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“The good physician treats the disease ; the great physician treats the patient who has

the disease.”

“It is much more important to know what sort of patient has a disease than what sort

of disease a patient has.”

“Medicine is a science of uncertainty and art of probability.”

William Osler

“A very great deal more truth can become known than can be proven”

Richard Feynman

“No one knows what the right algorithm is, but it gives us hope that if we can discover

some crude approximation of whatever this algorithm is and implement it on a computer,

that can help us make a lot of progress.”

Andrew Ng
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Summary

Precision medicine (also known as personalized medicine) has been proposed to cus-

tomize healthcare for each patient, from medical diagnosis to treatment, impacting me-

dical decisions and practices as well as current workflow. To meet this objective, patients

are placed into different groups based on some relevant similarities to take a medical de-

cision. Precision medicine primarily uses information about a person’s clinical records,

biological information including proteins (proteomics), genes (genomics), and, more re-

cently, images (radiomics). In the case of cancer, information about the tumor is also in-

corporated to make a diagnosis, decide on the type of treatment, monitor disease pro-

gression or predict treatment response or prognosis. Precision medicine for cancer relies

on the use of tumor markers to aid in diagnosis or targeted therapies to treat certain types

of cancer.

Radiomics is a research field where images are used for their potential in precision

medicine. It is defined as the analysis of a large number of extracted features from me-

dical images such as Computed Tomography (CT), Magnetic Resonance Imaging (MRI) or

Positron Emission Tomography (PET). These features are used to uncover disease charac-

teristics that fail to be found or quantified by the naked eye. The first step in radiomic

analysis in oncology is the lesion segmentation, which is the process of isolating a Re-

gion Of Interest (ROI) from other regions with contours. After segmentation, thousands

of features can be extracted from the ROI, and then the most relevant ones are selected.

Finally, a machine learning algorithm such as Random Forest (RF) or Support Vector Ma-

chine (SVM) is applied to identify the best relevant features that predict the outcome. This

classical workflow is limited for several reasons : segmentation requires a highly trainable

physician, is time consuming and the defined ground truth is physician subjective and

prone to error (intra and inter observer variability). Secondly, the handcrafted features

defined from the ROI are limited since they are heavily influenced by many factors like

the used segmentation method. Therefore they fail when the ROI is altered.

Recently, deep learning has dramatically changed the field of computer vision, inclu-

ding image classification, object detection, and image segmentation. In the medical ima-

ging field, various applications of deep learning have emerged in different areas, including

pathology classification, risk stratification, treatment response prediction, lesion and or-

gan segmentation. Thus, artificial intelligence in general and deep learning in particular

can come in handy to develop Computer Aided Diagnostic (CAD) applications. However,

deep learning approaches are well known for their data hungry nature, and annotated

data are usually hard to obtain in the medical imaging field.

The goal of this thesis is to go beyond the current radiomic paradigm which requires

manual extraction of characteristics and replace it by deep radiomics. In our new ap-

proach, features are learned along with the prediction of the outcome. To achieve this,

we develop different Deep Learning (DL) algorithms to create end-to-end architectures

that take an image as input, learn feature representation and outcome prediction.

The first method that we propose is to create a deep radiomics paradigm by exploring
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Summary

a Convolutional Neural Network (CNN) due to its predictive power. We created an end-

to-end prediction model based on a 3D CNN, called 3D RPET-NET, that jointly extracts

features from a 3D PET image volume and predict the outcome of therapy. The obtained

results outperform classical radiomic approaches.

As mentioned above, annotated data is a major issue in the medical imaging field,

where only a small subset of annotated images are available. We propose a Weakly Su-

pervised Learning (WSL) method to solve this problem. Our method allows to segment

automatically the lesion for radiomic analysis, without segmentation ground truth and

with only a weak annotation (class of the pathology and one voxel in the region of the tu-

mor). The key step is to segment the tumor in 3D. Our segmentation method is composed

of four steps : 1) calculate two "Maximum Intensity Projection" (MIP) images from 3D PET

images of lung and esophageal cancers in two directions 2) classify the MIP images into

different types of cancers 3) generate the class activation maps through a multitask lear-

ning approach with a weak prior knowledge 4) segment the 3D tumor region from the two

2D activation maps with a proposed new loss. Our proposed approach can obtain state of

the art of prediction results with a very weak segmentation ground truth.

Recent studies have shown the potential of peritumoral regions on boosting the ac-

curacy of outcome prediction. Thus, the association of the intratumoral and peritumotal

regions provides richer information than one region for radiomic analysis. Therefore, we

develop a new segmentation network that does not give the same ground truth as physi-

cians do, but to find the regions that contribute the most in the outcome prediction. Our

method is based on Multi-Task Learning (MTL) framework, which is a type of learning

algorithm that aims to combine several pieces of information from different tasks in or-

der to improve the model’s performance and its ability to better generalise. The basic idea

of MTL is that different tasks can share a representation of common characteristics, and

thus train them jointly.

Our method jointly performs 4 tasks : image reconstruction, pathology classification,

tumor segmentation and outcome prediction in a multi-task learning way. We show that

the encoder can benefits from multiple tasks to extract meaningful and powerful features

that boost radiomic performance, and that subsidiary tasks serve as an inductive bias so

the learned model can generalize better. Our model was tested and validated for treat-

ment response and survival in lung and esophageal cancers, outperforming single task

learning methods. We show also that, by using a MTL approach, we can boost the perfor-

mance of radiomics analysis thanks to the rich information extracted from intratumoral

and peritumoral regions. The MTL architecture was also tested on a COVID-19 dataset

with success.
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Résumé

La médecine de précision (également appelée médecine personnalisée) a été propo-

sée pour personnaliser les soins de santé pour chaque patient, du diagnostic médical au

traitement, ce qui a un impact sur les décisions et les pratiques médicales ainsi que sur le

flux de travail actuel. Pour atteindre cet objectif, les patients sont placés dans différents

groupes en fonction de certaines similitudes pertinentes pour prendre une décision mé-

dicale. La médecine de précision utilise principalement des informations sur les dossiers

cliniques d’une personne, des informations biologiques, notamment des protéines (pro-

téomique), des gènes (génomique) et, plus récemment, des images (radiomique). Dans

le cas du cancer, des informations sur la tumeur sont également incorporées pour éta-

blir un diagnostic, décider du type de traitement, suivre la progression de la maladie ou

prédire la réponse au traitement ou le pronostic. La médecine de précision pour le cancer

repose sur l’utilisation de marqueurs tumoraux pour faciliter le diagnostic ou de thérapies

ciblées pour traiter certains types de cancer.

La radiomique est un domaine de recherche où les images sont utilisées pour leur po-

tentiel dans la médecine de précision. Elle se définit comme l’analyse d’un grand nombre

de caractéristiques extraites d’images médicales telles que les CT, MRI ou PET. Ces carac-

téristiques sont utilisées pour découvrir les caractéristiques de la maladie qui ne peuvent

être trouvées ou quantifiées à l’œil nu. La première étape de l’analyse radiomique en on-

cologie est la segmentation de la lésion, qui consiste à isoler une ROI des autres régions

à l’aide de contours. Après la segmentation, des milliers de caractéristiques peuvent être

extraites de l’ROI, puis les plus pertinentes sont sélectionnées. Enfin, un algorithme d’ap-

prentissage automatique tel que RF ou SVM est appliqué pour identifier les meilleures

caractéristiques pertinentes qui prédisent le résultat. Ce flux de travail classique est li-

mité pour plusieurs raisons : la segmentation nécessite un médecin hautement qualifié,

elle est chronophage et la vérité terrain définie est subjective et sujette à erreur (variabi-

lité intra et inter observateur). Deuxièmement, les caractéristiques artisanales définies à

partir du ROI sont limitées car elles sont fortement influencées par de nombreux facteurs

tels que la méthode de segmentation utilisée. Par conséquent, elles échouent lorsque le

ROI est modifié.

Récemment, l’apprentissage profond a radicalement changé le domaine de la vision

par ordinateur, notamment la classification des images, la détection des objets et la seg-

mentation des images. Dans le domaine de l’imagerie médicale, diverses applications de

l’apprentissage profond sont apparues dans différents domaines, notamment la classifi-

cation des pathologies, la stratification des risques, la prédiction de la réponse au traite-

ment, la segmentation des lésions et des organes. Ainsi, l’intelligence artificielle en géné-

ral et l’apprentissage profond en particulier peuvent s’avérer utiles pour développer des

applications CAD. Cependant, les approches d’apprentissage profond sont bien connues

pour leur nature avide de données, et les données annotées sont généralement difficiles

à obtenir dans le domaine de l’imagerie médicale.

L’objectif de cette thèse est de surpasser le paradigme actuel de la radiomique qui né-
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RESUME

cessite une extraction manuelle des caractéristiques et de le remplacer par la radiomique

profonde. Dans notre nouvelle approche, les caractéristiques sont apprises en même temps

que la prédiction du résultat. Pour y parvenir, nous développons différents algorithmes

pour créer des architectures de bout en bout qui prennent une image en entrée, ap-

prennent la représentation des caractéristiques et la prédiction des résultats.

La première méthode que nous proposons consiste à créer un paradigme de radio-

mique profonde en explorant un CNN en raison de son pouvoir prédictif. Nous avons

créé un modèle de prédiction de bout en bout basé sur un CNN 3D, appelé 3D RPET-NET,

qui extrait conjointement les caractéristiques à partir d’une image CNN en 3D et prédit le

résultat du traitement. Les résultats obtenus surpassent les approches radiomiques clas-

siques.

Comme mentionné ci-dessus, les données annotées constituent un problème majeur

dans le domaine de l’imagerie médicale, où seul un petit sous-ensemble d’images anno-

tées est disponible. Nous proposons une méthode WSL pour résoudre ce problème. Notre

méthode permet de segmenter automatiquement la lésion pour l’analyse radiomique,

sans vérité terrain pour la segmentation et avec seulement une faible annotation (classe

de la pathologie et un voxel dans la région de la tumeur). L’étape clé est de segmenter la

tumeur en 3D. Notre méthode de segmentation est composée de quatre étapes : 1) calcu-

ler deux images MIP à partir d’images PET 3D de cancers du poumon et de l’œsophage

dans deux directions 2) classer les images MIP en différents types de cancers 3) générer

les cartes d’activation de classe par une approche d’apprentissage multitâche avec une

faible connaissance a priori 4) segmenter la région tumorale 3D à partir des deux cartes

d’activation 2D avec une nouvelle fonction de perte. L’approche que nous proposons per-

met d’obtenir des résultats comparable à l’état de l’art pour la prédiction avec une vérité

terrain très faible pour la segmentation.

Des études récentes ont montré le potentiel des régions péritumorales pour améliorer

la précision de la prédiction de la réponse au traitement et la survie. Ainsi, l’association

des régions intratumorale et péritumorale fournit des informations plus riches qu’une

seule région pour l’analyse radiomique. Par conséquent, nous développons un nouveau

réseau de segmentation qui ne donne pas la même vérité terrain que les médecins, mais

qui permet de trouver les régions qui contribuent le plus à la prédiction. Notre méthode

est basée sur l’apprentissage MTL, qui est un type d’algorithme d’apprentissage visant à

combiner plusieurs éléments d’information provenant de différentes tâches afin d’amé-

liorer les performances du modèle et sa capacité à mieux généraliser. L’idée de base du

MTL est que différentes tâches peuvent partager une représentation de caractéristiques

communes, et donc les entraîner conjointement.

Notre méthode réalise conjointement 4 tâches : la reconstruction de l’image, la clas-

sification de la pathologie, la segmentation de la tumeur et la prédiction de la réponse au

traitement et la survie, dans le cadre d’un apprentissage multi-tâches. Nous montrons que

l’encodeur peut bénéficier de tâches multiples pour extraire des caractéristiques signifi-

catives et puissantes qui améliorent la performance radiomique, et que les tâches subsi-

diaires servent de biais inductif pour que le modèle appris puisse mieux généraliser. Notre

modèle a été testé et validé pour la réponse au traitement et la survie dans les cancers

du poumon et de l’œsophage, surpassant les méthodes d’apprentissage à tâche unique.

Nous montrons également qu’en utilisant une approche MTL, nous pouvons améliorer

les performances de l’analyse radiomique grâce à la richesse des informations extraites

des régions intratumorales et péritumorales. L’architecture MTL a également été testée

avec succès sur un jeu de données COVID-19. a
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General Introduction

Cancers present a strong heterogeneity within and between patients, which occurs

at different levels/scales : genetic, cellular, tissue, organ . . . etc. It also evolves during the

course of the disease and therapy [Marusyk et al. 2012]. This limits the use of invasive

procedures such as biopsies, on which molecular and genetic analyses are carried out,

but on the other hand gives enormous potential to non-invasive imaging techniques [Yip

and Aerts 2016]. Over the past decade, the use and role of medical imaging in clinical on-

cology has increased dramatically. Recent advances in medical imaging allow the use of

image analysis methods that go beyond the localization of organs and tumors and simple

measurements of their size. Imaging therefore has great potential to guide treatment, mo-

nitor progress, predict disease progression and response to treatment.

“Radiomics” [Kumar et al. 2012, Lambin et al. 2012b], namely the computational ana-

lysis of medical images is recently used as a surrogate for the determination of complex

image features. Until recently, evaluation of images has been limited to what the eye can

see, but the complex interactions between tissues at the image level is a treasure-trove of

information that can only be fully utilized with computational methods. Here, we propose

to harness this information by applying deep learning methods to predict patient’s out-

come, study intra and inter-tumoral heterogeneity to better assess the underlying tumor

changes that may be impacting prognosis and therapy response.

Many methodologies have been proposed for patient stratification and biomarker iden-

tification [Elefsinioti et al. 2016, Sorani et al. 2010], some of them building a joint latent

variable model to simultaneous infer cluster assignments from multiple data types [Shen

et al. 2009], or building networks of patients as a basis for data integration [Wang et al.

2014]. Though powerful, these approaches do not scale well to high-dimensionality data,
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General Introduction

making the algorithms sensitive to a necessary initial feature pre-selection step. Despite

several decades of research, predictive biomarkers are scarce, limited to the metastatic

setting and are more effective at identifying non-responders than patients who may be-

nefit from treatment. Here, we aim to provide novel insights into radiomic and therapy

responsiveness by developing new prediction methods based on deep learning approach

that uses multiple layers to progressively extract higher-level features from the raw input

and predict the outcome in an end-to-end model.

In the last years, deep learning has seen large success for different applications such

as image classification [Krizhevsky et al. 2012], object detection [Zhao et al. 2019], speech

recognition [Hinton et al. 2012] and in various applications in the medical imaging field

[Lee et al. 2017, Ravì et al. 2016]. Deep learning methods are data hungry, which presents

a problem in the field of medical imaging where usually only few labeled examples are

available. In practice, to deal with small dataset, different well known regularization tech-

niques are used to avoid overfitting. For instance, dropout is a regularization technique

commonly used in deep neural network architectures to prevent co-adaptation between

neurons [Srivastava et al. 2014a]. The key idea is to randomly drop units (along with their

connections) from the neural network during training with the goal of generating an ex-

ponential number of different “thinned” networks. Other mechanisms such as Lp para-

meter norm or early stopping are usually used to reduce the model complexity. There-

fore, we believe that deep learning is a relevant approach for radiomic study despite these

challenges.

The objective of this thesis is to investigate an end-to-end deep frameworks that can

jointly extract rich features and predict patient’s outcomes on a small dataset. This thesis

has three main contributions. First, we propose to go beyond classical radiomics based on

handcrafted features by using deep radiomics. Our approaches can jointly learn characte-

ristics and predict outcomes. Second, we propose a weakly supervised learning approach

to segment automatically the lesion and then predict the patient’s outcome based on the

segmentation result. Finally, instead of doing segmentation and prediction separately and

also to solve the overfitting problem when training complex models, we propose an ar-

chitecture that includes segmentation, classification and prediction through multi-task

2



learning.

The work presented in this thesis was carried out in Becquerel cancer center with the

Quantif-Litis team of the university of Rouen, and General Electric Healthcare. This thesis

was financed in part by National Association for Research and Technology (ANRT).

Outline of the thesis. The manuscript is composed of two background chapters follo-

wed by three chapters each presenting one of our contribution as mentioned above.

— Chapter 1 starts by a general definition of cancer and the different tools used for

diagnosis, treatment and follow up. Then, we present the principle of fluorodeoxy-

glucose (FDG) PET imaging, as well as its medical interest in oncology. Finally, we

describe the first-order, second-order, and higher-order statistical features derived

from medical images and their contribution in oncology.

— Chapter 2 introduces several machine learning paradigms covering supervised lear-

ning, weakly supervised learning and multi-task learning, which are the core of

this thesis. Then, we present a review of the literature presenting the concept of

radiomic using machine learning and deep learning algorithms, as well as current

limitations.

— Chapter 3 presents our first contribution, which consists in the development of a

deep radiomics framewrok based on 3D CNN to predict the response to treatment

for patients with esophageal cancer. Our proposed method relies on two strate-

gies to boost the prediction power of a CNN : (i) Develop a 3D CNN to extract 3D

PET image features and predict the outcome (ii) Study the role of the volume of

interest on the accuracy of the 3D CNN and other methods by using isotropic mar-

gins around the tumor volume, so as to reveal intra and peritumoral influence on

the outcome prediction. We show experimentally that our approach allow us to

achieve the best results compared to state-of-the-art methods.

— Chapter 4 is devoted to our second contribution which falls into the scope of weakly

supervised learning where only little information is available for tumor segmenta-

tion. Image segmentation in 3D requires a lot of data and high computing power.

In addition, the tumor is sometimes too small and included in a large 3D volume.

We propose a method based on the principle of interpretability of a classification
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General Introduction

network to detect the lesion. The originality of our contribution comes from the

fact that we train a CNN to classify images into lung or esophageal cancer, whose

ground truths are easy to obtain compared to manual segmentation of 3D images.

Class activation maps which represent the areas of the lesion can be obtained at

the same time. Then, using the segmentation results, we perform radiomic analy-

sis to predict patient’s outcome for esophageal cancer and survival for lung cancer.

We show experimentally that the proposed method achieve state-of-the-art results

for both segmentation and prediction tasks.

— Chapter 5 is dedicated to the presentation of our third contribution. Instead of trai-

ning a Neural Network (NN) to do a segmentation as the physician’s delineation,

we let the NN decides which are the most peritumoral and intratumoral informa-

tive regions that boost the prediction performance. This is done through a MTL

approach where the NN learns jointly the segmentation of the lesion and the out-

come prediction. Since CNN needs a large dataset to learn useful representation

and generalize to an unseen data, training a CNN on a small dataset presents the

risk of overfitting. In order to overcome this limitation, we propose an approach

based on parameter sharing. By adding subsidiary tasks such image reconstruc-

tion [Zeng 2010] and pathology classification, we have experimentally shown that

the shared encoder works well for all four tasks because the number of grounth

truths is increased. We evaluated our method on lung and esophageal cancer da-

tasets and showed that MTL can improve the performance over a single learning

approach. We also validated our method on a COVID-19 CT dataset.

— In chapter 6, we conclude our work and give some perspectives to improve it.
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Chapitre 1

Medical imaging as a diagnostic and

prediction tool
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CHAPITRE 1. MEDICAL IMAGING AS A DIAGNOSTIC AND PREDICTION TOOL

1.1 Cancer

1.1.1 Definition

A healthy organism has vital functions (breathing, circulation, digestion,. . .) in good

condition and balanced : a phenomenon called homeostasis. In this situation a healthy

cell can divide by mitosis and give two daughter cells, clone of the mother cell. It fre-

quently happens that a cell undergoes changes either in the nucleus or in its morphology.

In the case of a deleterious mutation, either the cell commits suicide by apoptosis, or the

cell dies causing inflammation, which is called necrosis. As long as these mechanisms are

active, then the organism can remain healthy. However, a mutant cell may acquire the

characteristic of multiplying in an uncontrolled manner, endangering the vital balance of

the organism (Figure 1.1).

This disease characterized by abnormal cell proliferation within a living organism is

cancer. Indeed, these cells increase in number, both by their important mitotic capacity

linked to a loss of control of the cell cycle, but also by an insensitivity to apoptosis. There is

also an anomaly in DNA repair. As these cells accumulate, a tumor can form in the target

organ. Then, some primary tumors may progress to a more global invasion of the body, by

escape of tumor cells : this is called metastasis. When organs are affected, they gradually

lose their functionality, ultimately leading to death.

The 2 main categories of cancer are solid cancers and liquid/blood cancers. Solid tu-

FIGURE 1.1 – Normal and cancerous cells : How Are they different. Source : verywellhealth
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1.1. CANCER

mors, such as carcinomas or sarcomas, are recognizable by a localized cluster of cells.

They differ from blood cell cancers, such as leukemia or lymphoma, in which the cancer

cells circulating in the blood or lymph are dispersed throughout the body.

In 2018, the number of new cancer cases in metropolitan France is estimated at 382,000.

Between 2010 and 2018, the cancer incidence rate tends to stabilize in women; it is de-

creasing in men. The number of cancer deaths has been estimated at 157,400 (67,800 can-

cer deaths in women and 89,600 cancer deaths in men) 1. Therefore, cancer care is a public

health issue.

1.1.2 Cancer staging

For most of the cases where a person has cancer, physicians need to asses the stage

of the disease. Staging is the process of determining how much cancer cells is within the

body and its location. This step is crucial to determine the treatment. The stage of the

cancer can also be used to predict the prognosis and the response to treatment. However,

some cancers are not staged based on the spreading of the diseases, such as leukemia,

which is a cancer of the blood cells and therefore the diseases have spread throughout the

body by the time of the finding.

In order to asses the stage of the cancer, different techniques can be used. In many

cases, the most reliable way to diagnose a person with cancer and to know the type of

cancer it is, is by removing a small tissue called sample, and then analyze it under a mi-

croscope with the help of a pathologist. This operation is called biopsy. Blood tests can

also be used to stage some type of cancer. Other exams such as endoscopy are sometimes

used for the investigation and staging of cancer, for example, in the case of esophageal

cancer. Staging can also be done using imaging tests such as CT, PET and MRI.

Generally, the stage of the cancer is determined at the time of diagnosis, however, this

stage is usually updated later after the treatment and during the follow-up. When the sta-

ging is done based on physical exams such as medical imaging tests, endoscopy or biopsy

before the treatment it is called clinical staging. When the stage is determined using a

sample from a surgery given as first treatment it is called pathological stage. This stage

1. [Cancer In France /Edition 2019, National Institute of Cancer], November 2019, www.e-cancer.fr
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may differ from the clinical stage, since it allows to determine more precisely the spread

of the disease and may help also to predict treatment response and prognosis. In case

of a recurrence, the staging is performed a second time in order to help guide decisions

about the treatment. This is referred to as re-staging. An important thing to note here is

that the new stage is added to the original stage, but it does not replace it. The first stage

at the diagnosis level is the most important stage when performing statistics analysis or

predicting the outcome.

1.1.3 TNM Stage

The most common and widely used system to asses the stage of solid cancer is the

TNM stage. The overall stage in TNM is determined by investigating the 3 elements : tu-

mor(T), node(N) and metastasis(M) as follow :

— T : the primary tumor

— N : if the cancer has spread to nearby lymph nodes

— M : if the cancer has spread to distant part of the body

This system provides physicians with important information about the size of the tu-

mor, its location and whether or not it has spread. A letter or a number is assigned to each

category to determine the spread of the disease. For the primary tumor category (T), the

different sub-categories are :

— TX : no information about the tumor

— T0 : no evidence about the tumor

— T1 : the tumor invades the mucosa 2 or submucosa 3 (T1a and T1b)

— T2 : the tumor invades the muscularis 4

— T3 : the tumor invades the adventitia 5

— T4 : the tumor invades adjacent structures (other organs, . . .)

For the lymph nodes category (N), the different sub-categories are :

2. A membrane that lines various cavities in the body and covers the surface of internal organs. Source :

Wikipedia

3. A thin layer of tissue in various organs of the gastrointestinal, respiratory, and genitourinary tracts.

Source : Wikipedia

4. Third layer of tissue in the colon.

5. The outer layer of fibrous connective tissue surrounding an organ
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1.1. CANCER

— NX : no information about the nearby lymph nodes

— N0 : no evidence of regional lymph node involvement

— N1 : spread to 1 or 2 neighboring lymph nodes

— N2 : spread to 3 to 6 neighboring lymph nodes

— N3 : spread to more than 7 neighboring lymph nodes

For the metastasis category (M), the different sub-categories are :

— M0 : no distance metastasis

— M1 : the cancer has metastasized, it has spread to another part of the body.

Once all these information are gathered and combined the TNM stage is defined (see

table 1.1).

Stage TNM Stage T Stage N Stage M

Stage 0 T in situ N0 M0

Stage IA T1 N0 M0

Stage IB T2 N0 M0

Stage IIA T3 N0 M0

Stage IIB T1, T2 N1 M0

Stage IIIA T4a N0 M0

- T3 N1 M0

- T1, T2 N2 M0

Stage IIIB T3 N2 M0

Stage IIIC T4a N1, N2 M0

- T4b all N M0

- all T N3 M0

Stage IV all T all N M1

TABLEAU 1.1 – Regrouping of stages T (tumor), N (nodes) and M (metastatis) in a single stage TNM.

The cancer stage is a very important information that affect the treatment and also

the patient’s prognosis, along with the type of the cancer. The prognosis or survival rate

is defined as the percentage of people with certain stage and type of cancer living after

certain amount of time (usually 3- years), after being diagnosed. Survival rates are mainly

based on the stage. There are indeed other factors that may affect the prognosis, such

as the overall health of the patient, age and response to treatment. Finally, it should be

noted that accurate cancer staging is difficult and complex due to the precision required

to make accurate staging. Also, TNM system showed some limitations in the prediction of

the response to treatment and survival in oncology [Huang and O’Sullivan 2017].
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1.1.4 Treatment

Cancer is characterized by an inter- and intra-cellular heterogeneity. Due to this speci-

ficity, and the fact that different type of cancers are defined as different diseases, different

type of treatments are proposed. The main classes of treatment are the surgery, chemo-

therapy, radiotherapy and immunotherapy. It can also be combined such as Chemoradio-

therapy or surgery with Chemoradiotherapy.

Cancer surgery can be used for different purposes : to prevent, diagnose, stage and

treatment. Surgery is used sometimes to diagnose cancer. When this procedure requires

a surgery to take out a sample, it is called surgical biopsy. In the case of staging, it is done

by examining the area around the tumor such as the lymph nodes and nearby organs, in

order to determine how much the cancer has spread. Surgery for treatment is defined as

the abduction of the whole or a part of the tumor. In the first case, it is called curative since

it is given as the main treatment and the tumor is removed completely. In case where only

a part of the tumor is removable, it can help other treatments to work better. In that case

the operation is called debulking surgery.

Radiotherapy is the use of high doses of radiation to kill or damage DNA of cancer

cells. It is used generally to treat some area of the body, and is called local since it treats

or affects one part of the body. Cancer cells with irreparable DNA damage stop dividing

or die. When the damaged cells die, they are destroyed and eliminated by the body. This

process may take days or weeks, and even months before DNA is damaged enough for

cancer cells to die. There are two main types of radiation : internal and external (Figure

1.2). The choice of the type of radiation depends on several factors such as the type of

cancer, the size of the tumor, the tumor location and the overall health of the patient.

Internal radiation therapy is a treatment where the source of radiation is put inside the

body. The radiation source can be solid or dispersible. External radiation therapy is the

most common used in radiotherapy. In this case, the source of radiation comes from a

linear accelerator.

Chemotherapy is the use of drugs to treat a disease. In most of cases chemotherapy is

used to imply drugs used for cancer treatment. It is considered as a systemic treatment,
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1.1. CANCER

FIGURE 1.2 – Difference between external and internal (brachytherapy) radiation therapy. Source :

Equicarehealth.

since the drugs travels through the body in the bloodstream to kill cancer cells. It allows

to treat patients with metastasis that are far away from the primary tumor, which makes it

different from surgery and radiotherapy. The oncologist decides on the doses, the way to

administrate it, the frequency and the duration of treatment. Again, theses decisions are

mainly based on the type and stage of the disease, with other factors such as the patient’s

age and overall health.

Radiotherapy and chemotherapy are given to cure, to control or as a palliation treat-

ment. In case where cure is not possible, they are given to control the disease and stop the

growing and spreading of the tumor, with the hope to decrease its size. In that case, the

cancer is treated as a chronic illness. When curing and controlling is not possible, radio-

therapy and/or chemotherapy can be given to ease symptoms and relieve patient from

pain or pressure caused by a tumor so the patient feels better. This is called palliative

treatment or palliation.

Finally, immunotherapy is based on the use of a person’s own immune system to target

and kill cancer cells. This can be done using different strategies. The first one is stimula-

tion, or boosting the immune system to work its hardest or smartest. The second one is to

make substances similar to the immune system of a person and using them to improve the

immune system works in order to kill cancer cells. Recently, immunotherapy showed very

promising results for different type of cancers such as bladder cancer [Fuge et al. 2015],
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brain cancer [Jackson et al. 2014], breast cancer [Emens 2018], cervical cancer [Tewari and

Monk 2014], leukemia [Beyar-Katz and Gill 2018] and others [Couzin-Frankel 2013].

Cancer treatment is an area of ongoing research. Current criteria to choose a treatment

are based on stage, tumor localisation and clinical information. However, these criteria

have shown some limitations, and recent studies revealed the need of more accurate in-

formation for the choose of treatment [Lambin et al. 2012b]. These criteria should include

personal information about the person such as genes (genomics), proteins (proteomics)

and images (radiomics). The incorporation of these sources of information will help to

accurately identify the stage of the disease but also to personalize the treatment, which is

called precision or personalized medicine (see Figure 1.3).

FIGURE 1.3 – Example of different information, including the radiomic information of the image

contributing to a personalized treatment, according to [Lambin et al. 2012b]

During and at the end of the treatment the patient is monitored so that physicians

could evaluate the efficiency of the treatment. Medical imaging plays a fundamental role

in the follow up of the disease and re-staging of cancer.
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1.1.5 The WHO, RECIST and PERCIST criteria

World Health Organization (WHO) introduced a standard measure to assess the res-

ponse to treatment for solid tumors [Miller et al. 1981]. This standard categorize patients

in 4 groups : Complete Response (CR), Partial Response (PR), Stable Disease (SD) and

Progressive Disease (PD). This categorisation is based on several information including

anatomical criteria for the evolution of the tumor at the end of treatment. However, this

criteria have shown several limitations : it is not very robust to measurement bias and the

maximum/minimum number of lesions to be considered in the evaluation is not speci-

fied. Also, the WHO criteria is subjective.

The response evaluation criteria in solid tumors (RECIST) [Eisenhauer et al. 2009, The-

rasse et al. 2005] was proposed to solve these issues. This criteria uses computed tomo-

graphy scan to follow the development of the largest diameter of lesions over time. This

measurement is made by assuming that the shape of the tumors is elliptical. A patient is

considered to have CR if all lesions have disappeared and all affected lymph nodes are

less than 10 mm in diameter. A patient is said as to have PR if the diameter of the lesions

has decreased by 30% on average, PD if the diameter has increased by at least 20% and SD

in other cases.

The PET response criteria in solid tumors (PERCIST) was introduced in 2009 by [Wahl

et al. 2009]. The advantage of PERCIST is the use of metabolic quantitative information

from a radiotracer binding intensity index corresponding to the average of the intensities

within a 1 mL zone around the maximum intensity called "peak". This index is calculated

and then compared between 2 successive exams, thus allowing the patients to be sepa-

rated into 4 categories. A patient is considered to be in CR if all lesions have disappeared

and the intensity of fixation on post-therapy imaging of the lesion is lower than that of a

healthy reference zone (liver or aorta). A patient is defined as in PR if the variation of the

"peak" between 2 examinations is -30% for the zone of highest intensity, PD if the "peak"

is +30% and SD in other cases.

Given the great interest of PET in oncology [Lemarignier et al. 2014, Vera et al. 2014],

from diagnostic to evaluation and follow-up [Ben-Haim and Ell 2008], we have chosen to
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use PET modality with 2-[18]-Fluoro-2-desoxy-D-glucose (FDG), to study treatment res-

ponse and survival. In the following sections, we will present the principle of PET imaging

with FDG, and the characteristics that can be derived from it. Next, we will show the value

of PET imaging in oncology, and cover other advanced features that can be extracted from

the images.

1.2 FDG PET imaging : principle and characteristics

1.2.1 Principle of PET imaging

PET (Figure 1.4) is one of the most widely used medical imaging techniques today to

visualize the distribution of a tracer in an organism. Unlike anatomical imaging such as

X-ray, CT, or MRI, functional imaging such as Functional Magnetic Resonance Imaging

(FMRI) or PET allows the study of biochemical or physiological phenomena. In PET, the

gamma-rays measured are emitted by annihilation of positrons released by an exogenous

substance (tracer) in body. This is refereed to as imaging antimatter or annihilation of

antimatter with matter [Morgan Jr and Hughes 1970]. The gamma-rays are emitted in all

sort of directions. To look inside the set up of a PET scanner, it is composed of different

elements such as the detector ring, a coincidence processing unit, the computer for image

reconstruction, and the process placed at the heart of the object to be detected (see Figure

1.5).

In CT, absorption of the x-rays is the contrast generating parameter. The subject is

irradiated with x-rays, and the different absorption allows to distinguish between the dif-

ferent tissues. While in PET, the absorption is, in principle, undesirable. Indeed, the ab-

sorption of gamma-rays in PET is considered as a nuisance effect. Figure 1.6 shows an

unstable parent nucleus with in red the neutrons, and in blue, the positrons.

When this unstable nucleus decays, there is a conversion of a positron into a neu-

tron. Thus, the charge changes by minus one. With a different charge and with the charge

conservation law, this positive charge will be emitted from the nucleus in the form of a

positron. This positron will then diffuses through the tissues, undergoes various interac-
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FIGURE 1.4 – Discovery IQ PET/CT scanner image courtesy of GE Healthcare.

FIGURE 1.5 – Diagram of the PET scan acquisition process. Source : Wikipedia.

γ = 511 keV

180°e+

p+

n

e-

γ = 511 keV

β+

FIGURE 1.6 – After a short distance, the positron e+ obtained by emission β+ is annihilated with

an electron e− giving birth to two photons γ emitted in the same direction, in opposite direction

at 180° from each other and with an energy of 511 keV each.

15



CHAPITRE 1. MEDICAL IMAGING AS A DIAGNOSTIC AND PREDICTION TOOL

tions, and akin to the electrostatic Coulomb interaction. After this, positron has lost most

of its kinetic energy, at some point, it will be attracted by a nearby electron. They combine,

it is matter and antimatter, and when matter and antimatter meet, they are annihilated,

so there is the emission of two gamma-rays. These gamma-rays travel at 3 × 108 meters

per second. Thus, in 3 nanoseconds, the gamma-ray will have traversed 1 meter in the

scanner. This essentially means that in order to determine the location of an annihilation

event, the detector must detect two events that occurred simultaneously, i.e. two gamma-

rays at the same time. This will indicate that at some point, there was an electron–positron

annihilation. This is the basic principle of detection. However, in practice, the detection

of the two gamma-rays does not happen to be always simultaneously. There are several

cases :

— True coincidence (Figure 1.7a) two photons that are being sent off in opposite di-

rections and detected simultaneously.

— Random coincidences (Figure 1.7b) coincidences where two positron electron an-

nihilation processes happened simultaneously. Of these four photons that are being

produced, two of them are lost.

— Scattered coincidence.(Figure 1.7c) when an annihilation occurs and one of the

photons is being Compton scattered in the tissue, so it’s being deviated by a certain

angle.

— Multiple events (Figure 1.7d) when more then 2 events are detected simultaneously.

FIGURE 1.7 – Types of coincidences recorded by the detection system : (a) true coincidence, (b)

diffuse coincidence, (c) fortuitous coincidence and (d) multiple coincidence.

Finally, standardization must be added to this process. Once all the events are de-

tected, standardization must also be taken into account. Standardization is essentially a

process that takes into account the imperfection of the scanner.

The detected signals are stored in a 2D matrix called sinogram. A sinogram allows to
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describe the projection detected around the patient from a certain angle φ (Figure 1.8).

Each line of the sinogram represents the number of events detected in all the parallel res-

ponse lines forming the same angle with respect to the tomograph axis. Then the recons-

truction of the 3D images is done using analytical or iterative methods. PET machines

now-days are coupled with CT to add an anatomical information, which helps physicians

in image interpretation, and also for attenuation correction [Kinahan et al. 1998]. More

recently, MRI also can be coupled with PET images [Wagenknecht et al. 2013].

FIGURE 1.8 – Example of the creation of three lines of the sinogram according to the projection

angle. Source : Tylski

For more details on how PET works as well as CT reconstruction, the reader can refer

to [Das B K. and Das 2015].

1.2.2 Fluoro-2-deoxy-D-glucose (FDG)

The most widely used tracer for PET is FDG. It’s the glucose where there’s a fluorine

attached at the two position (Figure 1.9). Instead of OH group, there’s a fluorine attached.

Fluorine 18 is an unstable nucleus that decays, and as it decays it emits a positron. The

radioactive half-life is 110 minutes with an energy of 0.64 MeV.

FIGURE 1.9 – Stereo skeletal formula of fluorodeoxyglucose (18F). Source : Wikipedia.
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The accumulation of 18F-FDG visible on the PET images highlights the abnormally

high carbohydrate metabolism of tumors. Thus, PET imaging is routinely used as an aid in

the diagnosis and staging of many cancers. Due to its functional property, it is a powerful

tool for diagnosing the malignancy of a lesion 4.8.

(a) (b)

FIGURE 1.10 – (a) Cross-section PET to FDG and (b) MIP of a patient with an esophageal cancer.

The tumor appears stained on the MIP. Other organs with normal FDG fixation are : the brain due

to its permanent activation, the kidneys and bladder for their filtration role.

1.2.3 Standardized Uptake Value (SUV)

"Standardized Uptake Value" (SUV) [Woodard et al. 1975] was introduced as a simple

means to measure the absolute metabolic activity using PET. Tracer fixation in tissues

depends in particular on the injected dose and the blood volume in which the activity

is distributed. A simple way to normalize the measured uptake is therefore to apply the

following formula 1.1 :

SUVBW =

Activity concentration
(

kBq
mL

)

Injected dose(kBq)/Body weight(g)
(1.1)

This weight-standardized definition is usually given without unit. The fixation expres-

sed in Bq/mL, corresponds to the image quantified in an absolute way. So in summary,

an SUV value equal to 1 means that the tracer concentration corresponds to the average
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concentration in the patient. A value of 10 in a lesion means that 18F-FDG binding is 10

times greater than the uniform distribution of the tracer.

To interpret a fixation, it is necessary to normalize it by this quantity. It is a passage

from relative quantification (recorded events / voxel) to absolute qunatification (Kbq/mL).

The ability to measure the SUV value of a lesion has the advantage of normalizing the

images so as to compare the intensity of the fixation for patients who have received dif-

ferent activities relative to their weight. It also makes it possible to evaluate the therapeu-

tic response and to monitor the patient.

1.2.4 Features in FDG PET Imaging

Identifying new non-invasive approaches to predict a patient’s response to treatment

has the potential to significantly improve clinical outcome. As shown above, several stu-

dies have reported that the amount of FDG in initial PET images of the tumor can provide

predictive power [Hatt et al. 2011, Javeri et al. 2009, Rizk et al. 2009]. In addition to the

SUVmax, other measures were derived from the SUV 1.11 such as :

— SUVmean : is the mean value of the SUV in a defined metabolic volume.

— SUVmin : represents the SUV in the voxel of activity with the lowest value.

— SUVpeak [Wahl et al. 2009] : is the average SUV of the voxels contained in a paral-

lelepiped volume of interest with three voxels on each side and whose position is

chosen such that the average SUV of the voxels contained in the volume of interest

is as high as possible. Its center belongs to the segmented metabolic volume.

— TLG (Total Lesion Glycolysis) [Larson et al. 1999] : is defined as the product of the

mean SUV with the metabolic tumor volume measured in the tumor.

— MV (Metabolic volume) : is defined as the total volume in cubic centimeters (cc) of

the tumor.

Recently, a new approach is of increasing interest in PET imaging, namely the charac-

terization of intra-tumor heterogeneity of radiotracer uptake. This approach consists in

extracting image characteristics based on classical 1st and 2nd order statistical methods.

For instance, texture is very important in the analysis of images, this is due to its pre-

sence in the vast majority of images, thus a large number of methods for its analysis have
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FIGURE 1.11 – Representation of SUV derivatives of a lesion. Source : Orlhac.

been developed. There are several definitions of texture in the field of image processing,

the most common one defines texture as a region in an image, where a set of pixels that

have a spatial relationship between them. Texture can appear in different symmetrical,

recurring, dynamic forms . . . etc.

Work on texture has given rise to several approaches to characterize it and thus, to

recognize the texture in an image, we find in the literature two main approaches.

1.2.4.1 Structural approach

It is based on two main elements : the primitives used and the spatial relations that

link them together. The methods of this approach are mainly based on signal processing,

topography and geometry. Their strong point is that they can be used with classical seg-

mentation methods such as Edge-Detection. Some methods consist in finding the texels

(basic component of a texture) then using heuristics to find the positioning rules, other

so-called syntactic methods use language theory to generate the texture by applying pro-

duction rules, moreover a texture can be generated by several grammars. The results of

this approach are more used in texture synthesis than in texture analysis.

1.2.4.2 Statistical approach

First-order statistics :

It is a method based on the distribution of pixels without taking into account the rela-

tionships between them. The means used to represent the distribution is the histogram, a
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FIGURE 1.12 – Images and corresponding histograms

TABLEAU 1.2 – Different properties that can be calculated using the histogram.

Property Formula

Mean µ=
∑G−1

i
i h(i )(1.4)

Variance σ2 =
∑G−1

i=0 (i −µ)2h(i )(1.5)

Skewness µ3 =σ-3 ∑G−1
i=0 (i −µ)3h(i )(1.6)

Kurtosis µ4 =σ-4 ∑G−1
i=0 (i −µ)4h(i )−3(1.7)

Energy µ5 =
∑G−1

i
h(i )2(1.8)

Entropy µ6 =
∑G−1

i
h(i )log 2h(i )(1.9)

graph allowing to study the distribution of a variable, the X axis will represent the different

gray level values, the Y axis will represent the number of occurrences 1.12.

The creation of a histogram is done with the following function :

h(i ) =
N−1
∑

x=0

M−1
∑

y=0

σ( f (x, y), i ) (1.2)

where σ is 1 when f(x,y) = i, 0 otherwise. Then, the final equation is the following :

H(i ) =
h(i )

N ∗M
(1.3)

After the calculation of the histogram, different properties can be calculated as shown

in table 1.2.
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Second-order statistics :

First order statistics are limited since there are no relation kept between the different

voxels. For further statistical analysis, other methods have been proposed to account for

this voxel relationship, such as textural analysis. The resulted characteristics are of second

order or higher since relationships between neighboring elements 2 x 2 or more are kept.

There are four main texture matrices proposed in the literature :

— Co-occurrence matrix ("Gray Level Cooccurrence Matrix" (GLCM)) [Haralick et al.

1973] : The co-occurrence matrix is a matrix of dimension N*N where N is the num-

ber of gray level values, each cell of the matrix C (i, j) represents the number of oc-

currences of pixels i and j according to a relation of distance and orientation. So

we obtain a co-occurrence matrix for each distance and orientation (See figure ??).

For each matrix we can calculate 14 properties of which the most important are

shown in table 1.3.

— "Gray Level Difference Matrix" (GLDM) [Amadasun and King 1989] : It describes

differences in intensity between neighbors and contains statistics and contains

statistics of a higher order than the previous matrix.

— ("Gray Level Run Length Matrix" (GLRLM)) [Galloway 1975] : characterize the length

of ranges of the same intensity in a given direction.

— ("Gray Level Size Zone Matrix" (GLSZM)) [Thibault et al. 2009] : It gives the length

of the zones having the same intensity in all directions simultaneously.

Table 1.3 summarizes the most important characteristics that can be obtained from

these matrices.

The most used method nowadays for handcrafted feature extraction is based on first

and second order analysis and texture analysis. More recently, to describe 18-FDG uptake

heterogeneity in a lesion, other characteristics have been proposed. For instance, [Bund-

schuh et al. 2014] found that Coefficient Of Variation (VOC) is an important predictive

factor for patients with rectal cancer. El Naqa et al. proposed the extraction of characte-

ristics from the SUV-Volume Histogram [El Naqa et al. 2009], such as SUVx (minimum

SUV for the highest x% SUV) and Vx (Percentage of volume with at least x% SUV). Moreo-

ver, in the same paper, El Naqa et al. found that features extracted from the GLCM [Hara-
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TABLEAU 1.3 – Different properties that can be calculated using the Co-occurence matrix.

Property Formula

Mean mean =
∑

x

∑

y p(x, y)(1.10)

Variance var =
∑

x

∑

y (i −mean)2p(x, y)(1.11)

Energy energy =
∑

x

∑

y (p(x, y))2(1.12)

Contrast contrast =
∑

x

∑

y (p(x, y))2 ∗p(x, y)(1.13)

Entropy entropy =
∑

x

∑

y p(x, y)log (p(x, y))(1.14)

TABLEAU 1.4 – Main statistical characteristics of 2nd and higher order

Matrices 2nd order characteristics and more

Matrices de cooccurrences (GLCM) Variance, Energie, Entropy, Correlation,

Dissimilarity, Contrast, Homogeneity, Mo-

ment differential inverse (IDM), "Cluster

shade", "Cluster tendency"

Gray level difference matrix (GLDM) "Coarseness", "Contrast", "Busyness",

"Complexity", "Strength"

Matrices des longueurs de plages homo-

gènes (GLRLM)

"Short Run Emphasis" SRE, "Long Run

Emphasis" (LRE), "Low Gray level Run

Emphasis" (LGRE), "High Gray-level Run

Emphasis" (HGRE), "Short Run Low Gray-

level Emphasis" (SRLGE), "Long Run Low

Gray-level Emphasis" (LRLGE), "Short

Run High Gray-level Emphasis" (SRHGE),

"Long Run High Gray-level Emphasis"

(LRHGE), "Run Percentage" (RPr), "Gray

Level Non-Uniformity" (GLNUr), "Run

Length Non-Uniformity" (RLNU)

Matrice des longueurs de zones homo-

gènes (GLSZM)

"Short Zone Emphasis" (SZE), "Long

Zone Emphasis" (LZE), "Low Gray level

Zone Emphasis" (LGZE), "High Gray-level

Zone Emphasis" (HGZE), "Short Zone

Low Gray-level Emphasis (SZLGE), "Long

Zone Low Gray-level Emphasis" (LZLGE),

"Short Zone High Gray-level Emphasis"

(SZHGE), "Long Zone HighGray-level Em-

phasis" (LZHGE), "Zone Percentage" (ZP),

"Gray Level Non-Uniformity" (GLNUz),

"Zone Length Non-Uniformity" (ZLNU)
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lick et al. 1973], which characterizes intensity ratios between pairs of neighboring pixels,

are among the most important features in cervical cancer prediction. Other texture ma-

trices have also been proposed in the literature, such as the GLDM [Amadasun and King

1989] which characterizes the intensity difference between neighbors, the GLRLM [Gallo-

way 1975] and the GLSZM [Thibault et al. 2009] characterizing the intensity size ranges in

one direction or in all directions, respectively. In the end, it is possible to extract different

characteristics per matrix, which leads to a large number to be processed. [Tixier et al.

2011a] studied the importance of having a large number of PET image features in eso-

phageal cancer using "Receiver Operating Characteristic" (ROC) curves measuring "Area

Under ROC Curves" (AUC). Among 38 characteristics, they found that GLCM characteris-

tics (entropy, local contrast, correlation, second angular momentum, homogeneity and

dissimilarity) and GLSZM (ZLNU, GLNUz) characteristics are relevant for predicting pa-

tient response to chemo-radiotherapy.
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1.3 Conclusion

In this chapter, we presented the interest of the functional imaging PET with FDG for

cancer care. We also covered the interest of this modality in therapeutic follow-up, as well

as the prediction of treatment response and survival. The SUVmax is considered to be the

first feature that allowed such prediction to be made prior to treatment. Numerous cha-

racteristics emerged later in an abundant literature, proposing features based on 1st order,

2nd order and higher order statistics.

Since many features can be extracted from the images, Machine Learning (ML) is the

most relevant technique to take into account all the features together. In a classic scheme,

a ML algorithm is first used to select the most relevant features for prediction, and then

another or the same ML algorithm is applied to the selected features to predict patient

outcome.

In the next chapter, we will draw up a state of the art in ML algorithms and the process

of predicting patient survival using radiomic features. We will also discuss different ML

algorithms, as well as different radiomics framework.
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Chapitre 2

Radiomics and machine learning
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We are drowning in information and

starving for knowledge.

John Naisbitt

2.1 Introduction

Today we live in a world where data is available in immense quantities, to the point

where it is becoming the new oil [Hirsch 2013]. Conventional methods for manipulating

these vast amounts of data and mining knowledge are becoming very limited, hence the

interest in developing and using new adapted methods. ML, a subclass of Artificial In-

telligence (AI), is a paradigm in which the methods developed make use of this data to

uncover a pattern in order to predict future data or outcomes. AI is defined as a program

that mimic the human intelligence. ML is a branch of AI where designed algorithms im-

prove their performances with experience. DL is a class of ML that uses Artificial Neural

Network (ANN) with representation learning to progressively extract higher level features

from the raw input (see Figure 2.1).

Two components are essential in machine learning : learning (training) and testing

(inference). Learning requires the availability of a dataset in order to uncover a pattern,

which will help later during the inference to make a decision on a new, unseen samples.

Most of machine learning algorithms rely on handcrafted features instead of raw input.

This process requires domain knowledge to extract manually meaningful features, and

then passed to a ML algorithm in order to learn. For inference, the same features are

extracted to be used by the algorithm. DL proposes to replace this framework with an

end-to-end model that extract features and perform prediction at the same time. DL is

composed of several layers : the first ones tend to learn low level representations while

the latter ones high level features (Figure 2.7).

In this chapter, we will present first basic notion in machine learning, and then a state

of the art works in radiomics with ML. Finally, we will show the research directions that

we are going to carry out in this thesis.
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FIGURE 2.1 – Artificial intelligence, machine learning and deep learning.

2.2 Basic notions in Machine learning

2.2.1 Principe of Learning

Learning from data is what defines a machine learning algorithm. Mitchell provides

a formal definition to learning : “A computer program is said to learn from Experience

E with respect to some class of tasks T and performance measure P, if its performance

at tasks in T, as measured by P, improves with experience E.” [Mitchell et al. 1997]. In this

thesis, we will focus on the classification task with supervised learning experience, weakly

supervised learning and multi-task learning.

The Task, T :

If you ask a person if a tree is in a picture, he can answer very quickly. If the same

person is asked what a tree is, he may not answer with great accuracy to describe a tree.

ML algorithms allow to solve this problem by learning from the images the features of the

tree and decide on the type of tree, which is called learning from data. Thus, ML enables

to address problems that are hard to be solved by a written fixed program. The task is what

the ML algorithm will learn to do. For instance, if we want the algorithm to learn to predict

the survival of a patient with lung cancer after treatment, the task is survival prediction.
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The Performance, P :

Performance is a way to measure the efficiency of an algorithm. For the classification,

we usually measure the accuracy of the learned model. Accuracy is the proportion of data

that have been correctly classified. This measure provides a simple yet very useful infor-

mation on how the model is doing on classification. However, sometimes one measure is

limited. For instance, in a binary classification task, if 99% of the data belong to class 0

while only 1% belong to class 1, a simple model that attribute the class 0 to all data will

achieve an accuracy of 99% while the class 1 is completely ignored. In this case, other mea-

sures could be added to measure the efficiency, such as sensitivity (Sens) and specificity

(Spec) :

Sens =
TP

TP + FN
(2.1)

where TP is the true positives, FN is the false negatives. In our binary example, TP + FN is

the number of data points classified as 1.

Spec =
TN

TN + FP
(2.2)

where TN is the true negatives, FP is the false positives. In our binary example, TN + FP is

the number of data points classified as 0.

In that case the accuracy (ACC) could be defined as :

ACC =
TP + TN

TP + FN + TN + FP
(2.3)

Similarly, we can calculate the error rate, which is the proportion of misclassified data.

The objective of the learning algorithm is to minimize the error rate, called also the cost

function. This cost function and performance are calculated on the training dataset, but

in practice we are interested on how well the model is doing on a complete new unseen

dataset, which is called a test set. The choice of the performance metric depends on the

task to be learned.
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The Experience, E :

In machine learning, different approaches can be used to learn from unstructured

data (see Figure 2.2). Two main classes are usually presented : supervised learning and

unsupervised learning. In a supervised learning approach, the goal is to learn a mapping

from inputs x to outputs y , given a labeled set of input-output pairs D = (X i,Y i)i=1
N. D

is the training set and N is the number of training examples. The outputs y could be ca-

tegorical or nominal such as healthy or pathological patient, or a real-valued scalar such

as survival time in days. In the first case it is called a classification problem, and in the

second one it is known as regression problem.

The second type of machine learning is unsupervised learning. In this case, only in-

puts x are given, D = (X i)i=1
N, and the goal is to uncover a pattern or a relation between

x’s in the data. This approach is also refereed to as knowledge discovery. In this work we

are interested mainly in the supervised learning approach.

FIGURE 2.2 – Various categories of approaches for structuring the unstructured information.

Source : towardsdatascience.
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2.2.2 Capacity, Overfitting and Underfitting

The capacity of a model is defined as its generalization to perform well according to a

performance metric P on a new unseen data set, the test set. The error rate on the training

set is known as the training error, and on the test set as the generalization error or test

error. Among the main differences between optimization and ML is that in ML not only

we desire to minimize the training error but also the generalization error. Thus, finding a

trade-off between the two measures is necessary, which is a challenging problem in ML

known as underfitting and overfitting. The underfitting occurs when the model is not able

to fit the training dataset, which results in a high training error. Overfitting occurs when

the model does fit very well the training set, but the gap between the training error and

the test error is very high. One of the main factors influencing underfitting and overfitting

is the capacity of the model. It is defined as the set of functions the model can fit, called

hypothesis space. Models with low capacity tend to underfit. Models with high capacity

may overfit the training set, thus perform poorly on the test test. One way to address this

problem is by limiting the hypothesis space that a model can explore, thus, reducing the

capacity of the learning algorithm.

2.2.3 Hyperparameters and Validation Sets

As mentioned above, the capacity of the model influences the exploitation of a hypo-

thesis space. This capacity in fact depends on a set of hyperparameter of the algorithm. In

general, a hyperparameter is a parameter used to control the behavior of the algorithm.

The values of hyperparameters are not adapted through learning (though a field called

meta-learning in which a second algorithm learns the optimal hyperparameters for ano-

ther algorithm does exist). If the hyperparameters are chosen based on the training set,

the setting will be optimized to minimize the training error, resulting in overfitting. To

solve this problem, another set called validation set which is constructed from the training

set is used to evaluate the model. In practice, we split the training set into two subset, the

first one for training (≈ %80 of the data), and the second one for validation (≈ %20). The

validation set is used to estimate the generalization error during training, and allows to
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update the hyperparameters accordingly. It should be noted here that the test set is used

only to measure the performance of the final model after training and hyperparameters

optimization.

2.2.4 Cross-Validation

The availability of a large database, especially in the medical field, is not always evident.

Thus, dividing a small dataset into training and test may not be the best approach to mea-

sure the performance of a model. A small test set makes it hard to compare two algorithms

due to the uncertainty around the test error. In that case, an alternative procedure called

k-fold cross-validation can be applied. This procedure consists of dividing the dataset

into k subsets called folds, where k-1 are used in training and one in test. The process is

repeated k times. Different test set can then be chosen to measure the performance of the

model when using the other k-1 folds for training. The final measure can be obtained as

the mean of the k performances.

2.2.5 Weakly supervised learning

In a WSL, only few labels are available (see Figure 2.2). Theses labels are used to re-

trieve a signal that labels a large amount of data. ML algorithms are well known for their

data hungry nature, although in many of real life problems, such as in medical imaging,

having a sufficient quantity of labeled data may be difficult due to the need for an expert

to label the data manually and such a task is time consuming. Three well known types of

weak labels are usually presented :

— Imprecise or inexact labels : it is based on the definition of heuristics based on ex-

perts workflow to label the dataset, defining the expected distributions, or by im-

posing constraints on the training data [Cabannnes et al. 2020, Ratner et al. 2016,

Zhou 2018].

— Inaccurate labels : based on non-experts to label the data, which results in a low

quality annotations [Zhou 2018]

— Existing resources : such as knowledge bases or pre-trained models to label the
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data for a certain task that may be helpful, but not perfectly suited for the given

task [Ratner et al. 2019, Zhou 2018]

The advantage of this method is the possibility to increase the size of the database

without worrying about labels. Indeed, in a supervised learning approach, the whole da-

taset should be labeled, which limits the use of large databases that are available but not

annotated, as is the case in medical imaging.

2.2.6 Multitask learning

The standard method in machine learning is to learn one task at a time. Large pro-

blems are broken into small sub-problems that are learned separately and then recom-

bined. MTL [Caruana 1997] is a type of learning algorithm that aims to combine several

pieces of information from different tasks in order to improve the model’s performance

and its ability to better generalise [Zhang and Yang 2017]. The basic idea of MTL is that dif-

ferent tasks can share a representation of common characteristics [Zhang and Yang 2017],

and thus train them jointly. The use of different data sets from different tasks allows lear-

ning an efficient representation of the common characteristics of all tasks, because all

data sets are used to obtain it, even if each task has a small data set, thus improving the

performance of each task.

2.2.7 Artificial Neural Networks

ANNs or NNs for simplicity, are a computing system inspired roughly by biological

neural networks (see Figure 2.4). It consists of a number of units that receive an informa-

tion, process it and send it to the next units. The simple component of a NN is perceptron

[Rosenblatt 1958]. A perceptron represents a single neuron. It is a simple function with a

linear parameter with respect to its input, as represented by the following formula :

f (x) =φ(x .w +b) =φ(
D
∑

i=1

x iw i +b) (2.4)

where x ∈ IRD is an input vector, w is a vector of parameters known as weights. b is

a scalar parameter known as bias. φ is an activation function. Given an input node, φ
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outputs a value to decide if a neuron should contribute or not in the neural network,

and on how should it contribute. The most popular activation functions used in NNs are

nonlinear (see figure 2.3), thus the model could capture high representations using small

nodes.

FIGURE 2.3 – Similarities between biological neuron (left) and artificial neuron (right). Source :

Wikimedia.

FIGURE 2.4 – Popular nonlinear activation functions used for NN training. Source : [Feng et al.

2019]
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2.2.8 Multilayer perceptron (MLP)

Multi-Layer Perceptron (MLP) or deep feedforward networks are the core of deep lear-

ning models. A feedforward network can be represented as a function approximation

where y = f (x) and f is unknown. In classification, the goal of MLP is to estimate f using

a labeled training set D = (X i,Y i)i=1
N, and then to use this approximated function h to es-

timate ŷ using inputs x. We name the approximated function h the hypothesis function.

A MLP defines a mapping as y = h(x,θ), where θ are the parameters to learn that results

in the best approximation function. It is composed by an input layer, followed by one or

more hidden layers and an output layer (see figure 2.5).

FIGURE 2.5 – An example of a multi-layer perceptron.

2.2.9 Neural Network training

The most widely used algorithm to train neural network is Back-propagation [Rumel-

hart et al. 1986]. After a feed-forward pass, the NN predicts an output ŷ for each input x.

The ŷs are compared then to the expected output ŷ via a cost function, which gives us an

idea about the model performance. The error is propagated into the network from output

to input layer via back propagation. During this process, the weights and the biases of the

models are updated in order to minimize the cost (loss) function (see figure 2.6).
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FIGURE 2.6 – An example of back propagation. By updating the weight w and the bias b through

back propagation, the model minimize the loss L by approximating the ground truth y. Source :

Javaid.

2.2.10 Convolutional Neural Networks

In 1980, Fukushima introduced a hierarchical multilayer neural network called neo-

cognitron [Fukushima 1980], which is considered as the originial convolutional neural

network CNN. Neocognitron was used in several applications such as handwritten cha-

racter recognition and other pattern recognition tasks. The architecture was inspired from

the work of Hubel & Wiesel [Hubel and Wiesel 1959], where they found two types of cells

in the visual primary cortex. They have shown that first layers in the neural network tends

to learn simple patterns, using simple cells, while advanced layers tend to learn more abs-

tract patterns, using complex cells.

CNN was introduced and become known by LeCun [LeCun et al. 1998]. It is usually

composed of convolutional layers followed by pooling layers, then a multi-layer percep-

tron. Convolutional layers are based on a convolution operation, where a kernel is used to

convolve the image. A no linear activation function is applied then to the resulted image.

This operation is usually followed by a pooling layer. Different methods exist for the poo-

ling operation : max pooling which consists on keeping the maximum value within a re-

gion, or average pooling which return the average of values within a region. The size of

the kernel for the convolution may differ from a layer to another by increasing the depth

generally. At the end of the last convolutional layer, the raw input become small in width

and high but bigger in depth. Then, a flatten operation that consists on putting the result
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of the last convolutional layer into a 1 big dimensional tensor. A MLP is finally used to

make a decision.

FIGURE 2.7 – Illustration of a deep learning model. Source : deeplearningbook [Goodfellow et al.

2016].

Convolution in neural networks comes with three important properties : sparse in-

teractions (see figure 2.8 and figure 2.9), parameter sharing and equivariant representa-

tions. In a multi-layer perceptron, each unit of the actual layer is connected with every

unit of the next layer. This process create separate parameters describing the interac-

tion between each input unit and each output unit. Sparse interactions, called also sparse

connectivity or sparse weights, refers to the small connectivity between a kernel and the

input. This property allows the detection of small, meaningful features from an image,

such as edges. Unlike the fully connected neural network, only a small kernel with tens of

parameters is used, which results in a fewer parameters for the processing. This results in

a large efficiency, since fully connected neural network is based on a matrix multiplica-

tion. Which means for an input n and an output m, the matrix multiplication requires m

x n parameters. With a small k connectivity, only m x k parameters are required.

In a fully connected neural network, since each input unit is connected with each out-

put unit, the connection is used only once. In a CNN, the same kernel is used for the whole
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FIGURE 2.8 – Sparse connectivity (top) compared to fully connectivity (bellow). Using a kernel of

size 3, only 3 S outputs are affected by input x3 (top). With a fully connectivity, all S outputs are

affected by x3. Source : deeplearningbook [Goodfellow et al. 2016].

input, which results on sharing the parameters between the different input units.

2.2.11 Interpretabilty

Despite their success, deep learning models often function as black-boxes, and pro-

vide very little understanding about the inner workings. While opaqueness concerning

machine behaviour might not be a problem in deterministic domains, in health care, mo-

del interpretability is crucial to build trust in the performance of a predictive system. To

date no single method can provide a detailed human-understandable explanation of how

a model makes a decision, however recent efforts in the field of interpretable artificial in-

telligence have produced various methods that can help bridge the gap between low-level

features and phenotypic predictions. Perturbation-based approaches change parts of the

input and observe the impact on the output of the network [Alipanahi et al. 2015, Zhou

and Troyanskaya 2015]. Backpropagation-like methods, also known as saliency methods,

use signals from gradients or output decomposition to infer a “saliency map” [Simonyan

et al. 2013]. An alternative strategy is the Layer-wise Relevance Propagation (LRP) [Bach
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FIGURE 2.9 – The receptive field of the units in the deeper layers of a convolutional network is

larger than the receptive field of the units in the shallow layers. This means that even though direct

connections in a convolutional net are very sparse, units in the deeper layers can be indirectly

connected to all or most of the input image. Source : deeplearningbook [Goodfellow et al. 2016].

et al. 2015]. Interpretable surrogate models aim to approximate a large, slow, but accu-

rate model by a surrogate models a smaller, interpretable, yet still accurate model [Che

et al. 2015, Hinton et al. 2015, Ribeiro et al. 2016]. Modifications have been proposed to

Generative Adversarial Networks(GANs) to encourage the network to learn interpretable

and meaningful representations [Chen et al. 2016]. Models with built-in explainability,

such as attention mechanisms [Hendricks et al. 2016], can identify a posteriori the most

informative features underlying a prediction.

2.2.12 Conclusion

In the first section we have covered the basics of ML with supervised learning ap-

proach, WSL and MTL. We have presented ANN with the basic component of a NN : per-

ceptron. We covered then the MLP with CNN, showing how to train NN and preseting

several hyperparameters that influences on the training and the performance of the NN.

In the next section, we introduce the concept of radiomics. We will show the diffe-

rences between classical radiomics, based on handcrafted features with or without fea-

tures selection strategy followed by ML, and deep radiomics, where the features are lear-

ned jointly with classification or prediction.
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2.3 Radiomics

2.3.1 Concept and principle

Precision medicine is a reality in some tumor types [Arnedos et al. 2015]. It allows

to separate patients based on some biomarkers to two categories : patients with good

prognosis and patients with worse prognosis (see figure 2.10). Radiomics is a promising

way towards precision medicine in oncology. It consists on the extraction of features from

images to identify disease characteristics that help predict the outcome. In 2012, the concept

of radiomics was introduced corresponding to the calculation of several dozens of fea-

tures from medical images emerged [Kumar et al. 2012, Lambin et al. 2012a], extending

the old notion of image quantification towards the design of predictive models based on

selected features. Several reviews of the literature [Gardin et al. 2019, Yip and Aerts 2016]

show the potential impact of radiomics in oncology for the prediction of the treatment

response and patient survival. Several hundreds of quantitative handcrafted features can

be extracted per lesion and image modality, related to the tumour volume, shape and tex-

tural properties.

FIGURE 2.10 – Precision medicine allows to separate patients into different groups to personalize

treatment. Source : [Vargas and Harris 2016].

The use of all the features extracted from the images does not enhance necessarily the

performance, but may be responsible for the redundancy of the information and disrupt

the model. [Orlhac et al. 2014] have shown that certain texture characteristics are highly

correlated with MTV (Metabolic Total Volume) in three types of tumors. Similarly, [Tixier
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et al. 2011a] have shown that GLRLM characteristics are highly correlated with GLSZM,

therefore, they do not bring no additional information. Typically, conventional statistics

are used to assign a degree of importance to each characteristic for prediction [Van De

Wiele et al. 2013].

Because of the large number of characteristics to be studied and the non-linear re-

lationship between them, standard mathematical tools such as linear regression, are not

powerful enough. In this context, machine learning methods can be of great interest be-

cause of their ability to process a large number of characteristics and to capture a non-

linear pattern, providing much better results than conventional statistics when analyzing

several dozen characteristics [El Naqa et al. 2009]. The traditional classifiers generally

used are the SVM and RF.

2.4 Machine learning for radiomics

The most used machine learning methods in radiomics are RF, SVM and MLP. Ran-

dom forest or random decision forests [Breiman 2001] are an ensemble of multiple deci-

sion trees [Breiman et al. 1984]. Decision tree is a tree-like model where the population

is divided in 2 progressively based on a feature so that it separate at best the 2 popula-

tions. Decision trees can be used for both classification and regression. RF makes use of

handcrafted features, thus its performance is highly impacted by the features manually

defined. SVM [Boser et al. 1992, Cortes and Vapnik 1995] constructs a hyperplane or set

of hyperplanes in a high- or infinite-dimensional space, which can be used to separate

different classes. A good separation is achieved by the hyperplane that has the largest dis-

tance to the nearest training-data point of any class (called functional margin), since in

general the larger the margin, the lower the generalization error of the classifier [Noble

2006].

To build models predicting treatment response or patient survival, Machine Learning

(ML) approaches and Deep Learning (DL) have been used but their application to radio-

mics is still in its early stage. For instance, from a database of 65 patients with esophageal

cancer treated using chemo-radiotherapy and 61 clinical and baseline FDG-PET features,
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[Desbordes et al. 2017a] have shown the superiority of RF over SVM and conventional

statistical analysis, using a single concatenated vector and several feature selection stra-

tegies. The best signature included both clinical and radiomic features.

FIGURE 2.11 – Current workflow of radiomics based on machine learning and features selection

strategy.

To date, most works have addressed this challenge by concatenating all together mul-

tiple groups of features in one single feature vector resulting in a high dimensional low

sample size machine learning task [Parmar et al. 2015, Zhou et al. 2017]. Feature selec-

tion is the most commonly used method to reduce the dimension, either by using filter

[Wu et al. 2016], wrapper [Farhidzadeh et al. 2016] or embedded [Wang et al. 2017c] me-

thods. Though feature selection methods may be independent from the classifier, simple

to implement and computationally fast, they may also filter some useful information for

the classification task, whereas the objective of extracting a large number of features is

precisely to bring additional information.

To summarize, machine learning for radiomics workflow is as follow (see figure 2.11 :

— The first step is the collection of the dataset and the definition of the ROI. Collec-

ting a representative dataset is a challenge in the medical imaging field. In addi-

tion, the annotation of the dataset requires a highly trainable physician and is time
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consuming. Thus, many radiomic studies do not include more than 50 patients in

their studies [Balagurunathan et al. 2014, Cameron et al. 2015, Carneiro et al. 2017,

Chung et al. 2015, Farhidzadeh et al. 2016].

— The second step consists of the extraction of features from the ROIs. Thousands

of features can be extracted such as first order features, shape features,GLCM fea-

tures,GLSZM features,GLRLM features,GLDM features and more [Van Griethuysen

et al. 2017].

— Once the features are obtained, usually a feature selection strategy is applied to

keep only a representative group of the whole set.

— Finally, a classical machine learning algorithm such as RF, SVM or MLP is applied

to learn a radiomic signature that predict best the outcome [El Naqa et al. 2018, Jia

et al. 2019, Shi et al. 2019, Wei et al. 2019].

— The obtained radiomic signature can be combined afterward with other data such

as clinical data or other imaging modalities like CT or MRI.

In table 2.1 are referenced articles in the literature that address radiomic and machine

learning in PET, for different type of cancers and using various ML algorithms and dif-

ferent purposes, from tumor diagnosis to outcome prediction. For instance, [Hyun et al.

2019] used machine learning based radiomics to successfully identify the histological sub-

types of lung cancer (210 lung adenocarcinoma (ADC) from squamous cell carcinoma

(186). [Cysouw et al. 2021] predicted metastatic disease or high-risk pathological tumor

features in a prospective study. In [Li et al. 2019] radiomic with machine learning was used

to detect bone marrow involvement in 41 patients with leukemia. They used random fo-

rest with 1826 achieving an accuracy, a sensitivity and a specificity of 88.6%, 87.5% and

89.5% respectively, outperforming visual analysis (accuracy = 62.5%, sensitivity = 73.7%

and specificity = 68.6%). Other studies have shown the importance of incorporating per-

itumoral regions [Dou et al. 2018, Hao et al. 2018].
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TABLEAU 2.1

Radiomic studies using machine learning algorithms for different types of cancer in PET.

Reference
Type of

cancer

Nb of

patients
Purpose of the study

Nb of

features
Methods Accuracy AUC

[Hyun et al.

2019]
Lung 396

Distinguish lung adenocarcinoma

(ADC) from squamous cell

carcinoma (SCC)

44

logistic

regression

(LR) & ANN

0.769 0.859

[Cysouw

et al. 2021]
Prostate 76

Predict metastatic disease or

high-risk pathological tumor

features

51
Random

Forest
/ 0.86-0.76

[Peng et al.

2019]

Nasopharyngeal

carcinom
707

Predicting disease-free survival

(DFS)
296 4 CNNs / 0.722

[Toyama

et al. 2020]

Pancreatic

cancer
161 Prognosis 42

Random

Forest
/ 0.72

[Zhong et al.

2021]

Larynx and

hypopha-

rynx

72 Predict early disease progression /
Random

Forest
/ 0.70

[Xie et al.

2020]

Head and

neck
348 Prognosis 19

LR & SVM &

RF & XGboost
/ 0.72

[Du et al.

2020]

Nasopharyngeal

Carcinoma
76

Local recurrence versus

inflammation
478

k-nearest

neighbo-

rhood & SVM

& RF

/ 0.87

[Alongi et al.

2020]
Prostate 46 Prognosis 4867 / 0.66 /

[Ou et al.

2020]
breast 44

Breast carcinoma vs breast

lymphoma
11

Linear

discriminant

analysis

0.808 0.806

[Ren et al.

2020]
Lung 315 ADC vs SCC 14

LASSO

regression

analysis

/ 0.901

[Mu et al.

2019]
Lung 194 Prognosis 790 / / 0.81

4
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Reference
Type of

cancer

Nb of

patients
Purpose of the study

Nb of

features
Methods Accuracy AUC

[Hao et al.

2018]
Lung 100 Predict distant failure 34 SVM 0.83 0.79

[Wang et al.

2017a]
Lymphoma 168

Classifying mediastinal lymph

node metastasis
95

SVM & RF &

Adaboost &

ANN & CNN

0.81-0.85 0.87-0.92

[Nair et al.

2020]
Lung 50 Identify tumors with mutations 326

Logistic

regression
0.87 0.71

[Li et al.

2018]
Lung 100

Predicting treatment response and

OS
722 Clustering 0.64 /

[Li et al.

2019]
Leukemia 41

Bone marrow involvement

detection
1826

Random

Forest
0.88 /

[Papp et al.

2018]
Brain 70 Survival Prediction 56

Geometric

probability

covering

algorithms

/ 0.81

[Jeong et al.

2019]
Osteosarcoma 70 Treatment response prediction /

SVM & RF &

Gradient

Boost

/ 0.72-0.82

[Mi et al.

2015a]

lung &

Esophageal
25 & 36 Treatment response prediction 79 & 29 SVM 100% & 0.94

[Lian et al.

2016]

lung &

Esophageal

&

Lymphoma

25 & 36

& 45
Recurrence or no-recurrence 52 & 29 & 27

Evidential

K-Nearest-

Neighbor

100% & 0.89

& 0.93

100% & 0.77

& 0.95

[Desbordes

et al. 2017b]
Esophageal 65

Predicting treatment response and

OS
58

Random

Forest
0.82 & 0.80 0.82 & 0.75

4
6



2.5. DEEP LEARNING FOR RADIOMICS

2.5 Deep learning for radiomics

The use of DL algorithm is more recent [Peng et al. 2019]. While many studies have

begun to explore the benefit of the analysis of texture to predict patient’s outcome [Cook

et al. 2013, El Naqa et al. 2009, Ha et al. 2014, Tixier et al. 2011a, Willaime et al. 2012], dra-

wing a definitive conclusion is difficult because each study is based on different texture

definitions and deploys different prediction models. In order to overcome this problem,

deep machine learning methods such as convolutional neural networks have been used.

They allow to extract features in a hierarchical way and to preserve the spatial relationship

between the different slices. The strength of this method lies in the non-intervention in

the manual extraction of the features which can cause a bias in the learning phase (see

figure 2.12).

FIGURE 2.12 – Deep radiomics workflow. The model extract features and predict the outcome

jointly.

[Ypsilantis et al. 2015] have proposed a hierarchical representation learned directly

from PET images using two two-dimensional CNN architectures. The first called 1S-CNN,

where the exam is separated on m slices representing the tumor and the its input is one

slice at a time. A binary label is associated with each slice, 1 if the patient has responded to
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treatment and 0 otherwise. Then the model is evaluated by a majority vote using all slices

encompassing the region of interest (ROIs). The second architecture is a 3S-CNN where

the input entry is the combination of 3 slices. For each exam with m slices, each set of

three spatially adjacent slices is taken as an input resulting in a total of m-2 possible com-

binations. Figure 2.13 presents different slices for a patient X i, where each slice presents

a ROI for a specific tumor. The combination Z is done by selecting 2 adjacent slices.

FIGURE 2.13 – ROIs of a specific tumor i after segmentation embedded into larger square back-

ground of standard size of 100 × 100 pixels. From [Ypsilantis et al. 2015]

[Wang et al. 2017b] compared CNNs with four traditional ML methods including RF,

SVM, Adaptive Boosting (AB) and ANN. All methods were evaluated on 1397 lymphoma

nodules from 168 patients. The study showed no significant difference between CNN and

the other four methods for classifying non-small-cell lung carcinoma (NSCLC) medias-

tinal lymph node metastasis from PET/CT images. However, since CNNs do not require

manual extraction of features like the other methods, it is considered more interesting to

use them compared to the other methods.

2.6 Objectives of the thesis

Radiomics [Lambin et al. 2012b], can have a great clinical impact, since imaging is

used in clinical routine all over the world. In PET imaging, there is a growing interest

in identifying the features that characterize the spatial distribution and heterogeneity

of 18F-FDG in a tumor [Hicks et al. 2004, Miller et al. 2003]. The dominant method for

obtaining quantitative descriptors of spatial heterogeneities is based on texture analysis

[Castellano et al. 2004]. These techniques encompass a large number of mathematical

descriptors that can be used to evaluate the variation in intensity between voxels in a PET

slice as well as in adjacent slices, in order to retrieve measures of intra-lesion heteroge-

neity.
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Classical radiomic methods tend to use handcrafted methods to extract features, fol-

lowed by a statistical method or machine learning algorithm such as RF SVM for the pre-

diction. This workflow is based on two separated mechanism : extraction of features follo-

wed by learning the prediction of the outcome. Thus, it does not allow the model to learn

useful data representation. Thus, in this thesis, we will study DL methods. The objective

is to predict the cancer outcome from PET images. Because DL needs a lot of annotated

data, it is not always available in medical imaging. To solve this problem, we propose to

study weakly supervised learning and multitasking learning. In the next chapters, three

proposed methods will be presented.
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Hand crafted methods vs deep radiomics
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In this chapter, we conduct an exhaustive comparative study between classical radio-

mics, where the features are manually designed, and deep radiomics, where the model is

extracts end-to-end feature maps. We propose deep learning approaches based on convo-

lutional neural networks (CNNs) for outcome prediction from positron emission tomo-

graphy (PET) images. In particular, two 2D CNNs and one 3D CNN are developed and

evaluated to predict the outcome for patients with esophageal cancer on PET images. The

results were compared to 3 state of the art classical radiomics algoithms : random forest

without features selection (RF), random forest with genetic algorithm to select features

(GARF), and random forest with feature importance (FIC).

3.1 Introduction

Predicting patient response to radio-chemotherapy (RCT) is a very promising field of

research in personalized medicine. PET imaging with 18F-FDG, which is a radioactive glu-

cose analog, has mainly been used in radiomics analysis, but other radio-tracers have also

been tested [Lu et al. 2016]. However, the roles of traditional imaging biomarkers such as

SUVmax and metabolic tumor volume (MTV) have not been well established in esopha-

geal cancer for therapy response [Kwee 2010]. Other biomarkers such as handcrafted tex-

ture features have been proposed [Tixier et al. 2011b] that are associated with standard

statistics or advanced statistical classifiers [Desbordes et al. 2017c, Mi et al. 2015b].

The concept of radiomics is defined as the extraction of dozens of quantitative fea-

tures from the image that could be incorporated in predictive models for patient mana-

gement [Lambin et al. 2012a]. Many reports suggest that radiomic features extracted from

baseline images can contribute to improving patient prognosis and prediction of treat-

ment response in oncology [Avanzo et al. 2017]. Images can be obtained from computed

tomography (CT) [Bogowicz et al. 2017], magnetic resonance imaging (MRI) [Nishioka

et al. 2002] and positron emission tomography (PET) [Cook et al. 2014]. The visualization

of glucose metabolism of tumor cells and other radiotracers in PET provides additional

information to that obtained from anatomical imaging (CT or MRI). These so-called ra-

diomic features are assumed to highlight some informative tissue characteristics, such as
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FIGURE 3.1 – Columns from left to right : Fused PET/CT slice, zoomed on the esophageal tumor

seen on FDG-PET only. MTV (40% SUVmax thresholding) in red and MTV included in the cuboid.

MTV3 (MTV + 3 cm isotropic margin) in white and MTV3 included in the cuboid.

heterogeneity in glucose metabolic activity, necrosis, etc. Numerous image features have

been proposed in the literature [Gardin et al. 2019, Kumar et al. 2012, Sollini et al. 2017]

based on the shape and size of the lesion, 1st order statistics, textural features, filter and

model-based features, potentially leading to hundreds of image characteristics.

Several authors have used machine learning (ML) methods to build models for predic-

ting treatment response or patient survival based on radiomic features, such as random

forests (RFs) and support vector machines (SVMs) with or without a feature selection stra-

tegy [Desbordes et al. 2017c, Leger et al. 2017, Mi et al. 2015b]. The main drawback of

these approaches is that they require an initial extraction of radiomic features using hand

crafted methods, which usually results in a large number of features and cannot always

find the most representative ones. in addition, handcrafted features are affected by some

parameters [Hatt et al. 2017] such as noise, reconstruction, etc. and significantly by the

contouring methods used.

CNNs have proven to be very powerful tools in computer vision for classifying images

from different domains. CNN architectures for medical imaging have been introduced

and usually containing fewer convolutional layers because of the small datasets [Frid-

Adar et al. 2018]. Recently, a new paradigm in PET radiomic analysis has been propo-

sed based on CNNs for predicting response to therapy [Ypsilantis et al. 2015]. It has been

shown that deep learning architectures can outperform traditional ML methods in classi-

fication tasks.

CNNs were not fully studied in radiomics, especially in PET imaging. Some papers

have investigated baseline PET analysis based on 2 Dimensional (2D) CNN architectures
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[Wang et al. 2017b, Ypsilantis et al. 2015], but to our knowledge, there are no studies using

3D-CNN. These first two applications dealt with the prediction of the response to neoad-

juvant chemotherapy in esophageal cancer [Ypsilantis et al. 2015] and the classification

of mediastinal lymph node metastasis of non-small cell lung cancer (NSCLC) [Wang et al.

2017b].

In [Ypsilantis et al. 2015], Ypsilantis et al. proposed to learn a hierarchical represen-

tation directly from PET images in 107 patients with esophageal cancer using two CNN

architectures. The first one, called 1S-CNN, corresponds to an architecture where the in-

put is one slice. The process is repeated on each slice where the tumor is present. The

spatial dependency between slices is not exploited in this architecture. For this reason, a

second architecture was proposed where the input of the CNN is composed of 3 adjacent

slices, called 3S-CNN. For each exam containing m slices, each set of three spatially adja-

cent slices is taken as input, leading to a total of m-2 possible combinations. This 3S-CNN

better exploits the spatial relationship between slices but is limited to 3 slices. For both

architectures, a post processing step is required to predict the response based on a majo-

rity vote process using all slices that include a tumor for a patient. This study has shown

the superiority of these two deep learning methods compared to other ML methods, such

as RF, SVM, gradient boosting, and logistic regression.

In [Wang et al. 2017b], Wang et al. used a centered axial slice and two others that were

separated by 4 mm in two image modalities (PET and CT) to obtain a limited number of

six slices for each tumor to make a prediction. They compared the performances of their

CNN and four other methods including RF, SVM, adaptive boosting, and artificial neu-

ral network. The methods were evaluated to discriminate against benign and malignant

lymph nodes (1397) in 168 patients. The study showed that there were no significant dif-

ferences between the CNN and the best classical ML method for classifying mediastinal

lymph node metastasis of NSCLC from PET/CT images. Nevertheless, Wang et al. conclu-

ded that CNNs are more convenient to use because the method does not require an initial

feature extraction.

Radiotherapy planning is based on CT by delineating the gross tumor volume (GTV).

This GTV can also be segmented using other image modalities, such as MR and PET
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images. Segmentation of the tumor in PET imaging is usually performed using a fixed

threshold value of 40% of the maximum standard uptake value (SUVmax) [Galavis et al.

2010], leading to the biological or metabolic target volume (BTV or MTV). Then, the radia-

tion oncologist adds several margins that take into account the non-visible tumor infiltra-

tion (CTV : clinical tumor volume) as well as uncertainties in positioning and treatment

to obtain the PTV (planning target volume) [Dubray et al. 2013]. The peritumoral part of

the tumour is therefore a volume that is not neglected in the treatment. By analogy, taking

into account the intratumoral and peritumoral regions in radiomics analysis is likely a

strategy that can improve the results. At present, a few studies have tested this hypothesis

in other modalities [Braman et al. 2017, Zhou et al. 2018a] but never with PET imaging.

Our goal is to develop a new 3D-CNN architecture, that we name 3D RPET-NET, to

predict the response to treatment by learning from FDG-PET images of the tumor. Consi-

dering our small dataset, a four-layer 3D-CNN is proposed. Our study used a database of

baseline FDG PET images of 97 patients treated by radio-chemotherapy (RCT) for esopha-

geal cancer. The optimal hyperparameters of 3D RPET-NET and the influence of the lear-

ning volume (intratumoral volume with different peritumoral volumes) are investigated

and will be reported in Results section. The performances of the model were compared to

1S-CNN and 3S-CNN [Ypsilantis et al. 2015], as well as to three RF methods [Desbordes

et al. 2017c] considered as state-of-the-art radiomics classifiers.

3.2 Material and methods

3.2.1 Database presentation

In this study, 97 patients with one lesion that was histologically proven to be locally

advanced esophageal cancer and eligible for RCT are included. All procedures performed

in this study are conducted according to the principles expressed in the Declaration of

Helsinki. The study was approved as a retrospective study by the Henri Becquerel Center

Institutional Review Board (number 1506B). All patient information is de-identified and

anonymized prior to analysis.
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All patients underwent a FDG-PET/CT exam before treatment (baseline PET), at the

initial stage. They were then treated by RCT, corresponding to an uninterrupted radiation

therapy in the form of external radiation delivered by a 2-field technique of 2 Gy per frac-

tion per day, 5 sessions per week, for a total of 50 Gy, as well as chemotherapy including

platinum and 5-fluorouracil.

The PET/CT data were acquired on a Biograph® Sensation 16 Hi-Rez device (Siemens

Medical Solutions, IL, USA). This device does not provide point spread function (PSF) mo-

deling or time-of-flight (TOF) technology. Patients were required to fast for at least 6 hours

before imaging. A total of 5 MBq/kg of FDG was injected after 20 min of rest. Sixty minutes

later (±10 min), 6 to 8 bed positions per patient were acquired using a whole-body proto-

col (3 min per bed position). The PET images were reconstructed using Fourier rebinding

(FORE) and attenuation-weighted ordered subset expectation maximization algorithms

(AW-OSEM with 4 iterations and 8 subsets). The images were corrected for random coin-

cidences, scatter, and attenuation. Finally, the FDG-PET images were smoothed with a

Gaussian filter (full width at half maximum (FWHM) = 5 mm). The reconstructed image

voxel size was 4.06×4.06×2.0 mm3.

For the determination of treatment response, the response assessment included cli-

nical examination, CT, FDG-PET, and esophagoscopy with biopsies performed 1 month

after the end of treatment. Patients were classified as showing a clinically complete res-

ponse (CR, 56 patients) to RCT if no residual tumor was detected on the endoscopy (nega-

tive biopsies) and if no locoregional or distant disease were identified on CT or PET eva-

luation. Patients were classified as showing a non-complete response (NCR, 41 patients)

if a residual tumor or locoregional or distant disease was detected or if death occurred.

3.2.2 Image preprocessing

Tumor images were spatially normalized by re-sampling all the dataset to an isotropic

resolution of 2×2×2 mm3 using the k-nearest neighbor interpolation algorithm.

The metabolic tumor volume (MTV) was segmented by a physician who manually

defined a cuboid volume around the lesion and used a fixed threshold value of 40% of the

maximum standard uptake value (SUVmax) in the cuboid. To study the influence of the

56



3.2. MATERIAL AND METHODS

FIGURE 3.2 – 3D RPET-NET architecture composed by two 3D convolutional layers followed by 3D

pooling layers and two dense layers.

volume of interest on the performances of 3D RPET-NET, several isotropic margins of 1,

2, 3 and 4 cm around MTV were also applied, leading to defining MTV1 to MTV4. In Fig.

1, an example of a PET/CT slice with two volumes of interest (MTV and MTV3) is shown.

Tumor gray level intensities were normalized to absolute SUV level between [0 30] and

translated between [0 1] to be used in CNN architectures. The volumes of interest were

included into a 3D empty cuboid of standard width, length and height of 1003 voxels to

learn tumoral radiomic features.

3.2.3 3D RPET-NET architecture

We have developed a CNN architecture based on two 3D convolutional layers and two

fully connected layers, as shown in figure 3.2 for radiomic study. As we do not have a large

amount of data and our architecture is in 3D, we take here only 4 layers. Each convolutio-

nal layer, denoted C (m), consists of F (m) feature maps, where m is the layer number (1 or

2). For the first layer, C (1), each feature map is obtained by convolving the volume of inter-

est with a weight matrix W (1)
i

to which a bias term b(1)
i

is added, where i is the feature map

number. Then, the output is processed by a non linear function f(x) called the activation

function, where x is the input to a neuron, such as :

c(1)
i

= f (b(1)
i

+W (1)
i

∗x) with i = 1, .....,F (1). (3.1)

Each element of a feature map, ci
(1), is obtained by convolving the input x with a 3D

kernel. A large receptive field tends to better preserve the relationship between slices and
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FIGURE 3.3 – Visualization of a 2D slice of a segmented tumor and the resulting 32 feature maps in

the second convolutional layer of the 1S-CNN architecture.

the local 3D tumor information than a small one ((5×5×5) vs. (3×3×3)). The F(1) weight

matrices (one matrix per feature map) are learned by observing different positions of the

input, leading to the extraction of the description of features. Thus, the weight parameters

are shared for all tumor input sites, so that the layer has an equivariance property and is

invariant to the input tumor transformations (such as translation and rotation). It also

results in a sparse weight, which means that the kernel can detect small, but meaningful

features, as shown in figure 3.3. For instance, it can be seen that some kernels are learning

the tumor shape (e.g, feature maps [(1,1),(1,3),(2,4),(2,6)..etc.]), while others tend to focus

on features within the tumor (e.g, feature maps [(1,2),(1,5),(2,2),(2,3)..etc.]).

Then, the output of this first convolutional layer is followed by a 3D pooling layer, to

reduce the dimensionality of feature maps. The max-pooling operator is used as a stage

detector to report the maximum value within each cuboid of size (2×2×2) for all feature

maps. The purpose of this operation is to down sample the feature maps by a factor of 2

along each direction (width, high, length) and to better generalize learning by selecting

approximately invariant features. This invariance to local translation is very important in

radiomics because tumors do not have a particular direction. The resulting feature maps

are denoted P (m).

To extract high-level features from the low-level ones obtained in the initial layer, a

second convolutional layer is added, followed by a pooling layer. This convolutional layer

learns from the pooled feature maps of the first layer (see figure 3.2).
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The parameters of the CNN consist of all the convolutional weights W, and the weight

matrix Wh, denoted by θ. They are learned by minimizing the binary cross-entropy func-

tion :

L(θ) =−
1

n

n
∑

i=1

[yi log(ŷi )+ (1− yi ) log(1− ŷi )] (3.2)

which is a special case of the multinomial cross-entropy loss function for m = 2 :

L(θ) =−
1

n

n
∑

i=1

m
∑

j=1

yi j log(ŷi j ) (3.3)

where n is the number of patients, y is the the ground truth : 1 if the patient responds to

treatment, 0 otherwise.

In our experiments, the adaptive gradient algorithm optimizer (AdaDelta) is used with

mini batches. At each update of weights using the AdaDelta algorithm, only one mini

batch of training data was used, which is changed for each gradient calculation. Our CNN

also incorporated L2 normalization of the weights and a dropout regularization of 50% to

prevent the model from overfitting.

To find the best 3D RPET-NET we test different parameters. The network using the

optimal parameters is 3D RPET-NETBest. The hyperparameters to be optimized include

the number of 3D feature maps (we tested from 8 to 64 feature maps), the number of

neurons (128, 256, 512, 1024, 2048 and 4096), as well as different receptive field sizes (3×

3×3, 5×5×5) and different sizes of mini-batches (2, 4, 8 and 16). We have evaluated several

activation functions (relu, elu, selu and tanh), the numbers of 3D convolutional layers,3D

pooling layers (2 to 5) and fully connected layers (2, 3, 4 and 5) to find the the best model.

3.2.4 Implementation

The implementation of 3D RPET-NET is conducted using the Keras library which is

built on top of Theano and Tensorflow. We take advantage of graphical processing units

(GPUs) to accelerate the algorithm. The CNNs training is performed on an NVIDIA Tesla

80 with 12 GB of memory.
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3.3 Experimentations

Three experiments were performed to evaluate our 3D RPET-NET.

Experiment 1 : The first experiment consisted of tuning the optimal hyperparameters

to find 3D RPET-NETBest based on MTV. Optimizing the hyperparameters was performed

entirely on the training dataset.

Experiment 2 : The second experiment consisted of comparing our architecture with

2 other CNN methods proposed in the literature : 1S-CNN and 3S-CNN [Ypsilantis et al.

2015]. The same tuning process of 3D RPET-NET was performed to find the best 1S-CNN

and 3S-CNN hyperparameters. This experiment was performed on test data.

We carried out a comparative study between our method and three RF-based me-

thods : one method without any feature selection strategy, called RF, and two other RF

methods proposed in the literature using a feature selection strategy. The first selection

strategy, called GARF, uses a genetic algorithm based on random forest, and the second

one called FIC, uses features important coefficient methods. For the details of these me-

thods refer to [Desbordes et al. 2017c]. Briefly, 45 image features were extracted from PET

images corresponding to first-order statistics (18), one feature of the lesion form, and tex-

tural features (26). Five hundred decision trees were built leading to the creation of the

random forest classifiers.

Experiment 3 : The third experiment consisted of assessing the influence of the vo-

lume of interest on the performances of 3D RPET-NETBest, RF, GARF and FIC according

to the size of the volume of interest.

3.4 Validation methodology

For the evaluation of our method, cross-validation (CV) was performed. We split the

data into 2 groups to train and test the machine learning methods for each fold. One group

was used for training the models (77 patients) and one group for testing (20 patients). Fur-

thermore, for the CNN, the training samples were split into a dataset of 2 groups, a train
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set (55 patients) and a validation set (20 patients), and a grid search was conducted to

derive the optimal hyperparameters based on the validation set. For a fair comparison,

different machine learning methods were trained and tested with the same fold, i.e, trai-

ned with the same training sets and tested with the same test sets. To keep the same ratio

between the two classes CR and NCR, for each fold, the training set contained 44 CR pa-

tients and 33 NCR patients, and the testing set contained 12 CR and 8 NCR.

The performances of the methods were evaluated for each cross-validation, including

sensitivity (Sens), specificity (Spec), accuracy (Acc), and area under the receiver operating

characteristic (ROC) curve (AUC). For each curve, the definition of the thresholds was

determined using the method proposed by Fawcett [Fawcett 2006], and the optimal cut-

off point was defined using Youden’s index.

A comparison between different methods was mainly performed based on the AUC

values. Due to the 5-fold CV, 5 groups of performance values were calculated for each

method; therefore, paired hypothesis tests of 5 samples were performed. The p values

were calculated using Student t-test. To correct for multiple comparisons, we additionally

adjusted p-values by the false-discovery-rate (FDR) procedure according to Benjamini-

Hochberg [Benjamini and Hochberg 1995]. The null hypotheses were rejected at the level

of p < 0.05 after correction.
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Method VOI Acc Sens Spec AUC

Experiment 1

3D RPET-NETBest MTV 0.83±0.04 0.91±0.06 0.73±0.16 0.81±0.06

3D RPET-NET1 MTV 0.80±0.06 0.93±0.05 0.61±0.15 0.77 ±0.06

3D RPET-NET2 MTV 0.76±0.04 0.87±0.12 0.62±0.19 0.75±0.05

Experiment 2

3D RPET-NET MTV 0.72±0.08 0.79±0.17 0.62±0.21 0.70±0.04

1S-CNN MTV 0.69±0.06 0.79±0.15 0.57±0.24 0.65±0.08

3S-CNN MTV 0.67±0.08 0.73±0.19 0.60±0.20 0.67±0.08

GARF MTV 0.68±0.08 0.80±0.11 0.46±0.09 0.62±0.04

FIC MTV 0.65±0.07 0.78±0.21 0.46±0.38 0.61 ±0.16

RF MTV 0.65±0.04 0.65±0.18 0.53 ±0.18 0.59±0.04

Experiment 3

3D RPET-NET MTV1 0.73±0.04 0.76±0.07 0.69±0.1 0.72±0.04

GARF MTV1 0.70±0.08 0.74±0.07 0.54±0.07 0.62±0.02

FIC MT1V 0.62±0.10 0.58±0.18 0.64±0.12 0.59 ±0.04

RF MTV1 0.62±0.09 0.62±0.08 0.61 ±0.07 0.59±0.03

3D RPET-NET MTV2 0.75±0.03 0.76±0.45 0.74±0.15 0.74±0.02

GARF MTV2 0.71±0.09 0.73±0.11 0.54±0.09 0.63±0.04

FIC MTV2 0.58±0.01 0.58±0.25 0.57±0.18 0.54 ±0.07

RF MTV2 0.62±0.11 0.56±0.20 0.65 ±0.12 0.59±0.05

3D RPET-NET MTV3 0.72±0.09 0.71±0.09 0.74±0.14 0.72±0.09

GARF MTV3 0.66±0.07 0.68±0.19 0.57±0.12 0.63±0.04

FIC MTV3 0.61±0.11 0.63±0.17 0.58±0.16 0.59 ±0.04

RF MTV3 0.62±0.14 0.66±0.17 0.55 ±0.20 0.59±0.04

3D RPET-NET MTV4 0.63±0.09 0.77±0.10 0.46±0.21 0.61±0.11

GARF MTV4 0.65±0.09 0.73±0.14 0.52±0.16 0.62±0.02

FIC MTV4 0.59±0.08 0.54±0.14 0.63±0.08 0.56 ±0.04

RF MTV4 0.60±0.13 0.66±0.12 0.56±0.05 0.58±0.04

TABLEAU 3.1 – Classification results : Each result corresponds to the average of five independent

experiments and the standard deviation, using the training dataset (Experiment 1) or the test da-

taset (Experiment 2 and 3).
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3.5 Results

The main results from the 3 experiments evaluated by accuracy, sensitivity, specificity

and AUC of ROC curves are shown in table 1.

Experiment 1 : As shown in Fig.2, the best accuracy Acc=0.72 and AUC=0.70 were

achieved by two 3D convolutions layers and two 3D pooling layers, followed by two fully

connected layers with the following hyperparameters for the first 3D convolutional layer :

eight 3D feature maps with a filter size of 5× 5× 5 and a relu activation function. This

operation is followed by 3D Max-pooling of size 2× 2× 2. The second 3D convolutional

layer corresponds to sixteen 3D feature maps of 5×5×5 convolutions, followed again by a

2×2×2 3D pooling layer. Then, the last two layers are composed of fully connected layers

of 1024 hidden neurons and finally 2 neurons for both classes.

In Experiment 1, the results of two other models show also interesting performances,

with no significant difference from 3D RPET-NETBest. 3D RPET-NETBest and 3D RPET-

NET1 differ by the activation function (relu vs. elu). 3D RPET-NETBest and 3D RPET-NET2

differ by the activation function (relu vs. elu) and the kernel size ((5 x 5 x 5) vs. (3 x 3 x 3)).

Experiment 2 : the best results obtained with 1S-CNN, 3S-CNN, RF, GARF and FIC are

shown in table 3.1. The ROC curves of Experiment 2 are presented in Fig. 4.a.

The best results are obtained with 3D RPET-NETBest. 1S-CNN, seems to have lower

performances (Acc=0.67±0.06, AUC=0.67±0.06), but the 1S-CNN ROC curve is not statis-

tically significantly different from 3D RPET-NETBest (p=0.53) and 3S-CNN (p=0.48) ROC

curves. For the RF classifiers, the best results are obtained with the GARF algorithm. The

GARF ROC curve is not statistically significantly different from 1S-CNN (p=0.10) and 3S-

CNN (p=0.058) ROC curves, while the 3D RPET-NETBest ROC curve obtains better results

than the GARF ROC curve (p=0.028).

Experiment 3 : The results of Experiment 3 are given in table 3.1 and the compari-

sons of different AUC in figure 3.4.b. When studying the influence of the volume of inter-

est, the best performances of 3D RPET-NETBest are obtained with MTV2 (Acc=0.75 and

AUC=0.74). The performances of the 3D RPET-NETBest increase from no margin to a ma-

gin of 2 cm, and then decrease with higher margins (MTV3 and MTV4). Only 3D RPET-
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FIGURE 3.4 – a. On the left : ROC curve comparing the 6 classifiers (RF, GARF, FIC, 1S-CNN, 3S-CNN

and 3D RPET-NET) with the best parameters on MTV. b. Right : Comparison of the four classifiers

on different VOIs (MTVs). Error bars correspond to standard deviation.

NETBest performances on MTV2 are statistically significantly better than those on MTV4

(p=0.04). The same trend is observed with RF classifiers.

3.6 Discussion

We have developed an end-to-end 3D convolutional neural network (3D PET-NET)

based on PET images. We have also evaluated 5 other methods from the literature [Ypsi-

lantis et al. 2015] [Desbordes et al. 2017c]. For each CNN, the search for the best archi-

tecture is achieved by using a validation procedure to tune hyperparameters, such as the

number of feature maps and the size of filters.

Apart from the numerous advantages of CNNs (avoiding handcrafted feature design

and feature selection), it is now well known that convolutional architectures build high

level representations of the input signals. They typically extract low level features such

as textures of edge detectors in the low layers and accumulate these information to form

higher level features in the last layers. Low level features are generally rather generic and

can be exploited through transfer learning [Belharbi et al. 2017]. Higher level features are

more domain-specific and depend upon the application. A neural network is often consi-

dered as a “black box”, but CNN layers provide interpretability through the feature maps

that highlight the activation of each kernel within the input signal. Therefore, we think
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that CNN features are likely to be related to classical hancrafted radiomic features (see

figure 3.3).

PET imaging suffers from low resolution and high noise, leading to challenges in PET

radiomics [Hatt et al. 2017]. However, neural networks provide a robust mechanism to

avoid encoding the noise in the data such as ’early-Stopping’ and ’dropout’ which provide

better generalization [Srivastava et al. 2014b].

Unlike Ypsilantis et al. in [Ypsilantis et al. 2015] who claimed that the use of a 3D ROI

as direct input of the CNN is infeasible because every tumor has a different shape and size,

we show that englobing the tumor into a 3D cuboid of standard width, length and height

allows the benefit of the spatial relationship between slices using a large 3D receptive field

to be realized. Our assumption is that a neural network architecture able to capture pat-

terns of FDG uptake that occur within the whole lesion may detect imaging features that

are more relevant to predict treatment response than each slice individually or 3 adjacent

slices. Under this assumption, we propose an architecture that initially fuses the spatial

information across intra-slices images. 3D RPET-NETBest is composed of only 2 convo-

lutional layers. A higher number of convolutional layers were tested, without conclusive

results. The small number of patients in our database (without artificial data augmenta-

tion) is a limiting factor not only for the development of a deeper network but also for

radiomic analysis in general. Indeed, the current trend is in favour of the use of a network

with an increasing number of convolutional layers (very deep neural network). This is

only possible on large image databases (e.g., ImageNet [Russakovsky et al. 2015], contai-

ning now more than 14 million images, 30 high level categories and 20K subcategories)

that are not currently available in medical imaging. It is possible to artificially increase

the number of data. However since, learning takes place on a tumor inside a black box,

this solution leads to overfitting.

To ensure a fair comparison between the different methods, the database was divided

into 3 groups of 57 patients for the training, 20 for the validation and 20 for the test be-

fore any operation. Every CNN and RF classifier used the same folds to obtain an exact

comparison between methodologies.

There are several segmentation methods available for PET imaging. Many automa-
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tic frameworks have been proposed during the last decade [Foster et al. 2014], but few

of them are used/available in clinical routine. The simple threshold is still mainly used

but with different values depending on pathologies [Dewalle-Vignion et al. 2012]. A seg-

mentation of the MTV can be accurately performed with a 40% threshold value because

esophageal cancer can be considered as a massive non moving tumor [Kawakami et al.

2015] and it has been proven that this segmentation is highly correlated with a manual

segmentation [Lambin et al. 2012a].

We have shown that isotropic dilation of MTV tends to increase the performances of

RPET-NET 3D. When the margin around the MTV is too large (>2 cm) the network perfor-

mances decrease. When the MTV is increased by a margin which is too large, the volume

of interest can include parts of metabolically active organs that are likely to interfere with

the CNN analysis. Our results suggest that between 3 cm and 4 cm of the peritumoral vo-

lume, the relevant information to predict treatment response decreases, is responsible for

a drop in the model’s performance. Adding a peritumoral volume to the radiomic analy-

sis has already been tested in MRI [Braman et al. 2017] but never in PET imaging. These

initial results must be confirmed on other types of cancer. Moreover, the influences of the

initial volume of interest and the segmentation methods require further study.

3.7 Conclusion

The analysis of PET tumor images with a 3D CNN architecture (3D-RPET-NET) shows

very promising results in the prediction of treatment response in esophageal cancer. 3D-

RPET-NET outperformed 2D CNN architectures, as well as the traditional radiomics ap-

proach (such as RF classifiers). Moreover, since the CNN does not take hand-crafted fea-

tures as input, it eliminates the need for feature selection, making the entire process much

more convenient and less prone to user bias. In addition, we have shown that the best

volume to be used for PET radiomic prediction is the metabolic tumor volume with an

isotopic margin of 2 cm. This peritumoral region seems to contain information that is po-

tentially relevant to building better prediction algorithms since currently approaches are

based only on the quantification of the intratumoral region alone.
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Even though our CNN-based method can give good results, it needs to know segmen-

ted tumor regions. However, manual segmentation of the tumor in 3D is a very tedious

and time consuming task. To solve this problem, we propose a weakly supervised lear-

ning approach which will be presented in the next section.
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CHAPITRE 4. WEAKLY SUPERVISED LEARNING FOR OUTCOME PREDICTION

After demonstrating the effectiveness and usefulness of deep learning in predicting

patient’s outcome, this chapter introduces a novel weakly supervised learning approach

to segment the lesions in order to conduct a radiomic analysis. By the concern of lack of

annotations necessary for a supervised learning, we propose here a method which does

not require the ground truth of segmented tumor, but only the classes of the tumors. We

propose to use explainable deep learning techniques in the classification decision to de-

tect the tumor under prior knowledge. We transform the classification neural network

to the tumor detection and segmentation tasks. The results are compared to supervised

learning approach for tumor segmentation, and with radiomic based on manual segmen-

tation for outcome prediction.

4.1 Introduction

To better appreciate the volume of interest in oncological radiotherapy and also the

biological component of a tumor, radiomics is proposed as a field of study that makes

use of images [Gillies et al. 2016]. Radiomics allows from an initial PET exam the predic-

tion of the survival of a patient and the response to radio-chemotherapy treatment, and

therefore to help to personalize treatment [Amyar et al. 2019b, Lian et al. 2016]. The first

step in a radiomics analysis is to localize tumor region for which radiomcis features can

be extracted. Manual segmentation is tedious and time consuming, especially in 3D.

Deep learning is a very promising tool for the automatic detection of lesions in PET

images, but due to their data-hungry nature, they require very large amounts of annota-

ted images, they are usually not available in medical imaging field. Most of segmentation

methods use large annotated databases, however, annotating pixel-level tumor requires

highly trainable physicians and they don’t have a lot of time to do manual segmentation,

especially in 3D. Moreover, physicians annotations can be subjective. In contrast, image-

level labels indicating the presence of a lesion, or the type of cancer when they make the

diagnosis are easy for the physicians and can be quickly obtained. Therefore, we propose

an approach based on a weakly supervised learning (WSL), where image-level informa-

tion is used to train a classifier based on CNN to predict the class label in a supervised
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FIGURE 4.1 – An example of a PET image with oesophagus cancer on the left in which the tumor

is barely visible, and the same image on the left in which the localisation of the tumor is shown

in red color. It is not straightforward to learn the difference between tumor fixation and a normal

fixation in a PET image.

learning way. Thanks to the explainability of neural networks [Zeiler and Fergus 2014]

when making its decision, tumor pixels can be detected in an unsupervised way. Using

only image-level labels to segment pixel-level image remains unexplored in PET images.

To achieve this end, our strategy is to try to interpret how a neural network makes a clas-

sification decision.

The work on explanability and interpretability of neural network decision-making is

an ongoing area of research. CNNs have yielded impressive results for a wide range of vi-

sual recognition tasks [Girshick et al. 2014, Krizhevsky et al. 2012], especially in medical

imaging [Hannun et al. 2019, Rajpurkar et al. 2017]. As autonomous machines and black-

box algorithms begin making decisions previously entrusted to humans, it becomes ne-

cessary for these mechanisms to explain themselves [Gilpin et al. 2018]. Many approaches

for understanding and visualizing CNN have been developed in the literature [Mahendran

and Vedaldi 2015, Zeiler and Fergus 2014, Zhou et al. 2014]. For instance, Zeiler et al [Zei-

ler and Fergus 2014] use deconvolutional networks to visualize the activation. The deep

feature maps can be aggregated to extract class-aware visual evidence [Zhou et al. 2016].

However, when using fully connected layers for classification, the ability to locate objects

in convolutional layers is lost. Different studies tried to solve this problem by using a fully

convolutional neural networks (FCNs) such as Network in Network (NN) [Lin et al. 2013]

and GoogLeNet [Szegedy et al. 2015]. Typically, conventional CNNs are first converted

to FCNs to produce class response maps in a single forward pass. Although image-level

class labels indicate only the existence of objects classes, they can be used to meaningful

indices for image segmentation, called Class Attention Maps (CAMs) [Amyar et al. 2019a,
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FIGURE 4.2 – Maximum intensity projection (MIP) of PET exam. A) projection in Sagittal. B) Pro-

jection in Coronal

Selvaraju et al. 2017, Zhou et al. 2016]. These class response maps can indicate discrimi-

nant regions in the image that make a CNN take a decision. However, it can not distin-

guish the different objects present in the image, which therefore makes precise segmen-

tation difficult at the pixel level [He et al. 2017]. Different works have shown that although

a CNN is trained to classify images, it can be used to localize objects at the same time [11,

12]. Zhou et al [10] demonstrated that CNNs can recognize objects while being trained

for scene recognition, and that the same network can perform both image recognition

and object localization in a single training. They have shown that convolutional units of

different CNNs layers can behave as object detectors despite the lack of object labels.

[Ahn et al. 2019] presents an approach for instance segmentation using only image-

level class as label. They trained an image classifier model, and by identifying seed areas of

object from attention maps, a pseudo instance segmentation labels are generated, then,

propagated to discover the entire object areas with precise boundaries. Zhou et al. re-

ported that local maximums in a class response map correspond to strong visual cues

residing inside each instance [Zhou et al. 2018b]. They create a novel architecture based

on peak class response for instance segmentation using only the image-level label. First,

a peak from a class response map is stimulated, then, back-propagated and mapped to

highly informative regions of each object instance, such as instance boundaries. Works

on WSL in medical imaging field play an important role due to the lack of annotations.

However, the works on outcome prediction are limited. We propose here a WSL based on
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FIGURE 4.3 – The proposed architecture. The MIP is used to predict the pathology. A heat map is

generated from the last conolutional layer

class attention maps to segment tumor region in PET images.

Once the tumor region is known, the outcome prediction can be performed on the

tumor region. To this end, machine learning based methods are commonly used such as

random forests (RFs) and support vector machines (SVMs) with or without a feature se-

lection strategy [Cameron et al. 2015, Desbordes et al. 2017c, Leger et al. 2017]. The main

disadvantage of these classical approaches is the need of an initial extraction of radiomic

features using hand crafted methods, which usually yields a large number of features. In

addition, hand-crafted features are affected by some parameters [Hatt et al. 2017] such

as noise, reconstruction, etc. and significantly by the contouring methods used. Recent

studies aim to develop classifiers based CNN which can automatically extract image fea-

tures [Hosny et al. 2018, Zhou et al. 2018a]. Our work presented in the previous chapter

has proved its effectiveness by comparing it to other methods [Amyar et al. 2019b]. In this

work, we therefore use it to predict the response to treatment and the survival of patients.

Due to low PET image resolution, class attention maps cannot be directly used as

supervision for pixel segmentation since they cannot distinguish between physiological

fluorodeoxyglucose uptakes (normal fixation/ no tumor) and pathological uptakes (tu-

mor), see Fig. 1. The main concern of this method for processing PET images is the diffi-

culty of identifying only the tumor region, because certain other regions of the image can

also be identified as participating in the classification decision due to their strong visual

information. To resolve this problem, we integrate a weak prior knowledge. In this work,
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we tackle the challenging problem of training CNNs with image-level labels for pixel-level

tumor segmentation. We show that, by using a CNN architecture and its class attention

maps integrated with a weak prior knowledge, we can transform the classification task

into tumor localization in PET images. In this chapter, we present a new method for lear-

ning segmentation at the pixel level with class labels (at the image level) using the class

response map, to make a CNN capable of segmenting the tumor at the pixel level but

without pixel labels. To date, using only image-level labels to segment pixel-level image

remains unexplored in PET images.

In addition, we propose to fully identify and locate tumor in 3D PET images from only

two 2D MIP images with face and profile views, which allow to enormously reduce the

complexity of the architecture and the learning time.

The chapter is organized as follow : in section 2, we describe our weakly supervised

model model, explaining the CAM and the new loss function introduced. Section 3 pre-

sents the experimental studies. In section 4, we show the results of our work. Section 5 is

for discussion and conclusion.

4.2 Material and methods

4.2.1 Main idea

Our method consists of two stages : segmentation of the tumor region and prediction

of the treatment outcomes. The core of our method is to develop a new method to gene-

rate class activation maps to locate the tumor region. We propose a new loss function to

improve the generation of class activation maps, and therefore to locate the tumor more

precisely. First, to make class activation maps more relevant, we introduce prior know-

ledge. For each patient data we randomly define a point at the approximate center of the

tumor, which can be achieved easily compared to the delineation of the tumor contours

in 3D PET images. Then, we define a new loss function based on two loss terms : the

accuracy to classify the type of tumor, and the distance between the generated class ac-

tivation maps at the current iteration and the central point. To that end, an 8 layers CNN
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is created to learn image-level labels and to generate an improved class activation maps

to locate the tumors. After each feed forward of a mini batch of 8 images, a probability

of belonging to a tumor class is obtained and then a binary cross-entropy loss function

is calculated, noted Lcl ass, which is the first term. A A class activation map is generated

for each image and a distance between the CAM and the central point in the tumor is

then calculated, noted (Ldi st ance) which is the second loss term for tumor localization.

Finally, the back-propagation is performed in respect to both Lcl ass and Ldi st ance to

update the weights.

4.2.2 Maximum Intensity Projection

Maximum intensity projection (MIP) is a 2D image that represents 3D image for fast

interpretation in clinical applications [Prokop et al. 1997]. Our idea is to use MIP to deal

with 3D images, allowing in one hand to greatly reduce the complexity of the networks

and avoids over-fitting due to the small size of the medical image data set, and on the

other hand to keep useful 3D information for classification. Two MIPs calculated from

opposite points of view are symmetrical images because they are rendered by orthogra-

phic projection. MIP imaging is used routinely by physicians in interpreting PET images.

It can be used for the detection of lung nodules in lung cancer screening programs for

example. MIP enhances the 3D nature of these nodules, making them stand out from pul-

monary bronchi and vasculature [Valencia et al. 2006]. Considering the advantages of this

technique which is also faster in terms of calculation, we can use it for the classification of

images, to classify the different pathology such as lung cancer or esophageal cancer. Ho-

wever, the radiomics features obtained from MIP images are not rich enough to predict

the outcome of treatment and survival, due to the loss of depth information (the third di-

mension). To obtain a 3D tumor region, we propose to use both sagittal and coronal MIPs.

The intersection of these two orthogonal views allows us to define the region of interest

in 3D, as shown in Fig. 2. Our strategy is to use 2D images to find 3D tumor region, which

can speed up the tumor localisation in 3D. Indeed, instead of generating a 3D activation

response map whose corresponding 3D network is time consuming and difficult to train

with limited resources, we only design two 2D classifiers to generate two class activation
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maps.

4.2.3 New Design of Class Activation Map

Interpreting machine learning models is a key element towards making it easier for

physicians to embrace these methods. To interpret a convolutional neural network, we

can produce class activation maps to detect the zones in images that contribute the most

to the network classification decision. In this work, the classification involves classifying

the PET images into two classes : the esophagus class in which the esophagus tumor is

present in the images ; and the lung class in which the lung tumor is present. It is a key step

in our method, since it will be used to recover the entire tumor area in a PET image. When

a CNN, typically having a series of layers, classifies an MIP image, its first layers capture

low-level features while later layers capture higher-level visual information that is relevant

to the classification task. The last convolutional layer is flattened, and then passed to a

fully connected layers to provide a certain probability of belonging to the oesophagus

class or lung one, see Fig 3.

In a CNN based classifier, once the features are flattened, the spatial information is

lost. Therefore, if we want to visualize locations of the features , we have to visualize the

features with their locations before the flattening. We thus take the feature maps of the

last convolutional layer to generate class activation map. However, these feature maps are

much smaller in size than the input size. Typically, the width and high of a class activation

map are 1/33 of that of the input image and the number of feature maps is the same as the

output of the last layer (128). We note the total number of feature maps in the last layer by

D . To go from these feature maps with size of 13 x 5 to a heat maps over the whole image,

we need to unpack these feature maps. Let f i be the i th feature map. For each feature

map f i, a weight w is associated to it, where i=1...D . Then, a pre-heat maps is obtained by

adding each feature map multiplied by its weight as in 4.1 :

pr e_hmap =

D
∑

i=1

[w i f i] (4.1)

Each feature maps contains 13× 5 elements (65 in total), where f j,z
i is (j,z) element
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of the i th feature map, where j=1..13 and z=1..5. To obtain the wights w for each of these

feature maps, we calculate the influence of f i
j,z on the output ŷ , by computing the partial

derivative of ŷ with respect to each feature in f i, such as :

I =
∂ŷ

∂ f i
j,z

(4.2)

Then, w i is calculated by taking the average of the feature influences at each j , z posi-

tion as in 4.3 :

w i
=

1

N

J
∑

j=1

Z
∑

z=1

∂ŷ

∂ f i
j,z

(4.3)

where N is the number of elements in the feature map, J is the width and Z is the

height. Finally, we keep only features with positive influence. We apply ReLU function to

keep only positive values. The heat map is finally obtained by :

h_map = ReLU (
D
∑

i=1

[w i f i]) (4.4)

where ReLU (X ) is defined as :

Relu = max(0, X ) (4.5)

Because the heat map is generated at a low resolution of 13× 5, we interpolate it to

adapt it to the size of the MIP images. In our application, two different types of cancer,

corresponding to two classes : lung cancer and oesophagus c ancer are considered. Let C

denote the class ∈ {lung, oesophagus}. From 4.1 and ?? we have :

w i
C =

1

N

J
∑

j=1

Z
∑

z=1

∂ŷC

∂ f i
j,z

(4.6)

h_mapC
= ReLU (

D
∑

i=1

[w C
i f i]) (4.7)

The obtained heat maps will be used afterwards to calculate a new loss function in the

classification step(see next section).

We introduce this novel loss function to prevent heat maps from further resolution

drop. A large loss indicates that the current representation of the networks does not ac-
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FIGURE 4.4 – Our proposed architecture. The neural network learns to classify the type of cancer

from two 2D MIP images (sagittal and coronal). The generated heatmap is back-propagated and

corrected to identify accurately tumor regions.

curately capture the lesion’s visual patterns, and it is therefore necessary to provide an

additional mechanism for self-improvement through back-propagation. The resulting ar-

chitecture 4.4 is a novel convolutional neural network with an attention feedback, having

an improved localisation capability.

4.2.3.1 Classification

A CNN consisting of a two Dense layers with 128 and 64 neurons respectively, is used

in our classification step. The resulting set of feature maps, encloses the entire spatial local

information, as well as the hierarchical representation of the input. Each feature map is

flattened out, and all the elements are collected into a single vector V of dimension K,

providing the input for a fully connected hidden layer, called h, consisting of H units. The

activation of the i(th) unit of the h hidden layer is given by :

hi = g (bi +W hi ∗V ) with i = 1, ....., H . (4.8)

A dropout of 0.5 and the activation function el u are used for learning. The last layer

is a Dense layer with one neuron for image classification using a sigmoid activation. The
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binary cross entropy is used as the loss function (Lclass) for classification :

Lcl ass =−
1

n

n
∑

i=1

[yi log(ŷi )+ (1− yi ) log(1− ŷi )] (4.9)

where n is the number of patients, y is the cancer lung label (binary, 1 if the patient

has lung cancer, 0 if it is oesophagus cancer) and ŷij∈(0,1) :
∑

j ŷij=1 ∀i,j is the prediction of

a lung cancer presence.

4.2.3.2 Distance constraint using prior knowledge

As shown above, the class activation map depends on the derivation of feature maps.

Since the patients’ bodies have different widths, the areas where there is the contour of the

body can also make the class activation map meaningful. To deal with this problem, we

propose to use prior knowledge to construct a distance constraint. We assume that when

CNN classifies the images, the decision is focused on the tumor region. This means that

the class activation map must include the tumor region. Based on this prior knowledge,

we randomly select a point approximately in the center of the tumor. Therefore, we define

a distance constraint as our second loss term of classification.

The distance between the selected point p and the points in the generated heat maps,

defined as follow :

Ldi st ance =

√

m
∑

i=1

|q i −p| (4.10)

where qi notes a point i and m is the number of points in a heatmap. This second loss

function makes it possible to correct the errors of the heat maps generated through the

distance constraint. In fact, instead of focusing on the discriminating regions, which may

include information other than the location of the tumor for classification, the heat map

is regularized with the distance constraint to emphasize the region of the tumor and at

the same time keep a good classification (see Fig 5).

The global loss function (loss glob) for the 2 tasks is defined by :

loss_g l ob = Lcl ass +αLdi st ance (4.11)
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where α is a constant weight coefficient. We take alpha = 1 in our study. As the class acti-

vation map has low resolution, it does not accurately capture visual patterns of the lesion,

and it is therefore necessary to provide an additional mechanism for self-improvement by

backpropagation. The resulting architecture (see Figure 4.4) is a novel convolutional neu-

ral network with attention feedback based on the proposed loss function. This can greatly

improve the locating ability.

4.2.4 Segmentation

Once we obtain the heat maps for sagittal and coronal MIP views, we retrieve the le-

sions mask on the 3D image. Sagittal MIP allows to retrieve y and z axis, and coronal MIP

the x and z axis. Combining the 3 coordinates finally results in the 3D volume of the tumor,

see figure 4.6.

4.2.5 Prediction

Once we obtain the 3D tumor region, we conduct a radiomics analysis to predict pa-

tient survival and treatment outcome. We use 3d-rpet-net [Amyar et al. 2019b], a CNN

classifier based on two 3D convolutional layers and two fully connected layers to conduct

radiomics analysis (see figure 4.7). The same model is applied on both 3D volumes ma-

nually segmented by a physician and automatically segmented by our method in order to

compare their performances.

4.3 Experiments

4.3.1 Dataset

Patients underwent a whole body FDG PET/CT, at the initial stage of the pathology

and before any treatment. The PET/CT data were acquired on the same device, and with

the same acquisition and reconstruction procedure used in routine care, and presented in

the above chapter. The reconstructed exam voxel size was 4.06×4.06×2.0 mm3 and were

spatially normalized by re-sampling all the dataset to an isotropic resolution of 2×2×2
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FIGURE 4.5 – Distance matrix between p at the center of the tumor and the points qi generated

by the heat map. A) is a Coronal MIP for a patient with esophageal cancer. A point p is randomly

defined at the tumor region. B) is the heat map generated using our proposed model. C) shows the

overelay of the MIP and the heat map. D) is the distance matrix showing the distance between the

points qi generated by the heat map and the point p.

TABLEAU 4.1 – Results for 3D segmentation. WPk : without prior knowledge. CAM : class activation

map.

Method Dice

Oesophagus cancer U-NET 0.42±0.16

CAMsWPK 0.53±0.17

Ours 0.73±0.09

Lung cancer U-NET 0.57±0.19

CAMsWPK 0.63±0.14

Ours 0.77±0.07

mm3 using the k-nearest neighbor interpolation algorithm.

4.3.2 Setup

We firstly generated maximum intensity projection (MIP) for coronal view and for sa-

gittal view. MIP is a 2D image that summarizes 3D images for fast interpretation. Tumor

gray level intensities were normalized to have SUV level between [0 30] and then transla-

ted between [0 1] to be used in CNN architecture. The neural network is trained to classify

the type of cancer : oesophagus vs lung cancers. For each mini-batch, CAMs are gene-

rated, backpropagated and corrected via a distance function (3), to differentiate tumor

regions from normal regions. Then, the two resulted corrected CAMs, for face and profile

view are combined to retrieve the 3D tumor.
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FIGURE 4.6 – Segmentation : the 3D tumor region from the two 2D heat maps. Coronal heat map

allows to retrieve y and z axis, while sagittal heat map return x and z axis. The tumor is selected by

the intersection of the two heat maps.

FIGURE 4.7 – 3D RPET-NET architecture composed by two 3D convolutional layers followed by 3D

pooling layers and two dense layers.

Two experiments are conducted to evaluate our model.

Experiment 1 : The first experiment consisted of segmenting the lesions on the 3D

PET images for patients with oesophagus cancer and lung cancer, using only 2D MIPs.

The results were compared to the state of the art method U-NET [Ronneberger et al. 2015],

which is commonly used in medical imaging for fully supervised segmentation, and CAMs

without prior knowledge.

Experiment 2 : The second experiment consists of radiomics analysis. We predict the

treatment survival for oesophagus cancer, and patient’s survival for lung cancer. The res-

ponse to treatment was evaluated 3 months after the end of treatment, and the overall

survival (OS) used for the prognostic study was estimated at 3 years after the end of the

treatment.
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4.3.3 Implementation

The model was implemented using python with pytroch deep learning library, and

trained for 2 days on nvidia p6000 quadro GPU with 24gb.

4.4 Evaluation Methodology

We divide the dataset into 3 groups : training, validation and test. For a fair compari-

son, all the methods were trained, validated and tested with the same group of data. The

performance of the models were evaluated using the dice coefficient for the segmentation

task, and the accuracy (Acc), sensitivity (Sens), specificity (Spec) and area under the ROC

curve (AUC) for the classification, such as :

Sens =
TP

TP + FN
(4.12)

where TP is the true positives, FN is the false negatives and TP + FN is the number of

patients classified positively.

Spec =
TN

TN + FP
(4.13)

where TN is the true negatives, FP is the false positives and TN + FP is the number of

patients classified negatively.

ACC =
TP + TN

TP + FN + TN + FP
(4.14)

4.5 Results

Table 1 shows results for of tumor segmentation for both oesophagus and lung can-

cers. Different methods were compared to our proposed model with : U-NET using fully

supervised learning, and CAMs without prior knowledge.

Table 2 shows results of radiomic analysis, for the prediction of patient’s treatment, 3

months after the end of radiochemotherapy for oesophagus cancer, and the prediction
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TABLEAU 4.2 – Results for radiomics analysis. WPk : without prior knowledge. Ms : manual seg-

mentation

Method Accuracy Sensibility Specificity AUC

Oesophagus cancer CAMsWPK 0.57±0.03 0.61±0.28 0.56±0.24 0.53±0.26

MS 0.72±0.08 0.79±0.17 0.62±0.21 0.70±0.04

Ours 0.69±0.04 0.80±0.14 0.59±0.26 0.67±0.08

Lung cancer CAMsWPK 0.61±0.07 0.59±0.21 0.57±0.15 0.55±0.24

MS 0.68±0.17 0.72±0.09 0.54±0.07 0.61±0.03

Ours 0.65±0.05 0.65±0.18 0.58±0.15 0.59±0.04

FIGURE 4.8 – Comparison between different models. From left to right : PET exam, CAMs without

prior knowledge, ours

of survival for patients with lung cancer.

Fig 8 shows a CAM of one patient. We can see the improvement with the distance constraint.

All the methods were compared based on the ability to detect accurately the tumor

and to conduct a radiomics analysis. The performances are measured by accuracy, sen-

sibility, specificity and the area under the ROC curve. The results were obtained using

a 5 fold cross-validation. Best results for segmentation were obtained using our propo-

sed model for both lung and oesophagus cancer. For radiomics, 3d-rpet-Net with manual

segmentation was not statistically significantly different from our model (p=0.59) for oe-

sophagus and (p=0.63) for lung. Our model tend to have a better sensibility for oesopha-

gus and a better specificity for lung cancer with no significant differences. This means

that our method, which does not need ground truths, can obtain similar results as using

manual segmentation. This is very encouraging for the automatic radiomics analysis.
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4.6 Discussion & Conclusion

In this study, a new weakly supervised learning model was developed to localize lung

and oesophagus tumors in PET images. It utilizes two fundamental components : a new

class activation map to locate the tumor and a new loss function to improve localisation

precision. The model could detect tumors with better accuracy compared to fully super-

vised models such as U-NET, or classical CAMs, see Fig 6. Our model outperformed other

methods in terms of the dice index. As for radiomics analysuis, 3d-rpet-net with manual

segmentation is showing slightly better results than our model in radiomics analysis. Ho-

wever, it is based in manual pixel-level annotations of tumor, which requires a physician

expert and also is time consuming.

By detecting the tumor with 2D MIP images for face and profile views, we can obtain

x,y and z coordinates to segment the 3D image. The segmentation in the 3D images were

used to conduct a radiomics analysis with state-of-the-art results. This simple and yet po-

werful technique, can be integrated in future workflow/software dedicated to automatic

analysis of PET exams to conduct radiomics analysis.
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CHAPITRE 5. MULTITASK LEARNING FOR RADIOMICS ANALYSIS

In the previous chapter we showed the interest of weakly supervised learning to de-

tect automatically the lesions, in order to perform a radiomic analysis afterward. In this

chapter, we introduce the multi-task learning (MTL) framework, where neural networks

is trained to conduct several tasks in the same time. In this MTL approach we are inter-

ested of learning segmentation not to be exactly as the physician ground truth, but to let

the neural network decides which are the regions that contribute the most in the outcome

prediction.

5.1 Introduction

Radiomic is a field of study where images have great potential for precision and per-

sonalized medicine [Aerts et al. 2014, Lambin et al. 2012a]. It is defined as the extrac-

tion of a large number of features from medical images such as computed tomography

(CT), magnetic resonance imaging (MRI) or positron emission tomography (PET) [Kumar

et al. 2012]. These features are used to uncover disease characteristics that fail to be found

or quantified by the naked eye. The first step in radiomic analysis in oncology is the le-

sion segmentation (see figure 5.1). This task requires a highly trainable physician, is time

consuming and the ground truth defined is physician subjective. Recently, deep learning

showed very promising results in image classification [Ciregan et al. 2012], object detec-

tion [Szegedy et al. 2013], and image segmentation [Badrinarayanan et al. 2017]. In the

medical imaging field, various applications have emerged in different areas, including pa-

thology classification [Janowczyk and Madabhushi 2016], treatment response prediction

[Amyar et al. 2018], lesions segmentation [Kamnitsas et al. 2017] and organs at risk seg-

mentation [Trullo et al. 2017]. Thus, artificial intelligence in general and deep learning in

particular can come in handy to develop computer aided diagnostic applications (CAD).

However, deep learning approaches are well known for their data hungry nature, and an-

notated data are usually hard to obtain in the medical imaging field. Recent works tried

to tackle this problem with a weakly supervised learning strategy to segment the lesions,

and then predict the outcome [Amyar et al. 2020]. This approach showed very promising

results outperforming state of the art supervised approaches such as U-Net [Ronneber-
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FIGURE 5.1 – Columns from left to right : Fused PET/CT slice, zoomed on the lung tumor (left) and

esophageal tumor (right) seen on FDG-PET only. Metabolic Tumor Volume MTV (40% SUVmax

thresholding) in red. MTV3 (MTV + 3 cm isotropic margin) include the tumor and peritumoral

region.

ger et al. 2015] for image segmentation, and comparable results with supervised learning

[Amyar et al. 2019b] for radiomics analysis. However, the drawback of this method is the

two stage segmentation-outcome prediction. In addition, recent studies have shown the

potential of peritumoral regions on boosting the accuracy of outcome prediction [Braman

et al. 2019, Dou et al. 2018, Prasanna et al. 2017]. Thus, the association of the intratumoral

and peritumotal regions provides rich information for radiomic analysis [Braman et al.

2017, Hu et al. 2020].

The standard method in machine learning is to learn one task at a time. Large pro-

blems are broken into small subproblems that are learned separately and then recombi-

ned. Multi-task learning (MTL) [Caruana 1997] is a type of learning algorithm that aims

to combine several pieces of information from different tasks in order to improve the mo-

del’s performance and its ability to better generalise [Zhang and Yang 2017]. The basic

idea of MTL is that different tasks can share a representation of common characteristics

[Zhang and Yang 2017], and thus train them jointly. The use of different data sets from

different tasks allows learning an efficient representation of the common characteristics

of all tasks, because all data sets are used to obtain it, even if each task has a small data

set, thus improving the performance of each task.

Contribution : In this work, we tackle the challenging problem of training a neural

network to classify the pathology, segment the lesion, reconstruct the image and predict

the outcome based on the segmentation results. We believe that the global information
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in the entity image volume describing the relationship between the tumor and other or-

gans is also useful as the characteristics of the tumor. We show that, by using a multi-task

learning approach, we can boost the performance of radiomics analysis while extracting

rich information of intratumoral and peritumoral regions. More specifically, we present

a new method of learning segmentation not to be exactly as the physician ground truth,

but to let the neural network decides which are the regions that contribute the most in the

outcome prediction. Our main contributions are summarized as follows :

1. Our proposed architecture is the first to use jointly global features extracted from

entire image and local features from tumor regions to predict the outcome in a ra-

diomics study.

2. We design a new multi-tasking learning network to jointly segment the tumor on

a 3D PET image and predict the outcome, which is simultaneously associated with

two subsidiary tasks, classification and reconstruction. The last two tasks are added

to make the features more relevant and also to serve as an inductive bias to better

generalize.

3. We utilize a multi-scale feature extraction so that the model can predict the out-

come from tumor and tumor neighborhoods features, and also global features at

the encoder level.

4. We conduct extensive validation strategy with multiple ablation experiments, com-

parison with state of the art methods in both supervised and multi-task learning.

5.2 Related Work

In previous studies, several methods for segmentation of the region of interest and

joint classification have been proposed. For instance, Yang et al. [Yang et al. 2017] created

a multi-task deep neural network for skin lesion analysis, in order to solve different tasks
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FIGURE 5.2 – Hard parameter sharing for multi-task learning in deep neural networks used in our

proposed architecture.

simultaneously such as lesion segmentation and two independent binary lesion classi-

fications. The MTL model improved learning efficiency and prediction accuracy for each

task, in comparison to single task models. They achieved an average Jaccard score of 0.724

for lesion segmentation, while the average values of the area under the receiver operating

characteristic curve (AUC) on two lesion classifications are 0.880 and 0.972, respectively.

The model consists of a common encoder for the 3 tasks based on GoogleNet [Szegedy

et al. 2015], one decoder for segmentation and two fully connected branches for classifica-

tion. In [Asgari et al. 2019] Asgari et al. proposed a multi-class segmentation as multi-task

learning for drusen segmentation in retinal optical coherence tomography. The model is

based on a multi-decoder architecture that tackles drusen segmentation as a multi-task

problem. Instead of training a multi-class model for two classes segmentation, they used

one decoder per target class and an extra task for the area between the layers. They used

connections between each class-specific branch and the additional decoder to increase

the regularization effect of this surrogate task. The model was validated on a dataset of

366 images. They achieved a mean dice of 0.73 compared to 0.68 with multi-class U-Net

or 0.66 with a binary U-Net.

In [Thome et al. 2019] Thome et al. proposed a multi-task classification and segmen-

tation model for cancer diagnosis in mammography. The architecture is based on a fully

convolutional networks (FCN) [Long et al. 2015]. The model was evaluated on the DDSM

database [Heath et al. 2000] with cancer classification and pixel segmentation with five

91



CHAPITRE 5. MULTITASK LEARNING FOR RADIOMICS ANALYSIS

classes. They showed that the model could learn shared representations that are benefi-

cial for both tasks when trained in MTL approach compared to STL. The model achieved

a mean dice of 38.28% and an AUC of 84.02% compared to a mean dice of 34.98% and an

AUC of 81.37% for STL. In [He et al. 2020] He et al. used a multi-task learning approach for

the segmentation of organs at risk with label dependence. They used a MTL to accurately

determine the contour of organs at risk in CT images. They used an encoder-decoder fra-

mework for two tasks. The main task is the segmentation of organs, while the secondary

task is the multi-label classification of organs.

While previous studies showed the advantage of using MTL compared to single task

U-Net for image segmentation, recent works have shown the benefit of using U-Net, V-

NET [Milletari et al. 2016] or Faster-RCNN [Ren et al. 2016] as the backbone network. In

[Playout et al. 2018], Playout et al. proposed an extension to U-Net architecture relying

on multi-task learning with one common encoder, and two decoders to jointly detect and

segment red and bright retinal lesions which are essential biomarkers of diabetic retino-

pathy. At the encoder level, they used residual connections at every scale, mixed pooling

for spatial compression and large kernels for convolutions at the lowest scale. Segmen-

tation results are refined with conditional random fields (CRF) and the model is trained

with Kappa-based function loss. They achieved a sensitivity of 66,9% and a specificity of

99,8% on a public dataset.

In [Vesal et al. 2018a] Vesal et al. proposed a multi-task framework for Skin Lesion

Detection and Segmentation. The model is based on Faster-RCNN to generate bounding

boxes for lesion localization in each image, and "SkinNet" [Vesal et al. 2018b], which is

a modified version of U-Net. The model was trained and evaluated on ISBI 2017 chal-

lenge and the PH2 datasets, outperforming other STL methods in terms of Dice coeffi-

cients (0.93), Jaccard index (0.88), accuracy (0.96) and sensitivity (0.95), across five-fold

cross validation experiments. In [Zhou et al. 2020] Zhou et al. used an MTL framework

for segmentation and classification of tumors in 3D automated breast ultrasound images.

The main motivation behind their work is the correlation between tumor classification

and segmentation, therefore learning these two tasks jointly may improve the outcomes

of both tasks. The framework is based on an encoder-decoder network for segmentation
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and a light-weight multi-scale network for classification, with VNet as the backbone.

These above methods cannot be directly applied to 3D PET images to jointly segment

the lesion, classify the pathology and predict the outcome. For instance, the tumor boun-

daries in PET images for esophageal cancer are not well defined, and sometimes hard to

separate from other normal fixation (no tumor). In addition, peritumoral which is defined

as the pathology around the tumor is an important information that can boost the pre-

diction accuracy, but it is not taken into account with previous and classical approaches.

Finally, due to the variation in size of the tumors, a mutli-scale approach could be a be-

nefice to capture small features as well as investigating bigger ones. In this work, we take

advantage of previous proposed methods and propose a new architecture for radiomics

analysis. The main tasks are outcome prediction and lesion segmentation, and the se-

condary tasks are image reconstruction and pathology classification. We propose a multi-

scale feature learning for the outcome prediction, by jointly predicting on the local fea-

tures and global ones.

FIGURE 5.3 – Our proposed architecture, composed of an encoder and two decoders for image

reconstruction and tumor segmentation. A fully connected layers are added for classification (Oe-

sophageal vs lung cancer), and a multi-scale outcome prediction.
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5.3 Method

We propose a new multi-task learning algorithm to improve generalization by leve-

raging the domain-specific information contained in the training signals of related tasks

as an inductive bias. It does this by learning tasks in parallel while using a shared repre-

sentation; what is learned for each task can help other tasks be learned better. Two major

strategies are used when training a MTL algorithm, hard parameters sharing [Caruana

1997] or soft parameters sharing [Ruder 2017]. Hard parameter sharing is the most com-

monly used approach to MTL in neural networks and greatly reduces the risk of overfitting

[Ruder 2017], see figure 5.2. It is generally applied by sharing the hidden layers between

all tasks, while keeping several task-specific output layers. In this work we utilize hard

parameters sharing due to its great performance and wide utilization.

The reconstruction and pathology classification are extra tasks that serve as an induc-

tive bias. The power of MTL framework lay in the fact that it is able to determine how tasks

are related without being given an explicit training signal for task relatedness. We make

the assumption that since the four outputs share common hidden layers, it is possible for

internal representations that arise in the hidden layer for one task are used by other tasks.

5.3.1 Model description

We propose a new architecture called W-Net to jointly segment the lesion, classify

the pathology, reconstruct the image and predict the outcome. The proposed network

is shown in figure 5.3. We use U-Net as the backbone due to its great performance in 3D

medical image segmentation. The W-Net architecture consists of four parts : (i) a common

encoding part, (ii) a decoding part for reconstruction, iii) a decoding part for the segmen-

tation and (iii) skip connections between them, which form a W, see figure 5.3. To that we

add a multi-layer perceptron (MLP) for the classification task, and a convolutional neu-

ral network for the outcome prediction based on the segmentation result. Finally, we use

multi-scale approach to feed global features to the CNN, in order to predict make a pre-

diction on both global features and tumor ones. To summarize, many classic image clas-

sification networks use transfer learning [Pan and Yang 2009] to extract high level features

94



5.3. METHOD

FIGURE 5.4 – Heatmap from different scales with two different input.

from CNN models, such as VGG16 [Simonyan and Zisserman 2014] or ResNET [He et al.

2016]. Motivated by this, we use the same encoder for lesion segmentation and pathology

classification to to extract common features. We add reconstruction task as a secondary

task so that the neural network can extract meaningful features about PET images.

5.3.1.1 Encoder-Decoder

The encoder is used to obtain the disentangled feature representation. It is a 10-layers

3D convolutional neural networks with convolution filters of 3×3×3 and a maxpooling

of 2×2×2 after each 2 convolutional layers and a skip connection. The number of feature

maps increases from 64 for the 2 first layers to 1024 for the last ones. We use r elu activa-

tion function and a Dropout of 0.5 after the last convolutional layer. The structure of the

2 decoders is the same, with upsampling to return to the original image size followed by

convolutional layers to reduce the number of features by a factor of 2. These features are

concatenated with the ones from the corresponding level of the encoder.
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5.3.1.2 Multi-scale Feature Extraction

For the outcome prediction, we take advantage of both local features and global fea-

tures. Local features are extracted from the segmentation result, while the global features

are obtained from the common encoder. To benefit from features of different scales, we

designed a multi-scale feature concatenation model for the radiomics task, as shown in

figure 5.4. We concatenate feature maps from Level 3 to 5 in the encoder with the convo-

lutional network in the outcome prediction. As a strong tool to evaluate and analyze the

decision made by the neural network, we visualize heatmaps at different levels of the en-

coder and the decoder for the segmentation. To visualize the heatmaps, we use Grad-cam

technique [Selvaraju et al. 2017] to produce visual explanation at each scale. We can ob-

serve that scale 4, 5 and 6 extract rich features at the tumor level and beyond, including

peritumotal regions and other important fixations. To incorporate this information at the

prediction level we design a multi-scale feature concatenation model by fusing feature

maps from scale 4, 5 and 6 with the tumor features. We use a channel-wise global average

pooling (GAP) as in [Zhou et al. 2020] to reduce the complexity in training time and to

keep also important features, since it is more robust to spatial translation.

5.3.1.3 The reconstruction task Task1

We trained the model with a linear activation for the output and a mean squared error

for the loss function (Lrecon) and used accuracy as the metric :

Lr econ =
1

n

n
∑

t=1

(y_tr ue − y_pr edi ct )2 (5.1)

where y_true is the true label and y_predict is the predicted label.

5.3.1.4 The segmentation task Task2

We used the same architecture as the reconstruction except for the activation function

for the output, which is a sigmoid. The loss function is based on the dice coefficient loss

(Lseg) which is considered as the metric :
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di ce_coe f =
2∗|X ∩Y |+ǫ

|X |+ |Y |+ǫ
(5.2)

Lseg =−di ce_coe f (5.3)

where ǫ is the the smoothing factor and used to avoid a division by zero.

5.3.1.5 The classification task Task3

The resulting set of feature maps, encloses the entire spatial local information, as well

as the hierarchical representation of the input. Then, each feature map is flattened out,

and all the elements are collected into a single vector V of dimension K, providing the

input for a fully connected hidden layer, called h, consisting of H units. The activation of

the i(th) unit of the h hidden layer is given by :

hi = f (bi +W hi ∗V ) with i = 1, ....., H . (5.4)

In details, the output of the encoder is a tensor of mini_batch x 32 x 32 x 1024 to which

we add a convolutional layer followed by a maxpooling, and then a flatten operation to

convert the data to a mono-dimensional tensor to perform the classification. The multi-

layer perceptron consist of a two Dense layer with 128 and 64 neurons respectively, with

a dropout of 0.5 and the activation function el u. The last layer is a Dense layer with three

neurons for image classification using a sigmoid activation and a binary cross entropy is

used as the loss function (Lclass) :

Lcl ass =−
1

n

n
∑

i=1

[yi log(ŷi )+ (1− yi ) log(1− ŷi )] (5.5)

which is a special case of the multinomial cross-entropy loss function for m = 2 :

L(θ) =−
1

n

n
∑

i=1

m
∑

j=1

yi j log(ŷi j ) (5.6)

where n is the number of patients and y is the class label (esophageal cancer, lung cancer).
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5.3.1.6 The prediction task Task4

The prediction branch is connected to three layers from the encoder and segmenta-

tion decoder, in order to incorporate global features, in addition to tumor features extrac-

ted from the segmentation result. It is composed of 2 convolutional layers with 64 feature

maps each followed by a maxpooling and 2 other convolutional layers with 128 feature

maps each. Then, we apply a global average pooling to concatenate tumor based features

(local features) with encoder-decoder global features in a multi-scale. Finally, three fully

connected layers are used for the prediction with 128, 128 and 1 neurons respectively. The

loss function is the binary cross-entropy and the performance metric is the accuracy :

Lpr edi ct =−
1

n

n
∑

i=1

[yi log(ŷi )+ (1− yi ) log(1− ŷi )] (5.7)

where n is the number of patients and y is the outcome.

5.3.1.7 multi-task Loss Function

We use reconstruction task to learn more meaningful features of PET exams, and out-

come prediction task so that the network will focus attention on the most discrimina-

tor regions for the segmentation task so that. In our experiments, the Adam optimizer

[Kingma and Ba 2014] algorithm was used with a mini batches of 4 and a learning rate of

0.0001. The global loss function (loss glob) for the 4 tasks is defined by :

loss_g l ob =αLr econ +βLseg +ωLcl ass +λpr edi ct (5.8)

where α = β and ω= 1-(λ+2×α). Our model was trained for 1500 epochs with an early

stopping of 70.

5.3.2 Dataset

Our experiments were run on 195 PET image volumes with lung (98) and oesophagus

(97) cancer, from Henri Becquerel Center, Rouen, France. All patients underwent whole

body FDG PET with a CT (baseline PET), at the initial stage of the pathology and before
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any treatment. The PET/CT data were acquired on the same device, and with the same

acquisition and reconstruction procedure used in routine care. The reconstructed exam

voxel size was 4.06×4.06×2.0 mm3 and were spatially normalized by re-sampling all the

dataset to an isotropic resolution of 2×2×2 mm3 using the k-nearest neighbor interpola-

tion algorithm. We split the data into 2 groups to train and test the deep learning methods.

One group was used for training the models (77 Oeso and 78 Lung) and one locked group

for testing (40 patients). Furthermore, for the CNN, the training samples were split into 2

groups, a train set (57 Oeso and 58 Lung) and a validation set (40 patients).

5.3.3 Implementation

All models were implemented using python and keras deep learning library, with ten-

sorflow as backend, and trained on nvidia p6000 quadro gpu with 24gb. Some tested state

of the art models were developed using pytorch library.

5.4 Experiments

We compare the performance of single task learning (STL—learning just one task at a

time) and multi-task learning. We present an empirical test that rules out these mecha-

nisms and thus ensures that the benefit from MTL is due to the information in the extra

tasks.

Experiment 1 : The first experiment consists of the optimization of the network by tes-

ting the different combination of tasks. The models developed include single task models,

2 and 3 tasks models, and all tasks models. Reconstruction and pathology classification

are secondary tasks, thus they are combined either with segmentation or outcome predic-

tion or both of them. Also, outcome prediction with and without global or local features

were evaluated. In total, 15 models were developed for the outcome prediction.

Experiment 2 : The second experiment is to evaluate the performance of the best mo-

del with state of the art methods for image segmentation such as U-Net, V-NET and a

weakly supervised multi-task approach [Amyar et al. 2020]. The WSL-MTL model uses a

priori knowledge by defining two points in two 2D maximum intensity projection (MIP)
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images for coronal and sagittal views. The model learn to classify the two MIPs into lung

and esophageal cancers, and by generating a class activation map (CAM), it calculate a

distance between the CAM generated and the two points defined, and learn to minimize

the distance between the CAMs and the 2 points in a multi-task learning approach. Fi-

nally, the corrected CAMs for sagittal and coronal views are used to retrieve the tumor in

the 3D space.

Experiment 3 : The third experiment is to compare our models with state of the art

methods for image classification and outcome prediction. We use : Alexnet [Krizhevsky

et al. 2017], VGG-16 [Simonyan and Zisserman 2014], ResNET50 [He et al. 2016], 169-layer

DenseNet [Huang et al. 2017] and InceptionV3 [Szegedy et al. 2016]. We compare also our

results with deep radiomics such as 3D RPET-NET [Amyar et al. 2019b] and a 6 layers 3D

convolutional neural network.

Experiment 4 : In experiment 4 we study the effects of the hyperparameter λ on the

multitask learning. We have tested different values : 0.1, 0.3, 0.5, 0.7 and 0.9.

Experiment 5 : Finally, we compare our proposed method with state of the art multi-

task methods, including [Zhou et al. 2021],[Wang et al. 2018], [Qu et al. 2019] and [Chen

et al. 2018]. We extended 2D networks to 3D. In order to incorporate both local and larger

contextual information, we employ a multi-scale feature extraction for outcome predic-

tion.

5.5 Validation Methodology

The performances of the models were evaluated using the dice coefficient for the seg-

mentation task, and the area under the ROC curve (AUC) and the accuracy (Acc), for both

classification and prediction.
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TABLEAU 5.1 – Results of experiment 1 : segmentation, classification and prediction results from different scenarios, for esophageal and lung cancers. Task1 :

reconstruction, Task2 : segmentation, Task3 : pathology classification, Task4 : outcome prediction.

Seg. Class. Pred.

bf Type of cancer Tasks Global features Tumor features Dice_coef Accuracy AUC Accuracy AUC

Esoph. Task1 & Task4 X x / / / 0.60 0.60

Task1 & Task3 & Task4 X x / 0.95 0.94 0.65 0.68

Task1 & Task2 & Task4 X x 0.77 / / 0.65 0.64

Task1 & Task2 & Task4 x X 0.76 / / 0.65 0.63

Task1 & Task2 & Task4 X X 0.74 / / 0.70 0.63

Task2 & Task4 X x 0.73 / / 0.70 0.71

Task2 & Task4 x X 0.70 / / 0.70 0.74

Task2 & Task4 X X 0.79 / / 0.73 0.72

Task2 & Task3 & Task4 X x 0.71 0.94 0.93 0.72 0.70

Task2 & Task3 & Task4 x X 0.69 0.91 0.92 0.70 0.71

Task2 & Task3 & Task4 X X 0.71 0.93 0.91 0.75 0.73

Task3 & Task4 x x / 0.98 0.97 0.60 0.59

Task1 & Task2 & Task3 & Task4 X x 0.73 0.96 0.95 0.70 0.67

Task1 & Task2 & Task3 & Task4 x X 0.75 0.97 0.95 0.76 0.74

Task1 & Task2 & Task3 & Task4 X X 0.73 0.97 0.94 0.79 0.77

Lung Task1 & Task4 X x / / / 0.49 0.51

Task1 & Task3 & Task4 X x / 0.95 0.94 0.59 0.56

Task1 & Task2 & Task4 X x 0.84 / / 0.60 0.58

Task1 & Task2 & Task4 x X 0.84 / / 0.64 0.60

Task1 & Task2 & Task4 X X 0.83 / / 0.65 0.62

Task2 & Task4 X x 0.86 / / 0.65 0.57

Task2 & Task4 x X 0.81 / / 0.67 0.65

Task2 & Task4 X X 0.82 / / 0.67 0.66

Task2 & Task3 & Task4 X x 0.80 0.94 0.93 0.68 0.66

Task2 & Task3 & Task4 x X 0.76 0.91 0.92 0.68 0.65

Task2 & Task3 & Task4 X X 0.79 0.93 0.91 0.69 0.67

Task3 & Task4 x x / 0.98 0.97 0.70 0.65

Task1 & Task2 & Task3 & Task4 X x 0.81 0.96 0.95 0.70 0.62

Task1 & Task2 & Task3 & Task4 x X 0.83 0.97 0.95 0.71 0.69

Task1 & Task2 & Task3 & Task4 X X 0.82 0.97 0.94 0.70 0.71

1
0

1
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5.6 Results

The main results of the five experiments are shown in Tables 1 to 5. The neural network

was trained for 1500 epochs with an early stopping of 70.

Experiment 1 : As shown in Table 5.1, the best results for outcome prediction were ob-

tained by the combination of the four tasks with multi-scale, and with tumor and global

features. It achieved an accuracy of 0.79 and AUC of 0.77 for esophageal cancer outper-

forming 14 other scenarios which are composed of several combination of different tasks,

with and without multi-scale and with and without tumor features. For lung cancer, our

proposed model achieved an accuracy of 0.70 and AUC of 0.71 in multi-scale, and an ac-

curacy of 0.71 and AUC of 0.69 when using only tumor features. Using only reconstruction

and prediction resulted in a poor performance for both lung and esophageal cancers. For

the segmentation, the best results were achieved by the combination of segmentation and

prediction in multi-scale for esophageal cancer (dice coefficient = 0.79), and using only

global features for lung cancer (dice coefficient = 0.86). Our proposed model achieved a

dice score of 0.73 in multi-scale and 0.75 when using only tumor features for esophageal

cancer, and a dice score of 0.82 in multi-scale and 0.83 when using only tumor features for

lung cancer. The combination of the reconstruction, segmentation and prediction also re-

sulted in good results for segmentation, when using only global features, only tumor fea-

tures and in multi-scale : 0.77, 0.76 and 0.74 for esophageal cancer and 0.84, 0.84, 0.83 for

lung cancer respectively. When using the classification task in addition to segmentation

and prediction the performance on segmentation decreases : 0.71, 0.69 and 0.71 for eso-

phageal cancer and 0.80, 0.76, 0.79 for lung cancer. This can be explained due to the fact

that the reconstruction task helps in the extraction of rich meaningful features that contri-

bute in the segmentation better than the classification task. For the classification, the best

results were achieved with the combination of the classification and prediction tasks, wi-

thout reconstruction and segmentation : accuracy = 0.98 and AUC = 0.97. Our proposed

model achieved an accuracy of 0.97 and an AUC of 0.94 and 0.95 with multi-scale and

only tumor features respectively. Since the goal of our study is to focus on the prediction

task, the performance of the other 2 tasks (segmentation and classification) can be a lit-
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Method Dice coef

Esophageal cancer U-NET (Task2) 0.69

V-NET 0.69

WSL-MTL 0.73

Ours 0.73

Lung cancer U-NET (Task2) 0.80

V-NET 0.77

WSL-MTL 0.85

Ours 0.82

TABLEAU 5.2 – Experiment 2 : Segmentation results for esophageal and lung cancer compared to

the state of the art methods. WSL : weakly supervised learning model developed in [Amyar et al.

2020].

Classification Prediction

Method Accuracy AUC Accuracy AUC

Esophageal cancer AlexNet 0.74 0.73 0.54 0.52

VGG-16 0.79 0.77 0.53 0.51

VGG-19 0.78 0.78 0.55 0.53

ResNet50 0.97 0.97 0.62 0.63

169-layers DenseNet 0.95 0.94 0.63 0.61

InceptionV3 0.93 0.92 0.61 0.69

3d-rpet-net / / 0.72 0.70

6 layers CNN 0.80 0.81 0.69 0.68

Ours 0.97 0.94 0.79 0.77

Lung cancer AlexNet 0.74 0.73 0.51 0.49

VGG-16 0.79 0.77 0.50 0.51

VGG-19 0.78 0.78 0.51 0.51

ResNet50 0.97 0.97 0.59 0.57

169-layers DenseNet 0.95 0.94 0.61 0.60

InceptionV3 0.93 0.92 0.57 0.59

3d-rpet-net / / 0.68 0.61

6 layers CNN 0.80 0.81 0.63 0.60

Ours 0.97 0.94 0.70 0.71

TABLEAU 5.3 – Experiment 3 : classification and outcome prediction results compared to state of

the art methods for esophageal and lung cancers.

103



CHAPITRE 5. MULTITASK LEARNING FOR RADIOMICS ANALYSIS

tle higher when using only segmentation and prediction or classification and prediction,

but not for the prediction. This is due to the fact that to improve the performance of the

prediction task, the model tends to find the most informative and discriminating region

in the image that allows this improvement. This results in the extraction of intratumoral

and peritumoral tumor regions, which may differ from segmentation ground truth but

improve the prediction. The combination of segmentation and prediction resulted in an

accuracy of 0.70, 0.70 and 0.73 and an AUC of 0.71, 0.74 and 0.72 for esophageal cancer for

global features, tumor features and multi-scale respectively, and an accuracy of 0.65, 0.65

and 0.67 and an AUC of 0.57, 0.65 and 0.66 for lung cancer. The combination of the classi-

fication and prediction resulted in an accuracy of 0.60 and an AUC of 0.59 for esophageal

cancer and an accuracy of 0.70 and an AUC of 0.65 for lung cancer.

Experiment 2 : In Table 5.2, segmentation results for three other state of the art me-

thods are reported and compared to our proposed model, for esophageal and lung can-

cers. The 3 models are : U-Net, which represents the task Task2 for the segmentation

since it was used as the backbone in our model, V-Net and a weakly supervised multi-

task learning (WSL-MTL) model for tumor segmentation. Our model achieved the best re-

sults with the WSL-MTL for esophageal cancer (dice coefficient = 0.73), and slightly worse

then the WSL-MTL for lung cancer (dice coefficient = 0.82 and 0.85 respectively), since

the WSL-MTL was trained to do the segmentation as a primary objective. Our model was

better then single task (Task2) U-Net and V-Net : 0.69 and 0.69 for esophageal cancer and

0.80 and 0.77 for lung cancer. These results show that our model can correctly find the

tumor regions from which local tumor features can well be extracted.

Experiment 3 : Table 5.3 shows the results of the third experiment. We compared our

method with state-of-the-art deep learning models for image classification and predic-

tion. Our proposed model outperformed other methods for the prediction task for both

esophageal and lung cancers. ResNet50 had slightly better results for the classification

(accuracy 0.97 and AUC 0.97) but very poor results the the prediction : accuracy = 0.62

and AUC = 0.63 for eophageal cancer and accuracy = 0.59 and AUC = 0.57 for lung cancer.

AlexNet, VGG-16 and VGG-19 have not shown promising results.

Experiment 4 : In Table 5.4 the the influence of λ on the performance of our model
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λ Dice coef Accuracy AUC Accuracy AUC

Esophageal cancer 0.1 0.74 0.94 0.94 0.70 0.69

0.3 0.73 0.97 0.94 0.79 0.77

0.5 0.71 0.95 0.94 0.77 0.76

0.7 0.71 0.93 0.94 0.70 0.71

0.9 0.69 0.89 0.88 0.73 0.71

Lung cancer 0.1 0.80 0.94 0.94 0.65 0.64

0.3 0.82 0.97 0.94 0.70 0.71

0.5 0.85 0.95 0.94 0.71 0.70

0.7 0.80 0.93 0.94 0.69 0.70

0.9 0.78 0.89 0.88 0.71 0.70

TABLEAU 5.4 – Experiment 4 : The effects of λ on the multi-task learning.

Method Dice coef Accuracy AUC Accuracy AUC

Esophageal cancer [Zhou et al. 2021] 0.75 0.96 0.94 0.73 0.71

[Chen et al. 2018] 0.68 0.91 0.90 0.68 0.66

[Qu et al. 2019] 0.69 0.92 0.90 0.70 0.69

Ours 0.73 0.97 0.94 0.79 0.77

Lung cancer [Zhou et al. 2021] 0.77 0.96 0.94 0.67 0.65

[Chen et al. 2018] 0.73 0.91 0.90 0.63 0.60

[Qu et al. 2019] 0.80 0.92 0.90 0.68 0.65

Ours 0.82 0.97 0.94 0.70 0.71

TABLEAU 5.5 – Experiment 5 : A quantitative comparison between our model and state of the art

multi-task methods.
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is reported. We achieved the best results for tumor classification and outcome prediction

with λ = 0.3. When lowering the value of λ the model achieves slightly better result for

the segmentation for esophageal cancer (0.74) but a worse prediction result for both eso-

phageal and lung (accuracy = 0.70 and AUC = 0.69, accuracy = 0.65 and AUC = 0.64). For

λ= 0.5 our model achieves comparable results for both pathologies : accuracy = 0.77 and

AUC = 0.76 for esophageal cancer and accuracy = 0.71 and AUC = 0.70 for lung cancer, with

a better dice coefficient (0.85) for the segmentation of lung tumors. Increasing λ does not

result in an improvement of the prediction task, it decreases the performance of the seg-

mentation and classification tasks and also the prediction : accuracy = 0.73, AUC = 0.71

for outcome predication with esophageal cancer and accuracy = 0.71 and AUC = 0.70 for

lung cancer, accuracy = 0.89 and AUC = 0.88 for classification, and a dice coefficient = 0.69

and 0.78 for esophageal and lung cancers respectively for segmentation.

Experiment 5 : Table 5.5 reports the results of three state-of-the-art methods for multi-

task learning for segmentation and classification. Our proposed model achieves the best

results for both esophageal and lung cancers for the prediction and classification task,

where [Zhou et al. 2021] achieves a slight improvement on the segmentation task for eso-

phageal cancer (dice coefficient = 0.75), and comparable results for the classification (ac-

curacy = 0.96 and AUC = 0.94).

5.7 Discussion

We have developed a new deep learning multi-task model to jointly identify esopha-

geal and lung tumors, segment the tumor regions of interest and predict patient’s out-

come. Our architecture is general, which means that it can be used for other segmentation-

classification-prediction applications. We have also compared our method with several

state-of-the-art algorithms such as U-NET, V-NET and WSL-MTL for tumor segmenta-

tion, methods for image classification and prediction, and for multi-task learning such as

[Chen et al. 2018, Qu et al. 2019, Zhou et al. 2021]. To show the performance of our me-

thod, we tested the different combinations of different tasks, as well as using only global

features or only tumor features and a multi-scale regrouping tumor and global features.
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We have added the reconstruction task in order to leverage useful information contained

in multiple related tasks to improve both segmentation and prediction performances.

Multi-task learning can handle small data problems well, although each task can have

a relatively small data set. In contrast to conventional radiomics, where only one patho-

logy is studied at a time, multi-task learning allows to study different cancer types at the

same time, thus, to increase the size of the dataset and help the model to learn meaningful

features from PET images so that help to improve the prediction.

We have added global image features through a multi-scale by using a global average

pooling and then concatenated with tumor features to predict the outcome. Having both

global and local features helps to improve the performance of the model compared to

using only tumor features as in classical radiomic. Although the segmentation perfor-

mance drops a little when combining the 4 tasks compared to segmentation-prediction

alone, the most important task in our study is the prediction, hence we let the model de-

cides which is the most important region in the image that increases the prediction per-

formance, resulting in encompassing intratumoral and peritumoral regions. Since dice

coefficient measures the intersection between the ground truth and the segmentation re-

sult, it can drop a little its score. The segmented tumor region may not be exactly the same

as the ground truth, but it may be more relevant for prediction. In our study, the dice co-

efficient is used to ensure that the result of the segmentation is anatomically correct, not

to be perfect.

One of the main advantages of our proposed method relies in the fact that once the

learning is finished, we no longer need segmentation ground truth to do radiomics. The

model requires only the PET images as input, thus to avoid the tedious segmentation task

for physicians. Also, the architecture is general. The model can be modified easily to add

other cancer types to do radiomics without changing the architecture, just the classifica-

tion branch.
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5.8 Conclusion

In this chapter, we proposed a multi-task learning approach to predict patients out-

come from PET images and segment the regions of interest simultaneously. Our method

can improve prediction results even if we have only several small datasets. thanks to lear-

ning tasks in parallel while using a shared representation. Therefore, what is learned for

each task can help other tasks be learned better. We show also that subsidiary tasks serve

as an inductive bias so that the model can generalize better. Our model was tested and

evaluated for treatment response and survival in lung and esophageal cancers, outperfor-

ming single task learning methods and state-of-the-art multi-task learning methods. In

the future, we will add other cancers to validate our framework and develop an attention

mechanism to combine the different features.

Article Details :

— Multi-Task Multi-Scale Learning For Outcome Prediction in 3D PET Images. Amine

Amyar, Romain Modzelewski, Pierre Vera, Vincent Morard, Su Ruan. Under review.

Other Related Publications :

— Multi-task Deep Learning Based CT Imaging Analysis For COVID-19 pneumo-

nia : Classification and Segmentation. Amine Amyar, Romain Modzelewski, Hua

Li, Su Ruan. Computers in Biology and Medicine, 126, p.104037.
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In this thesis, we have investigated deep learning (DL) to design new frameworks for

radiomics. The main objective of this thesis was to exploit the potential of DL to automa-

tically segment the lesions, extract deep radiomic features and predict patient’s outcome

in order to propose robust and reproducible models. Concretely, different CNNs archi-

tectures were proposed and evaluated using PET images mainly for esophageal and lung

cancers.

We summarize our contributions as follows :

Deep radiomics

We propose a four-layer 3D-CNN. To find the best 3D RPET-NET, convolutional neural

networks were used as a backbone to develop new architectures for outcome prediction.

Classical methods based on random forest and handcrafted features such as : random

forest without feature selection (RF), random forest with features importance (FIC) and

random forest with genetic algorithm (GARF) were used as baseline for comparison. RF

makes use of handcrafted features, thus its performance is highly impacted by the fea-

tures manually defined. On the other hand, CNNs tend to learn representative features

while making a decision in an end-to-end framework. Early layers of a CNN extract low

level features, and latter layers high level ones. These rich features are then fed to a fully

connected layers (FC) for classification or regression.

The main algorithms proposed in the literature for deep radiomic are based on 2 Di-

mensional (2D) CNN architectures. This approach requires to process each slice sepa-

rately, therefore the spatial relationship is lost. Also, the final prediction for the whole 3D

volume requires a majority vote, which add the need to find the best threshold to separate
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accurately the 2 populations with good and bad outcome. To solve this issue, we englobed

the tumor into a 3D cuboid of standard width, length and height. This method allows to

take advantage of the spatial relationship between slices. Our assumption is that a neural

network architecture able to capture patterns of FDG uptake that occur within the whole

lesion in 3D may detect more relevant imaging features that are more relevant to predict

treatment response than each slice individually or 3 adjacent slices. The influence of the

learning volume (intratumoral volume with different peritumoral volumes) was also in-

vestigated. The peritumoral part of the tumor is therefore a volume that is not neglected in

the treatment. By analogy, taking into account the intratumoral and peritumoral regions

in radiomics analysis is likely a strategy that can improve the results.

To find a good compromise between network complexity and performance as well as

our small dataset, we proposed a four-layer 3D-CNN. To find the best 3D RPET-NET, cal-

led 3D RPET-NETBest, with optimized hyperparameters. The hyperparameters optimized

include the number of 3D feature maps (we tested from 8 to 64 feature maps), the num-

ber of neurons (128, 256, 512, 1024, 2048 and 4096), as well as different receptive field sizes

(3×3×3, 5×5×5) and different sizes of mini-batches (2, 4, 8 and 16). Several (4) expres-

sions of f(x), the activation function, were also evaluated (relu, elu, selu and tanh). Several

numbers of 3D convolutional layers and 3D pooling layers (2 to 5) and fully connected

layers (2, 3, 4 and 5) were evaluated. Having achieved the best performance with 3D CNN,

we used it for all the further studies for outcome prediction.

Image segmentation

The first step in radiomic analysis is the segmentation of the lesion. This process could

be automated using computer-aided detection (CAD) tools. State of the art U-NET have

shown very good performances for image segmentation in different fields. In medical

imaging, it is usually used as a backbone for tumor or organs segmentation. The main

drawback of U-NET is the need of a large dataset to work efficiently. Fully labeled data-

set is very hard to obtain in the medical imaging field due to several reasons such as :

protection of the patient’s privacy, establishment of a specific protocol for data recovery,

the need of an expert physician for data labeling . . . etc. Moreover, physician’s labels are
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subjective and prone to error.

One possible solution is the use of a weakly supervised learning (WSL) approach. In

order to make use of weakly labeled data, we transform a standard CNN used initially

for classification, to perform a segmentation. This is done by the interpretation of the

decision of the CNN using grad-cam, a method to visualize heatmaps developed by. In

particular, two maximum intensity images (MIP) of the 3D PET scan are calculated for

sagittal and coronal view. Then, a CNN is trained to classify the image for each view to

lung or esophageal cancer, while generating a heatmap. This heatmap is used to retrieve

the whole tumor volume. For each patient, we define at random a point in the center

of the tumor, which is considered as a prior knowledge. Then, we define a loss function

based on both the distance between the heatmap generated at the current iteration and

the central point, and on the accuracy of the tumor type classification. We showed that

training a neural network with weakly annotated data allows to achieve state of the art in

both segmentation and outcome prediction.

Multi-task based deep learning for segmentation and prediction

Fully supervised learning approaches for tumor segmentation rely on large annotated

dataset, and their performances depend on the ground truth (GT) defined manually by

the physicians, thus the need of a well-defined GT.

To find a good compromise between segmentation accuracy and outcome prediction

performance, we train a neural network to segment the tumor not to be precisely as the

physician defined ground truth, but to maximize outcome prediction, thus the segmenta-

tion include peritumoral and intratumoral regions that contribute most to the prediction.

To ensure that the neural network does not take into account noises we ensure that the

predicted segmentation is not very far away from the GT. This is done through a multi-

task learning (MTL) approach where the NN is trained to segment the lesion and predict

the outcome on the segmentation result simultaneously. In single task two step learning

process, the NN is first trained to segment the lesion and the parameters of the model

are freezed after training. Then a second NN is trained to predict the outcome from the

results of the first NN. MTL allows to train a single NN to perform both tasks in the same
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time, hence each task can help the other. Other subsidiary tasks, can be added to extract

meaningful features and to serve also as an inductive bias to generalize better. We pro-

posed a MTL framework where the NN is trained to classify the pathology, segment the

lesion, reconstruct the image and predict the outcome based on the segmentation re-

sults. In addition, we used global patient features with tumor and tumor regions features

to predict the outcome in a radiomic study through a multi-scale design. We conducted

extensive validation strategy with multiple ablation experiments, comparison with state

of the art methods in both supervised and multi-task learning. Furthermore, our MTL ap-

proach was validated on a COVID-19 database to classify and segment COVID-19 pneu-

monia lesions. Our approach outperformed state of the art methods, showing the interest

of combining jointly different tasks to improve both segmentation and classification per-

formances. Moreover, adding a third task such as image reconstruction, the encoder can

extract meaningful feature representation which help the other tasks (classification and

segmentation) to improve even more their performances.

5.9 Limitations

The potential of deep radiomics has been demonstrated in this thesis. However, there

are several important limitations that we would like to address here.

Quantity and quality of data

Deep learning methods are data hungry, and their performance rely heavily on the

quality of the dataset used for training. Therefore, it is very challenging to train a NN on

a small dataset with the aim to generalize very well to an unseen dataset. Two main pro-

blems may occur when training a NN on a small dataset : the NN fail to learn, which

results on a poor performance on the training dataset, this phenomena is called under-

fitting. This problem is generally due to the low capacity of the model, and can be solved

by increasing the number of parameters of the NN to learn better. This will results in a

NN with a large number of parameters that may have easily millions, therefore when lear-

ning from a small dataset it will lead to an overfitting. DL algorithms tend to overfit when
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no big dataset is available for training, thus one must be vigilant to include some regu-

larization techniques. Regularization is the process that allows a NN to look for useful

representation from the training dataset while being careful not to memorize its distri-

bution to prevent overfitting. Different regularization methods are proposed in the lite-

rature, but the most common one is based on representation learning such as dropout,

semi-supervised learning and manifold learning. These techniques may improve the re-

sults.

In order to improve model generalization, different approaches were used in our work.

In order to reduce model complexity we used Lp parameter norm, training with early stop-

ping, dropout and with other methods that do not alter the complexity of the model such

as parameter sharing in the MTL framework. The MTL algorithm can improve generali-

zation by leveraging the domain-specific information contained in the training signals of

related tasks as an inductive bias.

A major limitation in advancing the field of precision medicine research is the ability

to integrate data from a variety of different sources in order to improve patients classifi-

cation, which arises the need for approach that focuses on establishing new methods for

the computational analysis and integration of multi-modal data. More importantly, clas-

sifiers based on a single-data modality might ignore key biological features from other

available data sources hat might be highly predictive of a patient’s clinical status. In this

work, only image information is used to train DL models. Predicting patient’s outcome is

a very hard question to answer. While it is true that medical imaging shows a promising

results to tackle this challenges, other information is also highly relevant to add comple-

mentary value such as clinical notes, genomics and other imaging modalities such as CT

scan or MRI. Training the NN with multi-modality to incorporate different modalities and

with multi-view to integrate other relevant information can lead to an improved frame-

work with better results.
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5.10 Perspectives for future research

Multi-view and multimodal learning

Multi-view data are very common in the medical imaging field. One patient may have

several exams such as PET scan, MRI or CT scan. Each modality provides rich and com-

plementary information for other modalities, for example CT scan offers more anatomic

detail while PET image gives functional information such as metabolism. These two mo-

dalities can be integrated into the same framework in order to extract rich features from

both images to boost the NN performance. In particular, a multi-view NN can be trained

using both modalities as raw input, and instead of using a single description about the

patient and the lesion with one modality, using both of them provide more accurate and

complete description. In addition, more information can be added in this framework, co-

ming from heterogeneous sources : such as clinical data, genomics, proteomics or some

pertinent handcrafted features. One of the promising direction in the precision medicine

is the integration of all the available data types (genomics, proteomics and images) in a

AI-driven multi-modal classifier that will be trained to predict patient’s outcome, as well

as other relevant clinical variables, such as staging, disease-free survival, etc.

Interpretabilty

Despite their success, deep learning models often function as black-boxes, and pro-

vide very little understanding about the inner workings. While opaqueness concerning

machine behaviour might not be a problem in deterministic domains, in health care, mo-

del interpretability is crucial to build trust in the performance of a predictive system. To

date no single method can provide a detailed human-understandable explanation of how

a model makes a decision, however recent efforts in the field of interpretable artificial in-

telligence have produced various methods that can help bridge the gap between low-level

features and phenotypic predictions. Perturbation-based approaches change parts of the

input and observe the impact on the output of the network [Alipanahi et al. 2015, Zhou

and Troyanskaya 2015]. Backpropagation-like methods, also known as saliency methods,
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use signals from gradients or output decomposition to infer a “saliency map” [Simonyan

et al. 2013]. An alternative strategy is the Layer-wise Relevance Propagation (LRP) [Bach

et al. 2015]. Interpretable surrogate models aim to approximate a large, slow, but accurate

model by a surrogate models a smaller, interpretable, yet still accurate model [Che et al.

2015, Hinton et al. 2015, Ribeiro et al. 2016]. Generative models : Modifications have been

proposed to Generative Adversarial Networks(GANs) to encourage the network to learn

interpretable and meaningful representations [Chen et al. 2016]. Models with built-in ex-

plainability, such as attention mechanisms [Hendricks et al. 2016], can identify a poste-

riori the most informative features underlying a prediction.

While a lot of progress has been achieved, many of these methods have been deve-

loped for specific types of data, and their application to medical imaging data is not al-

ways trivial. Besides, many of the previous approaches exploit heuristic ideas that work

in very specific data types and models, limiting its generalization. Indeed, interpretabilty

methods are, to some extent, black-boxes themselves and we have no consensus on which

methods to use. In trying to understand a black-box, we have inadvertently created ano-

ther. We currently have little understanding of human factors when it comes to accepting

AI predictions in the clinic. Interpretability is important, but we have to always compare

to the gold standard here : human physicians. In many cases, their decisions are not in-

terpretable and object to a large inter and intra physician variability.

Data annotation

There has been a growing number of medical data annotation services over the past

few years. These offer a network of experts to label the data for AI development. It is no

surprise that almost 60% of ML work involves preparing data for models. Such services

handle this bottleneck allowing startups to focus on the AI development and clinical inte-

gration aspects of their business. As healthcare data is silo-ed, the tools needed to curate

each silo differ widely. As such, it is not entirely apparent if these services can offer a one-

size-fits-all solution. As data cleanliness is paramount, the expertise of these "outsourced"

annotators often comes into question.

Some of these services go one step further by offering access to curated medical images.
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It is unclear how successful this model will be as it relies heavily on the success of medi-

cal AI startups. There are also issues around the exclusivity of data, and whether data can

be re-purposed across multiple use cases. startups can have greater long-term benefits if

they control and operate their own data curation pipelines and network of annotators.

Clinical perspectives

The increasing availability of omics datasets has opened new ways to characterize, ca-

tegorize cancers and guide therapeutic interventions. Even though significant efforts have

been made recently, many of them have shown limited clinical applicability and precise

biomarkers that can inform clinicians of expected prognosis and offer the most beneficial

treatment, while reducing unnecessary morbidity, are still needed. Furthermore, since co-

hort sizes are often limited in size, many studies employ single-locus analysis strategies

that require the pre-selection of features in order to increase the statistical power of the

study. Consequently, these strategies limit their search to a few known a priori candidate

modifications and do not take full advantage of high-throughput datasets. From a clini-

cians’ and radiologists’ perspective all these efforts are only accepted, if it does not get

more complicated. The irony is that while technology is designed to help productivity,

it actually can add more work and complexity. The best AI application is the one that is

invisible, that is seamlessly integrated into the workflows.

Three important concepts in clinical trials today that may help AI based application :

Central reads, diversity, and real-world evidence / real-world data.

Central reads : Trials often rely on site-based reads where a radiologist on staff that

given day will review a patient’s images. The same radiologist may not even read all other

time-points for that patient. This can cause a very high level of variability and bias in the

data. Central reads ensure all data is read in a controlled environment complying with

protocols and using the same software. AI can play a major role in this highly operational

environment without the nuances of patient management.

Diversity : It is no surprise that trial populations are heavily skewed in terms of race,

background, and even gender. The FDA has recently issued guidance related to this topic.

Providers that have more diverse patient populations can now be seen as having "valuable
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data" and are more likely to be selected to participate in trials.

RWE / RWD : As trials test the efficacy of drugs (a controlled experiment) as opposed

to efficiency (in the real world), pharmaceutical companies are being asked to collect data

about how their drug is performing in the wild. That is the "evidence" part. The collection

of real-world data allows them to best identify what drugs need to be developed.
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