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Abstract

Autonomous vehicle navigation in urban areas involves interactions with the dif-
ferent road-users or traffic-agents like cars, bicycles, and pedestrians, sharing the
same road network. The ability of autonomous vehicle to observe, understand
and predict the behaviour of these traffic-agents is very important to gain a good
situation understanding prior to deciding what manoeuvre to follow. While this is
achieved to various degrees of success using model-based or data-driven methods,
human drivers remain much more efficient at this task, instinctively inferring differ-
ent agent motions even in previously unseen and challenging situations. Moreover,
context plays a very important role that enables us humans to understand what
is being perceived and make finer predictions. The need to increase situational
awareness of autonomous vehicles, as well as for safety related driving assistance
functions, stimulates our goal to exploit contextual information to predict the
future trajectories of the observed traffic-agents in different conditions.

Over the past years, machine learning has proven to be efficient at solving
a wide variety of problems, particularly those associated to machine perception.
This thesis therefore focuses on developing machine learning models to exploit
contextual information in order to observe and learn the trajectories of different
interacting traffic-agents as perceived from an autonomous vehicle. While most
models proposed in the past rely on a single sensor and model-based techniques,
the current approaches often rely on the use of multiple sensors and process their
outputs using different machine learning methods. The approach proposed in
this thesis follows these trends by combining information from different sensors
to predict the trajectories of the observed traffic-agents using machine learning,
as well as integrating contextual information and interactions into the prediction
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process.

The thesis gradually builds a machine learning architecture based on a
theoretical formulation and experimentation. Our approach is based on an LSTM
encoder-decoder model that accepts data from different inputs. Trajectory ob-
servations from 3D LiDAR point-cloud data and semantic information from map-
masks are used. Map masks represent areas where the traffic-agents can operate
or not, in a binary manner. The information on pedestrian attention to oncom-
ing vehicles obtained from camera images is also exploited to enrich the sequence
prediction system. The goal is to feed the model with context-cues and semantic
information to enhance the prediction of the traffic-agent trajectories, by knowing
whether or not the agents are aware of the presence of the subject vehicle and
including knowledge on areas where they are likely to navigate. Moreover, inter-
actions of the autonomous vehicle with traffic-agents often govern its behaviour
as the vehicle navigates. A mechanism to incorporate this information to the ma-
chine learning model is also developed as an interaction-aware trajectory prediction
system enhanced by context-cues.

Machine learning architectures are built using datasets acquired from the
perception sensors of a vehicle navigating in the expected workspace. As datasets
play an important role in solving machine learning problems, available annotated
datasets for autonomous navigation were reviewed according to their availability of
sensor data and contextual information. Experiments were performed for our mod-
els to learn, and gradually build the resulting architecture. Their performance are
demonstrated using the well-known NuScenes dataset acquired in urban settings.
The performance of the proposed approach were compared with model and data-
driven approaches, demonstrating that the incorporation of multiple contextual
information and agent interactions provides a substantial performance increase.
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Résumé

La navigation autonome des véhicules dans les zones urbaines implique des inter-
actions avec les différents usagers de la route ou agents de la circulation partageant
le même réseau routier comme les voitures, les vélos et les piétons. La capacité
du véhicule autonome à observer, comprendre et prédire le comportement de ces
agents est très importante pour acquérir une bonne compréhension de la situation
avant de décider de la manœuvre à suivre. Bien que cela soit réalisé à divers de-
grés de succès en utilisant des méthodes basées sur des modèles ou des données, les
conducteurs humains restent beaucoup plus efficaces dans cette tâche, déduisant
instinctivement différents mouvements d’agent même dans des situations inédites
et difficiles. De plus, le contexte joue un rôle très important qui permet à nous les
humains de comprendre ce qui est perçu et de faire des prédictions plus fines. La
nécessité d’accroître la connaissance de la situation des véhicules autonomes, ainsi
que des fonctions d’aide à la conduite liées à la sécurité, stimule notre objectif
d’exploiter ces informations contextuelles pour prédire les trajectoires futures des
agents observés dans différentes conditions.

Au cours des dernières années, l’apprentissage automatique s’est avéré
efficace pour résoudre une grande variété de problèmes, en particulier ceux associés
à la perception. Cette thèse se concentre donc sur le développement de modèles
d’apprentissage automatique pour exploiter des informations contextuelles afin
d’observer et d’apprendre les trajectoires de différents agents en interaction. Alors
que la plupart des modèles proposés dans le passé reposent sur un seul capteur
et des techniques basées sur un modèle, les approches actuelles reposent souvent
sur l’utilisation de plusieurs capteurs et traitent leurs sorties à l’aide de différentes
méthodes d’apprentissage automatique. L’approche proposée dans cette thèse suit
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ces tendances en combinant les informations de différents capteurs pour prédire
les trajectoires des agents observés à l’aide de l’apprentissage automatique, ainsi
qu’en intégrant des informations contextuelles et des interactions dans le processus
de prédiction.

La thèse construit progressivement une architecture d’apprentissage au-
tomatique basée sur une formulation théorique et des expérimentations. Notre
approche est basée sur un modèle d’encodeur-décodeur LSTM qui accepte les don-
nées de différentes entrées. Des observations de trajectoire à partir de données de
nuages de points LiDAR 3D et d’informations sémantiques à partir de masques de
carte sont utilisées. Les masques de cartes représentent des zones où les agents peu-
vent opérer ou non, de manière binaire. Les informations sur l’attention des piétons
aux véhicules venant en sens inverse obtenues à partir des images des caméras sont
également exploitées pour enrichir le système de prédiction de séquence. L’objectif
est d’alimenter le modèle avec des indices contextuels et des informations séman-
tiques pour améliorer la prédiction des trajectoires en sachant si les agents sont
conscients ou non de la présence du véhicule et en incluant des connaissances sur
les zones où ils sont susceptibles naviguer. De plus, les interactions du véhicule
autonome avec les agents de la circulation régissent souvent son comportement
lorsque le véhicule navigue. Un mécanisme pour incorporer ces informations au
modèle d’apprentissage est également développé aboutissant à un système de pré-
diction de trajectoire intégrant les interactions et des indices contextuels.

Les architectures d’apprentissage sont construites à partir de jeux de don-
nées acquis à partir des capteurs de perception d’un véhicule. Étant donné qu’ils
jouent un rôle important dans la résolution des problèmes d’apprentissage, les jeux
de données annotés disponibles pour la navigation autonome ont été examinés en
fonction de la disponibilité des données des capteurs et des informations con-
textuelles. Sur cette base, nos expériences ont permis de valider nos modèles et de
construire progressivement leur architecture. Leurs performances sont démontrées
à l’aide du célèbre jeu de données NuScenes acquis en milieu urbain. Les perfor-
mances de l’approche proposée comparées aux approches basées sur des modèles et
des données démontrent que l’ajout de multiples informations contextuelles et des
interactions d’agents permet une augmentation substantielle des performances.
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Chapter 1

Introduction

Contents
1.1 Autonomous Vehicles . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.1 Architecture and Sensors . . . . . . . . . . . . . . . . . 4

1.1.2 Multi-Sensor Fusion and Trajectory Prediction . . . . . 6

1.1.3 Machine learning for Autonomous Vehicles . . . . . . . 8

1.2 Role of Context in Perception for Autonomous Navigation . . . 9

1.3 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . 10

1.4 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.5 Thesis overview . . . . . . . . . . . . . . . . . . . . . . . . . . 12

The continuous population growth and economic improvements across
the globe has meant that the transportation of people and goods is today a major
daily activity. As a consequence, we have witnessed an expansion of road net-
works, the emergence of traffic jams, and pollution. Nevertheless, people appreci-
ate their freedom to move despite the growing safety concerns and environmental
impacts. Technological advances in sensing, computing, communications, and re-
cent progress in machine learning are enabling the development of autonomous
systems for transportation applications (Maleki et al., 2021; Sun et al., 2019).
These have increasing capabilities that allow them to autonomously interact and
evolve in complex environments. The deployment of autonomous vehicles evolv-

1



Chapter 1. Introduction

ing in existing road networks has the potential to improve the life of mankind in
different ways (Maleki et al., 2021). The perceived benefits include:

• Commuters, as they drive, can improve their productivity and their quality
of life because the driving task will be done by the autonomous system;

• Transportation Accessibility: Autonomous vehicles should provide means to
people that have reduced access to transportation. Example, the elderly, the
differently-abled, minors etc. could take this transport in an independent
manner;

• Safety: Most accidents are due to human error, mainly distraction. When
vehicles are under computer control, they are expected to improve safety.

(a) Waymo (b) Cruise

Figure 1.1: Autonomous Vehicle Companies and their vehicles

The Urban DARPA Grand Challenge demonstrated successfully in 2006
that vehicles can navigate under full computer control (Thrun et al., 2006). From
that point on, interest on the topic continued to increase and considerable progress
has been achieved on the operation of Autonomous Vehicles on public road net-
works. Most vehicle OEMs have prototypes or road-maps for this domain. Numer-
ous start-ups have emerged providing very competitive results. Alliances between
vehicle OEMs and Start-ups running multi-million dollar projects have been an-
nounced. It appears that a new industry has emerged with major players like
Waymo (way, 2020), Motional (mot, 2020), Cruise (cru, 2020) etc. Images of their
vehicles are shown in Figure 1.1. Whilst the expectations in the beginning were
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1.1. Autonomous Vehicles

high, driving automation has proved to be much harder. It was predicted that
some form of autonomous vehicle would already be available by 2020. However,
this is not the case, much work is still required (Said et al., 2021).

The research in this thesis addresses the perception problem as applied
to fully autonomous vehicles (The driver is no longer in the vehicle control loop).
In order to provide a coherent concept, this is equivalent to the SAE Level 4
Automation Level. This is explained in the next section. Perception is considered
one of the major mentally complex tasks for any human being and fundamental
for autonomous driving. Different developments and demonstrations have shown
that the perceived world needs not only to be represented digitally but also to
facilitate its interpretation by a machine.

In this chapter, initially we look into the major characteristics of au-
tonomous vehicles. This is followed by the role of context in the perception sys-
tems when applied to autonomous navigation. The problem addressed in this
thesis together with the purpose and objectives are described in the next section.
The contributions of the thesis are described next, and an overview of the content
of this manuscript.

1.1 Autonomous Vehicles

Over the past years, the Society of Automotive Engineers (SAE) has defined 5
levels of driving automation which are used today as a standard. These are shown
in Figure 1.2 (SAE, 2018).

Levels 0, 1 and 2 provide information to the driver or act on the vehicle
with the driver always being part of the control loop. Level 2 autonomy with a
control of the longitudinal and lateral motion but with human driver monitoring
the situation is available on today’s high-end vehicles (E.g. Tesla, Audi etc.). In
Level 3, we have partial automation and the computer will fully control some tasks
and with the driver having the ability to take over whenever necessary. Levels 4 and
5, the vehicle is under complete computer control without any driver intervention.
The differences between Levels 4 and 5 is that in Level 4, the vehicle is only able
to navigate autonomously in a predefined area. Whilst for Level 5, the vehicle
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Chapter 1. Introduction

Figure 1.2: Levels of driving automation as defined by SAE (SAE, 2018)

can drive anywhere. At the time of writing, NAVYA, a French company, is for
example building and selling Level 4 electric powered shuttles and cabs which are
operating as public service vehicles in different constrained sites in Europe (nav,
2019; 2020, 2020). Waymo has driven more than 20 milions miles autonomously
in public roads. They are testing robot-taxis without a safety driver in Phoenix,
Arizona for the past year (way, 2020). Fully autonomous vehicles are undergoing
testing in several parts of the world, but none are yet available to the general
public.

1.1.1 Architecture and Sensors

To navigate autonomously, a vehicle needs to perceive its surrounding environ-
ment, build a digital representation in order to be aware of its situation, and then
decide the action to take. This decision acts on the vehicle resulting in its motion

4



1.1. Autonomous Vehicles

Figure 1.3: Example of a system architecture of an Autonomous Vehicle (Raack, 2018)

under full computer control. These typical stages involved in autonomous driving
are called sensing, perception, planning and control. Figure 1.3 shows a typical
functional architecture used in autonomous vehicles. A set of vehicle on-board
sensors acquire data which is then processed to provide a digital representation of
the environment. For example, lane detection, object detection and classification,
object tracking, free space detection etc. This information is used to perform risk
assessment, trajectory planning and predictions, which results on the control of
the vehicle motion.

Figure 1.4: Sensor setup on a Renault Zoe used for building the NuScenes dataset
(Caesar et al., 2019)

5



Chapter 1. Introduction

Perception provides the means for the vehicle to know what is going on
within its operating environment. In an autonomous driving scenario, there are
numerous mobile entities that appear around the ego-motion vehicle: pedestrians,
other vehicles, cyclists etc. A major challenge resides in perceiving all these el-
ements in a continuous and precise manner without false positives (i.e.,reporting
non-existent obstacles) or false negatives (i.e., missing real obstacles). For this
purpose, several active and passive exteroceptive sensors can be used, these in-
clude different types of video cameras, LiDARs1, and RADARs2. State-of-the-art
detection algorithms provide bounding boxes or segmentation for each class of ob-
jects detected. Currently, there are many algorithms that can detect these objects
using vision data from cameras or point-cloud data from LiDARs (Lang et al.,
2018; Chen et al., 2017a; Zhou and Tuzel, 2018).

However, there is no single sensor technology capable to provide precise
and complete spatio-temporal information on all what is surrounding the vehicle,
each has its own advantages and disadvantages (Kocic et al., 2018). Ongoing
solutions thus combine different types of sensors through a multiple-sensor fusion
process that enables the exploitation of their major features in a coherent manner,
thus reducing the uncertainty associated to each one of them. As an example,
Figure 1.4 shows the sensor setup on a Renault Zoe which is used for recording
the NuScenes dataset (Caesar et al., 2019). It uses 6 cameras, 5 RADARs, and
one LiDAR to record synchronised sensor data for research and development of
perception and navigation algorithms.

1.1.2 Multi-Sensor Fusion and Trajectory Prediction

The work in this PhD will not concern directly the traffic-agent detections. It
focuses on the processes beyond perception, i.e., multi-sensor fusion trajectory
prediction and the need of incorporating additional information to improve the
prediction.

Sensor Fusion is defined as "combining raw or processed sensor data such
that the resulting information is, in some sense, better than what would be possible

1LIght Detection And Ranging
2RAdio Detection And Ranging
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1.1. Autonomous Vehicles

when these sources were used individually" (Fung et al., 2017; Kocic et al., 2018).
It reduces the uncertainty associated with each of the sensors used. It balances the
disadvantages of each individual sensor type and improves the robustness and the
overall reliability of the system. Sensor fusion techniques can be primarily split
into three categories (Fung et al., 2017):

• Low-level fusion or raw data fusion combines several sources of raw data to
produce new data that is expected to be more informative than the inputs;

• Intermediate-level fusion or feature level fusion combines various features
such as edges, corners, lines, textures, or positions into a feature map that
may then be used for segmentation and detection;

• High-level fusion, also known as decision fusion, combines decisions from
several experts. Methods of decision fusion include voting, fuzzy-logic, and
statistical methods.

In this thesis, the focus is on developing high-level fusion of individual object
detection.

Sensor fusion can be performed among different sensors, but also applied
to the same sensor from different points of time in order to filter noise and improve
precision of the information. To drive autonomously, it is necessary to anticipate
the evolution of their environment based on their perceived information.

Trajectory prediction of traffic-agents in the context of autonomous ve-
hicles account for a big part of risk-assessment and motion planning. This step
beyond perception is similar to how a human would assess the situation while driv-
ing (Endsley, 2015) - Will the vehicle in front turn right? Will the pedestrian cross
the road? - Questions that the driver answers passively while manoeuvring the
ever-changing driving environment. By contrast, for autonomous systems, to carry
out the same is a complex task. The appropriate combination of input sensors have
to be chosen, complementary information must be provided and the right mod-
els implemented to achieve the accuracy needed for the vehicle to understand its
situation and navigate safely (Endsley, 2015). These models have to perform tem-
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poral sequence prediction. This has become an important area of research which
includes multiple applications to Natural Language Processing, Weather Forecast,
Economics, or Intelligent Systems.

1.1.3 Machine learning for Autonomous Vehicles

In recent years, there has been a rapid expansion in computational power and
public datasets that reoriented the approaches used to solve the perception and
prediction problems. It has triggered an increased use of machine learning, in
particular deep learning algorithms, in perception, sensor fusion, and trajectory
prediction problems that have proved to be often much more efficient than model-
based methods (Lefèvre et al., 2014). Test benches and applications in the automo-
tive domain have demonstrated the clear advantage of machine learning methods
applied to perception over model/geometry-based methods (Russell and Norvig,
2009; Maleki et al., 2021; Fujiyoshi et al., 2019). The methods applied in this
thesis are also centred on the use of machine learning.

To train data-driven methods, annotated datasets are needed. For the
automotive domain, it is necessary to take them from moving vehicles operating in
public roads to take into account all the contextual information. Several datasets
have emerged applicable to the vehicle navigation domain. One of the earliest ones
is the Victoria Park dataset (Guivant et al., 2000) that has been used extensively
to solve the Simultaneous Localisation and Mapping (SLAM) problem. This was
completed by the New College datasets (Smith et al., 2009). The publication of
the KITTI dataset facilitated the application of machine learning and the bench-
marking of vehicle navigation algorithms since 2013 (Geiger et al., 2013). Recent
datasets, like NuScenes (Caesar et al., 2019) and Apolloscapes (Wang et al., 2019)
include richer information and sensor configurations similar to those found in SAE
level 4 autonomous vehicles. The performance attained were much higher in terms
of accuracy and complexity of the work environments by comparison to model-
based methods (Fujiyoshi et al., 2019). The success of data-based methods has
attracted research on several neural networks architecture such as Convolutional
Neural Networks (CNN), Recurrent Neural Networks (RNN) or Long Short-Term
Memory (LSTM) that we will seek to exploit in our research. These data driven
approaches are detailed in Chapter 3.
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1.2 Role of Context in Perception for Autonomous
Navigation

As introduced before, perception systems for autonomous vehicles address different
functions - environmental image acquisition, object detection and classification,
tracking and trajectory prediction, to name the most important. The accuracy
with which the perception system solves each of these tasks depends not only
on the data acquired by the sensors installed but also on additional information
given to or acquired by the system. The latter helps to provide a “context” to the
perception algorithms so as to identify different scenarios.

Context is part of a process of interacting with an ever-changing en-
vironment composed of “re-configurable, migratory, distributed, and multi scale
resources” (Coutaz et al., 2005). It provides additional information that facilitates
the interpretation of data. As an example, for vehicle navigation, the perception
problem does not stop at detecting the vehicles in front of the subject vehicle. We
should also determine whether or not it is relevant for the driving decision. For
this purpose, we can take advantage additional information. In the case of au-
tonomous vehicles we use maps: we can for example project the perceived vehicle
onto an HD-map (high definition map), which makes it possible to infer whether
the vehicle is within our lane or whether its path will cross our planned path.

Figure 1.5: A schematic overview of the position and context features used in Pool
et al. (2019). The static context is the distance to the intersection where the cyclist
might turn left. The dynamic context is the time for the vehicle to overtake the cyclist
assuming they maintain their pace. The object context indicates the confidence, of a
trained detector, whether the cyclist is lifting his/her arm.
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Context could be obtained from different sources such as HD-maps of
the surrounding environment or information extracted from the sensory data like
pedestrian head-orientation or gait (see Figure 1.5 for example taken from (Pool
et al., 2019)). One of the goals of this thesis is to explore how this information can
help in trajectory prediction in an autonomous navigation scenario. For example,
the trajectory of a pedestrian could be influenced by whether he/she has spotted
the vehicle or not, and whether there is a pedestrian crossing or not. HD-maps are
an important tool for providing data on whether road markings or traffic signals
are present in the environment. This, in addition to perception algorithms that
detect the state of these signs, becomes a strong tool in solving these use-cases
(Ma et al., 2018; William et al., 2019).

Wirthmüller et al. (2020) also explores the possibility of using daytime,
day of the week, weather, location and traffic density as contextual cues. They
classify such information as external conditions and the more studied cues such
as lane markings (Bartoli et al., 2018), map information, intersection distances or
topologies (Klingelschmitt and Eggert, 2015), traffic rules (Gindele et al., 2013),
and intentions (Schneemann and Heinemann, 2016) as situation context. Figure
1.6 shows the utilisation of distance of pedestrians to curbside and traffic light
status as situation context for predicting their movement. In this thesis, the focus
is on using situation context.

1.3 Problem Formulation

To summarise this introduction, machine learning has contributed very much to
perception applied to autonomous vehicle navigation by enabling large progress
on object detection. However, models rely often on a single sensor. As a result,
there are shortcomings in the form of false positives and false negatives and other
detection problems, unacceptable for safety critical navigation tasks that can be
addressed by sensor fusion algorithms. They play an important role by merging
the information gathered from different sensors and producing a detection or a
track which is robust and more efficient than using a single sensor. Even then,
conventional fusion algorithms still have several limitations due to limited input
information and can be improved by taking advantage of various form of context
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Figure 1.6: Example intersection scenario. Dashed green line denotes a rectangular
approximation to the curbside in view. Orange arrows denote relative distance of a
pedestrian from the two curbsides, which can indicate pedestrian intention. Pedestrian
traffic light status is highlighted in orange, which also influences pedestrian movement
(Habibi et al., 2018)

information.

In this thesis, we explore the application of deep learning methods to a
multiple sensor fusion process and the inclusion of context to achieve Multi-Object
Trajectory Prediction for autonomous navigation. The purpose is therefore to en-
hance the performance of perception systems applied to highly automated driving
via multi-sensor fusion techniques and the exploitation of contextual information.
We focus on the tracking of perceived entities such as pedestrians and vehicles,
in order to predict their motion, within the context of urban and peri-urban en-
vironments. For this purpose, two typical sensors are used - video cameras and
LiDARs - and contextual data coming form maps of the environment or the sensor
themselves.

The main objectives are therefore:

• To understand the use of machine learning algorithms for multi-sensor data
fusion through a critical state-of-the-art review and identify the most recur-
rent problem in perception, and trajectory prediction of several traffic-agents;

11



Chapter 1. Introduction

• To propose a framework with multi-modal input for the trajectory predic-
tion problem, to identify and implement the architecture and systems to
incorporate context into the prediction model;

• To validate and analyse the performance of the proposed framework using
data acquired from a vehicle navigating on public roads.

1.4 Contributions

Our work has resulted in the following publications:

• Palli Thazha, V., Filliat, D., and Ibañez-Guzmán, J. (2019). Applying map-
masks to Trajectory Prediction for Interacting Traffic-Agents. 3rd Edition
Deep Learning for Automated Driving (DLAD) workshop, IEEE Interna-
tional Conference on Intelligent Transportation Systems (ITSC’19)

• Palli-Thazha, V., Filliat, D., and Ibañez-Guzmán, J. (2020). Trajectory pre-
diction of traffic agents: Incorporating context into machine learning ap-
proaches. In 2020 IEEE 91st Vehicular Technology Conference (VTC2020-
Spring), pages 1–6

1.5 Thesis overview

In the remainder of this manuscript, chapters 2 and 3 introduce the technology, the
sensors, the software architectures and methods that form the perception systems
for autonomous vehicles. Chapters 4, 5 and 6 demonstrate the methods devel-
oped during this thesis and illustrates the related experiments and results. More
precisely:

• Chapter 2 presents the state-of-the-art research on trajectory prediction
methods, deep learning based prediction and works that have inspired the
ideas behind this thesis. It summarises the different prediction methods, the
data and sensors that are generally exploited for trajectory prediction and
the evaluation metrics adopted to compare their performances.
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• Chapter 3 introduces the different neural networks and deep learning tech-
niques used in perception systems for self-driving cars. It also presents the
important datasets that help push research on perception, navigation and
decision making in intelligent vehicles.

• Chapter 4 presents an experiment conducted to study the classification of
traffic-agents based on their trajectory. Different classes of traffic-agents
have distinct dynamic properties and their motion pattern can be used as
the feature of each class.

• Chapter 5 discusses the methods developed for trajectory prediction of mul-
tiple classes of traffic-agents using map as a context cue.

• Chapter 6 describes the proposal of exploiting pedestrian head orientation
(pedestrian attention) along with map information and historical trajectory
information for predicting the interactions at pedestrian crossings.

• Finally, Chapter 7 summarises the proposed methods and elaborates the
possible future directions in which this work could be extended.
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Chapter 2

Trajectory Prediction: A Literature
Review
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Trajectory prediction in the context of autonomous vehicles is an impor-
tant task as it facilitates situation understanding for vehicle navigation purposes.
To study the prediction of a traffic-agent trajectory, several factors must be consid-
ered, such as the observation of past trajectories of each traffic-agent, observing the
surrounding environment to identify risk, identifying cues that will affect the agent
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behaviour, or the effects of the likely motion of the ego vehicle. A reliable predic-
tion system contributes to safe decision-making. This reduces the risk associated
with vehicle navigation under full computer control. Autonomous navigation can
be regarded as inherently risky. This is owing to the fact that the traffic-agents
encountered by the vehicle in public road networks are highly interactive and dy-
namic in nature. In this chapter, we look into trajectory prediction of different
traffic-agents by exploring the methods that have been tested and proven, the data,
and different context cues that help achieve this purpose. For this, the work found
in the literature is categorised and compared according to the prediction methods,
data involved and datasets exploited. Data from vehicle proprioceptive sensors,
exteroceptive sensors (e.g. cameras, LiDAR and RADAR) as well as cartographic
information are studied.

Prediction methods are classified into model-based and data-driven. The
former follows classical methods represented by physics models, whilst the latter
addresses those dependent on machine learning, in particular deep learning. More-
over, works are classified based on whether the observer (the ego-motion vehicle)
is at rest or in motion.

2.1 Prediction Methods

Prediction methods can be split into two broad categories - Physics / Model-
based and Data-based. Physics/Model-based prediction methods deal with the
kinematics or dynamics of the moving agent be it a car, a pedestrian or a bike.
These movements can be approximated by different models and the trajectory
can be predicted. In contrast, prediction using data-based approaches learn from
examples. They use multiple datasets to understand how different traffic-agents
behave in different scenarios. In this section, we compare and analyse the different
methods available in the literature to determine their strengths and weaknesses as
well as the assumptions under which solutions are proposed.
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2.1.1 Model-based Prediction Methods

Trajectory prediction for pedestrians, vehicles and other traffic-agents has been
studied using model-based approaches: Constant Velocity (Schöller et al., 2019),
Constant Curvature (Horst and Barbera, 2006), Linear Regressions, Kalman Fil-
ters (Kalman, 1960), Monte Carlo Simulation (Danielsson et al., 2007), Time-series
methods and Hidden Markov Models (Firl et al., 2012) are some examples. Most of
these methods are limited to short-term predictions. Some offer long-term predic-
tion but their accuracy is affected by the lack of context information and ignoring
the interaction between different classes of traffic-agents. A survey on motion pre-
diction can be found in Lefèvre et al. (2014) where the authors analyse different
trajectory prediction methods based on model completeness and vehicle collision
risk assessment.

Figure 2.1: Trajectory prediction with a constant velocity motion model (Miller and
Huang, 2002). Illustrations from Lefèvre et al. (2014)

Several methods rely on the use of dynamic models for predicting the
behaviour of vehicles. Some models include representation of the longitudinal and
lateral forces, or the road banking angle (Brännström et al., 2010). However, these
methods are better suited for the design of vehicle control systems, as hese dynamic
models require more observations and model parameters, whilst for applications
like trajectory prediction, simpler bicycle models are preferred (Chiu-Feng Lin
et al., 2000; Jihua Huang and Han-Shue Tan, 2006).
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Figure 2.2: Trajectory prediction with a constant velocity motion model and Gaussian
noise simulation. Ellipses represent the uncertainty on the predicted positions (Ammoun
and Nashashibi, 2009). Illustrations from Lefèvre et al. (2014)

Kinematic models describe a vehicle’s motion based on the mathematical
relationship between the parameters of the movement (e.g. position, heading,
velocity), without considering the forces that affect the motion (Lefèvre et al.,
2014). The simplest models are Constant Velocity (CV) and Constant Acceleration
(CA), applied in the case of straight motion. Miller and Huang (2002) proposes
a cooperative vehicle collision warning system and implements the CV model to
determine a collision between interacting vehicles. This is illustrated in Figure
2.1. Ammoun and Nashashibi (2009) exploits knowledge acquired through shared
information via wireless communication links to predict the trajectories of the
surrounding vehicles. These are utilised to identify the configurations of possible
collisions between vehicles. Figure 2.2 shows a CV model with Gaussian noise to
predict collisions. In the same work, the Constant Turn Rate and Velocity (CTRV)
and Constant Turn Rate and Acceleration (CTRA) models allow to represent turns
(Ammoun and Nashashibi, 2009; Hillenbrand et al., 2006).
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Several works on human motion prediction utilise physics-based models
like in Pellegrini et al. (2009); Althoff et al. (2013); Elnagar (2001). Elnagar (2001),
for example, propose a framework for predicting future positions and orientation of
moving obstacles in a time-varying environment by implementing Kalman filtering
techniques. Pellegrini et al. (2009) introduces a dynamic social behaviour model,
inspired by models developed for crowd simulation and Althoff et al. (2013) pre-
dicts trajectories through a dynamic model by computing the possible occupancy
areas for consecutive time intervals applicable to all the agents participating in the
situation of interest. Tonoki et al. (2017) uses a model-based method for pedes-
trian prediction. They record pedestrian trajectory data using an environmental
Laser Range Finder (LRF) with an Extended Kalman filter (EKF) and construct
pedestrian movement models using a Vector Auto Regressive (VAR) model. The
output is the pedestrian state represented by the position, speed and direction.

This section provides relevant work done with the use of model-based
techniques. We focus our attention to obtain better performance by using data.

2.1.2 Data-based Prediction Methods

In our work, learning from data refers to developing machine learning algorithms
(deep learning) to infer motion predictions. The approaches introduced in this
section are data-driven and thus involve machine learning, particularly deep learn-
ing networks like Recurrent Neural Networks (RNNs), Long-Short Term Memories
(LSTMs) and Convolutional Neural Networks (CNNs). RNNs and LSTMs are em-
ployed in sequence prediction problems whilst CNNs are mainly implemented to
interpret images. For completeness, these networks are explained in detail in Chap-
ter 3. Such trajectory prediction methods have been applied to data acquired by
different sensors. Some solely with vision-based detection outputs, others with 3D
bounding-boxes obtained from LiDAR 3D point-clouds. Much research has gone
into utilising data to learn the motion patterns of different classes of traffic-agents.

Altché and de La Fortelle (2018) utilises LSTMs to predict the trajectory
of a single target vehicle on the NGSIM video dataset (Li et al., 2019). It predicts
the longitudinal and lateral trajectories of vehicles on a highway. Milan et al.
(2016) propose an end-to-end learning approach for online multi-target tracking
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using RNNs to predict the state of each target step by step. This is shown in
Figure 2.3. They use LSTMs to achieve data association by working on vision
data obtained from the 3D MOTChallenge dataset. Nikhil and Morris (2019)
implement a CNN-based approach to predict trajectories of surrounding vehicles.
This model applies highly parallelisable convolutional layers to handle temporal
dependencies instead of using recurrent networks. The trajectory histories are
embedded to a fixed size tensor and stacked convolutional layers used to ensure
temporal consistency. Jawed et al. (2019) also utilise a similar architecture based
on convolutional layers.

These works do not take into account the surrounding environment and
context which could improve the prediction in a real driving scenario. But it is a
good way to start building a base for prediction architectures.

2.1.2.1 Interaction and Context Aware Models

In this section, we group data-based approaches based on whether the interac-
tion with other traffic-agents is taken into consideration and whether they utilise
context cues. Interaction could be between same or different classes of traffic-
agents or with the environment. Interactions with the environment are generally
modelled through context cues. When the future trajectory of a traffic-agent is
predicted over a long period, the interaction between several agents and with the
environment needs to be taken into account. These approaches are mainly data
driven. There are several examples in the literature that try to solve the predic-
tion problem involving interactions between traffic-agents. Some focus either on
pedestrians or vehicles while others try to solve cases with interactions between
multiple classes of agents.

Several works take into account the interaction between vehicles for pre-
dicting their trajectories. Hu et al. (2019) employ a generative model to jointly
predict the sequential motion of each pair of interacting vehicles. The inputs are
trajectories and environment information in the form of location and velocity of
surrounding vehicles. Kim et al. (2017) generate occupancy grids and utilise RNNs
to predict the trajectory of vehicles on highways. They focus on solving vehicle
trajectories on highways and do not utilise context cues in their research, but
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Figure 2.3: Results of A. Milan’s tracking method on a 20-frame long synthetic se-
quence with clutter. Top: Ground truth (x-coordinate vs. time). Middle: Reconstructed
trajectories. Bottom: The existence probability ε for each target. Note the delayed initi-
ation and termination, e.g. for the top-most track (yellow) in the middle. (Milan et al.,
2016)

their limited application scenario implicitly put constraints on the motion of ve-
hicle in this particular context. Deo and Trivedi (2018) implement an LSTM
encoder-decoder architecture that utilises convolutional social pooling to learn
inter-dependencies between vehicles. Here the spatial configuration of the agents
in a scene is embedded into a spatial grid around the vehicle ego-motion. This
grid is passed into convolutional and pooling layers to obtain the social context
encoding. This, along with an LSTM encoding of the agents’ trajectory, is con-
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catenated and passed through a decoder to obtain the final predicted trajectory,
as illustrated in Figure 2.4. An extension of this work is done by Messaoud et al.
(2019) where they implement a non-local social pooling module. The non-local
multi-head attention mechanism captures the relative importance of each vehicle
despite the inter-vehicle distances to the target vehicle, while the local blocks rep-
resent nearby interactions between vehicles. A similar architecture is implemented
by Park et al. (2018) with the decoder producing the most likely trajectories over
an occupancy grid using the beam search technique.

Figure 2.4: Illustration of Multi-modal predictions of future motion of the surrounding
vehicles, along with prediction uncertainty shown here for the red vehicle. Blue is the
ego-motion vehicle (Deo and Trivedi, 2018)

Kotseruba et al. (2016) present a novel dataset for a critical aspect of
autonomous driving, the joint attention that must occur between drivers and of
pedestrians, cyclists or other drivers. They also show how visual complexity of
the behaviours and scene understanding is affected by various factors such as dif-
ferent weather conditions, geographical locations, traffic and demographics of the
people involved. Malla et al. (2020) introduce TITAN (Trajectory Inference using
Targeted Action priors Network), a new model that incorporates prior positions,
actions, and context to forecast future trajectory of agents and future ego-motion.
Alahi et al. (2016) tries to learn general human movement and then predict their
future trajectories. They solve the pedestrian motion prediction problem by im-
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plementing a pooling-based LSTM architecture and jointly predict the trajectories
of all the people within the sensor’s field of view. LSTMs have proven to be ef-
fective when sequences have to be predicted. This is the reason why researchers
adopt LSTMs for trajectory prediction problems. But sequences alone cannot
completely solve the problem of human trajectory prediction. Context cues play
an important role also. These works show the importance of interaction awareness
in solving trajectory prediction. We will take inspiration from these works in the
later sections to solve pedestrian crossing scenarios.

Context cues like head-orientation and distance from curbside, pedes-
trian crossings, static environment information and maps can improve trajectory
prediction.The following works are examples for such cases:

Kooij et al. (2014) propose a Dynamic Bayesian Network throughout a
situational awareness and spatial layout perspective to predict pedestrian paths.
For this purpose, they employ the following inputs and cues: pedestrian head ori-
entation, distance between vehicles and the pedestrian at expected point of closest
approach, and distance of the pedestrian to curbside. They are able to predict
changes in the observed pedestrian dynamics - mainly the stopping probability.
Lee et al. (2017) apply a Conditional Variational AutoEncoder (CVAE) based
RNN encoder-decoder to make prediction for interacting agents. They take past
trajectories as input along with a feature map generated from scene elements like
roads and sidewalks. These feature maps provide semantic scene information to
the prediction model. In an urban scenario, such context information is important
to account for the behaviour of various traffic-agents. Habibi et al. (2018) input
relative distance to curbside and state of pedestrian traffic lights as additional
information. This provides context to predict the pedestrian path. Ridel et al.
(2019) implicitly model pedestrian interactions with vehicles to predict pedestrian
behaviour. They exploit pedestrian head orientation as an input along with pedes-
trian location and past trajectories to an LSTM encoder. The final trajectory is
predicted using an LSTM decoder. Another study by Ma et al. (2018) generates
4D graphs to model interactions and classes of the interacting agents. Two di-
mensions for instances and their interactions, one for time series and another for
high-level categorisation. In the graph, all valid instances and categories of traffic-

23



Chapter 2. Trajectory Prediction: A Literature Review

agents are denoted as nodes. All relationships in spatial and temporal space are
represented as edges. An LSTM architecture (with two main layers - one for in-
stances and one for categories) is designed to generate trajectories from these 4D
graphs. The idea behind using a category layer is that traffic-agents in the same
class will have similar dynamic properties and reactions to other agents and the
environment. The results are shown in Figure 2.5. It can be observed that they
predict trajectories for different classes of traffic-agents in highly interactive urban
environments. However, they do not take into account any context information.

Figure 2.5: Illustration of TrafficPredict (TP) method on camera-based images (Ma
et al., 2018). Green lines are the ground truth and the proposed method is shown in
pink. We observe that the environment is highly diverse and dense.

2.2 Data used in Perception Research

Predicting the stochastic behaviour of pedestrians, or the more organised be-
haviour of cars or bicycles depends a lot on the available type of data. Studies
have been done on passive sensors like monocular cameras and infrared cameras,
and active sensors like LiDAR and RADAR.

The methods also differ based on whether the observer is static or dy-
namic. Prediction of traffic-agents from cameras on highways is an example of a
static observer, whereas sensors on an autonomous vehicle account for a dynamic
observer.
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Having multiple types of sensors helps in accounting for the shortcomings
of a single sensor. Hence it is important to study sensor fusion algorithms to
improve trajectory prediction of traffic-agents. In this section, we categorise the
methods based on the sensor input - whether they utilise Active Sensors or passive
ones. Works are also differentiated based on the state of the observer - Static or
Dynamic. Finally, research that involves sensor fusion is discussed.

2.2.1 Perception Techniques based on Active Sensors

Active sensors utilised in autonomous vehicle research mainly include LiDARs,
RADARs and Ultrasound sensors. They have lots of benefits like high-precision
distance measurement and usability during day and night and are, in most cases,
not affected by extreme sunlight. Some disadvantages include higher costs for the
hardware, high power consumption, increase/decrease in precision of measurement
based on the number of layers in the case of a LiDAR, and difficulty to interpret
data when compared to cameras.

Both LiDAR and RADAR use light-waves. They offer similar information
to an autonomous vehicle, with a few notable differences. LiDAR is more accurate
due to its higher frequency waves and hence utilised to detect nearby objects. It
is able to perceive smaller objects and provides a more accurate measurement of
its shape. This quality becomes a challenge during extreme weather conditions.
LiDAR is inaccurate in snow, rain, and fog, as it detects those small particles in
the air. RADAR has the ability to see through these by using low frequency radio
waves. However, they are less precise in direction and return a lot of noise. It has
a lower cost when compared to LiDARs. Both sensors complement each other in
most autonomous vehicles.

Among the active sensors, RADARs are implemented mainly for car and
bike detection. For example, Park et al. (2018) work with Delphi long range front
radars to record vehicle trajectories and implements an LSTM encoder-decoder
architecture to predict future vehicle trajectories. Laser sensors (Figure 2.6) have
been more widely used than RADAR for object detection, segmentation and tra-
jectory prediction.
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Figure 2.6: Velodyne LiDARs - A Velodyne HDL-64E, an HDL-32E, a Puck, and an
Ultra Puck

Earlier works involved single-layer LiDARs. Oñoro et al. (2013) work on
a single-layer LiDAR for vehicle and pedestrian segmentation. Guerrero-Higueras
et al. (2019) utilise a 2D LiDAR and Convolutional Neural Networks (CNNs) for
tracking people using a mobile robot. With improvement in LiDAR hardware,
multi-layer LiDARs were introduced and most autonomous vehicles now have 32-
or 64-layer LiDARs. This has paved the way for better feature detection using these
sensors. Premebida et al. (2009) tested a four-layer LiDAR in combination with
an RGB camera for detecting pedestrians in an urban scenario. Works described
in Dewan et al. (2016); Engelcke et al. (2017); Li (2017) and Levinson and Thrun
(2014) also utilise LiDAR point-cloud data for object detection and subsequent
tracking of the detected objects.

Among the existing datasets, that will be reviewed more thoroughly in
the next chapter, KITTI (Geiger et al., 2013), NuScenes (Caesar et al., 2019),
Appoloscapes (Wang et al., 2019), FORD campus (Pandey et al., 2011), Oxford
Robotcar (Maddern et al., 2017a), Waymo (Sun et al., 2019) and Standford Track
collection (Teichman et al., 2011), offer a wide range of point-cloud data collected
using Velodyne HDL-64/32 and SICK LiDAR sensors.

There exist studies which use LiDARs for detection and tracking. Most

26



2.2. Data used in Perception Research

of these only use data from a single sensor and do not take cues from other sources.
This limits the possibility of achieving a complete observation of the environment.
Context cues and other sensors have to be used to complement the information
obtained from this data. In the next section, we summarise the works that use
passive sensors and how these can be used to augment the information that we
obtain from active sensors.

2.2.2 Perception Techniques based on Passive Sensors

Passive sensors, typically different types of cameras, are employed in most au-
tonomous vehicles. These provide a semantic understanding of the environment
which the vehicle is traversing. Research has provided a multitude of vision-based
solutions through deep learning for semantic segmentation, object detection, depth
estimation and trajectory prediction.

Cameras have the upper hand when it comes to scene understanding as
they can "see" the environment. They are feature rich. The hardware cost is
also relatively very low when compared to active sensors. But adding software
licensing fees and intense development and training costs to this has made camera
systems for autonomous vehicles more expensive in recent years. When it comes
to depth sensing, cameras do not perform well as the depth has to be inferred
from relative position and size of objects from the camera. Only a depth estimate
can be obtained and not accurate distances as compared to active sensors. Other
factors that trouble a camera-based system are extreme lighting conditions, time
of day and rain. Hence, it can be deducted that for a robust autonomous sys-
tem, a combination of active and passive sensors will be required to overcome the
shortcomings of each other.

Methods proposed in Nikhil and Morris (2019), Alahi et al. (2016), Gupta
et al. (2018), Milan et al. (2016), Fernando et al. (2018b) focus on data obtained
from vision sensors. They implement techniques like Convolutions, Generative
Adversarial Networks (GANs), RNNs or LSTMs on various information obtained
from these images. Altché and de La Fortelle (2018), Nikhil and Morris (2019),
Jawed et al. (2019), Milan et al. (2016), Messaoud et al. (2019), Deo and Trivedi
(2018) work on the sequential position information obtained from image or video
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datasets, while Fernando et al. (2018b); Kooij et al. (2014) work on raw images for
pedestrian detection first and then predicts their future movement. Chandra et al.
(2019) developed graph LSTMs to process the spatial coordinates of the road-
agent defined by the set of vertices of the detected vehicle on an image. Nikhil and
Morris (2019) use sequential pedestrian position and do not use any context cues.
Alahi et al. (2016), Gupta et al. (2018) and Fernando et al. (2018b) also focus
on pedestrian trajectory prediction with social interaction. They do not take
into account other context cue besides the position of the pedestrians. Chandra
et al. (2019) focus on predicting the behaviour of vehicles. They predict both
spatial coordinates as well as whether a road-agent is going to exhibit overspeeding,
underspeeding, or neutral behavior by modeling spatial interactions between road-
agents.

Here again, many datasets like NGSIM US101 (Colyar and Halkias, 2007),
UCY (Lerner et al., 2007), ETH pedestrian dataset (Pellegrini et al., 2009), Im-
ageNET (Deng et al., 2009) or Microsoft COCO (Lin et al., 2014), NuScenes
(Caesar et al., 2019) and Apolloscape (Wang et al., 2019) provide images or videos
for learning such applications.

2.2.3 Perception Techniques based on Sensor Fusion

Sensor Fusion is defined as the combining of sensory data or data derived from
sensory data such that the resulting information is, in some sense, better than
what would be possible when these sources are used individually (Fung et al.,
2017; Kocic et al., 2018). This helps to overcome physical limitations of sensing
systems, balances the disadvantages of each individual sensor type and improves
robustness and the overall reliability of the system.

Zhao et al. (2019) propose to fuse multiple image information using a
Multi-agent tensor fusion method which exploits the past trajectories of multiple
dynamic interacting agents, and a scene/image containing a static context by
using data from the ETC-UCY and Stanford drone dataset. The model decodes
recurrently to multiple agents’ future trajectories, using adversarial loss to learn
stochastic predictions. MV3D (Chen et al., 2017b) combines information from
images and LiDAR data for object detection, classification and 3D bounding box
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Figure 2.7: Multi Agent tensor encoding in Zhao et al. (2019) encodes agent behaviour
and context through feature maps

regression. The network takes the bird’s eye view and front view of LIDAR point-
cloud as well as an image as input. It first generates 3D object proposals from
bird’s eye view map and project them to three views. A deep fusion network is
introduced to combine region-wise features obtained via ROI pooling for each view.
The fused features are exploited to jointly predict object class and do oriented 3D
box regression. Casas et al. (2018) introduce a one-stage detector and forecaster
that exploits both 3D point-clouds produced by a LiDAR sensor as well as dynamic
maps of the environment. They claim better accuracy than the respective separate
modules while saving computation time, which is critical to reduce reaction time
in self-driving applications. Dimitrievski et al. (2019) employ camera and LiDAR
data fusion to solve the association problem, for pedestrian tracking, where the
optimal solution is found by matching 2D and 3D detections to tracks using a joint
log-likelihood observation model. They utilise a behavioural motion model and
a non-parametric distribution as state model, to accurately track unpredictable
pedestrian motion in the presence of heavy occlusion.
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2.2.4 Observer position

The prediction problem changes in complexity based on whether the observer is
static or dynamic. A static observer problem is inherently much easier to solve
as it does not have to compensate for the ego-motion of the sensor. Literature
has a lot of research which tries to solve static observer trajectory prediction
problems. For example, the work done by Milan et al. (2016) mainly focus on
a static observer, specifically a static camera observing the motion of people in
a crowded environment. Altché and de La Fortelle (2018) also work on a static
observer setup by working on the NGSIM US101 dataset while Deo and Trivedi
(2018) utilise the I-80 dataset in addition to it. Example data from NGSIM dataset
is shown in Figure 2.8. They study the trajectory of vehicles on a highway observed
through aerial ortho-rectified photos and videos. Hu et al. (2019) collected a
dataset at a single-lane roundabout in Berkeley, California. The data was recorded
by a drone from bird’s-eye view. This allowed them to study the behaviour of
vehicles at roundabouts.

Figure 2.8: Overview of traffic environments on NGSIM datasets (Li et al., 2019)

In most autonomous driving scenarios, the ego-motion vehicle will be
moving and the study of trajectory prediction of traffic in such a setting becomes
extremely important. Such a study requires data recorded from moving sensors.
Nikhil and Morris (2019); Alahi et al. (2016); Gupta et al. (2018) work on publicly
available datasets - ETH and UCY which provide over 1500 pedestrian trajecto-
ries in varied crowd settings recorded from moving cameras. Jawed et al. (2019)
manipulate the Udacity dataset which consists of 30,000 image frames recorded
at 20 frames per second. The data is captured with a camera mounted on the
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windshield of a car while driving in Mountain View, California. Kim et al. (2017)
predict future trajectory of the surrounding vehicles over the occupancy grid map.
The experiments are conducted on the data collected from a highway driving sce-
nario and they show that the proposed method offers better prediction accuracy
over the existing Kalman filter-based methods. Park et al. (2018) collected a large
set of vehicle trajectory data from several hours of highway driving around Seoul,
South Korea. The test vehicle was equipped with Delphi long range front radars.
Kooij et al. (2014) created a dataset consisting of 58 sequences recorded using a
stereo camera (baseline 22 cm, 16 fps) mounted behind the windshield of a vehicle.

2.3 Evaluation Metrics

Two classifier evaluation indexes applied in this thesis - Sensitivity and Precision.
These are defined as:

• Sensitivity is an evaluation of a classifier’s positive finding capability.

Sensitivity =
TruePositives

TotalPositives
(2.1)

• Precision is introduced to find the ratio of true positives in all positive la-
belled samples.

Precision =
TruePositives

TruePositives+ FalsePositives
(2.2)

To evaluate the prediction accuracy of trajectory prediction methods,
the most commonly used metrics are described in Gupta et al. (2018); Zhao et al.
(2019): Average Displacement Error (ADE) and Final Displacement Error (FDE)
in pixels with respect to each time-step t within the prediction horizon:

1. Average Displacement Error (ADE): Average distance between ground truth
and our prediction over all predicted time-steps for the traffic-agent.
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ADE(i) =
1

T

∑
j=1,2...T

√
(x̂ji − x

j
i )

2 − (ŷji − y
j
i )

2 (2.3)

ADE =
1

n

∑
i=1,2,...n

ADE(i) (2.4)

2. Final Displacement Error (FDE): The distance between the predicted final
destination and the true final position of the agent.

FDE(i) =
1

n

√
(x̂Ti − xTi )2 − (ŷTi − yTi )2 (2.5)

FDE =
1

n

∑
i=1,2,...n

FDE(i) (2.6)

where n is the total number of interacting agents in the test set, xji and y
j
i denote

the coordinates of the ith agent in the predicted time-step j and T denotes the
final predicted time-step.

Using these metrics, an important factor to be chosen is the time horizon
in which the prediction will be performed. This depends on the class of the ob-
ject under consideration because different traffic-agents move at a different pace.
Pedestrians are typically predicted for a short time-period of 3s or for a long time-
period of 10s (Fernando et al., 2018b). Vehicles and bikes, on the other hand, are
often predicted for 1, 3 or 5s (Deo and Trivedi, 2018; Park et al., 2018).

2.4 Conclusion

This chapter introduces the related works that have inspired the research presented
in this manuscript. Studies involving trajectory prediction, intention, tracking and
sensor fusion for interacting traffic-agents are classified based on the prediction
methods - whether they are model-based, data-based and/or interaction/context-
aware models. Classification based on the input sensors that are utilised is also
summarised. They are differentiated as active sensors, passive sensors, sensor
fusion and position of the observing sensor. Table 2.1 summarises the most relevant
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works based on the methods, sensors and context cues in predicting the trajectories
of traffic-agents.

Paper Model-based Data-based Interaction Context LiDAR Image Fusion

Tonoki 2017 (Tonoki et al., 2017) 3 - 3 - 3 - -
Ammoun 2009 (Ammoun and Nashashibi, 2009) 3 - 3 - - - -
Altché 2018 (Altché and de La Fortelle, 2018) - 3 3 - - 3 -

Kooij 2014 (Kooij et al., 2014) - 3 3 3 - 3 -
Milan 2016 (Milan et al., 2016) - 3 3 - - 3 -
Alahi 2016 (Alahi et al., 2016) - 3 3 - - 3 -
Kim 2017 (Kim et al., 2017) - 3 3 3 3 3 -
Lee 2017 (Lee et al., 2017) - 3 3 3 3 3 3

Deo 2018 (Deo and Trivedi, 2018) - 3 3 - - 3 3

Park 2018 (Park et al., 2018) - 3 3 - - - -
Nikhil 2019 (Nikhil and Morris, 2019) - 3 3 - - 3 -

Jawed 2019 (Jawed et al., 2019) - 3 3 - - 3 -
Hu 2019 (Hu et al., 2019) - 3 3 - - 3 -

Chandra 2019 (Chandra et al., 2019) - 3 3 - - 3 -

Table 2.1: Comparison of Trajectory Prediction literature.

Results show that a fusion of data and information from different sen-
sors and the context cues will provide better trajectory prediction. This will aid
in solving problems like occlusion, missing detections, crowded scenes and other
problems that will arise in a difficult urban scenario. We take pointers from these
works and propose new techniques to improve such a prediction of trajectories.

The next chapter, will introduce basic deep learning concepts and net-
works that we utilise in our research. Relevant datasets with regards to au-
tonomous vehicle navigation are also presented and critiqued.
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Machine learning is a branch of artificial intelligence (AI) focused on
building applications that learn from data and improve their accuracy over time
without being programmed to do it (IBM, 2020). The behaviour of the system is
not explicitly programmed but is learned from going through examples of similar
scenarios. By gathering knowledge from experience, this approach avoids the need
for human operators to formally specify all the knowledge that the computer needs
(Russell and Norvig, 2009). It is a data driven approach.
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Figure 3.1: Deep learning architecture(Olah, 2015)

The emergence of Deep Learning has completely changed the potential of
Machine Learning techniques. It is a particular form of Artificial Neural Networks,
where a hierarchy of concepts enables the computer to learn complicated concepts
by building them out of simpler ones. If we draw a graph showing how these con-
cepts are built on top of each other (Figure 3.1), the graph is deep, with many lay-
ers, hence the deep learning name. Deep learning algorithms have been developed
and tested widely in autonomous vehicle perception and navigation. They have
replaced classical model based methods and are preferred in Autonomous vehicle
navigation. Image segmentation, clustering, classification and other tasks related
to autonomous driving have been solved using these networks. They are also used
in end-to-end driving architectures which output the steering angle directly with-
out going through the classical steps of detection, classification, tracking, control
etc. (Zhou and Tuzel, 2018).

In the next sections, important deep neural network models, used in this
thesis, are explained and their applications are discussed. Convolutional Neural
Networks, Recurrent Neural Networks, Long Short Term Memories and Gated
Recurrent Units are the building blocks of most of the architectures mentioned
in our work. The datasets available for Autonomous Vehicle navigation are also
discussed in this chapter.
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3.1 Convolutional Neural Networks (CNN)

The most basic Neural Networks architecture receive an input (a single vector),
and transform it through a series of hidden layers. Each hidden layer is made up
of a set of neurons, where each is fully connected to all neurons in the previous
layer and where neurons in a single layer function independently and do not share
any connections. The last fully-connected layer is called the “output layer” and in
classification settings, represents the class scores (Dertat, 2017).

3.1.1 Structure

Figure 3.2: Left: A regular 3-layer Neural Network. Right: A CNN arranges its
neurons in three dimensions (width, height, depth), as visualised in one of the layers.
Every layer of a ConvNet transforms the 3D input volume to a 3D output volume of
neuron activations. In this example, the red input layer holds the image, so its width
and height would be the dimensions of the image, and the depth would be 3 (Red, Green,
Blue channels)(Karpathy and Li, 2015).

For image processing applications (and more generally for spatially ar-
ranged inputs), Convolutional Neural Networks (CNN or ConvNet) take advantage
of the fact that the input consists of images and they constrain the architecture
in a structured manner. In particular, unlike a regular Neural Network (Figure.
3.2, left), the layers of a ConvNet have neurons arranged in 3 dimensions: width,
height, depth (Figure. 3.2, right). Note that the word depth here refers to the
third dimension of an activation volume, not to the depth of a full Neural Network,
which can refer to the total number of layers in a network. The neurons in a layer
will only be connected to a small region of the previous layer, instead of all of the
neurons in a fully-connected manner (Karpathy and Li, 2015).
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(a) Input and Kernel for a CNN

(b) Kernel multiplication and Feature map

Figure 3.3: (a) shows the Input matrix and the Kernel. (b) illustrates the calculation
of the feature map by sliding the kernel over the input matrix. Illustrations from Dertat
(2017)

The core component of a CNN is the convolutional layer. Convolution
is a mathematical operation which merges two sets of information. A convolution
operation is done on the input using a kernel or a convolution filter to produce a
feature map. The input is a matrix and the kernel is another matrix which is slid
over the input in each location as shown in Figure 3.3. Stride S is the number of
elements that we slide the kernel over the input. At each location, an element wise
multiplication is performed and the results are summed. This gives us the value
for the feature map for that particular location. Sliding the kernel over the whole
input gives us the complete feature map. There exist 3D CNNs also, where the
kernels move through three dimensions of data (height, length, and depth) and
produce 3D activation maps. This is used for example for processing point-cloud
data.
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Figure 3.4: A CNN architecture with 4 convolution + pooling layers, followed by 2 fully
connected layers. Input is an image and the output is a score for the class. Illustrations
from Dertat (2017)

In a complete CNN model, as shown in Figure 3.4, after each convolution
layers, a Reclified Linear Unit (RELU) layer will apply an elementwise activation
function, such as the max(0,x) function, which thresholds the negative values at
zero. It leaves the size of the input volume unchanged. Then to reduce the di-
mensions, a pooling operation is done. This reduces the number of parameters,
which in turn shortens training time and avoids overfitting. Pooling layers down-
sample each feature map independently, reducing their height and width, keeping
the depth intact.

The final fully-connected (FC) layers compute the class scores. As with
ordinary Neural Networks, each neuron in these layers will be connected to all
the neurons in the previous layer. These layers can learn to approximate different
functions, however since they contain multiple connections, they will have a high
number of parameters. Their training is then more time consuming and energy
consuming than convolution layers. An FC layer of size N is represented by the
following function:

o = W ∗ h + b (3.1)

with h the input vector of size H, W a weight matrix of size H ∗N and
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b the bias vector of size N .

As an illustrative example, the input images used in CIFAR-10 image
classification challenge (Krizhevsky, 2009) consists of a volume of activations, that
is a matrix of dimensions 32x32x3 (i.e, width, height and 3 colour channel for the
depth of the image). A convolutional layer on this input will transform it into
32x32x12 if 12 filters are used. A pooling layer can downsample this to 16x16x12
and finally an FC layer will compute the class scores, resulting in volume of size
1x1x10. The CNN architecture used in this example, ConvNet reduces the full
image into a single vector of class scores. These are arranged along the depth
dimension. In this example, there are 10 class scores which classify the image.

3.1.2 Guidelines for the design of CNN Architectures

The literature provides some general guidelines to help choose the parameters of
a CNN Architecture. This include:

The input layer (e.g. an image) should be divisible several times by 2.
This includes 32 (e.g. CIFAR-10), 64, 96 (e.g. STL-10), or 224 (e.g. common
ImageNet ConvNets), 384, and 512 (Olah, 2015). The convolutional (CONV)
layers should use small filters (e.g. 3x3 or at most 5x5), using a stride of 1. The
pool layers are in charge of downsampling the spatial dimensions of the input.
The preferred setting is to use max-pooling with 2x2 receptive fields (kernel size)
(i.e. F=2), and with a stride of 2 (i.e. S=2). The preferred method to build
a Convolutional Net architecture is to stack a few CONV-RELU layers, follow
them with POOL layers, and repeat this pattern until the image has been merged
spatially to a small size.

As an example of a typical CNN architecture, the runner-up in 2014
ImageNet Large Scale Visual Recognition Challenge (ILSVRC’14) was the network
from Karen Simonyan and Andrew Zisserman that became known as the VGGNet.
This has become the most widely applied architecture. Its main contribution
was in showing that the depth of the network is a critical component for good
performance. Their final best network contains 16 CONV/FC layers and features
an extremely homogeneous architecture that only performs 3x3 convolutions and
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Figure 3.5: A ConvNet architecture where 5 class scores are shown out of the 10. This
is a tiny VGG Net. Illustrations from Karpathy and Li (2015)

2x2 pooling from the beginning to the end. This is shown in Figure 3.5.

3.1.3 Applications

Convolutional Neural Networks are adopted in a variety of applications such as face
recognition, scene labelling, image classification, action recognition, human pose
estimation, semantic segmentation etc. In the domain of autonomous driving,
which heavily depends on cameras and LiDARs, this has become an indispensable
part of the software architecture. They work well for image segmentation and
classification, however for other applications, they must be combined with other
neural networks such as LSTMs. This is the case for trajectory prediction. The
most known convolutional network architectures are LeNet, AlexNet, GoogLeNet,
VGGNet and ResNet (Karpathy and Li, 2015).

As relevant application to autonomous vehicle, Treml et al. (2016) pro-
pose a deep network architecture for image segmentation that keeps the high ac-
curacy while being efficient enough for embedded devices. Figure 3.6 illustrates
the network architecture and Figure 3.7 shows the segmentation results. It con-
sists of Exponential Linear Units (ELU) activation functions, an encoder, followed
by parallel dilated convolutions, and a decoder. When applied to the Cityscapes
dataset, the network achieves higher segmentation accuracy than others that are
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Figure 3.6: Architecture of network for semantic segmentation proposed in Treml et al.
(2016).

tailored to embedded devices. The frame-rate is sufficiently high for application
in autonomous vehicles.

Figure 3.7: Example output (bottom) of the network with ground truth (centre) on
images from the Cityscapes validation set. Treml et al. (2016)

Convolutional architectures can also be applied to LiDAR point clouds
for object detection in autonomous vehicles (Engelcke et al., 2017). They achieve
object detection in point clouds at fast speeds with 3D CNNs constructed from
sparse convolutional layers, based on a voting scheme. A state of the art was
established on the KITTI benchmark. The architecture known as Vote3Deep out-
performs methods that use data from both point clouds and images in most test
cases. Figure 3.8 illustrates this architecture.
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Figure 3.8: (a) - Results of applying Vote3Deep to an unseen 3D point cloud (KITTI
dataset). The model detects cars (red), pedestrians (blue), and cyclists (magenta), even
at long range. It assigns the respective bounding boxes (green). (b) - Reference image
(Engelcke et al., 2017)
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3.2 Recurrent Neural Networks (RNN)

Recurrent Neural Networks (RNNs) help in retaining information in memory. Just
like when humans think, we use information from the past to make judgements,
the RNNs can retain information from the past and use it later. These networks
have loops, which allows information from previous updates to persist.

Figure 3.9: Architecture of an RNN (Olah, 2015)

Mathematically, RNNs can be represented as follows:

Given the input sequence [x = x1, ...,xT ] of length T , a single RNN is
formed by a repeated application of a function fh. This generates a hidden state
ht for each time step t.

ht = fh(xt,ht−1) = σ(xtWh + ht−1Uh + bh). (3.2)

for some non-linearity σ. The weight matrix W and the bias b define
different linear transformations. The model output can be defined with different
approaches. For example, it can be a function of the hidden state such as:
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ˆy = fy(hT) = hTWy + by. (3.3)

A recurrent neural network can be thought of as multiple copies of the
same network, each passing its hidden state to a successor. In the last few years,
RNNs have been incredibly successful in solving a variety of problems such as
speech recognition, language modeling, translation, image captioning etc. RNNs
are theoretically designed to encode long-term dependencies however these haven’t
solved the problem completely. Hochreiter and Schmidhuber (1997) [German] and
Bengio et al. (1994) have explored the fundamental reasons why RNNs do not
achieve this. By extending the concept, a new architecture has been developed,
namely Long Short-Term Memory networks or LSTMs to solve this problem.

3.2.1 Long Short Term Memories (LSTM)

LSTMs are a recurrent network architecture in conjunction with an appropriate
gradient based learning algorithm. It is designed to overcome the error backflow
problems incurred by RNNs (Graves et al., 2013; Hochreiter and Schmidhuber,
1997).

Figure 3.10: LSTM Architecture(Olah, 2015)

All recurrent neural networks have the form of a chain of repeating mod-
ules of neural network. In standard RNNs, this repeating module will have a very
simple structure, such as a single tanh layer. LSTMs also have this chain-like
structure, but the repeating module has a different structure. Instead of having a
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single neural network layer, there are four, interacting in a very special way. This
is shown in Figure 3.10. The LSTM has the ability to remove or add information
to a cell state, carefully regulated by structures called gates. Gates are a way to
optionally let information through. They are composed of a sigmoid neural net
layer and a point-wise multiplication operation. The sigmoid layer outputs num-
bers between zero and one, describing how much of each component should be let
through. A value of zero means “let nothing through”, while a value of one means
“let everything through!”. LSTM is defined by setting four gates namely "input",
"forget", "output", and an "input modulation gate".

The four gates (i, f ,o,g), the cell state (ct) and hidden state (ht) are
described by the following equations:

i = σ(xtWi + ht−1Ui) (3.4)

f = σ(xtWf + ht−1Uf ) (3.5)

o = σ(xtWo + ht−1Uo) (3.6)

g = tanh(σ(xtWg + ht−1Ug)) (3.7)

ct = f � ct−1 + i� g (3.8)

ht = o� tanh(ct) (3.9)

where {Wi,Ui,Wf ,Uf ,Wo,Uo,Wg,Ug} represent the weight matrices
and σ the sigmoid non-linearity. The cell state ct (also referred to as an internal
state) is updated in an additive manner.

The work by Milan et al. (2016) on End-to-end Multi Object Tracking
(MOT) is a good example of the use of LSTM applied to the autonomous vehicles.
The approach is based on recurrent neural networks (RNNs) for temporal predic-
tion and update as well as track management. The combinatorial problem of data
association for each frame is solved via LSTMs. The resulting network is shown
in Figure 3.11.

The work by Milan et al. (2016) involves machine learning for prediction,
data association, state update and initiation and termination of targets. Therefore,
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Figure 3.11: RNN Tracking architecture in Milan et al. (2016)

Figure 3.12: RNN-LSTM architecture used in Milan et al. (2016). Left: An RNN-
based architecture for state prediction, state update, and target existence probability
estimation. Right: An LSTM-based model for data association.

is a completely model-free approach. This is illustrated in Figure 3.12. The difficult
part in a tracking algorithm is data association, the problem of assigning each
detection/measurement to an object or target. The RNN module of this algorithm
deals with prediction and update of the state of the targets. It also predicts the
birth/death of each target using a Bayesian state estimation method. For this
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purpose, it takes as inputs, the current state (xt), existence probabilities (Et),
measurements vector (zt+1) and data association At+1. The resulting outputs
are - the vector of predicted states for all targets (xt+1), a vector of all updated
states (x∗t+1), a vector of probabilities indicated for each target how likely it is a
real trajectory (Et+1), and the absolute difference of Et+1 to Et given by E∗

t+1.
The LSTM module predicts the data association for each set of measurements.
This module takes as an input the pairwise-distance matrix C ∈ RN×M , where
Cij =

∥∥xi − zj∥∥
2
is the Euclidean distance between the predicted state of target i

and measurement j. This approach by Milan uses the MOTChallenge sequences
for training and testing. The results are shown in Figure 3.13.

Figure 3.13: RNN Tracking output on the MOTChallenge sequence. The colour of
each bounding box indicates the person identity (Milan et al., 2016).

3.2.2 Gated Recurrent Units(GRU)

Figure 3.14: Gated Recurrent Unit Architecture (GRU, 2018)
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Gated Recurrent Unit is another type of RNN which is very similar to
an LSTM. It combines the forget and input gates into a single “update gate.” It
also merges the cell state and hidden state, and makes some other changes. GRUs
adaptively capture dependencies of different time scales. Similarly to the LSTM
unit, the GRU has gating units that modulate the flow of information inside the
unit, however, without having a separate memory cell. This is illustrated in Figure
3.14.

The update gate acts similar to the forget and input gate of an LSTM. It
decides what information to throw away and what new information to add. The
reset gate is another gate used to decide how much past information to forget.
GRUs have fewer tensor operations; therefore, they are a little faster to train than
LSTMs. There isn’t a clear winner which one is better. It later chapters, we choose
LSTMs as it gives better results in our experiments.

3.3 Datasets

The availability of large and precise datasets is important to obtain good perfor-
mance for all data-driven methods. In this section, we present an overview of the
main datasets used for autonomous driving, considered in our work.

KITTI Vision Benchmark dataset (KITTI) (Geiger et al., 2013):
KITTI is one of the most well-known datasets when it comes to autonomous ve-
hicle research. The tasks focused by this dataset are: stereo, optical flow, visual
odometry, 3D object detection, and 3D tracking. For this purpose, they equipped
a standard station wagon with two high-resolution colour and grayscale video cam-
eras. Accurate ground truth for the perceived objects is provided using a Velodyne
3D-LiDAR scanner and a GPS-based localisation system. The datasets are cap-
tured by driving around the mid-size city of Karlsruhe (Germany), in rural areas
and on highways. Up to 15 cars and 30 pedestrians are visible per image. In total,
it provides 6 hours of driving data collected in both rural and highway traffic sce-
narios around Karlsruhe. The dataset is provided under the Creative Commons
Attribution-Non Commercial Share Alike License. Examples for annotated data
in this dataset and the vehicle used to record it is shown in Figure 3.15.
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Figure 3.15: Kitti Dataset: The vehicle used to record the dataset and some annotated
camera and 3D LiDAR point-cloud data (Geiger et al., 2013).

NuScenes dataset (Caesar et al., 2019): nuScenes claims to be the first
large-scale dataset to provide data from the entire sensor suite of an autonomous
vehicle (i.e., 6 cameras, 1 LiDAR, 5 RADAR, GPS, IMU). In 2019, the full dataset
with 1,000 scenes was released. It includes approximately 1.4M camera images,
390k LiDAR sweeps, 1.4M RADAR sweeps and 1.4M object bounding boxes in
40,000 keyframes. Additional features with a map extension, more raw data is
being released sequentially. They include 1000 driving scenes in Boston and Sin-
gapore, two cities that are known for their dense traffic and highly challenging
driving situations. The period of each scene is 20 seconds. They are manually se-
lected to show a diverse and interesting set of driving manoeuvres, traffic situations
and unexpected behaviours. To facilitate common computer vision tasks, such as

50



3.3. Datasets

object detection and tracking, they annotate 23 object classes with 3D bounding
boxes at 2Hz over the entire dataset. An extension of the dataset, suited for tra-
jectory prediction tasks was published in late 2020. Examples for annotated data
in this dataset is shown in Figure 3.16.

Figure 3.16: Nuscenes Dataset: Annotated camera images, RADAR, LiDAR and Map
data from the Nuscenes dataset (Caesar et al., 2019)

ApolloScape Open Dataset (Wang et al., 2019): This is a large dataset
that supports the training and evaluation of vision-based autonomous driving al-
gorithms and systems. It includes various tasks, e.g. 3D reconstruction, self-
localisation, semantic segmentation, instance segmentation, trajectory prediction,
detection and tracking. Their acquisition system consists of two laser scanners, up
to six video cameras, and a combined IMU/GNSS system. Organised into separate
sets under the names Trajectory dataset, 3D Perception LiDAR Object Detection
and Tracking dataset, it includes about 100K image frames, 80K LiDAR point
cloud and 1000km trajectories in urban traffic. Apolloscape consists of varying
conditions and traffic densities which include many challenging scenarios where
vehicles, bicycles, and pedestrians move among one another.

Ford campus vision and LiDAR dataset (Ford) (Pandey et al.,
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2011): This dataset is collected using an autonomous ground vehicle test-bed,
a modified Ford F-250 pickup truck. The vehicle is outfitted with a high-end
localisation system and inertial measurement unit (Applanix POS-LV and Xsens
MTi-G), a Velodyne 3D-LiDAR scanner, two forward looking Riegl LiDARs, and
a Point Grey omni-directional camera system. Approximately 100 gigabytes of
data was recorded around the Ford Research campus and downtown Dearborn
(Michigan) since 2009. The Ford campus vision and LiDAR dataset is well suited
to test simultaneous localisation and mapping (SLAM) algorithms and different
autonomous driving functions.

Udacity dataset (Higgins, 2017): It includes 223 gigabytes of image
frames and log data from 70 minutes of driving in Mountain View (USA) on two
separate days, with one day being sunny, and the other overcast. The Udacity
dataset was made open source in 2016 for research purposes. The vehicle sensor
setup consists of monocular colour cameras, GPS and IMU sensors, as well as a
Velodyne 3D-LiDAR. Vehicle information like steering angle and other variables
was recorded during the test runs by a human driver. The labelled data includes
bounding boxes for cars, trucks and pedestrians and steering angle for the driving.

Cityscapes dataset (Cordts et al., 2016): This dataset was developed
by Daimler AG R&D, Max Planck Institute for Informatics (MPI-IS), and TU
Darmstadt Visual Inference Group, in Germany. The Cityscapes Dataset focuses
on semantic understanding of urban street scenes, the reason for which it contains
stereo vision colour images. The diversity of the images is very large: 50 cities,
different seasons (spring, summer, fall), various weather conditions and different
scene dynamics. There are 5000 images with fine annotations and 20,000 images
with coarse annotations of the semantic labels. The Cityscapes dataset has been
used for two important challenges that test and benchmark the development of
semantic segmentation and instance segmentation algorithms (i.e., PASCAL VOC
Challenge (Everingham et al., 2015) and Robust Vision Challenge (Rob, 2018)).
An example for the annotation is shown in Figure 3.17

The Oxford RobotCar dataset (Maddern et al., 2017b): This dataset
was developed by recording data on a route through central Oxford twice a week
on average using the Oxford RobotCar platform, an autonomous Nissan LEAF.
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Figure 3.17: Semantic segmentation example from the Cityscapes dataset (Cordts et al.,
2016)

This resulted in over 1000km of recorded driving with almost 20 million images col-
lected from 6 cameras mounted to the vehicle, along with LIDAR, GPS and IMU
ground truth. Data was collected in all weather conditions, including heavy rain,
night, direct sunlight and snow. The dataset provides Real-time Kinematic (RTK)
ground truth for long-term localisation and mapping problems. This dataset fo-
cuses on long-term road vehicle autonomy by recording the same route in different
conditions and long periods of time.

The Cambridge-driving Labeled Video Dataset (CamVid) (Bros-
tow et al., 2008): This was the first collection of videos with object class semantic
labels, complete with metadata. The database provides ground truth labels that
associate each pixel with one of 32 semantic classes. Over ten minutes of high
quality 30Hz footage is provided using a car-mounted camera, with corresponding
semantically labelled images at 1Hz and in part, 15Hz. This dataset was used to
test algorithms in domains like multi-class object recognition, pedestrian detection,
and label propagation

The Daimler pedestrian benchmark dataset (Flohr and Gavrila,
2013): This dataset fits the topics of pedestrian detection, classification, segmen-
tation, and path prediction. The dataset contains a collection of pedestrian se-
quences collected from a stationary and moving vehicle. Four different pedestrian
motion types are considered: crossing, stopping, starting to walk, and bending-
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in. Each sequence has no more than one pedestrian and the pedestrians are not
occluded. They provide original stereo pairs (8 bit PGM, 1176x640), calibration
data, ground truth (GT) annotations, pedestrian detector measurements and ve-
hicle data (speed, yaw-rate), event tags and time-to-event labels (TTE in frames).
Pedestrian data is observed from a traffic vehicle by using only on-board mono
and stereo cameras. Recently, the dataset was extended with cyclist video sam-
ples captured with the same setup.

Caltech pedestrian detection dataset (Caltech) (Dollár et al.,
2009): The Caltech Pedestrian Dataset consists of approximately 10 hours of
640x480 30Hz video taken from a vehicle driving through regular traffic in an urban
environment. About 250,000 frames (in 137 approximately minute-long segments)
with a total of 350,000 bounding boxes and 2,300 unique pedestrians were anno-
tated. The annotation includes temporal correspondence between bounding boxes
and detailed occlusion labels.

Table 3.1 shows a summary of the main features of these datasets as
well as the sensors and the driving conditions. Due to the availability of the
dataset, initial experiments were done on the Apolloscape dataset. However much
information was still missing given the early stages of development at that time.
Nevertheless this helped us to familiarise with the early models developed in this
research.

Once the NuScenes dataset was available, and upon analysis with re-
spect to all of the referred datasets at the moment of performing our research,
the NuScenes dataset was chosen. The decision is based on the availability of
synchronised data in the form of labelled images, 3D LiDAR point-clouds and
map representations. This is important in the studies we conducted as it mainly
depended on multi-sensor, multi-input trajectory prediction. Most of the other
dataset that we tried had to be rejected because of lack of sensors and lack of
map-information. The availability of these data in a synchronised format is still a
big downside in autonomous driving research.

At the time of writing this thesis, richer datasets and updates are being
made available to overcome this problem. The most important ones are Waymo
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Dataset Task Sensor-Setup Size Traffic-
condition

NuScenes (18) 3D tracking, 3D ob-
ject detection

Radar, LiDAR, Ego-
Data, GPS, IMU,
Camera

345 GB
(1000
scenes, clips
of 20s)

Urban

KITTI (45)
3D tracking, 3D
object detection,
SLAM

Monocular cameras,
IMU, LiDAR, GPS 180 GB Urban, Ru-

ral

Apolloscape
(131)

Self-localisation,
semantic parsing,
instance segmen-
tation, trajectory
prediction, detec-
tion and tracking

LiDAR, Cameras,
IMU/GNSS Urban

Udacity (55) 3D tracking, 3D ob-
ject detection

Monocular cameras,
IMU, LiDAR, GPS,
EgoData

220 GB Rural

Cityscapes (26) Semantic under-
standing

Colour stereo cam-
eras

63 GB (5
clips) Urban

Oxford (90)
3D tracking, 3D
object detection,
SLAM

Stereo and monoc-
ular cameras, GPS,
LiDAR, IMU

23 TB (133
clips)

Urban,
Highway

CamVid (16) Object detection,
Segmentation

Monocular, colour
camera

8 GB (4
clips) Urban

Daimler Pedes-
trian Dataset
(42)

Pedestrian detec-
tion, Classification,
Segmentation, Path
prediction

Stereo and monocu-
lar cameras

91 GB (8
clips) Urban

Caltech (34)
Tracking, Segmenta-
tion, Object detec-
tion

Monocular camera 11 GB Urban

Table 3.1: Comparison of Autonomous Driving Datasets.

(Sun et al., 2019), Argoverse (Chang et al., 2019) and Lyft Level 5 Dataset (Hous-
ton et al., 2020).

3.4 Conclusion

This chapter has introduced the different deep learning models, tools, and archi-
tectures that are relevant in trajectory prediction and classification. As a result
of our analysis, the ones more suitable to the tracking problem are RNNs and
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LSTMs. However, these neural networks by themselves have their own perfor-
mance limitations. Now, for this purpose, in the next chapters, our own network
architectures will be proposed based on the selected networks.

To train the models in the proposed architecture, data is required, which
includes annotated 3D LiDAR point-clouds and camera images as well as map
information. For this purpose, a dataset that is most appropriate to train this
machine learning problem is sought. Different relevant open-source datasets were
examined, the most appropriate for our application purposes is the NuScenes. This
is the product of an analysis of the dataset and some experimental work.

In Chapter 4, 5 and 6, the details and design of the proposed architectures
are described as applied to trajectory prediction and classification of different
traffic agents (e.g., Cars, Bicycles and Pedestrians in several scenarios).
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4.1 Introduction

Agents that move around a car can be tracked, and hence their trajectory analysed.
The trajectory of a moving object can carry a lot of useful information depending
on what is sought. Each class of traffic-agents has its characteristic dynamic
behaviour in a traffic scenario. Cars, bicycles and pedestrians move with different
patterns when compared to each other. Therefore, their motion trajectories could
be used as a feature to distinguish them from one another. As a first familiarisation
with the LSTM neural networks, we examine whether or not it is possible to use
this idea to classify the observed trajectories of traffic-agents.

The driving scenario present in the nuScenes dataset is used in this study.
From this, a set of trajectory classes have been defined, based on the traffic-
agent they correspond to. This is done by extracting sequential object positions
perceived in the scenario. We limit our study to the three categories of cars,
bicycles and pedestrians as the data at hand is limited. There is a lack of long
sequences of trajectory data for different classes of traffic-agents. We choose the
three aforementioned classes as they are the ones with adequate sequential data.
The problem we address is to evaluate whether it is possible to classify these
trajectories into their corresponding classes.

Trajectory analysis has been treated in multiple ways and in different
contexts throughout literature. In most cases, the goal of trajectory analysis was
to detect outliers or to predict future states using data-driven machine learning
approaches. There are only a few approaches related to classifying traffic agents
by their trajectories that we describe below.

Li et al. (2007) used a rule-based classifier to do hierarchical feature classi-
fication. In their work, they presented a technique for anomaly detection of mov-
ing objects called ROAM (Rule-and mOtif-based Anomaly detection in Moving
objects). In their research, trajectories are expressed as a set of discrete fragments
called motifs, which form a multidimensional feature space for every sample. A
rule-based classifier is then responsible for a hierarchical exploration of the feature
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space to find the effective regions which define an anomaly. Likewise, Lee et al.
(2008) presented an outlier detection algorithm based on the partitioning of the
trajectory. The concept is similar to the previously cited work, with the differ-
ence that in this case, the aim is to detect also the outlier sub-trajectories. Here
the detection is done with a hybrid of a distance and a density-based approach.
Khosroshahi et al. (2016) presented a work related to vehicle trajectory analysis.
In particular, they performed behaviour analysis of surrounding vehicles for au-
tonomous driving using Recurrent Neural Networks. Their aim was to classify the
type of manoeuvres of other vehicles with a Long Short Term Memory model us-
ing their trajectories. Kumaran et al. (2018) presented work on anomaly detection
and trajectory classification on traffic surveillance videos. By using a hybrid Con-
volutional Neural Network and Variational Autoencoder they were able to detect
outliers and classify trajectories with impressive accuracy.

Inspired by the approaches exploiting recurrent neural networks, we pro-
pose to classify the type of traffic-agent from their trajectory behaviour using an
LSTM model. The motivation is that we focus on the manner in which the ob-
ject moves rather than on the use of their appearance. While in the autonomous
vehicle scenario such classification is of limited interest, because perception of the
agents usually gives good cues about its category, it is for us a first approach to
study the LSTM model and analyse the effect of some hyper-parameters. The po-
tential future use for such an approach could however be found in different fields.
In sports, for example, it could be interesting to recognise a particular style of
movement by looking at the trajectory of a sportsman, e.g. in winter sports. Or
the observation of movement patterns of wild animals are very interesting tasks
that could use the information provided by such an analysis.

In this chapter, Section 4.2 elaborates the problem formulation, describes
the dataset and the generation of data for training the models. Section 4.3 explains
the methodology involved in the classification of traffic-agent trajectories and and
the details about the implementation and training of the models. Finally, Section
4.4.2 discusses the results and concludes the chapter.

59



Chapter 4. Classification of Traffic-Agents by their Trajectory

4.2 Problem Formulation

4.2.1 Overview

The problem is formulated so as to provide the class of a traffic-agent according to
the trajectory in a probabilistic manner. This is applied to three classes, namely -
passenger cars, pedestrians and bicycles. The input is described as a sequence of
points in Cartesian coordinates, that represents the trajectory of the traffic agents
within the driving scenario. These points were obtained through detection and
tracking systems applied to data obtained from a camera or LiDAR sensor.

4.2.2 Data Formalisation

The historical trajectory of a traffic-agent k, from time-step 1 to time-step Tobs is
given by,

P k = [p1, ..., pTobs
], (4.1)

where,
pt = [xt, yt] (4.2)

represents the 2D position of the agent for each time-step t and xt and yt are the
spatial coordinates.

The input to the LSTM network will be a part of this trajectory sequence,
defined by a sliding observation window w which accounts for a sequence from time
(TObs−w) to the current time instance (TObs). Hence, we have as input:

P k
Tobs

= [pTObs−w
, ..., pTobs

], (4.3)

where pTObs−w
is the position at time TObs−w and pTObs

is the position at time TObs

or the current time. The choice of the size of the sliding window is explained in
Section 4.4.1.

We focus on three classes of traffic-agents - cars, pedestrians and bicycles
represented by class scores c, p and b. The goal is to find an LSTM architecture
plus a classification layer that converts the input trajectory data into class scores
of the predefined classes.

60



4.3. Methodology

4.2.3 Dataset

The data used to train the LSTM model originates from the NuScenes dataset
(Caesar et al., 2019). It includes ground truth for traffic-agents annotated from
LiDAR and camera data. The nuScenes dataset offers approximately 15h of driv-
ing data recorded in Boston and Singapore. Trajectory data is available with
annotations at 2 Hz for 20 second sequences, examples are shown in Figures 4.1
and 4.2. However, this data is insufficient to train the LSTM model. Some data
manipulation is necessary. Data augmentation techniques like mirroring and flip-
ping are used to generate more data. Further, trajectories which had less than 30
time-instances in the set were removed from the dataset because they were too
short to get any meaningful pattern. After this data manipulation, a total of 3120
car trajectories, 2580 bicycle trajectories and 2092 pedestrian trajectories were
generated from the nuScenes dataset for training purposes and 780, 645 and 523
trajectories respectively for test purposes.

Figure 4.1: Example trajectories for the pedestrian class (red lines). The black trace
in the middle of the road represents the ego-vehicle trajectory. Caesar et al. (2019)

4.3 Methodology

Sequence prediction problems are generally solved using LSTM encoder-decoder
architectures as shown in Figure 4.3. We decided to use their encoder part as a
basis for the classification task addressed in this chapter. Indeed, the hidden-state
vector of the LSTM models will include information about the trajectory, a feature
of the tracked object, and will contain information about the past trajectory and
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Figure 4.2: An example trajectory for the bicycle class (blue traces). The black trace
represents the ego-vehicle trajectory.

the dynamics of each observed traffic-agent. As each agent has its own motion
characteristics, the LSTM hidden-state could be used to classify them. To find
the hidden-state size that stores the most information about a trajectory, a basic
LSTM prediction network is trained. The value giving the best prediction perfor-
mance is then chosen for the classification network. This optimisation is detailed
in Section 4.4.1.

Figure 4.3: A basic LSTM encoder-decoder trajectory prediction model.

Following this approach, two different networks will be involved. First a
prediction network which is used to find the best hidden state size of the LSTM
model. Then a second Classification Network that enables us to classify the tra-
jectories of the observed traffic-agents reusing part of the architecture from the
first network.

For both network, the input is taken from the sequential data describing
the traffic-agent trajectory as represented by Equation 4.1. This is used as input
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to train the LSTM model. For this purpose, a window of time representing sev-
eral time steps of the observed traffic agent is used. The trajectory sequence is
represented by the spatial coordinates of the samples within the window given by
Equation 4.3, i.e. a trajectory sequence P k

TObs
from time (TObs−w) to the current

time instance (TObs).

4.3.1 Prediction Network

For the prediction network, the sequential trajectories P k
TObs

are passed through
an LSTM encoder to generate its embedding (hidden-state) as follows:

hkTObs
= LSTM(P k

TObs
, hkTObs−1

) (4.4)

where hkTObs
is the spatial embedding (i.e. embedding of the position) of traffic-

agent k at time TObs, P k
TObs

is the trajectory of the agent k in the observation
window and hkTObs−1

is the hidden-state vector from the previous step.

Thereafter, the resulting hidden-state latent vector hkTObs
is passed through

an LSTM decoder and a fully connected layer to obtain the predicted trajectory
following the equation below:

Ppredkt = FC(LSTM(hkt−1, Ppred
k
t−1)) (4.5)

where Ppredkt is the predicted trajectory at time t, hkt−1 is the previous hidden-
state vector from the previous time-step and Ppredkt−1 is the prediction in the
previous time-step.

The predicted trajectory Ppredkt can be expressed by:

Ppredkt = [x̂1k, ŷ
1
k, x̂

2
k, ŷ

2
k, .....x̂

w
k , ŷ

w
k ] (4.6)

The Root-Mean-Square-Error Loss is used to train the Prediction Net-
work:
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L =

√
1

w

∑
j=1,2...w

(x̂jk − x
j
k)2 − (ŷjk − y

j
k)2 (4.7)

where w is the observation window and xjk and yjk denote the position coordinates
of the kth agent in the predicted time-step j.

An Adam optimiser and a learning rate of 1× e−4 for 100 epochs is used
for training the Prediction Network.

4.3.2 Classification Network

This network, shown in Figure 4.4, also starts by passing the sequential trajectories
P k
TObs

through an LSTM encoder to generate its spatial embedding (hidden-state).
This feature vector hkTObs

, as given by Equation 4.4, is then passed through a linear
function representing a fully connected layer in a Neural Network to obtain the
classification scores. The output of the network is then a vector giving the class
scores for each sequence. Hence, in our case, the vector is of size 3 as there are
three classes. The scores c, p and b represent the class of traffic-agent to which
the trajectory belongs. The class scores are generated each time-step based on the
observation window as in Equation 4.8. The implementation details are elaborated
in the next section.

c, p, b = FC(LSTM(P k
TObs

, hkTObs−1
)) (4.8)

Figure 4.4: System Architecture for the LSTM based Trajectory Classification. (Class
of interest are cars, pedestrians and bicycles, represented by scores c, p and b)

The loss used to train the classification model is a Cross-Entropy Loss:
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L = −ΣM
c=1yo,clog(po,c) (4.9)

where M is the number of classes (M=3), y is a binary indicator (0 or 1) if class
label c is the correct classification for observation o and po,c is the predicted prob-
ability observation that o is of class c. The final vector of size 3 obtained from
here provides the c, p and b scores.

For training the classification network, an Adam optimiser (Kingma and
Ba, 2017) with a learning rate of 0.001 is applied for 100 epochs.

4.4 Results

The prediction and classification networks described previously are applied to
achieve specific purposes. The former helps in deciding the hidden-state size of
the LSTM whilst the latter is used to classify observed trajectories into their spe-
cific traffic-agent class. Section 4.4.1 describes the parameter selection and Section
4.4.2 shows the classification accuracy reached using our network.

The experiments are based on the use of the NuScenes dataset and the
overall purpose is to classify the trajectories of three traffic-agents - Cars, Bicycles
and Pedestrians - as stated before.

4.4.1 Parameter Selection

The rationale behind the selection of the various parameters in the Classification
Network is presented in this section. Initially, to select the observation window
which also decides the sequence length, results from Fernando et al. (2018b) were
studied. They consider 10 time-instances as a long-term prediction horizon. With
the dataset we are using - NuScenes, the sampling frequency is 2Hz. Therefore,
the 10 time-instances correspond to 5 seconds. This is used as a cue to choose the
sequence length for the classification problem. Hence, the observation window w

(c.f. Section 4.3) was initially chosen as 10 for the trajectory prediction network.
Different windows lengths, from 8 to 20, for the observation window are tested in
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the classification evaluation. However, increasing the length of this window implies
that it would be less appropriate for real-time trajectory classification.

The hidden-state size with the best performance for prediction is cho-
sen for training the classification network. For this purpose, the LSTM encoder-
decoder network (Figure 4.3) is trained with varying hidden-state sizes. The met-
rics chosen to evaluate the performance of prediction networks are the Average
Displacement Error (ADE) and the Final Displacement Error (FDE) as presented
in Section 2.3.

To select these parameters, the prediction network is used to predict
the trajectories of traffic-agents obtained from the NuScenes dataset, described in
Section 4.2.3. Different hidden-state sizes are used to train the network:

h = [50, 100, 150, 250, 300, 350] (4.10)

The results are presented in Table 4.1. These are used to determine
the optimal LSTM hidden-state size. This value is 300 as it produced the least
ADE and FDE, performance metrics. Therefore, the FC layer of the classification
network will have an input size of 1 ∗ 300 and an output size of 1 ∗ 3.

Hidden-State Size ADE FDE
50 4.13 8.12
100 3.99 7.86
150 3.56 7.56
250 3.32 5.45
300 2.23 4.54
350 2.38 4.96

Table 4.1: Performance of LSTM model with changing Hidden-State Size

4.4.2 Classification Accuracy

Before training a network to classify trajectories of different traffic-agents, we
visually verified the difficulty of the task using the t-distributed stochastic neighbour
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embedding (t-SNE) approach. This is a statistical method used for visualising
high-dimensional data by assigning each data-point a location in a two or three-
dimensional map (van der Maaten and Hinton, 2008). This technique is applied
to assess if the trajectories of different classes of traffic-agents can be separated
from each other. The results are shown in Figure 4.5. The three colours represent
the trajectories of cars, pedestrians and bicycles, which are our concern. In Figure
4.5a, it can be observed that the data-points are hard to be separated from each
other while in Figure 4.5b they are easily separable. This difference is linked to
the short sequence length (8) in the former case and long sequence length (20) in
the latter case, making them easier to be classified in the second situation.

(a) t-SNE plot for trajectories with sequence length 8.

(b) t-SNE plot for trajectories with sequence length 20.

Figure 4.5: Effect of changing sequence length of the classifiability of trajectories
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To see the effect of changing the observation window length w on the
classification accuracy, the classification network is trained with different window
sizes. The results shown in Table 4.2, indicate that a window length of 10 offers
limited performance, while a length of 20 provides an improvement in performance
of 15.7 percent. However, this requires a trajectory observation of 10 seconds which
is very long time for vehicle navigation applications. We can see an improvement in
classification accuracy of 22.9 percent for bicycles and 20.8 percent for pedestrians
while only 7.1 percent for cars. This is because, with a longer observed trajectory
of bicycles and pedestrians, there is an improvement in classification.

Observation Window (w) Cars Bicycle Pedestrians Overall Accuracy
6 52.2 25.3 26.3 34.6
8 57.4 37.4 39.5 44.77
10 83.9 54.8 64.8 67.83
12 84.7 58.7 68.4 70.6
14 86.5 62.7 69.9 73.03
16 87.7 63.4 70.1 73.73
18 87.9 64.3 75.3 75.83
20 89.9 67.4 78.3 78.53

Table 4.2: Effect of varying the observation window length on Trajectory Classification
Accuracy

The trajectory classification with an observation window of 10 frames,
resulting from the NuScenes dataset are presented in Table 4.3. The classification
accuracy is 89.9% for cars, 67.4% for bicycles and 78.3% for pedestrians. These
experiments demonstrate that the classification of traffic-agents by their trajectory
is insufficient for safety critical applications, that need very high levels of classifi-
cation accuracy. The experiments using a sequence length of 10 time-steps or less
result in poor accuracy. For instance, when the traffic-agents move at low speeds,
it is difficult to differentiate between a car and a bicycle as their trajectories would
look similar. This can be observed from the confusion matrix shown in Figure
4.6. When bicycle is the true class, a majority of the samples are classified as
cars. Also there are cases where it is hard to separate the trajectories of bicycles
and pedestrians. This is also noticeable from the confusion matrix. When 339
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samples are correctly predicted to be pedestrians, 168 of it is falsely classified to
be bicycles.

Figure 4.6: A confusion matrix showing the classification of the three trajectory classes:
C - Cars, B - Bicycles, P - Pedestrians.

Class Samples True Classification False Classification Precision
Car 780 655 125 83.9

Bicycle 645 354 291 54.8
Pedestrian 523 339 184 64.8

Overall Precision 67.8

Table 4.3: Precision of Trajectory Classification using LSTMs on the test set

The results show that the overall performance of our model based on
trajectory alone is insufficient to classify the observed traffic-agents. Using the
same sensors, appearance based models provide better results than trajectory-
only classification as demonstrated in literature for similar instances (Krizhevsky
et al., 2012; Qi et al., 2017).

4.5 Conclusion

In this chapter, a prediction LSTM encoder-decoder pipeline has been developed,
and the effect of changing hidden-state sizes on the prediction accuracy has been
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analysed. This has established that the hidden-state size of an LSTM is an impor-
tant hyper-parameter defining the performance of prediction applications. The en-
coder was then used as the basis of a classification network applied to traffic-agents
by observing only their trajectories. While the approach succeeded in classifying
the agents with an accuracy of 78%, this performance is low for safety critical
reasons. Further, it requires a long observation window (i.e. 10 seconds) which
cannot be applicable for autonomous vehicle navigation.

The proposed approach has enabled us to classify traffic-agent trajecto-
ries with limited accuracy. For autonomous vehicle navigation, this is not very
relevant because agent classification could be better performed using sensor data
and applying established methods (Krizhevsky et al., 2012; Qi et al., 2017; Zhang
and Rabbat, 2018). Nevertheless, this has resulted in the development of an LSTM
encoder-decoder architecture which will be extended in the remainder of the the-
sis through a mechanism that allows for the incorporation of real-time contextual
information. This should allow for the prediction of the trajectories of the ob-
served traffic-agents which is an important parameter that facilitates the situation
awareness of the vehicle prior to decision making.

The preliminary results in section 4.4.1 have demonstrated that the ac-
curacy level of the trajectory prediction of traffic-agents is limited. Nevertheless,
this can be improved using additional information that is available as the vehicle
navigates. The machine learning architecture developed in this chapter will be
used as a basis for the proposed trajectory prediction network using contextual
information, in Chapter 5. Its application to pedestrian crossing prediction in
urban settings is presented in Chapter 6. The focus will be to study how addi-
tional information can be fed to the developed model to improve the trajectory
prediction. As most intelligent vehicles use HD-maps as part of their functional
architectures, we seek to use context cues like driveable areas or road markings
stored in HD-maps or observed by intelligent cameras. The incorporation of these
cues in the prediction network is presented in the next chapters.
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5.1 Introduction

Predicting the trajectory of traffic-agents with which an autonomous vehicle in-
teracts allows it to prepare for future decisions and manoeuvres. It can assess the
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risk involved with respect to the decisions taken. The purpose is to enable the
vehicle to gain situation understanding so as to allow autonomous navigation in
complex conditions. The high level of interactions with other traffic-agents sharing
the same work-space and the randomness of the different situations encountered
make it difficult to solve the prediction problem with high accuracy. Multiple data
inputs, sensors and observations of the situation must be studied to attain the
necessary trajectory prediction accuracy of the relevant traffic-agents.

Single-agent sequence prediction problems have been solved using classi-
cal model-based techniques as discussed in Chapter 2. However, the use of data-
driven methods has been demonstrated to attain better results (Ma et al., 2018;
Altché and de La Fortelle, 2018; Messaoud et al., 2021). The behaviour of different
types of traffic-agents changes with their class - whether it is a car, a pedestrian
or a bicycle. Therefore, the approach taken in this thesis will exploit the specific
behaviour of the different traffic-agent classes and predict their individual trajec-
tories. We must recall that the interactions between different traffic-agents play
an important role as vehicles navigate. The behaviour of a particular agent will
depend heavily on the interactions with the surrounding agents and their positions
within the road network. Hence, an interaction-aware model is included into the
proposed approach. The behaviour of all traffic-agents is nominally governed by
its context. For example, motor vehicles will travel only along paths where they
are allowed (i.e., road). In the case of pedestrians, they are expected to walk on
curbs, move from one street to the next while walking on road crossings, etc. The
areas where traffic-agents can move are strongly associated with the navigation
maps. In this thesis, our approach incorporates the use of map information to
enhance the prediction of the identified traffic-agents. We introduce the use of
map-masks, which are defined as binary maps that provide information on the
driveable and non-driveable areas for the different traffic-agents. They provide
spatial context for all the observed traffic-agents. A similar work is published by
Messaoud et al. (2020) where they propose an approach applying multi-head at-
tention by considering a joint representation of the static scene and surrounding
agents.

Trajectory predictions can be regarded as a sequence prediction problem.
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This has been solved successfully using machine learning networks like RNNs and
LSTMs (c.f. Chapter 2). In this chapter, these are applied as part of our tech-
nique. Our approach introduces a machine learning architecture which takes as
input - historical trajectories obtained from 3D LiDAR point-cloud data and map
information in the form of map-patches as detailed in Section 5.2.2. This approach
is trained and tested on the NuScenes dataset (Caesar et al., 2019) which provides
all the necessary information which includes 3D bounding-boxes in LiDAR point-
clouds for different traffic agents, object/agent IDs and maps of the environment
from which we can extract our map-masks.

Using map-patches as input exploits the idea that the manner in which
traffic-agents behave is governed by their spatial context. When projected into
public road networks, it can be partitioned by areas into which they are usable
and non-usable. A contribution of this thesis reside on the use of such spatial
information in the form of map segments (patches). It can be regarded as the
incorporation of spatial context information to classical machine learning sequence
prediction methods.

To summarise, the focus is on the use of map-mask patches to improve
the prediction of trajectories for different classes of interacting traffic-agents. The
contributions of this chapter are:

• A new LSTM encoder-decoder architecture that uses these masks to make
trajectory predictions for different classes of traffic agents in drivable and
non-drivable areas

• An evaluation of the proposed model in comparison with classic and LSTM
baselines. The performance is superior when applied to single and multi
traffic-agent interaction scenarios.

Section 5.2 formulates the trajectory prediction problem with respect
to the proposed approach. The formalisation of the inputs is included as these
are important for training any machine learning model. Section 5.3 describes
the adopted methods and the developed machine learning architecture for the
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trajectory prediction of traffic agents. Section 5.4 tabulates the results and finally
Section 5.5 concludes the chapter.

5.2 Problem Formulation

5.2.1 Overview

The prediction problem can be expressed as a sequence prediction task. For this
purpose, the behaviour of the relevant traffic-agents is observed within the interval
[Tobs − w : Tobs] and the future trajectories in the interval [TObs+1 : TPred] are
predicted. w is the observation window, or the number of time-instances for which
the traffic-agent is observed. The process followed for the implementation of this
system is shown in Figure 5.1. The inputs to the prediction module are 3D LiDAR
point-cloud data and binary map-patches around each observed traffic-agent. From
the 3D LiDAR point-cloud data, the historical trajectory of each traffic-agent is
observed with the map-patches providing information on the drivable and non-
drivable areas in the work-space. These inputs are embedded into a mathematical
model so they can be fed to a machine learning model. The encoded sequence is
used as input to train the LSTM Encoder which produces a feature vector. From
this feature vector the trajectories are predicted using an LSTM decoder. The
formalisation of these data inputs to the machine learning model are discussed in
the next section.

Figure 5.1: The process involved in the Trajectory prediction module.
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5.2.2 Data Formalisation

In a driving scenario, several objects might be present, sharing the same work-space
with the ego-vehicle. These include pedestrians, other vehicles or cyclists. State-
of-the-art perception algorithms based on camera images or 3D LiDAR point-cloud
data provide bounding boxes/segmentation for each object class. In our approach,
we use 3D LiDAR point-cloud data and off-the-shelf detection algorithms to extract
the features of all the traffic-agents within the field of view of the sensor used.

For experimental purposes, the PointPillars object-detection network by
Lang et al. (2018) is adopted. This network is chosen as it shows superior perfor-
mances over other frameworks with their code available in the GitHub1 repository.
To predict trajectories during testing phase of the machine learning model, the
class and observed trajectory of the perceived agent is extracted from the output
of the object detection framework. This sequence is directly obtained from the
point-pillars network. However, for training the trajectory prediction network, the
ground truth trajectory available in the NuScenes dataset is used.

The NuScenes dataset includes HD-maps as used for autonomous driving.
This HD maps are converted into a binary map-mask. The drivable area/roads are
given an overall value (i.e., white) while the non-drivable areas are given another
value (i.e., black). To understand the behaviour of different classes of traffic-
agents in the drivable and non-drivable spaces, we use as input the transformed
map information. From this we extract square patches of the size 128 × 128

pixels, which represents approximately 10 meters × 10 meters, as shown in Figure
5.2b. These square patches are extracted around each detected traffic-agent in the
perception space, as shown in Figure 5.2a, of the ego-motion vehicle and for each
time-step in the observed time interval. From this data, we define the feature set
of each traffic agent k at time t as

fk
t = (pkt , c

k
t ,M

k
t ) (5.1)

where

pkt = [xkt , y
k
t ] (5.2)

1https://github.com/nutonomy/second.pytorch
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(a) Binary map-mask of a scene

(b) Examples of patches centred around the agent

Figure 5.2: Binary map-mask and map patches: A trajectory and the map-patches
surrounding the agent are marked by blue squares, centred around the traffic agent
marked in green

In these data, xkt and ykt are the spatial coordinates of the detected traffic-
agent obtained from the top-down view of the LiDAR point-cloud detections. c
is the class of the traffic agent, ci ∈ (1, 2, 3) where 1 is for pedestrians, 2 is for
cars and 3 is for cyclists. Mk

t is the 128× 128 pixels binary map patch of the area
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surrounding each detected object.

The task is to observe the features of all traffic-agents in the interval
[Tobs − w : Tobs] and predict their positions in [Tobs+1 : Tpred].

5.3 Methodology

The system architecture developed for the trajectory prediction of traffic agents
takes two inputs - 3D LiDAR point-cloud data and map masks. From the 3D
LiDAR point-cloud data, the historical trajectories of observed traffic-agents are
extracted using the VoxelNet Object Detection Network. Using this trajectory
information, the binary map-patches around each observed traffic agents are ex-
tracted for each time-step (Scene Mask Patches Retrieval). These map patch
sequences are then encoded using a CNN Encoder. The observed trajectories gen-
erated by the VoxelNet are then encoded together with the encoded map patches
using the LSTM Trajectory encoder. The resulting feature map is then fed into
an LSTM Trajectory Decoder to obtain the Predicted Trajectories. The resulting
architecture of this process is shown in Figure 5.3. The details of the different
components of this architecture are presented in the next section.

Figure 5.3: System Architecture: The prediction module has two inputs: sequential
historical trajectories of all traffic-agents and the associated map-mask patches of each
agent for the observed time instances
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5.3.1 Information encoding using LSTMs

The prediction framework developed by Fernando et al. (2018a) which applied
LSTMs for predicting pedestrian trajectory from images, is adapted to use the
trajectories obtained from 3D LIDAR point-cloud and to which we provide the
additional map context.

Let the historical trajectory of a traffic-agent k, from time-step 1 to time-
step Tobs be given by,

pk = [pk1, ..., p
k
Tobs

], (5.3)

where,
pki = [xki , y

k
i ] (5.4)

for each time-step i. These historical trajectories are passed through the
LSTM encoder of each respective traffic-agent to generate its historical embedding
as follows,

hkt = LSTM(pkt , h
k
t−1), (5.5)

generating a sequence of historical embedding. Each class of traffic-agent has its
own LSTM encoder. For our experiments, the LSTM encoders have a hidden state
size of 300 chosen by experimentation and following the recommendations found
in Fernando et al. (2018b).

A historical context vector CH,k
t is defined to encode the trajectory infor-

mation from the traffic-agent of interest (k), which can be computed as a weighted
sum of hidden states from t = [1 : Tobs]:

CH,k
t =

Tobs∑
j=1

αtjh
k
j (5.6)

and the weight αtj as shown in Bahdanau et al. (2014) can be computed by:

αtj =
exp(etj)∑T
l=1 exp(etl)

(5.7)

etj = a(hkt−1, h
k
j ) (5.8)

where the function a is a feed forward neural network which is trained jointly with
the whole network.
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A spatial context vector CS,k
t is used for embedding the neighbouring

trajectories. The spatial weights, denoted by wn
j are computed as:

wn
j =

1

dist(n, j)
(5.9)

where dist(n, j) is the Euclidean distance between the nth neighbour and
the traffic-agent of interest at the jth time-step, and wn

j is the generated spatial
attention weight. When there are N neighbouring trajectories in the local neigh-
bourhood, and hnj is the encoded hidden state of the nth neighbour at the jth

time-step, then the spatial context vector is defined as:

CS,k
t =

N∑
n=1

Tobs∑
j=1

wn
j h

n
j (5.10)

From these two context vectors, a merged context vector, C∗,k
t is com-

puted by concatenating them and applying a non linear function:

C∗,k
t = tanh([CH,k

t ;CS,k
t ]) (5.11)

For our experiments CS,k
t and CH,k

t has a size of (1,300) and the merged
vector at TObs will have a length of w × (1, 300).

For the baseline LSTM model used to compare with our final model, the
merged context is then passed through the LSTM decoder to predict the future
trajectory of the traffic-agent of interest (c.f. Section 5.3.3). Alternatively, as pre-
sented in the next section, in the proposed method, this context vector is modified
using the information from the binary map-masks before it is used as input to the
prediction model. Through this approach, contextual information is fed into the
model.

5.3.2 Map Input encoding

In this section, the encoding of the map-patches, to obtain context vectors for the
LSTM, is explained. Each of the 128× 128 pixels binary map patch Mk

t is passed
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Figure 5.4: Passing the map-patches through a CNN Encoder generates the latent
vector that stores information about the drivable area and this vector is passed on to the
LSTM encoder architecture

through a Convolutional Encoder. The resulting latent vector CC,k
t holds the

information about the drivable space associated with the respective traffic-agent
k at time-instance t. This concept is illustrated in Figure 5.4. These sequential
latent vectors are concatenated to form the Map Context vector corresponding to
the observed traffic-agents.

This Map Context vector is then concatenated with the merged context
vector C∗,k

t from the LSTM Model to obtain a new latent vector CM,k
t :

CM,k
t = [C∗,k

t ;CC,k
t ] (5.12)

Layer Name Layer Type Input Size Output Size
Conv1 ReLu(MaxPool2d(Conv2d(input))) 1× 128× 128 16× 21× 21
Conv2 ReLu(MaxPool2d(Conv2d(input))) 16× 21× 21 8× 10× 10
FC ReLu(Linear(input)) 1× 800 1× 300

Table 5.1: Layers of the CNN Encoder - Convolutions have a kernel size of 3 × 3,
maxpool has a kernel size of 2× 2. Parameters not mentioned are default parameters in
Pytorch library (in torch.nn).

The CNN encoder has two convolutional layers and one fully connected
(FC) layer as shown in Table 5.1. The stride for Conv1 and Conv2 layers are
empirically set to 3 and 2 respectively and a padding of 1 is set for both the
layers. The layers are initialised with Xavier init method from the PyTorch library
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(Glorot and Bengio, 2010). The output size of the FC layer is set to (1× 300), to
be compatible with the size of the LSTM hidden cell, as this will be concatenated
with it. Therefore, at time TObs, the length of the merged vector will be equal to
observation window w × (1, 300). Conv1 converts the map-mask to a volume of
16 in thickness. And Conv2 reduces it further to 8. From this we obtain the final
output of (1,300) through the FC layer.

Figure 5.5: The CNN Autoencoder architecture. The latent vector is extracted from
the FC later at the end of the encoder side.

In order to facilitate the LSTM training, we tested the pre-training of this
CNN encoder using an Autoencoder. This is illustrated in Figure 5.5. For this, we
append a CNN decoder to the CNN encoder and train it to reconstruct the map
patches used as input. The CNN decoder layer has an architecture mirroring the
one of the encoder as outlined in Table 5.2. It also utilises two layers, Conv1 with
a stride of 3 and Conv2 with a stride of 2, both having a padding of 1. These layers
are also initialised with Xavier init method. The CNN Autoencoder is pre-trained
and then the CNN Encoder is inserted into the prediction network.

It was found experimentally that training this architecture end-to-end
with the prediction module works faster than using the pre-trained CNN encoder
(c.f. Section 5.3.4).

5.3.3 LSTM Decoder for Trajectory Prediction

The next step is to obtain the final predicted trajectory qkt . This is done by passing
the context vector CM,k

t in the case of map input through the LSTM decoder and
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Layer Name Layer Type Input Size Output Size
FC ReLu(Linear(input)) 800× 300 800× 800

Conv1 ReLu(ConvTranspose2d(input)) 1× 800 16× 21× 21
Conv2 ReLu(ConvTranspose2d(input)) 16× 21× 21 1× 128× 128

Table 5.2: Layers of the CNN Decoder - Convolutions have a kernel size of 3 × 3,
maxpool has a kernel size of 2× 2. Parameters not mentioned are default parameters in
Pytorch library (in torch.nn).

two fully connected layers as shown in Equation 5.13. If only historical trajectories
are used, this context vector CM,k

t is replaced by C∗,k
t .

qkt = FC(LSTMck(hkt−1, q
k
t−1, C

M/∗,k
t )) (5.13)

The decoder used for each of the traffic-agent class ck of interest (i.e.,
pedestrian/car/cyclist) is different. Therefore, based on ck, the respective LSTM
model is chosen to decode. The resulting output qkt is made of a sequence of points
in a Cartesian grid:

qkt = [xObs+1, yObs+1, ..., xObs+N , yObs+N ] (5.14)

where N is the prediction horizon. This could range between 3 and 10 frames
as per the experiments discussed in Section 5.4. The number of observed frames
and the prediction horizon N are equal as per the system architecture design. For
example, when 3 frames are observed, the prediction horizon will consist of 3 future
frames.

The LSTM decoder also has a hidden state size of 300 similar to the
size of the LSTM encoder. This size has been chosen by experimentation and
following the recommendations made by Fernando et al. (2018b). This hidden
state is mapped to a vector of size 1× (2×N) through two FC layers. Therefore,
if the prediction horizon is equal to 10 frames, the output will be 1 × 20 which
includes the value of the x,y coordinates of the predictions of the 10 frames.
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5.3.4 Training

The architecture described in the previous section is trained using the NuScenes
dataset. We extracted 3200 different trajectories with at least 30 time frames for
the experiments which represent 15 seconds. These are of sufficient length for our
experiments, they were selected from 850 scenes recorded for periods of 20s in the
NuScenes data setup. The selected trajectories were split into the following sets:
2100 for training, 550 for validation and 550 for testing. For single-agent trajectory
prediction, these sequences are considered separately, whilst for the multi-agent
trajectory predictions, the information of all interacting agents are taken into
account. Each trajectory sequence is linked with the relevant interacting agent
information.

The training methods adopted by Bahdanau et. al. in their Neural Ma-
chine Translation work (Bahdanau et al., 2014) was used because they have a
similar sequence prediction problem. For each time-step, an object-pool is created
which is associated with a trajectory prediction network. The resulting model
predicts short-term and long-term trajectories for each traffic-agent in the object-
pool. This is based on the historic trajectory of the observed agent and the tra-
jectories of other neighbouring agents. Therefore, each traffic-agent that resides
in the pool is associated with a predicted short-term and long-term trajectory.
The approach results in a short-term prediction for 3 frames (1.5 seconds) and
a long-term for 10 frames (5 seconds). Studies show that occlusions last around
3-10 frames (Sadeghian et al., 2017). Having a long-term prediction enables the
architecture to take into account the noise in the raw outputs from the detection
network such as occlusions, false alarms, inaccurate bounding boxes, and missing
detections. Hence, the choice of short-term and the long-term horizons for the
prediction, they will help to compensate for occlusions by increasing the number
of predicted trajectories that can be used for training.

The CNN encoder applied on the map-masks was tested with and without
pre-training also using the NuScenes dataset. Experiments have shown us that the
method without pre-training is faster, leading to the same final performance. The
resulting model is attached to the LSTM encoder-decoder and then trained end-
to-end.
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The Adam optimiser was used as it is the most advantageous for this
application (Kingma and Ba, 2017), with a learning rate of 1× e−4 for 100 epochs
and fine-tuned with a learning rate of 1× e−5 for 20 epochs.

5.4 Results

To demonstrate the feasibility and performance of the previously developed sys-
tem, the trajectory prediction network was implemented and tested using part of
the NuScenes dataset. The performance is compared with other existing meth-
ods. For evaluation purposes, the prediction accuracy is measured based on two
metrics as described in Section 2.3: Average Displacement Error (ADE) and Final
Displacement Error (FDE). ADE provides the average error between the ground
truth and predicted trajectories. This is measured in the map space (meters) with
respect to each time step t (seconds) within the prediction horizon. The FDE
provides the error between the final positions in the predicted trajectory and the
ground truth.

To illustrate the advantage of using map information through the ex-
ploitation of the drivable/non-drivable areas definition in both single and multi-
agent scenario, two machine learning models are compared. This can be sum-
marised as follows:

• Single Agent with LSTM Model and Map-Mask input: Map-mask
is taken as input to predict the trajectories of single agents, not considering
interactions.

• Multi-Agent interactions and Model with LSTM and Map-Mask
input: Multi-agent interactions are taken into account in the LSTM
encoder-decoder architecture and map-masks are used to improve the pre-
dictions of traffic-agents involved in such interactions.

The developed models are compared, first with the model-driven ap-
proaches represented by:
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• Constant Velocity Model: Trajectory is predicted by assuming constant
velocity to that of the observed trajectory (Schöller et al., 2019).

• Constant Curvature Model: Trajectory is predicted by assuming con-
stant curvature to that of the observed trajectory (Horst and Barbera, 2006).

and then with data-driven models, described below:

• Single Agent LSTM Model for all traffic agents: Separate LSTM
models are used to predict the motion of single traffic agents. Interactions
are not taken into account in this model.

• Multi-Agent interactions and Model with LSTM only: Interactions
are taken into consideration and only the LSTM encoder-decoder architec-
ture is used to predict trajectories. This is similar to the method in Fernando
et al. (2018b).

Method ADE(Metres) FDE(Metres)
1. Constant Velocity Model 7.65 8.2
2. Constant Curvature Model 5.47 6.78
3. Single Agent LSTM only 5.31 6.2
4. Single Agent LSTM + Map-Input 1.67 1.95
5. Multi-Agent LSTM only 4.34 5.21
6. Multi-Agent LSTM + Map-Input 1.45 2.2

Table 5.3: Comparison of Prediction Accuracy for different models

The comparison of the ADE/FDE values obtained for the model-based
methods, the LSTM baselines and our models with map-input is presented in
Table 5.3. It shows that the machine learning models have higher performance
than the classical methods. However, it can be observed that the LSTM approach
predicting each single agent individually without map information presents perfor-
mances close to the constant curvature model. The interest of the deep-learning
approaches is only apparent when taking the agent interactions or the map context
into account.
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Figure 5.6: Comparison of trajectory prediction with classical methods: Green
is ground truth, red is constant velocity, brown is constant curvature and blue is map-
mask based prediction. The green arrows in the images show the direction of motion of
the ego-vehicle

It is observed from Table 5.3 that in both single-agent and multi-agent
predictions, the addition of map-mask patches help the system make better pre-
dictions than the models without the map-input. For single agent predictions, the
ADE and FDE are reduced by 68.5%, when the map input is introduced. While,
for multi-agent predictions, these are reduced by 66.6% and 57.8% respectively.
It can be observed that there is a noticeable performance jump when contextual
information is fed into the trajectory prediction system.

The performance of the model in different scenarios is illustrated in the
following figures. Figure 5.6 shows the comparison of our model with model-driven
approaches like the constant velocity model (red colour) and the constant curva-
ture model (brown colour) and ground truth (green colour). Although the constant
curvature model (brown colour) shows a better performance in the particular situ-
ation depicted in this figure, the overall performance of our proposed model (blue
colour) exceeds that of the constant curvature model.
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Figure 5.7: Straight path trajectory predictions: Behaviour of Trajectory Pre-
diction Models without Map-mask (Left) and with Map-mask (Right) input. The green
arrows in the images show the direction of motion of the ego-vehicle, ground truth (in
green) and predicted trajectory (in blue).

Figure 5.7 shows an example trajectory of a car in a straight line. The
prediction shows a trajectory in the non-drivable area when only an LSTM based
model is used. The predicted trajectories are shown in blue and the ground truth
in green. Once map-masks are included as inputs, the results show that the pre-
diction (blue trajectory in the right image) is limited to the drivable area. In this
example, we can clearly observe that contextual information aids in making better
predictions.

Figure 5.8 shows that the fitting of the trajectory prediction to road
curves when using map-masks is better predicted. When map-masks are not used
in the system, the predicted trajectory diverges from the ground truth. By con-
trast, when map-masks are included, the prediction accuracy is better, following
the curvature of the trajectory very closely. The divergence of the FDE for this
scenario is attributed to weaker long term predictions. Figure 5.9 shows another
example of the LSTM-only model predicting trajectories in non-drivable areas. It
can be seen that adding map-mask solves this error and makes a better prediction
compared to the LSTM baseline.

Figure 5.10 shows a scene with two interacting cars and a pedestrian.
The observed car trajectories are shown in black and the pedestrian trajectories
are shown in red, the ground truth trajectories for both agents are plotted in green.
The predictions on the left are by a model without knowledge about interaction
or maps while the one on the right is our interaction-aware model with map-
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Figure 5.8: Trajectory prediction at turnings: Behaviour of Trajectory Prediction
Models without (Left) and with Map-mask (Right) input. The green arrows in the images
show the direction of motion of the ego-vehicle. The green trajectories are the ground
truth and the blue one is the predicted trajectory

Figure 5.9: Better behaviour in non-drivable areas: Behaviour of Trajectory
Prediction Models without (Left) and with Map-mask (Right) input. The green arrows
in the images show the direction of motion of the ego-vehicle. The green trajectories are
the ground truth and the blue one is the predicted trajectory
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Figure 5.10: Multi-agent Trajectory prediction: Predictions from a model without
interaction information and map-input (Left) and one with interaction information and
map-input (Right). The green arrow in the image shows the direction of motion of the
ego-vehicle. The green trajectories are the ground truth and the predicted trajectories
are plotted in red for pedestrians and black for cars.

input. It can be observed that the predictions are more accurate in the proposed
model. The curvature of the car trajectory is better predicted with the map-
input. Pedestrian trajectory is also better estimated by the proposed model. This
illustrates its capability to predict the trajectories of multiple traffic-agents with
better accuracy than vanilla models.

5.5 Conclusion

In this chapter, a method was successfully proposed to predict the trajectory of
interacting traffic-agents applicable to vehicle navigation. It uses the knowledge
of the road network structure in the form of binary masks in conjunction with
3D LiDAR points to provide information about the driving scenario. A compar-
ison of single-agent and multi-agent trajectory prediction models is analysed and
the overall improvement of the prediction when map-masks are given as input is
validated.

These results serve as a preliminary step in the direction of using envi-
ronmental context information for improving prediction accuracy. Our approach
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addresses the problem by using binary map-masks to facilitate the understanding
of the scene environment but more semantic information could be used. For ex-
ample, it would be interesting to exploit the Map Extension tool of the NuScenes
dataset and use information such as crosswalks, sidewalks, traffic lights, stop lines
and lanes that can be obtained from their network of mapped areas in order to
improve the quality of trajectory prediction.

Most autonomous vehicles benefit from multi-sensor systems, where per-
ception is enhanced by the use of multi-sensor fusion techniques. In the next
chapter, 3D point-clouds from LiDAR is enriched by data from the images from
on-board video cameras. These images include important situational information.
For example, pedestrian awareness about the presence of a neighbouring vehicle
(i.e., our ego-vehicle). The exploitation of this additional context cue to predict
the pedestrian trajectories next to pedestrian crossings is developed in the next
chapter to demonstrate that the perceived contextual information can enhance the
predictions.
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6.1 Introduction

In the previous chapter the traffic-agents of interest namely - cars, pedestrians
and bicycles are treated in a similar manner. A specific model for each was
learnt, using their previous trajectory. It included the drivable areas available
for each, extracted from information stored in HD maps (i.e, map-masks). How-
ever, the pedestrian motion is unpredictable compared to cars and bicycles which
have tighter holonomic constraints. Additional information on their intentions is
needed to make better predictions.

Interacting with pedestrians is an integral part of autonomous vehicle
navigation for these to be accepted by society. In an urban scenario, an au-
tonomous car will come across several pedestrians. It has to make decisions on
whether to slow down, stop, keep moving or make an evasive manoeuvre. This im-
plies observing the scenario, identifying the relevant factors that affect the motion
of pedestrians and predict their future motion. Pedestrians might not be aware
of their surroundings, could be distracted or in the best case scenario, interact
with gestures or glances towards the vehicles. This is a very difficult task as it
involves social interaction. The contribution of this work is to provide situational
awareness so as to resolve this interaction task. Pedestrian interaction implies
several challenges to a driver and even more to an autonomous driving system
as it requires high levels of abstraction (beyond the classification only systems).
Recognising different behavioural cases and making the decision whether to cede,
stop or slow down is a problem that has to be solved.

In Chapters 4 and 5, trajectory prediction was achieved only by using a
LiDAR sensor and masks issued from HD-maps. However, some limitations were
found, there were some difficulties on the classification and prediction of trajec-
tories of the traffic-agents. The accuracy of predicting pedestrian trajectories is
much lower compared to other classes of traffic-agents. Hence, in this chapter
the focus on the pedestrian class. For this purpose, we introduce a second sensor
in the form of a video camera to exploit the detailed visual context that it pro-
vides. Hence, a multi-sensor perception system is proposed. A camera exploits
the presence of visual cues in the scene, for example, determines whether the ob-
served pedestrian has been looking in the direction of the autonomous vehicle and
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acknowledges its presence. In this research, the focus is on using enriched informa-
tion, like for example, pedestrian attention inferred from other systems to make
predictions in more complex scenarios, as used in road intersection crossings. It
is assumed that the detection of intention and attention has been solved (Lefévre
et al., 2011; Schneemann and Heinemann, 2016).

The review paper (Rudenko et al., 2020) presents an extensive survey
of pedestrian trajectory prediction. Among all the reviewed approaches, there
are several examples of research on predicting pedestrian behaviours at intersec-
tion crossings using vision as input. For example, Kooij et al. (2014) propose a
Dynamic Bayesian Network for pedestrian path prediction that incorporates envi-
ronment parameters such as pedestrian situational awareness and head orientation
with a Switching Linear Dynamical System to predict changes in the dynamics of
pedestrians. These motion models, to be efficient, require accurate and precise
segmentation and tracking of pedestrians. Such assumption can be challenging
due to the difficulty of extracting reliable image features for segmentation and
tracking. Hasan et al. (2016) treat the prediction of adverse pedestrian actions as
an anomaly detection problem. They built a fully convolutional auto-encoder to
learn the local features and use the reconstruction error to analyse the behaviour
regularities, followed by a classifier to detect anomalies. Rasouli et al. (2017) ex-
tract context features from input frames using an AlexNet network (Krizhevsky
et al., 2012) and train a linear SVM model to predict future crossing action of
pedestrians. This is applied on the JAAD dataset (Rasouli et al., 2017). These
approaches are limited in the fact that they focus only on spatial appearances in
small temporal windows, ignoring the temporal coherence in long-term motions.
To solve this issue, Gujjar and Vaughan (2019) perform the crossing actions clas-
sification by feeding the predicted frames of a frame prediction network to a 3D
convolution based network (Tran et al., 2014). This takes into account the tem-
poral dynamics in addition to the spatial appearances. Using different techniques,
Keller and Gavrila (2014) propose two novel approaches, based on Gaussian pro-
cess dynamical models and probabilistic hierarchical trajectory matching. They
use augmented features derived from dense optical flow for pedestrian path pre-
diction and action classification, at short sub-second time intervals as shown in
Figure 6.1.
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Figure 6.1: Pedestrian trajectory and behaviour prediction while crossing a road. Image
from (Keller and Gavrila, 2014)

Kotseruba et al. (2016) present a novel dataset for a critical aspect of
autonomous driving, the joint attention that must occur between drivers and of
pedestrians, cyclists or other drivers. They also show how visual complexity of
the behaviours and scene understanding is affected by various factors such as dif-
ferent weather conditions, geographical locations, traffic and demographics of the
people involved. Malla et al. (2020) introduce TITAN (Trajectory Inference using
Targeted Action priors Network), a new model that incorporates prior positions,
actions, and context to forecast future trajectory of agents and future ego-motion.

This review shows that using contextual information from machine vi-
sion, it is possible to estimate pedestrian intention at intersection crossings. This
information is used as input to our trajectory prediction network. In this chapter,
the focus is on the motion of pedestrians at an intersection crossing. This data
is obtained from the NuScenes dataset. To predict the future pedestrian posi-
tions within the field of view of the ego-motion vehicle, map-context, historical
trajectory of the observed pedestrians and a confidence parameter on whether the
pedestrian has seen the autonomous agent are used. The historical trajectory is
obtained from LiDAR data and the vision data provides the confidence parameter.

Section 6.2 formulates the trajectory prediction problem that is to be
solved. Section 6.3 describes the dataset and the data generated to train the
machine learning model. The approach proposed to solve the prediction problem
is developed in Section 6.4. The results are discussed in Section 6.5 to conclude
the chapter.
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6.2 Problem Formulation

6.2.1 Overview

The problem is formulated to find the manner in which the future trajectory of
the observed pedestrians can be estimated. For this purpose, using contextual
information, the model must predict what the trajectory of the pedestrian will
be as it intends to cross a road. Formally, the task is to observe the features of
pedestrians within the interval [Tobs−w : Tobs] and to predict their positions in the
interval [Tobs+1 : Tpred]. w is the observation window for each detected pedestrian.

The process followed for the implementation of this system is shown in
Figure 6.2. The inputs to the prediction module are 3D LiDAR point-cloud data,
binary map-patches around each observed pedestrian and images. From the 3D
LiDAR point-cloud data, the historical trajectory of each traffic-agent is observed
with the map-patches providing information on the drivable and non-drivable areas
and road crossings in the work-space. From images, the pedestrian attention to
the oncoming vehicle at each time step is obtained. These inputs are embedded
into a mathematical model so they can be fed to a machine learning model. The
encoded sequence is used as input to train the LSTM Encoder which produces a
feature vector. From this feature vector the trajectories are predicted using an
LSTM decoder.

Figure 6.2: The process involved in Pedestrian Trajectory Prediction
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6.2.2 Pedestrian Feature Set

A sequence of inputs that include LiDAR point-clouds and camera images together
with map-masks from HD maps defines the feature set for each pedestrian k at
time t. This can be represented as

fk
t = (pkt ,M

k
t , A

k
t ) (6.1)

where
pkt = [xkt , y

k
t ] (6.2)

Here, [xkt , y
k
t ] represents the position coordinates of the detected pedes-

trian in the ego-motion vehicle reference frame, obtained from the detections of
LiDAR point-cloud. Mk

t represents the map mask, defined by a 128 × 128 pixels
binary map patch, which is the area surrounding each observed pedestrian. Ak

t is
a scalar confidence parameter representing the attention of the pedestrian k to the
ego-vehicle. This is assumed to be obtained from vision data, where Ak

t is equal to
1 when the pedestrian is aware of the ego-vehicle and equal to 0 if it is unaware.

The task is to observe the features of all traffic-agents (pedestrians in
this case) within the interval [Tobs − w : Tobs] and to predict their positions in the
interval [Tobs+1 : Tpred]. The later will reflect if the pedestrian will cross the road
or not, where w is the sliding observation window, defined in Chapters 4 and 5.
So the problem resides in determining whether or not the pedestrian will cross the
road. Our approach relies on the use of an LSTM network that should incorporate
the contextual information.

In the next section, we describe the dataset used to train this LSTM
Network.

6.3 Dataset

The NuScenes dataset is used in this chapter also [c.f. Section 3.3]. From this
dataset, sequential point-cloud data, images and map-patches around the ego-
motion vehicle are extracted. LiDAR data and map information is used as it is
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from the NuScenes dataset. The pedestrian attention information is generated
manually. To describe this, we split the dataset into two - Data from NuScenes
and Generated Data. This is explained as follows:

6.3.1 Data from NuScenes

LiDAR data Observed Trajectory: The point-cloud data from the LiDAR is
used to generate the observed pedestrian trajectory. This is obtained by using
the Point Pillars approach applied previously in Chapter 5. The result will be a
vector of (x,y) - coordinates representing the position of the observed pedestrians.
This is illustrated in Figure 6.3. Out of 393 scenes identified from the NuScenes
involving pedestrians, 198 separate trajectories involving a pedestrian crossing the
road in front of the ego-vehicle are extracted. These involve scenarios where the
pedestrian crosses the road with or without pedestrian-crossings and also scenarios
where they stop and do not cross.

Figure 6.3: Observed Pedestrian Trajectory generation applying the PointPillars Algo-
rithm (Lang et al., 2018)

Map Information Input (Context): Whilst previously, we only used
binary information on drivable and non-drivable areas for this map-input, an ad-
dition description is incorporated regarding the presence of pedestrian crossings.
The pedestrian crossings information is incorporated because pedestrians are likely
to cross the road in those situations 1. The pedestrian crossings are added to the

1Accident studies have shown that, despite different assumptions, there are a significant
number of pedestrian accidents occurring when they cross the road at the pedestrian crossings.
[Accidentology Laboratory Renault, 2021]
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black areas in the map. Figure 6.4 shows this representation. An empirical study
showed that the size of the map-patch - 128x128 pixels - is practical as in Chapter
5.

Figure 6.4: Map masks including pedestrian crossings marked with white rectangles

6.3.2 Generated Data: Pedestrian Attention from Images

The third input used for the pedestrian crossing prediction network are obtained
from images, i.e, we have manually annotated a score that represents the level
of attention of the pedestrian crossing to the presence of the ego-vehicle. This is
shown in Figure 6.5. The annotation has been done by a single annotator. This
could have led to inaccurate annotations and should be taken into account while
analysing the results. This can be replaced by a pedestrian attention estimation
network in the future. This is represented by a scalar labelled as the Pedestrian
Attention Ak

t . For each time instance, the pedestrian attention is 1 if the pedestrian
is looking at the incoming ego-vehicle and 0 if it has never looked at it. This value
is approximately decided based on the angle of orientation of the pedestrian gaze.
The pedestrian attention for all the time-instances observed are joined together to
form the Pedestrian Attention Vector Ak

Tobs
. This is shown in Figure 6.5.
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Figure 6.5: Pedestrian images used as visual input to annotate the Pedestrian Attention
Vector

Therefore, the training dataset will consist of Observed Pedestrian Tra-
jectories, the corresponding map-patches and the pedestrian attention vectors.

6.4 Methodology

The architecture developed in this chapter is an extension of the works done in
Chapter 5. The system exploits three input streams - LiDAR point-cloud data,
Map-masks and images. From the 3D LiDAR point-cloud data, the historical
trajectories of observed traffic-agents are extracted using the VoxelNet Object
Detection Network. Using this trajectory information, the binary map-patches
around each observed traffic agents are extracted for each time-step (Scene Mask
Patches Retrieval). These map patch sequences are then encoded using a CNN
Encoder. From images, the pedestrian attention is extracted for each time step.
This is done through manual annotation. The observed trajectories generated by
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the VoxelNet are then encoded together with the encoded map patches and the
pedestrian attention vector using the LSTM Trajectory encoder. The resulting
feature map is then fed into an LSTM Trajectory Decoder to obtain the Predicted
Trajectories. This system architecture with these inputs is illustrated in Figure
6.6. The details of the different components of this architecture are presented in
the next section.

Figure 6.6: System Architecture: The Prediction Network has three inputs: sequential
historical trajectories of all traffic-agents, the associated map-mask patches around each
agent for the observed time instances and the confidence of pedestrian attention towards
the autonomous agent.

6.4.1 Historical Trajectory Embedding

Firstly, LiDAR point-cloud data is passed through the VoxelNet Object detection
network to extract the location of each pedestrian. The pedestrians are observed
for TObs and the sequence of positions extracted are passed to the next steps in
the prediction pipeline. These sequences are used to extract map-patches and also
passed on to the LSTM encoder to generate the historical trajectory embedding.
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Following the same steps in Chapter 5, let the historical trajectory of a
pedestrian k, from time-step 1 to time-step Tobs be given by,

pk = [pk1, ..., p
k
Tobs

], (6.3)

where,

pki = [xki , y
k
i ] (6.4)

for each time-step i. These historical trajectories are passed through the LSTM
encoder of each respective pedestrian to generate its historical embedding as fol-
lows,

hkt = LSTM(pkt , h
k
t−1), (6.5)

generating a sequence of historical embedding. With these historical embedding,
a merged context vector, C∗,k

t is computed by concatenating the historical context
vector CH,k

t and spatial context vector CS,k
t (as defined in Chapter 5) and applying

a non linear function:

C∗,k
t = tanh([CH,k

t ;CS,k
t ]) (6.6)

6.4.2 Context from Map input

Secondly, Map-masks associated with the driving location is the input that serves
for extracting map-patch sequences. These binary image sequences provide static-
context information to the prediction module, i.e., non-drivable areas including
pedestrian crossings on the map. Square patches of 128 × 128 pixels are ex-
tracted, centred around each location of the detected pedestrian from the LiDAR
input. These map-patch sequences are encoded using a CNN encoder (elaborated
in Chapter 5). The resulting feature vector is also passed to the LSTM encoder.
To elaborate, each of the 128× 128 pixels binary map patch Mk

t is passed through
a Convolutional Encoder producing a latent vector CC,k

t which holds the infor-
mation about the non-drivable areas and pedestrian crossings associated with the
respective pedestrian k at time-instance t. These sequential latent vectors for each
observed time instant in the observation window are concatenated to form the
Map Context vector CC,k

TObs
at time TObs.
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6.4.3 Pedestrian Attention Embedding

The third input that feeds the prediction module are images. Images are used to
extract Pedestrian Attention Vector as described in Section 6.3.

Let the historical attention of a traffic-agent k, from time-step Tobs−w to
time-step Tobs be given by,

Ak = [Ak
TObs−w

, ..., Ak
Tobs

], (6.7)

where, Ak
i = [0, 1] for each time-step i.

An embedding of the attention vectors is generated by passing it through
an LSTM as follows:

Ahkt = LSTM(Ak
t , Ah

k
t−1), (6.8)

where Ahkt are the hidden states for pedestrian k at time instance t. Now, the
Pedestrian Attention Embedding CA,k

t is computed as a weighted sum of hidden
states from t = [1 : Tobs]:

CA,k
t =

Tobs∑
j=1

αtjAh
k
j (6.9)

and the weight αtj as shown in Bahdanau et al. (2014) can be computed
by:

αtj =
exp(etj)∑T
l=1 exp(etl)

(6.10)

etj = a(Ahkt−1, Ah
k
j ) (6.11)

where the function a is a feed forward neural network which is trained jointly with
the whole network.

6.4.4 Pedestrian Trajectory Prediction

We have three vector sequences which provide static-context (maps), historical tra-
jectory information (LiDAR) and Attention Context (Pedestrian Attention vector
extracted from images). The Map Context vector CC,k

t is therefore concatenated
with the merged context vector C∗,k

t generated from the historical trajectory and
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the Attention Embedding CA,k
t generated from the Pedestrian Attention sequences

to obtain the final Pedestrian context vector CP,k
t :

CP,k
t = [C∗,k

t ;CC,k
t ;CA,k

t ] (6.12)

Now, the final predicted trajectory qkt is obtained by passing the final
Pedestrian context vector CP,k

t through the LSTM decoder and two fully connected
layers:

qkt = FC(LSTM(hkt−1, q
k
t−1, C

P,k
t )) (6.13)

The output qkt is composed of points in a Cartesian grid:

qkt = [xObs+1, yObs+1, ..., xObs+N , yObs+N ] (6.14)

where N is the prediction horizon which could range from 3-10 frames in our
experiments.

6.5 Results

The final model described in the previous section is implemented to predict the
trajectories of pedestrians at road crossings. Based on the prediction we also check
if the model is able to differentiate the cases where the pedestrian crosses the road
or not. To demonstrate the feasibility and performance of this system, the network
was implemented and tested using part of the NuScenes dataset.

The prediction accuracy is measured based on two criteria as described
in Section 2.3 : Average Displacement Error (ADE) and Final Displacement Error
(FDE) in the map space/pixel space with respect to each time step t within the
prediction horizon. ADE provides the average error between the ground truth and
predicted trajectories. The FDE provides the error between the final positions in
the predicted trajectory and the ground truth.

To illustrate the interest of using map information and pedestrian atten-
tion from images, three variants of our approach are implemented:
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• LSTM-only Baseline: This method uses observed trajectory obtained
from LiDAR data and a basic LSTM encoder-decoder architecture.

• LiDAR + Maps (LM): This method exploits LiDAR data and map-masks
providing information about pedestrian crossings.

• LiDAR + Maps + Attention (LMA): This is the proposed approach
combining information from all three sources - LiDAR, maps and images.

Method ADE(Metres) FDE(Metres)
1. Baseline - LSTM only 3.31 5.54
2. LiDAR + Map-mask (LM) 2.23 3.32
3. LiDAR + Maps + Attention (LMA) 1.2 1.7

Table 6.1: Comparison of Prediction Accuracy for different models

Table 6.1 clearly shows that the full model LMA, with all three inputs,
outperforms the baseline and LM model. By using LMA, the prediction error
ADE is reduced by 46.18% compared to LM and 63.75% when compared to the
LSTM baseline. Furthermore, the FDE is reduced by 48.8% and 69.3% with
respect to LM and the baseline respectively. However the performance of this
model in specific situations is not apparent from this table alone. For this, we
analyse its performance to predict whether the pedestrian crosses the road (C)
or do not cross the road (NC) in predefined conditions. The scenarios that are
analysed include - road crossing present (RC - Present), road crossing absent (RC
- Absent), pedestrian has seen or is aware of the ego-vehicle (Seen) and situation
where the pedestrian is not aware of the ego-vehicle (Not seen). For each model
listed above, the C or NC prediction in these four cases are tabulated and presented
in Figure 6.7. For each pedestrian trajectory, a threshold distance is calculated to
decide whether he/she has crossed the road or not. Figure 6.7 shows the confusion
matrices for each scenario. The colour of each cell represents the probability of
predicting the label in the horizontal axis when the true label is the one in the
vertical axis. Light colour signifies low probability while dark shades of green
signifies higher probability. A model that makes perfect predictions will show a
matrix with positions [0,0] and [1,1] in dark green, and positions [0,1] and [1,0] as
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white. Table 6.2 shows the precision of the prediction in these scenarios. "RC-
Present" or "RC-Absent" refers to the presence or absence of road crossings and
"Seen" or "Not Seen" refers to the pedestrians’ awareness of the ego-vehicle.

Figure 6.7: Prediction of Crossing or Not Crossing of a pedestrian in different scenarios.
The heatmap value shows the probability of predicting the label in the horizontal axis
when the true label is the one in the vertical axis.

Examining the performance of the LSTM only model, shown in the first
column of Figure 6.7, it is observed that the model predicts the crossing action
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Table 6.2: Precision of pedestrian crossing prediction in different scenarios

of pedestrians with a precision of 80%. But when it comes to predicting the
non crossing of pedestrians, the model fails. It only has a precision of 10-20% in
different scenarios. This shows that without contextual information, the LSTM-
only model mostly predicts a sequence that fits a pedestrian crossing the road. It
is unable identify cases where the pedestrian would stop and not cross.

LM model shows a 100% improvement in the crossing prediction com-
pared to the LiDAR only model, when road crossings are absent. This can be
noted from Table 6.2. However, the precision is still only 34%. This model how-
ever, shows similar performances to the LSTM only model while considering the
attention cue - Seen/Not Seen. This is evident from the fact that the model only
has information about past trajectories and maps. It is unable to differentiate
cases where the pedestrian behave differently because of the perceived ego-vehicle.

Finally, if we consider the performance of the complete model with Li-
DAR, Maps and Attention (LMA), an overall improvement can be observed in
all scenarios. For predicting the crossing of pedestrians, it shows a precision of
around 90% in all contexts. Also, for predicting that the pedestrian stops and
do not cross, the precision has hugely improved to 60% in the different scenarios.
This is an improvement of 200% compared to LM and the baseline LSTM. The
overall precision for predicting the crossing of pedestrians has also improved by
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11.8% compared to the LM model.

6.6 Conclusion

The question of whether a pedestrian will cross the road or not, is critical in the
context of autonomous vehicle navigation. This chapter addresses this problem
from a trajectory prediction point of view. A lot of factors are involved in the
decision that leads to a pedestrian crossing a road. Presence of road crossing,
traffic-lights, awareness of oncoming vehicles, distraction etc., are a few examples
of these factors. Without having a global idea of all such factors, it is hard to
estimate the behaviour of pedestrians. In this chapter, the use of such context
cues are studied to predict the trajectories of pedestrians at road crossings.

The models developed in this chapter show promising results in the con-
text of pedestrian trajectory prediction. The final model which incorporates pedes-
trian awareness to oncoming traffic when compared to the baselines with only ob-
served trajectory as input, and the model with LiDAR and Maps as input show
superior performances in all situations. The precision of crossing prediction under
four predefined scenarios are compared to test the model performances. These
scenarios are - Road crossing present, Road crossing absent, Pedestrian has seen
oncoming vehicle, Pedestrian has not seen oncoming vehicle. Our model shows a
precision of 93% to predict cases where the pedestrian crosses and 60% to predict
cases where the pedestrian do not cross. Even though this is not the best perfor-
mance one can expect, the improvement over the other models to predict specific
situations has to be noted.

As future work, adding more context cues and optimising the performance
of the developed model has to be studied. Training the model on a bigger and
better dataset will also aid in achieving superior results. Several assumptions
have been made to make the development and testing of the proposed methods
easier. Pedestrian attention is assumed to be obtained from an existing solution.
The dataset also provides synchronised data. This is not the case in real-life.
This assumption of having synchronised data will also have to be put to test and
verified with real driving data. Future works would involve getting rid of these
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suppositions and improving the prediction performance in all scenarios.
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The Association Nationale de la Recherche et de la Technologie (ANRT)
under the Conventions Industrielles de Formation par la REcherche (CIFRE)
Project between Groupe Renault and ENSTA Paris sponsored this thesis. The
research objective was to develop multi-sensor data fusion perception algorithms
applicable to autonomous vehicles. The initial high level goal was set to improve
existing approaches and extend current algorithms to understand the physics of
the perception problem . After this exploration phase, the trajectory prediction
task was chosen to be the focus of this thesis. The rationale resides on the need
of trajectory estimates, to facilitate the understanding of the behaviour of the ob-
served traffic- agents, prior to decision making utilising the data acquired by the
on-board exteroceptive sensors. The approach taken on this research is to gradu-
ally build a machine learning architecture that ultimately is capable to incorporate
contextual information as part of inputs into the prediction process.
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7.1 Summary of the Work

Chapter 2 undertakes a state-of-the-art review of different trajectory prediction
methods and presents them in a structured manner. They are classified into:
model-based, data-based and models that are aware of interaction and context
cues. The methods are also classified according to the type of perception sensors
namely, active and passive. The notions of multi-sensor fusion are also introduced
as this approach is preferred to enhance results but also provide redundancy in
safety critical applications. The evaluation metrics used in this thesis are also
included. The chapter introduces the framework that is used as the basis for the
approach proposed in this thesis.

Chapter 3 introduces the reader to various machine learning networks,
their structures, guidelines to build them and their application areas. It enabled
us to gain an understanding of the most suitable for our objectives, at different
stages some of these networks were tested. Datasets play a crucial role in the
development of machine learning algorithms. Without them, most of the myriad
tasks solved with machine learning could not be accomplished with the accuracy
levels attained in the past few years. The different datasets which could be used
in our research were analysed and the most relevant selected.

Chapter 4 details the initial research direction in this thesis. It evolves
around the idea that each class of traffic-agents has its own dynamic behaviour in
a traffic scenario. Therefore, their motion trajectories could be used as a feature
to distinguish them from one another. As a first familiarisation with the LSTM
neural networks, we examined whether it is possible to use this idea to classify the
observed trajectories of traffic-agents. Although, in the domain of autonomous
vehicle navigation, such classification is of limited interest, because perception
of the agents usually gives good cues about their class, it served us to use and
understand the LSTM model in particular the effect of some the hyper-parameters
used to define it. The results in this chapter pointed us to the direction of trajectory
prediction as well as to understand the different challenges.

In Chapter 5, the main contribution of this thesis is presented. Exper-
imental results showed that perception alone has its limitations when predicting
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the future trajectories of the observed traffic agents. The hypothesis related to
the introduction of context cues is formulated. Different studies on human under-
standing have also shown that drivers use multiple cues to understand what other
traffic agents might do, reacting accordingly. There are inherent rules that decide
the path taken by different classes of traffic-agents. In this chapter, we state that
maps can provide contextual information. For this purpose, we use map-masks
available in the NuScenes dataset. The challenge is on the manner that they can
be introduced into a machine learning model to improve the prediction of the
trajectories of the traffic-agents. These map-masks provide crucial information
about the driveable and non-drivable areas within the vehicle workspace, thus de-
termining indirectly where the traffic-agents can evolve. A comparison between
single-agent and multi-agent trajectory prediction models is included. The results
shown an overall improvement of the prediction when map-masks are given as
input. It is possible to associate contextual cues into machine learning models.

Chapter 5 addresses the application of the models developed in Chapter
5 to the task of pedestrian crossing prediction. The approach is to seek an exten-
sion of our previous machine learning architecture so it can incorporate additional
contextual cues. For this purpose, the attention of the pedestrian to the oncoming
ego-vehicle is incorporated into the ML architecture. The assumption is made that
this information is available from images acquired by the on-board sensors. This
additional context cue plays a significant role as most humans interact with the
oncoming vehicles with their gaze. In the proposed architecture, manually anno-
tated information from camera images are included. The results provide sufficient
insight to show that adding other context cues help to improve the prediction of
pedestrian trajectories and crossing behaviours.

7.2 Summary of Findings

The main findings in this thesis are:

• Interaction Aware systems are crucial in autonomous navigation:
To predict the motion of relevant traffic-agents in a traffic scenario, many
elements are critical. The interaction between them is very significant. The
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proposed approach investigated the trajectory prediction of the traffic-agents
when we consider or ignore the awareness of other agents within the same
workspace. Within the context of this thesis, by interaction, we mean the
interaction of trajectories. Test results showed that when the system had
information about other road-users, the predicted trajectories were better
aligned with respect to the ground truth.

• Maps provide important semantic information about the traffic-
agents: General rules constrain the motion of traffic-agents in the envi-
ronment. There are spaces where cars can navigate and those where they
cannot. On the contrary, pedestrians can be present in both drivable and
non-drivable areas. The use of simple binary map-masks (drivable and non-
driveable areas) in the prediction model helped intrinsically when they are
added into the knowledge pool of the system. Results prove that the use
of such map-masks indeed improve the prediction performance in specific
scenarios. It was demonstrated that this information could be included also
into ML architectures. The resulting model is able to predict cases where
the pedestrian crosses because of the presence of a road-crossing.

• Social Cues improve prediction tasks: Driving is a social task. There is
a lot of subtle interaction that happen between different traffic-agents. Cars
beeping, pedestrian gaze, use of vehicle indicators etc. are some examples
of such interaction. In the proposed method, we focus on one such cue,
i.e., pedestrian attention to the oncoming vehicle. It can be inferred that
such awareness of pedestrian intention provides substantial information to
the prediction module in deciding whether the road-user will cross or not for
example. This cue is particularly useful when people deviate from normal
behaviour, for example - crossing the road in the absence of a road crossing.
Having information about the attention of the pedestrian helps predict such
situations correctly.

7.3 Perspectives

This thesis proposes an interaction-aware trajectory prediction system that de-
pends on context cues. The results of this research is of relevant industrial interest
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and they point towards the need for further work in this area. For safety critical
functions, the classification of traffic agents might be insufficient to provide full
situational awareness, by adding contextual information this classification can be
extended. This section presents some general perspectives and discusses them in
the context of the conclusions mentioned above.

• Building a complete framework from ground up: Though initial works
undertaken in this thesis were to replicate results from other researchers,
finding a tangible research direction took time. Work on machine perception
applicable to vehicle navigation has been exploited as a research domain in
recent years. The system architecture built in this thesis is an original work
and was developed from ground up. Consequently, there is a good scope
for improvement. Preliminary results are promising enough to continue the
works in this direction by using more cues and optimising the developed
machine learning models. Hyper-parameter tuning can produce better re-
sults. Further, contextual information could be linked in a spatial manner
to provide a graphical relationship between them that bound likely errors.

• The Dataset Limitation: Datasets are the most important aspect of solv-
ing a problem using machine learning. Having a well-rounded dataset, that
comprises of all or most of the relevant cases in the problem, makes a big
difference in the accuracy in which the problem can be solved. This thesis
also deals with such a constraint. Finding a dataset with the required data
proved to be difficult. Even with the final choice of the dataset, a big part
of it had to be manually generated through different techniques. This may
cause constraints in replicating results. In the future, a dataset where all the
scenarios are recorded from real-life examples can make the model consistent.
For the exploration of machine learning models, synthetic models could be
used that represent the situations that pose safety concerns when driving
autonomously, generating out-of-the-norm situations for example, for model
improvements and testing.

• Localisation problem with maps: The use of maps in our system also
poses the question of localisation. The availability of maps has been proven
to be useful to make accurate predictions. But in real life, these maps could
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have errors because of road-works or outdated maps or even localisation er-
rors. Our system does not have a method to account for such errors. It
assumes a perfectly synchronised world-model. Having the luxury of the
NuScenes dataset aids in this context. Hence, in the future, an extension
that deals with such errors and variances in the map-masks has to be devel-
oped. Further, the use of semantic maps where the spatial relationships are
described in a graphical model should be explored on the manner this can
be exploited as part of the machine learning architecture.

• Improving pedestrian intention recognition: The proposed framework
takes only the position, heading and attention of pedestrians into account
during the inference phase to predict their positions. Prediction of pedestrian
behaviour can be greatly improved by taking into consideration some of the
other cues used by human drivers to decide whether a pedestrian will cross
or not. This extension could incorporate cues such as shoulder and body
poses, or current behaviour such as looking at a smartphone (Rasouli et al.,
2017; Hoy et al., 2018). Further, the notion of hazard could be incorporated
by including a clue on the likelihood of safety issues with respect to the
situations in which pedestrian accidents occur from accidentology data.

• Utilising more context cues: We have studied the benefit of adding
context cues to the prediction module. However, in real-life, context cues are
more than pedestrian attention or drivable or non-drivable areas. They can
be traffic-signs, vehicle speeds, more semantic information from HD-maps,
pedestrian gestures, etc. The incorporation of these cues into a prediction
system shall improve situation understanding and lead to better autonomous
vehicle navigation (Oh and Peng, 2020).

• Multi-Modal Prediction: The work presented in this thesis addressed
solutions with a single possible predicted trajectory for traffic-agents. Multi-
modal predictions are important when it comes to situations where there
are multiple paths or options that a traffic-agent can take. Works similar
to Mercat et al. (2020) point to a direction that can be adopted as future
developments to our model. They use a multi-head attention mechanism to
achieve multi-modal trajectory predictions.
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• System Validation: The validation of the type of systems as the one pro-
posed is complex, it is difficult to build statistical evidence. Validation of
the models developed in this thesis is a task that must be done in real-life
driving scenario. Although the models have been tested and verified to work
in specific scenarios, this is yet to be validated when it comes integrated
onto an autonomous vehicle. More complex scenarios that pose themselves
in real-life have more variables, thus the scenario exploration complexity in-
creases the number of scenarios to be tested drastically. A first step would
be to validate these in the predefined use-cases and then extend from there
or to explore the use of simulation technologies.

The validation problem remains a core challenge for the deployment of com-
plex autonomous systems. This is not only a crucial step in the industry to
test a system but also a research problem to find the correct methods. These
are likely to be different given the nature of the tested systems.
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Titre : Utilisation d’indices contextuels et d’interactions pour la prédiction de la trajectoire des usagers de la
route

Mots clés : Prédiction de trajectoire, LSTM, apprentissage automatique, indices contextuels, cartography,
fusion

Résumé : La navigation autonome des véhicules
dans les zones urbaines implique des interactions
avec les différents usagers de la route ou agents de la
circulation partageant le même réseau routier comme
les voitures, les vélos et les piétons. La capacité du
véhicule autonome à observer, comprendre et prédire
le comportement de ces agents est très importante
pour acquérir une bonne compréhension de la situa-
tion avant de décider de la manœuvre à suivre.
La thèse construit progressivement une architec-
ture d’apprentissage automatique basée sur une for-
mulation théorique et des expérimentations. Notre
approche est basée sur un modèle d’encodeur-
décodeur LSTM qui accepte les données de
différentes entrées. Des observations de trajectoire
à partir de données de nuages de points LiDAR 3D
et d’informations sémantiques à partir de masques
de carte sont utilisées. Les masques de cartes
représentent des zones où les agents peuvent opérer
ou non, de manière binaire. Les informations sur l’at-

tention des piétons aux véhicules venant en sens
inverse obtenues à partir des images des caméras
sont également exploitées pour enrichir le système
de prédiction de séquence. De plus, les interactions
du véhicule autonome avec les agents de la circu-
lation régissent souvent son comportement lorsque
le véhicule navigue. Un mécanisme pour incorpo-
rer ces informations au modèle d’apprentissage est
également développé aboutissant à un système de
prédiction de trajectoire intégrant les interactions et
des indices contextuels. Nos expériences ont per-
mis de valider nos modèles et de construire pro-
gressivement leur architecture. Leurs performances
sont démontrées à l’aide du célèbre jeu de données
NuScenes acquis en milieu urbain. Les performances
de l’approche proposée comparées aux approches
basées sur des modèles et des données démontrent
que l’ajout de multiples informations contextuelles et
des interactions d’agents permet une augmentation
substantielle des performances.

Title : Using context-cues and interaction for traffic-agent trajectory prediction

Keywords : Trajectory Prediction, LSTM, Machine Learning, context-cues, cartography, sensor-fusion

Abstract : Autonomous vehicle navigation in urban
areas involves interactions with the different road-
users or traffic-agents like cars, bicycles, and pedes-
trians, sharing the same road network. The ability of
autonomous vehicle to observe, understand and pre-
dict the behaviour of these traffic-agents is very im-
portant to gain a good situation understanding prior
to deciding what manoeuvre to follow. While this is
achieved to various degrees of success using model-
based or data-driven methods, human drivers remain
much more efficient at this task, instinctively inferring
different agent motions even in previously unseen and
challenging situations. Moreover, context plays a very
important role that enables us humans to understand
what is being perceived and make finer predictions.
The need to increase situational awareness of auto-
nomous vehicles, as well as for safety related driving
assistance functions, stimulates our goal to exploit
contextual information to predict the future trajectories
of the observed traffic-agents in different conditions.
The thesis gradually builds a machine learning ar-
chitecture based on a theoretical formulation and ex-

perimentation. Our approach is based on an LSTM
encoder-decoder model that accepts data from dif-
ferent inputs. Map masks represent areas where the
traffic-agents can operate or not, in a binary manner.
The information on pedestrian attention to oncoming
vehicles obtained from camera images is also exploi-
ted to enrich the sequence prediction system. Moreo-
ver, interactions of the autonomous vehicle with traffic-
agents often govern its behaviour as the vehicle navi-
gates. A mechanism to incorporate this information to
the machine learning model is also developed as an
interaction-aware trajectory prediction system enhan-
ced by context-cues. Experiments were performed for
our models to learn, and gradually build the resul-
ting architecture. Their performance are demonstra-
ted using the well-known NuScenes dataset acquired
in urban settings. The performance of the proposed
approach were compared with model and data-driven
approaches, demonstrating that the incorporation of
multiple contextual information and agent interactions
provides a substantial performance increase.

Institut Polytechnique de Paris
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