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Abstract

In numerous applications of environmental fluid mechanics, problems of retroactive
interaction between the fluid medium and the discrete solid medium are encoun-
tered. This requires the implementation of appropriate numerical coupling tech-
niques and of discrete element methods to take into account the discrete nature of
the solid units of the studied medium. This is the case, for example, when studying
the problems concerning the stability of rockfill dikes or even the flight of high-
speed train ballasts, where the solid medium consists of discrete blocks.

In this thesis, the Discontinuous Deformation Analysis (DDA) method is adopted
to study discontinuous and discrete problems. In the first part of the thesis, two-
dimensional Discontinuous Deformation Analysis (2-D DDA) is initially used to
study the ballast flight caused by dropping snow / ice blocks on high-speed rail-
ways and to analyze the dynamic behavior of ballast particles during their colli-
sion with a snow / ice block. The numerical results show that the velocity, shape
and incident angle of the snow / ice block play an important role in the ballast
flight. Specifically, the number and the maximum displacement of ballast particles
increase with the speed of the train while the incident angle greatly affects the direc-
tion of motion of the ballast particles. The shape of the ice block affects the amount
and the extent of the ballast flight. Afterward, the coupling between 2D-DDA and
the Computational Fluid Dynamics (CFD) equations (2D-DDA / CFD) is carried
out to study the stability of a breakwater under violent wave impacts by using a
triple-coupled Fluid-Porous-Solid model. Here, the fluid model is described by the
Volume-Averaged Reynolds-Averaged Navier-Stokes equations in which the non-
linear Forchheimer equations for the porous medium are added to the inertia terms.
The 2D-DDA method is used to analyze the movement and the stability of the cais-
son and armor units by taking into account the shapes of the armor units, as well as
the contact between blocks.

In the second part of the thesis, the 3D version of the DDA method is developed
by programming in the C ++ language. Particular attention is given to the detection
of contacts between blocks, considered as rigid solids. Thus, the techniques of the
Common Plane and of the soft contact method are used to avoid the processes of
penetration between solid blocks. The 3D-DDA method is verified and validated
first of all by academic test cases. Then, the 3D-DDA model is tested by a fluid-
structure interaction procedure which concerns the stability of a hydraulic gravity



dam with pre-existing cracks. The stability and damage of the structure are exam-
ined as the water level rises and as a function of the cohesion between the blocks.
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Résumé en Français

Les travaux dans cette thèse concernent le développement de méthodes numériques
pour des applications de couplage fluide-structure en mécanique des fluides de
l’environnement. Il s’agit de mettre en oeuvre des techniques numériques adap-
tées au couplage d’un modèle d’éléments discrets (DEM) basé sur la méthode
d’Analyse des Déformations Discontinus (DDA), avec un modèle avec maillage
basée sur la méthode d’Eléments finis (FEM). Ces travaux concernent tout d’abord
(i) le développement et la mise en place de la version bidimensionnelle (2D), ensuite
(ii) le développement de la version 3D de la méthode DDA.

(i) La première partie a nécessité la programmation en langage C++ de la version
2D du modèle numérique avec la DDA, ceci en adoptant la méthode de ‘Pénalité’
pour la gestion de contacts entre blocs (solides). La validation et l’application de
cette version 2D du modèle numérique ont été réalisées dans deux cas d’étude:

− le premier cas concerne la Dynamique et l’envol de ballasts par le déplace-
ment des trains à Grande Vitesse TGV. L’objectif principal de cette application
est de déterminer les facteurs d’influence du vol du ballast et d’analyser le com-
portement dynamique des particules de ballast lors de leur collision avec un bloc
neige / glace, ceci en tenant compte de la forme des blocs de glace et les contacts
entre les particules de ballast, ainsi que de la vitesse, de la forme et de l’angle
incident des blocs neige / glace. Les résultats de ce premier travail ont fait l’objet
d’un article publié dans le journal “Transportation Geotechnics”, Elsevier.

− le deuxième cas d’étude, concerne le déplacement d’un caisson induit par
des impacts hydrodynamiques. Un modèle basé sur le couplage de trois milieux
(fluide-poreux-solide) est développé. Le milieu fluide est décrit par les équations
3D de Navier-Stokes auxquelles sont ajoutées les equations de turbulence à deux
equations (K-epsilon). Le milieu poreux est décrit par les équations non linéaires
de Forchheimer, lesquelles sont ajoutées aux termes d’inertie du milieu fluide.
Enfin, les movements du milieu solide sont évalués par la méthode d’analyse de
déformation discontinue (DDA), laquelle fait partie des Methods des Elements
Discrets (DEM). Les résultats de ce deuxième travail ont fait l’objet d’un article
publié dans le dans journal "Ocean Engineering", Elsevier.

(ii) La deuxième partie, a également nécessité la programmation en langage C++,



porte sur le développement et l’implémentation de la version 3D de la méthode
DDA. Une attention particulière a été portée sur la détection des contacts entre
blocs, considérés comme des solides rigides. Ainsi les techniques du Plan Commun
et de pénalité ont été utilisées pour éviter les processus d’interpénétration entre
blocs solides.

Les résultats du modèle 3D-DDA ont été vérifiés et validés tout d’abord par des
cas tests académiques, sans milieu fluide. Ensuite, le modèle 3D-DDA a été testé
par une procédure d’interaction fluide-structure qui concerne la stabilité d’un bar-
rage hydraulique présentant des fissures. Dans cette application, il a été examiné la
stabilité et l’endommagement de l’ouvrage, au fur et à mesure que le niveau d’eau
augmente et en fonction de la cohésion entre les blocs.
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Chapter 1

Introduction

1.1 Motivation and background

During the environmental engineering practice, problems of the discontinuous me-
dia are often encountered. For example, the ballast particles in the track and the
armour units in the breakwater, etc. The blocks are largely discontinuous, inhomo-
geneous, anisotropic, and non-elastic (DIANE) material [1]. Correctly establishing
the corresponding numerical models based on the real conditions is quite chal-
lenging and significant to provide suggestions for the discontinuous environmental
problems.

Traditionally, several modified continuum approaches are used to investigate the
discontinuous and discrete medium, which can be divided into two types [2]:

− Continuum with joint interface approach;
The continuum with the joint interface method introduces the discontinuity in-
terface in the form of "joint element" [3] or "discontinuity of displacement" [4]
to model the discontinuity.

− Equivalent continuum approach;
The equivalent continuum method modifies the constitutive equation of the rock
mass to include the mechanical effects of the joints.

These two continuum-based methods have been implemented in Finite Element
(FE), Finite Difference (FD) and Boundary Element (BE) methods [5, 6, 7]. They
have also been successfully used in applications where no large deformation of the
rock mass occurs.

The discrete element method based on discontinuous medium mechanics is used to
simulate the motion and collision characteristics of a bulk system. It gives a better
solution to investigate the large deformation problems. The most commonly used
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discrete element approaches are Distinct Element Method (DEM) [8] and Discon-
tinuous Deformation Analysis (DDA) . The Discontinuous Deformation Analysis
(DDA) method was developed by Gen-hua Shi in the late 1980s [9]. Since its
publication, DDA has been verified and applied in numerous studies worldwide
and is now considered as a powerful and robust method to address both static and
dynamic engineering problems [10]. DDA is somewhat similar to the Finite Ele-
ment Method (FEM) for solving stress-displacement problems, but accounts for the
interaction of independent particles (blocks) along discontinuities in fractured and
jointed rock masses. DDA is typically formulated as a work-energy method, and can
be derived using the principle of minimum potential energy [9]. Once the equations
of motion are discretized, a step-wise linear time marching scheme in the Newmark
family is used for the solution of the equations of motion. The relation between
adjacent blocks is governed by equations of contact interpenetration and accounts
for friction. DDA adopts a stepwise approach to solve the large displacements that
accompany discontinuous movements between blocks. Since the method accounts
for the inertial forces of the blocks’ mass, it can be used to solve the full dynamic
problem of block motion. The formulation of DDA overcomes the problem of en-
ergy dissipation due to algorithmic damping especially when the penalty method is
used to handle the contact mechanics between blocks [11, 12] comparing with FEM
method. Although DDA and DEM are similar in the sense that they both simulate
the behavior of interacting discrete bodies, they are quite different theoretically.
While DDA is a displacement method, DEM is a force method. The advantage of
DDA over other rigid body discrete element approaches is DDA gives real dynamic
solution with correct energy consumption and utilizes simple or even higher-order
deformability of complex shapes [13].

DDA has been widely-used for discontinuous medium simulations. However, the
original DDA method still has some limitations which limited its applications. For
example, it is rarely used to study the problem of a large number of particles;
furthermore, it cannot incorporate water pressures in the joints, as well as there
is a gap between two dimensions in reality and no open-source code released for
3D-DDA.

2



1.2 Objective of this thesis

This thesis aims to investigate the discontinuous and discrete environmental prob-
lems based on the DDA method. The 2D-DDA method will be introduced and
the CFD/DDA coupling approaches will be proposed. Furthermore, the 3D-DDA
method will be developed and validated. The most important aspects include:

• The literature review of the DDA method will be presented. The validations,
modifications, extensions and applications will be introduced in detail.

• The 2D-DDA equations with penalty method will be presented; A coupling
strategy that transmit the pressure of the fluid mesh nodes to the solid polygon
vertices will be proposed to achieve fluid-solid coupling.

• The 3D-DDA equations will be developed and programmed. The common-
plane method will be used to detect contact; the soft contact method and open-
close iteration method will be used to avoid penetration; the Successive Over-
Relaxation (SOR) method will be used to solve linear system equations.

• A numerical model based on the 2D-DDA method will be proposed to study
the ballast flight caused by dropping snow / ice blocks in high-speed railways.
The dynamic behavior of ballast particles during their collision with a snow / ice
block will be investigated.

• A coupled Fluid-Porous-Solid model will be used to study the stability of
breakwater. The fluid model will be described by the Volume-Averaged RANS
equations. The solid model, which is based on the DDA method, will be used to
compute the movement of the caisson and armour units.

• The 3D-DDA code will be verified by comparing with the analytical results and
2D-DDA results. Then a fluid and solid coupling procedure will be proposed to
study the failure of gravity dam due to the rising water level. The effect of the
increasing water level and cohesion between structures will be studied.

1.3 Outline of this thesis

This thesis is organized as follows:

− Chapter 2 presents the start-of-the-art literature review of the Discontinuous
Deformation Analysis method;
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− Chapter 3 introduces the brief theory of the 2D-DDA method and the 2D-
CFD/DDA coupling approach;

− Chapter 4 is devoted to developing the 3D-DDA program, including the
common plane method, the open-close iteration method and SOR method.

− Chapter 5 simulates ballast flight caused by dropping snow / ice blocks
in high-speed railways. The dynamic behavior of ballast particles during their
collision with a snow / ice block is investigated.

− Chapter 6 carries out the coupled Fluid-Porous-Solid model to study the sta-
bility of breakwater. The flow patterns around the breakwater and the movement
of the caisson and armour units are simulated.

− Chapter 7 verifies the 3D-DDA by comparing with the analytical results
and proposes a 3D fluid and solid coupling procedure to study the gravity dam
failure.

− Chapter 8 concludes this thesis and gives suggestions for future work.
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Chapter 2

State of the art of the DDA method

2.1 Introduction

In this chapter, the state-of-the-art review of the DDA method is presented. The
following aspects are emphasized:

• The validations of the DDA method are introduced. The DDA method has
been verified by comparing with the mathematical analysis, other computational
techniques and experimental data;

• The extensions of the DDA method are presented. The DDA method has been
coupled with many numerical methods, for example, FEM, SPH and NMM ect.

• The applications of the DDA method are summarized and the development of
3D-DDA method is briefly introduced.

2.2 Validations

The validation works of DDA can be classified into three categories [14]: (1) Com-
parison with mathematical analysis; (2) Comparison with other computational tech-
niques; and (3) Comparison with experimental data. For the first type, the accuracy
of DDA was verified in different aspects, for example, sliding, rotation, tensile
strength, impact, and time integration, as shown in Table 2.1. DDA simulations
show high acceptable accuracy in most of the common engineering phenomena;
however, large body rotation always accumulates the first-order approximation er-
ror and causes the block volume expansions; therefore, several modifications have
been proposed and will be described in Section 2.3.1. For the second type, other
discrete numerical technologies were studied to valid the DDA method, as shown
in Table 2.2. Dong et al. [15] used a tunnel model to compare the displacement
results between the DDA and FEM predictions. Although the FEM model seems
to predict a larger horizontal displacement component, the displacement patterns
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caused by the slope excavation predicted by the FEM and DDA models are similar.
Furthermore, MacLaughlin et al. [16] compared DDA with another widely used
DEM code: Universal Distinct Element Code (UDEC). The instability and deep
failure of the rock model which has five dip angles combined with three rock mass
are investigated by DEM and UDEC. 73% of simulations of the two methods are
essentially identical. Khan [2] examined the time integration of those two methods
in parallel. UDEC uses an explicit scheme while DDA uses an implicit scheme. The
explicit scheme has low computational cost while the implicit scheme enhanced
stability [17, 18].
Validation with respect to experiments are summarized in Table 2.2, where the
sliding, shaking and impacting process were investigated. Mcbride et al. [19] es-
tablished a joint rock slope model, patterned after Cundall et al. [20]. The DDA
simulation can simulate the failure modes observed experimentally. Ishikawa et al.
[21] and Ding et al. [22] studied the dynamic behavior of railroad ballast. Results
from the DDA simulations qualitatively agree with experimental results from triax-
ial tests and air cannon impact tests [14].

2.3 Improvement of DDA

Many modifications and improvements to the DDA method have been proposed to
overcome some of its limitations and make it more efficient, suitable and practical
on engineering computations.

2.3.1 Modification of the DDA Method for rotation error

Ohnishi et al. [26] and Maclaughlin et al. [40] found large rigid body rotation
causes block expansion. According to the first-order approximation of DDA, the
displacement of block due to rigid translation and rotation is written as:

u = u0 − (y − y0)r0

v = v0 + (x− x0)r0

(2.1)

while the real displacement should expressed as:

u = u0 + (x− x0)(cosθ − 1)− (y − y0)sinθ

v = v0 + (x− x0)sinθ + (y − y0)(cosθ − 1)
(2.2)
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Table 2.1: DDA validation by comparing with mathematical analysis

Content Illustration Results Ref

Sliding

•DDA meets the analytical equation,
the relative error is less than 0.1%.
• Lower friction angle values
inducing less initial perturbation.

[23]
[24]
[25]

Rotation

•Large body rotation accumulates error
and causes block expansion;
•Using a second-order equation,
when the rotation is less than
0.2 radians, the error is negligible.

[26]
[27]
[28]

Tensile
strength

•Jointed rock specimen subjected
to horizontal uniaxial tension;
•Load factor 100 N/s has an error
of about 0.01%.

[29]

Impact

•DDA shows a qualitatively good
agreement using high contact stiffness.
•Smaller contact stiffness,
larger penetration, inelastic.

[30]
[31]
[32]
[22]

Multiblocks
•Accumulated displacement is proportional
to the input amplitude;
•The relative error is between 1% and 2%.

[33]
[34]

Time
integration

•Newmark approach used
to solve the kinematic system;
•Smaller time step size has higher
accuracy than higher time step size.

[12]
[35]
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Table 2.2: DDA validation by comparing with DEM and tests

Content Illustration Results Ref

DEM
Multi-blocks

DDA simulations show similar
responses to test observations;
Here, DDA has better accuracy than DEM.

[36]

UDEC:
Slopes

DDA and UDEC produce a similar result;
Explicit DEM has faster computational
speed than implicit DDA.

[2]
[37]

Test:
Sliding

Experiment and DDA simulation
failure patterns correspond well.

[38]
[24]

Test:
Shaking

Slope failure verified by DDA;
DDA can be applied to seismic issues. [39]

Test:
Impact

The number of flying blocks
agrees with the test;
A large number of blocks
also have good accuracy

[22]

where u0 and v0 are the rigid body translations, and r0 is the rotation angle of the
rigid body around its gravity center (x0, y0). When the body rotation is very small,
Equation (2.2) can be approximated as Equation (2.1). However, the rigid body
area usually gets expansive if it moves with large rotation, the error due to linear
displacement function is shown in Figure 2.1.

Figure 2.1: Rotation error due to linear displacement function [40]

In order to solve the problem of block expansion, three approaches have been
proposed:

• (1) Use an exact displacement function with nonlinear terms [40, 41];
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In the first approach, the trigonometric functions in Equation (2.2) can be ex-
pressed using Taylor,s series polynomial approximations, as shown in Equa-
tion (2.3). This is a more accurate displacement function, while the error still
occurs when the high-order terms are omitted. When the block rotation angle
is not greater than 0.4 radians, the error is small, but the error will increase
with the accumulation of time steps.

sin(r0) =
r0

1!
− r3

0

3!
+
r5

0

5!
− · · ·

cos(r0) = 1− r2
0

2!
+
r4

0

4!
− · · ·

(2.3)

• (2) Use linear displacement function and post-correction [27, 42].

In the second approach, the simplified linear displacement function Equation
(2.1) is adopted. Further to modify the error, the block vertices’ positions
are recalculated using the exact displacement function after each step of the
calculation. It should be noted that although this method can prevent the
increase of block volume, it did not consider the cumulative effect of higher-
order terms.

• (3) Increase the order of the polynomial [43, 44].

This approach will be described in detail in the next section 2.3.2.

2.3.2 High-order displacement function

In the original 2D-DDA method, a first-order polynomial displacement function
approximation was assumed. However, this approximation not only has rotation
error but also limits the application of DDA in areas with large stress concentra-
tions. Therefore, some attempts were made to develop the N-order displacement
formulation.
Koo et al. [28, 43] firstly developed the second and third-order displacement func-
tions by incorporating the complete high-order term. However, these extents still
cannot selectively achieve higher accuracy or more efficiency in calculation. Then,
Hsiung et al. [45] developed a more general formulation of the DDA that be able to
accept any order of polynomial displacement function by reducing the total degree
of freedom for different problems. Furthermore, Wang et al. [46] addressed the dif-
ficulties associated with the implementation of high-order in DDA and generalized
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the displacement function in a series form:
u =

m∑
j=1

d2j−1fj(x, y)

v =
m∑
j=1

d2jfj(x, y)

(2.4)

where the functions fj(x, y) are defined as (j − 1)th order polynomial, and d2j−1,
d2j are variables representing the displacements and deformations of the block.
Assuming q = 2m, Equation (2.4) can be written in matrix form:

(
u

v

)
= Tidi =

(
f1 0 f2 0 · · · fm 0

0 f1 0 f2 0 · · · fm

)


d1

d2

d3

...
dq−1

dq


. (2.5)

where i represents the i-th block, (u, v) are the displacements of point (x, y), Ti is
a 2× q matrix and di is a q × 1 matrix.

2.3.3 Contact mechanics

Traditionally, the penalty method and the Lagrange multiplier method are two com-
monly used approaches to avoid interpenetration between blocks. The Augmented
Lagrangian method is introduced and the soft contact approach developed from
the penalty method is introduced in this section. The summary of these contact
mechanics methods is shown in Table. 2.3.
The penalty method was originally used by Shi [9] in the DDA method to enforce
contact constraints at block interfaces. Considering two blocks i and j, where point
P1 of block i penetrates a depth, δ, into edge P2P3 of block j. Using the penalty
method is equivalent to placing a spring between point P1 and the edge P2P3, as
shown in Figure 2.2.
The formulation for the strain energy of contact spring between block i and j is:

Πcontact =
1

2
Pδ2 (2.6)

where p is a penalty number which is also the spring stiffness
This method has proved to be effective in many areas of numerical modeling [47,
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Table 2.3: Summary of contact algorithm

Approach Formula Limitations

Penalty method Πcontact = 1
2
Pδ2

• Penalty number P should be very lager
• Contact constraints are only

approximately satisfied

Lagrange multiplier method Πcontact = λδ
• Governing equation number

is increased
• Very large extra computational effort

Augmented lagrangian method
Πcontact = λ∗kδ + 1

2
Pδ2

λ∗k+1 = λ∗k + Pδ
•Iterations of Lagrange multiplier λ∗k

increase calculation time

Soft contact approach Πcontact = 1
2
(knd

2
n + ksd

2
s)

• Contact stiffness may be
difficult to obtain.

Figure 2.2: Interaction between two contacting blocks
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48]. However, the main limitation with the penalty approach is the choice of the
penalty number, since the solution significantly depends on this number. Further-
more, the contact constraints are only approximately satisfied.
The Lagrange multiplier method is another one of the most commonly used ap-
proaches to solve block contact problems [49, 50, 51]. This method assumes the
penetration δ is caused by an unknown contact force λ, therefore the strain resulting
from the contact force is defined as:

Πcontact = λδ (2.7)

This method satisfies the contact conditions exactly, whereas the number of gov-
erning equations is increased so that extra computational effort is required. The
Lagrange approach is rarely used in DDA due to its large consuming computation
time.
Combing the above two approaches, Amadei et al. [51] and Lin et al. [52, 53]
proposed the augmented Lagrangian formulation to model the contact between
blocks in the DDA method. The augmented Lagrangian method contains both the
penalty method and the classical Lagrange multiplier method. In this method, a
Lagrange multiplier λ∗, which represents the contact force, is iteratively calculated
until the penetration δ below a specified tolerance. The strain energy of contact
spring and force is expressed in the following form:

Πcontact = λ∗kδ +
1

2
Pδ2 (2.8)

where the term λ∗kδ accounts for the work done by the contact forces between the
blocks and the term 1

2
Pδ2 represents the elastic potential energy associated with the

contact between the blocks. An iterative process is used to calculate the first order
updated of the Lagrange multiplier, λ∗k, as follows:

λ∗k+1 = λ∗k + Pδ (2.9)

Furthermore, the mechanical model of contacts in other DEM codes also can be
learned and used in the DDA method. In the original DDA method, the interpen-
etration between blocks is considered non-physical, and with the help of penalty
functions, algorithms are used to prevent any intersection of the two contacting
bodies [54]. This is a hard contact approach while other DEM codes most use the
soft contact approach in which the interpenetration causes contact forces according
to the actual contact stiffness, and the arising contact forces are calculated from
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the depth of the interpenetration [55, 56]. The strain energy due to the normal and
tangential contact spring is presented as:

Πcontact =
1

2
(knd

2
n + ksd

2
s) (2.10)

where kn and ks are the actual normal and tangential contact stiffness, dn and ds are
normal and tangential penetration distances
The soft contact approach is a more realistic method but the appropriate properties
are hard to obtain; the penalty method is simple and easy to add to the program but
the contact constraints meet contact constraints only approximate, and the penalty
spring stiffness has a significant influence on accuracy and convergence. Khan et al.
[2] implements the soft contact approach to DDA code that shows good agreement
with analytical results and less residual error.

2.4 Extensions

2.4.1 Circular DDA

An advantage of the original DDA is that the irregular blocks can be investigated;
however, it may have contact problems when studying the circular blocks which
are modeled as polygons with many edges. In order to extend the application of the
DDA method, many researchers have developed the circular DDA method based
on the original equations. Ohnishi et al. [57] first implemented the mathematical
derivation to the DDA with the elliptical elements. Then, they improved the contact
mechanism to study the time-dependent deformation of elliptic disc elements, as
shown in Figure 2.3. This method was also applied in soil mechanics and geotech-
nical engineering fields [58, 59].

2.4.2 Numerical manifold method

The numerical manifold method (NMM) was developed based upon the DDA method
and mathematical manifold method [60], which can compute the movement and
deformation of continuous and discontinuous blocks by the finite cover and dis-
placement cover. The fracture of blocks also can be modeled by dividing a cover
into two or more disconnected domains.
For finite covers, the cover displacement functions can be defined by the weight
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Figure 2.3: Rotation and deformation of an ellipse

functions:{
u(x, y)

v(x, y)

}
=

(
wi(x, y) 0

0 wi(x, y)

)(
ui

vi

)
=

n∑
i=1

Ti(x, y)Di (2.11)

Here we assume the weighting functions satisfies:

wi(x, y) ≥ 0, (x, y) ∈ Ui; wi(x, y) = 0, (x, y) /∈ Ui (2.12)

where Ui represent the finite meshes.
Taking a triangle element as an example, for element e and (x, y) ∈ e, the Equation
(2.11) can be written as: {

u(x, y)

v(x, y)

}
=

3∑
r=1

Te(r)De(r) (2.13)

where

Te(r) =

(
f1r + f2rx+ f3ry 0

0 f1r + f2rx+ f3ry

)
(2.14)

For the displacement function, the first-order approximation follows the minimum
potential law which is similar to the DDA method. Besides, DDA and NMM the
kinematics constraints and contact detection method. It should be mentioned that
when a discrete block coincides with the manifold element, the NMM is DDA,
which is one of the special cases in NMM.
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2.4.3 DDA-FEM coupling

Coupling DDA with the FEM means adding the FEM meshes inside the DDA
blocks to get more accurate descriptions of the block’s deformation [61]. The system
equilibrium of FEM and DDA is obtained by the principle of total potential energy
minimization.
The nodal-based DDA (NDDA) method, which couples the FEM and the DDA, in
which the DDA kinematics are incorporated with the finite-element mesh, was first
developed by Shyu [62]. Take the triangular elements as an example (see Figure
2.4), each element has three nodes (i, j, m) and six displacement variables(ui, vi,
uj , vj , um, vm). The displacement (u, v) of any point (x, y) within a triangular
element can be written as:

{
u

v

}
=

[
Ni 0 Nj 0 Nm 0

0 Ni 0 Nj 0 Nm

]


ui

vi

uj

vj

um

vm


(2.15)

where Ni, Nj and Nm represent the shape functions of the triangular element.

Figure 2.4: Illustration of an NDDA model [63].

Then, Bao et al. [63] extended the NDDA program by employing the Mohr-Coulomb
failure criterion to provide a good representation of residual strength conditions to
analyze the fracture. Indeed, by discretizing the block into finite elements, the accu-
racy of the DDA method and its ability to resolve stress changes can be improved.
Furthermore, the sub-block analysis method [64] can also be used to achieve the
same determination, where each block is divided into smaller sub-blocks, which
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also can study the fracture by implementing the Mohr-Coulomb failure criterion.

2.4.4 Fluid-DDA coupling

In the original DDA method, no hydrodynamic forces are considered, however, the
fluid flow pressure in the joint usually has a profound effect on the deformation of
the rock mass, especially on the stability of the rock block.
Rouainia et al. [65] developed a HYDRO-DDA model to evaluate the responses
of fluid flow in deforming discontinuous media. The fluid has been described by
the means of Darcy’s law using a FEM mesh, responds to pressure on the solid
boundary and to porosity changes in the discontinuity patterns. However, this model
can only be used in steady state fluid flow and linear problems. Indeed, some dif-
ferent fluid flows coupled with DDA were proposed [66, 67]. Kaidi et al. [68]
presented a finite element model for solving the complete two dimensions vertical
(2DV) Navier–Stokes equations with the free-surface flow. This model is proposed
for coupling with the DDA method to analyze non-linear wave–structure effects.
Mikola and Sitar [69] presented a fluid-structure coupling between Smoothed Par-
ticles Hydrodynamics (SPH) and DDA for modeling rock-fluid interactions. The
Navier-Stokes equation is simulated using the SPH method and the motions of the
blocks are tracked in the DDA formulation.
In order to couple the fluid and solid, some transmission strategies were proposed.
The first approach operates by establishing an initial fluid pressure distribution in
the fluid element nodes of the boundary conditions and passing this information to
the vertex of DDA [65], as shown in Figure 2.5.
The normal forces acting on the vertices associated with an edge (from vertex 1 to
vertex 2) of a block are written as:

F1 =
L

2

(
P1m +

1

3
(P2m − P1m)

)
F2 =

L

2

(
P1m +

2

3
(P2m − P1m)

) (2.16)

where L is the length of the edge, and P1m and P2m are the pressure at the centroid
of the corresponding finite element in the fluid mesh where the two block vertex are
located.
Based on this approach, a more accurate solution was developed [68]. The pro-
cedure is first calculated the fluid pressure by the fluid flow model, and then the
distributed fluid pressures are converted to the corner nodal points hydrodynamic
forces (fi, fj) of the finite element mesh, as shown in Equation (2.17). This method
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Figure 2.5: HYDRO–DDA interface: conversion of fluid pressure into equivalent
vertex forces [65]

fully considers the distance between the nodes and the two vertices of an edge.

Figure 2.6: DDA and fluid interface: (a) finite element mesh and DDA block; (b) fluid
pressures around a DDA block and (c) conversion of fluid pressures into equivalent
vertex forces [68].

fi = pi
d

2
; fj = pj

d

2
(2.17)
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where pi and pj are the fluid pressure at nodes i and j, and d is the distance of the
finite element edge from node i to node j. Finally, the global forces (F1, F2) acting
on the DDA block can be written as:

F1x =
n∑
i=1

finx(
d2

d1 + d2

), F1y =
n∑
i=1

finy(
d2

d1 + d2

)

F2x =
n∑
i=1

finx(
d1

d1 + d2

), F2y =
n∑
i=1

finy(
d1

d1 + d2

)

(2.18)

where n is the total number of nodes on the edge, d1 and d2 are the distance from
the given node to vertex 1 and 2, nx and ny represent the directions.
The coupling with the meshless methods can be implemented by a new strategy. The
SPH-DDA interaction can be considered as the sphere-to-face contact type [70]. The
interaction force consists of the normal and tangential force respecting the contact
surface, as shown in Figure 2.7. The force F applied on the fluid particles when in

Figure 2.7: DDA and SPH interaction [70].

contact with the DDA solid, expressed as:

F = Fn + Fτ (2.19)

where the normal components of force Fn and the tangential components of the
force Fτ are:

Fn = [pδ − kd(ν · n)] · n

Fτ = −kf |Fn| · τ
(2.20)

where p is the penalty spring stiffness; kd and kf are the damping and friction
coefficient, respectively; δ is the penetration distance; n and τ are the unit vector
normal and tangential, respectively; ν is the relative velocity vector.
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The contact force also applied on the solid block i, which can be treated as a point
loading and added to the force sum-matrices of DDA. The potential energy of the
fluid loading is:

Πfluid =− (u, v)

(
Fn

Fτ

)

= −DT
i T

T
i

(
Fn

Fτ

) (2.21)

Then, the derivatives of the potential energy Πfluid is added to the global matrix as
an external loading.

2.5 Applications

Due to the unique advantages and continued development of the discontinuous de-
formation analysis method, it has been widely applied in geotechnical engineering.
It is noted that a number of high-profile projects were analyzed by the DDA method,
for example, the three gorges in China[15, 71], Gjovik Olympic Cavern in Norway
[72], Pueblo Dam in Colorado[73], King Herod’s Palace [74] and Masada national
monument [75] in Israel and so on. Specifically, the original DDA was used for the
rockfall [76, 77, 78], tunnel [79, 80, 81], and earthquake problems [82, 83, 84]; the
extended DDA is widely applied for the blast [85, 86], fracture [87, 63] and wave
impact [68], etc. The applications of the DDA method are shown in Figure 2.8.

Figure 2.8: Applications of the DDA method

19



2.6 Development of 3D-DDA

3D-DDA is currently under extensive research, mainly about its basic theory. G-H
Shi [88, 89] proposed the basic formulas of 3D-DDA, in which the sub-matrices
of point load, initial stress, elastic deformation and inertia forces were provided.
Beyabanaki et al. [90] further developed 3D-DDA with higher-order displacement
functions. Jiao et al. [91, 92] presented a new 3D spherical DDA model. Some
contact algorithms were developed to detect the contact between polygons. Jiang
and Yeung [93, 94] developed a vertex-to-face model, Yeung et al. [95] and Wu [96]
presented algorithms for edge-to-edge contacts. Liu et al. [97] and Yeung et al. [98,
99] introduced the ‘common-plane’ technique to the 3D-DDA method from other
DEM methods. Keneti and Jafari [100] considered the main plane and main contact
points to identify contact points and types. Beyabanaki and Mikola [101] provide
a method of using the closest point search algorithm to identify the contact pattern
between two blocks to improve efficiency. Wu et al. [102] proposed an effective and
robust spatial contact detection algorithm, which uses a new multi-shell covering
system and the decomposition of geometric sub-units, thereby greatly reducing the
number of contact detection and the number of iterations. The improvement of the
contact judgment algorithm is more and more valued by the majority of scholars
because it accounts for nearly 80% of the total computational time. But so far, there
is no efficient, universal, and suitable contact judgment algorithm for a large number
of block analysis calculations in related articles.
Similar to 2D-DDA, three-dimensional programs have also been developed and
coupled with other numerical technologies. Grayeli and Hatami [103] coupled the
FEM and DDA method using four-noded tetrahedral elements to determine stresses
and deformations in practical problems involving fissured elastic media. Wang et
al. [104] proposed a coupled DDA–SPH method in three-dimensional case to study
the landslide dams. However, it should be noted that although the theory and some
development of 3D-DDA have been proposed, there is still no open-source or com-
mercial solver released, so it is very necessary to develop a 3D program and on this
basis, in-depth development of three-dimensional applications.

2.7 Concluding remarks

In this chapter, the validations, modifications, extensions and applications of the
DDA method were presented and summarized, as shown in Figure 2.9

− For the validations of the DDA method, the sliding, rotation, impact and time

20



Figure 2.9: DDA state of the art

integration were verified by comparing with the mathematical analysis, other
computational techniques and experimental data.

− For the modifications of the DDA method, the rotation errors were modified
by post-correction or high-order displacement function, and some new contact
mechanics methods were introduced.

− For the extensions of the DDA method, the coupling between the DDA with
the FEM, the mathematical manifold and fluid mechanics were presented.

− For the applications, the DDA method was widely used in some high-profile
projects as well as rockfall, tunnel, blast and earthquake problems, etc.

− Furthermore, the development of the basic formulas of 3D-DDA was intro-
duced, however, there is no universal contact judgment algorithm for a large
number of block analysis calculations proposed and there is still no open-source
or commercial solver of 3D-DDA released.

The 2D or 3D DDA method should be developed and coupled with other numerical
techniques, which will expand the applicability of the DDA method.

21





Chapter 3

Theory of 2D-DDA and CFD/DDA
Coupling approach

3.1 Introduction

In this chapter, the governing equations of the fluid and solid method are introduced.
The following aspects are emphasized:

• The 2D-DDA method is introduced briefly. The conditions of the contact
surfaces are enforced through the penalty method in order to avoid the inter-
penetration between blocks.

• The fluid flow is described by the RANS equations. The Forchheimer equations
are presented to calculate the flow in the non-linear porous medium.

• The Volume-Averaged Reynolds-Averaged Navier-Stokes (VARANS) equa-
tions are proposed, in which the extended Forchheimer law used to calculate the
porous medium flow is added to the inertia terms of RANS equations.

• The coupling between the fluid and the solid is carried out by a transmission
strategy of the fluid mesh nodes’ pressure towards the solid polygon vertices.

3.2 Governing equations of 2D-DDA

In order to investigate the movement and the solid blocks, the Discontinuous De-
formation Analysis (DDA) method is used. The DDA method does not have the
meshing procedure of blocks and therefore, no refinement is needed to improve
the quality of the calculated solution, which has the advantage of reducing the
computation time [105, 106]. In the DDA method, the displacement (u, v) at any
point (x, y) of a block i can be represented by six variables: two translations( u0,
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v0) of the block gravity center (x0,y0) in x and y directions, a rotation γ0 around
(x0,y0), and two normal and a shear strains (εxx, εyy, εxy); therefore, the variables
vector associated with the block i is given:

Di =
(
u0, v0, γ0, εxx, εyy, εxy

)T
(3.1)

According to the first-order expression of any point (x, y), the displacement (u, v)

for an individual block i can be written as:

Ui =

(
u

v

)
= TiDi (3.2)

where

Ti =

(
1 0 −(y − y0) (x− x0) 0 (y − y0)/2

0 1 (x− x0) 0 (y − y0) (x− x0)/2

)
(3.3)

The strain of the block i can be expressed by the relationship between the strain and
displacement:

εi = LUi (3.4)

where L =


∂
∂x

0

0 ∂
∂y

1
2
∂
∂y

1
2
∂
∂x

 is the differential operator matrix for 2D problem.

Substituting Equation (3.2) into Equation (3.4), we get:

εi = LTiDi = BDi (3.5)

Assuming that the deformation is elastic and linear, the stress tensor is written as
follows:

σi = Eεi = EBDi (3.6)

whereE is the elastic matrix of deformation planes andB =

 0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

.

The total potential energy Πp of the block i, defined as the the sum of the elastic
strain energy Πelastic, initial stress potential energy Πinitialstress, body force potential
energy Πbodyforce, and inertial energy Πinertia, is given by:
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Πp = Πelastic + Πinitialstress + Πbodyforce + Πinertia

=

∫
Ωi

1

2
εTi σidΩi +

∫
Ωi

εTi σ0dΩi −
∫

Ωi

UT
i fbdΩi +

∫
Ωi

UT
i mD̈idΩi

(3.7)

By using Equation(3.2), it follows:

Πp =

∫
Ωi

1

2
εTi EεidΩi +

∫
Ωi

εTi σ0dΩi −DT
i T

T
i

(∫
Ωi

fbdΩi −
∫

Ωi

TiD̈idΩi

)
(3.8)

where fb denotes the body forces applied on a block i, and M is the block mass per
unit area. σ0 is the initial stress of the block.
Substituting Equation (3.5) and (3.6) into Equation (3.8), the total potential of a
system of N blocks is expressed as:

Πnp =
N∑
i=1

(
DT

i MD̈i +
1

2
DT
i KDi −DT

i fe

)
(3.9)

where M=
∫

Ωi
MT Ti TidΩi is the mass matrix, K=

∫
Ωi
BTEBdΩi is the stiffness

matrix, fe =
∫

Ωi
(T Ti fb − BTσ0)dΩi is the external forces matrix. According

to the minimized potential energy, the block system equations of motion can be
represented in the compact form:

∂Πnp

∂Di

= 0⇒MD̈ +KD = F (3.10)

Then, the displacement and the velocity in Equation (3.10) can be approximated by
the Newmark−β method:

Dn+1 = Dn + ∆tḊn +
∆t2

2

[
(1− 2β1)D̈n + 2β1D̈n+1

]
Ḋn+1 = Ḋn + ∆t

[
(1− β2)D̈n + β2D̈n+1

] (3.11)

where D̈ and Ḋ are the acceleration and velocity matrices, respectively, and β1 =

1/2 and β2 = 1 for the implicit scheme ([22]. Substituting Equation (3.11) into
Equation (3.10)), we obtain:

(K +
2M

∆t2
)Dn+1 = F +

2M

∆t
Ḋn (3.12)
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And then the compact form is given by:

K̂D = F̂ (3.13)

Consequently, we get the global matrix:

K̂11 K̂12 K̂13 . . . K̂1n

K̂21 K̂22 K̂23 . . . K̂2n

K̂31 K̂32 K̂33 . . . K̂3n

...
...

...
...

...
K̂n1 K̂n2 K̂n3 . . . K̂nn





D1

D2

D3

...
Dn


=



F̂1

F̂2

F̂3

...
F̂n


(3.14)

where F̂i and Di are the sub-matrices of force and displacement, which are 6 × 1
sub-matrices. The K̂ij is 6 × 6 sub-matrix. Sub-matrix K̂ij (i = j) is determined
by the block material properties, whereas K̂ij (i 6= j) is related to the contacts
between blocks. The stiffness sub-matrix K̂ij can be explained by the example
as shown in Figure 3.1. There are three blocks which have two contacts: (Block 1,
Block 2) and (Block 1, Block3), as shown in Figure 3.1(a), the stiffness sub-matrices
of the three blocks K̂ij (i, j = 1, 2, 3) as indicated in Figure 3.1(b), where the gray
diagonal partitions are contributed by deformation of block i, while the other parts
are derived from contact springs. Because there is no contact between Block 2 and
3, the contact stiffness sub-matrix K̂23=K̂32=0.

Figure 3.1: The structure of stiffness matrix in the case of three blocks:(a) Location
of three blocks; (b) Structure of stiffness matrix

Thereafter, it should be noted that when the contact between the blocks takes place,
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the associated potential energy must be added to the global equilibrium equation
(Equation (3.7)), and then the associated contact sub-matrices have to be added to
the global matrix Equation (3.14). In the present study, the surface contact con-
straints of blocks are enforced by the penalty method. Taking the contact of two
blocks i and j as an example, the point P1 moves into edge P2P3 of block j and
stops at point P ′

1, the penetration distance between blocks is δ. Using the penalty
method is equivalent to placing a spring between the two blocks, as shown in Figure
3.2.

Figure 3.2: Interaction between two contacting blocks

The strain energy of the contact spring reads:

Πcontact =
1

2
Pδ2 (3.15)

where P is the coefficient of penalty which can vary between 10E and 1000E, where
E denotes Young’s modulus ([9]). The block kinematics of the DDA method are
obtained by the open-close iteration which is adding or removing a stiff spring in
each time step at the contact position where tension and interpenetration do not
exist.

3.3 Validations of 2D-DDA

3.3.1 Case1: Frictionless impact - Free fall

In order to examine the accuracy of the DDA method, the progress of the free fall
and the elastic rebound was simulated. The simulation consisted of 1m× 1m block
falling 5.0 m onto a 1 m× 10 m base block with four fixed points, as shown in
Figure 3.3(a). We have an initial velocity of 0 m/s, and we assume an acceleration
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due to the gravity of 10 m/s2. The velocity of fall and rebound can be written as:
Vfall = V0 + gt 0 ≤ t ≤ 1

Vrebound = Vt − gt 1 < t ≤ Vt
g

(3.16)

where Vfall and Vrebound are the velocity during the fall and rebound. Vt is the
velocity when the block reaches the impact plane.
The velocity of free fall and rebound for four various contact stiffness values was
simulated using the DDA method. The theoretical value of free fall and elastic
rebound velocity after the frictionless impact was calculated by Equation (3.16), and
the numerical results are shown in Figure 3.3(b), where we assume that the contact
stiffness is related to the Young modulus of block material [23]. The results (Figure
3.3(b)) show that the greater the contact stiffness is, the less the impact damping
will be. It shows that the best agreement between theoretical and numerical results
is met when the contact stiffness value is around 109 N/m. It is worth noting that
for smaller contact stiffness, the penetration overlap is large and then the impact
between blocks becomes inelastic.

Figure 3.3: Falling block for testing frictionless impact and elastic rebound: (a)
Schematic diagram of free fall motion; (b) Comparison between the theoretical
value (Equation (3.16)) and DDA results for different contact stiffness

3.3.2 Case 2: Multi-blocks under seismic loading

The second validation is carried out by comparing the DDA numerical results with
both the experimental and the numerical results given by Komodromos et al. [36].
Thus, the behavior of seven 48mm× 48mm× 29mm blocks with a mass of 135.5
g under harmonic excitations (at the base) is simulated by DDA wherein we assume
that the contact stiffness is 107N/m and friction angle φ is 34o, and the peak ground
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accelerations is 2.15 m/s2. For four different frequencies, the computed results are
compared with the experimental observations. The DDA simulations show simi-
lar responses to experimental observations, as shown in Figure 3.4. Furthermore,
compared to the DEM results, the DDA results have higher accuracy.
For four different frequencies, the acceleration (ainitiate) to initiate the rocking or
sliding is calculated by the DDA model. The results from the experimental have a
great agreement with the numerical simulations, as shown in Figure 3.5. Therefore,
the DDA can be used to investigate the displacement of the vertical caisson and the
discrete rear structures.

Figure 3.4: Comparison between the experimental results [36] and the numerical
results computed by DEM and DDA. The dimension of one block is 48 mm ×48
mm ×29 mm, the mass is 135.5 g, the contact stiffness is 107N/m, the friction
angle is φ = 34o, and the peak ground accelerations is 2.15 m/s2

.
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Figure 3.5: Comparison between the experimental values of ainitiate [36] and DDA
results.

3.4 Governing equations of fluid

3.4.1 RANS equations for turbulent flow

The fluid flow is described by the Reynolds-Averaged Navier–Stokes (RANS) equa-
tions. The mass and momentum conservation functions are [107, 108]:

∂ρ

∂t
+∇ �

(
ρU
)

= 0 (3.17)

∂(ρU)

∂t
+∇ �

(
ρUU

)
= −∇P + g �X∇ρ+∇

(
µeff∇U

)
+ σκ∇α (3.18)

where U is the velocity vector, X is the Cartesian position vector, g denotes the
gravitational acceleration vector, and ρ represents the weighted averaged density.
The term µeff = µ+µt, where µ is the weighted average dynamic viscosity and the
µt is the dynamic turbulence viscosity calculated by k − ε model. σκ∇α signifies
the surface tension effects, where σ is the surface tension, α is the fluid volume
fraction, and κ = ∇ α

|α| .

3.4.2 Extended Forchheimer equations for porous medium

Darcy’s law has been traditionally used for describing the transport properties of
porous media; however, as the flow velocity increases, Darcy’s law became in-
applicable as the relationship between pressure and velocity becomes non-linear.
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A correction term (see the second term in Equation(3.19)), based on a quadratic
velocity, was added by Forchheimer [109] to take this non-linearity into account.
Furthermore, in the present study, an added mass term CA [110] was considered. To
accelerate the same volume of water in a porous medium, additional momentum is
required [111]. The extended Forchheimer equation can be written as:

Pporous = AU +BU |U |+ ρ

n
CA

∂U

∂t
(3.19)

where Pporous is the porous medium pressure, and the coefficients A and B are
[112, 110]:

A = µ1
(1− n)3

n2

µ

D2
50

(3.20)

B = µ2(1 +
7.5

KC

)
1− n
n2

ρ

D50

(3.21)

where D50 is the mean diameter of the porous material. µ1 and µ2 are empirical
coefficients related to the linear and nonlinear drag force, respectively. KC = ToUM

nD50

is the Keulegan-Carpenter number where UM is the maximum oscillatory velocity.
To is the period of the oscillation [112].

3.4.3 Volume-averaged RANS equation for incompressible fluid-
porous medium coupling

In what follows, we consider an incompressible flow. Thus, in order to correspond
to the extended Forchheimer Equation (3.19) with the RANS equations, we intro-
duce the volume-averaged velocity 〈U〉 that exists in the interstices of the solid
framework of the porous medium, given by:

〈U〉 =
1

V

∫
Vf

UdV (3.22)

where U is the hydrodynamic velocity with respect to the fluid, V is the total
volume, and Vf is the part of V which is occupied by the fluid. In what follows,
we set the porosity n =

Vf
V

. Then, by substituting volume-averaged velocity Equa-
tion (3.22) in the RANS Equations (3.17-3.18), we obtain the following VARANS
equations for incompressible fluid:

∇ � 〈U〉 = 0 (3.23)
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(1 + CA)
ρ

n

∂

∂t
〈U〉+

ρ

n2
〈U〉∇〈U〉 = −∇P + gX �∇ρ+

1

n
∇
(
µeff∇〈U〉

)
+ σκ∇α− A〈U〉

n
−B| 〈U〉

n
|〈U〉
n

(3.24)
where CA = 0.34 denotes the added mass coefficient, which is kept constant in the
present study [110].

3.4.4 VOF method

The computational model is built with a two-phase model (Fluid-air) and the free
surface that separates these two phases can cut a cell of the computational mesh into
two unequal parts. Each part contains a quantity of each phase. In what follows, the
Volume-of-Fluid (VOF) method is used to describe the volume fraction of the fluid
inside each computational cell which will be transmitted to VARANS. It is based
on the following transport equation [113]:

∂α

∂t
+

1

n
∇ ·
(
α〈U〉

)
+

1

n
∇ ·
(
α(1− α)〈Uc〉

)
= 0 (3.25)

where α is the fluid phase fraction laying between 0 and 1, where α=0 corresponds
to full of air and α=1 corresponds to full of fluid. However, in order to obtain physi-
cal results, there must be some limitations: a clear interface must be maintained,
and α must be limited between 0 and 1. Weller et al. [114] added an artificial
compression term ∇ · α(1 − α). This method only uses non-zero values at the
interface. In addition, |〈Uc〉| = [min(Cα|〈U〉|),max(|〈U〉|)], where the factor Cα
can be specified. If |〈Uc〉| is normal to the interface, the fluid will not be compressed,
which points to a larger value of α and therefore from the air to the water phase. The
boundedness of this equation is achieved by the specially designed solver MULES
(multi-dimensional universal limiter for explicit solution).
In the present study, the VARANS models (see Equations (3.23-3.25)) are solved by
using the PIMPLE algorithm (pressure implicit with the splitting of operators) [115]
to compute the pressure and SIMPLE (semi-implicit method for pressure-linked
equations) algorithm to obtain the velocity fields. Its main structure is inherited from
the original PISO but allows equations to be relaxed to ensure the convergence of
all equations at each time step ([110, 116]).
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3.5 Coupling procedure of Fluid-Solid interaction

The coupling between the fluid and the solid models requires a transfer of data from
one model to another. In our case, the fluid model uses meshes while the solid model
is meshless (see Figure 3.6 (a)) since it is based on the DDA method. Therefore, an
adequate data transfer strategy is required in order to faithfully reproduce the studied
physical phenomena ([68]). It consists of converting the nodal pressure forces of the
fluid (fi, fj) into equivalent forces Fi at the vertex points of the solid (see Figure
3.6 (b)-(c) and Equation (3.27)). It is specified that in this fluid-solid coupling, the
transfer is retroactive, where the fluid transfers to the solid the pressure force, a
force considered external to the solid.

Figure 3.6: Fluid/solid interface: (a) fluid finite element mesh and solid; (b) fluid
pressures in the mesh points; (c) conversion of fluid pressures into equivalent vertex
forces.

fi = pi
d

2
; fj = pj

d

2
(3.26)

where pi and pj are the fluid pressures at nodes i and j, and d is the distance of the
finite element edge from node i to node j. Finally, the global forces (F1, F2) acting
on the DDA block can be written as:

F1x =
n∑
i=1

finx(
d2

d1 + d2

), F1y =
n∑
i=1

finz(
d2

d1 + d2

)

F2x =
n∑
i=1

finx(
d1

d1 + d2

), F2y =
n∑
i=1

finz(
d1

d1 + d2

)

(3.27)

where n is the total number of nodes in the edge, d1 and d2 are the distances from
the given node to vertices 1 and 2, and nx and ny represent the directions along x
and y respectively.
The hydrodynamic force applied on the solid block i, which can be treated as a point
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loading and added to the force sum-matrices of DDA. The potential energy of the
fluid loading is:

Πfluid =− (u, v)

(
Fx

Fy

)

= −DT
i T

T
i

(
Fx

Fy

) (3.28)

The potential energy Πfluid is minimized by taking the derivatives:

fr = −
∂Πfluid
∂dri

=
∂

∂dri
DT

i T
T
i

(
Fx

Fy

)

= T T
i

(
Fx

Fy

)
(r = 1, . . . , 6)→ F̂i

(3.29)

which is a 6×1 sub-matrix that is added to F̂i in the global Equation (3.14).

3.6 Concluding remarks

In this chapter, the governing equations of fluid based on the Volume-Averaged
RANS equation and the solid based on the 2D-DDA method were introduced.
The 2D-DDA method with the penalty was introduced briefly. The kinematic con-
ditions of the contact surfaces were enforced through the penalty method in order
to avoid the inter-penetration between blocks. This method enabled us to take into
account the shapes of solid structures, as well as the contact between blocks. The
validations of the 2D-DDA method were done by comparing the numerical results
with the theoretical and the experimental results.
The Volume-Averaged Reynolds-Averaged Navier-Stokes (VARANS) equations were
proposed, in which the extended Forchheimer law used to calculate the porous
medium flow was added to the inertia terms of RANS equations.
The coupling between the fluid and the solid was carried out by transmitting the
pressure of the fluid mesh nodes to the solid polygon vertices. The hydrodynamic
force applied on the solid block, which can be treated as a point loading and added
to the global equilibrium equation.
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Chapter 4

Mathematical formulation of the
3D-DDA method

4.1 Introduction

The two-dimensional approach may only provide a rough approximation of ac-
tual behavior. In order to solve the environmental problems accurately, a robust
three-dimensional approach is required. This chapter presents the mathematical
formulations of 3D-DDA and introduces the corresponding program procedure. The
following aspects are emphasized:

• The minimum potential energy method is used in the 3D-DDA method;

• The common-plane method is used to detect the contact between blocks;

• The contact is divided in two types, which are vertex-to-face contact and
vertex-to-vertex contact, corresponding normal and shear springs as well as fric-
tional forces are added based on the contact type.

• Open-close iteration and soft contact method are used to avoid penetrations
between blocks. The SOR method is used to solve linear system equations.

4.2 Displacement function and global equilibrium equa-
tions

4.2.1 Displacement function

In this part we will go from standard 2D analysis to 3D Discontinuous Deformation
Analysis (3D-DDA), the following two basic assumptions are still valid:
• (1) Each time step satisfies the conditions of very small displacement and defor-
mation;
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• (2) The stresses and strains of the blocks are constant.
Let ( u, v, w ) be the displacements of any point of coordinates (x, y, z) that belongs
to block i. These displacements can be expressed as a function of the vectorDi:

DT
i = (u0, v0, w0, α0, β0, γ0, εx, εy, εz, γxy, γyz, γxz) (4.1)

where (u0 , v0 , w0) is the rigid translation vector at block i centroid (x0, y0, z0); (
α0 , β0 , γ0) is the rotation vector around x, y and z axis of the point (x0, y0, z0);
and (εx , εy , εz , γxy , γyz , γxz) are the normal and shear strains in the block i.
Assuming constant strains and stress within each block, the first-order approxima-
tion can be used, the displacements (u, v, w) of the point (x, y, z) of block i, can be
written as:

u = a0 + a1x+ a2y + a3z

v = b0 + b1x+ b2y + b3z

w = c0 + c1x+ c2y + c3z

(4.2)

The displacements of the center of gravity of block i are written in the following
form:

u0 = a0 + a1x0 + a2y0 + a3z0

v0 = b0 + b1x0 + b2y0 + b3z0

w0 = c0 + c1x0 + c2y0 + c3z0

(4.3)

By combining Equations (4.2) and (4.3), we get:

u = a1 (x− x0) + a2 (y − y0) + a3 (z − z0) + u0

v = b1 (x− x0) + b2 (y − y0) + b3 (z − z0) + v0

w = c1 (x− x0) + c2 (y − y0) + c3 (z − z0) + w0

(4.4)

The normal strains of blocks are:

εx =
∂u

∂x
= a1; εy =

∂v

∂y
= b2; εz =

∂w

∂z
= c3 (4.5)

The rotation of the point (x, y) can be expressed as:

α0 = 1
2

(
∂w
∂y
− ∂v

∂z

)
= 1

2
(c2 − b3)

β0 = 1
2

(
∂u
∂z
− ∂w

∂x

)
= 1

2
(a3 − c1)

γ0 = 1
2

(
∂v
∂x
− ∂u

∂y

)
= 1

2
(b1 − a2)

(4.6)
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The shear strains are given by:

γxy =
∂u

∂y
+
∂v

∂x
= a2 + b1

γyz =
∂v

∂z
+
∂w

∂y
= b3 + c2

γzx =
∂u

∂z
+
∂w

∂x
= a3 + c1

(4.7)

Therefore, we can get the parameters:

a1 = εx, b2 = εy, c3 = εz

c2 = 1
2
γyz + α0, b3 = 1

2
γyz − α0, a3 = 1

2
γzx + β0

c1 = 1
2
γzx − β0, b1 = 1

2
γxy + γ0, a2 = 1

2
γxy − γ0

(4.8)

For reasons of simplification we denote: X = x−x0, Y = y− y0, Z = z− z0, then
Equation (4.2) represents as:

 u

v

w

 =

 1 0 0 0 Z −Y X 0 0 Y /2 0 Z/2

0 1 0 Z 0 X 0 Y 0 X/2 Z/2 0

0 0 1 Y −X 0 0 0 Z 0 Y /2 X/2





u0

v0

w0

α0

β0

γ0

εx

εy

εz

γxy

γyz

γzx


(4.9)

which can be written in a compact form:

Ui =

 u

v

w

 = TiDi (4.10)
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where Ti is:

Ti =

 1 0 0 0 Z −Y X 0 0 Y /2 0 Z/2

0 1 0 Z 0 X 0 Y 0 X/2 Z/2 0

0 0 1 Y −X 0 0 0 Z 0 Y /2 X/2

 (4.11)

4.2.2 Global equilibrium equations

The total potential energy Πp of the N blocks, defined as the sum of all potential
energy, is given by:

Πp = Πelastic + Πinitialstress + Πpointload + Πbodyforce + Πinertia + Πcontact (4.12)

where
• Πp is the total potential energy;
• Πelastic is the elastic strain energy;
• Πinitialstress is the initial stress potential energy;
• Πpointload is the point loading energy;
• Πbodyforce is the body force potential energy;
• Πinertia is the inertial energy;
• Πcontact is the potential energy contributed due to contacts between blocks.
The total potential Πp can be written as:

Πp =
1

2

(
DT

1 DT
2 DT

3 · · · DT
n

)


K11 K12 K13 · · · K1n

K21 K22 K23 · · · K2n

K31 K32 K33 · · · K3n

...
...

... . . . ...
Kn1 Kn2 Kn3 · · · Knn





D1

D2

D3

...
Dn



+
(
DT

1 DT
2 DT

3 . . . DT
n

)


F1

F2

F3

...
Fn


(4.13)

where the sub-matricesKii andKij are 12×12 sub-matrices, and theKii depends
on the material properties of block i, Kij (i 6= j) represents the contacts between
blocks i and j. Fi and Di are 12 × 1 sub-matrices, Fi is the loading sub-matrix
which respects twelve unknown variables of block i (see Equation (4.1)).
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According to the minimized potential energy, the block system equations of motion
can be represented as:

∂Πp

∂dri
= 0, r = 1, 2, 3, · · · , 12 (4.14)

where dri is the displacement variable of block i. Therefore, we can get the global
equilibrium equation:

K11 K12 K13 . . . K1n

K21 K22 K23 . . . K2n

K31 K32 K33 . . . K3n

...
...

...
...

...
Kn1 Kn2 Kn3 . . . Knn





D1

D2

D3

...
Dn


=



F1

F2

F3

...
Fn


(4.15)

4.3 Governing equations of sub-matrices

4.3.1 Sub-matrix of elastic strain

The elastic strain energy of block i is:

Πelastic =
y

Ωi

1

2
(σxεx + σyεy + σzεz + τxyγxy + τyzγyz + τzxγzx) dxdydz

(4.16)
where the integration is done in the entire volume Ωi of block i. We assume the
blocks are linearly elastic, thus the relationship between stress and strain can be
expressed as follows:

σx

σy

σz

τyz

τzx

τxy


=

E

(1− ν2) (1− 2ν)



1− ν ν ν 0 0 0

ν 1− ν ν 0 0 0

ν ν 1− ν 0 0 0

0 0 0 1
2
− ν 0 0

0 0 0 0 1
2
− ν 0

0 0 0 0 0 1
2
− ν





εx

εy

εz

γyz

γzx

γxy


(4.17)

where E is the Young’s modulus and ν is the Poisson’s ratio of block material. It
can be written in a compact form:

σi = Eεi (4.18)
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where E is the elastic matrix of deformation block:

E =
E

(1− ν2) (1− 2ν)



1− ν ν ν 0 0 0

ν 1− ν ν 0 0 0

ν ν 1− ν 0 0 0

0 0 0 1
2
− ν 0 0

0 0 0 0 1
2
− ν 0

0 0 0 0 0 1
2
− ν


(4.19)

The strain of the block i can be expressed by the relationship between the strain and
displacement:

εi = LUi (4.20)

where L is the differential operator matrix for 3D problem. Substituting Equation
(4.10) into Equation (4.20), we get:

εi = LTiDi = BDi (4.21)

Assuming that the deformation is elastic and linear, the stress tensor is written as
follows:

σi = Eεi = EBDi (4.22)

The block strain energy represents as:

Πelastic =
1

2

y

Ωi

(εx εy εz γyz γzx γxy)



σx

σy

τz

τyz

τzx

τxy


dxdydz

=
1

2

y

Ωi

DT
i B

TEBDidxdydz

(4.23)
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where the Ei = BTEB is a 12× 12 matrix:

Ei =
E

(1− ν2) (1− 2ν)



0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1− ν ν ν 0 0 0

0 0 0 0 0 0 ν 1− ν ν 0 0 0

0 0 0 0 0 0 ν ν 1− ν 0 0 0

0 0 0 0 0 0 0 0 0 1
2
− ν 0 0

0 0 0 0 0 0 0 0 0 0 1
2
− ν 0

0 0 0 0 0 0 0 0 0 0 0 1
2
− ν


(4.24)

Therefore, the block strain energy can be written as:

Πelastic =
1

2

y

Ωi

DT
i EiDidxdydz

=
Vi
2
DT
i EiDi

(4.25)

where Vi is the volume of block i. Based on the minimization of the strain energy
Πelastic, we have:

Krs =
∂2Πe

∂dri∂dsi

=
Vi
2

∂2

∂dridsi

(
DT
i EiDi

)
= ViEi r, s = 1, 2, 3 · · · , 12→Kii

(4.26)

which is added to the sub-matrixKii in the global Equation (4.15).
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4.3.2 Sub-matrix of initial stress

The potential energy due to the initial stress is expressed as:

Πinitialstress =
y

Ωi

(
εxσ

0
x + εyσ

0
y + εzσ

0
z + γxyτ

0
xy + γyzτ

0
yz + γzxτ

0
zx

)
dxdydz

=Vi (εx εy εz γxy γyz γzx)



σ0
x

σ0
y

σ0
z

τ 0
xy

τ 0
yz

τ 0
zx


=ViD

T
i σ0

(4.27)
where the initial stress σ0=

(
0 0 0 0 0 0 σ0

x σ0
y σ0

z τ 0
xy τ 0

yz τ 0
zx

)T .
The derivatives fr are calculated to minimize the potential energy Πinitialstress:

fr = −∂Πinitialstress

∂dri
= Viσ0 (r = 1, . . . , 12)→ Fi (4.28)

which is added to the sub-matrix Fi in the global Equation (4.15).

4.3.3 Sub-matrix of point loading

Assuming that the point loading force acting on the point (x, y, z) of block i is (Fx,
Fy, Fz), the point loading potential energy is expressed as:

Πpointload =− (Fxu+ Fyv + Fzw) = −(u, v, w)

 Fx

Fy

Fz



= −DT
i T

T
i

 Fx

Fy

Fz


(4.29)

The potential energy Πpointload is minimized by taking the derivative:
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fr = −
∂Πpointload

∂dri
=

∂

∂dri
DT

i T
T
i

 Fx

Fy

Fz



= T T
i

 Fx

Fy

Fz

 (r = 1, . . . , 12)→ Fi

(4.30)

which is a 12×1 sub-matrix that is added to Fi in the global Equation (4.15).

4.3.4 Sub-matrix of body force

Assuming that the body force (fx, fy, fz) is the constant volume load acting on
block i, then the potential energy is:

Πbodyforce =−
y

Ωi

(u v w)

 fx

fy

fz

 dxdydz

=−DT
i

(y
Ωi

T T
i dxdydz

) fx

fy

fz


(4.31)

The coordinates of centre of gravity of block i are (x0, y0, z0) which can be ex-
pressed as:

x0 =
Sx
Vi
, y0 =

Sy
Vi
, z0 =

Sz
Vi

(4.32)

where Sx =
t

Ωi
xdxdydz, Sy =

t
Ωi
ydxdydz, Sz =

t
Ωi
zdxdydz and Vi =t

Ωi
dxdydz. Vi is the volume of block i.
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Then

y

Ωi

T T
i dxdydz =



Vi 0 0

0 Vi 0

0 0 Vi

0 − (Sz − z0Vi) (Sy − y0Vi)

(Sz − z0Vi) 0 − (Sx − x0Vi)

− (Sy − y0Vi) (Sx − x0Vi) 0

(Sx − x0Vi) 0 0

0 (Sy − y0Vi) 0

0 0 (Sz − z0Vi)

0 (Sz − z0Vi) (Sy − y0Vi) /2

(Sz − z0Vi) /2 0 (Sx − x0Vi) /2

(Sy − y0Vi) /2 (Sx − x0Vi) 0



=



Vi 0 0

0 Vi 0

0 0 Vi

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0


(4.33)

The potential energy is minimized by deriving the Πbodyforce:

fr = −∂Πbodyforce

∂dri
= (fxVi fyVi fzVi 0 0 0 0 0 0 0 0 0)T → Fi

(4.34)
which is a 12×1 sub-matrix that is added to Fi in the global Equation (4.15).

4.3.5 Sub-matrix of inertia force

Using the
(
u(t), v(t), w(t)

)
to represent the time-dependent displacement of any

point (x, y, z) in block i and M to donate the mass per unit volume. The inertia
force of block i is: fx

fy

fz

 = −M ∂2

∂t2

 u(t)

v(t)

w(t)

 = −MTi
∂2Di(t)

∂t2
(4.35)

The potential energy of the inertia force is written as:

Πinertia = −
y

Ωi

(u v w)

 fx

fy

fz

 dxdydz

=
y

Ωi

MDT
i T

T
i Ti

∂2Di(t)

∂t2
dxdydz

(4.36)
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Assume Di(0) = 0 is the block displacement at the beginning of the time step, ∆t

is the time step interval and Di(∆) = Di is the block displacement at the end of
the time step. Based on the time integration, we get:

Di(∆) = Di(0) + ∆t
∂Di(0)

∂t
+

∆t2

2

∂2Di(0)

∂t2
= ∆t

∂Di(0)

∂t
+

∆t2

2

∂2Di(0)

∂t2
(4.37)

Assuming the acceleration in each time is constant,

∂2Di(t)

∂t2
=
∂2D(0)

∂t2
=

2

∆t2
Di −

2

∆t

∂Di(0)

∂t
(4.38)

where
Vi(0) =

∂Di(0)

∂t
(4.39)

Therefore, we have the potential energy at the end of time step,

Πinertia = DT
i

y

Ωi

T T
i Tidxdydz

(
2M

∆t2
Di −

2M

∆t
Vi(0)

)
(4.40)

To reach equilibrium, the potential energy of inertia force is minimized by taking
derivatives with respect to the block displacement variables:

fr = −∂Πinertia

∂dri
= − ∂

∂dri

(
MDT

i

t
Ωi
T T
i Tidxdydz

(
2

∆t2
Di − 2

∆t
∂Di(0)
∂t

))
r = 1, 2, . . . , 12

(4.41)
which can be transformed into two parts:

2M
∆t2

t
Ωi
T T
i Tidxdydz →Kii

2M
∆t

(t
Ωi
T T
i Tidxdydz

)
Vi(0)→ Fi

(4.42)

which are added to the sub-matricesKii and Fi in the global Equation (4.15).
For the next step, the initial velocity inherits the end velocity of this step, from the
Equation (4.38), we get:

Vi(∆t) ≈ Vi(0) + ∆t
∂2Di(t)

∂t2
=

2

∆t
Di − Vi(0) (4.43)

In what follow, the analytical solution of the matrix integral
t

Ωi
T T
i Tidxdydz are
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calculated:

T TT =



1 0 0

0 1 0

0 0 1

0 −z y

z 0 −x
−y x 0

x 0 0

0 y 0

0 0 z

y/2 x/2 0

0 z/2 y/2

z/2 0 x/2



 1 0 0 0 z −y x 0 0 y/2 0 z/2

0 1 0 −z 0 x 0 y 0 x/2 z/2 0

0 0 1 y −x 0 0 0 z 0 y/2 x/2



(4.44)
where x = x − x0, y = y − y0, z = z − z0, and (x0, y0, z0) is the centroid of the
block i. The basic integrals in block i are introduced:

Vi =
y

Ωi

dxdydz Sx =
y

Ωi

xdxdydz Sy =
y

Ωi

ydxdydz Sz =
y

Ωi

zdxdydz

(4.45)
Therefore,

x0 =
Sx
Vi

y0 =
Sy
Vi

z0 =
Sz
Vi

(4.46)

The matrix elements of the integral are calculated as follows:

s
Ωi
xdxdydz =

t
Ωi

(x− x0) dxdydz = Sx − x0Vi = 0s
Ωi
ydxdydz =

t
Ωi

(y − y0) dxdydz = Sy − y0Vi = 0s
Ωi
zdxdydz =

t
Ωi

(z− z0) dxdydz = Sz − z0Vi = 0s
Ωi
x2dxdydz =

t
Ωi

(x− x0)2 dxdydz = S1s
Ωi
y2dxdydz =

t
Ωi

(y − y0)2 dxdydz = S2s
Ωi
z2dxdydz =

t
Ωi

(z − z0)2 dxdydz = S3s
Ωi
xydxdydz =

t
Ωi

(x− x0) (y − y0) dxdydz = S4s
Ωi
yzdxdydz =

t
Ωi

(y − y0) (z − z0) dxdydz = S5s
Ωi
zxdxdydz =

t
Ωi

(z − z0) (x− x0) dxdydz = S6

(4.47)
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Then, we can obtain the matrix integral
t

Ωi
T T
i Tidxdydz:

y

Ωi

T T
i Tidxdydz =

[
T11 T12

T21 T22

]
(4.48)

where

T11 =



Vi 0 0 0 0 0

0 Vi 0 0 0 0

0 0 Vi 0 0 0

0 0 0 S2 + S3 −S4 −S6

0 0 0 −S4 S1 + S3 −S5

0 0 0 −S6 −S5 S1 + S2



T12 =



0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 −S5 S5 −S6/2 (S2 − S3) /2 S4/2

S6 0 −S6 S5/2 −S4/2 (S3 − S1) /2

−S4 S4 0 (S1 − S2) /2 S6/2 −S5/2


T12 = T T

21

T22 =



S1 0 0 S4/2 0 S6/2

0 S2 0 S4/2 S5/2 0

0 0 S3 0 S5/2 S6/2

S4/2 S4/2 0 (S1 + S2) /4 S6/4 S5/4

0 S5/2S5/2 S6/4 (S2 + S3) /4 S4/4

S6/2 0 S6/2 S5/4 S4/4 (S1 + S3) /4


It should be noted that the elements of matrix integral can be obtained by the
three-dimensional simplex integral method [88, 100], for example, S(1−6) can be
expressed by the corner coordinates of a polyhedron. For details, please refer to
sub-Section 4.5.

4.4 Contact between blocks

The three-dimensional block contact detection and transfer algorithms are one of the
central tasks for all discrete element methods [117]. A robust and efficient algorithm
for contact detection and updating is the primary direction of the future development
of DEM [13]. The three-dimensional block contact detection algorithms must be
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used to judge contact types and locations and the appropriate state of each contact,
which can be open, sliding or locked [93]. The direct method was used in the origin
2D-DDA method; however, this method is not suitable for 3D-DDA due to the large
computational effort; therefore, in this thesis, the Common-Plane Method (CPM) is
introduced to apply in the 3D-DDA program.

4.4.1 Common-Plane Method

The three-dimensional contact detection of polyhedral blocks is classified into six
basic types [118]: vertex-to-vertex, edge-to-face, face-to-face, vertex-to-vertex, vertex-
to-edge, and edge-to-edge, as shown in Figure 4.1.

Figure 4.1: Basic contact types between two 3-D blocks

Barbosa et al. [119] introduced a simple algorithm for contact detection between
polyhedrons that requires detecting all the vertices, edges and faces of blocks. The
total detection number N is shown in Equation (4.49). The algorithm has a high
computational complexity of order O(n2), with n being the number of blocks.

N =
n∏
i=1

(vi + ei + fi) (4.49)

Although we can reduce the detection number according to classify contact types
[120], for example, three and more edge-face contacts at some point can be classi-
fied as edge-edge contact, the calculation amount is still very large. For DDA anal-
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ysis, the direct method is extremely time consuming and not adopted for practical
problem.
Cundall [121] introduced the Common-Plane Method (CPM). A Common-Plane
(CP) is a plane that, in some sense, bisects the space between the two contacting
blocks. If the two blocks are in contact, then both will intersect the CP, and if
they are not in contact, then neither intersects the CP. As a result of using CP,
the expensive block-to-block contact detection problem reduces to a much faster
plane-to-block contact detection problem. Once the CP is established between two
blocks, the normal to the CP defines the direction of the contact normal, which in
turn defines the direction of the normal contact force between the two blocks. This
is especially advantageous for vertex-to-vertex or edge-to vertex contacts, where the
definition of the contact normal is a non-trivial problem. This method has the com-
plexity of order O(n) and is widely used in some 3D DEM codes [122, 123, 124].
In this thesis, we applied the CPM technique to the 3D-DDA program.

4.4.1.1 Algorithm to position the Common-Plane

The CP is defined by two vectors (a) the normal unit vector n of the common-plane
and (b) position vector VC where PC is any point at the common plane [122], as
shown in Figure 4.2. Assume the PA and PB are one of vertex of two polygons A
and B, VA and VB are the position vector, the distance dA and dB can be expressed
as:

Figure 4.2: Definition of distances and sign convention of a point to a plane.

dA = max {n · (VA − VC)} dA < 0

dB = min {n · (VB − VC)} dB > 0
(4.50)

where VA, VB and VC are the vectors from centroid O to point PA, PB and PC .
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The CP between the blocks A and B should meet three conditions [122]:

• Centroids of blocks A and B are located on opposite sides of the CP;

• The gap d = dB − dA reaches maximum;

• dA = −dB.

In order to meet the three conditions, the CP can be positioned by two main proce-
dures:
(1) Specify the reference point PC and normal unit vector n.
The initial CP is placed in the middle between the centroids of the two blocks,
and the normal vector points from one centroid to the other centroid. Then the
gap d = dB − dA is calculated. If d> CRTL (CRTL is a small positive tolerance
defined by the user), the blocks will be recognized as non-contact and no CP will be
generated (see Figure 4.3(a)). The real contact is the contact with d<0 (see Figure
4.3(c)). The "potential contact" means that blocks A and B may form new contacts
when 0 <d <CRTL (see Figure 4.3(b)), where in the common plane should move to:

VC =
1

2
(VAmax + VBmin) (4.51)

where VAmax is the vertex on block A nearest to the CP, VBmin is the vertex on
block B nearest to the CP.

Figure 4.3: Two blocks contacts and the CP: (a) Non-contact, (b) Potential contact,
(c) Real contact

(2) Rotate the CP to find the maximum gap.
The second stage is an iterative process, in which the normal vectorn corresponding
to the maximum gap is found by rotating CP around the reference point. In three
dimensions, two arbitrary orthogonal axes p and q are selected in the CP, and the
origin is the reference point. Then, CP is disturbed around them in both negative

50



and positive sense; therefore, four perturbations are made as:

n = (n+Kp)/
√

(1 +K2)

n = (n−Kp)/
√

(1 +K2)

n = (n+Kq)/
√

(1 +K2)

n = (n−Kq)/
√

(1 +K2)

(4.52)

where K is the perturbation parameter. If the gap generated by any disturbance is
greater than the gap of the current CP, the new CP will replace the current CP. In
this case, the nearest vertex and reference point will be updated based on the newly
found CP. A flowchart of the algorithm of common plane method has been created
as previously described, and is shown in Figure 4.4.

4.4.1.2 Contact types detected by CPM

The type of contact is important because it determines the mechanical response of
the contact. Contact types can be detected by CPM according to the number of
vertices touching with CP, as shown in Table. 4.1.

Table 4.1: Contact types detected by Common-Plane Method

Number of vertices touching
Contact type Illustration

Block i Block j
0 0 Null
1 1 Vertex-to-vertex Figure4.1(d)
1 2 Vertex-to-edge Figure4.1(e)
1 >2 Vertex-to-face Figure4.1(a)
2 1 Edge-to-vertex Figure4.1(e)
2 2 Edge-to-edge Figure4.1(f)
2 >2 Edge-to-face Figure4.1(b)

>2 1 Face-to-vertex Figure4.1(a)
>2 2 Face-to-edge Figure4.1(b)
>2 >2 Face-to-face Figure4.1(c)

Traditionally, the contact types of the block can be transformed into vertex-to-face
contact [125, 126]. Obviously, contact types vertex-to-face, edge-to-face and face-
to-face can be considered simply as a combination of vertex-face contacts. In those
cases, the block face which will contact with another block vertex is selected as the
entrance face. However, for the contact types vertex-to-vertex, vertex-to-edge and
edge-to-edge, there is no entrance face that can be found. Therefore, the contact
types can be classified into two categories: (i) the first is the contact that can be
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Figure 4.4: Flowchart of the Common-Plane Method
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converted to vertex-to-face contact; (ii) the second type is the contact that can be
converted to vertex-to-vertex contact. We can add or remove different springs based
on the contact type to avoid penetration.

4.4.2 Sub-matrix of normal spring stiffness

(i) Vertex-to-face contact
As shown in Figure 4.5, assume that vertex P1 of block i penetrates into the face
P2P3P4 and stops at P0 in block j. The face P2P3P4 can be considered as the
entrance face, the position and displacement increment of vertex Pi are (xi, yi, zi)
and (ui, vi, wi), i = 1, 2, 3, 4, respectively. If the vertex P1 passes the entrance face
P2P3P4, a normal spring stiffness kn is introduced to push back the vertex to the
entrance face along the shortest distance dn. The potential energy contributed due
to the normal contact spring represents as:

Πnc =
kn
2
d2
n (4.53)

Figure 4.5: Contact between vertex and face, P1 is the penetrate vertex, and P2P3P4

is the entrance face.

On the face P2P3P4, vertices P2, P3, P4 are in counter-clockwise sequence. We use
P

′
i to represent the final position of Pi at the end of the time step. The shortest
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distance dn from P
′
1 to face P ′

2P
′
3P

′
4 denotes:

dn =
[
−−→
P

′
1P

′
2 · (
−−→
P

′
2P

′
3 ×
−−→
P

′
2P

′
4)]

|
−−→
P

′
2P

′
3 ×
−−→
P

′
2P

′
4)|

=
∆

A
(4.54)

where

A =

∣∣∣∣−−→P
′

2P
′

3 ×
−−→
P

′

2P
′

4)

∣∣∣∣
=

∣∣∣∣∣∣∣
i j k

x3 + u3 − x2 − u2 y3 + v3 − y2 − v2 z3 + w3 − z2 − w2

x4 + u4 − x2 − u2 y4 + v4 − y2 − v2 z4 + w4 − z2 − w2

∣∣∣∣∣∣∣
≈

√√√√√√√
[(y3 − y2) (z4 − z2)− (y4 − y2) (z3 − z2)]2

+ [(z3 − z2) (x4 − x2)− (x3 − x2) (z4 − z2)]2

+ [(x3 − x2) (y4 − y2)− (x4 − x2) (y3 − y2)]2

(4.55)

and,

∆ =

∣∣∣∣∣∣∣∣∣∣
1 x1 + u1 y1 + v1 z1 + w1

1 x2 + u2 y2 + v2 z2 + w2

1 x3 + u3 y3 + v3 z3 + w3

1 x4 + u4 y4 + v4 z4 + w4

∣∣∣∣∣∣∣∣∣∣
≈

∣∣∣∣∣∣∣∣∣∣
1 x1 y1 z1

1 x2 y2 z2

1 x3 y3 z3

1 x4 y4 z4

∣∣∣∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣∣∣∣
1 u1 y1 z1

1 u2 y2 z2

1 u3 y3 z3

1 u4 y4 z4

∣∣∣∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣∣∣∣
1 x1 v1 z1

1 x2 v2 z2

1 x3 v3 z3

1 x4 v4 z4

∣∣∣∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣∣∣∣
1 x1 y1 w1

1 x2 y2 w2

1 x3 y3 w3

1 x4 y4 w4

∣∣∣∣∣∣∣∣∣∣

(4.56)

It should be noted that the high-order terms has been ignored in the Equation (4.56)
due to the displacements (ui, vi, wi), i = 1, 2, 3, 4 in each time step are very small
[97]. Let,

S0 =

∣∣∣∣∣∣∣∣∣∣
1 x1 y1 z1

1 x2 y2 z2

1 x3 y3 z3

1 x4 y4 z4

∣∣∣∣∣∣∣∣∣∣
(4.57)
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Then, Equation (4.56) can be written as:

∆ = S0 +

 a1

b1

c1


T u1

v1

w1

+

 a2

b2

c2


T u2

v2

w2



+

 a3

b3

c3


T u3

v3

w3

+

 a4

b4

c4


T u4

v4

w4


(4.58)

where
a1 = (y4 − y2) (z3 − z2)− (y3 − y2) (z4 − z2)

a2 = (y3 − y1) (z4 − z1)− (y4 − y1) (z3 − z1)

b1 = (x3 − x2) (z4 − z2)− (x4 − x2) (z3 − z2)

b2 = (x4 − x1) (z3 − z1)− (x3 − x1) (z4 − z1)

c1 = (x4 − x2) (y3 − y2)− (x3 − x2) (y4 − y2)

c2 = (x3 − x1) (y4 − y1)− (x4 − x1) (y3 − y1)

a3 = (y4 − y1) (z2 − z1)− (y2 − y1) (z4 − z1)

a4 = (y2 − y1) (z3 − z1)− (y3 − y1) (z2 − z1)

b3 = (x2 − x1) (z4 − z1)− (x4 − x1) (z2 − z1)

b4 = (x3 − x1) (z2 − z1)− (x2 − x1) (z3 − z1)

c3 = (x4 − x1) (y2 − y1)− (x2 − x1) (y4 − y1)

c4 = (x2 − x1) (y3 − y1)− (x3 − x1) (y2 − y1)

(4.59)

From Equations (4.10) and (4.56) , dn represents as:

dn =
S0

A
+DT

i Ei +DT
j Gj (4.60)

where
ET
i =

1

A
(a1 b1 c1)Ti (x1, y1, z1) (4.61)

GT
j =

1

A
(a2 b2 c2)Tj (x2, y2, z2)

+
1

A
(a3 b3 c3)Tj (x3, y3, z3)

+
1

A
(a4 b4 c4)Tj (x4, y4, z4)

(4.62)

Therefore, the potential energy of the normal contact spring (see Equation (4.53))
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becomes:

Πnc =
kn
2
d2
n =

kn
2

(
S0

A
+DT

i Ei +DT
j Gj

)2

=
kn
2

(
S0

A

)2

+
kn
2

(
DT

i EiE
T
i Di +DT

j GjG
T
jDj

)
+ kn

S0

A

(
DT

i Ei +DT
j Gj

)
+ knD

T
i EiG

T
jDj

(4.63)

Taking the derivative of Πnc, four 12 × 12 sub-matrices and two 12 × 1 sub-
matrices can be obtained, which are then added to the sub-matrices Kii, Kij , Kji,
Kjj , Fi and Fj of the global Equation (4.15), respectively.
• The derivative of Πnc:

Krs =
∂2Πnc

∂dri∂dsi
= knEiE

T
i →Kii r, s = 1, 2, 3 · · · 12 (4.64)

is added to sub-matrixKii.
• The derivative of Πnc:

Krs =
∂2Πnc

∂dri∂dsj
= knEiG

T
j →Kij r, s = 1, 2, 3 · · · 12 (4.65)

is added to sub-matrixKij .
• The derivative of Πnc:

Krs =
∂2Πnc

∂drj∂dsi
= knGjE

T
i →Kij r, s = 1, 2, 3 · · · 12 (4.66)

is added to sub-matrixKji.
• The derivative of Πn:

Krs =
∂2Πnc

∂drj∂dsj
= knGjG

T
j →Kjj r, s = 1, 2, 3 · · · 12 (4.67)

• The derivative of Πnc:

fr = −∂Πnc(0)

∂dri
= −kn

S0

A
Ei → Fi r = 1, 2, 3 · · · 12 (4.68)

is added to sub-matrix Fi.
• The derivative of Πnc:

fr = −∂Πnc(0)

∂drj
= −kn

S0

A
Gj → Fj r = 1, 2, 3 · · · 12 (4.69)
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is added to sub-matrix Fj .
(ii) Vertex-to-vertex contact
Since the entrance face can not find in the second contact types, the common plane
can be assumed as an entrance plane in the vertex-to-vertex, vertex-to-edge and
edge-to-edge contacts. The unit normal vector of the common plane is expressed
as (lx, ly, lz), which points to block i from block j. As shown in Figure 4.6, the P1

on block i and P2 on block j are the nearest points to the common plane, which is
considered as the contact points. For the vertex-to-vertex contacts, the P1 and P2

are apparent. For the vertex-to-edge contact, the P2 is considered as the projected
point of point P1 on the edge E2. For the edge-to-edge contacts, P1 and P2 are
the intersection of line L with edge E1 and E2, respectively, where the L is an
orthogonal line to both edge E1 and edge E2.

Figure 4.6: Contact types and CP position: (a) Vertex-to-vertex; (b) Vertex-to-edge;
(c) Edge-to-edge

dn = (lx, ly, lz)

 x2 + u2 − (x1 + u1)

y2 + v2 − (y1 + v1)

z2 + w2 − (z1 + w1)

 (4.70)

dn = δ −DT
i Ei +DT

j Gj (4.71)
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where

δ = (lx, ly, lz)

 x2 − x1

y2 − y1

z2 − z1

 (4.72)

ET
i = (lx, ly, lz)Ti (x1, y1, z1) (4.73)

GT
j = (lx, ly, lz)Tj (x2, y2, z2) (4.74)

Taking the derivative of Πnc as the Equations (4.64)-(4.69), four 12 × 12 sub-
matrices and two 12 × 1 sub-matrices can be obtained, which are then added to
the sub-matrices Kii, Kij , Kji, Kjj , Fi and Fj of the global Equation (4.15),
respectively, as shown below:

knEiE
T
i →Kii

−knEiG
T
j →Kij

−knGjE
T
i →Kji

knGjG
T
j →Kjj

knδEi → Fi

−knδGj → Fj

(4.75)

4.4.3 Sub-matrix of shear spring stiffness

When the contact vertex and the entrance face are in the "non-sliding" mode, in
addition to the normal spring, a shear spring is also used to obtain the "lock"
mode. Assuming that P0 is the projection of P1 to entrance face P2P3P4, which is
considered as the contact point, and the vertex P1 and P0 move to the new location
P

′
1 and P ′

0 after the loading is applied. The sliding distance dτ is along the vector
−→
L

that is the projection of
−−→
P

′
0P

′
1 to the entrance face P2P3P4.

dτ =

√∣∣∣−−→P ′0P
′
1

∣∣∣2 − d2
n (4.76)

The potential energy contributed due to the shear spring is given by:

Πτ =
ks
2
d2
τ =

ks
2

(∣∣∣−−→P ′0P
′
1

∣∣∣2 − d2
n

)

=
ks
2

 x1 + u1 − x0 − u0

y1 + v1 − y0 − v0

z1 + w1 − z0 − w0


T  x1 + u1 − x0 − u0

y1 + v1 − y0 − v0

z1 + w1 − z0 − w0

− ks
2
d2
n

(4.77)
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Figure 4.7: Contact vertex and the entrance face, and the position of shear spring

From Equations (4.71) and (4.77), we can get:

Πτ =
ks
2

([
x1 − x0 y1 − y0 z1 − z0

]
+DT

i T
T
i −DT

j T
T
j

)

 x1 − x0

y1 − y0

z1 − z0

+ TiDi − TjDj

− ks
2

(
S0

A
+DT

i Ei +DT
j Gj

)2 (4.78)

Taking the derivative of Πτ , four 12× 12 sub-matrices and two 12× 1 sub-matrices
can be obtained, which are then added to the sub-matrices Kii, Kij , Kji, Kjj , Fi
and Fj of the global Equation (4.15), respectively.
• The derivative of Πτ :

krs =
∂2Πτ

∂dri∂dsi

=ksT
T
i Ti − ksET

i Ei →Kii

(4.79)

which is a 12 × 12 sub-matrix and added toKii of the global Equation (4.15).
• The derivative of Πτ :

krs =
∂2Πτ

∂dri∂dsj

=− ksT T
i Tj − ksET

i Gj →Kij

(4.80)
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which is a 12 × 12 sub-matrix and added toKij of the global Equation (4.15).
• The derivative of Πτ :

krs =
∂2Πτ

∂drj∂dsi

=− ksT T
j Ti − ksGT

j Ei →Kji

(4.81)

which is a 12 × 12 sub-matrix and added toKji of the global Equation (4.15).
• The derivative of Πτ :

krs =
∂2Πτ

∂drj∂dsj

=ksT
T
j Tj − ksGT

j Gj →Kjj

(4.82)

which is a 12 × 12 sub-matrix and added toKjj of the global Equation (4.15).
• The derivative of the potential energy Πτ of the force at P0 on block i is:

fr = −∂Πτ (0)

∂dri

= −ksT T
i

 x1 − x0

y1 − y0

z1 − z0

+
ksS0

A
ET
i → Fi

(4.83)

which is a 12 × 1 sub-matrix and added to Fi of the global Equation (4.15).
• The derivative of the potential energy Πτ of the force at P0 on block j is:

fr =
∂Πτ (0)

∂drj

= −ksT T
j

 x1 − x0

y1 − y0

z1 − z0

+
ksS0

A
GT
j → Fj

(4.84)

which is a 12 × 1 sub-matrix and added to Fj of the global Equation (4.15).
For the second contact types (see Figure 4.6), the contact points are P1 of block i
and P2 of block j. The potential energy of the shear spring is:

Πτ =
ks
2
d2
τ =

ks
2

(∣∣∣−−→P ′2P
′
1

∣∣∣2 − d2
n

)

=
ks
2

 x1 + u1 − x2 − u2

y1 + v1 − y2 − v2

z1 + w1 − z2 − w2


T  x1 + u1 − x2 − u2

y1 + v1 − y2 − v2

z1 + w1 − z2 − w2

− ks
2
d2
n

(4.85)

60



Taking the derivative of Πτ as the Equations (4.79)-(4.84), four 12 × 12 sub-
matrices and two 12 × 1 sub-matrices can be obtained, which are then added to
the sub-matrices Kii, Kij , Kji, Kjj , Fi and Fj of the global Equation (4.15),
respectively, as shown below:

ksT
T
i Ti − ksET

i Ei →Kii

−ksT T
i Tj + ksE

T
i Gj →Kij

−ksT T
j Ti + ksG

T
j Ei →Kji

ksT
T
j Tj − ksGT

jGj →Kjj

−ksT T
i

 x1 − x2

y1 − y2

z1 − z2

− ksδET
i → Fi

ksT
T
j

 x1 − x2

y1 − y2

z1 − z2

+ ksδG
T
j → Fj

(4.86)

where δ, Ei andGj are same as shown in Equations (4.72)-(4.74).

4.4.4 Sub-matrix of friction spring stiffness

The frictional forces should be considered when the contact is at the sliding state
[127]. For the sliding state, the normal spring and the friction spring need to be
added. Based on Coulomb’s law, the friction force is:

Ff = kn|dn|tan(φ) + Cf (4.87)

where kn is the normal spring stiffness, dn is the normal penetration distance,
tan(φ) is the friction coefficient in which φ is the friction angle, and Cf is the
cohesion.
The frictional force direction

−→
L is the projection of

−−→
P ′0P

′
1 on face P2P3P4 (see

Figure 4.7).

−−→
P ′0P

′
1 = (x1 + u′1 − x0 − u′0)~i+ (y1 + v′1 − y0 − v′0)~j + (z1 + w′1 − z0 − w′0)~k

(4.88)
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The unit normal vector
−→
of of face P2P3P4 can be obtained by:

−→
of =

1

A

{
[(y3 − y2) (z4 − z2)− (y4 − y2) (z3 − z2)]~i

+ [(z3 − z2) (x4 − x2)− (x3 − x2) (z4 − z2)]~j

+ [(x3 − x2) (y4 − y2)− (x4 − x2) (y3 − y2)]~k
} (4.89)

where the A can be calculated by Equation (4.55). Then the
−→
L and it’s value

represent as:
−→
L =

−−→
P ′0P

′
1 + |dn|

−→
of = a~i+ b~j + c~k (4.90)

|
−→
L | =

√
|
−−→
P ′0P

′
1|2 − |dn|2 = dτ (4.91)

where the dn and dτ are determined from the previous iteration, and

a = (x1 + u′1 − x0 − u′0)− a1
|dn|
A

b = (y1 + v′1 − y0 − v′0)− b1
|dn|
A

c = (z1 + w′1 − z0 − w′0)− c1
|dn|
A

(4.92)

where a1, b1, c1 are the same as Equation (4.59).
The potential energy Πfi contributed by frictional force Ff at P1 of block i is:

Πfi =
Ff

|~L|
(u1 v1 w1)

 a

b

c



=
Ff
dτ
DT

i T
T
i

 a

b

c


= FfD

T
i Ei

(4.93)

where

Ei =
1

dτ
T T
i

 a

b

c

 (4.94)

Based on the minimization of potential energy, the derivative of Πfi at zero dis-
placement position can be calculated and added to Fi in the global Equation (4.15).

fr = −∂Πfi(0)

∂dri
= −FfEi → Fi (4.95)
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where r=1,2,3,· · · ,12.
The potential energy Πfj contributed by frictional force Ff at P1 of block i is:

Πfj = −Ff
|~L|

(u1 v1 w1)

 a

b

c



= −Ff
dτ
DT

j T
T
j

 a

b

c


= −FfDT

j Gj

(4.96)

The derivative of Πfj at zero displacement position can be calculated added to Fj
in the global Equation (4.15).

fr = −∂Πfj(0)

∂drj
= FfGj → Fj (4.97)

where r=1,2,3,· · · ,12, and

Gj =
1

dτ
T T
j

 a

b

c

 (4.98)

4.4.5 Open-close iterations

Each contact has three possible states: open, sliding and lock. These states can be
determined by relationships between normal component Fn and shear component
Fs based on the Mohr-Coulomb law.
(1) Open state
Condition: when the normal component Fn of contact force is tensile:

Fn = −kndn ≤ 0 (4.99)

where dn < 0 means penetration occurs.
Operation: no normal and shear spring should be added.

(2) Sliding state
Condition: when the normal component Fn is compressive, and the shear compo-
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nent Fs along the entrance face is sufficiently large:

Fn > 0;

Fs ≥ Fntanφ+ Cf
(4.100)

Operation: apply a normal spring and a pair of friction force.
(3) Lock state
Condition: when the normal component Fn is compressive, and the shear compo-
nent Fs smaller than the friction force calculated by the Coulomb law.

Fn > 0;

Fs ≤ Fntanφ+ Cf
(4.101)

Operation: apply a normal and shear spring at the contact point.
In each time step, the global equilibrium equation should be solved iteratively to
determine the lock position. In each time step, the global equilibrium equation
should be solved iteratively to determine the lock position, and the stiff spring and
friction force should be applied or removed according to the contact state change
condition (see Table. 4.2), which is the called open-close iteration process [128], as
shown in Figure 4.8.

Table 4.2: Criteria for contact mode change

Mode change Condition Operation
Open→open dn>0 No change

Open→sliding
dn<0;
dτ>kn

ks
|dn|tanφ+

Cf

ks

Apply a normal spring and
a pair of friction force

Open→lock
dn<0;
dτ<kn

ks
|dn|tanφ+

Cf

ks

Apply a normal and shear spring

Sliding→open dn>0
Remove a normal spring and
a pair of friction force

Sliding→sliding
dn<0;
dτ≥TOL No change

Sliding→lock
dn<0;
dτ≤TOL

Remove the pair of friction forces
and apply a shear spring

Lock→open dn>0 Remove the normal and shear springs

Lock→sliding
dn<0;
dτ>kn

ks
|dn|tanφ+

Cf

ks

Remove the shear spring and
apply a pair of friction forces

Lock→lock
dn<0;
dτ<kn

ks
|dn|tanφ+

Cf

ks

No change
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where dn and dτ are the normal and shear displacements, calculated by the last
iteration. TOL=0.1 mm is a given limit value.

Figure 4.8: Flowchart of open-close iteration
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4.5 Simplex integration for 3D-DDA

2D and 3D simplex integration methods were proposed by G-H Shi [88, 100], used
to calculate the volume and centroid of 2D polygon and 3D polyhedron blocks
[129]. This method is easy to program and saves calculation consumption.
Assume the vertex list of the i-th plane loop is arranged anticlockwise, as shown in
Figure 4.9. The index and coordinate of a 3D block are:

Figure 4.9: Creating oriented simplexes on a face [100].

P
[i]
1 P

[i]
2 P

[i]
3 . . . P

[i]
n(i) (4.102)

where i = 1, 2, 3 · · · ,s represent all surface polygons of the block in turn, and the s
is the total number of polygons of the block.

P
[i]
j =

(
x

[i]
j , y

[i]
j , z

[i]
j

)
(4.103)

where j = 1, 2, 3· · · , n(i) − 1 represent the vertex of the face i. Set P0 =(0, 0, 0),
the volume V (positive or negative) of the 3D block is:

V =
s∑
i=1

n(i)−1∑
k=2

∫
p0p

(i]
1 p

[i]
k p

[i]
k+1

1D(x, y, z)

=
1

6

s∑
i=1

n(i)−1∑
k=2

∣∣∣∣∣∣∣
x

[i]
1 y

[i]
1 z

[i]
1

x
[i]
k y

[i]
k z

[i]
k

x
[i]
k+1 y

[i]
k+1 z

[i]
k+1

∣∣∣∣∣∣∣
(4.104)

Through simplex integral calculation, the integrals of 1, x, y, z, x2, y2, z2, xy, yz,
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xz are represented by the coordinates of the vertices of the 3D polyhedrons.

|V | =
y

Ω

dxdydz = sign (V )

∫
Ω

1D(x, y, z) (4.105)

Sx =
y

Ω

xdxdydz = sign (V )
s∑
i=1

n(i)−1∑
k=2

∫
p0p

[1/1
1 p

[i]
k p

[1]
k+1

xD(x, y, z)

=
1

24
sign (V )

s∑
i=1

n(i)−1∑
k=2

∣∣∣∣∣∣∣
x

[i]
1 y

[i]
1 z

[i]
1

x
[i]
k y

[i]
k z

[i]
k

x
[i]
k+1 y

[i]
k+1 z

[i]
k+1

∣∣∣∣∣∣∣ (x1 + xk + xk+1)

(4.106)

Sy =
y

Ω

ydxdydz =
1

24
sign (V )

s∑
i=1

n(i)−1∑
k=2

∣∣∣∣∣∣∣
x

[i]
1 y

[i]
1 z

[i]
1

x
[i]
k y

[i]
k z

[i]
k

x
[i]
k+1 y

[i]
k+1 z

[i]
k+1

∣∣∣∣∣∣∣ (y1 + yk + yk+1)

(4.107)

Sz =
y

Ω

zdxdydz =
1

24
sign (V )

s∑
i=1

n(i)−1∑
k=2

∣∣∣∣∣∣∣
x

[i]
1 y

[i]
1 z

[i]
1

x
[i]
k y

[i]
k z

[i]
k

x
[i]
k+1 y

[i]
k+1 z

[i]
k+1

∣∣∣∣∣∣∣ (z1 + zk + zk+1)

(4.108)

Sx2 =
y

Ω

x2dxdydz = sign (V )
s∑
i=1

n(i)−1∑
k=2

∫
p0p

[i]
1 p

[i]
k p

[i]
k+1

x2D(x, y, z)

=
1

60
sign (V )

s∑
i=1

n(i)−1∑
k=2

∣∣∣∣∣∣∣
x

[i]
1 y

[i]
1 z

[i]
1

x
[i]
k y

[i]
k z

[i]
k

x
[i]
k+1 y

[i]
k+1 z

[i]
k+1

∣∣∣∣∣∣∣
×
(
x2

1 + x2
k + x2

k+1 + x1xk + x1xk+1 + xkxk+1

)
(4.109)

Sy2 =
y

Ω

y2dxdydz =
1

60
sign (V )

s∑
i=1

n(i)−1∑
k=2

∣∣∣∣∣∣∣
x

[i]
1 y

[i]
1 z

[i]
1

x
[i]
k y

[i]
k z

[i]
k

x
[i]
k+1 y

[i]
k+1 z

[i]
k+1

∣∣∣∣∣∣∣
×
(
y2

1 + y2
k + y2

k+1 + y1yk + y1yk+1 + ykyk+1

) (4.110)

Sz2 =
y

Ω

z2dxdydz =
1

60
sign (V )

s∑
i=1

n(i)−1∑
k=2

∣∣∣∣∣∣∣
x

[i]
1 y

[i]
1 z

[i]
1

x
[i]
k y

[i]
k z

[i]
k

x
[i]
k+1 y

[i]
k+1 z

[i]
k+1

∣∣∣∣∣∣∣
×
(
z2

1 + z2
k + z2

k+1 + z1zk + z1zk+1 + zkzk+1

) (4.111)
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Sxy =
y

Ω

xydxdydz = sign (V )
s∑
i=1

n(i)−1∑
k=2

∫
p0p

(i]
1

)(i]

k
p
[i]
k+1

xyD(x, y, z)

=
1

120
sign (V )

s∑
i=1

n(i)−1∑
k=2

∣∣∣∣∣∣∣
x

[i]
1 y

[i]
1 z

[i]
1

x
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k y

[i]
k z

[i]
k

x
[i]
k+1 y
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∣∣∣∣∣∣∣ (2x1y1 + x1yk + x1yk+1

+xky1 + 2xkyk + xkyk+1 + xk+1y1 + xk+1yk + 2xk+1yk+1)
(4.112)

Sxz =
y

Ω

xzdxdydz =
1

120
sign (V )

s∑
i=1

n(i)−1∑
k=2

∣∣∣∣∣∣∣
x

[i]
1 y

[i]
1 z

[i]
1

x
[i]
k y

[i]
k z

[i]
k

x
[i]
k+1 y

[i]
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k+1

∣∣∣∣∣∣∣ (2x1z1 + x1zk + x1zk+1

+xkz1 + 2xkzk + xkzk+1 + xk+1z1 + xk+1zk + 2xk+1zk+1)
(4.113)

Syz =
y

Ω

yzdxdydz =
1

120
sign (V )

5∑
i=1

n(i)−1∑
k=2

∣∣∣∣∣∣∣
x

[i]
1 y

[i]
1 z

[i]
1

x
[i]
k y

[i]
k z

[i]
k

x
[i]
k+1 y

[i]
k+1 z

[i]
k+1
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+ykz1 + 2ykzk + ykzk+1 + yk+1z1 + yk+1zk + 2yk+1zk+1)
(4.114)

where sign (V ) is the symbolic function of the volume of the domain Ω, which
represents the direction of the domain.
The centroid of the block can be calculated by:

x0 =
Sx
V

y0 =
Sy
V

z0 =
Sz
V

(4.115)

4.6 SOR iteration method

In the 3D-DDA, the Successive Over-Relaxation (SOR) method is used for solving
the linear system of equations, resulting in faster convergence [130]. According to
the global Equation (4.15), a square system of 12×n linear equations with unknown
D is shown in Equation (4.116).

KD = F (4.116)

Then K can be decomposed into a diagonal component χ, and strictly lower and
upper triangular components Ľ and R̂:

K = χ+ Ľ+ R̂ (4.117)
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A relaxation factor ω is used for the linear equations, the Equation (4.116) can be
written as:

(χ+ ωĽ)D = ωF −
[
ωR̂+ (ω − 1)χ

]
(4.118)

where the constant 0 < ω < 2 , which can guarantee the SOR solution convergence.
The SOR method is an iterative technique that solves the left hand side of this ex-
pression forD, using the previous value forD on the right hand side. Analytically,
this may be written as:

D(k+1) = (χ+ ωĽ)−1
(
ωF − [ωR̂+ (ω − 1)χ]D(k)

)
(4.119)

whereD(k) is the k-th iteration of theD. TheD(k+1) can be calculated sequentially
by the forward substitution, which can be written as:

D
(k+1)
i = (1−ω)D

(k)
i +

ω

Kii

(
Fi −

∑
j<i

KijD
(k+1)
j −

∑
j>i

KijD
(k)
j

)
, i = 1, 2, . . . , n

(4.120)

4.7 Procedure for 3D-DDA program

A flowchart of procedures of the 3D-DDA code, including the sub-matrices, contact
mechanics and open-close iterations, has been created as previously described, and
is shown in Figure 4.10. Some details of those steps are introduced:

• (1) Input geometric data includes the coordinates of the vertexes and the order
of the generated surface, the obj file format is used in this program. Furthermore,
the loading, fixing and measuring points are input in this part. Input physical
data includes the material parameters (unit mass, volume force, Young’s modu-
lus, and Poisson’s ratio, etc) and computational parameters (time steps, contact
stiffness and maximum allowed displacement, etc).

• (2) Detect the contact types is done by the CPM. The open-close iterations
method is used to apply or remove normal, shear, or frictional springs based on
the contact types.

• (3) Check the convergence should meet two conditions: No penetrations and
no tension forces. If the conditions have not been met through the six-step open-
close iteration or the displacement exceeds the defined limit, the time intervals
need to be shortened.
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Figure 4.10: Flow chart of 3D-DDA procedure.
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4.8 Concluding remarks

The mathematical formation of the 3D-DDA method was presented in this section,
some new numerical technologies were used in programming:

− The CPM was used to detect the contact types, the calculation speed was
greatly improved and the calculation consumption was saved by comparing the
original direct method.

− The soft contact approach instead of the hard penalty method was used in this
thesis to consider the normal and shear contact stiffness.

− The contact was divided in two types, which are vertex-to-face contact and
vertex-to-vertex contact, corresponding normal and shear springs as well as fric-
tional forces were added based on the contact type.

− During each time step, the global equilibrium equations were solved itera-
tively by the SOR method to determine the lock position.

With these improvements, this 3D-DDA code will be able to simulate more con-
ditions for discontinuous mediums. And the simulation results can be greatly im-
proved for better predictions of their physics.
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Chapter 5

2D-DDA results application to ballast
flight in high speed railways

5.1 Introduction

In this chapter, a numerical model based on the 2D-DDA method is proposed to
study the ballast flight caused by dropping snow / ice blocks in high-speed railways.
The following aspects are emphasized:

• The validation of the proposed model is done by comparing the numerical
results with the experimental results.

• The numerical results show that the velocity, shape and incident angle of snow
/ ice block play an important role in the ballast flight. The number and the
maximum displacement of ballast particles increase as the train speed increases.

• The incident angle of ice block greatly affects the movement direction of
ballast particles.

• The shape of the ice block affects the amount and extent of ballast flight.

5.2 Background

The phenomenon of ballast flight is one of the major problems in high speed bal-
lasted track, which has resulted in major maintenance costs and safety concerns.
Flying ballast particles may hit the rail, the train body or the passengers through
stations. Furthermore, small particles of ballast may come to rest between the rail-
head and the wheels of rail vehicles, which cause substantial local bending damage
to the rail [131, 132]. The aerodynamic effect is commonly regarded as the main
cause of ballast flight [133, 134]. However, as counted by Saat et al. [135], about
50% of ballast flight incidents occur in snow condition. This is because high-speed
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trains run through snow zone and blow up the snow which sticks to the under-
floor equipment and freezes rapidly into ice, then, the frozen snow and ice drops
at high speeds from trains due to temperature changes, train vibration and heat
from the brakes, causing the ballast to fly up [136, 137], as shown in Figure 5.1.
The effects of ballast flight caused by dropping snow / ice may lead to serious
catastrophic consequences due to the high initial velocity, large mass, and chain
reaction of the falling snow / ice. snow / ice dropping and influencing factors of

Figure 5.1: Schematic illustration of the mechanism and process of ballast flight
caused by dropping ice block.

ballast flight have been studied in many recent studies. Loponen et al. [136] studied
the amount of the excitation required to drop snow from the train underframe. They
used a simplified equilibrium equation based on the adhesive forces to indicate that
the snow dropping requires an acceleration amplitude of approximately 20-2000 g
depending on the characteristics of the snow mass. Kawashima et al et al. [137]
carried out an experimental study using air cannon tests to investigate the ballast-
flight phenomenon caused by the dropping of accreted ice, and gave a relationship
between the number of flying ballast stones and the mass, shape, speed, and angle
of the ice. Furthermore, computational fluid dynamics (CFD) methods have been
applied to the study of the flow between the train underbody and the track bed
around the bogie area and its impact on the ballast flight [138, 139, 140]. Xie et al

[141] used a 3-D numerical model based on the coupling between Navier-Stokes
equations based model and a discrete phase model to investigate the flow field in
the presence of snow accumulation in the train underframe. The numerical result
showed that the snow particles accumulated and moved on the train bogies by the
high-speed air. However, to the best of our knowledge, there are no computational
techniques focused on the dynamic impact behavior between the ice block and the
ballasted track bed which is the key reason resulting in the ballast flight during
winter. In this study, the discontinuous deformation analysis (DDA) method is used
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to determine the displacement of irregular ballast particles and the collision between
ice block and ballast particles. DDA is a kind of discrete element method (DEM),
developed by G.-H Shi in 1989 for application of rock fracture mechanics and
geotechnical or structural problems [9, 142]. Ishikawa et al. first used DDA for
simulating deformation behavior of ballast [21], which showed good performance
in the study of coarse granular materials.
The main purpose of this chapter is to determine the influence factors of ballast
flight and to analyze the dynamic behavior of ballast particles during their collision
with a snow / ice block. In the DDA method, the kinematic conditions of the
contact surfaces are enforced through the penalty method in order to avoid the inter-
penetration between blocks. The performance of the ballast flight is evaluated by
considering the velocity, the shape and the incident angle of snow / ice blocks. The
numerical results show that these factors influence significantly the ballast particles
dynamics and also their flight as well as the collision between ballast particles.

5.3 Validation: Dynamic behavior of ballast after col-
lision.

In this first test, the dynamic behavior of ballasted track bed at the time of collision
with an ice block was verified according to the air cannon experimental results by
KawashimaI et al. [137]. The behavior of a 600 mm × 105 mm ice block with
a velocity of 80 km/h was simulated, and the computed results were compared
with the experimental observations. The DDA simulations exhibited phenomenon
of ballast flight similar to the ones observed experimentally, as shown in Figure
5.2. The number of ballast particles thrown 330 mm (distance from the ballast to
the train underframe) or higher N330 for two different mass was calculated by the
current DDA model. Due to the shape of the ice block in the air cannon test is
cylindrical, its mass can be calculated by:

Mice = ρπ(
d

2
)2H (5.1)

where ρ = 0.9340 × 10−6 kg/mm3 is the density of ice [143], and d = 105 mm
is the diameter of the cylinder. The mass of the ice block depends on the height of
the ice cylinder H . The results from both experimental and numerical simulations
showed that the number of the flying ballast particles increases as the velocity and
the mass of ice block increase, as shown in Figure 5.3. The numerical results agree
well with the experimental results.
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Figure 5.2: Comparison between the numerical and experimental responses [137] of
the blocks for the DDA method.

Figure 5.3: Comparison between the numerical and experimental values ofN33 [137]
for the DDA.
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5.4 Simulation results

5.4.1 Velocity of ice block

5.4.1.1 Cross section

The ballast shoulder has a width of 500 mm and a height of 100 mm, whereas
the ballast bed has a thickness of 350 mm (see Figure 5.4). Based on the Euro-
pean standard: aggregates for railway ballast (13450, 2002) [144], the gradation of
ballast particles is from 31.5 mm to 63 mm, where the ballast particles have an
irregular shape and are completely compacted. The ice block is assumed to be a
circular shape with a diameter of 100 mm, which falls from a height of 600 mm on
the ballast bed, where the falling distance is approximately equal to the height of
the rail plus half of the height of the bogie. Adding the unit mass, elastic modulus,
Poisson ratio, friction angle, etc. to the stiffness matrix in accordance to the physical
characteristics of the ballast and the ice [143, 145], as shown in Table 5.1.

Figure 5.4: Track bed model

Table 5.1: The material parameters of ice and ballast

– Unit mass Elastic modulus Poisson ratio Friction angle

Ice 934kg/m3 10GPa 0.06 –
Ballast 2600kg/m3 50GPa 0.20 45o

The initial vertical velocity is related to the falling location. In addition to the bogie
position, ice and snow may also pack and fall off in the coupler pocket, on the top
of the train, at the train connection, or even on the overhead contact system (OCS).
The standard height of contact wire is 5.1 m from the top of the rail [146], and the
vertical velocity of falling ice from OCS is about 10 m/s. Therefore, in the present
numerical investigations, we used 0 m/s, 5 m/s and 10 m/s as initial vertical
velocities. Overall, the simulation results presented below show that ballast flight
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responses to increased velocity varied significantly. There are three key phenomena,
are shown in Figure 5.5: (1) the movement trajectory of the ice block; (2) the
evolution of the marked ballast displacement; and (3) the responses of the ballast
bed. The phenomenon shows that the ice block after the collision first rebounded
and then rolled. The displacement of ice block increases with the initial vertical
velocity. When the vertical velocity exceeds 5 m/s, the ice block hits the rail, or
even bounce and a secondary strike on the track bed happens when the velocity is
more than 10 m/s. For the ballast after the collision, the higher the initial vertical
velocity, the higher rebound of marked ballast is ejected, the severity of ballast bed
responses is generated, and the greater the number of ballast particles is ejected.
From Figure 5.6, we can get the same results, the number of flying ballasts and
flying height of the ballast increase with the initial vertical velocity.
Figure 5.7 shows the displacement of the ice block and a marked ballast. In general,
a larger initial velocity induces greater displacement. However, unlike in the case of
small and moderate initial vertical velocities (0m/s and 5m/s), during the collision
process at initial vertical velocity of 10 m/s, there is a collision between ice block
and rail, which may reduce significantly the displacement of ice block after the
impact (see Figure 5.7(a)). It follows that the ballast trajectories and displacement
show that its movement may be divided into three phases. Taking the initial vertical
velocity of 5 m/s as an example (see Figure 5.7(b)), the first phase sited between
t= 0 s and t= 0.11 s corresponds to a stable state of the ballast which remains
motionless before its impact by the ice blocks. The second phase sited between t=
0.11 s and t= 0.34 s corresponds to the impact and flying processes in which the
ballast undergoes a rebound following a parabolic curve. The third phase sited after
t= 0.34 s corresponds to the marked ballast fly-back. It should be mentioned that
the severity and the duration of every phase strongly depend on the initial vertical
velocity. The increased initial vertical velocity induces greater displacement of the
ballast, and longer flight duration, which results in a more serious consequence.

5.4.1.2 Longitudinal section

The longitudinal section is more realistic since it considers the real velocity of the
ice block dropping from high-speed trains. The high-speed railway is commonly
defined by the maximum running speed exceeds 200 km/h. However, the running
speed of high-speed railways in China, Japan and France exceeds 300 km/h and
even the maximum test speed of the eastern line in France is 574.8 km/h [132]. In
addition, many ultra-high-speed railways are under development and under con-
struction. In order to analyze the initial dropping velocity of the ice block, the
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Figure 5.5: Computed ballast flight depending on the initial vertical velocity: (a) Vy=
0 m/s (free fall); (b) Vy = 5 m/s; (c) Vy = 10 m/s
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Figure 5.6: Relationship between (a) number of flying ballast particles and initial
vertical velocity of ice block, (b) maximum flying height and initial vertical velocity
of ice block

Figure 5.7: The displacement of (a) ice block and (b) marked ballast for different
initial vertical velocity in cross section
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initial collision position was set on the surface of the ballast bed. An initial vertical
velocity of 3.5 m/s which corresponded to the falling height of 600 mm, the initial
longitudinal velocity equal to the train running speed, and four initial longitudinal
velocities from 100 km/h to 400 km/h with an interval of 100 km/h were used.
The trajectory of the ice block and marked ballast, as well as the phenomenon of
ballast bed after the collision, is represented in Figure 5.8. It is clear that the track
bed was damaged after the collision, the ballast particles were hit and displaced, and
the surface of the track bed showed different degrees of depression. The severity of
the damage of the track bed had a positive relationship with the initial longitudinal
velocity. For the trajectory of the ice block, the ice block quickly flew upward and
forward after the collision. For the trajectory of marked ballast, we know that the
ballast flew to the front direction. The height and distance of the ballast flight
increased with the initial longitudinal velocity. When the dropping longitudinal
velocity is more than 300 km/h, the marked ballast may collide with the train
underframe since the maximum height of the marked ballast after the collision is
more than 330 mm (distance from the ballast bed to train underframe)[137]. If the
ice and ballast particles reach the train underframe, they may accelerate significantly
due to the collision with the train or may strike off more ice /snow blocks, causing
more serious consequences. Indeed, the effects of ballast projection may vary from
depending on where the particle lands. By considering the ballast particles flying
height H , the impact risk is classified into three categories:

• If H ≤ 184 mm(height of UIC-60 rail), flying ballast particles have the
possibility to hit the rail;

• If 184 mm<H ≤ 330 mm, flying ballast particles have the possibility to hit
the wheels of the train ;

• If H >330 mm, flying ballast particles will certainly hit the bottom of the
train, and probably the rail and the wheels of the train.

The displacement of the marked ballast and the ice block was calculated, as shown
in Figure 5.9. Results show that the displacement of marked ballast is linear with
the increasing initial longitudinal velocity at t = 0.5 s. The displacement of marked
ballast of 400 km/h is about four times of that 100 km/h. Significantly, the initial
longitudinal velocity of the ice block directly affects the displacement of ice block
and ballast particles. From Figure 5.10, the numerical results show that the number
of flying ballast particles and the vertical displacement of marked ballast increases
from 100 km/h to 400 km/h. When the longitudinal velocity of ice block is in
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the range of 200 km/h to 300 km/h, the results exhibit a peak of 33 % and 47
% of the total number of flying ballast and a maximum flying height of marked
ballast. Above 300 km/h, this process evolution increases gradually until a plateau
is reached. This non-uniform evolution may be related to the gradation of ballast
composed of different particle sizes. As the longitudinal velocity increases, most of
the small size and a part of the middle size of ballast particles in the impacted area
fly above the bed surface.
According to the above simulation results, the initial longitudinal velocity of the
snow / ice block which is directly dependent on the running speed of the train, has
a great impact on the ballast flight. Reducing the speed of trains is the simplest
and most effective mitigation strategy. However, this method may defeat the main
purpose of high-speed lines. The national center of operation of SNCF in France
proposed a time schedule which divided train speed into three kinds: acceptable,
tolerable and unacceptable. The weather forecast, mechanical simulation, and safety
approach were taken into consideration.

5.4.2 Incident angle of ice block

Regarding the angle of incidence of the ice block, in the longitudinal section, this
angle can correspond to the different attachment positions of the ice, as shown in
Figure 5.11. The incident angle is not an independent variable, while it is related
to the train speed and the distance of drop as well as the ice dropping position;
therefore, four angles (0o, 30o, 60o, and 90o) were investigated in the simulation.
The incident angles were controlled by the velocity of the longitudinal and vertical
directions. The total velocity was set to 20 m/s.
Figure 5.12 shows the trajectory of the ice block and the marked ballast as well
as the response of the track bed after the collision at different ejection angles.
Based on these simulation results, it can be seen that the incident angle is also
one of the main factors affecting ballast flight. When the incident angle is 0o, the
effect is insignificant, and just two ballast particles are moved above the surface.
The maximum vertical displacement of the marked ballast is only 1.1 cm. Among
the four angles, the ejection angle of 90o has the widest and the deepest impact,
where the displacement direction of the marked ballast is essentially vertical. When
the angle is 30o or 60o, there is a larger longitudinal and vertical displacement.
Comparing the reflection angles of the ice block in the four cases, the larger the
angle of incidence, the larger angle of reflection, and the greater probability that the
ice block collides with the bottom of the train. Figure 5.13 shows the displacement
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Figure 5.8: Relationship between ballast flight and longitudinal velocity: (a) Vx =
100 km/h; (b) Vx = 200 km/h; (c) Vx = 300 km/h; (d) Vx = 400 km/h
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Figure 5.9: The displacement of (a) ice block and (b) marked ballast for different
velocities in longitudinal section

Figure 5.10: Relationship between (a) number of flying ballast particles and initial
longitudinal velocity of ice block; (b) maximum flying height and initial longitudi-
nal velocity of ice block
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Figure 5.11: Three ice dropping types and incident angles

of the ice block and the marked ballast. The ice block with the incident angle of 0o

has the largest displacement of the four angles since the velocity in the longitudinal
direction is larger than the others. However, for the displacement of the marked
ballast, the displacement of the ballast with an incident angle of 0o is the smallest.
The displacement at incident angle of 30o and 60o is larger than the other two.
Furthermore, the marked ballast of 90o has a large second rebound process (see
Figure 5.12(d) and 5.13(b)).

5.4.3 Shape of ice block

In the third simulation, circular, triangular and square ice blocks with a diameter/-
side length of 100 mm were placed 600 mm above the ballast bed surface at the
center of the track. With the initial vertical velocity of 10 m/s, the impact results
are shown in Figure 5.14.
Three shapes of ice block trajectories are significantly different. The triangular ice
intrudes the ballast bed directly after colliding, while the square ice bounces off. The
trajectory of the circular bounced and hit the trackbed twice. Furthermore, accord-
ing to the response of the ballast bed after collision, the triangular ice ejected the
greatest number of particles and caused the greatest height of ejection, on account
of its contact area with the track bed being the smallest, resulting in maximum
pressure. The square ice has the widest and the deepest impact among the three,
due to its larger contact area and greater mass. The results of the displacement of
the ice block and the marked ballast are shown in Figure 5.15. After the collision,
the triangular ice has the smallest displacement and the square ice has the largest
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Figure 5.12: Ballast flight at different incident ejection angles: (a) α = 0o; (b) α =
30o; (c) α = 60o; (d) α = 90o
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Figure 5.13: The displacement of (a) ice block and (b) marked ballast for different
angles in longitudinal section

rebound. The triangular ice causes the maximum displacement of ballast particles,
followed by the circular ice and then the square ice.
An investigation by the Japan Railway Technical Research Institute showed that
the density of the packing snow and ice at the bottom of a train is from 150 to
900 kg/m3 and the maximum weight of snow / ice that may drop is about 15 kg.
Furthermore, the shape of the snow / ice block which drops from the train is various
and irregular [147]. Therefore, the ballast flight caused by different shapes of snow
/ ice block is very complex and serious.
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Figure 5.14: Relationship between ballast flight and ice block shape: (a) Triangle;
(b) Circle; (c) Square
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Figure 5.15: The displacement of (a) ice block and (b) marked ballast of different
shapes

5.5 Concluding remarks

A numerical model based on the 2D-DDA method, was proposed to study the
dynamic behavior of ballast stones and their collision with a snow / ice block.
This study took into account the shapes of the ice blocks and the contacts between
ballast particles, where we assumed that contact constraints were imposed through
the penalty method. The ballast flight induced by the dropping snow / ice with some
variations in intensity depends on the velocity, the incident angle, and shapes of
the ice blocks. The main findings derived from the numerical simulation may be
summarized as follows:

− The velocity of the snow / ice block, which directly depends on the running
speed of the train and the position of the ice attached, has a great impact on the
ballast flight.

− In the longitudinal-section, the number of flying ballast particles and their
displacement increase from 100 km/h to 400 km/h. When the longitudinal
velocity of the ice block is in the range of 200 km/h to 300 km/h, the results
exhibit a peak of 33 % and 47 % of the total number of flying ballast and
maximum of flying height of marked ballast.

− The angle of impact greatly influences the direction of the movement of the
ballast particles. The angle of incoming snow / ice blocks, which indeed are the
impacting projectiles, is closely related to the location of a detaching projectile.
Hence, it is worthwhile that, in order to significantly reduce the ballast flight
caused by the melting of snow / ice blocks, some measures should be taken to
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prevent snow accumulating in the train and snow settlement.

− The shape of the snow / ice block affects the extent of ballast flight. The
triangular ice block intrudes the ballast bed directly after collision, while the
square ice bounces off. The triangular ice ejects the greatest number of particles
and causes the greatest height of ejection. The square ice has the widest and the
deepest impact among the three.

Also, it is worth noting that very little research has been done on ice block and
ballast particle breakage from the point of view of aerodynamic interactions and
numerical modeling . The breakage process is very important as it may indicate the
violence of the impact after the flying ballast collision step. Thus, the analysis of
the breakage process by the DDA method is still an open problem which should be
undertaken in future studies.
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Chapter 6

Fluid-Solid coupling application to
stability of breakwater

6.1 Introduction

In this chapter, a coupled Fluid-Porous-Solid model is used to study the stability of
breakwater. The following aspects and results are emphasized:

• The porous non-linear equations are added to the inertia terms of RANS fluid
equations;

• The solid model is based on the Discontinuous Deformation Analysis method;

• The coupling between the fluid and the solid is carried out by transmitting the
pressure of the fluid mesh nodes to the solid polygon vertices;

• The breakwater stability depends on the thickness and slopes of the porous
layer;

• The breakwater stability depends on the shape of armour units.

6.2 Background

Breakwaters are used for the protection of harbors and beaches against wave action.
Their failure may be caused by the motion of the caissons and the global instability
of the rubble mound [148, 149]. For the motion of caissons, the most common forms
are sliding, subsidence, and overturning [150], which may induce the movement of
armour units to increase the failure of the breakwater.
Elsewhere, breakwater failures have been investigated by several empirical stud-
ies [151, 152] and by some numerical and experimental methods [153, 154]. For
the computational techniques, the computational fluid dynamics (CFD) method is
the most common tool used to describe the wave impacts. Kocaman et al. [155]
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discussed the impact of dam-break induced shock waves on a vertical wall by a
CFD RANS-VOF solution. The simulation results show that the impact of dam-
break flood waves on the vertical wall causes wave reflection against the wall and
the occurrence of a negative wave. The impacts of waves on the vertical wall were
also investigated by Liu et al. [156] using a two-phase compressible CFD solver.
Recently, many researchers made a series of attempts to couple the fluid and solid
models. Discrete Element Method (DEM) is usually used to calculate the movement
of armour units. A wave-structure interaction method was proposed by Latham et
al. [157]. In this method, the forces and the volume fraction from the CFD model
are mapped onto the DEM structure. Ren et al. [158] used a coupled SPH-DEM
method to investigate the stability of armour units in rubble-mound breakwaters. An
interfacial force-balance condition achieved the coupling between the fluid particle
(SPH) and the solid spheres (DEM).
Due to the complexity of the breakwater structure, the porous medium should also
be considered. Traditionally, Darcy’s law and Forchheimer law were used to in-
vestigate linear and non-linear structures for porous armour layer [109]. Hsu et al.
[159] proposed a mathematical model based on the Volume-Averaged Reynolds-
Averaged Navier-Stokes (RANS) equations that coupled the fluid and the porous
medium to describe surface wave motions in the vicinity of a coastal structure.
In this model, the Forchheimer law was added by the volume-averaged process.
Additionally, this fluid and porous medium coupled model is also developed in
OpenFoam [110, 160, 161, 113], an extended Forchheimer law which adds a mass
term that accelerates a certain amount of water considered.
In this chapter, we present a triple-coupled Fluid-Porous-Solid model. The fluid
model is described by the Volume-Averaged Reynolds-Averaged Navier-Stokes equa-
tions in which the extended Forchheimer law used to calculate the porous medium
flow is added to the inertia terms [159]. The solid model, which is based on the
2D-DDA, is used to compute the movement of the caisson and armour units [9].
This method enables to take into account the shapes of armour units, as well as
the contact between blocks. The coupling between the fluid and the solid is carried
out by a transmission strategy of the fluid mesh nodes’ pressure towards the solid
polygon vertices, while the coupling between the fluid and the porous medium
consists of the equations of the porous model in terms of the inertia of the fluid
model.
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6.3 Numerical model and validation

The numerical simulations were performed to analyze the flow evolution and to
characterize the forces on the breakwater subjected to violent wave impacts. The
breakwater is composed of a vertical caisson with shoreward armour units and a
porous seaward armour layer (see Figure 6.1). The hydrodynamic impact is gen-
erated by the solitary wave, with a wave height (hw = 6 m) and a water depth dw
= 10 m. The caisson position x/hc = 15.96 (where hc= 13 m is the height of the
caisson)[162, 163]. It is worth noting that the armour layer protects the structure
from the attacks of incident waves by dissipating their energy. These armour layers
are often built of large armour units and can be considered as a porous medium.
Indeed, many recent scientific studies have considered the porosity parameter to
represent different types of armour units in the CFD simulations. Van Gent [112]
proposed a value laying between 0.25 to 0.4 for cube-shaped units and suggested
a porosity value of 0.49 for tetrapod-shaped units. An armour layer thickness of 2
m and a porosity value of 0.49 are used in the following simulations. The location
of the gauges is also identified in Figure 6.1, numbered from 1 to 5, to monitor the
surface and the velocity of waves.

Figure 6.1: Schematic illustration of the computational domain. Wave type: solitary
wave; wave height hw = 6 m; water depth dw =10 m; armour layer thickness Ta = 2
m; breakwater caisson height hc =13 m; caisson position: x/hc = 15.96. The precise
location of gauges P1-P5 is 2hc, 11hc, 13hc, 14hc and 15.5hc (m), respectively.

6.3.1 Boundary conditions

• In the input computational domain, the free surface elevation η is given by:

η = hwsech
2

[√
3hw
4d3

w

X + ψ

]
(6.1)

where X = (x − ct), hw is the wave height, dw is the water depth, ψ is the wave
phase shift, and the wave celerity c is

√
g(hw + dw). The horizontal and vertical
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velocity components Uh and Uv verify [164]:

Uh =
η
√
gdw
dw

[
1− η

4dw
+
d2
w

3η

(
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2d2
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)
d2η

dX2

]
(6.2)

and

Uv =
−y
√
gdw

dw
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dη

dX
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3
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2d2
w

)
d3η

dX3

]
(6.3)

where x and y are the horizontal and the vertical space variables. Here, we assume
that the boundary is at x= 0, and the free surface will start from the highest point of
the solitary wave.
• At the top boundary, we assume p = patmospheric; at the bottom boundary, we set
a slip condition, where the roughness can be assumed to be negligible.

6.3.2 Mesh and time step convergence

The validation of the fluid model is carried out by comparing the calculated horizon-
tal velocity and water height with the theoretical free surface elevation η at transect
P1 (see Figure6.1) deduced from Equation (6.1). Three types of meshes are used for
mesh convergence validation, which contains 24510, 48000 and 94080 tetrahedral
mesh elements, respectively. A refinement ratio

√
2 is used for the mesh validation

[105]. The grid spacing of the coarser meshes (∆xc,∆yc) to grid spacing of the finer
meshes (∆xf ,∆yf ) is given as:

rg =
∆xc
∆xf

=
∆yc
∆yf

=
√

2 (6.4)

Figure 6.2(1) shows that the fine and medium meshes have similar results and give
better than coarse mesh. Considering both the accuracy and the simulation time,
the medium mesh is used for the following studies. Three time steps are designed.
Figure 6.2 (2) shows that the results of the three time step cases are all reasonable.
The accuracy of the case (∆t=0.1 s ) is clear enough; therefore, we use time steps
of 0.1 s in this work. The refinement of the space or time steps can improve the
quality of the results; however, this is not enough. It is therefore necessary to use
digital diagrams or models, such as Serre [165, 166] or Extended Boussinesq-like
models [167], which have good dispersive capacities for accurate prediction of wave
activity.
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Figure 6.2: (a) Horizontal velocity and free surface elevation of mesh, and (b) time
step convergence at gauge P1 (see Figure 6.1 for the wave parameters and gauges
location).

6.4 Simulation results

6.4.1 Flow patterns around the breakwater

The simulation of the flow patterns around the breakwater was done by considering
the fluid-porous coupling. The wave evolution around the breakwater presented in
Figure 6.3 shows that as the wave approaches the vertical caisson grows consider-
ably in amplitude until the breaking process occurs (Figure 6.3(b)). This then leads
to an up-moving jet due to the wave-squeezing processes (Figure 6.3(c)).
The distribution of the wave pressure in front of the vertical caisson is shown in
Figure 6.4. The normal pressure due to solitary waves is mainly located between 20
s and 25 s. The results show that the fluid pressure is relatively high in the lower half
of the caisson, which can induce a risk of sliding of the structure or even give rise
to a liftforce which could accentuate the overturning process since the maximum
pressure is located at the caisson’s toe (see point A, Figure 6.4).
At the vicinity of the breakwater, the height of the waves (expressed as H=η + dw)
increases considerably as they approach the breakwater until the breaking process
occurs, as shown in Figure 6.5. The wave-breaking process happens after the impact
between the wave and the caisson [167]. Three main reasons cause this wave-
breaking process:(1) non-linear terms and secondary waves, (2) reflection on the
porous medium and the caisson, (3) wave-wave interactions.
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Figure 6.3: Pattern changes: (a) t = 19.5 s; (b) t = 20.5 s; (c) t = 21.5 s. The impacting
wave is a solitary wave with a wave height 6m and a water height 10m. The caisson
height is 13 m. The thickness of the porous medium (porosity = 0.49) is 2 m. The
slope is 1:2.
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Figure 6.4: Pressure distribution along the vertical caisson. The impacting wave is a
solitary wave with a wave height 6 m and a water height 10 m. Point A is located
at the bottom of the caisson. Points B-D are 1

3
hc, 2

3
hc, and hc away from point A.

Figure 6.5: Water height evaluation at the vicinity of breakwater (The precise
location of gauges P2-P5 see Figure 6.1)
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6.4.2 Solution behavior with the breakwater seaward slopes

The wave motion and the flow pattern on the breakwater seaward slope are simu-
lated by the Fluid-Porous model, in which four slopes are considered. The slopes
are assumed to be 1:S, where S is the ratio of the slope bottom length to the slope
height, which equals 1, 2, 3, and 4. The simulation results are shown in Figure 6.6.

Figure 6.6: Surface wave deviation with various seaward slopes (1:S). For the wave
parameters, see Figure 6.1. The IWHmax of the four slopes are: (a) 1.86 m, (b) 3.71
m, (c) 5.57 m and (d) 9.28 m, respectively.

We then define the maximum impacting wave height (IWHmax) as the peak of the
incoming wave height after it impacts the caisson, as shown in Figure 6.6. Due to
the squeezing process of the breakwater, we observe that a larger S induces a bigger
(IWHmax) but less water is ejected. Hence, the Impacting Wave Height (IWHmax)
can be fitted through the following formula:

IWHmax = α1 + α2e
α3S (6.5)

where α1=0.41, α2=1.45 and α3=0.5. Fitting results are shown in Figure 6.7.
The seaward porous medium affects the wave. The turbulent kinetic energy K for
various thickness of the porous layer is shown in Figure 6.8. The large porous layer
has less turbulent kinetic energy due to a large dissipation. Several turbulences can
be found on the upper side of the caisson on the shoreward side, in the middle of the
caisson on the seaward side, as well as at the top and bottom of the porous medium.
The flow in the porous medium initially coincides with the direction of the wave
and then opposes it [168]. The porous medium significantly reduces the effects of
the breaking waves.
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Figure 6.7: Variation of IWHmax (see Figure 6.6) for various seaward slopes.

Figure 6.8: Turbulent kinetic energy K for various porous layer thickness in t=24.0
s. (see Figure 6.1 for the wave parameters).
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6.4.3 Solution behavior with the shape of shoreward armour
units

In order to analyze the stability of the shoreward armour units and the influence of
their shape, three typically shaped armour [68, 169] (see Figure 6.9) are modeled
and placed on the shoreward side of the breakwater. The armour units are optimally
arranged to ensure the initial position stability. Six units, numbered from 1 to 6, are
shown in Figure 6.10. The breakwater is then subjected to a violent solitary wave
impact whose input external force is calculated by Equation (3.27) (see the flow in
Figures 6.3 and 6.4). The material parameters used for the Solid-DDA model are
shown in Table 6.1.

Table 6.1: Material parameters used for simulations

Young’s modulus E Poisson’s ratio ρ unit weight m Penalty spring constant P Coefficient of friction µ

50 GPa 0.30 2400 kg/m3 2×108 N/m 0.6

Figure 6.9: Shapes of armour units used in the simulation.

Figure 6.10 shows the initial and the final position of the three various shapes of
armour units. The displacement of the caisson hindered by armour units is almost
zero and stable while varying degrees of sliding and rotating happen on the armour
units. The cubic units are more unstable than the other two; in fact, cubic unit No.2
experienced a significant fall. We found that units No.2 and No.3 have larger vertical
displacement while units No.3 and No.6 have large horizontal displacement. There-
fore, a falling process always happens on the rear side of the caisson and a sliding
process happens on the toe of the breakwater structure. As for the displacement, the
accropod and the tetrapod units followed the cubic units in that there is no significant
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drop; however, the rotation of the units can be seen. Because the two shaped units
are under force, the armour units move to rearrange and the structure becomes more
stable, with the tetrapod units.
The standard deviation (SD) of the displacement or the rotation of the armour units
is used to describe the stability of the breakwater, which is calculated by:

SD =

√∑N
i=1(φi − φ)2

N
(6.6)

where φi denotes the displacement or rotation value of units i at the final position,
φ is the average displacement or rotation value, and N = 6. The standard devia-
tions of the horizontal displacement, the vertical displacement, and the rotation are
shown in Figure 6.11. For the displacement of the armour units, we have obtained
SDcube > SDaccropod > SDtetrapod. For the rotation, however, the accropod units
are greater than the cubic and tetrapod units. Furthermore, the cubic units have
larger displacements, most of which are in the form of sliding along the slope.
In order to understand the motion of armour units, the trajectory of the six marked
armour units is investigated, as shown in Figure 6.12. The tetrapod-shaped units
and accropode-shaped units reached a steady-state after two hydrodynamic impacts,
while the cubic units continue to move during the five impacts. In general, the dis-
placement of tetrapod-shaped units significantly smaller than the other two shaped
units. It is because cubic armour units blocks bring resistance to breakwater by
the mass whereas tetrapod and accropode units bring resistance through the mass
and block interlock forces. Therefore, the cubic and tetrapod units by sliding and
rotation, respectively, to reach a stable state. Besides, the jump in the horizon-
tal displacement for the accropode units can be explained by accropode armour
units’ rearrangement. The design of the tetrapods is stable even in the most extreme
weather and marine conditions, and when arranged together in lines or heaps, they
create an interlocking.
Based on the simulation results, the tetrapod units are the most stable, followed
by the accropods, and then by the cubic armour units. The reason is that cubic
armour units bring resistance to the breakwater through mass whereas tetrapod and
accropod blocks bring resistance through mass and interlock forces among units.

6.4.4 Solution behavior with breakwater shoreward slopes

In order to analyze the influence of the slope of breakwater, three different slopes(
√

3

:1, 1:1 and 1:2) were investigated. In these three cases, the rubble mound structures
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Figure 6.10: Simulated movement for various shapes of armour units: (a) Cube, (b)
Accropod, (c) Tetrapod. The breakwater was subjected to solitary wave impacts
whose input external force is calculated by Equation (3.27). (See Figure 6.1 for the
wave parameters).
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Figure 6.11: Variation of standard deviations for three shapes of armour units.

of breakwater are composed of cubic blocks with the side length of 2.0 m. Six
blocks, numbered from 1 to 6, are shown in Figure 6.13. The breakwater is then
subjected to a violent solitary wave impact whose input external force is calculated
by Equation (3.27) ((see the flow in Figures 6.3 and 6.4). The material parameters
used for the Solid-DDA model are shown in Table 6.1.
Figure 6.13 shows the original model and final simulation results for three slopes.
The displacement of the slope of

√
3 : 1 is significantly larger than those of the two

other slopes. The slopes of 1:1 and 1:2 have roughly the same displacement from
time t = 0 s to t = 1.5 s. The displacement for the slope 1:2 becomes steady after t =
1.5 s. The final caisson displacement for the three slopes is: D√3:1 = 0.501 m, D1:1

= 0.380 m, D1:2 = 0.238 m, respectively. The flatter is the slope, the smaller the
displacement of the blocks is, the steadier the breakwater is. The reason is that the
rubble mound blocks in the flatter slope have large lateral resistance to the caisson.
The standard deviations of horizontal displacement, vertical displacement and rota-
tion are shown in Figure 6.14. For the displacement of rubble mound blocks, we all
have s√3:1 > s1:1 > s1:2, while there is no significant discrepancy during the three
slopes in term of rotation. The flatter slope was lower standard deviation which
indicates that the displacement of blocks tends to be close to the mean. Therefore,
the breakwater is more stable when the slope is flatter.
Figure 6.15 shows the horizontal and vertical displacements of the six cubic blocks.
The displacement of rear blocks can be divided into two phases: the phase of sliding
and the phase of the stable. Slopes 1: 2 and 1: 1 took about 1.2 s and 3 s respectively
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Figure 6.12: Standard deviations for three slopes
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Figure 6.13: Slope of breakwater: (a) slope=
√

3:1; (b) slope=1:1; (c) slope=1:2. The
shape of armour unit is cube. The breakwater was subjected to solitary wave impacts
whose input external force is calculated by Equation (3.27). (See Figure 6.1 for the
wave parameters).
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Figure 6.14: Standard deviations for three slopes

to reach steady-state, while the blocks in slope
√

3:1 are still unstable. It is clear
that the steeper the slope is, the longer it takes for the blocks to reach a steady state.
Besides, Block 2 and block 3 have larger vertical displacement than others. Block 3
and 6 have large horizontal displacement.

6.4.5 Effect of cohesion

In this simulation, a cohesion Cf=2 MPa and a tensile strength σt = 0.7MPa are
imposed, which may actually represent concrete placed on the surfaces and contact
points [68]. These values are obtained by adopting the extended Mohr-Coulomb
failure criterion based on the tension cut-off. It consists of reducing the tensile
strength of the material by imposing a value of σt while ensuring the following
condition: σt ≤ Ccotanφ. Thus, by fixing σt = 0.7MPa, we decrease the value
of C to Cf , which corresponds to the movement of one block of the caisson. Cf is
considered optimal.
Figure 6.16 shows that the displacement of armour units without cohesion is bigger
than the units with cohesion. All the units behind the caisson have been moved but
the units No.2 and 5 have moved significantly. Therefore, we have chosen to present
only the movements of units No.2 and No.5 as shown in Figure 6.17. For unit No.2,
when cohesion forces work, the steady-state can be reached in about 22.0 s and the
maximum displacement is 1.2 m which is far less than 1.90 m without cohesion.
For unit No.5, it reaches steady-state at 22.0 s (with cohesion) and 24.0 s (without
cohesion). In total, the displacement of the two units was lower by 36.8% and 23.8%
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Figure 6.15: Standard deviations for three slopes

107



respectively, as compared to when cohesion is absent. Therefore, we conclude that
cohesion enforces the stability of the breakwater.

Figure 6.16: Comparison of the motion of cubic units at final position: (a) cohesion=0
Pa, tensile strength σt = 0.7 MPa; (b) cohesion= 2 MPa, tensile strength σt = 0.7
MPa; (c) Comparison of the effect of cohesion. The breakwater was subjected to
solitary wave impacts whose external force is calculated by Equation (3.27) (See
Figure 6.1 for the wave parameters).
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Figure 6.17: Displacement of cubic armour units 2 and 5 with and without cohesion

6.5 Concluding remarks

The stability of a caisson-type breakwater was investigated using the fluid-porous-
solid triple coupled model. The fluid model was described by the Volume-Averaged
Reynolds-Averaged Navier-Stokes (VARANS) equations in which the nonlinear
Forchheimer equations for the porous medium were implemented as the terms of
inertia. The solid model was based on the DDA method to take the discrete behavior
of armor units into account. The coupling between the fluid and the solid was carried
out using a strategy that transmitted the pressure of the fluid mesh nodes to the solid
polygon vertices.
The results of the numerical simulation showed that the porosity and the thickness
of the porous layer had a significant influence on the distribution of the kinetic
energy of turbulence (TKE) around the structure of the breakwater. The greater
the thickness, the lower the intensity of the TKE. Indeed, the porous layer, located
just in front of the caisson, acts as a support structure that effectively dissipates
and absorbs the turbulent kinetic energy of the impacting waves. It reduces the
growth of wave crests and the overtopping of the caisson and also allows slope
adjustment just in front of the caisson to avoid possible progressive or severe rav-
eling of the lower part of the structure. The results of the numerical simulations
also showed that the maximum impacting wave height depended on the slope of
the structure of the breakwater. Thus, a new formula has been established for this
purpose. Moreover, the results also showed that the shape of the armor units was a
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major factor to be taken into account in the study of the stability of the structure. In
particular, they showed that tetrapod-shaped units were the most stable, followed by
acropod-shaped units and finally by cubic-shaped units, and that cohesion enforces
the stability of the breakwater.
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Chapter 7

Validations and application for
3D-DDA

7.1 Introduction

The mathematical formula of the 3D-DDA method was presented in Chapter 4, and
the corresponding 3D-DDA code will be verified by comparing the analytical results
and 2D results through three classic examples in this chapter. Then, a 3D coupled
fluid-structure interaction procedure will be proposed to investigate the stability of
a cracked gravity dam against increasing water level. The following three effects
are emphasized:

• The time intervals, interface friction angle and slope angle are studied by a
model sliding on an inclined plane;

• The case of multi-blocks is verified by comparing with 2D-DDA results;

• A 3D coupled fluid-structure interaction procedure is proposed to study the
gravity dam failure process;

• The effect of increasing water level and of the cohesion between blocks is
investigated.

7.2 Validations

7.2.1 Case 1: Free fall

This first academic test case corresponds to the validation of the 3D-DDA method
for the dynamic process. It concerns the free fall from a height h = 10.60 m of
a heavy block of density ρ = 2500 kg/m3, with an acceleration of gravity: g =
9.81 m/s2 (see Figure 7.1). In this example, we set the objectives of simulating
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the temporal evolution of velocity, in order to show the capacity of the developed
numerical model to deal with dynamic problems.

Figure 7.1: Schematic representation of a block in free fall. Falling height h = 10.60
m, g = 9.81 m/s2, initial velocity V0 = 0 m/s.

Figure 7.2 represents the evolution of the velocity of the block during its fall from
the height h. The calculations were carried out for a period of time T = 1.47
second, which corresponds to the time it takes for the block to reach the ground.
The comparison shows a perfect agreement between the numerical and analytical
results.

Figure 7.2: Comparison of analytical and numerical velocities. Falling height h =
10.60 m, g = 9.81 m/s2, initial velocity V0 = 0 m/s.
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7.2.2 Case 2: Sliding on an inclined plane

A classic dynamics example is used to verify the behavior of a block on an inclined
plane [170, 171], as shown in Figure 7.3, the slope angle, the friction angle, and the
time integration are studied in this case. The model consists of two blocks, in which
the bottom block is fixed and the upper block will accelerate and slides down on
the slope due to the gravity loading. The material constants of the two blocks are:
Young’s modulus E= 3000 Pa , Poisson ratio ν= 0.25, gravity g= 9.81 m/s2, and
the normal and shear contact spring stiffness kn=ks= 50000 N/m. Under the action
of gravity, the displacement s(t) and velocity v(t) of the block are analytically
determined as a function of time t, given as:

s(t) = 1
2
at2 = 1

2
(g sinα− g cosα tanφ)t2

v(t) = at = (g sinα− g cosα tanφ)t
(7.1)

where α is the slope angle and φ is the friction angle.

Figure 7.3: (a) Initial and (b) final positions of sliding model. α = 30o, φ=0.

Three time intervals: 0.1s, 0.01s and 0.001s are used to verify the time step conver-
gence at the sliding block. Figure 7.4 shows that the results of the three-time step
cases are all reasonable. The maximum relative errors for the three time intervals
are 1.4%, 0.56%, and 0.018%, respectively. This verifies that the DDA results match
the analytical limit equilibrium solutions at different time intervals, while smaller
time steps have better accuracy.

Three cases of friction angles, 0o, 10o and 20o, are investigated in this validation.
The accumulated displacements and velocities are calculated by Equation (7.1). The
variation of the velocity and displacement for different interface friction angles are
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Figure 7.4: Time step convergence at the sliding block. Slope angle α = 30o, friction
angle φ = 0o, time interval ∆t = 0.1s, 0.01s and 0.001s, respectively. Analytical
results calculated by the Equation (7.1).

shown in Figure 7.6, which verifies that the DDA results show a good agreement
with the analytical solutions (see Equation (7.1)).

Figure 7.5: Variation of the (a) velocity and (b) displacement for different interface
friction angles. Slope angle α = 30o, friction angle φ= 0o, 10o and 20o, respectively,
time interval ∆t = 0.01 s. Analytical results calculated by the Equation (7.1).

.

The slope incline angles also can affect the displacement and velocity of the sliding
block by changing the acceleration along the sliding plane (see Equation (7.1)).
Three different slope incline angles: α = 15o, 30o and 45o are studied. The variation
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of the velocity and displacement for different slope incline angles is shown in Figure
7.6. The comparison between the 3D-DDA and analytical results in different cases
validates the accuracy and applicability of the DDA method.

Figure 7.6: Variation of the (a) velocity and (b) displacement for different slope
incline angles. Slope angle α = 15o, 30o and 45o, respectively, friction angle φ=
0o, time interval ∆t = 0.01 s. Analytical results calculated by the Equation (7.1)

7.2.3 Case 3: Multi-blocks under gravity loading

The 3D-DDA method also can be valid by comparing with the 2D-DDA results. A
multi-block structure model similar to an arch bridge is established, in which the
outer sides of the arch blocks at both ends are fixed, and each block is only subject
to its own weight. The material constants of all rock blocks are: unit mass M= 20
Kg/m3, Young’s modulus E= 5e5 Pa, Poisson’s ratio ν = 0.2, the friction angle φ =
0o and cohesionCf = 0 Pa. Figure 7.7 (a) and (b) are the three-dimensional and two-
dimensional calculation results at initial and final position (∆t = 0.01s, time steps
= 60). The characteristic of this example is that the geometrical configuration, load
and fixed points of the block arch are all symmetrical, and all calculation results are
also symmetrical.

The velocity and displacement of the marked point which is the centroid of the
middle block are shown in Figure 7.8 and Figure 7.9. We can know that the three-
dimensional and two-dimensional results are highly consistent, the maximum rela-
tive errors of velocity and displacement are 3.8% and 1.7%, respectively.
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Figure 7.7: Multi-blocks model under gravity loading. ∆t = 0.01 s, time steps = 60.

Figure 7.8: Comparison of 2D and 3D velocity at marked point
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Figure 7.9: Comparison of 2D and 3D displacement at marked point

7.3 Application: gravity dam failure

7.3.1 Numerical model

In this section, we propose a 3D coupled fluid-solid coupling procedure to evaluate
the stability of a cracked gravity dam when the water level rises. In this process,
the gravity dam is assumed to be a discontinuous structure containing pre-existing
cracks. The fluid is assumed to be calm and stable water without violent waves
[172, 173].
The properties of concrete gravity dam are: unit mass M = 2500 Kg/m3, Young’s
modulus E = 50 GPa, Poisson’s ratio ν = 0.2, the friction angle φ = 30o and cohesion
Cf = 0.3 MPa, while the Fluid density is ρ = 1000Kg/m3. The geometric of gravity
dam and pre-crack position are shown in Figure 7.10.

7.3.2 Fluid-structure coupling

The coupling procedure occurs between the fluid and solid interface, as shown in
Figure 7.11, which includes a transmission solution that transfers the fluid pres-
sure to solid vertexes. The pressure exerted upon the dam is assumed to be purely
hydrostatic, which can be calculated by [174]:

P = P0 + ρgh (7.2)
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Figure 7.10: Numerical model of gravity dam with pre-existing cracks

where P is the fluid pressure acting on gravity dam at water depth h above the
crack position, P0 is the fluid pressure at crack position. As the height of the water
increases, and the corresponding pressure pi of all cells in the interface is calcu-
lated. pi can then be converted into an external load applied to the boundary of the
structure. This process is repeated several times until the dam failure reached. The
force on the cells is written as:

fi = pisi (7.3)

where pi is the fluid pressure at cell i, and si is the surface of the cell i. Finally, the
global forces (F1, F2, F3, F4) acting on the DDA block, as shown in Figure 7.11,
can be represented as:

F1 =
n∑
i=1

[
fi(

di4
di1 + di4

)ny

]
(

di2
di1 + di2

)nz =
n∑
i=1

fi(
di2nzdi4ny

RL
)

F2 =
n∑
i=1

[
fi(

di3
di2 + di3

)ny

]
(

di1
di2 + di3

)nz =
n∑
i=1

fi(
di1nzdi3ny

RL
)
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n∑
i=1

[
fi(

di2
di2 + di3

)ny

]
(

di4
di3 + di4

)nz =
n∑
i=1

fi(
di2nydi4nz

RL
)

F4 =
n∑
i=1

[
fi(

di1
di1 + di4

)ny

]
(

di3
di3 + di4

)nz =
n∑
i=1

fi(
di1nydi3nz

RL
)

(7.4)

where n is the total number of cells on the face, di1, di2, di3 and di4 are the distance
from the given cell centroid to vertex 1, 2, 3 and 4. ny and nz represent the unit
vector of y and z direction.
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Figure 7.11: Fluid-solid interface.

7.3.3 Simulation results

7.3.3.1 Effect of water level

In order to estimate the relationship between dam failure and water level, the wa-
ter level gradually increases above the fracture area until structural failure occurs.
According to the coupling process between fluid and solid, the forces acting on
the gravity dam can be calculated by Equation (7.4). Figure 7.12 shows the time-
depending forces exerted on the vertexes of the gravity dam with pre-existing cracks.
The results indicate that when the water reaches a height of 4 m above the fracture
zone, the pressure limit has been reached, the failure happens.
The failure behavior of the gravity dam is shown in Figure 7.13. It follows that the
falling blocks trajectories and displacement show that its movement may be divided
into three phases. The first phase sited between t= 0 s and t= 7.5 s corresponds to
a sliding state of the blocks move along the crack due to the water pressure. The
second phase sited between t= 7.5 s and t= 15.0 s corresponds to falling processes
in which the blocks fall into the bottom foundation. The third phase sited after t=
15.0 s corresponds to the stable state. It should be mentioned that the severity and
the duration of every phase strongly depend on the initial water pressure.
Figure 7.14 and Figure 7.15 show the variation of displacement of blocks No.
1 and No. 2 for three different water levels. The increased water level induces
early movement and may cause large displacement, which results in a more serious
consequence.
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Figure 7.12: Fluid force acting on solid vertex calculated by Equation (7.4).

7.3.3.2 Effect of cohesion

For concrete dams, cohesive strength usually accounts for a large part of the total
shear strength of the partially bonded concrete-rock interface[175, 176]. Parts with
high and low cohesion values may appear in clusters with a certain relative distance.
The reason is that the bond strength depends on many factors, such as the result of
cleaning the rock surface before concrete casting, local rock quality and the location
of the leak and other degradation processes. In order to investigate the influence
of the cohesion over the concrete-rock interface on gravity dam failure stability,
three values of cohesion employed in the numerical model and the variation of
displacement of block No. 1 for different cohesion are shown in Figure 7.16. There
is a significant difference between the displacement with and without cohesion.
By comparing the results of 3 MPa with 0 MPa, the displacement has a 16.7 %
reduction, and the movement 5.5 s earlier. Therefore, we can conclude that cohesion
improves the stability of the gravity dam.
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Figure 7.13: Failure behavior of the gravity dam; water height above the cracks h =
4.0 m.
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Figure 7.14: Variation of displacement of block No. 1 for three water levels.

Figure 7.15: Variation of displacement of block No. 2 for three water levels.
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Figure 7.16: Variation of displacement of block No. 1 for different cohesion, water
height above the cracks h = 4.0 m.

7.4 Concluding remarks

In this chapter, the 3D-DDA method was verified by comparing the analytical re-
sults and 2D results of three classic examples. Then, a 3D coupled fluid-structure
interaction procedure was proposed to study the stability of a cracked gravity dam
against increasing water level. The effect of the water level and the cohesion be-
tween the blocks was investigated.

− The validation of the 3D-DDA method was done by comparing the numerical
results with the analytical results. The time intervals, interface friction angle and
slope angle were investigated by sliding on an inclined plane compared with
analytical results. The case of multi-blocks was verified by comparing with 2D-
DDA results.

− The 3-D coupling procedure between the fluid and solid interface was pro-
posed, which included a transmission solution that transferred the fluid pressure
to solid vertexes.

− The effect of increasing the water level and cohesion between the blocks
was studied. The results showed that the increased water level induced early
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movement and might cause large displacement, which could result in a more
serious consequence. The cohesion improved the stability of the gravity dam.
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Chapter 8

Conclusions and future work

8.1 Conclusions

Discontinuous environmental problems were investigated based on the DDA method.
The brief theory of 2D-DDA was introduced and a 2D fluid and solid coupling
approach was proposed, wherein the fluid model was described by the Volume-
Averaged Reynolds-Averaged Navier-Stokes (VARANS) equations and the solid
model was based on the DDA method. Furthermore, the mathematical formulations
of 3D-DDA were introduced in detail and the corresponding code was programmed
and verified. The DDA method was used on ballast flight, breakwater and cracked
gravity dam.

The dynamic behavior of ballast stones and their collision with a snow / ice block
were studied using 2D-DDA. The shapes of the ice blocks and the contacts between
ballast particles were taken into account. The ballast flight induced by the dropping
snow / ice with some variations in intensity depended on the velocity, the incident
angle and the shapes of the ice blocks. Hence, setting the maximum operating
speed according to the weather conditions is an effective measure to reduce serious
consequences. It is noteworthy that in order to significantly reduce the ballast flight
caused by the melting of snow / ice blocks, some measures should be taken to
prevent snow accumulation in the train and snow settlement.

The stability of a caisson-type breakwater was investigated using the fluid-porous-
solid triple coupled model. The fluid model was described by the Volume-Averaged
Reynolds-Averaged Navier-Stokes (VARANS) equations in which the nonlinear
Forchheimer equations for the porous medium were implemented as the terms of
inertia. The solid model was based on the DDA method to take the discrete behavior
of armor units into account. The coupling between the fluid and the solid was carried
out using a strategy that transmitted the pressure of the fluid mesh nodes to the solid
polygon vertices. The results of the numerical simulation showed that the porosity
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and the thickness of the porous layer had a significant influence on the distribution of
the kinetic energy of turbulence (TKE) around the structure of the breakwater. The
greater the thickness, the lower the intensity of the TKE. Moreover, the results also
showed that the shape of the armor units was a major factor to be taken into account
in the study of the stability of the structure. In particular, they showed that tetrapod-
shaped units were the most stable, followed by acropod-shaped units and finally by
cubic-shaped units, and that cohesion enforces the stability of the breakwater.

The 3D-DDA method was verified by comparing the analytical results and the 2D
results of three classic examples. A 3D coupled fluid-structure interaction procedure
was then proposed to study the stability of a cracked gravity dam against increasing
water level. The effect of increasing the water level and cohesion between the
blocks was studied. The results showed that the increased water level induced early
movement and might cause large displacement, which could result in a more serious
consequence. The cohesion improved the stability of the gravity dam.

8.2 Future work

To augment the numerical and engineering contributions of this thesis, several im-
provements are recommended:

− The common-plane method used in the 3D-DDA method can economize on
calculations; however, it cannot be used to judge the contact between concave
polyhedrons. A highly efficient, universal and suitable contact judgment algo-
rithm should be proposed.

− The 3D fluid and solid coupling procedure were carried out to study purely
hydrostatic contexts. A general coupling method should therefore be proposed if
studying hydrodynamic problems is intended.

− Other numerical techniques, such as FEM, SPH, CFD, etc., can be developed
and coupled with the 2D or 3D DDA method, which will expand the applicability
of the DDA method.

With these improvements, the DDA method should be able to simulate more con-
ditions for various environmental problems. The simulation results can be greatly
improved for better predictions of their physics.
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A.1 Articles

[1] Ding, D., Ouahsine, A., Xiao, W., Du, P. (2020). Numerical study of ballast-
flight caused by dropping snow/ice blocks in high-speed railways using Discontin-
uous Deformation Analysis (DDA). Transportation Geotechnics, 22, 100314.
DOI: https://doi.org/10.1016/j.trgeo.2019.100314

Abstract: Frozen snow / ice blocks drop at high speeds from train causing the bal-
last to fly up and damage the car body. Thus, in this paper, we propose a numerical
model based on the discontinuous deformation analysis (DDA) method to study the
ballast flight caused by dropping snow / ice blocks in high-speed railways and to
analyze the dynamic behavior of ballast particles during their collision with a snow /
ice block. The validation of the proposed model is done by comparing the numerical
results with the theoretical and the experimental ones. The numerical results show
that the velocity, shape and incident angle of snow / ice block play an important
role in the ballast flight. Specifically, the number and the maximum displacement of
ballast particles increase as the train speed increases and the incident angle greatly
affects the movement direction of ballast particles. The shape of the ice block affects
the amount and extent of ballast flight.

Keywords: High speed railway; Ballast flight; Snow-dropping; Numerical model-
ing; Discontinuous deformation analysis
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for the stability of caisson-type breakwater subjected to violent wave impact. Ocean
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DOI: https://doi.org/10.1016/j.oceaneng.2021.108651

Abstract: Wave impacts on vertical caissons may cause breakwaters failures. This
paper focuses on the analysis of the stability of breakwaters under violent wave
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impacts by using a triple-coupled Fluid-Porous-Solid model. The fluid model is
described by the Volume-Averaged Reynolds-Averaged Navier-Stokes equations in
which the nonlinear Forchheimer equations for the porous medium are added to the
inertia terms. The solid model, based on the DDA method which is an implicit DEM
method, has been used to analyze the movement and the stability of the caisson and
armour units by taking into account the shapes of the armor units, as well as the
contact between blocks. The developed model has been used for multiple purposes.
Firstly, to estimate the variation of the maximum height of the impacting wave with
the breakwater slope. A new formula has then been established for this purpose.
Secondly, to analyze the influence of the porosity and of the thickness of the porous
layer on the Turbulence Kinetic Energy (TKE) distribution around the breakwater
structure. The results show that the higher the thickness, the lower the TKE intensity
will be. Finally, the model has been used to analyze the stability of shaped armour
units placed behind the caisson.

Keywords: Breakwater stability; Violent wave impacts; Fluid-Porous model; CFD/-
DEM coupling
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