
HAL Id: tel-03592828
https://theses.hal.science/tel-03592828

Submitted on 1 Mar 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On the security of instante messaging : towards solutions
for multi-device and group applications

Céline Duguey

To cite this version:
Céline Duguey. On the security of instante messaging : towards solutions for multi-device and group
applications. Other [cs.OH]. Université de Rennes, 2021. English. �NNT : 2021REN1S077�. �tel-
03592828�

https://theses.hal.science/tel-03592828
https://hal.archives-ouvertes.fr

THÈSE DE DOCTORAT DE

L’UNIVERSITÉ DE RENNES 1

ÉCOLE DOCTORALE NO 601
Mathématiques et Sciences et Technologies
de l’Information et de la Communication
Spécialité : Informatique

Par

Céline DUGUEY
On the Security of Instant Messaging

Towards solutions for multi-device and group applications

Thèse présentée et soutenue à Rennes, le 14 décembre 2021
Unité de recherche : IRISA - UMR 6074

Rapporteurs avant soutenance :

Benjamin NGUYEN Professeur, INSA Centre Val de Loire
Damien VERGNAUD Professeur, Sorbonne Université

Composition du Jury :

Examinateurs : Céline CHEVALIER Maître de conférence, Université Panthéon-Assas Paris2
Sylvain DUQUESNE Professeur, Université de Rennes 1
Benjamin NGUYEN Professeur, INSA Centre Val de Loire
Olivier SANDERS Ingénieur de recherche, Orange Labs
Damien VERGNAUD Professeur, Sorbonne Université

Dir. de thèse : Pierre-Alain FOUQUE Professeur, Université de Rennes 1

Invité :

Julien DEVIGNE Ingénieur en cryptologie, DGA-MI

On the Security of Instant Messaging
Towards solutions for multi-device and group applications

Céline DUGUEY

Supervisor: Pierre-Alain FOUQUE

Remerciements

Ces quatre années de travail ont été rendues possibles grâce la con�ance que beaucoup m’ont
accordée. Ainsi, je tiens tout d’abord à exprimer ma gratitude à Pierre-Alain Fouque, qui a pris
le temps de me recevoir dès 2016 et qui a accepté d’encadrer cette thèse pendant quatre ans. Nos
discussions ont aiguillé mon travail tout en m’accompagnant vers plus d’autonomie. Julien Devigne
a co-encadré ce travail côté DGA et m’a supportée comme co-bureau : merci de ta disponibilité
lorsque j’interrompais inopinément tes autres activités pour te poser la question urgente du moment
ou te faire part de mes doutes.
J’adresse mes remerciements chaleureux à Benjamin Nguyen et Damien Vergnaud qui m’ont fait
l’honneur d’endosser le rôle de rapporteur, ainsi qu’à Céline Chevalier, Olivier Sanders et Sylvain
Duquesne d’avoir accepté de faire partie de mon jury.
Merci à Sébastien Campion de sa disponibilité lors de nos travaux d’implémentation. Je garde un
souvenir réjouissant de nos mercredis après-midi à tracer notre chemin dans le code de Signal.
J’ai pu mener mes travaux tout en ayant un poste à DGA-MI grâce à la con�ance initiale de Raphaël
Bost et Laurent Malaquin, ainsi qu’à la bienveillance de Yannick Landré et à la compréhension
de Clément Gomez et Antoine Dallon, qui m’ont aidé à trouver un équilibre (parfois instable je
le concède !) entre ces deux activités. J’ai également grandement béné�cié du soutien moral de
l’ensemble de mes collègues de SCY grâce à l’ambiance toujours chaleureuse, positive et riche en
sucre (et en beurre) de l’équipe : un grand merci à vous.
Mes mercredis (et/ou vendredis) à l’Irisa sont une parenthèse dédiée à la recherche toujours plaisante
et je remercie l’ensemble des membres d’Emsec (Capsule/Spicy) de m’avoir intégrée malgré ma
présence partielle. J’ai un souvenir particulièrement agréable et fructueux du groupe de travail mené
avec Angèle Bossuat, Adina Nedelcu et Xavier Bultel. Le collectif était bienvenu pour oser approcher
ces modèles de sécurité impressionnants à première vue. Je souhaite également remercier Katharina
Boudgoust d’avoir accepté de partager avec moi le stress des derniers préparatifs techniques (*6)
et Solène Moreau, car nos discussions en pauses café furent une véritable source d’apaisement
personnel.
Je suis reconnaissante au Melting Note Orchestra et au projet Kolectiva de m’avoir apporté des
respirations musicales bienfaisantes et d’avoir démontré la force du collectif, surtout en temps de
con�nement.
Merci à mes parents de leur soutien depuis le tout début. Merci à Sophie, Anna, Marie et Laurine :
votre amitié indéfectible est un bien extrêmement précieux.
Julien, ta con�ance en moi continuera toujours de m’étonner ! Merci de faire que tout soit possible
si simplement. Elouen, Aénor, grâce à vous je peux mesurer l’ampleur de ce travail en centimètres
(respectivement 27 et 37). À vos côtés j’apprends l’essentiel.

Résumé en Français

L
’histoire de la cryptographie s’est principalement bâtie sur des guerres et des batailles
de pouvoir. La science du secret a servi généraux et intrigants sur des générations : César et
le code (élémentaire) qui porte désormais son nom, ou encore Marie Stuart, reine d’Écosse

au milieu du XVIe siècle, qui chi�rait ses messages pour fomenter le meurtre de sa rivale, Elizabeth
première, reine d’Angleterre. Un des principes fondamentaux de la cryptographie a été énoncé dans le
journal des sciences militaires, par Kerckho�s (1883). Et lorsque la cryptographie est immortalisée au
cinéma, c’est avec la machine Enigma, et son rôle pendant la seconde guerre mondiale. Une histoire
bien sombre donc. Ils furent sûrement quelques uns, moins éminents, à s’intéresser à la cryptographie
- et à sa contrepartie, la cryptanalyse - par curiosité ou, en tout cas, avec des desseins moins guerriers.
Ceux là ne sont pas passés à la postérité. Mais l’avènement de l’informatique, d’Internet, et plus
récemment encore des smartphones a totalement bouleversé l’usage de la cryptographie. Petit à
petit, elle s’est introduite dans la vie civile, d’abord pour sécuriser des domaines considérés comme
sensibles (les opérations bancaires par exemple). Puis elle est devenue accessible à tous ceux qui le
souhaitent, via des applications comme Pretty Goog Privacy (PGP), non pas parce qu’ils ont quelque
chose à cacher, mais sur le principe que, dans l’espace immensément ouvert que représente Internet,
chacun a le droit à une vie privée. Les applications de messageries sécurisées, petites icônes sur
nos smartphones, représentent l’apogée de cette ouverture au grand public, puisqu’elles mettent la
cryptographie à disposition de tout un chacun, (presque) sans e�ort.

iv Résumé en Français

Pourquoi utilise-t-on Whatsapp?

L’être humain est un animal social. Il a de tout temps éprouvé le besoin de communiquer. Il n’y a rien
de surprenant, dès lors, que l’avènement d’un réseau mondial comme Internet ait vu l’émergence de
nombreuses applications de communication : mail, chat, et plus récemment, grâce à la révolution
des smartphones, messageries instantanées asynchrones. Whatsapp, FacebookMessenger, Telegram,
Signal, Threema, Treebal, . . ., ces applications sont utilisées chaque jour par des milliards de gens
sur l’ensemble de la planète. Tout comme les premiers chats sur ordinateur, elles sont libérées des
latences que l’on retrouve dans les applications de mail et permettent de tenir des conversations
presque en direct. Et contrairement aux premiers chats, la conversation ne s’arrête pas si l’un des
protagonistes n’est plus en ligne. L’autre peut toujours continuer à déposer ses messages, qui seront
vus plus tard.

De façon informelle, les messageries instantanées peuvent être vues comme un endroit où discuter
avec ses amis, comme on le ferait dans la rue ou dans un café (avec ce béné�ce supplémentaire
de n’être pas obligé d’être présent en même temps !). Assis à votre table, avec vos amis, vous
n’apprécieriez que moyennement de sentir que les tables d’à côté ne perdent pas une miette de votre
conversation. Vous choisiriez peut-être de partir, ou bien vous penseriez que « la prochaine fois,
décidément, on choisira un autre endroit ! » Les messageries instantanées devraient suivre les mêmes
règles, puisqu’on y tient les mêmes conversations. C’est l’objectif des messageries instantanées
sécurisées (SIM), qui assurent une protection de bout en bout de nos conversations. Chaque message
est chi�ré sur le téléphone de l’émetteur, envoyé à qui de droit et ne peut être déchi�ré que par le
destinataire. Personne ne doit pouvoir s’immiscer dans la conversation, d’une quelconque façon.
La démarche est vertueuse, mais il est intéressant de regarder de plus près si les utilisateurs sont
vraiment sensibles à cet e�ort. Autrement dit, si l’endroit est sympa, sont-ils prêts à marcher plus
longtemps pour trouver un café plus tranquille ?

Un cobaye nommé Johnny

La première personne qui peut nous aider à mieux comprendre l’intérêt du public pour la sécurité des
messageries s’appelle Johnny. Il est le héros malgré lui d’une série d’articles traitant de l’ergonomie
d’applications de sécurité. L’histoire de Johnny commence en 1999, dans un article intitulé « Pourquoi
Johnny ne parvient-il pas à chi�rer ? » [WT99]. L’objectif de l’étude était d’identi�er, dans le design
d’une application de sécurité, les obstacles qui pouvaient empêcher un utilisateur - Johnny - de
faire bon usage de l’application, voire le décourager de l’utiliser. Le postulat étant qu’une mauvaise
utilisation d’une application censée apporter de la sécurité peut être plus dommageable qu’une
mauvaise implémentation de l’application elle-même. L’étude porte sur PGP 5.0, un logiciel disponible
dans le commerce, qui permettait à l’époque de chi�rer et de signer ses mails1. Le choix des auteurs
n’est pas anodin : l’application est ouvertement destinée au grand public, puisque ses créateurs
a�rment qu’« avoir amélioré l’interface graphique côté utilisateur rend la cryptographie et ses
mathématiques accessibles à un utilisateur d’ordinateur débutant. » L’idée est donc qu’il n’est pas
nécessaire de comprendre les ressorts techniques pour utiliser le produit.

Certes le logiciel PGP 5.0 semble aujourd’hui un peu désuet. De plus, une di�érence majeure
entre PGP et les messageries instantanées sécurisées (Secure Instant Messaging en anglais, SIM)
est que le premier est installé par l’utilisateur dans le but de sécuriser ses communications, tandis
que la cryptographie fait partie par défaut, par dé�nition même, des messageries sécurisées. Ainsi
certaines questions posées par l’étude, par exemple savoir si un utilisateur peut comprendre les bases

1L’application en est aujourd’hui à sa onzième version.

Première Section v

de l’authenti�cation et du chi�rement, ou s’il peut utiliser correctement le logiciel après quelques
heures d’e�orts relatifs, ne sont pas applicables aux SIM. En e�et, même si le public a montré un
intérêt croissant pour la sécurité de ses communications, nous verrons un peu plus tard que ce n’est
pas ce qui motive principalement le choix d’une application. Reste que certains constats obtenus
d’une part par l’observation méticuleuse de l’interface graphique du logiciel, d’autre part via un test
e�ectué auprès de douze « Johnny » en chair et en os, sont toujours pertinents. Par exemple, il est
illusoire de penser que l’utilisateur lambda sera motivé pour se lancer dans la lecture de manuels ou
même suivre des tutoriels, avant d’accéder à l’application. Mais l’enquête révèle également que le
design ne peut pas suivre les règles habituelles. Dans le cas présent, PGP a beau être plutôt attractif
(pour l’époque), avec des opérations simples (chi�rer, signer) accessibles par des boutons à cliquer
clairement identi�és, seul quatre participants, pourtant tous habitués à envoyer des mails, a réussi à
utiliser PGP 5.0 pour signer et chi�rer un message en une heure et demie. Par ailleurs, trois d’entre
eux ont envoyé par mégarde le secret qu’ils étaient censés protéger. Aussi joli soit-il, un gros bouton
« chi�rer » ne sert à rien si l’utilisateur ne comprend pas ce que signi�e chi�rer. « Concevoir des
applications de sécurité faciles d’usage pour des personnes qui ne comprennent pas vraiment la
sécurité nécessite quelque chose en plus ».

Johnny a poursuivi sa carrière de cobaye dans d’autres travaux, mais nous le laissons là et, fort de
nos premiers constats, nous allons nous intéresser de plus près au cas des messageries instantanées
sécurisées.

Petite balade dans la tête d’un utilisateur

Depuis 1999 et le premier épisode de la saga Johnny, le scandale provoqué par la révélation en 2013
de programmes de surveillance de masse de la part des États-Unis ou encore du Royaume-Uni a eu
un impact sur la perception qu’a le public des outils de communication numériques. C’est sûrement
l’un des facteurs qui a permis l’émergence de nombreuses applications de messageries sécurisées,
qui, pour la plupart, sont plus ergonomiques que leurs ancêtres. C’est ainsi qu’Unger et al. ont
proposé, en 2015 ([UDB+15]), une revue d’une vingtaine de solutions existantes, en les comparant à
la fois en terme de sécurité et d’ergonomie. On pourrait croire que, puisque les utilisateurs semblent
de plus en plus sensibles à la sécurité de leurs communications et que, d’un autre côté, leur sont
proposées de plus en plus d’applications de messagerie sécurisée ne demandant presque aucun
e�ort, tous les problèmes sont résolus. Une étude récente, publiée par Dechand et al. ([DNDS19])
a�rme au contraire que les choses ne sont pas si simples. Ces travaux montrent que l’ergonomie
n’est pas l’unique obstacle auquel les concepteurs doivent faire face. Il semble qu’il faille aussi
s’intéresser à ce qui se passe dans la tête de l’utilisateur : comment perçoit-il les risques liés à la
sécurité ? Comment apprécie-t-il les solutions techniques apportées par la cryptographie, comme le
chi�rement ou l’authenti�cation ? En se basant sur la messagerie Whatsapp, les auteurs ont tenté de
répondre à ces questions.

Whatsapp est une application de messagerie instantanée née en 2009. Son usage s’est massivement
développé au cours des années 2010, succès « couronné » par son rachat par Facebook en 2014. En
2016, le chi�rement de bout en bout (du téléphone d’un usager jusqu’à celui de son correspondant)
est adopté par l’application, qui le rend automatique. Dechan et al. ont vu dans cette annonce
l’occasion d’interroger les usagers sur la façon dont ils percevaient la sécurité de Whatsapp. Ils ont
comparé les résultats obtenus auprès de deux groupes, l’un interrogé en 2015, avant que Whatsapp
ne devienne une messagerie sécurisée, l’autre en 2017, neuf mois après. Les deux groupes étaient
pareillement composés de personnes ayant une compétence technologique dans la moyenne, avec
un âge moyen autour de 30 ans. Les auteurs précisent par ailleurs que leur étude n’a été menée

vi Résumé en Français

qu’auprès de personnes de nationalité allemande et ne prétend donc pas être générale (des facteurs
culturels peuvent évidemment entrer en jeu). Nous pensons néanmoins que ces résultats montrent
une tendance intéressante.

Dis-moi où sont les amis de Johnny, je te dirai où il est

Le premier constat frappant est que, en 2015 comme en 2017, les participants avaient plutôt une
bonne perception des di�érentes menaces qui pouvaient a�ecter la sécurité des communications nu-
mériques. Ils mentionnaient di�érents attaquants potentiels, du fournisseur de service aux agences
de renseignements, en passant par les hackers et les sociétés commerciales. Pour ce qui est de
Whatsapp plus particulièrement, il semble que le rachat par Facebook soit perçu comme une menace
supplémentaire. Malgré tout, certains participants, bien que conscients des espions potentiels, pen-
saient que « les gens ordinaires sont peu susceptibles d’être visés par un programme de surveillance
de masse. Selon eux, seules les personnalités riches, connues, les politiques ou encore les criminels
étaient visés ». Ils se sentaient donc concernés, mais de loin. Ces résultats font écho à l’analyse
quantitative menée par De Luca et al. ([DDO+16]), qui « suggère que l’in�uence des semblables est
ce qui pousse principalement les gens à adopter une application de messagerie mobile plutôt qu’une
autre, même pour les messageries sécurisées/privées et que la sécurité et le respect de la vie privée
joue un rôle mineur. »

Peu de con�ance envers le chi�rement

Le titre de l’article de Dechand et al. : « In encryption we don’t trust », souligne bien le résultat
principal de l’étude : bien que les participants arrivent à dé�nir plus ou moins précisément le concept
même de chi�rement, comme « une espèce de code secret » ou un « langage secret », certains
mentionnant même l’usage d’une clé ou d’un mot de passe, tous admettent qu’ils ne pensent pas
qu’il existe réellement une solution qui pourrait empêcher un attaquant un peu talentueux de casser
le chi�rement. Dans le groupe interrogé en 2015, certains pensaient que Whatsapp était déjà chi�ré,
tandis qu’en 2017, tous n’étaient pas au courant que la messagerie avait adopté le chi�rement de
bout en bout, et ce malgré le message a�ché au début de toute conversation « les messages et les
appels sont chi�rés de bout en bout. Aucun tiers, pas même Whatsapp, ne peut les lire ou les écouter.
Appuyez pour en savoir plus. » Dans la grande majorité des cas, même une fois avertis de ce fait, les
participants étaient convaincus que n’importe lequel des adversaires cités plus haut, ou au moins
Whatsapp, pouvaient potentiellement lire leurs messages. L’une des conclusions des auteurs suite à
ces constats est que les « usagers sont dépassés par la technologie en général et se considèrent sans
recours et vulnérables face à des attaquants compétents ». Parmi les recommandations données
à la �n de l’étude ressort donc le fait de parler le langage de l’usager. Par exemple, l’expression
chi�rement de bout en bout était peu intelligible pour la plupart des participants. La réaction de
l’un d’entre eux est révélatrice : « oh, voilà donc de quoi parlait cette noti�cation ennuyeuse ».

Pourquoi s’authenti�er?

Dans l’univers de la cryptographie, l’authenti�cation vise à s’assurer que l’on parle bien avec la
personne avec qui l’on est censé parler. Si cette dé�nition est claire pour les cryptographes, elle
l’est beaucoup moins pour les non spécialistes. Les participants de l’étude qui nous intéresse, que
ce soit en 2015 ou en 2017, ne comprenaient ni comment on pouvait parvenir à s’authenti�er, ni
à quoi cela servait. L’étude met ainsi en avant des réactions représentatives. Premièrement, la
conviction que l’on peut se �er à la notion de compte personnel et aux identi�ants pour savoir à

Mes contributions vii

qui l’on parle : « Supposons que moi et mon ami ayons chacun un compte, Alex27 et Katie07 par
exemple. Je lui envoie un message. Pourquoi Pia23 pourrait-elle le lire ? ». Le fait que Pia23 puisse
se jouer de lui en se faisant passer pour Alex27 ne constitue pas une menace. Deuxièmement, le
sentiment qu’« ils se rendraient bien compte si un message ne provenait pas du bon émetteur (par des
di�érences de style, de langage) ». Ces constats sur l’authenti�cation prennent toute leur importance
si l’on considère Whatsapp, car l’authenti�cation est la seule étape qui nécessite l’intervention de
l’usager. Pour identi�er formellement le propriétaire d’un compte, chaque utilisateur devrait, avant
de communiquer avec cette personne, échanger une valeur (l’empreinte cryptographique de la clé
publique correspondante), par un canal tiers, par téléphone ou en scannant un QR code en direct par
exemple. Les utilisateurs sont avertis que cette action devrait être faite, mais elle reste néanmoins
optionnelle. Aucun participant (sauf un) n’avait connaissance de ce code de véri�cation. Et l’un
d’entre eux a ouvertement a�rmé que « ce serait trop peu pratique de scanner les QR codes de tous
les contacts. » Ce n’est pas étonnant au vu des précédents constats sur l’authenti�cation. Mais cela
con�rme la nécessité d’imaginer des systèmes qui ne requièrent aucune action de l’utilisateur : « les
utilisateurs ne devraient pas avoir à se soucier de la sécurité - elle devrait juste être là pour eux ».

Mes contributions

Dans cette thèse, nous nous intéressons à deux services proposés par les messageries instantanées :
la connexion de plusieurs appareils et les communications de groupe. S’ils peuvent être considérés
comme des options, les résultats précédents nous montrent bien que ce n’est pas la sécurité qui
va guider les utilisateurs vers une application et, à choisir, ces services seront sûrement préférés
à l’assurance d’un chi�rement bout en bout. C’est pourquoi toutes les applications, sécurisées
comprises, les proposent. Tout l’enjeu, et c’est l’objet des travaux présentés ici, consiste à parvenir,
pour ces services, à un niveau de sécurité optimal, comme pour les communications deux à deux
classiques. En gardant à l’esprit que la cryptographie ne constitue peut-être pas la plus grande
di�culté.

Ce manuscrit s’organise autour de deux contributions principales : la première, sur le multi
appareil, est écrite avec Sébatien Campion, Julien Devigne et Pierre-Alain Fouque et a fait l’objet
d’une présentation à ACNS 2020 ([CDDF20]). La seconde correspond à des travaux menés avec Julien
Devigne et Pierre-Alain Fouque, présentés à ESORICS 2021. La présentation de ces contributions est
précédée d’un état de l’art détaillé de la littérature concernant les échanges de clés à cliquet (ratcheted
key exchange), aspect intéressant selon nous car ce concept, qui est au coeur de nombreuses
messageries sécurisées, est plutôt récent, et a fait l’objet d’un nombre non négligeable de publications
ces cinq dernières années.

Un état de l’art sur les échanges de clés à cliquet

En 2013, l’application de messagerie TextSecure, rebaptisée Signal peu après, introduisait un nouveau
protocole pour sécuriser les échanges entre deux interlocuteurs2. Dès l’origine, les implémentations
des algorithmes sont accessibles en open source, et trois ans plus tard, Moxie Marlinspike (à l’origine
de la fondation qui gère Signal) et Trevor Perrin publient les détails de ce qui fait la sécurité
de Signal : X3DH et l’algorithme intitulé Double Ratchet. X3DH est un protocole permettant à
deux participants, Alice et Bob, de négocier un secret commun, sans nécessairement être en ligne

2Initialement, TextSecure était un protocole de chi�rement des SMS/MMS basé sur O�-the-Record. En 2013, l’application
a migré du réseau GSM vers un transport data (reposant donc sur Internet et les couches TCP/IP), et a fait évoluer son
protocole d’authenti�cation et de chi�rement en parallèle.

viii Résumé en Français

même temps. Ce secret est usuellement utilisé par un protocole de chi�rement, qui va assurer la
con�dentialité des messages échangés. Le Double Ratchet va plus loin car il permet à Alice et Bob,
une fois qu’ils partagent un secret de base, de rafraîchir régulièrement ce secret et d’en dériver
de nouvelles clés cryptographiques, qui serviront à sécuriser leurs communications. Ce qui fait
l’intérêt du Double Ratchet, c’est qu’il garantit la sécurité des messages (des clés) passés et futurs
même si un adversaire accède aux clés long termes identi�ant les deux protagonistes, ou si cet
adversaire apprend les secrets présents mais reste passif. Il doit corrompre les clés régulièrement s’il
veut suivre la conversation. Ces caractéristiques sont appelées con�dentialité persistante (forward
secrecy) pour la première et con�dentialité future ou rétablissement pour la seconde. Et ce sont
notamment ces caractéristiques qui ont attiré l’attention sur ce nouveau type d’échange de clés
évolutif, baptisé échange de clés à cliquet. Après l’analyse de la sécurité de Signal en 2017 par Cohn
Gordon et al. [CCD+17], Bellare et al. ont proposé en 2018 une formalisation des échanges de clés
à cliquet [BSJ+17]. Dans ce premier e�ort, seul l’un des deux participants à l’échange fait évoluer
le secret (enclenche le cliquet). Parmi les articles qui ont fait suite à ce travail fondateur, nous en
retenons cinq, dont nous considérons qu’ils sont représentatifs. Les travaux de Poettering et Rösler
[PR18b] ainsi que ceux de Jaeger et Stepanovs [JS18b], tous deux parus à Crypto 2018, étudient la
sécurité maximale que l’on peut attendre de ce genre d’échange de clés, que ce soit au niveau de la
con�dentialité persistante ou future. L’intérêt théorique de leurs propositions est indéniable mais
elles nécessitent des primitives de cryptographie à clé publique permettant une mise à jour publique
des clés, et les constructions pratiques qu’ils proposent pour se conformer à ce modèle idéal font
appel à du chi�rement basé sur l’identité hiérarchique, une brique cryptographique qui n’est, à
l’heure actuelle, pas assez e�cace pour ce genre d’application. L’année suivante, Jost, Mauerer et
Mularczyk [JMM19], Durak et Vaudenay [DV19] et Alwen Corretti et Dodis [ACD19] ont également
proposé des modèles de sécurité permettant d’atteindre di�érents compromis entre sécurité et
e�cacité. Les derniers formalisent une sécurité proche de celle proposée par Signal, dont on sait
qu’elle est atteignable en pratique, tandis que les premiers dé�nissent une sécurité presque optimale,
mais ne proposent pas d’implémentation. La �gure ci-dessous résume le classement des di�érentes
propositions sur le plan de la sécurité.

Signal-like
•

[ACD19]
symmetric + cPK

PRF-PRNG

sub-optimal
•

[DV19]
cPK

CR hash

almost-optimal
•

[JMM19]
cPK + suPK

ROM

optimal
•

[JS18b]/[PR18b]
puPK

ROM/CR hash

Positionnement des di�érentes propositions en terme de sécurité. cPK signi�e cryptographie
à clé publique classique, suPK cryptographie à clé publique avec mise à jour secrète, et puPK
cryptographie à clé publique avec mise à jour publique. Nous précisons également si les preuves de
sécurité associées sont données dans le modèle classique, en se basant sur des fonctions de hachage
résitantes aux collisions (CR) ou dans le modèle de l’oracle aléatoire (ROM).

Plusieurs appareils pour un utilisateur

Une caractéristique ressort de l’état des lieux précédent : les échanges de clés à cliquet sont par
défaut dé�nis pour deux participants, ce qui représente, dans le cas d’une messagerie, deux appareils,
généralement le téléphone de Bob et celui d’Alice. Or la tendance est actuellement à la multiplication

Mes contributions ix

des appareils : smartphones, tablettes, ordinateurs portables, montres, ... Pour que cette pluralité ait
un sens (du moins sur le plan technologique), le minimum attendu est que ces appareils puissent
inter-opérer. Si l’on parle de messagerie, un utilisateur doit pouvoir avoir un compte unique et
suivre ses conversations depuis l’un ou l’autre de ses appareils. Pourtant, aucun protocole adressant
spéci�quement cette problématique n’a été proposé ni analysé jusqu’ici. Les équipes de la fondation
Signal ont publié un protocole baptisé Sesame, qui répond à cet usage en multipliant les canaux
Signal traditionnels, deux à deux, entre tous les appareils qui entrent en jeu dans la conversation :
tous ceux de Bob et d’Alice. Un inconvénient, important selon nous, de cette solution, outre que
le fait que le nombre de canaux deux à deux nécessaires augmente de façon polynomiale avec les
appareils d’Alice et de Bob, est que chacun doit voir les appareils de l’autre pour pouvoir établir un
canal avec eux.

Nous proposons une solution alternative, qui se décompose en deux parties : la première est un
mécanisme de multicast dont les clés évoluent dans le temps, qui permet à un groupe d’appareils de
communiquer entre eux tout en conservant les propriétés de sécurité de Signal, dont la con�dentialité
persistante et future. Cette nouvelle primitive, que nous appelons multicast dynamique à cliquet est
proche des multicasts existant, mais prend en compte des contraintes supplémentaires. L’une est
qu’il ne doit pas y avoir d’autorité centrale, car aucun appareil ne doit être maître. L’autre est le
besoin de rafraîchir régulierement les clés. En�n, nous utilisons le fait que les appareils qui doivent
communiquer appartiennent à un utilisateur unique, ce qui permet d’assurer une authenti�cation
initiale forte plus simplement. Nos travaux dé�nissent un modèle de sécurité associé à cette primitive,
qui formalise quelles propriétés sont attendues et sous quelles conditions. L’un des points d’intérêt
de ce modèle réside dans la dé�nition des sessions correspondantes, une session étant l’exécution du
protocole par un participant. Cette notion est usuelle pour les échanges de clés, et sert à identi�er
les deux sessions qui exécutent le protocole ensemble, mais il a fallu l’étendre pour prendre en
compte plus de deux participants. Comme les sessions ont des durées de vie longues (c’est une des
caractéristiques des sessions de messagerie asynchrone) et que les appareils peuvent être ajoutés ou
révoqués en cours de session (c’est l’aspect dynamique du protocole), il a également fallu dé�nir la
notion de correspondance entre sessions relativement aux di�érentes étapes du protocole. Nous avons
donc introduit la notion de chaînes de session, qui permettent de relier, dans l’analyse de sécurité,
deux appareils qui ont participé à la même instance du protocole mais qui étaient présents à des
étapes di�érentes. En�n nous proposons une construction basée sur des primitives cryptographiques
classiques : un chi�rement à clé publique et un code d’authenti�cation de message (MAC).

La seconde partie de ces travaux présente une dé�nition ainsi qu’un modèle de sécurité pour
un échange de clés à cliquet pour plusieurs appareils. Une attention toute particulière est portée
à la dé�nition de la fraîcheur d’une session, qui encadre en quelque sorte les pouvoirs donnés à
l’adversaire que l’on considère, a�n de pouvoir transposer les conditions de fraîcheur du modèle
pour la version classique de Signal proposé par Cohn Gordon et al. ([CCD+17]). Encore une fois,
la notion de correspondance des sessions requiert de la vigilance et de nouvelles dé�nitions. Nous
montrons ensuite qu’il est possible de composer le multicast à cliquet dé�ni plus haut et le protocole
Signal mentionné dans l’état des lieux, pour obtenir un protocole d’échange de clés à cliquet à
plusieurs participants, dont nous prouvons qu’il est sûr dans le modèle dé�ni ci-avant.

Sécuriser le (futur?) protocole de messagerie de groupe MLS

Depuis février 2018, des chercheurs et des ingénieurs travaillent ensemble dans le cadre d’un groupe
de travail de l’IETF (Internet Engineering Task Force) a�n de mettre au point une solution de
messagerie de groupe asynchrone sécurisée, baptisée MLS, pour Messaging Layer Security. Cette

x Résumé en Français

solution vise des propriétés de sécurité semblables à celles de Signal, à savoir la con�dentialité et
l’authenti�cation propres à un canal sécurisé, ainsi que la con�dentialité persistante et future. Le
coeur de leur proposition est un protocole baptisé TreeKem. Comme son nom l’indique (Tree signi�e
arbre en anglais), ce protocole est basé sur une structure d’arbre binaire et permet à n’importe
quel membre du groupe - une feuille de l’arbre - de mettre à jour le secret du groupe : la racine.
Nos travaux s’intéressent à une faiblesse du protocole, identi�ée formellement dans le dernier
avant-projet rendu public (draft 11 [BBM+20]) : lorsqu’un utilisateur met à jour le secret racine, il
doit envoyer des informations à certains nœuds de l’arbre, a�n que chaque membre du groupe -
chaque feuille - puisse prendre en compte cette mise à jour (chaque feuille récupère l’information
auprès de son nœud plus proche parent). Chaque nœud reçoit donc un secret qui lui est propre et
qui dépend de sa position dans l’arbre, mais tous ces secrets sont néanmoins dérivés d’un même
secret initial choisi par l’auteur de la mise à jour. De chacun de ces secrets est également dérivée une
information publique, envoyée à tous. Dans la version actuelle, les participants ne peuvent véri�er
la validité de la mise à jour reçue qu’une fois qu’ils l’ont déchi�rée. Si un utilisateur malveillant
envoie des informations de mise à jour incorrectes à une certaine partie de l’arbre, les participants
correspondants ne vont le voir qu’à réception. Et ceux qui auront reçu des informations correctes
prendront en compte la mise à jour, ce qui exclura d’o�ce les premiers. Nous introduisons une étape
de véri�cation e�ectuée par le serveur, avant de délivrer les messages de mise à jour. L’idée étant que
le serveur puisse véri�er que tous les messages chi�rés de mise à jour contiennent des informations
correctes, sans rien apprendre d’autre sur le contenu des di�érents messages, qui est secret puisqu’il
mène à la clé de groupe. Notre solution s’appuie sur deux primitives cryptographiques : un protocole
de preuve de connaissance à divulgation nulle d’une part, qui montre que les données publiques de
la mise à jour sont bien toutes calculées à partir de secrets dérivés d’un secret initial commun. Du
chi�rement véri�able d’autre part, qui permet à l’auteur de la mise à jour de prouver au serveur que
les éléments chi�rés à destination des autres nœuds sont bien les secrets qui sont considérés dans la
preuve de connaissance.

Les clés publiques de chaque nœud sont obtenues en appliquant successivement la fonction de
dérivation HKDF au secret initial, puis en e�ectuant une multiplication dans un groupe �ni d’ordre
premier (instancié par une courbe elliptique). Malgré l’intérêt fort de la communauté cryptographique
pour les protocoles de preuve à divulgation nulle, peu de solutions existent pour prouver l’exactitude
de calculs qui marient des étapes algébriques et des étapes représentées plus e�cacement par un
circuit. Nous proposons donc deux protocoles distincts pour calculer une preuve de connaissance
à divulgation nulle qu’un élément y est bien le résultat du calcul d’un circuit C sur une entrée x,
étant donné uniquement les mises en gage algébrique (de type Pedersen) de l’entrée x et de la sortie
y. Le premier est une extension direct du travail de Backes et al. ([BHH+19]), basé sur la technique
de calcul multipartite « dans la tête » (MPC in the head). Le second (décliné en deux variantes)
est réservé au cas ou le circuit C représente une fonction pseudo aléatoire car il s’appuie sur des
propriétés spéci�ques de ces fonctions.

Contents

Remerciements i

Résumé en Français iii
Pourquoi utilise-t-on Whatsapp? . iv
Mes contributions . vii

1 Introduction 3
1.1 Why Johnny uses Whatsapp ? . 4
1.2 Contributions . 7
1.3 Organisation of this manuscript . 9

2 Notations, De�nitions and Preliminaries 13
2.1 Mathematical Notations . 14
2.2 Provable Security . 14
2.3 Basic cryptographic primitives . 20
2.4 Key exchange protocols . 31
2.5 PRF, hash functions and random oracle . 40
2.6 Zero-Knowledge Proofs . 44
2.7 Veri�able encryption . 53

3 Ratcheted Key Exchanges 57
3.1 OTR and Signal : the practical protocols . 59
3.2 The security of Signal . 63
3.3 From a protocol analysis to a formal cryptographic primitive 70

4 From Single to Multi-Device Instant Secure Messaging 83
4.1 Existing solutions . 84
4.2 Our protocol overview . 86
4.3 A Ratcheted Dynamic Multicast as a new primitive. 90
4.4 A Multi-Device Messaging protocol . 107
4.5 A proof of concept implementation. 120

5 From One-to-One to Group Instant Secure Messaging 125
5.1 Messaging Layer Security . 126
5.2 Securing MLS updates . 129

xiv Contents

5.3 Zero Knowledge for a PRF on committed input and output 130
5.4 Implementation results . 144

6 Conclusion 147
6.1 Summary of the Results . 147
6.2 Open Problems . 147

Bibliography 149

List of Figures 165

List of Tables 166

1

Introduction 1
I

n its early stages, cryptography was a matter of war and power: Ceasar the emperor and
the cipher that bear his name, has become a classical example, or Mary Stuart, queen of
Scotland, that encoded her messages sent from her captivity in the mid 16th century, to

foment the murder of Elizabeth the �rst, back then Queen of England. Even the basics of cryptog-
raphy, were originally edited in a military manual by Kercho�s in 1883. And when cryptography
is immortalized in a box-o�ce success, it is with the famous machine Enigma and its role during
the second world war. There is no doubt that some common people, beyond those examples that
have gone down to posterity, got interested in cryptography, as a hobby or, at least, without warlike
intentions. But one can bet they were few. The advent of computer science and, later, of the Internet
has completely rescaled the role of cryptography. Little by little, it has been introduced to secure
speci�c sensitive activities, in the domain of banking for instance, before being proposed directly
to secure one-to-one communications, for anyone willing to, with applications such as OpenPGP.
In that sense, Secure Instant Messaging (SIM) solutions represent a kind of apotheosis: they o�er
cryptography for anyone in his everyday life communications. In the �rst part of this introduction,
we will get interested in how “anyone” welcomes and understands this o�er. In the second part, we
will detail our contributions to the domain of SIM.

Contents

Pourquoi utilise-t-on Whatsapp ? . iv
Un cobaye nommé Johnny . iv
Petite balade dans la tête d’un utilisateur . v

Mes contributions . vii
Un état de l’art sur les échanges de clés à cliquet vii
Plusieurs appareils pour un utilisateur . viii
Sécuriser le (futur?) protocole de messagerie de groupe MLS ix

4 Chapter 1 Introduction

1.1 Why Johnny uses Whatsapp ?

Humans are social beings. One of our primal need is to communicate with each other. Hence, there
is no surprise that, with the advent of the Internet, a large number of communication solutions ap-
peared, among them mail, Instant Messaging and more recently with the revolution of smartphones,
asynchronous Instant Messaging applications. WhatsApp, FacebookMessenger, Telegram, Signal,
Threema, Treebal1,. . . , are daily used by billions of people around the world. Instant messaging can
be seen as a place to converse informally with a friend, as you would do if you’d meet him in the
street, or in a café. But sitting at your table, you would feel pretty uncomfortable if you knew that
the other customers around you were listening to your conversation. You would maybe whisper or
leave and �nd another quieter place. Messaging applications follow the same rules: they should
provide some privacy to their users. This is the purpose of Secure Instant Messaging apps, that
propose end-to-end security. Authentication and privacy are o�ered from the sender’s phone, to the
receiver’s phone, and should not be defeated in between. But an interesting question is how much
people really care for virtual privacy. And how long they are eager to walk to �nd quieter café !

1.1.1 Usability: come and meet Johnny

To get some clues, one can ask Johnny. Johnny is the reluctant hero of a series of works about
security and usability. Johnny’s story begins in 1999, in the episode “Why Johnny can’t encrypt”
by Whitten and Tygar ([WT99]). The purpose was to evaluate the design of security interfaces, to
identify what where the obstacles that refrain a user - Johnny - from correctly using them (or, even
more, from using them at all). The assessment was that a wrong use of a security application could
cause as much - or even more - damage than a poor implementation. The authors conducted two
parallel studies on PGP 5.02. This commercially available interface came over a mail provider, to
secure the communications by encrypting and signing (electronic signature) the emails. It openly
targeted a broad public, as its creators stated for instance that “signi�cantly improved graphical
user interface makes complex mathematical cryptography accessible for novice computer users.”
No need to understand the technical principle to use the product. And there should be no need to
worry about it. How many car drivers really understand how their motor works? But a driver needs
to learn how to properly use his car, because this is not intuitive. If no such training is available for
an application, then the use must be intuitive. Whitten and Tygar de�ned more precise criteria for a
secure interface to be usable in practice.

De�nition 1.1 (Security software usability). A security software is usable if the people who are
expected to use it:

• Are reliably made aware of the security tasks they need to perform

• Are able to �gure out how to successfully perform those tasks

• Don’t make dangerous errors

• Are su�ciently comfortable with the interface to continue using it

We will not go into the details of this study, as the interface of PGP 5.0 is no longer relevant.
Also a main di�erence with a Secure Instant Messaging application, is that this software was to

1This one is not so famous yet but has been developed in Rennes.
2The application is now in version 11.

1

1.1 Why Johnny uses Whatsapp ? 5

be installed by people willing to protect their communications, while SIM (not all but most of
them) provide end-to-end security by default. Among the questions Whitten and Tygar wanted
to explore were whether a person - our Johnny - who acquires PGP would understand the basics
of cryptography (for instance that privacy is achieved by encryption, or that public keys need to
be exchanged), and also whether he would be able to use correctly PGP “within a few hours of
reasonably motivated e�ort”. In both cases, this is already a lot to ask to a user, and does not �t
the pro�l of SIM users. Even if the need for more secure means of communication increases, we
will see later on that the billions of WhatsApp users do not raise security as a �rst motivation for
choosing this application. However some assessments, obtained from theoretical observations of
PGP and a case-study run with twelve participants, are still up-to-date. The design for instance,
should not assume that users will be motivated to read manuals, or follow tutorials. Maybe more
meaningful is the comment that “despite the fact that PGP 5.0 is attractive, with basic operations
neatly represented by buttons with labels and icons” only one-third of the participants, while being
generally educated and trained experienced at using email, were able to use PGP 5.0 to correctly sign
and encrypt an email message within 90 minutes, and one-quarter of them accidentally exposed the
secret they were meant to protect. The conclusion is that a well designed encrypt button is useless
if the user does not understand what encrypting corresponds to. The classical conception rules
do not apply, because the concept behind the buttons are not familiar to the user, and the authors
conclude that “designing security that is usable enough to be e�ective for those who don’t already
understand it must thus require something more.”

New episodes of Johnny’s adventures are regularly released ([GM05], [CGM+11] and some more)
but we will leave our hero there, to focus on the case of messaging, keeping in mind that o�ering
cryptography to the masses is challenging.

1.1.2 A short trip in the user’s mind

From the time we quit Johnny, the scandal of the American mass surveillance in 2013 has clearly
modi�ed the use of communication technology. Or rather, has changed the perception of the
communication technologies by their users. This motivated the deployment of numerous secure
messaging applications, which, for most of them, seem to provide a better usability than their
predecessors. Unger et al. provide in [UDB+15] a large overview of the di�erent solutions available
in 2015 and compare those o�ers in terms of security and usability. Their work will follow us in
the next chapters of this thesis. An intuitive thought would tell us that, if on the one side people
are more and more aware of privacy concepts and, on the other side, if more applications (pretend
to) o�er such privacy with nearly no e�ort, everyone should be happy. A recent study shows that
it is not that simple. In [DNDS19], Dechand et al. tell us that the usability problems are not the
only obstacle to the adoption of encryption solutions. The mental model of the users are to be
considered. How aware are they about security threats? How do they receive technical solutions
such as encryption and authentication? The authors focus their study on messaging applications
and their main tool is WhatsApp.

WhatsApp is an Instant Messaging application that was released in 2009, and that saw its adoption
massively raise along the 2010’s, before being bought out by Facebook in 2014. In 2016, WhatsApp
announced that it introduces end-to-end encryption as an automatic feature. Dechan et al. took
advantage of this announce to study how people welcome the introduction of security features
in their every day life means of communication. They interviewed two sets of users, at di�erent
times: the �rst set was questioned in 2015, before WhatsApp’s announcement. The second set
was interviewed in 2017, nine months after end-to-end encryption had been introduced. The sets

6 Chapter 1 Introduction

were composed with various pro�le, with an average age around 30 in both cases and a technical
knowledge estimated as medium. The authors underline that their study was conducted only with
German participants, and so, does not pretend to be applied to other cultures directly. We feel that
this provides a general tendency, even if it would bene�t from some geographical enlargement.

Tell me where Johnny’s friends are, I’ll tell you where he is. Firstly, it is interesting to note
that the participants, both in 2015 and 2017, were aware that security threats exist. They mentioned
mobile providers, governments, intelligence agencies, hackers and commercial companies as being
potential spies. Considering WhatsApp, the fusion with Facebook appears as an additional threat.
However, some also believed that “ordinary people are not likely to be targeted for surveillance.
They stated that either rich, famous people, politicians or criminals are targeted.” They do not feel
directly a�ected. These results echo with the quantitative analysis conducted by De Luca et al.
([DDO+16]), that suggests “that peer in�uence is what primarily drives people to use a particular
mobile IM, even for secure/private IMs, and that security and privacy play minor roles.”

In encryption we don’t trust. The title of the article enlightens the main result. While the
participants could explain the idea of encryption, as being “a kind of secret code” or “secret language”,
some of them mentioning the need for a key or a password, they do not believe that there really
exists a solution stopping skilled attackers from breaking encryption. Considering WhatsApp, while
some of the participants of 2015 thought it was already encrypted, not all of the participants of
2017 were aware of the novel end-to-end encryption feature, despite the noti�cation message that
appears at the beginning of every conversation: “Messages you send to this chat and calls are now
secured with end-to-end encryption. Tap for more info.” And, in nearly every case, even when
informed of it, they were convinced that potentiality any of the above cited adversaries, or at least
WhatsApp, could read their messages: if WhatsApp controls the algorithm, then it can access to
all the data. One of the conclusion of the authors is that “users are overwhelmed by technology in
general and consider themselves to be helpless and vulnerable against skilled attackers”. Among the
recommendations, one is to speak user’s language. In fact, the terms “end-to-end encryption” were
opaque for most of the participants. The reaction of one participant when asked about WhatsApp
end-to-end encryption speaks for itself:“oh that was what this annoying noti�cation was about”.

Why authenticate? In terms of cryptography, authentication deals with being sure that the
person you are exchanging with is the intended person. If this concept seems quiet clear for
cryptographers, it reveals to be more foggy for non specialists. The participants, both in 2015 and
2017, do not understand how authentication can be achieved, nor why it is necessary. The study
highlights representative behaviours: �rstly, the conviction that one can rely on personal account
and identi�ers to know who you speak to “I assume that my friend and I have accounts, Alex27
and Katie07, for example. Then I send a message to them. Why should Pia23 read along?” It does
not appear as a threat to this participant that Pia23 could fool him by making him believe that she
is Alex27 for instance. Secondly, the feeling that “they would notice if a certain message does not
come from the sender (di�erent style of writing or language).” This review about authentication is
of prime importance considering WhatsApp, as authentication is the only step that requires a move
from the user. In order to identify an account owner, one should, before starting a conversation
with him, exchange a QR code or a sequence of numbers (which are the peer cryptographic key
�ngerprint) via another channel (direct meeting, phone...). This step is noti�ed to users, but remains
optional. All participants but one did not know about this security code veri�cation. And one clearly

1

1.2 Contributions 7

expressed that “it would be too inconvenient to scan QR codes of all contacts”. This con�rms the
demand for user-interaction-free solutions: “users should not have to care about security - it should
just be there for them.”

1.2 Contributions

In this thesis, we are interested in two services proposed by messaging applications: the multi device
accessibility and group messaging. If they can be considered as options, the above results show
that security will not be the main motivation for a user to select his favorite application and, in his
choice process, these options will surely be prefered to a certi�ed end-to-end security. Hence, nearly
all messaging applications, secure ones included, are willing to o�er them. What is at stake - and
this is the purpose of the work presented here, is to reach, for those services, an optimal level of
security, as for the classial one-to-one communications. While keeping in mind that the di�culty
of providing security does not only lie in the cryptographic corners. This manuscript exposes two
main contributions: the �rst [CDDF20], co authored with Sebastien Campion, Julien Devigne and
Pierre-Alain Fouque, was presented (virtually) at ACNS 2020. The second contribution [DDF21],
with co-authors Julien Devigne and Pierre-Alain Fouque was presented (still virtually) at ESORICS
2021. We adjoin to these contributions an expanded state-of-the art of the literature about Ratcheted
Key Exchange, which we think of interest for this concept, which is at the heart of many secure
messaging apps, is quiet novel and a wide range of papers have been published in a short period of
time.

1.2.1 A survey of the Ratcheted Key Exchange literature

In 2013, TextSecure introduced a new key management system for secure messaging. Some years
later, TextSecure was renamed Signal and in 2016, the two algorithms that composes this key
manadgement: X3DH and the Double Ratchet algorithm, were publicly released by their designers,
Trevor Perrin and Moxie Marlinspike, in the white papers [MP16a] and [MP16b]. X3DH is a non
interactive key exchange, that enables two participants, Alice and Bob, to negociate a shared secret
without being online at the same time. The Double Ratchet comes over and allows Alice and Bob
to refresh their shared secret regularly and derive cryptographic keys from it, keys that will be
used to secure their communications. One interesting property of the Double Ratchet is that the
con�dentiality of past and future messages is still guaranteed even after an exposure of long-term
keys or even of state secrets by a passive adversary. This forces the adversary to expose keys
regularly. Those features are often identi�ed as forward secrecy and healing. Because of those
feature, the literature got highly interested in this new kind of evolving key exchange, identi�ed as
Ratcheted Key Exchange.

We propose, in chapter 3, a review of this literature. We �rst recall the advent of the ratchet
mechanism, going from the historical O�-the-Record messaging protocol to our subject of interest:
the Double Ratchet and Signal. Then, we focus mainly on �ve major articles that we consider
as representative (Poettering and Rösler [PR18b], Jaeger and Stepanovs [JS18b], both published
at Crypto 2018, Durak and Vaudenay [DV19] published at IWESEC 2019, Jost, Maurer and Mula-
rczyk [JMM19] and Alwen, Coretti and Dodis [ACD19] both published at Eurocrypt 2019), trying to
�nely understand the di�erences, in term of security, between those propositions.

While comparing the above works, we try to highlight the reasons why the most optimal solu-
tions require complex cryptographic primitives such as identity based encryption, secure but yet
una�ordable for a practical messaging application.

8 Chapter 1 Introduction

1.2.2 A multi device solution for Signal

Our survey about Ratcheted Key Exchange underlines that these protocols are designed for one-to-
one communications only. But the technological race multiplies the number of devices that each user
can access: smartphones of course, laptops, pads, watches... For this plurality to have a sense (at least
at a technological point of view), the minimal usability requires that these devices should be able to
inter operate. Considering messaging applications, a user shall have a single account accessible from
any of his devices. We noticed, when we started looking in that direction, that no speci�c protocol
had been proposed, nor analysed. The Signal Team has released a protocol called Sesame, that only
duplicates one-to-one Signal channel between any pair of devices present in a conversation. A main
drawback of this solution, in addition to the non scalability of this multiplication of one-to-one
channels, is the fact that Alice can identify all of Bob’s devices.

We propose an alternative solution that overcomes this obstacle. Our contribution comes in two
parts: in a �rst step, we propose a ratcheted multicast that enables a bunch of devices to communicate
together while keeping the security properties of the Signal messaging, among them PFS and PCS.
This new primitive, identi�ed as a Ratcheted Dynamic Multicast (RDM), is close to existing multicast
protocols, with more constraints: no central authority, a regular renewal of the keys, and some
speci�c features: we take advantage of the fact that the devices belong to a single user for the initial
authentication process. We provide a security model for this new primitive. One point of interest is
a speci�c de�nition of matching sessions. Firstly, the traditional of matching has to be extended to
more than two sessions. Secondly, because the sessions are long-lived and continuously evolving
ones, the matching has to be de�ned relatively to the evolution of the shared state. We notably
introduce a concept of chained sessions to link sessions that run on di�erent devices at di�erent
times but correspond to a same execution. Finally, we propose a construction based on traditional
cryptographic primitives.

In a second step, we de�ne a security model for a multi device version of the Signal protocol,
which is formalized as a multi stage key exchange. We focus on the de�nition of the freshness
conditions, that are meticulously transposed from the one-to-one to the multi device version. Again
in this case, the de�nition of the matching requires a peculiar attention. We then detail how our
RDM can be associated with the existing Signal, with minor modi�cations, to provide a multi-device
ratcheted key exchange, that allows for a single Signal channel between the two participants, no
matter how many devices they use. We prove this modular approach to be secure in the sense of the
above model. Both our security model and our proof are settled on the original analysis of Signal
given by Cohn-Gordon et al. in [CCD+17].

1.2.3 Improving the security of the -to be standardized- Messaging Layer
Security group messaging protocol

Since february 2018, a group of researchers and engineers3 is working within the Internet Engi-
neering Task Force (IETF) to design a secure group messaging solution. Their protocol is called
MLS: Messaging Layer Security. As the one-to-one Signal, its aims at providing forward and post
compromise secrecy. The cryptographic heart of MLS is called TreeKEM. As the name suggests,
this protocol is based on tree structure and enables any member of the group - a leaf of the tree - to
regularly update the group secret - the tree root. Our contribution addresses a particular weakness
of this protocol, clearly identi�ed in the last draft ([BBM+20]): when a user updates the root secret,

3In the original working group were Richard Barnes from Cisco, Jon Millican from Facebook, Emad Omara from Google,
Katriel Cohn-Gordon both from University of Oxford and Facebook and Raphael Robert from Wire.

1

1.3 Organisation of this manuscript 9

he sends di�erent update information to di�erent nodes in the tree. These node secrets shall all be
derived from a single secret. Yet, receiving participants can only check the validity of the update
information once they have received it, which is too late: if a malicious user sends invalid updates
to some part of the tree, then the corresponding users will notice it after they processed it. And
the other users that received the correct update information will have moved forward to the new
root secret. We introduce a server checking step in the MLS protocol: the goal is that the server
shall be able to check whether the update messages are correct, without getting any information
about the update secret. The server can then decide to forward or not the update based on the
veri�cation of the proof. Our solution is settled on two cryptographic primitives. The �rst one
is a Zero-Knowledge proof, where the public statement is the public key of the node, computed
from the new node secret. The second is veri�able encryption, that enables the updater to prove to
the server that the update values encrypted for the rest of the tree are the one considered in the
Zero-Knowledge proof he supplies.

The public statement (the public key) for the Zero-Knowledge proof is obtained from the secret
through a hash like computation (more precisely a HKDF derivation) followed by an algebraic
multiplication. Despite the interest of the community in Zero-Knowledge, few propositions exist for
Zero-Knowledge proofs on statements that mix algebraic and circuit computations. As an inner
contribution, we propose two di�erent protocols to provide a Zero-Knowledge proof for a circuit,
given only Pedersen commitments of the input and output. The �rst is an extension of the recent
work of Backes et al. ([BHH+19]), based on the MPC in the head paradigm. The second is speci�c
to the case of the circuit representing a pseudorandom function (PRF), and requires some speci�c
properties of a PRF.

1.3 Organisation of this manuscript

The rest of the manuscript is organised as follows: chapter 2 introduces the notations and recalls
the de�nitions of some cryptographic primitives that are requested afterwards. The �rst part of
chapter 3 is dedicated to advent and the precise description of the current Double Ratchet and
X3DH algorithms. We also recall the main security analysis given for those in-use protocols. In
a second part of this chapter, we explore a more academic side of Ratcheted Key Exchange and
investigate on �ve articles that were published within the �ve last years. Our chapter 4 details our
contributions concerning the multi-device version of the Signal protocol, while chapter 5 is dedicated
to our contributions that concern the MLS group messaging protocol, including the Zero-Knowledge
part. Finally chapter 6 presents a conclusion of this manuscript and indicates some problems that
appeared to us, either as interesting follow up of our contributions, or more generally, as pertinent
challenges for the cryptographic community.

Personnal Contributions

[CDDF19] Sébastien Campion, Julien Devigne, Céline Duguey, and Pierre-Alain Fouque. Multi-
Device for Signal. Cryptology ePrint Archive, Report 2019/1363. https://eprint.
iacr.org/2019/1363. 2019 (cit. on p. 83).

[CDDF20] Sébastien Campion, Julien Devigne, Céline Duguey, and Pierre-Alain Fouque. Multi-
Device for Signal. In: ACNS 20, Part II. Ed. by Mauro Conti, Jianying Zhou, Emiliano
Casalicchio, and Angelo Spognardi. Vol. 12147. LNCS. Springer, Heidelberg, Oct. 2020,
pp. 167–187 (cit. on pp. vii, 7, 83).

https://eprint.iacr.org/2019/1363
https://eprint.iacr.org/2019/1363

10 Chapter 1 Introduction

[DDF21] Julien Devigne, Céline Duguey, and Pierre-Alain Fouque. MLS Group Messaging: How
Zero-Knowledge Can Secure Updates. In: Computer Security – ESORICS 2021. Ed. by
Elisa Bertino, Haya Shulman, and Michael Waidner. Cham: Springer International
Publishing, 2021, pp. 587–607 (cit. on pp. 7, 125).

1

2

Notations, De�nitions and
Preliminaries 2

I
n this chapter, we detail the notations and de�nitions that will be used in the rest of
this document. We start with standard mathematical notations, then continue with the
de�nitions of some cryptographic primitives that appear in our contribution. For each of

them, we expose the associated security requirements and elaborate on the related literature if
necessary.

Contents

1.1 Why Johnny uses Whatsapp ? . 4
1.1.1 Usability: come and meet Johnny . 4
1.1.2 A short trip in the user’s mind . 5

1.2 Contributions . 7
1.2.1 A survey of the Ratcheted Key Exchange literature 7
1.2.2 A multi device solution for Signal . 8
1.2.3 Improving the security of the -to be standardized- Messaging Layer Secu-

rity group messaging protocol . 8
1.3 Organisation of this manuscript . 9

14 Chapter 2 Notations, De�nitions and Preliminaries

2.1 Mathematical Notations

Sets. We denote by N the set of natural numbers, Z the set of integers and R the real numbers.
Let z be an integer, we denote z mod q the rest in the euclidean division of z by q. For any n ∈ N,
Zn denotes the ring of integers modulo n, Z/nZ (Z0 ∼= Z). For a prime q ∈ N, Fq denotes the �eld
of integers modulo q.

De�nition 2.1 (Negligible.). A function negl : N → R+ is said to be negligible if, for every c ∈ N,
there exists an integer nc such that, for all n ≥ nc, negl(n) ≤ n−c.

Probability. Given a sample space Ω, we denote with Pr[e] the probability of the speci�c event
e, subset of Ω. The description of the probabilities of the events of Ω is called a distribution of
probabilities D over Ω. We denote by x D←− Ω when x is sampled in Ω following the distribution D.
When the sample space is unambiguous, we denote this sampling simply x← D.

Uniform distribution. Considering a �nite set S, the uniform distribution over S describes the
fact that each event in S is observed with equal probability. We note s←$S when s is sampled
uniformly (following the uniform distribution) in S.

De�nition 2.2 (Indistinguishability of distributions). Let {D0
n}n∈N and {D1

n}n∈N be two sequences
of distributions, de�ned over a set Sn for each n. One says that {D0

n}n∈N and {D1
n}n∈N are:

• perfectly indistinguishable if for every n, D0
n = D1

n;

• statistically indistinguishable if there exists a negligible function negl such that for all n ∈ N,∑
i∈Sn

|Prx←D0
n

[x = i]− Prx←D1
n

[x = i] | ≤ negl((n)) ;

• computationally indistinguishable if for every algorithmA running in poly-time from {0, 1}n to
{0, 1}, there is a negligible function negl so that for all n ∈ N,

|Prx←D0
n

[A(x) = 1]− Prx←D1
n

[A(x) = 1] | ≤ negl((n)) .

2.2 Provable Security

In the early stages of cryptography, the di�culty of recovering the information hidden in an
encrypted message lied in �nding which transformation had undergone the original message. Had
the letters been switched? Had the original message been mixed with another? The secret lied more
in the treatment - the algorithm - than in the key element (the switch coe�cient for instance). In
1883, Auguste Kercho�s, a linguist from Netherlands, set out, in an article entitled “La cryptographie
militaire”, six rules that a cryptographic system should verify. Among them, the most famous states
that a cryptographic system shall not require secret (“Il faut qu’il n’exige pas le secret et qu’il puisse
sans inconvénient tomber aux mains de l’ennemi.”). Following this rules, the security must lie in a
secret element - the key - that shall be easily communicated. Two questions naturally arise: which
tool can be used to design such a cryptographic solution? And how to be sure that a solution is
actually secure enough?

A mathematical answer to the �rst question appears as one-way functions. A function is said
to be one-way if it is easy to compute but di�cult to invert. Here “easy” shall be understood as

2

2.2 Provable Security 15

possible in polynomial time while “di�cult” means that the probability of success in polynomial
time is negligible. For encryption schemes, an extra property is needed, called a trapdoor. A function
is said to be a trapdoor one-way function if it is easy to compute, hard to invert, but there exists
an additional information: the trapdoor t, such that the inversion of f given t is easy. One-way
functions formalize the existence of hard problems, on which are based the modern cryptographic
primitives.

For the second question regarding the security, this is precisely the goal of provable security, to
provide proofs that a cryptographic function or a protocol, reaches a certain level of security. We
�rst recall some ideas and de�nitions about hard problems commonly invoked in cryptography,
before looking deeper into the domain of game based security proofs. (The habilitation thesis of
David Pointcheval [Poi02] was a great help to better understand these notions).

2.2.1 Complexity

In the following, we give some informal de�nitions concerning the theory of complexity, trying to
give an intuition of expressions that will appear in this document, notably the notion of polynomial
time.

Turing machines. A Turing machine is a mathematical abstract model of computation. Roughly,
it works with a in�nite tape on which symbols are written, and on which the machine can perform
read and write operations. The machine also keeps in memory its state, that may evolve with
each operation. A table determines, for each couple (state of the machine, symbol) the symbol
to write and the next move to do: this represents the algorithm. Such a Turing machine is called
deterministic. If several possible instructions correspond to each combination (state, symbol), then
the machine is said to be non deterministic. In this case, the machine is sometimes called a lucky
one because it is supposed to always guess the good combination of instructions to reach the desired
result when it is possible. In the following, a Turing machine, if not explicitly described as non
deterministic, is supposed deterministic. The running time of a Turing machine corresponds to the
number of instructions needed before the machine stops (reaches an ending symbol). In addition, a
Turing machine (deterministic or not) can sometimes bene�t from an extra random tape, where only
random bits are written. In this case, the machine is said to be probabilistic and its running time is
more involved, as it depends on the probability of acceptance taken over all the possible random
tapes. In this thesis, we will most of the time talk about deterministic or probabilistic algorithms,
without the formalism of Turing machines.

NP problems. In complexity theory, problems are ordered in classes, each class gathering prob-
lems that are equally di�cult to solve, considering a speci�c factor (time, space, . . .). In cryptography,
one often considers time complexity. The class P gathers problems that can be decided by a deter-
ministic Turing machine working in polynomial time. That is, the time needed for the machine to
end can be written as polynomial in the length of the entry (the symbols written on the tape at the
beginning). In terms of complexity theory, this means that the problem can be easily solved. The
term easily is to be considered cautiously here. In fact, depending on the polynomial, a problem
in the class P can still be di�cult to solve in practise. The class NP gathers problems for which
a solution can be veri�ed in polynomial time by a deterministic machine but that can only be
decided in polynomial time by a non deterministic Turing machine (NP stands for Non deterministic
Polynomial time), which means the problem is di�cult. A problem is said to be NP-complete if it is
in NP and it is at least as di�cult as all problems in NP (NP-hard). Hence, NP-complete problems

16 Chapter 2 Notations, De�nitions and Preliminaries

should represent a great opportunity to design one way functions. However, the di�culty of most
NP-complete problems lies on the di�culty of some particular instances and thus nothing insures
that any random instance will provide the desired security. The factorization and the discrete
logarithm problem, two of the main cryptographic assumptions in use nowadays, are NP problems
but not proven in npol \ P neither NP-complete (and highly suspected not to be for the last part).

2.2.2 Game-based proofs

Security parameter. The security of a practical cryptographic algorithm is not something ab-
solute (whereas the ideal one-time pad o�ers a perfect security). It depends notably on the com-
putational power of an attacker. Considering an unlimited attacker, no primitive can be proven
secure. The security parameter, denoted λ ∈ N, can be seen as a bound on the adversarial power.
Consequently, the security parameter will also determine the size of the parameters of the algorithm.
Considering the complexity theory, the time complexity of the algorithms shall be determined
relatively to the length of the input. For key generation algorithms for instance, that shall return a
key of length λ having as only input λ, it is necessary to give as an input a unary representation of
the security parameter: 1λ, to have the actual bit size of the security parameter (and not its log2
value) in�uence the time complexity.

Adversary. A cryptographic security bound is always de�ned relatively to an adversary A. The
adversary is seen as a probabilistic Turing machine running in time polynomial in the security
parameter. We will talk about a PPT adversary.

Security goals. Before proving anything, the �rst question to answer is: what do I want to prove
i.e. what is the target of the adversary? The answer depends on the scheme. For instance, secret
key encryption schemes may want to protect themselves from an attacker who recovers the secret
key. But this is a very di�cult goal and proving the security of a scheme for this kind of attacker
does not mean the scheme is secure against attacker with smaller ambitions, such as obtaining
some information about a plaintext from a given ciphertext. Hence, di�erent degrees of security
have been de�ned for encryption, as we detail in subsection 2.3.1. One can identify two main
categories of security goals: computing ones, where the adversary is asked to produce a value, and
distinguishing ones, where the adversary is asked to make a di�erence between two values, usually
a value computed as required by the scheme and a random one.

Security experiment. A security experiment is a mental game between the adversary A and
a challenger. The challenger emulates the cryptographic algorithm that is being evaluated. The
adversary communicates with the challenger through oracles. The oracles can represent some of the
algorithm steps. They can also represent some additional power of the adversary. For instance, the
ability to access some side data. To design a security experiment, one has to determine the security
goals and the adversary’s power.

Adversary’s advantage. The security of a scheme ALG considers the probability of success - the
advantage - of an adversary A who plays a security experiment EXP. We denote AdvEXP

A,ALG(λ) this
advantage. In a distinguishing game for instance, a random answer has a chance over two to be
correct. The advantage of the adversary is determined as its probability to win compared to the
lucky one-half probability. Suppose, without loss of generality, a security experiment EXP where

2

2.2 Provable Security 17

the challenger samples a bit b←$ {0, 1}. If b = 0, he returns a value correctly computed by the
algorithm ALG that is evaluated. If b = 1, he returns a random value with the same characteristics
(e.g. bit length). The adversary A returns 1 or 0 depending on which value he thinks was given to
him. There are two equivalent ways to measure his advantage. Either one considers his probability
of winning, then:

AdvEXP
A,ALG(λ) =

∣∣∣∣Pr[A wins EXP]− 1
2

∣∣∣∣ .
Or one measures the probability that A behaves the same, no matter what value is given to him:

AdvEXP
A,ALG(λ) = |Pr[1← A|b = 0]− Pr[1← A|b = 1]| .

Both solutions are equivalent up to a factor 2. The second often makes it easier to formalize
the security reduction. The �nal advantage for the security experiment is the maximum of the
adversary’s advantage, taken over all possible adversaries in the class of the one considered in the
experiment (for instance PPT adversaries).

AdvEXP
ALG(λ) = max

A
AdvEXP

A,ALG(λ).

Security reductions. The main goal of a security proof is to show that winning the security
experiment is as hard as solving a problem known to be di�cult, called a security assumption.
Security reductions are an e�cient tool inherited from the theory of complexity: given an adversary
A who wins the security experiment, one constructs an adversary B who calls A to break the
security assumption. The running time t′ of B can be measured as the running time t of A plus the
auxiliary operations required by the simulation. The running time of B should remain polynomial.
As the security assumption is considered as unbreakable in polynomial time (up to some negligible
probability), an e�cient adversary A can exist at most with this negligible probability. This is
expressed as:

AdvEXP
A,Primitive(λ) ≤ L · AdvSec assumption

B (λ),

where L represents a loss factor that can arise in the reduction. In order to use A, B shall simulate
the challenger of A. A particular attention must be taken to the correctness of this simulation,
for A shall not detect that B simulates his challenger, otherwise A could chose not to follow his
experiment’s rules.

Unfortunately, it is rarely possible to provide a direct reduction from the original algorithm to a
single security assumption. A game based proof consists in modifying step by step the original game,
to end with a game that measures exactly the probability of the adversary to break the security
assumption. Each hop from one intermediate game to another should be invisible to the adversary,
up to a negligible loss factor. There must be a negligible chance that A sees that the challenger does
not behave as expected in the original game. The �nal advantage of the adversary is upper bounded
by the addition of all those intermediate loss factors, using a triangular inequality.

Asymptotic or concrete security Originally, security reductions did not necessarily compute
accurately the reduction loss. In the asymptotic paradigm, as in complexity theory, any polynomial
time algorithm is considered as e�cient. Consequently, any problem that cannot be decided in
polynomial time is di�cult. Hence, the only requirement to prove the security is to exhibit a
polynomial reduction in the security parameter i.e. to build an adversary B as before with a running
time t′ “polynomial in the security parameter λ”. Given λ is big enough, there exists no e�cient

18 Chapter 2 Notations, De�nitions and Preliminaries

adversary breaking Primitive (as the advantage of B is negligible in λ). However, this does not give
any clue on how to concretely chose λ. That is why concrete security exhorts cryptographers to
explicitly express the reduction coe�cient hidden in L as well as the running time of B according
to the running time of A (see for instance [BKR94] or [BR96]). More precisely, a reduction in the
concrete security paradigm shall state that, given an adversary A running in time t(λ) who wins
the security experiment with probability ε(λ), then there exists an adversary B running in time
t′(λ) = T (t, λ) and breaking the security assumption with probability E(ε(λ), λ). considering the
worst case on each side, this is often written as:

AdvEXP
Primitive(t) ≤ E · AdvSec assumption(t′),

where t′ andE’s expressions are fully speci�ed. In order to unify notation throughout the document,
we will keep the asymptotic notation, considering the time complexity of the adversary is the worst
case time complexity of the experiment. When a concrete security reduction gives precise timing
comparison, we will write it explicitly.

Security assumptions based on the discrete logarithm. Let G be a cyclic group of order q (we
denote G as a multiplicative group but the following results naturally adapt to the additive notation).
Let g be generator for this group. Given any element h ∈ G, the discrete logarithm of h, relatively to
g, is the unique element x ∈ Zq such that h = gx. We give three common cryptographic problems
on such a group. The di�culty of the problem is expressed as the advantage of an adversary A who
tries to solve the problem. In the following, we implicitly consider that the initial setup (G, g, q) is
generated accordingly to the security parameter, such that the bit length of q is λ.

De�nition 2.3 (Discrete Logarithm (DL)). Given a security parameter λ, a cyclic group G of order q,
g a generator of G and h ∈ G, compute x ∈ Zq such that h = gx. The advantage of a PPT adversary
A is written as follows:

AdvDL
A,G(λ) = Pr

[
h

$← G, x← A(G, g, q, h) : h = gx
]
.

Computing the discrete logarithm is said to be hard in G if, for all PPT adversaries A, there exists a
negligible function negl such that:

AdvDL
A,G(λ) ≤ negl(λ) .

The computational Di�e Hellman problem exploits the di�culty of the discrete logarithm. Given
two elements gx, gy in G, the challenge is to compute the double exponentiation gxy .

De�nition 2.4 (Computational Di�e Hellman (CDH)). Given a security parameter λ, a cyclic group
G of order q, and g a generator ofG, the advantage of a PPT adversaryA for theCDH problem is written
as follows: AdvCDH

A,G (λ) = Pr[x, y←$ Zq, Z ← A(G, g, q, gx, gy) : Z = gxy]. The computational
Di�e Hellman assumption is said to be hard in G if, for all PPT adversaries A, there exists a negligible
function negl such that:

AdvCDH
A,G (λ) ≤ negl(λ) .

For the Decisional Di�e Hellman assumption, the adversary is not asked to compute a value
but to distinguish between a random element and a value gxy , knowing gx and gy . This can be
formalized as an experiment, given in Figure 2.1.

2

2.2 Provable Security 19

ExpDDH
A,G (λ)

1 : x, y, z←$Zq
2 : b←$ {0, 1}
3 : X ← gx, Y ← gy

4 : Z0 ← gxy

5 : Z1 ← gz

6 : b′ ← A(G, g,X, Y, Zb)
7 : return b′

Figure 2.1 – The Decisional Di�e-Hellman security experiment.

De�nition 2.5 (Decisional Di�e Hellman (DDH)). Given a security parameter λ, a cyclic group G
of order q, and g a generator of G, the advantage of PPT adversary A is written as follows:

AdvDDH
A,G (λ) =

∣∣Pr
[
1← ExpDDH

A,G (λ)|b = 0
]
− Pr

[
1← ExpDDH

A,G (λ)|b = 1
]∣∣ .

The Decisional Di�e Hellman assumption is said to be hard in G if, for all PPT adversaries A, there
exists a negligible function negl such that:

AdvDDH
A,G (λ) ≤ negl(λ) .

These problems are listed here from the most di�cult to the easier one. For given G and g, any
instance of the discrete log problem can be reduced to a random instance. Suppose one has to
determine x = logg y. Then one can sample a ∈ Zq , set Y = ya. Then if one �nds X = logg Y ,
X/a mod q is a valid value for x. This reduction is only valid if q is prime. There also exists an
additive reduction, valid for any q: if one �nds X = logg yga then x = X − a mod q. However, the
multiplicative one also shows that the di�culty is independent of g (x is a valid discrete log of Y
relatively to ga). Finally, if one can solve a non negligible number of instances in polynomial time,
then one can solve all instances in average polynomial time. One can expect all the instances to be
equivalently hard.

The di�culty of those problems depends on the structure of the group G. If G has no speci�c
algebraic structure that can help, then only generic algorithms, such as the Pollard-rho method
([Pol78]) are avalaible. These generic algorithms require at least√q operations.

A new problem, called Gap DDH was introduced in [OP01]. The idea is to measure the di�culty
to solve the CDH problem given the access to a DDH oracle.

De�nition 2.6 (Gap Di�e Hellman (gDDH)). Given a security parameter λ, a cyclic group G of
order q, and g a generator of G, the advantage of a PPT adversary A for the CDH problem is written
as follows:

AdvgDDH
A,G (λ) = Pr

[
x, y←$ Zq, Z ← AODDH(G, g, q, gx, gy) : Z = gxy

]
,

where the oracle ODDH is de�ned as follows: on a query (g, gx, gy, Z) ∈ G, it returns 1 if Z = gxy ,
0 otherwise. The gap Di�e Hellman assumption is said to be hard in G if, for all PPT adversaries A,
there exists a negligible function negl such that:

AdvgDDH
A,G (λ) ≤ negl(λ) .

20 Chapter 2 Notations, De�nitions and Preliminaries

Elliptic curves cryptography. A common concrete instantiation of a Di�e Hellman group is
based on elliptic curves. An elliptic curve is an algebraic curve on a �eld K satisfying an equation of
the form:

y2 = x3 + ax+ b, a, b ∈ K, (if car(K) 6= 2, 3).

In cryptography, we consider elliptic curves de�ned on a �nite �eld Fp, and denote them E(Fp).
A curve E(Fp), together with a virtual point P∞, composes an additive group. The addition and
doubling laws can easily be determined geometrically, we do not detail them here. The number
of points in E(Fp) is bounded by Hasse’s theorem and can be considered close to the number of
elements in the �eld of de�nition.

|]E(Fp)− (p− 1)| ≤ 2√p.

Usually, one look for elliptic curves on a prime order �eld Fp, with a point P ∈ E(Fp) of order q
such that q is close to p. More precisely, q divides]E(Fp) such that]E(Fp) = mq with m small.
Then 〈P 〉 is a cyclic group on which the discrete logarithm is hard. Considering a generic curve,
the most e�cient algorithms computes a discrete logarithm in O

(√
q
)

Hence one has to choose a
curve with order twice longer than the security parameter. However, one has to be cautious on the
choice of the curve because some speci�c curves have more e�cient algorithms.

2.3 Basic cryptographic primitives

2.3.1 Encryption

Encryption is maybe the most famous and the most ancient cryptographic primitive. Introduction
courses or popularization books often begin with old classics as the Caesar cipher. This basic scheme
consists in replacing each letter of the original by the letter situated some �xed position after in the
alphabet. Knowing the shift rate, the receiver processes the inverse shift and recovers the message.
This toy example is indeed a good introduction to symmetric encryption. Symmetric states that the
sender and the receiver play symmetric roles, as they both use a common secret key (in the Caesar
cipher, the shift rate) to encrypt and decrypt the message.

De�nition 2.7 (Symmetric encryption). A symmetric encryption scheme SE, with keyspace K,
message spaceM, and cipher space C, is composed of three algorithms:

• KeyGen : 1λ → K which on input a security parameter λ (given in unary representation),
outputs a secret key k;

• Enc : K ×M→ C, a probabilistic algorithm which, on input a secret key k and a messagem,
outputs a ciphertext c;

• Dec : K × C →M×⊥ which on input a secret key k and a ciphertext c, outputs a messagem
or ⊥ if the decryption was unsuccessful.

Sometimes KeyGen is preceded with a fourth algorithm SetUp that, on input the security param-
eter, returns common set up information. As it is most of the time omitted, we do not include it in
the de�nition. Considering Enc is a randomized algorithm, it may sometimes be of interest to make
the randomness visible. In those cases, we will write Enc(k,m : r) for the encryption of a message
m under the key k using randomness r.

2

2.3 Basic cryptographic primitives 21

The main di�culty of symmetric encryption is the sharing of a secret key. When the sender and
the receiver can not rely on a common value, they can use a public key encryption scheme. In this
setting, the sender hides the message using a public key, which is publicly available, as its name
suggests. The recipient can decrypt using a private key which he is the only one to know.

De�nition 2.8 (Public Key Encryption). A public key encryption scheme PKE with secret key space
SK, public key space PK, message spaceM, and cipher space C, is composed of the three following
algorithms:

• KeyGen : 1λ → SK × PK, which, on input a security parameter, outputs a key pair composed
of a private key sk and a public key pk;

• Enc : PK ×M→ C, a probabilistic algorithm which, on input a public key pk and a message
m, outputs a ciphertext c;

• Dec : SK × C → M×⊥, a deterministic algorithm which, on input a private key sk and a
ciphertext c, outputs a messagem or ⊥ if the decryption was unsuccessful .

Security de�nitions. In both cases, symmetric or public key encryption, the purpose is to protect
the content of the message (also called the plaintext) from an eavesdropper who would not know the
secret/private key, while keeping a practical algorithm. In order to prove that a primitive satis�es
this security goal, one needs a precise de�nition of what protecting means. The basic property one
expects from an encryption scheme is that, when following the protocol with the correct keys, then
a ciphertext decrypts to the original plaintext. This property is called correctness.

De�nition 2.9 (Correctness). A public key encryption scheme (respectively a symmetric encryption
scheme) is said to be correct if, for all key pairs (sk, pk) ∈ SK (resp. for all key k ∈ K), for all messages
m ∈M, Dec(sk,Enc(pk,m)) = m (resp. Dec(k,Enc(k,m)) = m).

The notion of semantic security was introduced by Goldwasser and Micali in [GM82]. Informally,
this property states that “an adversary, who knows the encryption algorithm and is given the
ciphertext, cannot obtain any information about the cleartext”. Another de�nition, proven equivalent
([GM84]), is based on the notion of indistinguishability. This notion is the one that is commonly used
to prove the security of encryption scheme, as it is easier to express and understand. The idea is that
the encryption scheme reaches its goal if an adversary has negligible chances to distinguish between
the encryption of two di�erent plaintext that he knows. If the adversary is only given access to
the public key (in the symmetric setting he is given an encryption oracle), then it corresponds to
indistinguishability under chosen plaintext attack (IND-CPA security). If he is also given access
to a decryption oracle, then the corresponding property is called indistinguishability under chosen
ciphertext attack (IND-CCA security).

We detail in Figure 2.2 the traditional IND-CPA and IND-CCA security experiments in the
asymmetric setting. Equivalent de�nitions exist for the symmetric setting. In this case, the adversary
is given access to an encryption oracle in place of the public key.

We give in Figure 2.3 another indistinguishability experiment, in which the adversary is asked
to distinguish between the encryption of a plaintext he knows and the encryption of a random
plaintext of the same size. We identify these variations as ror-CPA and ror-CCA because they
are related to the real-or-random (RoR) de�nition of indistinguishability (for both CPA and CCA
case) de�ned in [BDJR97] in the symmetric context, the main di�erence being that, in the latter,

22 Chapter 2 Notations, De�nitions and Preliminaries

ExpIND-CPA
A,PKE (λ)

1 : pk, sk← KeyGen(1λ)
2 : m0,m1 ← A(pk)
3 : b←$ {0, 1}
4 : c∗ ← Enc(pk,mb)
5 : b′ ← A(pk, c∗)
6 : return b = b′

ExpIND-CCA
A,PKE (λ)

1 : pk, sk← KeyGen(1λ)
2 : m0,m1 ← AODec1(pk)
3 : b←$ {0, 1}
4 : c∗ ← Enc(pk,mb)
5 : b′ ← AODec2(pk, c∗)
6 : return b = b′

ODec1(c)

1 : m← Dec(sk, c)
2 : return m

ODec2(c)

1 : if c == c∗

2 : return ⊥
3 : m← Dec(sk, c)
4 : return m

Figure 2.2 – IND-CPA and IND-CCA security experiments.

the adversary is given access to a real-or-random oracle instead of submitting a single plaintext.
The same way, the authors de�ne a left-or-right (LoR) indistinguishability experiment (again in the
CPA and CCA version), which is similar to the IND-CPA and IND-CCA experiments described
in Figure 2.2, but in the symmetric case and with the access to a left-or-right oracle instead of a
single pair of message to be submitted.

Expror-CPA
A,PKE (λ)

1 : pk, sk← KeyGen(1λ)
2 : m∗ ← A(pk)
3 : b←$ {0, 1}
4 : if b = 1
5 : c∗ ← Enc(pk,m∗)
6 : else
7 : m̃←$ {0, 1}|m

∗|

8 : c∗ ← Enc(pk, m̃)
9 : b′ ← A(pk, c∗)

10 : return b = b′

Expror-CCA
A,PKE (λ)

1 : pk, sk← KeyGen(1λ)
2 : m∗ ← AODec1(pk)
3 : b←$ {0, 1}
4 : if b = 1
5 : c∗ ← Enc(pk,m∗)
6 : else
7 : m̃←$ {0, 1}|m

∗|

8 : c∗ ← Enc(pk, m̃)
9 : b′ ← AODec2(pk, c∗)

10 : return b = b′

ODec1(c)

1 : m← Dec(sk, c)
2 : return m

ODec2(c)

1 : if c == c∗

2 : return ⊥
3 : m← Dec(sk, c)
4 : return m

Figure 2.3 – ror-CPA and ror-CCA security experiments.

For concision, we denote with VRS the version of the experiment we consider - IND or ror -
and with ATK the kind of attack, CPA or CCA. With these notations in mind, we can write the
following de�nition:

De�nition 2.10 (IND-CPA/IND-CCA/ror-CPA/ror-CCA security). For VRS ∈ {IND, ror}
and ATK ∈ {CPA,CCA}, a public key encryption scheme PKE = (KeyGen,Enc,Dec) is said to be
VRS-ATK secure if, for any PPT adversary A, there exists a negligible function negl such that:

AdvVRS-ATK
A,PKE (λ) =

∣∣∣∣Pr
[
ExpVRS-ATK

A,PKE (λ) = 1
]
− 1

2

∣∣∣∣ ≤ negl(λ) .

And AdvVRS-ATK
PKE (λ) = maxA(AdvVRS-ATK

A,PKE (λ))).

2

2.3 Basic cryptographic primitives 23

Note that for a symmetric encryption scheme, the number of queries to the encryption oracle
may be bounded by some qe ∈ N. This is necessary to formalise a concrete reduction and to turn the
advantage into practical recommendations. For instance, qe will bound the number of encryption
that can be done with a single key.

The authors of [BDJR97] give reductions between their LoR and RoR versions of indistinguishably,
that are transposable in the public key setting (mentioned in [HMS03] for instance) and the single
message case. We give the reduction from IND-CPA to ror-CPA. The CCA version follows easily
and is the one that we will call in chapter 4.
Proposition 2.1 (IND-CPA implies ror-CPA.). For any public key encryption schemePKE as de�ned
in de�nition 2.8,

Advror-CPA
PKE (λ) ≤ AdvIND-CPA

PKE (λ).

Proof. Let A1 be an adversary attacking a scheme PKE following the ror-CPA experiment. A1 We
present a second adversary A2 that uses A1 to attack PKE in the IND-CPA sense. A2 simulates
the role of the ror-CPA challenger for A1 and answers his queries as follows:

1. At the beginning of the experiment, A2 receives a public key pk and transmits it to A1.

2. When receiving the plaintext m∗ sent by A1, A2 identify it as m1, sample a second plaintext
m0 of the same size and transmits the pair (m0, m∗) to its own challenger.

3. When receiving an encryption cb, that depends on the bit b sampled by his challenger, A2
transmits it to A1.

4. Following the experiment, A1 answers to A2 with a bit b′ and A2 answer to his challenger
with the same bit b′.

We write the advantage of A2 as:

AdvA2,IND-CPA
PKE (λ) = |Pr[1← A2|b = 1]− Pr[1← A2|b = 0]| .

which is, as recalled in section 2.2.2, equivalent to the expression given in de�nition 2.10.
If b = 1, then the game played by A1 is exactly the experiment ror-CPA with b = 1. Hence

Pr[1← A2|b = 1] = Pr[1← A1|b = 1].
If b = 0, then the game played by A1 is exactly the experiment ror-CPA with b = 0.
Finally,

AdvA2,IND-CPA
PKE (λ) = |Pr[1← A1|b = 1]− Pr[1← A1|b = 0]| = AdvA1,ror-CPA

PKE (λ).

As this is true for any adversaryA1 against ror-CPA, one gets Advror-CPA
PKE (λ) ≤ AdvIND-CPA

PKE (λ).

The IND-CCA to ror-CCA is obtained exactly the same way, as A2 can perfectly answer to the
decryption queries of A1 calling its own decryption oracle.

About the IND-CCA de�nition. Our de�nition of IND-CCA security is sometimes referred to
as IND-CCA2 security, or adaptive IND-CCA. The IND-CCA1 case, considered in [NY90] for
instance, corresponds to the experiment where the adversary is given access to the decryption oracle
before he sends his challenge messages m0,m1 but no longer after he has received the challenged
ciphertext c∗1.

1It is sometimes identi�ed as the lunch-time attack as to a real adversary that would access the target computer during
the owner’s lunch time.

24 Chapter 2 Notations, De�nitions and Preliminaries

A classical public key example : ElGamal encryption scheme. We detail hereafter the ElGa-
mal encryption scheme, as an example of an IND-CPA secure construction. We present it in the tra-
ditional multiplicative group version but it transposes to an additive group (elliptic curves). Consider
a cyclic group G of prime order q, and g a generator for this group. LetM = G be the message space,
PK = G∗ be the public key space and SK = Z∗q be the private key space. The KeyGen algorithm con-
sists in sampling a private key sk in Z∗q and to de�ne the corresponding public key as pk = gsk. Then
the encryption of a group elementm is de�ned as : Enc(pk,m : r) = (gr, pkr ·m) = (c1, c2) where r
is a random element in Z∗q . The decryption algorithm proceeds as follow : Dec(sk, (c1, c2)) = c2/c

sk
1 .

Considering that G is a group where the Decisional Di�e Hellman problem is hard, ElGamal is an
IND-CPA public key encryption scheme. Some more example that we do not detail: RSA-OAEP is
proven IND-CCA secure in [FOPS04]. In [CS98], Cramer and Shoup also propose an IND-CCA
secure scheme, the �rst to be proven secure without using a random oracle2. Another IND-CCA
secure solution based on Elliptic Curve (known as ECIES) is de�ned in [Sho01].

Public Key Infrastructure. When one encrypts a message using a public key scheme, one has
to be sure that the public key he uses indeed belongs to the intended recipient. A common solution
is to have a third party - the public key infrastructure (PKI) - binds the public key to the owner of
the corresponding private key. This is often realised through a certi�cate authority, that delivers a
certi�cate for the public key.

The hybrid encryption or the KEM-DEM paradigm. As we have seen earlier, the traditional
asymmetric encryption solved the major problem of allowing encryption when no secret key is
shared among the users. However, this is done with an non negligible cost on e�ciency. Public
key encryption schemes rely on mathematically based cryptographic assumptions such as big
number factorisation (RSA [RSA78]) or discrete logarithm computation. Consequently, encryption
and decryption mechanism require to perform some heavy computation compared to classical
symmetric schemes. Hybrid encryption naturally appeared as a way to take the best of both worlds.
The idea is to encrypt the smallest amount of information: a key, using a public key encryption
scheme, then to encrypt the data with a symmetric scheme, so as to save time and bandwidth. This
is often identi�ed as the KEM-DEM (Key Encapsulation Mechanism - Data Encryption Mechanism)
paradigm, as formalised in [Sho01], where KEM part consists in the asymmetric encryption of the
symmetric key.

2.3.2 Multi-user, multi-recipient and broadcast encryption

In the real world, an adversary’s knowledge will not be limited to seeing communications corre-
sponding to a single (public key, private key) pair. It is commonly needed to encrypt a same content
to di�erent receivers. This is called broadcast or multicast. It is frequently used for copyright
management for instance, or for on demand/registration based video services. At a network level,
broadcast and multicast have a slightly di�erent signi�cation. A broadcast consists, for a user, to
send a packet to all the users of a network, using the speci�c broadcast IP address for the network
for instance. The sender may or not be itself a member of the network. A multicast does not target
a whole network, it selects the users concerned with the packet. Moreover, it is not restricted to a
single network: nodes from di�erent networks can be gathered under a same multicast IP address.

2The random oracle model is detailed in subsection 2.5.1.

2

2.3 Basic cryptographic primitives 25

However at a cryptographic level, broadcast, multicast or even multi-recipient encryption often
mingle a little.

Encryption in a multi-user setting A naive solution to encrypt a unique content to n users
that do not share a common key, is to provide each user with a personal (private, public) key pair.
Then anyone can encrypt a message to all users or to any subgroup of t users. In this precise case,
the adversary gets an easy access to a single message encrypted under several public keys, which
is out of the traditional frame of IND-CPA and IND-CCA de�nitions. Baudron et al. address this
problem, called multi-user setting, in [BPS00]. They even consider a broader problem, that consists
in an adversary who sees encryption of related messages under several keys. The authors show an
equivalence between the single user security - the traditional IND-CPA or IND-CCA - and the
multi user security, as long as the number of users, n, remains polynomial. The reduction from the
multi-user case to the single user case grows the advantage of the adversary by a factor n. The
security model follows the single user one except that the adversary is now expected to provide two
vectors of plaintext of dimension n, only one of which (depending on the challenger bit b) will be
encrypted and returned.

In [BBM00], Bellare et al. address the same problem. They also show that both the IND-CPA
and IND-CCA properties can be translated from the single user to the multi-user setting. However,
their model is slightly di�erent. Instead of providing two vectors of plaintext, their adversary is
given access to several oracles. Each public key pki corresponds to a left or right oracle OLRi
that, on input two messages of equal length m0,m1 and a test bit b, returns the encryption of mb

under the public key pki. The test bit b sampled by the challenger, who instantiates these oracles, is
unique. We detail in Figure 2.4 the security experiment for n user IND-CCA security. A similar
experiment without decryption oracles corresponds to n-CPA security. We recall in Theorem 2.2
the general reduction result of [BBM00]. This possibility of submitting several pairs of messages to
the challenger captures the ability for the adversary to see encryptions of related plaintext under
di�erent keys in an adaptive way. The result is similar to [BPS00], except for the loss factor which
is augmented due to the adaptiveness. The general security reduction induces a loss factor in nqe
where n is the number of users and qe is the number of queries to the OLR oracles authorized in the
experiment.

Expn-CCA
A,PKE(λ)

1 : for i = 1 . . . n
2 : pki, ski ← KeyGen(1λ)
3 : b←$ {0, 1}

4 : b′ ← AOLRb
1,...,OLRb

n,ODec1,...ODecn(pk1, . . . , pkn)
5 : return b = b′

ODeci(c)

1 : if c = c∗i return ⊥
2 : m← Dec(ski, c)
3 : return m

OLRbi(m0,m1)

1 : c∗i ← Enc(pki,mb)
2 : return c∗i

Figure 2.4 – The n-CCA security experiment.

De�nition 2.11 (n-CCA security). A public key encryption scheme PKE = (KeyGen,Enc,Dec) is
said to be n-CCA secure if, for any PPT adversaryA, making at most q queries to the decryption oracle
and qe queries to its left-or-right oracles, there exists a negligible function negl such that:

26 Chapter 2 Notations, De�nitions and Preliminaries

Advn-CCA
A,PKE(λ) =

∣∣∣∣Pr
[
Expn-CCA

A,PKE(λ) = 1
]
− 1

2

∣∣∣∣ ≤ negl(λ) .

We denote Advn-CCA
PKE (λ, q, qe) the advantage for this experiment.

The IND-CCA de�nition considered in [BBM00] corresponds to IND-CCA2, where the adversary
is given access to the decryption oracle even after its challenge queries.

Theorem 2.2 (Multi user public key encryption reduction). Let PKE = (KeyGen,Enc,Dec) be a
public-key encryption scheme. Let n, q, qe be integers.

Advn-CCA
PKE (λ, q, qe) ≤ nqeAdvIND-CCA

PKE (λ, q).

Where the maximum on the left side is taken over adversaries A running in time t, and the maximum
on the right side is taken over adversaries B running in time t′ = t+O(log(qen)).

The security loss in this general reduction is important but is shown to be as tight as possible
for a general reduction. However, the authors of [BBM00] also propose reductions for two speci�c
schemes, namely the ElGamal (cf. section 2.3.1) and the Cramer-Shoup encryption schemes ([CS98]),
both based on the DDH hypothesis, for which they reach better security bounds. We do not detail
those results here and refer to the original paper for more details.

Extending the work of Kurosawa [Kur02], the authors of [BBKS07] study another variant, called
multi-recipient encryption together with a security model. They especially consider the possibility
and the consequences on security of reusing randomness in the context of multi recipient encryption.
As they explain, reusing randomness while encrypting two di�erent messages under a single public
key can dramatically damage the security. But they show that reusing randomness while encrypting
messages to di�erent public key can be done securely, assuming a property - reproducibility - on
the base encryption scheme. The reproducibility test for a given encryption scheme Enc, considers
the possibility, given a public key pk1, the encryption c1 of a random message m1 under pk1
with randomness r (c1 = Enc(pk1,m1 : r), a (public,private) key pair (pk2, sk2) and another
random message m2, to produce in polynomial time the encryption of m2 under pk2 using the
same randomness r. The authors show that classical discrete log based encryption schemes, such as
ElGamal ([ElG84], cf. section 2.3.1) or DHIES ([ABR01]), which follows the KEM-DEM paradigm,
are reproducible, and so extend naturally to a random reuse multi recipient version. This work
potentially enables great e�ciency savings while implementing broadcast with a naive solution.
In particular, considering DHIES, this result o�ers the possibility to encrypt a single symmetric
key (single message multi recipient encryption) with single randomness (randomness reuse) for
all the recipients. However, their result is not focused on the single-message setting. Barbosa and
Farshim extend this work to the single message setting in [BF07]. They particularly show that a
relaxation in the de�nition of reproducibility can lead to e�cient speci�c single key multi recipient
Key encapsulation mechanisms, as introduced in [Sma05], and propose a construction from an
adaptation of the Cramer Shoup scheme ([CS98]).

Broadcast Encryption. The main drawback of the naive solution is easily seen : its ine�ciency.
This solution implies t encryptions of the message, for t recipients, which can be prohibitive
when t is large. The global public key of all possible users also grows linearly with the number
n of participants. However, on the positive side, each user has a constant secret key which size
is independent from the di�erent subsets considered. On the road for better solutions, Fiat and

2

2.3 Basic cryptographic primitives 27

Naor introduced in [FN94] a dedicated cryptographic primitive, called broadcast encryption. In
this seminal work, a broadcast encryption scheme involves a centre that generates keys for the
participants and encrypts information to a dynamically changing set of decoders, chosen among a
prede�ned collection of n users. At encryption time, the sender can choose, within the enrolled
n enrolled participants, a subset S actually targeted by the message. Depending on the scheme,
this can be done by positively de�ning the set of receivers or, on the “negative side” by excluding
users from the global set of participant. Among the security properties that a broadcast scheme
can achieve is collusion resistance: even if the users outside of the targeted set S collude, they do
not obtain any information on the message. Public key versions of broadcasting, introduced in the
context of traitor tracing ([TT01], [DF03] for instance), enable any user to encrypt information
to a designated group of users, only leaving to the centre the task of performing the set up phase
(the generation of the keys) and managing the group. The main di�erences with multi-recipient
encryption are the pre-de�ned pool of participants and the fact that a centre generates the keys for
the participants, which leads to di�erent schemes.

The research in the domain of broadcast consists in proposing secure schemes, with improved
properties, while achieving the better trade-o� between the ciphertext, the public key and the
private keys size. We give hereafter an overview of some important contributions in the domain,
that will be useful later on in this manuscript to understand why we did not rely on this primitive
in our contribution. We describe the practical aspects of the scheme and do not detail their security
properties. In 2011, Hieu Phan et al. proposed in [PPS11] an overview of the di�erent security
notions for broadcast encryption. We refer to this publication for more detail.

Two e�cient collusion resistant schemes were proposed by Boneh, Gentry and Water in [BGW05].
The �rst with small constant size ciphertext and private decryption keys. As in the naive solution,
the public encryption key grows linearly with the number n of participants in the targeted set. The
second solution has ciphertext, encryption and decryption keys in O(

√
n).

In [DPP07], Delarablée et al. introduced a dynamic version of broadcast encryption. The given
de�nition of a dynamic scheme especially requires that the ciphertext size shall not depend on
the number of participants. In that sense, the naive solution is not dynamic. In this scheme, new
users can join the initial pool of potential receivers, with the property that newcomers are able to
decrypt previously encrypted messages, and some other can be revoked. The public encryption key
size is O(n), the private decryption key size is constant (the decryption keys are not impacted by
the addition of a user) and the ciphertext grows linearly with the number r of participants in the
targeted set S .

An e�cient scheme, using identity based encryption is described in [Del07]. In this proposition,
the total number of participant can be in�nite as it corresponds to the number of identities. The
security depends on the maximum size of a set of receivers, not in the number of decryption keys.
The scheme is not dynamic relatively to the de�nition of [DPP07]. However any identity can be
included in the target set of identities that should receive the encrypted message. Hence, as in the
naive solution, there is no need for speci�c join or revoke algorithms, but this requires an upper
bound on the cardinality of the target set. This schemes moreover does not authorize the newcomers
to access the previously exchanged messages (this property is called forward secrecy against new
users, however we will not use this denomination as it can be confusing). The private decryption
key and ciphertext have constant size while the public encryption key grows linearly with the
maximum size of the set of receiver for one encryption. All the previous schemes rely on a central
administration.

In [PPS12], the authors propose a decentralized instantiation of dynamic broadcast encryption. The
centre is eliminated, and replaced by an interactive group key exchange within the participant. Their

28 Chapter 2 Notations, De�nitions and Preliminaries

construction is dynamic in the sense of [DPP07] except for the modi�cation of private decryption key
when adding a new participant. This choice is made on purpose to prevent the newcomer to read past
messages. As we see, dynamic broadcast encryption realises multicast communications and, in the
cryptographic literature, both terms are sometimes used equally. Most of the broadcast encryption
scheme (including those described above) are based on the KEM-DEM paradigm. Logically, the
complexity lies in the group key encapsulation part. Hence broadcast encryption is also heavily
bound to group key establishment.

2.3.3 Message authentication codes

A message authentication code is a symmetric key primitive. From a message and a symmetric
key, it computes a single value - the tag - which shall provide two desirable properties. Firstly it
provides information about the sender’s identity. Secondly, it guarantees that the message has not
been modi�ed along the way between the sender and the receiver. This last feature is known as
integrity.

De�nition 2.12 (Message Authentication Code (MAC)). A message authentication code MAC is
composed of three algorithms:

• KeyGenm : 1λ → Km, which, on input a security parameter, returns a secret keyKm;

• Mac : Km ×M→ T , which, on input a keyKm and a messagem, outputs a tag t;

• Verif : Km ×M× T → {true, false}, which, on input a secret mac keyKm, a messagem, and
a tag t, returns true if the veri�cation succeeds, false otherwise.

The notion that formalizes the security we expect from a MAC scheme is called unforgeability.
Namely, one requires that it is almost infeasible for an adversary, who does not know the secret mac
key, to compute a tag t corresponding to a message of its choice. It follows that it must be a person
who knows the key who computed the tag. And the message attached to the tag can not be modi�ed,
otherwise, the adversary would also have to compute the corresponding tag. This is formalized by
two experiments, existential unforgeability and strong unforgeability, detailed in Figure 2.5. The
�rst notion excludes the cases where the adversary tries to forge a mac on a message, given a �rst
tag on this same message. If the scheme is deterministic, this attack has no sense. In the case where
the MAC algorithm is probabilistic (takes as extra input a random sampled from a random spaceR),
then the strong unforgeability notion excludes the attack.

ExpEUF
A,MAC(λ)

1 : Km ← KeyGenm(1λ)
2 : (m∗, t∗)← AOMac

3 : v ← Verif(Km,m
∗, t∗)

4 : if m∗ /∈ R1 ∧ v == true
5 : return 1
6 : else return 0

ExpSUF
A,MAC(λ)

1 : Km ← KeyGenm(1λ)
2 : (m∗, t∗)← AOMac

3 : v ← Verif(Km,m
∗, t∗)

4 : if (m∗, t∗) /∈ R2 ∧ v == true
5 : return 1
6 : else return 0

OMac(m)

1 : t← Mac(Km,m)
2 : R1 ← m

3 : R2 ← (m, t)
4 : return t

Figure 2.5 – EUF and SUF security experiments.

2

2.3 Basic cryptographic primitives 29

De�nition 2.13 (EUF security). A MAC scheme MAC = (KeyGenm,Mac,Verif) is said to be EUF
secure if for any PPT adversary A, there exists a negligible function negl such that:

AdvEUF
A,MAC(λ) =

∣∣Pr
[
ExpEUF

A,MAC(λ) = 1
]∣∣ ≤ negl(λ) .

We denote AdvEUF
MAC(λ) the advantage for this experiment.

De�nition 2.14 (SUF security). A MAC scheme MAC = (KeyGenm,Mac,Verif) is said to be SUF
secure if for any PPT adversary A, there exists a negligible function negl such that:

AdvSUF
A,MAC(λ) =

∣∣Pr
[
ExpSUF

A,MAC(λ) = 1
]∣∣ ≤ negl(λ) .

We denote AdvSUF
MAC(λ) this advantage.

In this work, we will need an extended version of strong unforgeability, in a multi-instance setting
as de�ned in [PR18a]. We recall the corresponding experiment in Figure 2.6. The de�nition is
similar to the classical SUF except that the adversary can play with several instances for the MAC,
corresponding to di�erent keys, and can expose those keys. He will try to forge a new (message, tag)
pair for an instance for which the key has not been exposed. The reduction from the multi instance
version to the classical strong unforgeability induces a loss factor in the number of instances.

Expmi-SUF
A,MAC (λ)

1 : k ← 0
2 : (i,m∗, t∗)← AOMac,OGen

3 : Require 1 ≤ i ≤ k
4 : v ← Verif(Ki

m,m
∗, t∗)

5 : if (m∗, t∗) /∈ Ri ∧ v == true
6 : return 1
7 : else return 0

OGen()

1 : k ← k + 1
2 : Kk

m ← KeyGenm(1λ)
3 : Ri ← ∅

OMac(i,m)

1 : t← Mac(Ki
m,m)

2 : Ri ← (m, t)
3 : return t

Figure 2.6 – The multi-instances SUFsecurity experiment.

De�nition 2.15 (mi-SUF security). A MAC scheme MAC = (KeyGenm,Mac,Verif) is said to be
mi-SUF secure if for any PPT adversary A, there exists a negligible function negl such that:

Advmi-SUF
A,MAC (λ) =

∣∣Pr
[
ExpSUF

A,MAC(λ) = 1
]∣∣ ≤ negl(λ) .

We denote Advmi-SUF
MAC (λ) the corresponding advantage.

The HMAC function. The HMAC function ([BCK96]) is a popular hash based message authenti-
cation code. Given a hash function H : {0, 1}∗ → {0, 1}c, built on a compression function with
bloc size b bytes, then:

HMAC(k,m) = H(k∗ ⊕ opad||H(k∗ ⊕ ipad||m)),

where ipad is set to 0x36b that is, the byte 0x36 repeated b times, opad = 0x5cb and k∗ is de�ned
as k padded with zeros to reach b bytes, if length(k) ≤ c, else k∗ is H(k) padded with zeros to reach

30 Chapter 2 Notations, De�nitions and Preliminaries

b bytes. This construction has been proven a PRF as long as the underlying compression function is
a PRF ([Bel06]). The reduction from PRF security to EUF is given in [BKR00] (Theorem 2.7). Some
more reductions, particularly from PRF to SUF are given in [AHM+14]). The security of HMAC
can then be extended to the multi instance setting as explained in [PR18a].

2.3.4 Authenticated Encryption with associated data

An authenticated encryption with associated data allows to encrypt a message such that the ci-
phertext’s integrity is guaranteed, and to attach to the message some additional data that are only
protected in integrity. We refer to [Rog02] and [RBBK01] for the classical security de�nitions for
AEAD and to [BN00] for the relations between the di�erent notions of security.

De�nition 2.16 (Authenticated encryption with associated data). An authenticated encryption with
associated data AEAD associated with a key space K, a message spaceM, an associated data space A
and a cipher text space C, is de�ned by the following algorithms:

• KeyGen : 1λ → K which on input a security parameter 1λ, outputs a secret key k;

• Enc : K ×M×A → C, a probabilistic algorithm which, on input a secret key k, a messagem
and associated data a, outputs a ciphertext c (the associated data are usually not included in the
cipher text and the way they are transmitted is not part of the model);

• Dec : K × C ×A →M×⊥ which on input a secret key k, a ciphertext c and additional data
a, outputs a messagem or ⊥ if the decryption was unsuccessful.

An intuitive way to obtain AEAD is to compose an encryption scheme with a MAC scheme in an
Encrypt-then-Mac fashion. The scheme ECIES (based on DHIES ([ABR01]), described in [Sho01]
and standardized in [Sta06], or [EI04]) provides authenticated encryption with associated data.

2.3.5 Key Derivation Function

We follow [Kra10] for the de�nition of key derivation functions. First one needs to de�ne a source
of keying material. Informally, the source is a secret value (k) from which one would like to obtain a
new key or even several keys. However, some side data (α) about this secret input may be available
to an evesdropper for instance. This a formalized in the de�nition of a source of keying material.

De�nition 2.17 (Source of keying material). A source of keying material SKM is a two value
probability distribution (k, α) generated by an e�cient probabilistic algorithm.

De�nition 2.18 (Key Derivation Function). A key derivation function KDF is a function that, on
input a source of keying material SKM a length value `, an optional salt value XTS and an optional
context information ctx, returns a string of ` bits.

As they are optional, the context and the salt can be set to O or to any constant value. We
denote by S the salt space. What is expected from such a function is that, if given enough entropy
i.e. a “good” source of keying material, then it should return a secure `-bit key, that is, the output
shall be indistinguishable from an `-bit random string. This is formalized by the experiment given
in Figure 2.7.

2

2.4 Key exchange protocols 31

ExpKDF
A,KDF(λ,SKM)

1 : k, α←$ SKM
2 : XTS←$S
3 : `∗, ctx∗ ← AOKDF(k,·,XTS,·)(α,XTS)
4 : b←$ {0, 1}
5 : k0∗ ← KDF(k, `∗,XTS, ctx∗)
6 : k1 ∗ ←$ {0, 1}`

∗

7 : b′ ← AOKDF(k,·,XTS,·)(α,XTS, k∗b)
8 : return b = b′

OKDF(k, `,XTS, ctx)

1 : return KDF(k, `,XTS, ctx)

Figure 2.7 – KDF security experiment.

De�nition 2.19 (KDF security). A KDF function KDF is said to be secure with respect to a source of
keying material SKM if, for any PPT adversary A, there exists a negligible function negl such that:

AdvKDF
A,KDF(λ) =

∣∣∣Pr
[
ExpKDF

A,KDF(λ,SKM) = 1|b = 0
]

−Pr
[
ExpKDF

A,KDF(λ,SKM) = 1|b = 1
]∣∣∣ ≤ negl(λ) .

We denote AdvKDF
KDF(λ) the corresponding advantage.

The HKDF function. Hugo Krawczyk proposes in [Kra10] a construction for a key derivation
function based on HMAC, called HKDF. It is composed of an extraction part, HKDFextract that is
used to extract a pseudo-random key from the input keying material k, if the latter is not already
uniformly random or pseudo-random, and an expand function, HKDFexpand that derives several
additional pseudo-random keys if needed. Let c be the output size of the hash function on which
the HMAC construction is based, then:

HKDF(k, `,XTS, ctx) = K(1)||K(2) . . . ||K(r), where r = d`/re,

PRK = HMAC(XTS, k),

K(1) = HMAC(PRK, ctx||0)),

and for i ∈ J1, rK:
K(i) = HMAC(PRK,K(i− 1)||ctx||i),

where K(r) is truncated to its �rst ` mod r bits.

2.4 Key exchange protocols

A key exchange is a protocol between - classically - two participants, traditionally denominated
Alice and Bob. Alice and Bob exchange messages so as to share, at the end, a common secret data,

32 Chapter 2 Notations, De�nitions and Preliminaries

typically a symmetric key. This kind of protocol is particularly useful when a new symmetric key: a
session key, needs to be shared each time Alice and Bob wish to start a conversation, i.e. want to
start a new session. However, such a protocol is useless if Alice is not sure that the key she computes
is only shared with Bob. Hence a secure key exchange protocol should ensure that no one, except
the intended peer, learns anything about the newly shared key. This is the goal of authenticated
key exchange. We detail in the following the de�nitions and the main security models of the key
exchange literature.

2.4.1 How secure is your session key ?

As for any cryptographic primitive, an e�cient security analysis needs to identify the security
goals of the primitive. In the domain of key exchange, the most intuitive expectation is that no
information about the session key leaks during the protocol execution. This has been formalised
by Bellare and Rogaway in the seminal work [BR94], as an indistinguishability experiment. In this
paper, the authors introduce the �rst security model for authentication and key exchange protocols,
as we detail in subsection 2.4.2. But, with the increasing use of cryptographic key exchange, various
more demanding requirements have emerged.

Known Keys Attacks. Resistance to known keys attacks, as de�ned in [BM99b], stipulates that
the knowledge of one (or several) session key does not leak information about the other sessions keys.
This is another basic requirement for a key exchange: the session keys should be computationally
independent.

Key Compromise Impersonation (KCI) If Alice’s long term key leaks to the adversary, nothing
can prevent him to impersonate Alice. However, there is another form of impersonation that needs to
be considered: does the knowledge of Alice ’s secret allowsA to impersonate any other uncorrupted
party to Alice. This can be seen as a reverse form of impersonation and is called Key Compromise
Impersonation (KCI, [KBB17], [BJM97]).

UnknownKey Share Attack (UKS). This attack is subtle as the adversary, we call him Evil, does
not try to learn the session key. His goal is to make Alice think she communicates with him while
her messages are in reality read by Bob. Bob identi�es the messages he receives as coming from
Alice - which is true - and, logically thinks they are addressed to him, when they were dedicated
to Evil. If Alice is Bob and Evil’s boss and the message is “you are �red” this can have dramatic
consequences. A UKS attack breaks the assumption that if you receive a message from someone,
then this message was intended to you.

Perfect Forward Secrecy (PFS). This notion cares about an adversary that registers the conver-
sation and accesses the long term key after the key exchange is over. The de�nition in [MOV96]
simply states: “A protocol is said to have perfect forward secrecy if compromise of long-term
keys does not compromise past session keys.” This says nothing about the power of the adversary.
In [Kra05], Krawczyck de�nes weak PFS (wPFS) as the original PFS but only for sessions in which
the adversary did not actively interfered. He shows that no two rounds implicitly authenticated
protocol can achieve full PFS, but that it can verify wPFS. PFS has received a lot of interest from the
late 90’s, mostly for signature schemes (see [BM99a], [Kra00], [AR00], [IR01], [MMM02], [KR03],
or [BSSW06]). Forward security in symmetric cryptography was studied in [BY03] while public

2

2.4 Key exchange protocols 33

key encryption has been advised in [CHK03] for instance and FS in authenticated key exchange is
considered in [DVW92] and was recently explored in [ACF20].

Post-Compromise Security (PCS). Often seen as a counterpart of PFS, Post-Compromise Se-
curity evaluates the possibility for a protocol to establish secure session keys after the long term
secrets have been compromised. This notion has been formally de�ned and studied in [CCG16].
The authors di�erentiate a weak form of PCS, where the adversary is given access to a long term
key interface (for instance a signature oracle) but not to the key itself. The strongest PCS admits a
compromise of the long term secret. The adversary can interfere in all but the last exchange before a
secure session key shall be established. A main result of this work is that no stateless key exchange
protocol can achieve full PCS.

Future secrecy, healing and backward secrecy also deal with the security of future keys. The term
self-healing appeared in [CJZ11] to designate the property given by a continuous refresh of the
secret material used to compute subsequent session keys. If an attacker accesses the secret material,
he can only eavesdrop on the corresponding session key. If he misses this opportunity, security is
regained. According to one of the designer of Signal3, future secrecy means that “a leak of keys
to a passive eavesdropper will be healed”, which is equivalent to the de�nition of self healing4.
In [BSJ+17], the authors refer to backward secrecy as “the knowledge of sender’s secrets - state and
keys - at the current time period can not be used to distinguish keys generated (at some near point)
in the future from random string”.

A “major detail” in the above de�nitions is the amount of passivity required from the adversary
(one message, one exchange or more). As shown in [CCG16], if the adversary is fully passive, then
the future secrecy is already covered by PFS. If the adversary can not use his knowledge of the
long-term secrets to introduce known randomness, or to fool the authentication for instance, then
there is no di�erence in corrupting the long-term secret before or after the session. If the adversary
is not required to be fully passive, PCS di�ers from PFS in that it concerns the authentication as
well as the con�dentiality of the future key.

As we will see in chapter 3, in the context of Ratcheted Key Exchange (RKE), each ratchet can be
considered as a sub session and then PFS and PCS is to be understood relatively to a state corruption
besides the long term key corruption.

2.4.2 A formal model

In the seminal work [BR94], Mihir Bellare and Philip Rogaway formalized the notions of authentica-
tion and key exchange. They introduced a formal model and useful de�nitions. This has been the
beginning of a fruitful literature on AKE. Most of the formalism we recall here is inherited from
their work, however augmented with further evolutions.

The environment. The model considers a set of participants I , who can run the protocol. Each
participant i is given a long term key. It can be a (public, private) key pair (pki, ski), or a symmetric
key ski (the original model is in the symmetric key paradigm. It has been extended to the public
key setting in [BJM97]). Two participants perform the protocol as intended until they reach a status
accept or reject (before they reach one of them, their status is undetermined (written as ∗)).

3Trevor Perrin, as quoted in [CCG16], the original reference on GitHub is not available any more.
4In their description of the Double Ratchet properties [MP13], the authors clearly mention that their future secrecy is

equal to the self healing.

34 Chapter 2 Notations, De�nitions and Preliminaries

The primitive: a formal protocol. A protocol Π can be seen as an e�ciently computable
function that takes as input: a security parameter λ, the identity of the owner of the session i ∈ I ,
the intended partner j ∈ I , the secret of the owner ski ∈ K, an history of the messages exchanged
so far, also called the transcript t ∈ {0, 1}∗, the random tape of the owner r ∈ {0, 1}∞. Then
Π(i, j, ski, t, r) returns the next message m to be sent when following the protocol description,
together with the status st ∈ {accept, reject, ∗} of the owner, and a potential private output
p (commonly the session secret key). This formalism is identi�ed as message driven protocols
in [CK01b]. The `th session involving the participant i (the owner of the session) and the participant
j (the intended peer) is identi�ed, on the administrative side of the model, as a triple s = (i, j, `) ∈
I × I ×N. A session s is associated to a tuple (i, j, role , sid), where role ∈ {initiator , responder}
is the role dedicated to i and sid is a session identi�er. Session identi�ers are de�ned to bind the
messages to their corresponding session. They can correspond to a practical value set by the protocol
or be explicitly de�ned by the model as we will see later. Each session s is associated to a session
oracle πsi . The creation of these oracles can be formalized by a Create oracle (also often called Init
oracle) that takes as input a triple (i, j, role), initialises an oracle πsi and returns the corresponding
session identi�er sid (that may be ⊥). This oracle keeps in memory the local state for the session,
namely the owner identity, πsi .id = i, the intended partner’s identity πsi .peer = j, the session
key πsi .sessionkey = ksi (initialized to ⊥), the transcript πsi .trans = tsi (initialized to ⊥), and the
random tape πsi .rand = rsi . The execution of the protocol is controlled by an oracle Send. On input
a tuple (i, j, s, m), where m is an incoming message for the session played by πsi , it returns (m′,
st) such that (m′, st, p) = Π(i, j, ski, tsi ||m, rsi). The state of the corresponding πsi is updated if
necessary (for instance the transcript is augmented, the session key �eld receives the private output
p, . . .). To start an initiator session, the incoming message is set to init .

The adversary. The adversary A can create sessions between the participants he pleases, by
calling the Create oracle. He also controls the message delivery with the oracle Send. In that sense,
he can reorder or drop messages. As we will see later, this is not always possible in more complex
multi stages models for instance (cf. section 2.4.3). The adversary can be honest but curious, which
means he relays the messages as expected and only tries to grab information from what he sees. He
can also try to introduce his own information or modify the communication. Or he can be given
more power. In [BR94], A has access to a RevealSessionKey oracle that, when queried with a triple
(i, j, s), returns the corresponding session key if the session πsi ’s status is accept and ⊥ otherwise.

In [CK01b], Ran Canetti and Hugo Krawczyck extend the Bellare-Rogaway model of [BR94].
Their model is simply identi�ed as the CK model. Their work increases the power of the adversary
by giving him access to new oracle queries5. Firstly, in addition to the RevealSessionKey oracle,
A can call a RevealState oracle that, when queried on a session (i, j, s), returns the local state of
participant i for this particular session. The local state may contain for instance the random coins
(the ephemeral Di�e Hellman elements for instance) needed for the computation of the session
key. Secondly, with a Corrupt(i) query, A gets the complete state of a participant i. He obtains
i’s random coins, the local state for every session i is engaged in, and most of all, he obtains his
long-term key. This de�nition - even if realistic (one can easily imagine that an adversary that can
access to the memory where the long term secrets are registered also has access to the memory
where the local states are registered, as the former should be more secure than the latter) - is tricky

5These new queries were actually already de�ned in [BCK98]. However the model proposed in this paper is based on
the simulation paradigm that brings composability but results in less intuitive proofs, hence we focus on game based
proofs. The Corrupt query also appeared in [BPR00]. We decide to focus on [CK01b] that appeared as a bigger step in
the evolutions of AKE models.

2

2.4 Key exchange protocols 35

because it demands to consider whether a session is expired or not. The local state of an expired
session is erased and so, never revealed with a Corrupt query.

In their extended version of the CK model [LLM07] (now simply identi�ed as the eCK model),
La Macchia et al. consider a RevealLongTerm query only reveals the long term secrets. This is not
restrictive as the Corrupt information, in the sense of the CK model, is still accessible by combining
a RevealLongTerm and RevealState queries. We will adopt this version in our own contribution.
Another di�erence lies in the de�nition of the RevealState. In the CK model, what is included in
the state is not formally de�ned. It is protocol dependent. Does it contains all random coins (for
instance those used for signature or encryption if needed)? Or only some speci�c data? An analysis
can be conducted with the hypothesis that the state is empty. Hence the single CK model can cover
a large range of practical security. La Macchia et al. replaces the RevealState by a more precise
RevealEphemeralKeys. The formalisation of these corruption queries will be of prime importance
when turning to the ratcheted key exchange. To keep trace of this queries, the state of a session oracle
will be augmented with associated "model-speci�c" �ags, that we identi�ed with a typewritter
font, for instance πsi .revSessionKey, πsi .revState. As the corruption of the long term key is not
session speci�c, we consider it is recorded in a global state for the participant, that can be written
as πi. The associated �ag is then πi.corrupt. Whatever the model, the adversary is not given
unlimited access to these oracles, otherwise he could win trivially. Restrictions are formalised in a
freshness predicate, which we detail in section 2.4.2.

Matching sessions. A crucial tool for the authentication are the matching sessions. This notion
measures whether the participants really talked to each other. The de�nition of matching session
may vary from a model to another. In the original de�nition of [BR94], matching sessions are
de�ned on matching conversations. Consider that the transcript of a session records the succession
of messages sent and received, timely ordered. Then a session s′ is matching a session s if its
transcript πs′j .trans corresponds to the transcript πsi .trans . The correspondence is not a mere
equality for two reasons: �rstly for an initiator session s the transcript will be pre�xed with an
init label that will not appear in the responder transcript. Secondly, suppose an odd number of
communications, and consider an initiator session s. Then a session s′ is matching s even if its
transcript does not contain the last message sent by the initiator session πsi . All one needs to be
sure is that the messages received by the initiator πsi are messages created by πs′j after receiving a
message from πsi .

The de�nition of matching session based on the transcript is commonly adopted in the key
exchange literature. However in [CK01b] or even [BPR00], the matching is based on session
identi�ers: two sessions (i, j , role , sid) and (j, i ,role6 sid ′) are matching if sid = sid ′. While the
de�nition seems more adapted to the case where the protocol explicitly de�nes a session identi�er,
the author of [BPR00] point out that, if it is not the case, it may be set to the protocol �ow for
instance. The same way, in [Kra05], when analysing the protocol HMQV in the CK model, the
author sets the session identi�er to be the couple (sent, rcv) of messages sent and received by the
session and re�nes the de�nition by saying that “the session (j, i ,rcv, sent) (if it exists) is said to be
matching the session (i, j , sent, rcv)”7. As the de�nition based on the transcript appears as quiet
natural, we identify sid with (rcv, sent) and formalise it as follows:

6An overlined value classically denotes the opposite (the complement) value. Here if role = initiator, then role =
responder and reversely.

7A third way of de�ning matching is through a matching function, as in [BR95]. However it is dedicated to the three
party case and we will not develop it here.

36 Chapter 2 Notations, De�nitions and Preliminaries

De�nition 2.20 (matching session). A session (idown, idpeer , (send, rcv), role) is said to be matching
(id′own, id

′
peer , (send

′, rcv′), role ′) if both sessions are completed and idown = id′peer , idpeer = id′own,
send = rcv′, rcv = send′, and role = role ′.

The separation between messages sent and received in the transcript enables to re�ne the de�ni-
tion. In [CF12] the notion of origin session is introduced, that will be a key element for the de�nition
of a PFS secure key exchange.

De�nition 2.21 (origin session). A session s′ =(idown, idpeer , (send, rcv), role) (possibly incomplete)
is said to be an origin session for s =(id′own, id

′
peer , (send

′, rcv′), role ′) if send′ = rcv.

The idea is that, to achieve full PFS, we only need to ensure that the messages received by the test
session where not controlled by the adversary, hence, that they were created by a legitimate oracle.

Authentication. Mutual authentication is studied as a separate goal in [BR94]. In the authen-
tication process, the goal of A is to make an oracle πsi,j reach an accept status while having no
matching sessions. Their de�nition of authenticated key exchange is too strong and restrictive as it
requires an AKE to be a secure key exchange on top of an authentication protocol. On the contrary,
the author of [BR95] claim that authentication is not a goal of security for key distribution, and,
traducing this view, one can say that the important point is not to be sure that the intended peer was
on-line at the time the key exchange took place, but only that the key is shared with this intended
peer and only with him. This is even more veri�ed in the case of asynchronous key exchanges,
where both participants do not need to be on line at the same time. Finally, in most of authenticated
key exchanges, the authentication part is implicit: it is implied by the fact that the two participants
derive the same key and hence is only veri�ed when the key is used.

Key exchange security. Considering the key exchange part, the expected security is that the
adversary does not recover the secret key, but, more than that, learns no bit of information about it.
Once again, this can be formulated as an indistinguishably experiment ExpAKE

A,Π (λ). The adversary
runs the protocol Π. The challenger creates and plays with the oracles πsi . At some point he queries
the challenger for a Challenge on a speci�c session (i∗, j∗, s∗) (that should corresponds to some
oracle execution πs∗i∗). This session is identi�ed as the challenged or test session. He is then given,
depending on a random bit b sampled by the challenger, either the corresponding correct session
key, or a random key. This event is recorded with a �ag πs∗i∗ .test. The adversary may continue to
query other oracles afterwards, however he is only permitted one challenge query. He must in �ne
decide which version he received and release a bit b′.

De�nition 2.22 (Authenticated Key Exchange (AKE)). A protocolΠ is said to be a secure authenticated
key exchange (relatively to the above security model) if, for all PPT adversary A making at most q
queries and opening at most qs sessions:

• any two sessions πsi and π
t
j that are matching and that accept compute the same session key;

• there exists a negligible function negl such that:

AdvAKE
A,Π (λ) ≤ negl(λ) .

We denote AdvAKE
Π (λ, q, qs) the corresponding global advantage.

2

2.4 Key exchange protocols 37

The freshness of a session. In the following, we consider a test session s =(i, j, role , sent,
rcv) and πsi the associated oracle. If he plays the game described above, the adversary has an
easy solution to win: he �rst reveals the session key of a session oracle πsi , then challenges this
session. To prevent those attacks that are unavoidable, a model sets natural restrictions, often
called the freshness conditions. A session key can be tested only if the session is fresh. In the
model of Bellare and Rogaway, a session πsi is fresh if it has accepted, it has not been queried
with a RevealSessionKey, and there is no session πtj , matching πsi , that has been queried with a
RevealSessionKey. The freshness crafts the security covered by the model and the more power the
adversary is given, the trickier is the de�nition of the freshness. We give some examples of the
relation between the oracles given to A, the freshness restrictions and the security properties.
Know Key Attacks. Resistance to Known Key Attack is formalised by giving the adversary the access
to the RevealSessionKey oracle for all sessions but the test session and its matching peer, if it exists.
Perfect Forward Secrecy. To capture PFS, one needs to give the adversary the possibility to compromise
the long-term key of the test session, and of its matching peer (if it exists), once the session is
completed. A basic restriction is that the adversary is not allowed to compromise both the long-term
and the state of the owner of the session or of its matching peer. However this last part is only valid
if there exists a peer session oracle that indeed send the message to πsi i.e. , using the de�nition of
origin session recalled in section 2.4.2, if there exists an origin session. More than that, depending on
the conditions under which A is authorized to corrupt a participant, one obtains di�erent �avours
of PFS. With no additional requirement, Krawczyk showed in [Kra05] that no two rounds protocol
(with implicit authentication) can achieve PFS. He introduces the weak-PFS de�nition where A
has access to the RevealLongTerm oracle only if he did not interfered in the protocol during its
execution. This can be written as: A is given access to the oracle RevealLongTerm(j) only if there
exists an origin session for s. This is the eCKw model.

In the full PFS case (eCK-PFS), this condition is changed to the following: if there exists no origin
session (if the message received by i were controlled by A) then s is fresh if A did not query a
RevealLongTerm(j) before the session was complete. Note that no restriction is needed on the
owner’s side. For the session s to accept, the oracle must have performed the entire protocol. The
adversary can modify the messages sent from i to j, however, he will not control the ephemeral
generated by πsi without a RevealState query.
Key Compromise Impersonation. Turning to KCI, the adversary shall not be prevented to compromise
the owner i’s long-term key before the execution of the session. This is the case in the eCK, eCKw
and eCK-PFS models.
Post Compromise Security. We deeply examine this aspect in the next Chapter, section 3.3.

As we see, freshness must be carefully balanced to exclude unavoidable attacks while giving
enough freedom to the adversary to capture the desired properties.

2.4.3 Beyond AKE

The AKE model as described above covers the basic but fundamental goal of sharing a secure key
between two participants. It does not, however, consider the way this key is (then) used, even
though it can dramatically harm the security. We mention two di�erent ways of taking this issue
into account. The composition, that states the conditions for a session key computed by a key
exchange to be used to provide an authenticated and secrete channel for instance. And the ACCE
model, that proposes a complete security model that includes the key exchange in a broader protocol.
On another side, multi stage key exchange, that computes several keys for several functions, do not

38 Chapter 2 Notations, De�nitions and Preliminaries

�t neither into the AKE model. We introduced the de�nitions speci�c to the multi-stage context, as
a �rst step toward ratcheted key exchanges that we develop in the next chapter.

Secure Channels and the ACCE model. We �rst recall an attack described in [CK01a] (Ap-
pendix A, this attack is attributed to Racko�): imagine a key exchange protocol in which the �rst
participant that computes the session key k, exposes k as soon it receives a well computed tag
MAC(k, 0). If studied in the original model designed by Bellare and Rogaway, the key k can be
shown secure, because the adversary is compelled to provide its guess bit just after receiving its
challenge value. He has no chance to foul the challenger by sending a MAC value. However, this
protocol can not be securely combined with a MAC scheme. Further models hence let the adversary
play with the challenger after the Challenge query. But this example shows that a secure use of the
session key is not trivial. In [CK01b], Canetti and Krawczyk introduce the notion of secure channel.
Informally, a secure channel is a link between two participants where data can be transmitted in a
secrete and authenticated manner. The authors show that a session key computed by a key exchange
protocol shown secure in the CK model, can be combined with secure MAC and a secure encryption
scheme to provide such a channel. They provide a security reduction where an adversary that
could foul the authentication (respectively the secrecy) of the channel, would break the security
of the key exchange. The composability of key exchange protocol, in a game-based formalism8 is
extended in [BFWW11], to any symmetric key protocol. The composition goes as follow: consider a
key exchange protocol Πke that provides session keys relatively to a key distribution K. Consider
a symmetric protocol Πsym, de�ned on the key distribution K. The composed protocol Πke,sym
consists in �rst running Πke then, if a session key is accepted, running Πsym with the session key.
The set-up (more particularly the key generation) for the composed protocol is the set up of the key
exchange protocol.

On the security side, let ExpSEC be a security experiment for the symmetric primitive. Then
one can de�ne a composed security experiment ExpAKE,SEC in which an adversary A can interact
simultaneously with several executions of the key exchange and the symmetric protocol, with the
symmetric keys being those derived from the AKE. The �nal goal of A is to break the security of
the symmetric protocol, not the key exchange. The authors prove a general reduction result:

Theorem 2.3. Let Πke be a secure authenticated key exchange9, relatively to K, and Πsym be a SEC
secure protocol. Then for any PPT adversary A, there exists PPT adversary B, C such that:

AdvAKE,SEC
A,Πke,sym

(λ) ≤ n2qs · AdvAKE
B,Πke(λ) + AdvSEC

C,Πsym(λ),

where n is the maximum number of participants and qs the maximum number of sessions per ordered
pair of participants.

The reduction coe�cient comes from the fact that one does not know which symmetric key will
be targeted by the adversary. As a consequence, one has to replace, step by step, all the session keys
by random elements - this is called a hybrid argument -, which amounts to playing n2qs times the
AKE game, before calling the symmetric security independently from the key exchange.

8Composability of key exchange has also naturally been studied in the simulation paradigm, for instance in [CK02]
or [Sho99], as it is one of the great advantage of this framework. However, as noted earlier, simulation based proofs
are less intuitive and often come with stronger restrictions that prevent e�cient secure realisations.

9The original paper considers security relatively to the original Bellare-Rogaway model, while claiming it can be
extended to eCK without di�culty.

2

2.4 Key exchange protocols 39

This modular approach, �rst the key exchange, then the communication channel is often adopted,
for its modularity and simplicity, and is the one adopted for the analysis of Signal, on which we rely
in our �rst contribution. However, key exchange protocols that use some exchanged values within
the protocol can not be proven secure with this approach. The Transport Layer Security protocol
(TLS) is widely used to establish Internet channel. It mainly consists in two phases: a handshake
phase (the key exchange part) and a record layer (communication phase). In earlier versions (for
instance TLS-DHE 1.2, as TLS 1.3 is now standardised), a main obstacle to prove the security
was that a last message, the server �nish, was encrypted using the freshly computed session key,
preventing any proof in the traditional key indistinguishability model. Therefore, while studying the
security of this protocol, the authors of [JKSS12] de�ne the notion of authenticated and con�dential
channel establishment (ACCE). The idea behind ACCE, is to keep a modular approach between an
authenticated part and a secrecy part, but with a weaker requirement on the key exchange. In the
ACCE model, one does not require the indistinguishability of the session key, but only study the
indistinguishability of the ciphertext produced with this key.

Multi-stage. TLS is not only a textbook case for the ACCE security. It also provides session
resumption. This mechanism enables two participants to derive a new session key without going
through the whole initial key agreement. Instead, they rely on a common key previously computed
within a full handshake step. The complete key exchange is now composed of two stages, �rst
a handshake, then a session resumption, both resulting in a di�erent session key. This notion of
multi-stage key exchange has been formalised by Fischlin and Günther in [FG14] to provide an
analysis of Google’s Quic protocol. We will detail some aspects of their model as an introduction to
the ratcheted key exchange models studied in section 3.3).

A stage gathers several steps of the protocol that result in a session key. This stage speci�c session
key can be further used in the protocol (to derive the next key for instance) or with an external
cryptographic primitive. Then studying such a protocol, one should ensure that each stage speci�c
session key is secure. Contrary to the single stage classical models, the adversary can choose among
a multiplicity of targets within each session. In the model administration, a stage is an additional
information that is recorded within the local state of the session. In our formalism, this translates in
a �eld stage ∈ N that is recorded by each oracle πsi . The number of stages per session is generally
bounded by a value nst. Now, as several keys are computed, the single session key �eld sk in a
session oracle state is replaced by a set SK gathering all kt = SK[t] established in stage t. The
�ags that record the reveal or challenge of a session key have to be adapted accordingly.

Beyond those administrative changes, the proposition of Fischlin and Günther tackles the notion
of the scheduling of the di�erent stages that will also be predominant in the ratcheting process.
Firstly, as a stage-t key may be used in a further stage s > t, the model introduces a stop and go
mechanism: if a Send query leads to the acceptance of a stage key, then the protocol halts, for the
adversary to query a Challenge if he wants to. If he does, the value released in the test is set as the
stage key value for the rest of the execution. Secondly, if a key at some stage t+ 1 depends on the
session key of the previous stage SK[t] (key dependence), then the adversary cannot reveal SK[t]
before SK[t+ 1] is established. This key dependence weakens the security model. However it still
prevents simple derivation (for instance SK[t+ 1] = h(SK[t]) for some hash function h). Finally,
the forward secrecy, if it is provided by the protocol, may not be accessible for the early stage. A
protocol is t-forward secure if it guaranties PFS only from stage t (included).

An interesting result is about composability: adopting the formalism of [BFWW11], they show
that key independence enables the composability with any symmetric scheme. To conclude on TLS,

40 Chapter 2 Notations, De�nitions and Preliminaries

an analysis of the 1.3 version of the handshake protocol has been conducted in this multi-stage
model in [DFGS20].

2.5 PRF, hash functions and random oracle

In this section, we explore the gap - and the relations - between formal security de�nitions related
to pseudorandom and hash functions, and an idealisation, the random oracle model, that is often
adopted to design e�cient protocols.

We denote Func(D,R) the set of all functions with domain D and range R, and FF(K,D,R)
the set of all function family with parameter (key) in K, domain D and rangeR. In the following,
we will note f : K ×D → R a function family in FF(K,D,R) (and call it a function, by ease of
language).

De�nition 2.23 (Pseudorandom function). Let f : K×D → R be an e�ciently computable function
family. It is said to be pseudorandom if, for all probabilistic polynomial time A:

|Pr
[
k←$K,AOf(k,·) → 1

]
− Pr

[
g←$ Func(D,R),AOg → 1

]
| is negligible.

If the adversary is not given a complete oracle access to fk or g but only receives either the
set {r1, . . . , rq, f(k, r1), . . . , f(k, rq)} (ri’s uniform random values in D) or {r1, . . . , rq, u1, . . . uq}
(the ui’s uniform random values inR), then f is said to be a weak-pseudorandom.

Hash functions. Let length function `out : N → N, be a length function. Basically, a hash
function is a compressing function h : {0, 1}∗ → {0, 1}`out . Theoretically, one often considers
families of keyed hash functions h : K×D → R. A keyed hash function hwith domainD and range
R is determined by a generation algorithm Genh that, on input a security parameter λ, outputs a
valid key k ∈ K, that provides a valid description for hk : D → R. As a consequence, a keyed hash
function can be identi�ed as a couple H = (Gen, h). A hash function is expected to be collision
resistant as de�ned below.

De�nition 2.24 (Collision resistant hash function.). A hash function H = (Gen, h) is said to be
collision resistant if, for all probabilistic polynomial time A, there exists a negligible function negl(λ)
such that:

Pr
[
k ← Gen(1λ), (x, x′)← A(hk,D,R) : x, x′ ∈ D, x 6= x′ and hk(x) = hk(x′)

]
≤ negl(λ) .

2.5.1 The Random Oracle Model (ROM)

The Random Oracle Model is an ideal environment where all the parties (including the adversary
and the challenger) are given access to an ideal function, the Random Oracle (RO), which, on input a
query, returns a perfectly random sequence of adequate length `. It also keeps a record of past queries
such that it returns the same result when queried twice (or more) on a same input x. Typically, the
RO can be thought of as a huge table, gathering (query, output) couples, with no collision within
the random sequences (up to the unavoidable birthday bound, q2/2` where q is the number of
queries). More formally, given a security parameter λ ∈ N, O is a function sampled among all
the possible functions mapping {0, 1}∗ to {0, 1}`out(λ). The ROM methodology was introduced by

2

2.5 PRF, hash functions and random oracle 41

Bellare and Rogaway in [BR93], inspired by the work of Fiat and Shamir on signature schemes
([FS87], cf. subsection 2.6.2) and Goldreich, Goldwasser and Micali on random functions ([GGM84]).
As practical as it may appear, the ROM has a main drawback: as no such random oracle exists in real
life, a protocol proven secure in the ROM will be implemented with a real function — generally a
hash function h — playing the part of the oracle. If a pseudorandom function f can be sampled and
kept secret by a trusted third party who, when queried on x, answers f(x), then the implementation
of the oracle is possible (see [MNPV99] that studies a concrete solution). Most of the time however,
the users need the function to be fully speci�ed (directly available, not through a third party).

In [CGH98], Canetti, Goldreich and Halevi show the limits of the ROM. They prove that the ROM
cannot be implemented by a single function, that would be valid for all protocols and, going further,
they exhibit a signature and an encryption schemes that can be proven secure in the ROM but
that cannot be secure when implemented with any real life function ensemble. This could be have
been the death sentence of the ROM, but it has not, mainly because these examples are theoretical
(“unnatural” as quali�ed by the authors). On the positive side, no practical protocol proven secure
in the ROM has been shown insecure because of the implementation of the ROM by a real life hash
function. The �nal discussion of [CGH98] is still relevant: as Canetti, it is reasonable to think that
relying on an unproven ideal construction such as the Random oracle contradicts the principles of
cryptography and proven security. But the fact is that the ROM provides e�cient and, until now,
secure practical construction that would not be possible otherwise. It seems not completely foolish
to stand in a midway, saying that, while concentrating on designing protocols proven secure in the
plain model, one can rely on the ROM as long as no other practical solution appears.

2.5.2 Correlation Intractability

Together with their criticism of the ROM, Canetti, Goldreich and Halevi propose [CGH98] a formali-
sation of the security one can expect from the random oracle, called correlation intractability. As for
a random oracle, the sets of functions are determined by their output length:

De�nition 2.25 (`out ensemble). Let `out : N → N be a length function. An `out ensemble is a
sequence F = {fλ}λ∈N of function families, such that, for any λ ∈ N, fλ = {f(k, ·) : {0, 1}∗ →
{0, 1}`out(λ)}k∈{0,1}λ is an e�ciently computable function family.

Correlation intractability is de�ned relatively to evasive relations. Informally, a binary relationR
is said to be evasive if, given access to a random oracle O, it is nearly impossible to �nd a witness x
such that (x, O(x)) satis�es the relationR (i.e. belongs to the language LR de�ned by R).

De�nition 2.26 (Evasive binary relation). A binary relation R is said to be evasive relatively to a
length function `out if, for every probabilistic polynomial time A, there exists a negligible function negl
such that:

PrO
[
x← AO ∧ (x,O(x)) ∈ LR

]
≤ negl(λ) .

De�nition 2.27 (Correlation intractability). Let `out : N → N be a length function and F be an
`out ensemble. Let R be a binary relation. F is correlation intractable relatively to R if, for every
probabilistic polynomial time oracle A there exists a negligible function negl such that:

Prk∈K [x← A(k) ∧ (x, f(k, x)) ∈ LR] ≤ negl(λ) .

F is correlation intractable if it is correlation intractable relatively to any evasive binary relation.

42 Chapter 2 Notations, De�nitions and Preliminaries

A main result of [CGH98] is that there exists no correlation intractable ensemble. They extend
their result to some speci�c case where the input length is bounded. This result can be interpreted
as the fact that there exists no function family that can realise a generic random oracle. However,
the interesting point is that some other results give some construction of correlation intractable
function relatively to more restricted classes of binary relations (example [CCR15]). In [Oka93] the
author assumes that there exists a function ensemble that is correlation intractable relatively to
speci�c discrete logarithm computations relations, to prove the existential unforgeability of their
signature scheme.

De�nition 2.28 (Sparse binary relation). A binary relation R is said to be sparse with respect to
length functions `in, `out if there exists a negligible function negl such that, for all x ∈ {0, 1}`in(λ):

Pry∈{0,1}`out(λ) [(x, y) ∈ R] ≤ negl(λ) .

The di�erence between sparse and evasive relations is that the evasive de�nition measures the
di�culty to �nd an input/output pair that veri�es the relation relatively to a non-uniform adversary
and this adversary can invoke several time the relation. In [CCR16], the authors give a construction
for a function family that is correlation intractable relatively to sparse relation recognizable by a
circuit of size bounded by a given polynomial p.

2.5.3 Correlated input security

Correlated input security is introduced by Goyal, O’Neill and Rao in [GOR11], in the context of hash
functions. Three di�erent degrees of security are considered: one wayness, unpredictability and
pseudorandomness. The latter notion can be seen as a generalisation of the correlated robustness
introduced by Ishai et al. in [IKNP03]. We focus on one-wayness as it is the version we will need
later in our contribution.

Let f : K ×D → R be a function family. (Note that we keep the notation of general function
family for consistency with the de�nitions we will give in chapter 5. However, to glue with the
original de�nition, f can be thought of as a keyed hash function where the key is a public parameter,
and is generated by a speci�c algorithm instead of being sampled from a key space.) Let C be a class
of polynomial size circuits D → D, such that each circuit shall have a su�cient min-entropy output
distribution for uniform input distribution. Let (C1, . . . , Cn) ⊂ C be a tuple that, for any random
r←$D, (C1(r), . . . , Cn(r)) de�nes a tuple of correlated inputs.

The adaptive ExpC-aCI-ow
A,f,C experiment:

• Set-up. The Challenger samples k←$K, r←$D and sends k to A.

• Queries. The adversary sends polynomially many queries C1, . . . Cq , Ci ∈ C for all i ∈ [1, q],
q = poly(1λ). The challenger answers with q values fi = f(k,Ci(r)).

• Invert. The adversary outputs (x, j). The experiment returns 1 if f(k, x) = fj .

In the selective version, the adversary is asked to output his queries before seeing the public
parameter k (i.e. before accessing the full description of the hash function).

De�nition 2.29. A family of function f is said to be adaptive correlated-input one way with respect to
a family of correlated input-circuits C if, for all probabilistic polynomial timeA, there exists a negligible
function negl(λ) such that:

AdvC-aCI-ow
A,f,C (λ, q) = Pr

[
ExpC-aCI-ow

A,f,C = 1
]
≤ negl(λ) .

2

2.5 PRF, hash functions and random oracle 43

2.5.4 Related Key Attacks

We now turn to property that can be considered as a “dual version” of the previous correlated input
one wayness. Related key attacks appeared in the context of cryptanalysis of real block ciphers
(see [BK09] for instance). It was latter formalised by Bellare and Kohno in [BK03]. Their work is
mostly focused on PRP but the full version extends to PRF. The de�nition takes as a parameter a set
Φ of key related derivating (RKD) functions φ : K → K, that will de�ne the relations taken into
account.

De�nition 2.30 (Φ-RKA security). Let Φ be a set of RKD. A PRF f : K×D → R is said to be secure
against Φ-restricted related key attacks (Φ-RKA secure) if, for all probabilistic polynomial time A,
there exists a negligible function negl such that:

|Pr
[
k←$K,AOf(RK(·,k),·) → 1

]
− Pr

[
g←$ F(K,D,R),AOg(RK(·,k),·) → 1

]
| ≤ negl(λ) 10,

where Of(RK(·,k),·) (respectively Og(RK(·,k),·)) takes as input a couple (φ, r) ∈ Φ × D and returns
f(φ(k), r) (resp. g(φ(k), r)).

Bellare and Khono show that some class of relations are impossible, for instance, no PRF (or
PRP) can be proven secure against RKA restricted to a class that contains a constant function. On
the positive side, Bellare and Cash propose in [BC10] a PRF construction where the keyspace is
a group, and that is secure against RKA where the key is operated on by any adversary speci�ed
group element, under the DDH assumption. Finally, in [BCM11], Bellare et al. model traditional
block ciphers as RKA secure PRFs and look how to use this primitive to build other RKA secure
primitives, such as signatures or encryption schemes.

In [GOR11], the authors prove the transition from a correlated input indistinguishable function
family to a 1-C-aRKA-wPRF secure function family. The 1-C-aRKA-wPRF experiment runs as
the general Φ-RKA with the exception that all the queries are related to a single random but public
input r. Moreover, the set of key deriving function considered is restricted to a class C of polynomial
size circuits K → K

De�nition 2.31 (1-C-aRKA-wPRF security). Let f : K × D → R be an e�ciently computable
function. f is 1-C-aRKA-wPRF if, for all probabilistic polynomial time A, there exists a negligible
function negl such that:∣∣∣Pr

[
k←$K, r←$D : A(r,Orf(RK(·,k),·))→ 1

]
−Pr

[
k←$K, r←$D, g←$ g←$ FF(K,D,R) : A(r,Org(RK(·,k),·))→ 1

]∣∣∣ ≤ negl(λ) ,

whereOrf(k,·) (resp. O
r
g(k,·)) takes as input a circuitCi ∈ C and outputs f(Ci(k), r) (resp. g(Ci(k), r)).

Input-Key Switching. The equivalence between correlated input pseudo randomness and related
key security is obtain by switching the role of the key and the input. From any family of functions
f ∈ FF(K,D,R) on can construct a family of function f̃ in FF(D,K,R). For any x in D, f̃(x, ·)
is a function from K toR de�ned as f̃(x, k) = f(k, x).
10The dependancy on the security parameter is hidden in the size of the key space. For more formalism, one can de�ne a

function family with a generation algorithm that, on input the security parameter, returns a keyspace as well as a
domain and a range.

44 Chapter 2 Notations, De�nitions and Preliminaries

2.6 Zero-Knowledge Proofs

Zero-knowledge proofs are a powerful cryptographic tool, which goal may seem counter intuitive:
proving the knowledge of an information without revealing nothing about it. The intuition about
proof of knowledge and zero knowledge proofs �rst appeared in [GMR89] and was further formalised
in [BG93]. Consider an NP relationR, i.e. given a witness w and an input x,R(x,w) = 1 can be
decided in polynomial time. LetL be the language associated toR,L = {x|∃w such thatR(x,w) =
1}. We note RL(x) the set of witness for x for the relation associated to the language L. An
interactive proof system is a two party protocol between a prover P and a veri�er V. Given a public
input x and a relationR, the former aims at convincing the latter that there exists a witness w such
thatR(x,w) = 1.

De�nition 2.32 (Proof system). Let (P, V) be a pair of interactive algorithms such that, on input
a public statement x, P and V interacts such that, at the end of interactions, V accepts the proof or
not. Let trP,V (x) represent the transcript of the interaction between P and V , together with the �nal
decision of V . We say that trP,V (x) is an accepting conversation (trP,V (x) ∈ accept) if it corresponds
to an interaction ending with V accepting the proof. Else, trP,V (x) is an rejecting conversation
(trP,V (x) ∈ reject). The pair (P, V) de�nes an interactive proof system if it veri�es:

• Completeness. For every x ∈ L, Pr[trP,V (x) ∈ accept] = 1 (if the veri�er and the prover are
honests and behave correctly, the veri�er will always accept).

• Soundness. There exists a negligible function negl such that, for every x ∈ {0, 1}λ \ L and every
malicious prover, P ∗ Pr[trP ∗,V (x) ∈ accept] ≤ negl(λ) (the veri�er shall not accept in an
execution with a cheating prover except with negligible probability).

Zero-Knowledge proofs. A proof system is said to be zero-knowledge if it reveals nothing
beyond the validity of the assertion of the prover. Formally, a proof system (P, V) for a language
L is said to be perfect/statistical/computational zero-knowledge if, for every potentially malicious
veri�er V ∗, there exists a Simulator Sim running in polynomial time on input x and a black box
access to the prover P such that:

{trP,V (x)}x∈L (the distribution of transcripts of a real execution of the protocol between P
and V ∗), and

Sim(V ∗, x)x∈L (the distribution of transcripts created by the simulator)

are identical/statistically/computationally indistinguishable.

Proof of Knowledge. A Proof of Knowledge (PoK) allows the prover to convince the veri�er that
he knows a witness w, without revealing it. The soundness property is replaced by the existence of
a polynomial time extractor Ext, de�ned as follows:

De�nition 2.33 (Proof of knowledge). Let R be a relation. Let κ be a function, κ : {0, 1}∗ →
[0, 1]. Let (P, V) be a pair of interactive algorithms such that, on input a public statement x, P and
V interacts such that, at the end of interactions, V accepts the proof or not. (P, V) is a proof of
knowledge for the relation R with knowledge error κ if it is complete and there exists a polynomial
time extractor Ext such that, for any malicious prover P ∗, on input a public statement x such that

2

2.6 Zero-Knowledge Proofs 45

p(x) = Pr[trP ∗,V (x) ∈ accept] > κ(x), and given a black box access to P ∗, there exists a constant
c such that Ext outputs a witness w ∈ RL(x) with an expected number of step bounded by:

|x|c

p(x)− κ(x)
.

Following the notation of [CS97], we write PK{w1, . . . , ws : R(w1, . . . , ws, x1 . . . , xt) = 1} to
denote the proof of knowledge of the secret witnesses w1, . . . , ws that satisfy the relationR with
the public values x1, . . . , xt.

Argument of Knowledge. A ZK Argument is a ZKPoK with computational soundness instead of
statistical soundness. Statistical soundness guaranties security even against an unbounded cheating
prover, whereas computational soundness only holds against a polynomial time cheating P ∗. In the
former case, a proof system always leads to a ZKPoK as an unbounded P ∗ will be able to compute a
witness.

2.6.1 Sigma protocols

A Sigma protocol (Σ protocol) is a three moves protocol in which a prover convinces a veri�er
that he knows a witness w for a relation R(x,w). The prover �rst sends a commitment a, then
the veri�er challenges him with a value c. Finally, the prover answers the challenge with a value
t. The veri�er accepts if the values x, a, c, t satisfy an e�ciently computable predicate Pre on the
statement to be proven. A Σ protocol moreover shall respect the following properties :

• Completeness: if the prover knows a witness w and the prover and the veri�er follow the
protocol, then the veri�er always accepts.

• s-Special soundness: a Σ protocol has s-special soundness σ if, given s distinct transcripts
(a, ei, ti)i∈[1..n] of the protocol, a witness w such that R(x,w) can be e�ciently computed.

• Special honest-veri�er Zero-Knowledge: there exists a PPT Simulator Sim which, given any
public statement x and a random challenge e, can return a transcript (a, e, c) with a probability
distribution indistinguishable from the distribution of a real execution of the protocol with an
honest veri�er. If the veri�er, denoted V ∗, is not honest and tries to obtain information by
cheating, then the protocol is said to be full Zero-Knowledge.

A Σ-protocol de�nes an honest-veri�er ZKPoK with knowledge error |C|, as proven in [Dam10],
where |C| is the cardinal of all possible challenges. Hence the challenge space shall be large enough
for the knowledge error to be negligible. The honest veri�er restriction implies that the veri�er is
supposed to generate the challenge randomly. Otherwise, the simulation is not possible anymore.
The s-Special soundness considers soundness once given s distinct transcripts. A malicious prover
shall not be able to produce more than s− 1 valid proofs. When proving the classical soundness
from the s-special soundness, the extractor uses rewinding to obtain the desired number of distinct
transcripts. The main point is that the extractor shall run in polynomial time. An e�cient rewinding
is given in [Dam10].

46 Chapter 2 Notations, De�nitions and Preliminaries

2.6.2 The Fiat Shamir Transform

The Fiat Shamir heuristic was introduced by Fiat and Shamir in [FS87] The original goal was to
design an e�cient signature scheme from an interactive identi�cation scheme. We focus our example
on Sigma protocols. As shown in Figure 2.8, given a traditional Sigma protocol Π, the Fiat Shamir
transform removes the interaction with the veri�er who traditionally sends a challenge. In the
protocol FSΠ, the prover generates the challenge itself by calling a h(x, a) were a is the commitment
value and x the public statement.

Sigma Protocol Π

Prover(w) Verifier(x)

a = com(w) a

c c = chal(a)

t = resp(w, a, c) t

return accepts if
Pre(x, a, c, t)

FSΠ

Prover(w) Verifier(x)

a = com(w)
c = h(a, x)

t = resp(w, a, c) a, t

return accepts if
Pre(x, a, c, t) and c = h(a, x)

Figure 2.8 – The Fiat Shamir transformation of a Σ protocol.

The Fiat Shamir transform was proven secure in the ROM for signatures by Pointcheval and
Stern in [PS96b] (extended in[PS96a]). The proof is based on a result known as the forking lemma.
This result relies on probability properties and ensures that, given a sound interactive three move
authentication protocol Π, then the Fiat Shamir transform of this protocol, FSΠ is a secure signature.
In the context of Sigma protocols, the reduction consists in showing that an adversary who can
produce a fake transcript for the non interactive FSΠ induces an adversary that produces two
transcripts and then breaks the 2 special soundness of the original protocol Π, which is contradictory
as Π was supposed sound. The zero-knowledge property does not come so clearly. It requires a
property called programmability. The idea is that the simulator for FSΠ can call the simulator
for the original protocol so as to obtain a valid simulation (a, e, t) (valid is to be understood as
indistinguishable from the distribution of real transcripts). Then if he can program his oracle such
that H(a) = e, the simulation is a valid simulation for FSΠ. A non negligible advantage is that it is
su�cient to have honest veri�er zero knowledge for the original interactive protocol. Despite the
limits of the ROM underlined in subsection 2.5.1, the Fiat Shamir transform is still widely used as it
enables practical non interactive protocol with nearly no overhead.

2.6.3 ZK proofs on circuits

Sigma protocols provide e�cient proof system for algebraic statements. But not all statements can
be e�ciently expressed as an algebraic relation. A circuit is a computation model, de�ned as an
acyclic directed graph composed of wires and gates. It can be algebraic, running over a �eld F, with
addition and multiplication gates, or boolean, running over Z2 with XOR and AND gates. We focus
here on proof systems relative to a circuit execution: given a circuit C , proving the knowledge of a
witness w such that C(w, x) = 1.

Garbled Circuits. In 2013, Jawurek, Kershbaum and Orlandi adapt in [JKO13] the 2 party compu-
tation garbling scheme of Yao ([Yao82]) to the zero-knowledge. Basically, the idea is that the Veri�er

2

2.6 Zero-Knowledge Proofs 47

computes an encrypted version of the circuit. The prover asks for the garbled values corresponding
to its input secret, without revealing it, using an oblivious transfer protocol, such that he can
evaluate the encrypted output and commit to it. Some more communications are needed for the
prover to be sure that the circuit was garbled honestly, then the veri�er can decrypt the output
and check the validity of the result. This proposition introduced a great improvement for circuit
based zero-knowledge. However, one main drawback is that it is inherently interactive. The original
publication announces, for proving the knowledge of a pre-image of SHA 256, a proving time around
5,7s, a veri�cation time around 4,4s, for a communication complexity of 3MB.

SNARKs SNARKs are Succinct Non interactive ARgument of Knowledge. Succinctness ensures
that the proof size remains at most logarithmic in the size of the public instance. This property was
�rst put forward for argument systems by Kilian ([Kil92]) and Micali ([Mic94]) and then extended
more recently to arguments of knowledge (see for instance [BCC+14]). SNARKs are settled in the
common reference string (CRS) model. This model supposes that the prover and the veri�er share
a common uniform public random string. This requires the existence of a trusted third party that
distributes such an input. This constraint however avoids resorting to the ROM. General SNARKs
can be constructed from two representative classes of NP problem: probabilistically checkable proofs
(PCP) or span programs.

SNARK from PCP. Given a language L, a probabilistically checkable proof system for L consists
in a prover and a probabilistic veri�er. For any statement x ∈ L, the prover produces a proof
Π that the veri�er can check with r(n) random coins and accessing q(n) bits of Π. The veri�er
shall accept all honest proofs with probability 1 and shall not be mistaken on a false proofs with
probability more than 1/2. Such a PCP is denoted PCP(r(n), q(n)). It has been proven in [ALM+98]
that PCP(log n, 1) = NP , which means any language in NP is associated to a proof system
where the veri�er can decide based on log n random coins and a single bit of the proof. Kilian
instantiated an interactive succinct argument from PCP in [Kil92], however concretely ine�cient.
More recently, [BCC+14] proposed a SNARK built from PCP.

SNARK from SPAN programs. Most current e�cient SNARK protocols are constructed from SPAN
programs. Quadratic Arithmetic Programs (QAP, [PHGR13]) translate an arithmetic circuit into a
set of polynomial constraints. They are a natural extension of Quadratic Span Programs introduced
in [GGPR13] for boolean circuits.

Informally, each multiplication gate gk, k ∈ [1, |F |], (where |F | denotes the complexity of the
circuit representing the function F in terms of multiplication gates) is associated to an arbitrary
�eld element rgk . The vj ’s will encode the left input wire, such that vj(rgk) = 1 if and only if the
wire i is a left input wire to the gate gk . Else vj(rgk) = 0. Similarly, the wj ’s encode the right input
wire and the yj ’s represent the output wire. See Figure 2.9 for an example. The idea is that those
polynomial can encode the circuit. If we de�ne a polynomial

p(x) :=

(
v0(x) +

m∑
i=0

(civi(x))

)
·

(
w0(x) +

m∑
i=0

(ciwi(x))

)
−

(
y0(x) +

m∑
i=0

(ciyi(x))

)
:= V (x)W (x)− Y (x)

a legal assignment is a set of coe�cients {ci}i∈[0,m] such that p vanishes on the roots {rgk}k∈[1,|F |]
corresponding to the multiplication gates. In other words, if we set t(x) =

∏m
i=0(x− ri), a legal

assignment is a set of coe�cients such that t divides p.
We recall the original de�nition from [PHGR13].

48 Chapter 2 Notations, De�nitions and Preliminaries

c1 c2 c3 c4

+ × g1

× g2

c5

c6 = output wire

gate g1:
left input: v3(rg1) = 1, vj(rg1) = O for j 6= 3.
right input: w3(rg1) = 1, wj(rg1) = O for j 6= 3.
output: y5(rg1) = 1, yj(rg1) = O for j 6= 5.
gate g2:
left input: v1(rg2) = 1, v2(rg2) = 1, vj(rg2) = O for
j 6= 1, 2.
right input: w5(rg2) = 1, wj(rg2) = O for j 6= 5.
output: y6(rg2) = 1, yj(rg2) = O for j 6= 6.

t(x) = (x− rg1)(x− rg2)

Figure 2.9 – A toy example of QAP encoding an arithmetic circuit. The ci’s label the wire, rg1 , rg2

are the roots associated to the multiplication gates g1 and g2.

De�nition 2.34 (QAP). A Quadratic Arithmetic Program Q over the �eld F contains three sets of
m + 1 polynomials V = {vi(x)},W = {wi(x)} and Y = {yi(x)}, i ∈ 0, 1, . . . ,m and a target
polynomial t(x). Suppose F is an arithmetic function that takes as input n elements of F and outputs
n0 elements, for a total of N = n + n0 I/O elements. Then, Q computes F if the following holds:
(c1, . . . , cN) ∈ FN is a valid assignment of F’s inputs and outputs, if and only if there exist coe�cients
(cN+1, . . . , cm) such that t(x) divides p(x), where:

p(x) :=

(
v0(x) +

m∑
i=0

(civi(x))

)
·

(
w0(x) +

m∑
i=0

(ciwi(x))

)
−

(
y0(x) +

m∑
i=0

(ciyi(x))

)
.

In other words, there must exist some polynomial h(x) such that h(x) · t(x) = p(x). The size of Q is
m, and the degree is the degree of t(x).

The idea for constructing SNARK from QAP is to leverage all the polynomial equations as
exponents in a group that supports bilinear pairing. They achieve linear veri�er time but only quasi
linear prover time (generally O(|F | log(|F |))).

Considering the original zk-SNARK protocol Pinocchio described in [PHGR13], both the CRS and
the proof computation require exponentiations in the group while the veri�cation requires only
one pairing computation. A proof of knowledge of a pre image for SHA-1 requires 12s for the CRS
generation, 15.7s for the proof computation, around 10 ms. for the veri�cation and the proof size is
a constant of 8 group elements (288 Bytes).

For more details on SNARKs, both from PCP and QAP, we refer to [Nit19].

STARKs. Some more recent work focuse on removing the CRS constraint. A main reason is that,
relying on a trustworthy party in a decentralized system - for instance crypto currencies, which
are one the main application of SNARKs -, is challenging. Some implementations (for instance the
original Zcash ([16]) choose to share the distribution via a multi party computation protocol, but
this has a non negligible computational cost. A zero knowledge STARK (zkSTARK) still require
some initial information to be shared between the prover and the veri�er but make this information
random and so, easier to deliver. Among the more relevant zkSTARK proposals, we identify
Ligero ([AHIV17]), and its recent counterpart for boolean circuit BooLigero ([GSV21]), as well as
Aurora ([BCR+19]) and STARK ([BBHR18]). The former presents an asymptotic proof size ofO(

√
N),

2

2.6 Zero-Knowledge Proofs 49

while the latter achieve O(log2N). Those asymptotic results are not easily achieved concretly. For
instance, STARK only shows e�ciency for very large circuits (above 106 multiplication gates).

MPC in the Head. Ishai et al. introduced in [IKOS07] a new paradigm for ZK proofs, called
MPC in the head. This solution reveals to be very competitive in terms of e�ciency for ZK proofs
performed on circuits, and does not require a CRS to be shared between the prover and the veri�er.
The idea is that the prover performs a virtual multi party computation (MPC) protocol and obtains
several views. He commits to these views and opens only a sub-part of them, required by the veri�er,
to convince this party. We detail in the following paragraph a very intuitive version of MPC in the
head.

ZKBoo. The seminal paper [GMO16] introducing ZKBoo proposes the �rst e�cient ZK argument of
a hash function computation. They improve the e�ciency of previous MPC in the head arguments
by introducing a function decomposition instead of more traditional MPC protocols. A (2,3)-
decomposition is a set of functions that separates the evaluation of a function into three symmetric
parts. With the requirement that, from any two parts, nothing is revealed about the third one,
especially about the input.

De�nition 2.35. A (2,3)-decomposition for the function φ is the set of functions:
D = (Share,Output1,Output2,Output3,Rec) ∪ F such that:

• Share is a surjective function used to split the input x in three shares x1, x2, x3;

• F is a �nite family of e�ciently computable functions described as {φj1, φ
j
2, φ

j
3}j∈[1,N];

• Outputi computes a value yi called the output share;

• Rec computes the �nal value y = φ(x) from the three outputs shares y1, y2 and y3.

The evaluation of the function φ on input x through the decomposition, denoted Φφ(x) produces
three views wi, i ∈ {1, 2, 3}, each composed of the input share xi together with the output of the
φi, j’s and yi. In the following, we will denote e, e+ 1 e+ 2 the three views for any e ∈ {1, 2, 3}.
In particular, additions on indices are implicitly performed mod 3.

Two properties are required from a decomposition: correctness and 2-privacy. The �rst means
that the decomposition enables to correctly evaluate the function. The second guarantees that given
any two views, one cannot learn the secret input x.

De�nition 2.36. Properties of a decomposition.

• Correctness : a (2,3)-decomposition D is said to be correct if Pr[φ(x) = Πφ(x)] = 1 for all
x ∈ X . The probability is over the choice of the random tapes ki.

• Privacy: a (2,3)-decomposition D is said to be 2-private if it is correct and, for all e ∈ {1, 2, 3}
there exists a simulator Sime, running in polynomial time, such that ({ki, wi}i=e,e+1, ye+2)
and Se(φ, y) output the same probability distribution for all x ∈ X .

The protocol ZKBoo, described in Figure 2.10 is a ZK argument/sigma protocol built from (2,3)-
decomposition in the same way IKOS ([IKOS07]) did from MPC, as formalised in the Theorem 2.4,
given in [GMO16]:

Proposition 2.4. The ZKBoo protocol is a Σ-protocol for the relationRΦ, with 3-special soundness.

50 Chapter 2 Notations, De�nitions and Preliminaries

ZKBoo

Prover Verifier
knows x such that y = φ(x) knows y
Sample random tapes k1, k2, k3

{wi, yi}i=1,2,3 ← Πφ(x)
for i = 1, 2, 3 do
ci = Commit(ki, wi)

a = (y1, y2, y3, c1, c2, c3) a

e e←$ {1, 2, 3}

ke, ke+1, we, we+1

if y 6= Rec(y1, y2, y3)
return reject

if ∃i ∈ {e, e+ 1} s.t. yi 6= Output(wi)
return reject

if ∃j ∈ [1, . . . N] s.t.
we[j] 6= φje(we, we+1, ke, ke+1)

return reject

return accept

Figure 2.10 – The ZKBoo sigma protocol built from a (2,3)-decomposition of a function.

A soundness probability of 2−σ (meaning the probability for a cheating Prover not to be caught
is less than 2−σ), is obtained by repeating the process t = σ · (log2 3− 1)−1 times.

We �nally give an overview of the practical instantiation of a (2,3) decomposition for any circuit
(boolean or arithmetic) that evaluates a function Φ : Rk → R` where R is a ring. Each gate, except
the multiplication gates, evaluates normally (or quiet, as addition by a constant is only performed in
the �rst view), whereas the computation of the output wire c of a multiplication gate with input
wires a and b is speci�cally split among the three views and randomized so as to obtain the 2-privacy
property.

we[c] = φce(wi[a, b], we+1[a, b])
= we[a] · we[b] + wi[a] · we+1[b] + we[b] · we+1[a] +Re(c)−Re+1(c),

withRe(c) (respectivelyRe+1(c)) being the randomness associated to view e (respectively e+1) for
the gate c. The initial sharing is a simple additive secret sharing, where addition is taken on R and
the output ye consists in the value of the output wire in the view we. Then the recomposition Rec
evaluates the addition of the three output shares: Rec(y1, y2, y3) = y1 + y2 + y3, where the addition
is taken on R. This description is proven to be a (2,3) decomposition, meaning that it satis�es the
correctness and 2-privacy properties. Note that for their implementation of ZKBoo proofs on SHA-1
and SHA-256, the authors consider a circuit described on Z2 so additions are to be understood as
XOR and multiplications as binary AND.
E�ciency. For |c| the bit size of each commitment, |r| the bit size of each random element re
and |k| the bit size of a random-tape ke, one obtains, for t rounds, a proof size of |proof | =

2

2.6 Zero-Knowledge Proofs 51

t · [3(|y|+ |c|) + 2 · (|view|+ |k|+ |r|)]. In [CDG+17] the authors propose an improvement of
ZKBOO, called ZKBoo++. They avoid sending values or commitment that the Verifier is able to
compute, once revealed the proof. They gain a factor two in the proof size at no extra computational
cost. They obtain |proof | = t · [|c|+ 2 · |k|+ 2/3 · |x|+ |view|+ |chal|)] where chal is the chal-
lenge computed from the commitments to the three views, in the Fiat Shamir transform. Focusing
on the size of a view, it is easy to remark that, from an input share e, a Verifier can compute all
gates of the viewe except the multiplication ones. For these, the Verifier needs values from the next
view viewe+1, which can also be reduced to the multiplication gates output wires values. Hence the
size of the view is fully determined by the number of multiplication gates in the circuit. The size of
the proof is linear in the number of multiplication gates in the circuits.
PQ signature and further improvements. The e�ciency of MPC in the head based protocol for circuit
proof gave birth to a family of Post Quantum signature called PicNic, that was submitted to the
NIST Post Quantum competition11. The improvement ZKBoo++ ([CDG+17]) was originally included
in the �rst Post Quantum signature scheme PicNic. With the same motivation, the KKW proto-
col ([KKW18]) or the recent TurboIKOS [GHS+21] are also improved MPC in the head protocols.
The former is included in PicNic2 and PicNic3 (the di�erences between version 2 and 3 are mainly
optimisation in the implementation of KKW). It reaches better performance than the original ZK-
Boo++, while using preprocessing. The later reaches performance close to KKW but is implemented
in alternative version of the PicNic scheme, which makes practical comparison more di�cult.

2.6.4 Commitment schemes

In the context of zero-knowledge, the prover often needs to convince the veri�er that he makes use
of a certain �xed value, without revealing this value. This is the purpose of commitment : to bind to
a value without leaking information about it.

De�nition 2.37 (Commitment scheme). A non interactive commitment scheme is de�nied by three
algorithms :

• Gen(λ) a generation algorithm that, on input a security parameter λ, outputs the public param-
eters pp for the scheme. They will be implicit input o� the following algorithms.

• Com(m, r) on input a messagem and some random coin r ∈ R, outputs a commitment c and
an opening information d.

• Open(c, d) on input a commitment c and an opening information d, returns accept or reject.

On the one hand, a commitment c shall not reveal any information about the committed x; this is
the hiding property. On the other hand, only the secret x shall produce a valid opening for c; this is
the binding property. We provide below formal de�nitions for both those properties.

De�nition 2.38 (Hiding). A commitment scheme is said to be perfectly (respectively statistically,
computationally) hiding if for all x 6= x′, the following distributions:

{Com(x, r)}U(R) and {Com(x′, r)}U(R)

are perfectly (resp. statistically, computationally) indistinguishable (where U(R) is the uniform distri-
bution over R).
11The PicNic scheme reached the third round as an alternate candidate. However, due to recent cryptanalysis that

impacted multivariate candidates GeMSS and Rainbow, a fourth round opened to new candidate is actually under
discussion.

52 Chapter 2 Notations, De�nitions and Preliminaries

De�nition 2.39 (Computational Binding). A commitment scheme is said to be computationally
binding if, for all probabilistic adversaries A running in polynomial time, there is a negligible function
negl(λ) such that:

Pr
[
pp← Gen(1λ), (m0, r0,m1, r1)← A(pp) : m0 6= m1∧

Com(m0, r0) = Com(m1, r1)] ≤ negl(λ) .

wherem0,m1 are valid message for the commitment scheme, r0, r1 ∈ R.

A commitment scheme can not be both statistically hiding and statistically binding. Informally,
the former requires the commitment to open at least to two di�erent values (otherwise an unbounded
prover that can test all the input to break the hiding property), but then, it is not binding anymore.

In addition, it is sometimes desirable that a third party (a simulator for instance) can cheat the
binding and open the commitment to the value of its choice. Some commitment schemes o�er this
possibility, with the help of an auxiliary trapdoor value. Such schemes are said to be equivocable.

De�nition 2.40 (Equivocality). A commitment scheme is said to be equivocable if there exists an
alternative generation algorithm Gen′ and an algorithm Eval such that:

• on input the security parameter, Gen′(1λ) returns the public parameters pp and a trapdoor T ;

• for any commitment C = Com(m, r), and any messagem′,
Com(m′,Eval(T,m′, (C, d) = C .

Moreover, there exists an extractor algorithm ExtCom that, given two distinct valid opening d0, d1 on a
commitment C , can extract the trapdoor T .

Perdersen commitment. The Pedersen commitment scheme [Ped92] is an equivocable scheme
with unconditional hiding and computational binding. It is routinely used because it interacts
nicely with linear relations. This scheme is de�ned as follows: let G be a cyclic group of prime
order q, P a generator and Q ∈ G such that the discrete log of Q in base P is unknown. Then,
Com(x) = xP+rQwhere r is sampled at random inZq . LetC1,C2 be commitments to values x1, x2.
If a, b ∈ Zq are public values, then one can e�ciently prove the following : PK{x1, x2, r1, r2 :
C1 = x1P + r1Q ∧ C2 = x2P + r2Q ∧ ax1 + x2 = b mod q}. The trapdoor for equivocality is
given by the discrete log of Q in base P .
We recall in Figure 2.11 the Σ-protocol to prove knowledge of the opening values of a Pedersen
commitment Cx. That is, PK{x, r : Cx = xP + rQ}. This proof is close to the discrete logarithm
proof.

Proof of knowledge of a linear relation between two Pedersen commitments. We recall
in Figure 2.12 the Σ-protocol to prove this statement: PK{x1, x2, r1, r2 : C1 = x1P + r1Q ∧ C2 =
x2P + r2Q ∧ ax1 + x2 = b mod q} and we give the associated proof.

Proof. Correctness follows by inspection.

Soundness. An extractor works as follows: given two transcripts with �xed values for d1, d2
but distinct challenges e1, e2 (opportunity given by the forking lemma), it can evaluate, as in the
original Schnorr proof, the witnesses values x1, x2, r1, r2 and check that the linear relation is veri�ed.

2

2.7 Veri�able encryption 53

Prover(x, r) Verifier(Cx)

a, s←$Zq d = aP + sQ

e e←$ {0, 1}`// such that 2` < q

u = a+ ex mod q

v = s+ er mod q u, v

return accepts if uP + vQ = eCx + d

Figure 2.11 – Proof of knowledge of opening of Pedersen commitment

Linear relation Proof

Prover(x1, x2, r1, r2) Verifier(C1, C2, a1, a2, b)
u1, u2←$ {(α, β) ∈ Zq :

αa1 + β = 0 mod p}
s1, s2←$Zq

d1 = u1P + s1Q, d2 = u2P + s2Q

c c←$ {0, 1}`// such that 2` < p

t1,1 = u1 + cx1 mod q

t2,1 = u2 + cx2 mod q

t1,2 = s1 + cr1 mod q

t2,2 = u2 + cr2 mod q

t1,1, t1,2, t2,1, t2,2

return accepts if
t1,1P + t1,2Q = cC1 + d1

t2,1P + t2,2Q = cC2 + d2

at1,1 + t2,1 = bc

Figure 2.12 – Proof of knowledge of a linear relation between two Pedersen Commitments

Honest veri�er zero knowledge. A simulator, knowing only the public values C1, C2, a, b can
simulate a correct view as follow. As a �rst step he guesses what the challenge e will be. Then
he samples a value t1,1 and deduces t2,1 from the relation at1,1 + t2,1 = be. Then he samples t1,2
and t2,2 and deduces d1 and d2. He sends them to the Verifier . He receives the challenge from
the Veri�er. If it is not the expected challenge then he aborts. Otherwise he answers with the pre
calculated values. Values d1, d2, t1,1, t1,2, t2,1, t2,2 are as random as the original should be (they are
sampled at random whereas the original ones are evaluated from at least on e random coe�cient
picked in the same space). The Veri�er cannot distinguish the two distributions.
It is important to note that a valid simulation can be obtained even if the linear relation is not
veri�ed. Suppose b is not a �xed public value but that the Prover samples b at random. As he does
not know x1, x2, he can not predict whether the relation ax1 + x2 = b holds. However the above
simulation remains valid.

2.7 Veri�able encryption

Veri�able encryption aims at convincing a veri�er that an encrypted data satis�es some properties
without leaking any information about the data itself. In such 2-party protocol, a prover and a
veri�er share in a common input string a public key encryption scheme Enc, a public key pk for

54 Chapter 2 Notations, De�nitions and Preliminaries

Enc, and a public value y. At the end, the veri�er either accepts and obtains the encryption of a
secret value x under pk such that x and y verify some relation R or rejects. It is worth noticing
that the prover does not need the secret key sk, that usually belongs to a third party. Veri�able
encryption often appears in the domain of anonymous credentials, fair exchange signatures, or
veri�able secret sharing [Sta96]. In [CD00], Camenish and Damgård describe how to provide a proof
that an encrypted value is a valid signature, using any semantically secure encryption scheme. The
idea is to take advantage of the Σ-protocol for a relationR(x, y), to prove that an encrypted value
is the witness x for this relation.

2.7.1 A formal de�nition

We recall here the formal de�nition of veri�able encryption as detailed in [CD00]. Let (KeyGen,
Enc, Dec) be a probabilistic public key encryption scheme and (pk, sk) = KeyGen(1λ) a valid key
pair. The veri�able encryption mechanism, attached to an encryption scheme (KeyGen,Enc,Dec),
to the binary relationR and to the associated language LR = {(x,w) : R(x,w) = 1}, is de�ned as
a two-party protocol Π between a prover P (who encrypts the data) and a couple composed of a
veri�er V on the one hand and a recovery algorithm Rec on the other hand. The protocol Π takes as
public parameters a valid public key pk, a statement x and a security parameter λ. Let VP (pk, x, λ)
denote the �nal output of V interacting with P on input (pk, x, λ). The recovery algorithm takes
as input the secret key sk and VP (pk, x, λ).

De�nition 2.41 (Secure Veri�able encryption). The couple protocol/recovery algorithm described
above is a secure veri�able encryption scheme if the following holds:

• completeness: if P and V are honest, then VP (pk, x, λ) 6= ⊥ for all (pk, sk) valid key pair for
the subsequent encryption scheme and x ∈ LR;

• validity: for all PPT malicious prover P ∗, all valid key pairs (sk, pk),
Pr[R(x,Rec(sk, VP ∗(pk, x, λ))] 6= 1 and VP ∗(pk, x, λ) 6= ⊥

)
is negligible;

• computational Zero-Knowledge: for every unbounded malicious veri�er V ∗, there exists an
expected poly-time Simulator SimV ∗ with black-box access to V ∗ such that for all distinguisher
A, all positive polynomial p(·), all x ∈ L and all su�ciently large λ we have:

Pr[A(pk, x, αi] = i : (pk, sk) = KeyGen(1λ), α0 = VP (pk, x, λ),
α1 = SimV ∗(pk, x, λ), i ∈ {0, 1}

)
≤ 1

2 + 1
p(λ) .

Informally, validity ensures that a malicious prover P∗ will always be caught, except with negli-
gible probability, because the recovery algorithm shall be able to compute a witness. The recovery
success guaranties that the decryption will be correct. In the soundness property of ZKPoK, one
needs a third party, the extractor, to unmask a cheating prover. We also note that the revelation
process "kills" the Zero-Knowledge feature of the proof. Veri�able encryption follows the same
rules, except that the third party - the recovery algorithm - needs an additional ingredient : the
secret key sk. The veri�er is not supposed to be honest here.

We denote by VerifEncEnc,pk(m : r) the encryption of a message m (using randomness r) under
the public key pk with the encryption scheme Enc and the associated proof i.e. the output of the
prover. We omit the randomness r when it is not necessary to explicitly mention it.

2

2.7 Veri�able encryption 55

2.7.2 The Camenish-Damgård veri�able encryption scheme

In Figure 2.13, we describe the veri�able encryption solution given in [CD00], adapted to the
Σ-protocol dedicated to a Pedersen commitment as de�ned in section 2.6.4

Veri�able encryption veri�cation protocol Π

Prover(x, r) Verifier(Cx, pk)
a, s←$Zq
u0 = a, u1 = a+ x mod q

ci = Encpk(ui : ri)// ri the randomness used in the encryption

d = aP + sQ, c0, c1

e e←$ {0, 1}

u = ue, v = s+ e · r mod q

t = (u, v, re)

o← uP + vQ == eCx + d

∧ ce == Encpk(u : re)
if o = 1 return (ce, u)
else return ⊥

Figure 2.13 – A simple version of veri�able encryption scheme. The Verifier knows a public
commitment to x, Cx and a public key pk. The Prover proves knowledge of the
encrypted message x and of the random r used in the commitment Cx.

As for any cut-and-choose protocols, the probability that a cheating prover wins is 1
2 for one

round. One has to repeat the protocol σ times to obtain a cheating probability (a validity error) of
2−σ . The protocol described in Figure 2.13 can be optimized by gathering all rounds in a single one
as described in the original paper, dropping to O(log(σ)) the number of encryptions to store.

About the veri�able encryption in [CPZ20]. In this paper, the authors describe a symmetric
encryption scheme, inspired by the original ElGamal scheme, on which one can prove that the
encrypted data is an attribute for which a speci�c anonymous algebraic credential was previously
delivered. To encrypt a scalar message y, they call an EncodeToG : {0, 1}` → G, an injective
and easily reversible encoding to the group G. The key in this scheme is that the prover can
give a commitment Ce on the encoded value EncodeToG(y) together with a proof that the value
committed inCe is the encoded version of the value committed in another commitmentCy . And this
is possible because the veri�er plays an active part in the creation of these commitments (he delivers
the original credentials and public values corresponding to secrets he owns. The Prover then uses
those credentials and parameters to provide the desired proof.) Unfortunately, in our own case, the
Verifier plays no part in the protocol apart verifying and transmitting values. Another drawback
is that it requires a group that supports an injective encoding EncodeToG that comes with a zero-
knowledge proof PK{(m, y) : y = EncodeToG(m)}. They use the Ristretto255 group ([HVLT19]),
a prime order group built on top of the Bernstein elliptic curve Curve25519 ([Ber06]).

3

Ratcheted Key Exchanges 3
S

ecure Instant Messaging solutions aim at o�ering to their users a quiet and private room
to communicate. A non negligible number of solutions have emerged through the last
decade, among them WhatsApp (1.5 billion of users, for 60 billions of messages sent each

day 1), Facebook Messenger with its optional secret conversation mode (1,3 billion of users 2), Wire,
Viber, Google Allo and Signal. Much more names could be mentioned here (Telegram, Threema,
. . .) but a common denominator of the solutions cited above is that they settle their security on a
solution called the Double Ratchet algorithm. After being released o�cially by Signal’s team in
2016, this algorithm has been widely studied and has led to the formalisation of theoretical primitive
baptised Ratcheted Key Exchanges (RKE). One of our goal in this Chapter, is to walk along the way
that goes from practical protocols (OTR then Signal) to a complex cryptographic primitive, which
associated expected security is not well de�ned yet.

Contents

2.1 Mathematical Notations . 14
2.2 Provable Security . 14

2.2.1 Complexity . 15
2.2.2 Game-based proofs . 16

2.3 Basic cryptographic primitives . 20
2.3.1 Encryption . 20
2.3.2 Multi-user, multi-recipient and broadcast encryption 24
2.3.3 Message authentication codes . 28
2.3.4 Authenticated Encryption with associated data 30
2.3.5 Key Derivation Function . 30

2.4 Key exchange protocols . 31
2.4.1 How secure is your session key ? . 32
2.4.2 A formal model . 33
2.4.3 Beyond AKE . 37

2.5 PRF, hash functions and random oracle 40
2.5.1 The Random Oracle Model (ROM) . 40
2.5.2 Correlation Intractability . 41
2.5.3 Correlated input security . 42
2.5.4 Related Key Attacks . 43

1http://techcrunch.com - Facebook Q4 2017 earnings announcement
2www.socialmediatoday.com/news Facebook Messenger by the numbers 2019

58 Chapter 3 Ratcheted Key Exchanges

2.6 Zero-Knowledge Proofs . 44
2.6.1 Sigma protocols . 45
2.6.2 The Fiat Shamir Transform . 46
2.6.3 ZK proofs on circuits . 46
2.6.4 Commitment schemes . 51

2.7 Veri�able encryption . 53
2.7.1 A formal de�nition . 54
2.7.2 The Camenish-Damgård veri�able encryption scheme 55

3

3.1 OTR and Signal : the practical protocols 59

Whenever studying the history of a technological advance, setting a starting point is nearly
impossible. Each small step is based on earlier developments and so, one may go back far in the
past to unfold the whole story. Hence, we must decide of a subjective beginning. Ours will be 2004
and the publication of the protocol O�-the Record [BGB04]. Other protocols already dealt with the
security of communication before: TLS (back then called SSL, cf. section 2.4.3), S/MiME ([Ram99]
for the version 3 of 1999, [RST19] for the current version), PGP ([Zim95]), or Trillian [21] are the
most commonly cited. However, the �rst was dedicated to secure connections between clients and
servers, S/MIME and PGP were mostly designed for emailing and the last one, (back then, as it still
exists and has evolved since) ensured secrecy without authentication. On a more academic level, the
messaging solution based on puncturable encryption proposed in [GM15] (inspired by [CHK03]), is
also interested in the security of messaging, but only explores the PFS feature. The systematization
of Knowledge of Unger et al. ([UDB+15]) provides a good survey of the existing solutions available
in 2015, and we will regularly refer to their work. For now, we start with O�-the-Record (OTR in the
following lines), as it contains the main ingredients that will be needed in the more recent Signal,
on which we elaborate our �rst contribution.

3.1 OTR and Signal : the practical protocols

3.1.1 O�-the-Record: the birth

The name of this protocol gives a good intuition of the intended goal we described earlier: enable
private conversations, that would be held without anyone around to record it. Three key notions
are associated: secrecy, PFS and deniability. The �rst notion relates to end-to-end authenticated
encryption. Messages are encrypted on Alice’s device and should be decrypted by Bob only. Deni-
ability says that no one should be able to tell that a particular message was sent by Alice to Bob.
Note that this is di�erent from anonymity, where no one should even know that Alice spoke to
Bob. Once again, the idea is to keep the privacy one enjoys in the street: without a recording of the
conversation (or a witness who heard everything), then Bob cannot prove that Alice made speci�c
comments: it is word against word only.

OTR introduces two key ingredients: �rstly, the use of short-lived session keys, to provide secrecy.
Secondly, a Mac based chaining system to provide authentication of the data without using a
signature scheme, which is, by nature, non deniable. The short-lived key computation is based on a
classical Di�e-Hellman protocol, that we recall here: let G be a cyclic group of prime order q, g
a generator for this group. Alice and Bob can compute a shared secret as follows: Alice samples
a←$ Zq , sends the public ga to Bob. Bob samples b←$ Zq , sends the public value gb to Alice. Then
both of them can compute a common secret gab = gba that we later denote DH(ga, gb). The most
basic re keying system would renew this whole protocol regularly. However, in order to save
computation, one can recycle an exponent, and only half refresh the common secret as described
in Figure 3.1.

This refreshing procedure is called ratcheting: once you have moved from ki,i to ki+1,i (respec-
tively from ki,i−1 to ki,i), no step backward is possible, given CDH is a hard problem. The ratchet
procedure also extends the notion of PFS. No long term key are at stake in the refreshing procedure
described in Figure 3.1. However, PFS can be understood relatively to the current state: accessing bi
does not harm the security of key computed with bj , j ∈ J0; i− 1K.

From this regularly ratcheted secret are derived two keys, one for data encryption, the other is
a Mac key. Each new Di�e-Hellman share’s integrity is protected under the previous Mac key,
composing a chaining system, that bounds each message to the origin. However, this origin has

60 Chapter 3 Ratcheted Key Exchanges

Key Refresh

Alice Bob

a1←$Zq ga1

gb1
b1←$Zq

k1,1 = DH(gb1 , ga1) k1,1 = DH(ga1 , gb1)

a2←$Zq ga2

k2,1 = DH(gb1 , ga2) k2,1 = DH(ga2 , gb1)

gb2
b2←$Zq

k2,2 = DH(gb2 , ga2) k2,2 = DH(ga2 , gb2)
. . .

Figure 3.1 – The OTR Di�e Hellman based key refreshing mechanism, in its simplest form.

to be formally authenticated: Alice and Bob need to ensure they start on a good basis to rely on
the chaining system. With this system, Alice encrypts her message and authenticate her new
public Di�e-Hellman share under the keys that were computed at the previous round, as shown
in Figure 3.2. OTR proposes a signature based authentication on the �rst two moves of the protocol.
DiRaimondo et al. examine in [DGK05] the need for a strong authenticated key exchange to settle
the authentication chain.

OTR

Alice Bob

a1←$Zq ga1

gb1
b1←$Zq

k11 = DH(gb1 , ga1) k11 = DH(ga1 , gb1)
sk11,mk11 = HKDF(k11) sk11,mk11 = HKDF(k11)

a2←$Zq ga2 , ea = Enc(sk11,m),Mac(mk11, g
a2 ||ea)

k21 = DH(gb1 , ga2) k21 = DH(ga2 , gb1)
sk21,mk21 = HKDF(k21) sk21,mk21 = HKDF(k21)

gb2 , eb = Enc(sk21,m),Mac(mk21, g
b2 ||eb) b2←$Zq

k22 = DH(gb2 , ga2) k22 = DH(ga2 , gb2)
. . .

Figure 3.2 – Sending and authenticating messages in OTR.

We have now the main ingredients that will compose a ratcheted key exchange: an initial
authenticated key exchange, a chaining authentication for deniability, and a regular update of the
encryption keys: the ratchet itself. But OTR was designed for instant messaging on computers, that
was, back then, inherently interactive. If the advent of smartphones saw the popularity of instant
messaging applications massively raise, it also invalidated the paradigm that both participants in
the conversation are on line at the same time. Secure messaging protocols have to move forward:

3

3.1 OTR and Signal : the practical protocols 61

• The initial key exchange has to be non interactive;

• The authentication chain has to be adapted: as designed in Figure 3.2, Alice can not use her
ratchet update as soon as she computes it. She has to wait for Bob to acknowledge it before.
This is not suitable for the asynchronous setting.

• The "ping-pong" format of the ratchet,where the key evolves only when receiving a message,
is not su�cient: as instant messaging session can now last for weeks or even years, if Bob is
o� line for a long time then no refreshing happens.

3.1.2 Signal: the con�rmation

The Signal secure messaging application (previously named TextSecure) aims at proposing an
asynchronous "end-to-end secure" messaging solution. It is based on two cryptographic protocols:
the Double Ratchet algorithm ([MP16a]), that controls the refreshing mechanism of the session keys,
and X3DH ([MP16b]), the initial asynchronous authenticated key exchange. Both protocols are
often put together and identi�ed as Signal3. Whatever the terms, we will focus in this manuscript
on the cryptographic part of the application, that occurs on the user’s device4. We �rst describe
the protocol, then investigate on the �rst complete security analysis, provided by Cohn-Gordon et
al. ([CCD+17]).
The initial key exchange. We recall the protocol X3DH in Figure 3.3. The main idea to reach
asynchronism, is to let any participant who wishes to be contacted (here Bob) pre-publish some
public keys on a dedicated server (Signal’s server for instance):

• a long term public identity key pkB . The �rst time Alice wants to communicate with Bob, she
should check the validity of this long term key, using an alternative channel, for instance, by
comparing a �ngerprint value via a phone call or via a QR Code. Note that this mechanism
does not prevent a malicious participant to register Bob’s public key as its own, to perform an
Unknown KeyShare Attack (UKS)5, cf. section 2.4.1;

• a mid-term public key prepkB . This key can be used for several initial key agreement, with
di�erent peers. However, it shall be renewed regularly. This frequency of renewal is decided
at an application level. This prekey is signed (the public signing key can be thought of as
part as the identity public key described above). This does not neither prevent UKS attacks.
According to the speci�cation [MP16b], this signature shall prevent a malicious user to register
trapped prekeys on behalf of Bob, that would cancel the PFS of X3DH;

• a bunch of ephemeral pre-keys epkB,j for j = 1, . . . ,M . Each key is used only once. The last
key of this set is called the last resort key. Its use is a warning that the set of ephemeral key
should be renewed. If no one-time key is available, the last component of the key derivation
secret (in cyan in Figure 3.3) is omitted.

On reusing mid-term keys. The reuse of ephemerals in Di�e Hellman based key agreements is
studied in [MU10]. The authors show how this practice can lead to small subgroup attack. Consider

3Some time before the name Signal spreads in the security community, the protocol - either the ratchet only or together
with the initial key exchange - was also identi�ed as the Axolotl protocol.

4There is another layer of encryption and authentication between the Signal server and the Google Cloud Messaging
system that distributes the message. We will not discuss it here.

5Moreover, this supposes the participants to be actively acting for the security of their communication. We extend on
the peculiar role of the server in subsection 3.2.3

62 Chapter 3 Ratcheted Key Exchanges

X3DH

Alice (pkA, skA) Server Bob (pkB , skB)
prepkB , preskB ← PreKeyGen(1λ){
epkB,`
eskB,`

}
`∈J0;MK
← EphKeyGen(1λ)

Register(pkB ,prekB ,{epkB,`}`∈J0;MK)

RequestPreKey(Bob)

pkB ,prekB , epkB,j

eskA, epkA ← EphKeyGen(λ)
DH1 = DH(prepkB , pkA)
DH2 = DH(pkB , epkA)
DH3 = DH(prepkB , epkA)
DH4 = DH(epkB,j , epkA)
SK = KDF(DH1||DH2||DH3||DH4)

Alice, epkA , j
−−→

pkA ← Alice

epkB,`, eskB,` ← j

DH1 = DH(pkA, prepkB)
DH2 = DH(epkA, pkB)
DH3 = DH(epkA, prepkB)
DH4 = DH(epkB,j , epkA)
SK = KDF(DH1||DH2||DH3||DH4)

Figure 3.3 – The X3DH asynchronous authenticated key exchange. The elements written in cyan
are optional. If no one-time key epkB,j is available, the protocol is performed with
only the three �rst DH computations.

a Di�e Hellman based key exchange that takes place on a group G of prime order q. The adversary
considers a group G′ such that the elements in G′ are encoded as the element in G and such
that an implementation of the multiplication in G (addition for an additive group) is valid for G′.
Moreover, G′ admits several elements g′i of distinct low orders ti (ti shall be small enough for A
to perform a brute force attack, ti ≤ 160). Then A registers one or several low order elements
pkB,i = g

′bi
i , bi←$ Zti as its own public key. If the key exchange enables Alice to reuse her keys

a, ga, A can brute force several values a mod ti. The Chinese remainder theorem then gives a. One
solution to prevent this attack is that Alice always check that Bob’s public key is a valid element in
G, not equal to 1.
The Double Ratchet part. Once Alice and Bob share (virtually, as Bob may not have received the
message yet) a common secret K , Alice can initiate the Double Ratchet algorithm to derive di�erent
keys. The Double Ratchet associates the asymmetric Di�e Hellman based ratchet of OTR, described
in subsection 3.1.1, with another evolution: the short lived session key obtained from the asymmetric
step is itself continuously updated with each message sent by Alice. This second derivation does
not require any randomness from Bob, and can be done independently on both side, hence its
name: symmetric ratchet. We list the keys and their function and give a schematic vision of the key
schedule of Signal in Figure 3.4. Alice and Bob store and update the following keys:

• a ratchet key pair rskA, rpkA: they are the ephemeral keys for the current asymmetric ratchet.
We index the ratchet keys with a counter: rskA,i, rpkA,i. As Alice and Bob alternatively
generate new ratchet key, there can be at most a di�erence of one between their counters (the

3

3.2 The security of Signal 63

initiator starts).

• a root key rk which takes charge of the authentication chaining system. This replaces the
Mac chaining in OTR. The next epoch root key derivation depends on the current root key,
this is the chaining. This way, the keys derived from this stage will be authenticated by Bob as
coming from Alice by Bob as soon as he derives them. Hence they can be used once computed.
The computation of the root key also depends on the asymmetric Di�e Hellman value. Hence
we index it with a counter that evolves with each ratchet step. As Alice and Bob ratcheting
counter can only di�er by one, we obtain either rki,i−1 or rki,i. The common secret resulting
from X3DH is the initial root key and called the master secret key MSK .

• a chain key ck: this is the starting point of the symmetric ratchet, from which are derived
the message keys. An initial chain key is derived together with the root key as follows:
rki,i, cki,i−1:0 = KDFr(DH(rpka,i, rpkb,i−1), 2λ, rki,i−1, cstr) (respectively rki+1,i, cki,i:0
= KDFr(DH(rpka,i, rpkb,i), 2λ, rki,i, cstr)), where KDFr corresponds to the HKDF key
derivation function (cf. subsection 2.3.5). Then, a new chain key is derived with each message:
cki,j:k+1 = HMAC(cki,j:k, 0) (j = i− 1 or j = i). Note that the initiator of the session (here
Alice) is always one index beyond the receiver. Hence, on Alice’s side, keys indexed with
i+ 1, i are computed when she wants to send messages: this initiates a sender chain. Keys
indexed with i, i are computed on receiving a response from B and initiates a receiving chain.
This is the contrary on Bob’s side.

• a message key mk: this is the application key that encrypts the data exchanged between
Alice and Bob. It is derived from the chain key by applying successively HMAC, then HKDF
(without salt): mki,j:k = HKDF(HMAC(cki,j:k, 1), cst1) where cst1 is a constant determined
at the implementation level.

In [CCD+17], the author gather both the HMAC and HMAC+HKDF derivations of the chain key in
a single global function KDFm such that KDFm(cki,j:k, cst1) = cki,ij,k+1,mki,j:k. This choice is
on purpose to facilitate the exposure of there proof. As it also makes the global key schedule clearer,
we adopt this notation in Figure 3.4.
The initial ratchet. Following the speci�cation ([MP16a]), once Alice has computed the initial
root key (the master secret), she immediately performs the ratchet step. She generates a random
ratchet key pair rskA,0, rpkA,0 and considers Bob’s signed prekey prekB as the initial ratchet key
for Bob. Following our notation, this key is a “−1th” ratchet key for Bob. From this data she
can derive rk0,0, ck0,−1:0 = KDFr(DH(rpkA,0, prekB), 2λ,MSK, cst) and ck0,−1:1,mk0,−1:0 =
KDFm(ck0,−1:0).

As we are interested in the key exchange part, the description of X3DH (Figure 3.3) and the key
schedule (Figure 3.4) are the main information we need. However, we give in Figure 3.5 a high
level view of a protocol execution between Alice and Bob to help visualize how the asymmetric and
symmetric ratchets alternate in the protocol.

3.2 The security of Signal

3.2.1 A segmented analysis

The security of Signal (TextSecure) was �rst explored in 2016 in [FMB+16]. In this work, the
ratcheting process is not fully considered, the authors analyse separately the di�erent components

64 Chapter 3 Ratcheted Key Exchanges

rki,i−1 rki,i rki+1,i

rpka,i rpkb,i−1 rpka,i rpkb,i rpka,i+1 rpkb,i

cki,i−1:0 cki,i:0

cki,i−1:1 cki,i:1mki,i−1:0 mki,i:0

cki,i−1:2 cki,i:2mki,i−1:1 mki,i:1

KDrF KDFr KDFr

KDFm KDFm

KDFm KDFm

Figure 3.4 – The key schedule of Signal. The horizontal evolution with diamond KDFr represents
the asymmetric ratchet. The vertical evolutions with ellipsoidal KDFm formalise the
symmetric ratchets. (We only pention public ratchet keys in coloured boxes but the
DH associates one of these public key with the secret key corresponding to the other.)

of the protocol. Firstly, they analyse the initial key exchange, identi�ed as a cached one round key
establishment. Back then (in 2016), X3DH was not speci�ed and TextSecure implemented a variant of
the protocol described in Figure 3.3. There was no mid-term key prekB but only one time ephemeral
keys, and the derivation was always executed on the secret entry epkskAB,j ||pk

eskA
B ||epkeskAB,j (written

here on Alice’s side). Their analysis takes place in a model that is situated half way between Bellare-
Rogaway and the extended Canetti-Krawczyk. The adversary is given access to a RevealLongTerm
oracle6, but has no RevealState. He has no access to ephemeral secrets eksA, eskB,j (apart from
impersonating Alice or Bob and registering one-time keys on behalf of them). Their security result
is based on the gDDH assumption, and they idealize the key derivation function as a random oracle.
(As an apparté, we note that there has been limited works focusing on the X3DH protocol since
this �rst analysis. A regain of interest seems to appear in the Post Quantum context, as reveal the
recent [BFG+20] and [HKKP21].)

The authors clearly point out that “the multiplicity of di�erent secret values established during
the TextSecure protocol makes it di�cult to correctly de�ne queries revealing any long-, medium-
or short lived values to the adversary”, which in fact gives birth to a complex model in the complete
Signal analysis provided in [CCD+17].

The authors then turn to the case of the encryption scheme (an encryption together with a mac)
and to the key derivation function. The key derivation they consider corresponds to KDFr followed
by KDFm (see Figure 3.6).

They prove the security of this construction given HMAC is a secure PRF and HKDF is modelled
as a non programmable random oracle. In the analysis of Cohn Gordon, that we explore in more

6It is originally called Corrupt but it only gives access to the long term secrets, not to the state, hence corresponds to
our de�nition of RevealLongTerm.

3

3.2 The security of Signal 65

Alice Server Bob
pkA, skA, pkB , skB

Initiation

Require Bob’s credentials

pkB , prepkB , epkB,j]

MSK ← X3DH
rskA,0, rpkA,0 ← DHKeyGen(1λ)
E = DH(rskA,0, prepkB)
rk0,0

ck0,−1:0

}
← KDFr(MSK,E)

ck0,−1:1
mk0,−1:0

}
← KDFm(ck0,−1:0)

AEAD(mk0,−1:0,m), j, rpkA,0, epkA ∗
−−−→ MSK ← X3DH

E = DH(preskB , rpkA,0)
temp = rk0,0

ck0,−1:0

}
← KDFr(MSK,E)

ck0,−1:1
mk0,−1:0

}
← KDFm(ck0,−1:0)

Asymmetric Ratchet - Bob’s reply

rskB,0, rpkB,0 ← DHKeyGen(1λ)
E = DH(rskB,0, rpkB,0)
rk1,0
ck0,0:0

}
← KDFr(temp,E)

ck0,0:1
mk0,0:0

}
← KDFm(ck0,0:0)

AEAD(mk0,0:0,m), rpkA,0
←−−−

. . .

Asymmetric Ratchet - Alice’s reply

rskA,i+1, rpkA,i+1 ← DHKeyGen(1λ)
E = DH(rskA,i+1, rpkB,i)
rki+1,i+1
cki+1,i:0

}
← KDFr(rki+1,i, E)

cki+1,i:1
mki+1,i:0

}
← KDFm(cki+1,i:0)

AEAD(mki+1,i:0,m), rpkA,i+1
−−−→

Symmetric Ratchet

cki+1,i:x+1
mki+1,i:x

}
← KDFm(cki+1,i:x)

AEAD(mki+1,i,x,m), rchpkA,i+1
−−−→

cki+1,i:x+2
mki+1,i:x+1

}
← KDFm(cki+1,i:x+1)

AEAD(mki+1,i:x+1,m), rchpkA,i+1
−−−→

Figure 3.5 – Alice is the initiator of the conversation. AEAD is de�ned in subsection 2.3.4. X3DH,
KDFm and KDFr are de�ned in subsection 3.1.2. An asymmetric ratchet occurs when
Bob (then Alice) replies. Symmetric ratchets happen when Alice or Bob send several
messages in a row. Note that the root key computed when receiving a fresh DH value
from the peer (indexed with (i, i) on Alice’s side, with (i + 1, i) on Bob’s side) is
considered as a temporary value and the next root key immediately computed.

66 Chapter 3 Ratcheted Key Exchanges

KDFTS(DH(rpka,i, rpkb,i−1), rki,i)

1 : rki,i+1, cki,i:0 ← HKDF(DH(rpka,i, 2λrpkb,i−1), cst0)
2 : mki,i:0 ← HKDF(HMAC(cki,i:0, cst1), cst3, cst4)

Figure 3.6 – The TextSecure Key derivation function considered in [FMB+16].

details, both KDFr and KDFm are considered as random oracles7.

3.2.2 The multi-stage model extended

The analysis by Cohn-Gordon et al. encompasses the whole Signal protocol - the initial key exchange
and further ratchet - in a single multi-stage protocol. As we recalled in subsection 2.4.3, a stage
is a chain of steps of the protocol that lead to a stage session key. In the case of Signal, the stage
session keys are the message keys. They are the keys one wants to ensure the security of. They
are the keys the adversary will be allowed to Challenge. Root keys and chain keys can be seen as
intermediate computation values, but are not considered as session keys as they are not used to
secure communications between Alice and Bob (inside or outside the protocol).

The main di�erence with Quic or TLS (the two other main protocols studied as multi-stage
key exchanges), is that the sequence of possible stages is not linear. Once a stage is completed,
i.e. once a message key is obtained, there are two options : either a subsequent message key is
derived through a symmetric ratchet (if several messages are sent in a row by a same user). Or the
subsequent message key is derived from an asymmetric ratchet (the �rst message each time a user
replies). We represent in Figure 3.7 the two di�erent kind of stages that lead to a message key. This
motivated Cohn Gordon et al. to propose in [CCD+17] (and in the full version [CCD+16] that has
signi�cantly evolved since 2017) a multi-stage model with a tree of possible stages, where each
branch corresponds to a di�erent sequence of asymmetric/symmetric stages.

The adversary. Within this multi-stage framework, the adversary A controls the network and
the message delivery as in the classical model. However, he is given �ne grained corruption
oracles. Firstly, he needs a RevealMidTerm in order to take into account the role of the signed
prekeys that enable the asynchronous one round initial key establishment. Secondly, in addition
to the RevealLongTerm and RevealSessionKey oracles, he can reveal the ephemeral di�e hell-
man values (rskA,i, rskB,j) through a RevealRandom oracle. This would correspond in spirit to
the RevealEphemeral of [LLM07]. Thirdly, A can access the intermediate root keys and chain
keys through a RevealState. Where in [LLM07], the author replaced the RevealState with a
RevealEphemeralKey, [CCD+17] adopts both of them.

A Signal speci�c freshness de�nition. Considering the �ned grained power given to the adver-
sary, the freshness conditions are tailored for the protocol. As can be seen in Figure 3.7, the stages
in Signal are not independent, they overlap each other. This results in a recursive de�nition of the
freshness conditions. Let study the security of mki,i:0. It is easily seen that it is secure if cki,i:0 is.
Now cki,i:0 is secure either if rki,i is unknown to A, or if both the ratchet secrets rska,i and rskb,i
are secure (the adversary is not allowed to reveal both a ratchet secret and the root key). But the

7The authors give an extended intuition of how it could be possible to without the ROM, relying on several PRF-ODH
assumptions, as de�ned in [BFGJ17], some of which do not have clear reduction to classical assumptions.

3

3.2 The security of Signal 67

rki,i−1 rki,i rki+1,i

rpka,i rpkb,i−1 rpka,i rpkb,i rpka,i+1 rpkb,i

cki,i−1:0 cki,i:0

cki,i−1:1 cki,i:1mki,i−1:0 mki,i:0

cki,i−1:2 cki,i:2mki,i−1:1 mki,i:1

KDrF KDFr KDFr

KDFm KDFm

KDFm KDFm

Figure 3.7 – The stages in Signal. All the steps that compose an asymmetric stage are surrounded
in orange. The steps that compose a symmetric stage are surrounded in cyan.

adversary has two ways to corrupt rki,i. Either he directly corrupts the corresponding state (with a
RevealState(i, i)) or he gets rki,i from revealing the previous state and a previous ratchet secret.

The same way, the freshness of a message key in a symmetric stage depends on the freshness
of the previous chain keys which also depends on the freshness of the corresponding asymmetric
stage.

PFS. Firstly we consider PFS relatively to the long-term secret. If the identity key of one participant
is corrupted, then Signal, even with the slight modi�cations considered in [CCD+17], reaches PFS.
The long term key is only used during the initial X3DH, and this protocol is safe as long the adversary
does not corrupt both a long term key and an ephemeral key (of either of the two participants). As
ephemeral keys are signed, the unforgeability of the signature scheme shall prevent the adversary
to insert malicious ephemeral keys, and PFS follows.

As recalled in section 2.4.1, in a constantly refreshed and long-lived session, PFS is to be understood
relatively to the state. If the current state of a participant is compromised, then the adversary gets a
root key (wlog. we suppose it of the form rki+1,i) and a chain key cki,i:,n. From the chain key A
can not compute the previous message key of stage (i, i), due to the security of the key derivation
function. From the root key (which is the next stage root key), the adversary can not compute
previous root keys, hence neither previous chain keys and so past message keys are still safe. As we
detail further on, A is forbidden by the de�nition of the freshness to insert its own ratchet values.
This means that only the weak form of PFS is considered. Now consider the adversary could control
the ratchet values. Given, at some time in the future, the stage at some stage and the long term
keys, he will access past session keys only if he knows the ratchet secrets from the beginning of
the execution. If there were an honest exchange between Alice and Bob, he would not access the
following keys. This is where PFS and PCS meet ! It is important to note that, in the asynchronous
setting, PFS can only be guaranteed with respect to the less advanced participant. If Alice answers

68 Chapter 3 Ratcheted Key Exchanges

Bob with several messages, then these message keys will not be forward secure as long as Bob will
not have updated his own state accordingly.

PCS. The asymmetric ratchet provides post compromised security, as it introduces fresh ran-
domized values in the computation of session keys. The window of passivity required from the
adversary is a way and back exchange between Alice and Bob. As for PFS, if A gets Alice or Bob’s
state, then he obtains a root key (wlog. we suppose it of the form rki+1,i) and a chain key cki,i.
From then, if he compromises the future Di�e Hellman ratchet keys r̃skA or r̃skB then he can
compute all the future keys. However, if at some time, Alice and Bob manage to exchange random
ratchet values rpk∗A, rpk∗B without A knowing the corresponding secrets, then (considering wlog.
that Alice starts):

• rkj+1,j = KDFr(r̃kj,j ,DH(rsk∗a, r̃pkB)) where t̃ilde values are controlled by A, is still
known to A.

• rkj+1,j+1 = KDFr(r̃kj+1,j ,DH(rsk∗b , rpk∗a)) is unknown to A. The protocol has “healed
itself”.

In the above scenario, one does not consider the case when the adversary introduces its own Di�e-
Hellman randoms. As explained in the next paragraph, this kind of impersonation is directly ruled
out by the model. Another limit to this formalisation of the PCS is that it requires the state (the root
key and chain key) to be separated from the ratchet random values. As they are all temporary values,
which need to be kept for a nearly equal amount of time, on can imagine that an implementation
would treat them accordingly. Now, if the adversary can access both the root key and the ratchet
random in a single oracle query, he will be able to compute the following root key. However, from
then the previous reasoning remains valid. If he does not compromise the new state (the new
ratchet randoms) then the next session keys are safe. Recently, Cremers et al. studied in [CFKN20]
the PCS provided by real world implementations of Signal. They highlight that the tolerance of
desynchronization necessarily induces a loss of PCS (this can be seen as a parallel to the fact that
tolerating out-of-order message weakens PFS), by enabling cloning attacks.

The �nal security statement on the security of Signal is given in Theorem 3.1. It is interesting
(but not surprising) to see that the security of the whole protocol rely on the same assumption that
the sole initial key exchange as studied in [FMB+16].

Theorem 3.1. The Signal protocol is a secure multi-stage key exchange protocol under the gDDH
assumption and assuming all KDFs are random oracles.

The security reduction is particularly non-tight (and recognized as such by the author) as their
proof induce a loss factor of nsn2

p on the gddh term. Considering an application as Signal that has
billions of users and more sessions, this boils down the security. On the contrary, instantiating the
application with parameters that achieve a ’certain) amount of security relatively to this statement
would result in an impractical protocol. This paradox is studied in [CCG+19] (and further in [JKRS20]),
in which the authors underline that the traditional game hope strategy for key exchange which
consists in guessing which session will be targeted is inherently non tight. They propose new
designs for key exchange to overcome this problem but their strategy is not applicable to Signal.

3

3.2 The security of Signal 69

Reality vs. idealisation The analysis of Cohn-Gordon et al. tries to be as close as possible as the
real implementation. However, the author conceded some modi�cations that we detail below.
Authenticating the ratchet values. In the model, message keys are not used within the protocol,
hence the "stop-and-go" mechanism introduced in [FG14] is not necessary. However in the real
implementation, the authors note that the message keys also authenticate the ratchet material sent
to each other i.e. that they are used within the protocol itself. They modify the protocol and consider
the ratchet material is sent unauthenticated. In order to obtain a security statement however, they
enforce authentication in the freshness conditions of their security model, by declaring fresh an
update randomness only if it has been produced and sent by an honest peer (preventing by �at the
adversary to insert its own ratchet randomness). With an authentication mechanism, then the PFS
and PCS properties are achieved more clearly (i.e. without requiring the adversary to be passive, the
security of the authentication should prevent impersonation. This is not trivial. For instance, the
authentication mechanism should evolve to provide PCS with regard to long term keys. However
it shall be independent from the root key otherwise no PCS is obtained at all. If the adversary
compromises the state, then he obtains both the root key and the solution to introduce its own
refreshing values.)
Out-of-order messages. In a real world implementation, one cannot be sure that the network will
convey the messages in the right order. Bob can receive the third message from Alice before the �rst
and so on. To deal with this, Signal’s implementation (WhatsApp implementation is not available
but one can suppose this is a common choice) keeps memory the message keys corresponding
to skipped messages. This seriously harms the PFS property. In their analysis, Cohn Gordon et
al. suppose that the messages arrive in order. We will see in section 3.3 that only one security model
for the ratchet takes into account the out-of-order messages.

3.2.3 On other security properties of Signal

Key indistinguishability, together with PFS and PCS are the main classical properties one expects
from a key exchange. But several works have been interested in other aspects. We look at two of
them, that we consider of non negligible interest.

Deniability. At a �rst glance, the de�nition of deniability seems to contradict the goal of the
authentication. Roughly, the idea is that Bob shall not be able to convince an external party - the
judge - that he conversed with Alice. Even if he is very bad and misbehave during his exchange
with Alice in order to trap her. If Bob and Alice exchange messages protected by a symmetric
key mechanism, then deniability is o�ered, as Bob can have generated the whole conversation
itself. The most di�cult part is to ensure that the - nearly - unavoidable AKE needed to share the
symmetric key is itself deniable. Deniability has long been assumed for Signal X3DH protocol. The
Systematization of Knowledge of Unger et al. attributed three deniability properties to TextSecure:
message unlinkability, message repudiation and participation repudiation. It has only recently been
proven, by Vatandas et al. in [VGIK20]. To be precise, the authors show the o�ine deniability of
Signal, when the judge exchanges with Bob after the key exchange session is over. Online deniability,
when the judge can in�uence Bob’s behaviour during the session is studied in [UG15]. Vatandas
et al. follow the de�nition of deniability given in [DGK06], based on the simulation paradigm:
it requires the existence of a simulator that, in interaction with Bob, generates transcripts that
are computationally indistinguishable from real transcripts between Alice and Bob. Intuitively,
implicitly authenticated key exchange protocols (in which the authentication is obtained because

70 Chapter 3 Ratcheted Key Exchanges

the long term key is implied in the derivation of the session key, but where no formal authentication
mechanism such as a signature is at stake in the transcript) appear as good candidates for deniability.
And X3DH is one of them. The author show that the intuition is good, even if, under some extreme
conditions (if the group chosen for the key exchange happens to be a group where the DDH is easy),
non deniability can be proven. However, such an hypothesis also defeats the security of the key
exchange (their case study is MQV []) and will be more rarely encountered. The interesting part
of their work is that they include the �nal session key in the simulation result, such that they can
prove the deniability of the whole Signal protocol, on top of the deniable X3DH.

About the trusted server. The X3DH initial key exchange relies on the Signal server to distribute
the correct key, to initiate the communication. In theory, one shall identify - physically with QR
code, or with a phone call for instance - the long-term key of each of its correspondent, any time it
changes. In their Systematization of Knowledge ([UDB+15]), Unger et al. identify key �ngerprint
veri�cation as introducing “severe usability and adoption limitations: users have to perform manual
veri�cation before communicating with a new partner to ensure strong authentication.” This step
is optional, hence augmenting usability, but this means that the con�dence in the server is high.
In [CDGM19], Chase et al. propose a veri�able key directory (VKD) construction, “which allows
users to monitor the keys distributed on their behalf”. Their work formalises the notion of VKD,
that was concretely implemented by [MBB+15] or [TD17] for instance and proposes a construction
based on zero-knowledge proofs. At a high level, the idea is that the server keeps a directory of the
key updates together with proofs that the update was performed by the appropriate user. When
requiring the key of Bob, Alice will receive the key together with the history of update proofs such
that she can be sure that the key is in fact Bob’s one.

Another direction was proposed in [BBB+19], replacing the trusted server with identity based
(ID-based) cryptography. The idea of instantiating the public key with any arbitrary string was
introduced by Shamir in [Sha84] and a �rst practical encryption scheme was given in [BF01]). The
SAID protocol proposes to replace the central Signal server, that has to be online for any session
initialization, with an ID based key distribution center that only has to be online for the registration
of a user 8.

Finally, the recent work of Ruggeri et al. [RCF+20] constructs a block-chain based version of the
X3DH, eliminating the central server.

3.3 From a protocol analysis to a formal cryptographic primitive

The ratcheting technic could have remained a special case of multi stage. But the work of Cohn-
Gordon et al. throws light on the need for some more abstraction. As noticed by the authors, when
they started the analysis, the security properties that were claimed for Signal were not well de�ned.
This blurred de�nition of security somehow emphasized the need for a new primitive: which security
properties are we entitled to expect from a protocol like Signal ? To what extend a process as the
double ratchet shall improve the basic security of a key exchange ? Once again, another interesting
question between those lines is: does the game is worth the candle ? More formally, identifying
the security bene�ts of a primitive in an appropriate model also helps deciding which degree of
complexity in a protocol (on the implementation and performance’s side for instance) is acceptable
to reach them.

8This work also proposes a model to analyse their alternative Signal protocol in the ACCE setting. Their model is highly
related to the ID-based setting and we do not include it in the state of the art that we provide in the next section.

3

3.3 From a protocol analysis to a formal cryptographic primitive 71

3.3.1 The di�erent propositions

Several works have set out, sometimes concurrently, to formalise the ratchet and its security. In
the following, we compare the propositions of the following: [BSJ+17], [PR18b], [JS18b], [DV19],
[ACD19], [JMM19] and [CDV21]. We �rst turn ourselves to the case of [PR18b], [JS18b], [DV19],
and [JMM19], as their goal is to maximise the security one can expect from a ratcheted key exchange.
In a second time, we examine [ACD19] and [CDV21], that are closer to the actual Signal.

Bellare, Singh, Jaeger, Nyayapati and Stepanovs put forward, in [BSJ+17], the �rst abstract
formalization of the ratchet as a cryptographic primitive. They focus on a one sided ratchet
primitive: the two participants have well de�ned roles, there is one sender and one receiver, and
only the sender is actively involved in the ratcheting process. As such, the state of the receiver’s
state remains as sensitive as in a traditional long-term key based key exchange. Despite the interest
of this seminal work, we will focus in the following comparison on the schemes that propose a
bi-directional version of their ratchet solution.

Following this work, Poettering and Rösler propose in [PR18b] (full version [PR18a]9) their own
version of a single directional ratchet key, then extend it to a sesquidirectional form (where the
receiver can also inject some new entropy but his Send messages do not lead to a new session key.
The role of the sender and the receiver are kept asymmetrical). They �nally propose a bidirectional
ratchet key exchange, that can easily be seen as the combination of two sesquidirectional versions:
one where the sender isA, the other where the sender isB. They are attached to capture the highest
level of security that one can expect from such a primitive. Hence their strategy is to give full
powers to the adversary, then to exclude only the unavoidable attacks in the freshness conditions,
as we will detail in section 4.3.2.

The proposition of Jaeger and Stepanovs ([JS18b], full version [JS18a]) follows the same path,
and we will see that their model encompasses the same security level as [PR18b], identi�ed as
�ne-grained compromise. Their work is however slightly di�erent as they do not focus on the key
exchange feature but on the more global channel point of view (cf. section 2.4.3). As such, their
primitive is described with encryption and decryption algorithms (instead of sending and receiving
ones as detailed below). Yet, the comparison of the powers o�ered to the adversary is still valuable.

At Eurocrypt 2019, Jost, Maurer and Mularczyck also formalises in [JMM19] (full version [JMM18])
a bidirectional messaging solution that achieves almost-optimal security, situated just below [JS18b]
and [PR18b]. Concretely, this means they have to exclude one more speci�c attack in addition to the
unavoidable ones. Thanks to this little relaxation, they obtain a somewhat more e�cient scheme.

Concurrently, Durak and Vaudenay also proposed in [DV19] (full version [DV18]) a formalisation
of a bidirectional asynchronous ratcheted key agreement (BARK). As for Poettering and Rösler,
they �rst propose an uni-directional version of their protocol, where one participant is a sender
and the other a receiver only) before doubling the uni-version to get a bidirectional protocol. They
achieve a sub-optimal security, that is below the above almost optimal one. They introduce an
interesting property, that they call Recovery, that stipulates that a protocol should not recover from
an impersonation.

In the following, we adopt a single syntax that can �t with any of the above proposition. Let it be
for the primitive formalisation or for the oracle that the adversary can access. The description of
the adversary’s power or of the freshness conditions will then reveal the di�erences between the
considered models.

9We always specify the full versions for the following work as they contain signi�cantly more information than the
conference ones.

72 Chapter 3 Ratcheted Key Exchanges

3.3.2 Formalizing a RKE model

The primitive. About half of the propositions formalised ratcheting in a key exchange protocol,
while the other half chose a messaging protocol. We focus on the key exchange formalization of the
primitive. Firstly, a key exchange primitive appears to us as more general, as a secure channel can
be composed (carefully) of a key exchange and an encryption scheme. Secondly, in the previous
works detailed in section 3.2, Signal and its predecessor TextSecure and OTR are analysed as key
exchange, hence, focusing on the key exchange part facilitates the comparisons.

A ratchet key exchange (RKE) is a protocol between two participants, A and B, composed of
three algorithms:

• Init, that, on input the security parameter returns a state for each participant sA and sB .

• Send, that, on input a state sU , returns an updated state s′U , a session key k and an update
information upd (in [PR18b] this update information is directly mentioned to be a ciphertext,
which is more adapted to their key encapsulation based construction. We keep the update
version of [BSJ+17] as we consider it more general.)

• Receive, that, on input a state stU and an update information upd, returns an updated state
st′U and a session key k or an error symbol ⊥.

One thing to note is that the above description quits the traditional “message driven” description of a
key exchange protocol and assigns speci�c roles to the sending and receiving action (this is a reason
why the channel versions are similar to the key exchange ones, except that the Send algorithm
outputs a ciphertext and the Receive algorithm outputs a plaintext message).

The environment. Another major point in the above description of a RKE is that it considers an
initialisation step that provides both participants with their initial state. If the participants were
to share a common secret, it would be provided by the Init algorithm. That is, the ratcheted key
exchange formalised as above does not consider the initial authenticated key establishment between
Alice and Bob. This means that the environment for the security model does not have to consider
several participants and concurrent sessions, but only focuses on a single protocol execution between
“�xed” Alice and Bob.

The adversary. The adversary has access to the oracles to perform the protocol: OSend, OReceive.
He can reveal the current session key on U ’s side with a RevealSessionKey(U). He can access the
whole state of a participant through a Expose(U). It could be assimilated to the Corrupt oracle
by [CK01b]. However the term Expose(U) may be less associated to a long-term key value than
Corrupt is. As the initiation procedure is abstracted in the RKE primitive, there may be no individual
long term key at stack in the protocol. The models of [JS18b] and [JMM19] allow the adversary to
access the randomness (a full control in the �rst case, a reveal just before a message is sent in the
second), which can be seen as an equivalent of the RevealRandom of [CCD+17]. However, in Signal,
the random coins were directly included in the key derivation whether in [JS18b] and [JMM19],
the main consequence of a randomness leakage is the loss of con�dentiality of publicly encrypted
messages.

Finally, the adversary can require to be challenged, on the sender or the receiver side, with a
Challenge(U) query. For the key exchange version, he will receive either the real key, or a random
one. The channel versions of [JMM19] and the Secure Messaging of [ACD19] both adopted the

3

3.3 From a protocol analysis to a formal cryptographic primitive 73

left-or-right indistinguishability. In [BSJ+17], [PR18b], [JS18b], [JMM19] the adversary may require
multiple challenges. One consequence is that the freshness of the query shall be veri�ed in-line
while in a single challenge version, one can delay the veri�cation to the end of the experiment.

Epochs. Epochs were introduced in [PR18b] and help the Challenger to keep trace of the updates
that happened during the protocol. Within an epoch, several keys may be computed by the same user.
A new epoch starts when a new entropy is introduced and ends when this entropy is acknowledged
by the partner. Keeping an eye on Signal, an epoch can start with an asymmetric ratchet while several
symmetric key derivation can happen within an epoch. The epoch counter plays an important
role in the freshness. In [PR18b] (and so would it be in [JS18b] or [DV19] if they adopted the
epoch vocabulary), the Challenger maintains one epoch counter per participant, that is incremented
with every sending operation, independently from the receiving ones. This can only be realised if
Alice and Bob each maintain and update their own personal key stream, independently from each
other. In [ACD19], that we detail later on, and so would it be in Signal, Alice’s epoch counter is
incremented by a sending only if it comes right after a receiving. This traduces a ping-pong pattern
in which a single key stream is updated by both participants.

Matching. As there is no multiple sessions, there is no notion of matching, as de�ned in sub-
section 2.4.2. However, there is still the need to know whether or not both the participants have
computed the same key (to know whether one can be corrupted and the other challenged, essen-
tially). Hence the model keeps trace of the synchronisation of the two participants. If the protocol
executes normally, then Alice and Bob are always synchronized. If the adversary injects its own
message in the receive oracle (in place of a legit message produced by the send), then Alice and Bob
are desynchronized. If this forgery is not issued directly after a state exposure, (which is a trivial
attack forbidden by the freshness requirements) then the adversary wins. Synchronization can be
formalized with a sync �ag in the code based description of the game as in [PR18b] (hijacked
in [JMM19]). Durak and Vaudenay chose a formal de�nition of matching. The victory of the
adversary in case of a forge is considered separately, in a speci�c FORGE game. If more explicit,
the �rst solution only spots out-of synchronisation due to the receiving of a forge. The matching
de�nition compares that all the messages received by Alice where indeed produced by Bob. But it
also checks whether there had been no forgery on Bob’s side at the time he sent his message. That
is, a previous forgery on Bob’s side would also make Alice out-of-sync (and not only Bob). However,
both de�nitions merge as in [PR18b], any forgery received by Bob automatically de�nes his further
message as forgeries, driving Alice out-of-sync immediately after. In [JS18b], synchronisation is not
properly formalised but equally taken into account by recording the forgery events.

Correctness. Two di�erent forms of correctness are proposed in those work. Both stipulate that
two synchronized participants should compute the same keys (or, in the channel models, the receiver
should be able to decrypt the ciphertext sent by its peer). Their di�erence is on the possibility or
not to resist to a misformed (malicious or not) update. We adopt the notation of [JS18b], Corr⊥
and Corr, to distinguish both notions but we give the de�nition for a key exchange. In the �rst
de�nition (Corr⊥), upon receiving an incorrect update (i.e. of the Receive algorithm returns⊥), the
state of the receiver is somehow erased and the correctness game is over. This is the one adopted
in [PR18b]. In the second version (Corr), the receiver maintains its previous state when receiving an
incorrect update and is still capable of treating an incoming correct update. This is the one adopted
in [BSJ+17], [DV19], or [JS18b].

74 Chapter 3 Ratcheted Key Exchanges

The latter explains that it is trivial to switch from one de�nition to the other (in fact, in a channel
construction for instance, one can decide whether or not to close the channel upon a bad decryption).
However, the two notions capture well distinct properties. The Corr implies a form of robustness
(and is denominated robustness in [BSJ+17]) of the scheme, that can carry on regardless a wrong
event. On the contrary it can be seen as a weakness as the scheme will not react to an attempt of
corruption for instance. Consider for instance the concrete scenario given in [JS18b]: the adversary
A corrupts then impersonates Bob. Alice will receive messages from A, thinking they come from
Bob. Imagine now the honest Bob succeeds in sending a message to Alice. Alice will not be able to
process this update. In a Corr⊥ secure protocol, this directly cuts o� the communication, while
with the Corr, it does not reveal that something went wrong. On another side, implementing the
Corr⊥ correctness can seriously damage the e�ciency of the scheme as every such misformed
update requires to reopen a channel (including the costly initial non interactive key agreement).
This opens the way to denial of service attack. This is the same dilemma again, security confronting
real life e�ciency.

3.3.3 According on PFS...

All the above models exclude the trivial attacks. Only [JS18b] and [PR18b] put no other restrictions.
The di�erences - that may appear small - in the expression of the freshness conditions traduce
di�erences in the expected PFS and PCS levels.

Trivial challenges. The adversary is forbidden to reveal a session key and then challenge it.
Conversely, the adversary is forbidden to challenge a key and immediately reveal it. If the participants
are synchronized, this condition extends to the peer naturally. In the channel model, the adversary
has no session key reveal algorithm. However those trivial challenge conditions also appear in the
state reveal restrictions.

PFS. A state exposure does not compromise past computed keys. The state exposure of Alice
will compromise the con�dentiality of all the updates that have been sent by Bob and not already
received by Alice. The keys obtained through those updates are set unfresh (the other way round,
in the channel set up, the exposure of Alice is forbidden while there are challenge messages from
Bob still in transition). If Bob is synchronized, then the corresponding sending keys are set as
unfresh. One can not do better for, if Alice is supposed to be able to process those updates (to derive
the corresponding key or to decrypt the messages), then it must be that her state contains all the
needed information to do so. Hence, PFS necessarily relates to the oldest accounted update. It is
then intuitive that, when out-of-order messages are authorised, a lost update can postpone PFS.

3.3.4 ...but di�ering on PCS

One can detail two facets of PCS, that are deeply related. Suppose Alice’s state has just been com-
promised. Firstly, one can legitimately wonder about the con�dentiality of the future messages/keys.
Secondly, it is necessary to study the question of the authentication: when can we be sure that the
adversary can not trivial insert its own update information (on Bob or Alice’s side). As said before,
these two questions can not go without another, but may not be impacted equally. In this paragraph,
we study the di�erent �avours of PCS provided by the consecutive (and sometimes concurrent) works
described in subsection 3.3.1. We chose to focus on the description of two constructions, [PR18b]
and [DV19], to underline how a small step in the PCS requirement can induce a gap in the e�ciency.

3

3.3 From a protocol analysis to a formal cryptographic primitive 75

Fine grained PCS. The most demanding models are the ones of Poettering and Rösler, and Jaeger
and Stepanovs, that we identify as �ne-grained PCS. In these models, the Exposure of Alice’s state:

1. identi�es as unsafe all the future updates (message) sent by Bob, up to the next message sent
by Alice itself. As for PFS, if Alice remains passive (only receives information) then her state
only evolves with the receiving messages. As the initial state exposure enables the adversary
to process all those updates, then one can not avoid those keys (messages) to be known to the
adversary;

2. makes all the future messages sent by Alice trivially forgeable. There is nothing to prevent
from this attack as Alice’s state necessarily contains all the elements to authenticate herself.

3. shall not harm the con�dentiality of future updates sent by Alice (the receiving keys of Bob).
In Jaeger and Stepanovs, this con�dentiality is lost only if the adversary also compromises
the random elements on Alice side.

4. shall not break the authentication of Bob’s message.

IfA remains passive (does not use [2]), then by [4] Alice shall be ensured that the future messages
received from Bob are honest (even if A can read them ([1]). And, thanks to [3], as soon as Alice
sends an update (and that Bob acknowledges it), then the security is regained: this is the healing
feature. The main di�erence with Signal is that healing is obtained instantaneously, while it required
Bob to reply with its own update in Signal.

Now, ifA is active and impersonates Alice (using consequence [2]). Then Bob is considered as out
of synchronisation. In particular, even an exposure of Bob after the impersonation shall not damage
the security of the potentially future keys/messages generated by the honest Alice. This speci�c
post-impersonation security requires for both participants to be able to update already transmitted
keys accordingly. We detail this process below when comparing to the weaker sub-optimal PCS
requirement. Both constructions proposed by [PR18b] and [JS18b] are based on hierarchical identity
based encryption (HIBE). This evolution of IBE (already mentioned in subsection 3.2.3)) introduced
in [GS02] is naturally related to updatable encryption as it makes it possible to create successive
secret decryption keys for related strings. But this mechanism is costly. For instance, in [GS02],
the size of the ciphertext and the complexity of the decryption grow linearly with the number of
updates. In a messaging protocol with long living sessions that require regular refreshing, this can
not be considered as a practical solution.

Sub-optimal PCS. The construction proposed by Durak and Vaudenay is somewhat less optimal
than the previous �ne grained PCS. The main di�erence is that an exposure on Alice side breaks the
authentication both on Alice and Bob’s side.

Where do this di�erence comes from ? We elaborate on the construction of [PR18b] and [DV19]
as they are close, to understand where the di�erence in the PCS lies. In both case, Alice and Bob both
maintain two keystreams: one for the messages where Alice is the sender and Bob the Receiver, and
a second one for the reverse communications. These channels are based on asymmetric encryption
and a signature scheme in [DV19], while they are built from a key updatable KEM, a one time
signature and a MAC in [PR18b]. Each time Alice sends a message, her state is composed of several
sending states, (corresponding to the epoch not acknowledged by Bob yet) and several receiving
states (corresponding to updates received by Bob and not acknowledge yet).
The sub-optimal version. In [DV19], receiving states are composed of a public signature key and a
secret PKE decryption key while sending states logically contains a public PKE key and a secret

76 Chapter 3 Ratcheted Key Exchanges

signature key. On sending a message, Alice generates a new session key k, a brand new receiving
state stArec for her (this corresponds to the generate algorithm in Figure 3.8), that she appends to
her receiving states directory and the corresponding sending state stBsnd for Bob. In parallel, she
generates a new sending state stAsnd and a corresponding receiving state stBrcv for Bob. Then stBsnd,
stBrcv and the new session key k are signed and encrypted successively under each sending state,
forming an “onion structure”10. This structure serves as an acknowledgement of all the previously
received messages. Finally stAsnd replaces the most recent sending state in Alice’s sending directory
(it is not a new state but an update, this is the renew step in Figure 3.8). Always keeping an eye on
Signal, this would correspond to the symmetric ratchet, while not symmetric. If Alice sends several
messages in a row, she does not generate a new sending epoch with each message but only update
keys within the corresponding epoch. When Bob receives a messages from Alice, he peels the onion
and gets his corresponding updated receiving state stBrcv , his brand new sending state stBsend and
the new session key k. It goes the same way round when Bob sends a message and Alice receives.

The �ne grained version. In [PR18b], the sender also needs a public encapsulation key and a private
signature key, and the receiver the corresponding private and public keys. Here we detail some
structural di�erences that do not have an impact on the PCS level. Firstly the signature keys
are not accumulated, only the most recent one is kept in memory. With each message, Alice
generates a new signing pair, keeps the private one and transmits the corresponding public key to
Bob. The acknowledgement of previous received updates is constructed only on the encapsulation
scheme. Before sending a message, Alice will encapsulate to every public key she has in her sending
state directory. From the keys output by all the encapsulation, she derives a chaining value (that
provides passive authentication as the root key in Signal), the session key and a new (public, private)
encapsulation key pair. The private key is erased while the public key replaces the most recent
public encapsulation key in memory : this is the renew step in Figure 3.8. This way, only public keys
needs to be transmitted to Bob (but the derivation implies that the proof is settled in the random
oracle model). When Bob receives a message, he gets the public future sending information stBsnd
and he can derive the same shared secret so that he computes the private encapsulation key stBrcv
corresponding to stAsnd. Again, roles are interchangeable. As we said, the structure di�ers but the
result is very similar: a new receiving state stArcv (and the corresponding stBsnd) is generated while
the most recent sending state stAsnd (and the corresponding stBrcv) is renewed.

And now, we come to the main di�erence. In the receiving process, Alice compares the epoch
E considered in the message she received (the most recent decapsulation key she needs) and the
maximal epoch, say E + k she has in memory. The di�erence k corresponds to the number of
messages that she has sent but that Bob has not processed yet. With each of this message, Alice had
generated a private decapsulation key stArcv and sent the corresponding public key to Bob: this is
the generate step in Figure 3.8. Now, as Bob has not taken them into account yet, Alice secures these
keys by updating them, thanks to the updatable feature of the KEM. Every message received from
Bob that does not take epoch E + `, ` ≤ k into account leads to the update of the corresponding
private decapsulation key for Bob. When Bob �nally processes the message of epoch E + `, he has
to count how many messages he has sent in the period of time [Alice sent epoch E + ` - now] and
updates the public key of epoch E + `, that he has just received, as many times as necessary to be
10Actually the onion encryption is optimized and instead of encrypting successively in a for loop, the previous ciphertext

becoming the next plaintext, they generate as many symmetric keys ki as there is onion layers (say `), encrypt one
key in each layer and �nally encrypt the plaintext symmetrically under k = kA ⊕ · · · ⊕ k`. This saves bandwidth as
it uses asymmetric encryption only for key encapsulation. However, this does not interfere with the PCS property
and we do not elaborate more on this.

3

3.3 From a protocol analysis to a formal cryptographic primitive 77

synchronized with Alice. We give a simpli�ed view of this process in Figure 3.8. This asymmetric
updating process a posteriori (public and private keys are updated separately, after they have been
created) is the one that requires updatable asymmetric primitives, with public update information
(as Alice and Bob must be able to perform the update without receiving any information from each
other). In [PR18b] it is a key-updatable KEM and in [JS18b] key-updatable signature and encryption
schemes.

Now, consider the attack in green in Figure 3.8. If Bob is exposed, then impersonated, the update
synchronization is defeated and Alice state is useless. Without the update mechanism, exposing
Alice after an impersonation potentially compromises all the unacknowledged states.

Almost optimal. The PCS modelled by Jost, Maurer and Mularczyck in [JMM19] is situated just
below the �ne grained PCS. We detailed it in third position only because it is simpler to appreciate
the di�erences with the above description in mind. Their model also o�er post-impersonation
security: if Alice is exposed and Bob receives a trivial forgery, then:

1. Bob’s authentication shall not be defeated;

2. the con�dentiality of future messages sent by the honest Alice shall remain even under the
exposure of Bob’s state.

But those properties are only achieved if the last message sent by Alice before the impersonation
remains con�dential. For [1], this is because, as in [DV19], Alice sends the next secret signature
key to Bob. To obtain [2], [JMM19] propose the following: whenever she sends a messages, Alice
encrypts it with sending state corresponding to the last update received from Bob. But she also
over encrypts it with an ephemeral PKE public key pkeph. She further generates a new ephemeral
encryption key from a secret seed z, and sends z to Bob. When Bob receives a message from Alice,
he derives the corresponding skeph = PKE.Gen(tr||z) (where tr is a hash chain of the incoming
transcript), he knows that all further incoming messages will have to be over decrypted with the
newly generated skeph. If A impersonates Alice, then when Bob receive A’s message, he will erase
his previous ephemeral decryption key. Further messages from Alice will be protected as Bob’s
state does not contain the correct over -decryption key anymore. As the seed is secretly sent with
each message, the security holds only if the last message sent by Alice was con�dential11. The main
advantage is that their secretly updatable scheme only relies on classic public key cryptography.

Finally, we gather in Figure 3.9 the di�erent properties of the four schemes detailed above.
Whether or not they require HIBE, the above schemes are particularly non e�cient if the commu-

nication does not regularly alternate between Alice and Bob. For HIBE, this deepens the hierarchy
tree while in [JMM19], the number of asymmetric update operation is linear in the number of
messages received in a row. Finally, in the onion structure of [DV19], this augments linearly the
number of asymmetric encryptions needed for each message. Remark that, even without the post-
impersonation security, the loss of e�ciency is unavoidable, as obtaining an immediate healing
(without waiting to receive a response) imposes to replace the symmetric ratchet step in Signal by a
public key ratchet.

11In order to minimize the consequences of a randomness exposure, they propose a scheme where the updated encryption
key is mixed with the previous one. As such, a randomness exposure breaks the con�dentiality only if combined with
a previous state exposure. However, if the adversary is in position to expose, then it is not improbable that he is able
to perform two state exposures in a row, the �rst with a randomness leakage of the next message sent by Alice, the
second just after, followed by an impersonation.

78 Chapter 3 Ratcheted Key Exchanges

Alice transmission Bob

stAsnd = [stAs,i, . . . , stAs,i+ni]
stArcv = [stAr,j]

stBsnd = [stBs,j]
stBrcv = [stBr,i, . . . stBr,i+ni]

renew(stAs,i+ni , st
B
r,i+ni)

generate(stAr,j+1, st
B
s,j+1)

acknowledges sending states i to i+ ni
stBsnd = [stBs,j , stBs,j+1]

stBrcv = [stBr,i+ni (renewed)]

* Expose(Bob)

renew(stAs,i+ni , st
B
r,i+ni)

generate(stAr,j+2, st
B
s,j+2)

renew(stAs,i+ni , st
B
r,i+ni)

generate(stAr,j+3, st
B
s,j+3)

renew(stBs,j+1, st
A
r,j+1)

generate(stBr,i+ni+1, st
A
s,i+ni+1)

acknowledges sending states j, j + 1
stAsnd = [stAs,i+ni , st

A
s,i+ni+1]

stArcv = [stAr,j+1 (renewed)]
updates the unacknowledged

stAr,j+2, st
A
r,j+3

stBsnd = [stBs,j+1, st
B
s,j+2]

stBrcv = [stBr,i+ni(renewed), st
B
r,i+ni+1]

i+ ni + 1− i+ ni = 1
updates stBs,j+2 once

Bob has not sent the last message
no Update*Expose(Alice)

renew(stBs,j+2, st
A
r,j+2)

generate(stBr,i+ni+2, st
A
s,i+ni+2)

acknowledges sending states j + 1, j + 2

still con�dential
stAsnd = [stAs,i+ni , st

A
s,i+ni+1, st

A
s,i+ni+2]

stArcv = [stAr,j+2 (renewed)]
updates the unacknowledged stAr,j+3

stBsnd = [stBs,j+2, st
B
s,j+3]

stBrcv = [stBr,i+ni(renewed), st
B
r,i+ni+1, st

B
r,i+ni+2]

(i+ ni + 2)− (i+ ni) = 2
updates stBs,j+2 twice

Figure 3.8 – A simple view of the updating process. The renew and generate algorithm corresponds
to steps de�ned in section 3.3.4. In red, we mention the updating of the already created
but not acknowledged yet keys. This process requires updatable public key primitives,
as an updatable KEM in [PR18b]. The elements in green correspond to the attack that
succeeds only without the update

3

3.3 From a protocol analysis to a formal cryptographic primitive 79

sub-optimal
•

[DV19]
cPK

CR hash

almost-optimal
•

[JMM19]
cPK + suPK

ROM

optimal
•

[JS18b]/[PR18b]
puPK

ROM/CR hash

Figure 3.9 – Positioning of the di�erent proposition in terms of security. cPK stands for classical
public key cryptography, suPK for secretly updatable public key cryptography and
puPK for publicly updatable public key cryptography. We also mention whether the
security proofs are given in the plain model (settled on collision resistant (CR) hash
functions) or in the ROM.

3.3.5 Signal like

Two propositions, among them a very recent one, are dedicated to protocols close to the actual Signal.
In [ACD19] (full version [ACD18]), Alwen, Coretti and Dodis propose their own formalisation of
Secure Messaging. They show that one can realise a secure messaging from two sub primitives: a
continuous key agreement (CKA) on the one side and a forward secure authenticated encryption
with additional data (FS-AEAD) on the other side. For this latter primitive, the authors propose a
generic construction from a Pseudo Random Generator (PRG) and an AEAD scheme, that matches
the Signal implementation when PRG = HMAC based on SHA256, while the former is implemented
with a KEM. Their proposal is close to the actual Signal protocol and they recognize that they do
not seek for the most �ne grained post-compromise security. They formalise a new property called
immediate decryption (cf. subsection 3.3.6). In their proposal, the CKA provides (the equivalent
of) the asymmetric ratchet while the forward secure encryption abstracts the symmetric one. At
�rst glance, the CKA could be seen as the proper equivalent of the other previous propositions
(that are mostly asymmetric ratchet). However, the CKA model is very restrictive (it does not
consider authentication, as the adversary is supposed to be passive and imposes a ping-pong order
for the Sending oracle calls) and designed to be combined with a symmetric primitive to achieve a
higher security level. Considering the whole secure messaging model, PCS is not as sharp as the
previous work, for an exposure of one participant, say Alice, has consequences on both sides, on
the con�dentiality and the authentication side. The author introduce a PCS coe�cient, ∆SM that
relates to the number of “way-and-back” messages necessary to heal from an state exposure. For the
con�dentiality, the number of messages required to recover depends on when the exposure takes
place (was the exposed participant sending or receiving). But for both the sender and the receiver,
it takes at least ∆SM way and back messages (and at most ∆SM + 1) to recover. Authenticity
only requires ∆SM way and back messages, in any case. In the actual Signal protocol, ∆SM = 3,
meaning the third message12 after a compromise is always safe. This shared minimal cost reveals a
shared state between the sender and the receiver. In their proposed construction, they show that
replacing the “half-ratchet” of Signal (that updates only one half of the Di�e Hellman computation
with each asymmetric ratchet) by a proper KEM reduces this coe�cient to ∆SM = 2 (moreover,
considering a post quantum secure KEM such as Frodo ([BCD+16], updated in the round 3 of the
NIST PQ competition [ABD+21]) can bring Post quantum security, which is not the case in the other
works).

12We only consider way and back messages here, several messages in a row count as one.

80 Chapter 3 Ratcheted Key Exchanges

The most recent work of Caforio, Durak and Vaudenay ([CDV21]) extends this vision by proposing
an hybrid model to build an asynchronous ratcheted communication with additional data (ARCAD)
from any strongly secure protocol (such as [JMM19], [DV19], or [PR18b]) that brings PCS, together
with a lighter, symmetric cryptography based protocol that only enables PFS. For this latter part,
they rely on the recent Encrypt-then Hash proposed by Yan and Vaudenay ([YV20]). They try to
optimize the ratio e�ciency/security by proposing an on-demand ratchet feature, that calls the most
heavy protocol only when considered necessary: “The decision to ratchet or not could of course be
made by the end user or rather triggered by the application at an upper layer”.

3.3.6 Additional properties

Immediate decryption and out-of-order messages. Alwen, Coretti and Dodis introduced the
notion of immediate decryption. The idea is to enable out-of-order messages and even to resist
to a message loss. This directly reduces the PFS as older unused keys have to be kept in memory.
This also a�ects the design. Acknowledgement mechanisms for instance, as the onion of [DV18] or
the concatenation of [PR18b], are excluded: the update mechanism must not depend on previous
messages. And Bob must be able to compute a non-received yet key from his state and an newer
message, which supposes that this computation does not require randomness from Alice. Finally, in
order to limit the PFS consequences, message keys shall be independent: from an old key preserved,
one shall not be able to compute further keys (this banishes simple key hashing as PFS mechanism).

Recovery. Durak and Vaudenay wonder in [DV18] whether it is really a good thing to be able to
recover from an impersonation. As for the discussion on correctness, even if this feature can be seen
as practical at a �rst glance, it also says that one will not see that an impersonation has taken place.
They introduce the RECOVER security notion. Brie�y, in a protocol that is RECOVER secure,
if Alice has been impersonated (meaning that Bob has received a trivial forgery) then Bob can no
longer receive any message from the honest Alice. A solution to achieve RECOVER security is to
provide a transcript dependant data within every message. This is done in [JS18b]: when Alice sends
a message, she sends as additional data the hash of all the transcript she sent since the last update
acknowledged by Bob. In [CDV21], the authors state that the protocol proposed in [PR18b] is not
RECOVER secure. While [PR18b] does not include an history of the transcript in its messages, it
is unclear how the RECOVER security can fail since the �ne-grained PCS property ensures that
Bob can not decrypt messages from the honest Alice after she has been impersonated and that their
correctness de�nition demands that a fault in the decryption shall cut o� the communication.

3.3.7 Conclusion

As described above, the security o�ered by the �ne grained compromised model seems the most
desirable. However, as we pointed out, this higher security requires impractical public key updatable
primitives. Because of their update and acknowledgement mechanisms, the schemes proposed
in [PR18b], [JS18b], [JMM19] and [DV19] see their e�ciency dramatically impoverished if Alice and
Bob do not regularly alternate their role of sender/receiver, which is quite in contradiction with the
purpose of asynchronous messaging. On another hand, the �exibility o�ered by [CDV21] has to be
handled carefully as this can easily lead to a huge di�erence between the security claimed by an
application and the reality.

3

4

From Single to Multi-Device
Instant Secure Messaging 4

T
he development of smartphones has made of secure instant messaging an essential
everyday-life application. In parallel, more and more people started using several devices
- a smartphone, a tablet or a laptop - to communicate. They wish to be able to frequently

and rapidly switch between them. Security protocols such as SIM have to be adapted to this ever-
changing multi-device setting. However, the modi�cations have to be as light as possible for the users
and e�cient so that it will be the same if we use this or that device. This chapter mainly contains the
contributions that were published in [CDDF20], and in the corresponding full version [CDDF19].

Contents

3.1 OTR and Signal : the practical protocols 59
3.1.1 O�-the-Record: the birth . 59
3.1.2 Signal: the con�rmation . 61

3.2 The security of Signal . 63
3.2.1 A segmented analysis . 63
3.2.2 The multi-stage model extended . 66
3.2.3 On other security properties of Signal 69

3.3 From a protocol analysis to a formal cryptographic primitive 70
3.3.1 The di�erent propositions . 71
3.3.2 Formalizing a RKE model . 72
3.3.3 According on PFS... 74
3.3.4 ...but di�ering on PCS . 74
3.3.5 Signal like . 79
3.3.6 Additional properties . 80
3.3.7 Conclusion . 80

84 Chapter 4 From Single to Multi-Device Instant Secure Messaging

As studied in chapter 3, an interesting property of ratcheted key exchange is that the con�dentiality
of past and future messages is still guaranteed even after an exposure of the long-term keys or of
the state secrets. Regrettably, the Double Ratchet algorithm has been designed for device to device
interaction and its use in a multi device context is more di�cult. This was already underlined in the
work of Unger et al. ([UDB+15]), which concludes about TextSecure that it introduces problems for
multi-device support, while de�ning multi-device as an important usability criteria1. Consequently,
each SIM application has developed its own strategy to solve this problem. We detail below three
of them, WhatsApp, Facebook Messenger and Signal. A more detailed panorama can be found
in [DGGL21]. This recent systematization of knowledge explores a various number of multi-device
solutions, ours included. The authors underline that, even now, the academic literature on multi
device instant messaging is very sparse (they admit three papers of interest, the classical but not
up-to-date SoK of Unger et al. [UDB+15], a work of Atwater and Hengartner on the problematic of
key distribution among multiple device using threshold cryptography [AH16] and our contribution),
and their work is mostly based on white papers of existing Instant Messaging application.

4.1 Existing solutions

WhatsApp. The most widely used SIM is designed to be used on a single phone. However, in
order to enable its users to communicate from a computer, WhatsApp developers released WhatsApp
web. This interface establishes a secure channel between the “master phone” and the computer,
with the former just pushing data from the server to the latter, and conversely. Thus, a user can use
WhatsApp from its computer only if his phone is also connected2.

Facebook Messenger. This SIM enables end-to-end encryption as an option, called secret con-
versation. A technical white paper issued in May 2017 [Fac17] explains that “Secret conversations
with more than two devices use the Signal Protocol’s group Messaging Protocol". In this solution,
called Sender’s Key, each device sends to the others (through a Signal Channel unused afterward)
a same symmetric key: the Sender’s key. This key is ratcheted through a key derivation function
(KDF), without additional key exchange information. This protocol does not achieve future secrecy
and does not o�er the security we are looking for.

Signal. In April 2017, Open Whisper Systems (the company who developed Signal) released
Sesame, a new protocol dedicated to multi-device secure messaging [MP17]. Sesame consists in
establishing Signal sessions between all devices, as shown in Figure 4.2. It represents

(
nA
2
)

+
(
nB
2
)

+
nA · nB Signal channels. If Alice has nA devices and Bob nB , it requires for Alice (nA − 1) + nB
encryptions for each message she sends, and as many ratchet executions. Adding or removing a
device from a user’s pool of devices is possible through opening/closing the corresponding pairwise
channel3. In Sesame as in Facebook Messenger, Alice knows that Bob communicates from several

1It is interesting to note that the only solutions for conversation security that were identi�ed to support multi device
were either theoretical such as the puncturable encryption of Green and Miers ([GM15] or the IBE based protocol of
Canetti, Halevi and Katz ([CHK03]) or already deployed protocols not designed for massive secure messaging, such as
TLS or openPGP.

2While writing this manuscript, it was announced that WhatsApp multi device support was to come “soon” (see for
instance https://www.theverge.com/2021/6/3/22466425/).

3Sesame o�ers two options: either each device owns private and public long term keys, or all devices of a single user
share a unique private/public long term key pair. This key is used to identify new devices as belonging to the same
user and avoid physical security checks. This second option (implemented by Signal) forces the Signal server to store

https://www.theverge.com/2021/6/3/22466425/

4

4.1 Existing solutions 85

Figure 4.1 – Facebook’s senders key version of the multi-device. Each arrow corresponds to a
temporary pairwise channel used to transmit the device symmetric sender’s keys to
the others.

devices. She can even identify which channel - hence which device - sent the message.

Figure 4.2 – Sesame multi-device protocol. Each array corresponds to pairwise Signal channel.

Messaging Layer Security. In a related area, Cohn-Gordon et al. proposed in [CCG+18] a solution
for groups based on Di�e-Hellman trees. We describe this protocol more deeply in chapter 5. This
solution could be adapted to the multi-device context, by considering each device as a single user.
However, secure group messaging tries to tackle a broader and more complicated problem than
secure multi-device messaging. We detail below some particularities to multi-device messaging that
our contribution takes advantage of. More generally, we believe that designing a solution for the
multi-device case is interesting given the evolution of users’ practices, and that such a solution,

a "mail box" for each device of the same user. It also presents as major drawback the necessity of uninstalling and
then installing again Signal’s application on every device as soon as one is compromised.

86 Chapter 4 From Single to Multi-Device Instant Secure Messaging

Figure 4.3 – Our Multi-Device Dynamic Ratcheted Key Exchange protocol. Only one Signal channel
is needed between Alice and Bob.

besides being secure, must also be e�cient and easy to use in order to be widespread.

Multi-device messaging vs. group messaging. In multi-device messaging, a single user owns
and controls the di�erent devices, while in group messaging, multiple users discuss using a single
device each. Passive authentication is therefore easier to achieve in the multi-device case: received
messages need to be authenticated as coming from a valid device but the identity of the sending
device does not need to be revealed - the owner of the devices knows this information. Moreover, to
authenticate a new device to another one of the same user, one can easily assume the devices will
be physically close at some point. This means that a QR code can be used to exchange data between
them (as it is the case in Sesame). Finally, assuming average usage, we do not take into account
concurrent actions, such as revoking one’s phone from one’s tablet and conversely, at the same time.
This also excludes the case when one honest device and a malicious one try to revoke each other
at the same time. This could be handled at an application level by requiring a password or some
personal data before revoking.

4.2 Our protocol overview

As a contribution we propose a multi-device protocol based on the classical two users Signal. In
our solution, one user does not need to know how many devices the other has. Neither can he �nd
which device his correspondent uses. This is an improvement in terms of privacy, as, for instance,
the use of a particular device can leak information about your location. The idea is to open a speci�c
multicast channel between a user’s devices to broadcast the one Signal secret essential to perform the
protocol: the ratchet secret key (rskA in subsection 3.1.2). As illustrated in Figure 4.3, each time one
device of Alice sends a Signal message to Bob, it also sends a speci�c message to Alice other devices,
containing the new Signal ratchet secret key. Thanks to this non interactive synchronization, all
Alice devices have the same voice in the Signal conversation: they speak through the same Signal
channel to Bob. On the way back, when Bob answers Alice through the unique Signal channel, his
message is duplicated by the Server to all of Alice devices. A multicast channel is created for each
Signal’s session. To keep the security properties o�ered by the two-users ratchet, the multicast must

4

4.2 Our protocol overview 87

guarantee these properties.

A speci�c multicast for the devices. We propose as a �rst step a new primitive: a Ratcheted
dynamic multicast (RDM). As for a traditional multicast, our RDM establishes a secure channel
shared between several participants (in our case devices). It is dynamic since one can add or revoke
devices during the execution of the protocol. The novelty is that the keys used to secure this channel
are regularly updated, so as to obtain the forward secrecy and healing properties. This is the ratchet
feature. The update can be done independently by any party. It is of utmost importance that each
device remains independent in its ratcheting process, because in real life, one does not want to
wait for all - or even a small part - of its devices to interact together before sending a message.
For a similar reason, it is essential that our RDM is decentralized, as we want to avoid having a
master device that one cannot a�ord to lose, have corrupted, or run out of battery. We also exclude a
threshold mechanism, that would, as in [AH16], require several devices to be logged in (the Shatter
protocol proposed in [AH16] does not require Alice to have several devices with her to communicate,
however, if she only has her smartphone, her computer shall not be turned o� and con�gured to
answer automatically to communication requests).

As a contribution, we propose a security model, described in subsection 4.3.2 for this new
primitive, as well as a construction detailed in subsection 4.3.3. We prove our construction secure
in section 4.3.3. Our construction is based on standard well known primitives: an authenticated
asymmetric encryption and a MAC scheme, as they were described in section 2.3.

Integrating our multicast with Signal. In a second step, we instantiate the integration of our
multicast with Signal, to obtain a Multi-Device version of Signal.

Figure 4.4 represents a high level view of our solution, with Alice sending messages to Bob.
Alice sends messages from any devices and Bob receives them on all of its devices. The square box
numbers highlight some of our design particularities, that we motivate hereafter. We consider the
sending device is dA,i.

1. When Alice sends a message from any of her devices, this message is identically duplicated by
the server and distributed to each of Bob’s device. This can be done through mailboxes handled
by the Server, who needs to know about Bob’s devices (or at least about their numbers). This
mailbox system is already o�ered by the Sesame solution in [MP17].

2. When the other devices receive a message corresponding to a symmetric Signal step performed
by dA,i, they have to perform the symmetric ratchet on their own to maintain their chain
key up-to-date. (The corresponding ratchet secret is always transmitted to face up with
undelivered messages. This is an implementation feature and could be omitted in a �rst
simpler design).

3. When the other devices receive a message corresponding to an asymmetric Signal step
performed by dA,i, they receive the corresponding ratchet secret key rskA. From this key,
they can perform the asymmetric ratchet, to derive the needed keys and maintain their state
up-to-date.

4. As devices now share the ratchet secret, we need to change this secret when a device is revoked.
A revocation hence induces an extra ratchet in the Signal conversation between Alice and
Bob. As we do not want a newcomer to be able to read past messages, an additional ratchet
also comes up with the joining process. Bob needs to know about this ratchet, otherwise the

88 Chapter 4 From Single to Multi-Device Instant Secure Messaging

Alice other devices dA,j Alice sending device dA,i Server Bob

dpkA,j , dskA,j , ukA, uskA dpkA,i, dskA,i, upkA, uskA upkB , uskB

Initiation

Require Bob’s credentials
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

upkB , ephpkB←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−RDM.Init creates a new RDM channel

RDM.Add&Join adds all dA,j to the channel
MSK = X3DH(upkB , prepkB , uskA, eskA)
rskA,0, rpkA,0 ← DHKeyGen(1λ)
E = DH(rskA,0, prepkB)
rk0,0, ck0,−1 = KDFr(MSK,E)

RDM.Enc sends rk0,0, rskA,0
ephemeral prekey index, rpkA,0 ∗

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ 1
*in reality sent as additional data with the �rst message

Symmetric Ratchet

cki,i−1:x+1,mki,i−1:x = KDFm(cki,i−1:x)

RDM.Enc sends m(, rskA,i) 2

cki,i−1:x+1,mki,i−1:x = KDFm(cki,i−1:x)

AEAD(mki,i−1:x,m, rpkA,i)−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

Asymmetric Ratchet

rskA,`+1, rpkA,`+1 ← DHKeyGen(1λ)
E = DH(rskA,`+1, rskB,`)
rk`+1,`+1, ck`+1,`:0 = KDFr(rk`+1,`, E)
ck`+1,`,1,mk`+1,`,0 = KDFm(ckx+1,0)

RDM.Enc sends m, rskA,`+1 3

E = DH(rskA,`+1, rpkB,`)
rk`+1,`+1, ck`+1,`:0 = KDFr(rk`+1,`, E)
ck`+1,`:1,mk`+1,`:0 = KDFm(ck`+1,`:0)

AEAD(mk`+1,`:0,m, rpkA,`+1)
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

Addition/Revocation

rskA,z, rpkA,z ← DHKeyGen(1λ)
RDM.Add&Join/Revoke Adds/Revokes a device E = DH(rskA,z, rskB,u)

rkz,u, ckz,u:0 = KDFr(rkz,u, E)
ckz,u:1,mkz,u:0 = KDFm(ckz,u:0)

RDM.Enc sends rskA,z AEAD(mkz,u:0, “update”, rpkA,z) 4
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

Figure 4.4 – Multi-Device Signal protocol. Signal procedures KDFr,KDFm,X3DH, are de�ned
in subsection 3.1.2. AEAD is de�ned in subsection 2.3.4. Boxed messages are sent
between Alice devices. Without them, the �gure represents Signal. Boxed numbers 1
to 4 are justi�ed in section 4.2.

next message he sends would correspond to old keys, that the revoked device knows. An
update message is sent to Bob, to let him know about the ratchet. Bob knows there has been
a ratchet, but he can not know if it corresponds to an addition, a revocation, or a security
update, and he has no clues about which devices are concerned. We take those extra ratchets
into account in our security analysis.

4

4.2 Our protocol overview 89

We detail the above description in subsection 4.3.3. We introduce in subsection 4.3.2 a security
model for such a RDM primitive. We introduce some important de�nitions and we detail how the
freshness conditions in Signal’s model need to be updated to take into account the multi-device
feature, in particular the dynamic aspects. Our multi device messaging model is based on the
multi-stage model of [CCD+17] recalled in subsection 3.2.2. However, one could plug our RDM
on another RKE security model, with the same adaptations on the freshness conditions, obtaining
a �avor of Multi-Device Ratcheted Key Exchange (MDRKE). We implement our solution over the
Signal library libsignal-protocol-java accessible on Signal GitHub account. We give details and
results in section 4.5.

How do we deviate from Signal. One of our goal is to upgrade the existing Signal protocol
in a transparent way. However, one modi�cation was unavoidable: the introduction of a device
key, that every device generates for itself, before registering to the Signal server. This key is
used to initiate the RDM channels between devices, and to add a new device. This key also plays
a main part during the revocation process. In this precise case, we allow the renewal of the
Signal ephemeral keys (ephpk, ephsk, that gathers the mid-term keys and one-time pre keys in
the description of subsection 3.1.2) and user keys (upk, usk, that corresponds to the long term
identity keys in subsection 3.1.2). In the original Signal, the user key cannot be modi�ed without
unregistering then registering again and thus closing all current conversations. In our solution,
the server accepts a new user key for Alice if it is authenticated with one of Alice’s device key. On
Bob’s side, this will be exactly as if Alice had registered a new account (as it is now in Signal). The
main advantage is for Alice to keep her current conversations when revoking a device. If she had
registered again, she also would have to add her devices again. Another deviation from the original
Signal is that we make it possible to achieve several ratchets in a row on Alice’s side (instead of the
ping-pong pattern adopted by the original Double Ratchet). We show that this has no consequence
on the security, nor on the possibility to deal with out-of-order messages. However, it implied for us
a small patch in the Signal library as explained in section 4.5.

Our choices vs. Signal’s Sesame solution. Our solution di�ers from Sesame or Facebook
solutions in that, in our construction, a user is ignorant about his correspondent’s devices. A
message sent by Bob is only encrypted once for Alice, instead of being encrypted for each device of
Alice. This message is also encrypted only once for all of Bob’s other devices, instead of once per
device. The server will be in charge of broadcasting the message to the appropriate devices. The
authentication of a new device is also di�erent. The Sesame protocol o�ers two options: the �rst
requires all the devices of Alice to share a common IDkey. When a new device is added, it obtains
this IDkey. Bob recognizes the new device as a device of Alice since it has the same IDkey. This
makes the IDkey a very sensitive data. In [CCG16], the authors clearly stipulate that this feature
prevented the TextSecure messaging app from achieving post-compromise security. Concretely, if
an attacker learns Bob’s ID key, he can further register his own device as Bob’s one and enter any
session, even after a ratchet. The ratcheting mechanism does not provide PCS any more. This attack
has recently been further developed in [WBPE21] (to be published at DIMVA 21). In this paper, the
author also show that our contribution is not weakened by this attack. In the second option, the
devices do not share a common key. When Alice adds a device, Bob should physically authenticate
this device to be sure it is honest and belongs to Alice. In our solution, we only require a new device
of Alice to be authenticated by another device of hers.

90 Chapter 4 From Single to Multi-Device Instant Secure Messaging

4.3 A Ratcheted Dynamic Multicast as a new primitive.

As a �rst contribution, we introduce a new protocol for multicast communication. The idea behind
the ratchet feature is that the protocol is stateful and the state evolves during the execution of the
protocol. The goal is to strengthen the security of the channel. In the security model, it means
that the adversary can be given more abilities than in a non-ratcheted version. As we explained
in subsection 2.3.1, the traditional broadcast solutions do not �t our use case as they either require a
center or interactivity between the users. We are not either in a classical multi-recipient scheme as
we require a group notion which implies a form of authentication between the participants. From
then, we will consider participants in the RDM as devices.

4.3.1 A RDM de�nition

We start by giving a formal description of a RDM. Each device i maintains two states. The device
state, πi, is valid for all the sessions of the protocol. It registers long-term private key and public
key: πi.sk, πi.pk. The session state πsi is valid only for the session s of the protocol. It contains the
following information:

• rand, the ephemeral information of the state.

• devices, the public keys of all devices involved in the session.

• PK , the current session public key for the group πsi .devices.

Protocol description. A Ratcheted dynamic multicast (RDM) is de�ned by nine algorithms:
· SetUp(1λ, i)→ πi. Generates secret and public keys (ski, pki) and creates a device state πi.
· Init(πi, s) → πsi . Initiates a new session s of the protocol. Generates a session state πsi for

this session.
· Enc(m,πsi)→ Cenc, π

s
i . On input a message m and a session state πsi , returns a ciphertext

Cenc and the updated state πsi .
· Dec(Cenc, πrj)→ m,πrj . On input a ciphertext Cenc and a session state πrj , returns a message
m and the updated state πrj .
· Add&Join({pkj`}`∈[1,z], π

s
i) → Cadd, Cjoin, π

s
i . On input a set of public keys {pkj`}`∈[1,z]

and a session state πsi (of the device that adds), returns information Cjoin for the new devices,
Cadd for the already enrolled devices and the updated state πsi .
· DecJoin(Cjoin, πj , r) → πrj . On input a ciphertext Cjoin, a device state πj , and a session

identi�er r, returns a new session state πrj .
· DecAdd(Cadd, πok) → πok. On input a ciphertext Cadd and a session state πok, returns the

updated session state πok.
· Revoke(pk, πsi) → Crev, π

s
i . On input a public key pk and a session state πsi , returns a

ciphertext Crev and the updated state πsi .
· DecRevoke(Crev, πok) → πok. On input a ciphertext Crev and a session state πok, returns the

updated state πok.
Implicitly, in all decryption algorithm, if the decryption fails (returns an error symbol ⊥), then

the state is maintained. Our correctness de�nition will then correspond to the Corr described
in subsection 3.3.2.

4

4.3 A Ratcheted Dynamic Multicast as a new primitive. 91

Towards a more general description. What is expected from a primitive description is a high
level view, with the minimal input and output interfaces, that leaves a great freedom to a protocol
designer. The algorithms described above may seem to direct the construction too much. We give
arguments for why we chose such a level of detail. Firstly, it is important to notice that, due to the
addition and revocation feature, a dynamic multicast is to be analysed as a complex protocol more
than as a mere encryption scheme. It requires messages to be exchanged between participants. This
is the sense of the Init algorithm, that opens a session of the protocol. This may be compared to
the Execute given in [PPS12]. This Execute represents the initial protocol between the users that
leads to a broadcast group de�nition. However, in the model of [PPS12], the adversary is only given
a single access to the Execute oracle. As we will see in subsection 4.3.2, we chose to analyse our
multicast in a concurrent session setting.

Concerning a multicast encryption, as for an encryption scheme, Enc and Dec are the minimal
functionalities one can expect. As our protocol is statefull, there is no surprise that the state comes
up the algorithms de�nition. Then the last question is: how generic can the dynamic part be ? Add
and Revoke are necessary to obtain a fully dynamic protocol. In [PPS12] again, the author do not
detail their Join algorithm but only describe it as an interactive protocol between the group and the
newcomer. We could have, in a similar manner, gathered our Add&Join, DecJoin and DecAdd in a
single Add procedure for instance (and the same way, we could have included the DecRevoke oracle
together with the Revoke describing it as a procedure between the enrolled devices). However, as in
our primitive, the addition and revocation mechanisms are not necessarily interactive, it seemed less
intuitive to gather the whole procedure in a single call. The choice to keep separate the initiation of
the addition procedure by a single member and the �nalisation by the rest of the group on the one
side and the newcomer on the other side seems even more legit when one thinks of an adversary. In
the security model, the adversary has access to the di�erent algorithms that compose the protocol.
If the addition was to be considered as a sub protocol, then how do A could interact with it ? In a
real life execution, a strong adversary may tamper with the messages that concern the addition or
revocation in the same way as with the more basic encryption and decryption. This is why the nine
algorithms that compose the RDM description are necessary to represent the functionalities of this
primitive.

4.3.2 An appropriate security model

We �rst give an intuition of the security expected from a RDM primitive. We expect a RDM to
provide indistinguishability under chosen-ciphertext attacks, as de�ned in subsection 2.3.1, as well
as forward secrecy and healing. We de�ne our security model by starting from an ideal case where
the adversary has full powers, and then excluding the attacks that we consider as unavoidable.
The adversary controls the execution of s sessions of the protocol and he can obtain all the secret
information he wishes. At some point, he can query an indistinguishability challenge on one session.
He then has to distinguish between a real ciphertext honestly produced by this session or some
randomness (we adopt the real-or-random modelisation for indistinguishability). We exclude the
cases where he could trivially win, or the attacks that we consider as unavoidable by de�ning some
freshness conditions, that are formally de�ned in section 4.3.2.

We introduce three necessary de�nitions. Firstly, we formalize the notion of step of a protocol.
A session can live for a long life time (weeks, months) and some secret data may evolve during
this period. Steps are meant to follow this evolution. They are our multicast equivalent to the
Epoch de�ned for the RKE4 (cf. subsection 3.3.2). Secondly, we de�ne matching sessions, based

4We did not choose the term Epoch because, if we assemble our RDM with a RKE, the Epochs of the RKE and the steps

92 Chapter 4 From Single to Multi-Device Instant Secure Messaging

on [BR94]. This is necessary because we consider a multi-session context. Our de�nition helps us
to de�ne the correctness of our protocol: if two participants are involved in a same execution and
have reached corresponding steps - i.e. if they are matching, they should be able to communicate
together. Moreover, as matching sessions may share common secret data, the adversary’s powers
are also de�ned "matching-session" wise. Finally, because of the dynamic feature, several sessions
that correspond to a same execution of the RDM may not be present at the same time, and so do
not match. They are however related. We introduce the notion of chained sessions, to take this
relationship into account.

Let {d1, . . . , dnd } be the devices participating in the protocol. Each device di is modelled by an
oracle πi and each session s executed by a device di (session (i, s)) is modelled by an oracle πsi . We
identify a session s by the number si of sessions already run by i. Oracles maintain states as de�ned
in subsection 4.3.1. In the following, we assimilate the oracles and their state.

Protocol steps. Data registered in a device state for a session will change during the execution of
the protocol. To model this phenomenon, we consider steps of the protocol. Each Enc, Add&Join,
Revoke or corresponding decryption algorithm advances the protocol to a new step. Steps are
formalized through a counter t, set to 0 at initiation and incremented by oracle queries. This counter
is included in the oracle session state with πsi .step. It is not necessary in an implementation but
needed by the model. (In a general way, we use the typewriter typo for model speci�c elements).
Going from one step to another indicates that the algorithm has processed without error. Intuitively,
steps will embody the healing and forward secrecy properties: some restrictions can be needed at
some step t and released at step t + 1 (or reversely), meaning that the con�dence is back (is still
there for past steps). We refer with (i, s, t) to the session (i, s) at step t. We note πsi [t] when we
refer to oracle’s state πsi as it was at step t. We note πsi [t].X the access to item X at step t.

Matching sessions. We denote πsi .sid the transcript of the protocol executed in session (i, s),
that is, the concatenation of all messages Ci sent or received by πsi . We write πsi [ts].sid =
Ci[0]‖Ci[1]‖ . . . ‖Ci[ts]. As no message is sent or received for the initiation, the �rst component of
a sid for a session running the Init procedure is set to INIT. We refer to a session created by an Init
algorithm as an initial session. As all devices are playing similar roles, we do not consider roles in
our de�nition of the matching sessions. Since devices can join and leave during the protocol, we
de�ne a matching that is step-wise.

De�nition 4.1 (Matching sessions at some step.). One says (i, s, ts) and (j, r, tr), ts ≥ tr ((i, s) joined
�rst), are matching if ∃ sid′ substring of πsi [ts].sid such that πsi [ts].sid =̃ sid′‖πrj [tr].sid (sid′

eventually empty). The symbol =̃ stands for the following de�nition: πsi [ts].sid =̃ sid′‖πrj [tr].sid if,
∀t ∈ [0; tr]:

· either t > 0 and Ci[ts − tr + t] = Cj [t],

· either t > 0 and Ci[ts − tr + t] = (Cadd, Cjoin) or Cadd and Cj [t] = Cadd,

· either t > 0 and Cj [t] = (Cadd, Cjoin) or Cadd and Ci[ts − tr + t] = Cadd,

· or t = 0 and Ci[ts− tr] = (Cadd, Cjoin) or Cadd and Cj [0] = Cjoin with (Cadd, Cjoin) having
been produced by the same Add&Join call.

of the RDM would complete each other but not necessarily correspond.

4

4.3 A Ratcheted Dynamic Multicast as a new primitive. 93

As devices can join the protocol at any moment, we de�ne a way to link sessions that corresponds
to a same execution but were not present at the same time. This composes chains of sessions, as
illustrated in Figure 4.5.

(j, r) tr

t′0

(i0, s0) t0

t′1

(i1, s1) t1

t′n−1

(in−1, sn−1) tn−1

ts

(i, s)

Figure 4.5 – A chain of sessions between (i, s, ts) and (j, r, tr).

De�nition 4.2 (Chained sessions.). A session (j, r, tr) is chained with (i, s, ts) if tr is maximal and
there exists n sessions (iα, sα), and n couples (t′α, tα), t

′
α ≤ tα, α ∈ [0, n− 1] such that:

· (j, r, tr) and (i0, s0, t
′
0) are matching,

· ∀α ∈ [0, n− 2], (iα, sα, tα) and (iα+1, sα+1, t
′
α+1) are matching,

· (in−1, sn−1, tn−1) and (i, s, ts) are matching.
{(iα, sα, tα)}α∈[0,n−1] is called a chain of sessions between (i, s, ts) and (j, r, tr).

Note that the above de�nition is “one-way” : a session is chained with a more advanced session,
in the sense, with a session that have processed more recent messages.

We now come to the de�nition of the correctness. We expect matching sessions to be synchronised
and, as a consequence, to be able to communicate together. We formalise this statement in the
following de�nition.

De�nition 4.3 (Correctness.). Suppose a passive adversary that sees communications and may only
disturb their delivery. A RDM is said to be correct if, for all matching sessions (i, s, ts) and (j, r, tr),
for all messagesm,

Dec(Enc(m,πsi [ts]), πrj [tr])) = m.

In the following, we consider the security of a multicast when facing a more powerful adversary.
The goal is to ensure that the scheme provides the expected con�dentiality on the messages.

The adversary’s powers. As in the original IND-CCA experiment, the adversary A can query
for one Challenge of indistinguishability. He is given access to oracles that enables him to perform
the whole protocol: OInit, OEnc, ODec, OAdd&Join, ODecAdd, ODecJoin, ORevoke, ODecRevoke.
The oracle OInit de�nes the experiment in a multi-session context. In the original de�nition of
IND-CCA, giving the adversary the possibility to corrupt the key would be a non sense, as only one

94 Chapter 4 From Single to Multi-Device Instant Secure Messaging

long term key is considered. In a RDM protocol, one expects the ratchet feature to bring PFS and
PCS. Hence, the adversary can query a RevealLongTerm on a device to obtain its long term secret
key, and he can choose to query RevealState5 to obtain the state secrets of any device. We consider
as state secrets values that needs to be memorized from one message ton another for instance.
Randomness used for encryption is not considered as part of the state. Finally, we do not consider
out-of-order messages, messages are supposed to be transmitted in the order they were created.

We complete the state description with �ags, not required for the implementation, to keep trace
of the adversary’s queries:

• revLT. It is a �ag on global state. It is set to false at Register, set to true whenever
RevealLongTerm is called, if the device is not active (see below).

All the followings are session state �ags:

• revState. Set to false at Init, set to true whenever RevealState is called on this session.

• challenge. Set to false at Init, set to true whenever Challenge is called on this session or
on a matching session.

• active. Set to true if the device i has been called by oracle OEnc in session s. A device gets
active in the protocol as soon as it sends a message.

We note πsi .flag for πsi .flag = true and ¬πsi .flag for πsi .flag = false.

The security model description We give a pseudo code description of the model in Figure 4.6,
gathering all the oracles accessible to the adversary.

Freshness. The natural restrictions de�ned here are meant to exclude unavoidable attacks or
cases where the adversary could win trivially. These restrictions are often valid for a session and
all the corresponding chained sessions (not only matching sessions). This expresses the fact that a
device has to participate regularly to the protocol to update its state. This is inherent to the ratchet
process: the participants have to be actively involved for the ratchet to be operational. One of the
direct consequence of this remark, is that we consider that the session speci�c data are equal to the
long term data until a participant is active. This gives the adversary two ways of accessing long-term
data, revLT and revState. We carefully take into account these two paths for the adversary to
trivially win the Game. We consider the freshness condition directly in the experiment description.
A main reason is to make easier the composition with the messaging part in a second step. In order
to formalise the freshness conditions in the pseudocode representation of the model, we introduce
the following notation:

NoRevState-NoInactiveRevLT(i, s, t) =

· ¬[πsi [t].revState ∨ (πi.revLT ∧ ¬πsi [t].active)] and

· ∀(j, r, tr) chained with (i, s, t) and non revoked,
¬[πrj [tr].revState ∨ (πj .revLT ∧ ¬πrj [tr].active)].

5Again, about the vocabulary, our RevealState is equivalent in spirit to the Expose introduced for the RKE. However,
as the exposure was introduced in a context where there are no long term key queries, it seemed to us more relevant
to keep the traditional RevealState/RevealLongTerm vocabulary.

4

4.3 A Ratcheted Dynamic Multicast as a new primitive. 95

ExpRDM-IND
RDM,nd,q,A(n)

1 : b←$ {0, 1}
2 : P ← ⊥, initialdata← ⊥, C∗ ← ⊥
3 : for i = 1, . . . , nd do
4 : πi ← SetUp(1λ, i), si ← 0
5 : initialdata← initialdata ∪ {πi.pk}
6 : b′ ← AOracles,Challenge(initialdata)
7 : return b = b′

OInit(i)

1 : si ← si + 1, s← si

2 : πsi [0]← Init(πi, s)
3 : πsi .step← 0, Esi ← 0, V si ← ∅
4 : return

OEnc(m, i, s)

1 : t← πsi .step
2 : Cenc, π

s
i [t+ 1]← Enc(m,πsi [t])

3 : V si ← V si ∪ Cenc
4 : for T ≥ t+ 1 do
5 : πsi [T].revState← false

6 : πsi [T].challenge← false

7 : πsi [T].active← true

8 : Esi ← t+ 1, πsi .step← t+ 1
9 : return Cenc

ODec(Cenc, j, r)

1 : t← πrj .step

2 : Req. ¬(Cenc = C∗ ∧ πrj [t].challenge)
3 : Req. NoRevState-NoInactiveRevLT(j, r, t)
∨ ∃(k, o, to) matching (j, r, t) such that Cenc ∈ V ok

4 : m,πrj [t+ 1]← Dec(Cenc, πrj [t])
5 : πrj .step← t+ 1
6 : return m

OAdd&Join({j`}`∈[1,z], i, s)

1 : t← πsi .step
2 : Cjoin, Cadd, π

s
i [t+ 1]← Add&Join({πj` .pk}`∈[1,z], π

s
i [t])

3 : if ∃ ` such that πj` .revLT then
4 : for T ≥ t do πsi [T].revState← true

5 : V si ← V si ∪ {Cadd}, P ← P ∪ {Cjoin}
6 : πsi .step← t+ 1
7 : return Cjoin, Cadd

ODecJoin(Cjoin, j)

1 : Req. Cjoin ∈ P
2 : sj ← sj + 1, r ← sj

3 : πrj [0]← DecJoin(Cjoin, πj , r)
4 : πrj .step← 0, V rj ← ⊥, Esi ← 0
5 : return

ODecAdd(Cadd, k, o)

1 : t← πok.step
2 : Req. NoRevState-NoInactiveRevLT(k, o, t)
∨ ∃(j, r, tr) matching (k, o, t) such that Cadd ∈ V rj

3 : πok[t+ 1]← DecAdd(Cadd, πok[t])
4 : πok.step← t+ 1
5 : return

ORevoke(pk, i, s)

1 : t← πsi .step
2 : Crev, π

s
i [t+ 1]← Revoke(pk, πsi [t])

3 : V si ← V si ∪ {Crev}
4 : πsi .step← t+ 1
5 : return Crev

ODecRevoke(Crev, k, o)

1 : t← πok.step
2 : Req. NoRevState-NoInactiveRevLT(k, o, t)
∨ ∃(j, r, tr) matching (k, o, t) such that Crev ∈ V rj

3 : πok[t+ 1]← DecRevoke(Crev, πok[t])
4 : πok.step← t+ 1
5 : return

RevealLongTerm(i)

1 : Req. ¬∃s, ts such that
πsi [ts].challenge ∧ ¬πsi [ts].active

2 : πi.revLT← true

3 : return ski

RevealState(i, s)

1 : t← πsi .step
2 : Req. ¬πsi [t].challenge
3 : for T ≥ Esi do πsi [T].revState← true

4 : if ¬πsi .active do πi.revLT← true

5 : return πsi [t].rand

Challenge(m0,m1, i, s)

1 : t← πsi .step
2 : Req. NoRevState-NoInactiveRevLT(i, s, t)
3 : C∗, πsi [t+ 1]← Enc(mb, π

s
i [t])

4 : for T ≥ t do
5 : πsi [T].challenge← true

6 : πsi [T].revState← false

7 : for (j, r, tr) chained with (i, s, t) such that:
πj .pk ∈ πsi .devices do

8 : for T ≥ tr do
9 : πrj [T].challenge← true

10 : πsi .step← t+ 1
11 : return C∗

Figure 4.6 – The full RDM-IND security game given in pseudo code. Req. stands for require.

96 Chapter 4 From Single to Multi-Device Instant Secure Messaging

By checking NoRevState− NoInactiveRevLT(i, s, t), we ensure that the state of(i,s) is not re-
vealed, would it be by a RevealState or a RevealLongTerm while i is not active in that session or by
a similar query on a chained session. We consider non revoked chain sessions here and not only
matching session as, if a session is chained, it is waiting to process all the messages until the one
that corresponds to step t of (i, s). As its state enables to process all the messages, a leakage of its
state gives A access to (i, s, t)’s state also. This traduces that the devices share at least part of their
state. Without the condition on chained session, the NoRevState− NoInactiveRevLT(i, s, t)
condition implies that each devices maintain its own ratcheted channel.

We detail below the di�erent freshness conditions that appear in the model. The �rst two
restrictions exclude traditional trivial attacks. The third means forward secrecy can be achieved
solely for active participants. The fourth models the healing property of the ratchet. The �fth
excludes impersonation attacks and �nally, the last point models an authentication procedure when
adding a new participant, which we consider out of the scope of this protocol.

1. A shall not RevealState state secrets just before the challenge. This is prevented by line 2 of
Challenge.

2. A shall not RevealState a device concerned with the challenge. This is prevented by line 2 in
RevealState and lines 7-9 in Challenge. The sequels of a RevealState are cancelled by a OEnc.
Line 6 in OEnc ensures the security is back for i’s secret after i performs an encryption. This
ensures the security is back for di’s secret after di performs an encryption. A RevealState on
a device only threatens the steps from the last encryption and until the next. This corresponds
to the healing property. It also means that forward secrecy depends on devices regularly
sending messages.

3. A shall not RevealLongTerm a non active device before or after the challenge. This is prevented
by line 2 of Challenge and lines 1-2 of RevealLongTerm. A device comes active as soon as it
performs an encryption (it enters the ratcheting process).

4. A shall not RevealState and use the secret state information to maliciously send an encrypted
message with its own new random, revoke someone, or join a non authorized corrupted device.
There is nothing we can do against this kind of impersonation attack, and the two user ratchet
is also vulnerable to it. We prevent this by introducing the register V s

i that keeps track of
ciphertexts produced by the OEnc, OAdd&Join and ORevoke oracles. Line 3 of Oracle ODec,
and line 2 of ODecAdd and ODecRevoke check whether the incoming ciphertext has been
produced legitimately. If not, those lines verify whether there was a RevealState at the same
step.

5. Register P initialized in line 2 of the global experiment prevents A from joining a device in a
non existing session or after an exposure. This models a physical authentication procedure
between the device that adds and the new device.

De�nition 4.4. (Secure Ratcheted Dynamic Multicast) A RDM running with nd devices is a secure
Ratcheted Dynamic Multicast if it is correct and, for all adversaries A, running in polynomial time,
making at most q queries to the oracles, there exists a negligible function negl(λ) such that:

AdvRDM-IND
A,RDM,nd,q(λ) =

∣∣∣∣Pr
[
ExpRDM-IND

A,RDM,nd,q
]
− 1

2

∣∣∣∣ ≤ negl(λ) .

We denote εRDM-IND this advantage.

4

4.3 A Ratcheted Dynamic Multicast as a new primitive. 97

4.3.3 Our construction.

As a second contribution, we propose a construction that realise a Ratcheted Dynamic Multicast,
and prove it secure in the model described in subsection 4.3.2. We �rst give in Figure 4.7 a high-level
view of our construction. The detailed pseudo code description is given in Figure 4.8.

Alice sending device

dA,1(dpk1,dsk1)
Alice other devices

dA,2(dpk2,dsk2),dA,3(dpk3,dsk3)

devices = {dpk1}
PK = {dpk1}

RDM.Init

Km ← KeyGenm(1λ)
epk1, esk1 ← KeyGena(1λ)
PK = {epk1}

RDM.Add&Join(dpk2)

K ′m ← KeyGenm(1λ)
devices = {dpk1, dpk2}
PK ′ = {epk1, dpk2}

Enc(PK ′‖devices‖K ′m, dpk2)
−−−−−−−−−−−−−−−−−−−−−−−−−→ for dA,2

RDM.Enc(m)

K ′′m ← KeyGenm(1λ)
epk′1, esk

′
1 ← KeyGena(1λ)

PK ′′ = {epk′1, dpk2}
τ = Mac(K ′′m ‖PK ′′,K ′m)

{Enc(m‖K ′′m ‖τ, pk)}pk∈PK′′ , PK ′′−−−−−−−−−−−−−−−−−−−−−−−−−→ ∗

if RDM.Enc for a symmetric ratchet then
update chain key and message key

if RDM.Enc for an asymmetric ratchet then
update rootkey, chainkey, message key

RDM.Add&Join(dpk3)

K ′′′m ← KeyGenm(1λ)
devices = {dpk1, dpk2, dpk3}
PK ′′′ = {epk1, dpk2, dpk3}
τ = Mac(K ′′′m ‖PK ′′′,K ′′m)

Enc(PK ′′′‖devices‖K ′′′m , dpk3)
−−−−−−−−−−−−−−−−−−−−−−−−−→ for dA,3

{Enc(K ′′′m ‖τ, pk)}pk∈PK′′ , PK ′′′−−−−−−−−−−−−−−−−−−−−−−−−−→ for all but dA,3

RDM.Revoke(dpk2)

K ′′′′m ← KeyGenm(1λ)
devices = {dpk1, dpk3}
PK ′′′′ = {epk1, dpk3}
τ = Mac(K ′′′′m ‖PK ′′,K ′′′m)

{Enc(K ′′′′m ‖τ, pk)}pk∈PK′′′′ , PK ′′′′−−−−−−−−−−−−−−−−−−−−−−−−−→ for all but dA,2

Figure 4.7 – Our RDM protocol. The sending device can change for each procedure. The algo-
rithms (KeyGenm,Mac,Verif) and (KeyGena,Enc,Dec) de�ne a Mac (respectively an
asymmetric encryption) as in section 2.3. The instructions * detail the integration of
our RDM with Signal.

The main idea is that the keys used to encrypt the multicast messages are updated regularly.
We base our solution on parallel asymmetric encryption, as studied in [BPS00] or [BBM00] and
detailed in subsection 2.3.2. The authenticated asymmetric encryption scheme given by th algorithms

98 Chapter 4 From Single to Multi-Device Instant Secure Messaging

(KeyGena,Enc,Dec) is de�ned as in subsection 2.3.1, is used as a multicast in the naive way: PK is
the set of public keys of all devices di concerned with the encryption. mEnc(m,PK) stands for
{Enc(m, pk)}∀pk∈PK . We consider that the number of devices remains reasonable: around ten for
each user does not seem so restrictive. This design allows us to choose among well-known and
proven secure primitives, as detailed in section 2.3.1.

As we have seen, broadcast encryption, as a primitive, does not �t our use case. This is why
we introduced the notion of RDM. But one could try to construct a RDM using a decentralized
broadcast scheme. However, the most e�cient construction given in [PPS12] can not be used as
a building block for a RDM, for it requires interactivity between the participants. More generally,
broadcast encryption solutions o�er fewer implementation evaluations.

An asymmetric ratchet. The Di�e-Hellman ratchet implemented in Signal is only possible for
two users. With more than two parties, multiparty computation could be thought of as an option,
but we do not want to wait for all, or even a minimum number of devices to be present before
sending a message: each device has to be autonomous in its ratcheting process. Our ratchet consists
in generating new ephemeral asymmetric keys epk, esk for the device which sends a message. The
multicast public key is updated with the new ephemeral public key epk. Here, we take advantage of
the multi-device context. As all the devices belong to a single person, we consider that no honest
device will try to exclude another device maliciously (by mis-updating the multicast public key).
When any device updates its ephemeral key pair, the others only receive the updated common public
key. They do not need to know about who updated it. However, when a device wants to revoke
another device, it has to know which ephemeral public key to erase from PK . We deal with this
by considering there exists a correspondence between the list devices of long term keys recorded
in each device state and the list PK of ephemeral public keys. Requirements in the Add&Join
algorithm prevent a device from being present in the group several times. In such a case, revoking
this device once would not be enough to be sure it is de�nitively out of the protocol.

Passive authentication. Another important point is that the messages have to be identi�ed as
coming from an honest device, but again, its identity does not matter. Our solution provides passive
authentication thanks to a Mac key Km shared between the devices. A new Mac key is generated
with every action: sending a message, joining, or revoking a device. Otherwise, an adversary who
could access the Mac key at some step could impersonate any device at any step further. This new
Mac key is authenticated under the previous one, creating an authentication chain. This solution is
less expensive than generating new signature key pairs regularly.

The detailed construction. We give a pseudocode detailed description of our RDM protocol
in Figure 4.8. The restrictions in the Add&Join procedure are there to prevent a same device to be
added several times. The requirement in the Revoke procedure prevents a device to revoke itself.
Ephemeral data esk, epk and Km constitute the randomness πsi .rand of the model. For readability
reasons, we keep them separate in the construction and refer to them with πsi .esk, πsi .epk, and
πsi .Km. To be able to initialize a session, a device must have processed a SetUp to generate its global
state πi.

E�ciency-wise, we generate two new keys for each encryption and only one for additions and
revocations. Maintaining several Signal channels requires a number of key generations that grows
linearly with the number of devices.

4

4.3 A Ratcheted Dynamic Multicast as a new primitive. 99

SetUp(1λ, i)

1 : sk, pk ← KeyGena(1λ)
2 : πi.sk ← sk, πi.pk ← pk

3 : πi.1λ ← 1λ

4 : return πi

Init(πi, s)

1 : Km ← KeyGenm(πi.1λ)
2 : πsi .Km ← Km

3 : πsi .esk ← πi.sk, π
s
i .epk ← πi.pk

4 : πsi .PK ←{πi.pk}
5 : πsi .devices←{πi.pk}
6 : return πsi

Enc(m, πsi)

1 : K ′m ← KeyGenm(πi.1λ)
2 : Find ind such that πsi .PK[ind] = πsi .epk

3 : sk, pk ← KeyGena(πi.1λ)
4 : πsi .esk ← sk, πsi .epk ← pk

5 : πsi .PK[ind]← πsi .epk

6 : τ ← Mac(“up”‖πsi .PK‖K ′m, πsi .Km)
7 : c← mEnc(m‖K ′m‖τ, πsi .PK)
8 : Cenc ← c‖πsi .PK, πsi .Km ← K ′m

9 : return Cenc, π
s
i

Dec(Cenc, πrj)

1 : c‖PK ′ ← Cenc

2 : m‖Km‖τ ← Dec(c, πrj .esk)
3 : Verif(“up”‖PK ′‖Km, τ, π

r
j .Km)

4 : πrj .Km ← Km, π
r
j .PK ← PK ′

5 : return m,πrj

Revoke(pk, πsi)

1 : Require pk 6= πi.pk

2 : Find j such that πsi .devices[j] = pk

3 : if j = ⊥ return ⊥, πsi
4 : D ← πsi .devices \ {pk}
5 : πsi .PK ← πsi .PK \ πsi .PK[j]
6 : K ′m←$ KeyGenm(πi.1λ)
7 : τ ← Mac(“rev”‖πsi .PK‖D‖K ′m, πsi .Km)
8 : c← mEnc(K ′m‖τ, πsi .PK)
9 : Crev ← c‖πsi .PK‖D

10 : πsi .Km ← K ′m, π
s
i .devices← D

11 : return Crev, π
s
i

DecRevoke(Crev, πok)

1 : c‖PK‖D ← Crev

2 : Km‖τ ← Dec(c, πok.esk)
3 : Verif(“rev”‖PK‖D‖Km, τ, π

o
k.Km)

4 : πok.Km ← Km

5 : πok.PK ← PK, πok.devices← D

6 : return πok

Add&Join({pkj`}`∈[1,z], π
s
i)

1 : Require (∀ ` 6= `′, pkj` 6= pkj`′)
2 : ∧ {pkj`}`∈[1,z] ∩ πsi .devices = ∅
3 : K ′m ← KeyGenm(πi.1λ)
4 : PK ′ ← πsi .PK ∪ {pkj`}`∈[1,z]

5 : πsi .devices← πsi .devices ∪ {pkj`}`∈[1,z]

6 : Cjoin ← Join({pkj`}`∈[1,z], PK
′,K ′m, π

s
i)

1 : mjoin ← PK′‖πsi .devices‖K′m
2 : Cjoin ← mEnc(mjoin, {pkj`}`∈[1,z])
3 : return Cjoin

7 : Cadd ← Add(PK ′,K ′m, πsi)

1 : madd ← “add”‖PK′‖πsi .devices‖K′m
2 : τ ← Mac(, πsi .Km)
3 : c̃← mEnc(K′m‖τ, πsi .PK)
4 : Cadd ← c̃‖PK′‖πsi .devices
5 : return Cadd,

8 : πsi .PK ← PK ′, πsi .Km ← K ′m

9 : return Cjoin, Cadd, π
s
i

DecJoin(Cjoin, πj , r)

1 : PK‖D‖Km ← Dec(Cjoin, πj .sk)
2 : πrj .esk ← πj .sk, π

r
j .epk ← πj .pk, π

r
j .Km ← Km

3 : πrj .PK ← PK, πrj .devices← D

4 : return πrj

DecAdd(Cadd, πok)

1 : c‖PK‖D ← Cjoin

2 : Km‖τ ← Dec(c, πok.esk)
3 : Verif(“add”‖PK‖D‖Km, τ, π

o
k.Km)

4 : πok.PK ← PK, πok.devices← D,πok.Km ← Km

5 : return πok

Figure 4.8 – A Ratcheted Dynamic Multicast construction.

The following theorem enunciates the security of our construction relatively to the RDM security

100 Chapter 4 From Single to Multi-Device Instant Secure Messaging

model described in subsection 4.3.2.

Theorem 4.1. If Enc is an IND-CCA secure asymmetric encryption scheme, and Mac is secure under
multi-instance strong unforgeability, the above construction is a secure ratcheted dynamic multicast for
nd devices, such that, for any PPT adversary making at most q queries to the oracles:

AdvRDM-IND
RDM,nd,q,A(λ) =

∣∣∣∣Pr
[
ExpRDM-IND

RDM,nd,q,A(n)
]
− 1

2

∣∣∣∣
≤ q ·mi-SUF + (q + 1) · nd · IND-CCA.

In practice, one would use hybrid encryption (as described in section 2.3.1) instead of a single
asymmetric encryption scheme in this construction. It means that the asymmetric encryption is
used to transmit a common symmetric key to all devices and that data are then encrypted with
this key. This would modify the security argument only by a negligible term due to the symmetric
encryption. We decide to present our construction with the asymmetric part so as not to add extra
lines in an already complex construction.

A game based proof We now give a proof of Theorem 4.1.

Proof. The proof of correctness follows by inspection: if the messages are correctly transmitted,
then the devices all obtain the correct updated keys to verify the Mac and decrypt the messages.

For the indistinguishably, we consider a proof by iteration. Considering a session (i, s), we call
a step fresh if it is suitable for challenge. We show that considering any session, a fresh step will
always correspond to a group of honest devices with secret keys unknown to the adversary and a
safe shared MAC key. As for the Signal proof, we obtain a tree of possible sequences of oracle calls.
Hence for each step, we consider the di�erent branches of the tree that the adversary can follow.

• If the considered step is fresh with a secret MAC key, then A cannot interfere in the protocol
(thanks to SUF of the MAC apart from the initial step where speci�c restrictions exist) and
the step after any action ofA is either fresh with a secure MAC key (thanks to the IND-CCA
of the encryption) or non-fresh.

• If the considered step is not fresh, then A cannot interfere due to restrictions imposed by the
model. The step after any action of A is either a non fresh step, or a fresh step with a secret
MAC key if the corruption has been healed.

From this, we obtain that in any session, any step suitable for challenge is necessarily uncompro-
mised.

In more detail, we consider a lookup table B in which we will write each RevealLongTerm or
RevealState query made by the adversary. RevealLongTerm and RevealState are written and erased
in B the same way corresponding �ags are turned to false or true, but we need this table to identify
the last reveal/corruption healing. We choose to observe the experiment from one session (i, s) but
what we actually look at is the behaviour of the group at each step. Hence we consider in the lookup
table lines that concerns (i, s) or any matching session. If B contains only lines for non matching
session, we say it is empty. Of course adversary does not only play with (i, s) but also with others.
We therefore consider queries on (i, s) or on other sessions (j, r) if it is a matching sessions because
it has an e�ect on (i, s) state. In the proof, we denote by Si the event “the adversary wins in the
game i”.

4

4.3 A Ratcheted Dynamic Multicast as a new primitive. 101

Case of initial sessions

Initialization. We consider an initial session (i, s). We initialize our iteration by considering step
0 of the session. As (i, s) is an initial session, its step 0 concerns only device i. First, a MAC key
Km is generated and is not used at this moment, so it can be considered as non revealed.

Case A: fresh departure. Step 0 is not corrupted nor revealed. B is empty. It means i is not corrupted
and Km is safe. As Km is safe, we show A can not interfere.
Game A.0. Let Game 0 be the original game with this con�guration.
Game A.1. Let Game A.1 be as Game 0 except the simulator respectively reject all ciphertexts Cenc
and Cadd not produced by OEnc and OAdd&Join on input to ODec and ODecAdd (Revocation is
not considered here as i cannot revoke himself). Otherwise, we can use it to build an adversary
against strong unforgeability of the MAC scheme. We obtain:

|Pr[SA.1]− Pr[SA.0] | ≤ mi-SUF.

At this point, we consider there are no forgeries, this means that all ciphertexts accepted6 by
di�erent oracles are produced by other oracles and A cannot join or send encrypted message
maliciously.

From there, A can query for an OEnc, OAdd&Join, ORevoke, RevealState or RevealLongTerm.
We do not consider decryptions here as there is still no ciphertext produced by oracles OEnc,
OAdd&Join, and ORevoke. We study each option:

• RevealLongTerm(i). This query will lead to a non fresh step (step has not changed, it just
got corrupted) and (i, s) is written as corrupted in B (actually, we shall write (i, s′) for all
sessions runned by i, but, since we are only interested in (i, s) now, we only consider this
one).

• RevealState(i, s, 0). This query will lead to a non fresh step and (i, s) is written as corrupted
in B.

• Enc(m, i, s). LetGameA.2.Enc be as Game A.1 but ensuresA learns nothing about the newly
generated MAC key K ′m. That is we replace the ciphertext c = EncAsym(m‖K ′m‖τ, πsi .PK)
produced in OEnc by a random c′ = EncAsym(rand, πsi .PK) and keep the couple (ciphertext,
plaintext) = (c′,m‖K ′m‖τ) in a list L for later decryption. i is not corrupted and is the only
receiver of this encryption (πsi .PK = πi.pk). IND-CCA security7 of the encryption scheme
ensures we can do this substitution properly with loss:

|Pr[SA.2.Enc]− Pr[SA.1] | ≤ IND-CCA.

We are in a fresh state with secure MAC key Km.
6For ciphertexts accepted by the ODecJoin, the security model already restricts the ciphertext to belong to P (line

1. of this oracle). This is due to the fact that we do not have made a choice to authenticate a device to another. By
considering a speci�c solution to authenticate them, we could delete this restriction in the security model and describe
here an additional game A.1’ in which we would apply the security of this chosen authentication to obtain Cjoin on
input to ODecJoin has been produced by OAdd&Join.

7This actually corresponds to a ror-CCA experiment. The reduction from ror-CCA to IND-CCA given in subsec-
tion 2.3.1 enables us to keep the more classical notion of IND-CCA.

102 Chapter 4 From Single to Multi-Device Instant Secure Messaging

• OAdd&Join
(
{j`}`∈[1,z], i, s

)
with none of the j` corrupted. Consider a Game A.2.Join that

runs as Game A.1 except that we ensure that A learns nothing about the newly generated
MAC key K ′m. We replace the ciphertext Cjoin = EncAsym(PK ′‖K ′m, {pkj`}`∈[1,z]) pro-
duced in Join of OAdd&Join by Cjoin = EncAsym(rand, {pkj`}`∈[1,z]) and ciphertext c̃ =
EncAsym(K ′m‖τ, πsi .PK) produced in Add of OAdd&Join by c̃′ = EncAsym(rand, πsi .PK).
We keep both couples (C ′join, PK ′‖K ′m, {pkj`}`∈[1,z]) and (c̃′,K ′m‖τ, πsi .PK) in the list L
for later decryption. None of the {j`}`∈[1,z] is corrupted and they are the only receivers
of the encryption Cjoin and i is not corrupted and is the only receiver of the encryption c̃.
IND-CCA security of the encryption scheme - extended to parallel encryption - ensures we
can do both substitutions properly with loss:

|Pr[SA.2.Join]− Pr[SA.1] | ≤ IND-CCA + z · IND-CCA
≤ nd · IND-CCA.

We are in a fresh state with secure MAC key Km.

• OAdd&Join({j`}`∈[1,z], i, s) with one or more j` corrupted. For each device j` corrupted,
(j`, allsessions) is written as corrupted in B. Adversary obtains the new MAC key K ′m
through the joining process and we are in a non fresh step with unsafe MAC key.

Case B: unfresh departure. If i is corrupted, (i, s) is written as corrupted in B and step 0 is not suitable
for a Challenge query.
As before, A can query for an OEnc, OAdd&Join, and RevealState (a query RevealLongTerm is
useless here as i is already corrupted). We do not consider decryption oracles here as there is still
no ciphertext produced by oracles OEnc, OAdd&Join, and ORevoke and A cannot join, revoke, or
send encrypted message maliciously. This last point is due to the natural restrictions in the security
model: the model does not allow A to forge a message after a corruption or an exposure.
Game B.0. Let Game 0 be the original game with this con�guration. We study each option:

• RevealState(i, s, 0). This step remains a non fresh step and i is still written as corrupted in B.

• OEnc(m, i, s). Let Game B.1.Enc be as Game 0 but ensures A learns nothing about the
newly generated MAC key K ′m. We replace the ciphertext c = EncAsym(m‖K ′m‖τ, πsi .PK)
produced in OEnc by c′ = EncAsym(rand, πsi .PK) and keep the couple (c′,m‖K ′m‖τ) in
the list L for later decryption. i is corrupted, but during the execution of OEnc, this oracle
generates for i a new secret/public key (sk, pk) (line 3. of Enc) unknown to A and we can
delete the entry (i, s) from the table B. B is now empty. The ciphertext c is intended for the
sole new key of i, non corrupted at this step. IND-CCA security of the encryption scheme
ensures we can do this substitution properly with loss:

|Pr[SB.1.Enc]− Pr[SB.0] | ≤ IND-CCA.

We are in a fresh state with secure MAC key Km.

• OAdd&Join({j`}`∈[1,z], i, s) with none of the j` corrupted. As A get the new MAC key K ′m
through the Add part of OAdd&Join, we demand no security on the private side apart from
the model restrictions. We are in a non fresh state with unsafe MAC key.

• OAdd&Join({j`}`∈[1,z], i, s) with one or more j` corrupted. For each j` corrupted, (j`,allsessions)
is written as corrupted in B. Adversary obtains the new MAC key K ′m through the joining
process and we are in a non fresh step with unsafe MAC key.

4

4.3 A Ratcheted Dynamic Multicast as a new primitive. 103

Iteration. We now consider a session (i, s) at step t in the protocol after q queries. Each reveal or
corrupt has been registered in B. As before, we consider case A when we start from a fresh step and
case B when we start from a non fresh step.

Case A: fresh departure (B is empty).
Game A.0. Let Game 0 be the original game with this con�guration.
Game A.1. Let Game A.1 be as Game 0 except the simulator respectively reject all ciphertexts Cenc,
Cadd, and Crev not produced by OEnc, OAdd&Join, and ORevoke on input to ODec, ODecAdd,
and ORevoke. Otherwise, we can use it to build an adversary against strong unforgeability of the
MAC scheme. We obtain:

|Pr[SA.1]− Pr[SA.0] | ≤ mi-SUF.

At this point, all ciphertexts accepted8 by di�erent oracles are produced by other oracles and A
cannot join or send encrypted message maliciously.

From there A can query for an OEnc, OAdd&Join, ORevoke, RevealState, or RevealLongTerm.
Decryption oracles do not induce changes on the honesty of the devices, on the secret of the MAC
key, or on the freshness of the step due to Game A.1, so we do not detail them. We note t = πsi .step
We study each option:

• RevealLongTerm(i). If i is active in the session - meaning that it already does not use his long
term secret key πi.sk to communicate with the group of devices -, then nothing happens. Else
(i, s) is written as corrupted in B.

• RevealLongTerm(j). If there exists r, ts ≤ t such that (j, r, πrj .step) is non active and
matches (i, s, ts), (j, r) is written as corrupted in B. Otherwise, as j is active on all sessions
matching with (i, s), nothing happens.

• RevealState(i, s). (i, s) is written as corrupted in B.

• RevealState(j, r). If there exists ts ≤ t such that (j, r, πrj .step) matches (i, s, ts), (j, r) is
written as corrupted in B. If ts < t, then the MAC key has changed but as the secret key of j
is known to the adversary, he has access to the new MAC key also.

• OEnc(m, i, s). Let Game A.2.Enc be the same as Game A.1 but ensures A learns nothing
about the newly generated MAC key K ′m. That is we replace the ciphertext produced in
OEnc, c = EncAsym(m‖K ′m‖τ, πsi .PK), by c′ = EncAsym(rand, πsi .PK) and keep the
couple (c′,m‖K ′m‖τ) in the list L for later decryption. B is empty, IND-CCA security of the
encryption scheme ensures we can do this substitution properly with loss n|PK| where n|PK|
is the number of public keys in πsi .PK , equals to the number of devices in the group at this
step:

|Pr[SA.2.Enc]− Pr[SA.1] | ≤ n|PK| · IND-CCA
≤ nd · IND-CCA.

We are in a fresh state with secure MAC key Km.
8For ciphertexts accepted by the ODecJoin, as already explained, A cannot join a maliciously DecJoin due to the

security model.

104 Chapter 4 From Single to Multi-Device Instant Secure Messaging

• OEnc(m, j, r). If (j,r,πrj .step) matches (i, s, ts < t) then the message produced is not valid.
In fact, (j, r) matches on an older MAC key than the one (i, s) uses now. If (j,r,πrj .step)
matches (i, s, t), just process the same as for OEnc(m, i, s). Otherwise do nothing.

• OAdd&Join({k`}`∈[1,z′], i, s) with none of the k` corrupted. Let the nextGameA.2.Join be as
Game A.1 but ensuresA learns nothing about the newly generated MAC keyK ′m. That is we re-
place the ciphertext Cjoin = EncAsym(PK ′‖K ′m, pkk) produced in the Join subprocedure of
OAdd&Join by Cjoin = EncAsym(rand, pkk) and the cipher c̃ = EncAsym(K ′m‖τ, πsi .PK)
produced in Add of OAdd&Join by c̃′ = EncAsym(rand, πsi .PK). We keep both couples
(C ′join, PK ′‖K ′m, pkk) and (c̃′,K ′m‖τ, πsi .PK) in the list L for later decryption. None of the
k` is corrupted and they are the only receivers of the encryption Cjoin. B is empty which
means that the receivers of c̃ are not corrupted. IND-CCA security of the encryption scheme
ensures we can do both substitutions properly with loss where n|PK| is the number of public
keys in πsi .PK , equals to the number of devices in the group:

|Pr[SA.2.Join]− Pr[SA.1] | ≤ (n|PK| + z′) · IND-CCA
≤ nd · IND-CCA.

We are in a fresh state with secure MAC key Km.

• OAdd&Join({k`}`∈[1,z′], i, s) with one or more k` corrupted. For each device k` corrupted,
(k`, allsessions) is written as corrupted in B. Adversary obtains the new MAC key K ′m
through the joining process and we are in a non fresh step with unsafe MAC key.

• OAdd&Join({k`}`∈[1,z′], j, r). If (j,r,πrj .step) matches (i, s, ts < t) then the message produced
is not valid. In fact, (j, r) matches on an older MAC key than the one (i, s) uses now. If
(j,r,πrj .step) matches a session (i, s, t), just processes the same as for the previous case
OAdd&Join({k`}`∈[1,z′], i, s). Otherwise do nothing.

• ORevoke(pk, i, s). The construction veri�es that ∃k such that pk = pkk
9. B is empty, we

revoke k even if it was not written as corrupted - in reality this allows to prevent a further
corruption. Let Game A.2.Rev be as Game A.1 but ensuresA learns nothing about the newly
generated MAC key K ′m. Again, we replace the ciphertext c = EncAsym(K ′m‖τ, πsi .PK)
produced in ORevoke by c′ = EncAsym(rand, πsi .PK) and keep the couple (c′,K ′m‖τ) in
the list L for later decryption. B is empty, IND-CCA security of the encryption scheme
ensures we can do this substitution properly with loss n|PK| where n|PK| is the number of
public keys in πsi .PK , equals to the number of devices in the group:

|Pr[SA.2.Rev]− Pr[SA.1] | ≤ n|PK| · IND-CCA
≤ nd · IND-CCA.

We are in a fresh state with secure MAC key Km.

• ORevoke(pkk, j, r). If (j,r,πrj .step) matches (i, s, ts < t) then the message produced is not
valid. If (j,r,πrj .step) matches (i, s, t),just processes the same as ORevoke(pkk, i, s). Otherwise
do nothing.

9In the following, we assume that revoke queries are always on a valid long term key pkk .

4

4.3 A Ratcheted Dynamic Multicast as a new primitive. 105

Case B: unfresh departure. If B is not empty, there is at least an identi�er (device, session) written as
corrupted in B and step t is not suitable for the Challenge query.
As before, A can query for an OEnc, OAdd&Join, ORevoke, RevealState, and RevealLongTerm. As
for the case B of the initialization, A cannot join, revoke, or send encrypted message maliciously.
Again, this is due to natural restrictions in the security model.
Game B.0. Let Game 0 be the original game with this con�guration. We study each option:

• RevealLongTerm(i). If i is active in the session - meaning that it already does not use his long
term secret key π.sk to communicate with the group of devices -, then nothing happens. Else
(i, s) is written as corrupted in B.

• RevealLongTerm(j). If there exists r, ts ≤ t such that (j, r, πrj .step) is non active and
matches (i, s, ts), (j, r) is written as corrupted in B. Otherwise, as j is active on all sessions
matching with (i, s), nothing happens.

• RevealState(i, s). (i, s) is written as corrupted in B.

• RevealState(j, r). If there exists ts ≤ t such that (j, r, πrj .step) matches (i, s, ts), (j, r) is
written as corrupted in B. If ts < t, then the MAC key has changed but as the secret key of j
is know to adversary, he will access to the new MAC key also.

• OEnc(m, i, s). If (i, s) is the sole entry written as corrupted in B, then as for the case B
in step 0, we regain security. (i, s) is now not written as corrupted in B. Let in this case,
Game B.1.Enc be as Game 0 but ensures A learns nothing about the newly generated MAC
key K ′m. We replace the ciphertext c = EncAsym(m‖K ′m‖τ, πsi .PK) produced in OEnc
by c′ = EncAsym(rand, πsi .PK) and keep the couple (c′,m‖K ′m‖τ) in the list L for later
decryption. B is empty, IND-CCA-security of the encryption scheme ensures we can do this
substitution properly with loss n|PK| where n|PK| is the number of public key in πsi .PK ,
equals to the number of devices in the group:

|Pr[SB.1.Enc]− Pr[SB.0] | ≤ n|PK| · IND-CCA
≤ nd · IND-CCA.

We are in a fresh state with secure MAC key Km.
If B contains lines other than (i, s), security is still not back. (i, s) is erased from B if it
was previously written. Nothing more is expected since the new MAC key K ′m is accessible
through remained corrupted/revealed devices and we are in a non fresh state.

• OEnc(m, j, r). If (j,r,πrj .step) matches (i, s, ts < t) then the message produced is not valid, do
nothing. If (j,r,πrj .step) matches (i, s, t), just process the same as for OEnc(m, i, s). Otherwise
do nothing.

• OAdd&Join({k`}`∈[1,z′], i, s) with none of the {k`}`∈[1,z′] corrupted. We do nothing as the
adversary will obtain the new MAC key K ′m through the ciphertext Cadd. We remain in a
non fresh step with unsafe MAC key.

• OAdd&Join({k`}`∈[1,z′], i, s) with one or more of the {k`}`∈[1,z′] corrupted. For all corrupted
k` we write the newly generated (k`, r`) as corrupted in B as soon as DecJoin(k`, cjoin) is
queried on the returned Cjoin message and do nothing else as the adversary is able to obtain
the new MAC key K ′m. We remain in a non fresh step with unsafe MAC key.

106 Chapter 4 From Single to Multi-Device Instant Secure Messaging

• OAdd&Join({k`}`∈[1,z′], j, r). If (j,r,πrj .step) matches (i, s, ts < t) then the message produced
is not valid, do nothing. If (j,r,πrj .step) matches (i, s, t), just process the same as for the
previous case OAdd&Join({k`}`∈[1,z′], i, s). Otherwise do nothing.

• ORevoke(pkk, i, s). For all o, to, ts ≤ t such that (k, o) is written as corrupted in B and
(k, o, to) is matching (i, s, ts), we erase (k, o) from B. If (k, o) was the sole entry written
as corrupted in B, then as for the case B in step 0, we regain security. Let in this case,
Game B.1.Rev be as Game 0 but ensures A learns nothing about the newly generated MAC
key K ′m. We replace the ciphertext c = EncAsym(K ′m‖τ, πsi .PK) produced in ORevoke
by c′ = EncAsym(rand, πsi .PK) and keep the couple (c′,K ′m‖τ) in the list L for later
decryption. B is now empty, IND-CCA security of the encryption scheme ensures we can
do this substitution properly with loss n|PK| where n|PK| is the number of public keys in
πsi .PK , equals to the number of devices in the group:

|Pr[SB.1.Rev]− Pr[SB.0] | ≤ nd · IND-CCA.

We are in a fresh state with secure MAC key Km. If B contains other lines not concerning
(k, o), security is still not back. Nothing more is attended since the new MAC key K ′m is
accessible through remained corrupted/revealed devices and we are in a non fresh state.

• ORevoke(pkk, j, r). If (j,r,πrj .step) matches (i, s, ts < t) then do nothing. If (j,r,πrj .step)
matches (i, s, t), just process the same as for ORevoke(pkk, i, s). Otherwise do nothing.

Case of non initial sessions

Through restrictions, a session can only be created by the OInit. This means that every session is
chained with an initial session. The only modi�cation in our game hops is that we now consider
chained session instead of solely matching sessions. (For instance in a case OEnc(m, j, r), replace
“If (j,r,πrj .step) matches (i, s, ts < t) then the message produced is not valid, do nothing" by “If
(j,r,πrj .step) is chained with (i, s, t) then the message produced is not valid, do nothing.") The above
game hops are still valid because one can go from the initial session to the one of our interest
following a chain of sessions. As we consider actions on chained sessions and as those chains are
taken into account in our restrictions, the same logic applies.

Consider the event E: after q queries any session state is either corrupted or a fresh state with no
adversary having interfered. Suppose, nd is a �xed value that corresponds to the maximum number
of devices the adversary can play with, we obtain:

Pr[E] ≤ q ·mi-SUF + q · nd · IND-CCA.

Finally when adv queries a Challenge, if the step is not fresh, challenge is not valid. If the step
is fresh with secret keys and no adversary having in�ltrated the group, IND-CCA security of the
encryption scheme used nd parallel times gives:

AdvRDM-IND
RDM,nd,q,A(λ) =

∣∣∣∣Pr
[
ExpRDM-IND

RDM,nd,q,A(n)
]
− 1

2

∣∣∣∣
≤ Pr[E] + nd · IND-CCA
≤ q ·mi-SUF + (q + 1) · nd · IND-CCA.

4

4.4 A Multi-Device Messaging protocol 107

4.4 A Multi-Device Messaging protocol

In this section, we focus on our multi-device version of the Signal protocol and on its security
analysis. We start with a description of the protocol, which we de�ne as a Multi-Device Instant
Messaging protocol (MDIM), and the associated security model, before giving a construction and a
proof of the security of our protocol relatively to the model. The security model we consider is a
direct combination of [CCD+17] and of our RDM model described in subsection 4.3.2. As the model
proposed by Cohn-Gordon et al. is tailored for Signal (through its freshness predicate,) so is ours.
Since several other models have been proposed for RKE, each with its pros and cons, we do not
pretend to present a universal model for multi device RKE. However, as our model construction is
modular, we expect it to adapt well to other RKE models.

4.4.1 A formal MDIM

Before going into the model details, we �rst need to give a high level description of the protocol
concerned by the model. A MDIM is a state full protocol between two users, an initiator Pi
and a responder Pr that both possess many devices din,1, . . . , din,nin (respectively dr,1, . . . , dr,nr).
Each participant possesses a general key package composed of a long-term user key and possibly
ephemeral keys. This user key package is identi�ed as the user’s prekey bundle (sprekey, pprekey).
Each device has its own device long term key dsk. Each device du,i maintains a state πu,i and each
session s executed by a device du,i maintains a session state πsu,i. The device state aggregates all
non session-speci�c elements:

• dID, the device identi�er.

• uID, the user identi�er.

• dsk, the device’s secret key.

• sprekeys, the user’s secret keys. This comprises user long term key usk and the ephemeral
keying material ephsk needed for initialization (correspondingly, pprekey contains both upk
and ephpk).

• Devices, the public keys of the owner other devices.

• Sessions, a list of all sessions the device i is engaged in.

A session state πsu,i gathers session speci�c information. The session state has two facets, one that
registers the data needed for the conversation with the peer:

• role, the role of the user u: initiator or receiver,

• peer, the intended peer user of this session,

• rand, the current ratchet secret,

• randpeer , the current public ratchet value of the intended peer,

• sessionkey, the current messaging session key,

• state, all other secret information needed,

108 Chapter 4 From Single to Multi-Device Instant Secure Messaging

and another that maintains the data shared with other devices:

• devrand, the randomness,

• PK a public key shared with the other devices.

The choice of this description is mainly due to our will to obtain a protocol that can be built as the
composition of two protocols, one between the peers, and another between the devices. However,
one can imagine a protocol where only one randomness is needed for instance. A session state
πsu,i has access to general information of the device state πu,i. Conversely, a device state πu,i gives
implicit access to every session state πsu,i.

Protocol description. A MDIM is de�ned as the following tuple of algorithms:
· UserKeyGen(1λ)→ pprekeys, sprekeys. Generates two lists of prekeys. These lists gather

respectively public and private user keys, and optional extra keying material. We call these
keys the “prekey bundle”.
· DeviceSetUp(1λ, (u, i)) → πu,i. Generates the device key and records them in a new state
πu,i.
· Register(uID, πu,i)→ πu,i. Creates the prekey bundle and uID, and registers them together

with the device key on the server. Completes the device state πu,i with the prekey bundle and
uID.
· InitSession(role,pprekeysv ,πu,i, s)→ Cinit, cout, πsu,i. On input a role, the pprekeysv of the

intended peer v, a device state πu,i, and a session identi�er s, returns a (eventually empty)
ciphertext Cinit for u’s other devices, a (possibly empty) ciphertext cout for the intended peer,
and a session state πsu,i.
· ReceiveInitSession(Cinit, πu,j , r)→ πru,j . On input a ciphertext Cinit, a device state πu,j , and

a session identi�er r, outputs a session state πru,j .
· Send(m,πsu,i)→ Cin, cout, π

s
u,i. On input a plaintext m and a session state πsu,i, returns one

ciphertext Cin for u’s other devices, a second ciphertext cout for the intended peer πsu,i.peer,
and an updated state πsu,i.
· ReceiveIn(Cin, πru,j)→ m,πru,j . On input a ciphertext Cin and a session state πru,j , outputs a

(eventually empty) message m and an updated session state πru,j .
· ReceiveOut(cout, πpv,`)→ m,πpv,`. On input a ciphertext cout and a session state πpv,`, outputs

a (potentially empty) message m and an updated session state πpv,`.
· Add&Join(dpkj , πu,i)→{Cjoin,s, Cadd,s, cout,s}s∈S , πu,i

with S = πu,i.Sessions. On input a device public key dpkj and a device state πu,i, returns,
for each session s the device i is engaged in, one ciphertext Cjoin,s for the new device j, one
ciphertext Cadd,s for all the other devices, a ciphertext cout,s for the intended peer, and an
updated state πu,i (comprising updated session states πsu,i for each s).

· DecJoin
(
{Cjoin,r }r∈[1,R] , πu,j

)
→ πu,j . On input R ciphertexts Cjoin,r and a device state

πu,j , returns an updated device state πu,j (comprising R new session states πru,j).

· DecAdd
(
{Cadd,o}o∈[1,O] , πu,k

)
→ πu,k. On input O ciphertexts Cadd,o and a device state

πu,k , returns an updated device state πu,k (comprising updated session states πou,k for each o).

4

4.4 A Multi-Device Messaging protocol 109

· Revoke(dpk, πu,i)→{Crev,s, cout,s}s∈πu,i.Sessions, pprekeys, πu,i. On input a device public
key dpk and a user state πu,i, returns, for each session s the device i is engaged in, a ciphertext
crev,s for all the other devices of user u and a ciphertext cout,s for the intended peer, and a
new user state πu,i (comprising updated session states πsu,i for each s).

· DecRevoke
(
{Crev,o}o∈[1,O] , πu,k

)
→ πu,k . On input O ciphertexts Crev,o and a device state

πu,k, returns an updated device state πu,k (comprising updated sessions states πou,k for each
o).

Once again, this description is not as high-level as it could be. All the receiving algorithms could be
gathered in a general Receive algorithm for instance, in order to obtain a less construction-oriented
description of the protocol. We adopt the detailed position on purpose. Firstly, it facilitates the
exposure of the security model, in particular the freshness conditions. Secondly, as explained in the
section introduction, we do not aim at providing a universal model, but more a model that considers
the composition of a RDM with a RKE. Gathering the appropriate algorithms in a single Receive
and writing the freshness conditions aside would give a more general (for a non composition based
protocol for instance) but less clear presentation.

4.4.2 A composed security model.

Now that we have a formal description of the protocol, we detail an associated security model.
As before, this model shall formalize the security properties that one can expect from any MDIM
protocol.

The environment. Our model considers concurrent execution of the protocols. Hence we have
a set of users {P1, . . . ,PnU } and for each user Pu, {du,1,. . . ,du,nd} is the set of his devices. Each
device du,i is modelled by an oracle πu,i and each session s executed by a device du,i is modelled by
an oracle πsu,i. Device oracles maintain device states and session oracles maintain session states as
de�ned in subsection 4.4.1. In the following, we assimilate device or session oracles and their state.

Protocol steps. As in the RDMmodel described in subsection 4.3.2, we consider the steps of the
protocol. Each Send, Add, Revoke, or corresponding Receive or Dec algorithm brings the session to
a new step and corresponding oracles will increment the step counter.

If no change occurs, values are transmitted from one step to another (e.g. if state does not change
at step ts, then πsu,i[ts + 1].state = πsu,i[ts].state). We refer to session s run by πu,i at step ts as
(u, i, s, ts).

Partnered and matching sessions. In order to de�ne the matching between sessions run by
di�erent users, we �rst need to consider the relationship between devices belonging to a single user.
We introduce the notion of partnered sessions. For this de�nition, we still consider a matching based
on the transcript but we separate the conversation between the devices (written in a session identi�er
sid1) from the messages sent and received from a peer (gathered in sid2). Partnered sessions
correspond to devices of a single user that are online at the same moment. We de�ne the session
identi�er sid1 as the concatenation of ciphertexts Cin sent by Send(·, πsu,i), Add&Join, or Revoke
or received through ReceiveIn(·, πs

u,i),DecAdd(·, πsu,i), DecJoin(·, πsu,i), or DecRevoke(·, πsu,i). We
write πsu,i[ts].sid1 = C1

u,i[0]‖C1
u,i[1]‖ . . . ‖C1

u,i[ts]. Hence we can write the de�nition of partnering
as follow:

110 Chapter 4 From Single to Multi-Device Instant Secure Messaging

De�nition 4.5 (Partnered sessions at some step.). Two sessions (u, i, s, ts) and (u, j, r, tr) are part-
nered if:

· πsu,i.role = πru,j .role,

· πsu,i.peer = πru,j .peer,

· πsu,i.uID = πru,j .uID,

· there exists sid′ subset of πsu,i[ts].sid1 such that πsu,i[ts].sid1=̃sid′‖πru,j [tr].sid1 (or reversely
for πsu,i and π

r
u,j if j was there for longer than i), where =̃ is de�ned as follow:

πsu,i[ts].sid1 =̃ sid′‖πru,j [tr].sid1 if, ∀t ∈ [0; tr]:

· either C1
u,i[|ts − tr|+ t] = C1

u,j [t],

· either C1
u,k[|ts − tr|+ t] is of the form (Cadd, Cjoin) or C1

add and C
1
u,`[t] = Cadd, k, ` ∈

{i, j}, k 6= `,

· or t = 0 and C1
u,i[|ts − tr|] is of the form (Cadd, Cjoin) or Cadd and C1

u,j [0] = Cjoin with
(Cadd, Cjoin) having been produced by the same Add&Join call.

We de�ne chains of partnered sessions, as for the RDM, to connect sessions that are active on
di�erent devices that were present at di�erent steps. Those structures are necessary to link any
session to the initiation step when the authentication is performed.

De�nition 4.6 (Chained sessions.). A session (u, j, r, tr) is chained with (u, i, s, ts) if tr is maximal
and there exists n sessions (u, iα, sα), and n couples (t′α, tα), t

′
α ≤ tα, α ∈ [0, n− 1] such that:

· (u, j, r, tr) and (u, i0, s0, t
′
0) are partnered,

· ∀α ∈ [0, n− 2], (u, iα, sα, tα) and (u, iα+1, sα+1, t
′
α+1) are partnered,

· (u, in−1, sn−1, tn−1) and (i, s, ts) are partnered.

{(u, iα, sα, tα)}α∈[0,n−1] is called a chain of sessions between (u, j, r, tr) and (u, i, s, ts).

We consider matching sessions relatively to the peer’s conversation. We de�ne πsu,i.sid2 as the
concatenation of ciphertexts cout received by ReceiveOut(πs

u,i, ·) or produced either by πsu,i or by
any partnered session. The matching is de�ned between two sessions (u, i, s) and (v, `, o). One
session (u, i, s) can match several other sessions (v, `z, oz). Our de�nition is recursive: a matching
is well-de�ned if one can trace the conversations from the very beginning on u and v’s side. This is
done by calling chains of sessions, and each chain element should match an element in the other
chain.

De�nition 4.7 (Matching sessions at some step.). Two sessions (u, i, s, ts) and (v, `, p, tp), ts ≥ tp
are matching if:

• πsu,i.role 6= πpv,`.role,

• πsu,i.peer = πpv,`.user and π
s
u,i.user = πpv,`.peer,

• (u, i, s, ts) and (v, `, p, tp) are chainedwith respective initial sessions (u, i0, s0, ts0), (v, l0, p0, tp0),
through respective chains {(u, iα, sα, tα)}α∈[1,n], {(v, `β, pβ, tβ)}β∈[1,m],

4

4.4 A Multi-Device Messaging protocol 111

• ∃ sid subset of πsu,i[ts].sid2 such that πsu,i[ts].sid2 = sid‖πpv,`[tp].sid2,

• if (u, i, s, ts) is an initial session, then ∀ β ∈ [0,m], ∃ t̃β and sidβ such that πsu,i[t̃β].sid2 =
sidβ‖π

pβ
v,`β

[tβ].sid2,

• else (u, i, s, ts) and (v, `m, pm, tm) are matching.

We can estimate t̃β = t̃β−1 + tβ − t′β , t′β de�ned as in 4.6.

A multi device messaging solution shall ensure that any device of Alice can receive a message
sent by any device of Bob. As we consider the key exchange point of view of Signal, this means that
any two matching sessions (one on Alice’s side, the other on Bob’s side) shall share a same session
key if they are matching. Hence we de�ne correctness of a MDIM as follow:

De�nition 4.8 (Correctness of a MDIM). A MDIM protocol is said to be correct if, for all matching
sessions (u, i, s, ts) and (v, j, r, tr), πsu,i[ts].sessionKey = πrv,j [tr].sessionKey.

The adversary’s power. As we expect our protocol to provide at least as much security as the
one-to-one Signal protocol, the adversary shall have - at least - as much power. Hence, in addition to
the expected oracles that enables him to run the protocol, we provide A with oracles RevealUserLT
and RevealEphemeralKey that reveal the user long term key (respectively the ephemeral keying
material) of the prekey bundle, RevealState, RevealRandom, and RevealSessionKey. To ensure that
the presence of multiple devices do not impoverish the security, he is also given oracles to access
devices speci�c data: RevealDevLT, RevealDevState.

MDIM indistinguishability. The MDIM-IND complete experiment is described in Figure 4.9.
We complete a session state πsu,i with �ags linked to di�erent oracles. All �ags are initialized with
false. Flag active, is set to true as soon as OSend(πs

u,i) is called. In a general way, revX is set
to true whenever revealX is invoked on this session. A �ag value is transmitted from one step to
another.

We detail below the di�erent registers and counters we need to de�ne our freshness.

• The register V s
u,i, as in RDM model in subsection 4.3.2, is there to prevent A from interfering

if a device randomness is corrupted.

• The counter Esu,i records the step of the last Send.

• The counter F su,i records the step when the last change of randomness (what we call ratchet)
occurred.

• The counter Gsu,i records the step when the last change of state occurred. Esu,i, F su,i and Gsu,i
are useful to turn all necessary �ags to true when Reveal queries occur. If the Reveal query
happens, then we turn all �ags from Esu,i (resp. F su,i, Gsu,i) to true. Some actions as Send or
Add&Join or Revoke may turn them back to false. This corresponds to the healing property.
Remark that in OSend and OReceiveIn, we identify ratchets by comparing random values. In
OReceiveOut, we identify on state changes by comparing state values.

• The list Asu,i records all steps when an addition of a new device occurs. We need to keep
track of these because information is sent to the newcomer. This list is emptied with every
revocation.

112 Chapter 4 From Single to Multi-Device Instant Secure Messaging

For readability reasons we de�ne:
ResetRand− State− Session(u, i, s, t)=
πsu,i[T].revRand← false and πsu,i[T].revState← false and πsu,i[T].revSessionKey← false.

ResetState− Session(u, i, s, t)=
πsu,i[T].revState← false and πsu,i[T].revSessionKey← false.

NoDevReveal(u, i, s, t)=
¬[πsu,i[t].revDevState ∨(πu,i.revDevLT ∧ ¬πsu,i[t].active)] and
∀(u, j, r, tr) chained with (u, i, s, t)¬[πru,j [tr].revDevState∨(πu,j .revDevLT∧¬πru,j [tr].active)].

Freshness conditions. Freshness conditions are obtained by considering the RDM freshness and
upgrading the original Signal freshness in the following way: each time an element of a session was
concerned in the original freshness, the same element has now to be considered for this session and
all the partnered and chained sessions. More precisely, we try to stipulate clearly all the ways that
an element can leak to the adversary: directly from the targeted device or a partnering or matching
one, or through the communication between devices. For the latter, data of a session (u, i, s) at step
t can leak if a device (u, i)’s randomness (or device keys if it has not been active in the ratcheting
process yet) is compromised, or if the device randomness of a partnered session is compromised
or if there exists a session chained with (u, i, s) whose device randomness is compromised (if it is
chained, it means it will not perform any action until it matches (u, i, s, t) - if not revoked - it just
has not received all of its messages). We de�ne:
DeviceLeak(u, i, s, ts) =

· πsu,i[ts].revDevState

· or (πu,i.revDevLT ∧ ¬πsu,i[ts].active)

· or ∃ (u, j, r, tr) partnering (u, i, s, ts) such that:
· πru,j [tr].revDevState

· or (πu,j .revDevLT ∧ ¬πru,j [tr].active)

· or ∃ (u, j, r, tr) chained with (u, i, s, ts) such that:
· πu,j .pk ∈ πsu,i[ts].devices and

∗ πru,j [tr].revDevState

∗ or (πu,j .revDevLT ∧ ¬πru,j [tr].active).

Initial freshness. As in the original model for Signal, freshness of the initial non interactive key
exchange (NIKE) is treated separately, because it is proper to X3DH. (We consider here freshness
conditions designed for X3DH i.e. without the optional one time prekeys. Taking into account the
X4DH option would add an oracle on the optional Signal keys and corresponding restrictions.) One
can imagine adopting another NIKE and designing a new ad hoc initiation freshness. A major impact
of the multi device on this initiation freshness is due to the sharing of the user keys between the
devices. The security of the session initiation is now related to the security of the communication be-
tween the devices. And the revocations will de�ne intervals of steps within which the security of an
initiation shall be considered. Let I be an interval of protocol steps. For readability reasons we de�ne:

DevLeakPrekeys(u, i, s, I) = there exists a step t ∈ Asu,i ∩ I such that DeviceLeak(u, i, s, t).

4

4.4 A Multi-Device Messaging protocol 113

CorruptUser(u, I) = u.revUserLT within the period I or there exists a session (u, i, s) such that
DevLeakPrekeys(u, i, s, I).

RevealEph(u, I) = u.revEph within the period I or there exists a session (u, i, s) such that
DevLeakPrekeys(u, i, s, I).

For a session (u, i, s), let Iu identify the interval that starts with the last revocation on u’s side
before (u, i, s) is initialized and ends with the �rst revocation on u’s side after (u, i, s) is initialized. If
no revocation occurs after initialization, Iu ends with the experiment. If no revocation had occurred
before the initialization, Iu starts with the experiment. The same way, de�ne Iū as the interval that
starts with the last revocation on πsu,i.peer’s side before (u, i, s) is initialized and ends with the �rst
revocation on πsu,i.peer’s side after (u, i, s) is initialized.

De�nition 4.9 (Initiation freshness.). Consider a session (u, i, s). A session πsu,i such that πsu,i.role
= initiator has a fresh initiation if:

· ¬CorruptUser(u, Iu) ∨ ¬RevealEph(πsu,i.peer, Iū) or

· ¬πsu,i[0].revRand ∨ ¬RevealEph(πsu,i.peer, Iū) or

· ¬πsu,i[0].revRand ∨ ¬CorruptUser(πsu,i.peer, Iū).

A session πsu,i such that πsu,i.role = responder has a fresh initiation if:

· ¬CorruptUser(πsu,i.peer, Iū) ∨ ¬RevealEph(u, Iu) or

· ¬πov,k[0].revRand for all (v, k, o, 0) matching (u, i, s, 0) if it exists ∨ ¬RevealEph(u, Iu) or

· ¬πov,k[0].revRand for all (v, k, o, 0) matching (u, i, s, 0) if it exists ∨ ¬CorruptUser(u, Iu).

Freshness of the following steps. Here we consider the same restrictions as in [CCD+17] but we
extend them relatively to partnered sessions, multiple matching sessions and device leakage for data
that are transmitted between the devices (randomness and state data when a device is added).

De�nition 4.10 (Freshness at some step.). A session (u, i, s, t), t > 0, is fresh if:

· ¬(πu,i.revDevLT ∧ ¬πsu,i[t].active) and

· ¬RevealSessionKey(u,i,s,t) and

· ¬RevealState(u,i,s,t− 1) or ¬RevealRandom(u, i, s, t).

where RevealSessionKey(u, i, s, t) stands for:

· πsu,i[t].revSessionKey

· or ∃ (u,j,r,tr) partnered with (u,i,s,t) such that πru,j [tr].revSessionKey

· or ∃ (v,`,o,to) matching (u,i,s,t) such that πov,`[to].revSessionKey.

RevealState(u, i, s, t) stands for:

· πsu,i[t].revState

· or ∃ (u,j,r,tr) partnered with (u,i,s,t) such that πru,j [tr].revState

· or ∃ (v,`,o,to) matching (u,i,s,t) such that πov,`[to].revState

114 Chapter 4 From Single to Multi-Device Instant Secure Messaging

ExpMDIM-IND
A,MDIM,np,nd(λ)

1 : b←$ {0, 1}
2 : chal← ⊥, initialdata← ⊥
3 : for u = 1, . . . , np do
4 : Pu ← ⊥
5 : for i = 1, . . . , nd do
6 : su,i ← 0
7 : dpku,i, πu,i ← DeviceSetup(1λ, (u, i))
8 : πu,i, pubprekeysu ← Register(idu, idi)
9 : initialdata+ = u, pubprekeysu, dpku,i

10 : b′ ← AOracles,Challenge(initialdata)
11 : return chal 6= ⊥ ∧ Fresh(chal) ∧ b = b′

OInitSession(role, u, i, v)

1 : su,i ← su,i + 1, s← su,i

2 : Cinit, cout, π
s
u,i[0]

← InitSession(role, πv.pubprekeys, πu,i, s)
3 : Pu ← Pu ∪ Cinit
4 : πu,i.Sessions← s, πsu,i.step← 0
5 : V su,i ← ∅
6 : Esu,i ← 0, F su,i ← 0,
7 : Gsu,i ← 0, Asu,i ←{0}
8 : return cout, Cinit

OReceiveInitSession(Cinit, u, j)

1 : su,j ← su,j + 1, r ← su,j

2 : πru,j ← ReceiveInitSession(Cinit, πu,j , r)
3 : πu,j .sessions← r, πru,j .step← 0
4 : V ru,j ← ∅, Aru,j ←{0}
5 : Eru,j ← 0, F ru,j ← 0, Gru,j ← 0
6 : return

OSend(m, u, i, s)

1 : t← πsu,i.step

2 : Cin, cout, π
s
u,i[t+ 1]← Send(m,πsu,i[t])

3 : V su,i ← V su,i ∪ Cin, E
s
u,i ← t+ 1

4 : for T ≥ t+ 1 do
5 : πsu,i[T].revDevRand← false

6 : if πsu,i[t].active = false then
7 : for T ≥ t+ 1 do
8 : πsu,i[T].active← true

9 : if πsu,i[t+ 1].rand 6= πsu,i[t].rand then
10 : F su,i ← t+ 1, Gsu,i ← t+ 1
11 : for T ≥ t+ 1 do
12 : ResetRand-State-Session(u, i, s, T)
13 : πsu,i.step← t+ 1
14 : return Cin, cout

OReceiveIn(C , u, j, r)

1 : t← πru,j .step

2 : Req. NoDevReveal(u, j, r, t)
∨ C ∈ V ru,j
∨ ∃(u, k, o, to) partnered with (u, j, r, t)
such that C ∈ V ou,k

3 : m,πru,j [t+ 1]← ReceiveIn(c, πru,j [t])
4 : if πru,j [t+ 1].rand 6= πru,j [t].rand then
5 : F ru,j ← t+ 1, Gru,j ← t+ 1
6 : for T ≥ t+ 1 do
7 : ResetRand-State-Session(u, j, r, T)
8 : πru,j .step← t+ 1
9 : return m

OReceiveOut(c, v, `, p)

1 : t← πpv,`.step

2 : m,πpv,`[t+ 1]← ReceiveOut(c, πpv,`[t])
3 : if πpv,`[t+ 1].state 6= πpv,`.state then
4 : Gpv,` ← t+ 1
5 : for T ≥ t+ 1 do
6 : ResetState-Session(v, j, r, T)
7 : πpv,`.step← t+ 1
8 : return m

OAdd&Join(j, u, i)

1 : {Cjoin,s, Cadd,s, cout,s}s∈πu,i.sessions
, πu,i

← Add&Join(pkj , πu,i)
2 : for s ∈ πu,i.Sessions do
3 : ts ← πsu,i.step

4 : Pu ← Pu ∪ {Cjoin,s}
5 : V su,i ← V su,i ∪ {Cadd,s}
6 : F su,i ← ts + 1, Gsu,i ← ts + 1
7 : Asu,i ← Asu,i ∪ {ts + 1}
8 : πsu,i.step← ts + 1
9 : for T ≥ ts + 1 do
10 : ResetRand-State-Session(u, i, s, T)
11 : return {Cjoin,s, Cadd,s, cout,s}s∈πu,i.Sessions

ODecJoin({Cr }r∈[1,R], u, j)

1 : for 1 ≤ r ≤ R do Req. Cr ∈ Pu
2 : πu,j ← DecJoin({Cr }r∈[1,R] , πu,j , r)

3 : su,j ← R

4 : for 1 ≤ r ≤ R do
5 : Eru,j ← 0, F ru,j ← 0, Gru,j ← 0
6 : V ru,j ← ⊥, Aru,j ← {0}, πru,j .step← 0
7 : return

ODecAdd({Co}o∈[1,O], u, k)

1 : Req. O = #πu,k.Sessions
2 : for 1 ≤ o ≤ O do
3 : to ← πou,k.step

4 : Req. NoDevReveal(u, k, o, to)
∨ Co ∈ V ou,k
∨ ∃(u, i, s, ts) partnered with (u, k, o, to)
such that Co ∈ V su,i

5 : πu,k ← DecAdd({Co}o∈[1,O] , πu,k)

6 : for 1 ≤ o ≤ O do
7 : for T ≥ to + 1 do
8 : ResetRand-State-Session(u, k, o, T)
9 : F ou,k ← to + 1, Gou,k ← to + 1
10 : Aou,k ← Aou,k ∪{to}
11 : πou,k.step← to + 1
12 : return

ORevoke(dpk, u, i)

1 : {Crev,s, cout,s}s∈πu,i.Sessions
, πu,i,

pubprekeys← Revoke(dpk, πu,i)
2 : for s ∈ πu,i.Sessions do
3 : ts ← πsu,i.step

4 : V su,i ← V su,i ∪ {Crev,s}
5 : F su,i ← ts + 1, Gsu,i ← ts + 1, Asu,i ← ∅
6 : πsu,i.step← ts + 1
7 : for T ≥ ts + 1 do

ResetRand-State-Session(u, i, s, T)
8 : u.corruptUser← false

9 : u.corruptOpt← false

10 : return {Crev,s, cout,s}s∈πu,i.Sessions
, pubprekeys

ODecRevoke({Co}o∈[1,O], u, k)

1 : Req. O = #πu,k.Sessions
2 : for 1 ≤ o ≤ O do
3 : to ← πou,k.step

4 : Req. NoDevReveal(u, k, o, to)
∨ Co ∈ V ou,k
∨ ∃(u, i, s, ts) partnered with (u, k, o, to)
such that Co ∈ V su,i

5 : πu,k ← DecRevoke({Co}o∈[1,O] , πu,k)

6 : for 1 ≤ o ≤ O do
7 : for T ≥ to + 1 do
8 : ResetRand-State-Session(u, k, o, T)
9 : F ou,k ← to + 1, Aou,k ← ∅
10 : πou,k.step← to + 1
11 : return

RevealDevState(u, i, s)

1 : t← πsu,i.step

2 : for T ≥ Esu,i do
3 : πsu,i[T].revDevState← true

4 : if ¬πsu,i[t].active then
5 : πu,i.revDevLT← true

6 : return πsu,i[t].devrand

RevealSessionKey(u, i, s)

1 : t← πsu,i.step

2 : for T ≥ t do
3 : πsu,i[T].revSessionKey← true

4 : return πsu,i[t].sessionkey

RevealState(u, i, s)

1 : t← πsu,i.step

2 : for T ≥ Gsu,i do
3 : πsu,i[T].revState← true

4 : return πsu,i[t].state

RevealRandom(u, i, s)

1 : for T ≥ F su,i do
2 : πsu,i[T].revRand← true

3 : return πsu,i[t].Random

RevealDevLT(u, i)

1 : πu,i.revDevLT← true
2 : return πu,i.dsku,i

RevealUserLT(u)

1 : u.revUserLT← true
2 : return πu.usku

RevealEphemeral(u)

1 : u.revEph← true

2 : return πu.mtsku

Challenge(u, i, s, t)

1 : chal← (u, i, s, t)
2 : if b = 0 k ← πsu,i[t].sessionkey
3 : else k←$K
4 : return k

Figure 4.9 – The Multi-Device Ratcheted Key Exchange Model.

4

4.4 A Multi-Device Messaging protocol 115

ExpMDIM-IND
A,MDIM,np,nd(λ)

1 : b←$ {0, 1}
2 : chal← ⊥, initialdata← ⊥
3 : for u = 1, . . . , np do
4 : Pu ← ⊥
5 : for i = 1, . . . , nd do
6 : su,i ← 0
7 : dpku,i, πu,i ← DeviceSetup(1λ, (u, i))
8 : πu,i, pubprekeysu ← Register(idu, idi)
9 : initialdata+ = u, pubprekeysu, dpku,i

10 : b′ ← AOracles,Challenge(initialdata)
11 : return chal 6= ⊥ ∧ Fresh(chal) ∧ b = b′

OInitSession(role, u, i, v)

1 : su,i ← su,i + 1, s← su,i

2 : Cinit, cout, π
s
u,i[0]

← InitSession(role, πv.pubprekeys, πu,i, s)
3 : Pu ← Pu ∪ Cinit
4 : πu,i.Sessions← s, πsu,i.step← 0
5 : V su,i ← ∅
6 : Esu,i ← 0, F su,i ← 0,
7 : Gsu,i ← 0, Asu,i ←{0}
8 : return cout, Cinit

OReceiveInitSession(Cinit, u, j)

1 : su,j ← su,j + 1, r ← su,j

2 : πru,j ← ReceiveInitSession(Cinit, πu,j , r)
3 : πu,j .sessions← r, πru,j .step← 0
4 : V ru,j ← ∅, Aru,j ←{0}
5 : Eru,j ← 0, F ru,j ← 0, Gru,j ← 0
6 : return

OSend(m, u, i, s)

1 : t← πsu,i.step

2 : Cin, cout, π
s
u,i[t+ 1]← Send(m,πsu,i[t])

3 : V su,i ← V su,i ∪ Cin, E
s
u,i ← t+ 1

4 : for T ≥ t+ 1 do
5 : πsu,i[T].revDevRand← false

6 : if πsu,i[t].active = false then
7 : for T ≥ t+ 1 do
8 : πsu,i[T].active← true

9 : if πsu,i[t+ 1].rand 6= πsu,i[t].rand then
10 : F su,i ← t+ 1, Gsu,i ← t+ 1
11 : for T ≥ t+ 1 do
12 : ResetRand-State-Session(u, i, s, T)
13 : πsu,i.step← t+ 1
14 : return Cin, cout

OReceiveIn(C , u, j, r)

1 : t← πru,j .step

2 : Req. NoDevReveal(u, j, r, t)
∨ C ∈ V ru,j
∨ ∃(u, k, o, to) partnered with (u, j, r, t)
such that C ∈ V ou,k

3 : m,πru,j [t+ 1]← ReceiveIn(c, πru,j [t])
4 : if πru,j [t+ 1].rand 6= πru,j [t].rand then
5 : F ru,j ← t+ 1, Gru,j ← t+ 1
6 : for T ≥ t+ 1 do
7 : ResetRand-State-Session(u, j, r, T)
8 : πru,j .step← t+ 1
9 : return m

OReceiveOut(c, v, `, p)

1 : t← πpv,`.step

2 : m,πpv,`[t+ 1]← ReceiveOut(c, πpv,`[t])
3 : if πpv,`[t+ 1].state 6= πpv,`.state then
4 : Gpv,` ← t+ 1
5 : for T ≥ t+ 1 do
6 : ResetState-Session(v, j, r, T)
7 : πpv,`.step← t+ 1
8 : return m

OAdd&Join(j, u, i)

1 : {Cjoin,s, Cadd,s, cout,s}s∈πu,i.sessions
, πu,i

← Add&Join(pkj , πu,i)
2 : for s ∈ πu,i.Sessions do
3 : ts ← πsu,i.step

4 : Pu ← Pu ∪ {Cjoin,s}
5 : V su,i ← V su,i ∪ {Cadd,s}
6 : F su,i ← ts + 1, Gsu,i ← ts + 1
7 : Asu,i ← Asu,i ∪ {ts + 1}
8 : πsu,i.step← ts + 1
9 : for T ≥ ts + 1 do
10 : ResetRand-State-Session(u, i, s, T)
11 : return {Cjoin,s, Cadd,s, cout,s}s∈πu,i.Sessions

ODecJoin({Cr }r∈[1,R], u, j)

1 : for 1 ≤ r ≤ R do Req. Cr ∈ Pu
2 : πu,j ← DecJoin({Cr }r∈[1,R] , πu,j , r)

3 : su,j ← R

4 : for 1 ≤ r ≤ R do
5 : Eru,j ← 0, F ru,j ← 0, Gru,j ← 0
6 : V ru,j ← ⊥, Aru,j ← {0}, πru,j .step← 0
7 : return

ODecAdd({Co}o∈[1,O], u, k)

1 : Req. O = #πu,k.Sessions
2 : for 1 ≤ o ≤ O do
3 : to ← πou,k.step

4 : Req. NoDevReveal(u, k, o, to)
∨ Co ∈ V ou,k
∨ ∃(u, i, s, ts) partnered with (u, k, o, to)
such that Co ∈ V su,i

5 : πu,k ← DecAdd({Co}o∈[1,O] , πu,k)

6 : for 1 ≤ o ≤ O do
7 : for T ≥ to + 1 do
8 : ResetRand-State-Session(u, k, o, T)
9 : F ou,k ← to + 1, Gou,k ← to + 1
10 : Aou,k ← Aou,k ∪{to}
11 : πou,k.step← to + 1
12 : return

ORevoke(dpk, u, i)

1 : {Crev,s, cout,s}s∈πu,i.Sessions
, πu,i,

pubprekeys← Revoke(dpk, πu,i)
2 : for s ∈ πu,i.Sessions do
3 : ts ← πsu,i.step

4 : V su,i ← V su,i ∪ {Crev,s}
5 : F su,i ← ts + 1, Gsu,i ← ts + 1, Asu,i ← ∅
6 : πsu,i.step← ts + 1
7 : for T ≥ ts + 1 do

ResetRand-State-Session(u, i, s, T)
8 : u.corruptUser← false

9 : u.corruptOpt← false

10 : return {Crev,s, cout,s}s∈πu,i.Sessions
, pubprekeys

ODecRevoke({Co}o∈[1,O], u, k)

1 : Req. O = #πu,k.Sessions
2 : for 1 ≤ o ≤ O do
3 : to ← πou,k.step

4 : Req. NoDevReveal(u, k, o, to)
∨ Co ∈ V ou,k
∨ ∃(u, i, s, ts) partnered with (u, k, o, to)
such that Co ∈ V su,i

5 : πu,k ← DecRevoke({Co}o∈[1,O] , πu,k)

6 : for 1 ≤ o ≤ O do
7 : for T ≥ to + 1 do
8 : ResetRand-State-Session(u, k, o, T)
9 : F ou,k ← to + 1, Aou,k ← ∅
10 : πou,k.step← to + 1
11 : return

RevealDevState(u, i, s)

1 : t← πsu,i.step

2 : for T ≥ Esu,i do
3 : πsu,i[T].revDevState← true

4 : if ¬πsu,i[t].active then
5 : πu,i.revDevLT← true

6 : return πsu,i[t].devrand

RevealSessionKey(u, i, s)

1 : t← πsu,i.step

2 : for T ≥ t do
3 : πsu,i[T].revSessionKey← true

4 : return πsu,i[t].sessionkey

RevealState(u, i, s)

1 : t← πsu,i.step

2 : for T ≥ Gsu,i do
3 : πsu,i[T].revState← true

4 : return πsu,i[t].state

RevealRandom(u, i, s)

1 : for T ≥ F su,i do
2 : πsu,i[T].revRand← true

3 : return πsu,i[t].Random

RevealDevLT(u, i)

1 : πu,i.revDevLT← true
2 : return πu,i.dsku,i

RevealUserLT(u)

1 : u.revUserLT← true
2 : return πu.usku

RevealEphemeral(u)

1 : u.revEph← true

2 : return πu.mtsku

Challenge(u, i, s, t)

1 : chal← (u, i, s, t)
2 : if b = 0 k ← πsu,i[t].sessionkey
3 : else k←$K
4 : return k

116 Chapter 4 From Single to Multi-Device Instant Secure Messaging

· or t ∈ Asu,i and DeviceLeak(u, i, s, t)

· or ∃ (v,k,o,to) matching (u,i,s,t) such that to ∈ Aov,k and DeviceLeak(v, k, o, to)

RevealRandom(u, i, s, t) stands for:

· πsu,i[t].revRand

· or ∃ (u,j,r,tr) partnering (u,i,s,t) such that πru,j [tr].revRand

· or DeviceLeak(u, i, s, t).

PFS, revocation and out-of-order messages. As for RDM, we do not consider out-of-order
messages. We have already mentionned that this option, only considered in the work of Alwen et al. ,
seriously damages the PFS. The other fundamental reason why we made this choice is the revocation
feature. If Bob still accepts unused old keys to face up with the arrival of delayed messages, a revoked
device of Alice can also use these keys to in�ltrate maliciously the session. Revocation would not
be e�cient. The second obstacle to forward secrecy in a multi-device context is that we consider
each device shall receive all the messages in the conversation. If a device stays o�ine for a long
time, it will process all the updates from the moment he went o�ine until the moment he is back
online. All the corresponding keys are still sensible data. This is why we need to consider chains
of session in the freshness conditions. Forward secrecy is to be considered only for the messages
sent before the “oldest o�ine device” went o�ine. This highlights that a multi-device application
should consider a process to prevent the devices from being o�ine for a time too long (automatic
revocation for instance). This is to be considered at an implementation level.

De�nition 4.11 (Secure Multi-Device Instant Messaging.). A MDIM executed with np users, each
having nd devices is said to be secure in the above model if it is correct and for all adversary A running
in polynomial time, there exists a negligible function negl(λ) such that:

AdvMDIM-IND
A,MDIM,np,nd(λ) =

∣∣∣∣Pr
[
ExpMDIM-IND

A,MDIM,np,nd(λ)
]
− 1

2

∣∣∣∣ .
4.4.3 Building over Signal

We detail our Multi-Device Signal solution, depicted in Figure 4.4. It is built from the Signal protocol
and our RDM protocol described in subsection 4.3.3. The complete pseudocode description is given
in Figure 4.11. The RDM enables us to share the DH secrets, for all devices to perform the operation.
It is also used to share the message’s body. Every Signal sending is doubled with a RDM sending.
This way, any device can follow the conversation, can speak for itself, and can directly receive
messages sent by Bob. For each Signal session, a speci�c RDM channel is opened between Alice’s
devices. Addition and revocation induce extra ratchets, for the joining/revoked device not to access
previous/future conversations. We introduce a new procedure, ExtraRatchet. When a device
receives a ratchet secret through the RDM channel, he has to update its Signal state accordingly.
This is done in an Update procedure. Those new procedures are detailed in section 4.4.3.

Signal. We describe Signal, that we depicted in Figure 3.5 with the �ve following algorithms:

• Sig.KeyGen(1λ)→ pk, sk.

• Sig.MedTermKeyGen(1λ)→ ephpk, ephsk.

4

4.4 A Multi-Device Messaging protocol 117

• Sig.Activate(role, ephpk, πsu,i) → cout, π
s
u,i. Computes the initial shared secret, the �rst

rootkey rk and the �rst chainkey ck. Returns a message cout and an updated state πsu,i.

• Sig.Send(m,πsu,i)→ cout, π
s
u,i. A probabilistic algorithm that takes as input a session state

πsu,i and a message m, and returns an updated state πsu,i and a ciphertext c.

• Sig.Receive(c, πsu,i)→ m, πsu,i. A deterministic algorithm that takes as input a session state
πsu,i and a ciphertext c, and returns an updated state πsu,i and a message m.

This corresponds to the abstraction adopted in [CCD+17], except that we split the algorithm Run
into Sig.Send and Sig.Receive, which corresponds to the RKE abstraction from section 3.3. We need
to keep the key generation and activation algorithms detail as, contrary to the RKE formalisation,
we do take into account the initial non interactive key exchange. We detail Sig.Register to take into
account the device key in addition to the user key and the ephemeral keys usually used by Signal.

The extra procedures. A device shall perform a RDM.SetUp to obtain its devices keys before he
registers. We gather Sig.KeyGen and Sig.MedTermKeyGen in a UserKeyGen procedure that returns
a set of prekeys prekeys. Those keys are registered to the server. We obtain a Multi-Device Instant
Messaging protocol, as formally de�ned in subsection 4.4.1. We formalize the registering procedure
as follow:

• Sig.Register(uID, πu,i, pprekeys) → πu,i. On input a user ID, a device state and a set of
prekeys prekeys, registers on the server and updates the device state πu,i with Signal data.

We detail in Figure 4.10 below the ExtraRatchet and Update procedures. The �rst is needed to
ensure con�dentiality of conversation before adding a device or after revoking one. The second
enables devices that receive a ratchet secret through the RDM channel (in a ReceiveIn), to maintain
their Signal state up-to-date.

Update(πsu,i, rchsk)

1 : if rchsk 6= πsu,i.rand

2 : E ← DH(rchsk, πsu,i.randpeer)
3 : RK,CK ← KDF_RK(πsu,i.RK,E)
4 : πu,is.RK ← RK,πsu,i.CK ← CK

5 : CK,MK ←← KDF_CK(CK)
6 : πsu,i.CK ← CK, πsu,i.MK ←MK

7 : return πsu,i

ExtraRatchet(πsu,i)

1 : rchsk, rchpk ← DHKeyGen(1λ)
2 : E ← DH(rchsk, πsu,i.randpeer)
3 : RK,CK ← KDF_RK(πsu,i.RK,E)
4 : πsu,i.RK ← RK,πsu,i.CK ← CK

5 : πsu,i.rand← rchsk

6 : return rchpk, πsu,i

Figure 4.10 – The ExtraRatchet and Update procedures.

About addition and revocation. Our Add&Join sends sprekeys and Devices to everybody
(the newcomer as the already enrolled devices). This last point is done on purpose to be sure a
newcomer cannot receive session speci�c information without receiving global ones. Sending these
data only with the RDM.Join would lead to a more complicated model for the RDM and we choose
to keep the joining action unrelated to the shipping of encrypted messages.

118 Chapter 4 From Single to Multi-Device Instant Secure Messaging

The complete construction. We give in Figure 4.11 a complete pseudo code description of
our Multi-Device Signal protocol, MDSig. As all Signal and RDM procedures take as an entry
the device state and update it, we simplify (except for initiation and key generation procedures)
πsu,i, y ← Proc(πsu,i, x) as y ← Proc(x).

The following theorem states the security of the above construction:

Theorem 4.2. Let Signal be a secure multi-stage key-exchange protocol with advantage εsig and RDM
a RDM-IND secure ratcheted dynamic multicast with advantage εRDM-IND, the above construction
is a secure MDIM such that, for any PPT adversary running ns sessions from nd devices of np users,
making at most q queries to the oracles:

AdvMDIM-IND
A,MDSig,np,nd(λ) ≤ n2

p · (2 · εRDM-IND + εsig).

A proof of the security of our MDIM construction.

Proof. Correctness of the partnering. Suppose (u,i,s,ts) and (u,j,r,tr) are partnered sessions, with
(u,j,r) being alive for longer than (u,i,s) (tr > ts). That means πru,j [tr].sid1=̃sid′‖πsu,i[ts].sid1.
By de�nition of sid1, the two sessions are matching in the sense of ratcheted multicast. By the
construction we have that πsu,i[ts].sid1[0]=Cjoin where Cjoin is obtained from Add&Join(pki, πou,k)
for some session (u,k,o). By the partnering de�nition, two cases are possible as Cjoin is in-
tended to (u,i,s): either πru,j [tr].sid1 = sid′‖(Cjoin, Cadd)‖ · · · , (meaning that (u,k,o)=(u,j,r))
or πru,j [tr].sid1 = sid′‖Cadd‖ · · · (meaning that (u,k,o) 6= (u,j,r)) and both sessions share the
same RK and CK , as they are encrypted in the ciphertext Cin included in both Cjoin and Cadd
ciphertexts of the Add&Join algorithm. From this step, both sessions are included in the group of
the multicast and by correctness of the multicast, all messages exchanged via the multicast canal
are the same for (u, i, s) and (u, j, r): they have access to the same successive randsk. We now
consider the chain of session from (u,i,s,ts) to an initial session (u,iinit,sinit,tinit). We can see that
the same chain links (u,j,r,tr) to the same initial session. By construction, (u,j,r,tr) and (u,i,s,ts)
will receive the same Signal message in ReceiveOut hence the same public randomness from the
conversation peer. Since they have common root key and then common secret and public ratchet
randomness they compute the same sessionkey.

Correctness of the matching. Suppose (u,i,s,ts) and (v,`,p,tp) are matching sessions. Consider the
chains of sessions from (u,i,s) to an initial session (u,i0, s0) (chain U) and from (v,`,p) to the initial
session (v,`0,p0) (chain V). Those two chains exist according to the de�nition ??. Now we consider
an abstract super device Su that is present from the initiation step of session (u, i0, s0), and until
the step ts of session (u, i, s). Its state is limited to RK , randsk and sid2. The state of this super
device takes successively the values of the state of the di�erent sessions composing the chain U .
This is possible without con�ict, because, when two partners are present at the same time, they
share the same RK , randsk and sid2. (For sid2 this is by de�nition, for the others, by correctness
of partnering). Su.sid2 contains all Signal messages received and sent from the initialization to the
present step tr of (u, j, r). We consider a similar super device Sv that aggregates state information
along the V chain. The recursive de�nition of the matching ensures those two users are matching
in terms of Signal transcripts at each moment, including the initialization step. The correctness
of the Signal protocol provides that Su and Sv share the same session key at each moment. As
Su.sessionkey (respectively Sv.sessionkey) is de�ned as πsu,i.sessionkey (resp. πsu,i.sessionkey)

4

4.4 A Multi-Device Messaging protocol 119

when session (u,i,s) (resp. (v,j,r)) is alive, we obtain that (u,j,i,ts) and (v,j,r,tr) share the same
sessionkey.

MDIM indistinguishability. For all games Gx, we denote Sx the event A wins in Gx.

Game 0 is the original MDIM-IND Game as described in Figure 4.9.
In Game 1, we guess which pair of users (initiator/receiver) (u, v) will be targeted by the adversary
in order to apply only on them the RDM-IND security. We have np users.

AdvG0
A (λ) ≤ n2

p · AdvG1
A (λ).

In Game 2, we will collapse all devices of each of these two users into a super single user. First,
as the MDIM-IND security game respects the same restrictions as in RDM ind game for the RDM
part, RDM security of the multicast ensures none of the information sent through the RDM canal
leaks with security loss bounded by the RDM-IND factor. Second, correctness of the RDM ensures
us at each step all “alive" devices share same secrets and transcripts for signal part and that the
device that sent the signal message is present in the partnering pool. With this consideration, one
can think of the pool of devices of one user as a single signal superdevice.

|Pr[S2]− Pr[S1] | ≤ 2 · εRDM-IND.

What we have to show is that these superdevices execute the Signal protocol as a classical device.
What is di�erent from the original Signal design? There are additions and revocations of devices.
Once the multicast communication are “erased" (swallowed by superdevice), there remains additional
asymmetric signal ratchets (not at initial stage) and prekey bundle updates.

About the asymmetric ratchets. Several ratchets in a row on Alice’s side for instance means
that Bob’s ratchet random will be used several times. In the proofgiven in [CCD+17], this would
correspond to a [asym-ir or ri] case. There are two options, either freshness relays on the root key,
then randoms are not concerned and we are still in the model. Either freshness relays on randoms.
In our model, freshness �ag on a random is maintained from step to step: if it is corrupted at a step
t, it will remain corrupted for the followings steps. So assumptions on the freshness on the root
key or on the random still holds. If the tested session is an initiator type session and that there
has been several [asym-ir] type step before challenge, there is no problem. We will receive values
(X,Y) from the GDH Challenger and replace last initiator public random by X , and last responder
public random by Y as much time as needed (the number of ratchet step there has been on the
initiator’s side). We knows the successive initiator’s ratchet secret and can evaluate the root key
as needed. If test occurs on responder’s side after several ratchet on responder side it is the same.
Responder’s public key eventually has been used many steps before but we can simulate perfectly
the corresponding steps (not concerned with the DDH challenge) as we know initiator’s secret in
this case. Additional ratchets do not alter Signal’s model with GDH assumption.

About the additional keys. The devices keys are only concerned with the multicast. The main
di�erence is that the entire Signal prekey bundle can be refreshed with the revoke algorithm. Note
that, in Figure 4.4, we mention the generation and the transmission of the new prekey bundle to the
other device in the Revoke algorithm, but we do not formalise the communication of these keys to
the server. We consider that this has to be seen at the implementation level. This refresh should
correspond to an unregistering then registering again with the di�erence here that already ongoing
sessions are still alive. Indeed, these ongoing sessions continue to be used as an asymmetric ratchet

120 Chapter 4 From Single to Multi-Device Instant Secure Messaging

has already been performed during the revoke algorithm but the Signal prekey bundle related to
these sessions is not used anymore (due to the ratchets). For future new session, not initiated yet,
the new Signal prekey bundle is used and it can be viewed as a Signal prekey bundle for a new user.
In others terms, it is as if each superdevice were composed of many independant Signal users. In
Game 2, we are in the traditional Signal protocol execution.
In Game 3, in the Challenge, if b=0, we replace the session key by a random. Signal security ensures
we can do this substitution and we have: |Pr[S3]− Pr[S2] | = εsig .
Finally, in Game 3, A has no advantage since the returned key is always random and we obtain:

AdvG0
A (λ) ≤ n2

p · (2 · εRDM-IND + εsig).

4.5 A proof of concept implementation.

In this section, we give some measures we made on a �rst implementation. This work intends to
show that the modularity of our construction is not only “on paper”. We implement our solution over
the Signal library libsignal-protocol-java accessible on https://github.com/signalapp/
libsignal-protocol-java. This is the one library considered in [CCD+17]. We build our test
in the experimental InMemory version of the Library. This version does not use a physical server
but simulates the transport layout. We use the JCE and the BouncyCastle libraries for cryptography
services. We implemented our RDM with ECIES on curve secp256r1 and AES with 128 bits
keys for hybrid encryption, and HMAC_SHA256 for the MAC scheme. We play a scenario where
Alice uses three devices and Bob one. We run n iterations of the following: Alice sends a message
from a random device, Bob and Alice other devices decrypt, Bob answers, all devices of Alice decrypt.
Finally, to compare our implementation, we run a similar scenario with Alice devices represented
by 3 di�erent users in the Sesame solution. In Table 4.1, we presents the results in term of time and
number of connection (each time a message is sent or received) for a run of 1 000 exchanges. We
run our test on a 2,9 GHz IntelCore i7 with 16 Go of LPDDR3 RAM memory at 2 133 MHz. Our code
is accessible on https://github.com/multidevicerke. In subsection 4.5.1, we detail how
we locally patched the original library.

time (ms) number of data weight (bits)
connections

our solution 20 690 8 000 2 186 000
Sesame 3 007 12 000 990 000

Table 4.1 – Results for a run of n = 1 000 exchanges.

The Sesame solution is quicker which can be explained by the use of asymmetric encryption in the
RDM scheme. However, the di�erence can be minimized since asymmetric like computation in the
Sesame version (Di�e Hellman asymmetric ratchet for all channels) are done using a native elliptic
curve C library, whereas we employ an external Java BouncyCastle Library for the encryption
computations. Finally, our solution requires one-third less connections. This corresponds to Alice
sending only one message for Bob over a Signal channel instead of nA+nB−1 for Sesame. Counting
all the messages, (those from the RDM and the one that goes through the Signal sevrer), our solution
requires nA messages instead of nA + nB − 1 for Sesame, which respresents, as nA and nB can be
expected to be of the same order, a saving of half of the connexions. As a connection is an irreducible

https://github.com/signalapp/libsignal-protocol-java
https://github.com/signalapp/libsignal-protocol-java
https://github.com/multidevicerke

4

4.5 A proof of concept implementation. 121

time-consuming operation, this gain is not negligible. Considering the amount of exchanged data,
we have a ratio of 273 bits/connection which is largely acceptable.

4.5.1 Patches on the Signal implementation.

We add a half − ratchet method that corresponds to our ExtraRatchet procedure described in
subsection 4.4.3. In the original code, as soon as Bob receives a reply, he performs two asymmetric
step. He computes the ratchet with Alice new randomness and obtains the root key, chain key pair:
(RKr, CKr) also computed by Alice. Then Bob immediately prepares his keys for his reply. He
generates his new randomness and computes a new pair (RKs, CKs). RKs becomes Bob’s current
root key. CKs de�nes Bob’s future sending chain. The positive of this solution is that the sending
procedure does not have to consider whether to perform an asymmetric ratchet or not. The negative
is that Bob stores his future secret keys before it is necessary, which downgrades the future secrecy
property. In our solution, Alice can send another ratchet. She uses her current root key, which is
equal to RKr. When Bob tries to computes the ratchet from his current root key RKs, he fails.
We separate the two ratchet step: the receiver chain is updated when receiving a message, and the
sending chain is updated, if necessary, before sending a message. We add a RatchetCounter in the
Signal state to deal with whether or not perform a ratchet in the Encrypt procedure.

122 Chapter 4 From Single to Multi-Device Instant Secure Messaging

DeviceSetUp(1λ, (u, i))

1 : πu,i ← R.SetUp(1λ, (u, i))
2 : return πu,i

UserKeyGen(1λ)

1 : usk, upk ← S.KeyGen(1λ)
2 : ephpk, ephsk ← S.MTKeyGen(1λ)
3 : ppk ← upk,mtpk,{opk`}`
4 : spk ← usk,mtsk,{osk`}`
5 : return ppk, spk

Register(uID, πu,i)

1 : if uID already registered then
2 : return // need to do add in that case

3 : else
4 : ppk, spk ← UserKeyGen(1λ)

5 : πu,i
∪←− S.Register(uID, πu,i, ppk)

6 : πu,i.secprekeys← spk

7 : πu,i.Devices← ∅
8 : πu,i.Sessions← ∅
9 : return πu,i

InitSession(role, pprekeysv, πu,i)

1 : cout ← S.Activate(role, opk`)

2 : πu,i.Sessions
∪←− {s}

3 : πsu,i ← R.Init(1λ, πu,i, s)
4 : spk, rchsk, CK,RK ← πsu,i

5 : D ← πsu,i.Devices

6 : Cjoin, Cadd ← R.Add&Join(D,πsu,i)
7 : mRDM ← RK‖CK‖rchsk‖spk
8 : Cin ← R.Enc(mRDM , π

s
u,i)

9 : Cinit ← Cjoin‖Cin
10 : return Cinit, cout, π

s
u,i

ReceiveInitSession(Cinit, πu,j)

1 : Cjoin‖Cin ← Cinit

2 : πru,j ← R.DecJoin(Cjoin, πu,j)
3 : RK‖CK‖rchsk ← R.Dec(Cin, πru,j)
4 : πru,j .state← RK,CK

5 : πru,j .rand← rchsk

6 : πu,j .Sessions← r

7 : return πru,j

Add&Join(dpkj , πu,i)

1 : Require dpkj /∈ πu,i.Devices ∧ i 6= j

2 : πu,i.Devices
∪←− dpkj

3 : D ← πu,i.Devices

4 : spk ← πu,i.sprekeys

5 : for session s ∈ πu,i.Sessions do
6 : Cjoin,s, Cadd,s←R.Add&Join(dpkj , πsu,i)
7 : ExtraRatchet(πsu,i)
8 : cout ← S.Send(”update”, πsu,i)
9 : RKs, CKs, rchsks ← πsu,i

10 : ms ← RKs‖CKs‖rchsks‖spk‖D
11 : Cin,s ← R.Enc(ms, π

s
u,i)

12 : Cjoin,s ← Cjoin,s‖Cin,s
13 : Cadd,s ← Cadd,s‖Cin,s
14 : return {Cjoin,s, Cadd,s,

cout,s}s∈πu,i.Sessions, πu,i

DecAdd
(
{Cadd,o}o∈[1,O] , πu,k

)
1 : for session o ∈ [1, O] do
2 : Cadd,o‖Cin,o ← Cadd,o

3 : R.DecAdd(Cadd,o, πou,k)
4 : mo ← R.Dec(Cin,o, πou,k)
5 : RKo‖CKo‖rchsko‖spk‖D ← m

6 : πou,k.rand← rchsko

7 : πou,k.RK ← RKo

8 : πou,k.CK ← CKo

9 : πu,k.Devices← D

10 : return πu,k

DecJoin
(
{Cjoin,r }r∈[1,R] , πu,j

)
1 : for r ∈ [1, R] do
2 : Cjoin,r‖Cin,r ← Cjoin,r

3 : R.DecJoin(Cjoin,r, πu,j , r)
4 : mr ← R.Dec(Cin,r, πru,j)
5 : RKr‖CKr‖rchskr‖spk‖D ← mr

6 : πru,j .rand← rchskr

7 : πru,j .RK ← RKr

8 : πru,j .CK ← CKr

9 : πu,j .sprekeys← spk

10 : πu,j .Devices← D

11 : return πu,j

Send(m,πsu,i)

1 : cout ← S.Send(m,πsu,i)
2 : rchsk ← πsu,i

3 : Cin ← R.Enc(rchsk‖m,πsu,i)
4 : return Cin, cout, π

s
u,i

ReceiveOut(cout, πpv,`)

1 : m← S.Receive(cout, πpv,`)
2 : return m,πpv,`

ReceiveIn(Cin, πru,j)

1 : m, rchsk ← R.Dec(Cin, πru,i)
2 : Update(πru,j , rchsk)
3 : πru,j .rand← rchsk

4 : return m,πru,j

Revoke(devpk, πu,i)

1 : Require devpk 6= πu,i.dpk

2 : Find j s.t. πu,i.Devices[j] = devpk

3 : if j = ⊥ return ⊥, πu,i
4 : ppk, spk ← UserKeyGen(1λ)
5 : S ← πu,i.Sessions

6 : for s in S do
7 : pkj,s ← πsu,i.PK[j]
8 : rchsks ← πsu,i.rand

9 : Crev,s ← R.Revoke(pkj,s, πsu,i)
10 : ExtraRatchet(πsu,i)
11 : cout,s ← S.Send(“”, πsu,i)
12 : mRDM ← rchsks‖spk‖devpk
13 : Cin,s ← R.Enc(mRDM , π

s
u,i)

14 : Crev,s ← Crev,s‖Cin,s

15 : πu,i.Devices
\←−{devpk}

16 : return {Crev,s, cout,s}s∈S , ppk, πu,i

DecRevoke({Crev,o}o∈πu,k.Sessions , πu,k)

1 : for session o ∈ πu,k.Sessions do
2 : Crev,o‖Cin,o ← Crev,o

3 : R.DecRevoke(Crev,o, πou,k)
4 : mo ← R.Dec(Cin,o, πou,k)
5 : rchsko‖spk‖devpk ← mo

6 : πou,k.rand← rchsko

7 : πu,k.sprekeys← spk

8 : πu,k.Devices
\←−{devpk}

9 : return πu,k

Figure 4.11 – The Multi-Device Signal construction MDSig. A ∪←− {x} stands for A← A ∪ {x}

4

4.5 A proof of concept implementation. 123

DeviceSetUp(1λ, (u, i))

1 : πu,i ← R.SetUp(1λ, (u, i))
2 : return πu,i

UserKeyGen(1λ)

1 : usk, upk ← S.KeyGen(1λ)
2 : ephpk, ephsk ← S.MTKeyGen(1λ)
3 : ppk ← upk,mtpk,{opk`}`
4 : spk ← usk,mtsk,{osk`}`
5 : return ppk, spk

Register(uID, πu,i)

1 : if uID already registered then
2 : return // need to do add in that case

3 : else
4 : ppk, spk ← UserKeyGen(1λ)

5 : πu,i
∪←− S.Register(uID, πu,i, ppk)

6 : πu,i.secprekeys← spk

7 : πu,i.Devices← ∅
8 : πu,i.Sessions← ∅
9 : return πu,i

InitSession(role, pprekeysv, πu,i)

1 : cout ← S.Activate(role, opk`)

2 : πu,i.Sessions
∪←− {s}

3 : πsu,i ← R.Init(1λ, πu,i, s)
4 : spk, rchsk, CK,RK ← πsu,i

5 : D ← πsu,i.Devices

6 : Cjoin, Cadd ← R.Add&Join(D,πsu,i)
7 : mRDM ← RK‖CK‖rchsk‖spk
8 : Cin ← R.Enc(mRDM , π

s
u,i)

9 : Cinit ← Cjoin‖Cin
10 : return Cinit, cout, π

s
u,i

ReceiveInitSession(Cinit, πu,j)

1 : Cjoin‖Cin ← Cinit

2 : πru,j ← R.DecJoin(Cjoin, πu,j)
3 : RK‖CK‖rchsk ← R.Dec(Cin, πru,j)
4 : πru,j .state← RK,CK

5 : πru,j .rand← rchsk

6 : πu,j .Sessions← r

7 : return πru,j

Add&Join(dpkj , πu,i)

1 : Require dpkj /∈ πu,i.Devices ∧ i 6= j

2 : πu,i.Devices
∪←− dpkj

3 : D ← πu,i.Devices

4 : spk ← πu,i.sprekeys

5 : for session s ∈ πu,i.Sessions do
6 : Cjoin,s, Cadd,s←R.Add&Join(dpkj , πsu,i)
7 : ExtraRatchet(πsu,i)
8 : cout ← S.Send(”update”, πsu,i)
9 : RKs, CKs, rchsks ← πsu,i

10 : ms ← RKs‖CKs‖rchsks‖spk‖D
11 : Cin,s ← R.Enc(ms, π

s
u,i)

12 : Cjoin,s ← Cjoin,s‖Cin,s
13 : Cadd,s ← Cadd,s‖Cin,s
14 : return {Cjoin,s, Cadd,s,

cout,s}s∈πu,i.Sessions, πu,i

DecAdd
(
{Cadd,o}o∈[1,O] , πu,k

)
1 : for session o ∈ [1, O] do
2 : Cadd,o‖Cin,o ← Cadd,o

3 : R.DecAdd(Cadd,o, πou,k)
4 : mo ← R.Dec(Cin,o, πou,k)
5 : RKo‖CKo‖rchsko‖spk‖D ← m

6 : πou,k.rand← rchsko

7 : πou,k.RK ← RKo

8 : πou,k.CK ← CKo

9 : πu,k.Devices← D

10 : return πu,k

DecJoin
(
{Cjoin,r }r∈[1,R] , πu,j

)
1 : for r ∈ [1, R] do
2 : Cjoin,r‖Cin,r ← Cjoin,r

3 : R.DecJoin(Cjoin,r, πu,j , r)
4 : mr ← R.Dec(Cin,r, πru,j)
5 : RKr‖CKr‖rchskr‖spk‖D ← mr

6 : πru,j .rand← rchskr

7 : πru,j .RK ← RKr

8 : πru,j .CK ← CKr

9 : πu,j .sprekeys← spk

10 : πu,j .Devices← D

11 : return πu,j

Send(m,πsu,i)

1 : cout ← S.Send(m,πsu,i)
2 : rchsk ← πsu,i

3 : Cin ← R.Enc(rchsk‖m,πsu,i)
4 : return Cin, cout, π

s
u,i

ReceiveOut(cout, πpv,`)

1 : m← S.Receive(cout, πpv,`)
2 : return m,πpv,`

ReceiveIn(Cin, πru,j)

1 : m, rchsk ← R.Dec(Cin, πru,i)
2 : Update(πru,j , rchsk)
3 : πru,j .rand← rchsk

4 : return m,πru,j

Revoke(devpk, πu,i)

1 : Require devpk 6= πu,i.dpk

2 : Find j s.t. πu,i.Devices[j] = devpk

3 : if j = ⊥ return ⊥, πu,i
4 : ppk, spk ← UserKeyGen(1λ)
5 : S ← πu,i.Sessions

6 : for s in S do
7 : pkj,s ← πsu,i.PK[j]
8 : rchsks ← πsu,i.rand

9 : Crev,s ← R.Revoke(pkj,s, πsu,i)
10 : ExtraRatchet(πsu,i)
11 : cout,s ← S.Send(“”, πsu,i)
12 : mRDM ← rchsks‖spk‖devpk
13 : Cin,s ← R.Enc(mRDM , π

s
u,i)

14 : Crev,s ← Crev,s‖Cin,s

15 : πu,i.Devices
\←−{devpk}

16 : return {Crev,s, cout,s}s∈S , ppk, πu,i

DecRevoke({Crev,o}o∈πu,k.Sessions , πu,k)

1 : for session o ∈ πu,k.Sessions do
2 : Crev,o‖Cin,o ← Crev,o

3 : R.DecRevoke(Crev,o, πou,k)
4 : mo ← R.Dec(Cin,o, πou,k)
5 : rchsko‖spk‖devpk ← mo

6 : πou,k.rand← rchsko

7 : πu,k.sprekeys← spk

8 : πu,k.Devices
\←−{devpk}

9 : return πu,k

and A \←− {x} stands for A← A \ {x}

5

From One-to-One to Group
Instant Secure Messaging 5

M
ost of the time, Instant Messaging applications are not used for one-to-one communi-
cations. One of their most appreciated functionality is that they enable to create groups of
users, giving birth to virtual communities. However, a great number of applications base

their end-to-end security on the Double Ratchet algorithm which is, as we have studied in chapter 3,
dedicated to one-to-one communications. As a consequence, as for the multi-device setting, other
solutions, such as the sender’s key protocol (cf. section 4.1) have been adopted. Those alternatives
do not provide the same security level, especially on the PCS aspect. In this chapter, we focus
on the Messaging Layer Security (MLS) protocol, which is currently developed by the Internet
Engineering Task Force (IETF) and aims at providing a secure group messaging solution. We develop
on an identi�ed weakness of this protocol and propose a solution to overcome it. The contributions
exposed in this chapter were presented at ESORICS 2021 [DDF21].

Contents

4.1 Existing solutions . 84
4.2 Our protocol overview . 86
4.3 A Ratcheted Dynamic Multicast as a new primitive. 90

4.3.1 A RDM de�nition . 90
4.3.2 An appropriate security model . 91
4.3.3 Our construction. 97

4.4 A Multi-Device Messaging protocol . 107
4.4.1 A formal MDIM . 107
4.4.2 A composed security model. 109
4.4.3 Building over Signal . 116

4.5 A proof of concept implementation. 120
4.5.1 Patches on the Signal implementation. 121

126 Chapter 5 From One-to-One to Group Instant Secure Messaging

5.1 Messaging Layer Security

MLS targets secure group messaging and is developed by the IETF1. The goal is to obtain similar
security properties as those in one-to-one protocols. The idea is to enable a group of users to share
a common secret that can be updated regularly by any member. One of the open issues in the IETF
draft is that the validity of an update message can only be checked after it has been received. This
open issue is clearly identi�ed in the current draft 11 ([BBM+20], section 15.5). Our contribution
aims at resolving this issue. However, before diving into the detailed description of the protocol, we
give a short overview of the existing work around the global security of the protocol.

5.1.1 A short MLS history

As we have seen in chapter 3, RKE have received a lot of attention in the past decade. Literature for
the group version has grown only very recently (mainly from the late 2020) and the community is
still smaller. In [CCG+17] Cohn Gordon et al. introduced the notion of Asynchronous Ratcheted
Trees (ART). These ART are Di�e Hellman based binary trees in which the update process of a
node involves entropy coming from both its children. As we detail in section 5.1, MLS is based on a
protocol called TreeKEM, which is directly inspired from ART. A main di�erence is that, in MLS, a
single leaf generates, alone, the update data for each of its ancestor nodes while in ART, information
from several internal nodes is needed in the update procedure. TreeKEM has been initially formalized
in the technical paper [BBR18] and has then evolved to reach the actual description available on the
prevailing draft 11 [BBM+20]. Alwen, Coretti, Dodis and Tselekounis formalized in [ACDT20] a
Continuous Group Key Agreement (CGKA) derived from the two-party Continuous Key Agreement
de�ned in [ACD19] (cf. chapter 3). They provide a security model for CGKA and show that TreeKEM
does not achieve optimal FS and PCS security, but prove that using updatable public key encryption
can lead to a better security. Our solution is compatible with this improvement. Their analysis only
consider a weakly passive adversary, unable to inject packets or drop individual message for instance.
They also introduce the notion of Post Compromise Forward Security (PCFS) as the (strictly stronger)
combination of FS and PCS holding simultaneously; a current epoch remains secure despite both
past and future compromises. In [ACC+19] (to be published in the proceedings of S&P 21), Alwen et
al. propose an alternative version, called Tainted TreeKEM that achieves a weak version of PCFS
against an adaptive and strongly passive adversary, that can learn the users randomness (but can
not control it) and decide of its next action depending on its view of the execution so far. Alwen,
Coretti Jost and Mularczyk made a step forward to reach active security in [ACJM20]. Their model
de�nes an optimal security notion that TreeKEM does not reach. Three of the above authors re�ned
in [AJM20] the active security notion by de�ning the insider security. As an active adversary, the
insider can control randomness of the parties and controls the network (package order and delivery).
He can also “interact with the PKI on behalf of the corrupt users.” The authors propose an improved
TreeKEM that reaches their insider security, notably by introducing message authentication of the
transcript and signature of the packets to be delivered. Finally, Brzuska et al. provide in [BCK21] an
analyse of the current draft 11, considering both TreeKEM and the Key Schedule on top of it. They
analyse the pseudorandomness of the key distribution obtained through those two components.
While their model largely di�ers from the strong model of [AJM20], the author claim that the results
are comparable. On a parallel subject, Chase et al. recently studied in [CPZ20], the question of the

1The last draft has expired the 25th of June. A copy of this last prevailing draft is still accessible at https://www.
ietf.org/archive/id/draft-ietf-mls-protocol-11.txt and on the a�liated github
project https://github.com/mlswg/mls-protocol.

https://www.ietf.org/archive/id/draft-ietf-mls-protocol-11.txt
https://www.ietf.org/archive/id/draft-ietf-mls-protocol-11.txt
https://github.com/mlswg/mls-protocol

5

5.1 Messaging Layer Security 127

privacy of membership in the Signal Group enrolment. Their solution is based on credentials and
requires a speci�c veri�able encryption scheme (cf. section 2.7).

5.1.2 The protocol description

Currently in MLS, the authors require an hybrid public key encryption (HPKE) scheme, as designed
in [BBLW20] (which was recently studied in [ABH+21]), composed of a KEM to transmit a symmetric
key k and an AEAD encryption scheme that encrypts the data under k, as well as a key derivation
function. The security of this scheme is examined in [ABH+20]. In the rest of this work, we denote
by Encpk(m : r) the HPKE encryption of a message m under the public key pk using randomness r.
The asymmetric part of Enc is based on an elliptic curve E de�ned on a �nite �eld Zp with base
point P of order a prime q. MLS also supposes the existence of a broadcast channel for each group,
which distributes the messages to each group member, conserving the order.

TreeKEM. MLS key exchange TreeKEM is based on a binary tree structure (Figure 5.1) where
users correspond to leaves and each node is associated to a secret value. Each user U has a long
term identity signing key and an initial key package for the encryption scheme Enc (both certi�ed
by a PKI). We will simply represent the key package as a public/private key pair (pkU , skU).

A B C − E F G H
psA psB psC psE psF psG psH

•ps2 •ps6 •ps10 •ps14

•ps12•ps4

•
psroot

Figure 5.1 – A view of the MLS tree. Nodes are implicitly numbered from left to right, indepen-
dently from their height. Leaves are associated to a user represented as a letter. Each
node i has a secret psi. A leaf secret is indexed with its user name.

The group key is derived from the root secret. Each child node knows the secret of each of its
ancestors and only of its ancestors. To each node i corresponds a path secret psi and a secret and
public key ski, pki = deriveKeyPair(psi) (in the original protocol the keys are derived from an
intermediate node secret nsi itself derived from psi. We present a lighter version for the simplicity
of the exposure but the complete version is compatible with our solution.) A user knows the secrets
psi and ski in his direct path, composed of himself and his direct ancestors. Moreover, each user
keeps an up-to-date global view of the tree, as a hash value of each node’s public information.

About the key derivation. In [BBM+20], several suitable cipher suites are described. We fo-
cus on one of them for a practical example, for a 128-bit security level. This suite uses X25519
for ECDH computation and SHA256 as a hash function (and base function for HKDF implemen-
tation). Following [DJB], the private key sk is obtained from a 256-bit string of secure ran-
dom data (sk[0], sk[1], . . . , sk[255]) by applying the following transform: sk[0] = sk[0]AND248,
sk[31] = sk[31]AND127 then sk[31] = sk[31]OR64. One obtains, when interpreted as an integer

128 Chapter 5 From One-to-One to Group Instant Secure Messaging

value in little endian, a scalar of the form 2254 + 8 · `, ` ∈ [0, 2251 − 1]. We design by deriveSK
the application of SHA256 followed by the above transformation such that for any 32-byte se-
quence of random data X, deriveSK(X) is a valid secret key for X25519. This encoding can be
integrated in the circuit computing the last derivation. The public key is obtained by multiplying
the secret key by the base point of the curve. We de�ne, independently from the curve targeted,
(ski, pki) = deriveKeyPair(psi) = (deriveSK(psi), deriveSK(psi)P) where deriveSK is a PRF.

Updates. The path secrets and derived keys are regularly updated. Each update gives birth to a
new epoch. To update the tree, a user B generates a new secret ps′B . The path secrets in the direct
path will be successively derived from ps′B .

We note Hp(psi) for the function HKDF-expand(psi, “path”, “”, Hash.length). The update
mechanism is given in Figure 5.2.

A B C − E F G H
psA ps′B

psC psE psF psG psH

•Hp(ps′B) = ps′2 •ps6 •ps10 •ps14

•ps12•Hp(ps′2) = ps′4

•
Hp(ps′4) = ps′root

Figure 5.2 – The update process in MLS. User B updates his secrets. Path secrets are updated
along his direct path (in red). The update secrets are sent to his copath nodes (in
green).

When B updates its secret psB → ps′B , he �rst computes his new key package (skB, pkB) =
deriveKeyPair(ps′B) then he derives the new node data for each node on his path:

• ps′2 = Hp(ps′B), pk2 = deriveSK(ps′2) · P ;

• ps′4 = Hp(ps′2), pk4 = deriveSK(ps′4) · P ;

• ps′root = Hp(ps′4), pkroot = deriveSK(ps′root) · P .

Then he sends for each node on his copath the necessary secret material for the users under this
node to perform the same update. Following our example in Figure 5.2, B has to send ps′2 to A, ps′4
to nodes C and 6 and ps′root to nodes E, 10, F, 12, G, 14, H . As a child knows the secret key ski for
each of its ancestors, B will only have to encrypt ps′2 under pkA, ps′4 under pk6 and ps′root under
pk12. From ps′2 (respectively ps′4), A (resp. C) shall be able to compute the root secret.

A late veri�cation. From the root secret is derived an epoch secret SE+1
2. Before sending his

update message, B computes SE+1 and uses it to produce a con�rmation key. This value shall
enable A and C to check that they have derived the correct root secret and so, that they received
a correct update. Other mechanisms such as the transmission of the updated view of the tree, or

2From the root secret are derived several application keys, however we only focus on how the root secret is updated,
not on the how it is used, hence we have not detailed those keys.

5

5.2 Securing MLS updates 129

of intermediate hash values are provided for a user to check that he received a correct update. All
those mechanisms enable a veri�cation after receiving the update information. From then, two
di�erent policies are possible: either the update is accepted by all only once each user has con�rmed
that he received a valid update, this can imply a huge latency, if some users are seldom online, and
non valid updates can easily lead to a denial of service. Or the update is validated without such a
feedback. In this case, the users that received non valid secret values are ejected from the group de
facto. In both case, this seriously hampers with the security of the service provided by the protocol.

5.2 Securing MLS updates

We now explain how to combine a ZK protocol (cf. section 2.6) and a veri�able encryption scheme
(cf. section 2.7) to secure the update process in MLS. We �rst focus on a single step of the update
process (a user updates his direct parent) and then explain how this solution can be extended to the
global tree.

5.2.1 Server-checking in MLS.

As described in Figure 5.2, lets assume thatB generates a new secret ps′B . Suppose that he computes
the required data and, additionally, for each secret, a Pedersen commitment (cf. subsection 2.6.4) as
follows:

• deriveKeyPair(ps′B) to obtain a new key package and CB = Com(ps′B, r′B);

• ps′2 = Hp(ps′B) the new secret for node 2 and commits to it: C2 = Com(Hp(ps′B), r2);

• (sk′2, pk′2) = deriveKeyPair(ps′2) the new keys for node 2 and the corresponding Csk′2 =
Com(deriveSK(Hp(ps′B)), rsk′2).

Suppose there exists a ZK protocol which, for a PRF f , given public values Cx and Cy , provides
a proof that the prover knows opening values x, rx, ry such that Cx opens to x with randomness
rx and that Cy opens to f(x) with randomness ry , which can be written as: PK{x, rx, ry : Cx =
Com(x, rx) ∧ Cy = Com(f(x), ry)}. Then B can send to the server the public values CB , C2,
Csk′2 , pk′2 together with a proof Π2 = PK{ps′B, rB′ , r2, rsk′2 : CB = Com(ps′B, rB′) ∧ C2 =
Com(Hp(ps′B), r2) ∧ Csk′2 = Com(deriveSK(Hp(ps′B)), rsk′2) ∧ pk′2 = deriveSK(ps′2)P} (the last
part of the proof being a classic discrete log proof).

On another side, a veri�able encryption scheme VerifEnc such as the Camenish-Damgård de-
scribed in section 2.7, allows to link the message encrypted with VerifEnc with the data committed
in C2. To sum up, B will send for a node update, the public values CB , C2, Csk′2 , and pk′2, the proof
Π2 together with VerifEncEnc,pkA(ps′2). If the server accepts the proof, then he transmits the public
key pk′2 as well as VerifEncEnc,pkA(ps′2) to A.

To extend the proof to the complete tree, one has to repeat the above steps for each level. To certify
the update value ps′4 corresponding to the parent node 4,B will send the server valuesC4, Csk′4 , pk′4,
the proof Π4 = PK{ps′2, r2, r4, rsk′4 : C2 = Com((ps′2), r2) ∧ C4 = Com(Hp(ps′2), r4) ∧ Csk4 =
Com(deriveSK(Hp(ps′2)), rsk′4) ∧ pk′4 = deriveSK(Hp(ps′2))P} together with VerifEncEnc,pk6(ps′4).
The crucial point is that, as the commitment C2 is linked with ps′B in Π2, it can be used as a base
value for Π4 and so on. Some special care must be taken as we commit, in a group of order q prime,
to an element sk ∈ {0, 1}256 that does not lie naturally in Zq . We explain how to handle with this
in section 5.3.5.

130 Chapter 5 From One-to-One to Group Instant Secure Messaging

About the server. Several reasons appear for calling on a third party. Firstly, this central node
with the largest computational power is the one that can discard invalid updates with the most
e�ciency. If one relies on users to check for the validity of the data they received, this means that
one must wait for each user to process the update and to send back an acknowledgement. As a
user can be o�-line for a long time, this can be very ine�cient. Another solution would be to allow
users to adopt the update as soon as they are individually convinced it is correct, while providing a
"backup solution". This would probably imply keeping old keys and drastically impoverish FS.

Secondly, in MLS architecture, all the update encrypted messages are gathered and sent as one
big message to all the users. It may be of interest to think of a solution where only the needed
encryption is sent to a speci�c user. In this case, only the server will see all the messages together.
He is then the only one able to perform a veri�cation on a global proof to see whether all the updates
are correctly generated from a single secret seed.

5.3 Zero Knowledge for a PRF on committed input and output

Our solution to secure the updates in MLS requires a ZK protocol which, given public values Cx
and Cy , provides the following proof: PK{x, rx, ry : Cx = Com(x, rx) ∧ Cy = Com(f(x), ry)}
for any PRF f . This proof mixes algebraic statements (the commitment, which we suppose is a
Perdersen Commitment) and a function evaluation. Expressing the algebraic part as a circuit would
considerably increase the circuit size and reduce the e�ciency. The other way around, one could
express each gate of a circuit as an algebraic relation that can be proven with a Σ-protocol, but this
solution is clearly non desirable as circuits for hashing may have thousands of gates. Considering
this, combining e�ciently algebraic and non algebraic proofs has revealed to be an important
challenge.

5.3.1 State-of-the-art

In [CGM16], Chase et al. propose two constructions, based on Garbled Circuits (cf. section 2.6.3),
to provide a circuit proof on a committed input. Their �rst proposal consists, in a �rst step, in
using the values selected by the prover as the garbled input of the circuit to produce a bit-wise
commitment to the secret input of the circuit, and, in a second step, proving that this corresponds
to a bit-wise commitment to the secret input in the algebraic proof. Their second solution avoids
the bitwise commitment by including a one time mac ax + b in the circuit to be garbled. They
include this computation aside the original circuit so as to obtain a combination of an algebraic
and a non algebraic proof on a single witness ("I know "x" such that f1(x) = y and z = gx where
f1 is represented as a circuit). They use their MAC to bind the value committed to in an algebraic
commitment and the input to the garbled circuit. In our application, we need to bind the ouput of
the circuit to the commitment on the input. In addition, these proposals heavily rely on the garbling
and can not be transposed to the non interactive setting.

More recently, Agrawal et al. in [AGM18] propose a solution for modular composition of algebraic
and non algebraic proofs. Their solution is non interactive, based on Sigma protocols and QAP-based
SNARKs (cf. section 2.6.3). As explained in their work, the “key ingredient [they] need from a
SNARK construction is that the proof contains a multi-exponentiation of the input/output”, thus can
not be adapted to the more recent STARKs for instance (see section 2.6.3). They compose it with a
proof that the exponents in a multi-exponentiation correspond to values committed to in a collection
of commitments. From this result, they show how to obtain proofs for AND, OR and composition
of two statements, either algebraic or circuit. The small proofs and the light veri�cation step of

5

5.3 Zero Knowledge for a PRF on committed input and output 131

SNARKS are desirable for privacy-preserving credentials or crypto-currencies proofs of solvency.
But the prover’s high computational e�ort is not adapted to our application where the veri�er turns
out to have a larger computation power than the prover.

Finally, Backes et al. propose in [BHH+19] an extended version of ZKBoo++ (cf. section 2.6.3) that
allows algebraic commitments on the secret input of the circuit. Their protocol is non interactive
and the computational cost is balanced between the prover and the veri�er. Their solution requires
to commit to each bit of the secret input and to commit to internal values of the ZKBoo++ circuit
proof. Our �rst contribution is an extension of their work to committed outputs.

5.3.2 An overview of our protocols

As a contribution, we provide three protocols to prove the knowledge of an input x and randoms rx,
ry , such that, for a public values Cx, Cy , and a function f evaluated as a circuit, Cx = Com(x, rx)
and Cy = Com(f(x), ry).

Our �rst solution, ComInOutZK (Committed Input and Output ZK) is directly inspired from the
work of Backes et al. ([BHH+19]), which provides a proof of a circuit evaluation on a committed
input and public output. We extend their work to a committed output.

Our second contribution comprises two close alternative proposals, CopraZK (Commitment and
PRF alternative ZK), and CopraZK+, which are speci�c to the case of f being a PRF. The secret x is
the PRF key and we evaluate f on a public message m. In CopraZK, we consider the circuit that
evaluates two equations on x and on another secret input a. We call the results of these equations tag
values. The �rst tag t1 only depends on f(x,m) and f(a,m). The second tag t2 depends on x and
a. Both t1 and t2 also include a value α that is related to the commitments. The idea is that the tags
computation binds the values committed to the values used in the circuit. The second alternative,
CopraZK+, seeks for better e�ciency. We consider the circuit that computes a single tag value:
f(x,m) + αx (where x is the key of the PRF and α is determined by the public commitment). It
shows better e�ciency but relies on more theoretical PRF properties. Both CopraZK and CopraZK+
call for some PRF properties, that we discuss in section 5.3.4, and for the homomorphic properties
of the commitment.

We compare in Table 5.1 our three solutions with the SNARK based solution of [AGM18].
CopraZK+ (respectively CopraZK) adds a negligible number of algebraic operations. The prover
performs 4 (respc. 20) multiplications on the curve (public key operations) and 8 computations
in Zq (symmetric operations). For the veri�er, 6 (respect. 12) computations on the curve and 2
in Zq are needed. However, in CopraZK, the circuit part of the proof is more than doubled to
compute the two tags. Considering ZKBoo, the prover e�ort is O(σ|F |) symmetric operations,
where |F | is the number ofAND gates of the circuit and σ the number of rounds. CopraZK requires
O(σ(2|F |+ |mod|)) + 8 symmetric operations and 20 public key operations, where |mod| is the
size of the circuit for a modular addition which is negligible compared to |F |. CopraZK+ requires
O(σ(|F |+ |mod|)) + 8 symmetric operations and 4 public key operations. For both protocols, the
computational cost is dominated by the symmetric part. The size of the proof and the work on the
veri�er’s side are also dominated by the circuit part. One inconvenient is that the security proofs
requires non usual hypothesis on the function f . However, the bene�ce of CopraZK is that we
provide a reduction to an already known notion for one hypothesis. Another advantage of both
CopraZK and CopraZK+ is that they are independant of the circuit based proof chosen. We describe
our solutions with ZKBoo as it is an intuitive MPC solution but they can bene�t from more recent
improvements, as we detail in subsection 5.4.1.

On the opposite side, ComInOutZK is valid for any circuit, only requires equivocality of the

132 Chapter 5 From One-to-One to Group Instant Secure Messaging

Non
inter-
ac-
tive

No
CRS

Prover’s work Veri�er’s work Proof size

SNARK
based [AGM18]

yes no O((|F |+ λ) · pub) O((|x| + |y| + λ) ·
pub)

λ

CopraZK yes yes O(2|F |λ · sym) O(2|F |λ · sym) O(2|F |λ)
CopraZK+ yes yes O(|F |λ · sym) O(|F |λ · sym) O(|F |λ)
ComInOutZK yes yes O(|F |λ · sym +

(|x|+ |y|+λ) ·pub)
O(|F |λ·sym+(|x|+
|y|+ λ) · pub)

O((|F | +
|x| + |y| +
λ)λ)

Table 5.1 – E�ciency of the di�erent solutions for a circuit proof on committed input and output.
pub stands for the cost of a public key operation (multiplication on the curve), while
sym stands for the cost of a symmetric operation. |F | is the circuit size (in terms of
multiplication gates), |x| the input size and |y| the output size. In most applications,
|F | >> (|x|, |y|, λ).

commitment scheme, which is a common hypothesis, and leaves the circuit evaluation untouched.
But it requires a non negligible number of algebraic commitments. Considering |x| (respectively |y|)
the bit size of the input (of the output), we obtain on the prover side O(|x|+ |y|+ 2σ) public key
operations and O(σ|F |) symmetric operations. The veri�er’s work is equivalent. The proof size of
ZKBoo is augmented with O(|x|+ |y|+ 6σ) curve points which is asymptotically O(|x|+ |y|+ λ)
as σ augments with λ.

On the challenge size When we expose our solutions, in both case we mention a unique challenge,
that is used for the algebraic Σ-protocol and for the ZKBoo proof. This means that the challenge
space size for the Σ-protocol is 3 and that we shall perform λ/(log2(3) − 1) rounds to obtain a
soundness error in 2−λ. The Σ-protocol can bene�t from a larger challenge space, that allows for a
single round. As explained in [BHH+19], it is possible to de�ne distinct challenges eρ ∈ {1, 2, 3} for
each ZKBoo round and a global challenge e =

∑σ
i=1 3iei for the algebraic Σ-protocols, hence the

algebraic part of the proof can be performed a single time.

5.3.3 ComInOutZK: a bit wise solution

In [BHH+19], the authors propose a non interactive proof PK{x : Cx = Com(x, rx) ∧ y = f(x)}
based on bit commitments and ZKBoo++. Their optimized solution increases the ZKBoo++ prover’s
and veri�er’s work with O(|x|+ σ) exponentiations and multiplications on the group G of order q
chosen for the commitment, where |x| is the number of bits of the input x and σ is the number of
rounds in ZKBoo++. The proof size grows by O(|x|+ σ) group elements and O(|x|+ σ) elements
in Zq . We adapt this strategy to the case of a committed output. As the output of the circuit, y, shall
remain secret, we will not be able to call ZKBoo++ as a full black box. This is of prime importance
when we prove the zero-knowledge property.

The work of Backes et al. and our extension rely on a result given by the homomorphic property
of a commitment scheme such as Pedersen scheme. For any scalar k, and any two commitments

5

5.3 Zero Knowledge for a PRF on committed input and output 133

Com(x, rx), Com(y, ry), any k ∈ Zq , we have that:

k · Com(x, rx) + Com(y, ry) = Com(kx+ y, krx + ry).

For any commitment Cb = Com(b, rb) to a secret bit b and any public bit β, one can easily compute
the commitment of b⊕ β as follows:

if β = 0, Cb⊕β = Cb,

if β = 1 then Cb⊕β = Com(1, 0)− Cb = Com(1− b,−rb).

For any x =
∑|x|−1

i=0 2ix[i], denote Cx[i] = Com(x[i], rx[i]) a commitment to the i-th bit of x. Then∑|x|−1
i=0 2iCx[i] is a valid commitment to x with opening randomness

∑|x|−1
i=0 2irx[i]. Finally one

can easily compute a commitment to x⊕ β for an element β as Cx⊕β =
∑|x|−1

i=0 2iCx[i]⊕β[i], with
opening randomness

∑|x|−1
i=0 2i(−1)β[i]rx[i].

The protocol proceeds in two mains steps. First, the prover commits to the bits of the output y of
the circuit, and provides a proof that the corresponding commitments are valid bit commitments.
The homomorphic properties of the commitment scheme bind the bitwise commitments to the
public commitment of y, Cy . In a second steps, the prover executes a ZKBoo proof on the circuit,
but, instead of releasing the output share of the unopened view, he only provides a commitment of
this share. He then provides the randomness that binds the commitment of the three shares to the
bitwise commitments.

The protocol ComInOutZK. We describe in Figure 5.3 the protocol on a committed output only
(ComOutZK), for readability reasons. Combining Backes et al. protocol for a committed input and
ours for a committed output leads to ComInOutZK.

Let f be a function: Z`2 → Z`2, G be a group of prime order q, such that 2` ≤ p. There is a natural
embedding Z`2 ↪→ G. Let P be a generator for this group and Q an element of G such that logP (Q)
is unknown. We consider a hash function h : Z∗2 → Z`∗2 and a commitment scheme Com that takes
as input values in Zq . The following theorem states the security of our bitwise solution.

Theorem 5.1. Given that ZKBoo and the Πj are Σ-protocols with 3-special soundness and honest
veri�er Zero Knowledge property, and Com is a homomorphic and equivocal commitment scheme, then
the protocol described in Figure 5.3 is a Σ-protocol with 3-special soundness and honest veri�er property.

Proof. We study separately the three properties a Σ-protocol should verify.

Correctness. It follows by inspection. Assuming the Prover and the Verifier execute the protocol as
described, the Verifier never meets a rejection cause and then always accepts.

3-special soundness. Consider an algorithm Ext that has access to three distinct accepting executions
of the protocol on the same commit phase: (a, e1, p1), (a, e2, p2), and (a, e3, p3), e1 6= e2 6= e3,
for a public statement Cy . We show that Ext can exhibit a witness (x∗, r∗) such that Cy =
Com(f(x∗), r∗). We can not directly call the Extractor from ZKBoo++ as we do not exactly execute
ZKBoo. In our protocol, the Verifier does not have access to the output of the circuit. However, we
show that this di�erence does not prevent Ext from succeeding. We describe in the following how
Ext works.
Firstly, from the distinct transcripts, Ext can obtain three pairs of shares xe1 , xe1+1, xe2 , xe2+1,
xe3 , xe3+1 (note that, as we detail the extractor on a single round, we do not mention the upper

134 Chapter 5 From One-to-One to Group Instant Secure Messaging

The Prover knows x, y = f(x), and ry such that Cy = Com(f(x), ry). The Verifier knows
the statement Cy .
Prover
Commit phase

1. samples random ry[j] and commits to the bits of y : Cy[j] = Com(y[j], ry[j]) for j ∈ [0, |y|].
2. computes the commit phase aΠj for the proofs Πj = PK{y[j], ry[j] : Cy[j] =

Com(y[j], ry[j]) ∧ y[j] ∈ {0, 1}} for j ∈ [0, |y|].
for ρ ∈ [1, σ] :

3. samples random seeds kρ1 , kρ2 , kρ3 .
4. generates the shares xρ1, x

ρ
2, x

ρ
3 = Share(x, kρ1 , k

ρ
2) such that x = xρ1 ⊕ x

ρ
2 ⊕ x

ρ
3.

5. simulates the MPC to obtain three views wρ1, w
ρ
2, w

ρ
3 .

6. evaluates yρi = Output(wρi), i ∈ {1, 2, 3}.
7. commits to the views : cρi = h(wρi , k

ρ
i), i ∈ {1, 2, 3}.

8. samples random ryρi and commits to the outputs : Cyρi = Com(yρi , ryρi), i ∈ {1, 2, 3}.
a = ((Cyρ1 , Cyρ2 , Cyρ3 , c

ρ
1, c

ρ
2, c

ρ
3)σ, (Cy[j])|y|, (aΠj)|y|)

Challenge : e = h(a)
Response phase

1. computes the responses zΠj for the proofs Πj

for ρ ∈ [1, σ] :
2. bρ = (Cyρe+2

, cρe+2)
3. zρ = (wρe+1, k

ρ
e , k

ρ
e+1, ryρe , ryρe+1

)
4. βρ = yρe ⊕ yρe+1
5. Cρz =

∑|y|−1
i=0 2iCy[i]⊕βρ[i]

6. rρz = ryρe+2
−
∑|y|−1

i=0 2i(−1)β[i]ry[i]

return p = (e, (bρ, zρ, rρz)ρ), (zΠj)j
. .

Verifier(a, p)
1. Parses p as e, (bρ, zρ, rρz)σ
2. Parses a as (Cyρ1 , Cyρ2 , Cyρ3 , c

ρ
1, c

ρ
2, c

ρ
3)σ, (Cy[j])|y|, aΠj)

3. Reconstructs the proof Πj (computes aΠ from (zΠj)j)
4. Rejects if Cy 6=

∑|y|−1
i=0 2iCy[i]

for ρ ∈ [1, σ] :
5. runs the MPC protocol to reconstruct wρe from wρe+1, k

ρ
e , k

ρ
e+1

6. obtains yρe = Output(we), yρe+1 = Output(we+1)
7. Computes βρ = ye ⊕ ye+1

8. Computes Cρz =
∑|y|−1

i=0 2iCy[i]⊕βρ[i]
9. Rejects if Cyρe+2

6= Com(0, rz) + Cρz

Reconstructs a and reject if e 6= h(a)

Figure 5.3 – The ComOutZK protocol. The reconstruct step of the veri�cation consists in computing
the commitment a from the response data and check its validity with the challenge.
Only the values in a that can not be reconstructed need being sent.

5

5.3 Zero Knowledge for a PRF on committed input and output 135

case ρ index). He also gets three pairs of output values ye1 , ye1+1, ye2 , ye2+1, ye3 , ye3+1 and the
corresponding randomness rye1

, rye1+1 , rye2
, rye2+1, rye3

, rye3+1. From the common commitment a,
Ext gets Cy1 , Cy2 , Cy3 . As the three transcripts are accepting, Ext knows that (considering, w.l.o.g.,
e1 = 1, e2 = 2, e3 = 3):

Cy1 = Com(ye1 , rye1
) = Com(ye3+1, rye3+1).

Cy2 = Com(ye2 , rye2
) = Com(ye1+1, rye1+1).

Cy3 = Com(ye3 , rye3
) = Com(ye2+1, rye2+1).

If one of this equality veri�es with di�erent opening values, then, due to the equivocability of the
commitment scheme, Ext can extract the trapdoor. Given this knowledge, he can consider any value
x̃, compute ỹ = f(x̃) and compute the appropriate randomness to open Cy to ỹ.
Now we consider the case when the equalities on the commitments traduce equalities of the openings.
Ext thus obtains three values y1 = ye1 = ye3+1, y2 = ye2 = ye1+1, y3 = ye3 = ye2+1 and a single
y∗ = y1 ⊕ y2 ⊕ y3. From then, one can call the original ZKBoo extractor that executes back the
MPC protocol and obtain three shares x1 = xe1 = xe3+1, x2 = xe2 = xe1+1, x3 = xe3 = xe2+1
and a single x∗ = x1 ⊕ x2 ⊕ x3 such that y∗ = f(x∗).

Now Ext needs to extract a randomness r∗ that opens Cy to y∗. Using as a subroutine the
extractors for the proofs Πj , Ext obtains couples (y′[j], ry′[j]) for j ∈ [0, |y| − 1]. From the protocol,
as the transcripts are accepting ones, Ext knows that Cy =

∑|y′|−1
i=0 2iCom(y′[i], ry′[i]).

Ext selects one transcript, for instance e1.
He computes:

β = ye1 ⊕ ye1+1 and

Cz =
∑|y′|−1

i=0 2iCy′[i]⊕β[i] =
∑|y′|−1

i=0 2iCom(y′[i]⊕ β[i], (−1)β[i]ry′[i]).

By the protocol, Cz = Cye1+2 − Com(0, rz).
If
∑|y′|−1

i=0 2i(y′[i] ⊕ β[i]) 6= ye1+2 and/or
∑|y′|−1

i=0 2i(−1)β[i]ry′[i] 6= rye1+2 − rz , then again, Ext
obtains the trapdoor of the commitment scheme and can open Cy to the value he wishes.
Otherwise

∑|y′|−1
i=0 2i(y′[i] ⊕ β[i]) = ye1+2 and

∑|y′|−1
i=0 2i(y′[i]) = ye1+2 ⊕ β = ye1+2 ⊕ ye1 ⊕

ye1+1 = f(x∗).
Finally,

∑|y′|−1
i=0 2iry′[i] opens Cy to f(x∗) and the extractor is done. The running time of the

extractor is bounded by the time of running back the MPC protocol (as for the ZKBoo extractor) +
the running time of the extractors ExtΠj + computing one XOR and one commitment. Considering
that an extractor for ZKBoo and the extractor for the proofs Πj run in polynomial time, Ext also
runs in polynomial time.

Zero-knowledge. We consider a simulator Sim that, on input a public statement Cy , shall produce a
transcript (a, e, p). As for the soundness, we cannot call directly the ZKBoo simulator, SimZKB , as
the output of the circuit is not part of the statement. Sim runs as follows: he sets e and he samples
random tapes ke, ke+1 and random input shares xe, xe+1. Then he runs the protocol as normal
except that, when he meets a binary multiplication gate in the circuit, he cannot compute the real
value of the view we+1 (because it would depend on the third view that he cannot compute because
he does not know x) so he samples it at random. This is indistinguishable form the real execution
as binary multiplication gates are, in a correct execution, randomized with an element from ke+2

136 Chapter 5 From One-to-One to Group Instant Secure Messaging

that the Verifier cannot compute. Sim obtains output values ye, ye+1. He samples random re, re+1,
computes Cye = Com(ye, re) and Cye+1 = Com(ye+1, re+1).

In a second step, he samples random |y| − 1 bit values y[j], j ∈ [1, |y| − 1] and associated
randomness ry[j] and computes Cy[j] = Com(y[j], r[j]). He executes the proofs Πj with challenge
e. Then he evaluates Cy[0] = Cy −

∑|y|−1
j=1 Cy[j]. Using the simulator for the proof Π0, Sim obtains

a transcript for Π0 for a challenge e′. If e′ 6= e he runs SimΠ0 again. Given that Π0 is honest veri�er,
there is a non negligible probability that e′ = e within a polynomial time. De�ning β = ye ⊕ ye+1,
Sim can compute Cy[i]⊕β[i] only from the knowledge of Cy[i] and β[i]. Now Sim samples rz ∈ Zp
and computes Cye+2 =

∑|y|−1
j=0 Cy[i]⊕β[i] + Com(0, rz). He now has all the elements to produce an

accepting transcript.
The transcript of the ZKBoo part of the proof is indistinguishable form a real execution. The

elements that Sim produces itself are commitments that will not be opened, hence, by the hiding
property of the commitment, the complete simulated transcript is indistinguishable form a real
execution of the protocol.

5.3.4 CopraZK: a tag-based solution

Let f be a function: Z`2 × Z∗2 → Z`2 and m a public input, m ∈ Z∗2. Let G be a group of prime order
q, such that 2` ≤ q. There is a natural embedding Z`2 ↪→ G. Let P be a generator for this group and
Q an element of G such that logP (Q) is unknown. Let h be a hash function Z∗2 → Z`∗2 . Let Com be
the Pedersen commitment scheme. Those elements are the public parameters of the prover and the
veri�er. We use a ZKBoo proof for the circuit part, but the protocol and its proof are valid for any
circuit based ZK proof or argument. Let Cx, Cy be public commitments, known to the veri�er. Let a
be a random mask for the secret x. The prover also provides commitments Ca and Cb for values a
and f(a,m) and seal all the commitment values by computing α = h(Cx||Cy||Ca||Cb). The main
idea is to consider the circuit that computes two tags t1 = f(x,m) + αf(a,m) and t2 = x+ αa
where a is considered as a second secret entry of the circuit. A MPC in the head proof on this circuit
ensures that t1 and t2 are correctly computed from two secret values x and a known to the prover.
The prover also provides commitments Ca and Cb for values a and f(a,m). Considering Pedersen
commitments, we complete the circuit proof with an algebraic proof that the committed values in
Ca, Cx, Cy , Cb verify the relations t1 and t2. These linear relations together with the properties
of f de�ned below, bind the values of Cx and Cy such that the veri�er can be convinced that the
value committed in Cy is equal to the evaluation of f on the value committed in Cx. The detailed
description of the protocol CopraZK is given in Figure 5.4.

Some speci�c PRF properties.

As we use Fiat-Shamir to get an non interactive protocol, our proof is settled in the ROM (cf. sub-
section 2.6.2), which would satisfy our hypothesis. However, it seems contradictory to idealize as a
random oracle the PRF f that is concretely described as a circuit in the ZKBoo part of the protocol.
Hence, the ROM hypothesis only applies to the hash function h that generates the challenge. The
1-varRKA-wPRF and 1-varCI-ow properties de�ned below provide a way to formalize a security
proof when only some properties of the random oracle are needed.

Variation of Related Key Attack properties. Our �rst notion, 1-varRKA-wPRF is related to
the related key attack security recalled in section 2.5. It stipulates that the function f does not

5

5.3 Zero Knowledge for a PRF on committed input and output 137

Let f be a function: Z`2 × Z∗2 → Z`2 and m a public input, m ∈ Z∗2. Let Cy, Cx be public
commitments. The Prover wants to convince the Verifier that he knows x, rx, ry such that
Cx = Com(x, rx) and Cy = Com(f(x,m), ry).
Prover
Commit phase:

1. samples a, ra, rb←$ Z`2.
2. computes Ca = Com(a : ra), Cb = Com(f(a,m) : rb).
3. computes α = h(Cx||Cy||Ca||Cb).
4. computes (t1, t2) = (f(x,m) + αf(a,m) mod q, x+ αa mod q).
5. Evaluates the commit phase output aΠ for the Σ protocol Π =
PK{x, rx, y, ry, a, ra, b, rb : Cx = xP+rxQ∧Cy = yP+ryQ∧Ca = aP+raQ∧Cb =
bP + rbQ ∧ t1 = y + αb ∧ t2 = x+ αa}

for ρ ∈ [1, σ] (ZKBoo part):
6. samples random tapes kρ1 , k

ρ
2 , k

ρ
3 .

7. generates the shares xρ1, x
ρ
2, x

ρ
3 = Share(x, kρ1 , k

ρ
2) such that x = xρ1 ⊕ x

ρ
2 ⊕ x

ρ
3.

8. evaluates the MPC protocol on the circuit Circ that, on entrance values entry (x, a),
evaluates (t1, t2) = (f(x,m) + αf(a,m) mod q, x + αa mod q) and obtains three
views wρ1, w

ρ
2, w

ρ
3 .

9. obtains the output shares : oρ1 = (t1,1, t2,1), oρ2 = (t1,2, t2,2), oρ3 = (t1,3, t2,3) such that
t1 = tρ1,1 ⊕ t

ρ
1,2 ⊕ t

ρ
1,3 and t2 = tρ2,1 ⊕ t

ρ
2,2 ⊕ t

ρ
2,3.

10. commits to the views : cρ1 = h(wρ1, k
ρ
1), cρ2 = h(wρ2, k

ρ
2), cρ3 = h(wρ3, k

ρ
3).

a = Ca, Cb, Cx, t1, t2, (cρ1, c
ρ
2, c

ρ
3, o

ρ = (oρ1, o
ρ
2, o

ρ
3))ρ, aΠ.

Challenge: e = h(a)
Response phase:

1. computes the response zΠ for the proof Π
for ρ ∈ [1, σ] :

2. bρ = (oρe+2 = (t1,e+2, t2,e+2), cρe+2)
3. zρ = (wρe+1, k

ρ
e , k

ρ
e+1)

return p = (e, (bρ, zρ)ρ, zΠ)
. .

Verifier(a, p)
1. Parse p as e, (bρ, zρ)ρ, zΠ
2. Parse a as Ca, Cb, Cx, t1, t2, (cρ1, c

ρ
2, c

ρ
3, o

ρ = (oρ1, o
ρ
2, o

ρ
3))ρ, aΠ

3. Computes α
4. Reconstruct the proof Π

for ρ ∈ [1, σ] (Verifying the ZKBoo proof):
5. runs the MPC protocol to reconstruct wρe from wρe+1, k

ρ
e , k

ρ
e+1

6. obtains tρ1,e, t
ρ
2,e = Output(we), tρ1,e+1, t

ρ
2,e+1 = Output(we+1)

7. computes tρ1,e+2 = t1 ⊕ tρ1,e ⊕ t
ρ
1,e+1, tρ2,e+2 = t2 ⊕ tρ2,e ⊕ t

ρ
2,e+1

Reconstruct a and reject if e 6= h(a)

Figure 5.4 – The CopraZK protocol. The reconstruction means the veri�cation by reconstruction
of the challenge in the Fiat-Shamir version.

138 Chapter 5 From One-to-One to Group Instant Secure Messaging

Exp1-varRKA-wPRF
A,f,p (λ)

Let p be a prime, let f be a public e�ciently computable function K ×D → R
such that there exists an embeddingR ↪→ Zpa. Let A be a PPT adversary.

• SetUp. The Challenger samples a key k←$K, a random input
r←$D and b←$ {0, 1}. He sends r to A.

• Queries Computation. For i ∈ [1, q], the adversary computes his
queries qi = (αi, t1,i) ∈ R × K. He sends those queries to the
Challenger.

• Answers. The Challenger samples g←$ FF(K,D,R). For i ∈ [1, q]
the Challenger answers to the query qi with a value t1,i = f(k, r)−
αif(t2,i−kαi

, r) if b = 0, t1,i = g(k, r)− αig(t2,i−kαi
, r) if b = 1.

• Guess. A outputs a guess bit b̂. The Challenger accepts if b̂ = b.
athe dependency to the security parameter is hidden in the keyspace choice.

Figure 5.5 – The 1-varRKA-wPRF security experiment.

leak information when evaluated as t1 = f(x) − αf(t2−xα). The formal experiment is described
in Figure 5.5. The reduction to RKA security tells that if f does not leak any information when
evaluated on values f(t2−xα), then it does not leak more information when evaluated as t1. This
will be of prime importance in the proof of the Zero-Knowledge property of the Sigma protocol
CopraZK, as the Simulator will not be able to compute t1 and so will sample it at random.

De�nition 5.1 (1-varRKA-wPRF security). Let f : K × D → R be an e�ciently computable
function. f is 1-varRKA-wPRF-secure if, for all PPT adversary A making at most q queries, the
quantity Adv1-varRKA-wPRF

A,f,p (λ), de�ned as:∣∣∣Pr
[
Exp1-varRKA-wPRF

A,f,p (λ) = 1|b = 0
]
− Pr

[
Exp1-varRKA-wPRF

A,f,p (λ) = 1|b = 1
]∣∣∣ ≤ negl(λ)

is negligible.

Proposition 5.2. Let f : K×D → R be an e�ciently computable function. If f is 1-C-aRKA-wPRF
secure, then f is 1-varRKA-wPRF-secure.

Proof. Suppose there exists an adversaryA that breaks the 1-varRKA-wPRF security with q queries,
in time t for a function f : K×R → D. Then we build an adversaryB that breaks 1-C-aRKA-wPRF
security of f with q + 1 queries and runs the same time as A. The adversary B uses A as follows:

• SetUp. The Challenger for 1-C-aRKA-wPRF security samples a bit b, a key k←$K
and a random function g←$ Func(K ×D,R). He samples a random input r that he
sends to B. B sends r to A.

• First Query. B queries his oracle with the identity polynomial. He receives a value y.
• q queries. For i ∈ [1, q] adversary A sends its challenger (played by B) a query
{ti, αi}i∈[1,q]. B de�nes the circuit Ci : X → X−ti

αi
. He queries his own oracle with Ci.

B receives value yi. He sends zi = y − αiyi to A.
• Guess. After his q queries,A answers with a bit b′. B transmits b′ to its own Challenger.

B perfectly simulates the oracle for A. The probability that B wins is exactly the probability that
A wins.

5

5.3 Zero Knowledge for a PRF on committed input and output 139

Exp1-varCI-ow
A,H,p

Let p be a prime number, f be an e�ciently computable function K ×D → R,
such that there exists an embedding R ↪→ Zp and A a PPT adversary. The
experiment rus as follows:

• SetUp. The Challenger selects a random key k and samples a ran-
dom public input r. He sends r to A.

• Queries. For i ∈ [1, q] the adversary computes his queries qi =
(αi, t1,i) ∈ K ×K. He sends them to the Challenger. He receives a
value t2,i = f(k, r)− αif(k−t1,iαi

, r) ∈ R.
• Invert. A sends a couple (x, j) with x ∈ K and j the index of a

query. The Challenger accepts if f(x, r)− αjf(x−t1,jαj
, r) = t2,j .

Figure 5.6 – The 1-varCI-ow security experiment.

Note that, in this de�nition as well as in the description of CopraZK, the input r is sampled at
random. However in MLS, the input in the HKDF successive node secrets derivations is always
equal to 0. This can be �xed by changing the value of this input from zero to the hash value of some
public data depending on the updated tree, that are already computed in the protocol, such as the
tree view for instance.

Variation of correlated input one-wayness. Our second notion, 1-varCI-ow, formalizes the
fact that the equation eq1 : t1 = f(x) − αf(t2−xα) is hard to solve. This will be of prime impor-
tance in the soundness proof. The corresponding security experiment is given in Figure 5.6. The
de�nition is related to Correlated Input one-wayness, as de�ned in section 2.5. However, contrary
to 1-varRKA-wPRF, there is no simple reduction between the two notions.

De�nition 5.2 (1-varCI-ow security). Let f : K ×D → R be an e�ciently computable function. f
is said to be 1-varCI-ow-secure if, for all PPT adversary A making q queries, the following advantage:
Adv1-varCI-ow

A,f,p (λ) = Pr
[
Exp1-varCI-ow

A,f,p (λ) = 1
]
is negligible.

In real life, most of the widely used hash functions are build from compression functions, based
on a keyed block cipher (SHA-2 family) or on an unkeyed block de�ned permutation (Keccak family).
PRF are mostly derived from those kind of hash functions. This the case of the HKDF-expand function,
built from HMAC and instantiated in MLS with a SHA family. If few literature exists concerning
RKA or CI one-wayness for real-life PRF, we state that �nding a preimage or correlations on inputs
and outputs of a hash function is among the most di�cult problem for symmetric cryptography
experts.

CopraZK security

The following theorem states the security of CopraZK.

Theorem 5.3. Let f be a 1-varRKA-wPRF and 1-varCI-ow secure function, h be a secure hash function
and Com a homomorphic commitment scheme. Then the CopraZK protocol described in Figure 5.4
de�nes a Σ-protocol with 3-special soundness and computational honest veri�er zero-knowledge.

Proof. Correctness. If the prover and the veri�er act as required by the protocol, then the veri�er
always accept for a valid proof. In fact, the veri�er knowsCx andCy and so computes the same value

140 Chapter 5 From One-to-One to Group Instant Secure Messaging

for α. Then, considering the proof of knowledge of a linear relation between two Pedersen Commit-
ments Π as detailed in subsection 2.6.4, from zΠ, Cx and Cy , the veri�er can reconstruct the correct
aΠ. From (bρ, zρ)ρ∈[1,σ] the veri�er can reconstruct the values (cρ1, c

ρ
2, c

ρ
3, o

ρ = (oρ1, o
ρ
2, o

ρ
3))ρ∈[1,σ]

and t1, t2 (and check that the values he gets is equal to the t1, t2 that were transmitted in a that he
used to reconstruct Π). From these values, he can compute the correct challenge value e and accept.

3-special soundness. Suppose we are given three distinct transcripts with a common commitment
phase (a, e1, p1), (a, e2, p2) and (a, e3, p3). From the 2-special soundness of the Sigma protocol Π,
one gets values x̃, ỹ, ã, b̃r̃x, r̃y , r̃a, and r̃b such thatCx = x̃P+r̃xQ,Cy = ỹP+r̃yQ,Ca = ãP+r̃aQ,
Cb = b̃P + r̃bQ and t1 = ỹ−αb̃ and t2 = x̃−αã. From the 3-special soundness of ZKBoo, one can
extract x′, a′ such that t1 = f(x′,m) + αf(a′,m) and t2 = x′ − αa′, where t1, t2 are �xed values,
the same as the one for the proof Π. Now this gives valid extraction the following equalities verify:
x′ = x̃, a′ = ã, y′ = PRF(x̃), b′ = f(a′). The extractor can return the triple x′, rx′ , ry′ . Hence we
look at the probability that one or more of the previous equations do not verify. We call Bad this
event, and separate it in four subcases.

Case Bad1. Only one equality among ỹ = f(x′), ã = a′, b̃ = f(a′), x̃ = x′ does not verify. As the
relations t1, t2 verify, this can never happen, Pr[Bad1 = 0].

Case Bad2. Two equalities out of the four do not verify. Due to relations t1, t2 we have :

1. if x̃ = x′ and ỹ = f(x′) then ã = a′ and b̃ = f(a′);

2. if x̃ = x′ and b̃ = f(a′) then ã = a′ and ỹ = f(x′);

3. if ã = a′ and ỹ = f(x′) then b̃ = f(a′) and x̃ = x′;

4. if ã = a′ and b̃ = f(a′) then ỹ = f(x′) and x̃ = x′;

If only x̃ = x′ and ã = a′, we look for the probability that ỹ 6= f(x′) and b̃ 6= f(a′). It is obvious
that if one inequality stands, so does the other. Calling the binding security of Pedersen commitment
and the one-wayness of h, α is a �xed value and so are x̃, ã, y′, b′ and t1 and t2. Then if ỹ 6= f(x′)
and b̃ 6= f(a′), it must be that x′ is a solution to the equation f(x)− αf(x−t2α) = t1, breaking the
1-varCI-ow security of f .

Now if only ỹ = f(x′) and b̃ = f(a′), again, x′ is a solution to the equation f(x)−αf(x−t2α) = t1,
breaking the 1-varCI-ow security of f . So Pr[Bad2] ≤ 2 (εow + εCom + ε1-varCI-ow), where εow
(respectively εCom, ε1-varCI-ow) denote the advantage terms for the one-way security of h (respectively
the binding property of the commitment and the 1-varCI-ow security of f).

Case Bad3. Only one equality veri�es. Due to relations t1 and t2, this case is impossible and
Pr[Bad3] = 0.

Case Bad4. Finally suppose no equation veri�es. Again, calling the binding property of the
Pedersen commitment and the one wayness of h, α is a �xed value. As in case Bad2, if the proof
accepts then it must be that x′ is a solution to f(x)−αf(x−t2/α) = t1. This is again the 1-varCI-ow
security of f and Pr[Bad4] ≤ ε1-varCI-ow. Finally, given the one wayness of h, the binding property
of the commitment, and the 1-varCI-ow-security of f , the triple (x′, rx′ , ry′) is a valid witness.

Zero-Knowledge We describe a simulator that outputs in polynomial time a transcript such that
the distribution of its transcript is indistinguishable from the distribution of the real execution
transcripts. The simulator Sim works as follows: �rstly, it samples a random x ∈ Z`2. Then the Sim-
ulator acts as a real Prover , following steps 1, 2 and 3 : he samples random a, b, ra, rb and computes

5

5.3 Zero Knowledge for a PRF on committed input and output 141

the commitments Ca, Cb. Then he computes α. Given his random x, a, b and the related α, he can
compute t2 = x− αa and samples t1 at random. This is possible because of the 1-varRKA-wPRF
security of f . We note here that the relation between the real value corresponding to the public com-
mitment Cx, Cy , a, b and t1, t2 are not veri�ed a priori. As seen in Section 2.6.4, this shall not disturb
the Simulation. Sim calls the Simulator of the algebraic proof Π, SimΠ on t1, t2, Cx, Ca, Cy, Cb
and obtains a transcript (aΠ, eΠ, zΠ) Given the output of the circuit (t1, t2), Sim calls the ZKBoo
Simulator, SimZKBoo, on e to obtain a transcript (aZKB = c1, c2, c3, (o1, o2, o3), e, (b, z)) In par-
ticular, o1⊕ o3⊕ o3 = (t1, t2) and the view and random seeds in z enable to reconstruct the ZKBoo
proof. Finally the Simulator returns (Ca, Cb, t1, t2, aZKB, aΠ), e, (b, z, zΠ)).

The transcript obtained from SimΠ and SimZKBoo are (statistically) indistinguishable from real
transcripts. If f is 1-varRKA-wPRF-secure, then sampling a random t1 is indistinguishable from
the real distribution of t1 and �nally, the output distribution of Sim is indistinguishable from the
real execution output.

5.3.5 CopraZK+: toward a more e�cient version of CopraZK

As previously, let f be a function: Z`2×Z∗2 → Z`2 and m a public input, m ∈ Z∗2. Let G be a group of
prime order q, such that 2` ≤ q. Let P be a generator for this group andQ an element of G such that
logP (Q) is unknown. Let h be a hash function Z∗2 → Z`∗2 and Com be the Pedersen commitment
scheme. They are the public parameters of the protocol.

Let Cx, Cy be public commitments, known to the veri�er. The idea to get a more e�cient protocol
is to consider the circuit that only computes the tag t = f(x,m)+αxwhere α is a public coe�cient
derived from the commitment values Cx and Cy . A MPC in the head proof on this circuit ensures
that t is correctly computed from a secret value x known to the prover. Considering Pedersen
commitments, we complete the circuit proof with an algebraic proof that the committed values in
Cx and Cy verify the relation t. This linear relation plus the properties of f de�ned below, bind the
values of Cx and Cy such that the veri�er can be convinced that the value committed in Cy is equal
to the evaluation of f on the value committed in Cx. A complete description is given in Figure 5.7.
We depict our protocol using ZKBoo for the circuit part, but the proof adapts to any circuit based
ZK proof.

Yet another PRF property.

As for our protocol CopraZK, we avoid considering the PRF f as a random oracle. Hence, this also
require to call some more subtil PRF properties. Firstly, we need its dual function f̃ to be correlation
intractable (cf. subsection 2.5.2) with respect to the family of relationsRa,b : {x, y : y = ax+ b}
for a, b random values.

Secondly, we need to be sure that the tag does not leak information on the key. We de�ne a
general linear input deviation resistant PRF (glider-PRF) as follows:

De�nition 5.3 (glider-PRF security). A function family f ∈ FF(K,D,R) (with appropriate domain
and range) is said to be a glider-PRF if for all PPT adversary A, and a random α←$ R, there exists a
negligible function negl such that:

Pr
[
x← A(α)Og : g←$ F(D,R)

]
− Pr

[
x← A(α)Of(k,·)+α· : k←$K

]
≤ negl(λ) .

As for 1-varCI-ow, we do not have a reduction to a more classical (or at least already de�ned)
property. We consider as an important, yet challenging, research target to explore and formalise

142 Chapter 5 From One-to-One to Group Instant Secure Messaging

Let Cy, Cx be public commitments and m a public message. The Prover wants to convince the
Verifier that he knows x, rx, ry such that Cx = Com(x, rx) and Cy = Com(f(x,m), ry).
Prover
Commit phase:

1. computes α = h(Cx||Cy).
2. computes t = f(x,m) + αx mod q.
3. Evaluates the commit phase output aΠ for the Σ protocol Π = PK{x, rx, y, ry : Cx =
xP + rxQ ∧ Cy = yP + ryQ ∧ t = y + αx}

for ρ ∈ [1, σ] (ZKBoo part):
4. samples random tapes kρ1 , k

ρ
2 , k

ρ
3 .

5. generates the shares xρ1, x
ρ
2, x

ρ
3 = Share(x, kρ1 , k

ρ
2) such that x = xρ1 ⊕ x

ρ
2 ⊕ x

ρ
3.

6. evaluates the MPC protocol on the circuit Circ that, on entrance values entry (x, a),
evaluates t = f(x,m) + αx mod q and obtains three views wρ1, w

ρ
2, w

ρ
3 .

7. obtains the output shares : oρ1 = t1, o
ρ
2 = t2, o

ρ
3 = t3 such that t = tρ1 ⊕ t

ρ
2 ⊕ t

ρ
3.

8. commits to the views : cρ1 = h(wρ1, k
ρ
1), cρ2 = h(wρ2, k

ρ
2), cρ3 = h(wρ3, k

ρ
3).

a = t, (cρ1, c
ρ
2, c

ρ
3, o

ρ = (oρ1, o
ρ
2, o

ρ
3))ρ, aΠ.

Challenge: e = h(a)
Response phase:

1. computes the response zΠ for the proof Π
for ρ ∈ [1, σ] :

2. bρ = (oρe+2 = te+2, c
ρ
e+2)

3. zρ = (wρe+1, k
ρ
e , k

ρ
e+1)

returns p = (e, (bρ, zρ)ρ, zΠ)
. .

Verifier(a, p)
1. parses p as e, (bρ, zρ)ρ, zΠ
2. parses a as t, (cρ1, c

ρ
2, c

ρ
3, o

ρ = (oρ1, o
ρ
2, o

ρ
3))ρ, aΠ

3. computes α
4. reconstruct the proof Π

for ρ ∈ [1, σ] (Verifying the ZKBoo proof):
5. runs the MPC protocol to reconstruct wρe from wρe+1, k

ρ
e , k

ρ
e+1

6. obtains tρe = Output(we), tρe+1 = Output(we+1)
7. computes tρe+2 = t⊕ tρe ⊕ tρe+1.

reconstructs a and rejects if e 6= h(a)

Figure 5.7 – Our protocol CopraZK+.

the security properties expected and achieved by real life PRF. Nowadays, even the already stated
properties such as correlation intractability are only proven (partially) for algebraic constructions
that are not e�cient and not used in everyday life protocols.

Theorem 5.4 states the security of CopraZK+.

Theorem 5.4. Given that ZKBoo and the Πj are Σ protocols with 3 (respectively 2) special soundness
and honest veri�er Zero Knowledge property (in their interactive form), that Com is a homomorphic
commitment scheme, and that f is a glider-PRF function family such that f̃ is correlation intractable

5

5.3 Zero Knowledge for a PRF on committed input and output 143

relatively to relations {Ra,b : {x, y : y = ax + b}}, then the protocol described in Figure 5.7 is a
Σ-protocol with 3-special soundness and full Zero-Knowledge.

Proof. Correctness. If the prover and the veri�er act as required by the protocol, then the veri�er
always accept for a valid proof. In fact, the veri�er knows Cx and Cy and so computes the same
value for α. Then, considering the proof Π of knowledge of a linear relation between two Pedersen
commitments (cf. subsection 2.6.4), from zΠ, Cx and Cy , the veri�er can reconstruct the correct aΠ.
From (bρ, zρ)ρ∈[1,σ] the veri�er can reconstruct the values (cρ1, c

ρ
2, c

ρ
3, o

ρ = (oρ1, o
ρ
2, o

ρ
3))ρ∈[1,σ] and t

(and check that the t he gets is equal to the t that was transmitted in a that he used to reconstruct
Π). From these values, he can compute the correct challenge value e and accept.

3-special soundness. Suppose we are given three distinct transcripts with a common commitment
phase (a, e1, p1), (a, e2, p2) and (a, e3, p3). From the 2-special soundness of the Sigma protocol Π,
one extract x̃, ỹ, r̃x, r̃y such that Cx = x̃P + r̃xQ,Cy = ỹP + r̃yQ and t = αx̃ + ỹ. From the
3-special soundness of ZKBoo, one extracts x′ such that t = f(x′,m) +αx′, where t is a �xed value,
the same as the one for the proof Π. Correlation intractability of f̃ ensures that x′ 6= x̃ happens
with negligible probability. We note that the correlation intractability of f̃ requires the input of f to
be randomized. In MLS, this supposes considering a random value (for instance the hash of the tree
view) instead of the constant 0.

Zero Knowledge. We build a simulator Sim as follows: Sim computes t from the public values.
The glider-PRF-security of f ensures that t does not give any information on x. Then he calls the
Simulator of ZKBoo, SimZKBoo, as a subroutine and obtains a transcript (aZKBoo,e,zZKBoo). Then
he calls the simulator for the Sigma protocol Π, SimΠ, as a second subroutine, on the challenge e
and obtains a second transcript (aΠ, e, zΠ) (as SimΠ shall work for any challenge). Finally, as the
transcripts given by SimZKBoo and SimΠ are indistinguishable from real transcript, the output
distribution of Sim is indistinguishable from the real execution output. In the context of MLS, the
tag t must be accessible to the server only. A user who would receive its valid update and access the
tag could compute the secret of its child, which he should not.

Group order and commitments. In our proofs, we consider commitments and discrete logarithm
proofs in cyclic groups of order q, and circuits input and output that naturally lie in Fq . This may not
be the case. Considering the X25519 key derivation described in section 5.1.2, a new user’s secret
ps′B is a random element in {0, 1}256, which, when interpreted as an integer, can be larger than q.
As explained in [BHH+19], it is possible to consider ps′B mod q for the commitment and to include
to a modular computation in the circuit. If q is close enough to 2256 then it is a simple comparison
and subtraction. This requires around 2 000 gates, which is negligible compared to our circuit size.
Another solution is to directly sample ps′B in Fq . This can be done by rejection sampling or as
follow: sample X su�ciently big compared to log2(q) (log2(X) > log2(q) + 64 as advised by the
NIST for instance), then simply considering X mod q can be done with a negligible bias. For all the
intermediate values in the tree, the �rst method can be applied. The last step is the commitment of
the secret key sk = deriveSK(X). For this element, we directly consider the encoding provided with
the curve. The commitment Csk of sk in a group of order q will result in the same implicit reduction
modulo q than the computation of the public key. Then we can produce an AND ZK proof that the
value committed to in Csk is the discrete log of the pk: PK{sk : Csk = skP + rQ ∧ pk = skP}.

144 Chapter 5 From One-to-One to Group Instant Secure Messaging

Prover (ms) Veri�er (ms)
Generating random 21 Loading �le 1
Sharing secrets 1 Generating challenge 0
Running circuit 534 Verifying 799
Committing 20
Total generating proof data 578 Total verifying 800
Proof size (MB) 3.3

Table 5.2 – Running meantime of the Prover and the Verifier over 1 000 executions for 136 rounds.

5.4 Implementation results

We now discuss the e�ciency of our protocol CopraZK, both in terms of time and size of the proof.
We focused on CopraZK because it was more prone than ComInOutZK to bene�t from optimized
MPC protocols such as KKW ([KKW18]), that are designed for large circuits. And compared to
CopraZK+, it can be seen as a worst case, and so we can get an upper bound on the e�ciency.
Considering the table Table 5.1, we can easily estimate performances of CopraZK+ as being half
the result we present here.

Our implementation. We implemented the circuit part of our CopraZK protocol on top of the
ZKBoo code, available at https://github.com/Sobuno/ZKBoo. ZKBoo has been fairly opti-
mized since then but this code was easily accessible and we considered it as a good starting point.
The code provides ZKBoo versions for elementary operations. These functions operate on three
views and each binary AND call is randomized as recommended in the ZKBoo description. The
code provides ZKBoo versions of operations on 32 bits vectors: addition, XOR, AND, addition with
a constant. It also provides a ZKBoo version of a SHA_256 circuit, that comprises around 23300
binary AND gates. We implemented a ZKBoo version for the HMAC function, with two calls to
SHA_256, and a 256-bit addition. The function HMAC corresponds to HKDF− expand when the
desired output length equals the output length of the underlying hash function. Our �nal circuit,
with input x and a computes t1 = x+ a and t2 = HMAC(x) + HMAC(a) for a total of 93696 AND
gates. We did not implement the modular reduction. However, as we expect our entries x and a
(similarly HMAC(x) and HMAC(a)) to be in the cyclic group Zq (cf. section 5.3.5), t1 and t2 may
only exceed q by one q. Hence modular reduction can be instantiated as a comparison and subtrac-
tion if necessary. Using Cingulata (a compiler toolchain for homomorphic encryption, available at
https://github.com/CEA-LIST/Cingulata), we estimated the number of AND gates for
this operation on 8 and 16 bits integers, and obtained respectively 48 and 103 AND gates. From this
result, we can expect that a modular reduction on 256 bits integer can be implemented using around
2000 AND gates. This number being far from representative in our circuit, we did not considered
this operation in a basic implementation. We consider the running time for a soundness parameter
σ = 80 (corresponding to a soundness error of 2−80), requiring 136 rounds.

Times are given for four steps on the Prover side: the generation of the randomness, the sharing of
the secret inputs, the evaluation of the circuit, and the committing phase. One step is representative
on the Verifier side: checking the consistency of the received proof. Our tests were run on a Dell
laptop with Processor IntelCore i7-7600U CPU running a single core at 2, 8 Ghz with 15.5 GB of

https://github.com/Sobuno/ZKBoo
https://github.com/CEA-LIST/Cingulata

5

5.4 Implementation results 145

RAM. Results are given in Table 5.2. We see that the prover’s running time is better than the veri�er’s
one, which is not the case in [GMO16], running ZKBoo on the mere SHA_256 circuit. Running a
proof on a bigger circuit increases the veri�er’s load more than the prover’s one. The running time of
the prover is around half a second when the veri�cation takes around 0.8 seconds. In [GMO16], the
author show that a parallelized implementation can seriously improve those results (with 8 threads,
they divide the running time by 3.4 for the prover and by 5 for the veri�er). This experimental proof
size is large, and we examine in the following section the optimization possibilities.

5.4.1 Improvements

The �rst improvement, ZKBoo++, is given in [CDG+17]. The authors meticulously analyse which
data should be sent by the prover and which one can be directly computed by the veri�er. They show
that one can cut by more than half the size of the proof, at no computational cost. They implemented
their solution on an optimized circuit for SHA_256 with 22272 AND gates and obtained a proof
size of 618KB for a soundness error of 2−128 (48% of ZKBoo proof size on the same circuit). For a
soundness parameter σ = 80 they obtain 385KB. Considering this reduction, our own proof would
drop to 1.6MB. Moreover, the optimized SHA_256 circuit enables to save around 4000 AND gates,
cancelling the cost of the modular reduction. We now turn to the KKW protocol [KKW18]. The
authors use another MPC solution to decrease the number of rounds required to reach a desired
soundness security. They show that the improvement one can expect on the size of the proof
depends on the number of AND gates. Considering an average of 95000 AND gates for our circuit,
the proof size drops by 70KB compared to ZKBoo++. Hence we could obtain proofs around 90KB.

5.4.2 Comparison with SNARKs solutions

Agrawal et al. proposed in [AGM18] a ZK protocol mixing algebraic commitments on input and
output and circuit evaluation (comIOSnark). It is worth comparing their solution to ours. No imple-
mentation is available in [AGM18], however they estimate the prover’s work to four exponentiation
in addition to the number of exponentiations for computing the SNARK proof when the Verifier
has to perform 4 exponentiations and 30 pairings. To compare to more practical results, we recall
the performances of Pinocchio ([PHGR13]), on which the protocol of [AGM18] bases its description.
The implementation for Pinocchio is performed on a single core of a 2.67 GHz Intel Core i7 with
8 GB of RAM, which is comparable to our test setting. A proof on a SHA1 evaluation with 23785
multiplication gates requires, �rst, a public key generation of 11 seconds. The proof computation
takes 15.7 seconds. As expected however, the Verifier ’s running time is only around 10 ms and
the proof size is 288 bytes. Even if optimizations can be performed, the Prover ’s work is far more
important than in our solution. Hence we believe that, depending on the applications targeted,
either one or the other solution might be of interest.

6

Conclusion 6
O

n our way to design alternative or more secure messaging protocols, we were confronted
to several problems, among them: usability, e�ciency, compatibility with already deployed
applications. For some of them we found acceptable solutions, which we recall in the �rst

part of this conclusion, while other are still open or led to even more questions, that we evoke in
the second part.

6.1 Summary of the Results

This thesis focused on end-to-end secure instant messaging, a massively implemented protocol. We
presented state of the art of the literature concerning the two users ratcheted key exchange, as we
believe that a well understood abstraction of the security goals targeted by a real-life protocol is
a necessary �rst step toward more secure solutions. This state of the art reveals a large panel of
possible security degrees, from the basic but already adopted Double Ratchet to the ideal optimal
post compromise security for which no e�cient concrete solution is available for now.

Given this background, our �rst contribution was turned to a concrete usability problem: the
possible security of a multi device version of secure instant messaging. On the way to the �nal
protocol, we provided a multicast solution, the Ratcheted Dynamic Multicast, that provides forward
secrecy and some post-compromise security. This new multicast comes lightly over the existing
and already massively adopted Signal, to compose our �nal construction. As we have underlined
in the introduction, a user mainly chooses its messaging application relatively to the number of
peers that have made the same choice. Hence we think of interest trying to improve a protocol that
has already been chosen by billions of users. It seems more di�cult to move all these users to a
di�erent, but multi-device born - application. However, implementations results shall be improved
and should encourage us, to optimize the actual code to get a more accurate comparison with the
already deployed Sesame solution.

Remaining on the path of usability, our second contribution aims at giving cryptographic tools
to patch a default in the currently developed (and maybe soon deployed) MLS group messaging
solution. We combine powerful cryptographic tools: Zero-knowledge and veri�able encryption, to
enforce the security of the �nal protocol and avoid attacks likely to happen. Our contribution is
also more theoretical, as we provide new zero-knowledge protocols that provide proofs on mixed
algebraic and circuit based statements.

6.2 Open Problems

Towards a more e�cient RDM. The construction we proposed for the ratcheted dynamic
multicast is the naive one. It thus requires a non negligible number of asymmetric keys to be
generated and the update message is a concatenation of messages encrypted for each key. Even if

148 Chapter 6 Conclusion

the management of many keys as well as basic asymmetric cryptography can be implemented in a
transparent way (in fact, Signal does it), one can legitimately wonder whether a more optimized
solution can be designed. We feel that this ties up with the updatable public key primitives, that are
necessary to obtain optimal PCS in ratcheted key exchange, but are non e�cient enough yet.

Preserving deniability. As we have seen in section 3.2.3, the deniability of Signal has only
recently been formally studied. An evident follow up would be to study the deniability of our multi-
device version of the protocol. More generally, we think that this feature could help convincing
users of the bene�ts from end-to-end security, as it can be illustrated with concrete examples such
as protection of the sources for journalists, who are sometimes (illegally) summoned to reveal their
informer’s identity. Hence it would be reasonable to consider the deniability feature of the di�erent
ratcheted key exchange proposition to see if some designs are fundamentally incompatible with this
property. It would provide a supplementary parameter to consider when looking for an optimal
solution.

Veri�able encryption. As we mentioned in section 2.7, there are interesting ways towards
veri�able encryption schemes more e�cient than the cut-and-choose solution of Camenish and
Damgård. Another way that seems to us of interest was introduced in [CCL+19]. It is based on
groups with subgroups of unknown orders and the Castagnos Laguillaumie framework. We refer
to [Tuc20] for more information. However this would require a complete re examination of the
MLS protocol as we would loose the main bene�t of the Camenish-Damgård solution, which is the
possibility to keep the encryption scheme required in MLS speci�cation.

On PRF properties. The more general open problem that appears to us concerns the study of
real-life PRF properties. As explained in subsection 2.5.1, the random oracle model is not necessarily
a desirable long term solution. It is more to be considered as an acceptable compromise while
no better result is available. However, we note that there is a gap between the known security
properties of real life hash functions (as for instance the SHA families) and the security properties
one requires in cryptographic proofs. Hence it appears as an important challenge to reconcile theory
and practice. We are conscious that this problem has been opened for some decades now.

Bibliography

[16] The Zcash Ceremony. 2016. Link. (Cit. on p. 48).
[21] Trillian IM. 2021. Link. (Cit. on p. 59).
[ABD+21] Erdem Alkim, Joppe W. Bos, Léo Ducas, Patrick Longa, Ilya Mironov, Michael Naehrig,

Valeira Nikolaenko, Chris Peiker, Ananth Raghunathan, and Dougla Stebila. FrodoKEM
Learning With Errors Key Encapsulation. NIST PQ Competition Round 3 speci�cation.
speci�cation. June 2021. Link. (Cit. on p. 79).

[ABH+20] Joël Alwen, Bruno Blanchet, Eduard Hauck, Eike Kiltz, Benjamin Lipp, and Doreen
Riepel. Analysing the HPKE Standard. Cryptology ePrint Archive, Report 2020/1499.
https://eprint.iacr.org/2020/1499. 2020 (cit. on p. 127).

[ABH+21] Joël Alwen, Bruno Blanchet, Eduard Hauck, Eike Kiltz, Benjamin Lipp, and Doreen
Riepel. Analysing the HPKE Standard. In: Advances in Cryptology – EUROCRYPT 2021.
Ed. by Anne Canteaut and François-Xavier Standaert. Cham: Springer International
Publishing, 2021, pp. 87–116 (cit. on p. 127).

[ABR01] Michel Abdalla, Mihir Bellare, and Phillip Rogaway. The Oracle Di�e-Hellman As-
sumptions and an Analysis of DHIES. In: CT-RSA 2001. Ed. by David Naccache. Vol. 2020.
LNCS. Springer, Heidelberg, Apr. 2001, pp. 143–158 (cit. on pp. 26, 30).

[ACC+19] Joël Alwen, Margarita Capretto, Miguel Cueto, Chethan Kamath, Karen Klein, Ilia
Markov, Guillermo Pascual-Perez, Krzysztof Pietrzak, Michael Walter, and Michelle
Yeo. Keep the Dirt: Tainted TreeKEM, Adaptively and Actively Secure Continuous Group
Key Agreement. Cryptology ePrint Archive, Report 2019/1489. https://eprint.
iacr.org/2019/1489. 2019 (cit. on p. 126).

[ACD18] Joël Alwen, Sandro Coretti, and Yevgeniy Dodis. The Double Ratchet: Security Notions,
Proofs, and Modularization for the Signal Protocol. Cryptology ePrint Archive, Report
2018/1037. https://eprint.iacr.org/2018/1037. 2018 (cit. on p. 79).

[ACD19] Joël Alwen, Sandro Coretti, and Yevgeniy Dodis. The Double Ratchet: Security Notions,
Proofs, and Modularization for the Signal Protocol. In: EUROCRYPT 2019, Part I. Ed. by
Yuval Ishai and Vincent Rijmen. Vol. 11476. LNCS. Springer, Heidelberg, May 2019,
pp. 129–158 (cit. on pp. viii, 7, 71–73, 79, 126).

[ACDT20] Joël Alwen, Sandro Coretti, Yevgeniy Dodis, and Yiannis Tselekounis. Security Analysis
and Improvements for the IETF MLS Standard for Group Messaging. In: CRYPTO 2020,
Part I. Ed. by Daniele Micciancio and Thomas Ristenpart. Vol. 12170. LNCS. Springer,
Heidelberg, Aug. 2020, pp. 248–277 (cit. on p. 126).

https://z.cash/blog/the-design-of-the-ceremony.html
https://trillian.im
https://frodokem.org/files/FrodoKEM-specification-20210604.pdf
https://eprint.iacr.org/2020/1499
https://eprint.iacr.org/2019/1489
https://eprint.iacr.org/2019/1489
https://eprint.iacr.org/2018/1037

150 Bibliography

[ACF20] Gildas Avoine, Sébastien Canard, and Loïc Ferreira. Symmetric-Key Authenticated
Key Exchange (SAKE) with Perfect Forward Secrecy. In: CT-RSA 2020. Ed. by Stanislaw
Jarecki. Vol. 12006. LNCS. Springer, Heidelberg, Feb. 2020, pp. 199–224 (cit. on p. 33).

[ACJM20] Joël Alwen, Sandro Coretti, Daniel Jost, and Marta Mularczyk. Continuous Group Key
Agreement with Active Security. In: TCC 2020, Part II. Ed. by Rafael Pass and Krzysztof
Pietrzak. Vol. 12551. LNCS. Springer, Heidelberg, Nov. 2020, pp. 261–290 (cit. on p. 126).

[AGM18] Shashank Agrawal, Chaya Ganesh, and Payman Mohassel. Non-Interactive Zero-
Knowledge Proofs for Composite Statements. In: CRYPTO 2018, Part III. Ed. by Hovav
Shacham and Alexandra Boldyreva. Vol. 10993. LNCS. Springer, Heidelberg, Aug. 2018,
pp. 643–673 (cit. on pp. 130–132, 145).

[AH16] Erinn Atwater and Urs Hengartner. Shatter: Using Threshold Cryptography to Protect
Single Users with Multiple Devices. In: Proceedings of the 9th ACM Conference on Se-
curity & Privacy in Wireless and Mobile Networks. WiSec ’16. Darmstadt, Germany:
Association for Computing Machinery, 2016, pp. 91–102. isbn: 9781450342704. Link.
(Cit. on pp. 84, 87).

[AHIV17] Scott Ames, Carmit Hazay, Yuval Ishai, and Muthuramakrishnan Venkitasubramaniam.
Ligero: Lightweight Sublinear Arguments Without a Trusted Setup. In: ACM CCS 2017.
Ed. by Bhavani M. Thuraisingham, David Evans, Tal Malkin, and Dongyan Xu. ACM
Press, Oct. 2017, pp. 2087–2104 (cit. on p. 48).

[AHM+14] Joël Alwen, Martin Hirt, Ueli Maurer, Arpita Patra, and Pavel Raykov.Key-Indistinguishable
Message Authentication Codes. In: SCN 14. Ed. by Michel Abdalla and Roberto De Prisco.
Vol. 8642. LNCS. Springer, Heidelberg, Sept. 2014, pp. 476–493 (cit. on p. 30).

[AJM20] Joël Alwen, Daniel Jost, and Marta Mularczyk. On The Insider Security of MLS. Cryp-
tology ePrint Archive, Report 2020/1327. https://eprint.iacr.org/2020/
1327. 2020 (cit. on p. 126).

[ALM+98] Sanjeev Arora, Carsten Lund, Rajeev Motwani, Madhu Sudan, and Mario Szegedy.
“Proof Veri�cation and the Hardness of Approximation Problems”. In: J. ACM 45.3
(May 1998), pp. 501–555. issn: 0004-5411. Link. (Cit. on p. 47).

[AR00] Michel Abdalla and Leonid Reyzin. A New Forward-Secure Digital Signature Scheme.
In: ASIACRYPT 2000. Ed. by Tatsuaki Okamoto. Vol. 1976. LNCS. Springer, Heidelberg,
Dec. 2000, pp. 116–129 (cit. on p. 32).

[BBB+19] Olivier Blazy, Angèle Bossuat, Xavier Bultel, Pierre-Alain Fouque, Cristina Onete, and
Elena Pagnin. SAID: Reshaping Signal into an Identity-Based Asynchronous Messaging
Protocol with Authenticated Ratcheting. In: IEEE European Symposium on Security and
Privacy, EuroS&P 2019, Stockholm, Sweden, June 17-19, 2019. IEEE, 2019, pp. 294–309.
Link. (Cit. on p. 70).

[BBHR18] Eli Ben-Sasson, Iddo Bentov, Yinon Horesh, and Michael Riabzev. Scalable, transparent,
and post-quantum secure computational integrity. Cryptology ePrint Archive, Report
2018/046. https://eprint.iacr.org/2018/046. 2018 (cit. on p. 48).

[BBKS07] M. Bellare, A. Boldyreva, K. Kurosawa, and J. Staddon. “Multirecipient Encryption
Schemes: How to Save on Bandwidth and Computation Without Sacri�cing Security”.
In: IEEE Transactions on Information Theory 53.11 (2007), pp. 3927–3943 (cit. on p. 26).

https://doi.org/10.1145/2939918.2939932
https://eprint.iacr.org/2020/1327
https://eprint.iacr.org/2020/1327
https://doi.org/10.1145/278298.278306
https://doi.org/10.1109/EuroSP.2019.00030
https://eprint.iacr.org/2018/046

Bibliography 151

[BBLW20] Richard Barnes, Karthikeyan Bhargavan, Benjamin Lipp, and Christopher Wood.
Hybrid Public Key Encryption: draft-barnes-cfrg-hpke-06. draft-barnes-cfrg-hpke-06.
Sept. 2020. Link. (Cit. on p. 127).

[BBM+20] Richard Barnes, Benjamin Beurdouche, Jon Millican, Emad Omara, Katriel Cohn-
Gordon, and Raphael Robert. The Messaging Layer Security (MLS) Protocol: draft-ietf-
mls-protocol-11. draft-ietf-mls-protocol-11. Dec. 2020. Link. (Cit. on pp. x, 8, 126, 127).

[BBM00] Mihir Bellare, Alexandra Boldyreva, and Silvio Micali. Public-Key Encryption in a
Multi-user Setting: Security Proofs and Improvements. In: EUROCRYPT 2000. Ed. by
Bart Preneel. Vol. 1807. LNCS. Springer, Heidelberg, May 2000, pp. 259–274 (cit. on
pp. 25, 26, 97).

[BBR18] Karthikeyan Bhargavan, Richard Barnes, and Eric Rescorla. TreeKEM: Asynchronous
Decentralized Key Management for Large Dynamic Groups. May 2018. Link. (Cit. on
p. 126).

[BC10] Mihir Bellare and David Cash. Pseudorandom Functions and Permutations Provably
Secure against Related-Key Attacks. In: CRYPTO 2010. Ed. by Tal Rabin. Vol. 6223. LNCS.
Springer, Heidelberg, Aug. 2010, pp. 666–684 (cit. on p. 43).

[BCC+14] Nir Bitansky, Ran Canetti, Alessandro Chiesa, Sha� Goldwasser, Huijia Lin, Aviad
Rubinstein, and Eran Tromer. The Hunting of the SNARK. Cryptology ePrint Archive,
Report 2014/580. https://eprint.iacr.org/2014/580. 2014 (cit. on p. 47).

[BCD+16] Joppe W. Bos, Craig Costello, Léo Ducas, Ilya Mironov, Michael Naehrig, Valeria
Nikolaenko, Ananth Raghunathan, and Douglas Stebila. Frodo: Take o� the Ring!
Practical, Quantum-Secure Key Exchange from LWE. In: ACM CCS 2016. Ed. by Edgar R.
Weippl, Stefan Katzenbeisser, Christopher Kruegel, Andrew C. Myers, and Shai Halevi.
ACM Press, Oct. 2016, pp. 1006–1018 (cit. on p. 79).

[BCK21] Chris Brzuska, Eric Cornelissen, and Konrad Kohbrok. Cryptographic Security of the
MLS RFC, Draft 11. Cryptology ePrint Archive, Report 2021/137. https://eprint.
iacr.org/2021/137. 2021 (cit. on p. 126).

[BCK96] Mihir Bellare, Ran Canetti, and Hugo Krawczyk. Keying Hash Functions for Message Au-
thentication. In: CRYPTO’96. Ed. by Neal Koblitz. Vol. 1109. LNCS. Springer, Heidelberg,
Aug. 1996, pp. 1–15 (cit. on p. 29).

[BCK98] Mihir Bellare, Ran Canetti, and Hugo Krawczyk. A Modular Approach to the Design
and Analysis of Authentication and Key Exchange Protocols (Extended Abstract). In: 30th
ACM STOC. ACM Press, May 1998, pp. 419–428 (cit. on p. 34).

[BCM11] Mihir Bellare, David Cash, and Rachel Miller. Cryptography Secure against Related-Key
Attacks and Tampering. In: ASIACRYPT 2011. Ed. by Dong Hoon Lee and Xiaoyun
Wang. Vol. 7073. LNCS. Springer, Heidelberg, Dec. 2011, pp. 486–503 (cit. on p. 43).

[BCR+19] Eli Ben-Sasson, Alessandro Chiesa, Michael Riabzev, Nicholas Spooner, Madars Virza,
and Nicholas P. Ward. Aurora: Transparent Succinct Arguments for R1CS. In: EURO-
CRYPT 2019, Part I. Ed. by Yuval Ishai and Vincent Rijmen. Vol. 11476. LNCS. Springer,
Heidelberg, May 2019, pp. 103–128 (cit. on p. 48).

[BDJR97] Mihir Bellare, Anand Desai, Eric Jokipii, and Phillip Rogaway. A Concrete Security
Treatment of Symmetric Encryption. In: 38th FOCS. IEEE Computer Society Press, Oct.
1997, pp. 394–403 (cit. on pp. 21, 23).

https://datatracker.ietf.org/doc/draft-irtf-cfrg-hpke-06.txt
https://datatracker.ietf.org/doc/draft-ietf-mls-protocol/
https://mailarchive.ietf.org/arch/msg/mls/v1CY0jFAOVOHokB4DtNqS__tX1o/
https://eprint.iacr.org/2014/580
https://eprint.iacr.org/2021/137
https://eprint.iacr.org/2021/137

152 Bibliography

[Bel06] Mihir Bellare. New Proofs for NMAC and HMAC: Security without Collision-Resistance.
In: CRYPTO 2006. Ed. by Cynthia Dwork. Vol. 4117. LNCS. Springer, Heidelberg, Aug.
2006, pp. 602–619 (cit. on p. 30).

[Ber06] Daniel J. Bernstein. Curve25519: New Di�e-Hellman Speed Records. In: PKC 2006. Ed.
by Moti Yung, Yevgeniy Dodis, Aggelos Kiayias, and Tal Malkin. Vol. 3958. LNCS.
Springer, Heidelberg, Apr. 2006, pp. 207–228 (cit. on p. 55).

[BF01] Dan Boneh and Matthew K. Franklin. Identity-Based Encryption from the Weil Pairing.
In: CRYPTO 2001. Ed. by Joe Kilian. Vol. 2139. LNCS. Springer, Heidelberg, Aug. 2001,
pp. 213–229 (cit. on p. 70).

[BF07] Manuel Barbosa and Pooya Farshim. Randomness Reuse: Extensions and Improvements.
In: 11th IMA International Conference on Cryptography and Coding. Ed. by Steven D.
Galbraith. Vol. 4887. LNCS. Springer, Heidelberg, Dec. 2007, pp. 257–276 (cit. on p. 26).

[BFG+20] Jacqueline Brendel, Marc Fischlin, Felix Günther, Christian Janson, and Douglas Stebila.
Towards post-quantum security for Signal’s X3DH handshake. In: Proc. 27th Conference
on Selected Areas in Cryptography (SAC) 2020. Ed. by Michael J. Jacobson Jr., Orr
Dunkelman, and Colin O’Flynn. LNCS. Springer, Oct. 2020 (cit. on p. 64).

[BFGJ17] Jacqueline Brendel, Marc Fischlin, Felix Günther, and Christian Janson. PRF-ODH:
Relations, Instantiations, and Impossibility Results. In: CRYPTO 2017, Part III. Ed. by
Jonathan Katz and Hovav Shacham. Vol. 10403. LNCS. Springer, Heidelberg, Aug. 2017,
pp. 651–681 (cit. on p. 66).

[BFWW11] Christina Brzuska, Marc Fischlin, Bogdan Warinschi, and Stephen C. Williams. Com-
posability of Bellare-Rogaway key exchange protocols. In: ACM CCS 2011. Ed. by Yan
Chen, George Danezis, and Vitaly Shmatikov. ACM Press, Oct. 2011, pp. 51–62 (cit. on
pp. 38, 39).

[BG93] Mihir Bellare and Oded Goldreich. On De�ning Proofs of Knowledge. In: CRYPTO’92.
Ed. by Ernest F. Brickell. Vol. 740. LNCS. Springer, Heidelberg, Aug. 1993, pp. 390–420
(cit. on p. 44).

[BGB04] Nikita Borisov, Ian Goldberg, and Eric Brewer. O�-the-record communication, or, why
not to use PGP. In: Jan. 2004, pp. 77–84 (cit. on p. 59).

[BGW05] Dan Boneh, Craig Gentry, and Brent Waters. Collusion Resistant Broadcast Encryption
with Short Ciphertexts and Private Keys. In: CRYPTO 2005. Ed. by Victor Shoup. Vol. 3621.
LNCS. Springer, Heidelberg, Aug. 2005, pp. 258–275 (cit. on p. 27).

[BHH+19] Michael Backes, Lucjan Hanzlik, Amir Herzberg, Aniket Kate, and Ivan Pryvalov.
E�cient Non-Interactive Zero-Knowledge Proofs in Cross-Domains Without Trusted
Setup. In: PKC 2019, Part I. Ed. by Dongdai Lin and Kazue Sako. Vol. 11442. LNCS.
Springer, Heidelberg, Apr. 2019, pp. 286–313 (cit. on pp. x, 9, 131, 132, 143).

[BJM97] Simon Blake-Wilson, Don Johnson, and Alfred Menezes. Key Agreement Protocols and
Their Security Analysis. In: 6th IMA International Conference on Cryptography and
Coding. Ed. by Michael Darnell. Vol. 1355. LNCS. Springer, Heidelberg, Dec. 1997,
pp. 30–45 (cit. on pp. 32, 33).

[BK03] Mihir Bellare and Tadayoshi Kohno. A Theoretical Treatment of Related-Key Attacks:
RKA-PRPs, RKA-PRFs, andApplications. In: EUROCRYPT 2003. Ed. by Eli Biham. Vol. 2656.
LNCS. Springer, Heidelberg, May 2003, pp. 491–506 (cit. on p. 43).

Bibliography 153

[BK09] Alex Biryukov and Dmitry Khovratovich. Related-Key Cryptanalysis of the Full AES-192
and AES-256. In: ASIACRYPT 2009. Ed. by Mitsuru Matsui. Vol. 5912. LNCS. Springer,
Heidelberg, Dec. 2009, pp. 1–18 (cit. on p. 43).

[BKR00] Mihir Bellare, Joe Kilian, and Phillip Rogaway. “The Security of the Cipher Block
Chaining Message Authentication Code”. In: Journal of Computer and System Sciences
61.3 (2000), pp. 362–399. issn: 0022-0000. Link. (Cit. on p. 30).

[BKR94] Mihir Bellare, Joe Kilian, and Phillip Rogaway. The Security of Cipher Block Chaining.
In: CRYPTO’94. Ed. by Yvo Desmedt. Vol. 839. LNCS. Springer, Heidelberg, Aug. 1994,
pp. 341–358 (cit. on p. 18).

[BM99a] Mihir Bellare and Sara K. Miner. A Forward-Secure Digital Signature Scheme. In:
CRYPTO’99. Ed. by Michael J. Wiener. Vol. 1666. LNCS. Springer, Heidelberg, Aug.
1999, pp. 431–448 (cit. on p. 32).

[BM99b] Simon Blake-Wilson and Alfred Menezes. Unknown Key-Share Attacks on the Station-
to-Station (STS) Protocol. In: PKC’99. Ed. by Hideki Imai and Yuliang Zheng. Vol. 1560.
LNCS. Springer, Heidelberg, Mar. 1999, pp. 154–170 (cit. on p. 32).

[BN00] Mihir Bellare and Chanathip Namprempre. Authenticated Encryption: Relations among
notions and analysis of the generic composition paradigm. In: ASIACRYPT 2000. Ed. by
Tatsuaki Okamoto. Vol. 1976. LNCS. Springer, Heidelberg, Dec. 2000, pp. 531–545
(cit. on p. 30).

[BPR00] Mihir Bellare, David Pointcheval, and Phillip Rogaway. Authenticated Key Exchange
Secure against Dictionary Attacks. In: EUROCRYPT 2000. Ed. by Bart Preneel. Vol. 1807.
LNCS. Springer, Heidelberg, May 2000, pp. 139–155 (cit. on pp. 34, 35).

[BPS00] Olivier Baudron, David Pointcheval, and Jacques Stern. Extended Notions of Security
for Multicast Public Key Cryptosystems. In: ICALP 2000. Ed. by Ugo Montanari, José D. P.
Rolim, and Emo Welzl. Vol. 1853. LNCS. Springer, Heidelberg, July 2000, pp. 499–511
(cit. on pp. 25, 97).

[BR93] Mihir Bellare and Phillip Rogaway. Random Oracles are Practical: A Paradigm for
Designing E�cient Protocols. In: ACM CCS 93. Ed. by Dorothy E. Denning, Raymond
Pyle, Ravi Ganesan, Ravi S. Sandhu, and Victoria Ashby. ACM Press, Nov. 1993, pp. 62–
73 (cit. on p. 41).

[BR94] Mihir Bellare and Phillip Rogaway. Entity Authentication and Key Distribution. In:
CRYPTO’93. Ed. by Douglas R. Stinson. Vol. 773. LNCS. Springer, Heidelberg, Aug.
1994, pp. 232–249 (cit. on pp. 32–36, 92).

[BR95] Mihir Bellare and Phillip Rogaway. Provably Secure Session Key Distribution: The Three
Party Case. In: 27th ACM STOC. ACM Press, May 1995, pp. 57–66 (cit. on pp. 35, 36).

[BR96] Mihir Bellare and Phillip Rogaway. The Exact Security of Digital Signatures: How to
Sign with RSA and Rabin. In: EUROCRYPT’96. Ed. by Ueli M. Maurer. Vol. 1070. LNCS.
Springer, Heidelberg, May 1996, pp. 399–416 (cit. on p. 18).

[BSJ+17] Mihir Bellare, Asha Camper Singh, Joseph Jaeger, Maya Nyayapati, and Igors Stepanovs.
Ratcheted Encryption and Key Exchange: The Security of Messaging. In: CRYPTO 2017,
Part III. Ed. by Jonathan Katz and Hovav Shacham. Vol. 10403. LNCS. Springer, Heidel-
berg, Aug. 2017, pp. 619–650 (cit. on pp. viii, 33, 71–74).

https://www.sciencedirect.com/science/article/pii/S002200009991694X

154 Bibliography

[BSSW06] Xavier Boyen, Hovav Shacham, Emily Shen, and Brent Waters. Forward-secure signa-
tures with untrusted update. In: ACM CCS 2006. Ed. by Ari Juels, Rebecca N. Wright,
and Sabrina De Capitani di Vimercati. ACM Press, Oct. 2006, pp. 191–200 (cit. on p. 32).

[BY03] Mihir Bellare and Bennet S. Yee. Forward-Security in Private-Key Cryptography. In:
CT-RSA 2003. Ed. by Marc Joye. Vol. 2612. LNCS. Springer, Heidelberg, Apr. 2003,
pp. 1–18 (cit. on p. 32).

[CCD+16] Katriel Cohn-Gordon, Cas Cremers, Benjamin Dowling, Luke Garratt, and Douglas
Stebila. A Formal Security Analysis of the Signal Messaging Protocol. Cryptology ePrint
Archive, Report 2016/1013. https://eprint.iacr.org/2016/1013. 2016
(cit. on p. 66).

[CCD+17] Katriel Cohn-Gordon, Cas J. F. Cremers, Benjamin Dowling, Luke Garratt, and Douglas
Stebila. A Formal Security Analysis of the Signal Messaging Protocol. In: 2017 IEEE
European Symposium on Security and Privacy, EuroS&P 2017, Paris, France, April 26-28,
2017. 2017, pp. 451–466 (cit. on pp. viii, ix, 8, 61, 63, 64, 66, 67, 72, 89, 107, 113, 117, 119,
120).

[CCG+17] Katriel Cohn-Gordon, Cas Cremers, Luke Garratt, Jon Millican, and Kevin Milner.
On Ends-to-Ends Encryption: Asynchronous Group Messaging with Strong Security
Guarantees. Cryptology ePrint Archive, Report 2017/666. https://eprint.iacr.
org/2017/666. 2017 (cit. on p. 126).

[CCG+18] Katriel Cohn-Gordon, Cas Cremers, Luke Garratt, Jon Millican, and Kevin Milner.
On Ends-to-Ends Encryption: Asynchronous Group Messaging with Strong Security
Guarantees. In: ACM CCS 2018. Ed. by David Lie, Mohammad Mannan, Michael Backes,
and XiaoFeng Wang. ACM Press, Oct. 2018, pp. 1802–1819 (cit. on p. 85).

[CCG+19] Katriel Cohn-Gordon, Cas Cremers, Kristian Gjøsteen, Håkon Jacobsen, and Tibor
Jager. Highly E�cient Key Exchange Protocols with Optimal Tightness. In: CRYPTO 2019,
Part III. Ed. by Alexandra Boldyreva and Daniele Micciancio. Vol. 11694. LNCS. Springer,
Heidelberg, Aug. 2019, pp. 767–797 (cit. on p. 68).

[CCG16] Katriel Cohn-Gordon, Cas J. F. Cremers, and Luke Garratt. On Post-compromise Security.
In: CSF 2016Computer Security Foundations Symposium. Ed. by Michael Hicks and Boris
Köpf. IEEE Computer Society Press, 2016, pp. 164–178 (cit. on pp. 33, 89).

[CCL+19] Guilhem Castagnos, Dario Catalano, Fabien Laguillaumie, Federico Savasta, and Ida
Tucker. Two-Party ECDSA from Hash Proof Systems and E�cient Instantiations. In:
CRYPTO 2019, Part III. Ed. by Alexandra Boldyreva and Daniele Micciancio. Vol. 11694.
LNCS. Springer, Heidelberg, Aug. 2019, pp. 191–221 (cit. on p. 148).

[CCR15] Ran Canetti, Yilei Chen, and Leonid Reyzin. On the Correlation Intractability of Obfus-
cated Pseudorandom Functions. Cryptology ePrint Archive, Report 2015/334. https:
//eprint.iacr.org/2015/334. 2015 (cit. on p. 42).

[CCR16] Ran Canetti, Yilei Chen, and Leonid Reyzin. On the Correlation Intractability of Ob-
fuscated Pseudorandom Functions. In: TCC 2016-A, Part I. Ed. by Eyal Kushilevitz and
Tal Malkin. Vol. 9562. LNCS. Springer, Heidelberg, Jan. 2016, pp. 389–415 (cit. on p. 42).

[CD00] Jan Camenisch and Ivan Damgård. Veri�able Encryption, Group Encryption, and Their
Applications to Separable Group Signatures and Signature Sharing Schemes. In: ASI-
ACRYPT 2000. Ed. by Tatsuaki Okamoto. Vol. 1976. LNCS. Springer, Heidelberg, Dec.
2000, pp. 331–345 (cit. on pp. 54, 55).

https://eprint.iacr.org/2016/1013
https://eprint.iacr.org/2017/666
https://eprint.iacr.org/2017/666
https://eprint.iacr.org/2015/334
https://eprint.iacr.org/2015/334

Bibliography 155

[CDG+17] Melissa Chase, David Derler, Steven Goldfeder, Claudio Orlandi, Sebastian Ramacher,
Christian Rechberger, Daniel Slamanig, and Greg Zaverucha. Post-Quantum Zero-
Knowledge and Signatures from Symmetric-Key Primitives. In: ACM CCS 2017. Ed. by
Bhavani M. Thuraisingham, David Evans, Tal Malkin, and Dongyan Xu. ACM Press,
Oct. 2017, pp. 1825–1842 (cit. on pp. 51, 145).

[CDGM19] Melissa Chase, Apoorvaa Deshpande, Esha Ghosh, and Harjasleen Malvai. SEEMless:
Secure End-to-End Encrypted Messaging with less Trust. In: ACM CCS 2019. Ed. by
Lorenzo Cavallaro, Johannes Kinder, XiaoFeng Wang, and Jonathan Katz. ACM Press,
Nov. 2019, pp. 1639–1656 (cit. on p. 70).

[CDV21] Andrea Caforio, F. Betül Durak, and Serge Vaudenay. Beyond Security and E�ciency:
On-Demand Ratcheting with Security Awareness. In: PKC 2021, Part II. Ed. by Juan Garay.
Vol. 12711. LNCS. Springer, Heidelberg, May 2021, pp. 649–677 (cit. on pp. 71, 80).

[CF12] Cas J. F. Cremers and Michele Feltz. Beyond eCK: Perfect Forward Secrecy under Actor
Compromise and Ephemeral-Key Reveal. In: ESORICS 2012. Ed. by Sara Foresti, Moti
Yung, and Fabio Martinelli. Vol. 7459. LNCS. Springer, Heidelberg, Sept. 2012, pp. 734–
751 (cit. on p. 36).

[CFKN20] Cas Cremers, Jaiden Fairoze, Benjamin Kiesl, and Aurora Naska. Clone Detection in
Secure Messaging: Improving Post-Compromise Security in Practice. In: ACM CCS 2020.
Ed. by Jay Ligatti, Xinming Ou, Jonathan Katz, and Giovanni Vigna. ACM Press, Nov.
2020, pp. 1481–1495 (cit. on p. 68).

[CGH98] Ran Canetti, Oded Goldreich, and Shai Halevi. The Random Oracle Methodology, Re-
visited (Preliminary Version). In: 30th ACM STOC. ACM Press, May 1998, pp. 209–218
(cit. on pp. 41, 42).

[CGM+11] Sandy Clark, Travis Goodspeed, Perry Metzger, Zachary Wasserman, Kevin Xu, and
Matt Blaze. Why (Special Agent) Johnny (Still) Can’t Encrypt: A Security Analysis of the
APCO Project 25 Two-Way Radio System. In: USENIX Security 2011. USENIX Association,
Aug. 2011 (cit. on p. 5).

[CGM16] Melissa Chase, Chaya Ganesh, and Payman Mohassel. E�cient Zero-Knowledge Proof
of Algebraic and Non-Algebraic Statements with Applications to Privacy Preserving
Credentials. In: CRYPTO 2016, Part III. Ed. by Matthew Robshaw and Jonathan Katz.
Vol. 9816. LNCS. Springer, Heidelberg, Aug. 2016, pp. 499–530 (cit. on p. 130).

[CHK03] Ran Canetti, Shai Halevi, and Jonathan Katz. A Forward-Secure Public-Key Encryption
Scheme. In: EUROCRYPT 2003. Ed. by Eli Biham. Vol. 2656. LNCS. Springer, Heidelberg,
May 2003, pp. 255–271 (cit. on pp. 33, 59, 84).

[CJZ11] John Callas, Alan Johnston, and Philip Zimmermann. ZRTP: Media Path Key Agreement
for Unicast Secure RTP. IETF web site. Apr. 2011. Link. (Cit. on p. 33).

[CK01a] Ran Canetti and Hugo Krawczyk. Analysis of Key-Exchange Protocols and Their Use
for Building Secure Channels. Cryptology ePrint Archive, Report 2001/040. https:
//eprint.iacr.org/2001/040. 2001 (cit. on p. 38).

[CK01b] Ran Canetti and Hugo Krawczyk. Analysis of Key-Exchange Protocols and Their Use
for Building Secure Channels. In: EUROCRYPT 2001. Ed. by Birgit P�tzmann. Vol. 2045.
LNCS. Springer, Heidelberg, May 2001, pp. 453–474 (cit. on pp. 34, 35, 38, 72).

https://tools.ietf.org/html/rfc6189#page-107
https://eprint.iacr.org/2001/040
https://eprint.iacr.org/2001/040

156 Bibliography

[CK02] Ran Canetti and Hugo Krawczyk. Universally Composable Notions of Key Exchange
and Secure Channels. In: EUROCRYPT 2002. Ed. by Lars R. Knudsen. Vol. 2332. LNCS.
Springer, Heidelberg, Apr. 2002, pp. 337–351 (cit. on p. 38).

[CPZ20] Melissa Chase, Trevor Perrin, and Greg Zaverucha. The Signal Private Group System
and Anonymous Credentials Supporting E�cient Veri�able Encryption. In: ACM CCS
2020. Ed. by Jay Ligatti, Xinming Ou, Jonathan Katz, and Giovanni Vigna. ACM Press,
Nov. 2020, pp. 1445–1459 (cit. on pp. 55, 126).

[CS97] Jan Camenish and Markus Stadler. Proof Systems for General Statements about Discrete
Logarithms. Technical Report No.260. Dept. of Computer Science, ETH Zurich, 1997.
Link. (Cit. on p. 45).

[CS98] Ronald Cramer and Victor Shoup. A Practical Public Key Cryptosystem Provably Secure
Against Adaptive Chosen Ciphertext Attack. In: CRYPTO’98. Ed. by Hugo Krawczyk.
Vol. 1462. LNCS. Springer, Heidelberg, Aug. 1998, pp. 13–25 (cit. on pp. 24, 26).

[Dam10] Ivan Damgård. On Sigma Protocols. lecture. Aarhus University, 2010. Link. (Cit. on
p. 45).

[DDO+16] Alexander De Luca, Sauvik Das, Martin Ortlieb, Iulia Ion, and Ben Laurie. Expert
and Non-Expert Attitudes towards (Secure) Instant Messaging. In: Proceedings of the
Twelfth USENIX Conference on Usable Privacy and Security. SOUPS ’16. Denver, CO,
USA: USENIX Association, 2016, pp. 147–157. isbn: 9781931971317 (cit. on pp. vi, 6).

[Del07] Cécile Delerablée. Identity-Based Broadcast Encryption with Constant Size Ciphertexts
and Private Keys. In: ASIACRYPT 2007. Ed. by Kaoru Kurosawa. Vol. 4833. LNCS.
Springer, Heidelberg, Dec. 2007, pp. 200–215 (cit. on p. 27).

[DF03] Yevgeniy Dodis and Nelly Fazio. Public Key Trace and Revoke Scheme Secure against
Adaptive Chosen Ciphertext Attack. In: PKC 2003. Ed. by Yvo Desmedt. Vol. 2567. LNCS.
Springer, Heidelberg, Jan. 2003, pp. 100–115 (cit. on p. 27).

[DFGS20] Benjamin Dowling, Marc Fischlin, Felix Günther, and Douglas Stebila. A Crypto-
graphic Analysis of the TLS 1.3 Handshake Protocol. Cryptology ePrint Archive, Report
2020/1044. https://eprint.iacr.org/2020/1044. 2020 (cit. on p. 40).

[DGGL21] Antonio Dimeo, Felix Gohla, Daniel Goßen, and Niko Lockenvitz. SoK: Multi-Device
Secure Instant Messaging. Cryptology ePrint Archive, Report 2021/498. https://
eprint.iacr.org/2021/498. 2021 (cit. on p. 84).

[DGK05] Mario Di Raimondo, Rosario Gennaro, and Hugo Krawczyk. Secure O�-the-Record
Messaging. In: Proceedings of the 2005 ACM Workshop on Privacy in the Electronic
Society. WPES ’05. Alexandria, VA, USA: Association for Computing Machinery, 2005,
pp. 81–89. Link. (Cit. on p. 60).

[DGK06] Mario Di Raimondo, Rosario Gennaro, and Hugo Krawczyk. Deniable authentication
and key exchange. In: ACM CCS 2006. Ed. by Ari Juels, Rebecca N. Wright, and Sabrina
De Capitani di Vimercati. ACM Press, Oct. 2006, pp. 400–409 (cit. on p. 69).

[DJB] D.J.Bernstein. A State-of-the-art Di�e Hellman Function. Link. (Cit. on p. 127).
[DNDS19] Sergej Dechand, Alena Naiakshina, Anastasia Danilova, and Matthew Smith. In En-

cryption We Don’t Trust: The E�ect of End-to-End Encryption to the Masses on User
Perception. In: 2019 IEEE European Symposium on Security and Privacy (EuroSP). 2019,
pp. 401–415 (cit. on pp. v, 5).

ftp://ftp.inf.ethz.ch/pub/publications/tech-reports/
https://www.cs.au.dk/~ivan/Sigma.pdf
https://eprint.iacr.org/2020/1044
https://eprint.iacr.org/2021/498
https://eprint.iacr.org/2021/498
https://doi.org/10.1145/1102199.1102216
https://cr.yp.to/ecdh.html

Bibliography 157

[DPP07] Cécile Delerablée, Pascal Paillier, and David Pointcheval. Fully Collusion Secure Dy-
namic Broadcast Encryption with Constant-Size Ciphertexts or Decryption Keys. In:
PAIRING 2007. Ed. by Tsuyoshi Takagi, Tatsuaki Okamoto, Eiji Okamoto, and Takeshi
Okamoto. Vol. 4575. LNCS. Springer, Heidelberg, July 2007, pp. 39–59 (cit. on pp. 27,
28).

[DV18] F. Betül Durak and Serge Vaudenay. Bidirectional Asynchronous Ratcheted Key Agree-
ment with Linear Complexity. Cryptology ePrint Archive, Report 2018/889. https:
//eprint.iacr.org/2018/889. 2018 (cit. on pp. 71, 80).

[DV19] F. Betül Durak and Serge Vaudenay. Bidirectional Asynchronous Ratcheted Key Agree-
ment with Linear Complexity. In: IWSEC 19. Ed. by Nuttapong Attrapadung and Takeshi
Yagi. Vol. 11689. LNCS. Springer, Heidelberg, Aug. 2019, pp. 343–362 (cit. on pp. viii, 7,
71, 73–75, 77, 79, 80).

[DVW92] Whit�eld Di�e, Paul C Van Oorschot, and Michael J. Wiener. Authentication and
authenticated key exchanges. In: Proc. Designs, Codes and Cryptography. Ed. by editor.
June 1992, pp. 107–125. Link. (Cit. on p. 33).

[EI04] Institute of Electrical and Electronics Engineers (IEEE). Standard Speci�cations for
Public Key Cryptography - Amendment 1: Additional Techniques - Std. 1363a. 2004. Link.
(Cit. on p. 30).

[ElG84] Taher ElGamal. A Public Key Cryptosystem and a Signature Scheme Based on Discrete
Logarithms. In: CRYPTO’84. Ed. by G. R. Blakley and David Chaum. Vol. 196. LNCS.
Springer, Heidelberg, Aug. 1984, pp. 10–18 (cit. on p. 26).

[Fac17] Facebook. Messenger Secret Conversation, Technical Whitepaper, Version 2.0. May 2017
(cit. on p. 84).

[FG14] Marc Fischlin and Felix Günther. Multi-Stage Key Exchange and the Case of Google’s
QUIC Protocol. In: ACM CCS 2014. Ed. by Gail-Joon Ahn, Moti Yung, and Ninghui Li.
ACM Press, Nov. 2014, pp. 1193–1204 (cit. on pp. 39, 69).

[FMB+16] Tilman Frosch, Christian Mainka, Christoph Bader, Florian Bergsma, Jörg Schwenk,
and Thorsten Holz. How Secure is TextSecure? In: 2016 IEEE European Symposium on
Security and Privacy (EuroS P). 2016, pp. 457–472 (cit. on pp. 63, 66, 68).

[FN94] Amos Fiat and Moni Naor. Broadcast Encryption. In: CRYPTO’93. Ed. by Douglas R.
Stinson. Vol. 773. LNCS. Springer, Heidelberg, Aug. 1994, pp. 480–491 (cit. on p. 27).

[FOPS04] Eiichiro Fujisaki, Tatsuaki Okamoto, David Pointcheval, and Jacques Stern. “RSA-
OAEP Is Secure under the RSA Assumption”. In: Journal of Cryptology 17.2 (Mar. 2004),
pp. 81–104 (cit. on p. 24).

[FS87] Amos Fiat and Adi Shamir. How to Prove Yourself: Practical Solutions to Identi�cation
and Signature Problems. In: CRYPTO’86. Ed. by Andrew M. Odlyzko. Vol. 263. LNCS.
Springer, Heidelberg, Aug. 1987, pp. 186–194 (cit. on pp. 41, 46).

[GGM84] Oded Goldreich, Sha� Goldwasser, and Silvio Micali. On the Cryptographic Applications
of Random Functions. In: CRYPTO’84. Ed. by G. R. Blakley and David Chaum. Vol. 196.
LNCS. Springer, Heidelberg, Aug. 1984, pp. 276–288 (cit. on p. 41).

https://eprint.iacr.org/2018/889
https://eprint.iacr.org/2018/889
https://doi.org/10.1007/BF00124891
https://standards.ieee.org/standard/1363a-2004.html

158 Bibliography

[GGPR13] Rosario Gennaro, Craig Gentry, Bryan Parno, and Mariana Raykova. Quadratic Span
Programs and Succinct NIZKs without PCPs. In: EUROCRYPT 2013. Ed. by Thomas
Johansson and Phong Q. Nguyen. Vol. 7881. LNCS. Springer, Heidelberg, May 2013,
pp. 626–645 (cit. on p. 47).

[GHS+21] Yaron Gvili, Julie Ha, Sarah Sche�er, Mayank Varia, Ziling Yang, and Xinyuan Zhang.
TurboIKOS: Improved Non-interactive Zero Knowledge and Post-quantum Signatures.
In: Applied Cryptography and Network Security - 19th International Conference, ACNS
2021, Kamakura, Japan, June 21-24, 2021, Proceedings, Part II. Ed. by Kazue Sako and
Nils Ole Tippenhauer. Vol. 12727. Lecture Notes in Computer Science. Springer, 2021,
pp. 365–395. Link. (Cit. on p. 51).

[GM05] Simson L. Gar�nkel and Robert C. Miller. Johnny 2: A User Test of Key Continuity
Management with S/MIME and Outlook Express. In: Proceedings of the 2005 Symposium
on Usable Privacy and Security. SOUPS ’05. Pittsburgh, Pennsylvania, USA: Association
for Computing Machinery, 2005, pp. 13–24. isbn: 1595931783. Link. (Cit. on p. 5).

[GM15] Matthew D. Green and Ian Miers. Forward Secure Asynchronous Messaging from Punc-
turable Encryption. In: 2015 IEEE Symposium on Security and Privacy. IEEE Computer
Society Press, May 2015, pp. 305–320 (cit. on pp. 59, 84).

[GM82] Sha� Goldwasser and Silvio Micali. Probabilistic Encryption and How to Play Mental
Poker Keeping Secret All Partial Information. In: 14th ACM STOC. ACM Press, May
1982, pp. 365–377 (cit. on p. 21).

[GM84] Sha� Goldwasser and Silvio Micali. “Probabilistic encryption”. In: Journal of Computer
and System Sciences 28.2 (1984), pp. 270–299. issn: 0022-0000. Link. (Cit. on p. 21).

[GMO16] Irene Giacomelli, Jesper Madsen, and Claudio Orlandi. ZKBoo: Faster Zero-Knowledge
for Boolean Circuits. In: USENIX Security 2016. Ed. by Thorsten Holz and Stefan Savage.
USENIX Association, Aug. 2016, pp. 1069–1083 (cit. on pp. 49, 145).

[GMR89] Sha� Goldwasser, Silvio Micali, and Charles Racko�. “The Knowledge Complexity of
Interactive Proof Systems”. In: SIAM J. Comput. 18 (1989), pp. 186–208 (cit. on p. 44).

[GOR11] Vipul Goyal, Adam O’Neill, and Vanishree Rao. Correlated-Input Secure Hash Functions.
In: TCC 2011. Ed. by Yuval Ishai. Vol. 6597. LNCS. Springer, Heidelberg, Mar. 2011,
pp. 182–200 (cit. on pp. 42, 43).

[GS02] Craig Gentry and Alice Silverberg. Hierarchical ID-Based Cryptography. In: ASI-
ACRYPT 2002. Ed. by Yuliang Zheng. Vol. 2501. LNCS. Springer, Heidelberg, Dec.
2002, pp. 548–566 (cit. on p. 75).

[GSV21] Yaron Gvili, Sarah Sche�er, and Mayank Varia. BooLigero: Improved Sublinear Zero
Knowledge Proofs for Boolean Circuits. Cryptology ePrint Archive, Report 2021/121.
https://eprint.iacr.org/2021/121. 2021 (cit. on p. 48).

[HKKP21] Keitaro Hashimoto, Shuichi Katsumata, Kris Kwiatkowski, and Thomas Prest. An
E�cient and Generic Construction for Signal’s Handshake (X3DH): Post-Quantum, State
Leakage Secure, and Deniable. In: Public-Key Cryptography – PKC 2021. Ed. by Juan A.
Garay. Cham: Springer International Publishing, 2021, pp. 410–440. isbn: 978-3-030-
75248-4 (cit. on p. 64).

https://doi.org/10.1007/978-3-030-78375-4%5C_15
https://doi.org/10.1145/1073001.1073003
https://www.sciencedirect.com/science/article/pii/0022000084900709
https://eprint.iacr.org/2021/121

Bibliography 159

[HMS03] Dennis Hofheinz, Jörn Müller-Quade, and Rainer Steinwandt. On Modeling IND-
CCA Security in Cryptographic Protocols. Cryptology ePrint Archive, Report 2003/024.
https://eprint.iacr.org/2003/024. 2003 (cit. on p. 23).

[HVLT19] Mike Hamburg, Henri de Valence, Isis Lovecruft, and Arcieri Tony. The Ristretto group.
2019. Link. (Cit. on p. 55).

[IKNP03] Yuval Ishai, Joe Kilian, Kobbi Nissim, and Erez Petrank. Extending Oblivious Transfers
E�ciently. In: CRYPTO 2003. Ed. by Dan Boneh. Vol. 2729. LNCS. Springer, Heidelberg,
Aug. 2003, pp. 145–161 (cit. on p. 42).

[IKOS07] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sahai. Zero-knowledge from
secure multiparty computation. In: 39th ACM STOC. Ed. by David S. Johnson and Uriel
Feige. ACM Press, June 2007, pp. 21–30 (cit. on p. 49).

[IR01] Gene Itkis and Leonid Reyzin. Forward-Secure Signatures with Optimal Signing and
Verifying. In: CRYPTO 2001. Ed. by Joe Kilian. Vol. 2139. LNCS. Springer, Heidelberg,
Aug. 2001, pp. 332–354 (cit. on p. 32).

[JKO13] Marek Jawurek, Florian Kerschbaum, and Claudio Orlandi. Zero-knowledge using
garbled circuits: how to prove non-algebraic statements e�ciently. In: ACM CCS 2013.
Ed. by Ahmad-Reza Sadeghi, Virgil D. Gligor, and Moti Yung. ACM Press, Nov. 2013,
pp. 955–966 (cit. on p. 46).

[JKRS20] Tibor Jager, Eike Kiltz, Doreen Riepel, and Sven Schäge. Tightly-Secure Authenticated
Key Exchange, Revisited. Cryptology ePrint Archive, Report 2020/1279. https://
eprint.iacr.org/2020/1279. 2020 (cit. on p. 68).

[JKSS12] Tibor Jager, Florian Kohlar, Sven Schäge, and Jörg Schwenk. On the Security of TLS-
DHE in the Standard Model. In: CRYPTO 2012. Ed. by Reihaneh Safavi-Naini and Ran
Canetti. Vol. 7417. LNCS. Springer, Heidelberg, Aug. 2012, pp. 273–293 (cit. on p. 39).

[JMM18] Daniel Jost, Ueli Maurer, and Marta Mularczyk. E�cient Ratcheting: Almost-Optimal
Guarantees for Secure Messaging. Cryptology ePrint Archive, Report 2018/954. https:
//eprint.iacr.org/2018/954. 2018 (cit. on p. 71).

[JMM19] Daniel Jost, Ueli Maurer, and Marta Mularczyk. E�cient Ratcheting: Almost-Optimal
Guarantees for Secure Messaging. In: EUROCRYPT 2019, Part I. Ed. by Yuval Ishai and
Vincent Rijmen. Vol. 11476. LNCS. Springer, Heidelberg, May 2019, pp. 159–188 (cit. on
pp. viii, 7, 71–73, 77, 79, 80).

[JS18a] Joseph Jaeger and Igors Stepanovs. Optimal Channel Security Against Fine-Grained
State Compromise: The Safety of Messaging. Cryptology ePrint Archive, Report 2018/553.
https://eprint.iacr.org/2018/553. 2018 (cit. on p. 71).

[JS18b] Joseph Jaeger and Igors Stepanovs. Optimal Channel Security Against Fine-Grained
State Compromise: The Safety of Messaging. In: CRYPTO 2018, Part I. Ed. by Hovav
Shacham and Alexandra Boldyreva. Vol. 10991. LNCS. Springer, Heidelberg, Aug. 2018,
pp. 33–62 (cit. on pp. viii, 7, 71–75, 77, 79, 80).

[KBB17] Nadim Kobeissi, Karthikeyan Bhargavan, and Bruno Blanchet. Automated Veri�cation
for Secure Messaging Protocols and Their Implementations: A Symbolic and Computa-
tional Approach. In: 2017 IEEE European Symposium on Security and Privacy (EuroSP).
2017, pp. 435–450 (cit. on p. 32).

https://eprint.iacr.org/2003/024
https://ristretto.group/
https://eprint.iacr.org/2020/1279
https://eprint.iacr.org/2020/1279
https://eprint.iacr.org/2018/954
https://eprint.iacr.org/2018/954
https://eprint.iacr.org/2018/553

160 Bibliography

[Kil92] Joe Kilian.ANote on E�cient Zero-Knowledge Proofs and Arguments (Extended Abstract).
In: 24th ACM STOC. ACM Press, May 1992, pp. 723–732 (cit. on p. 47).

[KKW18] Jonathan Katz, Vladimir Kolesnikov, and Xiao Wang. Improved Non-Interactive Zero
Knowledge with Applications to Post-Quantum Signatures. In: ACM CCS 2018. Ed. by
David Lie, Mohammad Mannan, Michael Backes, and XiaoFeng Wang. ACM Press,
Oct. 2018, pp. 525–537 (cit. on pp. 51, 144, 145).

[KR03] Anton Kozlov and Leonid Reyzin. Forward-Secure Signatures with Fast Key Update.
In: SCN 02. Ed. by Stelvio Cimato, Clemente Galdi, and Giuseppe Persiano. Vol. 2576.
LNCS. Springer, Heidelberg, Sept. 2003, pp. 241–256 (cit. on p. 32).

[Kra00] Hugo Krawczyk. Simple Forward-Secure Signatures From Any Signature Scheme. In:
ACM CCS 2000. Ed. by Dimitris Gritzalis, Sushil Jajodia, and Pierangela Samarati. ACM
Press, Nov. 2000, pp. 108–115 (cit. on p. 32).

[Kra05] Hugo Krawczyk.HMQV: AHigh-Performance Secure Di�e-Hellman Protocol. In:CRYPTO 2005.
Ed. by Victor Shoup. Vol. 3621. LNCS. Springer, Heidelberg, Aug. 2005, pp. 546–566
(cit. on pp. 32, 35, 37).

[Kra10] Hugo Krawczyk. Cryptographic Extraction and Key Derivation: The HKDF Scheme. In:
CRYPTO 2010. Ed. by Tal Rabin. Vol. 6223. LNCS. Springer, Heidelberg, Aug. 2010,
pp. 631–648 (cit. on pp. 30, 31).

[Kur02] Kaoru Kurosawa. Multi-recipient Public-Key Encryption with Shortened Ciphertext.
In: PKC 2002. Ed. by David Naccache and Pascal Paillier. Vol. 2274. LNCS. Springer,
Heidelberg, Feb. 2002, pp. 48–63 (cit. on p. 26).

[LLM07] Brian A. LaMacchia, Kristin Lauter, and Anton Mityagin. Stronger Security of Authen-
ticated Key Exchange. In: ProvSec 2007. Ed. by Willy Susilo, Joseph K. Liu, and Yi Mu.
Vol. 4784. LNCS. Springer, Heidelberg, Nov. 2007, pp. 1–16 (cit. on pp. 35, 66).

[MBB+15] Marcela S. Melara, Aaron Blankstein, Joseph Bonneau, Edward W. Felten, and Michael
J. Freedman. CONIKS: Bringing Key Transparency to End Users. In: USENIX Security 2015.
Ed. by Jaeyeon Jung and Thorsten Holz. USENIX Association, Aug. 2015, pp. 383–398
(cit. on p. 70).

[Mic94] Silvio Micali. CS Proofs (Extended Abstracts). In: 35th FOCS. IEEE Computer Society
Press, Nov. 1994, pp. 436–453 (cit. on p. 47).

[MMM02] Tal Malkin, Daniele Micciancio, and Sara K. Miner. E�cient Generic Forward-Secure
Signatures with an Unbounded Number Of Time Periods. In: EUROCRYPT 2002. Ed. by
Lars R. Knudsen. Vol. 2332. LNCS. Springer, Heidelberg, Apr. 2002, pp. 400–417 (cit. on
p. 32).

[MNPV99] David M’Raïhi, David Naccache, David Pointcheval, and Serge Vaudenay. Compu-
tational Alternatives to Random Number Generators. In: SAC 1998. Ed. by Sta�ord E.
Tavares and Henk Meijer. Vol. 1556. LNCS. Springer, Heidelberg, Aug. 1999, pp. 72–80
(cit. on p. 41).

[MOV96] Alfred J. Menezes, Paul C van Oorshot, and Scott A. Vanstone. Handbook of Applied
Cryptography. CRC Press, 1996. Chap. 12, p. 496. isbn: 0-8493-8523-7. Link. (Cit. on
p. 32).

[MP13] Moxie Marlinspike and Trevor Perrin. Advanced Cryptographic Ratcheting. Signal web
site. Nov. 2013. Link. (Cit. on p. 33).

https://cacr.uwaterloo.ca/hac/
https://signal.org/blog/advanced-ratcheting

Bibliography 161

[MP16a] Moxie Marlinspike and Trevor Perrin. The Double Ratchet Algorithm. White paper.
Signal’s web site, 2016. Link. (Cit. on pp. 7, 61, 63).

[MP16b] Moxie Marlinspike and Trevor Perrin. The X3DH Key Agreement Protocol. White paper.
Signal’s web site, 2016. Link. (Cit. on pp. 7, 61).

[MP17] Moxie Marlinspike and Trevor Perrin. “The Sesame Algorithm: Session Management
for Asynchronous Message Encryption”. In: Signal’s web site (Apr. 2017) (cit. on pp. 84,
87).

[MU10] Alfred Menezes and Berkant Ustaoglu. “On Reusing Ephemeral Keys in Di�e-Hellman
Key Agreement Protocols”. In: Int. J. Appl. Cryptol. 2.2 (2010), pp. 154–158. issn:
1753-0563. Link. (Cit. on p. 61).

[Nit19] Anca Nitulescu. A tale of SNARKs: quantum resilience, knowledge extractability and
data privacy. thesis. Université PSL - ENS, 2019. Link. (Cit. on p. 48).

[NY90] Moni Naor and Moti Yung. Public-key Cryptosystems Provably Secure against Chosen
Ciphertext Attacks. In: 22nd ACM STOC. ACM Press, May 1990, pp. 427–437 (cit. on
p. 23).

[Oka93] Tatsuaki Okamoto. Provably Secure and Practical Identi�cation Schemes and Corre-
sponding Signature Schemes. In: CRYPTO’92. Ed. by Ernest F. Brickell. Vol. 740. LNCS.
Springer, Heidelberg, Aug. 1993, pp. 31–53 (cit. on p. 42).

[OP01] Tatsuaki Okamoto and David Pointcheval. The Gap-Problems: A New Class of Problems
for the Security of Cryptographic Schemes. In: PKC 2001. Ed. by Kwangjo Kim. Vol. 1992.
LNCS. Springer, Heidelberg, Feb. 2001, pp. 104–118 (cit. on p. 19).

[Ped92] Torben P. Pedersen. Non-Interactive and Information-Theoretic Secure Veri�able Secret
Sharing. In: CRYPTO’91. Ed. by Joan Feigenbaum. Vol. 576. LNCS. Springer, Heidelberg,
Aug. 1992, pp. 129–140 (cit. on p. 52).

[PHGR13] Bryan Parno, Jon Howell, Craig Gentry, and Mariana Raykova. Pinocchio: Nearly
Practical Veri�able Computation. In: 2013 IEEE Symposium on Security and Privacy.
IEEE Computer Society Press, May 2013, pp. 238–252 (cit. on pp. 47, 48, 145).

[Poi02] David Pointcheval. Le chi�rement asymétrique et la sécurité prouvée. HDR thesis. ENS,
2002. Link. (Cit. on p. 15).

[Pol78] J. Pollard. “Monte Carlo methods for index computation (mod p)”. In: Mathematics of
Computation 32 (1978), pp. 918–924 (cit. on p. 19).

[PPS11] Duong Hieu Phan, David Pointcheval, and Mario Stre�er. Security Notions for Broadcast
Encryption. In:ACNS 11. Ed. by Javier Lopez and Gene Tsudik. Vol. 6715. LNCS. Springer,
Heidelberg, June 2011, pp. 377–394 (cit. on p. 27).

[PPS12] Duong Hieu Phan, David Pointcheval, and Mario Stre�er. Decentralized Dynamic
Broadcast Encryption. In: SCN 12. Ed. by Ivan Visconti and Roberto De Prisco. Vol. 7485.
LNCS. Springer, Heidelberg, Sept. 2012, pp. 166–183 (cit. on pp. 27, 91, 98).

[PR18a] Bertram Poettering and Paul Rösler. Asynchronous ratcheted key exchange. Cryptology
ePrint Archive, Report 2018/296. https://eprint.iacr.org/2018/296. 2018
(cit. on pp. 29, 30, 71).

[PR18b] Bertram Poettering and Paul Rösler. Towards Bidirectional Ratcheted Key Exchange.
In: CRYPTO 2018, Part I. Ed. by Hovav Shacham and Alexandra Boldyreva. Vol. 10991.
LNCS. Springer, Heidelberg, Aug. 2018, pp. 3–32 (cit. on pp. viii, 7, 71–80).

https://signal.org/docs/specifications/doubleratchet/
https://signal.org/docs/specifications/x3dh/
https://doi.org/10.1504/IJACT.2010.038308
https://www.di.ens.fr/~nitulesc/files/Anca-these.pdf
https://www.di.ens.fr/david.pointcheval/Documents/Reports/2002_HDRThesis.pdf
https://eprint.iacr.org/2018/296

162 Bibliography

[PS96a] David Pointcheval and Jacques Stern. Provably Secure Blind Signature Schemes. In: ASI-
ACRYPT’96. Ed. by Kwangjo Kim and Tsutomu Matsumoto. Vol. 1163. LNCS. Springer,
Heidelberg, Nov. 1996, pp. 252–265 (cit. on p. 46).

[PS96b] David Pointcheval and Jacques Stern. Security Proofs for Signature Schemes. In: EURO-
CRYPT’96. Ed. by Ueli M. Maurer. Vol. 1070. LNCS. Springer, Heidelberg, May 1996,
pp. 387–398 (cit. on p. 46).

[Ram99] Blake Ramsdell. S/MIME Version 3 Message Speci�cation. RFC. IETF, June 1999. Link.
(Cit. on p. 59).

[RBBK01] Phillip Rogaway, Mihir Bellare, John Black, and Ted Krovetz. OCB: A Block-Cipher
Mode of Operation for E�cient Authenticated Encryption. In: ACM CCS 2001. Ed. by
Michael K. Reiter and Pierangela Samarati. ACM Press, Nov. 2001, pp. 196–205 (cit. on
p. 30).

[RCF+20] Armando Ruggeri, Antonio Celesti, Maria Fazio, Antonino Galletta, and Massimo
Villari. BCB-X3DH: a Blockchain Based Improved Version of the Extended Triple Di�e-
Hellman Protocol. In: 2020 Second IEEE International Conference on Trust, Privacy and
Security in Intelligent Systems and Applications (TPS-ISA). 2020, pp. 73–78 (cit. on p. 70).

[Rog02] Phillip Rogaway. Authenticated-Encryption With Associated-Data. In: ACM CCS 2002.
Ed. by Vijayalakshmi Atluri. ACM Press, Nov. 2002, pp. 98–107 (cit. on p. 30).

[RSA78] R. L. Rivest, A. Shamir, and L. Adleman. “A Method for Obtaining Digital Signatures
and Public-Key Cryptosystems”. In: Commun. ACM 21.2 (1978), pp. 120–126. issn:
0001-0782. Link. (Cit. on p. 24).

[RST19] Blake Ramsdell, Jim Schaad, and Sean Turner. Secure/Multipurpose Internet Mail Exten-
sions (S/MIME) Version 4.0 Message Speci�cation. RFC. IETF, Apr. 2019. Link. (Cit. on
p. 59).

[Sha84] Adi Shamir. Identity-Based Cryptosystems and Signature Schemes. In: CRYPTO’84. Ed.
by G. R. Blakley and David Chaum. Vol. 196. LNCS. Springer, Heidelberg, Aug. 1984,
pp. 47–53 (cit. on p. 70).

[Sho01] Victor Shoup. A Proposal for an ISO Standard for Public Key Encryption. Cryptology
ePrint Archive, Report 2001/112. https://eprint.iacr.org/2001/112. 2001
(cit. on pp. 24, 30).

[Sho99] Victor Shoup. On Formal Models for Secure Key Exchange. Cryptology ePrint Archive,
Report 1999/012. https://eprint.iacr.org/1999/012. 1999 (cit. on p. 38).

[Sma05] Nigel P. Smart. E�cient Key Encapsulation to Multiple Parties. In: SCN 04. Ed. by Carlo
Blundo and Stelvio Cimato. Vol. 3352. LNCS. Springer, Heidelberg, Sept. 2005, pp. 208–
219 (cit. on p. 26).

[Sta06] International Organization for Standardization/International Electrotechnical Com-
mission (ISO/IEC). Information technology - Security techniques - Encryption algorithms
- Part 2: Asymmetric ciphers - 18033-2. 2006. Link. (Cit. on p. 30).

[Sta96] Markus Stadler. Publicly Veri�able Secret Sharing. In: EUROCRYPT’96. Ed. by Ueli M.
Maurer. Vol. 1070. LNCS. Springer, Heidelberg, May 1996, pp. 190–199 (cit. on p. 54).

[TD17] Alin Tomescu and Srinivas Devadas. Catena: E�cient Non-equivocation via Bitcoin.
In: 2017 IEEE Symposium on Security and Privacy. IEEE Computer Society Press, May
2017, pp. 393–409 (cit. on p. 70).

https://tools.ietf.org/html/rfc2633
https://doi.org/10.1145/359340.359342
https://tools.ietf.org/html/rfc8551
https://eprint.iacr.org/2001/112
https://eprint.iacr.org/1999/012
https://www.iso.org/standard/37971.html

Bibliography 163

[TT01] Wen-Guey Tzeng and Zhi-Jia Tzeng. A Public-Key Traitor Tracing Scheme with Re-
vocation Using Dynamic Shares. In: PKC 2001. Ed. by Kwangjo Kim. Vol. 1992. LNCS.
Springer, Heidelberg, Feb. 2001, pp. 207–224 (cit. on p. 27).

[Tuc20] Ida Tucker. Chi�rement fonctionnel et signatures distribuées fondés sur des fonctions de
hachage à projection, l’apport des groupes de classe. 2020LYSEN054. PhD thesis. 2020.
Link. (Cit. on p. 148).

[UDB+15] Nik Unger, Sergej Dechand, Joseph Bonneau, Sascha Fahl, Henning Perl, Ian Goldberg,
and Matthew Smith. SoK: Secure Messaging. In: 2015 IEEE Symposium on Security and
Privacy. IEEE Computer Society Press, May 2015, pp. 232–249 (cit. on pp. v, 5, 59, 70,
84).

[UG15] Nik Unger and Ian Goldberg. Deniable Key Exchanges for Secure Messaging. In: ACM
CCS 2015. Ed. by Indrajit Ray, Ninghui Li, and Christopher Kruegel. ACM Press, Oct.
2015, pp. 1211–1223 (cit. on p. 69).

[VGIK20] Nihal Vatandas, Rosario Gennaro, Bertrand Ithurburn, and Hugo Krawczyk. On the
Cryptographic Deniability of the Signal Protocol. In: ACNS 20, Part II. Ed. by Mauro
Conti, Jianying Zhou, Emiliano Casalicchio, and Angelo Spognardi. Vol. 12147. LNCS.
Springer, Heidelberg, Oct. 2020, pp. 188–209 (cit. on p. 69).

[WBPE21] Jan Wichelmann, Sebastian Berndt, Claudius Pott, and Thomas Eisenbarth. Help,
my Signal has bad Device! Breaking the Signal Messenger’s Post-Compromise Security
through a Malicious Device. Cryptology ePrint Archive, Report 2021/626. https:
//eprint.iacr.org/2021/626. 2021 (cit. on p. 89).

[WT99] Alma Whitten and J. Doug Tygar. Why Johnny Can’t Encrypt: A Usability Evaluation
of PGP 5.0. In: USENIX Security 99. Ed. by G. Win�eld Treese. USENIX Association,
Aug. 1999 (cit. on pp. iv, 4).

[Yao82] Andrew Chi-Chih Yao. Protocols for Secure Computations (Extended Abstract). In: 23rd
FOCS. IEEE Computer Society Press, Nov. 1982, pp. 160–164 (cit. on p. 46).

[YV20] Hailun Yan and Serge Vaudenay. Symmetric Asynchronous Ratcheted Communica-
tion with Associated Data. In: IWSEC 20. Ed. by Kazumaro Aoki and Akira Kanaoka.
Vol. 12231. LNCS. Springer, Heidelberg, Sept. 2020, pp. 184–204 (cit. on p. 80).

[Zim95] Philip R. Zimmermann. The O�cial PGP User’s Guide. Cambridge, MA, USA: MIT
Press, 1995. isbn: 0262740176 (cit. on p. 59).

http://www.theses.fr/2020LYSEN054/document
https://eprint.iacr.org/2021/626
https://eprint.iacr.org/2021/626

List of Figures

2.1 The Decisional Di�e-Hellman security experiment. 19
2.2 IND-CPA and IND-CCA security experiments. 22
2.3 ror-CPA and ror-CCA security experiments. 22
2.4 The n-CCA security experiment. 25
2.5 EUF and SUF security experiments. 28
2.6 The multi-instances SUFsecurity experiment. 29
2.7 KDF security experiment. 31
2.8 The Fiat Shamir transformation of a Σ protocol. 46
2.9 A toy example of QAP encoding an arithmetic circuit. 48
2.10 The ZKBoo sigma protocol built from a (2,3)-decomposition of a function. 50
2.11 Proof of knowledge of opening of Pedersen commitment 53
2.12 Proof of knowledge of a linear relation between two Pedersen Commitments 53
2.13 A simple version of veri�able encryption scheme 55

3.1 The OTR Di�e Hellman based key refreshing mechanism. 60
3.2 Sending and authenticating messages in OTR. 60
3.3 The X3DH asynchronous authenticated key exchange. 62
3.4 The key schedule of Signal. 64
3.5 Overview of the Signal protocol. 65
3.6 The TextSecure Key derivation function considered in [FMB+16]. 66
3.7 The stages in Signal. 67
3.8 A simple view of the updating process. 78
3.9 Positioning of the di�erent proposition in terms of security. 79

4.1 Facebook’s senders key version of the multi-device. 85
4.2 Sesame multi-device protocol. 85
4.3 Our Multi-Device Dynamic Ratcheted Key Exchange protocol. 86
4.4 Our Multi-Device Signal protocol. 88
4.5 Chains of matching sessions. 93
4.6 Ratcheted Dynamic Multicast Indistinguishability experiment. 95
4.7 Our RDM protocol. 97
4.8 A Ratcheted Dynamic Multicast construction. 99
4.9 The Multi-Device Ratcheted Key Exchange Model. 114
4.10 The ExtraRatchet and Update procedures. 117
4.11 The Multi-Device Signal construction MDSig. 122

5.1 A view of the MLS tree. 127

5.2 The update process in MLS. 128
5.3 The ComOutZK protocol. 134
5.4 The CopraZK protocol. The reconstruction means the veri�cation by reconstruction

of the challenge in the Fiat-Shamir version. 137
5.5 The 1-varRKA-wPRF security experiment. 138
5.6 The 1-varCI-ow security experiment. 139
5.7 Our protocol CopraZK+. 142

List of Tables

4.1 Results for a run of n = 1 000 exchanges. 120

5.1 E�ciency of the di�erent solutions for a circuit proof on committed input and output. 132
5.2 Running meantime of the Prover and the Verifier over 1 000 executions for 136

rounds. 144

List of Tables 167

Titre : Autour de la sécurité des messageries instantanées

Mot clés : Cryptographie, messageries instantanées sécurisées, échanges de clés à cliquet,

divulgation nulle

Résumé : Les applications de messagerie
instantanée sécurisée, telles WhatsApp ou Si-
gnal, sont devenues incontournables pour nos
communications quotidiennes. Elles apportent
une sécurité caractérisée notamment par le
chiffrement de bout en bout, la confidentialité
persistante ou encore la sécurité après com-
promission. Mais ces propriétés sont généra-
lement limitées aux communications deux à
deux. L’objectif des travaux présentés ici est
d’atteindre, pour les communications à par-
tir de plusieurs appareils et pour les com-
munications de groupe, un niveau de sécu-
rité optimal, comparable à celui existant pour
les échanges deux à deux. Dans un premier

temps, nous proposons une solution multi-
appareils basée sur l’échange de clé à cli-
quet utilisé dans Signal et largement déployé
dans d’autres applications. Dans un second
temps, nous nous intéressons au protocole
MLS (Messaging Layer Security) qui vise à of-
frir une messagerie de groupe sécurisée. La
sécurité de ce protocole repose notamment
sur la possibilité pour chaque utilisateur de
mettre à jour la clé de groupe. Telle que spé-
cifiée actuellement, cette fonctionnalité pré-
sente une faille. Nous proposons une solution
pour sécuriser le mécanisme de mise à jour,
en se basant notamment sur de nouveaux
protocoles de preuve à divulgation nulle.

Title: On the security of Instant Messaging

Keywords: Cryptography, Secure Messaging, Ratcheted Key Exchange, Zero-Knowledge

Abstract: Secure Instant Messaging applica-
tions (such as WhatsApp or Signal) have be-
come unavoidable means of communication in
our every day lives. These applications offer
desirable security features such as end-to-end
encryption, forward and post-compromise se-
curity. However, these properties are often lim-
ited to one-to-one communications. The pur-
pose of the work presented in this manuscript
is to reach, in the multi device or in the group
context, an optimal level of security, compa-
rable to the classical one-to-one communica-
tions. On the multi-device side, we propose
a Multi-Device Instant Messaging protocol,
based on the Ratcheted Key exchange used
in Signal and widely deployed in other appli-

cations. On the group side, we are interested
in the Messaging Layer Security (MLS) proto-
col, which aims at providing a secure group
messaging solution. The security of the proto-
col relies in particular on the possibility for any
user to update the group secrets. In its actual
design, a flaw appears in this updating pro-
cess. We propose a solution to secure the up-
date mechanism, using Zero-Knowledge (ZK)
as a building block. As a main contribution,
we provide two different ZK protocols to prove
knowledge of the input of a pseudo random
function implemented as a circuit, given an al-
gebraic commitment of the output and the in-
put.

	Remerciements
	Résumé en Français
	Pourquoi utilise-t-on Whatsapp ?
	Un cobaye nommé Johnny
	Petite balade dans la tête d'un utilisateur

	Mes contributions
	Un état de l'art sur les échanges de clés à cliquet
	Plusieurs appareils pour un utilisateur
	Sécuriser le (futur?) protocole de messagerie de groupe MLS

	Table of Contents
	Introduction
	Why Johnny uses Whatsapp ?
	Usability: come and meet Johnny
	A short trip in the user's mind

	Contributions
	A survey of the Ratcheted Key Exchange literature
	A multi device solution for Signal
	Improving the security of the -to be standardized- Messaging Layer Security group messaging protocol

	Organisation of this manuscript

	Notations, Definitions and Preliminaries
	Mathematical Notations
	Provable Security
	Complexity
	Game-based proofs

	Basic cryptographic primitives
	Encryption
	Multi-user, multi-recipient and broadcast encryption
	Message authentication codes
	Authenticated Encryption with associated data
	Key Derivation Function

	Key exchange protocols
	How secure is your session key ?
	A formal model
	Beyond AKE

	PRF, hash functions and random oracle
	The Random Oracle Model (ROM)
	Correlation Intractability
	Correlated input security
	Related Key Attacks

	Zero-Knowledge Proofs
	Sigma protocols
	The Fiat Shamir Transform
	ZK proofs on circuits
	Commitment schemes

	Verifiable encryption
	A formal definition
	The Camenish-Damgård verifiable encryption scheme

	Ratcheted Key Exchanges
	OTR and Signal : the practical protocols
	Off-the-Record: the birth
	Signal: the confirmation

	The security of Signal
	A segmented analysis
	The multi-stage model extended
	On other security properties of Signal

	From a protocol analysis to a formal cryptographic primitive
	The different propositions
	Formalizing a RKE model
	According on PFS...
	...but differing on PCS
	Signal like
	Additional properties
	Conclusion

	From Single to Multi-Device Instant Secure Messaging
	Existing solutions
	Our protocol overview
	A Ratcheted Dynamic Multicast as a new primitive.
	A RDM definition
	An appropriate security model
	Our construction.

	A Multi-Device Messaging protocol
	A formal MDIM
	A composed security model.
	Building over Signal

	A proof of concept implementation.
	Patches on the Signal implementation.

	From One-to-One to Group Instant Secure Messaging
	Messaging Layer Security
	A short MLS history
	The protocol description

	Securing MLS updates
	Server-checking in MLS.

	Zero Knowledge for a PRF on committed input and output
	State-of-the-art
	An overview of our protocols
	ComInOutZK: a bit wise solution
	CopraZK: a tag-based solution
	CopraZK+: toward a more efficient version of CopraZK

	Implementation results
	Improvements
	Comparison with SNARKs solutions

	Conclusion
	Summary of the Results
	Open Problems

	Bibliography
	List of Figures
	List of Tables

