
HAL Id: tel-03593003
https://theses.hal.science/tel-03593003

Submitted on 1 Mar 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Data-driven Management Solution for
Microservice-based Deep Learning Applications

Zeina Houmani

To cite this version:
Zeina Houmani. Data-driven Management Solution for Microservice-based Deep Learning Applica-
tions. Other [cs.OH]. Université de Lyon, 2021. English. �NNT : 2021LYSEN092�. �tel-03593003�

https://theses.hal.science/tel-03593003
https://hal.archives-ouvertes.fr

Numéro National de Thèse : 2021LYSEN092

THÈSE DE DOCTORAT DE L’UNIVERSITÉ DE LYON
opérée par

l’École Normale Supérieure de Lyon

École Doctorale N◦ 512

École Doctorale en Informatique et Mathématiques de Lyon

Discipline: Informatique

Soutenue publiquement le 16/12/2021, par :

Zeina HOUMANI

Data-driven Management Solution for
Microservice-based Deep Learning Applications

——————————–

Solution de gestion pilotée par les données pour les applications
Deep Learning basées sur des microservices

Devant le jury composé de:

Cedric TEDESCHI Maître de conférences HDR IRISA Rennes Rapporteur
Laurence DUCHIEN Professeure des universités Université de Lille Rapporteure
Michael KRAJECKI Professeur des universités Université de Reims Examinateur
Laure GONNORD Professeure des universités Grenoble INP Examinatrice
Gabriel ANTONIU Directeur de recherche Inria Rennes Examinateur
Eddy CARON Maître de conférences HDR ENS de Lyon Directeur
Daniel BALOUEK-THOMERT Research associate Université d’Utah Co-Directeur

FOREWORD

The research work presented in this thesis is a collaboration between the Laboratoire
de l’Informatique du Parallélisme (LIP) at ENS Lyon (Lyon, France) and the Rutgers
Discovery Informatics Institute RDI2 at Rutgers University (New Jersey, USA). During
the first and last year, the realization of this thesis was under the Avalon team at the
LIP laboratory. In the second year, I moved to the United States to continue the work
under RDI2 at Rutgers University.

This research is supported in part by the NSF under grants numbers OAC 1640834,
OAC 1835661, OAC 1835692 and OCE 1745246 and in other part by LIP Laboratory
and ENS grants.

Figure 1 – Logos of the collaborating institutions on the research work of this thesis

iii

ACKNOWLEDGMENTS

Getting to the point of writing this acknowledgment section is the result of the help,
encouragement, and support from many people around me whom I want to thank.

I would like first to express my sincere gratitude to the rapporteurs in my Ph.D.
committee: Laurence Duchien and Cedric Tedeschi for reading my dissertation and
writing detailed reports with great feedback. Also, I like to thank my thesis examiners:
Laure Gonnord, Michael Krajecki, and Gabriel Antoniu for accepting to be part of the
committee and dedicating part of their valuable time to assess my work.

I would like to express my deepest gratitude to my supervisors, Eddy Caron and
Daniel Balouek-Thomert for their invaluable efforts, dedicated scientific guidance, and
enthusiastic participation during this thesis. I appreciate their fruitful discussions, pa-
tience, and confidence in me.

Foremost, I am thankful to Eddy for his consistent support and encouragement
throughout my master’s internship and thesis. For me, Eddy was more than just an
advisor. He quickly became the first scientific role model that I look up to as a grow-
ing researcher. He showed great manners, an infectious personality, and outstanding
knowledge and expertise in the field of computer science. I thank him for not giving up
on me after our awkward first meeting and after knowing my unimpressive knowledge
in the film industry.

I’m grateful for Daniel for helping me grow as a researcher. I learned from him to
pay close attention to details, to devote enough time for the work planning phase, and
to never cut corners. I’m always thankful for his constructive comments which helped
me improve my writing skills. Being his first official Ph.D. student made this journey
more exciting knowing that we were both learning how to cope with the challenges that
came our way during this process.

I’m super happy and fortunate to have had the chance to work closely with Eddy
and Daniel. I hope I have lived up to their expectations.

I would like to thank Mr. Christian Perez, the leader of the Avalon team, and
Mr. Manish Parashar, the director of the RDI2 team at the time, for their benevolent
suggestions and for giving me the opportunity to be part of their research teams during
this thesis.

iv

I like to thank all the members of Avalon for the group meetings, work presentations,
discussions, and the calming pre-covid19 coffee breaks. I would like to thank the members
of the RDI2 team, especially Eduard Renart for the useful discussions and suggestions.

I would like to thank Mr. Yves Caniou, a member of the LIP laboratory staff, for
introducing me to the LIP laboratory when I was looking for a research internship.
That’s when it all started.

I’m grateful to the administrative staff in LIP, especially, Mme Evelyne Blesle, Mme
Marie Bozo, Mme Chiraz Benamor, and Mme Sylvie Boyer for helping me with so many
things over the past few years and making laboratory life so much easier.

I’m also thankful for Mme Noraida Martinez, administrative staff at Rutgers Uni-
versity, who worked hard for making my visit to Rutgers University well organized.

Thanks to this journey, I met many incredible people in Lyon and New Jersey. I like
to thank my friends Sarah, Orsola, Soha, Sally, and Hiba for making ordinary moments
in Lyon extraordinary. I like to express my gratitude to Fatima, Ghadir, and Batoul,
whom I met in New Jersey, for welcoming me and providing me with the help I needed
to adapt quickly to the new environment.

I want to thank my roommates at the Rutgers dorm in New Jersey, Anna and Sunin.
Despite their short stay, they made life in the dormitory feel less lonely. I like to thank
Anna for the great memories in New York and the long and fun discussions. I’m
thankful for Sunin for being a super kind roommate, for the enthusiastic "Momoland"
morning alarm, and for introducing me to the delicious Tteokbokki.

I like to thank my childhood friend Bilal for being a brother who has been by my
side since forever and has always been a person I can rely on. Huge thanks to my
best friends Marwa, Lina, Batoul, Hiba and Maysa for remaining great support despite
choosing different career and being thousands of miles apart.

Last but not least, I would like to express my gratitude to my beloved family for
their continuous encouragement and support during this special chapter of my life. In
particular, I would like to thank first my parents, Khalil Houmani and Amina Cheaib,
and my sisters, Zeinab and Zahraa, who have always given me the support, the strength,
and the positive energy that I needed. I am grateful to them for always being there for
me. Also, I want to thank my uncle Taan Cheaib for the moral support. Many thanks to
my cousin Rayan for the numerous walks in Paris, the Boursin, and for being someone
I can count on.

v

In memory of my dearest grandparents, Zamzam cheaib, Zeinab Kanso, and my aunt
Khadija Houmani, whom I lost during this journey.

vi

DEDICATION

To my lovely parents and sisters.
Thank you for supporting my dreams and believing in me.

To my late grandmothers and late aunt.
Thank you for caring about me. I will hold you safe in my heart forever.

vii

ABSTRACT

We live in a new era of Big Data, the era of insights. While our capacity to collect
real-time data has grown significantly over the past decade, our ability to analyze that
data to turn it into knowledge has not kept pace. With new generations of devices and
network technologies, the focus of Big Data is shifting toward the design of tools and
applications able to extract information from collected data. The majority of emerging
applications present expectations of near-real-time processing to maintain the validity
of their results. However, guaranteeing their performance requirements is hampered
by the traditional Cloud system designs and management strategies. Current systems
for Big Data applications rely on heterogeneous resources distributed across the con-
strained Edge and the powerful Cloud. In addition, the applications are now created as
a set of self-contained microservices, developed by independent teams following the De-
vOps practices. This evolution of systems designs has introduced extreme heterogeneity
and uncertainty into emerging applications, highlighting the limitations of traditional
management strategies.

In this thesis, we focus on designing a system for Big Data applications that re-
thinks existing management strategies with a particular emphasis on the heterogeneity
of incoming data, applications, and resources. We first study the decoupling of data
producers and consumers in emerging microservice-based applications as the entry point
to effectively leverage available services, even newly published ones. Accordingly, we
propose a data-driven service discovery framework based on data-centric service de-
scriptions and rely on a Peer-to-Peer data-driven architecture. In addition, we present
an adaptation scheme that scales deployed microservices to tackle the impact of fluctu-
ating load on real-time performance. Second, we investigate the trade-off between the
quality and urgency of the results in Big Data applications as a promising strategy to
overcome the limited and heterogeneous capacity of system resources. In particular, we
present a data-driven workflow scheduling approach to distribute microservices across
the edge of the network, the core, and along the data path. Additionally, we propose
a data adaptation strategy that reduces the quality of incoming data when potential
quality-latency trade-off optimizations are available. We then apply the proposed ap-
proaches in the context of Deep Learning applications.

viii

RÉSUMÉ EN FRANÇAIS

La capacité à collecter des données en temps réel a considérablement augmenté
au cours de la dernière décennie. Pourtant, la capacité d’analyser ces données pour les
exploiter n’a pas suivi la même progression. Avec le développement des appareils connec-
tés et des technologies réseau, le Big Data a fait émerger des outils et des applications
capables d’extraire des informations à partir des données collectées. La majorité des
applications issues du Big Data nécessitent un traitement en temps réel pour maintenir
la pertinence de leurs résultats. Cependant, garantir la performance en temps réel est
entravé par les stratégies de gestion traditionnelles des systèmes Cloud. Les systèmes
actuels pour les applications Big Data reposent sur des ressources hétérogènes allant de
la périphérie du réseau (faible latence mais puissance limitée) jusqu’au Cloud (latence
importante mais disposant d’importante puissance de traitement).

Par ailleurs, les applications sont de plus en plus créées sous la forme d’un ensemble
de services autonomes, développés par des équipes indépendantes. Cette évolution des
conceptions de systèmes a introduit une hétérogénéité et une incertitude extrêmes dans
les applications émergentes, mettant en évidence les limites des stratégies de gestion
traditionnelles.

Cette thèse s’intéresse à la conception d’un système pour les applications Big Data
(puis plus précisément des applications de Deep Learning) qui repense les stratégies de
gestion existantes avec un accent particulier sur l’hétérogénéité des données entrantes,
des applications et des ressources. Nous étudions d’abord la problématique d’accès à
des services ou des types de services sans être en mesure de connaître leurs identifiants
(par exemple leur nom précis). Puis dans un second temps, nous étudions le compromis
entre la qualité et l’accesibilité des résultats dans les applications de Big Data pour
proposer une stratégie prometteuse pour surmonter la capacité limitée et hétérogène
des ressources système. Un aperçu de chaque contribution de cette thèse est présenté
ci-dessous :

La découverte de services basée sur les données. La découverte de services est le
processus de localisation d’un fournisseur de services approprié aux besoins du client.
Les approches actuelles recherchent l’emplacement de services particuliers à l’aide de
leurs identifiants. Cependant, les systèmes actuels incluent des services dynamiques,
avec des implémentations hétérogènes, et parfois sans identifiants. Dans cette thèse,
nous choisissons une approche originale en nous concentrant sur des informations liées

x

aux données plutôt que sur des identifiants. Cette approche est basée sur une descrip-
tion de microservices centrés sur les données et sur une architecture Peer-to-Peer pour
couvrir de vastes zones géographiques.

Un schéma d’adaptation des microservices basé sur les données. Le trafic en-
trant des applications de Big Data est hétérogène en termes de type, format et qualité
des données. De plus, il se caractérise par un taux de génération de données dynamique.
Une approche pour controler la latence des applications consiste à mettre à l’échelle les
services, ce qui correspond à l’augmentation ou la diminution de leur capacité de calcul.
La plupart des approches traditionnelles reposent uniquement sur des métriques liées
à l’infrastructure ou aux applications sans tenir compte de l’hétérogénéité du trafic.
Dans cette thèse, la mise à l’échelle est effectuée selon des métriques liées aux données
et pour des groupes de microservices ayant les mêmes données d’entrée.

Une évaluation expérimentale de l’approche de découverte de services. Le
routage du trafic et la supervision des microservices sont realisés par le project Istio.
Cependant, ce projet ne prend pas en charge la création d’une approche de découverte
basée sur les données avec des garanties de qualité de service. Dans cette thèse, un
ensemble de services de gestion est développé pour intégrer la découverte de microser-
vice proposée dans Istio. L’évaluation des approaches proposées sur Grid’5000 a montré
que la plate-forme peut maintenir une latence et un pourcentage de requêtes traitées
acceptables tout en utilisant efficacement les ressources système.

Une approche de compromis latence-précision du traitement des données.
La mise à l’échelle des microservices pour garantir une faible latence n’est pas tou-
jours possible en raison des ressources limitées et hétérogènes des systèmes actuels.
Par conséquent, il est nécessaire d’adopter des approches de gestion des données et de
workflow. Les travaux existants tendent à traiter ces deux aspects indépendamment,
traitent rarement l’ensemble du flux de travail de l’application et manquent de formu-
lations générales des approches proposées. Cette thèse présente une nouvelle méthode
de compromis latence-précision basée sur la combinaison d’un approche d’adaptation
de la qualité des données et d’une approche de placement de workflow.

Une évaluation expérimentale dans le cadre du Deep Learning. Les applica-
tions de Deep Learning nécessitent que les décisions soient prises en temps réel tout
en s’appuyant sur des ressources hétérogènes et limitées. Dans cette thèse nous avons

xi

évalué sur Grid’5000 la méthode de compromis proposée sur un cas d’utilisation d’ap-
plication Deep Learning. Les résultats de l’évaluation ont montré un gain de latence de
traitement des données allant jusqu’à 54,4% dans un scénario multi-utilisateurs avec
une qualité de traitement supérieure à un seuil.

xii

TABLE OF CONTENTS

1 Introduction 1
1.1 Context . 1
1.2 Research Questions . 3
1.3 Structure of the Manuscript . 4

1.3.1 Outline . 4
1.3.2 Accepted research publications 5

2 Enabling Data-driven System Management 7
2.1 Introduction . 7
2.2 Cloud System Design: Current Landscape 8

2.2.1 The Evolution of Cloud-based Infrastructural Designs 8
2.2.1.1 Centralized Cloud computing 9
2.2.1.2 Decentralized Cloud computing 10

2.2.2 Shift from Monolithic to Microservices Paradigm 12
2.2.2.1 Monolithic design and drawbacks 12
2.2.2.2 Service-Oriented Architecture (SOA) and anti-patterns 13
2.2.2.3 MicroServices-based Architecture MSA 14

2.2.3 Service Mesh: concept, features and projects 16
2.3 Shortcomings of Current Cloud Systems 18
2.4 Data-Driven Ecosystem: Definition and Design 20

2.4.1 Data-driven decision-making . 20
2.4.2 System design: an overview . 22

2.5 Conclusion . 25

3 Data-driven Service Discovery approach 26
3.1 Introduction . 26
3.2 Literature Review: Service Discovery 27

3.2.1 Service description models . 28

xiii

3.2.2 Context-aware service discovery 30
3.2.3 Architectural design of discovery approaches 33
3.2.4 Discovery patterns for microservices architectures 37

3.3 Data-centric Service Description Model 38
3.4 Service Discovery Mechanism . 40
3.5 Data-Driven Architectural Design . 42
3.6 Service Discovery Illustrative Example 45
3.7 Conclusion . 48

4 Data-driven Resource Adaptation Approach 49
4.1 Introduction . 49
4.2 Literature Review: Scaling Approaches 50

4.2.1 Scaling actions . 51
4.2.2 Scaling types: proactive, predictive, and reactive 51
4.2.3 Production threshold-based auto-scaling solutions 52
4.2.4 Microservices scaling approaches 53

4.3 Limitations of the Istio Service Mesh 54
4.4 Architecture Design for Improving QoS 56

4.4.1 API management services . 57
4.4.2 Operational services . 57
4.4.3 Adaptation services . 58

4.5 Management Algorithms . 59
4.5.1 ScaleOut algorithm . 60
4.5.2 ScaleDown algorithm . 62
4.5.3 Load Shedding algorithm . 63

4.6 Evaluation of System Adaptation . 63
4.6.1 Methodology overview . 64

4.6.1.1 Platform . 64
4.6.1.2 Testbed . 64
4.6.1.3 Platform configuration 65
4.6.1.4 Benchmarks . 65
4.6.1.5 Metrics . 65

4.6.2 Evaluation results . 66
4.7 Conclusion . 68

xiv

5 Data Quality Management and Workflow Scheduling Strategies 69
5.1 Introduction . 69
5.2 Literature: Data and Workflow Management 70

5.2.1 Configuration adaptation for Edge-based systems 70
5.2.2 Workflow scheduling strategies 71

5.3 System Architecture and Modeling . 73
5.3.1 Infrastructure model . 74
5.3.2 Workflow model . 75
5.3.3 Performance models . 76

5.3.3.1 End-to-end latency model 76
5.3.3.2 Accuracy model . 78

5.3.4 System objective . 78
5.4 Data Quality Adaptation Strategy . 80
5.5 Data-driven Workflow Scheduling Approach 82

5.5.1 Tasks categorization . 83
5.5.2 Heterogeneity-aware workflow scheduling algorithms 83

5.5.2.1 Resource reservation algorithm 83
5.5.2.2 Workflow scheduling algorithm 85

5.5.3 Requirements adjustment algorithm 86
5.6 Conclusion . 87

6 Data-driven Management: the Case of Deep Learning Applications 88
6.1 Introduction . 88
6.2 Data Analytics Systems: An Overview 89

6.2.1 Data analysis workflow . 89
6.2.2 Intelligent data analysis . 90
6.2.3 YOLO: You Only Look Once 92

6.3 Object Detection Use Case . 93
6.3.1 Definition . 93
6.3.2 Tasks categorization . 94

6.4 System Modeling: The Case of Deep Learning 95
6.5 Evaluation of Latency Optimization . 97

6.5.1 Methodology overview . 97
6.5.1.1 Testbed . 97
6.5.1.2 Platform . 98

xv

6.5.2 Evaluation results . 100
6.5.3 Discussion . 102

6.6 Conclusion . 103

7 Conclusion and Perspectives 104
7.1 Summary . 104
7.2 Contributions . 105

7.2.1 Designing scalable data-driven service discovery system 105
7.2.2 Leveraging a latency-accuracy trade-off approach 106

7.3 Perspectives . 107

Bibliography 139

List of Figures 139

List of Tables 139

xvi

Chapter 1

Introduction

Contents
1.1 Context . 1

1.2 Research Questions . 3

1.3 Structure of the Manuscript . 4

1.1 Context

The exponential growth of digital data sources connected to the network empowers
businesses, academia, and the quality of human life. For instance, the applications
designed to prevent natural disasters such as early earthquake warning systems [1] an-
alyze geoscience data produced by sensors in real-time to protect human lives. The
generated digital data are characterized by several features such as their Variety, Vol-
ume, Velocity, and Value [2]. Variety comprises various types, resolutions, and data
formats, including videos, audios, documents, and others. For example, in agricultural
applications, the data collected can be, among others, images from cameras, drones,
satellites, and sound data for locating livestock [3,4]. Data Velocity relates to the data
creation rate. For instance, after the outbreak of COVID-19, every aspect of life moved
online. According to the 2021 DOMO report, every 1 minute, 240k photos are shared
on Facebook, and users stream 694k hours of content on YouTube [5]. In addition, the
Value of the data refers to the information they might hold.

Extracting the values from real-time data requires applications able to process data
in a timely manner. Guaranteeing the real-time requirements is one of the main reasons

1

Chapter 1: Introduction

driving the evolution of infrastructures and applications designs [6, 7]. Traditionally,
infrastructures are based on geographically centralized data centers [8]. Due to the
volume of generated data and limited network capacity, traditional systems suffer from
high latency. Therefore, there has been recent interest in moving resources from data
centers located at the network’s core to near data producers at the network’s edge. The
distributed design of current infrastructures triggered an evolution in the way applica-
tions are implemented and deployed. In particular, the ongoing race to anticipate the
Cloud-Native mindset [9] created a growing emergence of the microservice paradigm.
This paradigm [10] is an application design that consists of decomposing traditional
large applications into sets of self-contained and loosely coupled services that interact
over the network. The 2019 research report from the International Data Corpora-
tion (IDC) expected that, by 2022, around 90% of newly developed applications would
feature the microservices architectures [11].

The current landscape of infrastructures designs, applications paradigms, and the
growth of generated data added new challenges to the management of emerging appli-
cations. First, the microservice-based applications are dynamic, created by different
entities, and have several microservices implementations. Each entity continuously
publishes new microservices or removes existing ones based on their needs [12]. These
microservices are not aware of each other’s functionality [13] and mostly lack explicit
identifiers. Furthermore, several microservices offer the same functionality but with
different quality of service and accept specific data characteristics. For example, in
a video analytics system, several implementations of the object detection service ex-
ist [14, 15]; each provides specific analysis performance, consumes different resources,
and accepts particular data type and resolution. Consequently, at a specific time, what
exists in a microservice-based environment is not guaranteed, and the selected imple-
mentations affect the critical performance of current applications. Second, the number
of data sources is dynamic during the application runtime where new data producers
can continuously join the system, and existing ones may leave [16]. For example, for
data sources that correspond to mobile smartphones, users voluntarily start or stop
providing their data for the application [17]. Each data producer generates particular
data and aims to utilize available microservices developed to process their specific data.
Due to the fluctuating load, the traffic that each microservice receives is not known in
advance, which can cause an increase in their response time. Third, in real-time de-
ployments, the available resources are geographically distributed, limited, and provide
different computing, memory, storage, and bandwidth capacities. These resources may

2

Chapter 1: Introduction

range from embedded devices featuring limited capacities to large data centers [18]. Us-
ing these resources to deploy time-sensitive Big Data applications requires additional
strategies to control the distribution of resources among heterogeneous data sources
and microservices.

In this regard, management approaches that overcome these challenges are necessary
to maintain the efficiency of time-sensitive applications. Several systems and tools are
created to manage Big Data applications in distributed environments and on different
system levels (such as resource, data, and application-level). However, their approaches
are mostly considered goal-based approaches driven by the system needs to meet a
certain quality of service requirements and offer specific functionality to the system’s
users. These approaches are usually based on explicit assumptions tailored to answer
the system’s objective. In the context of Big Data applications, adopting goal-driven
approaches in real-world deployments is inefficient due to the extreme heterogeneity and
uncertainty of emerging applications. Hence, it is crucial to design novel approaches
with reasoning built on the characterization of current environments and generated
data. Data-driven management approaches are fundamentally different from existing
goal-driven ones, but they can complement each other to leverage available services and
resources effectively.

This thesis designs a system that relies on data-driven approaches for managing
Big Data applications in distributed environments. Among existing Big Data applica-
tions, this thesis put an emphasis on Deep Learning applications. The proposed system
rethinks current goal-driven management strategies with a particular focus on the char-
acteristics of the generated data, the application, and the infrastructure. To tackle the
challenges of the current landscape presented above, we formulate the research questions
of this thesis in Section 1.2.

1.2 Research Questions

With the technological advancements, our capacity to collect data has grown signifi-
cantly [19]. However, the potential of using these data in making efficient management
decisions for real-world deployments is not sufficiently addressed in current Big Data
systems. Hence, this thesis aims to create a system providing data-driven manage-
ment on multiple system levels for emerging time-sensitive Big Data applications. This
goal was further decomposed into three sets of research questions that address the chal-
lenges of current microservice-based applications mentioned in Section 1.1. This section

3

Chapter 1: Introduction

presents the research questions in the order in which they were addressed in the thesis:

• RQ1: Can using data products help select, from even recently published uniden-
tified microservices, the best microservice implementation for a data source?

• RQ2: How to minimize the impact of fluctuating and heterogeneous incom-
ing load on the latency of microservice-based applications? How suitable is the
adopted strategy in avoiding the misuse of system resources?

• RQ3: How to distribute a data processing workflow across a computing contin-
uum with heterogeneous and limited resources at the edge of the network, the
core, and along the data path? How the system should respond to an increase in
data producers? How it affects the quality and the latency of processing?

This thesis targets these questions while focusing on collected data related to the
application, the infrastructure, and the incoming data. The RQ1 focuses on addressing
the challenge of dynamic microservices having multiple implementations created by dif-
ferent entities with no explicit identifiers. Addressing this challenge is seen as the entry
point to effectively leverage available services, even newly published ones. The RQ2,
on the other hand, targets the need for adapting the capacity of specific microservices
according to the incoming load. The RQ3 aims to identify a mechanism that can reduce
the end-to-end latency of Big Data applications (precisely Deep Learning applications)
when processing data on limited and heterogeneous resources.

1.3 Structure of the Manuscript

The manuscript includes seven chapters in total. Each chapter provides the required
background for the mentioned concepts and an overview of the related literature. This
section presents the outline of the manuscript and the accepted papers.

1.3.1 Outline

The remainder of this thesis is organized as follows:

• Chapter 2 presents the context of my research and an overview of the contri-
butions regarding data-driven management in distributed systems. The context
includes a description of the current landscape of system designs and highlights
their limitations in dealing with the requirements of emerging applications.

4

Chapter 1: Introduction

• Chapter 3 presents a data-driven resource management approach able to provide
users the best microservices implementations matching their needs without relying
on explicit identifiers. This chapter addresses the research question RQ1.

• Chapter 4 presents a service adaptation scheme designed to tackle the challenge
of fluctuating discovery load. It shows the implementation details and evaluation
results of the proposed system on a real testbed. This chapter addresses the
research questions in RQ2.

• Chapter 5 introduces data and workflow management solutions to cope with the
limited and heterogeneous resource capacity of current infrastructures. It manages
a tradeoff between the critical latency requirement and the quality of processing.
This chapter addresses the research questions in RQ3.

• Chapter 6 evaluates the impact of the approaches presented in Chapter 5 on the
performance of a specific Deep Learning application use case. The evaluations
are conducted on a real testbed and the results provide concrete answers to the
research questions in RQ3.

• Chapter 7 summarizes our contributions and discusses the perspectives.

1.3.2 Accepted research publications

Papers in International Conferences

• Zeina Houmani, Daniel Balouek-Thomert, Eddy Caron, and Manish Parashar.
"Enabling microservices management for Deep Learning applications across the
Edge-Cloud Continuum." In the 33rd IEEE International Symposium on Com-
puter Architecture and High-Performance Computing (SBAC-PAD’21). Belo
Horizonte, Brazil, October 2021. (Rank B)

• Zeina Houmani, Daniel Balouek-Thomert, Eddy Caron, and Manish Parashar.
"Enhancing microservices architectures using data-driven service discovery and
QoS guarantees." In the 20th IEEE/ACM International Symposium on Cluster,
Cloud and Internet Computing (CCGrid’20). Melbourne, Australia, May 2020,
pp. 290-299. (Rank A)

5

Chapter 1: Introduction

Papers in National Conferences

• Zeina Houmani. "Déploiement et validation d’une architecture microservices
pour la découverte de services pilotée par les données". In the Conférence d’informatique
en Parallélisme, Architecture et Système (COMPAS’19). Anglet, France, juin
2019. (Conference without proceedings)

6

Chapter 2

Enabling Data-driven System
Management

Contents
2.1 Introduction . 7

2.2 Cloud System Design: Current Landscape 8

2.3 Shortcomings of Current Cloud Systems 18

2.4 Data-Driven Ecosystem: Definition and Design 20

2.5 Conclusion . 25

2.1 Introduction

With the development of technologies, wireless networks and devices, new big data
applications are being introduced, such as Virtual Reality (VR) [20], autonomous ve-
hicles [21], multimedia processing [22] and others. These applications have several
requirements to guarantee their effectiveness and well-functioning. They often demand
high computing and bandwidth capacity, as well as real-time processing. A high-quality
VR application, for example, needs to send 240 frames per second with a total volume
of compressed data larger than 1Gb per second [23].

Guaranteeing these requirements in current systems is challenging due to the esca-
lation in the number of high-quality data sources (such as 4k and 360◦ cameras) and
the increase in the heterogeneity of applications and infrastructures. The heterogeneity
of infrastructures refers to resources with different computing and network capacities.

7

Chapter 2: Enabling Data-driven System Management

The heterogeneity of applications refers to service implementations providing the same
functionality but with specific Quality of Service (QoS) guarantees and data inputs.
Thus, there is a need to rethink current management approaches to take this hetero-
geneity into account while managing emerging applications. In this context, we present
a data-driven system that manages applications on data, workflow, and resource levels.

This chapter is organized as follows: Section 2.2 presents a literature review of
current Cloud system designs. Section 2.3 highlights the limitations of current systems
in dealing with emerging applications. Afterward, in Section 2.4, we put forward a
multi-level data-driven platform for managing current applications. Finally, Section 2.5
concludes the chapter.

2.2 Cloud System Design: Current Landscape

The exponential growth of the data generated and the continuous emergence of appli-
cations with Quality of Service (QoS) requirements are driving the evolution of how
we build systems. This section describes the changes in the infrastructural designs of
current systems (Section 2.2.1), their software architectures (Section 2.2.2), as well as
the management of the interactions between software components (Section 2.2.3).

2.2.1 The Evolution of Cloud-based Infrastructural Designs

Cloud computing [6,7,24] is defined as a model for enabling convenient and on-demand
access, via the internet, to configurable computing resources, including physical and vir-
tual servers, data storage, applications, development tools, and others. The resources
are deployed in clusters and managed by certified providers such as Amazon Web Ser-
vices (AWS), Google Cloud Platform (GCP), and AlefEdge [25]. Furthermore, clients
can access applications and data from a Cloud anywhere and anytime [26].

Traditionally, Cloud computing is based on geographically centralized data centers.
Guaranteeing the requirement of emerging data-driven applications by solely using cen-
tralized computing was not feasible. This required an evolution of centralized Cloud
designs to decentralized models. In this section, we present centralized and some de-
centralized Cloud computing designs.

8

Chapter 2: Enabling Data-driven System Management

2.2.1.1 Centralized Cloud computing

Traditional Cloud computing revolves around a pool of large, geographically central-
ized, and virtualized resources stored in remote data centers located far from data
sources. These resources correspond to computing power, storage, platforms, and ser-
vices granted to users over the internet for a fee. Centralized Cloud provides benefits
for both users and businesses [27]. Demanding infrastructures from Cloud providers
decrease the costs of purchasing, installing, configuring, and managing private infras-
tructures in the organizations. In addition, it increases productivity and infrastructure
agility due to the ready-to-use tools, hardware, and services. On the other hand, users
will have access from anywhere and anytime to the platform with a price based on
the pay-as-you-go cost model. Furthermore, Cloud computing provides elasticity of
resources as they can adapt to users’ demands, making services more reliable.

Despite bringing numerous advantages, centralized Cloud computing poses some
serious limitations after the growth of communication technologies, devices, and real-
time applications [24]. With the humongous increase in the number of data sources and
the advent of the Internet of Things (IoT) with high-resolution data (such as 4k images
and 360◦ videos), the load increased substantially. At the same time, data sources
are usually connected to Cloud data centers via wireless networks, which forward the
generated data to the central servers. These networks have a limited bandwidth, which
means a finite limit to the amount of data that can be transferred across the network
to the centralized Cloud. Even with the development of network technologies (such as
next-generation 5G wireless technology [28]), the improvement of network capacity to
accommodate a large volume of data remains limited, and the cost of integrating these
technologies can be high. Hence, sending a large volume of data from devices to the
Cloud will certainly create serious delay bottlenecks and unstable network connectivity,
which can be disastrous for time-critical applications such as autonomous vehicles and
health-related applications (e.g., [29], [30] and [31]). In addition, other limitations exist
for the centralized Cloud model, such as the high energy consumption of large data
centers [32], the single-point of failure of centralized processing, less mobility support,
and the security aspects of exchanging sensitive or personal data between devices and
data centers [33]. Thus, an evolution of centralized Cloud infrastructural design to
a decentralized model is inevitable to deal with the QoS requirements of emerging
applications and distribute computing load over geographically diverse resources.

9

Chapter 2: Enabling Data-driven System Management

2.2.1.2 Decentralized Cloud computing

The basic principle of a decentralized Cloud is locating resources closer to data produc-
ers, and processing collected data at the edge of the network. Compared to centralized
computing, these resources are distributed, heterogeneous in terms of computing and
storage capacity, and have lower processing and storage capabilities than Cloud data
centers [6]. The proximity of computing resources to data can deliver substantial bene-
fits to businesses and users. Companies can integrate technologies near data sources to
collect timely insights from data and, if applicable, take early actions. In addition, they
can filter unnecessary or redundant information within the raw data to reduce band-
width usage and storage cost, which also promotes energy savings and both quality
of service and experience improvements. Another benefit of decentralized computing
is enabling geospatial analysis for location-aware applications [34] and improving the
security of exchanged data by applying security policies at the edge of the network [35].
Users, on the other hand, benefit from faster and more reliable services with better user
experiences.

Different types of decentralized models for Cloud computing exist [6]. In this section,
we focus on Edge computing, Fog computing, and Edge-to-Cloud computing.

Edge computing. It is a network layer providing local computing capabilities by
taking advantage of nearby Edge devices. Edge devices correspond to physical hardware
with memory, storage, and computing capacity. These devices are located at or near the
physical location of data sources. Edge computing exploits the computing and storage
capabilities of Edge devices which limit the resource waste [24]. In addition, it allows
executing data processing operations at the edge of the network, which can reduce the
volume of data and identify trends. However, even with the growth of these devices
and the increase in their computing capacity, the available local resources continue to
be constrained, making them unable to cope with the full computing requirements of
these applications. Consequently, Edge devices frequently rely on the powerful resources
at the Cloud data centers to execute the more complex processing tasks [36]. In the
literature, it is referred to as task offloading [37]. Relying on Cloud resources requires
transferring a large volume of data back to the Cloud. This re-exposes the inherent
shortcomings of the centralized Cloud.

Fog computing. It is an approach for expanding traditional Cloud computing ca-
pabilities at the edge of the network by providing a large amount of storage, communica-

10

Chapter 2: Enabling Data-driven System Management

tion, and computing resources [7]. It introduces an intermediate physical infrastructure
layer between data producers and Cloud data centers. This layer is tightly linked to the
existence of a Cloud and cannot operate in a standalone mode [8]. Fog computing sup-
ports features such as mobility and location awareness, low latency, and virtualization.
Fog nodes correspond to any device with computing, storage, and network connectivity.
The computing capacity of Fog nodes is heterogeneous [7,38]. Examples of Fog devices
include switches, routers, embedded servers, and Cloudlets. The latter is a small-scale
Cloud data center located near data producers [39]. It benefits from Virtual Machines
(VM), which permit the available resources to scale based on the load. Unlike other
Fog nodes, it can operate disconnectedly from Cloud services. Fog nodes usually have
higher computing capacity than Edge devices. This increases the possibility of carrying
out more intensive data processing operations near the edge of the network, reducing
the need to transfer large data volume to the Cloud.

Edge-to-Cloud computing. It is a computing paradigm where computational,
storage, and network resources are integrated into a multi-level hierarchy along the data
path between the Edge and the network’s core. Hence, unlike previous models, this
computing paradigm does not focus on a particular dimension (Edge, Fog, or Cloud).
Still, it allows leveraging the computing on Edge devices, Fog nodes (referred to as In-
transit nodes), and Cloud data centers. In the literature, this paradigm is referred to as
a “Computing Continuum” [18, 36, 38]. Each infrastructure level within the continuum
consists of a set of nodes offering a specific storage and computing capacity. Each
level is connected to its peer infrastructure level via a network link with a particular
bandwidth capacity. As we move in the hierarchy closer to data producers, the capacity
of the nodes and bandwidth link decrease.

Leveraging the computing continuum to support time-critical and/or location-aware
applications was recently explored in [40] with an Earthquake Early Warning use case.
It consists of mapping the application workflow to resources along the data path to
get early insights and reduce the volume of data to be transferred across the contin-
uum. As Fog nodes have a higher computing capacity than Edge devices, they perform
preprocessing operations on the collected data and take actions if applicable. If heavy
processing operations are needed, the data are sent toward Cloud data centers to lever-
age the high computing capacities of deployed servers. Other use cases exist, such as
in vehicular industry [41] and healthcare [42].

11

Chapter 2: Enabling Data-driven System Management

2.2.2 Shift from Monolithic to Microservices Paradigm

The evolution of infrastructure designs and the rising tendency of organizations to adopt
Cloud-based systems forced an evolution in software architectural styles to leverage
current infrastructures. The ongoing trend of Cloud-Native computing [43] focuses
on building applications that exploit the flexibility, scalability, and resilience of Cloud
computing. Traditional software designs failed to fit the current trend as they were not
designed for Cloud-based systems or due to their anti-patterns in practice. This section
presents the evolution of architectural designs from the traditional monolithic pattern
to the Cloud-Native microservices paradigm.

2.2.2.1 Monolithic design and drawbacks

The traditional application architecture is Monolithic. It consists of creating an ap-
plication as a single binary artifact and then decomposing it internally (with code
refactoring) into horizontal layers [44]. The layered design consists of 3 main tiers, each
performing a specific role within the application [45]: Presentation layer, Business logic
layer, and Data access layer. The data access layer is the first layer to be built in prac-
tice. It enforces access rules to data stored in the application’s data store. The business
logic layer is the middle layer of the design. It contains the functional logic driving the
application’s core services. They are usually implemented using frameworks that pro-
vide libraries and tools to build applications such as Microsoft .NET Framework and
Java 2 Platform, Enterprise Edition (J2EE) framework [46]. The presentation layer is
the front-end user interface that the client uses to interact with the application.

As monoliths continue to rule the environment, several issues were detected:

1. Strong coupling of code within and between the layers. This makes it hard to add
changes to the applications and causes code issues that require considerable time
to fix, test and deploy;

2. Reliability issue. A bug in any functionality can potentially bring down the entire
application;

3. Strong coupling between the development teams. Each code change must be
carefully coordinated among teams due to the tight coupling of functionalities.
This hinders the application agility and slows down the development process;

12

Chapter 2: Enabling Data-driven System Management

4. The application can only support one programming language. This reduces the
flexibility of the development team in using specific technologies or libraries, which
will affect their productivity;

5. “Scale-everything” issue. Even if only a single functionality requires adaptation
to the load, engineers must scale the entire artifact multiple times. This leads to
a misuse of the system resources.

The list of issues of this application design goes on. These problems have led to
an architectural refactoring of applications [47] and the emergence of Service-Oriented
Architectures (SOA).

2.2.2.2 Service-Oriented Architecture (SOA) and anti-patterns

The Service-Oriented Architecture (SOA) consists of decomposing large applications
into sets of “services” [48–50]. A service is a self-contained module that embodies the
code and the data required to perform certain operations (such as business functions,
authentication, etc.). The service boundaries are based on business capabilities without
a specific size.

SOA introduces a service provider, a service consumer, and a service definition [51].
A service provider is an entity that provides services to another party. A service con-
sumer is any type of software component that demands the service. To access it, the
consumer sends a request according to the provider’s invocation interface. This stan-
dard interface is defined in the service definition of the provider. A service definition
specifies, among others, one or more operations that comprise the request format and,
optionally, the response messages [52–54]. The exchange of requests and response mes-
sages between service consumers and providers is done via an Enterprise Service Bus
ESB [55]. It is a centralized software component that performs a set of operations such
as message routing, conversion of communication protocols, conversion of message for-
mats, and monitoring. It contains a component called service registry that stocks the
service definition of all the available service providers in the system and makes them
available to the ESB and to service consumers [56]

The SOA design provides software engineers with several benefits [57]:

1. Simultaneous development. Every service can be developed, tested, and deployed
by a separate team which significantly reduce development time;

13

Chapter 2: Enabling Data-driven System Management

2. Using different languages and technologies. Developers can choose the language
that best suits the services and their purpose;

3. Reusability of services. As services are self-contained and use standard interfaces,
they can be incorporated into new applications without wasting time and effort
on duplicating existing services.

In addition, for organizations, SOA affects positively the businesses [57]:

1. Faster time to market. This is due to the faster development and upgrading of
functionalities in comparison to monolithic design;

2. Scalability. Unlike a monolithic application, there is no need to scale the entire
application to deal with a load of specific functionalities. Services can be scaled
independently based on the load, which leads to better use of resources;

3. Increase the reliability of the application. For example, if one service is down,
only the operations provided by this service will be affected and not the entire
application.

After years of using SOA in practice, some anti-patterns were identified, such as: 1)
many SOA applications implements in the ESB a set of operations for communication
management which turn the Enterprise Bus into a single monolithic artifact [56]. As
the service providers and consumers use this component to interact, once it is down, the
entire application will be affected; 2) there is no guidance about the service granularity
in SOA. So, when a service integrates multiple operations, it turns to a monolithic
application; 3) sharing databases between services. Managing the data of multiple ser-
vices in the same database couple development teams, complexify database replication,
force the use of the same database technologies, and cause security risks.

Traditional SOA did not fit the Cloud-Native approach. So, software engineers
created from the SOA a new architectural design to deal with these anti-patterns and
increase the agility, resiliency, and scalability of service-based applications. This design
is the microservices paradigm.

2.2.2.3 MicroServices-based Architecture MSA

The microservice architectural style was officially introduced in 2012 as “an approach
to developing a single application as a suite of small services, each running in its

14

Chapter 2: Enabling Data-driven System Management

own process and communicating with lightweight mechanisms, often an HTTP resource
API ” [10]. In more detail, the characteristics of microservices are as follow:

• Fine-grained services. Each service is responsible for a well-defined functional-
ity [58–61]. In practice, deciding the size of the functionality in the microservices
paradigm is not an easy task, and it depends on the use cases of the system [62–65].
Making microservices not granular enough will turn them into monolithic, and
making them too granular might increase the application’s latency due to extra
remote calls over the network [44].

• Database-per-microservice. Each service is self-contained and controls its own
private data store [66–68]. This increases the scalability of services as the database
can be easily scaled in a database cluster when the microservice needs to scale
with the load. In addition, it helps to enhance the security of the data and the
agility of the development process [69]. In the literature, there are two other
mainstream approaches for using database systems in microservice architectures.
However, Database-per-microservice is the most commonly used [70].

• Lightweight communication via APIs. Service providers and consumers may com-
municate directly with each other [58] or through a proxy (referred to as API
Gateway) [56]. The communication is either synchronously via HTTP requests,
asynchronously via messages, or mixed by using a synchronous request with an
asynchronous response [71].

• Lightweight deployment with containers. A container is a form of system virtu-
alization. It consists of packaging the code and all the dependencies in a single
unit of software [72]. Containers are quickly evolving to become a standard im-
plementation for microservices even with their non-negligible impact on the per-
formance [73–75]. This is because containers are lightweight, provide fast start-up
times, and have a low overhead which increases the agility of the microservice-
based applications [75].

These features create self-contained and loosely coupled services that increase the
applications’ scalability, flexibility, resiliency, and availability. In addition, it allows
continuous development and delivery with more independent development teams [76].
This paradigm is adopted by several well-known platforms such as Netflix [77], Ama-
zon [78] and LinkedIn [79]. Also, it has been widely used in Internet of Things IoT
systems [80–84].

15

Chapter 2: Enabling Data-driven System Management

Several concepts and techniques in the area of microservices were borrowed from
SOA, such as service definition, service registry, service discovery (finding where the
service is located), heterogeneity of technology stack, scalability, the organization of
development teams, etc. So, as there are some differences in design and architecture,
there is also an overlap that makes microservices a design that emerged from the years of
experience with SOA and the real-world use cases and not an entirely new paradigm [60].

With Cloud-Native computing, microservices-based applications are pushed to a
very large scale. As the scale rises, the effort required to manage the massive incoming
traffic increases. Cloud-Native Service Mesh is a technology that emerged to manage
external and internal traffic. Details about Service Mesh are presented in Section 2.2.3

2.2.3 Service Mesh: concept, features and projects

Splitting applications into microservices and supporting the architectures with tech-
nologies such as docker [85] and Kubernetes [86] improved the efficiency and productiv-
ity of the development and deployment of the applications. However, the operational
complexity during service runtime has not been mitigated.

The first attempt for managing incoming traffic was to add libraries to deployed
services. These libraries aim to control the security between services, latency, moni-
toring, and load balancing. Examples of these libraries are Finagle of Twitter [87] and
Hystrix of Netflix [88]. However, with the microservices paradigm, the integration of
libraries into the technological architecture stack became complex and time-consuming:
¬ microservices-based applications have a large number of microservices, so adding a
library to each service is complex; ­ managing traffic at the application level do not
fit the “single functionality” constraint of the microservices paradigm; ® microservices
are developed in various programming languages and implementing the libraries in all
supported languages is inefficient; ¯ microservices used in the same application can be-
long to different entities and might not be using compatible libraries. These challenges
led to the emergence of Service Mesh.

Definition. Service Mesh is a dedicated infrastructure layer that controls communica-
tion between services and decouples the inter-service communication management from
the application layer. This additional layer forms a distributed and scalable network of
interconnected proxies within the microservices network. In practice, communications
between microservices pass through the proxy servers deployed alongside the services
without the need for any code modification.

16

Chapter 2: Enabling Data-driven System Management

Service Mesh is composed of two key architectural components, a data plane, and
a control plane. The data plane includes a set of intelligent proxies. Instead of calling
services directly over the network, these proxies intercept the network packet and encap-
sulate the complexities of the service-to-service exchange. This component is managed
as a whole by a control plane. The control plane enforces the authentication policies
specified by the system admins, collects metrics, and configures the proxies for traffic
routing. These two components communicate via a predefined API. The architectural
design of a Service Mesh is presented in Figure 2.1.

Fundamental Features. The main responsibilities of Service Mesh include, among
others, service discovery, failure recovery, routing, load balancing, authentication/au-
thorization, and monitoring.

• Traffic routing: through configuring routing rules, Service Mesh can dynamically
hide and expose specific services or create testing and versioning deployments.

• Failure recovery: system’s reliability is handled by setting timeouts, retries, cir-
cuit breaking, and health checks. Circuit breaking rules back off the requests of
overloaded services and health checks verify whether services are still available.

• Load balancing: it provides the capability of routing the traffic across the network
using modern routing mechanisms.

Microservice
A

Proxy

Microservice
B

Proxy

Service Mesh Control Plane

Data Plane

Monitor

Configure

Control
Plane

Connect

Telemetry

Figure 2.1 – The architecture of a Service Mesh containing a control plane and a data
plane [89].

17

Chapter 2: Enabling Data-driven System Management

• Authentication and Authorization: Service Mesh has the ability to ensure the
security of traffic by forcing a service-to-service and an end-user authentication
and policies from the control plane.

• Monitoring: it provides a set of network performance metrics like latency, band-
width, and uptime for every level of the architecture stack. In addition, it offers
detailed logging for events and distributed tracing of requests.

The features provided are not fundamentally new. Instead, the Service Mesh is
ultimately a shift in where the traffic management is handled, not what can be done.

Service Mesh projects. In 2016, the first Service Mesh project was released (Link-
erd [90]). Since then, dozens of new open-source Service Mesh platforms have been
created, including Istio [91], Consul Connect [92], and AWS App Mesh [93]. In this
work, we chose the Istio open-source project. Even though it is considered the most
complex Service Mesh to install, configure and operate, it quickly becomes the standard
for Service Mesh [94]. This is due to its maturity and extensible features in comparison
to the other mainstream implementations of Service Mesh.

Istio is an ongoing collaboration between IBM, Google and Lyft. Its data plane
consists of a set of Envoy proxies that mediate all inbound and outbound traffic for
all services in the Service Mesh. Envoy [95] is a high-performance distributed proxy
able to support small applications as well as large-scale microservices architectures. If
needed, developers can use other proxies in the data plane.

Istio’s control plane is itself a modern Cloud-Native application. Its core compo-
nents are all written and deployed as separate microservices. Ê Pilot is a component
responsible for traffic management and resiliency; Ë Mixer enforces access control and
usage policies across the Service Mesh and collects telemetry data from the Envoy proxy
and other services; Ì Citadel enables strong service-to-service and end-user authenti-
cation; Í Galley is a component mainly responsible for the validation of configuration
data and translating them into the common format of Istio.

2.3 Shortcomings of Current Cloud Systems

The emerging applications have the following characteristics: 1) The distributed data
sources provide a large volume of data concurrently with heterogeneous data charac-
teristics (type, format, resolution, rate, etc.). Furthermore, these data sources are dy-
namic where new data producers can join the system to take advantage of the provided

18

Chapter 2: Enabling Data-driven System Management

services; 2) the applications’ workflows consist of a set of functionalities demanding
different computing and bandwidth requirements. Therefore, the intensity of resource
usage within a workflow can vary from low to high intensive based on the functionality
provided, adopted technologies, and accepted input data quality; 3) the microservice
paradigm has become the leading design for Cloud-Native systems [96]. However, de-
spite its benefits, this paradigm adds challenging characteristics to current applications:
i) tasks are dynamic. New functionalities or new versions of existing functionalities can
be added or removed by the application developers or due to the underlying environ-
ment. As a consequence, the available functionalities in emerging applications are not
constant. ii) tasks are heterogeneous. Besides the heterogeneity in terms of program-
ming languages and technologies used, microservice-based tasks have multiple instances
providing the same functionalities but offer particular QoS and accept data of specific
characteristics. Thus, the selection of instances during runtime can’t happen randomly
to guarantee the requirements of users. iii) tasks are highly decoupled. The workflow
tasks are developed, deployed, and managed by different teams within the same orga-
nization or from different entities [13]. As a result, the microservices composing the
application workflow are not designed to work together automatically.

These characteristics highlight the limitations of current system designs in guar-
anteeing the real-time requirements of emerging applications and maintaining proper
functioning of their workflows:

1. Edge-only and Fog-based systems provide limited support for emerging applica-
tions as they cannot fulfill the computing needs of intensive tasks within the ap-
plication’s workflow. Furthermore, when relying on the Cloud to offload tasks to
powerful resources, the network latency will prevent processing data in real-time,
which is in some application use cases can be critical [97]. The Edge-to-Cloud
continuum is a promising design for emerging applications. However, it did not
establish concrete maturity yet [40].

2. Systems managing microservice-based workflows do not take into account the
extreme heterogeneity, dynamicity, and decoupling of this paradigm in real-life
deployments. For example, in production, two microservices are unaware of each
other’s functionality and have separate lifecycles [13].

3. Current Cloud-Native landscape provides a set of scheduling tools such as Kuber-
netes and Docker Swarm to deploy microservice-based applications on available

19

Chapter 2: Enabling Data-driven System Management

resources [98]. These centralized tools provide scheduling strategies within a cen-
tralized multi-node computing environment which does not match the current
decentralized environment for emerging applications. The scheduling approaches
proposed in the literature make goal-driven scheduling decisions motivated by the
system objective of meeting particular QoS requirements with limited emphasis
on characterizing current environments [99].

4. Several systems assume that the computing and network capacity is infinite or
ignores the possibility of multiple data sources joining the system with high-
resolution data [100]. In production, keeping these assumptions will negatively
affect the processing quality for all users.

5. Existing system designs target specific application use cases such as video ana-
lytics applications [15, 101] and Augmented Reality AR [102]. The absence of
general formulations of emerging applications and their needs makes it difficult
for developers to integrate these approaches into other application use cases.

6. Management strategies rarely handle the entire workflow of emerging applications.
Instead, they focus on specific services within the workflow [15]. In infrastruc-
tures with limited and heterogeneous resources, not taking into account the entire
workflow is inefficient because they share the available computing and network
resources, affecting the system performance.

These shortcomings of current systems limit the ability to support emerging applica-
tions and their QoS requirements. Exploiting the Edge-to-Cloud continuum capabilities
is hindered by the lack of understanding of application requirements in real-life deploy-
ments. Propelled by the need to overcome these limitations, we propose a novel system
that rethinks current management strategies at multiple system levels with an empha-
sis on the characteristics of applications and infrastructures, particularly their extreme
heterogeneity. More details about this ecosystem are presented in Section 2.4.

2.4 Data-Driven Ecosystem: Definition and Design

2.4.1 Data-driven decision-making

In the context of this thesis, data-driven decision-making refers to making management
decisions based on the examination of collected data. Creating a data-driven manage-

20

Chapter 2: Enabling Data-driven System Management

ment approach consists of the following four steps: À specify the management objective
that needs to be accomplished and the reason it is required; Á among generated data,
determine the metrics essential to accomplish the desired goal. Â identify the compo-
nents that can provide the desired data; Ã analyze collected data and turn analysis
results into management actions. The logic of a data-driven decision-making approach
when receiving data from data sources is illustrated in Figure 2.2.

Request

Send

Data Sources
Analysis TriggerRequired

metrics
Decision

Filter

Action

Figure 2.2 – The logic of a data-driven decision-making approach when receiving data
from data sources.

In the literature, several data-driven approaches are designed to manage specific
system components. The management decisions are based on different data metrics.
Mahmud et al. [103] propose a context-aware application placement policy in Fog com-
puting environments. The scheduling approach considers the characteristics of data pro-
ducers (data size and data rate) due to their direct impact on Fog node functionalities
and application characteristics. Furthermore, they jointly consider during scheduling
the heterogeneous computation and networking capacity of Fog nodes and the QoS
requirements (service delivery deadline) of applications.

Renart et al. [12] present a framework that enables applications to specify data-
driven, location-aware, and resource-aware processing of data streams. It provides a
content-driven programming model that enables users to specify functional rules trig-
gered by data content and determine which topologies are executed and where [104].
In addition, authors adopt a data-driven discovery process to associate data produc-
ers with consumers [16]. The discovery is based on a matching mechanism between
the data-input-related and location-related metrics provided by the producers and con-
sumers. A match between the profiles triggers a predefined management action.

Wang et al. [15] propose an online algorithm to adapt the configuration of incoming
load (frame sampling rate and frame resolution) and the allocation of bandwidth for
Edge-based real-time video analytics. Data and resource management decisions are
driven by data related to video content and network capacity. Due to the dynamicity of

21

Chapter 2: Enabling Data-driven System Management

incoming load and limited resource capacity, the configuration is continuously optimized
while taking into account the energy consumption, system latency, and analytics quality.

2.4.2 System design: an overview

The proposed ecosystem adopts data-driven decision-making approaches on multiple
system levels: workflow, resources, and data. This section briefly presents each man-
agement layer and its components. For each component, we present the steps men-
tioned in Section 2.4.1 to create data-driven decision-making. Figure 2.3 presents the
full overview of the proposed system.

Resource management layer. This layer is dedicated to discovering deployed
microservices and adapting them to the incoming load. The challenge of this layer is
to discover microservices based on the characteristics of clients’ data with regard to
guaranteed quality of service in terms of response time. This layer consists of two data-
driven management components: microservice discovery and microservice adaptation.
Details about the discovery approach are presented in Chapter 3 and the adaptation
approach in Chapter 4.

1. Microservice discovery:

• Goal: this component is responsible for the discovery of available function-
alities and the different microservices providing them.

• Data metrics: the discovery is based on matching the characteristics of
incoming data, such as data type, format, and resolution, with those of the
deployed services.

• Data source: the workload-related data are received from the users, and the
microservices-related data is extracted from the microservices descriptions
provided by the application developers.

• Action: the component decides what functionalities and microservices suit
the needs of the users.

2. Microservice adaptation:

• Goal: this component continuously adapts the capacity of microservices to
prevent the performance degradation or the misuse of resources.

22

Chapter 2: Enabling Data-driven System Management

• Data metrics: the adaptation decision is based on resource- and workload-
related metrics, such as free resources, number of active users, and data
type.

• Data source: the resource-related data collected from the underlying in-
frastructure and the workload characteristics collected from the users.

• Action: the analysis of the collected data might trigger an increase or de-
crease in the number of microservices following the variation of the load.

Workflow management Layer. This layer represents the system level the de-
velopers use to interact with the ecosystem. It is dedicated to scheduling submitted
microservice-based workflows on heterogeneous system resources. The main challenge
of this layer is mapping the tasks to the available resources with regard to the het-
erogeneity of both workflows and infrastructure. This layer consists of two manage-
ment components responsible for making data-driven decisions: tasks categorization
and workflow scheduling. Details about the approaches of this layer are presented in
Chapter 5 and a demonstration of a specific use case is presented in Chapter 6.

1. Tasks categorization:

• Goal: this component aims to group submitted tasks having similar resource
usage characteristics into multiple categories. Each category has a scheduling
policy and priority.

• Data metrics: the categorization decision is based on the characteristics
of each submitted task, such as the given functionality and accepted input
data.

• Data source: the required metrics are given by the developers of the appli-
cation to be deployed in the system.

• Action: after analyzing the collected metrics, the component tags the task
with the selected category.

2. Workflow scheduling:

• Goal: this component is responsible for distributing the tasks in the appli-
cation’s workflow on system resources.

23

Chapter 2: Enabling Data-driven System Management

• Data metrics: the placement decision is based on the category labels and
characteristics of available resources such as CPU, RAM, storage.

• Data source: the data metrics are collected from the categorization com-
ponent and the underlying infrastructure.

• Action: after analyzing the collected metrics, the component allocates re-
sources and map the tasks to them.

Data management Layer. This layer is responsible for selecting appropriate
data quality for each incoming load providing a system performance that meets the
application requirement. The challenge of this layer is to optimize the trade-off between
the latency of processing and its quality during runtime. This layer consists of two
components: Performance estimation and data quality adaptation. Details about the
approaches of this layer are presented in Chapter 5 and validated with a specific use
case in Chapter 6.

1. Performance models:

• Goal: this component formulate the general analytical models of the perfor-
mance of emerging applications.

• Data metrics: the models depend on resource-, workload- and workflow-
related data, such as bandwidth, data quality, and throughput.

• Data source: the required data are collected from the underlying infras-
tructure and system components.

• Action: the collected metrics help this component estimate the performance
of the application with the current system state.

2. Data quality adaptation:

• Goal: this component decides whether the system can handle the original
data qualities of all data sources or a quality reduction is required. It man-
ages trade-offs to optimize performance.

• Data metrics: the adaptation decision is based on the estimations of per-
formance models and the supported data qualities.

• Data source: the required data are collected from the performance models
and system components.

24

Chapter 2: Enabling Data-driven System Management

• Action: this component selects the optimal data qualities for existing data
sources and triggers the adaptation.

Edge Fog Cloud
CamerasSensorsDatabases

Computing Resources

Infrastructure

Data Producers

Service Mesh

Resource
Management

Layer

Performance models

Task Categorization Workflow scheduling

Quality adaptation

Workflow
Management

Layer

Data
Management

Layer

Microservice AdaptationMicroservice discovery

Figure 2.3 – A global overview of the ecosystem design consisting of three management
layers, each of them with its respective components. The infrastructure has heteroge-
neous computing resources and data producers. In addition, it has Service Mesh for
managing the submitted microservice-based applications.

2.5 Conclusion

The characteristics of emerging microservice-based applications highlight the shortcom-
ings of current system designs in guaranteeing real-time data processing. The simul-
taneous processing of incoming workloads on limited, distributed, and heterogeneous
resources requires the development of new management approaches driven by the char-
acteristics of user-generated data and resources rather than on the general goal of the
system. This chapter presents a literature review of the evolution of traditional designs
and their limitations in managing emerging applications. In addition, it presents an
overview of a system dedicated to managing emerging applications at different levels
using data-driven management approaches.

Chapter 3 elaborates the data-driven microservices discovery of the resource man-
agement layer.

25

Chapter 3

Data-driven Service Discovery
approach

Contents
3.1 Introduction . 26

3.2 Literature Review: Service Discovery 27

3.3 Data-centric Service Description Model 38

3.4 Service Discovery Mechanism . 40

3.5 Data-Driven Architectural Design 42

3.6 Service Discovery Illustrative Example 45

3.7 Conclusion . 48

3.1 Introduction

Producers and consumers of data in current computing systems are decoupled. Un-
like traditional applications, the microservice paradigm supports Conway’s law [105]
which means aligning microservices ownership to the structure of teams [58]. Thus,
implementing and managing microservices by autonomous teams from the same or dif-
ferent organizations creates applications with several functionalities not designed to
work together. Several implementations of these functionalities usually exist, creating
applications with heterogeneous microservices. These microservices use different tech-
nologies, data formats, data resolutions and expect particular Quality of Service (QoS).

26

Chapter 3: Data-driven Service Discovery approach

Building high cohesion in these complex systems relies on managing decoupled mi-
croservices to work together without the need for redevelopment. Service discovery
mechanisms help achieve that. However, in current practice, service discovery imple-
mentations are goal-based, designed to fulfill the general system goal depending on
the client’s required functionalities. They often let the client discover the location of a
provider for the requested service using its identifier. Using goal-based service discovery
approaches built on services’ identifiers in current highly decoupled systems with het-
erogeneous microservices implementations is inefficient; Current mechanisms prevent
the discovery of newly created microservices published by the different teams and those
designed without explicit identifiers. In addition, they prevent the use of microservices’
implementations that fit the client’s data and QoS needs. Hence, there is a need to
rethink traditional discovery approaches to overcome these challenges.

In this context, this work addresses the challenges by integrating information related
to the client’s data and QoS needs into the discovery process. As a result, this data-
driven service discovery approach helps service consumers and providers. On the service
consumer side, this approach allows the discovery of services according to data products.
On the service provider side, it allows for the integration of third-party services with
context-aware features. Our approach is built on a data-centric microservice description
and a Peer-to-Peer (P2P) data-driven architecture to ensure the system’s resiliency and
cover wide geographical areas.

This chapter is organized as follows: Section 3.2 presents a literature review of ser-
vice description models, context-aware discovery mechanisms, and architectural designs
for discovery approaches. Section 3.3 describes our data-centric microservice description
model. The architectural design of the proposed approach is presented in Section 3.5.
Section 3.6 presents an illustrative example of the discovery approach. Finally, Sec-
tion 4.7 concludes the chapter.

3.2 Literature Review: Service Discovery

Service discovery is the process of identifying then locating a service provider according
to the client’s needs specified in the discovery request. It provides the ability to search
for desired services while reducing the need for services configuration. Service discovery
mechanisms have been widely investigated in the literature of web services and the
Internet of Things (IoT). This section provides a comprehensive literature review of
some concepts in service discovery and networking techniques used in this work.

27

Chapter 3: Data-driven Service Discovery approach

3.2.1 Service description models

Service providers prepare descriptions of their services before they are published. A
service description model describes deployed service with a set of keywords and syntax
following a specific description language and format. These descriptions allow con-
sumers to discover available services and invoke them without the necessity of knowing
how they are implemented. Existing approaches to formally describe web services for
discovery are mainly based on the Ontology Web Language OWL/RDF [106], the Ex-
tensible Markup Language XML, or the JavaScript Object Notation JSON/YAML.

Description languages depend on the type of web services. Two main types of
services exist, SOAP-based and REST-based web services. SOAP services represent
the traditional web services that use the SOAP messaging protocol to share data [107].
SOAP is a lightweight protocol for exchanging information over HTTP. Regardless of
the service type, service description languages can be categorized into syntactic-based
or semantic-based service descriptions. Syntactic descriptions have a textual structure
and rely on markup languages. Whereas semantic descriptions explore the meaning of
functionalities and attributes using ontological approaches. An ontology differs from a
markup-based schema in that it is a knowledge representation, not a message format.

Syntactic-based descriptions. SOAP web services are described using the stan-
dard Web Service Description Language WSDL [52]. It is an XML-based machine-
readable language that describes the functional characteristics of a web service with a
focus on its communications aspect. It presents the interfaces, binding protocols, the
operations with their inputs and outputs, and the network endpoint addresses (URIs) at
which these operations can be invoked. In the literature of web services, many authors
worked on WSDL and service discovery. Paliwal et al. [108], for example, proposed
service categorization and selection strategies that depend on the WSDL service de-
scription files. They extract from the WSDL descriptions the characteristics of services
such as input and output of supported operations to associate services to concepts.
Chen et al. proposed in [109] a web service clustering approach that depends on a set
of features extracted from the WSDL service description files such as port, type, service
name, message, and content.

For our system, we spot two major problems with the use of WSDL. First, microser-
vices are considered loosely coupled services that operate independently without being
coupled to server endpoints. As WSDL description language describes endpoints, it
can’t fit the RESTful design of microservices. Secondly, in practice, the WSDL de-

28

Chapter 3: Data-driven Service Discovery approach

scription automatically generates a source code which is then compiled into a service.
If the description changes, the service no longer works. Due to that, any change in
the service’s WSDL description file requires a recompilation of the code. This makes
WSDL not flexible enough to suit dynamic environments.

Unlike SOAP services, RESTful services lack a widely accepted service descrip-
tion. Each service provider uses its own service description template with a set of
attributes that helps fulfill its system’s objectives. RESTful web services support XML
and JSON formats for service descriptions. The Web Application Description Lan-
guage (WADL) [53] is a syntactic XML-based description for RESTful services. It
describes services in terms of resources, URI patterns, supported media types, and
HTTP methods. Several metadata formats for describing REST APIs penetrated the
industry market with rising popularity, such as Swagger [110], RESTful API Modeling
Language (RAML) [111], and API Blueprint [112]. These languages aim to provide
JSON/YAML human-readable and machine-processable documentation for RESTful
web services which are not dependent on specific programming languages. In [92,113],
developers created their own JSON-based service description models. Some of the infor-
mation can be removed, but no additional properties can be added. For our system, the
common issue with all these service description languages is that they are considered
operation-centric and do not fully support data-related attributes.

Semantic-based descriptions. In the literature, many efforts exist to add seman-
tics to the discovery of SOAP and RESTful services. The key to semantic discovery is
having semantics in the descriptions of the services [114]. In [115–117], authors adopt
an OWL-based description model to describe available SOAP services semantically. A
service description contains a ServiceProfile, ServiceModel, and a ServiceGrounding. A
ServiceProfile describes a service in terms of its data inputs, outputs, preconditions
that should be satisfied before the service is executed, and effects after the execution.
A ServiceModel describes the set of functionalities/operations provided by a service. A
ServiceGrounding describes how a service is invoked, including the protocol, message
format, and port number. In [115], Gomes et al. add to the description models the
geographic location metrics such as latitude, longitude, and altitude to locate service
providers. Rohallah et al. extended the service descriptions in [116] with QoS profiles
to describe QoS parameters such as Response Time and Execution Price.

OWL-based service descriptions provide a rich description of functionalities with
possible extensions to add new attributes and facilitate the discovery process. How-
ever, they are considered heavyweight with a bulky format. These descriptions do not

29

Chapter 3: Data-driven Service Discovery approach

suit systems with constrained resources and network capacities [118]. In addition, ex-
pressing service descriptions in semantic description languages requires clients to have
knowledge of Semantic Web Services and description details which can make their usage
difficult [119].

Several semantic descriptions exist for RESTful services such as hRESTS [54] and
RESTdoc [120]. hRESTS (HTML for RESTful Services) consists of inserting HTML
tags within the HTML documentation of RESTful web services to enable the anno-
tation of operations, inputs and outputs, HTTP methods, and labels. It has a set of
extensions to add an extra semantic annotation for RESTful service descriptions such
as MicroWSMO [54] and SA-REST [121]. RESTdoc consists as well of inserting annota-
tions in the HTML documentation of restful services. Moreover, it provides adapters to
automatically transform the data in service descriptions to RDFs (Resource Description
Framework). RDF is a standard for interlinking between services. The major limitation
of these description languages is that the HTML documentation can be unavailable or
hard to get in most public web services.

In this thesis, we create our own description for RESTful services. It is a syntactic
XML-based description that is not operation-centric as existing languages but is data-
centric with QoS metrics. Details about this description are presented in Section 3.3.

3.2.2 Context-aware service discovery

Service discovery mechanisms usually involve three steps: À retrieve the functional
and non-functional information about available services in the system; Á execute a
matchmaking strategy between the information in the descriptions of the services and
the client’s request; Â finally, select the service that matches the request and return it
to the client. The first step depends on the discovery scope of the designed mechanism.
Service discovery scope refers to the range method operates. It can be of two types, local
and remote discovery. Local discovery allows users to interact with their immediate
environment. However, remote discovery provides remote access to distant devices
and services. The information used in the matchmaking and selection processes helps
improve the quality of service selection. Based on the type of this information, service
discovery approaches can be classified into several categories, such as context-based,
protocol-based, semantic-based, and QoS-based approaches [122]. In this work, we focus
on context-based service discovery approaches. This category of discovery uses context
information to select the appropriate service for the clients. Context is formally defined

30

Chapter 3: Data-driven Service Discovery approach

as “any information that can be used to characterize the situation of an entity. An entity
is a person, place, or object that is considered relevant to the interaction between a
user and an application, including the user and applications themselves” [123]. For web
services discovery, the context is any information able to support the client’s requests.
Contextual information can be divided into three main categories:

• Environment context: it includes information about the physical environment
such as location, temperature, and time.

• Service context: it includes information about the type of the service, data input,
data output, network, and resources (such as battery and memory level).

• Social context: it is user-related information such as user preferences, age, gender,
and social behavior.

Pattaret et al. [124] present a distributed three-phase service discovery mechanism
that provides personalized search results based on client’s requirements. These require-
ments are categorized into two types, optional and essential. Essential requirements
represent the services needed. Optional requirements refer to Environmental informa-
tion (such as time, region, and temperature) and social information (such as individual
preferences). First, essential requirements are used to extract a matching set of services
only containing the requested services. This matchmaking process helps reduce the
search space. Further, the optional requirements of the user are matched with the set
of filtered services. A semantic-based similarity score is computed between the client’s
requirements and the characteristics of filtered services. Finally, based on this similarity
score, the services are ranked and returned to the client.

Hussein et al. [125] propose a dynamic service discovery in a smart space IoT en-
vironment. This environment is characterized by its heterogeneity, where things have
various resource capabilities. Additionally, the dynamicity in location is a major char-
acteristic where things can move within, join or leave the environment. The service
discovery relies on a semantic-based service matching algorithm responsible for match-
ing available services in a smart space with user’s real-time requests. The matchmaking
process is based on combining two types of contextual data: objective and subjective
contexts. The objective context represents the physical aspects of the user’s surround-
ing environment, and the subjective context represents Social factors. After filtering
out unrelated services, this algorithm generates a list of services that match the user’s
needs. The service descriptions are located in a centralized data store.

31

Chapter 3: Data-driven Service Discovery approach

Ko et al. [126] contribute as well in context-based service discovery for IoT environ-
ment. They present a user-centric IoT-based service discovery framework in an urban
computing environment. It adopts a service discovery mechanism for IoT environments
based on the available IoT resources and other social and environmental contextual
information. The former consists of the temperature, noise, humidity, brightness, the
season, day of the week, phase of the day, and location. The social characteristics of
the users are their demographic information, such as their age, gender, and occupation.
The authors considered the contextual information to filter out the set of tasks that do
not contribute to supporting clients’ needs. The service descriptions are represented in
Web Services Description Language (WSDL) and include information about the oper-
ations and interface details of the services. The available smart objects are registered
and discovered using a decentralized Domain Name Server (DNS).

Yu et al. [127] provide an approach for selecting appropriate services at runtime
using users’ and services’ contexts. The approach includes a user’s context modeling
based on four aspects: user profile, resources, activities, and physical locations. Service
context is based on the category of the service. Each category consists of a set of
Metadata that captures the non-functional properties of the service. These Metadata
are presented in an OWL-based service description registered in a centralized store.
Context-aware criteria represent the data from the service profile as well as data from
the user context. The selection process evaluates each criterion for each available service
and gets the overall score to select the most suitable service.

Butt et al. [128] present a RESTful web service discovery protocol for the IoT
environment. The contextual information used for service selection is related to users,
services, and the environment. Services and environmental contexts are added to the
service descriptions in an attribute-value format with semantic information. The user
sends a request containing the desired service and location. The discovery process
searches IoT devices providing the given service in the specified location. If multiple
services exist, the contextual information is used to select the appropriate match.

Other efforts in the literature focused on extending traditional protocols for service
discovery to add contextual information. mDNS/DNS-SD [129] is a combination of
two protocols for distributed service discovery where the service selection criterion is
the service identifier. Multicast Domain Name System (mDNS) is a communication
protocol that resolves hostnames to IP addresses without a local name server. Each
device in the system is a client and server in the discovery process. DNS Service
Discovery (DNS-SD) is a protocol for describing and resolving services using semantic-

32

Chapter 3: Data-driven Service Discovery approach

based DNS Resource Records. Stolikj et al. [130], propose an extension of mDNS/DNS-
SD that enables clients to discover and select services based on contexts. Each service
is associated with a set of context properties. The service discovery process consists
of sending a query with wanted/unwanted context tags, service type, and the logical
domain. Then, it returns the descriptions of services satisfying the client’s query.

The first common issue of existing approaches is that they are built on services iden-
tifiers. Therefore, clients specify the identifiers of the required services in their discovery
requests, and the discovery process will execute the matching and selection strategies
for the specified service. Using service identifiers prevents discovering new services or
those without explicit identifiers (such as in IoT environment). Additionally, the other
issue is that the main design focus is either device-centric or user-centric (profile and
preferences). These designs are not sufficient for current data-driven systems.

Besides existing contextual information and functionality-driven strategies, this the-
sis aims to present a data-centric context-based discovery approach. It focuses on the
users’ data objects and discovers the available services designed for this data.

3.2.3 Architectural design of discovery approaches

The service discovery process relies on the interaction with system data stores, referred
to as service registries. When services are deployed in the system, they register their
service description models in these registries. During the discovery process, contacting
the registries allow the discovery of available services in the system. Based on the
architectural design of these registries, service discovery approaches are categorized
into centralized, distributed, and hierarchical/hybrid approaches.

Centralized approaches. They consist of adopting a central registration of ser-
vice descriptions. They use only one global registry where all available services are
registered. Albalas et al. [131], present an energy-aware service discovery mechanism
with a single registry to host the description of each resource in the network. Their goal
is to keep the service registry regularly updated with messages that contain the latest
status of associated services. The energy consumption has been reduced by varying the
updating intervals. Kim et al. [132], present a protocol-based service discovery for IoT
devices using the Domain Name System (DNS). Each IoT device creates and pushes
the DNS name (such as unique ID, location, and device model) and its service list to a
centralized DNS server. To retrieve the available services, the client sends two requests.
In the first request, the client gets the list of available devices from the DNS server. If

33

Chapter 3: Data-driven Service Discovery approach

the client selects a device, it sends another request to the DNS server to get the service
lists of the chosen IoT device.

The advantage of centralized web service discovery approaches is that the manage-
ment of the distributed resources is done centrally. However, in large-scale systems,
using a fully centralized registry for all the services in the system is inefficient. This
design can’t handle the large number of services that need to be registered. In addition,
parallel accesses to the registry are very limited, and its response time could be high
when dealing with a high load. For this purpose, distributed and hybrid designs have
been proposed for service discovery approaches to bring more flexibility and resiliency
to large-scale systems.

Distributed approaches. They consist of adopting a set of local registries that
communicate together to discover the available services. The Peer-to-Peer (P2P) tech-
nology is widely used among existing distributed topologies. In a P2P network, all
member nodes have equal capacity for sharing information and can establish direct
connections with any other member node to download information [133]. A member
node in the P2P overlay network is referred to as a peer. Any peer has the ability to
join the network, which makes this technology highly scalable. In addition, as each
peer acts as a client and a server, the P2P network doesn’t have a single point of fail-
ure. The nodes’ failures don’t compromise the overall availability of the services, which
makes this technology robust. P2P networks for service discovery allow implementing
a distributed and large-scale infrastructure to realize the discovery at the local scale.

Using P2P technology to discover declared services in a large-scale environment
using multi-criteria was first introduced by Tedeschi et al. in [134] and was later inte-
grated into several projects, such as in [135] and [136]. In [134], the available services
are defined using a set of service-related attributes such as service’s name, processor
type, and operating system. The service description is stored in a set of Prefix trees,
each for an attribute. Each service’s attribute is stored in a Placement table located
only in the leaf node of its dedicated tree. During the discovery process, the discovery
request is routed in the tree based on the prefix of the specified attribute. The leaf
node matching the attribute’s prefix returns the stored information about the services
having the requested attribute.

Li et al. [137], present a distributed discovery mechanism based on P2P technology.
In the adopted network, every node maintains connections to other nodes and can send
messages. Every peer provides an information registry. When new services are deployed
in the network, their descriptions are stored in the local information registry. Each peer

34

Chapter 3: Data-driven Service Discovery approach

exposes a set of discovery APIs that clients can invoke. In addition, they maintain a
routing table to enable efficient query routing.

Cirani et al. [138], present an automated service and resource QoS-aware discovery
mechanisms for large-scale IoT networks using P2P architecture. The proposed mecha-
nisms allow the discovery of RESTful services and resources in a local and global scope.
Smart objects residing in the same or different networks can interact. Due to the adop-
tion of P2P architecture, this technique is self-configuring, fault-tolerant, and scalable.
Rui et al. [139] present as well a QoS-aware discovery process for a service-oriented IoT
environment by using the P2P network. The P2P network can be modified in four main
steps, Edge adding, Edge removal, Edge updating, and maximum in-degree updating.

Aside from P2P-based architectures, some innovative topologies exist. Rapti et
al. [140], for example, propose distributed service discovery and selection techniques
based on artificial potential fields. Their approach to selecting the requested services
is inspired by physics and specifically from the interaction between electrically charged
particles. Through the balance of forces applied among service nodes and service re-
quests, the system route the user request in the network to achieve the composition
of the services. The charges formed are based on the percentage of requested services
provided by service providers and the availability of service nodes.

A challenging aspect of service discovery in dynamic environments is discovering
newly published services without human interference. In [141], the author presents a
research project that focuses on creating a self-healing system allowing the dynamic
adaptation to newly created microservices. They mentioned that in production, the
service discovery should work together with management components to control the
changes of services versions. Krivic et al. [142], target as well this issue by creating a
distributed agent-based service discovery mechanism in an IoT environment using the
Machine-to-Machine (M2M) technology. M2M enables communications between ma-
chines using embedded devices that can capture data and transmit it. The discovery
and registration processes are managed by a gateway, server, and device agents. Each
IoT device is linked to a previously deployed device agent. The Gateway agent auto-
matically initiates the discovery process of the new device. The device returns data
about its services. These data are stored in the database of the Server Agent.

Hierarchical approaches. Other than centralized and distributed designs, some
researchers focused on designing Hybrid/Hierarchical architectural designs for service
discovery. In hierarchical mode, the involved registries for service descriptions are
organized in a hierarchical structure where local and global registries exist. This design

35

Chapter 3: Data-driven Service Discovery approach

is known for its scalability and ability to reduce network traffic and overhead.
Helal et al. [143] propose an energy-efficient technique for service discovery based

on a structured P2P multi-tier architecture. The geographical region covered by the
system is divided into areas. Each area has an area router and a local store. With the
hierarchical model, the area router manages all the stores in its area. Each local store
contains the attributes of a few regular sensors within its direct communication range.
In addition, area routers store the attributes that can be found at each local store in its
area and can communicate due to the P2P network. This system focus on guaranteeing
a high success rate while maintaining energy efficiency. Energy efficiency is achieved by
limiting the number of hops that a service discovery request must traverse before being
satisfied. A high success rate is guaranteed using the hierarchical structure.

Ben Fredj et al. [144], present a semantic-based IoT service discovery mechanism
using the hierarchical structure for IoT environments. An IoT environment is mod-
eled as a tree hierarchy of smartspaces (e.g., country, region, city). Each smart space
is managed by a gateway component that maintains the service descriptions of IoT
services in its scope and processes discovery requests. The aggregated information of
each semantic gateway is then sent to its parent gateway. The system adopts a dy-
namic clustering of services to support dynamic environments and reduce the number
of service-request matching operations. Within a smart space, services are grouped
based on their location. In each gateway, a routing table is built, representing each
cluster. During discovery, the parent gateway decides, based on the semantic request
description and on the user’s geographical position, which gateway should first receive
the request to start performing service search.

In this thesis, we adopt a P2P-based distributed architectural design for the pro-
posed data-driven service discovery mechanism. The system adopts a dynamic grouping
of services based on data rather than location. Each Group of services has its own local
registry for service descriptions and gateway for management. The geographical area
covered by the system is divided into Regions and Regions into Zones to reduce the
network overhead. Unlike the hierarchical design, no global registries are used. The
services descriptions are only stored in the local groups’ registries within the Zones and
can be accessed from any geographical area due to the P2P structure and the exposed
Discovery APIs. Details about the architecture are presented in Section 3.5.

The Table 3.1 below summarizes the discovery approaches mentioned in the litera-
ture review and analyzes them based on their architecture, category, service description,
and discovery scope.

36

Chapter 3: Data-driven Service Discovery approach

Table 3.1 – Service discovery approaches in the literature review.

Architecture Research Category Service
Description

Discovery
Scope

Centralized

[125,127] Context-aware Semantic Remote

[131] Energy-aware Syntactic Remote

[132] Protocol-aware Semantic Remote

Distributed

[124, 126, 128,
130,137]

Context-aware Semantic Remote

[134] Context-aware Syntactic Remote

[138,139] QoS-aware Semantic Remote

[140] QoS-aware Syntactic Local

[142] Energy-aware Syntactic Remote

Hierarchical
[143] Energy-aware Semantic Local

[144] Semantic-aware Semantic Remote

3.2.4 Discovery patterns for microservices architectures

Service discovery for microservices architectures has two possible patterns: client-side
service discovery [145] and server-side service discovery [146].

When implementing client-side discovery, the client is responsible for identifying
available services and selecting the appropriate one. Thereafter, the client contacts
the target services directly. The client is the only entity that implements the logic of
service discovery. Netflix OSS [147] provides a great example of the client-side discovery
pattern. It provides a client library called Netflix Ribbon, that allows the interaction
with Netflix’s registry and to load balance requests across the available service instances.
The advantage of this pattern is that the client has full control over the discovery
process. However, it has a major security issue when dealing with external clients.
Allowing a direct interaction between clients and the system’s database might affect
the availability of the system.

For the service-side discovery pattern, an intermediate component acts as a middle-

37

Chapter 3: Data-driven Service Discovery approach

man to intercept clients’ requests. The client exclusively talks to the intermediate
component that runs at a known location. Then, this component will be responsible
for identifying available services, selecting the appropriate one, and then forwarding to
it the client’s request. An AWS Elastic Load Balancer (ELB) [148] is an example of a
server-side discovery component. It distributes incoming application traffic across mul-
tiple targets. Even though this pattern abstracts the discovery details from the client,
it has a significant drawback in large-scale systems. As the intermediate component
intercept all client’s request and forward their data to the selected services, it can easily
become a system bottleneck that affects the system performance.

In this thesis, the proposed discovery approach is based on a hybrid pattern. The
client has full control over the discovery, and the client-service interactions are direct
such as in the client-side pattern. However, client-registry interactions to identify and
select appropriate services are done via an intermediate component like the server-side
pattern. Details about the proposed discovery approach are presented in Section 3.4.

3.3 Data-centric Service Description Model

The main goal of service discovery is to show clients the available microservices de-
ployed in the platform. To this end, each microservice must be registered in the plat-
form using a data model to declare its availability for the discovery clients. As shown
in Section 3.2.1, the service’s data model usually contains basic network and service
configurations such as service identifier and location. However, in data-driven service
discovery, additional information related to the functionality of the service and its data
should be specified.

In this thesis, we propose a data-centric service description. It is an XML-based syn-
tactic profile that consists of the following groups of keywords: Identification keywords,
QoS keywords, Service Access keywords, and Data keywords. Listing 3.1 presents an
example of a microservice description. Its Identification keywords correspond to the
service ID, description, and version (lines 2-4). The QoS keywords show the perfor-
mance of the microservice via the two metrics, Request-Per-Second RPS and service
up-time (lines 20, 21). The Service Access keywords contain the information required
to access the microservice when it is discovered. It includes the hostname, port, secure
port, protocol, REST interfaces, service status, health check, and request parame-
ters (lines 5-10, 22-34, respectively). Finally, the Data keywords group provides details
about the data the microservice works on and generates as a result. It contains the

38

Chapter 3: Data-driven Service Discovery approach

Listing 3.1 – An XML-based service description model of a microservice with identifi-
cation, performance, access and data related keywords.

1 <?xml version=" 1 .0 " encoding="utf −8"?>
2 <Appl icat ionID>Crop</Appl icat ionID>
3 <Desc r ip t i on>Remove unwanted areas o f an image</Desc r ip t i on>
4 <InstanceVer s ion>v1 . 2</ Ins tanceVers ion>
5 <Hostname>s e r v i c e . com</Hostname>
6 <Port>9500</Port>
7 <SecurePort>443</SecurePort>
8 <Protoco l>http</Protoco l>
9 <In t e r f a c e>/ crop</ I n t e r f a c e>

10 <Status>ON</Status>
11 <InputType>image</InputType>
12 <OutputType>image</OutputType>
13 <MaxInput>12</MaxInput>
14 <MinInput>1</MinInput>
15 <MaxInputSize>50MB</MaxInputSize>
16 <MaxPixelDimension>2000 x15000</MaxPixelDimension>
17 <InputFormat>
18 <format>PNG</ format>
19 </InputFormat>
20 <RPS>100</RPS>
21 <Uptime>1567889</Uptime>
22 <HealthCheck>/ hea l th</HealthCheck>
23 <Parameters>
24 <Parameter id="areaWidth">
25 <ValueType>in t</ValueType>
26 <Desc r ip t i on>Width o f the area to ex t r a c t</Desc r ip t i on>
27 <requ i r ed>true</ requ i r ed>
28 </Parameter>
29 <Parameter id=" f i l e ">
30 <ValueType>s t r i n g</ValueType>
31 <Desc r ip t i on>Locat ion o f the l o c a l / d i s t an t input ob j e c t</

Desc r ip t i on>
32 <requ i r ed>true</ requ i r ed>
33 </Parameter>
34 </Parameters>

39

Chapter 3: Data-driven Service Discovery approach

input and output data type, min/max number of input data in a request, max input
size, max input resolution, and input format (lines 11-19).

Data and QoS -related keywords are considered as the primary contextual informa-
tion in the microservices profiles. They are examined during the data-driven service
discovery process to find the appropriate service for the client. This process, explained
in detail in Section 3.4, is a two-steps mechanism. Data keywords are examined in the
two steps of the discovery and the QoS keywords only during the second step.

Contextual information in the discovery requests needs to be specified in order to
apply the matchmaking with the available description models. During the discovery
process, the client program sends information concerning its data properties (such as
its data type, data format, and size) and the required service performance. If these
properties match exactly the data and QoS keywords in the microservice description,
the microservice is considered a matching profile. However, the profile is not a match
if a strict matching is considered and one of these contextual information differs.

Three service statuses are supported in the system: ON, OFF, andWaiting. Services
with status ON correspond to those ready to receive requests. Services with status OFF
are stopped and can’t receive new requests. Status Waiting means services are deployed
but not yet ready to receive requests. During discovery, only services with status ON
can be discovered. If a service has multiple instances (discussed in Chapter 4) and at
least one instance is ON, the service can be discovered.

3.4 Service Discovery Mechanism

As described in Section 3.2.4, the proposed service discovery is based on a hybrid
discovery pattern. This pattern aims to maintain the security of the system database,
reduce the bottleneck in the intermediate components, and give clients full control
over the discovery process. The hybrid pattern in our system involves two components
during the discovery process: the service registry and the API Gateway.

The service registry represents a database cluster that contains the data-centric
descriptions of available microservices deployed in the platform. This database must be
highly available in order to discover existing microservices at any time. In our system,
new microservices instances can be created and destroyed dynamically. Due to that,
this component must be continuously updated. When a new instance is deployed, its
description is registered in the service registry to declare its availability. This service
description is removed when the microservice is no longer available.

40

Chapter 3: Data-driven Service Discovery approach

Two different patterns exist to handle the registration and deregistration of microser-
vices within the service registry. This process can be done directly (self-registration
pattern) or via an intermediate component called the “Registrar” (third-party regis-
tration pattern). In this platform, we use the third-party registration pattern since it
decouples existing microservices from the registration process. This helps us deploy
platform-independent microservices that do not need to implement any registration
logic to participate in our platform. During service discovery, the service registry is
queried by the discovery clients to find a matching profile with their data objects. The
interaction between the client and the registry during the hybrid discovery process is
intercepted by an API gateway.

The API gateway is an API management tool that usually sits between clients
and backend services to manage the client-services interactions. In our system, the API
gateway is used to manage the discovery API. It provides a customized API to apply
the proposed data-driven discovery mechanism. It receives the discovery requests and
contacts the dedicated registry to lookup for functionalities and microservices according
to the client’s objects. Any interaction between the client and the chosen microservice
is direct to protect the API Gateway from overuse.

The proposed data-driven discovery mechanism consists of two steps illustrated in
Figure 3.1. The mechanism works as follow:

• Step 1.1: At first, the client program does not know anything about the available
services in the system. The client initiates the service discovery by sending a
discovery request to the API Gateway containing information about its data.
The API Gateway forwards the request to the service registry.

• Step 1.2: The service registry filters the set of stored microservices by matching
the contextual information of the client’s data with the data-related keywords in
the stored service descriptions. Then, it returns to the client a list containing only
the names of all the available functionalities in the system that can be applied to
this type of data object.

• Step 1.3: After the client program receives the list of available functionalities, it
becomes in charge of selecting the most suited functionality according to its own
objectives.

• Step 2.1: In the second step, the client sends another request to the registry
via the API Gateway, specifying the chosen functionality as well as more details

41

Chapter 3: Data-driven Service Discovery approach

API
Gateway

Data Type & Format1.1 1.1 Data Type & Format

filtering
1.2

1.21.2
Function
Selection

Service A & Size
&QoS

2.1 Service A & Size
&QoS

2.1

2.2 List of Service A
filtering

2.2 List of Service A

Service
A

Service
Selection

1s
t s

te
p

2n
d

st
ep

Connect

2.2

Service
Registry

2.3

1.3

Client

Service A &
Service B

Service A &
Service B

Figure 3.1 – Workflow of the data-driven service discovery initiated by the client to the
API Gateway and service registry.

about its data object and preferred service performance. These parameters help
reduce the search space.

• Step 2.2: The registry applies another matchmaking to create a new list of avail-
able services. This list contains the full descriptions of the existing microservices
in the platform that can offer the desired functionality in the preferred perfor-
mance and support the client’s data object. Then, the registry returns the new
list to the client.

• Step 2.3: At this point, when the client program receives the new list, it has
discovered all the existing microservices that match its requirements. The client
selects the preferred service in terms of machine performance and requested pa-
rameters.

After the discovery process, the client contacts the selected service instance directly.
The entire architecture design of this data-driven service discovery process is presented
in the Section 3.5.

3.5 Data-Driven Architectural Design

The service discovery process and its integration in a Service Mesh rely on the inter-
action of several system components. As the complexity of service and infrastructure

42

Chapter 3: Data-driven Service Discovery approach

grows, there is a need to reduce the number of components implicated in the discovery
process and prevent them from causing potential degradation of system performance.

Among the possible architectural designs described in Section 3.2.3, we propose
a distributed data-driven architecture with the following design goals: (i) A single-
purpose API Gateway specific for each type of data supported by existing microservices.
This implementation design allows the management of services based on data. (ii) A
Grouping of services based on each data input supported to allow later data-driven
resource management. (iii) A Zone management to allow clients to discover services in
a specific geographical area and balance loads between areas. (iv) A Peer-to-Peer (P2P)
model that creates an overlay network between the Zones. This provides the ability to
discover the remote resources deployed on several sites.

Two possible patterns exist to integrate an API gateway in a system: General
purpose API backend and Backend For Frontend (BFF). The general-purpose pattern
provides a single entry point to all backend services, while the BFF pattern introduces
several entry points for each type of client. With the latter pattern, the incoming load
is shared among multiple customized gateways tailored to the needs of each type of
client. This also reduces the possibility of a bottleneck within these entry points. Our
architecture adopts a customized BFF pattern where the type of clients is defined based
on the supported data types in the system. Thus, if the system supports Images and
Videos, two BFFs will be created: “BFF API Gateway Image” and “BFF API Gateway
Video”. Each implemented BFF Gateway is linked to a cluster of service registries.
This cluster is responsible for storing the descriptions of microservices managed by this
BFF Gateway. The stored descriptions in the cluster are not replicated to the other
clusters in the system. So, the “BFF API Gateway Image” will be linked to a cluster
of “service registry Image” independent of the registries of the other data types.

In this work, deployed microservices are managed by groups referred to as Data-
driven Microservices Groups (DMG). Grouping microservices is based on their sup-
ported data objects. Thus, if the data input of type Image is supported, DMG Image
will represent all the microservices in the Zone supporting this data type. Each DMG
is managed by the BFF Gateway of the same data type. So, the DMG Image will be
managed by the BFF API Gateway Image.

The wide distribution of data consumers and producers in architectures such as IoT
systems can increase system latency, affecting the user experience. For this reason, we
use in our system the concept of Regions and Availability Zones adopted by Amazon
EC2 [148]. The Regions are designed to be completely isolated to ensure the stability

43

Chapter 3: Data-driven Service Discovery approach

of our system, but the Availability Zones within a Region are connected. The resources
that belong to the same geographical area are linked to the same Availability Zone
within a Region. Each Zone has its own BFF gateways and service registries. It contains
a component called Zone Manager (ZM), responsible for managing incoming requests.
This component represents the entry point of the architecture in each Zone. It receives
requests from clients located in its Zone and determines to which BFF Gateway these
requests should be forwarded in order to achieve the discovery of local services. In
addition to local services, Zone Manager supports the global discovery of services via a
P2P network. This network is formed by the Zone Managers within the same Region.
The system can discover microservices from different geographical areas by forwarding
the client’s discovery requests to other peers. Once the discovery process is complete,
and the chosen BFF Gateway has received the list of available microservices from its
dedicated registry, it sends the results back to the ZM, which in turn passes them to
the clients. An overview of the data-driven architecture is presented in Figure 3.2.

The proposed architecture allows data-driven management of deployed microser-
vices. It reduces the number of transmitted messages in the system by forwarding the
clients’ requests directly to the appropriate BFF Gateway and service registry cluster.
Moreover, the BFF pattern adopted in this architecture aims at reducing the number
of requests to be processed by each API Gateway that has become responsible for a
single data category instead of all deployed microservices. This reduces the bottlenecks
within these components and, as a result, improves the system performance. In addi-

ZM3 ZM4

Registry A1
A2

A3
RegistryC1

C2

C3

ZM2ZM1

API Gateway
type B

API Gateway
type A

API Gateway
type C

API Gateway
type A

Figure 3.2 – Data-driven architectural design for service discovery with a Peer-to-Peer
network between the Zone Managers of the same Region for inter-zone connections.

44

Chapter 3: Data-driven Service Discovery approach

tion, this architecture avoids the continuous replication of microservices descriptions in
the entire system by creating separate service registry clusters dedicated to each data
type in every Zone of the Regions. Besides, this P2P architecture between the different
Zone Managers creates an evolutionary system that allows connecting the entry points
of all the Zones by forming a robust system for query processing.

3.6 Service Discovery Illustrative Example

This section aims to clarify the data-driven discovery approach with a simplified ex-
ample. Figure 3.3 represents the implemented architecture and the details of deployed
microservices. This system supports only data inputs of type Image in a specific ge-
ographical area. It exposes four microservices to external clients, each accepts data
inputs of different characteristics, as shown in Figure 3.3b. These microservices are
grouped in a DMG Image and managed by a BFF API Gateway Image. The data-
centric descriptions of all these microservices are registered in a service registry.

The implementation of the discovery process relies on REST APIs to allow HTTP
access of web clients. In this example, the client program has one input of type Image

ZM

BFF Gateway Image

Service
Registry

Register

Discovery

Discovery

Resize
V1

Crop

DMG Image

Resize
V3

Resize
V2

(a) Architectural design with the main discov-
ery components.

Resize service:v3

Resize service:v2

Resize service:v1

Crop service

InputFormat=PNG
MaxInputSize=50MB
MaxImageWidth=1600
MaxIMageHeight=1200
RPS=20

InputFormat=JPG
MaxInputSize=40MB
MaxImageWidth=4080
MaxIMageHeight=3072
RPS=50

InputFormat=JPG
MaxInputSize=40MB
MaxImageWidth=3264
MaxIMageHeight=2448
RPS=30

InputFormat=PNG
MaxInputSize=40MB
MaxImageWidth=3264
MaxIMageHeight=2448
RPS=60

(b) Data and quality-related metrics of de-
ployed microservices.

Figure 3.3 – System supporting data objects of type Image with four microservices.

45

Chapter 3: Data-driven Service Discovery approach

and PNG format. Once the client initiates the service discovery, the interactions in the
system are as follows:

o The client program sends a discovery request describing the object’s charac-
teristics within the query parameters. In this example It sends the discovery
request using l’URL http://IP:PORT/lookup?inputType=image&inputFormat=

png&quantity=1.

i. This system contains a match for the client’s request. The service registry fil-
ters existing descriptions and returns, via the BFF Image, an HTTP response
of status code 200 OK to indicate that the request has been successfully com-
pleted. This response is presented in the Listing 3.2 below. It contains a list
of existing functionalities, their names, and descriptions.

Listing 3.2 – Functionalities that can be applied to a PNG image.
1 {

2 "crop -service":"Remove unwanted areas of an image",

3 "resize -service":"Change the pixels information of an image"

4 }

ii. In case there were no matching functionalities present in the system, an HTTP
response of status code 204 containing an empty response payload body is
returned, and the discovery process stops.

o Since the discovery approach is data-driven, different data provides different dis-
covery results. For example, if the client had an Image of JPG format instead of
PNG, the registry’s response will be as presented in Listing 3.3. As the microservice
crop only supports PNG images, it won’t match the client’s request.

Listing 3.3 – Functionalities that can be applied to a JPG image.
1 {

2 "resize -service":"Change the pixels information of an image"

3 }

o When the client program receives the list of functionalities, it discovers what kind
of actions can be applied to its PNG image in the existing system. The selection
process of the desired functionality is made on the client-side.

46

http://IP:PORT/lookup?inputType=image&inputFormat=png&quantity=1
http://IP:PORT/lookup?inputType=image&inputFormat=png&quantity=1

Chapter 3: Data-driven Service Discovery approach

o In the next step of the discovery process, another request is sent for the service
registry to discover the available microservices offering the chosen functionality.
Within the query parameters, additional information concerning the client’s data
and its quality requirements are specified. If the client program in this exam-
ple wants to use the Resize functionality on its PNG image, it sends the follow-
ing request http://IP:PORT/services?service=resize-service&inputSize=
20&inputFormat=png&Dimension=1096x1540&RPS=50.

i. Based on the available microservices, this system contains a resizing microser-
vice matching the client’s request. So, the registry returns the full registered
description of these microservices. The format of the response is presented
in the Listing 3.4. Additional information might be added to the response,
depending on the data type of the client’s object. Among the details of the
instance, the client receives the self-linking URL to access these microservices.

Listing 3.4 – Response message associated to the discovery of services
matching the client’s requirements.

1 {

2 "service": "resize -service",

3 "description": "Change the pixels information of an

image",

4 "version": "v3",

5 "inputType": "image",

6 "inputFormat": "png",

7 "maxInput": 2,

8 "maxInputSize": 40MB,

9 "maxImageWidth": 4044,

10 "maxImageHeight": 3805,

11 "port": 9700,

12 "links":

13 [{

14 "rel": "self",

15 "href": http :// ip_address :9700/ image/show/

16 [original -thumbnail -poster]?file=image.png

17 }]

18 "ip_address": "172.17.0.1"

19 }

47

http://IP:PORT/services?service=resize-service&inputSize=20&inputFormat=png&Dimension=1096x1540&RPS=50
http://IP:PORT/services?service=resize-service&inputSize=20&inputFormat=png&Dimension=1096x1540&RPS=50

Chapter 3: Data-driven Service Discovery approach

ii. In case none of the available microservices offers the desired functionality and
support the client’s requirements, an HTTP response with status code 204

containing an empty list is returned.

o On the client-side, the discovery client selects the appropriate microservice based
on the returned metrics.

o Finally, using the returned self-linking URL, the client interacts directly with the
chosen microservice instance.

3.7 Conclusion

With the microservices paradigm, producers and consumers of data are growing con-
tinuously with different Quality of Service (QoS) requirements and data supported.
Therefore, keep using goal-based service discovery approaches built on identifiers to
discover services locations, prevent the discovery of newly published services. This
chapter introduced a standalone data-driven service discovery framework that allows
client programs to discover the available functionalities and microservices depending
on their data objects. It is built on a data-centric model to allow the matching be-
tween clients’ requirements and services descriptions. In addition, it uses a data-driven
microservices architecture with a Peer-to-Peer (P2P) network that enables remote dis-
covery in different geographical areas.

Dealing with fluctuating load affects the system’s performance. Therefore, designing
resource management strategies is needed to guarantee a QoS during discovery. The
next chapter discusses the resource management approaches adopted.

48

Chapter 4

Data-driven Resource Adaptation
Approach

Contents

4.1 Introduction . 49

4.2 Literature Review: Scaling Approaches 50

4.3 Limitations of the Istio Service Mesh 54

4.4 Architecture Design for Improving QoS 56

4.5 Management Algorithms . 59

4.6 Evaluation of System Adaptation . 63

4.7 Conclusion . 68

4.1 Introduction

The data-driven architecture covers several geographical areas due to the integration of
Peer-to-Peer technology. During runtime, the number of data producers in the system
is dynamic where new users can continuously join the system, and existing ones may
leave. When several data producers join, the system becomes a target to resource
overhead and performance degradation due to the increase in incoming load.

Dealing with fluctuating load requires designing resource adaptation solutions to
guarantee the Quality of Service (QoS) requirements of deployed microservices. A pri-

49

Chapter 4: Data-driven Resource Adaptation Approach

mary challenge of managing the resources in the proposed data-driven system is the
microservices heterogeneity in terms of data supported. Each data producer generates
particular data and aims to utilize available microservices developed to process their
specific data. Managing heterogeneous microservices lead a data type to take over the
available system resources when dealing with high load. Thus, to overcome this chal-
lenge, we propose a data-driven adaptation scheme that controls deployed microser-
vices by data type to reduce system response time. It groups existing microservices
in Data-driven Microservices Groups (DMG) and scales them dynamically based on
the incoming load. The integration of this adaptation scheme in the data-driven ar-
chitecture requires the implementation of management services. This chapter presents
the adaptation scheme, the management components, and their implementation in an
existing Service Mesh, Istio.

The chapter is organized as follows: Section 4.2 presents a literature review on
existing resource scaling approaches. Section 4.3 presents significant limitations of Istio
Service Mesh in creating a data-driven service discovery system. The architectural
design for improving the QoS and the different system components are described in
Section 4.4. Section 4.5 presents the adaptation algorithms. Section 4.6 shows in detail
the evaluation of the system performance with stable and dynamic incoming load.
Finally, Section 4.7 concludes this chapter.

4.2 Literature Review: Scaling Approaches

Scalability describes the elasticity of a system. It is the ability to adapt system re-
sources to changing demands [149]. Rather than a manual scaling that requires human
intervention, Cloud computing systems adopt dynamic scaling techniques for adapting
the resources automatically. These techniques are known as auto-scaling techniques.

System resources can refer to physical machines, Virtual Machines (VM), contain-
ers, or storage. In this work, the focus is on container-based microservices. Application
containerization is a lightweight virtualization technology [72,150]. It consists of orga-
nizing all the runtime components necessary to execute an application in an isolated
environment, including configuration files, libraries, and environment variables. An ex-
ample of virtual containers is Docker [85]. In comparison to traditional VMs, containers
have higher portability. They demand lower compute resources than VMs and have a
better performance. Due to that, containers fit to serve the high elasticity needs of
microservices in Cloud platforms.

50

Chapter 4: Data-driven Resource Adaptation Approach

There is a variety of scaling approaches in the literature with diverse characteristics.
This section defines the scaling actions and types. In addition, it presents a set of
production scaling solutions and experience studies targeting containerized systems.

4.2.1 Scaling actions

Two scaling actions exist to adapt the system resources efficiently: 1) increasing the
system capacity to prevent resources from being under-provisioned when dealing with
incoming load. A resource is considered under-provisioned when its capacity does not
meet the performance requirements of the workload [151]; 2) decreasing the system
capacity to efficiently using the reserved resources while preventing them from being
over-provisioned. A resource is over-provisioned when its capacity can be sized down
while still meeting the performance requirements of the workload [151]. The latter
action is also referred to as Scale In or Scale Down. Approaches providing the first
scaling action are generally categorized into horizontal, vertical, and hybrid scaling
approaches. Horizontal scaling is usually referred to as Scale Out. It consists of adding
additional instances of resources without updating the specification of existing ones.
When scaling out containers, new instances are created, and the amount of CPU, RAM,
and disk allocated are also copied over. The instances share the processing power of
the machine, and incoming load is balanced between them. Kubernetes autoscaler [152]
is an example of this scaling category. Vertical scaling or Scale Up consists of adding
additional CPU, RAM, and disk to existing resources to increase their capacity. The
limit of scaling up a container is the total available capacity of the machine. An
example of exclusive vertical scaling for containers is the “Elastic Docker engine” [153].
Hybrid scaling approaches use a combination of horizontal and vertical scaling. Studies
in [154–157], for example, present scaling techniques of this category.

In this work, the focus is on container-based Scale Down/Out approaches.

4.2.2 Scaling types: proactive, predictive, and reactive

Scaling techniques are divided into three groups [151, 158]: proactive, predictive, and
reactive approaches. Proactive scaling is also referred to as scheduled scaling. It
allows to schedule for increasing and decreasing the system capacity ahead of the vari-
ation in incoming demands. The scheduled scaling is triggered at a specific date and
time with a predefined desired number of instances. This scaling type is usually used

51

Chapter 4: Data-driven Resource Adaptation Approach

in use cases where the load that will appear in the future is already known. Cloud
providers such as Amazon AWS [159] and Google Cloud [160] provide this feature.

When the incoming load is not known in advance, rule-based auto-scaling techniques
are used. They consist of generating rules that define a condition and an action to
be executed if the condition is met. Those rules are defined on specific performance
metrics. For example, a scaling rule can be if CPU_usage>60%, then add one instance.
The rule-based approaches are further categorized as predictive and reactive scaling
approaches. Predictive scaling techniques consist of creating prediction models that
analyze historical data to predict when the workload will change. These models require
to be trained on real workloads before being used in production. This scaling type
is widely investigated in the literature. Ye et al. [161], for example, propose an
autoscaler for containerized elastic application based on resource demand prediction
model. Its goal is to minimize the violation of Service Level Agreements (SLA) when
dealing with fluctuating demands to guarantee applications’ performance and save cost.
Abdullah et al. [162] present a novel predictive auto-scaling approach for microservices
running on a Fog environment with limited computing capacity. It aims to minimize
the violation of response time specified in the SLA. The authors target the time and
resources challenges of existing proactive systems in building predictive models. They
present a simple and computationally inexpensive machine learning model able to be
trained on small datasets. Reactive scaling , on the other hand, means that the
system resources are scaled in reaction to changing demands. A threshold-based scaling
strategy is a reactive approach based on two scaling rules that define when to increase
and decrease the system capacity. Those rules are defined on specific performance
metrics and predefined thresholds. If the current value of the chosen metric exceeds or
falls below the threshold, the system triggers the scaling decisions.

In this work, the proposed system deals with a dynamic load that is unknown in
advance. Furthermore, due to the simplicity of reactive scaling approaches in com-
parison to proactive approaches and the fact that they are easy to understand for
clients [151], this work targets threshold-based scaling approaches to address under-
and over-provisioning resources.

4.2.3 Production threshold-based auto-scaling solutions

Several Cloud providers and frameworks adopt the threshold-based scaling approach,
such as Google’s Kubernetes [152], Amazon EC2 [159], and Google Cloud Platform [160].

52

Chapter 4: Data-driven Resource Adaptation Approach

Kubernetes (k8s) is a production-ready open-source container management system [86].
It runs a set of pods that encapsulate the application’s containers. These pods are ac-
cessible via the network using an abstraction called service. k8s adopts a Horizontal
Pod Auto-scaling (HPA) approach principally based on CPU utilization [152]. HPA
is responsible for adapting the number of pods of a single service to maintain an
average CPU utilization across all pods close to the desired value.

The Amazon EC2 AWS platform offers auto-scaling approaches for managing Auto
Scaling groups [159]. Each group is a set of EC2 instances that need to be treated
as a logical unit for the purposes of management. EC2 instances are similar to VMs
in their concept, but they manage their resources differently. The auto-scaling ap-
proaches apply scaling rules on each EC2 group based on infrastructure-level metrics
such as “CPU utilization” or application-level metrics such as “Request Count Per Tar-
get”. These approaches increase the EC2 group’s capacity by a dynamic number of
EC2 instances when the specified metric is above a threshold or decrease the capacity
when the metric is below the threshold for a time interval. The adaptation of EC2
instances happens within the same group while respecting a predefined minimum
and maximum number of instances in a group.

The Google Cloud Platform provides an auto-scaling approach for managing groups
of VM instances that need to be controlled as a single entity [160]. These groups are
called Managed Instance Groups (MIGs). MIGs let the system operates applications on
multiple identical VMs. The auto-scaling approach uses multiple auto-scaling policies
where each is a single-level rule based on one metric. For example, one policy can
be based on the average CPU utilization as an infrastructure-level metric. Another
policy can be based on application throughput as an application-level metric. The
chosen scaling policy is the one recommending the largest number of instances. The
auto-scaling of VM instances happens within the same group.

For this work, these auto-scalers are inefficient. The proposed data-driven system
aims to manage microservices as Data-driven Microservices Groups (DMGs) and apply
auto-scaling strategies on the groups themselves, not the microservices within the group.

4.2.4 Microservices scaling approaches

Microservice scaling is considered a relatively new research topic [163]. Nowadays, re-
searchers have taken some initiative for rule-based auto-scaling strategies for container-
ized microservices [164–166]. Gotin et al. [164] present a threshold-based auto-scaling

53

Chapter 4: Data-driven Resource Adaptation Approach

system to perform horizontal scaling for I/O-intensive and compute-intensive microser-
vices. Authors investigate which performance metrics to be used by the auto-scaler
in order to prevent overloaded message queues and avoid SLA violations. Their eval-
uation showed that the traditional CPU utilization metric is suitable for scaling all
classes of microservices if they have constant characteristics. However, it is vulnerable
if microservices are responsible for different computational operations.

Abdel Khaleq et al. [165] propose an auto-scaling system that takes into account
the heterogeneity of microservices in terms of QoS and resource requirements. The
QoS metric is the Response Time, and it is extracted from the Service Level Agree-
ments (SLA). Authors added intelligence to their auto-scaling approach via machine
learning and reinforcement learning models. These models help enhance the thresh-
old values of the auto-scaling. The evaluated performance metrics for auto-scaling are
the queue size for microservices high on input traffic, CPU usage for CPU-intensive
microservices, and memory usage for memory-intensive microservices.

Taherizadeh et al. [166] present a multi-level auto-scaling system with dynamically
changing thresholds. Authors argue that using infrastructure-level metrics such as CPU
usage might be helpful for some basic applications, but their effectiveness drops when
dealing with heterogeneous services. The proposed system uses not only infrastructure
but also application-level monitoring data such as application throughput. Authors
define a fine-grained auto-scaling for containerized applications as an approach able to
satisfy application performance requirements (e.g., response time) while optimizing the
resource utilization in terms of the number of container instances.

In this work, the proposed microservices auto-scaling approach considers the hetero-
geneity of deployed microservices in terms of their data characteristics. Each supported
data type has an auto-scaling threshold that is dynamically adjusted based on available
instances. The auto-scaling rules are based on an application-level metric (total number
of active clients), and the QoS metric we tend to satisfy is the system response time.
The proposed system tends to optimize resource usage by continuously adapting the
number of instances using Scale Out and Scale Down algorithms.

4.3 Limitations of the Istio Service Mesh

The proposed data-driven system is implemented in the Istio Service Mesh to manage
the services interactions. It offers a set of key features that allows to secure, observe,
connect and control microservices across the Service Mesh network. Istio works na-

54

Chapter 4: Data-driven Resource Adaptation Approach

tively with Kubernetes (k8s) [86]. All microservices deployed in k8s are distributed
across one or multiple virtual clusters, called Namespaces, that create logically isolated
environments.

Istio presents three significant limitations in creating a data-driven service discovery
architecture with QoS guarantees:

1. Microservices deployed in Istio are not immediately visible to the clients outside
the platform. To expose them, there is a need to manually create a set of routing
rules linked to a component called Ingress Gateway. However, in our dynamic
architecture, where new microservices come and go, this is inefficient. Therefore,
exposing available microservices to external clients and hiding them when they
are deleted must be done automatically without any external intervention.

2. When microservices have many instances, Istio is responsible for balancing the
incoming traffic between them within the same Namespace. Our architecture man-
ages microservices by data type as DMG representing Namespaces dedicated to
each type. When multiple instances of a DMG exist, the system needs to balance
requests between the microservices instances replicated in different Namespaces
to prevent inconsistent workload distribution.

3. Istio maintains an internal service registry containing the descriptions of microser-
vices running in the Service Mesh. In addition, Istio offers a Consul adapter as
an integrated registry. However, Consul [167] provides its own service descrip-
tion format that does not support any additional properties. These two service
registries use the Domain Name System (DNS) [168] for service discovery. This
creates the need to modify Istio and integrate an alternative service registry that
supports our proposed data model without affecting the data-driven discovery
process.

Overcoming the limitations of Istio requires the integration of new components:
IngressController, designed to automate the creation and deletion of routing rules À.
LoadBalancer to control sharing incoming requests among DMG instances Á. Finally,
the ServiceRegistry that accepts the proposed data model and allows profiles matching
for the data-driven discovery process Â.

55

Chapter 4: Data-driven Resource Adaptation Approach

4.4 Architecture Design for Improving QoS

Providing the missing functionalities in the Service Mesh and integrating resource adap-
tation strategies in the data-driven architecture requires implementing and deploying
new management components. This section presents the set of management components
used and their roles in the resource adaptation process. Three categories of manage-
ment services exist in the system: API management services, operational services, and
adaptation services. The full architectural design of the QoS-aware system is presented
in Figure 4.1.

REST API

Ingress GatewayIngress Gateway
Ingress GatewayBFF API Service

Ingress GatewayIngressController Service

Ingress GatewayRegistrar Service

Ingress GatewayLoadBalancer Service

Operational support

Ingress GatewayDMGController Service

Ingress GatewayScaleUP Service

Ingress GatewayScaleDOWM Service

Adaptation services

MicroserviceMicroserviceMicroservice

DMG Type 1

REST API

MicroserviceMicroserviceMicroservice

DMG Type n

...

Database Type 1 Database Type n

...

Client

Discovery request

Access request

Remove inactive
 DMG

Register
unregister

services

Replicate DMG

API

management

Platform

management

Business

logic

Storage

Figure 4.1 – Overview of the data-driven QoS architecture. It provides operational and
adaptation support to control the discovery and access requests initiated by the clients.

56

Chapter 4: Data-driven Resource Adaptation Approach

4.4.1 API management services

The system adopts a data-driven discovery approach with a new communication strat-
egy between clients and the internal system components. Integrating this approach
in the system requires exposing a discovery API and control incoming traffic. The
management services in this category are presented below:

1) Ingress Gateway Service: It is a given service by the Service Mesh Istio. It
is required for exposing services to external clients and managing routing rules. The
routing rule is a powerful tool for traffic management in Istio. Based on a matching
condition, a routing rule forward the incoming requests to particular destinations. The
matching conditions can be on traffic ports, header fields, URIs, and more. In this
work, the matching conditions are on services’ URIs. The Ingress Gateway is the entry
point of the Service Mesh. For the discovery requests, this component forwards the
load to the BFF API Gateway Service. For accessing the services after discovery, the
system does not use the default Load Balancer given by the Service Mesh. The Ingress
Gateway is designed to forward the load to a customized LoadBalancer Service.

2) BFF API Gateway Service: it is a service created to manage the customized
discovery API. It is created for each data type supported in the platform. As described
in Chapter 3 on page 42, this component receives the discovery requests and contacts
the dedicated registry to lookup for functionalities and microservices according to the
client’s data object. Before this component proceeds to the discovery mechanism, it is
responsible for checking whether the discovery requests must be rejected or not. To do
so, the BFF API Gateway service sends the client’s data type, specified in the incoming
requests, to another management service, called the DMGContoller Service, presented
later in Section 4.4.3.

4.4.2 Operational services

Grouping deployed microservices by data type as DMG is not supported in the liter-
ature. Thus, the system needs to implement services for managing the microservices
registration, exposing them to external clients, and controlling their traffic routing.
These management services control the deployed microservices and help the resource
management process. The services in this category are presented below:

1) Registar Service: it is a customized third-party registration component. It

57

Chapter 4: Data-driven Resource Adaptation Approach

receives the microservices description models at startup, registers them in the local
service registry, and then un-registers the microservices at shutdown. This Registrar is
the only component in the platform able to notify the management services when a new
microservice is deployed or removed. Many third-party registration components exist
in the literature to automate the registration process in containerized platforms such
as Registrator [169] and Joyent [170]. However, existing components are not helpful
in our architecture for two reasons: first, they create services description based on the
environment and does not support predefined data-centric service description models;
second, they are designed to work with specific registries such as Consul and etcd [171]
and do not support customized databases. For those two reasons, we need to create
our own Registrar to manage the registration of DMGs.

2) IngressController Service: it is a standalone service able to update Istio’s
routing rules automatically. This component is needed in order to dynamically expose
deployed microservices to external clients in the Ingress Gateway without any human
intervention. It makes Istio more suitable for dynamic environments. The IngressCon-
troller service exposes two http endpoints to receive notifications from the Registrar
Service when microservices are added or removed. Based on the notifications, it updates
the routing rules. If a new microservice is deployed in the system, the IngressController
service adds a new rule containing the URI of the service as a matching condition. If
the microservice is removed, the rule is deleted. The destination of the added routing
rules is a customized Load Balancer Service.

3) LoadBalancer Service: it is a standalone service designed to apply load balanc-
ing algorithms. As Service Mesh does not support routing traffic across DMG instances,
this component was needed. It receives incoming requests, and based on their URI, it
distributes them among the instances of the requested microservices located in different
DMGs. The Load Balancer uses a Round Robin algorithm by default, and additional
algorithms can be added as well. It exposes an http endpoint to receive incoming
traffic from the Ingress Gateway service and another to receive notifications from the
Registrar Service when new microservices are added or deleted.

4.4.3 Adaptation services

The core of the resource adaptation scheme is implemented in three management ser-
vices. With these adaptation services, the data-driven architecture is able to Scale Out

58

Chapter 4: Data-driven Resource Adaptation Approach

and Scale Down groups of microservices for specific data types and shed load to reduce
system overhead. The services in this category are the following:

1) DMGController Service: it represents the trigger component of the adapta-
tion strategies deployed in the system. For each discovery request, it receives from the
BFF Gateway service the type of the client’s data. Based on the total number of active
clients in the DMGs of the specified data type, the DMGController Service decides
whether the request for this data type can proceed with the discovery process. The ac-
tive clients of a DMG correspond to those currently using the microservices within the
group. If the targeted DMG is overloaded, it triggers the ScaleOUT Service to increase
the system capacity. If the ScaleOUT Service is unable to scale the microservices due
to the lack of free resources, the DMGController Service starts shedding the load. If
the targeted DMG is not overloaded, the discovery process proceeds normally.

2) ScaleOUT Service: it is responsible for the “ScaleOut” algorithm, presented
later in Section 4.5. It allows the system to adapt to the incoming requests by creating
new DMG instances for overloaded data types while considering available resources. It
exposes an http endpoint for receiving overload notifications and interacts with the
service registries to add newly created DMGs.

3) ScaleDOWN Service: it is responsible for the “ScaleDown” algorithm, pre-
sented in Section 4.5. This algorithm is triggered periodically by the ScaleDOWN
Service to check the resource capacity of each supported data type. If a data type has
a small number of active clients in comparison to a fixed threshold and has more than
one DMG instance, the algorithm scales down the DMGs of this data type and free
allocated resources.

4.5 Management Algorithms

The proposed data-driven microservices architecture is dynamic where new microser-
vices can be added, and others removed. This affects the number of incoming requests,
which will be continuously changing. The fickleness of load leads to a misuse of system
resources: Excessive load causes an overuse of resources, which significantly slows down
the processing system. Besides, deficient load gives rise to an underuse of reserved
resources.

One way to avoid the overuse of resources is to set a limit to the maximum number

59

Chapter 4: Data-driven Resource Adaptation Approach

of concurrent requests that microservices can process. However, our system contains
microservices of different data types that share the system’s resources. Thus, microser-
vices of a specific DMG can sometimes receive a considerable number of requests. This
can lead the system to reach its fixed threshold (referred to as maxreq) without allowing
other microservices groups of different data types to process additional requests. In this
data-driven architecture, avoiding a specific data type from taking over Zone’s resources
is done by defining a rate limiter and a resource quota (CPU, RAM) for each data type
supported. Thus, when deploying a DMG, the system can only reserve resources from
those assigned to its data type without violating its resource quota.

On the other hand, the number and size of data in each incoming request are
unknown in advance. So, using only a rate limiter to control the resource usage can
sometimes lead to a misuse of system resources. For example, with a limit rate equal
to 10 concurrent requests, an application that accepts only images with dimensions less
than 2560x1600 will need fewer resources to processes 10 HD grayscale images with
dimensions 1280x720 than 10 Widescreen RGB images with the maximum dimensions.

As a consequence, we designed an adaptation scheme based on three QoS algorithms:
ScaleOut, ScaleDown, and Load Shedding. This scheme helps create a system able to
handle the rise and fall of incoming load with minimal performance degradation. In
addition, it prevents rejecting requests when the rate limiter is reached, but there are
still enough resources in the platform. The details of the algorithms are presented in
this section.

4.5.1 ScaleOut algorithm

This algorithm is responsible for increasing the capacity of the system when an over-
load is detected. As described in Section 4.4, the component responsible for detecting
the overload is the DMGController Service. The BFF Gateway Service notifies the
controller for each discovery request by sending the client’s data type. The controller
checks whether an action should be done to prevent an overload from the microservices
of this data type, or the discovery request can enter the system directly. The ScaleOut
algorithm is presented in Algorithm 1. The logic of function Discovery is implemented
in the BFF Gateway Service, and that of function NotifyDMG is implemented in the
DMGConroller Service.

When a notification is received, the DMGController Service examines the total
number of running requests for the active users (referred to as RunningReq) in all the

60

Chapter 4: Data-driven Resource Adaptation Approach

Algorithm 1: Scale out overloaded data-driven microservices groups
Data: dataType, dataFormat
Result: Discover functionalities depending on the data

1 Microservice Discovery(dataType, dataFormat)
2 begin
3 HandleREQ ← NotifyDMG(dataType);
4 if HandleREQ == TRUE then
5 MSlist ← FindServices(dataType, dataFormat);
6 return (MSlist);
7 else
8 return(NULL);

Data: dataType
Result: Modifying system capacity based on the load

9 boolean NotifyDMG(dataType)
10 begin
11 RunningReq ← countREQ(dataType);
12 maxreq ← countMAX(dataType);
13 if RunningReq > 85%× maxreq then
14 if resourceavailable()==TRUE then
15 ScaleUP(dataType);
16 else
17 nbDMGtype ← countDMG(dataType);
18 if nbDMGtype > 1 then
19 DMGname ← FindOveloadedDMG(dataType);
20 UpdateDMGstate(DMGname, “OFF")

21 return(FALSE);
22 else
23 return(TRUE);

DMG that belongs to the client’s data type. It verifies whether RunningReq exceeds
85 percent of the total rate limiter maxreq specified for these DMGs. If this threshold
is not yet reached, the controller demands the BFF Gateway Service to accept the
discovery request. The discovery request will be processed normally, and the client will
discover the existing functionalities. However, if the threshold is reached, two options
exist: À if the resource quota specified for this data type allows the reservation of
additional system resources, the DMGController Service triggers the ScaleOUT Service
presented in Section 4.4 to create a new DMG instance. At each creation of a new

61

Chapter 4: Data-driven Resource Adaptation Approach

instance, the maxreq threshold will be automatically incremented. That increases the
capacity of the data type to process more requests; Á However, if there are no more free
resources sufficient to replicate a DMG for this data type, the algorithm hides first the
overloaded DMG while ensuring that one instance remains. Hiding a DMG instance
consist of changing the status of its microservices from ON to OFF. Changing the
status of overloaded microservices allows them to finish processing their currently active
requests while preventing them from appearing to upcoming discovery clients. Also, it
decreases the allowed maxreq for the targeted data type. Later, the controller triggers
the LoadShedding algorithm and notifies the BFF Gateway Service of the overload.

4.5.2 ScaleDown algorithm

Hiding DMG instances during the discovery process simply means changing their status
but without actually removing them and releasing their allocated resources. Thus,
when the system hides multiple DMGs due to system overload, the allowed resources
by the specified quota become all reserved but not efficiently used. This prevents the
system from using these resources to deploy new DMGs and serve additional clients.
Algorithm 2 is implemented to prevent the underuse of system resources.

It is applied by the ScaleDOWN Service presented in Section 4.4. This service
triggers the ScaleDown algorithm periodically to check the system DMGs. It has two
responsibilities: À releasing resources reserved by the hidden DMG (with status OFF)
after they finish processing the requests of currently active clients; Á hiding the deployed
DMG instances that are no longer needed. The ScaleDown algorithm considers a DMG

Algorithm 2: Scale down underutilized data-driven microservices groups
Data: maxreq, DMGtype
Result: Remove the useless DMG

1 void ScaleDownDMG(DMGtype)
2 begin
3 nbDMGtype ← countDMG(DMGtype);
4 RunningReq ← countREQ(DMGtype);
5 if RunningReq ≤ 50%× maxreq then
6 if nbDMGtype > 1 then
7 DMGmin ← selectDMGmin();
8 UpdateDMGstate(DMGmin,“OFF");

9 RemoveInactiveDMG(DMGtype);

62

Chapter 4: Data-driven Resource Adaptation Approach

instance of a specific data type as unessential if the capacity maxreq of this type is
underused. If the total number of running requests RunningReq in all the DMG of this
type is less than 50 percent of the total data type capacity maxreq, the algorithm will
demand to change the status of one instance to OFF. The DMG that will be considered
unessential for the system and that can be avoided is the one with the fewest number
of requests at the time when the algorithm is triggered. The maxreq of the data type
will decrease, and the algorithm will later remove the hidden DMG.

4.5.3 Load Shedding algorithm

This algorithm represents a rate limiting technique. It aims to shed some of the incom-
ing load so that the system can continue operating and providing services for a subset
of requests rather than crashing completely. In our QoS approach, we shed load in two
cases: À when the total number of running requests for a specific data type exceeds the
predefined maxreq but there are not enough free resources (CPU, RAM) in the platform
to deploy new DMG instances; Á when a new request arrives at the system and the new
deployed DMG is not yet ready to receive requests (its status is still Waiting). In the
first case, the Load Shedding algorithm will continue to reject the incoming requests
for a specific data type until the already existing DMGs are no longer overloaded. For
the second case, as long as the status of the newly deployed DMGs are still “Waiting”
the algorithm will continue to shed the load forwarded to them by the LoadBalancer
Service. When the microservices of the new DMGs are deployed and their status switch
to ON, the Load Shedding algorithm will stop. The component responsible for applying
this algorithm is the DMGController Service.

4.6 Evaluation of System Adaptation

The integration of the adaptation scheme in the Service Mesh offers our system the
ability to adapt itself to dynamic and heterogeneous load while effectively using the
physical resources of the platform. This section presents the methodology and the
results of a set of experiments realized on the proposed platform. These experiments
aim to evaluate the behavior and the scalability of the proposed data-driven system
when dealing with unexpected load.

63

Chapter 4: Data-driven Resource Adaptation Approach

4.6.1 Methodology overview

4.6.1.1 Platform

Our platform is integrated into Service Mesh Istio 1.16 and built on top of Kuber-
netes 1.15. We implemented and deployed the architecture presented in Figure 4.1 that
includes a service registry cluster, seven customized management services, and the re-
quired components of Istio and Kubernetes. The registry cluster is implemented as a
distributed MySQL Cluster [172] with 6 nodes members. MySQL Cluster is a multi-
master database where each data node member can accept write and read operations.
It ensures that updates made by any application are instantly available to all other
members. The architecture contains one DMG Image grouping a set of microservices
dedicated to graphics and image processing. The DMG Image is managed in Kuber-
netes as a Namespace. The microservices that belong to it are deployed within the
defined Namespace and are isolated from the microservices of any other DMG instance.

This platform is evaluated in two scenarios: when the rate of the incoming load is
stable and when it is dynamically changing. It is important to note that the evaluation
results showed in this section are not specific to this use case. This simplified use
case is to show the behavior of the system in order to guarantee a QoS. The work we
present here is neither limited to particular services deployed in the DMGs nor specific
to certain data types.

4.6.1.2 Testbed

The platform evaluation is performed on the French large-scale platformGrid’5000 [173].
It represents a distributed testbed designed to support experimental-driven research in
parallel and distributed systems. The experimental setup of this work contains 27 com-
pute nodes on the dahu cluster at the site of Grenoble. Each node is equipped with
two Intel Xeon Gold 6130 processors, 16 cores per CPU, 192 GiB memory, and a pri-
mary disk drive SDD with a capacity of 240 GB. The nodes are connected by 10 Gbps
Ethernet network and run 64-bit Debian stretch Linux with Java 8 installed.

Kubernetes follows master-slave architecture. So, in all the experiments, one re-
served node is dedicated to be the master node, while all the remaining nodes are slaves
nodes. Each experiment has been conducted with a new reservation of the testbed and
deployment of the platform. We ensured that the experiments were isolated with no
interference originated from other users.

64

Chapter 4: Data-driven Resource Adaptation Approach

4.6.1.3 Platform configuration

The resource quota specified for the data type Image is 13 CPUs and 23GB memory.
This quota means that the total number of resources reserved by the DMGs for data
type Image cannot exceed the limit. This prevents specific data types from taking over
the system resources.

The initial rate limiter maxreq of the data type Image is set to 80 concurrent re-
quests. This threshold dynamically changes based on the number of available DMGs.

4.6.1.4 Benchmarks

Two test files are created for the evaluation of the proposed platform. They represent
two clients generating a different type of load for 20 minutes. The definition of load in
these experiments is a set of discovery requests for the existing services.

The first test file is a data source responsible for generating a stable load of 600
requests per second RPS. The second test file is responsible for generating a dynamic
load with a distribution of requests of 50 RPS, then 100 RPS, and lastly, another 50
RPS. Each rate last for 5 min.

4.6.1.5 Metrics

The evaluation metrics of these experiments are the following: system Response Time (RT),
percentage of accepted requests, number of DMG replicas, and the number of incoming
requests.

The number of incoming requests refers to the number of discovery requests gener-
ated by the test files and sent to the system. The system response Time corresponds to
the average time needed to complete the discovery mechanism and access the selected
microservices. The percentage of accepted requests presents the percentage of discovery
requests allowed to enter the platform after the system verifies its ability to process
them. The number of DMG replicas corresponds to the number of DMG instances for a
specific data type. As in these experiments only a DMG Image is deployed, the number
of DMG replicas corresponds to the number of DMG Image instances available.

During the experiments, these metrics are collected using the open-source visual-
ization layer Grafana [174] and the storage back-end Prometheus [175]. In addition to
monitoring the services deployed in the cluster, we need to monitor the Kubernetes clus-
ter itself (such as namespaces/DMG, pods, etc.). We deployed the kube-state-metrics

65

Chapter 4: Data-driven Resource Adaptation Approach

v2.0.0+ endpoint [176] to monitor the Kubernetes API server. This endpoint is then
linked to Prometheus to expose the collected metrics.

4.6.2 Evaluation results

Figure 4.2 shows the variation of the average RT and the percentage of accepted requests
for a stable incoming load. We can observe three different phases. The first phase shows
the baseline of 1 request per second. It presents a low average response time and a
percentage of accepted requests equal to 100%. We aim to saturate the existing DMG
by increasing the incoming rate to 600 RPS in order to show the system’s behavior.
When we switch from the baseline to this new rate, the second phase of the graph

0 200 400 600 800 1000 1200
Time (sec)

0

5

10

15

20

25

Re
sp

on
se

 T
im

e
(s

ec
)

Response Time

0

20

40

60

80

100

Pe
rc

en
ta

ge
 o

f a
cc

ep
te

d
re

qu
es

ts

% of accepted requests

Figure 4.2 – With a stable incoming rate, the system’s response time and the percentage
of accepted requests stabilize around values close to the baseline due to DMG scaling.

shows that the average RT begins to increase respectively until it reaches a peak of 25
seconds. In parallel, as the existing DMG alone cannot process this incoming rate, the
system starts shedding load. The graph shows that the percentage of accepted requests
falls off rapidly until only 60% of incoming requests are accepted.

The drop of system performance triggers the DMGController Service that detects a
system overload and notifies the ScaleOUT Service, which runs our ScaleOut algorithm.

66

Chapter 4: Data-driven Resource Adaptation Approach

This algorithm replicates the targeted DMG to increase the system capacity and im-
prove the performance. In parallel, the DMGController Service runs the LoadShedding
algorithm to prevent requests from blocking the saturated DMG.

As requests continue to arrive, the final phase in the graph shows a decrease in
the average RT. This decrease continues until it stabilizes around a value close to our
baseline. At the same time, due to the creation of new DMG instances, the number of
accepted requests rises respectively until it maintains its peak of 100%.

In the second experiment, we switch to a dynamic distribution of load rather than
a stable incoming rate to focus on the number of DMG replicas. Figure 4.3 shows
the variation in the number of DMG replicas while the incoming rate varies over time
following a specific distribution of the load. We aim with this distribution to show the
system capacity to adjust the number of DMG replicas according to a load that goes
up and down respectively.

0 200 400 600 800 1000 1200 1400
Time (sec)

0

100

200

300

400

Nu
m

be
r o

f r
eq

ue
st

s

Number of Requests

1

2

3

4

5

6

7

8

Nu
m

be
r o

f r
ep

lic
as

Number of replicas

Figure 4.3 – With a dynamic incoming rate, the system tunes the number of replicas
according to the load.

At first, since the unique DMG replicas targeted in this experiment cannot process
more than 80 concurrent requests, sending 50 requests each second leads to a system
overload. This triggers the DMGController Service and then the ScaleOUT Service,
responsible for the ScaleOUT algorithm, to create multiple new DMG replicas. As

67

Chapter 4: Data-driven Resource Adaptation Approach

the graph shows, the number of replicas increased rapidly from 1 to 5 DMG replicas.
Similarly, when the number of requests goes from 50 to 100 RPS, the number of replicas
continues to increase slowly while following the variation of the incoming rate.

Later, to show how the system reacts if the incoming rate suddenly falls off, we
switched back the number of incoming requests from 100 to 50 RPS. As the incoming
rate is lower than the capacity of the total number of replicas, the ScaleDOWN Service
triggers the ScaleDown algorithm in order to free unnecessary DMG. As the graph
shows, following this diminution, the number of replicas decreases respectively with a
variation similar to the incoming rate.

4.7 Conclusion

Adopting Peer-to-Peer technology and supporting multiple data types require integrat-
ing dynamic data-driven management strategies to guarantee a quality of service. The
current Istio Service Mesh is not designed to support that. Thus, this work introduces
new components to overcome the Service Mesh limitations.

We have deployed this Service Mesh data-driven architecture on a real-life testbed.
Results showed that the platform can adapt and maintain a QoS in terms of response
time and percentage of accepted requests when receiving incoming rates that exceed
system capacity. In addition, the system is effectively adapting itself to the incom-
ing load by replicating a sufficient number of DMG, enough to process the incoming
requests, and removing allocated resources when they are no more needed.

In chapters 3 and 4, we targeted the resource management layer of the data-driven
system. In the next chapter, we present the data and workflow management layers with
the experiments conducted.

68

Chapter 5

Data Quality Management and
Workflow Scheduling Strategies

Contents

5.1 Introduction . 69

5.2 Literature: Data and Workflow Management 70

5.3 System Architecture and Modeling 73

5.4 Data Quality Adaptation Strategy 80

5.5 Data-driven Workflow Scheduling Approach 82

5.6 Conclusion . 87

5.1 Introduction

Ecosystems supporting emerging applications have become highly heterogeneous and
geographically distributed, bringing significant challenges in delivering processing re-
sults in a timely manner with respect to other Quality of Service (QoS) constraints [36].
Many emerging applications require real-time data processing with a specific quality
of the processing results, referred to as accuracy. Meeting the application’s objectives
when dealing with multiple data sources and resources of heterogeneous capabilities
highlights the need for resource and data management solutions that enables trade-offs
between the time and the quality of the application.

69

Chapter 5: Data Quality Management and Workflow Scheduling Strategies

Resource management aims at task allocation strategies and collaborative infras-
tructure designs [177, 178]. On the other hand, data management often consists of
customizing tasks to suit the resource-constrained systems while addressing the trade-
off between QoS metrics [101,179]. Existing work tends to approach these two aspects
independently and rarely manages the entire application workflow, resulting in ineffi-
ciencies between the design and the deployment of emerging applications. This work
aims to combine a data quality adaptation approach and a workflow scheduling strategy
for time-sensitive workflows that rely on constrained resources located at the network’s
Edge, powerful core, and along the data path. The system manages trade-offs between
the end-to-end workflow latency and the accuracy of results to meet the performance
requirements of emerging applications. It offers means to developers to automatically
distribute workflows across the Edge-to-Cloud computing continuum.

The chapter is organized as follows: Section 5.2 presents a literature review on
existing data quality adaptation and workflow scheduling approaches. The system
architecture, modeling, and the management objective formulation are described in
Section 5.3. Section 5.4 presents the data adaptation strategy. Section 5.5 shows
in detail the workflow scheduling strategy on the heterogeneous resources. Finally,
Section 5.6 concludes this chapter.

5.2 Literature: Data and Workflow Management

5.2.1 Configuration adaptation for Edge-based systems

Analyzing incoming data in environments with limited resources while guaranteeing
QoS constraints is challenging. Several data processing systems and frameworks ei-
ther allocate predetermined resources for data processing in a way to achieve fairness
among users or assume that the available resource capacity is infinite [100]. Keeping
these assumptions when dealing concurrently with multiple data sources on limited
resources will negatively affect the processing quality for all users. In practice, when
processing data concurrently, the resources available to each data source are often un-
known. Online and offline profiling-based configurations adaptation with trade-offs
between QoS requirements is currently a promising solution to address the issue of lim-
ited resources [180]. Online profiling corresponds to periodically checking the possible
configuration adaptations and selecting the optimal one [101,180]. However, offline pro-
filing consists of checking the possible configurations only once offline, and then during

70

Chapter 5: Data Quality Management and Workflow Scheduling Strategies

runtime they choose and adjust the optimal configuration [15, 100, 102, 181–184]. The
latter is inefficient in emerging dynamic applications since new services can be added
or removed, new data sources can join the system with different data resolutions, and
the complexity of the data content can vary during runtime.

In [184], Zamani et al. tackle the latency accumulation problem caused by the
constrained bandwidth capacity between data producers and consumers. The proposed
system decides between low-resolution and high-resolution configuration based on the
outcome of the detection algorithm. If at least one object is detected, a high-resolution
image is delivered to the consumer. Otherwise, a low-resolution is given. However, the
authors do not consider the limited computing capacities of the streaming platform.

Wang et al. [15] address the issue of limited computing and network resources
between IoT devices and Edge nodes. They adopt a configuration adaptation and a
bandwidth allocation for a multi-user video analytics system. A configuration refers
to a particular combination of video resolution and frame rate. Their objective is to
find the optimal trade-off between analytics accuracy and energy consumption, with a
long-term latency constraint. Unlike our system, the authors do not manage workflows
in a computing continuum but single services distributed on the Edge nodes.

Kim et al. [180] present an online configuration adaptation algorithm in a GPU-
enable Edge server for video analytics systems. Its objective is to minimize the total
latency and maximize the total accuracy of analyzing multiple video streams while
utilizing limited computing resources. It optimizes the resource-accuracy trade-off with
respect to frame rate and frame resolution of video streams. Unlike our system, the
authors target services and not application workflows. In addition, the infrastructure
consists of a single Edge server and not a heterogeneous computing continuum.

The configuration adaptation is adopted by Mobile Augmented Reality (MAR) sys-
tems deployed at the network Edge [102, 183]. Lui et al. [183] present a multi-user
MAR system that enables mobile users to dynamically change their AR configurations
according to wireless conditions and computation workloads in edge servers. The dy-
namic configuration adaptations strategy targets the frames resolution and rate in order
to reduce the service latency of MAR users and maximize the quality of augmentation.

5.2.2 Workflow scheduling strategies

In computing infrastructures, scheduling refers to the allocation of computing resources
and the mapping of the application to those resources in a way to meet QoS con-

71

Chapter 5: Data Quality Management and Workflow Scheduling Strategies

straints (such as latency and energy consumption) or achieve an optimization sys-
tem goal (such as minimizing application makespan and maximizing throughput) [185].
Based on the application, scheduling approaches can be classified into three main cat-
egories. First, job scheduling techniques are designed to schedule processing jobs on
the cluster workers [186–188]. Second, single task scheduling techniques for scheduling
provided services with a guarantee of specific performance targets [189–191]. Lastly,
workflow scheduling techniques are designed to distribute the entire application on the
available resources [14,99,192]. This category is not yet well discussed in the literature.
The contribution of this work belongs to the last category.

The workflows of emerging applications include tasks with diverse data quality,
performance, and resource requirements. Cloud-based infrastructures consist of het-
erogeneous resources offering various computing and network capacities. The diversity
of both applications and resources must be considered during scheduling to reduce
performance degradation and achieve efficient scheduling [193,194].

Krishnapriya et al. [193] stressed the need to take into account the extreme het-
erogeneity of applications, infrastructures, and incoming data in the context of the
Internet of Things (IoT) applications. Otherwise, scheduling approaches can lead to
sub-optimal results.

Zhang et al. [194] present a task classification approach based on user-defined re-
source requirement (CPU, RAM) and task priority. The goal of task classification is
to divide workflows into multiple task classes with similar resource demand and per-
formance characteristics. The class of each task is used during scheduling to determine
the allocation policy that should be applied to the task. Task priorities ensure that
high-priority tasks are scheduled earlier than low-priority tasks. Similarly, in our work,
we adopt a task classification to characterize the heterogeneous workflow for schedul-
ing. Some classes have a higher scheduling priority than others, and each follows a
scheduling policy.

The functional partitioning of a data-driven workflow and its distribution across
Edge-to-Cloud resources has been considered in [14]. Ali et al. [14] present a system
for large-scale video stream analytics. The analysis pipeline is decomposed into stages;
each consists of a set of processing tasks. The basic processing tasks are considered non-
intensive tasks and are placed on the Edge resources. For intensive tasks, the authors
propose three strategies to distribute the stages across Edge, in-transit, and Cloud
resources. The first consists of observing the inference time of the task when deployed
on each layer; the second strategy relies on estimating the content of the frames; the

72

Chapter 5: Data Quality Management and Workflow Scheduling Strategies

third strategy consists of observing historical data to decide the best placement of
tasks. Among the proposed strategies, only the first strategy was further explored by
the authors in [99] under deadline constraints. This scheduling strategy is goal-driven,
where the scheduling decisions made are motivated by the author’s goal of satisfying
the deadline constraints of the user’s submitted job. Unlike our data-driven scheduling
strategy proposed in this work, these approaches do not consider the difference in the
tasks’ computing and network requirements nor the impact of incoming data on the
application performance.

Renart et al. [192] tackle the problem of dynamically decomposing and placing IoT
data-flows on heterogeneous Edge and Cloud resources. They explore the heterogeneity
of operators, their interactions and resources capacity to orchestrate the IoT data-flows
while optimizing the end-to-end application latency. They present a programming
model based on R-Pulsar system [195] allowing developers to define dataflow splitting
across the Edge and the Cloud.

5.3 System Architecture and Modeling

Several management microservices are implemented to allow the optimization of the
application latency when deployed in distributed, heterogeneous and limited environ-
ment. An overview of the system architecture is presented in Figure 5.1. When an
application workflow is submitted to the system, the workflow management strategy is
executed in order to place the workflow on the infrastructure resources. As it is shown
in Figure 5.1, four workflow management microservices are implemented to achieve the
workflow management strategy. Details about this strategy are presented in Section 5.5.
Later, when a user joins the system, the data management strategy is executed. It aims
to specify the data quality that should be adopted by each existing user in order to
optimize the application latency. The best quality distribution is selected based on
performance estimations. As shown in Figure 5.1, four data management microservices
are used to accomplish the data quality adaptation strategy. Details about this strat-
egy are presented in Section 5.4. The data-driven microservice discovery mechanism
presented previously in Chapter 3 is used to assign workflows to users based on their
data quality.

The remainder of this section presents the infrastructure, workflow, and performance
modeling. The latter consists of an end-to-end latency and a processing accuracy mod-
eling. In addition, this section provides a formulation of the system objective.

73

Chapter 5: Data Quality Management and Workflow Scheduling Strategies

Task

Task
Task categorization

E:1 E:N C:1 C:N Cloud

Edge Tier Cloudlet Tier Cloud Tier

Workflow

Submit

Schedule workflow

TaskTask

TaskTask

Stream
data to

deployed
workflows

Data
sources

Workflow management

Cameras

Sensors

Databases

Data management

Infrastructure resources

Data

Resource management

Microservice Discovery

Assign workflows
to users

Resource
reservation

Resource
adjustement

Resource scheduling

Task scheduling

Quality
adaptation
adapt(CU)

Reduce
Latency model

Accuracy model

Performance estimation

Get estimations

Specify quality distribution

Figure 5.1 – A global overview of the system design illustrating the management mi-
croservices and their interactions.

5.3.1 Infrastructure model

The infrastructure design is based on the Edge-to-Cloud computing continuum. The
set of computing resources available is given by R = {rk} which represents the set of
Edge (E), Fog (F), and Cloud (C) nodes. In this work, the terms Cloudlet and Fog refer
to the resources along the data path from the edge of the network to the core. Cloudlet
resources provide computational capabilities greater than Edge resources and less than
Cloud resources. The capacity of the Cloudlet-Cloud network link is a thousand times
higher than the capacity of the Edge-Cloudlet link.

74

Chapter 5: Data Quality Management and Workflow Scheduling Strategies

The system supports multiple data sources located at the Edge. The set of data
sources in the system are denoted by U = {u1, u2, ..., uk}. Each user u has a set of
configuration metrics such as its data type, format, quality, data rate, QoS, etc. For
simplicity, in this chapter, we focus on the user’s data type, quality, and size. The
QoS constraints are predefined for the application. Let CU = {cui , 1 ≤ i ≤ k} the
set of configurations for each user u ∈ U . The configuration cu of a user is defined as
cu = (dt, dq, ds) where dt, dq and ds refer to the original user’s data type, quality and
size, respectively. Due to the data quality management strategy adopted in this work
as a part of the proposed trade-off solution (presented later in Section 5.4), the quality
dq and size ds of a user are inconstant during runtime. This adaptation strategy is
defined as adapt(CU) −→ {CU ′ = {cu′} | ∀cu′ , cu′ = (dt, dq′, ds′)}. It takes as input
the set of users’ configurations and generates the output CU ′. This output corresponds
to the set of users’ configurations after applying the adaptation strategy. As it is shown
in Figure 5.1, this configuration is obtained via the use of performance models and the
data-driven service discovery approach. The metrics (dq′, ds′) of a user might refer to
its original quality and size (dq, ds) or new adapted configuration. For simplicity, in
this section, we will refer to the quality and size of user’s data respectively as q and s,
whether original or adapted.

5.3.2 Workflow model

An application workflow consists of a sequence of functionalities. Let W = {f1, ..., fX}
be the application workflow with X corresponds to the total number of functionalities
provided. Different microservices can be implemented to provide the same functionality
f , but each accepts specific data characteristics and has its own configuration. Thus, for
each functionality f there is a set of microservices M = {m′1,m′2, ...,m′Z} that provide
it. Details about the metrics used to describe the configuration of a microservice are
given in Chapter 3 page 38. Let CM = {cm′

y , 1 ≤ y ≤ Z} be the set of configurations
of each implementation m′ ∈ M . For simplicity, in this chapter the microservice’s
configuration metrics used are defined as cm′ = (t′, q′, s′, RPS ′) where t′, q′ and s′

corresponds to the type, quality and size of the microservice’s input data, respectively.
RPS ′ refers to the number of requests the microservice can process per second. Among
the different implementations of a functionality f , one microservice at a time is selected
to be a part of the workflow assigned to user. Let m =

∑Z
y=1 φym

′
y represents the

selected microservice for a functionality f . The variable φ is a binary that indicates

75

Chapter 5: Data Quality Management and Workflow Scheduling Strategies

whether a microservicem′ is selected fromM to provide a functionality f . Based on the
data-driven service discovery mechanism presented in Chapter 3 page 40, the selected
microservice is the one matching the characteristics of the user’s data. Thus, the binary
φ is presented as follows:

φ =

{
1 if q′m′ = qu, t′m′ = dtu and s′m′ ≥ su

0 otherwise.

The application workflow corresponds to the set of microservices providing the sequence
of functionalities needed. Hence, the workflow assigned to a user u is formulated as
Wu = {mi, 1 ≤ i ≤ X}. Due to the data quality adaptation strategy adopted in
this work, the configuration of the user cu might changes during runtime. Thus, the
workflow assigned to a user u varies over time.

5.3.3 Performance models

This thesis focuses on the application’s end-to-end latency, and the quality of data
processing referred to as accuracy. This section presents the average end-to-end latency
and accuracy of K data sources in a time slot t. A data generated by a data source u
is considered as a job J to be processed by the application. Let N be the total number
of jobs generated by a data source in a time slot t.

5.3.3.1 End-to-end latency model

The configuration of the job J depends on its user’s cu′ configuration generated by the
adaptation strategy. If cu′ is different than the original (or previous) user’s configuration
cu, the job is forwarded to a management microservice defined as reduce(J, cu, cu′). It
is responsible for applying the adapted configuration cu′ = (dt, dq′, ds′) on job J having
a current configuration cu before starting the data processing. Hence, the end-to-end
latency of a job J from a data source u corresponds to the time taken to adapt the job’s
configuration, if needed, and then to complete its assigned data processing workflow.
The end-to-end latency is formulated as follows:

T uJ = µ · Treduce + TW (5.1)

Treduce is a constant value that refers to the time required to reduce the job’s quality
via the management microservice Reduce (see Figure 5.1). The value µ is a binary

76

Chapter 5: Data Quality Management and Workflow Scheduling Strategies

that indicates whether a data quality reduction was needed for this data source or not.
Details about data adaptation will be presented in Section 5.4. TW corresponds to the
total time spent in the application workflow assigned to the user based on its data entry.
It includes the sum of the response time of all the microservices in the workflow. It is
presented as:

TW =
n∑
i=1

RT (mi) where

RT (mi) = α · TD + Trans(mj,mi) + TE

(5.2)

RT (mi) represents the response time of the selected microservice mi to provide a func-
tionality in the workflow. The variable α is a binary that indicates whether a microser-
vice discovery happened or not while processing a job. TD represents the discovery
time of the microservice. Trans(mj,mi) represents the time needed to transfer the
data input of microservice mi from its predecessor mj. A predecessor of a microservice
corresponds to its preceding task in the workflow. The microservices mj and mi are
the chosen microservices to provide two different functionalities. Let rj and ri be the
resources where mj and mi are deployed respectively. For clarity, Trans(mj,mi) is
replaced by Trans(rj, ri). TE corresponds to the execution time of the microservice.

The transfer time of the data is formulated as:

Trans(rj, ri) =



s

w(rj, F)
+

s

w(F, ri)
if rj ∈ E, ri ∈ C

0 if ri = rj
s

w(rj, ri)
otherwise,

(5.3)

s refers to the data size (in Mbits) to be sent over the network. It might correspond to
the original data size or to the reduced size if the function reduce was applied (µ = 1

in Equation 5.1). The w(producer, consumer) refers to the bandwidth (Mbits/s) of
the network link between the data producer and consumer. If they were deployed on
resources {ri, rj} ∈ {E,C}, the transferred data must pass through the Cloudlet tier.

The execution time of a microservice is presented as TE = Load/RPS where
Load refers to the data to be processed by mi. RPS is the throughput capacity of the
selected microservice specified in its configuration cmi

∈ CMi. It refers to the number
of requests that can be processed per second. The value of the throughput differs based
on the characteristics of the microservice selected to provide the needed functionality
such as technologies used, type and resolution of input data, etc.

77

Chapter 5: Data Quality Management and Workflow Scheduling Strategies

Thus, the average end-to-end latency of K data sources in a time slot t is presented
as follows:

Tt =
1

K

K∑
i=1

(
1

N

N∑
j=1

T ij

)
(5.4)

5.3.3.2 Accuracy model

Due to the data-driven discovery mechanism, changing the quality of the incoming
data during a time slot by the data management strategy will cause a change in the
selected microservice to provide the functionality needed. The microservice chosen
can impact the accuracy of the application since they have different configuration and
data characteristics. Let Q = {q′1, q′2, ..., q′L} be the set of data quality supported
by the deployed microservices providing the same functionality. Let φiJ and βxJ be two
binary variables that indicate whether microservicem′i and data quality q′x are selected
for data source uk to apply a functionality on job J . So, mk

J =
∑Z

y=1 φ
y
J,km

′
y is the

microservice chosen for job J from data source uk and qkJ =
∑L

x=1 β
x
J,kq

′
x is its data

quality with
∑Z

y=1 φ
y
J,k = 1 and

∑L
x=1 β

x
J,k = 1. Let E(qkJ ,m

k
J) be the accuracy of the

application when processing the job J of data source uk. Hence, the average accuracy
of a data source uk in time slot t is 1

N

∑N
j=1 E(qkj ,m

k
j). During a time slot,

∑Z
y=1 φ

y
k and∑L

x=1 β
x
k can be greater than 1, which indicates that a data source can have multiple

data qualities and so can use multiple microservices providing the same functionality.
The average accuracy of K data sources in a time slot t is presented as follows:

at =
1

K

K∑
i=1

(
1

N

N∑
j=1

E(qij,m
i
j)

)
(5.5)

5.3.4 System objective

This work aims to reduce the end-to-end latency of applications under a long-term accu-
racy constraint. To achieve this objective, a latency-accuracy trade-off utility function
is needed. It is formulated as Uu,t = au,t−ΘTu,t where Θ trades off between the latency
cost and accuracy. The total utility for K data sources in time slot t is presented as:

Ut =
1

K

K∑
i=1

Ui,t (5.6)

78

Chapter 5: Data Quality Management and Workflow Scheduling Strategies

Table 5.1 – An overview of the mathematical notations.

Meaning Notation
Infrastructure
Set of Edge nodes E
Set of Fog nodes F
Set of Cloud nodes C
Set of computing resources R = {rk} = {E ∪ F ∪ C}
Network Bandwidth between resources rj and ri w(rj , ri)
Users
Set of data sources/ users U = {u1, u2, ..., uk}
Set of users’ configurations CU = {cu1

, cu2
, ..., cuk

}
Original user’s data type dtu
Original user’s data quality dqu
Original user’s data size dsu
Set of users’ adapted configurations CU ′ = {cu′

1
, cu′

2
, ..., cu′

k
}

Adapted data quality dq′

Adapted data size ds′

Job generated by a user J
Total number of jobs generated by a user in time slot t N
Workflow
Workflow assigned to user u Wu

Implementation/microservice of a given functionality m′
i

Set of configuration metrics for a microservice cm′
i

Accepted input data type by a microservice t′

Accepted input data quality by a microservice q′

Accepted input data size by a microservice s′

Microservice’s throughput RPS′

Set of implementations of a particular functionality M = {m′
1,m

′
2, ...,m

′
Z}

Selected implementation from M m
Binary variable for selecting an implementation φy
Set of data quality supported by M Q
Binary variable for selecting a data quality from Q βx

Performance
Total Latency of a workflow assigned to a user TW
Reduce the configuration cu of job J to cu′ reduce(J, cu, cu′)
Latency of data quality reduction Treduce
Binary variable for the reduction µ
Response time of a selected microservice mi RT (mi)
Binary variable for the discovery process α
Latency of service discovery TD
Data transfer time from microservice mj to mi Trans(mj ,mi)
Execution time of a job in a microservice TE
Total End-to-end Latency of a job J from user u Tu

J

Average end-to-end latency of K users in time t Tt
Processing accuracy of job J with quality q E(qJ ,mJ)
Average accuracy of K users in time slot t at
Objective Formulation
Latency-accuracy trade-off weight Θ
Threshold of minimum processing accuracy amin

Total trade-off utility for K data sources in time t Ut

79

Chapter 5: Data Quality Management and Workflow Scheduling Strategies

Maximizing this utility during runtime, with respect to the accuracy constraint, will
increase the system efficiency. As in [15], the long-term utility augmentation during
runtime will become limited. So, the system goal is formulated as follows:

Goal : max
β,φ

lim
t→+∞

1

T

T∑
t=1

(Ut)

subject to lim
t→+∞

1

T

T∑
t=1

at ≥ amin

(5.7)

The accuracy constraint in the formula ensures that the trade-off is only possible if
the long-term average accuracy exceeds the minimum threshold amin.

To optimize this utility, the system aims to adapt the quality of incoming data.
This adaptation is presented in Section 5.4.

5.4 Data Quality Adaptation Strategy

The system contains a set of distributed and limited resources of different computing
and network capacity. Analyzing data generated by multiple data sources on these
resources while guaranteeing the latency constraint requires adopting a latency-accuracy
trade-off solution. This section presents a data quality adaptation strategy for time-
critical applications. This strategy is responsible for specifying the distribution of data
qualities on the existing data sources. It estimates whether the system can handle the
original data qualities of all data sources or a quality reduction is required. Reducing
data quality can negatively affect the application’s accuracy. So, this strategy controls
the quality of generated data while guaranteeing a system accuracy higher than a fixed
threshold amin.

Let B = {b1, ..., bm} be the set of possible quality distributions among data sources.
Each distribution bi is formulated as {β ·ql | 1 ≤ β ≤ k and ql ∈ Q}, where β represents
the number of data sources having the data quality ql and k is the total number of data
sources in the system. ql might corresponds to their original or reduced data qualities.
The proposed strategy selects from B the distribution with the fastest analysis latency
and an accuracy that does not fall below the amin threshold. However, in specific
use cases, the selected data quality distribution may not be the fastest: The system
compromises between latency and accuracy in case there is another distribution that

80

Chapter 5: Data Quality Management and Workflow Scheduling Strategies

provides a latency gain less than 10ms but an accuracy loss greater than or equal to
20%. The strategy is presented in the Algorithm 3 below.

Algorithm 3: Select the distribution of data qualities across system data
sources. The selection compromises between latency and accuracy.
Result: quality distribution with the optimal trade-off.
begin

1 initialization;
2 for b in B do
3 L ← getEstimatedLatency(b) ; // model (5.4) in 5.3.3.2
4 A ← getEstimatedAccuracy(b) ; // model (5.5) in 5.3.3.2
5 if A ≥ amin then
6 add({b, L, A}, list);

7 if isEmpty(list) == TRUE then
8 return ∅
9 best ← getMinLatency(list);

10 for x in list do
11 if 4(x[L], best[L]) < 10 and
12 4(x[A], best[A]) ≥ 20% then
13 best ← x;

14 return(best);

In steps 2-6, it starts by calculating the estimated latency and accuracy of each
possible data quality distribution. Then, in step 5, it filters those with unacceptable
accuracy. If no configuration provides acceptable accuracy, the data source can’t join
the system at that time period (steps 7 and 8). Otherwise, the preferred data distri-
bution among the acceptable configurations is the one that provides the fastest pro-
cessing (step 9). In steps 10-12, it checks if there is another distribution that matches
the use case presented above. If so, it will be selected as the preferred data quality
distribution in the system.

Targeted applications have dynamic data content. Therefore, adapting data quality
once during analysis is inefficient as the performance varies depending on the content.
To handle the dynamism of data, the adaptation strategy is triggered periodically and
when new data sources join the system. The microservices responsible for applying this
strategy are deployed on the Edge.

After selecting data qualities and the number of data sources that should adopt each
quality, the system randomly maps qualities to data sources. This mapping switches
periodically between data sources until the next adaptation period.

81

Chapter 5: Data Quality Management and Workflow Scheduling Strategies

5.5 Data-driven Workflow Scheduling Approach

The proposed system has multiple challenges that need to be overcome in order to
schedule the workflow effectively on the continuum:

1. Microservices have several implementations and have different computing and
network requirements.

2. System has a limited number of resources.

3. Available system resources have different computing and network capacity.

4. In a continuum, resources can become unavailable.

For challenges À and Â, this work adopts resource reservation and scheduling algo-
rithms based on a task categorization approach. This approach identifies the different
categories of tasks in a workflow and their requirements. The reservation algorithm aims
to allocate in advance the resources for tasks requiring high computing capacity in the
submitted application. Its purpose is to prevent other tasks from allocating powerful
resources and forcing intensive tasks to run with insufficient computing power. The
scheduling algorithm consists of distributing the tasks on the continuum based on their
categories and reserved resources. These two algorithms are presented in Section 5.5.2.
For challenge Á, the system adopts a requirement adjustment algorithm. It aims to
adjust the resources reserved for the intensive tasks to use the system’s limited com-
puting resources efficiently. This adjustment algorithm is presented in Section 5.5.3.
The 4th scheduling challenge is beyond the scope of this paper. The categorization
approach and each scheduling algorithm are deployed as microservices and located on
the Edge tier. This data-driven scheduling approach is triggered when a new or an up-
dated workflow is submitted to the system. When triggered, the interactions between
microservices are as follows: the categorization microservice first receives the workflow
description. Then, after examining each task, it sends the workflow description with the
categorization results to the resource reservation microservice. During the scheduling
process, the reservation microservice allocates the resources and triggers the scheduling
microservice. If the available system resources are not enough to handle the intensive
tasks of the workflow, It triggers the resource adjustment microservice. This section
presents the details of each microservice participating in the scheduling process.

82

Chapter 5: Data Quality Management and Workflow Scheduling Strategies

5.5.1 Tasks categorization

The tasks categorization strategy consists of differentiating the application’s tasks based
on their CPU, memory, bandwidth, and storage requirements. The categorization re-
sults depend on the functionality given by the tasks, their configuration, and their data
input characteristics. In this work, categorizing tasks offering the same functionality is
based on the quality of their data input. The task that deals with high-quality data re-
quires more resources than tasks with low-quality data. Identifying the categories of the
tasks properly allows serving their requirements better during scheduling on resources
with limited capacity.

Tasks are classified into two main categories: Non-Intensive tasks and Intensive
tasks. Non-Intensive tasks (NI) refer to those which do not demand frequent access
to the system’s computational resources. In contrast, Intensive tasks (I) require
a lot of resources to process incoming data. Among the intensive tasks, two main
sub-categories can be identified: High-Intensive tasks (HI) and Low-Intensive
tasks (LI). As the name implies, High-Intensive tasks require more resources than
Low-Intensive tasks. The ratios between the required resources of these categories
as well as their sub-categories depend on each application use case. An example of
categorizing a data-driven application use case is presented in Chapter 6.

5.5.2 Heterogeneity-aware workflow scheduling algorithms

A naive approach to assign tasks to resources is to explore all the possibilities in a
brute-force manner which creates a search space of exponential complexity. This work
adopts the following pruning techniques to minimize the search space. First, all tasks
within the same category have the same resource assignment. Second, intensive tasks
can only be deployed on the Fog and Cloud resources. HI tasks have a priority to be
assigned to the Cloud and LI tasks to the Fog.

The scheduling approach consists of two parts. The first part aims to reserve re-
sources for intensive tasks. The second part of this scheduling approach is responsible
for distributing the workflow on the continuum.

5.5.2.1 Resource reservation algorithm

During resource reservation, the system gives HI tasks a higher placement priority than
LI tasks. The resource reservation for HI tasks is presented in Algorithm 4. This

83

Chapter 5: Data Quality Management and Workflow Scheduling Strategies

algorithm takes as input the number of HI tasks in the submitted workflow. In step 1
and 2, it retrieves the available resources in Cloud and Cloudlet tiers, respectively. In
step 3, it counts the number of HI tasks that can be placed on the Cloud. This depends
on the capacity of the Cloud tier and the fixed requirements of the HI tasks. Steps 4-
16 check whether the computing requirements of HI tasks can be fully guaranteed at
the Cloud or they must be distributed across Cloudlet-Cloud tiers. In addition, they
decide whether the available resources can handle the entire computing requirements of
HI tasks or a “requirements adjustment solution” is needed. For the first case (steps 4-
6), it checks if the capacity of the Cloud tier is greater than the requirements of HI
tasks. If so, it reserves all required resources on the Cloud. If not (steps 7-16), it checks
whether the Fog resources can handle the requirements of the remaining tasks. If so, the
reserved resources for HI tasks will be distributed across Cloudlet-Cloud tiers. However,
if the resources available in the Cloudlet are also not enough, it triggers Algorithm 6,
which will be presented in Section 5.5.3.

Algorithm 4: Resource reservation for high intensive tasks.
Data: countHI
Result: List of resources reserved for HI microservices

List Reserve_HI(countHI)
begin

1 capCloud ← getFreeResources(‘cloud’);
2 capFog ← getFreeResources(‘fog’);
3 cloudHI ← countCloudHI(capCloud);
4 if cloudHI ≥ countHI then
5 entry ← reserve(countHI, ‘cloud’);
6 updateReservedList(entry);
7 else
8 remainHI ← countHI - cloudHI;
9 fogHI ← countFogHI(capFog);

10 if fogHI ≥ remainHI then
11 entry ← reserve(cloudHI, ‘cloud’);
12 updateReservedList(entry);
13 entry ← reserve(remainHI, ‘fog’);
14 updateReservedList(entry);
15 else
16 Adjust_res(‘HI’);

17 return(getReservedList());

84

Chapter 5: Data Quality Management and Workflow Scheduling Strategies

After reserving the resources for HI tasks, the system will repeat the same logic to
reserve the resources for LI tasks. As they have a priority to be assigned to the Fog,
the system checks first whether their computing requirements can be fully guaranteed
at the Cloudlet level before checking the Cloud.

5.5.2.2 Workflow scheduling algorithm

The next step in the scheduling approach is to distribute the workflow on the con-
tinuum. It is presented in Algorithm 5. This algorithm takes as input the list of
resources reserved for intensive tasks and the workflow. For each task in the workflow,
it checks whether they are intensive or not. If so, it searches for the resources reserved
for its category (steps 4 and 5). However, if not, it looks for the remaining free re-
sources (steps 6 and 7). As NI tasks do not require a lot of computing power, they
can be easily placed on system resources without prior reservation. Among discovered
resources for each task, it selects those located near its predecessor (step 8). A pre-
decessor of a task corresponds to its preceding task in the analysis pipeline or a data
source in case it is the entry task of the workflow. In case several resources are located
on the same infrastructure level, the selection of the resource is random. After selecting
the resource, it deploys the task and makes it ready for production (step 9).

Algorithm 5: Scheduling application’s workflow on reserved resources.
Data: listsIntensive, workflow
Result: Mapping DL pipeline to system resources

Void Scheduling(listsIntensive, workflow)
begin

1 for task in workflow do
2 predecessor ← getPredecessor(task);
3 category ← getCategory(task);
4 if category = ‘LI’ OR category = ‘HI’ then
5 list ← getReserved(category, listsIntensive);
6 else
7 list ← getFreeResources(category);

8 res ← selectResource(list, predecessor);
9 deployTask(task, res);

85

Chapter 5: Data Quality Management and Workflow Scheduling Strategies

5.5.3 Requirements adjustment algorithm

As Algorithm 4 has shown, it is possible that the system cannot handle the computing
requirements of intensive tasks. Algorithm 6 is used to handle this issue. It aims to
adjust the resource requirements of intensive tasks to place them on the continuum
when a full guarantee of required resources is not possible. It attempts to reduce the
computing requirements of intensive tasks while ensuring a minimum threshold equal
to 50% of their fixed requirements. This allows maximum use of the system’s limited
resources. This algorithm is only triggered by Algorithm 4 if a new workflow submission
occurs.

Algorithm 6 takes as input the category of the task to be placed and the current list
of resources reserved for intensive tasks. In steps 2 and 3, it gets the list of remaining
free resources on the Cloudlet-Cloud tiers and selects the one with the maximum re-
maining capacity. If the remaining capacity of the selected resource is greater than or
equal to the minimum threshold, the resource is reserved (steps 3-5). However, if not,
the algorithm attempts to reach the minimum threshold by adjusting the computing
capacity of the other reservations on the same selected resource (steps 6-13). In step 7,
it gets the remaining capacity needed to reach the minimum threshold. The reservations

Algorithm 6: Resource adjustment for intensive tasks.
Data: listLI, listHI, category
Result: Adjust required resources of intensive tasks

Void Adjust_res(listLI, listHI, category)
begin

1 listFree ← getFreeResources();
2 res ← getMAX(listFree, category);
3 if res ≥ 50% × requiredResources then
4 entry ← reserve(res, category);
5 updateReservedList(category, entry);
6 else
7 remain ← getRemain(res);
8 listReservations←checkReservations(remain, listLI, listHI);
9 part ← (remain / size(listReservations));

10 newList ← Reduce(part, listReservations);
11 updateReservedList(newList);
12 entry ← reserve(res, remain);
13 updateReservedList(entry);

86

Chapter 5: Data Quality Management and Workflow Scheduling Strategies

on the selected resource that can handle a resource adjustment are those that remain
above the minimum threshold even if their computing capacity is reduced (step 8). In
steps 9 and 10, it reduces the remaining capacity needed evenly from the reservation
list. After adjustment, the list of reserved resources is updated (steps 11-13).

5.6 Conclusion

Current systems tend to approach resource and data management solutions indepen-
dently when managing emerging applications and without focusing on the entire ap-
plication workflows. With the increase in the quality and amount of data, it became
challenging to meet the application’s objectives when dealing with multiple data sources
and limited resources of heterogeneous capabilities.

This chapter proposed a system that combines a data quality adaptation strategy
and a workflow scheduling approach to support time-critical workflows with an accu-
racy constraint. It manages latency-accuracy trade-offs by controlling the quality of
incoming data and distributing the workflows’ tasks across the continuum based on
their functionality and data input.

In Chapter 6, we validate the system’s viability by implementing and deploying a
data-driven application use case on Grid’5000 testbed.

87

Chapter 6

Data-driven Management: the Case of
Deep Learning Applications

Contents
6.1 Introduction . 88

6.2 Data Analytics Systems: An Overview 89

6.3 Object Detection Use Case . 93

6.4 System Modeling: The Case of Deep Learning 95

6.5 Evaluation of Latency Optimization 97

6.6 Conclusion . 103

6.1 Introduction

Deep Learning techniques have gained massive momentum in the industry over recent
years, with a growing market estimated at 44.3 Billion USD by 2027 [196]. Deep Learn-
ing applications present a growing potential to extract knowledge from the analysis of
streaming data with applications in numerous domains, including computer vision [197],
speech recognition [198], precision medicine [199], and COVID-19 research [200].

The ecosystem supporting the emerging Deep Learning applications has become
highly heterogeneous and geographically distributed. In addition, many Deep Learning
applications require critical decision-making to be delivered in a timely manner with
an appropriate quality even when dealing with multiple data sources [40]. Meeting
the Quality of Service (QoS) requirements of Deep Learning applications on resources

88

Chapter 6: Data-driven Management: the Case of Deep Learning Applications

with heterogeneous capacities highlights the need for data-driven management solutions
and the implementation of trade-offs between the time and the quality of analysis.
This chapter aims to validate the impact of data and workflow management strategies,
presented in Chapter 5, on emerging intelligent data analytics systems. In particular,
this chapter focuses on a time-sensitive object detection use case in an architecture
relying on the use of constrained resources located at the Edge, the powerful Cloud,
and along the data path.

The chapter is organized as follows: Section 6.2 presents an overview of data an-
alytics systems with a focus on intelligent systems. The object detection use case is
described in Section 6.3. Section 6.4 details the system model in the context of Deep
Learning. Section 6.5 presents the evaluation of the system. Finally, Section 6.6 con-
cludes this chapter.

6.2 Data Analytics Systems: An Overview

Data analytics is a science that provides complete data management, including the col-
lection, cleansing, organization, storage, governance, and analysis. Given the growth
in generated data, data analytics is widely used in different disciplines, such as health-
care [201], telecommunication [202], and smart cities [203]. Data analysis is a sub-
component of data analytics. It involves processing and analyzing the incoming data
to derive from the information they hold meaningful insights that help create effective
decision-making [204]. In short, data processing is about changing the original form
of the data to a more usable and desired form using approaches such as data extrac-
tion and data filtering. Analyzing the processed data allows discovering the hidden
knowledge within the incoming data.

Due to the current need to analyze data in a timely manner, data analysis is tran-
sitioning from being offline (a.k.a. batch processing) to online (a.k.a. stream process-
ing) [205]. Analyzing a high volume of data in real-time requires the use of Machine
Learning [206, 207]. This section describes data analysis workflows as well as Machine
Learning with a focus on Deep Learning.

6.2.1 Data analysis workflow

The data analysis process consists of three main stages. Each stage provides a set of
functionalities helping in the discovery of knowledge.

89

Chapter 6: Data-driven Management: the Case of Deep Learning Applications

Pre-processing stage: it is an often neglected but essential step in the analysis
process. It is responsible for preparing incoming data for analysis. The preparation
tasks are specific to the incoming data, the goal of the data analytics application and
the analysis algorithms used. This stage might include data cleansing functionalities
and feature engineering [208]. The data cleansing transforms data to the appropriate
shape and quality for analysis. It includes data filtering, merging, and others. Fea-
ture engineering allows the characterization of incoming data and the selection of the
attributes to be used in the analysis. The extracted characteristics, such as data reso-
lution, format, and size, contribute later to a better selection of the analysis pipeline.

Analysis stage: it is the stage of extracting the hidden knowledge from prepared
data using appropriate algorithms. The selected algorithms depend on the analysis
purpose and the type of the data (stream data/ historical data). The analysis tasks can
classify objects, detect specific patterns, examine the dependency between attributes,
predict future behaviors, etc. The algorithms used can include, among others, support
vector machine (SVM) [209] and neural networks [210]. Section 6.2.2 presents briefly
Machine Learning, in particular, Deep Learning.

Post-processing stage: it is responsible for processing the pieces of knowledge
extracted from the analysis stage. Post-processing techniques are categorized into
four classes [211]: knowledge filtering, interpretation and explanation, evaluation, and
knowledge integration. À Knowledge filtering corresponds to reduce the extracted
knowledge and only keep those that are pertinent to the application’s goal; Á inter-
pretation and explanation refer to make the results understandable for end-users and
machines. If a machine receives the extracted knowledge, the post-processing stage
needs to formalize the results in a way to be integrated by other machines. However, if
the knowledge is to be received directly by end-users, techniques of documentation and
visualization are used; Â evaluation corresponds to evaluating the performance of the
analysis using particular criteria such as the error rate, the accuracy, and the latency; Ã

knowledge integration refers to combining the knowledge extracted from several analysis
algorithms to obtain new and more accurate knowledge.

6.2.2 Intelligent data analysis

The intelligent data analysis represents the analysis workflows that use Artificial Intel-
ligence (AI) to extract knowledge and predict future behavior. Artificial Intelligence
is any technique that aims to create intelligent computers able to address problems

90

Chapter 6: Data-driven Management: the Case of Deep Learning Applications

usually treated by humans [212]. Machine Learning is a subset of Artificial Intelli-
gence techniques that enables computers to learn automatically from previous experi-
ences and perform analysis tasks without or with little human intervention using learn-
ing algorithms [213]. Several Machine Learning algorithms exist, such as K-Nearest
Neighbors (K-NN), Support Vector Machines (SVM), Neural Networks (NN), and oth-
ers [214]. These algorithms require data to be structured. Structured data corresponds
to quantitative data that can be stored in tables of relational databases such as names,
addresses, and dates. Among these techniques, Neural Networks are widely used. They
represent a collection of connected units (neurons) organized in three types of layers:
input layers, hidden layers, and output layers. The neuron is a mathematical func-
tion that takes an input and produces an output. The number of hidden layers can
vary from one layer (shallow NNs) to multiple layers (deep NNs) based on the analysis
needs. The neural networks learn continuously from incoming data to provide better
analysis results with future data. The learning becomes deeper when the data are more
complex. Complex data correspond to a large volume of unstructured data without
a uniform format holding hidden patterns and interrelated features such as images,
videos, and audios. Discovering patterns and understanding the complex relationships
between variables is accomplished through multi-layered Neural Networks.

Deep Learning is a subset of Neural Networks that only uses multi-layered Neural
Networks to build more efficient decision rules [215]. Due to the large number of hidden
layers, Deep Learning can derive high-level functions from unstructured input informa-
tion such as text classification [216], object detection [217], and speech recognition [218].
Many Deep Learning algorithms exist; each has a different number, type, and shape
of NN’s layers. An overview of several Deep Learning architectures is presented by
Emmert-Streib et al. in [219], Lui et al. in [220] and van Veen in [210]. Among existing
Deep Learning models, this chapter focuses on the “You Only Look Once YOLO” model
as it is a part of the developed and implemented application use case. YOLO model is
briefly presented in Section 6.2.3.

Deep Learning models exhibit higher analysis quality than traditional Machine
Learning (a.k.a. shallow model) in most application scenarios such as music genre
classification [221], landslide susceptibility assessment [222] and Predicting Cognitive
Performance of Stroke Patients [223]. However, due to the high complexity of deep mod-
els, both their training and inference times are longer than those of shallow models.
Thus, deploying intelligent data analysis into real-time data analytics systems requires
the adoption of trade-off solutions between the latency and the accuracy of the analysis.

91

Chapter 6: Data-driven Management: the Case of Deep Learning Applications

6.2.3 YOLO: You Only Look Once

Object detection consists of locating and understanding the objects located in digital
images or videos. In the literature, two types of object detectors exist, one-stage detec-
tors and two-stages detectors. The latter consists of accomplishing the detection task
in two steps. First, it identifies the regions of interest within the image by scanning
every location in it. A region of interest corresponds to boxes that might contain ob-
jects. Second, it adjusts the coordinates of identified boxes (so it better fits the detected
objects) and classifies their detected objects. Due to the need to detect and classify ob-
jects in each box, two-stage detectors are considered slow and highly expensive in terms
of computation. One of the popular two-stages detectors is Faster R-CNN, short for
Faster Region-based Convolutional Neural Networks [224]. Furthermore, the one-stage
detector consists of locating objects in images directly without scanning every location.
Due to the one-step detection, one-stage detectors are considered time-efficient and can
be used for real-time applications. You Only Look Once YOLO model is currently the
best one-stage detector in Deep Learning as it outperforms existing detection models in
terms of quality-speed [225]. Figure 6.1 shows the Venn diagram depicting the different
areas of Artificial Intelligence and the YOLO model.

YOLO is a real-time object detection model based on Deep Learning. It detects
and recognizes various objects and provides their class probabilities using a deep Neural
Network called Convolutional Neural Network (CNN). Since its creation in 2015, it has
been used in several disciplines such as healthcare [226,227] and self-driving cars [228].
Four official versions of this model currently exist in the literature, and each version
brought impressive improvements to the object detection field. Several variants of these

Artificial Intelligence

Machine Learning

Neural Networks

Deep Learning

YOLO

Shallow machine
learning

Figure 6.1 – A Venn diagram representing areas of Artificial Intelligence and the “You
Only Look Once YOLO” model (inspired by Janiesch et al. [213])

92

Chapter 6: Data-driven Management: the Case of Deep Learning Applications

versions are developed to meet different users’ needs, such as YOLO-tiny-MSC [229],
Poly-YOLO [230], YOLO-Fine [231], and others. The application use case adopted in
this chapter uses the YOLO version 4 (YOLOv4) for object detection.

6.3 Object Detection Use Case

This section presents an intelligent data analysis application based on Deep Learning.
It defines the set of microservices in the application workflow and applies the proposed
categorization approach presented in Section 5.5.1 to classify each task.

6.3.1 Definition

The object detection use case is a time-sensitive application that identifies and locates
objects in images or videos (sequence of images). Figure 6.2 shows the workflow of
the object detection use case. As depicted in the figure, the workflow consists of 4
microservices:

1. Resize microservice is responsible for receiving incoming frames and modifying
their resolution to suit the input data size of the following task. This service
belongs to the pre-processing stage.

2. YOLOv4-416 microservice is responsible for detecting objects in frames with reso-
lution 416p using the YOLO model. It is a part of the analysis stage.

3. YOLOv4-512 microservice is another microservice responsible for detecting ob-
jects in incoming frames using the YOLO model. Differently from YOLOv4-416

microservice, this microservice analyses frames with resolution 512p. It is a part
of the analysis stage.

Pre-processing stage Analysis stage Post-processing stage

Resize

YOLOv4-416

YOLOv4-512

DrawFrames
resized
frames

objects,
labels &
frames

Figure 6.2 – Workflow of an object detection Deep Learning application showing the
stages, dataflow and tasks.

93

Chapter 6: Data-driven Management: the Case of Deep Learning Applications

4. Draw microservice is the last microservice in the workflow. It receives the frames
and the analysis result from the analysis stage. It is responsible for marking the
detected and identified objects on the frames and save them locally. This task
belongs to the post-processing stage.

6.3.2 Tasks categorization

In Section 5.5.1, three categories of tasks were identified based on the resource require-
ments: Non-Intensive (NI), Low-Intensive (LI), and High-Intensive (HI) tasks. Based
on our observations in deploying and running Deep Learning applications, tasks within
a Deep Learning workflow can be classified as follows. The categorization of each task
in the object detection use case is shown in Table 6.1.

• In pre-processing and post-processing stages : the tasks that do not manage their
own database are considered NI. Database microservices are considered HI due
to their storage demand. In the application use case, Resize microservice is
considered as NI and Draw microservice as HI.

• In the analysis stage: the shallow Machine Learning models are LI. However,
concerning Deep Learning models, their characteristics have an impact on their
performance, such as their parameters and the number of Neural Network layers.
In this work, we only consider the data resolution to categorize Deep Learning
models. For each type of Deep Learning models in the analysis stage (YOLO,
Faster RCNN, etc.), the lowest resolution task is considered LI. For example, in
the object detection use case, YOLOv4-416 is considered LI, and YOLOv4-512 is
considered HI.

Table 6.1 – The CPU, memory and storage requirements of the object detection use
case. Legend: ◦: non-intensive; +: low-intensive; ++: high-intensive.

Task

Resources
CPU Memory Storage

Resize ◦ ◦ ◦
YOLOv4-416 + + ◦
YOLOv4-512 ++ ++ ◦
Draw ◦ ◦ ++

94

Chapter 6: Data-driven Management: the Case of Deep Learning Applications

In practice, users need to specify in the description of the submitted Deep Learning
workflow the type of each task (pre-processing, shallow, etc.). The system will then
automatically assign each type to a category, as mentioned above.

6.4 System Modeling: The Case of Deep Learning

The general formulation of the proposed system and the latency/accuracy performance
models were presented in Section 5.3 page 73. This section presents extra details on
the system modeling in the context of Deep Learning applications.

Workflow Modeling. The application workflow (W) is composed of 3 stages: Pre-
processing stage (Pr), Analysis stage (A), and Post-processing stage (Po). Each
stage is composed of a set of microservices providing the required functionalities. Let
FPr = {mPr

i , 1 < i ≤ xPr}, FA = {mA
i , 1 < i ≤ xA} and FPo = {mPo

i , 1 < i ≤ xPo}
correspond to the set of microservices selected to provide the pre-processing, analysis,
and post-processing functionalities, respectively. The workflow assigned to a user u can
be presented as Wu = {mi} = {FPr ∪ FA ∪ FPo}. The analysis stage has Z Deep
Learning models. These models can be of different types (Faster RCNN, YOLO, etc.)
or the same type but support different input quality (YOLO416, YOLO512, etc.). Let
D = {d1, d2, ..., dZ} represent the set of models in the system and Q = {q1, q2, ..., qL}
the set of data qualities supported.

End-to-End Latency Model. In the context of Deep Learning, the end-to-end la-
tency of a job J from a data source u corresponds to the time needed to complete all
the stages of the data analytics workflow. Based on Chapter 5 page 76, the latency
model is formulated as:

T uJ = µ · Treduce + TPr + TA + TPo,

where Treduce refers to the time required to reduce the job’s quality via the manage-
ment microservice Reduce (see Figure 5.1 page 74). µ is a binary value that indicates
whether a data adaptation was needed for this data source or not. TPr, TA, and TPo

correspond to the time spent in completing the microservices FPr, FA and FPo of the
pre-processing, analysis, and post-processing stages, respectively. The latency of each
stage is formulated as the sum of its microservices’ response time. Thus, the response

95

Chapter 6: Data-driven Management: the Case of Deep Learning Applications

time of the processing stages are formulated as follows:

TPr =
xPr∑
i=1

RT (mPr
i) where mPr

i ∈ FPr

TA =
xA∑
i=1

RT (mA
i) where mA

i ∈ FA

TPo =
xPo∑
i=1

RT (mPo
i) where mPo

i ∈ FPo

The response time of a microservice is defined as RT (mi) = α·TD+Trans(mj,mi)+

TE. The transfer time of the job between the data producer and data consumer
Trans(mj,mi) depends on the data size S (in Mbits) to be sent over the network (de-
tails in formula 5.3 page 77). In the object detection use case, the data size is given by
S = γ · (w×h) with (w, h) correspond to the width and height of the frame, and γ is
the number of bits required to represent the information carried by one pixel. S might
correspond to the original data size or the reduced size if the data quality adaptation
was applied. Additionally, the execution time TE depends on the throughput capac-
ity of the chosen microservices (details page 77). In the analysis stage A of the Deep
Learning workflow, the throughput depends on the chosen Deep Learning models and
the quality of incoming data. As experimentally proved in [15] and [232], the models
provide a slower analysis speed with high data quality than with low-quality data. In
addition, [233] showed that with the same data, some Deep Learning models perform
faster than others.

Analysis Accuracy Model. The analysis accuracy of the object detection use case
corresponds to the detection accuracy of Deep Learning models. It is measured using
the metric F1_score, a weighted average of the Precision and Recall evaluation metrics.
It is presented as follows:

F1_score = 2× Precision×Recall
Precision+Recall

,

where Precision corresponds to the ratio of correctly predicted positive observations
among the total predicted positive observations and Recall is the ratio of correctly
predicted positive observations among all observations. These metrics are formulated

96

Chapter 6: Data-driven Management: the Case of Deep Learning Applications

as follows:

Precision =
TP

(TP + FP)
Recall =

TP

(TP + FN)

where True Positive (TP) refers to the total number of correctly detected objects; False
Positive (FP) refers to the total number of incorrectly detected objects; finally, False
Negative (FN) refers to the total number of undetected objects. The Intersection over
Union (IoU) metric [234] is used to identify the TP, FP, and FN. IoU is a number from
0 to 1 that specifies the amount of overlap between the predicted and ground truth (i.e.,
actual) objects. If IoU ≥ 0.5 and the label is accurate, the detection is TP. However,
if IoU ≥ 0.5 and the label is false, the detection is FP. In case the IoU < 0.5 and the
label is accurate, the detection is FP.

It has been experimentally observed in [15, 232, 233] that the quality of incoming
data and the chosen Deep Learning model impact the accuracy of the results. As
showed in [15, 232], the relationship between accuracy and data quality is formulated
as a concave exponential function of three coefficients E(q, d) = α1d− α2d× e−q/α3d . It
reflects that a higher data quality q produces a better analysis accuracy, and the analysis
accuracy gain decreases at a high quality. In this work, {α1, α2, α3} are constant
coefficients of a Deep Learning model d.

6.5 Evaluation of Latency Optimization

The evaluation aims to show the impact of the proposed system on the end-to-end
processing latency of the object detection use case (Figure 6.2) when dealing concur-
rently with incoming data. The use case is representative of the general Deep Learning
problem as it deals with tasks of different categories and requires leveraging limited
and heterogeneous resources to achieve real-time performance. This section presents
the evaluation methodology and the results of a set of experiments. In addition, we
discuss some insights and takeaways from the evaluation.

6.5.1 Methodology overview

6.5.1.1 Testbed

The evaluation of the system is performed on the large-scale platform Grid’5000 [173].
It represents a distributed testbed designed to support experimental-driven research in

97

Chapter 6: Data-driven Management: the Case of Deep Learning Applications

parallel and distributed systems. The experimental setup of the Edge-to-Cloud contin-
uum consists of a total of 14 nodes in the nova cluster. Each node is originally equipped
with two processors of 8 cores each, 64 GB memory, and 598 GB storage (HDD). Among
the reserved nodes, there are 11 Edge nodes, 2 Fog nodes, and 1 Cloud node. The orig-
inal node capacity is not entirely allocatable/available for Edge, Fog, and Cloud nodes.
The allocatable capacity of each type of node is described in Table 6.2. The network
connection between nodes of the same and different types has a delay and bandwidth
as given in Table 6.3. The emulation of the continuum on Grid’5000 is achieved via the
framework E2Clab [235]. It provides, among others, a network emulation feature that
allows the specification of Edge-to-Cloud communication constraints (delay, loss, and
bandwidth). In addition, it permits the virtualization of the cluster’s physical network
to separate Edge, Fog, and Cloud nodes into independent virtual networks/subsets.

The system has 19 data sources on the Edge. They generate 25 frames per sec-
ond in the default resolution of 512p. The frames are from the COCO2017 validation
dataset [236] of size 1GB. It is an object detection dataset with 91 defined classes.

Table 6.2 – Resource capacity of Edge, Fog and Cloud nodes.

Layer Cores RAM (GiB) Storage HDD
Edge 1 2 2GB
Fog 4 32 20GB

Cloud 8 64 500GB

Table 6.3 – Delay and bandwidth of network connections between nodes.

Layer Average Delays(ms) Uplink Bandwidth
Edge-Edge 1 1Gbps
Fog-Fog 1 1Gbps

Cloud-Cloud 1 10Gbps
Edge-Fog 4 30Mbps
Fog-Cloud 5 10Gbps

6.5.1.2 Platform

The platform is built on top of Kubernetes 1.15. We implemented and deployed the
object detection use case presented in Figure 6.3. The two object detector models in
the analysis stage YOLOv4-512 and YOLOv4-416 are pre-trained on the COCO dataset
and provide an accuracy AP50 equals to 64.9% and 62.7%, respectively.

98

Chapter 6: Data-driven Management: the Case of Deep Learning Applications

Based on the data-driven scheduling approach presented in this work, the mapping of
the application use case on the available resources is as follows: Resize microservice on
the Edge, YOLOv4-416microservice on the Fog, and YOLOv4-512 and Drawmicroservices
on the Cloud. The platform is illustrated in Figure 6.3. Since there are few tasks in the
deployed object detection use case, each task can reserve the entire computing capacity
of the node on which it is deployed. Regarding the two services placed on the Cloud,
they share the resources by half. The Resize microservice has 11 instances distributed
on all the Edge nodes, YOLOv4-416, YOLOv4-512, and Draw microservices have one
instance each.

The system only supports two data qualities, 512p and 416p. Therefore, the data
adaptation strategy consists of selecting whether the quality of data entering the system
remains at 512p or should be reduced to 416p. Thus, due to the data quality adapta-
tion strategy and the data-driven service discovery adopted, the deployed microservices
constitute two possible processing workflows for system’s users:

• Cloud-only configuration: it uses the Resize service on the Edge for pre-processing,
the YOLOv4-512 model, and Draw service located on the Cloud for the analysis
and post-processing stages, respectively. Data sources assigned to this pipeline
are those generating data of quality 512p.

• Fog-only configuration: it uses the Resize service on the Edge for pre-processing,
the YOLOv4-416 model on the Fog for the analysis, and the Draw service located
on the Cloud for the post-processing stage. Data sources assigned to this pipeline
are those with adapted data of quality 416p.

The system evaluation consists of four experiments in total, each running for 20
minutes. Experiments 1 and 2 use all system data sources generating data in the
default frame rate and resolution. Experiments 3 and 4 use only one data source. The
purpose of these experiments is to measure the average makespan and accuracy of the

Resize ...
11 instances

Yolov4-416 Yolov4-512 Draw

1 instance 1 instance 1 instance

Edge
 Cloudlet Cloud

30Mbps 10Gbps

Figure 6.3 – The distribution of the Deep Learning object detection use case across the
Edge-to-Cloud continuum.

99

Chapter 6: Data-driven Management: the Case of Deep Learning Applications

Deep Learning object detection use case during runtime with and without the latency-
accuracy trade-off solution. In experiments 1 and 3, no data adaptation strategy is used.
As a result, the quality of generated data stays equal to 512×512. Due to that, all data
sources are assigned to the pipeline with a Cloud-only analysis configuration. However,
in the second experiment, the data adaptation strategy was used once. Among all data
sources, the quality of the generated data by only 1 data source is reduced to 416×416.
So, unlike the rest, this data source is assigned to the pipeline with the Fog-only analysis
configuration. In experiment 4, the data adaptation strategy is applied to the single
data source used. Results of these experiments are presented in Section 6.5.2.

6.5.2 Evaluation results

Figure 6.4 shows the average system makespan variation with 19 data sources with and
without using the data adaptation. In experiment 1, without any data adaptation, the
system takes up to around 5.7 hours to analyze the data generated by 19 data sources
during a 20 minutes test. However, in experiment 2, when applying the data adaptation
strategy on one data source, the average system makespan was reduced to around 2.6
hours. The gain in the average system makespan between experiments 1 and 2 is shown
in Figure 6.5. Results show that using the data adaptation strategy when dealing with
high load helped accelerate the system analysis up to 54.4% (≈3.1 hours).

0 200 400 600 800 1000 1200
Time in seconds

0

2500

5000

7500

10000

12500

15000

17500

20000

Av
er

ag
e

sy
st

em
 m

ak
es

pa
n

(s
ec

)

Experiment 1 : without adaptation
Experiment 2: with adaptation

Figure 6.4 – With 19 data sources, the system makespan with data adaptation in
experiment 2 is lower than in experiment 1, where no trade-off solution is used.

100

Chapter 6: Data-driven Management: the Case of Deep Learning Applications

0 200 400 600 800 1000 1200
Time in seconds

0

2000

4000

6000

8000

10000

Av
er

ag
e

m
ak

es
pa

n
ga

in
 (s

ec
)

 b
et

we
en

 e
xp

er
im

en
t 1

 a
nd

 2

Figure 6.5 – Up to 54.4% gain in average system makespan between experiment 2 (with
data adaptation) and experiment 1 (without data adaptation).

Figure 6.6 shows the variation of average system F1-score with and without the
data adaptation strategy. Results show that system accuracy decreased from 71.19%
to 63.82% after reducing the quality of one data source from 512 × 512 to 416 × 416.
The system accuracy remains higher than the default accuracy threshold fixed to 50%.
The obtained system accuracy depends mainly on the models used. In this work, the
accuracy results are for the pre-trained YOLOv4 models.

Exp1: Without adaptation Exp2: With adaptation
40

45

50

55

60

65

70

75

Av
er

ag
e

sy
st

em
 a

cc
ur

ac
y

(%
)

71.19%

63.82%

accuracy threshold a_min

Figure 6.6 – With 19 data sources, average system accuracy decreased in experiment
2 (with data adaptation) compared to experiment 1 (without data adaptation). Despite
this, it remains higher than a fixed threshold equals to 50%.

101

Chapter 6: Data-driven Management: the Case of Deep Learning Applications

Figure 6.7 shows the average system makespan of a single data source with and
without using the data quality adaptation strategy. In experiment 3, without any data
adaptation, the system takes up to around 1 hour to analyze all the data generated
by the single data source. However, when applying the data adaptation strategy in
experiment 4, the average system makespan is around 1.3 hours.

0 200 400 600 800 1000 1200
Time in seconds

0

1000

2000

3000

4000

Av
er

ag
e

sy
st

em
 m

ak
es

pa
n

(s
ec

)

Experiment 3: without adaptation
Experiment 4: with adaptation

Figure 6.7 – With a single data source, the average system makespan with data adap-
tation in experiment 4 is higher than in experiment 3, where no trade-off solution is
used.

6.5.3 Discussion

During the system evaluation, we observed that when the Fog-Cloud network is con-
strained due to high load, the Edge-only configuration for analysis pipelines can be an
interesting approach, as it is shown in experiment 2. However, if no high load in the
system as in experiments 3 and 4, the Cloud of 10Gbps bandwidth performs better
in terms of makespan than the Edge-only pipeline configuration. This indicates that,
for Deep Learning applications, applying the data adaptation strategy to maximize
the utility function is only possible when the Fog-Cloud network performance is con-
strained. Otherwise, the Cloud-only pipeline configuration is the better choice in terms
of average system makespan.

102

Chapter 6: Data-driven Management: the Case of Deep Learning Applications

6.6 Conclusion

Deep Learning applications are among the emerging applications facing challenges in
meeting their real-time requirements when dealing with multiple data sources and lim-
ited resources of heterogeneous capabilities. This chapter illustrated the viability of
the proposed data quality and workflow management strategies presented in Chapter 5
by implementing and deploying an object detection use case on Grid’5000. Evaluation
results showed a gain in average system makespan reaching up to 54.4% compared to
a Cloud-only pipeline configuration in a multi-user scenario with an analysis accuracy
remaining higher than a fixed threshold.

103

Chapter 7

Conclusion and Perspectives

Contents
7.1 Summary . 104

7.2 Contributions . 105

7.3 Perspectives . 107

7.1 Summary

The development of devices and network technologies is driving the evolution of cur-
rent applications towards processing generated data to extract information capable of
strengthening businesses, academia, and the quality of human life. Among emerging
applications, Deep Learning applications present expectations of near-real-time pro-
cessing to maintain the effectiveness of their results. The need to guarantee the la-
tency requirement has changed the application and infrastructure designs traditionally
adopted to deliver services close to data sources while ensuring their computing needs.
Running Deep Learning applications on current infrastructures has several challenges.
This thesis focused on three challenges related to the applications, data producers, and
infrastructures:

1. Decoupled and heterogeneous services. Emerging microservice-based ap-
plications are designed as a set of independent services managed by different
entities and not designed to work together automatically. In addition, several

104

Chapter 7: Conclusion and Perspectives

implementations exist for the same functionality where each provides a particular
Quality of Service, accepts specific data input, and often does not have explicit
identifiers. Therefore, the ability to discover available services by their identifiers
is not guaranteed, and the selection of one implementation over the other can
impact the real-time performance of applications.

2. Fluctuating incoming load. The number of data producers is dynamic where
new data sources can join the system and others leave. These data sources can
have different data characteristics (such as resolution and type). Dealing with
multiple users generating data concurrently increases the latency of deployed ap-
plications. Thus, with the fluctuating load during runtime, there is no guarantee
of the real-time requirement.

3. Heterogeneous and distributed infrastructures. Existing infrastructure de-
signs consist of geographically distributed resources with different computing and
bandwidth capacities. Additionally, Deep Learning applications consist of pro-
cessing tasks with different computing and network requirements. Therefore,
deploying the processing tasks of Deep Learning applications on heterogeneous
resources impact their processing latency.

This thesis addressed the challenges mentioned above to create a system for Deep Learn-
ing applications in distributed infrastructures through several contributions. Section 7.2
describes the contributions made in this thesis. Then, in Section 7.3, we discuss the
perspectives that our research opens.

7.2 Contributions

7.2.1 Designing scalable data-driven service discovery system

Traditional service discovery approaches look up the location of specific services using
their identifiers. Adopting traditional discovery approaches in current microservice-
based applications is inefficient as it prevents discovering the microservices without
identifiers and selecting the appropriate implementations that fit users’ needs. In addi-
tion, existing approaches to reduce the impact of fluctuating load on the applications
consist of scaling services based on metrics related to infrastructure or application
without considering traffic heterogeneity. In Chapter 3 and Chapter 4, we studied the

105

Chapter 7: Conclusion and Perspectives

challenges of discovering microservices based on incoming data rather than services
identifiers while guaranteeing a Quality of Service, even with fluctuating load, using
data-related metrics.

Data-driven service discovery framework

Chapter 3 presented a data-driven service discovery approach that allows data produc-
ers (external users or microservices) to discover the functionalities provided without the
need for redevelopment. The proposed approach is built on a data-centric microservices
description and a Peer-to-Peer data-driven architecture to ensure the system’s resiliency
and cover wide geographical areas. We described in detail the steps of the discovery
using an illustrative example.

Data-driven microservice adaptation scheme

Chapter 4 presented an adaptation scheme that scales deployed microservices according
to the load. Unlike existing scaling approaches, this approach manages microservices by
data type. The increase of load with specific data characteristics triggers a scale out of
microservices targeted by this load. However, the microservices designed to work with
other data types are not affected. Similarly, a drop in the load triggers a decrease in
the capacity of targeted microservices to prevent the misuse of the system’s resources.
Since the system’s computing capacity is limited, it might resort to load shedding in
order to prevent performance degradation.

Integration into the Istio Service Mesh project

Leveraging a Service Mesh abstracts the complexity of microservices interactions. How-
ever, existing Service Mesh projects do not support the data-driven discovery approach.
In Chapter 4, we integrated the proposed discovery framework into the Istio Service
Mesh project [91]. We conducted a set of experiments to evaluate the proposed frame-
work on Grid’5000 [173]. Results showed that the platform could adapt and maintain
an acceptable system latency and percentage of accepted requests during runtime. In
addition, the system is effectively using the system resources by adapting the reserved
resources according to the load.

7.2.2 Leveraging a latency-accuracy trade-off approach

Only adopting scaling and load shedding algorithms to manage the latency of Deep
Learning applications is insufficient when dealing with limited resources of heteroge-

106

Chapter 7: Conclusion and Perspectives

neous capabilities and a high volume of incoming data. Hence, there is a need to adopt
data and workflow management approaches. Existing work tends to target these two
aspects independently, rarely manages the entire Deep Learning workflow, and lacks
general formulations of proposed approaches. Chapter 5 targeted these limitations by
presenting a system design that enables trade-offs between the time and quality of data
processing. The system was then validated in Chapter 6 in the context of Deep Learn-
ing using an object-detection use case.

Latency-accuracy trade-off approach based on tasks categorization

Chapter 5 presented a general formulation of a latency-accuracy trade-off method that
combines a data quality adaptation and workflow scheduling approaches. The quality
adaptation approach selects the data quality configuration for existing data sources.
The selected qualities provide the fastest workflow processing latency without an ac-
curacy violation. The workflow scheduling approach relies on the use of constrained
resources located at the Edge, the Fog, and the powerful Cloud nodes. The scheduling
priorities are specified using a task categorization strategy based on the functionality
provided and the accepted data quality.

Experimental evaluation in the context of Deep Learning

We conducted an experimental evaluation on the testbed Grid’5000 to validate the
proposed trade-off method on a Deep Learning application use case. The evaluation
methodology and results are presented in Chapter 6. The evaluation results showed a
gain in average system makespan reaching up to 54.4% when using the proposed trade-
off method compared to a Cloud-only workflow configuration in a multi-user scenario.
During the evaluation, the application accuracy remains higher than a fixed threshold.

7.3 Perspectives

Our work opens several perspectives. In this section, we discuss the most promising
ones, which, if addressed, will extend the capability of data-driven management in cur-
rent systems.

Dynamic Latency-accuracy trade-off approach

Chapter 5 presented a latency-accuracy trade-off approach based on a combination of a
data quality adaptation and a workflow scheduling strategies. The proposed approach

107

Chapter 7: Conclusion and Perspectives

is static, as the number of reserved resources (Edge, Fog, and Cloud nodes) and the
complexity of incoming data are fixed during runtime. In addition, the adaptation
strategy presented in this work and in the majority of existing online configuration
approaches [100, 101] are triggered periodically. During runtime, in each time period,
the system checks whether a reconfiguration is needed. However, in real-life deploy-
ments, the infrastructures are dynamic where new nodes can join the network, and
others leave. Additionally, the content of incoming data is continuously changing and
the more complex it is, the more resources are needed. For example, in the object
detection use case defined in Chapter 6, images can have different sizes and numbers
of objects. Therefore, analyzing images with one detected object of large size is less
resource-intensive than processing an image with 100+ small objects. Thus, in practice,
even though periodic approaches help optimize the system performance, they cannot
prevent the performance degradation that might happen within the specified period.
Also, using short periods is not efficient due to the high computing cost of the profiling
process [180]. Therefore, designing approaches to cope with the dynamicity of current
environment is required.

Resource assignment tool for data-driven workflows

Chapter 5 and Chapter 6 presented and demonstrated a task categorization strategy.
In this strategy, the amount of computing resources assigned to each task category
are predefined based on our observations during the evaluation of the Deep Learning
application. An interesting research direction is the design of a resource assignment
tool for Deep Learning workflows. It considers incoming data, type of tasks, and re-
source heterogeneity to generate a resource assignment plan. Furthermore, this tool can
leverage artificial intelligence techniques to select an optimal resource assignment plan
providing the best analysis performance. This tool can be integrated into our system to
automatically distribute workflows on heterogeneous resources with minimum resource
waste.

Control plane for Edge-to-Cloud Continuum

The Edge-to-Cloud continuum is a promising design for emerging applications. While
significant research and development exist at specific places along this continuum, few
existing approaches include the entire computing continuum as a collective whole [18].
Thus, the Edge-to-Cloud continuum did not establish concrete maturity yet due to
the lack of management tools. The extreme heterogeneity in the resources and ap-

108

Chapter 7: Conclusion and Perspectives

plications requires the design of a control plane able to balance the requirements of
deployed applications with what is possible in practice using trade-off strategies. This
control plane must be external to the applications’ deployments. This thesis focuses
on the latency-accuracy trade-off to manage the latency constraint. However, for most
emerging applications, other trade-off solutions are also required to deal with other
performance constraints such as accuracy-energy consumption trade-off, energy-latency
trade-off, and/or cost-latency trade-off, among others.

Leverage hybrid nanoservice/microservice applications

In data-driven management, extracting early insights from data before being transferred
across the continuum is a key for performance optimizations in emerging applications.
However, deploying processing services near data producers is hampered by the con-
strained resource capacity at the Edge of the network and the stack of resources (CPU,
memory, storage, and others) required by microservices. The concept of nanoservice is
a recently emerging paradigm to build applications in Cloud-based systems with con-
strained resource capacity. While the microservice is defined as a single “functionality”
within the application, the nanoservice is emerging as a lightweight microservice dedi-
cated to performing a “single-purpose granular operation” [237]. In the literature, the
boundary of an operation is either logical [238] or physical [239] and requires fewer
resources stack than normal microservices. Hence, designing approaches that leverage
nanoservices- and microservices-based workflows can increase the processing capabilities
at the edge of the network.

109

Bibliography

[1] Kevin Fauvel, Daniel Balouek-Thomert, Diego Melgar, Pedro Silva, Anthony Si-
monet, Gabriel Antoniu, Alexandru Costan, Véronique Masson, Manish Parashar,
Ivan Rodero, et al. A distributed multi-sensor machine learning approach to
earthquake early warning. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 34, pages 403–411, 2020.

[2] Marzieh Fathi, Mostafa Haghi Kashani, Seyed Mahdi Jameii, and Ebrahim
Mahdipour. Big data analytics in weather forecasting: a systematic review.
Archives of Computational Methods in Engineering, pages 1–29, 2021.

[3] Andre Luckow, Kartik Rattan, and Shantenu Jha. Exploring task placement
for edge-to-cloud applications using emulation. In 2021 IEEE 5th International
Conference on Fog and Edge Computing (ICFEC), pages 79–83. IEEE, 2021.

[4] Andrés Villa-Henriksen, Gareth T.C. Edwards, Liisa A. Pesonen, Ole Green, and
Claus Aage Grøn Sørensen. Internet of things in arable farming: Implementation,
applications, challenges and potential. Biosystems Engineering, 191:60–84, 2020.

[5] DOMO. Data never sleeps 9.0. https://www.domo.com/learn/infographic/

data-never-sleeps-9, 2021. Last checked October 2021.

[6] Gonçalo Carvalho, Bruno Cabral, Vasco Pereira, and Jorge Bernardino. Edge
computing: current trends, research challenges and future directions. Computing,
103(5):993–1023, 2021.

[7] Pooyan Habibi, Mohammad Farhoudi, Sepehr Kazemian, Siavash Khorsandi, and
Alberto Leon-Garcia. Fog computing: a comprehensive architectural survey.
IEEE Access, 8:69105–69133, 2020.

110

https://www.domo.com/learn/infographic/data-never-sleeps-9
https://www.domo.com/learn/infographic/data-never-sleeps-9

BIBLIOGRAPHY

[8] Carla Mouradian, Diala Naboulsi, Sami Yangui, Roch H. Glitho, Monique J.
Morrow, and Paul A. Polakos. A comprehensive survey on fog computing: State-
of-the-art and research challenges. IEEE Communications Surveys Tutorials,
20(1):416–464, 2018.

[9] accenture.com. "cloud native: Application development at the speed of busi-
ness". https://www.accenture.com/_acnmedia/PDF-90/Accenture-Cloud-

Native-POV-Final.pdf. Last checked September 2021.

[10] Martin Fowler James Lewis. Microservices, a definition of this new architectural
term. https://www.martinfowler.com/articles/microservices.html. Last
checked August 2021.

[11] The International Data Corporation (IDC). "idc futurescape: Worldwide it
industry 2019 predictions". https://www.idc.com/research/viewtoc.jsp?

containerId=US44403818. Last checked September 2021.

[12] Eduard Gibert Renart, Daniel Balouek-Thomert, and Manish Parashar. An edge-
based framework for enabling data-driven pipelines for iot systems. In 2019
IEEE International Parallel and Distributed Processing Symposium Workshops
(IPDPSW), pages 885–894, 2019.

[13] Anurag Choudhry and Anshu Premchand. Microservices and devops for optimal
benefits from iot in manufacturing. In Proceedings of International Conference on
Recent Trends in Machine Learning, IoT, Smart Cities and Applications, pages
375–384. Springer, 2021.

[14] Muhammad Ali, Ashiq Anjum, M Usman Yaseen, A Reza Zamani, Daniel
Balouek-Thomert, Omer Rana, and Manish Parashar. Edge enhanced deep learn-
ing system for large-scale video stream analytics. In 2018 IEEE 2nd International
Conference on Fog and Edge Computing (ICFEC), pages 1–10. IEEE, 2018.

[15] C. Wang, S. Zhang, Y. Chen, Z. Qian, J. Wu, and M. Xiao. Joint configuration
adaptation and bandwidth allocation for edge-based real-time video analytics. In
IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pages
257–266, 2020.

111

https://www.accenture.com/_acnmedia/PDF-90/Accenture-Cloud-Native-POV-Final.pdf
https://www.accenture.com/_acnmedia/PDF-90/Accenture-Cloud-Native-POV-Final.pdf
https://www.martinfowler.com/articles/microservices.html
https://www.idc.com/research/viewtoc.jsp?containerId=US44403818
https://www.idc.com/research/viewtoc.jsp?containerId=US44403818

BIBLIOGRAPHY

[16] Eduard Gibert Renart, Javier Diaz-Montes, and Manish Parashar. Data-driven
stream processing at the edge. In 2017 IEEE 1st International Conference on Fog
and Edge Computing (ICFEC), pages 31–40, 2017.

[17] Yuuichi Teranishi, Takashi Kimata, Hiroaki Yamanaka, Eiji Kawai, and Hiroaki
Harai. Dynamic data flow processing in edge computing environments. In 2017
IEEE 41st Annual Computer Software and Applications Conference (COMP-
SAC), volume 1, pages 935–944. IEEE, 2017.

[18] Pete Beckman, Jack Dongarra, Nicola Ferrier, Geoffrey Fox, Terry Moore, Dan
Reed, and Micah Beck. Harnessing the computing continuum for programming
our world. Fog Computing: Theory and Practice, pages 215–230, 2020.

[19] Ahmed Oussous, Fatima-Zahra Benjelloun, Ayoub Ait Lahcen, and Samir Belfkih.
Big data technologies: A survey. Journal of King Saud University - Computer
and Information Sciences, 30(4):431–448, 2018.

[20] Ravi Pratap Singh, Mohd Javaid, Ravinder Kataria, Mohit Tyagi, Abid Haleem,
and Rajiv Suman. Significant applications of virtual reality for covid-19 pandemic.
Diabetes & Metabolic Syndrome: Clinical Research & Reviews, 14(4):661–664,
2020.

[21] Fabio Arena, Giovanni Pau, and Mario Collotta. A survey on driverless vehicles:
From their diffusion to security. J. Internet Serv. Inf. Secur, 8:1–19, 2018.

[22] Sidi Ahmed Mahmoudi, Mohammed Amin Belarbi, Saïd Mahmoudi, Ghalem Be-
lalem, and Pierre Manneback. Multimedia processing using deep learning tech-
nologies, high-performance computing cloud resources, and big data volumes.
Concurrency and Computation: Practice and Experience, 32(17):e5699, 2020.

[23] Ch Cheevers, M Bugajski, A Luthra, S McCarthy, P Moroney, and K Wirick.
Virtual and augmented reality–how do they affect the current service delivery
and home and network architectures? arris enterprises llc, 2016.

[24] Yuezhi Zhou, Di Zhang, and Naixue Xiong. Post-cloud computing paradigms: a
survey and comparison. Tsinghua Science and Technology, 22(6):714–732, 2017.

[25] Alef, the 5g edge api company. https://alefedge.com/about-alefedge/. Last
checked August 2021.

112

https://alefedge.com/about-alefedge/

BIBLIOGRAPHY

[26] Raj Jain and Subharthi Paul. Network virtualization and software defined
networking for cloud computing: a survey. IEEE Communications Magazine,
51(11):24–31, 2013.

[27] Jalal H Kiswani, Sergiu M Dascalu, and Frederick C Harris Jr. Cloud computing
and its applications: A comprehensive survey. International Journal of Computer
Applications IJCA, 28, 2021.

[28] Mamta Agiwal, Abhishek Roy, and Navrati Saxena. Next generation 5g wireless
networks: A comprehensive survey. IEEE Communications Surveys & Tutorials,
18(3):1617–1655, 2016.

[29] Iman Azimi, Arman Anzanpour, Amir M. Rahmani, Pasi Liljeberg, and Tapio
Salakoski. Medical warning system based on internet of things using fog com-
puting. In 2016 International Workshop on Big Data and Information Security
(IWBIS), pages 19–24, 2016.

[30] Shreshth Tuli, Nipam Basumatary, Sukhpal Singh Gill, Mohsen Kahani, Ra-
jesh Chand Arya, Gurpreet Singh Wander, and Rajkumar Buyya. Healthfog:
An ensemble deep learning based smart healthcare system for automatic diagno-
sis of heart diseases in integrated iot and fog computing environments. Future
Generation Computer Systems, 104:187–200, Mar 2020.

[31] Andrea Pazienza, Roberto Anglani, Giulio Mallardi, Corrado Fasciano, Pietro
Noviello, Corrado Tatulli, and Felice Vitulano. Adaptive critical care intervention
in the internet of medical things. In 2020 IEEE Conference on Evolving and
Adaptive Intelligent Systems (EAIS), pages 1–8. IEEE, 2020.

[32] A. Beloglazov, R. Buyya, Young Choon Lee, and Albert Y. Zomaya. A taxonomy
and survey of energy-efficient data centers and cloud computing systems. ArXiv,
abs/1007.0066, 2011.

[33] Hamed Tabrizchi and Marjan Kuchaki Rafsanjani. A survey on security challenges
in cloud computing: issues, threats, and solutions. The journal of supercomputing,
76(12):9493–9532, 2020.

[34] Hedda R Schmidtke. Location-aware systems or location-based services: a survey
with applications to covid-19 contact tracking. Journal of Reliable Intelligent
Environments, 6(4):191–214, 2020.

113

BIBLIOGRAPHY

[35] Yasmine Harbi, Zibouda Aliouat, Allaoua Refoufi, and Saad Harous. Recent
security trends in internet of things: A comprehensive survey. IEEE Access,
2021.

[36] Daniel Balouek-Thomert, Eduard Gibert Renart, Ali Reza Zamani, Anthony Si-
monet, and Manish Parashar. Towards a computing continuum: Enabling edge-
to-cloud integration for data-driven workflows. The International Journal of High
Performance Computing Applications, 33(6):1159–1174, 2019.

[37] Jaber Almutairi and Mohammad Aldossary. A novel approach for iot tasks of-
floading in edge-cloud environments. Journal of Cloud Computing, 10(1):1–19,
2021.

[38] Seyed Hossein Mortazavi, Mohammad Salehe, Carolina Simoes Gomes, Caleb
Phillips, and Eyal de Lara. Cloudpath: A multi-tier cloud computing framework.
In Proceedings of the Second ACM/IEEE Symposium on Edge Computing, SEC
’17, New York, NY, USA, 2017. Association for Computing Machinery.

[39] Zhengyuan Pang, Lifeng Sun, Zhi Wang, E. Tian, and Shiqiang Yang. A survey
of cloudlet based mobile computing. 2015 International Conference on Cloud
Computing and Big Data (CCBD), pages 268–275, 2015.

[40] Daniel Balouek-Thomert, Ivan Rodero, and Manish Parashar. Harnessing the
computing continuum for urgent science. SIGMETRICS Perform. Eval. Rev.,
48(2):41–46, November 2020.

[41] Dragi Kimovski, Dijana C Bogatinoska, Narges Mehran, Aleksandar Karadimce,
Natasa Paunkoska, Radu Prodan, and Ninoslav Marina. Cloud—edge offload-
ing model for vehicular traffic analysis. In 2020 IEEE Intl Conf on Parallel &
Distributed Processing with Applications, Big Data & Cloud Computing, Sustain-
able Computing & Communications, Social Computing & Networking (ISPA/B-
DCloud/SocialCom/SustainCom), pages 746–753. IEEE, 2020.

[42] Muhammad Ijaz, Gang Li, Huiquan Wang, Ahmed M El-Sherbeeny, Yussif
Moro Awelisah, Ling Lin, Anis Koubaa, and Alam Noor. Intelligent fog-enabled
smart healthcare system for wearable physiological parameter detection. Elec-
tronics, 9(12):2015, 2020.

114

BIBLIOGRAPHY

[43] Scott Carey. What is cloud-native? the modern way to develop
software. https://www.infoworld.com/article/3281046/what-is-cloud-

native-the-modern-way-to-develop-software.html. Last checked August
2021.

[44] Frank Moley. Microservices foundations. https://www.linkedin.com/

learning/microservices-foundations/bounded-context. Last checked Au-
gust 2021.

[45] Mark Richards. Software architecture patterns: Layered architecture.
https://www.oreilly.com/library/view/software-architecture-

patterns/9781491971437/ch01.html. Last checked August 2021.

[46] Gunjan Samtani and Dimple Sadhwani. Web services and application frameworks
(. net and j2ee). In Web Services Business Strategies and Architectures, pages
273–289. Springer, 2002.

[47] Jonas Fritzsch, Justus Bogner, Alfred Zimmermann, and Stefan Wagner. From
monolith to microservices: A classification of refactoring approaches. In Interna-
tional Workshop on Software Engineering Aspects of Continuous Development and
New Paradigms of Software Production and Deployment, pages 128–141. Springer,
2018.

[48] Olaf Zimmermann. An architectural decision modeling framework for service-
oriented architecture design. 2009.

[49] Naghmeh Niknejad, Waidah Ismail, Imran Ghani, Behzad Nazari, Mahadi Bahari,
et al. Understanding service-oriented architecture (soa): A systematic literature
review and directions for further investigation. Information Systems, 91:101491,
2020.

[50] Mike P Papazoglou and Willem-Jan Van Den Heuvel. Service oriented archi-
tectures: approaches, technologies and research issues. The VLDB journal,
16(3):389–415, 2007.

[51] Uwe Zdun, Carsten Hentrich, and Wil MP Van Der Aalst. A survey of pat-
terns for service-oriented architectures. International journal of Internet protocol
technology, 1(3):132–143, 2006.

115

 https://www.infoworld.com/article/3281046/what-is-cloud-native-the-modern-way-to-develop-software.html
 https://www.infoworld.com/article/3281046/what-is-cloud-native-the-modern-way-to-develop-software.html
https://www.linkedin.com/learning/microservices-foundations/bounded-context
https://www.linkedin.com/learning/microservices-foundations/bounded-context
 https://www.oreilly.com/library/view/software-architecture-patterns/9781491971437/ch01.html
 https://www.oreilly.com/library/view/software-architecture-patterns/9781491971437/ch01.html

BIBLIOGRAPHY

[52] Rama Akkiraju, Joel Farrell, John Miller, Meenakshi Nagarajan, Marc-Thomas
Schmidt, Amit Sheth, and Kunal Verma. "web service semantics—wsdl-s".
https://www.w3.org/Submission/WSDL-S/. Accessed July, 2021.

[53] Marc Hadley. "web application description language". https://www.w3.org/

Submission/wadl/. Last checked July 2021.

[54] Jacek Kopeckỳ, Tomas Vitvar, Dieter Fensel, and Karthik Gomadam. hrests &
microwsmo. CMS WG Working Draft, 2009.

[55] Omer Aziz, Muhammad Shoaib Farooq, Adnan Abid, Rubab Saher, and Naeem
Aslam. Research trends in enterprise service bus (esb) applications: A systematic
mapping study. IEEE Access, 8:31180–31197, 2020.

[56] Fabrizio Montesi and Janine Weber. Circuit breakers, discovery, and api gateways
in microservices, 2016.

[57] Kseniia Kyslova. Service-oriented architecture: When to use and how to
benefit from it? https://proxify.io/de/articles/benefits-of-service-

oriented-architecture. Last checked August 2021.

[58] Sam Newman. Building microservices: Designing fine-grained systems. Oreilly &
Associates Inc, 2015.

[59] Nicola Dragoni, Saverio Giallorenzo, Alberto Lluch Lafuente, Manuel Mazzara,
Fabrizio Montesi, Ruslan Mustafin, and Larisa Safina. Microservices: yesterday,
today, and tomorrow. Present and ulterior software engineering, pages 195–216,
2017.

[60] Olaf Zimmermann. Microservices tenets. Computer Science-Research and Devel-
opment, 32(3):301–310, 2017.

[61] Adrian Cockcroft. Migrating to microservices. https://www.infoq.com/

presentations/migration-cloud-native/. Last checked August 2021.

[62] Davide Taibi and Kari Systä. From monolithic systems to microservices: A de-
composition framework based on process mining. 2019.

[63] Anup Kalia, Jin Xiao, Rahul Krishna, Saurabh Sinha, Maja Vukovic, and De-
basish Banerjee. Mono2micro: A practical and effective tool for decomposing

116

https://www.w3.org/Submission/WSDL-S/
https://www.w3.org/Submission/wadl/
https://www.w3.org/Submission/wadl/
https://proxify.io/de/articles/benefits-of-service-oriented-architecture
https://proxify.io/de/articles/benefits-of-service-oriented-architecture
https://www.infoq.com/presentations/migration-cloud-native/
https://www.infoq.com/presentations/migration-cloud-native/

BIBLIOGRAPHY

monolithic java applications to microservices. arXiv preprint arXiv:2107.09698,
2021.

[64] Davide Taibi, Valentina Lenarduzzi, and Claus Pahl. Processes, motivations, and
issues for migrating to microservices architectures: An empirical investigation.
IEEE Cloud Computing, 4(5):22–32, 2017.

[65] Jacopo Soldani, Damian Andrew Tamburri, andWillem-Jan Van Den Heuvel. The
pains and gains of microservices: A systematic grey literature review. Journal of
Systems and Software, 146:215–232, 2018.

[66] Antonio Messina, Riccardo Rizzo, Pietro Storniolo, Mario Tripiciano, and Alfonso
Urso. The database-is-the-service pattern for microservice architectures. In Inter-
national Conference on Information Technology in Bio-and Medical Informatics,
pages 223–233. Springer, 2016.

[67] Cristian Gadea, Mircea Trifan, Dan Ionescu, and Bogdan Ionescu. A reference
architecture for real-time microservice api consumption. In Proceedings of the
3rd Workshop on CrossCloud Infrastructures & Platforms, CrossCloud ’16, New
York, NY, USA, 2016. Association for Computing Machinery.

[68] Antonio Messina, Riccardo Rizzo, Pietro Storniolo, and Alfonso Urso. A simpli-
fied database pattern for the microservice architecture. In The Eighth Interna-
tional Conference on Advances in Databases, Knowledge, and Data Applications
(DBKDA), pages 35–40, 2016.

[69] Davide Taibi, Valentina Lenarduzzi, and Claus Pahl. Architectural patterns for
microservices: A systematic mapping study. In CLOSER, pages 221–232, 2018.

[70] Rodrigo Laigner, Yongluan Zhou, Marcos Antonio Vaz Salles, Yijian Liu, and
Marcos Kalinowski. Data management in microservices: State of the practice,
challenges, and research directions, 2021.

[71] Saulo S. de Toledo, Antonio Martini, and Dag I.K. Sjøberg. Identifying archi-
tectural technical debt, principal, and interest in microservices: A multiple-case
study. Journal of Systems and Software, 177:110968, 2021.

[72] Claus Pahl, Antonio Brogi, Jacopo Soldani, and Pooyan Jamshidi. Cloud con-
tainer technologies: a state-of-the-art review. IEEE Transactions on Cloud Com-
puting, 7(3):677–692, 2017.

117

BIBLIOGRAPHY

[73] Tasneem Salah, M. Jamal Zemerly, Chan Yeob Yeun, Mahmoud Al-Qutayri, and
Yousof Al-Hammadi. Performance comparison between container-based and vm-
based services. In 2017 20th Conference on Innovations in Clouds, Internet and
Networks (ICIN), pages 185–190, 2017.

[74] Nane Kratzke. About microservices, containers and their underestimated impact
on network performance. arXiv preprint arXiv:1710.04049, 2017.

[75] Marcelo Amaral, Jorda Polo, David Carrera, Iqbal Mohomed, Merve Unuvar, and
Malgorzata Steinder. Performance evaluation of microservices architectures using
containers. In 2015 IEEE 14th International Symposium on Network Computing
and Applications, pages 27–34. IEEE, 2015.

[76] Lianping Chen. Microservices: architecting for continuous delivery and devops.
In 2018 IEEE International conference on software architecture (ICSA), pages
39–397. IEEE, 2018.

[77] Tony Mauro. Adopting microservices at netflix: Lessons for architec-
tural design. https://www.nginx.com/blog/Microservices-at-netflix-

architectural-best-practices/. Last checked August 2021.

[78] staci Kramer. The biggest thing amazon got right: The plat-
form. https://gigaom.com/2011/10/12/419-the-biggest-thing-amazon-

got-right-the-platform/. Last checked August 2021.

[79] Karan Parikh Steven Ihde. From a monolith to microservices + rest: the evolu-
tion of linkedin’s service architecture. https://www.infoq.com/presentations/
linkedin-Microservices-urn/. Last checked August 2021.

[80] Maha Driss, Daniah Hasan, Wadii Boulila, and Jawad Ahmad. Microservices in
iot security: Current solutions, research challenges, and future directions. arXiv
preprint arXiv:2105.07722, 2021.

[81] Juan-Manuel Fernandez, Ivan Vidal, and Francisco Valera. Enabling the orches-
tration of iot slices through edge and cloud microservice platforms. Sensors,
19(13), 2019.

[82] Kleanthis Thramboulidis, Danai C. Vachtsevanou, and Alexandros Solanos.
Cyber-physical microservices: An iot-based framework for manufacturing sys-
tems. CoRR, abs/1801.10340, 2018.

118

https://www.nginx.com/blog/Microservices-at-netflix-architectural-best-practices/
https://www.nginx.com/blog/Microservices-at-netflix-architectural-best-practices/
https://gigaom.com/2011/10/12/419-the-biggest-thing-amazon-got-right-the-platform/
https://gigaom.com/2011/10/12/419-the-biggest-thing-amazon-got-right-the-platform/
https://www.infoq.com/presentations/linkedin-Microservices-urn/
https://www.infoq.com/presentations/linkedin-Microservices-urn/

BIBLIOGRAPHY

[83] Björn Butzin, Frank Golatowski, and Dirk Timmermann. Microservices approach
for the internet of things. In 2016 IEEE 21st International Conference on Emerg-
ing Technologies and Factory Automation (ETFA), pages 1–6. IEEE, 2016.

[84] Sergio Trilles, Alberto González-Pérez, and Joaquín Huerta. An iot platform
based on microservices and serverless paradigms for smart farming purposes. Sen-
sors, 20(8):2418, 2020.

[85] Docker Inc. "docker: Empowering app development for developers". https:

//www.docker.com/. Last checked July 2021.

[86] Cloud Native Computing Foundation. "kubernetes: Production-grade container
orchestration". https://kubernetes.io/. Last checked August 2021.

[87] Twitter. "finagle library". https://twitter.github.io/finagle/. Last checked
July 2021.

[88] Netflix. "hystrix library". https://github.com/Netflix/Hystrix. Last checked
July 2021.

[89] NASSCOM Insights. "service mesh - manage service-to-service com-
munication within your microservice application efficiently". https:

//community.nasscom.in/communities/it-services/service-mesh-

manage-service-service-communication-within-your-microservice.
Accessed July, 2021.

[90] Linkerd service mesh. https://linkerd.io/. Last checked July 2021.

[91] Istio service mesh. https://istio.io/. Last checked July 2021.

[92] "consul: Service discovery". https://www.consul.io/docs/discovery/

services. Last checked July 2021.

[93] App mesh: Application-level networking for all your services. https://aws.

amazon.com/app-mesh/. Last checked July 2021.

[94] Sachin Manpathak. Kubernetes service mesh: A comparison of istio, link-
erd and consul. https://platform9.com/blog/kubernetes-service-mesh-a-
comparison-of-istio-linkerd-and-consul/, October 2019. Last checked July
2021.

119

https://www.docker.com/
https://www.docker.com/
https://kubernetes.io/
https://twitter.github.io/finagle/
https://github.com/Netflix/Hystrix
https://community.nasscom.in/communities/it-services/service-mesh-manage-service-service-communication-within-your-microservice
https://community.nasscom.in/communities/it-services/service-mesh-manage-service-service-communication-within-your-microservice
https://community.nasscom.in/communities/it-services/service-mesh-manage-service-service-communication-within-your-microservice
https://linkerd.io/
https://istio.io/
https://www.consul.io/docs/discovery/services
https://www.consul.io/docs/discovery/services
https://aws.amazon.com/app-mesh/
https://aws.amazon.com/app-mesh/
 https://platform9.com/blog/kubernetes-service-mesh-a-comparison-of-istio-linkerd-and-consul/
 https://platform9.com/blog/kubernetes-service-mesh-a-comparison-of-istio-linkerd-and-consul/

BIBLIOGRAPHY

[95] Envoy proxy. https://www.envoyproxy.io/. Last checked July 2021.

[96] Vincent Bushong, Amr S Abdelfattah, Abdullah A Maruf, Dipta Das, Austin
Lehman, Eric Jaroszewski, Michael Coffey, Tomas Cerny, Karel Frajtak, Pavel
Tisnovsky, et al. On microservice analysis and architecture evolution: A system-
atic mapping study. Applied Sciences, 11(17):7856, 2021.

[97] Kevin Fauvel, Daniel Balouek-Thomert, Diego Melgar, Pedro Silva, Anthony Si-
monet, Gabriel Antoniu, Alexandru Costan, Véronique Masson, Manish Parashar,
Ivan Rodero, et al. A distributed multi-sensor machine learning approach to
earthquake early warning. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 34, pages 403–411, 2020.

[98] Cloud Native Computing Foundation (CNCF). "cncf cloud native interactive
landscape". https://landscape.cncf.io/card-mode?category=scheduling-

orchestration&grouping=category. Last checked September 2021.

[99] M. Ali, A. Anjum, O. Rana, A. R. Zamani, D. Balouek-Thomert, and
M. Parashar. Res: Real-time video stream analytics using edge enhanced clouds.
IEEE Transactions on Cloud Computing, pages 1–1, 2020.

[100] Haoyu Zhang, Ganesh Ananthanarayanan, Peter Bodik, Matthai Philipose,
Paramvir Bahl, and Michael J. Freedman. Live video analytics at scale with
approximation and delay-tolerance. In 14th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 17), pages 377–392, Boston, MA,
March 2017. USENIX Association.

[101] Junchen Jiang, Ganesh Ananthanarayanan, Peter Bodik, Siddhartha Sen, and
Ion Stoica. Chameleon: scalable adaptation of video analytics. In Proceedings of
the 2018 Conference of the ACM Special Interest Group on Data Communication,
pages 253–266, 2018.

[102] Q. Liu, S. Huang, J. Opadere, and T. Han. An edge network orchestrator for
mobile augmented reality. In IEEE INFOCOM 2018 - IEEE Conference on Com-
puter Communications, pages 756–764, 2018.

[103] Redowan Mahmud, Adel N. Toosi, Kotagiri Ramamohanarao, and Rajkumar
Buyya. Context-aware placement of industry 4.0 applications in fog computing

120

https://www.envoyproxy.io/
https://landscape.cncf.io/card-mode?category=scheduling-orchestration&grouping=category
https://landscape.cncf.io/card-mode?category=scheduling-orchestration&grouping=category

BIBLIOGRAPHY

environments. IEEE Transactions on Industrial Informatics, 16(11):7004–7013,
2020.

[104] Eduard Renart, Daniel Balouek-Thomert, Xuan Hu, Jie Gong, and Manish
Parashar. Online decision-making using edge resources for content-driven stream
processing. In 2017 IEEE 13th International Conference on e-Science (e-Science),
pages 384–392. IEEE, 2017.

[105] Melvin E Conway. How do committees invent. Datamation, 14(4):28–31, 1968.

[106] "owl web ontology language". https://www.w3.org/TR/2004/REC-owl-guide-
20040210/#StructureOfOntologies. Last checked July 2021.

[107] Francisco Curbera, Matthew Duftler, Rania Khalaf, William Nagy, Nirmal Mukhi,
and Sanjiva Weerawarana. Unraveling the web services web: an introduction to
soap, wsdl, and uddi. IEEE Internet computing, 6(2):86–93, 2002.

[108] Aabhas V. Paliwal, Basit Shafiq, Jaideep Vaidya, Hui Xiong, and Nabil Adam.
Semantics-based automated service discovery. IEEE Transactions on Services
Computing, 5(2):260–275, 2012.

[109] Jian Wu, Liang Chen, Zibin Zheng, Michael Lyu, and Z. Wu. Clustering web
services to facilitate service discovery. Knowledge and Information Systems, 38,
01 2014.

[110] "what is openapi?". https://swagger.io/docs/specification/about/. Last
checked July 2021.

[111] "restful api modeling language". https://raml.org/. Last checked July 2021.

[112] "api blueprint". https://apiblueprint.org/. Last checked July 2021.

[113] "linkerd: Service profiles". https://linkerd.io/2.10/tasks/books/

#service-profiles. Last checked July 2021.

[114] Kaarthik Sivashanmugam, Kunal Verma, Amit Sheth, and John Miller. Adding
semantics to web services standards. Proceedings of the International Conference
on Web Services, 05 2003.

121

https://www.w3.org/TR/2004/REC-owl-guide-20040210/#StructureOfOntologies
https://www.w3.org/TR/2004/REC-owl-guide-20040210/#StructureOfOntologies
https://swagger.io/docs/specification/about/
https://raml.org/
https://apiblueprint.org/
https://linkerd.io/2.10/tasks/books/#service-profiles
https://linkerd.io/2.10/tasks/books/#service-profiles

BIBLIOGRAPHY

[115] Gomes Porfirio, Cavalcante Everton, Rodrigues Taniro, Batista Thais, Deli-
cato Flavia C., and Pires Paulo F. A federated discovery service for the internet
of things. In Proceedings of the 2nd Workshop on Middleware for Context-Aware
Applications in the IoT, M4IoT 2015, page 25–30, New York, NY, USA, 2015.
Association for Computing Machinery.

[116] Rohallah Benaboud, Ramdane Maamri, and Zaidi Sahnoun. Agents and owl-s
based semantic web service discovery with user preference support. International
journal of Web and Semantic Technology, 4(2):57–75, Apr 2013.

[117] Nawaz Falak, Qadir Kamran, and Ahmad H. Farooq. Semreg-pro: A semantic
based registry for proactive web service discovery using publish-subscribe model.
In 2008 Fourth International Conference on Semantics, Knowledge and Grid,
pages 301–308, 2008.

[118] Meriem Aziez, Saber Benharzallah, and Hammadi Bennoui. Service discovery for
the internet of things: Comparison study of the approaches. In 2017 4th Interna-
tional Conference on Control, Decision and Information Technologies (CoDIT),
pages 0599–0604, 2017.

[119] Asma Adala, Nabil Tabbane, and Sami Tabbane. A framework for automatic web
service discovery based on semantics and nlp techniques. Adv. MultiMedia, 2011,
January 2011.

[120] Davis John and Rajasree M S. Restdoc: Describe, discover and compose restful
semantic web services using annotated documentations. International journal of
Web & Semantic Technology, 4:37–49, 01 2013.

[121] Amit P Sheth, Karthik Gomadam, and Jon Lathem. Sa-rest: Semantically in-
teroperable and easier-to-use services and mashups. IEEE Internet Computing,
11(6):91–94, 2007.

[122] Meriem Achir, Abdelkrim Abdelli, and Lynda Mokdad. A taxonomy of service
discovery approaches in iot. In 2020 8th International Conference on Wireless
Networks and Mobile Communications (WINCOM), pages 1–6, 2020.

[123] Anind Dey. Understanding and using context. Personal and Ubiquitous Comput-
ing, 5:4–7, 02 2001.

122

BIBLIOGRAPHY

[124] Santosh Pattar, Dwaraka S. Kulkarni, Darshil Vala, Rajkumar Buyya, Venugopal
K. R., S.S. Iyengar, and L.M. Patnaik. Progressive search algorithm for service
discovery in an iot ecosystem. In 2019 International Conference on Internet of
Things (iThings) and IEEE Green Computing and Communications (GreenCom)
and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart
Data (SmartData), pages 1041–1048, 2019.

[125] Dina Hussein, Son Han, Gyu Myoung Lee, Noel Crespi, and Emmanuel Bertin.
Towards a dynamic discovery of smart services in the social internet of things.
Computers & Electrical Engineering, Elsevier, 58, 01 2017.

[126] In-Young Ko, Han-Gyu Ko, Angel Jimenez Molina, and Jung-Hyun Kwon. Soiot:
Toward a user-centric iot-based service framework. ACM Trans. Internet Tech-
nol., 16(2), April 2016.

[127] Hong Qing Yu and Stephan Reiff-Marganiec. Automated context-aware service
selection for collaborative systems. In International Conference on Advanced
Information Systems Engineering, pages 261–274. Springer, 2009.

[128] Talal Ashraf Butt, Iain Phillips, Lin Guan, and George Oikonomou. Adaptive and
context-aware service discovery for the internet of things. In Internet of things,
smart spaces, and next generation networking, pages 36–47. Springer, 2013.

[129] "dns service discovery". http://www.dns-sd.org/. Last checked July 2021.

[130] Milosh Stolikj, P. Cuijpers, J. Lukkien, and N. Buchina. Context based service
discovery in unmanaged networks using mdns/dns-sd. 2016 IEEE International
Conference on Consumer Electronics (ICCE), pages 163–165, 2016.

[131] Firas Albalas, Wail Mardini, and Majd Al-Soud. Aft: Adaptive fibonacci-based
tuning protocol for service and resource discovery in the internet of things. In 2017
Second International Conference on Fog and Mobile Edge Computing (FMEC),
pages 177–182, 2017.

[132] Seokhwa Kim, Keuntae Lee, and J. Jeong. Dns naming services for service discov-
ery and remote control for internet-of-things devices. 2017 International Confer-
ence on Information and Communication Technology Convergence (ICTC), pages
1156–1161, 2017.

123

http://www.dns-sd.org/

BIBLIOGRAPHY

[133] Manoj Parameswaran, Anjana Susarla, and Andrew B Whinston. P2p network-
ing: an information sharing alternative. Computer, 34(7):31–38, 2001.

[134] Cédric Tedeschi. Peer-to-Peer Prefix Tree for Large Scale Service Discovery. The-
ses, Ecole normale supérieure de lyon - ENS LYON, October 2008.

[135] Eddy Caron, Frédéric Desprez, and Cédric Tedeschi. Enhancing computational
grids with peer-to-peer technology for large scale service discovery. Journal of
Grid Computing, 5(3):337–360, 2007.

[136] Eddy Caron, Florent Chuffart, Haiwu He, and Cédric Tedeschi. Implementation
and evaluation of a p2p service discovery system: Application in a dynamic large
scale computing infrastructure. In 2011 IEEE 11th International Conference on
Computer and Information Technology, pages 41–46. IEEE, 2011.

[137] Juan Li, Nazia Zaman, and Honghui Li. A decentralized locality-preserving
context-aware service discovery framework for internet of things. In 2015 IEEE
International Conference on Services Computing, pages 317–323, 2015.

[138] Simone Cirani, Luca Davoli, Gianluigi Ferrari, Remy Leone, Paolo Medagliani,
Marco Picone, and Luca Veltri. A scalable and self-configuring architecture for
service discovery in the internet of things. IEEE Internet of Things Journal,
1:508–521, 10 2014.

[139] Jiang Rui and Sun Danpeng. An agricultural service oriented information discov-
ery technology for internet of things. In 2016 International Conference on Smart
Grid and Electrical Automation (ICSGEA), pages 268–271, 2016.

[140] Elli Rapti, Anthony Karageorgos, Catherine Houstis, and Elias Houstis. Decen-
tralized service discovery and selection in internet of things applications based on
artificial potential fields. Service Oriented Computing and Applications, 11(1):75–
86, 2017.

[141] Yuwei Wang. Towards service discovery and autonomic version management in
self-healing microservices architecture. In Proceedings of the 13th European Con-
ference on Software Architecture - Volume 2, ECSA ’19, page 63–66, New York,
NY, USA, 2019. Association for Computing Machinery.

124

BIBLIOGRAPHY

[142] Petar Krivic, Pavle Skocir, and Mario Kusek. Agent-based approach for energy-
efficient iot services discovery and management. In KES international symposium
on agent and multi-agent systems: technologies and applications, pages 57–66.
Springer, 2018.

[143] Rana Helal and Amr ElMougy. An energy-efficient service discovery protocol for
the iot based on a multi-tier wsn architecture. In 2015 IEEE 40th Local Computer
Networks Conference Workshops (LCN Workshops), pages 862–869, 2015.

[144] Sameh Ben Fredj, Mathieu Boussard, Daniel Kofman, and Ludovic Noirie. Effi-
cient semantic-based IoT service discovery mechanism for dynamic environments.
In IEEE 25th Annual International Symposium on Personal, Indoor, and Mobile
Radio Communication (PIMRC), 2014, pages 2088 – 2092, washington, United
States, September 2014.

[145] Chris Richardson. Pattern: Client-side service discovery. https://

microservices.io/patterns/client-side-discovery.html. Last checked
July 2021.

[146] Chris Richardson. Pattern: Server-side service discovery. https://

microservices.io/patterns/server-side-discovery.html. Last checked
July 2021.

[147] Netflix. Netflix open source software center. https://netflix.github.io/. Last
checked July 2021.

[148] Amazon AWS. Elastic load balancing. https://aws.amazon.com/

elasticloadbalancing/. Last checked July 2021.

[149] Nikolas Roman Herbst, Samuel Kounev, and Ralf Reussner. Elasticity in cloud
computing: What it is, and what it is not. In 10th International Conference
on Autonomic Computing (ICAC 13), pages 23–27, San Jose, CA, June 2013.
USENIX Association.

[150] Dirk Merkel. Docker: Lightweight linux containers for consistent development
and deployment. Linux J., 2014(239), March 2014.

[151] Tania Lorido-Botran, Jose Miguel-Alonso, and Jose A Lozano. A review of auto-
scaling techniques for elastic applications in cloud environments. Journal of grid
computing, 12(4):559–592, 2014.

125

https://microservices.io/patterns/client-side-discovery.html
https://microservices.io/patterns/client-side-discovery.html
https://microservices.io/patterns/server-side-discovery.html
https://microservices.io/patterns/server-side-discovery.html
https://netflix.github.io/
https://aws.amazon.com/elasticloadbalancing/
https://aws.amazon.com/elasticloadbalancing/

BIBLIOGRAPHY

[152] Kubernetes: Horizontal pod autoscaler. https://kubernetes.io/docs/tasks/

run-application/horizontal-pod-autoscale/. Last checked August 2021.

[153] Yahya Al-Dhuraibi, Fawaz Paraiso, Nabil Djarallah, and Philippe Merle. Auto-
nomic vertical elasticity of docker containers with elasticdocker. In 2017 IEEE
10th International Conference on Cloud Computing (CLOUD), pages 472–479,
2017.

[154] Anthony Kwan, Jonathon Wong, Hans-Arno Jacobsen, and Vinod Muthusamy.
Hyscale: Hybrid and network scaling of dockerized microservices in cloud data
centres. In 2019 IEEE 39th International Conference on Distributed Computing
Systems (ICDCS), pages 80–90, 2019.

[155] Sourav Dutta, Sankalp Gera, Akshat Verma, and Balaji Viswanathan.
Smartscale: Automatic application scaling in enterprise clouds. In 2012 IEEE
Fifth International Conference on Cloud Computing, pages 221–228, 2012.

[156] Philipp Hoenisch, Ingo Weber, Stefan Schulte, Liming Zhu, and Alan Fekete.
Four-fold auto-scaling on a contemporary deployment platform using docker con-
tainers. In International Conference on Service-Oriented Computing, pages 316–
323. Springer, 2015.

[157] Jingqi Yang, Chuanchang Liu, Yanlei Shang, Bo Cheng, Zexiang Mao, Chunhong
Liu, Lisha Niu, and Junliang Chen. A cost-aware auto-scaling approach using the
workload prediction in service clouds. Information Systems Frontiers, 16(1):7–18,
2014.

[158] Shveta Verma and Anju Bala. Auto-scaling techniques for iot-based cloud appli-
cations: a review. Cluster Computing, pages 1–35, 2021.

[159] Amazon ec2 auto scaling. https://docs.aws.amazon.com/autoscaling/ec2/

userguide/what-is-amazon-ec2-auto-scaling.html. Last checked August
2021.

[160] Google cloud compute engine: Autoscaling groups of instances. https://cloud.
google.com/compute/docs/autoscaler. Last checked August 2021.

[161] Tian Ye, Xue Guangtao, Qian Shiyou, and Li Minglu. An auto-scaling framework
for containerized elastic applications. In 2017 3rd international conference on big
data computing and communications (BIGCOM), pages 422–430. IEEE, 2017.

126

https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/
 https://docs.aws.amazon.com/autoscaling/ec2/userguide/what-is-amazon-ec2-auto-scaling.html
 https://docs.aws.amazon.com/autoscaling/ec2/userguide/what-is-amazon-ec2-auto-scaling.html
https://cloud.google.com/compute/docs/autoscaler
https://cloud.google.com/compute/docs/autoscaler

BIBLIOGRAPHY

[162] Muhammad Abdullah, Waheed Iqbal, Arif Mahmood, Faisal Bukhari, and Ab-
delkarim Erradi. Predictive autoscaling of microservices hosted in fog microdata
center. IEEE Systems Journal, 15(1):1275–1286, 2020.

[163] João Nunes, Thiago Bianchi, Anderson Iwasaki, and Elisa Nakagawa. State of the
art on microservices autoscaling: An overview. In Anais do XLVIII Seminário
Integrado de Software e Hardware, pages 30–38, Porto Alegre, RS, Brasil, 2021.
SBC.

[164] Manuel Gotin, Felix Lösch, Robert Heinrich, and Ralf Reussner. Investigating
performance metrics for scaling microservices in cloudiot-environments. In Pro-
ceedings of the 2018 ACM/SPEC International Conference on Performance En-
gineering, pages 157–167, 2018.

[165] Abeer Abdel Khaleq and Ilkyeun Ra. Intelligent autoscaling of microservices in
the cloud for real-time applications. IEEE Access, 9:35464–35476, 2021.

[166] Salman Taherizadeh, Vlado Stankovski, and Jin-Hee Cho. Dynamic multi-
level auto-scaling rules for containerized applications. The Computer Journal,
62(2):174–197, 2019.

[167] Hashicorp consul. https://www.hashicorp.com/products/consul/multi-

platform-service-mesh. Last checked July 2021.

[168] what is dns? how dns works. https://www.cloudflare.com/learning/dns/

what-is-dns/. Last checked August 2021.

[169] Registrator. https://github.com/gliderlabs/registrator. Last checked July
2021.

[170] Joyent. https://github.com/joyent/containerpilot. Last checked July 2021.

[171] etcd key-value store. https://etcd.io/. Last checked July 2021.

[172] Oracle. Oracle data sheet: Mysql cluster. https://www.mysql.com/products/

cluster/mysql-cluster-datasheet.pdf. Last checked August 2021.

[173] Desprez and al. Adding virtualization capabilities to the grid’5000 testbed. In
Ivan I. Ivanov, Marten van Sinderen, Frank Leymann, and Tony Shan, editors,
Cloud Computing and Services Science, pages 3–20, Cham, 2013. Springer Inter-
national Publishing.

127

https://www.hashicorp.com/products/consul/multi-platform-service-mesh
https://www.hashicorp.com/products/consul/multi-platform-service-mesh
https://www.cloudflare.com/learning/dns/what-is-dns/
https://www.cloudflare.com/learning/dns/what-is-dns/
https://github.com/gliderlabs/registrator
https://github.com/joyent/containerpilot
https://etcd.io/
https://www.mysql.com/products/cluster/mysql-cluster-datasheet.pdf
https://www.mysql.com/products/cluster/mysql-cluster-datasheet.pdf

BIBLIOGRAPHY

[174] Grafana. https://grafana.com/. Last checked August 2021.

[175] Prometheus. https://prometheus.io/. Last checked August 2021.

[176] kube-state-metrics. https://github.com/kubernetes/kube-state-metrics.
Last checked August 2021.

[177] Zheyi Chen, Junqin Hu, Xing Chen, Jia Hu, Xianghan Zheng, and Geyong Min.
Computation offloading and task scheduling for DNN-based applications in cloud-
edge computing. IEEE Access, 2020.

[178] M. Satyanarayanan, P. Simoens, Y. Xiao, P. Pillai, Z. Chen, K. Ha, W. Hu, and
B. Amos. Edge analytics in the internet of things. IEEE Pervasive Computing,
14(2):24–31, 2015.

[179] Ben Taylor, Vicent Sanz Marco, Willy Wolff, Yehia Elkhatib, and Zheng Wang.
Adaptive deep learning model selection on embedded systems. SIGPLAN Not.,
53(6):31–43, June 2018.

[180] Woo-Joong Kim and Chan-Hyun Youn. Lightweight online profiling-based con-
figuration adaptation for video analytics system in edge computing. IEEE Access,
8:116881–116899, 2020.

[181] Xukan Ran, Haolianz Chen, Xiaodan Zhu, Zhenming Liu, and Jiasi Chen. Deep-
decision: A mobile deep learning framework for edge video analytics. In IEEE
INFOCOM 2018-IEEE Conference on Computer Communications, pages 1421–
1429. IEEE, 2018.

[182] Chien-Chun Hung, Ganesh Ananthanarayanan, Peter Bodik, Leana Golubchik,
Minlan Yu, Paramvir Bahl, and Matthai Philipose. Videoedge: Processing camera
streams using hierarchical clusters. In 2018 IEEE/ACM Symposium on Edge
Computing (SEC), pages 115–131. IEEE, 2018.

[183] Qiang Liu and Tao Han. Dare: Dynamic adaptive mobile augmented reality
with edge computing. In 2018 IEEE 26th International Conference on Network
Protocols (ICNP), pages 1–11. IEEE, 2018.

[184] Ali Reza Zamani, Moustafa AbdelBaky, Daniel Balouek-Thomert, Juan J Villalo-
bos, Ivan Rodero, and Manish Parashar. Submarine: A subscription-based data

128

 https://grafana.com/
https://prometheus.io/
 https://github.com/kubernetes/kube-state-metrics

BIBLIOGRAPHY

streaming framework for integrating large facilities and advanced cyberinfras-
tructure. Concurrency and Computation: Practice and Experience, 32(16):e5256,
2020.

[185] Prateeksha Varshney and Yogesh Simmhan. Characterizing application schedul-
ing on edge, fog, and cloud computing resources. Software: Practice and Experi-
ence, 50(5):558–595, 2020.

[186] Haoyu Wang, Zetian Liu, and Haiying Shen. Job Scheduling for Large-Scale
Machine Learning Clusters, page 108–120. Association for Computing Machinery,
New York, NY, USA, 2020.

[187] Yanghua Peng, Yixin Bao, Yangrui Chen, Chuan Wu, and Chuanxiong Guo.
Optimus: an efficient dynamic resource scheduler for deep learning clusters. In
Proceedings of the Thirteenth EuroSys Conference, 2018.

[188] Yanghua Peng, Yixin Bao, Yangrui Chen, Chuan Wu, Chen Meng, and Wei Lin.
Dl2: A deep learning-driven scheduler for deep learning clusters. arXiv preprint
arXiv:1909.06040, 2019.

[189] Michael Zhang, Chandra Krintz, and Rich Wolski. Stoic: Serverless teleoperable
hybrid cloud for machine learning applications on edge device. In 2020 IEEE In-
ternational Conference on Pervasive Computing and Communications Workshops
(PerCom Workshops). IEEE, 2020.

[190] Zheyi Chen, Junqin Hu, Xing Chen, Jia Hu, Xianghan Zheng, and Geyong Min.
Computation offloading and task scheduling for DNN-based applications in cloud-
edge computing. IEEE Access, 2020.

[191] Wenjia Zheng, Yun Song, Zihao Guo, Yongchen Cui, Suwen Gu, Ying Mao, and
Long Cheng. Target-based resource allocation for deep learning applications in
a multi-tenancy system. In 2019 IEEE High Performance Extreme Computing
Conference (HPEC). IEEE, 2019.

[192] Eduard Gibert Renart, Alexandre Da Silva Veith, Daniel Balouek-Thomert, Mar-
cos Dias De Assunção, Laurent Lefevre, and Manish Parashar. Distributed opera-
tor placement for iot data analytics across edge and cloud resources. In 2019 19th
IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing
(CCGRID), pages 459–468. IEEE, 2019.

129

BIBLIOGRAPHY

[193] Joby P P. Qos aware resource scheduling in internet of things-cloud environment.
International Journal of Scientific and Engineering Research, 6:294–297, 01 2015.

[194] Qi Zhang, Mohamed Faten Zhani, Raouf Boutaba, and Joseph L Hellerstein. Dy-
namic heterogeneity-aware resource provisioning in the cloud. IEEE transactions
on cloud computing, 2(1):14–28, 2014.

[195] Eduard Gibert Renart, Daniel Balouek-Thomert, and Manish Parashar. Edge
based data-driven pipelines (technical report), 2018.

[196] Global Industry Analysts. Global deep learning industry. https://www.

reportlinker.com/p05798338/Global-Deep-Learning-Industry.html, 2021.
Last checked October 2021.

[197] Athanasios Voulodimos, Nikolaos Doulamis, Anastasios Doulamis, and Eftychios
Protopapadakis. Deep learning for computer vision: A brief review. Computa-
tional intelligence and neuroscience, 2018, 2018.

[198] Zixing Zhang, Jürgen Geiger, Jouni Pohjalainen, Amr El-Desoky Mousa, Wenyu
Jin, and Björn Schuller. Deep learning for environmentally robust speech recog-
nition: An overview of recent developments. ACM Transactions on Intelligent
Systems and Technology (TIST), 2018.

[199] Francesco Piccialli, Vittorio Di Somma, Fabio Giampaolo, Salvatore Cuomo, and
Giancarlo Fortino. A survey on deep learning in medicine: Why, how and when?
Information Fusion, 66:111 – 137, 2021.

[200] Connor Shorten, Taghi M Khoshgoftaar, and Borko Furht. Deep learning appli-
cations for covid-19. Journal of Big Data, 8(1):1–54, 2021.

[201] Panagiota Galetsi and Korina Katsaliaki. A review of the literature on big data
analytics in healthcare. Journal of the Operational Research Society, 71(10):1511–
1529, 2020.

[202] Hira Zahid, Tariq Mahmood, Ahsan Morshed, and Timos Sellis. Big data analyt-
ics in telecommunications: literature review and architecture recommendations.
IEEE/CAA Journal of Automatica Sinica, 7(1):18–38, 2019.

130

https://www.reportlinker.com/p05798338/Global-Deep-Learning-Industry.html
https://www.reportlinker.com/p05798338/Global-Deep-Learning-Industry.html

BIBLIOGRAPHY

[203] Safa Ben Atitallah, Maha Driss, Wadii Boulila, and Henda Ben Ghézala. Lever-
aging deep learning and iot big data analytics to support the smart cities de-
velopment: Review and future directions. Computer Science Review, 38:100303,
2020.

[204] Thomas A Runkler. Data analytics. Springer, 2020.

[205] Saeed Shahrivari. Beyond batch processing: Towards real-time and streaming big
data. Computers, 3, 03 2014.

[206] Erwin Adi, Adnan Anwar, Zubair Baig, and Sherali Zeadally. Machine learning
and data analytics for the iot. Neural Computing and Applications, 32(20):16205–
16233, 2020.

[207] Maryam M Najafabadi, Flavio Villanustre, Taghi M Khoshgoftaar, Naeem Seliya,
Randall Wald, and Edin Muharemagic. Deep learning applications and challenges
in big data analytics. Journal of big data, 2(1):1–21, 2015.

[208] Jason Brownlee. Data preparation for machine learning: data cleaning, feature
selection, and data transforms in Python. Machine Learning Mastery, 2020.

[209] Himani Bhavsar and Mahesh H Panchal. A review on support vector machine
for data classification. International Journal of Advanced Research in Computer
Engineering & Technology (IJARCET), 1(10):185–189, 2012.

[210] Rama Akkiraju, Joel Farrell, John Miller, Meenakshi Nagarajan, Marc-Thomas
Schmidt, Amit Sheth, and Kunal Verma. The neural network zoo. https://www.
asimovinstitute.org/neural-network-zoo/, 2016. Accessed September 2021.

[211] Ivan Bruha and Fazel Famili. Postprocessing in machine learning and data mining.
SIGKDD Explorations, 2:110–114, 12 2000.

[212] Michael Haenlein and Andreas Kaplan. A brief history of artificial intelligence:
On the past, present, and future of artificial intelligence. California management
review, 61(4):5–14, 2019.

[213] Christian Janiesch, Patrick Zschech, and Kai Heinrich. Machine learning and
deep learning. Electronic Markets, pages 1–11, 2021.

131

https://www.asimovinstitute.org/neural-network-zoo/
https://www.asimovinstitute.org/neural-network-zoo/

BIBLIOGRAPHY

[214] Mohammad Saeid Mahdavinejad, Mohammadreza Rezvan, Mohammadamin
Barekatain, Peyman Adibi, Payam Barnaghi, and Amit P. Sheth. Machine learn-
ing for internet of things data analysis: a survey. Digital Communications and
Networks, 4(3):161–175, 2018.

[215] Aston Zhang, Zachary C Lipton, Mu Li, and Alexander J Smola. Dive into deep
learning. arXiv preprint arXiv:2106.11342, 2021.

[216] Kamran Kowsari, Kiana Jafari Meimandi, Mojtaba Heidarysafa, Sanjana Mendu,
Laura Barnes, and Donald Brown. Text classification algorithms: A survey. In-
formation, 10(4):150, 2019.

[217] Zhong-Qiu Zhao, Peng Zheng, Shou-tao Xu, and Xindong Wu. Object detection
with deep learning: A review. IEEE transactions on neural networks and learning
systems, 30(11):3212–3232, 2019.

[218] Zixing Zhang, Jürgen Geiger, Jouni Pohjalainen, Amr El-Desoky Mousa, Wenyu
Jin, and Björn Schuller. Deep learning for environmentally robust speech recog-
nition: An overview of recent developments. ACM Transactions on Intelligent
Systems and Technology (TIST), 9(5):1–28, 2018.

[219] Frank Emmert-Streib, Zhen Yang, Han Feng, Shailesh Tripathi, and Matthias
Dehmer. An introductory review of deep learning for prediction models with big
data. Frontiers in Artificial Intelligence, 3:4, 2020.

[220] Hongyu Liu and Bo Lang. Machine learning and deep learning methods for
intrusion detection systems: A survey. applied sciences, 9(20):4396, 2019.

[221] Alexander Schindler, Thomas Lidy, and Andreas Rauber. Comparing shallow
versus deep neural network architectures for automatic music genre classification.
In FMT, pages 17–21, 2016.

[222] Dieu Tien Bui, Paraskevas Tsangaratos, Viet-Tien Nguyen, Ngo Van Liem, and
Phan Trong Trinh. Comparing the prediction performance of a deep learning
neural network model with conventional machine learning models in landslide
susceptibility assessment. CATENA, 188:104426, 2020.

[223] Sucheta Chauhan, Lovekesh Vig, Michele De Filippo De Grazia, Maurizio Cor-
betta, Shandar Ahmad, and Marco Zorzi. A comparison of shallow and deep

132

BIBLIOGRAPHY

learning methods for predicting cognitive performance of stroke patients from
mri lesion images. Frontiers in Neuroinformatics, 13:53, 2019.

[224] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn: To-
wards real-time object detection with region proposal networks. arXiv preprint
arXiv:1506.01497, 2015.

[225] Alexey Bochkovskiy, Chien-Yao Wang, and Hong-Yuan Mark Liao.
Yolov4:optimal speed and accuracy of object detection. arXiv preprint
arXiv:2004.10934, 2020.

[226] N Suresh Kumar, Amit Kumar Goel, and S Jayanthi. A scrupulous approach to
perform classification and detection of fetal brain using darknet yolo v4. In 2021
International Conference on Advance Computing and Innovative Technologies in
Engineering (ICACITE), pages 578–581. IEEE, 2021.

[227] Fetulhak Abdurahman, Kinde Anlay Fante, and Mohammed Aliy. Malaria para-
site detection in thick blood smear microscopic images using modified yolov3 and
yolov4 models. BMC bioinformatics, 22(1):1–17, 2021.

[228] Yingfeng Cai, Tianyu Luan, Hongbo Gao, Hai Wang, Long Chen, Yicheng Li,
Miguel Angel Sotelo, and Zhixiong Li. Yolov4-5d: An effective and efficient
object detector for autonomous driving. IEEE Transactions on Instrumentation
and Measurement, 70:1–13, 2021.

[229] Dongsheng Li, Yujie Zhang, Junping Xiang, Jianfei Li, and Yu Zou. Yolo-tiny-
msc: A tiny neural network for object detection. In Journal of Physics: Confer-
ence Series, volume 1873, page 012073. IOP Publishing, 2021.

[230] Petr Hurtik, Vojtech Molek, Jan Hula, Marek Vajgl, Pavel Vlasanek, and Tomas
Nejezchleba. Poly-yolo: higher speed, more precise detection and instance seg-
mentation for yolov3. arXiv preprint arXiv:2005.13243, 2020.

[231] Minh-Tan Pham, Luc Courtrai, Chloé Friguet, Sébastien Lefèvre, and Alexandre
Baussard. Yolo-fine: one-stage detector of small objects under various back-
grounds in remote sensing images. Remote Sensing, 12(15):2501, 2020.

[232] José Ignacio Fernández-Villamor, Carlos Angel Iglesias, and Mercedes Garijo.
Microservices-lightweight service descriptions for rest architectural style. In
ICAART (1), pages 576–579, 2010.

133

BIBLIOGRAPHY

[233] Jonathan Hui. Object detection: speed and accuracy comparison (Faster R-
CNN, R-FCN, SSD, FPN, RetinaNet and YOLOv3). http://www.lighterra.

com/papers/videoencodingh264/, 2018. Last checked August 2021.

[234] Adrian Rosebrock. Intersection over union (iou) for object detec-
tion. https://www.pyimagesearch.com/2016/11/07/intersection-over-

union-iou-for-object-detection/, 2016. Accessed September, 2021.

[235] Daniel Rosendo, Pedro Silva, Matthieu Simonin, Alexandru Costan, and Gabriel
Antoniu. E2Clab: Exploring the Computing Continuum through Repeatable,
Replicable and Reproducible Edge-to-Cloud Experiments. In Cluster 2020 -
IEEE International Conference on Cluster Computing, pages 1–11, Kobe, Japan,
September 2020.

[236] Tsung-Yi Lin, Michael Maire, Serge J. Belongie, Lubomir D. Bourdev, Ross B.
Girshick, James Hays, Pietro Perona, Deva Ramanan, Piotr Dollár, and
C. Lawrence Zitnick. Microsoft COCO: common objects in context. CoRR,
abs/1405.0312, 2014.

[237] Frans Panduwinata, Pujianto Yugopuspito, et al. Nanoservices as generalization
services in service-oriented architecture. In 2017 International Conference on
Soft Computing, Intelligent System and Information Technology (ICSIIT), pages
131–137. IEEE, 2017.

[238] Erkki Harjula, Pekka Karhula, Johirul Islam, Teemu Leppänen, Ahsan Manzoor,
Madhusanka Liyanage, Jagmohan Chauhan, Tanesh Kumar, Ijaz Ahmad, and
Mika Ylianttila. Decentralized iot edge nanoservice architecture for future gadget-
free computing. IEEE Access, 7:119856–119872, 2019.

[239] Xinwen Wang, Tiancheng Yuan, Yu-Ju Huang, and Robbert van Renesse. Disag-
gregated applications using nanoservices. 2021.

134

http://www.lighterra.com/papers/videoencodingh264/
http://www.lighterra.com/papers/videoencodingh264/
https://www.pyimagesearch.com/2016/11/07/intersection-over-union-iou-for-object-detection/
https://www.pyimagesearch.com/2016/11/07/intersection-over-union-iou-for-object-detection/

List of Figures

1 Logos of the collaborating institutions on the research work of this thesis iii

2.1 The architecture of a Service Mesh containing a control plane and a data
plane [89]. 17

2.2 The logic of a data-driven decision-making approach when receiving data
from data sources. 21

2.3 A global overview of the ecosystem design consisting of three manage-
ment layers, each of them with its respective components. The infras-
tructure has heterogeneous computing resources and data producers. In
addition, it has Service Mesh for managing the submitted microservice-
based applications. 25

3.1 Workflow of the data-driven service discovery initiated by the client to
the API Gateway and service registry. 42

3.2 Data-driven architectural design for service discovery with a Peer-to-Peer
network between the Zone Managers of the same Region for inter-zone
connections. 44

3.3 System supporting data objects of type Image with four microservices. 45

4.1 Overview of the data-driven QoS architecture. It provides operational
and adaptation support to control the discovery and access requests ini-
tiated by the clients. 56

4.2 With a stable incoming rate, the system’s response time and the per-
centage of accepted requests stabilize around values close to the baseline
due to DMG scaling. 66

4.3 With a dynamic incoming rate, the system tunes the number of replicas
according to the load. 67

135

LIST OF FIGURES

5.1 A global overview of the system design illustrating the management mi-
croservices and their interactions. 74

6.1 A Venn diagram representing areas of Artificial Intelligence and the “You
Only Look Once YOLO” model (inspired by Janiesch et al. [213]) . . . 92

6.2 Workflow of an object detection Deep Learning application showing the
stages, dataflow and tasks. 93

6.3 The distribution of the Deep Learning object detection use case across
the Edge-to-Cloud continuum. 99

6.4 With 19 data sources, the system makespan with data adaptation in
experiment 2 is lower than in experiment 1, where no trade-off solution
is used. 100

6.5 Up to 54.4% gain in average system makespan between experiment 2 (with
data adaptation) and experiment 1 (without data adaptation). 101

6.6 With 19 data sources, average system accuracy decreased in experiment
2 (with data adaptation) compared to experiment 1 (without data adap-
tation). Despite this, it remains higher than a fixed threshold equals to
50%. 101

6.7 With a single data source, the average system makespan with data adap-
tation in experiment 4 is higher than in experiment 3, where no trade-off
solution is used. 102

136

List of Tables

3.1 Service discovery approaches in the literature review. 37

5.1 An overview of the mathematical notations. 79

6.1 The CPU, memory and storage requirements of the object detection use
case. Legend: ◦: non-intensive; +: low-intensive; ++: high-intensive. . 94

6.2 Resource capacity of Edge, Fog and Cloud nodes. 98
6.3 Delay and bandwidth of network connections between nodes. 98

137

List of Algorithms

1 Scale out overloaded data-driven microservices groups 61
2 Scale down underutilized data-driven microservices groups 62

3 Select the distribution of data qualities across system data sources. The
selection compromises between latency and accuracy. 81

4 Resource reservation for high intensive tasks. 84
5 Scheduling application’s workflow on reserved resources. 85
6 Resource adjustment for intensive tasks. 86

	Introduction
	Context
	Research Questions
	Structure of the Manuscript
	Outline
	Accepted research publications

	Enabling Data-driven System Management
	Introduction
	Cloud System Design: Current Landscape
	The Evolution of Cloud-based Infrastructural Designs
	Centralized Cloud computing
	Decentralized Cloud computing

	Shift from Monolithic to Microservices Paradigm
	Monolithic design and drawbacks
	Service-Oriented Architecture (SOA) and anti-patterns
	MicroServices-based Architecture MSA

	Service Mesh: concept, features and projects

	Shortcomings of Current Cloud Systems
	Data-Driven Ecosystem: Definition and Design
	Data-driven decision-making
	System design: an overview

	Conclusion

	Data-driven Service Discovery approach
	Introduction
	Literature Review: Service Discovery
	Service description models
	Context-aware service discovery
	Architectural design of discovery approaches
	Discovery patterns for microservices architectures

	Data-centric Service Description Model
	Service Discovery Mechanism
	Data-Driven Architectural Design
	Service Discovery Illustrative Example
	Conclusion

	Data-driven Resource Adaptation Approach
	Introduction
	Literature Review: Scaling Approaches
	Scaling actions
	Scaling types: proactive, predictive, and reactive
	Production threshold-based auto-scaling solutions
	Microservices scaling approaches

	Limitations of the Istio Service Mesh
	Architecture Design for Improving QoS
	API management services
	Operational services
	Adaptation services

	Management Algorithms
	ScaleOut algorithm
	ScaleDown algorithm
	Load Shedding algorithm

	Evaluation of System Adaptation
	Methodology overview
	Platform
	Testbed
	Platform configuration
	Benchmarks
	Metrics

	Evaluation results

	Conclusion

	Data Quality Management and Workflow Scheduling Strategies
	Introduction
	Literature: Data and Workflow Management
	Configuration adaptation for Edge-based systems
	Workflow scheduling strategies

	System Architecture and Modeling
	Infrastructure model
	Workflow model
	Performance models
	End-to-end latency model
	Accuracy model

	System objective

	Data Quality Adaptation Strategy
	Data-driven Workflow Scheduling Approach
	Tasks categorization
	Heterogeneity-aware workflow scheduling algorithms
	Resource reservation algorithm
	Workflow scheduling algorithm

	Requirements adjustment algorithm

	Conclusion

	Data-driven Management: the Case of Deep Learning Applications
	Introduction
	Data Analytics Systems: An Overview
	Data analysis workflow
	Intelligent data analysis
	YOLO: You Only Look Once

	Object Detection Use Case
	Definition
	Tasks categorization

	System Modeling: The Case of Deep Learning
	Evaluation of Latency Optimization
	Methodology overview
	Testbed
	Platform

	Evaluation results
	Discussion

	Conclusion

	Conclusion and Perspectives
	Summary
	Contributions
	Designing scalable data-driven service discovery system
	Leveraging a latency-accuracy trade-off approach

	Perspectives

	Bibliography
	List of Figures
	List of Tables

