Precision medicine (also known as personalized medicine) has been proposed to customize healthcare for each patient, from medical diagnosis to treatment, impacting medical decisions and practices as well as current workflow. To meet this objective, patients are placed into different groups based on some relevant similarities to take a medical decision. Precision medicine primarily uses information about a person's clinical records, biological information including proteins (proteomics), genes (genomics), and, more recently, images (radiomics). In the case of cancer, information about the tumor is also incorporated to make a diagnosis, decide on the type of treatment, monitor disease progression or predict treatment response or prognosis. Precision medicine for cancer relies on the use of tumor markers to aid in diagnosis or targeted therapies to treat certain types of cancer.

Radiomics is a research field where images are used for their potential in precision medicine. It is defined as the analysis of a large number of extracted features from medical images such as Computed Tomography (CT), Magnetic Resonance Imaging (MRI) or Positron Emission Tomography (PET). These features are used to uncover disease characteristics that fail to be found or quantified by the naked eye. The first step in radiomic analysis in oncology is the lesion segmentation, which is the process of isolating a Region Of Interest (ROI) from other regions with contours. After segmentation, thousands of features can be extracted from the ROI, and then the most relevant ones are selected. Finally, a machine learning algorithm such as Random Forest (RF) or Support Vector Machine (SVM) is applied to identify the best relevant features that predict the outcome. This classical workflow is limited for several reasons : segmentation requires a highly trainable physician, is time consuming and the defined ground truth is physician subjective and prone to error (intra and inter observer variability). Secondly, the handcrafted features defined from the ROI are limited since they are heavily influenced by many factors like the used segmentation method. Therefore they fail when the ROI is altered.

Recently, deep learning has dramatically changed the field of computer vision, including image classification, object detection, and image segmentation. In the medical imaging field, various applications of deep learning have emerged in different areas, including pathology classification, risk stratification, treatment response prediction, lesion and organ segmentation. Thus, artificial intelligence in general and deep learning in particular can come in handy to develop Computer Aided Diagnostic (CAD) applications. However, deep learning approaches are well known for their data hungry nature, and annotated data are usually hard to obtain in the medical imaging field.

The goal of this thesis is to go beyond the current radiomic paradigm which requires manual extraction of characteristics and replace it by deep radiomics. In our new approach, features are learned along with the prediction of the outcome. To achieve this, we develop different Deep Learning (DL) algorithms to create end-to-end architectures that take an image as input, learn feature representation and outcome prediction.

The first method that we propose is to create a deep radiomics paradigm by exploring V Summary a Convolutional Neural Network (CNN) due to its predictive power. We created an endto-end prediction model based on a 3D CNN, called 3D RPET-NET, that jointly extracts features from a 3D PET image volume and predict the outcome of therapy. The obtained results outperform classical radiomic approaches.

As mentioned above, annotated data is a major issue in the medical imaging field, where only a small subset of annotated images are available. We propose a Weakly Supervised Learning (WSL) method to solve this problem. Our method allows to segment automatically the lesion for radiomic analysis, without segmentation ground truth and with only a weak annotation (class of the pathology and one voxel in the region of the tumor). The key step is to segment the tumor in 3D. Our segmentation method is composed of four steps : 1) calculate two "Maximum Intensity Projection" (MIP) images from 3D PET images of lung and esophageal cancers in two directions 2) classify the MIP images into different types of cancers 3) generate the class activation maps through a multitask learning approach with a weak prior knowledge 4) segment the 3D tumor region from the two 2D activation maps with a proposed new loss. Our proposed approach can obtain state of the art of prediction results with a very weak segmentation ground truth.

Recent studies have shown the potential of peritumoral regions on boosting the accuracy of outcome prediction. Thus, the association of the intratumoral and peritumotal regions provides richer information than one region for radiomic analysis. Therefore, we develop a new segmentation network that does not give the same ground truth as physicians do, but to find the regions that contribute the most in the outcome prediction. Our method is based on Multi-Task Learning (MTL) framework, which is a type of learning algorithm that aims to combine several pieces of information from different tasks in order to improve the model's performance and its ability to better generalise. The basic idea of MTL is that different tasks can share a representation of common characteristics, and thus train them jointly.

Our method jointly performs 4 tasks : image reconstruction, pathology classification, tumor segmentation and outcome prediction in a multi-task learning way. We show that the encoder can benefits from multiple tasks to extract meaningful and powerful features that boost radiomic performance, and that subsidiary tasks serve as an inductive bias so the learned model can generalize better. Our model was tested and validated for treatment response and survival in lung and esophageal cancers, outperforming single task learning methods. We show also that, by using a MTL approach, we can boost the performance of radiomics analysis thanks to the rich information extracted from intratumoral and peritumoral regions. The MTL architecture was also tested on a COVID-19 dataset with success. VI

Résumé

La médecine de précision (également appelée médecine personnalisée) a été proposée pour personnaliser les soins de santé pour chaque patient, du diagnostic médical au traitement, ce qui a un impact sur les décisions et les pratiques médicales ainsi que sur le flux de travail actuel. Pour atteindre cet objectif, les patients sont placés dans différents groupes en fonction de certaines similitudes pertinentes pour prendre une décision médicale. La médecine de précision utilise principalement des informations sur les dossiers cliniques d'une personne, des informations biologiques, notamment des protéines (protéomique), des gènes (génomique) et, plus récemment, des images (radiomique). Dans le cas du cancer, des informations sur la tumeur sont également incorporées pour établir un diagnostic, décider du type de traitement, suivre la progression de la maladie ou prédire la réponse au traitement ou le pronostic. La médecine de précision pour le cancer repose sur l'utilisation de marqueurs tumoraux pour faciliter le diagnostic ou de thérapies ciblées pour traiter certains types de cancer.

La radiomique est un domaine de recherche où les images sont utilisées pour leur potentiel dans la médecine de précision. Elle se définit comme l'analyse d'un grand nombre de caractéristiques extraites d'images médicales telles que les CT, MRI ou PET. Ces caractéristiques sont utilisées pour découvrir les caractéristiques de la maladie qui ne peuvent être trouvées ou quantifiées à l'oeil nu. La première étape de l'analyse radiomique en oncologie est la segmentation de la lésion, qui consiste à isoler une ROI des autres régions à l'aide de contours. Après la segmentation, des milliers de caractéristiques peuvent être extraites de l'ROI, puis les plus pertinentes sont sélectionnées. Enfin, un algorithme d'apprentissage automatique tel que RF ou SVM est appliqué pour identifier les meilleures caractéristiques pertinentes qui prédisent le résultat. Ce flux de travail classique est limité pour plusieurs raisons : la segmentation nécessite un médecin hautement qualifié, elle est chronophage et la vérité terrain définie est subjective et sujette à erreur (variabilité intra et inter observateur). Deuxièmement, les caractéristiques artisanales définies à partir du ROI sont limitées car elles sont fortement influencées par de nombreux facteurs tels que la méthode de segmentation utilisée. Par conséquent, elles échouent lorsque le ROI est modifié.

Récemment, l'apprentissage profond a radicalement changé le domaine de la vision par ordinateur, notamment la classification des images, la détection des objets et la segmentation des images. Dans le domaine de l'imagerie médicale, diverses applications de l'apprentissage profond sont apparues dans différents domaines, notamment la classification des pathologies, la stratification des risques, la prédiction de la réponse au traitement, la segmentation des lésions et des organes. Ainsi, l'intelligence artificielle en général et l'apprentissage profond en particulier peuvent s'avérer utiles pour développer des applications CAD. Cependant, les approches d'apprentissage profond sont bien connues pour leur nature avide de données, et les données annotées sont généralement difficiles à obtenir dans le domaine de l'imagerie médicale.

L'objectif de cette thèse est de surpasser le paradigme actuel de la radiomique qui né-VII RESUME cessite une extraction manuelle des caractéristiques et de le remplacer par la radiomique profonde. Dans notre nouvelle approche, les caractéristiques sont apprises en même temps que la prédiction du résultat. Pour y parvenir, nous développons différents algorithmes pour créer des architectures de bout en bout qui prennent une image en entrée, apprennent la représentation des caractéristiques et la prédiction des résultats. La première méthode que nous proposons consiste à créer un paradigme de radiomique profonde en explorant un CNN en raison de son pouvoir prédictif. Nous avons créé un modèle de prédiction de bout en bout basé sur un CNN 3D, appelé 3D RPET-NET, qui extrait conjointement les caractéristiques à partir d'une image CNN en 3D et prédit le résultat du traitement. Les résultats obtenus surpassent les approches radiomiques classiques.

Comme mentionné ci-dessus, les données annotées constituent un problème majeur dans le domaine de l'imagerie médicale, où seul un petit sous-ensemble d'images annotées est disponible. Nous proposons une méthode WSL pour résoudre ce problème. Notre méthode permet de segmenter automatiquement la lésion pour l'analyse radiomique, sans vérité terrain pour la segmentation et avec seulement une faible annotation (classe de la pathologie et un voxel dans la région de la tumeur). L'étape clé est de segmenter la tumeur en 3D. Notre méthode de segmentation est composée de quatre étapes : 1) calculer deux images MIP à partir d'images PET 3D de cancers du poumon et de l'oesophage dans deux directions 2) classer les images MIP en différents types de cancers 3) générer les cartes d'activation de classe par une approche d'apprentissage multitâche avec une faible connaissance a priori 4) segmenter la région tumorale 3D à partir des deux cartes d'activation 2D avec une nouvelle fonction de perte. L'approche que nous proposons permet d'obtenir des résultats comparable à l'état de l'art pour la prédiction avec une vérité terrain très faible pour la segmentation.

Des études récentes ont montré le potentiel des régions péritumorales pour améliorer la précision de la prédiction de la réponse au traitement et la survie. Ainsi, l'association des régions intratumorale et péritumorale fournit des informations plus riches qu'une seule région pour l'analyse radiomique. Par conséquent, nous développons un nouveau réseau de segmentation qui ne donne pas la même vérité terrain que les médecins, mais qui permet de trouver les régions qui contribuent le plus à la prédiction. Notre méthode est basée sur l'apprentissage MTL, qui est un type d'algorithme d'apprentissage visant à combiner plusieurs éléments d'information provenant de différentes tâches afin d'améliorer les performances du modèle et sa capacité à mieux généraliser. L'idée de base du MTL est que différentes tâches peuvent partager une représentation de caractéristiques communes, et donc les entraîner conjointement.

Notre méthode réalise conjointement 4 tâches : la reconstruction de l'image, la classification de la pathologie, la segmentation de la tumeur et la prédiction de la réponse au traitement et la survie, dans le cadre d'un apprentissage multi-tâches. Nous montrons que l'encodeur peut bénéficier de tâches multiples pour extraire des caractéristiques significatives et puissantes qui améliorent la performance radiomique, et que les tâches subsidiaires servent de biais inductif pour que le modèle appris puisse mieux généraliser. Notre modèle a été testé et validé pour la réponse au traitement et la survie dans les cancers du poumon et de l'oesophage, surpassant les méthodes d'apprentissage à tâche unique. Nous montrons également qu'en utilisant une approche MTL, nous pouvons améliorer les performances de l'analyse radiomique grâce à la richesse des informations extraites des régions intratumorales et péritumorales. L'architecture MTL a également été testée avec succès sur un jeu de données COVID-19. a First of all, I would like to thank the members of the jury of this thesis for their interest in my work. I particularly thank Mrs. Diana Mateus and Mr. John LEE, for having accepted to report my thesis. I also thank Mr. Dimitris Visvikis for having done me the honor of chairing the jury.
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General Introduction

Cancers present a strong heterogeneity within and between patients, which occurs at different levels/scales : genetic, cellular, tissue, organ . . . etc. It also evolves during the course of the disease and therapy [START_REF] Marusyk | Intra-tumour heterogeneity : a looking glass for cancer ?[END_REF]]. This limits the use of invasive procedures such as biopsies, on which molecular and genetic analyses are carried out, but on the other hand gives enormous potential to non-invasive imaging techniques [START_REF] Yip | Applications and limitations of radiomics[END_REF]. Over the past decade, the use and role of medical imaging in clinical oncology has increased dramatically. Recent advances in medical imaging allow the use of image analysis methods that go beyond the localization of organs and tumors and simple measurements of their size. Imaging therefore has great potential to guide treatment, monitor progress, predict disease progression and response to treatment. "Radiomics" [START_REF] Kumar | Radiomics : the process and the challenges[END_REF], Lambin et al. 2012b], namely the computational analysis of medical images is recently used as a surrogate for the determination of complex image features. Until recently, evaluation of images has been limited to what the eye can see, but the complex interactions between tissues at the image level is a treasure-trove of information that can only be fully utilized with computational methods. Here, we propose to harness this information by applying deep learning methods to predict patient's outcome, study intra and inter-tumoral heterogeneity to better assess the underlying tumor changes that may be impacting prognosis and therapy response.

Many methodologies have been proposed for patient stratification and biomarker identification [START_REF] Elefsinioti | Key factors for successful data integration in biomarker research[END_REF][START_REF] Sorani | Clinical and biological data integration for biomarker discovery[END_REF]], some of them building a joint latent variable model to simultaneous infer cluster assignments from multiple data types [START_REF] Shen | Integrative clustering of multiple genomic data types using a joint latent variable model with application to breast and lung cancer subtype analysis[END_REF]], or building networks of patients as a basis for data integration [START_REF] Wang | Similarity network fusion for aggregating data types on a genomic scale[END_REF]]. Though powerful, these approaches do not scale well to high-dimensionality data, making the algorithms sensitive to a necessary initial feature pre-selection step. Despite several decades of research, predictive biomarkers are scarce, limited to the metastatic setting and are more effective at identifying non-responders than patients who may benefit from treatment. Here, we aim to provide novel insights into radiomic and therapy responsiveness by developing new prediction methods based on deep learning approach that uses multiple layers to progressively extract higher-level features from the raw input and predict the outcome in an end-to-end model.

In the last years, deep learning has seen large success for different applications such as image classification [START_REF] Krizhevsky | Imagenet classification with deep convolutional neural networks[END_REF]], object detection [START_REF] Zhao | Object detection with deep learning : A review[END_REF]], speech recognition [START_REF] Hinton | Deep neural networks for acoustic modeling in speech recognition : The shared views of four research groups[END_REF]] and in various applications in the medical imaging field [START_REF] Lee | Deep learning in medical imaging : general overview[END_REF][START_REF] Ravì | Deep learning for health informatics[END_REF]. Deep learning methods are data hungry, which presents a problem in the field of medical imaging where usually only few labeled examples are available. In practice, to deal with small dataset, different well known regularization techniques are used to avoid overfitting. For instance, dropout is a regularization technique commonly used in deep neural network architectures to prevent co-adaptation between neurons [Srivastava et al. 2014a]. The key idea is to randomly drop units (along with their connections) from the neural network during training with the goal of generating an exponential number of different "thinned" networks. Other mechanisms such as L p parameter norm or early stopping are usually used to reduce the model complexity. Therefore, we believe that deep learning is a relevant approach for radiomic study despite these challenges.

The objective of this thesis is to investigate an end-to-end deep frameworks that can jointly extract rich features and predict patient's outcomes on a small dataset. This thesis has three main contributions. First, we propose to go beyond classical radiomics based on handcrafted features by using deep radiomics. Our approaches can jointly learn characteristics and predict outcomes. Second, we propose a weakly supervised learning approach to segment automatically the lesion and then predict the patient's outcome based on the segmentation result. Finally, instead of doing segmentation and prediction separately and also to solve the overfitting problem when training complex models, we propose an architecture that includes segmentation, classification and prediction through multi-task learning.

The work presented in this thesis was carried out in Becquerel cancer center with the Quantif-Litis team of the university of Rouen, and General Electric Healthcare. This thesis was financed in part by National Association for Research and Technology (ANRT).

Outline of the thesis. The manuscript is composed of two background chapters followed by three chapters each presenting one of our contribution as mentioned above.

-Chapter 1 starts by a general definition of cancer and the different tools used for diagnosis, treatment and follow up. Then, we present the principle of fluorodeoxyglucose (FDG) PET imaging, as well as its medical interest in oncology. Finally, we describe the first-order, second-order, and higher-order statistical features derived from medical images and their contribution in oncology.

-Chapter 2 introduces several machine learning paradigms covering supervised learning, weakly supervised learning and multi-task learning, which are the core of this thesis. Then, we present a review of the literature presenting the concept of radiomic using machine learning and deep learning algorithms, as well as current limitations.

-Chapter 3 presents our first contribution, which consists in the development of a deep radiomics framewrok based on 3D CNN to predict the response to treatment for patients with esophageal cancer. Our proposed method relies on two strategies to boost the prediction power of a CNN : (i) Develop a 3D CNN to extract 3D PET image features and predict the outcome (ii) Study the role of the volume of interest on the accuracy of the 3D CNN and other methods by using isotropic margins around the tumor volume, so as to reveal intra and peritumoral influence on the outcome prediction. We show experimentally that our approach allow us to achieve the best results compared to state-of-the-art methods.

-Chapter 4 is devoted to our second contribution which falls into the scope of weakly supervised learning where only little information is available for tumor segmentation. Image segmentation in 3D requires a lot of data and high computing power.

In addition, the tumor is sometimes too small and included in a large 3D volume.

We propose a method based on the principle of interpretability of a classification network to detect the lesion. The originality of our contribution comes from the fact that we train a CNN to classify images into lung or esophageal cancer, whose ground truths are easy to obtain compared to manual segmentation of 3D images.

Class activation maps which represent the areas of the lesion can be obtained at the same time. Then, using the segmentation results, we perform radiomic analysis to predict patient's outcome for esophageal cancer and survival for lung cancer.

We show experimentally that the proposed method achieve state-of-the-art results for both segmentation and prediction tasks.

-Chapter 5 is dedicated to the presentation of our third contribution. Instead of training a Neural Network (NN) to do a segmentation as the physician's delineation, we let the NN decides which are the most peritumoral and intratumoral informative regions that boost the prediction performance. This is done through a MTL approach where the NN learns jointly the segmentation of the lesion and the outcome prediction. Since CNN needs a large dataset to learn useful representation and generalize to an unseen data, training a CNN on a small dataset presents the risk of overfitting. In order to overcome this limitation, we propose an approach based on parameter sharing. By adding subsidiary tasks such image reconstruction [START_REF] Zeng | Medical image reconstruction : a conceptual tutorial[END_REF]] and pathology classification, we have experimentally shown that the shared encoder works well for all four tasks because the number of grounth truths is increased. We evaluated our method on lung and esophageal cancer datasets and showed that MTL can improve the performance over a single learning approach. We also validated our method on a COVID-19 CT dataset.

-In chapter 6, we conclude our work and give some perspectives to improve it. 

Cancer

Definition

A healthy organism has vital functions (breathing, circulation, digestion,. . .) in good condition and balanced : a phenomenon called homeostasis. In this situation a healthy cell can divide by mitosis and give two daughter cells, clone of the mother cell. It frequently happens that a cell undergoes changes either in the nucleus or in its morphology.

In the case of a deleterious mutation, either the cell commits suicide by apoptosis, or the cell dies causing inflammation, which is called necrosis. As long as these mechanisms are active, then the organism can remain healthy. However, a mutant cell may acquire the characteristic of multiplying in an uncontrolled manner, endangering the vital balance of the organism (Figure 1.1). This disease characterized by abnormal cell proliferation within a living organism is cancer. Indeed, these cells increase in number, both by their important mitotic capacity linked to a loss of control of the cell cycle, but also by an insensitivity to apoptosis. There is also an anomaly in DNA repair. As these cells accumulate, a tumor can form in the target organ. Then, some primary tumors may progress to a more global invasion of the body, by escape of tumor cells : this is called metastasis. When organs are affected, they gradually lose their functionality, ultimately leading to death. They differ from blood cell cancers, such as leukemia or lymphoma, in which the cancer cells circulating in the blood or lymph are dispersed throughout the body.

In 2018, the number of new cancer cases in metropolitan France is estimated at 382,000.

Between 2010 and 2018, the cancer incidence rate tends to stabilize in women ; it is decreasing in men. The number of cancer deaths has been estimated at 157,400 (67,800 cancer deaths in women and 89,600 cancer deaths in men) 1 . Therefore, cancer care is a public health issue.

Cancer staging

For most of the cases where a person has cancer, physicians need to asses the stage of the disease. Staging is the process of determining how much cancer cells is within the body and its location. This step is crucial to determine the treatment. The stage of the cancer can also be used to predict the prognosis and the response to treatment. However, some cancers are not staged based on the spreading of the diseases, such as leukemia, which is a cancer of the blood cells and therefore the diseases have spread throughout the body by the time of the finding.

In order to asses the stage of the cancer, different techniques can be used. In many cases, the most reliable way to diagnose a person with cancer and to know the type of cancer it is, is by removing a small tissue called sample, and then analyze it under a microscope with the help of a pathologist. This operation is called biopsy. Blood tests can also be used to stage some type of cancer. Other exams such as endoscopy are sometimes used for the investigation and staging of cancer, for example, in the case of esophageal cancer. Staging can also be done using imaging tests such as CT, PET and MRI.

Generally, the stage of the cancer is determined at the time of diagnosis, however, this stage is usually updated later after the treatment and during the follow-up. When the staging is done based on physical exams such as medical imaging tests, endoscopy or biopsy before the treatment it is called clinical staging. When the stage is determined using a sample from a surgery given as first treatment it is called pathological stage. This stage may differ from the clinical stage, since it allows to determine more precisely the spread of the disease and may help also to predict treatment response and prognosis. In case of a recurrence, the staging is performed a second time in order to help guide decisions about the treatment. This is referred to as re-staging. An important thing to note here is that the new stage is added to the original stage, but it does not replace it. The first stage at the diagnosis level is the most important stage when performing statistics analysis or predicting the outcome.

TNM Stage

The most common and widely used system to asses the stage of solid cancer is the TNM stage. The overall stage in TNM is determined by investigating the 3 elements : tumor(T), node(N) and metastasis(M) as follow :

-T : the primary tumor -N : if the cancer has spread to nearby lymph nodes -M : if the cancer has spread to distant part of the body This system provides physicians with important information about the size of the tumor, its location and whether or not it has spread. A letter or a number is assigned to each category to determine the spread of the disease. For the primary tumor category (T), the different sub-categories are :

-TX : no information about the tumor -T0 : no evidence about the tumor -T1 : the tumor invades the mucosa 2 or submucosa 3 Once all these information are gathered and combined the TNM stage is defined (see The cancer stage is a very important information that affect the treatment and also the patient's prognosis, along with the type of the cancer. The prognosis or survival rate is defined as the percentage of people with certain stage and type of cancer living after certain amount of time (usually 3-years), after being diagnosed. Survival rates are mainly based on the stage. There are indeed other factors that may affect the prognosis, such as the overall health of the patient, age and response to treatment. Finally, it should be noted that accurate cancer staging is difficult and complex due to the precision required to make accurate staging. Also, TNM system showed some limitations in the prediction of the response to treatment and survival in oncology [Huang and O'Sullivan 2017].

Treatment

Cancer is characterized by an inter-and intra-cellular heterogeneity. Due to this specificity, and the fact that different type of cancers are defined as different diseases, different type of treatments are proposed. The main classes of treatment are the surgery, chemotherapy, radiotherapy and immunotherapy. It can also be combined such as Chemoradiotherapy or surgery with Chemoradiotherapy.

Cancer surgery can be used for different purposes : to prevent, diagnose, stage and treatment. Surgery is used sometimes to diagnose cancer. When this procedure requires a surgery to take out a sample, it is called surgical biopsy. In the case of staging, it is done by examining the area around the tumor such as the lymph nodes and nearby organs, in order to determine how much the cancer has spread. Surgery for treatment is defined as the abduction of the whole or a part of the tumor. In the first case, it is called curative since it is given as the main treatment and the tumor is removed completely. In case where only a part of the tumor is removable, it can help other treatments to work better. In that case the operation is called debulking surgery.

Radiotherapy is the use of high doses of radiation to kill or damage DNA of cancer cells. It is used generally to treat some area of the body, and is called local since it treats or affects one part of the body. Cancer cells with irreparable DNA damage stop dividing or die. When the damaged cells die, they are destroyed and eliminated by the body. This process may take days or weeks, and even months before DNA is damaged enough for cancer cells to die. There are two main types of radiation : internal and external (Figure 1.2). The choice of the type of radiation depends on several factors such as the type of cancer, the size of the tumor, the tumor location and the overall health of the patient.

Internal radiation therapy is a treatment where the source of radiation is put inside the body. The radiation source can be solid or dispersible. External radiation therapy is the most common used in radiotherapy. In this case, the source of radiation comes from a linear accelerator.

Chemotherapy is the use of drugs to treat a disease. In most of cases chemotherapy is used to imply drugs used for cancer treatment. It is considered as a systemic treatment, Radiotherapy and chemotherapy are given to cure, to control or as a palliation treatment. In case where cure is not possible, they are given to control the disease and stop the growing and spreading of the tumor, with the hope to decrease its size. In that case, the cancer is treated as a chronic illness. When curing and controlling is not possible, radiotherapy and/or chemotherapy can be given to ease symptoms and relieve patient from pain or pressure caused by a tumor so the patient feels better. This is called palliative treatment or palliation.

Finally, immunotherapy is based on the use of a person's own immune system to target and kill cancer cells. This can be done using different strategies. The first one is stimulation, or boosting the immune system to work its hardest or smartest. The second one is to make substances similar to the immune system of a person and using them to improve the immune system works in order to kill cancer cells. Cancer treatment is an area of ongoing research. Current criteria to choose a treatment are based on stage, tumor localisation and clinical information. However, these criteria have shown some limitations, and recent studies revealed the need of more accurate information for the choose of treatment [Lambin et al. 2012b]. These criteria should include personal information about the person such as genes (genomics), proteins (proteomics) and images (radiomics). The incorporation of these sources of information will help to accurately identify the stage of the disease but also to personalize the treatment, which is called precision or personalized medicine (see Figure 1.3). 

The WHO, RECIST and PERCIST criteria

World Health Organization (WHO) introduced a standard measure to assess the response to treatment for solid tumors [START_REF] Miller A | Reporting results of cancer treatment[END_REF]]. This standard categorize patients in 4 groups : Complete Response (CR), Partial Response (PR), Stable Disease (SD) and Progressive Disease (PD). This categorisation is based on several information including anatomical criteria for the evolution of the tumor at the end of treatment. However, this criteria have shown several limitations : it is not very robust to measurement bias and the maximum/minimum number of lesions to be considered in the evaluation is not specified. Also, the WHO criteria is subjective.

The response evaluation criteria in solid tumors (RECIST) [START_REF] Eisenhauer | New response evaluation criteria in solid tumours : Revised RECIST guideline (version 1.1)[END_REF] elements such as the detector ring, a coincidence processing unit, the computer for image reconstruction, and the process placed at the heart of the object to be detected (see Figure 1.5).

In CT, absorption of the x-rays is the contrast generating parameter. The subject is irradiated with x-rays, and the different absorption allows to distinguish between the different tissues. While in PET, the absorption is, in principle, undesirable. Indeed, the absorption of gamma-rays in PET is considered as a nuisance effect. Figure 1.6 shows an unstable parent nucleus with in red the neutrons, and in blue, the positrons.

When this unstable nucleus decays, there is a conversion of a positron into a neutron. Thus, the charge changes by minus one. With a different charge and with the charge conservation law, this positive charge will be emitted from the nucleus in the form of a positron. This positron will then diffuses through the tissues, undergoes various interac- tions, and akin to the electrostatic Coulomb interaction. After this, positron has lost most of its kinetic energy, at some point, it will be attracted by a nearby electron. They combine, it is matter and antimatter, and when matter and antimatter meet, they are annihilated, so there is the emission of two gamma-rays. These gamma-rays travel at 3 × 10 8 meters per second. Thus, in 3 nanoseconds, the gamma-ray will have traversed 1 meter in the scanner. This essentially means that in order to determine the location of an annihilation event, the detector must detect two events that occurred simultaneously, i.e. two gammarays at the same time. This will indicate that at some point, there was an electron-positron annihilation. This is the basic principle of detection. However, in practice, the detection of the two gamma-rays does not happen to be always simultaneously. There are several cases :

-True coincidence (Figure 1.7a) two photons that are being sent off in opposite directions and detected simultaneously.

-Random coincidences (Figure 1.7b) coincidences where two positron electron annihilation processes happened simultaneously. Of these four photons that are being produced, two of them are lost.

-Scattered coincidence.(Figure 1.7c) when an annihilation occurs and one of the photons is being Compton scattered in the tissue, so it's being deviated by a certain angle.

-Multiple events (Figure 1.7d) when more then 2 events are detected simultaneously. Each line of the sinogram represents the number of events detected in all the parallel response lines forming the same angle with respect to the tomograph axis. Then the reconstruction of the 3D images is done using analytical or iterative methods. PET machines now-days are coupled with CT to add an anatomical information, which helps physicians in image interpretation, and also for attenuation correction [START_REF] Kinahan | Attenuation correction for a combined 3d pet/ct scanner[END_REF]]. More recently, MRI also can be coupled with PET images [START_REF] Wagenknecht | Mri for attenuation correction in pet : methods and challenges[END_REF]]. 

Fluoro-2-deoxy-D-glucose (FDG)

The most widely used tracer for PET is FDG. It's the glucose where there's a fluorine attached at the two position (Figure 1.9). Instead of OH group, there's a fluorine attached.

Fluorine 18 is an unstable nucleus that decays, and as it decays it emits a positron. The radioactive half-life is 110 minutes with an energy of 0.64 MeV. The tumor appears stained on the MIP. Other organs with normal FDG fixation are : the brain due to its permanent activation, the kidneys and bladder for their filtration role.

Standardized Uptake Value (SUV)

"Standardized Uptake Value" (SUV) [START_REF] Woodard | Expression of tissue isotope distribution[END_REF]] was introduced as a simple means to measure the absolute metabolic activity using PET. Tracer fixation in tissues depends in particular on the injected dose and the blood volume in which the activity is distributed. A simple way to normalize the measured uptake is therefore to apply the following formula 1.1 :

SUV BW = Activity concentration kBq mL
Injected dose(kBq)/Body weight(g) (1.1) This weight-standardized definition is usually given without unit. The fixation expressed in Bq/mL, corresponds to the image quantified in an absolute way. So in summary, an SUV value equal to 1 means that the tracer concentration corresponds to the average 1.2. FDG PET IMAGING : PRINCIPLE AND CHARACTERISTICS concentration in the patient. A value of 10 in a lesion means that 18F-FDG binding is 10 times greater than the uniform distribution of the tracer.

To interpret a fixation, it is necessary to normalize it by this quantity. It is a passage from relative quantification (recorded events / voxel) to absolute qunatification (Kbq/mL).

The ability to measure the SUV value of a lesion has the advantage of normalizing the images so as to compare the intensity of the fixation for patients who have received different activities relative to their weight. It also makes it possible to evaluate the therapeutic response and to monitor the patient. -SUV mean : is the mean value of the SUV in a defined metabolic volume.

Features in FDG PET Imaging

-SUV min : represents the SUV in the voxel of activity with the lowest value.

-SUV peak [START_REF] Wahl R L | From RECIST to PERCIST : Evolving Considerations for PET response criteria in solid tumors[END_REF]] : is the average SUV of the voxels contained in a parallelepiped volume of interest with three voxels on each side and whose position is chosen such that the average SUV of the voxels contained in the volume of interest is as high as possible. Its center belongs to the segmented metabolic volume.

-TLG (Total Lesion Glycolysis) [START_REF] Larson | Tumor Treatment Response Based on Visual and Quantitative Changes in Global Tumor Glycolysis Using PET-FDG Imaging The Visual Response Score and the Change in Total Lesion Glycolysis[END_REF]] : is defined as the product of the mean SUV with the metabolic tumor volume measured in the tumor.

-MV (Metabolic volume) : is defined as the total volume in cubic centimeters (cc) of the tumor.

Recently, a new approach is of increasing interest in PET imaging, namely the characterization of intra-tumor heterogeneity of radiotracer uptake. This approach consists in extracting image characteristics based on classical 1 st and 2 nd order statistical methods.

For instance, texture is very important in the analysis of images, this is due to its presence in the vast majority of images, thus a large number of methods for its analysis have Work on texture has given rise to several approaches to characterize it and thus, to recognize the texture in an image, we find in the literature two main approaches.

Structural approach

It is based on two main elements : the primitives used and the spatial relations that link them together. The methods of this approach are mainly based on signal processing, topography and geometry. Their strong point is that they can be used with classical segmentation methods such as Edge-Detection. Some methods consist in finding the texels (basic component of a texture) then using heuristics to find the positioning rules, other so-called syntactic methods use language theory to generate the texture by applying production rules, moreover a texture can be generated by several grammars. The results of this approach are more used in texture synthesis than in texture analysis.

Statistical approach

First-order statistics :

It is a method based on the distribution of pixels without taking into account the relationships between them. The means used to represent the distribution is the histogram, a FIGURE 1.12 -Images and corresponding histograms TABLEAU 1.2 -Different properties that can be calculated using the histogram.

Property Formula Mean µ = G-1 i i h(i )(1.4) Variance σ 2 = G-1 i =0 (i -µ) 2 h(i )(1.5) Skewness µ 3 = σ -3 G-1 i =0 (i -µ) 3 h(i )(1.6) Kurtosis µ 4 = σ -4 G-1 i =0 (i -µ) 4 h(i ) -3(1.7) Energy µ 5 = G-1 i h(i ) 2 (1.8) Entropy µ 6 = G-1 i h(i )l og 2 h(i )(1.9)
graph allowing to study the distribution of a variable, the X axis will represent the different gray level values, the Y axis will represent the number of occurrences 1.12.

The creation of a histogram is done with the following function :

h(i ) = N -1 x=0 M -1 y=0 σ( f (x, y), i ) (1.2)
where σ is 1 when f(x,y) = i, 0 otherwise. Then, the final equation is the following :

H (i ) = h(i ) N * M (1.3)
After the calculation of the histogram, different properties can be calculated as shown

in table 1.2.
Second-order statistics :

First order statistics are limited since there are no relation kept between the different voxels. For further statistical analysis, other methods have been proposed to account for this voxel relationship, such as textural analysis. The resulted characteristics are of second order or higher since relationships between neighboring elements 2 x 2 or more are kept.

There are four main texture matrices proposed in the literature :

-Co-occurrence matrix ("Gray Level Cooccurrence Matrix" (GLCM)) [START_REF] Haralick | Textural features for image classification[END_REF]] : The co-occurrence matrix is a matrix of dimension N*N where N is the number of gray level values, each cell of the matrix C (i, j) represents the number of occurrences of pixels i and j according to a relation of distance and orientation. So we obtain a co-occurrence matrix for each distance and orientation (See figure ??).

For each matrix we can calculate 14 properties of which the most important are shown in table 1.3.

-"Gray Level Difference Matrix" (GLDM) [START_REF] Amadasun | Textural features corresponding to textural properties[END_REF]] : It describes differences in intensity between neighbors and contains statistics and contains statistics of a higher order than the previous matrix.

-("Gray Level Run Length Matrix" (GLRLM)) [START_REF] Galloway | Texture analysis using gray level run lengths[END_REF]] : characterize the length of ranges of the same intensity in a given direction.

-("Gray Level Size Zone Matrix" (GLSZM)) [START_REF] Thibault | Texture Indexes and Gray Level Size Zone Matrix Application to Cell Nuclei Classification[END_REF]] : It gives the length of the zones having the same intensity in all directions simultaneously. 

Conclusion

In this chapter, we presented the interest of the functional imaging PET with FDG for cancer care. We also covered the interest of this modality in therapeutic follow-up, as well as the prediction of treatment response and survival. The SUV max is considered to be the first feature that allowed such prediction to be made prior to treatment. Numerous characteristics emerged later in an abundant literature, proposing features based on 1 st order, 2 nd order and higher order statistics.

Since many features can be extracted from the images, Machine Learning (ML) is the most relevant technique to take into account all the features together. In a classic scheme, a ML algorithm is first used to select the most relevant features for prediction, and then another or the same ML algorithm is applied to the selected features to predict patient outcome.

In the next chapter, we will draw up a state of the art in ML algorithms and the process of predicting patient survival using radiomic features. We will also discuss different ML algorithms, as well as different radiomics framework.

Introduction

Today we live in a world where data is available in immense quantities, to the point where it is becoming the new oil [START_REF] Hirsch | The glass house effect : Big data, the new oil, and the power of analogy[END_REF]]. Conventional methods for manipulating these vast amounts of data and mining knowledge are becoming very limited, hence the interest in developing and using new adapted methods. ML, a subclass of Artificial Intelligence (AI), is a paradigm in which the methods developed make use of this data to uncover a pattern in order to predict future data or outcomes. AI is defined as a program that mimic the human intelligence. ML is a branch of AI where designed algorithms improve their performances with experience. DL is a class of ML that uses Artificial Neural Network (ANN) with representation learning to progressively extract higher level features from the raw input (see Figure 2.1).

Two components are essential in machine learning : learning (training) and testing (inference). Learning requires the availability of a dataset in order to uncover a pattern, which will help later during the inference to make a decision on a new, unseen samples.

Most of machine learning algorithms rely on handcrafted features instead of raw input.

This process requires domain knowledge to extract manually meaningful features, and then passed to a ML algorithm in order to learn. For inference, the same features are extracted to be used by the algorithm. DL proposes to replace this framework with an end-to-end model that extract features and perform prediction at the same time. DL is composed of several layers : the first ones tend to learn low level representations while the latter ones high level features (Figure 2.7).

In this chapter, we will present first basic notion in machine learning, and then a state of the art works in radiomics with ML. Finally, we will show the research directions that we are going to carry out in this thesis. 

Basic notions in Machine learning

Principe of Learning

Learning from data is what defines a machine learning algorithm. Mitchell provides a formal definition to learning : "A computer program is said to learn from Experience E with respect to some class of tasks T and performance measure P, if its performance at tasks in T, as measured by P, improves with experience E." [START_REF] Mitchell | Machine learning[END_REF]]. In this thesis, we will focus on the classification task with supervised learning experience, weakly supervised learning and multi-task learning.

The Task, T :

If you ask a person if a tree is in a picture, he can answer very quickly. If the same person is asked what a tree is, he may not answer with great accuracy to describe a tree.

ML algorithms allow to solve this problem by learning from the images the features of the tree and decide on the type of tree, which is called learning from data. Thus, ML enables to address problems that are hard to be solved by a written fixed program. The task is what the ML algorithm will learn to do. For instance, if we want the algorithm to learn to predict the survival of a patient with lung cancer after treatment, the task is survival prediction.

The Performance, P :

Performance is a way to measure the efficiency of an algorithm. For the classification, we usually measure the accuracy of the learned model. Accuracy is the proportion of data that have been correctly classified. This measure provides a simple yet very useful information on how the model is doing on classification. However, sometimes one measure is limited. For instance, in a binary classification task, if 99% of the data belong to class 0 while only 1% belong to class 1, a simple model that attribute the class 0 to all data will achieve an accuracy of 99% while the class 1 is completely ignored. In this case, other measures could be added to measure the efficiency, such as sensitivity (Sens) and specificity (Spec) :

Sens = TP TP + FN (2.1)
where TP is the true positives, FN is the false negatives. In our binary example, TP + FN is the number of data points classified as 1.

Spec = TN TN + FP (2.2)
where TN is the true negatives, FP is the false positives. In our binary example, TN + FP is the number of data points classified as 0.

In that case the accuracy (ACC) could be defined as :

ACC = TP + TN TP + FN + TN + FP (2.3)
Similarly, we can calculate the error rate, which is the proportion of misclassified data.

The objective of the learning algorithm is to minimize the error rate, called also the cost function. This cost function and performance are calculated on the training dataset, but in practice we are interested on how well the model is doing on a complete new unseen dataset, which is called a test set. The choice of the performance metric depends on the task to be learned.

The Experience, E :

In machine learning, different approaches can be used to learn from unstructured data (see Figure 2.2). Two main classes are usually presented : supervised learning and unsupervised learning. In a supervised learning approach, the goal is to learn a mapping from inputs x to outputs y, given a labeled set of input-output pairs The second type of machine learning is unsupervised learning. In this case, only inputs x are given, D = (X i ) i=1 N , and the goal is to uncover a pattern or a relation between

D = (X i , Y i ) i=1 N . D
x's in the data. This approach is also refereed to as knowledge discovery. In this work we are interested mainly in the supervised learning approach. FIGURE 2.2 -Various categories of approaches for structuring the unstructured information. Source : towardsdatascience.

Capacity, Overfitting and Underfitting

The capacity of a model is defined as its generalization to perform well according to a performance metric P on a new unseen data set, the test set. The error rate on the training set is known as the training error, and on the test set as the generalization error or test error. Among the main differences between optimization and ML is that in ML not only we desire to minimize the training error but also the generalization error. Thus, finding a trade-off between the two measures is necessary, which is a challenging problem in ML known as underfitting and overfitting. The underfitting occurs when the model is not able 

Hyperparameters and Validation Sets

As mentioned above, the capacity of the model influences the exploitation of a hypothesis space. This capacity in fact depends on a set of hyperparameter of the algorithm. In general, a hyperparameter is a parameter used to control the behavior of the algorithm.

The values of hyperparameters are not adapted through learning (though a field called meta-learning in which a second algorithm learns the optimal hyperparameters for ano- 

Cross-Validation

The availability of a large database, especially in the medical field, is not always evident.

Thus, dividing a small dataset into training and test may not be the best approach to measure the performance of a model. A small test set makes it hard to compare two algorithms due to the uncertainty around the test error. In that case, an alternative procedure called k-fold cross-validation can be applied. This procedure consists of dividing the dataset into k subsets called folds, where k-1 are used in training and one in test. The process is repeated k times. Different test set can then be chosen to measure the performance of the model when using the other k-1 folds for training. The final measure can be obtained as the mean of the k performances.

Weakly supervised learning

In a WSL, only few labels are available (see Figure 2.2). Theses labels are used to retrieve a signal that labels a large amount of data. ML algorithms are well known for their data hungry nature, although in many of real life problems, such as in medical imaging, having a sufficient quantity of labeled data may be difficult due to the need for an expert to label the data manually and such a task is time consuming. Three well known types of weak labels are usually presented :

- -Inaccurate labels : based on non-experts to label the data, which results in a low quality annotations [START_REF] Zhou | A brief introduction to weakly supervised learning[END_REF]] -Existing resources : such as knowledge bases or pre-trained models to label the data for a certain task that may be helpful, but not perfectly suited for the given task [START_REF] Ratner | Weak supervision : the new programming paradigm for machine learning[END_REF][START_REF] Zhou | A brief introduction to weakly supervised learning[END_REF] The advantage of this method is the possibility to increase the size of the database without worrying about labels. Indeed, in a supervised learning approach, the whole dataset should be labeled, which limits the use of large databases that are available but not annotated, as is the case in medical imaging.

Multitask learning

The standard method in machine learning is to learn one task at a time. Large problems are broken into small sub-problems that are learned separately and then recombined. MTL [START_REF] Caruana | Multitask learning[END_REF]] is a type of learning algorithm that aims to combine several pieces of information from different tasks in order to improve the model's performance and its ability to better generalise [START_REF] Zhang | A survey on multi-task learning[END_REF]]. The basic idea of MTL is that different tasks can share a representation of common characteristics [Zhang and Yang 2017],

and thus train them jointly. The use of different data sets from different tasks allows learning an efficient representation of the common characteristics of all tasks, because all data sets are used to obtain it, even if each task has a small data set, thus improving the performance of each task.

Artificial Neural Networks

ANNs or NNs for simplicity, are a computing system inspired roughly by biological neural networks (see Figure 2.4). It consists of a number of units that receive an information, process it and send it to the next units. The simple component of a NN is perceptron [START_REF] Rosenblatt | The perceptron : a probabilistic model for information storage and organization in the brain[END_REF]]. A perceptron represents a single neuron. It is a simple function with a linear parameter with respect to its input, as represented by the following formula :

f (x) = φ(x . w + b) = φ( D i =1 x i w i + b) (2.4)
where x ∈ IR D is an input vector, w is a vector of parameters known as weights. b is a scalar parameter known as bias. φ is an activation function. Given an input node, φ outputs a value to decide if a neuron should contribute or not in the neural network, and on how should it contribute. The most popular activation functions used in NNs are nonlinear (see figure 2.3), thus the model could capture high representations using small nodes. 

Multilayer perceptron (MLP)

Multi-Layer Perceptron (MLP) or deep feedforward networks are the core of deep learning models. A feedforward network can be represented as a function approximation where y = f (x) and f is unknown. In classification, the goal of MLP is to estimate f using a labeled training set D = (X i , Y i ) i=1 N , and then to use this approximated function h to estimate ŷ using inputs x. We name the approximated function h the hypothesis function.

A MLP defines a mapping as y = h(x, θ), where θ are the parameters to learn that results in the best approximation function. It is composed by an input layer, followed by one or more hidden layers and an output layer (see figure 2.5).

FIGURE 2.5 -An example of a multi-layer perceptron.

Neural Network training

The most widely used algorithm to train neural network is Back-propagation [START_REF] Rumelhart | Learning representations by backpropagating errors[END_REF]]. After a feed-forward pass, the NN predicts an output ŷ for each input x.

The ŷs are compared then to the expected output ŷ via a cost function, which gives us an idea about the model performance. The error is propagated into the network from output to input layer via back propagation. During this process, the weights and the biases of the models are updated in order to minimize the cost (loss) function (see figure 2.6). 

Convolutional Neural Networks

In 1980, Fukushima introduced a hierarchical multilayer neural network called neocognitron [START_REF] Fukushima | Neocognitron : A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position[END_REF]], which is considered as the originial convolutional neural This operation is usually followed by a pooling layer. Different methods exist for the pooling operation : max pooling which consists on keeping the maximum value within a region, or average pooling which return the average of values within a region. The size of the kernel for the convolution may differ from a layer to another by increasing the depth generally. At the end of the last convolutional layer, the raw input become small in width and high but bigger in depth. Then, a flatten operation that consists on putting the result of the last convolutional layer into a 1 big dimensional tensor. A MLP is finally used to make a decision. Convolution in neural networks comes with three important properties : sparse interactions (see figure 2.8 and figure 2.9), parameter sharing and equivariant representations. In a multi-layer perceptron, each unit of the actual layer is connected with every unit of the next layer. This process create separate parameters describing the interaction between each input unit and each output unit. Sparse interactions, called also sparse connectivity or sparse weights, refers to the small connectivity between a kernel and the input. This property allows the detection of small, meaningful features from an image, such as edges. Unlike the fully connected neural network, only a small kernel with tens of parameters is used, which results in a fewer parameters for the processing. This results in a large efficiency, since fully connected neural network is based on a matrix multiplication. Which means for an input n and an output m, the matrix multiplication requires m

x n parameters. With a small k connectivity, only m x k parameters are required.

In a fully connected neural network, since each input unit is connected with each output unit, the connection is used only once. In a CNN, the same kernel is used for the whole input, which results on sharing the parameters between the different input units.

Interpretabilty

Despite their success, deep learning models often function as black-boxes, and provide very little understanding about the inner workings. While opaqueness concerning machine behaviour might not be a problem in deterministic domains, in health care, model interpretability is crucial to build trust in the performance of a predictive system. To date no single method can provide a detailed human-understandable explanation of how a model makes a decision, however recent efforts in the field of interpretable artificial in- 

Conclusion

In the first section we have covered the basics of ML with supervised learning approach, WSL and MTL. We have presented ANN with the basic component of a NN : perceptron. We covered then the MLP with CNN, showing how to train NN and preseting several hyperparameters that influences on the training and the performance of the NN.

In the next section, we introduce the concept of radiomics. We will show the differences between classical radiomics, based on handcrafted features with or without features selection strategy followed by ML, and deep radiomics, where the features are learned jointly with classification or prediction.

Radiomics

Concept and principle

Precision medicine is a reality in some tumor types [START_REF] Arnedos | Precision medicine for metastatic breast cancer-limitations and solutions[END_REF] The use of all the features extracted from the images does not enhance necessarily the performance, but may be responsible for the redundancy of the information and disrupt the model. [START_REF] Orlhac | Tumor Texture Analysis in 18F-FDG PET : Relationships Between Texture Parameters, Histogram Indices, Standardized Uptake Values, Metabolic Volumes, and Total Lesion Glycolysis[END_REF] 

Machine learning for radiomics

The most used machine learning methods in radiomics are RF, SVM and MLP. Random forest or random decision forests [START_REF] Breiman | Random forests[END_REF]] are an ensemble of multiple decision trees [START_REF] Breiman | Classification and Regression Trees[END_REF]]. Decision tree is a tree-like model where the population is divided in 2 progressively based on a feature so that it separate at best the 2 popula- to implement and computationally fast, they may also filter some useful information for the classification task, whereas the objective of extracting a large number of features is precisely to bring additional information.

To summarize, machine learning for radiomics workflow is as follow (see figure 2.11 :

-The first step is the collection of the dataset and the definition of the ROI. Collecting a representative dataset is a challenge in the medical imaging field. In addition, the annotation of the dataset requires a highly trainable physician and is time consuming. Thus, many radiomic studies do not include more than 50 patients in their studies [Balagurunathan et 

Objectives of the thesis

Radiomics [Lambin et al. 2012b], can have a great clinical impact, since imaging is used in clinical routine all over the world. In PET imaging, there is a growing interest in identifying the features that characterize the spatial distribution and heterogeneity of 18F-FDG in a tumor [START_REF] Hicks | Early fdg-pet imaging after radical radiotherapy for non-small-cell lung cancer : inflammatory changes in normal tissues correlate with tumor response and do not confound therapeutic response evaluation[END_REF][START_REF] Miller | Improved prognostic value of 18F-FDG PET using a simple visual analysis of tumor characteristics in patients with cervical cancer[END_REF]]. The dominant method for obtaining quantitative descriptors of spatial heterogeneities is based on texture analysis [START_REF] Castellano | Texture analysis of medical images[END_REF]]. These techniques encompass a large number of mathematical descriptors that can be used to evaluate the variation in intensity between voxels in a PET slice as well as in adjacent slices, in order to retrieve measures of intra-lesion heterogeneity. 

Introduction

Predicting patient response to radio-chemotherapy (RCT) is a very promising field of research in personalized medicine. PET imaging with 18 F-FDG, which is a radioactive glucose analog, has mainly been used in radiomics analysis, but other radio-tracers have also 

Material and methods

Database presentation

In this study, 97 patients with one lesion that was histologically proven to be locally 

Image preprocessing

Tumor images were spatially normalized by re-sampling all the dataset to an isotropic resolution of 2 × 2 × 2 mm 3 using the k-nearest neighbor interpolation algorithm.

The metabolic tumor volume (MTV) was segmented by a physician who manually defined a cuboid volume around the lesion and used a fixed threshold value of 40% of the maximum standard uptake value (SUVmax) in the cuboid. To study the influence of the 

3D RPET-NET architecture

We have developed a CNN architecture based on two 3D convolutional layers and two fully connected layers, as shown in figure 3.2 for radiomic study. As we do not have a large amount of data and our architecture is in 3D, we take here only 4 layers. Each convolutional layer, denoted C (m) , consists of F (m) feature maps, where m is the layer number (1 or

2). For the first layer, C (1) , each feature map is obtained by convolving the volume of interest with a weight matrix W (1) i to which a bias term b (1) i is added, where i is the feature map number. Then, the output is processed by a non linear function f(x) called the activation function, where x is the input to a neuron, such as : (1) i + W (1) i * x) with i = 1, ....., F (1) .

c (1) i = f (b
(3.1)

Each element of a feature map, c i (1) , is obtained by convolving the input x with a 3D kernel. A large receptive field tends to better preserve the relationship between slices and Then, the output of this first convolutional layer is followed by a 3D pooling layer, to reduce the dimensionality of feature maps. The max-pooling operator is used as a stage detector to report the maximum value within each cuboid of size (2 × 2 × 2) for all feature maps. The purpose of this operation is to down sample the feature maps by a factor of 2 along each direction (width, high, length) and to better generalize learning by selecting approximately invariant features. This invariance to local translation is very important in radiomics because tumors do not have a particular direction. The resulting feature maps are denoted P (m) .

To extract high-level features from the low-level ones obtained in the initial layer, a second convolutional layer is added, followed by a pooling layer. This convolutional layer learns from the pooled feature maps of the first layer (see figure 3.2).

The parameters of the CNN consist of all the convolutional weights W, and the weight matrix Wh, denoted by θ. They are learned by minimizing the binary cross-entropy function :

L(θ) = - 1 n n i =1 [y i log( ŷi ) + (1 -y i ) log(1 -ŷi )] (3.2)
which is a special case of the multinomial cross-entropy loss function for m = 2 :

L(θ) = - 1 n n i =1 m j =1 y i j log( ŷi j ) (3.3)
where n is the number of patients, y is the the ground truth : 1 if the patient responds to treatment, 0 otherwise.

In our experiments, the adaptive gradient algorithm optimizer (AdaDelta) is used with mini batches. At each update of weights using the AdaDelta algorithm, only one mini batch of training data was used, which is changed for each gradient calculation. Our CNN also incorporated L2 normalization of the weights and a dropout regularization of 50% to prevent the model from overfitting.

To find the best 3D RPET-NET we test different parameters. The network using the optimal parameters is 3D RPET-NETBest. The hyperparameters to be optimized include the number of 3D feature maps (we tested from 8 to 64 feature maps), the number of neurons (128, 256, 512, 1024, 2048 and 4096), as well as different receptive field sizes (3 × 3×3, 5×5×5) and different sizes of mini-batches (2, 4, 8 and 16). We have evaluated several activation functions (relu, elu, selu and tanh), the numbers of 3D convolutional layers,3D pooling layers (2 to 5) and fully connected layers (2, 3, 4 and 5) to find the the best model.

Implementation

The implementation of 3D RPET-NET is conducted using the Keras library which is built on top of Theano and Tensorflow. We take advantage of graphical processing units (GPUs) to accelerate the algorithm. The CNNs training is performed on an NVIDIA Tesla 80 with 12 GB of memory.

Experimentations

Three experiments were performed to evaluate our 3D RPET-NET. 

Validation methodology

For the evaluation of our method, cross-validation (CV) was performed. We split the data into 2 groups to train and test the machine learning methods for each fold. One group was used for training the models (77 patients) and one group for testing (20 patients). Furthermore, for the CNN, the training samples were split into a dataset of 2 groups, a train set (55 patients) and a validation set (20 patients), and a grid search was conducted to derive the optimal hyperparameters based on the validation set. For a fair comparison, different machine learning methods were trained and tested with the same fold, i.e, trained with the same training sets and tested with the same test sets. To keep the same ratio between the two classes CR and NCR, for each fold, the training set contained 44 CR patients and 33 NCR patients, and the testing set contained 12 CR and 8 NCR.

The performances of the methods were evaluated for each cross-validation, including sensitivity (Sens), specificity (Spec), accuracy (Acc), and area under the receiver operating characteristic (ROC) curve (AUC). For each curve, the definition of the thresholds was determined using the method proposed by Fawcett [START_REF] Fawcett | An introduction to roc analysis[END_REF]], and the optimal cutoff point was defined using Youden's index.

A 

Results

The main results from the 3 experiments evaluated by accuracy, sensitivity, specificity and AUC of ROC curves are shown in table 1.

Experiment 1 : As shown in Fig. 2, the best accuracy Acc=0.72 and AUC=0.70 were achieved by two 3D convolutions layers and two 3D pooling layers, followed by two fully connected layers with the following hyperparameters for the first 3D convolutional layer : eight 3D feature maps with a filter size of 5 × 5 × 5 and a relu activation function. This operation is followed by 3D Max-pooling of size 2 × 2 × 2. The second 3D convolutional layer corresponds to sixteen 3D feature maps of 5×5×5 convolutions, followed again by a 2×2×2 3D pooling layer. Then, the last two layers are composed of fully connected layers of 1024 hidden neurons and finally 2 neurons for both classes.

In NETBest performances on MTV2 are statistically significantly better than those on MTV4 (p=0.04). The same trend is observed with RF classifiers.

Discussion

We have developed an end-to-end 3D convolutional neural network (3D PET-NET) based on PET images. We have also evaluated We have shown that isotropic dilation of MTV tends to increase the performances of RPET-NET 3D. When the margin around the MTV is too large (>2 cm) the network performances decrease. When the MTV is increased by a margin which is too large, the volume of interest can include parts of metabolically active organs that are likely to interfere with the CNN analysis. Our results suggest that between 3 cm and 4 cm of the peritumoral volume, the relevant information to predict treatment response decreases, is responsible for a drop in the model's performance. Adding a peritumoral volume to the radiomic analysis has already been tested in MRI [START_REF] Braman | Intratumoral and peritumoral radiomics for the pretreatment prediction of pathological complete response to neoadjuvant chemotherapy based on breast dce-mri[END_REF]] but never in PET imaging. These initial results must be confirmed on other types of cancer. Moreover, the influences of the initial volume of interest and the segmentation methods require further study.

Conclusion

The analysis of PET tumor images with a 3D CNN architecture (3D-RPET-NET) shows very promising results in the prediction of treatment response in esophageal cancer. 3D-RPET-NET outperformed 2D CNN architectures, as well as the traditional radiomics approach (such as RF classifiers). Moreover, since the CNN does not take hand-crafted features as input, it eliminates the need for feature selection, making the entire process much more convenient and less prone to user bias. In addition, we have shown that the best volume to be used for PET radiomic prediction is the metabolic tumor volume with an isotopic margin of 2 cm. This peritumoral region seems to contain information that is potentially relevant to building better prediction algorithms since currently approaches are based only on the quantification of the intratumoral region alone.

Even though our CNN-based method can give good results, it needs to know segmented tumor regions. However, manual segmentation of the tumor in 3D is a very tedious and time consuming task. To solve this problem, we propose a weakly supervised learning approach which will be presented in the next section.
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Introduction

To better appreciate the volume of interest in oncological radiotherapy and also the biological component of a tumor, radiomics is proposed as a field of study that makes In addition, we propose to fully identify and locate tumor in 3D PET images from only two 2D MIP images with face and profile views, which allow to enormously reduce the complexity of the architecture and the learning time.

The chapter is organized as follow : in section 2, we describe our weakly supervised model model, explaining the CAM and the new loss function introduced. Section 3 presents the experimental studies. In section 4, we show the results of our work. Section 5 is for discussion and conclusion.

Material and methods

Main idea

Our method consists of two stages : segmentation of the tumor region and prediction of the treatment outcomes. The core of our method is to develop a new method to gene- Finally, the back-propagation is performed in respect to both Lcl ass and Ld i st ance to update the weights.

Maximum Intensity Projection

Maximum intensity projection (MIP) is a 2D image that represents 3D image for fast interpretation in clinical applications [START_REF] Prokop | Use of maximum intensity projections in ct angiography : a basic review[END_REF]]. Our idea is to use MIP to deal with 3D images, allowing in one hand to greatly reduce the complexity of the networks and avoids over-fitting due to the small size of the medical image data set, and on the other hand to keep useful 3D information for classification. Two MIPs calculated from opposite points of view are symmetrical images because they are rendered by orthographic projection. MIP imaging is used routinely by physicians in interpreting PET images.

It can be used for the detection of lung nodules in lung cancer screening programs for example. MIP enhances the 3D nature of these nodules, making them stand out from pulmonary bronchi and vasculature [START_REF] Valencia | Value of axial and coronal maximum intensity projection (mip) images in the detection of pulmonary nodules by multislice spiral ct : comparison with axial 1-mm and 5-mm slices[END_REF]]. Considering the advantages of this technique which is also faster in terms of calculation, we can use it for the classification of images, to classify the different pathology such as lung cancer or esophageal cancer. However, the radiomics features obtained from MIP images are not rich enough to predict the outcome of treatment and survival, due to the loss of depth information (the third dimension). To obtain a 3D tumor region, we propose to use both sagittal and coronal MIPs.

The intersection of these two orthogonal views allows us to define the region of interest in 3D, as shown in Fig. 2. Our strategy is to use 2D images to find 3D tumor region, which can speed up the tumor localisation in 3D. Indeed, instead of generating a 3D activation response map whose corresponding 3D network is time consuming and difficult to train with limited resources, we only design two 2D classifiers to generate two class activation maps.

New Design of Class Activation Map

Interpreting machine learning models is a key element towards making it easier for physicians to embrace these methods. To interpret a convolutional neural network, we In a CNN based classifier, once the features are flattened, the spatial information is lost. Therefore, if we want to visualize locations of the features , we have to visualize the features with their locations before the flattening. We thus take the feature maps of the last convolutional layer to generate class activation map. However, these feature maps are much smaller in size than the input size. Typically, the width and high of a class activation map are 1/33 of that of the input image and the number of feature maps is the same as the output of the last layer (128). We note the total number of feature maps in the last layer by D. To go from these feature maps with size of 13 x 5 to a heat maps over the whole image, we need to unpack these feature maps. Let f i be the i th feature map. For each feature map f i , a weight w is associated to it, where i=1...D. Then, a pre-heat maps is obtained by adding each feature map multiplied by its weight as in 4.1 :

pr e_hmap = D i =1 [w i f i ] (4.1)
Each feature maps contains 13 × 5 elements (65 in total), where f j,z i is (j,z) element of the i th feature map, where j=1..13 and z=1..5. To obtain the wights w for each of these feature maps, we calculate the influence of f i j,z on the output ŷ, by computing the partial derivative of ŷ with respect to each feature in f i , such as :

I = ∂ ŷ ∂ f i j,z (4.2)
Then, w i is calculated by taking the average of the feature influences at each j , z position as in 4.3 :

w i = 1 N J j =1 Z z=1 ∂ ŷ ∂ f i j,z (4.3)
where N is the number of elements in the feature map, J is the width and Z is the height. Finally, we keep only features with positive influence. We apply ReLU function to keep only positive values. The heat map is finally obtained by :

h_map = ReLU ( D i =1 [w i f i ]) (4.4)
where ReLU (X ) is defined as :

Rel u = max(0, X ) (4.5)
Because the heat map is generated at a low resolution of 13 × 5, we interpolate it to adapt it to the size of the MIP images. In our application, two different types of cancer, corresponding to two classes : lung cancer and oesophagus c ancer are considered. Let C denote the class ∈ {lung, oesophagus}. From 4.1 and ?? we have :

w i C = 1 N J j =1 Z z=1 ∂ ŷC ∂ f i j,z (4.6) h_map C = ReLU ( D i =1 [w C i f i ]) (4.7)
The obtained heat maps will be used afterwards to calculate a new loss function in the classification step(see next section).

We introduce this novel loss function to prevent heat maps from further resolution drop. A large loss indicates that the current representation of the networks does not ac- 

Classification

A CNN consisting of a two Dense layers with 128 and 64 neurons respectively, is used in our classification step. The resulting set of feature maps, encloses the entire spatial local information, as well as the hierarchical representation of the input. Each feature map is flattened out, and all the elements are collected into a single vector V of dimension K, providing the input for a fully connected hidden layer, called h, consisting of H units. The activation of the i (th) unit of the h hidden layer is given by :

h i = g (b i + W h i * V ) with i = 1, ....., H . (4.8)
A dropout of 0.5 and the activation function el u are used for learning. The last layer is a Dense layer with one neuron for image classification using a sigmoid activation. The binary cross entropy is used as the loss function (Lclass) for classification :

Lcl ass = - 1 n n i =1 [y i log( ŷi ) + (1 -y i ) log(1 -ŷi )] (4.9)
where n is the number of patients, y is the cancer lung label (binary, 1 if the patient has lung cancer, 0 if it is oesophagus cancer) and ŷij ∈(0,1) : j ŷij =1 ∀i,j is the prediction of a lung cancer presence.

Distance constraint using prior knowledge

As shown above, the class activation map depends on the derivation of feature maps.

Since the patients' bodies have different widths, the areas where there is the contour of the body can also make the class activation map meaningful. To deal with this problem, we propose to use prior knowledge to construct a distance constraint. We assume that when CNN classifies the images, the decision is focused on the tumor region. This means that the class activation map must include the tumor region. Based on this prior knowledge, we randomly select a point approximately in the center of the tumor. Therefore, we define a distance constraint as our second loss term of classification.

The distance between the selected point p and the points in the generated heat maps, defined as follow :

Ld i st ance = m i =1 |q i -p| (4.10)
where q i notes a point i and m is the number of points in a heatmap. This second loss function makes it possible to correct the errors of the heat maps generated through the distance constraint. In fact, instead of focusing on the discriminating regions, which may include information other than the location of the tumor for classification, the heat map is regularized with the distance constraint to emphasize the region of the tumor and at the same time keep a good classification (see Fig 5).

The global loss function (loss glob) for the 2 tasks is defined by :

l oss_g l ob = Lcl ass + αLd i st ance (4.11)
where α is a constant weight coefficient. We take alpha = 1 in our study. As the class activation map has low resolution, it does not accurately capture visual patterns of the lesion, and it is therefore necessary to provide an additional mechanism for self-improvement by backpropagation. The resulting architecture (see Figure 4.4) is a novel convolutional neural network with attention feedback based on the proposed loss function. This can greatly improve the locating ability.

Segmentation

Once we obtain the heat maps for sagittal and coronal MIP views, we retrieve the lesions mask on the 3D image. Sagittal MIP allows to retrieve y and z axis, and coronal MIP the x and z axis. Combining the 3 coordinates finally results in the 3D volume of the tumor, see figure 4.6.

Prediction

Once we obtain the 3D tumor region, we conduct a radiomics analysis to predict patient survival and treatment outcome. We use 3d-rpet-net [Amyar et al. 2019b], a CNN classifier based on two 3D convolutional layers and two fully connected layers to conduct radiomics analysis (see figure 4.7). The same model is applied on both 3D volumes manually segmented by a physician and automatically segmented by our method in order to compare their performances.

Experiments

Dataset

Patients underwent a whole body FDG PET/CT, at the initial stage of the pathology and before any treatment. The PET/CT data were acquired on the same device, and with the same acquisition and reconstruction procedure used in routine care, and presented in the above chapter. The reconstructed exam voxel size was 4.06 × 4.06 × 2.0 mm 3 and were spatially normalized by re-sampling all the dataset to an isotropic resolution of 2 × 2 × 2 

Setup

We firstly generated maximum intensity projection (MIP) for coronal view and for sagittal view. MIP is a 2D image that summarizes 3D images for fast interpretation. Tumor which is commonly used in medical imaging for fully supervised segmentation, and CAMs without prior knowledge.

Experiment 2 : The second experiment consists of radiomics analysis. We predict the treatment survival for oesophagus cancer, and patient's survival for lung cancer. The response to treatment was evaluated 3 months after the end of treatment, and the overall survival (OS) used for the prognostic study was estimated at 3 years after the end of the treatment.

Implementation

The model was implemented using python with pytroch deep learning library, and trained for 2 days on nvidia p6000 quadro GPU with 24gb.

Evaluation Methodology

We divide the dataset into 3 groups : training, validation and test. For a fair comparison, all the methods were trained, validated and tested with the same group of data. The performance of the models were evaluated using the dice coefficient for the segmentation task, and the accuracy (Acc), sensitivity (Sens), specificity (Spec) and area under the ROC curve (AUC) for the classification, such as :

Sens = TP TP + FN (4.12)
where TP is the true positives, FN is the false negatives and TP + FN is the number of patients classified positively.

Spec = TN TN + FP (4.13)
where TN is the true negatives, FP is the false positives and TN + FP is the number of patients classified negatively. ACC = TP + TN TP + FN + TN + FP (4.14)

Results

Table 1 shows results for of tumor segmentation for both oesophagus and lung cancers. Different methods were compared to our proposed model with : U-NET using fully supervised learning, and CAMs without prior knowledge.

Table 2 shows results of radiomic analysis, for the prediction of patient's treatment, 3 months after the end of radiochemotherapy for oesophagus cancer, and the prediction All the methods were compared based on the ability to detect accurately the tumor and to conduct a radiomics analysis. The performances are measured by accuracy, sensibility, specificity and the area under the ROC curve. The results were obtained using a 5 fold cross-validation. Best results for segmentation were obtained using our proposed model for both lung and oesophagus cancer. For radiomics, 3d-rpet-Net with manual segmentation was not statistically significantly different from our model (p=0.59) for oesophagus and (p=0.63) for lung. Our model tend to have a better sensibility for oesophagus and a better specificity for lung cancer with no significant differences. This means that our method, which does not need ground truths, can obtain similar results as using manual segmentation. This is very encouraging for the automatic radiomics analysis.

In the previous chapter we showed the interest of weakly supervised learning to detect automatically the lesions, in order to perform a radiomic analysis afterward. In this chapter, we introduce the multi-task learning (MTL) framework, where neural networks is trained to conduct several tasks in the same time. In this MTL approach we are interested of learning segmentation not to be exactly as the physician ground truth, but to let the neural network decides which are the regions that contribute the most in the outcome prediction.

Introduction

Radiomic is a field of study where images have great potential for precision and per- The standard method in machine learning is to learn one task at a time. Large problems are broken into small subproblems that are learned separately and then recombined. Multi-task learning (MTL) [START_REF] Caruana | Multitask learning[END_REF]] is a type of learning algorithm that aims to combine several pieces of information from different tasks in order to improve the mo- We believe that the global information in the entity image volume describing the relationship between the tumor and other organs is also useful as the characteristics of the tumor. We show that, by using a multi-task learning approach, we can boost the performance of radiomics analysis while extracting rich information of intratumoral and peritumoral regions. More specifically, we present a new method of learning segmentation not to be exactly as the physician ground truth, but to let the neural network decides which are the regions that contribute the most in the outcome prediction. Our main contributions are summarized as follows :

1. Our proposed architecture is the first to use jointly global features extracted from entire image and local features from tumor regions to predict the outcome in a radiomics study.

2. We design a new multi-tasking learning network to jointly segment the tumor on a 3D PET image and predict the outcome, which is simultaneously associated with two subsidiary tasks, classification and reconstruction. The last two tasks are added to make the features more relevant and also to serve as an inductive bias to better generalize.

3. We utilize a multi-scale feature extraction so that the model can predict the outcome from tumor and tumor neighborhoods features, and also global features at the encoder level.

4. We conduct extensive validation strategy with multiple ablation experiments, comparison with state of the art methods in both supervised and multi-task learning.

Related Work

In previous studies, several methods for segmentation of the region of interest and joint classification have been proposed. For instance, Yang et al. [START_REF] Yang | A novel multi-task deep learning model for skin lesion segmentation and classification[END_REF]] created a multi-task deep neural network for skin lesion analysis, in order to solve different tasks The main motivation behind their work is the correlation between tumor classification and segmentation, therefore learning these two tasks jointly may improve the outcomes of both tasks. The framework is based on an encoder-decoder network for segmentation and a light-weight multi-scale network for classification, with VNet as the backbone.

These above methods cannot be directly applied to 3D PET images to jointly segment the lesion, classify the pathology and predict the outcome. For instance, the tumor boundaries in PET images for esophageal cancer are not well defined, and sometimes hard to separate from other normal fixation (no tumor). In addition, peritumoral which is defined as the pathology around the tumor is an important information that can boost the prediction accuracy, but it is not taken into account with previous and classical approaches.

Finally, due to the variation in size of the tumors, a mutli-scale approach could be a benefice to capture small features as well as investigating bigger ones. In this work, we take 

Method

We propose a new multi-task learning algorithm to improve generalization by leveraging the domain-specific information contained in the training signals of related tasks as an inductive bias. It does this by learning tasks in parallel while using a shared representation ; what is learned for each task can help other tasks be learned better. Two major strategies are used when training a MTL algorithm, hard parameters sharing [START_REF] Caruana | Multitask learning[END_REF]] or soft parameters sharing [START_REF] Ruder | An overview of multi-task learning in deep neural networks[END_REF]]. Hard parameter sharing is the most commonly used approach to MTL in neural networks and greatly reduces the risk of overfitting [START_REF] Ruder | An overview of multi-task learning in deep neural networks[END_REF]], see figure 5.2. It is generally applied by sharing the hidden layers between all tasks, while keeping several task-specific output layers. In this work we utilize hard parameters sharing due to its great performance and wide utilization.

The reconstruction and pathology classification are extra tasks that serve as an inductive bias. The power of MTL framework lay in the fact that it is able to determine how tasks are related without being given an explicit training signal for task relatedness. We make the assumption that since the four outputs share common hidden layers, it is possible for internal representations that arise in the hidden layer for one task are used by other tasks.

Model description

We task so that the neural network can extract meaningful features about PET images.

Encoder-Decoder

The encoder is used to obtain the disentangled feature representation. It is a 10-layers 3D convolutional neural networks with convolution filters of 3 × 3 × 3 and a maxpooling of 2×2×2 after each 2 convolutional layers and a skip connection. The number of feature maps increases from 64 for the 2 first layers to 1024 for the last ones. We use r el u activation function and a Dropout of 0.5 after the last convolutional layer. The structure of the 2 decoders is the same, with upsampling to return to the original image size followed by convolutional layers to reduce the number of features by a factor of 2. These features are concatenated with the ones from the corresponding level of the encoder.

Multi-scale Feature Extraction

For the outcome prediction, we take advantage of both local features and global fea- keep also important features, since it is more robust to spatial translation.

The reconstruction task Task1

We trained the model with a linear activation for the output and a mean squared error for the loss function (Lrecon) and used accuracy as the metric :

Lr econ = 1 n n t =1
(y_t r ue -y_pr ed i c t ) 2 (5.1)

where y_true is the true label and y_predict is the predicted label.

The segmentation task Task2

We used the same architecture as the reconstruction except for the activation function for the output, which is a sigmoid. The loss function is based on the dice coefficient loss (Lseg) which is considered as the metric :

5.3. METHOD d i ce_coe f = 2 * |X ∩ Y | + ǫ |X | + |Y | + ǫ (5.2) Lseg = -d i ce_coe f (5.3)
where ǫ is the the smoothing factor and used to avoid a division by zero.

The classification task Task3

The resulting set of feature maps, encloses the entire spatial local information, as well as the hierarchical representation of the input. Then, each feature map is flattened out, and all the elements are collected into a single vector V of dimension K, providing the input for a fully connected hidden layer, called h, consisting of H units. The activation of the i (th) unit of the h hidden layer is given by :

h i = f (b i + W h i * V ) with i = 1, ....., H . (5.4) 
In details, the output of the encoder is a tensor of mini_batch x 32 x 32 x 1024 to which we add a convolutional layer followed by a maxpooling, and then a flatten operation to convert the data to a mono-dimensional tensor to perform the classification. The multilayer perceptron consist of a two Dense layer with 128 and 64 neurons respectively, with a dropout of 0.5 and the activation function el u. The last layer is a Dense layer with three neurons for image classification using a sigmoid activation and a binary cross entropy is used as the loss function (Lclass) :

Lcl ass = - 1 n n i =1 [y i log( ŷi ) + (1 -y i ) log(1 -ŷi )] (5.5)
which is a special case of the multinomial cross-entropy loss function for m = 2 :

L(θ) = - 1 n n i =1 m j =1 y i j log( ŷi j ) (5.6)
where n is the number of patients and y is the class label (esophageal cancer, lung cancer).

The prediction task Task4

The prediction branch is connected to three layers from the encoder and segmentation decoder, in order to incorporate global features, in addition to tumor features extracted from the segmentation result. It is composed of 2 convolutional layers with 64 feature maps each followed by a maxpooling and 2 other convolutional layers with 128 feature maps each. Then, we apply a global average pooling to concatenate tumor based features (local features) with encoder-decoder global features in a multi-scale. Finally, three fully connected layers are used for the prediction with 128, 128 and 1 neurons respectively. The loss function is the binary cross-entropy and the performance metric is the accuracy :

Lpr ed i c t = - 1 n n i =1 [y i log( ŷi ) + (1 -y i ) log(1 -ŷi )] (5.7)
where n is the number of patients and y is the outcome.

multi-task Loss Function

We use reconstruction task to learn more meaningful features of PET exams, and outcome prediction task so that the network will focus attention on the most discriminator regions for the segmentation task so that. In our experiments, the Adam optimizer [START_REF] Kingma | A method for stochastic optimization[END_REF] algorithm was used with a mini batches of 4 and a learning rate of 0.0001. The global loss function (loss glob) for the 4 tasks is defined by : l oss_g l ob = αLr econ + βLseg + ωLcl ass + λpr ed i c t (5.8) where α = β and ω= 1-(λ+2×α). Our model was trained for 1500 epochs with an early stopping of 70.

Dataset

Our experiments were run on 195 PET image volumes with lung (98) and oesophagus (97) cancer, from Henri Becquerel Center, Rouen, France. All patients underwent whole body FDG PET with a CT (baseline PET), at the initial stage of the pathology and before any treatment. The PET/CT data were acquired on the same device, and with the same acquisition and reconstruction procedure used in routine care. The reconstructed exam voxel size was 4.06 × 4.06 × 2.0 mm 3 and were spatially normalized by re-sampling all the dataset to an isotropic resolution of 2 × 2 × 2 mm 3 using the k-nearest neighbor interpolation algorithm. We split the data into 2 groups to train and test the deep learning methods.

One group was used for training the models (77 Oeso and 78 Lung) and one locked group for testing (40 patients). Furthermore, for the CNN, the training samples were split into 2 groups, a train set (57 Oeso and 58 Lung) and a validation set (40 patients).

Implementation

All models were implemented using python and keras deep learning library, with tensorflow as backend, and trained on nvidia p6000 quadro gpu with 24gb. Some tested state of the art models were developed using pytorch library.

Experiments

We compare the performance of single task learning (STL-learning just one task at a time) and multi-task learning. We present an empirical test that rules out these mechanisms and thus ensures that the benefit from MTL is due to the information in the extra tasks. 

Validation Methodology

The performances of the models were evaluated using the dice coefficient for the segmentation task, and the area under the ROC curve (AUC) and the accuracy (Acc), for both classification and prediction. 

Results

The main results of the five experiments are shown in Tables 1 to 5. The neural network was trained for 1500 epochs with an early stopping of 70.

Experiment 1 : As shown in 

Discussion

We have developed a new deep learning multi-task model to jointly identify esophageal and lung tumors, segment the tumor regions of interest and predict patient's outcome. Our architecture is general, which means that it can be used for other segmentationclassification-prediction applications. We have also compared our method with several state-of-the-art algorithms such as U-NET, V-NET and WSL-MTL for tumor segmentation, methods for image classification and prediction, and for multi-task learning such as We have added the reconstruction task in order to leverage useful information contained in multiple related tasks to improve both segmentation and prediction performances.

Multi-task learning can handle small data problems well, although each task can have a relatively small data set. In contrast to conventional radiomics, where only one pathology is studied at a time, multi-task learning allows to study different cancer types at the same time, thus, to increase the size of the dataset and help the model to learn meaningful features from PET images so that help to improve the prediction.

We have added global image features through a multi-scale by using a global average pooling and then concatenated with tumor features to predict the outcome. Having both global and local features helps to improve the performance of the model compared to using only tumor features as in classical radiomic. Although the segmentation performance drops a little when combining the 4 tasks compared to segmentation-prediction alone, the most important task in our study is the prediction, hence we let the model decides which is the most important region in the image that increases the prediction performance, resulting in encompassing intratumoral and peritumoral regions. Since dice coefficient measures the intersection between the ground truth and the segmentation result, it can drop a little its score. The segmented tumor region may not be exactly the same as the ground truth, but it may be more relevant for prediction. In our study, the dice coefficient is used to ensure that the result of the segmentation is anatomically correct, not to be perfect.

One of the main advantages of our proposed method relies in the fact that once the learning is finished, we no longer need segmentation ground truth to do radiomics. The model requires only the PET images as input, thus to avoid the tedious segmentation task for physicians. Also, the architecture is general. The model can be modified easily to add other cancer types to do radiomics without changing the architecture, just the classification branch.

Conclusion

In this chapter, we proposed a multi-task learning approach to predict patients outcome from PET images and segment the regions of interest simultaneously. Our method can improve prediction results even if we have only several small datasets. thanks to learning tasks in parallel while using a shared representation. Therefore, what is learned for each task can help other tasks be learned better. We show also that subsidiary tasks serve as an inductive bias so that the model can generalize better. Our model was tested and evaluated for treatment response and survival in lung and esophageal cancers, outperforming single task learning methods and state-of-the-art multi-task learning methods. In the future, we will add other cancers to validate our framework and develop an attention mechanism to combine the different features.
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Conclusion and Perspectives

In this thesis, we have investigated deep learning (DL) to design new frameworks for radiomics. The main objective of this thesis was to exploit the potential of DL to automatically segment the lesions, extract deep radiomic features and predict patient's outcome in order to propose robust and reproducible models. Concretely, different CNNs architectures were proposed and evaluated using PET images mainly for esophageal and lung cancers.

We summarize our contributions as follows :

Deep radiomics

We propose a four-layer 3D-CNN. To find the best 3D RPET-NET, convolutional neural networks were used as a backbone to develop new architectures for outcome prediction.

Classical methods based on random forest and handcrafted features such as : random forest without feature selection (RF), random forest with features importance (FIC) and random forest with genetic algorithm (GARF) were used as baseline for comparison. RF makes use of handcrafted features, thus its performance is highly impacted by the features manually defined. On the other hand, CNNs tend to learn representative features while making a decision in an end-to-end framework. Early layers of a CNN extract low level features, and latter layers high level ones. These rich features are then fed to a fully connected layers (FC) for classification or regression.

The main algorithms proposed in the literature for deep radiomic are based on 2 Dimensional (2D) CNN architectures. This approach requires to process each slice separately, therefore the spatial relationship is lost. Also, the final prediction for the whole 3D volume requires a majority vote, which add the need to find the best threshold to separate accurately the 2 populations with good and bad outcome. To solve this issue, we englobed the tumor into a 3D cuboid of standard width, length and height. This method allows to take advantage of the spatial relationship between slices. Our assumption is that a neural network architecture able to capture patterns of FDG uptake that occur within the whole lesion in 3D may detect more relevant imaging features that are more relevant to predict treatment response than each slice individually or 3 adjacent slices. The influence of the learning volume (intratumoral volume with different peritumoral volumes) was also investigated. The peritumoral part of the tumor is therefore a volume that is not neglected in the treatment. By analogy, taking into account the intratumoral and peritumoral regions in radiomics analysis is likely a strategy that can improve the results.

To find a good compromise between network complexity and performance as well as our small dataset, we proposed a four-layer 3D-CNN. 

Image segmentation

The first step in radiomic analysis is the segmentation of the lesion. This process could be automated using computer-aided detection (CAD) tools. State of the art U-NET have shown very good performances for image segmentation in different fields. In medical imaging, it is usually used as a backbone for tumor or organs segmentation. The main drawback of U-NET is the need of a large dataset to work efficiently. Fully labeled dataset is very hard to obtain in the medical imaging field due to several reasons such as : protection of the patient's privacy, establishment of a specific protocol for data recovery, the need of an expert physician for data labeling . . . etc. Moreover, physician's labels are subjective and prone to error.

One possible solution is the use of a weakly supervised learning (WSL) approach. In order to make use of weakly labeled data, we transform a standard CNN used initially for classification, to perform a segmentation. This is done by the interpretation of the decision of the CNN using grad-cam, a method to visualize heatmaps developed by. In particular, two maximum intensity images (MIP) of the 3D PET scan are calculated for sagittal and coronal view. Then, a CNN is trained to classify the image for each view to lung or esophageal cancer, while generating a heatmap. This heatmap is used to retrieve the whole tumor volume. For each patient, we define at random a point in the center of the tumor, which is considered as a prior knowledge. Then, we define a loss function based on both the distance between the heatmap generated at the current iteration and the central point, and on the accuracy of the tumor type classification. We showed that training a neural network with weakly annotated data allows to achieve state of the art in both segmentation and outcome prediction.

Multi-task based deep learning for segmentation and prediction

Fully supervised learning approaches for tumor segmentation rely on large annotated dataset, and their performances depend on the ground truth (GT) defined manually by the physicians, thus the need of a well-defined GT.

To find a good compromise between segmentation accuracy and outcome prediction performance, we train a neural network to segment the tumor not to be precisely as the physician defined ground truth, but to maximize outcome prediction, thus the segmentation include peritumoral and intratumoral regions that contribute most to the prediction.

To ensure that the neural network does not take into account noises we ensure that the predicted segmentation is not very far away from the GT. This is done through a multi- 

Limitations

The potential of deep radiomics has been demonstrated in this thesis. However, there are several important limitations that we would like to address here.

Quantity and quality of data

Deep learning methods are data hungry, and their performance rely heavily on the quality of the dataset used for training. Therefore, it is very challenging to train a NN on a small dataset with the aim to generalize very well to an unseen dataset. Two main problems may occur when training a NN on a small dataset : the NN fail to learn, which results on a poor performance on the training dataset, this phenomena is called underfitting. This problem is generally due to the low capacity of the model, and can be solved by increasing the number of parameters of the NN to learn better. This will results in a NN with a large number of parameters that may have easily millions, therefore when learning from a small dataset it will lead to an overfitting. DL algorithms tend to overfit when 5.9. LIMITATIONS no big dataset is available for training, thus one must be vigilant to include some regularization techniques. Regularization is the process that allows a NN to look for useful representation from the training dataset while being careful not to memorize its distribution to prevent overfitting. Different regularization methods are proposed in the literature, but the most common one is based on representation learning such as dropout, semi-supervised learning and manifold learning. These techniques may improve the results.

In order to improve model generalization, different approaches were used in our work.

In 

Perspectives for future research

Multi-view and multimodal learning

Multi-view data are very common in the medical imaging field. One patient may have several exams such as PET scan, MRI or CT scan. Each modality provides rich and complementary information for other modalities, for example CT scan offers more anatomic detail while PET image gives functional information such as metabolism. These two modalities can be integrated into the same framework in order to extract rich features from both images to boost the NN performance. In particular, a multi-view NN can be trained using both modalities as raw input, and instead of using a single description about the patient and the lesion with one modality, using both of them provide more accurate and complete description. In addition, more information can be added in this framework, coming from heterogeneous sources : such as clinical data, genomics, proteomics or some pertinent handcrafted features. One of the promising direction in the precision medicine is the integration of all the available data types (genomics, proteomics and images) in a AI-driven multi-modal classifier that will be trained to predict patient's outcome, as well as other relevant clinical variables, such as staging, disease-free survival, etc.

Interpretabilty

Despite their success, deep learning models often function as black-boxes, and provide very little understanding about the inner workings. While opaqueness concerning machine behaviour might not be a problem in deterministic domains, in health care, model interpretability is crucial to build trust in the performance of a predictive system. To date no single method can provide a detailed human-understandable explanation of how a model makes a decision, however recent efforts in the field of interpretable artificial intelligence have produced various methods that can help bridge the gap between low-level features and phenotypic predictions. Perturbation-based approaches change parts of the input and observe the impact on the output of the network [Alipanahi et While a lot of progress has been achieved, many of these methods have been developed for specific types of data, and their application to medical imaging data is not always trivial. Besides, many of the previous approaches exploit heuristic ideas that work in very specific data types and models, limiting its generalization. Indeed, interpretabilty methods are, to some extent, black-boxes themselves and we have no consensus on which methods to use. In trying to understand a black-box, we have inadvertently created another. We currently have little understanding of human factors when it comes to accepting AI predictions in the clinic. Interpretability is important, but we have to always compare to the gold standard here : human physicians. In many cases, their decisions are not interpretable and object to a large inter and intra physician variability.

Data annotation

There has been a growing number of medical data annotation services over the past few years. These offer a network of experts to label the data for AI development. It is no surprise that almost 60% of ML work involves preparing data for models. Such services handle this bottleneck allowing startups to focus on the AI development and clinical integration aspects of their business. As healthcare data is silo-ed, the tools needed to curate each silo differ widely. As such, it is not entirely apparent if these services can offer a onesize-fits-all solution. As data cleanliness is paramount, the expertise of these "outsourced" annotators often comes into question.

Some of these services go one step further by offering access to curated medical images.

It is unclear how successful this model will be as it relies heavily on the success of medical AI startups. There are also issues around the exclusivity of data, and whether data can be re-purposed across multiple use cases. startups can have greater long-term benefits if they control and operate their own data curation pipelines and network of annotators.

Clinical perspectives

The increasing availability of omics datasets has opened new ways to characterize, categorize cancers and guide therapeutic interventions. Even though significant efforts have been made recently, many of them have shown limited clinical applicability and precise biomarkers that can inform clinicians of expected prognosis and offer the most beneficial treatment, while reducing unnecessary morbidity, are still needed. Furthermore, since cohort sizes are often limited in size, many studies employ single-locus analysis strategies that require the pre-selection of features in order to increase the statistical power of the study. Consequently, these strategies limit their search to a few known a priori candidate modifications and do not take full advantage of high-throughput datasets. From a clinicians' and radiologists' perspective all these efforts are only accepted, if it does not get more complicated. The irony is that while technology is designed to help productivity, it actually can add more work and complexity. The best AI application is the one that is invisible, that is seamlessly integrated into the workflows.

Three important concepts in clinical trials today that may help AI based application :

Central reads, diversity, and real-world evidence / real-world data.

Central reads : Trials often rely on site-based reads where a radiologist on staff that given day will review a patient's images. The same radiologist may not even read all other time-points for that patient. This can cause a very high level of variability and bias in the data. Central reads ensure all data is read in a controlled environment complying with protocols and using the same software. AI can play a major role in this highly operational environment without the nuances of patient management.

Diversity : It is no surprise that trial populations are heavily skewed in terms of race, background, and even gender. The FDA has recently issued guidance related to this topic.

Providers that have more diverse patient populations can now be seen as having "valuable 
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The 2 FIGURE 1 . 1 -

 211 FIGURE 1.1 -Normal and cancerous cells : How Are they different. Source : verywellhealth

  (T1a and T1b) -T2 : the tumor invades the muscularis4 -T3 : the tumor invades the adventitia5 -T4 : the tumor invades adjacent structures (other organs, . . .)For the lymph nodes category (N), the different sub-categories are : 2. A membrane that lines various cavities in the body and covers the surface of internal organs. Source : Wikipedia 3. A thin layer of tissue in various organs of the gastrointestinal, respiratory, and genitourinary tracts. Source : Wikipedia 4. Third layer of tissue in the colon. 5. The outer layer of fibrous connective tissue surrounding an organ 1.1. CANCER -NX : no information about the nearby lymph nodes -N0 : no evidence of regional lymph node involvement -N1 : spread to 1 or 2 neighboring lymph nodes -N2 : spread to 3 to 6 neighboring lymph nodes -N3 : spread to more than 7 neighboring lymph nodes For the metastasis category (M), the different sub-categories are :-M0 : no distance metastasis -M1 : the cancer has metastasized, it has spread to another part of the body.
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 12 FIGURE 1.2 -Difference between external and internal (brachytherapy) radiation therapy. Source : Equicarehealth.
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 13 FIGURE 1.3 -Example of different information, including the radiomic information of the image contributing to a personalized treatment, according to [Lambin et al. 2012b]
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 14 FIGURE 1.4 -Discovery IQ PET/CT scanner image courtesy of GE Healthcare.
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 151 FIGURE 1.5 -Diagram of the PET scan acquisition process. Source : Wikipedia.
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 17 FIGURE 1.7 -Types of coincidences recorded by the detection system : (a) true coincidence, (b) diffuse coincidence, (c) fortuitous coincidence and (d) multiple coincidence.
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 18 FIGURE 1.8 -Example of the creation of three lines of the sinogram according to the projection angle. Source : Tylski

FIGURE 1 . 9 -FIGURE 1 .

 191 FIGURE 1.9 -Stereo skeletal formula of fluorodeoxyglucose (18F). Source : Wikipedia.
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 111 FIGURE 1.11 -Representation of SUV derivatives of a lesion. Source : Orlhac.
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 21 FIGURE 2.1 -Artificial intelligence, machine learning and deep learning.

  is the training set and N is the number of training examples. The outputs y could be categorical or nominal such as healthy or pathological patient, or a real-valued scalar such as survival time in days. In the first case it is called a classification problem, and in the second one it is known as regression problem.

  to fit the training dataset, which results in a high training error. Overfitting occurs when the model does fit very well the training set, but the gap between the training error and the test error is very high. One of the main factors influencing underfitting and overfitting is the capacity of the model. It is defined as the set of functions the model can fit, called hypothesis space. Models with low capacity tend to underfit. Models with high capacity may overfit the training set, thus perform poorly on the test test. One way to address this problem is by limiting the hypothesis space that a model can explore, thus, reducing the capacity of the learning algorithm.

  ther algorithm does exist). If the hyperparameters are chosen based on the training set, the setting will be optimized to minimize the training error, resulting in overfitting. To solve this problem, another set called validation set which is constructed from the training set is used to evaluate the model. In practice, we split the training set into two subset, the first one for training (≈ %80 of the data), and the second one for validation (≈ %20). The validation set is used to estimate the generalization error during training, and allows to update the hyperparameters accordingly. It should be noted here that the test set is used only to measure the performance of the final model after training and hyperparameters optimization.

  Imprecise or inexact labels : it is based on the definition of heuristics based on experts workflow to label the dataset, defining the expected distributions, or by imposing constraints on the training data [Cabannnes et al. 2020, Ratner et al. 2016, Zhou 2018].
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 2324 FIGURE 2.3 -Similarities between biological neuron (left) and artificial neuron (right). Source : Wikimedia.
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 26 FIGURE 2.6 -An example of back propagation. By updating the weight w and the bias b through back propagation, the model minimize the loss L by approximating the ground truth y. Source : Javaid.

  network CNN. Neocognitron was used in several applications such as handwritten character recognition and other pattern recognition tasks. The architecture was inspired from the work of Hubel & Wiesel[START_REF] Hubel | Receptive fields of single neurones in the cat's striate cortex[END_REF], where they found two types of cells in the visual primary cortex. They have shown that first layers in the neural network tends to learn simple patterns, using simple cells, while advanced layers tend to learn more abstract patterns, using complex cells.CNN was introduced and become known by[START_REF] Lecun | Gradient-based learning applied to document recognition[END_REF]]. It is usually composed of convolutional layers followed by pooling layers, then a multi-layer perceptron. Convolutional layers are based on a convolution operation, where a kernel is used to convolve the image. A no linear activation function is applied then to the resulted image.
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 27 FIGURE 2.7 -Illustration of a deep learning model. Source : deeplearningbook [Goodfellow et al. 2016].

FIGURE 2 .

 2 FIGURE 2.8 -Sparse connectivity (top) compared to fully connectivity (bellow). Using a kernel of size 3, only 3 S outputs are affected by input x3 (top). With a fully connectivity, all S outputs are affected by x3. Source : deeplearningbook [Goodfellow et al. 2016].

  show the potential impact of radiomics in oncology for the prediction of the treatment response and patient survival. Several hundreds of quantitative handcrafted features can be extracted per lesion and image modality, related to the tumour volume, shape and textural properties.

FIGURE 2 .

 2 FIGURE 2.10 -Precision medicine allows to separate patients into different groups to personalize treatment. Source : [Vargas and Harris 2016].

  tions. Decision trees can be used for both classification and regression. RF makes use of handcrafted features, thus its performance is highly impacted by the features manually defined. SVM[Boser et al. 1992, Cortes and[START_REF] Cortes | Support-vector networks[END_REF] constructs a hyperplane or set of hyperplanes in a high-or infinite-dimensional space, which can be used to separate different classes. A good separation is achieved by the hyperplane that has the largest distance to the nearest training-data point of any class (called functional margin), since in general the larger the margin, the lower the generalization error of the classifier [Noble 2006].To build models predicting treatment response or patient survival, Machine Learning (ML) approaches and Deep Learning (DL) have been used but their application to radiomics is still in its early stage. For instance, from a database of 65 patients with esophageal cancer treated using chemo-radiotherapy and 61 clinical and baseline FDG-PET features,[Desbordes et al. 2017a] have shown the superiority of RF over SVM and conventional statistical analysis, using a single concatenated vector and several feature selection strategies. The best signature included both clinical and radiomic features.
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 211 FIGURE 2.11 -Current workflow of radiomics based on machine learning and features selection strategy.
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 212 FIGURE 2.12 -Deep radiomics workflow. The model extract features and predict the outcome jointly.

FIGURE 2 .

 2 FIGURE 2.13 -ROIs of a specific tumor i after segmentation embedded into larger square background of standard size of 100 × 100 pixels. From [Ypsilantis et al. 2015]
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  been tested[START_REF] Lu | Robustness of radiomic features in [11 c] choline and [fdg pet/ct imaging of nasopharyngeal carcinoma : Impact of segmentation and discretization[END_REF]]. However, the roles of traditional imaging biomarkers such as SUVmax and metabolic tumor volume (MTV) have not been well established in esophageal cancer for therapy response[START_REF] Kwee | Prediction of tumor response to neoadjuvant therapy in patients with esophageal cancer with use of 18f fdg pet : a systematic review[END_REF]]. Other biomarkers such as handcrafted texture features have been proposed[Tixier et al. 2011b] that are associated with standard statistics or advanced statistical classifiers[Desbordes et al. 2017c, Mi et al. 2015b].The concept of radiomics is defined as the extraction of dozens of quantitative features from the image that could be incorporated in predictive models for patient management[Lambin et al. 2012a]. Many reports suggest that radiomic features extracted from baseline images can contribute to improving patient prognosis and prediction of treatment response in oncology[START_REF] Avanzo | Beyond imaging : the promise of radiomics[END_REF]]. Images can be obtained from computed tomography (CT)[START_REF] Bogowicz | Computed tomography radiomics predicts hpv status and local tumor control after definitive radiochemotherapy in head and neck squamous cell carcinoma[END_REF]], magnetic resonance imaging (MRI)[START_REF] Nishioka | Image fusion between 18fdg-pet and mri/ct for radiotherapy planning of oropharyngeal and nasopharyngeal carcinomas[END_REF]] and positron emission tomography (PET)[START_REF] Cook | Radiomics in pet : principles and applications[END_REF]]. The visualization of glucose metabolism of tumor cells and other radiotracers in PET provides additional information to that obtained from anatomical imaging (CT or MRI). These so-called radiomic features are assumed to highlight some informative tissue characteristics, such as
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 31 FIGURE 3.1 -Columns from left to right : Fused PET/CT slice, zoomed on the esophageal tumor seen on FDG-PET only. MTV (40% SUVmax thresholding) in red and MTV included in the cuboid. MTV3 (MTV + 3 cm isotropic margin) in white and MTV3 included in the cuboid.

  advanced esophageal cancer and eligible for RCT are included. All procedures performed in this study are conducted according to the principles expressed in the Declaration of Helsinki. The study was approved as a retrospective study by the Henri Becquerel Center Institutional Review Board (number 1506B). All patient information is de-identified and anonymized prior to analysis. All patients underwent a FDG-PET/CT exam before treatment (baseline PET), at the initial stage. They were then treated by RCT, corresponding to an uninterrupted radiation therapy in the form of external radiation delivered by a 2-field technique of 2 Gy per fraction per day, 5 sessions per week, for a total of 50 Gy, as well as chemotherapy including platinum and 5-fluorouracil. The PET/CT data were acquired on a Biograph ® Sensation 16 Hi-Rez device (Siemens Medical Solutions, IL, USA). This device does not provide point spread function (PSF) modeling or time-of-flight (TOF) technology. Patients were required to fast for at least 6 hours before imaging. A total of 5 MBq/kg of FDG was injected after 20 min of rest. Sixty minutes later (±10 min), 6 to 8 bed positions per patient were acquired using a whole-body protocol (3 min per bed position). The PET images were reconstructed using Fourier rebinding (FORE) and attenuation-weighted ordered subset expectation maximization algorithms (AW-OSEM with 4 iterations and 8 subsets). The images were corrected for random coincidences, scatter, and attenuation. Finally, the FDG-PET images were smoothed with a Gaussian filter (full width at half maximum (FWHM) = 5 mm). The reconstructed image voxel size was 4.06 × 4.06 × 2.0 mm 3 . For the determination of treatment response, the response assessment included clinical examination, CT, FDG-PET, and esophagoscopy with biopsies performed 1 month after the end of treatment. Patients were classified as showing a clinically complete response (CR, 56 patients) to RCT if no residual tumor was detected on the endoscopy (negative biopsies) and if no locoregional or distant disease were identified on CT or PET evaluation. Patients were classified as showing a non-complete response (NCR, 41 patients) if a residual tumor or locoregional or distant disease was detected or if death occurred.
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 32 FIGURE 3.2 -3D RPET-NET architecture composed by two 3D convolutional layers followed by 3D pooling layers and two dense layers.

FIGURE 3 . 3 -

 33 FIGURE 3.3 -Visualization of a 2D slice of a segmented tumor and the resulting 32 feature maps in the second convolutional layer of the 1S-CNN architecture.

Experiment 1 :Experiment 2 :Experiment 3 :

 123 The first experiment consisted of tuning the optimal hyperparameters to find 3D RPET-NETBest based on MTV. Optimizing the hyperparameters was performed entirely on the training dataset. The second experiment consisted of comparing our architecture with 2 other CNN methods proposed in the literature : 1S-CNN and 3S-CNN[START_REF] Ypsilantis | Predicting Response to Neoadjuvant Chemotherapy with PET Imaging Using Convolutional Neural Networks[END_REF]]. The same tuning process of 3D RPET-NET was performed to find the best 1S-CNN and 3S-CNN hyperparameters. This experiment was performed on test data.We carried out a comparative study between our method and three RF-based methods : one method without any feature selection strategy, called RF, and two other RF methods proposed in the literature using a feature selection strategy. The first selection strategy, called GARF, uses a genetic algorithm based on random forest, and the second one called FIC, uses features important coefficient methods. For the details of these methods refer to[Desbordes et al. 2017c]. Briefly, 45 image features were extracted from PET images corresponding to first-order statistics(18), one feature of the lesion form, and textural features (26). Five hundred decision trees were built leading to the creation of the random forest classifiers. The third experiment consisted of assessing the influence of the volume of interest on the performances of 3D RPET-NETBest, RF, GARF and FIC according to the size of the volume of interest.

FIGURE 3 .

 3 FIGURE 3.4 -a. On the left : ROC curve comparing the 6 classifiers (RF, GARF, FIC, 1S-CNN, 3S-CNN and 3D RPET-NET) with the best parameters on MTV. b. Right : Comparison of the four classifiers on different VOIs (MTVs). Error bars correspond to standard deviation.

  use of images[START_REF] Gillies | Radiomics : images are more than pictures, they are data[END_REF]]. Radiomics allows from an initial PET exam the prediction of the survival of a patient and the response to radio-chemotherapy treatment, and therefore to help to personalize treatment[Amyar et al. 2019b[START_REF] Lian | Selecting radiomic features from fdg-pet images for cancer treatment outcome prediction[END_REF]]. The first step in a radiomics analysis is to localize tumor region for which radiomcis features can be extracted. Manual segmentation is tedious and time consuming, especially in 3D.Deep learning is a very promising tool for the automatic detection of lesions in PET images, but due to their data-hungry nature, they require very large amounts of annotated images, they are usually not available in medical imaging field. Most of segmentation methods use large annotated databases, however, annotating pixel-level tumor requires highly trainable physicians and they don't have a lot of time to do manual segmentation, especially in 3D. Moreover, physicians annotations can be subjective. In contrast, imagelevel labels indicating the presence of a lesion, or the type of cancer when they make the diagnosis are easy for the physicians and can be quickly obtained. Therefore, we propose an approach based on a weakly supervised learning (WSL), where image-level information is used to train a classifier based on CNN to predict the class label in a supervised
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 41 FIGURE 4.1 -An example of a PET image with oesophagus cancer on the left in which the tumor is barely visible, and the same image on the left in which the localisation of the tumor is shown in red color. It is not straightforward to learn the difference between tumor fixation and a normal fixation in a PET image.
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 42 FIGURE 4.2 -Maximum intensity projection (MIP) of PET exam. A) projection in Sagittal. B) Projection in Coronal
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 43 FIGURE 4.3 -The proposed architecture. The MIP is used to predict the pathology. A heat map is generated from the last conolutional layer

  rate class activation maps to locate the tumor region. We propose a new loss function to improve the generation of class activation maps, and therefore to locate the tumor more precisely. First, to make class activation maps more relevant, we introduce prior knowledge. For each patient data we randomly define a point at the approximate center of the tumor, which can be achieved easily compared to the delineation of the tumor contours in 3D PET images. Then, we define a new loss function based on two loss terms : the accuracy to classify the type of tumor, and the distance between the generated class activation maps at the current iteration and the central point. To that end, an 8 layers CNN is created to learn image-level labels and to generate an improved class activation maps to locate the tumors. After each feed forward of a mini batch of 8 images, a probability of belonging to a tumor class is obtained and then a binary cross-entropy loss function is calculated, noted Lcl ass, which is the first term. A A class activation map is generated for each image and a distance between the CAM and the central point in the tumor is then calculated, noted (Ld i st ance) which is the second loss term for tumor localization.

  can produce class activation maps to detect the zones in images that contribute the most to the network classification decision. In this work, the classification involves classifying the PET images into two classes : the esophagus class in which the esophagus tumor is present in the images ; and the lung class in which the lung tumor is present. It is a key step in our method, since it will be used to recover the entire tumor area in a PET image. When a CNN, typically having a series of layers, classifies an MIP image, its first layers capture low-level features while later layers capture higher-level visual information that is relevant to the classification task. The last convolutional layer is flattened, and then passed to a fully connected layers to provide a certain probability of belonging to the oesophagus class or lung one, seeFig 3. 
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 44 FIGURE 4.4 -Our proposed architecture. The neural network learns to classify the type of cancer from two 2D MIP images (sagittal and coronal). The generated heatmap is back-propagated and corrected to identify accurately tumor regions.
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 45 FIGURE 4.5 -Distance matrix between p at the center of the tumor and the points qi generated by the heat map. A) is a Coronal MIP for a patient with esophageal cancer. A point p is randomly defined at the tumor region. B) is the heat map generated using our proposed model. C) shows the overelay of the MIP and the heat map. D) is the distance matrix showing the distance between the points qi generated by the heat map and the point p.

  gray level intensities were normalized to have SUV level between [0 30] and then translated between [0 1] to be used in CNN architecture. The neural network is trained to classify the type of cancer : oesophagus vs lung cancers. For each mini-batch, CAMs are generated, backpropagated and corrected via a distance function (3), to differentiate tumor regions from normal regions. Then, the two resulted corrected CAMs, for face and profile view are combined to retrieve the 3D tumor.

FIGURE 4 .

 4 FIGURE 4.6 -Segmentation : the 3D tumor region from the two 2D heat maps. Coronal heat map allows to retrieve y and z axis, while sagittal heat map return x and z axis. The tumor is selected by the intersection of the two heat maps.

FIGURE 4 .Experiment 1 :

 41 FIGURE 4.7 -3D RPET-NET architecture composed by two 3D convolutional layers followed by 3D pooling layers and two dense layers.
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 42 FIGURE 4.8 -Comparison between different models. From left to right : PET exam, CAMs without prior knowledge, ours
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 51 FIGURE 5.1 -Columns from left to right : Fused PET/CT slice, zoomed on the lung tumor (left) and esophageal tumor (right) seen on FDG-PET only. Metabolic Tumor Volume MTV (40% SUVmax thresholding) in red. MTV3 (MTV + 3 cm isotropic margin) include the tumor and peritumoral region.

  del's performance and its ability to better generalise[START_REF] Zhang | A survey on multi-task learning[END_REF]. The basic idea of MTL is that different tasks can share a representation of common characteristics [Zhang and Yang 2017], and thus train them jointly. The use of different data sets from different tasks allows learning an efficient representation of the common characteristics of all tasks, because all data sets are used to obtain it, even if each task has a small data set, thus improving the performance of each task. Contribution : In this work, we tackle the challenging problem of training a neural network to classify the pathology, segment the lesion, reconstruct the image and predict the outcome based on the segmentation results.
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 52 FIGURE 5.2 -Hard parameter sharing for multi-task learning in deep neural networks used in our proposed architecture.

  advantage of previous proposed methods and propose a new architecture for radiomics analysis. The main tasks are outcome prediction and lesion segmentation, and the secondary tasks are image reconstruction and pathology classification. We propose a multiscale feature learning for the outcome prediction, by jointly predicting on the local features and global ones.
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 53 FIGURE 5.3 -Our proposed architecture, composed of an encoder and two decoders for image reconstruction and tumor segmentation. A fully connected layers are added for classification (Oesophageal vs lung cancer), and a multi-scale outcome prediction.

  propose a new architecture called W-Net to jointly segment the lesion, classify the pathology, reconstruct the image and predict the outcome. The proposed network is shown in figure 5.3. We use U-Net as the backbone due to its great performance in 3D medical image segmentation. The W-Net architecture consists of four parts : (i) a common encoding part, (ii) a decoding part for reconstruction, iii) a decoding part for the segmentation and (iii) skip connections between them, which form a W, see figure 5.3. To that we add a multi-layer perceptron (MLP) for the classification task, and a convolutional neural network for the outcome prediction based on the segmentation result. Finally, we use multi-scale approach to feed global features to the CNN, in order to predict make a prediction on both global features and tumor ones. To summarize, many classic image classification networks use transfer learning [Pan and Yang 2009] to extract high level features
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 54 FIGURE 5.4 -Heatmap from different scales with two different input.

  figure 5.4. We concatenate feature maps from Level 3 to 5 in the encoder with the convolutional network in the outcome prediction. As a strong tool to evaluate and analyze the decision made by the neural network, we visualize heatmaps at different levels of the encoder and the decoder for the segmentation. To visualize the heatmaps, we use Grad-cam technique [Selvaraju et al. 2017] to produce visual explanation at each scale. We can observe that scale 4, 5 and 6 extract rich features at the tumor level and beyond, including peritumotal regions and other important fixations. To incorporate this information at the prediction level we design a multi-scale feature concatenation model by fusing feature maps from scale 4, 5 and 6 with the tumor features. We use a channel-wise global average pooling (GAP) as in [Zhou et al. 2020] to reduce the complexity in training time and to

Experiment 1 :Experiment 2 :Experiment 3 :Experiment 4 : 9 . 5 :

 123495 The first experiment consists of the optimization of the network by testing the different combination of tasks. The models developed include single task models, 2 and 3 tasks models, and all tasks models. Reconstruction and pathology classification are secondary tasks, thus they are combined either with segmentation or outcome prediction or both of them. Also, outcome prediction with and without global or local features were evaluated. In total, 15 models were developed for the outcome prediction. The second experiment is to evaluate the performance of the best model with state of the art methods for image segmentation such as U-Net, V-NET and a weakly supervised multi-task approach[Amyar et al. 2020]. The WSL-MTL model uses a priori knowledge by defining two points in two 2D maximum intensity projection (MIP) images for coronal and sagittal views. The model learn to classify the two MIPs into lung and esophageal cancers, and by generating a class activation map (CAM), it calculate a distance between the CAM generated and the two points defined, and learn to minimize the distance between the CAMs and the 2 points in a multi-task learning approach. Finally, the corrected CAMs for sagittal and coronal views are used to retrieve the tumor in the 3D space. The third experiment is to compare our models with state of the art methods for image classification and outcome prediction. We use : Alexnet [Krizhevsky et al. 2017], VGG-16 [Simonyan and Zisserman 2014], ResNET50 [He et al. 2016], 169-layer DenseNet [Huang et al. 2017] and InceptionV3 [Szegedy et al. 2016]. We compare also our results with deep radiomics such as 3D RPET-NET [Amyar et al. 2019b] and a 6 layers 3D convolutional neural network. In experiment 4 we study the effects of the hyperparameter λ on the multitask learning. We have tested different values : 0.1, 0.3, 0.5, 0.7 and 0.Experiment Finally, we compare our proposed method with state of the art multitask methods, including [Zhou et al. 2021],[Wang et al. 2018], [Qu et al. 2019] and [Chen et al. 2018]. We extended 2D networks to 3D. In order to incorporate both local and larger contextual information, we employ a multi-scale feature extraction for outcome prediction.

Experiment 5 :

 5 phageal and lung (accuracy = 0.70 and AUC = 0.69, accuracy = 0.65 and AUC = 0.64). For λ = 0.5 our model achieves comparable results for both pathologies : accuracy = 0.77 and AUC = 0.76 for esophageal cancer and accuracy = 0.71 and AUC = 0.70 for lung cancer, with a better dice coefficient (0.85) for the segmentation of lung tumors. Increasing λ does not result in an improvement of the prediction task, it decreases the performance of the segmentation and classification tasks and also the prediction : accuracy = 0.73, AUC = 0.71 for outcome predication with esophageal cancer and accuracy = 0.71 and AUC = 0.70 for lung cancer, accuracy = 0.89 and AUC = 0.88 for classification, and a dice coefficient = 0.69 and 0.78 for esophageal and lung cancers respectively for segmentation. Table5.5 reports the results of three state-of-the-art methods for multitask learning for segmentation and classification. Our proposed model achieves the best results for both esophageal and lung cancers for the prediction and classification task, where[START_REF] Zhou | Multi-task learning for segmentation and classification of tumors in 3d automated breast ultrasound images[END_REF]] achieves a slight improvement on the segmentation task for esophageal cancer (dice coefficient = 0.75), and comparable results for the classification (accuracy = 0.96 and AUC = 0.94).

[

  Chen et al. 2018, Qu et al. 2019, Zhou et al. 2021]. To show the performance of our method, we tested the different combinations of different tasks, as well as using only global features or only tumor features and a multi-scale regrouping tumor and global features.

  task learning (MTL) approach where the NN is trained to segment the lesion and predict the outcome on the segmentation result simultaneously. In single task two step learning process, the NN is first trained to segment the lesion and the parameters of the model are freezed after training. Then a second NN is trained to predict the outcome from the results of the first NN. MTL allows to train a single NN to perform both tasks in the same time, hence each task can help the other. Other subsidiary tasks, can be added to extract meaningful features and to serve also as an inductive bias to generalize better. We proposed a MTL framework where the NN is trained to classify the pathology, segment the lesion, reconstruct the image and predict the outcome based on the segmentation results. In addition, we used global patient features with tumor and tumor regions features to predict the outcome in a radiomic study through a multi-scale design. We conducted extensive validation strategy with multiple ablation experiments, comparison with state of the art methods in both supervised and multi-task learning. Furthermore, our MTL approach was validated on a COVID-19 database to classify and segment COVID-19 pneumonia lesions. Our approach outperformed state of the art methods, showing the interest of combining jointly different tasks to improve both segmentation and classification performances. Moreover, adding a third task such as image reconstruction, the encoder can extract meaningful feature representation which help the other tasks (classification and segmentation) to improve even more their performances.

  order to reduce model complexity we used L p parameter norm, training with early stopping, dropout and with other methods that do not alter the complexity of the model such as parameter sharing in the MTL framework. The MTL algorithm can improve generalization by leveraging the domain-specific information contained in the training signals of related tasks as an inductive bias.A major limitation in advancing the field of precision medicine research is the ability to integrate data from a variety of different sources in order to improve patients classification, which arises the need for approach that focuses on establishing new methods for the computational analysis and integration of multi-modal data. More importantly, classifiers based on a single-data modality might ignore key biological features from other available data sources hat might be highly predictive of a patient's clinical status. In this work, only image information is used to train DL models. Predicting patient's outcome is a very hard question to answer. While it is true that medical imaging shows a promising results to tackle this challenges, other information is also highly relevant to add complementary value such as clinical notes, genomics and other imaging modalities such as CT scan or MRI. Training the NN with multi-modality to incorporate different modalities and with multi-view to integrate other relevant information can lead to an improved framework with better results.
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	Stage TNM	Stage T	Stage N	Stage M
	Stage 0	T in situ	N0	M0
	Stage IA	T1	N0	M0
	Stage IB	T2	N0	M0
	Stage IIA	T3	N0	M0
	Stage IIB	T1, T2	N1	M0
	Stage IIIA	T4a	N0	M0
	-	T3	N1	M0
	-	T1, T2	N2	M0
	Stage IIIB	T3	N2	M0
	Stage IIIC	T4a	N1, N2	M0
	-	T4b	all N	M0
	-	all T	N3	M0
	Stage IV	all T	all N	M1

1)

. TABLEAU 1.1 -Regrouping of stages T (tumor), N (nodes) and M (metastatis) in a single stage TNM.

2 FDG PET imaging : principle and characteristics 1.2.1 Principle of PET imaging

  In the following sections, we will present the principle of PET imaging with FDG, and the characteristics that can be derived from it. Next, we will show the value of PET imaging in oncology, and cover other advanced features that can be extracted from the images.

	Unlike anatomical imaging such as
	X-ray, CT, or MRI, functional imaging such as Functional Magnetic Resonance Imaging
	(FMRI) or PET allows the study of biochemical or physiological phenomena. In PET, the
	gamma-rays measured are emitted by annihilation of positrons released by an exogenous
	substance (tracer) in body. This is refereed to as imaging antimatter or annihilation of
	antimatter with matter [Morgan Jr and Hughes 1970]. The gamma-rays are emitted in all
	sort of directions. To look inside the set up of a PET scanner, it is composed of different

, Therasse et

al. 2005

] was proposed to solve these issues. This criteria uses computed tomography scan to follow the development of the largest diameter of lesions over time. This measurement is made by assuming that the shape of the tumors is elliptical. A patient is considered to have CR if all lesions have disappeared and all affected lymph nodes are less than 10 mm in diameter. A patient is said as to have PR if the diameter of the lesions has decreased by 30% on average, PD if the diameter has increased by at least 20% and SD in other cases.

The PET response criteria in solid tumors (PERCIST) was introduced in 2009 by

[START_REF] Wahl R L | From RECIST to PERCIST : Evolving Considerations for PET response criteria in solid tumors[END_REF]

]. The advantage of PERCIST is the use of metabolic quantitative information from a radiotracer binding intensity index corresponding to the average of the intensities within a 1 mL zone around the maximum intensity called "peak". This index is calculated and then compared between 2 successive exams, thus allowing the patients to be separated into 4 categories. A patient is considered to be in CR if all lesions have disappeared and the intensity of fixation on post-therapy imaging of the lesion is lower than that of a healthy reference zone (liver or aorta). A patient is defined as in PR if the variation of the "peak" between 2 examinations is -30% for the zone of highest intensity, PD if the "peak" is +30% and SD in other cases.

Given the great interest of PET in oncology

[START_REF] Lemarignier | Pretreatment metabolic tumour volume is predictive of disease-free survival and overall survival in patients with oesophageal squamous cell carcinoma[END_REF][START_REF] Vera | FDG PET during radiochemotherapy is predictive of outcome at 1 year in non-small-cell lung cancer patients : a prospective multicentre study (RTEP2)[END_REF]

], from diagnostic to evaluation and follow-up [Ben-Haim and Ell 2008], we have chosen to use PET modality with 2-[18]-Fluoro-2-desoxy-D-glucose (FDG), to study treatment response and survival.

1.

PET (Figure

1

.4) is one of the most widely used medical imaging techniques today to visualize the distribution of a tracer in an organism.
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	.3 summarizes the most important characteristics that can be obtained from
	these matrices.
	The most used method nowadays for handcrafted feature extraction is based on first
	and second order analysis and texture analysis. More recently, to describe 18-FDG uptake
	heterogeneity in a lesion, other characteristics have been proposed. For instance, [Bund-
	schuh et al. 2014] found that Coefficient Of Variation (VOC) is an important predictive
	factor for patients with rectal cancer. El Naqa et al. proposed the extraction of characte-
	ristics from the SUV-Volume Histogram [El Naqa et al. 2009], such as SUVx (minimum
	SUV for the highest x% SUV) and Vx (Percentage of volume with at least x% SUV). Moreo-
	ver, in the same paper, El Naqa et al. found that features extracted from the GLCM [Hara-

  The receptive field of the units in the deeper layers of a convolutional network is larger than the receptive field of the units in the shallow layers. This means that even though direct connections in a convolutional net are very sparse, units in the deeper layers can be indirectly connected to all or most of the input image. Source : deeplearningbook[START_REF] Goodfellow | Deep learning[END_REF]].

telligence have produced various methods that can help bridge the gap between low-level features and phenotypic predictions. Perturbation-based approaches change parts of the input and observe the impact on the output of the network [Alipanahi et al. 2015, Zhou and Troyanskaya 2015]. Backpropagation-like methods, also known as saliency methods, use signals from gradients or output decomposition to infer a "saliency map" [Simonyan et al. 2013]. An alternative strategy is the Layer-wise Relevance Propagation (LRP) [Bach

FIGURE 2.9et al. 2015]. Interpretable surrogate models aim to approximate a large, slow, but accurate model by a surrogate models a smaller, interpretable, yet still accurate model [Che et al. 2015, Hinton et al. 2015, Ribeiro et al. 2016]. Modifications have been proposed to Generative Adversarial Networks(GANs) to encourage the network to learn interpretable and meaningful representations [Chen et al. 2016]. Models with built-in explainability, such as attention mechanisms [Hendricks et al. 2016], can identify a posteriori the most informative features underlying a prediction.

  ]. It allows to separate patients based on some biomarkers to two categories : patients with good prognosis and patients with worse prognosis (see figure2.10). Radiomics is a promising way towards precision medicine in oncology. It consists on the extraction of features from images to identify disease characteristics that help predict the outcome. In 2012, the concept of radiomics was introduced corresponding to the calculation of several dozens of fea-

tures from medical images emerged [Kumar et al. 2012, Lambin et al. 2012a], extending the old notion of image quantification towards the design of predictive models based on selected features. Several reviews of the literature [Gardin et al. 2019, Yip and Aerts 2016]

  . 2011a] have shown that GLRLM characteristics are highly correlated with GLSZM, therefore, they do not bring no additional information. Typically, conventional statistics are used to assign a degree of importance to each characteristic for prediction [Van De

	Wiele et al. 2013].
	Because of the large number of characteristics to be studied and the non-linear re-
	lationship between them, standard mathematical tools such as linear regression, are not
	powerful enough. In this context, machine learning methods can be of great interest be-
	cause of their ability to process a large number of characteristics and to capture a non-
	linear pattern, providing much better results than conventional statistics when analyzing

have shown that certain texture characteristics are highly correlated with MTV (Metabolic Total Volume) in three types of tumors. Similarly, [Tixier et alseveral dozen characteristics [El Naqa et al. 2009]. The traditional classifiers generally used are the SVM and RF.

  al. 2014, Cameron et al. 2015, Carneiro et al. 2017, Chung et al. 2015, Farhidzadeh et al. 2016]. The use of DL algorithm is more recent [Peng et al. 2019]. While many studies have begun to explore the benefit of the analysis of texture to predict patient's outcome [Cook et al. 2013, El Naqa et al. 2009, Ha et al. 2014, Tixier et al. 2011a, Willaime et al. 2012], drawing a definitive conclusion is difficult because each study is based on different texture definitions and deploys different prediction models. In order to overcome this problem, deep machine learning methods such as convolutional neural networks have been used.

	-The second step consists of the extraction of features from the ROIs. Thousands of features can be extracted such as first order features, shape features,GLCM fea-tures,GLSZM features,GLRLM features,GLDM features and more [Van Griethuysen et al. 2017]. -Once the features are obtained, usually a feature selection strategy is applied to keep only a representative group of the whole set. TABLEAU 2.1 Reference Type of cancer Nb of patients Purpose of the study Nb of [Hyun et al. 2019] Lung 396 Distinguish lung adenocarcinoma (ADC) from squamous cell carcinoma (SCC) 44 [Cysouw et al. 2021] Prostate 76 Predict metastatic disease or high-risk pathological tumor features 51 [Peng et al. 2019] Nasopharyngeal carcinom 707 (DFS) 296 [Toyama et al. 2020] Pancreatic cancer 161 Prognosis 42 [Zhong et al. 2021] Larynx and hypopha-[Xie et al. 2020] Head and neck 348 Prognosis 19 [Du et al. 2020] Nasopharyngeal Carcinoma 76 Local recurrence versus inflammation 478 [Alongi et al. 2020] Prostate 46 Prognosis 4867 [Ou et al. 2020] breast 44 Breast carcinoma vs breast lymphoma 11 [Desbordes et al. 2017b] Esophageal 65 Predicting treatment response and OS 58 [Lian et al. 2016] Esophageal & Lymphoma 25 & 36 & 45 Recurrence or no-recurrence 52 & 29 & 27 lung & [Mi et al. 2015a] Esophageal 25 & 36 Treatment response prediction 79 & 29 lung & 2019] Osteosarcoma 70 Treatment response prediction / [Jeong et al. rynx 72 Predict early disease progression / [Papp et al. 2018] Brain 70 Survival Prediction 56 [Li et al. 2019] Leukemia 41 Bone marrow involvement detection 1826 Predicting disease-free survival [Li et al. 2018] Lung 100 OS 722 Predicting treatment response and [Nair et al. 2020] Lung 50 Identify tumors with mutations 326 [Wang et al. 2017a] Lymphoma 168 node metastasis 95 Classifying mediastinal lymph features 2018] Lung 100 Predict distant failure 34 [Hao et al. Radiomic studies using machine learning algorithms for different types of cancer in PET. logistic regression Random Forest 4 CNNs LR & SVM & RF & XGboost neighbo-& RF / discriminant analysis Forest 0.82 & 0.80 / / / 0.66 0.808 Random Linear Neighbor & 0.93 K-Nearest-100% & 0.89 Evidential rhood & SVM / SVM 100% & 0.94 k-nearest Boost Gradient / SVM & RF & Random Forest / algorithms covering / probability Forest / Geometric Random Forest 0.88 Random Clustering 0.64 regression 0.87 Logistic (LR) & ANN 0.769 ANN & CNN Adaboost & 0.81-0.85 SVM & RF & Methods Accuracy SVM 0.83 Reference Type of cancer Nb of patients Purpose of the study Nb of features Methods Accuracy 2.5 Deep learning for radiomics	0.722 0.72 / 0.806 0.82 & 0.75 & 0.95 100% & 0.77 0.87 0.72-0.82 0.70 0.81 0.72 / / 0.86-0.76 0.71 0.859 0.87-0.92 AUC 0.79 AUC
	[Ren et al. 2020]	Lung	315	ADC vs SCC	14	LASSO analysis regression	/	0.901
	[Mu et al. 2019]	Lung	194	Prognosis	790	/	/	0.81
	rest with 1826 achieving an accuracy, a sensitivity and a specificity of 88.6%, 87.5% and			
	89.5% respectively, outperforming visual analysis (accuracy = 62.5%, sensitivity = 73.7%			
	and specificity = 68.6%). Other studies have shown the importance of incorporating per-			
	itumoral regions [Dou et al. 2018, Hao et al. 2018].					

-Finally, a classical machine learning algorithm such as RF, SVM or MLP is applied to learn a radiomic signature that predict best the outcome [El Naqa et al. 2018, Jia et al. 2019, Shi et al. 2019, Wei et al. 2019]. -The obtained radiomic signature can be combined afterward with other data such as clinical data or other imaging modalities like CT or MRI. In table 2.1 are referenced articles in the literature that address radiomic and machine learning in PET, for different type of cancers and using various ML algorithms and different purposes, from tumor diagnosis to outcome prediction. For instance, [Hyun et al. 2019] used machine learning based radiomics to successfully identify the histological subtypes of lung cancer (210 lung adenocarcinoma (ADC) from squamous cell carcinoma (186). [Cysouw et al. 2021] predicted metastatic disease or high-risk pathological tumor features in a prospective study. In [Li et al. 2019] radiomic with machine learning was used to detect bone marrow involvement in 41 patients with leukemia. They used random fo-They allow to extract features in a hierarchical way and to preserve the spatial relationship between the different slices. The strength of this method lies in the non-intervention in the manual extraction of the features which can cause a bias in the learning phase (see figure 2.12).

  2.6. OBJECTIVES OF THE THESISClassical radiomic methods tend to use handcrafted methods to extract features, followed by a statistical method or machine learning algorithm such as RF SVM for the prediction. This workflow is based on two separated mechanism : extraction of features followed by learning the prediction of the outcome. Thus, it does not allow the model to learn useful data representation. Thus, in this thesis, we will study DL methods. The objective is to predict the cancer outcome from PET images. Because DL needs a lot of annotated data, it is not always available in medical imaging. To solve this problem, we propose to study weakly supervised learning and multitasking learning. In the next chapters, three proposed methods will be presented.

  been proposed during the last decade [Foster et al. 2014], but few of them are used/available in clinical routine. The simple threshold is still mainly used but with different values depending on pathologies [Dewalle-Vignion et al. 2012]. A seg-

	that CNN features are likely to be related to classical hancrafted radiomic features (see
	figure 3.3).
	PET imaging suffers from low resolution and high noise, leading to challenges in PET
	radiomics [Hatt et al. 2017]. However, neural networks provide a robust mechanism to mentation of the MTV can be accurately performed with a 40% threshold value because
	avoid encoding the noise in the data such as 'early-Stopping' and 'dropout' which provide esophageal cancer can be considered as a massive non moving tumor [Kawakami et al.
	better generalization [Srivastava et al. 2014b]. 2015] and it has been proven that this segmentation is highly correlated with a manual
	Unlike Ypsilantis et al. in [Ypsilantis et al. 2015] who claimed that the use of a 3D ROI segmentation [Lambin et al. 2012a].
	as direct input of the CNN is infeasible because every tumor has a different shape and size,
	we show that englobing the tumor into a 3D cuboid of standard width, length and height
	Apart from the numerous advantages of CNNs (avoiding handcrafted feature design ning now more than 14 million images, 30 high level categories and 20K subcategories)
	and feature selection), it is now well known that convolutional architectures build high that are not currently available in medical imaging. It is possible to artificially increase
	level representations of the input signals. They typically extract low level features such the number of data. However since, learning takes place on a tumor inside a black box,
	as textures of edge detectors in the low layers and accumulate these information to form this solution leads to overfitting.
	higher level features in the last layers. Low level features are generally rather generic and To ensure a fair comparison between the different methods, the database was divided

5 other methods from the literature [Ypsilantis et al. 2015] [

Desbordes et al. 2017c

]. For each CNN, the search for the best architecture is achieved by using a validation procedure to tune hyperparameters, such as the number of feature maps and the size of filters. can be exploited through transfer learning

[START_REF] Belharbi | Spotting l3 slice in ct scans using deep convolutional network and transfer learning[END_REF]

]. Higher level features are more domain-specific and depend upon the application. A neural network is often considered as a "black box", but CNN layers provide interpretability through the feature maps that highlight the activation of each kernel within the input signal. Therefore, we think allows the benefit of the spatial relationship between slices using a large 3D receptive field to be realized. Our assumption is that a neural network architecture able to capture patterns of FDG uptake that occur within the whole lesion may detect imaging features that are more relevant to predict treatment response than each slice individually or 3 adjacent slices. Under this assumption, we propose an architecture that initially fuses the spatial information across intra-slices images. 3D RPET-NETBest is composed of only 2 convolutional layers. A higher number of convolutional layers were tested, without conclusive results. The small number of patients in our database (without artificial data augmentation) is a limiting factor not only for the development of a deeper network but also for radiomic analysis in general. Indeed, the current trend is in favour of the use of a network with an increasing number of convolutional layers (very deep neural network). This is only possible on large image databases (e.g., ImageNet

[START_REF] Russakovsky | Imagenet large scale visual recognition challenge[END_REF]

], contaiinto 3 groups of 57 patients for the training, 20 for the validation and 20 for the test before any operation. Every CNN and RF classifier used the same folds to obtain an exact comparison between methodologies.

There are several segmentation methods available for PET imaging. Many automa-tic frameworks have

de la réponse au traitement du cancer de l'oesophage en boostant l'analyse (deep) radiomique avec des caractéristiques cliniques et anthropomé- triques

  

	3D RPET-NET : DEVELOPMENT OF A 3D PET IMAGING CONVOLUTIONAL NEU-
	RALNETWORK FOR RADIOMICS ANALYSIS AND OUTCOME PREDICTION. Amine
	Amyar, Su Ruan, Isabelle Gardin, Clément Chatelain, Pierre Decazes, Romain Mod-
	zelewsk. IEEE Transactions on Radiation and Plasma Medical Sciences, 3(2), pp.225-
	231.
	Other Related Publications :

-Radiomics-net : Convolutional neural networks on FDG PET images for predicting cancer treatment response. Amine Amyar, Su Ruan, Isabelle Gardin, Romain Herault, Chatelain Clement, Pierre Decazes, Romain Modzelewski. Journal of Nuclear Medicine, 59(supplement 1), pp.324-324.

-Prédiction . Amine Amyar, Su Ruan, Pierre Decazes, Isabelle Gardin, Romain Modzelewski. Médecine Nucléaire, 44(2), p.106.

-Radiomics-

net : analyse Deep-radiomics des images TEP FDG pour prédire la réponse au traitement du cancer. Amine

  After demonstrating the effectiveness and usefulness of deep learning in predicting patient's outcome, this chapter introduces a novel weakly supervised learning approach to segment the lesions in order to conduct a radiomic analysis. By the concern of lack of annotations necessary for a supervised learning, we propose here a method which does not require the ground truth of segmented tumor, but only the classes of the tumors. We propose to use explainable deep learning techniques in the classification decision to detect the tumor under prior knowledge. We transform the classification neural network to the tumor detection and segmentation tasks. The results are compared to supervised learning approach for tumor segmentation, and with radiomic based on manual segmentation for outcome prediction.
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  TABLEAU 5.1 -Results of experiment 1 : segmentation, classification and prediction results from different scenarios, for esophageal and lung cancers. Task1 : reconstruction, Task2 : segmentation, Task3 : pathology classification, Task4 : outcome prediction.

					Seg.	Class.		Pred.
	bf Type of cancer Tasks	Global features Tumor features Dice_coef Accuracy AUC Accuracy AUC
	Esoph.	Task1 & Task4		x	/	/	/	0.60	0.60
		Task1 & Task3 & Task4		x	/	0.95	0.94	0.65	0.68
		Task1 & Task2 & Task4		x	0.77	/	/	0.65	0.64
		Task1 & Task2 & Task4	x		0.76	/	/	0.65	0.63
		Task1 & Task2 & Task4			0.74	/	/	0.70	0.63
		Task2 & Task4		x	0.73	/	/	0.70	0.71
		Task2 & Task4	x		0.70	/	/	0.70	0.74
		Task2 & Task4			0.79	/	/	0.73	0.72
		Task2 & Task3 & Task4		x	0.71	0.94	0.93	0.72	0.70
		Task2 & Task3 & Task4	x		0.69	0.91	0.92	0.70	0.71
		Task2 & Task3 & Task4			0.71	0.93	0.91	0.75	0.73
		Task3 & Task4	x	x	/	0.98	0.97	0.60	0.59
		Task1 & Task2 & Task3 & Task4		x	0.73	0.96	0.95	0.70	0.67
		Task1 & Task2 & Task3 & Task4	x		0.75	0.97	0.95	0.76	0.74
		Task1 & Task2 & Task3 & Task4			0.73	0.97	0.94	0.79	0.77
	Lung	Task1 & Task4		x	/	/	/	0.49	0.51
		Task1 & Task3 & Task4		x	/	0.95	0.94	0.59	0.56
		Task1 & Task2 & Task4		x	0.84	/	/	0.60	0.58
		Task1 & Task2 & Task4	x		0.84	/	/	0.64	0.60
		Task1 & Task2 & Task4			0.83	/	/	0.65	0.62
		Task2 & Task4		x	0.86	/	/	0.65	0.57
		Task2 & Task4	x		0.81	/	/	0.67	0.65
		Task2 & Task4			0.82	/	/	0.67	0.66
		Task2 & Task3 & Task4		x	0.80	0.94	0.93	0.68	0.66
		Task2 & Task3 & Task4	x		0.76	0.91	0.92	0.68	0.65
		Task2 & Task3 & Task4			0.79	0.93	0.91	0.69	0.67
		Task3 & Task4	x	x	/	0.98	0.97	0.70	0.65
		Task1 & Task2 & Task3 & Task4		x	0.81	0.96	0.95	0.70	0.62
		Task1 & Task2 & Task3 & Task4	x		0.83	0.97	0.95	0.71	0.69
		Task1 & Task2 & Task3 & Task4			0.82	0.97	0.94	0.70	0.71

Table 5 .

 5 1, the best results for outcome prediction were obtained by the combination of the four tasks with multi-scale, and with tumor and global features. It achieved an accuracy of 0.79 and AUC of 0.77 for esophageal cancer outperforming 14 other scenarios which are composed of several combination of different tasks, with and without multi-scale and with and without tumor features. For lung cancer, our proposed model achieved an accuracy of 0.70 and AUC of 0.71 in multi-scale, and an accuracy of 0.71 and AUC of 0.69 when using only tumor features. Using only reconstruction and prediction resulted in a poor performance for both lung and esophageal cancers. For the segmentation, the best results were achieved by the combination of segmentation and Experiment 3 : classification and outcome prediction results compared to state of the art methods for esophageal and lung cancers. tle higher when using only segmentation and prediction or classification and prediction, but not for the prediction. This is due to the fact that to improve the performance of the prediction task, the model tends to find the most informative and discriminating region in the image that allows this improvement. This results in the extraction of intratumoral and peritumoral tumor regions, which may differ from segmentation ground truth but improve the prediction. The combination of segmentation and prediction resulted in an accuracy of 0.70, 0.70 and 0.73 and an AUC of 0.71, 0.74 and 0.72 for esophageal cancer for global features, tumor features and multi-scale respectively, and an accuracy of 0.65, 0.65 and 0.67 and an AUC of 0.57, 0.65 and 0.66 for lung cancer. The combination of the classification and prediction resulted in an accuracy of 0.60 and an AUC of 0.59 for esophageal cancer and an accuracy of 0.70 and an AUC of 0.65 for lung cancer. We achieved the best results for tumor classification and outcome prediction with λ = 0.3. When lowering the value of λ the model achieves slightly better result forthe segmentation for esophageal cancer (0.74) but a worse prediction result for both eso-

	prediction in multi-scale for esophageal cancer (dice coefficient = 0.79), and using only
	global features for lung cancer (dice coefficient = 0.86). Our proposed model achieved a
	dice score of 0.73 in multi-scale and 0.75 when using only tumor features for esophageal
	cancer, and a dice score of 0.82 in multi-scale and 0.83 when using only tumor features for
	lung cancer. The combination of the reconstruction, segmentation and prediction also re-
	sulted in good results for segmentation, when using only global features, only tumor fea-
	tures and in multi-scale : 0.77, 0.76 and 0.74 for esophageal cancer and 0.84, 0.84, 0.83 for
	lung cancer respectively. When using the classification task in addition to segmentation
	and prediction the performance on segmentation decreases : 0.71, 0.69 and 0.71 for eso-
	phageal cancer and 0.80, 0.76, 0.79 for lung cancer. This can be explained due to the fact
	that the reconstruction task helps in the extraction of rich meaningful features that contri-
	bute in the segmentation better than the classification task. For the classification, the best
	results were achieved with the combination of the classification and prediction tasks, wi-

thout reconstruction and segmentation : accuracy = 0.98 and AUC = 0.97. Our proposed model achieved an accuracy of 0.97 and an AUC of 0.94 and 0.95 with multi-scale and only tumor features respectively. Since the goal of our study is to focus on the prediction task, the performance of the other 2 tasks (segmentation and classification) can be a lit-Experiment 2 : In Table 5.2, segmentation results for three other state of the art methods are reported and compared to our proposed model, for esophageal and lung cancers. The 3 models are : U-Net, which represents the task Task2 for the segmentation since it was used as the backbone in our model, V-Net and a weakly supervised multitask learning (WSL-MTL) model for tumor segmentation. Our model achieved the best re-(accuracy 0.97 and AUC 0.97) but very poor results the the prediction : accuracy = 0.62 and AUC = 0.63 for eophageal cancer and accuracy = 0.59 and AUC = 0.57 for lung cancer. AlexNet, VGG-16 and VGG-19 have not shown promising results.

Experiment 4 : In Table

5

.4 the the influence of λ on the performance of our model

Multi-task Deep Learning Based CT Imaging Analysis For COVID-19 pneumo- nia : Classification and Segmentation. Amine

  Amyar, Romain Modzelewski, Hua Li, Su Ruan. Computers in Biology and Medicine, 126, p.104037.

  al. 2015, Zhou and Troyanskaya 2015]. Backpropagation-like methods, also known as saliency methods, use signals from gradients or output decomposition to infer a "saliency map" [Simonyan et al. 2013]. An alternative strategy is the Layer-wise Relevance Propagation (LRP) [Bach et al. 2015]. Interpretable surrogate models aim to approximate a large, slow, but accurate model by a surrogate models a smaller, interpretable, yet still accurate model [Che et al. 2015, Hinton et al. 2015, Ribeiro et al. 2016]. Generative models : Modifications have been proposed to Generative Adversarial Networks(GANs) to encourage the network to learn interpretable and meaningful representations [Chen et al. 2016]. Models with built-in explainability, such as attention mechanisms [Hendricks et al. 2016], can identify a posteriori the most informative features underlying a prediction.

[Cancer In France /Edition 2019, National Institute of Cancer], November 2019, www.e-cancer.fr
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Discussion & Conclusion

In this study, a new weakly supervised learning model was developed to localize lung and oesophagus tumors in PET images. It By detecting the tumor with 2D MIP images for face and profile views, we can obtain x,y and z coordinates to segment the 3D image. The segmentation in the 3D images were used to conduct a radiomics analysis with state-of-the-art results. This simple and yet powerful technique, can be integrated in future workflow/software dedicated to automatic analysis of PET exams to conduct radiomics analysis.
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