigms are capable of producing

accurate approximation. In some cases, ML-based models and variants of PA are

combined, in order to implement PI procedures: see, e.g., the approaches on the second

to last line of the table, which rely on both PA,1 and p̄A for online and offline algorithm

configuration.

The rest of the chapter is devoted to a more detailed analysis of the approaches

shown in Tab. 4.1.

4.6 Per-problem approaches

In this section, we present an overview of the PP methodologies that we deem to be the

most significant in the ACP literature. All of them are of the offline type, and their K-EP

focuses primarily on the construction of model PA,1 of Eq. (4.8), accomplished through

the deployment of a diverse set of heuristic algorithms. Clearly, their implementation

of the recommender is also the same (see Sec. 4.4): ΨM is a constant function, always

relying on the same configuration by PA,1 to solve any new instances. Therefore, we will

only describe their K-EP. Further, all of these approaches require that the user provides

a set of instances of the optimization/decision problem solved by A. In Sec. 4.2, we

called this set Π′.

4.6.1 Approaches based on evolutionary algorithms

Several PP methodologies rely on evolutionary algorithms [199] for constructing PA,1 in

the K-EP. Evolutionary algorithms are metaheuristics (see Sec. 2.6.1.4) for optimization

problems, inspired by biological evolution. The solutions found by an evolutionary

algorithm during its execution are treated as “individuals” in a population. Over the

“generations” (i.e., over the course of algorithmic iterations), the population evolves

through combinations of attributes of the strongest individuals and through random

mutations. The “strength” of an individual is assessed via a fitness function, usually

the objective function of the optimization problem to be solved, or some surrogate

thereof.

An example of these approaches, called “Gender-based Genetic Algorithm” (GGA)

and employing a genetic algorithm (belonging to the class of evolutionary algorithms),

is presented in [7, 36]. GGA can be deployed to tune of the discrete and continuous
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(although discretized) parameters of any target algorithm. To represent the logical

dependencies between the parameters, GGA encodes each configuration by a tree.

In [7], the K-EP is initialized by sampling a set of configurations uniformly at random

(sample0), randomly assigning them a label comp or ncomp (“competitive”, “noncom-

petitive”) and evaluating those with label comp on a set of instances Π′ (evaluate0). The

performance pA is chosen to be the algorithmic run time. In subsequent samplet phases:

a) 10% of the comp configurations with the smallest run time, and a smaller percentage

(decreasing at each iteration) of randomly chosen ncomp configurations, are selected;

b) all the selected ncomp configurations are randomly assigned one of the picked comp

ones, and the remaining selected comp configurations are randomly coupled with each

other; c) a new generation is produced by crossover, i.e., by combining the trees of each

couple, and by random perturbations of the tree vertices; d) finally, each new configu-

ration is given a label, determined by the labels of the parents. The configurations of

the new generation are sampled, then evaluated (evaluatet). The updatet phase keeps

track of and updates the best performing configuration(s), representative of PA,1, over

the generations.

In GGA++, a variant of GGA described in [36], the K-EP is initialized (iteration

t = 0) by training a random forest regressor (see Sec. 3.6.2). Its purpose is approximate

the performance of a configuration, i.e., to learn the function χA defined in Eq. (4.7).

At iterations t > 0, the K-EP is then carried out as in [7], save for the fact that the

trained predictor is used in samplet, notably: at point b), to pick ncomp configurations

by their estimated performance (rather than uniformly at random); at point c), after

crossover, to compute the estimated performance of all possible tree combinations and

only select the best one.

Another approach implementing evolutionary techniques is “Relevance Estimation

and Value Calibration” (REVaC) [147]. The K-EP is launched by sampling candidate

configurations uniformly at random (sample0). At each iteration t ≥ 0 and for each of

the configurations sampled by samplet, the evaluatet phase computes the average per-

formance over Π′. The configuration with the worst performance is eliminated, and

replaced by a new one in the next samplet phase, for t > 0. In particular, this new

configuration is produced as follows: samplet chooses the “parents”, i.e., the top per-

forming configurations of the previous iteration; then, for each algorithmic parameter, it

randomly samples a value from an interval, defined by combining the parameter values

of the parents. The update0 phase saves the configuration c∗ with the best performance,

while updatet, for t > 0, checks whether of c∗ can be updated.
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4.6.2 Approaches based on local search heuristics

Many PP methodologies rely on LSHs, and metaheuristics other than evolutionary

algorithms (presented in Sec. 2.6.1.3 and 2.6.1.4), to build PA,1 in the K-EP.

“OPtimization of ALgorithms” (OPAL) (see [10, 9] and references therein) is an

ACP methodology based on mesh-adaptive direct search, an LSH and employed in

derivative-free optimization. OPAL allows the user to encode the configuration set CA
via constraints, and to even enforce additional constraints on the execution of the K-EP

(say, to maximize the number of instances solved while ensuring that the solve time for

each instance does not exceed a prescribed limit). In the first iteration t = 0 of the

K-EP, the instances in Π′ are solved by the default configuration of A, and partitioned

into easy (Π′
e) and hard (Π′

h) to solve, according to the solution CPU time. We call

pA(Π
′, c) the time that A, configured by c, takes to solve the instances in Π′ to a

prescribed precision; in OPAL, pA(Π̄′
e, ·) is used as a surrogate of pA(Π̄, ·). The sample0

phase selects configurations by DOE. Then, the evaluate0 phase computes pA(Π
′
h, ·) of

the sampled configurations.

In subsequent iterations, samplet performs two steps. First, a grid is created from

the configurations for which pA(Π
′
h, ·) has been previously calculated. Then, for all

the configurations c on the grid, pA(Π
′
e, c) is computed; only the ones with similar

performance to the incumbent, i.e., for a user-defined ε > 0, such that

|pA(Π′
e, c)− pA(Π

′
e, c

∗)| ≤ ε ,

are sampled. The evaluatet phase computes pA(Π
′
h, ·) of the sampled configurations.

Finally, the updatet phase checks whether the current best configuration of PA,1, i.e., the

incumbent c∗, can be replaced with a better one. If c∗ cannot be updated, another local

search is performed around it: new configurations are sampled from a grid generated

around the incumbent, pA(Π
′
e, ·) is again used as a surrogate of pA(Π

′
h, ·) to sample

promising configurations, and c∗ is updated, if necessary.

ParamILS [89] relies on the “iterated local search”metaheuristic (the “ILS” in its

name), can be deployed to tune the parameters of any algorithms (although it can only

manage discrete/discretized values) and allows the definition of conditional dependencies

and feasibility constraints on the parameters. Furthermore, it assumes that two sets of

instances are available for the K-EP, that we will refer to as Π′ and Π′′. In [89], the

chosen pA is the algorithmic run time, computed for each configuration and aggregated

over Π′. ILS is based on the 1-neighbourhood N1(c) of a configuration c, i.e., the set of all

configurations obtained by randomly modifying only one (generally, randomly picked)

parameter of c.
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The sample0 phase is launched either with the default configuration of the target

algorithm or with a random configuration, when the default one is unknown. This

configuration is evaluated evaluate0 and stored as the first incumbent of PA,1; we call

the incumbent c∗.

In the first iterations after t = 0, ParamILS repeats the following tasks until a better

incumbent is found: a) it randomly samples a configuration c̄ ∈ N1(c
∗) (samplet); b) it

computes its average performance over Π′ (evaluatet); c) it updates the incumbent, if

the performance of c̄ is higher (updatet).

In subsequent iterations, the ILS is performed again, with some modifications.

Firstly, samplet only uses a proper subset ofN1(c
∗), rather than the whole 1-neighborhood.

Secondly, each samplet has a (user-defined) probability of being re-initialized from a ran-

dom point instead of c∗. Thirdly, if the sampled candidate c̄ ∈ N1(c
∗) and c∗ have been

evaluated on the same instances but it is impossible to establish a winner, the pair is

evaluated on Π′′, one instance at a time, until one clearly dominates the other. The ILS

is executed until no single-parameter value change can improve c∗, or until a time limit

has elapsed.

A variant of ParamILS is implemented in [45], where the metaheuristic of choice is

a VNS (see Sec. 2.7.1.2), based on i 1-neighbourhoods, each centered at a different

configurations.

The i-race methodology [138] implements a local search procedure that the authors

call “iterated race”. In the first iteration of a race, randomly sampled configurations

(sample0) are evaluated, in parallel, on the instances in Π, one at a time (evaluate0).

A statistical test, performed at prescribed intervals during the evaluations, allows the

elimination of the configurations with the worst performance, while the others continue

the race. This process stops when: a certain number of surviving configurations have

been selected, a maximum number of training instances have been used, or a prescribed

computational budget has been depleted. The surviving configurations are then selected

as incumbent, representative of Π′, and ranked by performance (update0).

In subsequent iterations, samplet unfolds in three steps: a) a configuration c̄ is drawn

from the incumbent ones, with probability increasing as the rank gets higher; b) for each

parameter, a probability distribution is defined as a function of that parameter’s value

in c̄; c) several new configurations are selected by this distribution, to iterate the race.

A sample distribution for point b), when the parameter at hand is continuous, is a

truncated normal distribution: its mean is the parameter value in c̄; its variance is, ini-

tially, the midpoint of the parameter’s feasible range, and is decreased at each iteration.

After samplet, the newly picked configurations are raced against the incumbent one(s)

in evaluatet, and the incumbent configurations updated, if necessary, in updatet.
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“Sequential Model-based Algorithm Configuration” (SMAC), illustrated in [88], dif-

fers from those outlined above in that it combines LSHs with an ML paradigm. Iteration

t = 0 of the K-EP is dedicated to training an ML predictor p̄A (Eq. (4.6)); a random

forest regressor (discussed in see Sec. 3.6.2) is the choice in [88], although other alter-

natives are possible. Its predictions are then aggregated over Π′: we let p̂A(c) be the

resulting approximation of the CPU time that A, configured by c ∈ CA, takes on average

to solve instances in Π′. The update0 phase also selects an incumbent configuration c∗,

the one with minimum p̂A, for PA,1.

The following iterations are based on the computation of a metric, EI(c), measuring

the “expected improvement” of a configuration c over c∗ in terms of p̂A. At each iteration

t > 0, samplet first computes EI for all configurations evaluated at h < t, then launches

an MS (described in Sec. 2.7.1.2), optimizing EI and based on a 1-neighbourhood, at

ten configurations with the highest EI. The ten corresponding solutions, together with

several additional, randomly chosen configurations, are sampled. The updatet phase

uses evaluatet as a subroutine: it runs evaluatet until a time budget is reached, in order

to compare the performance of the sampled configurations with that of the incumbent;

moreover, it replaces c∗ when a better incumbent is found. We remark that evaluatet is

called on the on the same subset of Π′ both for the incumbent and the other candidates.

This process produces new training data, which can be used in the next iterations to

re-train the chosen ML predictor.

4.6.3 Approaches based on experimental design

The approach presented in [3], called “CALIBRA”, employs DOE techniques — no-

tably, Taguchi’s fractional factorial experimental design — for tuning up to 5 dis-

crete/continuous parameters of a given target algorithm. We refer to the article above,

and the references therein, for a closer look at the DOE techniques employed by the

authors. In the first iteration of the K-EP, the algorithmic performance of 25 config-

urations, sampled by a full factorial design (sample0) is computed on the instances in

Π′ (evaluate0); the top performing one, that we call c∗, is picked as the incumbent,

representative of PA,1 (update0). In subsequent iterations (t > 0), nine configurations

are sampled in the neighbourhood of c∗, via Taguchi’s design techniques (samplet), and

evaluated (evaluatet). If one of the sampled configurations has better performance than

the incumbent, c∗ is updated (updatet). The approach can be easily extended to con-

sider more than incumbent for PA,1. The K-EP terminates when a given budget of

algorithm runs is exhausted.
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4.7 Per-instance approaches

In this section, we examine the approaches to the ACP that we consider most relevant in

the PI context. Their M is mostly ML-based, i.e., it involves the construction of either

ζA, p̄A or χA (i.e., Eq. (4.5), Eq. (4.6) or Eq. (4.7), respectively). However, variants

of model PA (Eq. (4.8)) are also employed, often in combination with ML techniques.

The majority of these methodologies are of the offline type. In all of them, a set of

instances and, often, even a set of configurations — we call them Π′ and C′
A — both

necessary for performing the K-EP, are provided by the user, rather than being chosen

in the sample0 phase.

4.7.1 Approaches learning to predict the optimal configuration

Common to the methodologies in this section are: the construction of an ML-derived

predictor ζA (Eq. (4.5)) of the optimal configuration for a given instance; the fact that

they are all offline.

The approach proposed in [19] aims to decide which, out of two scaling methods, an

optimization solver should apply for a given problem instance. Scaling is a technique

to reduce the numerical errors committed by a solver, especially in the execution of

B&B-type algorithms (see Sec. 2.6.1.1), in order to improve the behaviour of the solver

and shorten the solution process. The choice of the most suited scaling technique is

represented as a binary classification problem, where the possible outputs {0, 1} encode

the available options. To perform classification, the K-EP learns an ML regressor,

capable of approximating the numerical instability of a solver run, which is encoded by

a value in [0, 1]. In the recommendation phase, given a new instance of the optimization

problem Π, the scaling method to be applied is determined by checking whether the

estimate is closer to 0 or 1, by a user-defined threshold. The K-EP usually consists

of a single iteration, whereby, given Π′, sample0 and evaluate0 assemble a training set,

and update0 builds an ML predictor. Computational results with a Random Forest (see

Sec. 3.6.2) and a linear regressor (see Sec. 3.6.4) are presented.

The approach described in [25] aims at tuning one parameter of an optimization solver.

The parameter in question determines whether or not to linearize the quadratic objec-

tive function of a Mixed-Integer Quadratic Program (MIQP), i.e., a QP (see Sec. 2.3)

with integer variables and linear constraints. In practice, three parameter values are

considered, corresponding to three algorithmic strategies: linearize, do not linearize,

leave the choice to the solver. The K-EP, carried out in a single iteration, constructs an

ML classifier ζA to predict the optimal parameter configuration, for a given instance.

Since Π′ is given, and CA consists of only three configurations, sample0 is trivial. The
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training labels, for building the classifier in update0, are determined by running the

target solver, with the three configurations, to optimize the instances in Π′ (evaluate0).

This approach can be adapted to many ML paradigms: the authors present results

with a support vector machine (i.e., a classification-oriented variant of SVR, discussed

in Sec. 3.6.4) and other tree-based methods (derived from the base model treated in

Sec. 3.6.2).

The authors of [24] present an ASP approach, capable of picking the best algorithm

for solving a given instance of an optimization problem Π. This is achieved by learning

a decision tree classifier, notably, a model ζA based on the DT paradigm illustrated

in Sec. 3.6.2. In the K-EP, the corresponding training problem is cast as an MP and

solved heuristically, by running an VNS (see Sec. 2.7.1.2). The trained predictor is such

that each tree leaf is assigned a) a partition of the training instances and b) the optimal

algorithm for solving them. In the recommendation phase, given a new instance, the

trained predictor can directly recommend the most appropriate algorithm for solving

it.

4.7.2 Approaches learning to approximate algorithmic performances

The PI approaches described in this section are all of the offline type and involve the

construction of an ML-derived predictor p̄A of the performance function pA (i.e., model

M in Eq. (4.6)). Thus, their K-EP is dedicated to solving the training problem, which

requires building a training set (sample0, evaluate0) and training the chosen predictor

(update0).

The K-EP in the methodology presented in [17] is used to learn a random forest

regressor (see Sec. 3.6.2), capable of approximating the algorithmic run time of a couple

(instance, configuration). Given an instance of Π, the recommendation phase runs

an exhaustive search, which selects the best algorithmic configuration for solving that

instance by computing the trained predictor’s approximation at all points of C′
A.

In [86], the performance function to be approximated is the same as that chosen

in [17], but different ML paradigms are deployed to obtain an approximation p̄A, i.e.,

linear basis function regression and linear bayesian regression. The recommendation

phase also executes brute-force search to compute the recommender. However, the au-

thors argue that, since scaling this method to large CA can be very challenging, more

sophisticated strategies may need to be considered, such as gradient descent for con-

tinuous parameters. However, no computational experiments are provided for assessing

the suitability such strategies.
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The approach proposed in [23] is intended for the configuration of optimization solvers.

The performance pA is a function of different statistics concerning the solution process,

i.e.: a) the time necessary to attain optimality, b) the sequence of solver integrality gaps,

measured at each gap improvement, c) the time between two consecutive improvements

of the sequence. A diverse set of ML regressors (locally weighted learning [8], SVR

(see Sec. 3.6.4) and random committee [194]), built in the K-EP to estimate pA, are

tested. Upon the arrival of a new instance, the configuration recommended in the

recommendation phase is found by computing p̄A for all possible candidates.

4.7.3 Approaches building PA,|Π′|

Approaches of this type focus on the construction of a variant of model PA in Eq. (4.8),

whereby Π′ is partitioned into as many elements as its cardinality (see Sec. 4.3).

In the offline methodology presented in [156] each element of the partition PA,|Π′|

(i.e., each instance in Π′) is specified by a Bayesian Network (BN), and all BNs are

learned in one iteration of the K-EP. A BN is a probabilistic graphical model, notably,

an ML approximation of the kind in Eq. (4.7), capable of assigning a high probability

to configurations which are most likely to provide good performance. Its construction,

taking place in update0, requires a training set (built by sample0 and evaluate0). In the

recommendation phase, a configuration for a given instance of π̄ ∈ Π is recommended

by first finding the closest or “most similar” instance in PA,|Π′| — according to some

distance function — and then computing the prediction by the associated BN. If the

instances in PA,|Π′| are too different from π̄, a new BN is learned for π̄, and the pair

is added to PA,|Π′|. The saved BNs are periodically re-trained, as new training data is

gathered.

4.7.4 Approaches building PA,C

The approaches examined in this section, i.e., those presented in [40, 96] (both ASP

methodologies) and [101], are all offline. Their K-EP implements the construction of

PA,C , i.e., a variant of the model PA in Eq. (4.8), where the instances in Π′ are grouped

into several clusters, such that the elements of each cluster share a similar structure.

In all the surveyed approaches, the K-EP begins with the execution of a procedure for

clustering the instances in Π′ (iteration t = 0). This is followed by a second phase

which, for each cluster, selects a configuration considered optimal for its instances.

The adopted clustering algorithms are: the k-means (see [40, 96] and references

therein), which requires the user to input the number k of cluster to create; the g-

means ([101], a variation of the k-means that automatically finds k). Π′ is clustered

based on the instance features [40, 101], or on a combination of instance features and
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metrics about the target algorithm performance on single instances [96].

The approaches differ according to the method used to select the representative

configuration of each cluster. In [40], this is accomplished by a brute-force search: the

performance of all candidates in C′
A is computed for each cluster, and the best one

is chosen. This strategy is generally computationally infeasible when C′
A is large, but

it works in this case, because [40] is an ASP methodology and C′
A is a small set of

candidate algorithms. Instead, in [96] (an ASP approach), Π′ is clustered according to

the performance of candidate target algorithms on single instances: for each cluster, the

k-means automatically chooses the most efficient algorithm for solving the instances in

that cluster. Moreover, in the K-EP of [96], a classifier is trained to assign an instance

to a cluster. However, in the context of algorithm configuration, where CA is often much

larger than in the ASP, more sophisticated procedures are necessary. For instance, the

approach illustrated in [101] first performs clustering on Π′ and then runs GGA (an

ACP methodology of the PP type, discussed in Sec. 4.6.1) on each cluster.

The recommendation phase in [40] involves running, upon the arrival of a new in-

stance, a k-nearest neighbour algorithm [22, §] to assign it a cluster. Instead, in [96],

a classifier learned in the K-EP is used to assigned a cluster label to the new instance.

Finally, in [101], the membership of the new instance to one of the clusters is decided

according to some distance function, computed for all the cluster centroids.

We note that the approach in [96] also differs from the others in the implementation

of a meta-sampling loop, which feeds the recommendation phase data (new instances

and recommended configurations) into the K-EP.

4.7.5 Approaches building PA,1

The K-EP of the methodologies discussed in this section deals with the construction

of PA,1, i.e., a variant of the model in Eq. (4.8), in which the instances in Π′ are not

partitioned and only one configuration is selected as representative of the whole Π′.

The online, PI approach discussed in [14], called “reactive search”, is devised for cali-

brating a single parameter of a tabu-search algorithm, a metaheuristic for optimization

problems (see Sec. 2.6.1.4). In reactive search, the K-EP, used to construct PA,1, is

iterated each time a new instance π̄ ∈ Π is to be solved. At iteration t, samplet selects a

value of the parameter to be configured; at t = 0, the choice is between a random value

or the default one. Then, the tabu-search, configured with the selected parameter value,

is run for a prescribed CPU time or number of iterations, to solve π̄ (evaluatet); the cor-

responding solution is stored in a database containing all solutions. In the subsequent

updatet phase, the database is inspected, and the parameter increased or decreased if the

current solution appears too often or not too often, compared to a threshold provided

by the user. The updated parameter value will be used at the next iteration.
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A different approach, described in [137] and called “Auto-sklearn”, relies on PP tech-

niques — in particular, it is based on the SMAC methodology, outlined in Sec. 4.6.2 —

and combines both offline and online procedures. Auto-sklearn is designed to recom-

mend the best ML strategy to learn from a given a dataset. A strategy, that the authors

refer to as “framework”, comprises the choice of data pre-processing techiniques, fea-

ture creation and prediction algorithms (including the accompanying hyperparameters).

The purpose of Auto-sklearn is to automatically select the framework minimizing the

generalization error on the given dataset. In a first, offline phase, SMAC is run several

times on different training datasets, to pick the best framework for each of them. The

training datasets and the associated recommended framework, each encoded by a vector

of continuous/discrete element, are then stored. The online phase is executed when a

new dataset D arrives: Auto-sklearn first finds, among the datasets saved in the offline

phase, k that are most similar to D (according to some distance function and thresh-

old provided by the user), and then retrieves the associated frameworks. Subsequently,

these frameworks are used to initialise SMAC, which uses the data in D to find the

optimal framework for it.

In the offline approach presented in [195, 197] and called “Hydra”, the K-EP output

consists of two models M, both contributing to the structure of the recommender. One

model is PA,1 (a variant of model PA in Eq. (4.8)): although PA,1 is usually specified

by a single configuration, representative of the instances in Π′, Hydra saves a portfolio

of promising configurations. The other model is a variant of p̄A in Eq. (4.7), for which

here we use the shorthand p̂A,c(π). In Hydra, p̂A,c(π) is ML-derived and it approximates

the performance of the target algorithm A, configured by c and run to solve an instance

π ∈ Π (see [196] for details). We remark that Hydra learns a different predictor for

each algorithmic configuration added to the portfolio, i.e., p̂A,c is a function of π and is

parametrized by c.

Before the K-EP starts, Π′ is partitioned into training and test instances, that we

refer to as Π′
tr and Π′

te. At each iteration of the K-EP, the following tasks are performed:

1. any PP methodology, applied to Π′
tr, selects a configuration c∗ to be added to the

portfolio accompanying PA,1. In iteration t = 0, this is achieved by using pA as

the performance function. In subsequent iterations, the PP methodology uses the

improvement over the average portfolio performance as the performance function,

to pick the configuration achieving the largest performance improvement;

2. p̂A,c∗ is learned using Π′
tr;

3. the estimated performance of c∗ by p̂A,c∗ is computed on Π′
te. Configurations with

poor estimated performance are removed from the portfolio.
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In [195, 197], ParamILS (Sec. 4.6.2) is the procedure chosen at step 1. In [195], step

2 is based on the ridge regression; instead, in [197], an ensemble of decision forests is

deployed, which is capable of predicting the ranking of c∗ in the portfolio. Furthermore,

in [197] the K-EP is modified so that, at each iteration, multiple configurations are

added to the portfolio: the chosen PP approach is run several times, in parallel, and a

subset of promising configurations is selected from the solutions found.

Given a new instance π̄ ∈ Π, the recommendation phase selects, from the portfolio

assembled in the K-EP, the configuration with the best estimated performance on π̄,

according to the learned approximations p̂A,c.

4.8 Our take on the algorithm configuration problem

The contribution of this thesis to the ACP is the design and implementation of two

novel offline, PI solution methodologies.

In the first one (published in [93] and illustrated in detail in Ch. 5), the model M
built in the K-EP is p̄A of Eq. (4.6). Since p̄A is an approximation of the performance

function, we call this approach Performance-as-Output (PaO). The recommender, for

computing the ACP solution, is formulated as an MP, containing the equations of the

inference problem associated to p̄A (which describe the learned prediction into MP

terms): its objective optimizes p̄A over the known set CA of feasible configurations; its

constraints encode CA.
Our methodology is unlike the other PI ones (discussed in Sec. 4.7) and, specifically,

different from the ones centering on the model in Eq. (4.6) (considered in Sec. 4.7.2).

In fact, we exploit the mathematical structure of the trained ML predictor to formulate

the ACP as an MP. In this sense, the novelty of the formulation we propose is that it is

white-box, as opposed to the other black-box approaches, prominent in the literature.

For this reason, we can solve the ACP with all the available sophisticated machinery,

and even off-the-shelf optimization tools, hopefully scaling more efficiently to very large

configuration sets than black-box optimization algorithms.

In the second ACP methodology (published in [94] and described in Ch. 6), the model

M to construct is a variant of ζA in Eq. (4.5), i.e., an approximation c̄ of the function

c : Π× R −→ CA , c(π, r) 7→ c . (4.14)

In Eq. (4.14), r ∈ R is a required algorithmic performance level, and c ∈ CA a configu-

ration allowing A to attain a performance r, when it is run on π. We call this approach

Performance-as-Input (PaI), to distinguish it from the PaO one, and because r is an



82 CHAPTER 4. ALGORITHM CONFIGURATION

input for the ML predictor. Similarly to the PaO methodology, we translate the predic-

tor c̄ into MP terms, and optimize the resulting formulation, to recommend a suitable

algorithmic configuration for solving a given instance.

We note that the PaI approach is in contrast to the PI methodologies outlined in

Sec. 4.7 — in particular, to the ones in Sec. 4.7.1 — where M directly returns the

optimal configuration for a given instance, by means of an ML predictor.

Finally, we observe that both of our methodologies are able to operate with any ML

paradigm, as long as one is capable of describing the corresponding inference problem by

means of the MP language. In this sense, the approaches we propose are “MP-driven”,

and parameterized by ML predictors. Moreover, both approaches can be deployed to

tune the (discrete/discretized) parameters of any target algorithm, and thus have wide

applicability.

4.9 Conclusions

In this chapter, we introduced an algorithmic schema, common to all ACP methodolo-

gies, for constructing and deploying a recommender, i.e., a function capable of suggesting

the optimal configuration of a given algorithm A for solving an instance of a given de-

cision/optimization problem Π. Furthermore, we placed the most prominent works of

the ACP literature in our schema.

Despite all the research efforts in the field of algorithm configuration, the problem

still remains extremely difficult to solve. In fact, it is usually impossible to know the

algorithmic performance pA over all of the many parameter configurations in CA, which
can be up to the hundreds or thousands (especially in general-purpose optimization

solvers, equipped with a diverse set of algorithmic components to solve famously NP-

hard problems [102, 103]). Furthermore, while the ACP can be somewhat approached

if we consider a single instance or a small subset of Π′, it becomes intractable when we

look at the whole set Π, which is normally of infinite size.

To overcome this complication, ACP methodologies are all based on multiple forms

of approximation of: a) the algorithmic performance function, or of the parameter con-

figuration allowing to achieve specific algorithmic performances, via some computable

ML approximation; b) Π, via the manual selection of a subset of representative instances

and corresponding representative configurations. The methodologies we developed dur-

ing my PhD are among those based on approximation type a), and relying on ML.

However, they differ from the others in that they propose a white-box approach to the

problem of formulating a trained ML predictor; this allows us to add, to the arsenal of

techniques for dealing with the ACP, those proper to MP.



Chapter 5

Tuning algorithms: optimizing

over learned predictions

5.1 Introduction

In this chapter, we discuss the PaO approach, mentioned in Sec. 4.8 of the previous chap-

ter: an offline, PI, MP-driven, ACP methodology, parametrized by an ML paradigm,

for finding instance-wise optimal parameter configurations for general MP solvers. The

origin of its name (“performance-as-output”) lies in the fact that the model M built

in the K-EP is an (ML) approximation of the performance function pA. In Sec. 5.5,

we report the results of the computational experiments that we carried out to test the

proposed approach. A part of this chapter has been published in [93].

5.2 Motivation

Once a problem is modelled by an MP formulation, an off-the-shelf solver can be used

to solve it. Off-the-shelf solvers are highly complex pieces of software, which must be

general enough to encompass a significant family of problems, and yet fast enough that

sufficiently large-scale instances will be solved in reasonable time. By the usual trade-

off between generality and efficiency, implementing a good solver is extremely hard.

Today’s most successful solvers meet these specifications by actually embodying a corpus

of different algorithmic components (pre-processing techniques, relaxations, heuristics,

cutting planes, branching algorithms, etc., which are treated in Ch. 2), for addressing

the different phases of the solution process. Each solution algorithm has its own (often

very large) set of algorithmic options, and the available algorithmic choices are exposed

to the user as a long list of parameters. Their default values are chosen so that the

solver will operate reasonably well on a sizable library of instances. Furthermore, some

commercial solvers provide automatic configuration procedures called “tuning tools”

83
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(e.g., [91, Ch. 10]). These procedures can run the solver, with different configurations,

on one or more instances within a given time limit, and record the best parameter values

encountered.

Despite all this, default/tuning-tool configurations may still be highly suboptimal

on specific instances. Therefore, for many problem classes, carefully adjusting the solver

configuration is necessary (see, e.g., [87]) to improve the quality of the obtained solution

and/or the efficiency of the solution process. Identifying good solver parameters for a

given problem instance, however, is a difficult art, which requires considerable experience

in solver usage, and in-depth knowledge of the application giving rise to the considered

MP formulation. Further, it can be an extremely time-consuming task, due to the

large amount of available parameters, whose number is sometimes in the hundreds (see,

e.g., [92]). Therefore, it is of significant interest to develop general, PI approaches,

capable of finding the optimal algorithmic parameters for single instances of a decision

or optimization problem in an automatic way.

5.3 The Performance-as-Output approach to solver con-

figuration

In this chapter, we will use the same notation and assumptions as in Ch. 4, notably,

Sec. 4.1. Thus, we will consider a parametrized algorithm A (here, an optimization

solver, although the PaO methodology is suitable for any algorithm) for solving instances

of a problem Π, and choose a parameter configuration from an admissible set CA, to
optimize the performance pA of A on a given problem instance. Further, we will rely

on the following assumptions:

• each configuration c ∈ CA can be encoded by a vector of q binary values, repre-

senting categorical and numerical parameters (although extension to integer and

continuous numerical parameters is clearly possible). Since every subset of the

unitary hypercube can be described by means of a polytope [157, Cor. 1], we as-

sume that a representation of CA as a bounded set of linear inequalities in binary

variables, i.e.,

CA = {c ∈ {0, 1}q | Ac ≤ β} , (5.1)

is known. In practice, deriving A and β from the logical conditions on the param-

eters can be assumed to be easy;

• a finite subset Π′ ⊂ Π is available. ML methodologies are known to perform well

on training sets that are not “overly general” [73, Ch. 5.3]. Therefore, we select

Π′ as a set of instances belonging to the same problem, or at least to different

variants of a single problem. In practice, we focus on a unit commitment problem

arising in the energy industry, that we describe in Sec. 5.5.1;
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• each instance π ∈ Π can be encoded by a vector of m continuous components, i.e.,

π ∈ Rm;

• the performance function that we want to learn by ML is defined as

pA : Π× CA −→ R ,

mapping a couple (π, c) into the integrality gap reported by the solver after a

fixed time limit. This definition takes into account the fact that the best config-

uration may vary among instances belonging to the same problem, which makes

our approach PI.

To build the training set for our approach, we compute pA for all the instances in

Π′ and all the configurations in the considered CA. We effect this by calling the

solver, configured by each c ∈ CA, on every instance π ∈ Π′. Hopefully, then, the

training set thus built can be used to generalize our approach to instances outside

Π′, with known encoding and which are in some way similar (in size or otherwise)

to those in Π′.

With the above assumptions, we describe our approach for addressing the ACP on

MP solvers, and fit it into the algorithmic schema illustrated in Sec. 4.1–4.5, notably,

by discussing the two phases K-EP (where we sample pA and construct a model p̄A for

it) and recommendation phase (where we build a recommender for a given instance π).

5.3.1 The construction of M

Since pA is usually a black-box function, the K-EP for building M relies on a supervised

ML paradigm to learn an approximation

p̄A : Rm × CA −→ R (5.2)

of pA, from the training set

S =
{(

πi, ci, pA(πi, ci)
)
| πi ∈ Rm, ci ∈ CA, pA ∈ R

}
.

Eq. (5.2) is the model M in Eq. (4.6), so the considerations we made in Ch. 4 about

the construction of this predictor — in particular, how the different phases samplet,

evaluatet and updatet are implemented — also apply here. A training input vector

(πi, ci) is the concatenation of an instance encoding and a configuration encoding; the

training set labels pA(πi, ci) are computed on the corresponding input tuples. Following

the notation of Eq. (3.1) in Ch. 3, we use the shorthand s = |S| and S = {1, 2, . . . , s}.
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5.3.2 The recommender

The recommendation phase, in which we compute the recommender for a given instance

in Π, amounts to solving the the Configuration Set Search Problem (CSSP).

After learning p̄A, the formal structure underlying the trained predictor is translated

into MP terms. In Sec. 3.3, we define this formulation the “inference problem” of a

learned ML predictor. By adding constraints encoding the compatibility/dependency

conditions on the configuration parameter values, we obtain the the CSSP, i.e.:

CSSP(π̄) = arg min
c∈CA

p̄A
(
π̄, c
)
, (5.3)

for a given instance π̄ and a given predictor p̄A. We solve Eq. (5.3), upon the arrival of π̄,

to find the configuration c∗ providing optimal algorithmic performance with respect to

the approximated performance function p̄A. Hence, in terms of the entities introduced

in Ch. 4, CSSP(π̄) is our recommender ΨM(π̄). If p̄A yields an accurate estimate of pA,

we expect the optimum c∗ of Eq. (5.3) to be a good approximation of the true optimal

configuration for solving π̄.

We remark that the actual implementation of Eq. (5.3) depends on the MP encod-

ing selected for the trained predictor, and it may include additional variables and/or

constraints; see Sec. 3.6.1–3.6.4 for some examples.

The main novelty of our methodology is the fact that learned model M is white-box:

we exploit the mathematical description of p̄A to formulate and optimize the CSSP for

specific instances. This conveniently allows us to treat the ACP as an MP, by contrast

with most of the existing ACP approaches, which consider the p̄A as a black-box and,

hence, cannot exploit its structure. These approaches can only employ p̄A, as an oracle,

in LSHs or metaheuristics in the K-EP, or to compute a prediction at all candidate

configurations in the recommendation phase [88, 36, 17, 86, 23, 137, 195, 197] (see

Sec. 4.6–4.7). Thus, they cannot reasonably hope to find a global minimum when the

number of parameters grows. Moreover, they may not scale well to settings where not

only CA is large but c∗ depends on the instance at hand. Further, formulating the ACP

as an MP is advantageous, as it allows the seamless integration of the constraints on

the configuration parameters, which is something that few other ACP methods allow.

The only exceptions that we are aware of are the approaches described in [89, 7] —

where, according to the authors, users can enforce constraints on feasible parameter

configurations — and in [138] — where the user can forbid the sampling of specific

configurations. However, these approaches are of the PP type; therefore, when the

behaviour of the target algorithm varies considerably with the structure of an instance

of Π, they may fail to recommend good configurations for specific instances.

A unique asset of our methodology is that it is not limited to a specific supervised

ML paradigm. The fact that it can be adapted to operate with any predictor — as long

as one is capable of formulating the accompanying inference problem — offers users
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freedom to trial many approximation structures and pick the one providing the highest

generalization. Of course, extremely accurate predictors may be also too complex for

the resulting CSSP to be solved quickly. This would defeat the purpose of deploying our

methodology, since, in these circumstances, one might as well solve π̄ directly. Hence,

incurring the additional computational overhead for solving the CSSP may be advanta-

geous only when the instance at hand is “hard”. All in all, achieving a balance between

the K-EP predictor’s complexity and the CSSP cost is by no means trivial, which makes

the practical implementation of our PaO approach quite challenging. However, we will

see in Sec. 5.3.2 that, at least for the tested ML paradigms, the associated CSSP is

solved in a matter of seconds.

We remark that, although we perform the K-EP only once, offline, the approach

can be easily fitted to a “dynamic” setting, in which the data obtained from solving the

CSSP is iteratively used to re-train the chosen ML predictor.

Finally, we should point out that the idea of learning the unknown components

(constraints, objective) of an MP has been already explored. In general, it is possible

to cast the ML approximation of a mapping/relation as an MP, and optimize upon this

(see, e.g., [134], [142], [62] or [186] and references therein). However, while this is in

principle possible, the set of successful applications is restricted in practice. Indeed,

using this approach in the ACP context is, to the best of our knowledge, novel. It also

comes with some specific twists:

• different models M yield different CSSPs, which require ad-hoc implementations

and specific solution tools;

• the performance of an optimization solver is usually expressed in terms of the gap

reached within a time limit, or the time required to reach optimality. In both

cases, pA can range from very small to quite large values, which often requires

designated processing procedures (e.g., outlier elimination, normalization, etc.),

for the K-EP training to be carried out efficiently. We call pml the processed

performance function, i.e., the one actually estimated by p̄A. Since the CSSP

optimizes a proxy of pml (rather than a proxy of pA) these processing procedures

could affect the success of c∗ in configuring A;

• the chosen ML loss metric determines how prediction errors are penalized. This is

crucial to achieve a correspondence between the set of global optima of p̄A (where

the CSSP solution lies) and the set of global optima of pA (containing the true

optimal solution of the ACP);

• since dimensionality reduction techniques can help to decrease the ML predictor

error, we tried several FS algorithms (see Sec. 3.5.4.1) on our training set. FS,

acting on inputs (π, c) of dimension m+q, can select a subvector (π′, c′) of dimen-
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sion m′ + q′. However, FS also has an impact on the CSSP. In fact, if q′ < q, the

solution c∗ ∈ {0, 1}q′ of the CSSP will have to be completed, by assigning values

to the q− q′ left-out configuration variables. Addressing the use of dimensionality

reduction techniques other than FS is left for future research.

In the next sections, we will discuss the issues above in more depth.

We tested our idea with the following components: we configured nine parameters of

the IBM ILOG CPLEX solver version 12.7, which we employed to solve 250 instances of

a hard MILP, the Hydro Unit Commitment (HUC) problem [26]. The experiments were

conducted on an Intel Xeon CPU E5-2620 v4 @ 2.10GHz architecture, while CPLEX

was run on Intel Xeon Gold 5118 CPU @ 2.30GHz. We compared the performances

of linear and nonlinear SVR, and DTs, as the ML paradigms of choice. We used the

open-source, MINLP solver Bonmin [153] to solve the CSSP for the nonlinear SVR,

and CPLEX for the linear SVR and DTs. The pipeline was implemented in Python

3.6.8 [163] and AMPL version 20200110 [66]. In the following, we detail the algorithmic

set-up that we employed. In Ch. 6, we will discuss several CSSP formulations for the

PaO and PaI approaches, when the selected ML paradigm is LR; we will also describe

computational experiments carried out on a smaller dataset than the one we used in

this chapter. Further, in Ch. 8 we will show a CSSP-PaO formulation for a generic NN.

5.4 Implementation with different ML paradigms

In this section, we present the CSSP formulations arising from the use of SVR and DTs.

The optimal training coefficients of each predictor, learned by training, are marked with

an asterix. The CSSP is optimized to solve the ACP for a given instance, which we call

π̄. We also present the results of the computational experiments we conducted to test

the PaO approach.

5.4.1 The approach with SVR

The linear SVR form yields the following MILP:

CSSP(π̄) ≡ arg min
c∈CA

⟨w∗, (π̄, c)⟩ . (5.4)

The training problem associated with Eq. (5.4) only requires solving the primal SVR

formulation (stated in Sec. 3.6.4.1), a convex QP, for which many efficient algorithms

exist (see Sec. 2.3). We remark that the solution returned by this CSSP is always the

same for any instance, which makes it PP, rather than PI. In fact, let w∗ = (w∗
π, w

∗
c ),

where w∗
π and w∗

c are the subvectors referring to the instance components and the

configuration components, respectively. Then, carrying out the dot product in Eq. (5.4),

we have:

arg min
c∈CA

⟨w∗, (π̄, c)⟩ = arg min
c∈CA

⟨wc, c⟩ .
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We decided to test this CSSP anyway, to benchmark its performance against the PI

variants of the PaO methodology, on instances of the same problem Π.

The nonlinear SVR form relies on the kernel trick (see Sec. 3.6.4.3). For our ex-

periments, we choose a Gaussian kernel, which is the default choice in absence of any

other meaningful prior [44]. This makes the CSSP a MINLP with a nonconvex objective

function:
CSSP(π̄) ≡ arg min

c∈CA

∑
i∈S

α∗
i e

−γ∗∥(πi,ci)−(π̄,c)∥22 . (5.5)

5.4.2 The approach with DTs

We use the notation of Sec. 3.6.2 to describe the CSSP with a DT. Since, in our setting,

the training inputs are vectors (π, c), the intermediate vertices V ∗
I of the learned tree

T ∗ = (V ∗
I ∪ V ∗

L , A
∗)

are partitioned as

V ∗
I = {V ∗

π , V
∗
CA} ,

where V ∗
π are the vertices branching on instance-related components and V ∗

CA the ones

branching on configuration-related components. To formulate the CSSP for an instance

π̄, we first retrieve a graph from T ∗, that we call T ∗∗
π̄ = (V ∗∗

CA ∪ V ∗∗
L , A∗∗), whereby

V ∗∗
CA ⊆ V ∗

CA and V ∗∗
L ⊆ V ∗

L .

In particular, V ∗∗
CA and A∗∗ are built as follows:

1. we consider a copy T 1 = (V 1
π ∪ V 1

CA ∪ V 1
L , A

1) of T ∗;

2. since π̄ is known, we can evaluate the branching constraints at each u ∈ V 1
π , and

determine which of its two children violates them: we call ulx and urx the two

children of u, and let v ∈ {ulx, urx} be the (only) infeasible child; then, we delete

arc (u, v) from A1, as well as the subtree of T 1 rooted in v. This yields a subgraph

of T 1, that we call T 2 = (V 2
π ∪ V 2

CA ∪ V 2
L , A

2);

3. initially, A∗∗ = ∅.

Firstly, we populate it with all the arcs (u, u′) ∈ A2 such that u, u′ ∈ V 2
CA .

Secondly, for each u ∈ V 2
π , we consider its “predecessor” and its “successors”.

Given the directed path P (root, u) in T 2 between the root and u, we define the

predecessor of u as the vertex up ∈ P (root, u) such that: a) up ∈ V 2
CA , b) up ̸= u

and c) up is closest to u on the path. The successors are found by recursively

visiting each of the subtrees of T 2 rooted in u’s children ulx and urx: if the root

of the visited subtree belongs to V 2
CA ∪ V 2

L , then it is selected as a successor;

otherwise (i.e., if the root belongs to V 2
π ), the two subtrees rooted in its children

are recursively explored. We remark that there can be at most four successors for
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each u. After this, for all the successors, we add an arc (predecessor, successor)

to A2, and delete u.

We call the resulting tree T ∗∗
π̄ ;

4. finally, we retrieve the components of ρ∗, τ∗, λ∗ related to the vertices of T ∗∗.

The CSSP on T ∗∗ is the following ILP:

arg min
c∈CA

∑
u∈V 1

L

yup,uλ
∗
u (5.6)

yrootp,root = 1 (5.7)

u ∈ V ∗∗
CA yup,u = yu,ulx

+ yu,urx (5.8)

u ∈ V ∗∗
CA yup,u − c[ρ∗u] ≤ yu,ulx

(5.9)

u ∈ V ∗∗
CA yup,u + c[ρ∗u]− 1 ≤ yu,urx (5.10)

u ∈ V ∗∗
CA yup,u ∈ {0, 1} . (5.11)

For each u ∈ V ∗∗
CA : we refer to its father as up, to its children as ulx and urx, and

to the corresponding path variable as yup,u. Further, the variables c[ρ∗u] — i.e., the

branching variables at the intermediate vertices of T ∗∗
π̄ — represent the CSSP choices

about algorithmic configuration components. The CSSP solution also identifies a unique

path in T ∗∗
π̄ , which goes from root to one of the leaves V ∗∗

L . We call this path P and

the finish leaf u∗. The predicted performance λ∗
u∗ at u∗ must be as small as possible

(Eq. (5.6)). Eq. (5.7) guarantees that P is unique. The constraints in Eq. (5.8) make

sure that only intermediate vertices u receiving flow (i.e., vertices such that yup,u = 1)

can dispatch it and belong to P. Eq. (5.9) and (5.10) enforce the branching constraints:

if c[ρ∗u] is set to 0, then the path continues to the left child; otherwise, it continues to

the right child. The previous constraints also guarantee that only the flow variables

corresponding to the active arcs in P are set to 1.

Clearly, T ∗∗
π̄ is usually much smaller than T ∗. Due to its size and the fact that it

is an ILP, the CSSP in Eq. (5.6)–(5.11) can be solved extremely quickly, as we will see

below.

We remark that, due to the action of ρ∗ on the configuration components and to the

processing steps implemented to construct T ∗∗
π̄ , the number of variables c[ρ∗u] might be

less than q, i.e., less than the size of a configuration vector in CA. In other words, the

CSSP solution may only be a partial configuration, even when no FS is operated. The

procedures we adopted to complete the CSSP solution are explained in Sec. 5.5.5.

5.5 Experimental results

In this section, we discuss the implementation details of our methodology.
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5.5.1 The Hydro Unit Commitment problem

One of the most efficient and long-term techniques to store electricity is to transform it

into potential energy, by pumping water up mountain valleys into water reservoirs. The

HUC is the problem of finding the optimal scheduling of a multi-unit, pump-storage,

hydro power station, for a short term period in which inflows and electricity prices are

given (usually obtained by forecasts). The plant’s operating and energy production are

decided so as to maximize the revenue given by power selling (see, e.g., [192]), while

satisfying diverse technical, physical and strategic constraints. The units of the plant

can work as pumps or turbines and are fed by the same water reservoir. The HUC

belong to the family of unit commitment problems.

In our experiments, we considered a fixed time horizon of 24h and a fixed hydro-

system, with a single-pump. Therefore, all of our instances have the same size. The

problem natively has a nonlinear structure, which arises from the relationship between

the power output of the turbines, the corresponding water flow from the reservoir and

the water volume in the reservoir. The HUC formulation that we use as reference,

presented in [26], is an MILP, whereby the original nonlinearities are approximated by

linear constraints.

The HUC is hard to solve in practice. In fact, even when its nonlinearities are

linearized, it is often hard to find a feasible solution, let alone an optimal one. A

further challenge arises from the combinatorial nature of the problem, which requires

determining which units to activate, while accounting for, say, startup/shutdown costs

and forbidden operational zones [181]. Finally, HUC instances are often large-scale and

must be solved, in practice, in a reasonably short time, often for hundreds of times a

day. In view of the mentioned complexities, the benefits of any improvements upon

the solution process could be substantial. For this reason, we chose the HUC as the

benchmark optimization problem (i.e., Π) to test our ACP methodology.

5.5.2 Building the training set

1. Instance encoding (features). The instances in Π′ that we use all have the same

size and their constraints do not vary overmuch. The characteristics that actu-

ally vary (and that we extracted from each instance) are mainly the coefficients

of the objective function. Notwithstanding, our approach is general: the “prob-

lem structure” is encoded in the vector π, which is certainly class-specific, but

need not be size-specific (one can e.g. use dimensionality reduction techniques

to achieve feature vectors of the same size even for instances of varying size).

Notably, for each instance, we chose to extract 55 features, varying from day

to day: the date, 24 hourly prices, 24 hourly inflows, initial and target water

volumes, upper and lower bound admitted on the water volumes. Thus, for
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all HUC instances, π ∈ R55, with continuous/discrete components. All the in-

stances have been randomly generated with an existing generator, which accu-

rately reproduces realistic settings. The code of the generator can be found at

https://people.unipi.it/dimitri_thomopulos/libraries/hig/

2. Configuration parameters. Our approach can help configure any subset of solver

parameters. However, in order to reduce the time spent in constructing the train-

ing set, we decided to consider a reasonably small subset of parameters that are

thought to have a definite impact on the problem at hand. We select 9 discrete

CPLEX parameters: fpheur, dive, probe, heuristicfreq, startalgorithm

and subalgorithm from mip.strategy; crossover from barrier; mircuts and

flowcovers, from mip.cuts. For each of them, we consider between 2 and 4

different values. We then combine them so as to obtain 2304 parameter configura-

tions. A configuration is encoded by a vector c ∈ {0, 1}23, where each categorical

parameter is represented by its incidence vector.

3. Performance measure. We use CPLEX’s integrality gap as pA(π, c), which in [91]

is defined as

int. gap =
|best integer sol.value− best relaxation value|

1e−10 + |best integer sol.value|
.

It has been shown that MIP solvers can be affected by performance variability

issues (see, e.g., [133]), owing to executing the solver on different computing plat-

forms, permuting rows/columns of a formulation, adding valid and redundant

constraints, effecting (apparently neutral) changes to the solution process, etc. In

order to overcome this issue, first we sample three different random seeds. Then,

for each couple (π, c), we carry out the following procedure: (i) we run CPLEX

(using its Python API) three times on π, using the different random seeds, for 60

seconds; (ii) we record the middle out of the three obtained performance values,

to be assigned to the pair (π, c). We call ϱ(π, c) the performance measure thus

obtained from the CPLEX output.

At this point, our dataset contains s = 250 × 2304 = 576k points, each with

dimension 55 + 23 + 1 = 79. We store this dataset as a matrix. Notably, we let

MS be the s× (m+q) matrix obtained by stacking the training inputs, so that: a)

for all i ≤ s, the i-th row displays the i-th input (πi, ci); b) for all j ≤ m+ q, the

j-th component of (πi, ci) appears on the j-th column. We refer to the columns

of MS as “attributes”.

We note that ϱ(π, c) usually contains some extremely large floating point values.

These values stand for “infinity” (denoted “∞” below), and appear whenever the

CPLEX gap has a value close to zero in the denominator, or CPLEX cannot find

https://people.unipi.it/dimitri_thomopulos/libraries/hig/
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feasible solutions or valid bounds within the allotted CPU time. Moreover, these

infinities may unduly bias the training process to learn p̄A. Instead of scaling

in the presence of these outliers, we deal with them as follows: we compute the

maximum ϱ̄ over all values of (the range of) ϱ(π, c) lower than a given threshold

(set to 1e+5 in our experiments), re-set all values of ϱ larger than the threshold

to ϱ̄+100, then re-scale ϱ so that it lies within the interval [0, 1]. In the following,

we call the resulting performance measure pml, to distinguish it from pA; so, p̄A is

actually an approximation of pml.

We remark that setting the time limit, imposed on all of CPLEX runs, to 60

seconds provides the solver enough time to move past the preliminary processing

and to begin working on closing the gap, even for very hard instances (i.e., the

ones with long pre-processing times). This allows us to measure the actual impact

that different parameter configurations have on the chosen performance measure.

See Sec. 2.9.1 for more details on the customary approach of MILP solvers to the

solution process.

4. Feature engineering. We process MS to craft new learning attributes, so as to

improve the approximation accuracy of our predictors. Notably, we process the

date in order to extract the season, the week-day, the year-day, two flags called

isHoliday and isWeekend, and we perform several sine/cosine encodings, that

are customarily used to treat cyclical attributes. Moreover, we craft new features

by computing statistics on the remaining 55 features. This task takes around 12

minutes to complete for the whole data set.

5. Splitting the dataset. Our Π′ is composed of 250 HUC instances. We randomly

divide them into 187 “in-sample” (IS) and 63 “out-of-sample” (OS), and split the

rows of MS accordingly (432k IS and 144k OS), into MSIS
and MSOS

. We use

the IS data to perform FS and to train the ML predictors. Then, we assess the

performance of the whole pipeline (from the construction of p̄A to the solution of

the CSSP) both on the OS instances — to test its generalization capabilities on

unseen inputs — and on the IS instances — to evaluate its performance on the

data that we learn from — as detailed below.

6. Feature selection for learning p̄A. We use Python’s Pandas DataFrame’s corr func-

tion to perform Pearson’s linear correlation and sklearn RandomForestRegressor’s

feature importances to perform DTs’ feature importance algorithm, in order

to get insights on which features contribute the most to yield accurate predic-

tions. A detailed explanation of the employed FS techniques falls outside of the

scope of this document, but the interested reader can refer to [79] for linear cor-

relation, and [81, Ch. 10.13,15.3] for feature importance, among many others. In
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order to perform FS, we use a dedicated subset of the IS dataset, composed of

approximately 10k points and only employed for this task. Performing the se-

lected FS techniques on this dataset takes around 8 minutes, and reduces π to 22

components. For the configuration vectors we consider three FS scenarios: aggFS,

where FS is applied more aggressively, gentleFS and noFS, yielding c vectors with,

respectively, q′ = 10, 14, 23 components. We then filter the K-EP dataset MSIS

according to the selected attributes. In particular, for each instance: a) we delete

all the rows of MSIS
where the components of the c-attributes eliminated by FS

are not set to their default value; b) since this creates duplicate rows, for each

subset of duplicate rows, we compute the average pA keeping only one row. We

call M ′
S′ the resulting dataset matrix. In all scenarios, we sample approximately

11k rows from M ′
S′ for the construction of p̄A in the K-EP.

5.5.3 Learning p̄A: experimental setup and results

We present experimental results with linear SVR (“SVR lin”), SVR with a Gaussian

kernel (“SVR rbf”) and DTs (“DT”). We assess the prediction error of the predictors

by NCV (see Sec. 3.5.3). Furthermore, our training includes a phase for determining

and saving the hyperparameters and the coefficients of the ML predictor’s functional

form. We use Python’s sklearn.model selection.RandomizedSearchCV for the inner

loop of the NCV and a customized implementation for the outer loop. Instead, we use

sklearn.svm.SVR, sklearn.svm.LinearSVR and sklearn.tree.DecisionTreeRegressor

to implement the ML predictors.

FS predictor maetr maete %maetr/te mean pml std pml time

agg

SVR lin 2.248E-01 2.261E-01 99.4 6.267E-01 3.489E-01 143.8

SVR rbf 3.636E-02 1.138E-01 32.0 6.268E-01 3.487E-01 17484.7

DT 3.980E-02 8.779E-02 45.3 6.267E-01 3.489E-01 7672.6

gentle

SVR lin 2.572E-01 2.568E-01 100.2 6.280E-01 3.763E-01 196.9

SVR rbf 7.740E-02 1.715E-01 45.1 6.272E-01 3.772E-01 14464.0

DT 8.331E-02 1.352E-01 61.6 6.275E-01 3.768E-01 5512.2

no

SVR lin 2.834E-01 2.831E-01 100.1 6.045E-01 3.975E-01 202.7

SVR rbf 1.137E-01 2.186E-01 52.0 6.031E-01 3.974E-01 15688.2

DT 1.261E-01 1.798E-01 70.1 6.035E-01 3.979E-01 4438.0

Table 5.1: Prediction error of p̄A, in terms of mae (measured on the training and on the

test set) and training time, for different FS scenarios

In Tab. 5.1, we report the average NCV training and test mae (“maetr”, “maetr”),

the ratio between maetr and maete (“%maetr/te”) and the seconds necessary for learning

p̄A (“time”), for different FS scenarios and the three predictors. We also report the

mean and standard deviation of pml, for assessing the magnitude of the prediction errors
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committed. We note that the training and test sets used to obtain the results in Tab. 5.1

all have the same number of rows.

The linear SVR exhibits the largest (i.e., worst) mae, both on the training set and

the test set and in every FS scenario, despite being the faster to train. The DT commits

the smallest maete, so it is the paradigm with the greatest potential for generalization.

The nonlinear SVR shows a slightly higher mae than the DT, but it also shows much

larger training times. Training a DT takes twenty to fifty times longer than fitting

a linear SVR, but only about a third of the time needed to learn a nonlinear SVR.

Moreover, the DT training times do not vary overmuch (indeed, they even improve)

going from agg FS to no FS. Thus, DTs provide an excellent option for producing very

accurate out-of-sample predictions in relatively short time, even when trained on sizable

datasets, with many attributes. “SVR lin” predictors are the least prone to overfitting:

their training error is always very close to their test error, i.e., “%maetr/te” is always

around 100%. On the other hand, the fact that “%maetr/te” for “SVR lin” is consistently

very low points to a high risk of overfitting for predictors of this type. All in all, from

the table we gather that the ability to avoid overfitting improves when more attributes

are considered: evidently, a more informative (although nonredundant) dataset allows

a superior generalization.

A common issue in data-driven optimization — where ML-derived predictors provide

approximations of the unknown components of an optimization problem — is that using

standard ML error metrics may not lead to good solutions of the optimization problem

itself [55, 74]. In fact, while ML is deployed to approximate single components of the

problem — i.e., its objective function and/or a subset of its constraints — the complex

structure of an optimization problem is determined by the logical interactions between

all of its components. However, ML predictions are natively incapable of factoring in

this structure: their predictions, although capable of achieving a low generalization error

(i.e., accurate by ML standards), may fail to identify the true global/local optima of

the optimization problem (i.e., be inaccurate by optimization standards). Recently, an

interesting work [59] addressed this problem, by devising a methodology based on NNs

(see Sec. 3.6.3), that incorporates a Lagrangian relaxation of the optimization problem

into the training loss function. However, this methodology is not deployable off-the-

shelf, as it needs an ad hoc implementation for the specific optimization problem at

hand.

In our PaO/PaI methodologies, the correspondence between the global optima of

p̄A and those of pA ensures that the solution of the CSSP can actually solve the ACP,

for the instance at hand. However, measuring this correspondence at training time is

nontrivial, as we said above. We try to overcome this difficulty by training our predictors

not only with a variety of more or less customary ML metrics (mean absolute error mae,

mean squared error mse, log-cosh error lce), but also with a custom metric cmaeδ. For
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all i ∈ S, we let pi = pml(πi, ci), p̄i = p̄A(πi, ci), and the prediction error be

ρi = pi − p̄i .

With the above notation, we have that

mae =
1

2
|ρi| , mse =

1

2
(ρi)

2 , lce = log
expρi +exp−ρi

2
.

For δ ∈ [0, 1], our custom metric is defined as:

cmaeδ =


ρi +

ρi
1+exp(ρi)

if pi ≤ δ and ρi < 0

ρi +
ρi

1+exp(−ρi)
if pi ≥ 1− δ and ρi > 0

ρi if δ ≤ pi ≤ 1− δ

0 otherwise .

(5.12)

Note that Eq. (5.12) requires pi to be scaled in [0, 1] to work. We want p̄A to accurately

predict the points around the global minimum/maximum of pA. Hence, the cmaeδ

penalizes prediction overestimates, while allowing any underestimates, at δ-minima (i.e.,

points such that pi ≤ δ), and viceversa at δ-maxima. Furthermore, it behaves exactly

like the mae at points s.t. δ ≤ pi ≤ 1− δ. In the tables below, we report results for the

PaO methodology, with Eq. (5.12) as the ML loss metric.

5.5.4 The CSSP: experimental setup and results

We use AMPL to formulate and solve the CSSP for the IS and OS instances. To solve

the CSSP corresponding to the nonlinear SVR paradigm, we run the nonlinear solver

Bonmin. Bonmin is manually configured with settings heuristic dive fractional

yes, algorithm B-Hyb, heuristic feasibility pump yes, and with a time limit of 60

seconds. Moreover, to solve the CSSP associated to the linear SVR and DT paradigms,

we run CPLEX, with its default parameter configuration.

Then, for each instance in Π′, we retrieve our CSSP solution c∗∗cssp. Since we have

enumerated all possible configurations, we can also compute the “true” CSSP global

optimum c∗, for sake of comparison.

In Tab. 5.2 and 5.3, we report the time taken to solve the CSSP (“time”), the

percentage of cases where c∗∗cssp = c∗, (“%glob.”) and, for all the instances where this is

not true, the distance between p̄A(c
∗∗
cssp) and p̄A(c

∗) (“CSSP gap”, averaged over all the

corresponding instances of the considered IS/OS set).

From Tab. 5.2, we gather that performing more aggressive FS techniques improves

both the nonlinear SVR solution quality — with higher “% glob” and lower “CSSP

gap” — and time. In fact, FS reduces the size of the CSSP, by eliminating variables

and related constraints, thus making it easier to optimize it. In general, the quality

of c∗∗cssp for “SVR rbf” is high (on average, 85% on IS instances and 90% on the OS
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ones), even when c∗∗cssp is only a local optimum. In fact, ”CSSP gap” is always lower

than 2.7E-02, i.e., a local optimum is never larger than 2.7% of the global optimum.

Further, Bonmin never needs more than 15 seconds to solve the CSSP, which is well

below the designated time limit of 60 seconds. The statistics reported in Tab. 5.2 also

show a clear dominance of the DT and the linear SVR paradigms over the nonlinear

SVR one. Their c∗∗cssp is always a global optimum (“%glob” is always 100%), and their

CSSP is always solved in less than one second. Moreover, the two tables above shows

that another advantage of solving CSSPs corresponding to DTs and linear SVR is that

its size (depending on the FS scenarios) does not affect “time”.

set FS
%glob CSSP gap time

SVR rbf DT SVR lin SVR rbf DT SVR lin SVR rbf DT SVR lin

IS

agg 86.01

100 100

2.673E-02

0 0

5.34 0.04 0.03

gentle 88.95 2.583E-02 9.39 0.04 0.03

no 82.00 2.116E-02 14.61 0.05 0.03

OS

agg 94.18

100 100

2.335E-02

0 0

5.16 0.05 0.03

gentle 92.06 1.984E-02 9.99 0.04 0.03

no 83.60 1.733E-02 13.06 0.04 0.03

Table 5.2: CSSP solution process performance, by instance set, FS scenario and predic-

tor

set loss
%glob CSSP gap time

SVR rbf DT SVR lin SVR rbf DT SVR lin SVR rbf DT SVR lin

IS

cmae.2 84.85

100 100

3.000E-02

0 0

11.41 0.05 0.03

cmae.3 85.92 2.439E-02 10.06 0.05 0.03

cmae.4 83.07 2.828E-02 10.34 0.05 0.03

lce 90.91 1.747E-02 6.48 0.05 0.03

mae 87.34 2.257E-02 10.91 0.04 0.03

mse 81.82 2.474E-02 9.50 0.04 0.03

OS

cmae.2 93.12

100 100

2.317E-02

0 0

10.68 0.04 0.03

cmae.3 88.36 2.154E-02 10.93 0.04 0.03

cmae.4 88.89 1.753E-02 10.08 0.05 0.03

lce 92.06 1.599E-02 6.25 0.04 0.03

mae 88.36 1.196E-02 10.75 0.04 0.03

mse 88.89 3.085E-02 7.74 0.05 0.03

Table 5.3: CSSP solution process performance, by instance set, K-EP loss metric and

predictor

Tab. 5.3 shows the effects of adopting different K-EP loss metrics on CSSP. In the

case of “SVR rbf”, adopting lce yields the fastest CSSP solutions, the best “%glob” and

“CSSP gap” results on IS instances, and very good results on OS instances, although

no metric shows a clear advantage on the OS set. In contrast, in the case of “DT” and
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“linear SVR”, the same observations as in Tab. 5.2 apply.

We remark that devising more efficient techniques to solve the CSSP (say, refor-

mulations, decomposition, etc.) might be necessary with some ML paradigms, if our

approach is scaled to considerably more algorithmic parameters.

5.5.5 CSSP solution completion

To construct our ML predictors, we consider different FS scenarios for the input compo-

nents of S; then, we study how they affect the CSSP solution quality. In the training set,

we use input tuples (π, c). In the CSSP, π is an input of the problem, while c encodes

its variables. Thus, FS techniques that reduce π do not change the structure of the

CSSP overmuch, while FS techniques operating on c alter the variables and constraints

of the CSSP. In particular, upon deployment of FS, the set of feasible configurations in

Eq. (5.1) becomes

C′
A = {c′ ∈ {0, 1}q′ | A′c′ ≤ β′} , q′ < q , (5.13)

so the CSSP solution reduces to q′ variables. This raises the question of how to determine

the q − q′ left-out configuration components from a partial CSSP solution.

Consider a single parameter ω, encoded by an incidence vector of qω binary com-

ponents summing to one. We let q′ω be the number of components picked by FS. If

qω = q′ω, then all qω variables encoding ω are decided by solving the CSSP. Instead, if

qω − q′ω = 1, The value to be assigned to the only left-out component is always decided

unambiguously. To see this, consider Tab. 5.4, representing a single parameter with

four components (on the columns) and four configurations (on the rows). Choose any

column as left-out, and then pick a row; the values on this row, excluding the one corre-

sponding to the left-out column, encode a CSSP solution. Since each row corresponds to

a unique configuration, the value of the left-out component to be determined is precisely

that of the selected row. However, if qω − q′ω > 1, deciding the values of the q′ω left-out

ω

ω0 ω1 ω2 ω3

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

Table 5.4: A parameter ω with qω = 4 and all of its possible configurations

components may not be straighforward. To see this, consider again Tab. 5.4 and pick

ω2 and ω3 as left-out: if the CSSP solution was, for instance, (ω0, ω1) = (0, 0) (on the



5.5. EXPERIMENTAL RESULTS 99

third and fourth rows), it would be unclear how to choose between (ω2, ω3) = (1, 0) or

(ω2, ω3) = (0, 1).

To address this issue, we have devised and implemented several heuristics, which

we execute once, after the K-EP. Their purpose of each heuristic is to create and store

a dictionary where all possible partial CSSP solutions (i.e., vectors c∗∗cssp} of size q′)

are completed, by matching them with a vector of q − q′ left-out configuration compo-

nents. How this matching is computed changes with each heuristic. Then, the saved

dictionaries can be quickly browsed, after solving the CSSP, to complete a solution.

Below we describe heuristic 1, heuristic 2, and their variants.

5.5.5.1 heuristic 1

Given the q′ FS-picked configurations components and the processed training matrix

M ′
S′ , separately for each parameter ω (with qω variables and qω − q′ω left-out compo-

nents), heuristic 1 performs the following steps:

1. it groups the rows of M ′
S′ by the qω variables;

2. for each group, it computes the mean or the minimum pA over the corresponding

rows of M ′
S′ . This produces a new column, that we call p′A;

3. for each possible combination of the FS-picked q′ω components, it deletes the rows

of the grouped matrix such that the q′ω component values are different than the

ones in that combination. Then, the row with minimum p′A is identified among

the remaining ones, and stored in the dictionary.

5.5.5.2 heuristic 2

Given the q′ FS-picked configurations components and the processed training matrix

M ′
S′ , heuristic 2 executes the following tasks:

1. it groups the rows of M ′
S′ by all of the q′ variables;

2. for each group, it retrieves the row in M ′
S′ with minimum pA. The q − q′ left-out

components of that row are saved in the dictionary.

5.5.5.3 Clustering variant

We also provide an option to embed clustering into the heuristics described above:

before the CSSP, the elements of M ′
S′ are clustered based on π; then, the heuristics are

run, separately for each cluster, on the rows of M ′
S′ belonging to that cluster.
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5.5.6 Assessing the performance of our recommender

In this section, we compare two CPLEX configurations: the CSSP solution c∗∗cssp and

CPLEX’s default one, ccpx, such that all parameters are set to “auto”. We observe that,

when we instruct CPLEX to use the “auto” mode, the solver automatically deploys

its internal heuristics to select ccpx according to the structure of the instance to be

solved. As CPLEX is a commercial solver, the details of this procedure are confidential,

but we can certainly consider ccpx a PI configuration. We use the two configurations

to configure CPLEX, that we deploy to optimize the IS and OS instances; we discuss

the corresponding solver performances in terms of pA and pml. To this end, we retrieve

pA(·, c∗∗cssp), pml(·, c∗∗cssp), pA(·, ccpx) and pml(·, ccpx) fromM ′
S , for every IS and OS instance.

Below, we report the percent total wins “%w” and the percent non-worsenings

“%w+d”, i.e., the percentage of instances such that pA(·, c∗∗cssp) < pA(·, ccpx) and pA(·, c∗∗cssp) ≤
p(·, ccpx), by the first sixteen decimal digits of pA, in scientific notation. Furthermore,

we compute the percent wins-over-nondraws “%w-d”, i.e., the wins over all instances

such that pA(·, c∗∗cssp) ̸= p(·, ccpx). We also compute, for each instance with a draw, the

relative gap between pA(·, c∗∗cssp) and the minimum pA, and then average it over the IS

and OS instances. Finally, we measure the time to optimality, for instances with a draw

(“time d”) and for the others (“time nond”). We compute the same metrics for pml

too. We will pay particular attention to the statistics calculated on instances OS: they

allow us to assess the generalization capabilities of our methodology, namely, its ability

to solve the ACP on data unseen during the K-EP.

set p FS
%w %w+d %w-d

SVR rbf DT SVR lin SVR rbf DT SVR lin SVR rbf DT SVR lin

IS

pA

agg 48.69 48.56 41.82 97.65 97.92 89.56 95.41 95.91 80.04

gentle 48.59 45.86 41.00 97.64 94.16 88.76 95.40 88.74 78.49

no 47.33 47.33 41.98 96.35 95.28 89.66 92.84 90.99 80.26

pml

agg 82.92 83.18 70.07 95.07 95.60 84.98 94.39 94.98 82.34

gentle 81.39 77.54 69.28 93.61 92.16 84.97 92.71 90.81 82.16

no 78.79 80.21 69.61 92.16 94.12 84.31 90.94 93.16 81.61

OS

pA

agg 33.99 34.61 33.60 77.29 83.51 86.33 60.06 67.95 71.10

gentle 35.49 36.07 33.64 83.60 88.62 86.42 68.60 76.35 71.33

no 35.98 39.42 32.80 85.45 93.65 84.13 71.31 86.33 67.53

pml

agg 56.92 60.67 64.33 73.63 77.91 79.81 68.34 73.35 76.11

gentle 60.32 63.27 64.29 76.46 80.03 80.11 71.89 75.85 76.37

no 61.38 75.93 62.43 76.98 91.27 78.31 72.86 89.68 74.19

Table 5.5: CSSP solution performance, compared to CPLEX’s default configuration, by

instance set and FS scenario

Tab. 5.5 shows that CSSP solutions do not generally benefit from the application of

aggressive FS techniques (i.e., when q′ is small). In fact, although the agg and gentle

scenarios report large “%w”, “%w+d” and “%w-d” on IS instances, no or gentle FS are
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better strategies on OS instances, for both nonlinear SVR and DTs. Only linear SVR

performs better when the q′ is small. The results of different FS techniques on IS and

OS instances reported in Tab. 5.5 confirm what we observed about Tab. 5.1: a) the

risk of overfitting is likely to increase with the use of more aggressive FS techniques,

and b) the linear SVR paradigm seems to be the least vulnerable to this risk (at least,

according to our experiments).

set gap d time d time nond

IS 1.146E-10 24.16 34.48

OS 0 30.89 46.39

Table 5.6: Instance hardness, by time to optimality and relative gap

The fact that, in Tab. 5.6, the values of the “time d” column are always smaller than

“time nond” reveal that draws occur on easier instances. Moreover, “gap d” values are

always very close or equal to zero: this means that whenever CPLEX, tasked with

solving those easier instances and configured by ccpx, manages to close the gap within

the allotted time limit, our c∗∗cssp is just as efficient. In these cases, there is little room

for improvement over the default CPLEX settings; the most that can be expected from

the CSSP configuration is to be able to match ccpx’s performance, which c∗∗cssp manages

to do. Further, looking at the “%w-d” column in Tab. 5.5, we see that on harder,

“nondraw” instances, we beat CPLEX at least 90% of the time on the IS instances, and

at least 60% of the time on OS instances.

We also remark that DTs clearly outperform the other paradigms, by their superior

scores in every computational setting, in particular on OS instances and when no FS is

executed.

Finally, Tab. 5.5 clearly shows that the best results are those corresponding to pml,

rather than pA. Since p̄A, optimized in the CSSP, is an approximation of pml and not

of pA, this is not surprising. It further highlights the strong connection between the

approximation of pA and the efficacy of recommender, which exploits the structure of

that approximation.

Tab. 5.7 displays the same metrics as Tab. 5.5, here aggregated by ML loss metric.

The rows corresponding to pml indicate that mse is the best choice for the DT paradigm,

and that cmae.2 should be selected for the linear SVR one. As for the nonlinear SVR,

mae allows the best results on OS instances, so it should be preferred over mse, that

is the best option on the IS ones. These observations also apply to the table entries

concerning pA and IS instances. Instead, when we consider the OS ones, the mae metric

dominates the others in most of the cases. In general, we can conclude that the choice of
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the K-EP loss metric has some impact on the quality of c∗∗cssp, but does not significantly

affect performance. Further, our custom metric often fails to provide a valid alternative

to the other customary ML loss metrics.

set p loss
%w %w+d %w-d

SVR rbf DT SVR lin SVR rbf DT SVR lin SVR rbf DT SVR lin

IS

pA

cmae.2 47.98 46.88 41.92 96.97 95.34 89.93 94.07 91.08 80.65

cmae.3 48.34 47.09 41.50 97.42 95.78 88.83 94.95 91.82 78.82

cmae.4 48.37 46.82 41.95 97.50 95.99 89.78 95.10 92.12 80.41

lce 47.86 48.07 41.33 96.76 96.61 88.83 93.68 93.46 78.75

mae 47.86 47.50 41.35 96.70 94.83 89.04 93.57 90.28 79.07

mse 48.81 47.12 41.53 97.92 96.17 89.54 95.93 92.50 79.88

pml

cmae.2 80.90 79.98 70.65 93.29 94.36 85.44 92.34 93.33 82.90

cmae.3 81.05 80.54 68.48 93.79 94.53 83.54 92.84 93.63 80.63

cmae.4 81.58 79.77 69.79 93.76 93.29 84.64 92.89 92.21 81.96

lce 80.10 81.40 69.01 93.02 94.39 84.34 91.97 93.54 81.49

mae 80.51 78.85 69.99 93.94 92.36 85.44 92.99 91.17 82.78

mse 82.06 81.34 69.99 93.88 94.83 85.12 93.06 94.02 82.46

OS

pA

cmae.2 34.66 34.30 34.13 79.81 85.71 86.60 63.35 71.11 71.83

cmae.3 32.80 38.18 32.54 80.69 88.89 83.95 63.35 78.10 67.16

cmae.4 35.71 37.04 32.80 81.31 87.30 84.13 65.96 75.32 67.50

lce 36.16 38.01 33.95 82.98 90.92 85.98 68.21 81.10 70.77

mae 36.16 36.07 33.16 85.10 87.65 87.30 71.45 74.59 72.44

mse 35.45 36.60 33.51 82.80 91.09 85.80 67.63 81.06 70.24

pml

cmae.2 59.26 65.17 65.26 76.01 84.39 80.34 71.22 80.29 76.84

cmae.3 56.79 64.90 62.26 74.78 81.39 78.48 69.22 77.57 74.28

cmae.4 58.11 64.02 62.43 72.66 78.84 78.22 68.01 75.14 74.14

lce 61.82 69.40 63.23 77.34 83.86 78.84 73.19 81.00 74.92

mae 62.35 66.14 64.20 79.28 83.69 80.25 75.04 80.21 76.47

mse 58.91 70.11 64.73 74.07 86.24 80.34 69.50 83.55 76.70

Table 5.7: CSSP solution performance, compared to CPLEX’s default configuration, by

instance set and ML loss metric

With Tab. 5.8, we can assess the impact of different heuristics for the comple-

tion of the CSSP solution (described in Sec. 5.5.5.1–5.5.5.3). We tested six heuristics:

heuristic 1, with mean and minimum, and heuristic 2, both with and without the

clustering option. Furthermore, we report results corresponding to the case where no

FS is carried out, hence no heuristics are executed (marked by rows whose header,

under the “heur” column, is “no”). Firstly, the table shows that, on IS instances, no

heuristic unequivocally dominates the others, but “clst-h1-mean” and “noclst-h2” yield

slight better performances. However, when solving OS instances, not executing any

FS procedure is almost always the best strategy, except for “SVR lin”, for which the

“noclst-h2” heuristic has a clear advantage over the others. The no FS scenario yields

the most impressive OS performances, when compared to the other scenarios.

Moreover, DTs prove again to be the most effective, especially in terms of “%w-

d” and for solving OS instances. All in all, they are faster to train, provide better
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generalization in the K-EP (see Tab. 5.1), and also achieve excellent results in the

CSSP, and even when tackling large configuration vectors.

set p heur
%w %w+d %w-d

SVR rbf DT SVR lin SVR rbf DT SVR lin SVR rbf DT SVR lin

IS

pA

clst-h1-mean 49.20 47.64 41.62 98.40 96.57 89.48 96.85 93.35 79.84

clst-h1-min 48.80 47.10 41.35 97.82 96.12 89.26 95.74 92.46 79.40

clst-h2 48.08 46.66 40.78 96.79 95.14 87.70 93.77 90.58 76.84

no 47.33 47.33 41.98 96.35 95.28 89.66 92.84 90.99 80.26

noclst-h1-mean 49.02 47.77 41.09 98.04 96.79 88.99 96.18 93.79 78.88

noclst-h1-min 48.80 47.10 41.35 97.82 96.12 89.26 95.74 92.46 79.40

noclst-h2 47.95 46.97 42.25 97.01 95.50 90.24 94.16 91.31 81.25

pml

clst-h1-mean 82.84 81.02 69.92 94.47 94.39 85.12 93.74 93.48 82.45

clst-h1-min 81.91 80.21 69.79 93.94 94.07 85.16 93.10 93.10 82.46

clst-h2 81.86 79.50 67.96 94.70 93.09 83.73 93.92 92.00 80.69

no 78.79 80.21 69.61 92.16 94.12 84.31 90.94 93.16 81.61

noclst-h1-mean 82.04 81.24 69.25 93.94 94.16 84.89 93.11 93.24 82.09

noclst-h1-min 81.91 80.21 69.79 93.94 94.07 85.16 93.10 93.10 82.46

noclst-h2 82.35 79.99 71.35 95.05 93.49 85.78 94.33 92.46 83.37

OS

pA

clst-h1-mean 35.85 35.45 33.33 81.08 86.90 87.04 65.67 73.23 72.06

clst-h1-min 35.05 34.92 33.33 81.88 85.58 85.98 66.20 71.23 70.42

clst-h2 32.94 34.79 33.60 77.38 84.79 85.85 59.69 70.12 70.49

no 35.98 39.42 32.80 85.45 93.65 84.13 71.31 86.33 67.53

noclst-h1-mean 35.05 35.45 33.33 81.61 87.17 85.98 65.89 73.78 70.42

noclst-h1-min 35.05 34.92 33.33 81.88 85.58 85.98 66.20 71.23 70.42

noclst-h2 34.52 36.51 34.79 78.84 86.38 87.43 62.33 73.33 73.51

pml

clst-h1-mean 59.79 62.30 64.81 74.74 78.97 80.82 70.24 74.68 77.17

clst-h1-min 59.79 62.96 63.89 76.85 80.29 79.89 72.06 76.09 76.06

clst-h2 54.76 59.26 62.43 71.16 76.06 77.78 65.45 71.14 73.75

no 61.38 75.93 62.43 76.98 91.27 78.31 72.86 89.68 74.19

noclst-h1-mean 60.05 64.15 64.68 77.12 81.35 80.69 72.38 77.40 77.01

noclst-h1-min 59.79 62.96 63.89 76.85 80.29 79.89 72.06 76.09 76.06

noclst-h2 57.54 60.19 66.14 73.54 76.85 80.69 68.52 72.20 77.39

Table 5.8: CSSP solution performance, compared to CPLEX’s default configuration, by instance set

and CSSP solution completion heuristic

In Tab. 5.9 and 5.10, we report the percentage of IS and OS instances such that

CPLEX, configured by c∗∗cssp and ccpx, manages to find a feasible solution (“%feas c∗∗cssp”

and “%feas ccpx”). Our results reveal that CPLEX’s default configuration emphasizes

feasibility, as it always ensures that the solver reaches a feasible solution within the

time limit (“%feas ccpx” is always 100%). Our c∗∗cssp achieves slightly worse performance,

and again proves to be more effective in solving IS instances than OS instances: on IS

instances, the average “%feas c∗∗cssp” is 98.02% for the nonlinear SVR, 96.81% for the DT

and 89.88% for the linear SVR; on OS instances, it is 90.26% for the nonlinear SVR,

91.78% for the DT and 86.08% for the linear SVR. From this we gather that DT-based

CSSPs solutions are most likely to help CPLEX find a feasible solution, when the solver

is used to optimize π̄.

In Tab. 5.9 and 5.10, we also examine the quality of the feasible solutions found by

using c∗∗cssp and ccpx. The columns “gapp c∗∗cssp”, “gapp ccpx”, “gapd c∗∗cssp” and “gapd ccpx”

report the primal and dual gaps achieved by CPLEX, configured by c∗∗cssp or ccpx, averaged

over the instances for which the solver manages to find a feasible solution. Firstly, we
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set FS loss
%feas c*

%feas ccpx

gapp c*
gapp ccpx

gapd c*
gapd ccpxSVR rbf DT SVR lin SVR rbf DT SVR lin SVR rbf DT SVR lin

IS

agg

cmae.2 98.04 98.75 90.11

100

7.850E-02 8.653E-02 4.971E-02

5.812E-01

5.179E-02 5.816E-02 6.259E-02

1.018E-01

cmae.3 97.86 98.84 89.93 7.669E-02 8.266E-02 6.571E-02 5.111E-02 6.225E-02 7.482E-02

cmae.4 97.59 98.66 90.20 9.267E-02 8.058E-02 4.897E-02 6.680E-02 5.408E-02 7.362E-02

lce 98.48 98.75 90.20 7.836E-02 7.956E-02 4.981E-02 5.345E-02 5.514E-02 7.979E-02

mae 97.59 98.31 90.20 7.747E-02 8.695E-02 4.987E-02 4.998E-02 6.486E-02 7.689E-02

mse 98.13 98.48 90.37 7.443E-02 8.140E-02 6.828E-02 5.621E-02 7.140E-02 7.771E-02

gentle

cmae.2 98.75 92.25 89.93 6.975E-02 8.910E-02 4.460E-02 3.792E-02 5.843E-02 5.512E-02

cmae.3 99.38 97.68 89.93 8.271E-02 1.202E-01 4.460E-02 4.245E-02 5.062E-02 5.603E-02

cmae.4 98.48 95.01 89.93 7.085E-02 1.021E-01 4.460E-02 5.015E-02 5.516E-02 5.602E-02

lce 97.50 97.68 87.17 1.068E-01 9.698E-02 2.004E-01 5.865E-02 5.211E-02 2.124E-01

mae 96.43 94.65 88.32 7.183E-02 8.870E-02 5.390E-02 4.159E-02 6.327E-02 5.990E-02

mse 99.55 96.43 89.93 8.930E-02 8.657E-02 4.460E-02 5.533E-02 5.438E-02 5.602E-02

no

cmae.2 96.79 98.40 91.44 1.504E-01 7.780E-02 4.385E-02 9.708E-02 4.720E-02 5.012E-02

cmae.3 95.72 97.33 89.30 1.193E-01 1.168E-01 6.076E-02 8.104E-02 5.751E-02 1.797E-01

cmae.4 98.40 95.72 90.37 1.143E-01 6.861E-02 1.147E-01 7.253E-02 4.577E-02 1.291E-01

lce 98.40 94.65 90.37 1.454E-01 5.558E-02 4.458E-02 1.061E-01 5.119E-02 5.432E-02

mae 98.93 94.12 90.37 1.058E-01 7.090E-02 4.458E-02 4.698E-02 5.064E-02 5.432E-02

mse 98.40 96.79 89.84 1.819E-01 8.987E-02 4.465E-02 1.679E-01 4.861E-02 5.845E-02

OS

agg

cmae.2 89.42 90.74 87.04

100

2.054E-01 1.204E-01 4.624E-02

4.633E-01

9.062E-02 6.757E+00 7.217E-02

8.121E-02

cmae.3 88.89 90.48 87.04 2.061E-01 1.408E-01 4.643E-02 9.395E-02 1.336E-01 6.550E-02

cmae.4 88.10 86.24 86.51 2.075E-01 1.023E-01 4.660E-02 9.874E-02 1.260E-01 8.740E-02

lce 89.42 88.62 87.04 1.765E-01 9.950E-02 5.123E-02 9.301E-02 1.319E-01 9.117E-02

mae 88.62 90.48 87.30 1.792E-01 1.125E-01 4.851E-02 7.733E-02 9.503E-02 8.443E-02

mse 89.42 89.68 86.51 1.744E-01 1.125E-01 4.609E-02 1.021E-01 8.426E-02 8.239E-02

gentle

cmae.2 89.68 82.01 85.71 1.471E-01 9.676E-02 4.932E-02 6.471E-02 1.192E-01 5.373E-02

cmae.3 87.83 92.06 85.71 1.261E-01 1.190E-01 4.932E-02 1.189E-01 5.017E-02 5.373E-02

cmae.4 91.01 89.68 85.71 1.541E-01 1.310E-01 4.932E-02 1.283E-01 9.173E-02 5.373E-02

lce 94.71 95.50 85.98 1.922E-01 1.125E-01 2.548E-02 9.251E-02 6.486E-02 4.776E-02

mae 92.86 89.95 89.68 1.486E-01 8.022E-02 4.966E-02 1.078E-01 6.013E-02 7.417E-02

mse 90.21 96.83 85.71 1.025E-01 8.736E-02 4.932E-02 7.853E-02 7.386E-02 5.400E-02

no

cmae.2 87.30 93.65 87.30 6.968E-02 3.875E-02 4.908E-02 7.931E-02 3.488E-02 5.275E-02

cmae.3 92.06 98.41 84.13 1.231E-01 9.757E-02 6.368E-02 8.500E-02 2.870E-02 2.843E-01

cmae.4 88.89 96.83 80.95 1.305E-01 9.445E-02 2.729E-02 9.687E-02 3.758E-02 3.943E-02

lce 90.48 93.65 85.71 6.714E-02 4.978E-02 4.973E-02 4.807E-02 5.009E-02 5.672E-02

mae 93.65 90.48 85.71 1.371E-01 9.420E-02 4.973E-02 6.611E-02 1.349E-01 5.672E-02

mse 92.06 96.83 85.71 1.454E-01 6.355E-02 4.998E-02 6.329E-02 4.899E-02 5.333E-02

Table 5.9: CSSP solution and CPLEX’s default configuration performances, in terms of

pA gap, by instance set and ML loss metric

see that the primal/dual gaps provided by our methodologies are almost always better

than those achieved by CPLEX’s default setting. In fact, c∗∗cssp yields gaps between 68%

and 92% smaller than those obtained by ccpx. The only scenario where our methodology

fails to beat CPLEX’s default configuration is when DTs are used in an aggressive FS

scenario, to solve OS instances, particularly when cmae.2 is the ML loss metric of choice.

This is evident by looking at Tab. 5.9. Moreover, since in Tab. 5.10 results are aggregated

over all ML loss metrics, the poor performance of cmae.2 also impacts the “OS”, “agg”,

“DT” rows of that table. Secondly, the “OS” entries of the two tables show that “SVR

lin” gives the smallest (i.e., best) primal gaps, and often the smallest (i.e., best) dual

gaps. This is unexpected, because linear SVR yields a PP CSSP. The DT paradigm

manages to attain smaller dual gaps, but only in the no FS scenario. Third, from

Tab. 5.9 and, especially, from Tab. 5.10, we conclude that, on OS instances, the no FS

scenario provides the best primal and dual gaps. We believe that since, in this scenario,

the CSSP solution does not need to be completed (heuristically), no further noise —

other than the noise that p̄A already carries with it — is injected into our pipeline. We

also see that no clear winner emerges among the heuristics implemented for completing

the CSSP solution, nor between the several ML loss metrics tested. Consequently,
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set FS heur
%feas c**

%feas ccpx

gapp c**
gapp ccpx

gapd c**
gapd ccpxSVR rbf DT SVR lin SVR rbf DT SVR lin SVR rbf DT SVR lin

IS

agg

clst-h1-mean 99.11 98.75 91.00

100

8.082E-02 8.141E-02 6.207E-02

5.812E-01

5.407E-02 5.601E-02 7.379E-02

1.018E-01

clst-h1-min 97.77 98.57 90.37 7.523E-02 8.354E-02 4.458E-02 4.691E-02 5.588E-02 5.432E-02

clst-h2 97.50 98.13 87.97 8.874E-02 8.997E-02 9.263E-02 7.436E-02 7.605E-02 1.544E-01

noclst-h1-mean 98.22 99.29 89.84 7.486E-02 7.935E-02 4.465E-02 4.648E-02 5.353E-02 5.845E-02

noclst-h1-min 97.77 98.57 90.37 7.512E-02 8.354E-02 4.458E-02 4.692E-02 5.588E-02 5.432E-02

noclst-h2 97.33 98.48 91.44 8.334E-02 7.988E-02 4.385E-02 6.060E-02 6.853E-02 5.012E-02

gentle

clst-h1-mean 98.66 95.90 89.22 8.001E-02 9.776E-02 7.191E-02 4.835E-02 5.381E-02 8.343E-02

clst-h1-min 98.66 95.72 89.13 8.208E-02 9.805E-02 7.210E-02 4.662E-02 5.392E-02 8.445E-02

clst-h2 97.77 95.37 88.59 8.050E-02 9.208E-02 7.232E-02 4.920E-02 5.909E-02 7.968E-02

noclst-h1-mean 98.66 95.72 89.13 8.208E-02 9.805E-02 7.210E-02 4.662E-02 5.392E-02 8.445E-02

noclst-h1-min 98.66 95.72 89.13 8.208E-02 9.805E-02 7.210E-02 4.662E-02 5.392E-02 8.445E-02

noclst-h2 97.68 95.28 90.02 8.452E-02 9.976E-02 7.212E-02 4.868E-02 5.930E-02 7.899E-02

no no 97.77 96.17 90.29 1.362E-01 7.993E-02 5.885E-02 9.526E-02 5.015E-02 8.766E-02

OS

agg

clst-h1-mean 91.01 90.48 87.83

100

1.898E-01 1.144E-01 4.060E-02

4.633E-01

9.815E-02 1.167E+00 7.573E-02

8.121E-02

clst-h1-min 88.89 88.89 85.71 1.767E-01 1.255E-01 4.973E-02 8.121E-02 1.192E+00 5.672E-02

clst-h2 87.04 88.10 89.15 2.142E-01 1.049E-01 4.598E-02 1.274E-01 1.342E+00 1.878E-01

noclst-h1-mean 89.42 90.21 85.71 1.853E-01 1.054E-01 4.998E-02 8.072E-02 1.155E+00 5.333E-02

noclst-h1-min 88.89 88.89 85.71 1.767E-01 1.255E-01 4.973E-02 8.121E-02 1.192E+00 5.672E-02

noclst-h2 88.62 89.68 87.30 2.064E-01 1.122E-01 4.908E-02 8.712E-02 1.281E+00 5.275E-02

gentle

clst-h1-mean 91.80 91.53 86.51 1.537E-01 9.730E-02 4.592E-02 9.910E-02 7.522E-02 5.636E-02

clst-h1-min 91.80 90.74 86.24 1.442E-01 1.026E-01 4.595E-02 9.686E-02 7.446E-02 5.625E-02

clst-h2 89.42 91.01 85.71 1.398E-01 1.145E-01 4.353E-02 1.020E-01 8.225E-02 5.710E-02

noclst-h1-mean 91.80 90.74 86.24 1.442E-01 1.026E-01 4.595E-02 9.686E-02 7.446E-02 5.625E-02

noclst-h1-min 91.80 90.74 86.24 1.442E-01 1.026E-01 4.595E-02 9.686E-02 7.446E-02 5.625E-02

noclst-h2 89.68 91.27 87.57 1.443E-01 1.072E-01 4.512E-02 9.907E-02 7.904E-02 5.492E-02

no no 90.74 94.97 84.92 1.122E-01 7.305E-02 4.825E-02 7.311E-02 5.586E-02 9.054E-02

Table 5.10: CSSP solution and CPLEX’s default configuration performances, in terms

of pA gap, by instance set and CSSP solution completion heuristic

when the approach is deployed on an instance π̄ ∈ Π and if the available computational

resources allow it, we reckon that it might be useful to try solving different versions of

the CSSP in parallel, to test different ML loss metrics, completion heuristics and even

FS scenarios.

5.6 Conclusions

The methodology presented in this chapter combines ML and MP techniques to solve

the ACP for optimization solvers. All in all, our computational results with CPLEX,

deployed to solve a hard MILP problem, show that the approach is very promising. In

fact, the configurations that it provides typically have better primal/dual gaps than

those achieved by the default, PI CPLEX configuration. In a small fraction of cases,

when the configuration produced by the CSSP is used to setup CPLEX, it does not allow

it to reach a feasible solution (Tab. 5.9 and 5.10). A possible fix to this issue would be

to use a performance measure pA promoting feasibility, instead of the integrality gap.

It is interesting to remark that using FS techniques is conducive to much easier CSSP

formulations, although this can sometimes affects the quality of the accompanying rec-

ommender. However, the most important choice when implementing our approach is

that of a ML paradigm for the K-EP: the tables of Sec. 5.5 show that some predictors

may scale more efficiently to diverse/larger configuration spaces than others, while pre-

serving high generalization capabilities. On our dataset, DTs generally outperformed

SVR in this regard. Overall, since choices taken at any point in the pipeline affect its
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final outcome (i.e., the repommended configuration c∗∗cssp), a number of details have to

be carefully considered for the approach to work.

In the future, we plan to extend the approach to other ML paradigms, starting with

NNs (due to their powerful approximation capabilities), kernel-based ones (due to the

possibility of designing and implementing ad hoc kernels for the application at hand)

and other tree-based designs (due to the fact that DTs were so efficient in our tests).

We will also try to combine several predictors.



Chapter 6

Tuning algorithms: an alternative

stance

6.1 Introduction

This chapter presents the PaI approach to the ACP; this chapter was published in

[94]. Like the PaO methodology (described in Ch. 5), this is an offline, PI, MP-driven

approach, parametrized by an ML paradigm. Its purpose is to select the best parameters

for configuring general algorithms, to solve specific instances. In the computational

experiments that we conducted, we chose an MP solver as the target algorithm, and

employed to optimize the instances of a hard MILP problem. As in the PaO case, the

PaI methodology involves two components: the construction of a model M and the

computation of the recommender in the CSSP. However, instead of constructing M as

an ML approximation of pA — as in the PaO approach — in the PaI variant we learn to

select a configuration providing a desired solver performance level. To this end, we use

the same training set as in the PaO one, but we treat the performance function as a part

of the training input (rather than the output), hence the name “PaI” (“performance as

input”).

At the end of this chapter, we discuss the computational results presented in [94],

with LR (see Sec. 3.6.1) as the ML paradigm of choice, and compare the derived PaI and

PaO CSSP implementations. We test them on CPLEX, deployed to solve instances of

the HUC problem (see Sec. 5.5.1). We remark that, in [94], we presented a first proof of

concept of the PaI approach, and the experiments we illustrate Sec. 6.5 of this chapter

are based on a much smaller training set than the one used for the experiments discussed

in Ch. 5. Thus, the results of the two chapters will not be compared. A more extensive

evaluation, say, based on the same statistics calculated for the PaO methodology in

Sec. 5.5, is left for future research.

107



108 CHAPTER 6. ACP: AN ALTERNATIVE STANCE

6.2 Motivation

We discuss the issue of automatically finding a good MP solver configuration for a

particular instance of a given problem, and we propose a two-phase approach to solve

it. In the first phase of our PaI approach, we use a supervised learning paradigm (see

Ch. 3 for an overview of supervised learning) in order to learn the relationships between

the features an instance π ∈ Π, a solver configuration c, and the performance pA of

the solver, configured by c, on π. Notably, we learn an approximation c̄ of the map

introduced in Eq. (4.14), that we report here for convenience:

c : Π× R −→ CA , c(π, r) 7→ c .

In c, c is any configuration allowing to obtain a required performance level r ∈ R for

the instance π. This is a different interpretation of the K-EP than the one used in

the PaO variant of our methodology, where we construct an approximation p̄A of the

performance function pA : Π× CA −→ R (see Sec. 5.3.1).

A specific difficulty of learning a good solver configuration is that parameter settings

may not all be independent; this requires enforcing (hard) constraints on the learning

outcome, to determine which configurations are admissible. We address this issue in

the second phase of our approach, the CSSP, where we use the learnt information c̄

to construct and solve an optimization problem having an explicit representation of

the dependency/consistency/compatibility constraints on the configuration parameter

settings. These constraints ensure feasibility of the produced configuration. The input

of the CSSP is an encoding of the learned map, as well as the encoding of the instance to

be solved. The objective function of the CSSP is the learned map: optimizing it over the

the constraints yields a good solver configuration for the given instance. Our approach

is therefore capable of handling configuration spaces having arbitrarily complex logical

conditions. This overcomes a weakness in previous learning-based approaches to the

ACP, as acknowledged e.g. by [87, 89]. To see how this weakness might adversely

impact a solver configuration methodology, consider the following naive approach: learn

the map c using a supervised learning method, then ask the trained method to output

c(π, 1) (1 being the best possible performance) for a new, unseen instance encoded by

π. Unfortunately, this approach would fail over most off-the-shelf supervised learning

methodologies, which are natively unable to reliably enforce constraints on the output

configuration. As discussed in Sec. 5.3.2, some attempts have been made to overcome

this issue in the ACP literature. Other approaches, used in learning-based optimization,

try to directly integrate a constrained optimization problem in a neural network, for

example embedding it into the gradient computations of the back-propagation pass

[60, 193] or into an individual layer [5], or by embedding a Lagrangian relaxation of the

problem into the loss training function of an NN. However, these approaches are not
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generalizable to any ML algorithm and/or MP; moreover, they have not been applied

to address the ACP.

6.3 The construction of M

The preliminary assumptions formulated in Sec. 5.3 about CA, Π and pA are also valid

in this chapter. The procedures adopted to obtain pml are the same as those described

in Sec. 5.5.2. However, here, the performance function approximated in the K-EP and

appearing in the training set is defined as 1 − pml, rather than just pml as in Ch. 5.

Therefore, the best performance is the highest 1−pml, and the CSSP is a maximization

problem, rather than a minimization one. We adopt this definition because we employ

LR as the K-EP paradigm of choice in our experiments: changing the approximated

performance function is the easiest way to adapt the CSSP formulation to inference

problem of the LR (presented in Sec. 3.6.1.2). We do this both for the PaO and PaI

variants, for a better comparison, although the performance function being part of

the input in the PaI case means the alternative definition of the performance is not a

requirement for the PaI CSSP.

The choice of LR for this work is motivated by the fact that: (a) the parameters

chosen for automatic configuration are all binary, and LR is a good method for esti-

mating binary values; (b) the performance function pml has range [0, 1]. In general, as

seen for the PaO setting, LR can be replaced by other ML paradigms. This changes the

technical details of the K-EP and the CSSP, but it does not change the overall approach.

6.3.1 The PaO variant

We want to produce an approximation p̄A of the performance function. The LR training

and inference problem are presented in Sec. 3.6.1; we interpret the symbols introduced

there using the entities defined in Sec. 5.5.2 (which addresses the construction of the

training set for the PaO methodology). Thus, the training set for learning p̄A is:

S =
{(

πi, ci, 1− pml(πi, ci)
)
| πi ∈ Rm, ci ∈ CA, pml ∈ [0, 1]

}
. (6.1)

Adopting the notation from Sec. 3.2 of Ch. 3, we have that the ML input set is X = Rm+q

(i.e., X is Π × CA) and the ML output set is Y = [0, 1]. This setting is represented in

the left part of Fig. 6.1.

6.3.2 The PaI variant

Here, we aim at constructing an approximation of the map c in Eq. (4.14). To this end,

we learn a function c̄(π, r), which, given an instance and a desired performance in [0, 1],

returns the a configuration capable of ensuring that performance. Here, we employ the
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same training set in Eq. (6.1), used in the PaO variant, but we have that the ML input

set is X = Rm × [0, 1] (i.e., X is Π × [0, 1]) and the ML output set is Y = Rq (i.e., Y
is CA). By the definition of Y in the PaI case, the LR requires multiple output vertices

x1

x2

x3

y1

x1

x2

x3

y1

y2

Figure 6.1: Standard (left) and multiple (right) logistic regressions.

(see Fig. 6.1, right), instead of a single one as in the PaO approach (see Fig. 6.1, left),

since q > 1 in general. This can simply be achieved by considering q standard LRs

sharing the same input vertex set.

The training problem of a multiple LR with k output vertices consists of k indepen-

dent training problems for standard LRs, as in Eq. (3.21).

In fact, a multiple LR on k outputs is equivalent to k standard LRs with training sets

S1 = (X ,Y1), . . . ,Sk = (X ,Yk) where Yh = (y1h, . . . , y
n
h) for all h ≤ k and t ≤ n. Note

that all these training sets share the same input vector set X . For each h ≤ k we define

Bernoulli random variables Yh. Then P(Yh = 1 | X = x) (for some x ∈ Rd and some

d > 0) is given by τ(x,wh, bh), where wh ∈ Rd and bh ∈ R, for all h ≤ k. The training

problem aims at maximizing the log-likelihood functions lnLSh(wh, bh) in Eq. (3.21) of

each output vertex h ≤ k, which yields the objective function max
∑

h≤k lnLSh(wh, bh).

Now we note that the optimum of
∑

h lnLSh(wh, bh) is achieved by optimizing each

term separately, since each term depends on separate decision variables.

It is rather hard to have the LR to produce a bona fide y ∈ {0, 1}q, although this

might be easily solved by rounding; what is much harder to obtain is that y ∈ CA, which
we impose via the CSSP constraints.

6.4 The recommender

In our computational experiments, we compare the performances of the PaI and PaO

variants of the CSSP. Clearly, the formulation of the CSSP depends on the output, p̄A

or c̄, of the K-EP.

6.4.1 The PaO variant

In this case, the most obvious version of the CSSP would be to just maximize the

expected performance over the set of feasible configurations, consistently with the dy-

namics of the trained LR discussed in Sec. 3.6.1. As remarked above, the CSSP can be
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formulated as a maximization problem because we scale pml into [1, 0] and use LR to

produce an approximation of 1− pml. This yields the following nonconvex MINLP:

CSSP(π̄) ≡ argmax
c∈CA

(1 + e−⟨w∗,(π̄,c)⟩+b∗)−1 . (6.2)

As already observed in Sec. 3.6.1, the objective function of Eq. (6.2) is log-concave,

which means that

CSSP(π̄) ≡ argmax
c∈CA

ln
1

1 + e−⟨w∗,(π̄,c)⟩+b∗
(6.3)

is a MINLP yielding the same optima as the formulation in Eq. (6.2) but is easier to

solve.

We also identified a different interpretation for the CSSP objective, namely that

of maximizing the likelihood that any new instance would be matched with a solver

configuration and a performance value “as closely as possible” to the associations be-

tween (π̄, c) and pA(π̄, c) established during training. In other words, we maximize the

likelihood given in Eq. (3.20) as a function of c and r, r being a specific performance

value. In order to have the CSSP pick out a high performance, we add a term +r to

the objective:

CSSP(π̄) ≡
arg max

c∈CA,r∈[0,1]

{
r ln

(
1

1 + e−⟨w∗,(π̄,c)⟩+b∗

)
+(1− r)

(
1− ln

(
1

1+e−⟨w∗,(π̄,c)⟩+b∗

))
+ r
}
.

(6.4)

Since the performance measure r is in [0, 1] (where 1 corresponds to maximum (excellent)

performance), Eq. (6.4) is compatible with LR.

Finally, we propose a third CSSP interpretation, where each alternative r and 1− r

is weighted by the corresponding conditional probability:

CSSP(π̄) ≡
arg max

c∈CA,r∈[0,1]

{
r

(
1

1 + e−⟨w∗,(π̄,c)⟩+b∗

)
+(1− r)

(
1−

(
1

1+e−⟨w∗,(π̄,c)⟩+b∗

))}
.

(6.5)

While Eq. (6.5) is nonconvex, it can still be heuristically solved efficently enough. This

formulation is the one yielding the best computational results.

6.4.2 The PaI variant

Here, we consider the multiple LR setting: we correlate a given tuple (π, r), that is,

(instance feature, performance), to a parameter configuration c yielding algorithmic

performance r. The most direct interpretation of the CSSP in this case is the nonconvex

MINLP

CSSP(π̄) ≡


arg max

c∈A, r∈[0,1]
r

∀j ≤ q cj =
1

1+e
−⟨(wj)∗,(π̄,r)⟩−b∗

j
,

(6.6)
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where (wj)∗ ∈ Rm+1 is the weight vector of the j-th configuration output. However,

this interpretation does not satisfy the feasibility requirements on the cj .

Proposition 6.4.1. (6.6) is infeasible, even if the constraint r ∈ [0, 1] is relaxed.

Proof. The constraint of the problem implies for all j ≤ q

1

1 + e−⟨(wj)∗,(π̄,r)⟩−b∗j
∈ {0, 1} .

However, for any given (wj)∗, b∗j and π̄, there is no value of r ∈ R which makes the LHS

either 0 or 1, hence the result.

Because of Prop. 6.4.1, here we consider the same interpretation of the CSSP (6.5),

presented in Sec. 6.4.1), i.e., the MINLP

CSSP(π̄) ≡
arg max

c∈CA, r∈[0,1]

∑
j≤s

[
cj

(
1

1+e
−⟨(wj)∗,(π̄,r)⟩−b∗

j

)
+ (1− cj)

(
1−

(
1

1+e
−⟨(wj)∗,(π̄,r)⟩−b∗

j

))]
,

(6.7)

which, through simple rearrangements, can be reformulated as

CSSP(π̄) ≡ arg max
c∈CA, r∈[0,1]

∑
j≤s

(
1−e

−⟨(wj)∗,(π̄,r)⟩−b∗j
)
cj−1

1+e
−⟨(wj)∗,(π̄,r)⟩−b∗

j
. (6.8)

6.5 Computational experiments

We compared the PaO and PaI approaches with LR, in the following general set-up:

• we consider 41 MILP instances of the HUC, illustrated in see Sec. 5.5.1;

• the MP solver of choice is CPLEX;

• the supervised ML methodology for building M is LR;

• the CSSP is a MINLP, that we heuristically solve — using Bonmin — to find good

parameter values for CPLEX deployed on 41 instances of the HUC problem.

All experiments were carried out on a single virtual core of a 1.4GHz Intel Core

i7 of a MacBook 2017 with 16GB RAM running under macOS Mojave 10.14.6. Our

implementations are based on Python 3.7, AMPL 20200430, and Bonmin 1.8.6. We

implemented LR as a Keras+TensorFlow [58, 136] NN (see Sec. 3.6.3 with sigmoid

activation and a stochastic gradient descent solver minimizing a loss function given by

binary cross-entropy (a simple reformulation of the log-likelihood function in Eq. (3.21)).
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6.5.1 The algorithmic framework

In this section we give a detailed description of the general algorithmic framework we

employ.

1. Instance encoding. A set of m = 55 features was extracted from each of the 41

problem instances. For more details, see point 1. of Sec. 5.5.2.

2. Configuration parameters. We considered a subset of 11 CPLEX parameters

(fpheur, rinsheur, dive, probe, heuristicfreq, startalgorithm, subalgorithm

from mip.strategy; crossover from barrier; and mircuts, flowcovers, pathcut

from mip.cuts, concerning LSHs, strategies at the root and children nodes of the

B&B, cutting planes), each with a varying number of discrete settings (between 2

and 4), which we combined so as to obtain 9216 configurations. We transformed

each of these settings into binary form, obtaining q = 27 binary parameters. These

parameters were chosen because, in our experience, they were reasonably likely to

have an impact on the problem we considered. Therefore, our dataset is composed

of 41× 9216 = 377856 points.

3. Separating in-sample and out-of-sample sets. We randomly choose 11 out of the

41 instances as OS (“out-of-sample”), and let the rest be the IS (“in-sample”) set.

The IS instances are meant for training purposes, while the OS ones are used to

assess the generalization capabilities of the approach.

4. We use the sklearn.cluster.KMeans k-means algorithm implementation to clus-

ter the dataset into 5 clusters. We form a training set with 75% of the vectors

from each cluster, a validation set with 20%, and a test set with the remaining

5%. By using clustering, we want to ensure that, even after the sampling, the

actual distribution of the instances is preserved in all sets.

5. We implement a LR using a keras.layers.Dense complete bipartite pair of in-

put/output layers (for p̄A, with m + q input vertices and 1 output vertex; for c̄,

withm+1 input vertices and q output vertices), with a sigmoid activation function

in the output vertices. We train the LR (by the appropriate training, validation

and test sets) using the keras stochastic gradient descent optimizer optimizing

the binary cross-entropy loss function, which corresponds to minimizing the neg-

ative of Eq. (3.21). Then, for further use in the different CSSP formulations, we

save:

• (w∗, b∗), with w ∈ Rm+q and b ∈ R, for K-EP-PaO;

• ( (wj)∗, b∗j ), ∀j ≤ q, with wj ∈ Rm+1 and bj ∈ R, for K-EP-PaI.

6. For each OS instance (feature vector) π̄, we perform the following actions:
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(a) we establish a link from Python to AMPL via amplpy;

(b) we solve the CSSP corresponding to π̄ with Bonmin, and retrieve the optimal

configuration c∗∗cssp;

(c) we retrieve the stored performances pA(π̄, c
∗∗
cssp) and pA(π̄, ccpx), where ccpx

is the default CPLEX configuration;

(d) if pA(π̄, c
∗∗
cssp) > pA(π̄, ccpx) we count an improvement;

(e) if pA(π̄, c
∗∗
cssp) ≥ pA(π̄, ccpx)− 0.001 we count a non-worsening;

(f) we record the performance difference |pA(π̄, c∗∗cssp)− pA(π̄, ccpx)|.

7. We count the number of improvements and non-worsenings over the number of

successful Bonmin runs on the CSSP instances; sometimes Bonmin fails on account

of the underlying NLP solver, which is why some lines of Table 6.1 consider a total

of less than 11 instances.

8. We repeat this process 10 times, from Step 3, and report cumulative statistics of

improvements im, non-worsenings nw, performance differences pd, and CPU times

6.5.2 Results

We first conducted experiments on the simple PaO interpretation in Eq. (6.3) of the

CSSP. However, this gave very poor results in practice. The formulation in Eq. (6.4),

instead, gave better computational results than those obtained optimizing Eq. (6.3),

although each CSSP instance took considerably more time to solve with respect to the

formulations in Eq.(6.3) and (6.5). The PaO formulation in Eq. (6.5) is the one which

gave the best results, and is therefore the only one considered in Tab. 6.1. As for the

PaI variant, Tab. 6.1 shows the results of formulation in Eq. (6.8). The table shows

im, nw, pd and CPU times. We also report cumulative statistics (sum, mean, standard

deviation) for the 10 runs of the algorithmic framework in Sect. 6.5.1 for the PaO and

PaI variants. We remark that the “by-run” comparison is only meant for presentation,

as the out-of-sample instances involved in each run of PaO and PaI differ.

The results show that the PaO and PaI variants are comparable. PaO improves

more, but also worsens more. PaI improves slightly less, but it has three considerable

advantages w.r.t. PaO: (i) it does not worsen results more than 60% of the times, which

means it can be recommended for usage w.r.t. the default CPLEX configuration; (ii)

it is more reliable in terms of standard deviation of improvements and non-worsening;

(iii) it is faster.
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im nw pd CPU

run PaO PaI PaO PaI PaO PaI PaO PaI

1 0/08 5/09 0/08 7/09 0.63 0.30 41.44 30.55

2 0/11 4/11 0/11 6/11 0.42 0.47 41.62 29.28

3 4/09 4/10 5/09 8/10 0.08 0.14 43.06 33.37

4 0/09 5/10 0/09 8/10 0.43 0.12 42.65 35.28

5 3/10 1/10 7/10 2/10 0.08 0.70 43.30 31.69

6 8/09 3/11 8/09 9/11 0.20 0.18 43.69 28.98

7 5/10 1/11 8/10 4/11 0.05 0.52 45.54 30.05

8 7/08 3/09 7/08 8/09 0.21 0.02 45.49 31.28

9 0/09 0/10 0/09 0/10 0.40 0.88 43.83 31.88

10 8/10 5/08 8/10 7/08 0.21 0.10 43.50 33.88

sum 35/93 34/99 43/93 59/99 2.69 3.40 434.12 316.24

mean 0.38 0.32 0.46 0.60 0.26 0.34 43.41 31.62

stdev 0.36 0.20 0.39 0.30 0.18 0.27 1.30 1.94

Table 6.1: Computational results. Best results are marked in boldface.

6.6 Conclusions

We presented a general two-phase framework for learning good MP solver configura-

tions, subject to logical constraints, using a function estimated from data. We proposed

two significantly different variants of the methodology, named Pao and PaI. We tested

both of them using LR as the ML paradigm of choice in the K-EP, but using different

configurations for the inputs and outputs of the LR. Moreover, we conducted computa-

tional experiments to trial our approaches to efficiently solve a problem arising in the

scheduling of hydro-electric generators. Both variants showed promise, although the PaI

one appeared to be preferable for several reasons. We remark that these encouraging

results were obtained with a relatively small number of instances.

In the future, we will conduct more extensive experiments, to fully assess the po-

tential of the PaI methodology and compare it to the PaO variant. Moreover, in future

works, we are going to investigate our framework using different ML predictors, in the

same way we did for the PaO approach.
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Part III

Graph embedding and Distance

Geometry
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Chapter 7

Cycle-based formulations in

Distance Geometry

7.1 Introduction

The DGP asks to find a realization of a given simple, edge-weighted graph in a Euclidean

space of given dimension K. Its goal is to reconstruct the position of the graph vertices

from the (known) edge weights, such that: a) each edge is realized as a straight segment

of length equal (or as close as possible) to the edge weights, and b) the distance between

the corresponding incident vertices is as close as possible to the corresponding edge

weight. Formally:

Distance Geometry Problem (DGP). Given a positive integer K and a simple

undirected graph G = (V,E) with an edge weight function d : E → R≥0,

establish whether there exists a realization of the vertices, i.e., a function

x : V → RK such that Eq. (7.1) below is satisfied:

∀{i, j} ∈ E ∥x(i)− x(j)∥ = d({i, j}) , (7.1)

where x(i) ∈ RK for each i ∈ V and d({i, j}) is the weight on edge {i, j} ∈ E.

In this chapter, we will write x(i) as xi and d({i, j}) as duv, for brevity. Although

the DGP is given above in the canonical decision form of Eq. (7.1), we consider the

corresponding search problem, where one has to actually find the realization x. The

DGP is also known as the graph realization problem in geometric rigidity [108, 18, 178].

It belongs to a more general class of metric completion and embedding problems [34,

83, 169].

The problem is often modelled as an MP formulation, involving decision variables

which determine the position of the vertices in the given Euclidean space. Solution

algorithms are generally constructed using local or global nonlinear optimization tech-

niques.

119
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Our contribution is a new modelling technique for the DGP where, instead of de-

ciding vertex positions, formulations decide the length of the segments representing the

edges in each cycle in the graph, projected in every dimension. We propose a novel,

exact (MP) formulation for the DGP, and a relaxation based on a Eulerian cycle. We

observe that, although diverse methodologies exist for solving the DGP, MP-based ones

generally allow robust solutions. We compare computational results from protein con-

formation instances, obtained with stochastic global optimization techniques on the new

cycle-based formulation and on the existing edge-based formulation. While edge-based

formulations take less time to reach termination, cycle-based formulations are generally

better on solution quality measures. An abridged version of this chapter was published

in [120]; a longer and updated version has been submitted to a journal.

7.2 Placing the DGP in the thesis

In general, the DGP is an inverse problem which occurs every time one can measure

some of the pairwise distances in a set of entities, and needs to establish their position.

Further, it is motivated by many scientific and technological applications. The clock

synchronization problem, for example, aims at establishing the absolute time of a set of

clocks when only the time difference between subsets of clocks can be exchanged [175].

The sensor network localization problem aims at finding the positions of moving wireless

sensor on a 2D manifold given an estimation of some of the pairwise Euclidean distances

[178, 95, 51]. The Molecular DGP (MDGP) aims at finding the positions of atoms

in a protein, given some of the pairwise Euclidean distances [110, 112, 127, 122, 1, 139].

The position of autonomous underwater vehicles cannot be determined via GPS (since

the GPS signal does not reach under water), but must rely on distances estimated using

sonars: a DGP can then be solved in order to localize the fleet [12].

However, as far as this thesis is concerned, one of the most relevant applications of

the DGP is in ML.

Most popular ML methods are limited to the use of “flat” data, typically encoded

by vectors. However, in more complex domains, a vectorial representation may not

be able to capture the richness of the underlying data. In these cases, one might

resort to labelled graphs. Given a data input, graphs can represent both its single

components/features — encoding them by vertices — and the relationships between

them — encoding them by edges/arcs. This has been done, for instance, in [70], where

instances of an optimization problem are first represented by a graph and then used to

train a ML predictor. In that work, graph vertices are used to encode the constraint

coefficients of the instance, or the variables involved in those constraints; then, the

graph-structured data is used as training input for a graph neural network. Instead, in

[114], the authors describe a framework for describing, storing and manipulating MP
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formulations, providing guidelines to represent the expressions stating constraints and

objective functions by a graph.

Some DL paradigms are capable of processing graph-structured inputs. Given an

input graph G, their goal is to learn a function h(G) = (N ◦Φ)(G), called transduction:

given an integer K > 0, a trasduction is the composition of a map Φ, computing a

realization of G in a space X ⊆ RK , and an NN, i.e., a function N : X −→ Y, where

Y ⊆ Rt, and X ,Y are the learning input and output sets, with the notation adopted

in Sec. 3.2. In particular, the topology of N is derived from (or is the same as) that

of G, although the real-valued vectors encoding the information at the vertices may

be different. See [11] for a survey on the topic, and [168, 141] for a presentation of

several DL paradigms for dealing with graph inputs. We have seen that the instances

of several problems can be represented by a graph, and solving the DGP amounts to

finding a graph embedding. Therefore, one of the motivations for our investigation of

the DGP is that it can be instrumental in deploying vector-based ML paradigms on

graphs. In fact, solving the DGP (say, by the novel MP formulations that we describe

in this chapter) can be seen as an alternative to computing a transduction and, notably,

it should provide an efficient way of calculating Φ, compared to computationally heavier

alternatives.

Another motivation lies in the fact that, since K is an input of a DGP instance, dis-

tance geometry techniques can be used to perform dimensionality reduction (discussed

in Sec. 3.5.4 of this thesis) on graph-structured data, by using a small enough K. The

realization found by solving the DGP can then be used as at training set input for

a vector-based ML paradigm. See [119] for a survey on the issue of mapping graphs

to vectors, and its relation with MP and ML (in particular, dimensionality reduction

techniques). Moreover, see [117] for an application of the DGP to a vector-based ML

paradigm for natural language processing.

Although the applications of the DGP in ML are of considerable interest in relation

to this thesis, there was not enough time during my PhD to conduct computational

experiments in this direction. The idea of applying DGP formulations to the processing

of training data for an ML predictor, and the execution of test to assess the effectiveness

of this strategy against more mainstream methods, is left for future research.

7.3 Generalities

In its most general form, the DGP might be parametrized over any norm [46]. In

practice, the ℓ2 norm is the most usual choice [127], and will also be employed in this

paper. The DGP with the ℓ2 norm is sometimes called the Euclidean DGP (EDGP).

For the EDGP, Eq. (7.1) is often reformulated to:

∀{i, j} ∈ E ∥xi − xj∥22 = d2ij , (7.2)
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which is a system of quadratic polynomial equations with no linear terms [122, §2.4].

The DGP is weakly NP-hard even when restricted to simple cycle graphs (by re-

duction from Partition) and strongly NP-hard even when restricted to integer edge

weights in {1, 2} in general graphs (by reduction from 3sat) [167]. It is in NP if K = 1

but not known to be in NP if K > 1 for general graphs [16], which is an interesting

open question [123].

There are many approaches to solving the DGP. Generally speaking, application-

specific solution algorithms exploit some of the graph structure, whenever it is induced

by the application. For example, a condition often asked when reconstructing the po-

sitions of sensor networks is that the realization should be unique (as one would not

know how to choose between multiple realizations), a condition called global rigidity

[41]. This condition can, at least generically, be ensured by a specific graph rigidity

structure of the unweighted input graph. For protein structures, on the other hand,

which are found in nature in several isomers, one is sometimes interested in finding all

(incongruent) realizations of the given protein graph [111, 145, 124]. Since such graphs

are rigid, one can devise an algorithm (called Branch-and-Prune) which, following a

given vertex order, branches on reflections of the position of the next vertex, which is

computed using trilateration [125, 122]. In absence of any information on the graph

structure, however, one can resort to Mathematical Programming (MP) formulations

and corresponding solvers [128, 37, 50].

The MP formulation which is most often used reformulates Eq. (7.2) to the mini-

mization of the sum of squared error terms:

min
x

∑
{i,j}∈E

(∥xi − xj∥22 − d2ij)
2 . (7.3)

This formulation describes an unconstrained polynomial minimization problem. The

polynomial in question has degree 4, is always nonnegative, and generally nonconvex

and multimodal. The decision variables are represented by a n×K rectangular matrix

x such that xik is the k-th component of the vector xi, which gives the position in

RK of vertex i ∈ V . Each solution x∗ ∈ RnK having global minimum value equal to

zero is a realization of the given graph. Solutions with small objective function value

represent approximate solutions. Because of the nonconvexity of the formulation and

the hardness of the problem, Eq. (7.3) is not usually solved to guaranteed ε-optimality

(e.g. using a sB&B approach [151]); rather, heuristic approaches, such as MS [121, 109],

VNS [126], or relaxation-based heuristics [50, 130] may be used.

As far as we know, all existing MP formulations for the EDGP are based on the

incidence of edges and vertices. In this paper we discuss a new MP formulation for

the EDGP based on the incidence of cycles and edges instead, a relaxation based on

Eulerian cycles, and a computational comparison with Eq. (7.3).
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7.4 Some existing MP formulations

In this short section we give a minimal list of typical variants of Eq. (7.3) in order to

motivate the claim that the cycle-based formulation of the DGP discussed in this paper

is new. Of course, only a complete enumeration of DGP formulations in the literature

could substantiate this claim. But even this short list shows that the typical modelling

approach for the DGP is direct: namely, decision variables encode the realization of

each vertex as a vector in RK . Many more formulations of the DGP and its variants,

all corresponding to this criterion, are given in [109, 128, 37].

The closest variant of Eq. (7.3) simply adds a constraint ensuring that the centroid

of all of the points in the realization is at the origin. This removes the degrees of freedom

given by translations:

min
x

∑
{i,j}∈E

(∥xi − xj∥22 − d2ij)
2

∀k ≤ K
∑
i∈V

xik = 0 .
(7.4)

This formulation describes a linearly constrained polynomial minimization problem.

Like Eq. (7.3), the polynomial in Eq. (7.4) has degree 4, is always nonnegative, and is

generally nonconvex and multimodal.

Another small variant of Eq. (7.4) is achieved by adding range bounds to the

the realization variables x; generally valid (but slack) bound values can be set to

±1
2

∑
{u,v}∈E duv. This corresponds to the worst case of a single path being arranged in

a straight line with unknown orientation.

Another possible formulation, derived again from Eq. (7.3), is obtained by replacing

the squared error with absolute value errors (whose positive and negative parts are

encoded by s+, s−). This yields the following formulation:

min
s,x

∑
{i,j}∈E

(s+ij + s−ij)

∀{i, j} ∈ E ∥xi − xj∥22 = d2ij + s+ij − s−ij

∀{i, j} ∈ E s+ij , s
−
ij ≥ 0 .

(7.5)

Note that, again, each solution s∗, x∗ with zero optimal objective value makes x∗ an

encoding of a realization of the given graph. Thus, global optima are preserved by this

reformulation, while local optimal may differ.

Yet another reformulation derived from replacing squared errors with absolute values

consists in observing that the “plus” and “minus” parts of each absolute value term

correspond to a convex and concave function. This yields a formulation called push-

and-pull, since the objective pulls adjacent vertices apart, while the constraint push

them back together:

max
x

∑
{i,j}∈E

∥xi − xj∥22

∀{i, j} ∈ E ∥xi − xj∥22 ≤ d2ij .
(7.6)
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Eq. (7.6) is a quadratically constrained QP with concave objective and convex con-

straints. It was used within a Multiplicative Weights Update algorithm for the DGP

in [37, 140], as well as a basis for Semidefinite Programming and Diagonally Dominant

Programming relaxations [50, 130]. It can be shown that all constraints are active at

global optima, which therefore correspond to realizations of the given graph [140].

7.5 A new formulation based on cycles

In this section we propose a new formulation for the EDGP, based on the fact that the

quantities xik−xjk sum up to zero over all edges of any cycle in the given graph for each

dimensional index k ≤ K. This idea was used in [167] for proving weak NP-hardness

of the DGP on cycle graphs. For a subgraph H of a graph G = (V,E), we use V (H)

and E(H) to denote vertex and edge set of H explicitly; given a set F of edges we use

V (F ) to denote the set of incident vertices. Let m = |E| and n = |V |. For a mapping

x : V → RK we denote by x[U ] the restriction of x to a subset U ⊆ V .

Lemma 7.5.1. Given an integer K > 0, a simple undirected weighted graph G =

(V,E, d) and a mapping x : V → RK , then for each cycle C in G, each orientation of

the edges in C given by a closed trail W (C) in the cycle, and each k ≤ K we have∑
(i,j)∈W (C)

(xik − xjk) = 0 . (7.7)

Proof. We renumber the vertices in V (C) to 1, 2, . . . , γ = |V (C)| following the walk

order in W (C). Then Eq. (7.7) can be explicitly written as

(x1k − x2k) + (x2k − x3k) + · · ·+ (xγk − x1k) =

= x1k − (x2k − x2k)− · · · − (xγk − xγk)− x1k = 0 ,

as claimed.

We introduce new decision variables yijk replacing the terms xik − xjk for each

{i, j} ∈ E and k ≤ K. Eq. (7.2) then becomes:

∀{i, j} ∈ E
∑
k≤K

y2ijk = d2ij . (7.8)

We remark that for the DGP with other norms this constraint changes. For the ℓ1 or

ℓ∞ norms, for example, we would have:

∀{i, j} ∈ E
∑
k≤K

|yijk| = dij or max
k≤K

|yijk| = dij . (7.9)

Next, we adjoin the constraints on cycles

∀k ≤ K,C ⊂ G

(
C is a cycle ⇒

∑
{i,j}∈E(C)

yijk = 0

)
. (7.10)
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We also note that the feasible value of a yijk variable is the (oriented) length of the

segment representing the edge {i, j} projected on the k-th coordinate. We can therefore

infer bounds for y as follows:

∀k ≤ K, {i, j} ∈ E − dij ≤ yijk ≤ dij . (7.11)

Although Eq. (7.11) are not necessary to solve the cycle formulation, they may improve

performance of sB&B algorithms [184, 151] as well as of various “matheuristics” [129],

as well as allow an exact linearization of variable products, should a y variable occur in

a product with a binary variable in some DGP variant.

We now state our main result, i.e. that Eq. (7.8) and (7.10) are a valid MP formu-

lation for the EDGP.

Theorem 7.5.2. There exists a vector y∗ ∈ RKm which satisfies Eq. (7.8) and (7.10),

parametrized on K,G, if and only if (K,G) is a YES instance of the EDGP.

The proof argues by recursion on a graph decomposition of G that a certain linear

system related to the cycles of G (see Eq. (7.12) below) has a solution if and only if

the given DGP instance is YES. We shall construct the proof by steps. The first step

defines the graph decomposition.

Given a graph G = (V,E) and a subset U ⊂ V , the subgraph G[U ] induced by

U is the graph (U, {{u, v} ∈ E | u, v ∈ U}). With a slight abuse of notation we

denote the vertices of a graph G′ by V (G′) and its edges by E(G′). We let γ(G) be

the number of connected components of G. A vertex v of G with the property that

γ(G[V ∖ {v}]) > γ(G) is called a cut vertex. A graph G is biconnected if there is a

simple cycle in G incident to any pair of distinct vertices of G.

Lemma 7.5.3. G = (V,E) is biconnected if and only if it is connected and has no cut

vertices.

Proof. Suppose G is biconnected with a cut vertex v: then the removal of v from G

yields two separate connected components G1, G2. Let u1 ∈ V (G1) and u2 ∈ V (G2).

Since u1, u2 ∈ V and G is biconnected, there is a simple cycle in G incident to u1, u2,

consisting of two vertex-disjoint simple paths p1 and p2 from u1 to u2. Since the removal

of v can break at most one of these paths (by vertex disjointness), the other path shows

thatG1, G2 are not disconnected, against the assumption. SoG cannot have cut vertices.

Conversely, if G is connected and has a cut vertex v, then any pair of paths from u1

to u2 must necessarily pass through v, which means that they are not vertex disjoint,

which implies that there is no cycle between u1 and u2 in G, which in turn implies that

G is not biconnected.

We now define a graph decomposition based on removal of a single cut vertex.
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Definition 7.5.4. A 1-decomposition of a graph G = (V,E) is a set of subgraphs

G1, . . . , Gr (where r ∈ N with r ≥ 1) of G such that:

(a) Gi is either biconnected or a tree for all i ≤ r;

(b)
⋃

i≤r E(Gi) = E;

(c) for any i < j ≤ r the intersection V (Gi) ∩ V (Gj) either has zero cardinality or it

consists of a single cut vertex of G.

A 1-decomposition of G is nontrivial if r > 1. A graph G is 1-decomposable if it has a

nontrivial 1-decomposition.

Lemma 7.5.5. A connected graph G = (V,E) is 1-decomposable if and only if it has a

cut vertex.

Proof. Suppose C = {C1, . . . , Ct} is a nontrivial 1-decomposition of G. By Def. 7.5.4

and since G is connected, it follows that G must have at least one cut vertex and as

many as |C|− 1. Conversely, supposing that G has a cut vertex would yield a nontrivial

1-decomposition by Def. 7.5.4, i.e. G is 1-decomposable.

Corollary 7.5.6. No simple graph consisting of a single cycle is 1-decomposable.

Proof. Since a cycle is biconnected, by Lemma 7.5.3 it cannot have a cut vertex, hence

its only possible 1-decomposition is trivial.

Corollary 7.5.7. Let G be 1-decomposable, with decomposition G = {G1, . . . , Gr}, and
C be a cycle in G. Then there is an index i ≤ r s.t. C is a subgraph of Gi.

Proof. Consider there were two subgraphs Gi, Gj in G both incident to the edges of C.

Then there is a nontrivial path p in C, with at least two edges, joining a vertex u in Gi

to a vertex v in Gj . Therefore there must be a cut vertex of G on p, which implies that

there is a cut vertex in C, which is impossible by Cor. 7.5.6.

Corollary 7.5.8. No biconnected graph G is 1-decomposable.

Proof. By Lemma 7.5.3, if G is biconnected it cannot have a cut vertex, therefore any

1-decomposition must necessarily be trivial.

Proposition 7.5.9. Any simple graph G = (V,E) has a 1-decomposition consisting of

biconnected subgraphs and tree subgraphs.

Proof. We prove this result by induction on the number β of biconnected subgraphs in

a 1-decomposition C = {G1, . . . , Gr} of G for some r ∈ N. We first deal with the base

case, where β = 0. We claim that G must be a tree: supposing G has a cycle G′, by

Cor. 7.5.6 and part ((c)) of Def. 7.5.4, G′ must be one of the G1, . . . , Gr. But then β = 1
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against the assumption. Therefore, the trivial 1-decomposition C = {G} is a valid 1-

decomposition of G. We now tackle the induction step. Consider the largest biconnected

subgraph B of G: then G̃ = G[V ∖ V (B)] has one fewer biconnected components than

G, so, by induction, G̃ has a 1-decomposition D′ = {G′
1, . . . , G

′
t−1} for some t ∈ N

with t > 1. We prove that D = D′ ∪ {B} is a valid 1-decomposition of G. Condition

((a)) is verified since D′ is a valid 1-decomposition by induction, and B is biconnected;

condition ((b)) is verified since the union of the graph in D is G by construction; for

condition ((c)), suppose there is i < t s.t. |V (Gi)∩V (B)| ≥ 2: this means there are two

distinct vertices u, v in both V (Gi) and V (B). Since Gi is connected, there must be a

path p from u to v in Gi, hence G[B ∪ V (p)] is a biconnected graph larger than B. But

B was assumed to be largest, so this is not possible, and ((c)) holds, which concludes

the proof.

The second step proves the easier (⇐) direction of Thm. 7.5.2.

Proposition 7.5.10. For any YES instance (K,G) of the EDGP there is a vector

y∗ ∈ RKm which satisfies Eq. (7.8) and (7.10).

Proof. Assume that (K,G) is a YES instance of the EDGP. Then G has a realization

x∗ ∈ RnK in RK . We define y∗ijk = x∗ik − x∗jk for all {i, j} ∈ E and k ≤ K. Since x∗

is a realization of G, by definition it satisfies Eq. (7.2), and, by substitution, Eq. (7.8).

Moreover, any realization of G satisfies Eq. (7.7) over each cycle by Lemma 7.5.1. Hence,

by replacement, it also satisfies Eq. (7.10).

In the third step, we lay the groundwork towards the more difficult (⇒) direction of

Thm. 7.5.2. We proceed by contradiction: we assume that (K,G) is a NO instance of

the EDGP, and suppose that Eq. (7.8) and (7.10) have a nonempty feasible set Y . For

every y ∈ Y we consider the K linear systems

∀{i, j} ∈ E xik − xjk = yijk , (7.12)

for each k ≤ K, each with n variables and m equations. We square both sides then sum

over k ≤ K to obtain

∀{i, j} ∈ E
∑
k≤K

(xik − xjk)
2 =

∑
k≤K

y2ijk . (7.13)

By Eq. (7.8) we have ∑
k≤K

y2ijk = d2ij , (7.14)

whence follows Eq. (7.2), contradicting the assumption that the EDGP is NO. So we

need only show that there is a solution x to Eq. (7.12) for any given y ∈ Y . To this effect,

we shall exploit the 1-decomposition of G into biconnected graphs and trees derived in

Prop. 7.5.9. First, though, we have to show that Eq. (7.12) has a solution if Y ̸= ∅ in

the “base cases” of the 1-decomposition, namely trees and biconnected graphs.
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Lemma 7.5.11. Let G = (V,E) be a tree, and Y ̸= ∅ satisfying Eq. (7.8) and (7.10).

Then Eq. (7.12) has a solution for every k ≤ K.

Proof. Let Mk be the matrix of each system Eq. (7.12), for k ≤ K; we aim at proving

that Mk and (Mk, yk) have the same rank, where yk = (yuvk | {u, v} ∈ E), and that

this rank is full. We proceed by induction on the size |E| of the tree. The base case,

where |E| = 1 and G consists of a single edge {u, v}, yields Mk = (1,−1) with rank

1 for each k ≤ K. By inspection, (Mk, yuvk) also has rank 1 for any yuvk. Consider

a tree G′ with one fewer edge (say, {u, v}) than G, such that V ∖ V (G′) = {v}. Let

the corresponding system Eq. (7.12) M̃k = ỹk satisfy rank(M̃k) = rank(M̃k, ỹk), for all

k ≤ K. Then the shape of Mk is:

Mk =

(
M̃k 0

eu −1

)
,

where eu = (0, . . . , 0, 1u, 0, . . . , 0). This shows that rank(M
k) = rank(M̃k) + 1, that this

rank is full, and hence also that rank(Mk) = rank((Mk, yk)), as claimed.

Lemma 7.5.12. Let G = (V,E) be biconnected, and Y ̸= ∅ satisfying Eq. (7.8) and

(7.10). Then Eq. (7.12) has a solution for every k ≤ K.

Proof. We proceed by induction on the simple cycles of G. For the base case, we consider

G to be a graph consisting of a single cycle, with corresponding y satisfying Eq. (7.8)

and (7.10). Since G is a cycle, it has the same number of vertices and edges, say q.

This implies that, for any fixed k ≤ K, Eq. (7.12) is a linear system Mkx = yk (where

yk = (yuvk | {u, v} ∈ E) with a q × q matrix:

Mk =



1 −1

1 −1

1
. . .

. . . −1

−1 1


. (7.15)

By Eq. (7.7) and by inspection of Eq. (7.15) it is clear that rank(Mk) = q − 1: then

Eq. (7.10) ensures that rank((Mk, yk)) = rank(Mk), and therefore that Eq. (7.12) has a

solution.

We now tackle the induction step. The incidence vectors in E of the cycles of any

graph are a vector space of dimension m− n+ 1 over the finite field F2 = {0, 1} [173].

We consider a fundamental cycle basis B of G (see Sec. ??). We assume that (a) G′

is a union of fundamental cycles in B′ ⊊ B, for which Eq. (7.12) has a solution x′ by

the induction hypothesis, and (b) that C is another fundamental cycle in B ∖ B′, with

a solution xC of Eq. (7.12) which exists by the base case. We aim at proving that



7.5. A NEW FORMULATION BASED ON CYCLES 129

Eq. (7.12) has a solution for G′ ∪C. Since G is biconnected, the induction can proceed

by ear decomposition [135], which means that G′ is also biconnected, and that C is such

that E(G′) ∩ E(C) = F is a nonempty path in G′.

By Eq. (7.10) applied to C, we have

∀k ≤ K
∑

{i,j}∈C

yijk = 0 . (7.16)

Since x′ satisfies Eq. (7.12) by the induction hypothesis,

∀k ≤ K, {i, j} ∈ F x′ik − x′jk = yijk . (7.17)

We replace Eq. (7.17) in Eq. (7.16), obtaining

∀k ≤ K
∑

{i,j}∈F

(x′ik − x′jk) = −
∑

{i,j}∈E(C)∖F

yijk . (7.18)

Moreover, xC also satisfies Eq. (7.12) over C, hence we can replace the right hand side

of Eq. (7.18) with the corresponding terms in xCik − xCjk, to get

∀k ≤ K
∑

{i,j}∈F

(x′ik − x′jk) +
∑

{i,j}∈E(C)∖F

(xCik − xCjk) = 0. (7.19)

We now fix x′, and aim at modifying xC so that: (a) xC matches x′ on V (F ), (b) the

modified xC is still a solution of Eq. (7.12) on C. We set xCik to x′ik for each i ∈ V (F ),

and consider the resulting linear system Eq. (7.12) given by Mk, as in Eq. (7.15), for

each k ≤ K, where we assume without loss of generality that V (F ) = {1, . . . , r} and

V (C) = {r + 1, . . . , s}:

x′
1k − x′

2k = y12k (1)

x′
2k − x′

3k = y23k (2)

. . .
. . .

...
...

...

x′
rk − xC

r+1,k = yr,r+1,k (r)

xC
r+1,k − xC

r+2,k = yr+1,r+2,k (r+1)

. . .
. . .

...
...

...

xC
s−1,k − xC

sk = ys−1,s,k (s−1)
− x′

1k xC
sk = y1sk . (s)



(7.20)

The equations from (1) to (r−1) in Eq. (7.20) are satisfied by the induction hypothesis

since they only depend on x′, so we can remove them from the system and assume x′

to be constant. We are left with:

− xCr+1,k = yr,r+1,k − x′rk (r)

xCr+1,k − xCr+2,k = yr+1,r+2,k (r+1)
. . .

. . .
...

...
...

xCs−1,k − xCsk = ys−1,s,k (s−1)
xCsk = y1sk + x′1k . (s)


(7.21)
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Summing up the left hand sides of Eq. (7.21), we obtain

−xCr+1,k + (xCr+1,k − xCr+2,k) + · · ·+ (xCs−1,k − xCsk) + xCsk

= (−xCr+1,k + xCr+1,k) + · · ·+ (−xCsk + xCsk) = 0

for all k ≤ K, so the (s − r + 1) × (s − r + 1) matrix M̄k of the k-th linear system

Eq. (7.21) has rank ≤ s− r. On the other hand, eliminating the first or last row makes

it clear by inspection that the rest of the rows are linearly independent; therefore the

rank of M̄k is exactly s− r. Summing up the components of the right hand side vector

ȳk of Eq. (7.21), we obtain

χ = −x′rk + yr,r+1,k + yr+1,r+2,k + · · ·+ ys−1,s,k + y1sk + x′1k

= (x′1k − x′rk) +
∑

{i,j}∈E(C)∖F

yijk .

We remark that

x′1k − x′rk = (x′1k − x′2k) + (x′2k − x′3k) + · · ·+ (x′r−1,k + x′rk)

=
∑

{i,j}∈F

(x′ik − x′jk) =
∑

{i,j}∈F

yijk

since x′ satisfies Eq. (7.12) by the induction hypothesis. Therefore,

χ =
∑

{i,j}∈F

yijk +
∑

{i,j}∈E(C)∖F

yijk =
∑

{i,j}∈E(C)

yijk ,

whence χ = 0 by Eq. (7.16). This implies that rank((M̄k, ȳk)) = rank(M̄k) = s − r.

Therefore, Eq. (7.21) has a solution, which yields the modified xC with properties (a)

and (b) given above. This concludes the induction step and the proof.

We can finally give the proof of Thm. 7.5.2.

Proof of Thm. 7.5.2. The (⇐) part follows by Prop. 7.5.10. For the (⇒) part, we

exploit a 1-decomposition of G into trees and biconnected subgraphs, derive solutions

to Eq. (7.12) for each subgraph, and show that the solutions can be easily combined to

yield a solution to Eq. (7.12) for the whole graph G.

We assume without loss of generality that G is connected (otherwise each con-

nected component can be treated separately), and consider a 1-decomposition D =

{G1, . . . , Gr} of G. By Lemmata 7.5.11 and 7.5.12, there exist solutions x1, . . . xr to

Eq. (7.12) applied to G1, . . . , Gr respectively. Consider the graph

D = (D, {{i, j} | 1 ≤ i ̸= j ≤ r ∧ |V (Gi) ∩ V (Gj)| = 1}) .

By Cor. 7.5.7, D is a tree: otherwise, a cycle in D would be a contraction of a cycle in

G not included in a single Gi, against Cor. 7.5.7. This allows us to reorder D so that,

for each j > 1, there is a unique i < i such that {i, j} ∈ E(D).
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We remark that, for each i ≤ r, xi is a realization of Gi in RK by Eq. (7.12)-(7.14).

More precisely, xi is a |V (Gi)| × K matrix xi = (xiℓk) so that xiℓ = (xiℓ1, . . . , x
i
ℓK) is

the position of vertex ℓ ∈ V (Gi) in RK . Note that the realizations x1, . . . , xr can be

modified by translations without changing the values of y (by inspection of Eq. (7.12)).

We now construct a solution x̄ of Eq. (7.12) for G by induction on D ordered as

described above. For the base case i = 1, we fix x1 in any way (e.g. by taking the

centroid of the rows of x1 to be the origin), and initialize the first |V (G1)| rows of x̄

with those of x1. For any i > 1, we identify the unique predecessor j of i in the order

on D. The induction hypothesis ensures the existence of a solution x̄ of the union of

G1, . . . , Gj . Consider the cut vertex v in V (Gj)∩V (Gi) guaranteed by definition of the

order on D, and let x̄v ∈ RK be its position. Then the translation x̃i = xi−1(xiv − x̄v)
⊤

yields another valid solution of Eq. (7.12) applied to Gi by translation invariance, and

this solution is such that x̃iv = x̄v. Therefore, using the rows of x̃i, x̄ can be extended

to a solution of Eq. (7.12) applied to the union of G1, . . . , Gj and Gi, as claimed.

Thm. 7.5.2 can also be interpreted as a polynomial reduction of the EDGP to the

problem of finding a solution of Eq. (7.8) and (7.10).

Corollary 7.5.13. Deciding feasibility of Eq. (7.8) and (7.10) is NP-hard.

Proof. By reduction from EDGP using Thm. 7.5.2.

A remarkable consequence of Thm. 7.5.2 is that it allows a decomposition of the

computation of the realization x into two stages: first, solve Eq. (7.8)-(7.10) to find a

feasible y∗; then solve

∀k ≤ K, {i, j} ∈ E xik − xjk = y∗ijk (7.22)

to find a realization x∗. We note that Eq. (7.22) is just a restatement of Eq. (7.12)

universally quantified over k.

Corollary 7.5.14. Given a solution y∗ solving Eq. (7.8) and Eq. (7.10), any solution

x∗ of Eq. (7.22) is a valid realization of the EDGP instance (K,G).

Proof. The feasibility of Eq. (7.22) with the right hand side replaced by a solution y∗

of Eq. (7.8) and (7.10) follows directly from Thm. 7.5.2, since if such a y∗ exists then

the EDGP is feasible.

The first stage is NP-hard by Cor. 7.5.13, while the second stage is tractable, since

solving linear systems can be done in polynomial time.

Remark 7.5.15. Note that Eq. (7.22) has Km equations, but its rank may be lower,

since there are only Kn variables: in particular, Eq. (7.22) may be an overdetermined

linear system. The feasibility of this system is guaranteed by Cor. 7.5.14; in particular,
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the steps of the proof of Thm. 7.5.2 imply that Eq. (7.22) loses rank w.r.t. Km according

to the incidence of the edges in the cycles of G. In other words, any solution y′ to

Eq. (7.10) provides a right hand side to Eq. (7.22) that makes the system feasible.

The issue with Thm. (7.5.2) is that it relies on the exponentially large family of

constraints Eq. (7.10). While this is sometimes addressed by algorithmic techniques such

as row generation, we shall see in the following that it suffices to consider a polynomial

set of cycles (which, moreover, can be found in polynomial time) in the quantifier of

Eq. (7.10).

7.6 The cycle vector space and its bases

We recall that incidence vectors of cycles (in a Euclidean space having |E| dimensions)

form a vector space over a field F, which means that every cycle can be expressed as

a weighted sum of cycles in a basis. In this interpretation, a cycle in G is simply a

subgraph of G where each vertex has even degree: we denote their set by C. This means

that Eq. (7.10) is actually quantified over a subset of C, namely the simple connected

cycles. Every basis has cardinality m − n + a, where a is the number of connected

components of G. If G is connected, cycle bases have cardinality m− n+ 1 [173].

Our interest in introducing cycle bases is that we would like to quantify Eq. (7.10)

polynomially rather than exponentially in the size of G. Our goal is to replace “C is any

simple connected cycle in C” by “C is a cycle in a cycle basis of G”. In order to show

that this limited quantification is enough to imply every constraint in Eq. (7.10), we

have to show that, for each simple connected cycle C ∈ C, the corresponding constraint

in Eq. (7.10) can be obtained as a weighted sum of constraints corresponding to the

basis elements.

Another feature of Eq. (7.10) to keep in mind is that edges are implicitly given a

direction: for each cycle, the term for the undirected edge {i, j} in Eq. (7.10) is (xik−xjk).

Note that while {i, j} is exactly the same vertex set as {j, i}, the corresponding term

is either positive or not, depending on the direction (i, j) or (j, i). We deal with this

issue by arbitrarily directing the edges in E to obtain a set A of arcs, and considering

directed cycles in the directed graph Ḡ = (V,A). In this interpretation, the incidence

vector of a directed cycle C of Ḡ is a vector cC ∈ Rm satisfying [179, §2, p. 201]:

∀j ∈ V (C)
∑

(i,j)∈A

cCij =
∑

(j,ℓ)∈A

cCjℓ . (7.23)

A directed circuit D of Ḡ is obtained by applying the edge directions from Ḡ to a

connected subgraph of G where each vertex has degree exactly 2 (note that a directed

circuit need not be strongly connected, although its undirected version is connected).
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Its incidence vector cD ∈ {−1, 0, 1}m is defined as follows:

∀(i, j) ∈ A , cDij ≜


1 if (i, j) ∈ A(D)

−1 if (j, i) ∈ A(D)

0 otherwise ,

where we have used A(D) to mean the arcs in the subgraphD. In other words, whenever

we walk over an arc (i, j) in the natural direction i → j we let the (i, j)-th component

of cD be 1; if we walk over (i, j) in the direction j → i we assign a −1, and otherwise a

zero.

7.6.1 Constraints over cycle bases

The properties of undirected and directed cycle bases have been investigated in a se-

quence of papers by many authors, culminating with [179]. We now prove that it suffices

to quantify Eq. (7.10) over a directed cycle basis.

Proposition 7.6.1. Let B be a directed cycle basis of Ḡ over Q. Then Eq. (7.10) holds

if and only if:

∀k ≤ K, B ∈ B
∑

(i,j)∈A(B)

cBijyijk = 0 . (7.24)

Proof. Necessity (7.10) ⇒ (7.24) follows because Eq. (7.10) is quantified over all cycles:

in particular, it follows for any undirected cycle in any undirected cycle basis. Moreover,

the signs of all terms in the sum of Eq. (7.24) are consistent, by definition, with the

arbitrary edge direction chosen for Ḡ.

Next, we claim sufficiency (7.24) ⇒ (7.10). Let C ∈ C be a simple cycle, and C̄ be its

directed version with the directions inherited from Ḡ. Since B is a cycle basis, we know

that there is a coefficient vector (γB | B ∈ B) ∈ R|B| such that

cC̄ =
∑
B∈B

γBc
B . (7.25)

We now consider the expression

∀k ≤ K
∑
B∈B

γB
∑

(i,j)∈A(B)

cBijyijk . (7.26)

On the one hand, by Eq. (7.25), Eq. (7.26) is identically equal to
∑

(i,j)∈A(C̄) c
C̄
ijyijk

for each k ≤ K; on the other hand, each inner sum in Eq. (7.26) is equal to zero by

Eq. (7.24). This implies
∑

(i,j)∈A(C̄) c
C̄
ijyijk = 0 for each k ≤ K. Since C is simple and

connected, C̄ is a directed circuit. This implies that cC̄ ∈ {−1, 0, 1}. Now it suffices to

replace −yijk with yjik to obtain

∀k ≤ K
∑

{i,j}∈E(C)

yijk = 0 ,
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where the edges on C are indexed in such a way as to ensure they appear in order of

consecutive adjacency.

Obviously, if B has minimum (or just small) cardinality, Eq. (7.24) will be sparsest

(or just sparse), which is often a desirable property of linear constraints occurring in

MP formulations. Hence we should attempt to find short cycle bases B.
In summary, given a basis B of the directed cycle space of Ḡ where cB is the incidence

vector of a cycle B ∈ B, the following:

min
s≥0,y

∑
{i,j}∈E

(s+ij + s−ij)

∀(i, j) ∈ A(Ḡ)
∑
k≤K

y2ijk − d2ij = s+ij − s−ij

∀k ≤ K,B ∈ B
∑

(i,j)∈A(B)

cBijyijk = 0


(7.27)

is a valid formulation for the EDGP. The solution of Eq. (7.27) yields a feasible vector

y∗. As pointed out in Cor. 7.5.14, we must then solve Eq. (7.22) to obtain a realization

x∗ for G.

7.6.2 How to find directed cycle bases

We require directed cycle bases over Q. By [179, Thm. 2.4], each undirected cycle basis

gives rise to a directed cycle basis (so it suffices to find a cycle basis of G and then direct

the cycles using the directions in Ḡ). Horton’s algorithm [85] and its variants [72, 131]

find a minimum cost cycle basis in polynomial time. The most efficient deterministic

variant is O(m3n) [131], and the most efficient randomized variant has the complexity

of matrix multiplication. Existing approximation algorithms have marginally better

complexity.

It is not clear, however, that the provably sparsest constraint system will make the

DGP actually easier to solve. We therefore consider a much simpler algorithm: starting

from a spanning tree, we pick the m − n + 1 circuits that each chord (i.e., non-tree)

edge defines with the rest of the tree. This algorithm [155] yields a fundamental cycle

basis. Finding the minimum fundamental cycle basis is known to be NP-hard [49],

but heuristics based on spanning trees prove to be very easy to implement and work

reasonably well [49] (optionally, their cost can be improved by an edge-swapping phase

[4, 113]).

7.7 The Eulerian cycle relaxation

In this section we construct a relaxation of Eq. (7.27) that decreases the number of

constraints in Eq. (7.24), which occurs as the last line in Eq. (7.27), from |B| to 1.
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We let G′ be the multigraph obtained from G by adding sufficiently many parallel

edges to G, so that the degree of each vertex in G′ is even. This can always be done

by [56], which implies that G′ is Eulerian, i.e. it has a cycle incident with every edge

in G′ exactly once. We let E be a Eulerian cycle in G′, and let Ē be either of the two

orientations of E obtained by walking over the cycle. We let Ḡ′ be the digraph induced

by the Eulerian circuit Ē . For each {i, j} ∈ E let Hij be the number of parallel edges

between i, j in G′.

We note that Ḡ′ might have parallel and antiparallel arcs. Consider the family of

arc subset Hij = {(i′, j′, h) | h ≤ Hij ∧ {i′, j′} = {i, j}} of A(Ḡ′). We replace each arc

(i′, j′, h) ∈ Hij having h > 1 by an oriented 2-path pi′j′h = {(i′, vijh), (vijh, j′)} involving

a new added vertex vijh. Call G̃ the digraph obtained from Ḡ′ with this replacement. We

remark that G̃ is simple (it has no parallel/antiparallel arcs) by construction. Moreover,

G̃ is a Eulerian digraph: take the Eulerian circuit Ē in Ḡ′, and, every time it traverses

a parallel/antiparallel arc (i′, j′, h) ∈ Hij with h > 1, let it traverse the oriented 2-path

replacement pi′j′h instead: this is clearly a Euclidean circuit in G̃, which we call C .

Next we consider the simple graph Ĝ obtained by replacing each arc in G̃ with an

edge. Let V̂ = {vijh | {i, j} ∈ E ∧ h > 1}, and Ê be the subset of edges of E(Ĝ)

obtained from losing the orientation of the arcs in the union⋃
(i′,j′,h)∈Hij
{i,j}∈E∧h>1

pi′j′h

of all the arcs from the 2-path replacements. We note that, by construction,

V̂ = V (Ĝ)∖ V ∧ Ê = E(Ĝ)∖ E . (7.28)

Let cC
ij ∈ {1,−1} be the orientation of (i, j) in C w.r.t. Ĝ; let Ĉ be the simple Eulerian

cycle in Ĝ corresponding to C .

We can now prove the main result of this section.

Proposition 7.7.1. The formulation

min
s≥0,y

∑
{i,j}∈E

(s+ij + s−ij)

∀(i, j) ∈ A(Ḡ)
∑
k≤K

y2ijk − d2ij = s+ij − s−ij

∀k ≤ K
∑

(i,j)∈C

cC
ijyijk = 0 (†)

(7.29)

is a relaxation of Eq. (7.27).

Proof. We form a variant of the cycle formulation Eq. (7.27) applied to Ĝ, where, from

the constraints corresponding to Eq. (7.8) (second line of Eq. (7.27)), we omit those

indexed by Ê. We call this variant (⋆). We claim that (⋆) is an exact reformulation of



136 CHAPTER 7. CYCLE-BASED FORMULATIONS IN DG

Eq. (7.27) applied to G. The claim holds because E(Ĝ) ∖ Ê = E by Eq. (7.28), and

because the signs of the y variables are irrelevant in Eq. (7.8) since they are squared.

Now, since Ĉ is a Eulerian cycle in Ĝ, Eq. (†) is an aggregation of constraints in

Eq. (7.24), which occur within the reformulation (⋆). So Eq. (7.29) is a relaxation of

(⋆). The proposition follows because of the claim.

Note that Eq. (7.29) provides a solution ȳ which may not satisfy Eq. (7.24), which

also guarantee feasibility in Eq. (7.10) by Prop. 7.6.1. By Remark 7.5.15, this implies

that Cor. 7.5.14 is no longer applicable. In other words, the realization x of G cannot in

general be retrieved from ȳ using the linear system in Eq. (7.22), since ȳ might well make

Eq. (7.22) infeasibile. Eq. (7.22), however, can instead be integrated into Eq. (7.29) as

additional constraints. This invalidates the decomposition property of Cor. 7.5.14, but

allows the relaxation to yield a valid realization.

We therefore define the Eulerian cycle-based relaxation formulation as follows:

min
s≥0,x,y

∑
{i,j}∈E

(s+ij + s−ij)

∀(i, j) ∈ A(Ḡ)
∑
k≤K

y2ijk − d2ij = s+ij − s−ij

∀k ≤ K
∑

(i,j)∈A(Ẽ )

cẼ
ijyijk = 0

∀{i, j} ∈ A(Ḡ) xik − xjk = yijk

∀k ≤ K
∑
i∈V

xik = 0.

(7.30)

For a formulation P , we denote by valP its optimal objective function value. Since

Eq. (7.30) has additional constraints w.r.t. Eq. (7.29), we naturally have val(7.30) ≥
val(7.29). Moreover, for every instance for which a solution ȳ of Eq. (7.29) yields an

infeasible system Eq. (7.22), by inspection ȳ must be infeasible in Eq. (7.30), which im-

plies that there are cases where Eq. (7.30) is a strictly tighter relaxation than Eq. (7.29).

The very last constraint in Eq. (7.30) fixes the centroid of the points at the origin, as

in Eq. (7.4).

7.8 Computational experiments

The aim of this section is to compare the computational performance of the following

EDGP formulations:

(i) the cycle-based formulation in Eq. (7.27), where the realization is retrieved as a

post-processing stage using (7.22) according to Cor. 7.5.14;

(ii) the Eulerian cycle-based relaxation in Eq. (7.30);

(iii) the classic edge-based formulation in Eq. (7.4).
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All of these formulations are nonconvex NLP, which are generally NP-hard to solve.

Specifically, formulations (i) and (iii) are as hard to solve as the EDGP, which is NP-

hard. No specific NP-hardness proof exists for formulation (ii) yet.

As a solution algorithm, we used a very simple MS heuristic based on calling a

local NLP solver from a random initial starting point at each iteration, and updating

the best solution found so far as needed: although there are better heuristics around

[126, 37, 140], MS is the best trade-off between implementation simplicity and efficiency.

Moreover, more efficient heuristic often change the formulation during their execution,

which may hinder the meaning of this computational comparison between formulations.

We evaluate the quality of a realization x of a graph G according to mean (MDE)

and largest distance error (LDE), defined this way:

mde(x,G) =
1

|E|
∑

{i,j}∈E

∣∣∥xi − xj∥2 − dij
∣∣

lde(x,G) = max
{i,j}∈E

∣∣∥xi − xj∥2 − dij
∣∣ .

The CPU time taken to find the solution may also be important, depending on the

application. In the control of underwater vehicles [12], for example, DGP instances

might need to be solved in real time. In other applications, such as finding protein

structure from distance data [1, 139] (our application of choice), the CPU time is not

so important.

Our tests were carried out on a single CPU of a 2.1GHz 4-CPU 8-core-per-CPU

machine with 64GB RAM running Linux. The local NLP solver used within the MS

heuristic was the IPOpt solver [39]. We remarked in some preliminary tests that IPOpt

was considerably slowed down by variants of Eq. (7.3) such as Eq. (7.5), which essentially

move a nonconvexity on the objective to one in the constraints. The same holds for the

cycle-based formulation in Eq. (7.27). We therefore reformulated Eq. (7.27) as follows:

min
y

∑
{i,j}∈A(Ḡ)

(
∑
k≤K

y2ijk − d2ij)
2

∀k ≤ K,B ∈ B
∑

(i,j)∈A(B)

cBijyijk = 0 ,
(7.31)

and Eq. (7.30) similarly.

Our implementation consists of a mixture of Python 3 [163] and AMPL [66] inter-

faced through amplpy. Cycle bases and Eulerian cycles are found using networkX [80].

Solutions to the feasible but possibly overdetermined linear systems in Eq. (7.22) are

obtained using an ℓ1 error minimization approach reformulated as a LP problem solved

with CPLEX [91].

7.8.1 Results

A benchmark on a diverse collection of randomly generated weighted graphs of small

size and many different types, with a very similar set-up to the one discussed here, is
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presented in [120]. It was found that the cycle formulation finds better MDE values,

while the edge formulation generally finds better LDE values and is faster. Some results

on proteins, obtained with only 3 MS iterations, were also presented in [120].

The benchmark we consider here contains medium to large scale protein graph in-

stances realized in R3. With regard to the protein results presented in [120], we inte-

grated one more instance, 1tii, which, at 69800 edges and 5684 vertices, is considerably

larger than all the others.

MDE LDE CPU

Instance m n cycle Eul edge cycle Eul edge cycle Eul edge

1guu 955 150 0.086 0.069 0.053 1.234 1.068 1.037 7.90 553.76 290.21

1guu-1 959 150 0.080 0.082 0.059 1.013 1.069 0.980 9.67 23.03 1.72

1guu-4000 968 150 0.112 0.106 0.092 1.073 1.431 0.936 8.68 10.77 1.56

pept 999 107 0.144 0.239 0.179 2.862 1.847 1.943 5.52 4.72 1.4

2kxa 2711 177 0.051 0.119 0.172 3.705 2.826 3.813 21.53 25.54 7.35

res 2kxa 2627 177 0.055 0.237 0.156 2.949 3.570 3.054 20.84 21.20 12.44

C0030pkl 3247 198 0.000 0.145 0.211 0.000 3.537 3.829 29.50 26.69 7.36

cassioli 4871 281 0.146 0.113 0.057 3.914 3.616 3.185 47.23 48.44 14.51

100d 5741 488 0.201 - 0.251 3.038 - 3.987 387.32 - 29.42

hlx amb 6265 392 0.105 0.214 0.119 3.836 3.888 3.485 120.25 80.27 20.54

water 11939 648 0.146 0.490 0.243 3.579 4.196 4.281 1346.69 399.42 224.66

3al1 17417 678 0.062 0.126 0.216 3.451 3.175 4.059 835.10 433.69 123.45

1hpv 18512 1629 0.385 0.402 0.416 3.847 3.831 4.015 10138.00 2387.29 442.70

il2 45251 2084 0.385 0.049 0.107 4.422 4.204 4.583 18141.22 9904.81 5255.76

1tii 69800 5684 0.620 0.436 0.434 6.755 4.492 3.854 18846.37 38230.21 9039.28

avg 0.172 0.202 0.184 3.045 3.054 3.136 3331.05 3724.99 1031.49

stdev 0.167 0.144 0.118 1.673 1.204 1.272 6672.49 10272.3 2587.33

|best| 9 1 5 4 5 6 1 0 14

Table 7.1: Cycle formulation vs. edge formulation performance on protein graphs (real-

izations in K = 3 dimensions).

The results are given in Table 7.1. We report instance name, instance sizes m and

n, then performance measures MDE, LDE and CPU for cycle, Eulerian and edge-based

formulations. In the last three lines we report average, standard deviation, and number

of instances where the formulation performed best, for all performance measures. In

all tested cases, finding the cycle basis, the Eulerian cycles, and solving Eq. (7.22) took

a small fraction of the total solution time. The missing result for instance 100d on

the Eulerian cycle reformulation is due to a failure occurred in the networkX module

because the graph of 100d is not connected.

It appears that, on average, there is relatively little difference between the quality

performances of these three DGP formulations on protein graphs of medium and large

sizes. CPU-time wise, of course, the edge formulation is best. Cycle formulations, taken

together, are definitely better than the edge formulation on quality measures. The cycle-

based formulation Eq. (7.27) is slightly better than the other formulations for both MDE
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and LDE. The number of instances on which Eq. (7.27) is best on quality measures is 13,

against 11 for the edge-based formulation. Eq. (7.27) was the only formulation by which

a global optimum was found (that of C0030pkl). All in all, we believe that our results

show that cycle formulations are credible competitors w.r.t. the well established edge-

based formulations, especially when the CPU time is not an important performance

measure (which is generally the case in the protein conformation application).

7.9 Conclusions

In this chapter, we discussed the DGP, namely, the problem of finding a realization of

a graph in a Euclidean space of given dimension. Our contribution is a new modelling

technique for this problem, based on MP: in particular, we propose a novel MP for-

mulation of the DGP, and a corresponding relaxation, and we perform computational

experiments to test our formulations.

Our interest in DGP lies mainly in the fact that a large number of practical problems,

whereby one knows the distances between entities in a set and wants to find their

coordinates, can be attributed to it. Furthermore, the DGP is relevant to this thesis

because of its potential use as a methodology for processing ML training data, in view

of fitting paradigms that natively work with vectorial inputs to graphs.
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Chapter 8

Future developments

In this chapter, we briefly discuss some research ideas that, due to lack of time, could

not be implemented and/or tested properly during my Ph. D.

8.1 The PaO approach with Neural Networks

In Ch. 5, we presented the PaO approach to the ACP (Sec. 5.3) and several implemen-

tations, corresponding to different ML paradigms (Sec. 5.4).

Here, we show the CSSP formulation corresponding to the use of an NN in the K-

EP, to construct an approximation of the performance pA. We refer to Sec. 3.6.3 for a

presentation of NNs.

We want to solve the ACP for an instance π̄ of an optimization problem Π. We

consider an NN with a single vertex o in the output layer O. Moreover, since the inputs

of our problem are vectors (π, c), the vertices in the NN input layer are partitioned as

I = Iπ∪ICA . The vertices in Iπ encode π̄, while those in ICA represent the configuration

variables. The CSSP is as follows:

CSSP(π̄) ≡



arg min
c∈CA

σo(b
∗
o +

∑
(v,o)∈A

w∗
vozv)

∀u ∈ Iπ zu = π̄[u]

∀u ∈ ICA zu = c[u]

u ∈ H zu = σu(b
∗
u +

∑
(v,u)∈A

w∗
vuzv) .

(8.1)

The shorthand π̄[u], c[u] has the same meaning as in Sec. 3.6.2, i.e., for instance, π̄[u] is

the u-th components of vector π. In general, Eq. (8.1) is a nonconvex MINLP, owing to

the structure of the activation functions in the network vertices. However, when specific

activation functions are employed (say, ReLU), the formulation can be linearized, which

yields an MILP formulation of the CSSP (see, for instance, [62, 172, 159, 185]).

We are currently testing several implementations of the CSSP in Eq. (8.1), for dif-

ferent NN architectures and activation functions.
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8.2 The multi-phase PaO approach

In this section, we consider an extension of the PaO approach. Its purpose is to solve

the ACP for a B&B-based optimization solver (see Sec. 2.6.1.1), while it is running

to solve a specific instance. In particular, we aim to find the best configuration of

parameters at each of the different phases of the solution process. We are motivated

by previous work in ML-based configuration and enhancement of MP solvers, which

employs information about the execution of the solver — rather relying solely on the

characteristics of the instances to be solved — to improve algorithmic performance,

on-the-run (see, for instance, [200, 54, 183]).

In general, one can identify 1, 2, . . . T phases of the solution process; each phase is

governed by specific algorithmic parameters, and we want to decide the optimal values

of those parameters before that phase begins, to execute it as efficiently as possible.

At the end of each phase t < T , executed with the recommended configuration, we

encode the solver behaviour into an array of features. This framework requires that

we provide an estimate of the solver performance on the remaining phases (i.e., for

t′ ≥ t), given that, in the previous phases 1, . . . , t, we have already recommended solver

configurations. Moreover, this setting requires that each phase is addressed by a specific

K-EP (to learn the algorithmic performance for that phase) and a specific CSSP (to

recommend the optimal configuration for executing that phase). Thus we refer to this

variant as “multi-phase” PaO approach.

8.2.1 Implementation

Since, in the multi-phase variant of the PaO approach, we want to execute K-EP and

CSSP for each phase, the training set will be different than the one defined in Sec. 5.3.1.

Formally, we let π be an instance to solve. Furthermore, being T the number of

phases, the purpose of the CSSPs is to decides the configuration vector

c∗ = [c1, c2, . . . , cT ] ∈ [0, 1]q1 × · × [0, 1]qT

where, for 1 ≤ t ≤ T , ct, is the configuration vector used to run the solver in phase

t, and qt is its size. It is possible for the same algorithmic parameters to appear in

configuration vectors of different phases.

Further, we consider feature vectors

ι = [ι1, ι2, . . . , ιT ] ,

where ι1 = π are the instance features and, for 1 < t ≤ T , ιt encodes the algorithmic

behaviour of the solver, configured by ct−1, at phase t− 1.

Thus, at each phase t, the CSSP optimizes an approximation of the performance

function at phase t, given the features ιt. Its solution, that we call ct, is used to configure

the solver and execute it, which also allows us to compute ιt+1.
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To perform the K-EP, we first sample a training set

S = {(ι1, ι2i , . . . , ιTi , c1i , c
2
i , . . . , c

T
i , pA(ιi, ci)) | i = 1 . . . s} , (8.2)

which is usually larger than the basic PaO training set, as there are potentially many

more possible configurations to consider.

To define the performance function pA, we let{
ι<t
i = [ι1i , . . . , ι

t−1
i ], ι≤t

i = [ι1i , . . . , ι
t
i], ι>t

i = [ιt+1
i , . . . , ιTi ]

c<t
i = [c1i , . . . , c

t−1
i ], c≤t

i = [c1i , . . . , c
t
i], c>t

i = [ct+1
i , . . . , cTi ] .

We would like to define the performance function as

ptA(ι, c
≤t) = min

i∈S
{pA(ιi, ci ) | c≤t

i = c≤t} , (8.3)

where c≤t is the configuration recommended by our methodology. However, Eq. (8.3)

cannot be used because, at t, ι>t is unknown. Therefore, we define the performance

function as:

ptA(ι
≤t, c≤t) = avg

i∈S

{
ptA(ιi, c

≤t) | ι≤t
i = ι≤t} , (8.4)

where: if t = 1, ι≤t is π; otherwise, ι≤t is computed by executing the solver with the

configuration c<t recommended by our methodology. In Eq. (8.4), the purpose of avg is

to provide an estimate of the potential algorithmic performance at subsequent phases,

subject to the uncertainty about the actual realization of ι>t. This strategy is related to

robust/uncertain optimization. Other estimation strategies could be used: for instance,

if one wanted to hedge against the risk of choosing configurations that can be “very bad”

in some cases, Value-at-Risk or Conditional-Value-at-Risk may be employed instead of

avg.

With the performance function defined in Eq. (8.4), the K-EP for phase t relies on

the training set

St = {
(
ι≤t
i , c≤t

i , ptA(ι
≤t
i , c≤t

i )
)
| i ∈ Sj} ,

to learn an ML approximation

p̄tA(ι
≤t, c≤t)

of ptA(ι
≤t, c≤t). The corresponding CSSPt, solved to find c≤t, is:

CSSPt(π̄) ≡ arg min
c∈CA

{p̄tA(ῑ≤t, [c<t, ct])
}
, (8.5)

where ῑ<t and c<t are fixed. In Eq. (8.5), one is optimizing the average estimated

performance p̄A, by selecting an algorithmic configuration ct for executing the t-th phase,

such that the algorithm has already been configured by c<t in the previous phases, and

the features ῑ≤t, corresponding to these choices, have already been computed.
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Chapter 9

Conclusions

The contributions of this Ph. D. thesis fall in the domains of algorithm configuration

and distance geometry.

The research topics covered here lie at the intersection of MP — a formal language for

describing optimization problems and a framework for solving them — and ML — a set

of techniques for designing and implementing algorithms to construct hypotheses from

data. The text opens with an introduction to these two fields (Ch. 2 and 3), intended

to make this thesis as self-contained as possible.

In the central part of the thesis, we deal with the ACP, i.e., given a target algo-

rithm, the problem of finding the parameter configuration yielding the best algorithmic

performance for solving a specific instance.

First, we review the relevant state of the art. In Ch. 4, we first present an algorithmic

schema, whose purpose is the description and classification of any approach to the ACP.

Then, we survey the main ACP methodologies in the literature, and fit them into our

schema. Part of the chapter has been accepted for publication in a journal as, to the

extent of our knowledge, the proposed schema is original.

In Ch. 5 and 6, we propose two novel MP-driven approaches to the ACP, that

optimize over trained ML predictors to find good algorithmic configurations for specific

instances; we also study the application of the ACP to solution algorithms for MP (i.e.,

MP solvers).

To deal with the ACP, we use ML predictors as elements appearing in an MP

formulation. We first construct an ML approximation of the performance of the target

algorithm A, deployed to solve instances of a given optimization problem Π. Then, we

translate the mathematical properties underlying the learned approximation into MP

terms; finally, we embed the resulting equations into an MP formulation, approximating

the ACP for a specific instance. We refer to this MP as “CSSP”. The objective of

the CSSP optimizes the ML-derived approximation of the algorithmic performance;
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its constraints determine the set of admissible configurations (and, potentially, other

conditions on the learned approximation). When a instance arrives, we optimize the

CSSP to solve the ACP for that instance. One of the advantages of this framework is

that it allows great freedom in choosing the most appropriate ML paradigm for Π and A.

Another quality of our approach is that it can exploit the structure of the CSSP to solve

it to a global optimum. All the other ACP methodologies, prominent in the literature,

treat the ACP as a black-box problem, so they solve it by local (meta)heuristics, and

can only manage to find configurations that are good for a set of instances with similar

characteristics. Moreover, black-box methodologies often do not scale well large sets of

feasible configurations, or to situations where the ACP-optimal configuration depends

on the instance at hand. In these cases, MP solution algorithms should be more efficient,

since they use a problem structure.

In Ch. 5 and 6, we investigate different implementation choices for the learning

phase; furthermore, we discuss the nontrivial trade-offs arising from the fact that these

choices affect not only the accuracy of the learned predictor, but also the cost of solving

the corresponding CSSP. The ideas and results presented in these two chapters resulted

in two publications, [93] and [94].

In the last part of the thesis, we discuss the DGP.

The DGP asks to find a realization of a given graph in a Euclidean space of given

dimension. In particular, it considers simple, undirected graphs, whereby the vertex

positions are unknown and the edges are labeled by a weight/length function. Given

an integer K, its goal is to reconstruct the position of the graph vertices in a Euclidean

space of dimension K, from the known edge weights, while drawing the edges as straight

segments of length equal to the edge weights.

A customary approach to the DGP is to solve an MP formulation to determine the

position of the vertices. We propose an alternative MP formulation where, instead, we

consider the cycles of the graph: we determine the length of the segments modelling

the edges in each cycle, so that, for any two vertices incident on an edge, their distance

is as close as possible to the corresponding edge weight. Beyond the novelty of the

formulation that we propose, our research is also motivated by the fact that the DGP

can be instrumental in applying vector-based ML paradigms to graphs. A shortened

version of Ch. 7 was published in [120], and an extended version has been submitted

for publication to a journal.
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[7] C. Ansótegui, M. Sellmann, and K. Tierney. A gender-based genetic algorithm for

the automatic configuration of algorithms. In Proceedings of the 15th International

Conference on Principles and Practice of Constraint Programming, pages 142–157,

Berlin, Heidelberg, 2009. Springer-Verlag.

[8] C. G. Atkeson, A. W. Moore, and S. Schaal. Locally Weighted Learning. Artificial

Intelligence Review, 11:11—-73, 1997.

[9] C. Audet, D. Kien, and D. Orban. Algorithmic parameter optimization of the

DFO method with the OPAL framework. Software Automatic Tuning: From

Concepts to State-of-the-Art Results, pages 255–274, 2010.

147



148 BIBLIOGRAPHY

[10] C. Audet and D. Orban. Finding optimal algorithmic parameters using Derivative-

Free Optimization. SIAM Journal on Optimization, 17(3):642–664, 2006.

[11] D. Bacciu, F. Errica, A. Micheli, and M. Podda. A gentle introduction to deep

learning for graphs. Neural Networks, 129:62, 2020.

[12] A. Bahr, J. Leonard, and M. Fallon. Cooperative localization for autonomous

underwater vehicles. International Journal of Robotics Research, 28(6):714–728,

2009.

[13] M. F. Balcan. Georgia Tech, 8803: Machine Learning Theory, 2011. Lecture notes

of the course.

[14] R. Battiti and M. Brunato. Reactive Search: machine learning for memory-based

heuristics. Technical report, University of Trento, 2005.

[15] M. S. Bazaraa, H. D. Sherali, and C. M. Shetty. Nonlinear Programming: Theory

and Algorithms. Wiley Publishing, 3rd edition, 2013.

[16] N. Beeker, S. Gaubert, C. Glusa, and L. Liberti. Is the Distance Geometry Prob-

lem in NP? In A. Mucherino, C. Lavor, L. Liberti, and N. Maculan, editors,

Distance Geometry: Theory, Methods, and Applications, pages 85–94. Springer,

2013.
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Title : Algorithmic configuration by learning and optimization Keywords : algorithm configuration, machine
learning, mathematical programming, optimization solvers, parameter tuning, distance geometry
Abstract : The research topics described in this
Ph.D. thesis lie at the intersection of Machine Lear-
ning (ML) and Mathematical Programming (MP). The
main contributions concern the Algorithm Configura-
tion Problem (ACP) and the Distance Geometry Pro-
blem (DGP).
After providing introductions to MP and ML, we sur-
vey the ACP literature. Given a configurable algorithm
A and an input P for A, the ACP addresses the issue
of identifying the parameter configuration c∗ of A en-
suring the best algorithmic performance pA in solving
P . Since most algorithms have a very large number
of configurable parameters, this is usually a very hard
optimization problem to tackle in practice.
We propose two novel MP-driven methodologies,
using ML paradigms as elements appearing in an
MP formulation, to address the ACP. Since algorith-
mic performance is usually a black-box function, we
first train an ML predictor to estimate it. Then, we pro-
duce an explicit description of the learned approxima-
tion. We embed this encoding into an MP formulation
of the ACP : its objective optimizes the ML-derived

approximation ; its constraints define the set of fea-
sible configurations, and, potentially, other conditions
on the trained predictor. Upon the arrival of a new ins-
tance P ′, we solve the ACP by MP techniques, to re-
trieve the configuration optimising the estimated algo-
rithmic performance for P ′. This framework can work
with virtually any ML paradigms. We employ our ap-
proaches to tune the parameters of an optimization
solver, deployed on instances of a hard mixed-integer
linear programming problem.
In the last part of the manuscript, we consider a me-
thodology for solving the DGP, i.e., for finding a rea-
lization of a weighted graph in a Euclidean space of
given dimension. A customary approach is to solve
an MP formulation to determine the position of the
vertices in the given Euclidean space. We propose a
new MP formulation where, instead, we consider the
cycles of the graph, and we decide the length of the
segments modelling the edges in each cycle. Our re-
search is partly motivated by the fact that it can serve
as a graph embedding methodology, in view of ap-
plying vector-based ML paradigms to graphs.

Titre : Configuration algorithmique par apprentissage et optimisation Mots clés : configuration des algo-
rithmes, machine learning, programmation mathémathique, solveurs d’optimisation, géométrie des distances
Résumé : Les sujets de recherche décrits dans cette
thèse se situent à l’intersection du Machine Learning
(ML) et de la Programmation Mathématique (PM). Les
principales contributions concernent le problème de
la configuration des algorithmes (ACP) et le problème
de la géométrie des distances (DGP).
Après avoir présenté la PM et le ML, nous passons
en revue la littérature sur l’ACP. Étant donné un al-
gorithme paramétré A et une entrée P pour A, l’ACP
aborde la sélection de la configuration de paramètres
c∗ de A assurant la meilleure performance pA pour
résoudre P . Comme la plupart des algorithmes ont
un très grand nombre de paramètres, cela constitue
un problème d’optimisation généralement très difficile
à résoudre dans la pratique.
Nous proposons deux nouvelles méthodologies,
fondées sur la PM et sur des paradigmes de ML,
pour résoudre l’ACP. Puisque la performance algo-
rithmique est généralement une fonction boı̂te noire,
nous construisons d’abord un prédicteur de ML pour
estimer le comportement de A. Puis, nous produi-
sons une description explicite de l’approximation ap-
prise, et nous l’intégrons dans une formulation MP
de l’ACP : l’objectif de cette formulation optimise l’ap-
proximation apprise ; ses contraintes définissent l’en-

semble des configurations admissibles, et, potentiel-
lement, d’autres conditions sur le prédicteur entraı̂né.
A l’arrivée d’une nouvelle entrée P ′, nous résolvons
l’ACP par des techniques de PM, pour trouver la confi-
guration optimisant la performance algorithmique es-
timée sur P ′. Ce cadre est compatible avec n’importe
quel paradigme de ML. Nous utilisons nos approches
pour régler les paramètres d’un solveur d’optimisa-
tion, déployé sur des instances d’un difficile problème
linéaire mixte en nombres entiers.
Dans la dernière partie du manuscrit, nous
considérons une méthodologie pour résoudre le DGP,
c’est à dire pour trouver une réalisation d’un graphe
pondéré dans un espace euclidien de dimension
donnée. Une approche habituelle consiste à résoudre
une formulation de PM pour déterminer la position
des sommets dans l’espace euclidien donné. Nous
proposons une nouvelle formulation de PM où, à la
place, nous considérons les cycles du graphe, et nous
décidons de la longueur des segments modélisant les
arêtes de chaque cycle. Notre recherche est en partie
motivée par le fait qu’elle peut servir de méthodologie
de plongement de graphes, en vue d’appliquer aux
graphes des paradigmes de ML basés sur les vec-
teurs.
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