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Abstract

Cancer epidemiology is concerned with the identification of causes of cancer, including the

biological mechanisms possibly involved in cancer development, based on observational data.

The tools recently introduced in the causal inference literature offer a formal framework to

address such causal questions. In particular counterfactual variables can be used to define

causal effects of interest, and different sets of conditions have been shown to be sufficient

to guarantee that a given causal effect can be estimated in practice. However, the practical

application of causal inference in cancer epidemiology still faces a number of challenges; the

objective of this thesis is to explore some of them.

First, concerns have been raised in the literature regarding the relevance of causal effects

estimated from observational studies for certain exposures, for instance obesity, for which there

is no possible “direct” intervention, and only interventions on some of its causes, such as diet or

physical activity, can be implemented in practice. We show how the effect of an hypothetical

intervention on the exposure of interest, when impossible to apply in practice, relates to the

effects of interventions on its causes, depending on the structure of the causal model.

Then, even if many causal models of interest in epidemiology involve time-varying variables,

these variables are most often observed at one single point in time only. Then, practitioners

tend to overlook the time-varying nature of the variables, and to work under over-simplified

causal models. We investigate conditions ensuring that estimates derived under over-simplified

longitudinal causal models relate to causal quantities of interest under the true longitudinal

causal model. Our results confirm that these conditions are very stringent and that estimates

derived under over-simplified longitudinal causal models generally have to be interpreted with

great caution.

Motivated by a project on high-dimensional mediation analysis, we also study latent vari-

able models for dimension-reduction. We notice a severe limitation in several models proposed

in the literature, including the probabilistic formulation of partial least squares proposed by

el Bouhaddani et al. (2018). We precisely describe the limitation under this particular model,

and illustrate it through simulated examples. We also propose a simple extension which cor-

rects the defect of the initial model. Overall, our results suggest that caution is needed when

developing and applying latent variable models for dimension-reduction, as they may turn out

to be too simplistic when imposing too strong constraints on the model parameters.

Finally, with the same motivating example in mind, we study the calibration of the tuning

parameter in penalized regression models. We focus on a popular extension of the lasso, the

adaptive lasso, which uses a weighted L1-norm in the penalty term, with weights derived from

initial estimates of the parameter vector. We empirically show that the standard K-fold cross-

validation, although very popular, is not suitable to calibrate the tuning parameter in the

adaptive lasso. A simple alternative cross-validation scheme is proposed, which is shown to

outperform the standard K-fold cross-validation on simulated examples.



Résumé

L’identification des causes du cancer, mais aussi des mécanismes biologiques pouvant in-

tervenir dans son développement, à partir de données observationnelles, est l’une des problé-

matiques principales en épidémiologie du cancer. Les outils introduits récemment en inférence

causale offrent un cadre formel pour répondre à de telles questions. En particulier, les variables

contrefactuelles permettent de définir les effets causaux d’intérêts, et diverses conditions per-

mettent de garantir qu’un effet causal donné soit estimable en pratique. Cependant, leur mise

en application en épidemiologie du cancer présente un certain nombre d’enjeux ; l’objectif de

cette thèse est d’en explorer quelques uns.

Tout d’abord, des réserves ont été émises concernant la pertinence des effets causaux estimés

à partir de données observationnelles pour des expositions telles que l’obésité, pour laquelle il

n’existe pas d’intervention «directe», mais seulement des interventions sur certaines de ses

causes, comme l’activité physique ou l’alimentation. À cet effet, nous étudions comment l’effet

d’une intervention hypothétique sur l’exposition d’intérêt est lié aux effets des interventions sur

certaines de ses causes.

Ensuite, même si la plupart des modèles causaux d’intérêt en épidémiologie font intervenir

des variables qui varient au cours du temps, ces dernières ne sont bien souvent observées qu’à un

unique temps donné. De fait, il est assez usuel de travailler sous un modèle causal simplifié, qui

néglige le caractère longitudinal de ces variables. Nous déterminons des conditions qui assurent

que les quantités obtenues en travaillant sous de tels modèles soient liées à celles d’intérêt sous

le vrai modèle longitudinal. Ces conditions, très restrictives, confirment ainsi que les quantités

obtenues en travaillant sous des modèles causaux longitudinaux simplifiés doivent généralement

être interprétées avec prudence.

Motivé.e.s par un projet sur les analyses en médiation en grande dimension, nous nous

sommes intéressé.e.s à l’utilisation des modèles à variables latentes pour la réduction de dimen-

sion. Nous avons identifié un défaut dans plusieurs modèles proposés dans la littérature, notam-

ment dans la formulation probabiliste des moindres carrés partiels proposée par el Bouhaddani

et al. (2018). Nous décrivons en détail le défaut sous leur modèle, et l’illustrons au moyen de

simulations. Nos résultats suggèrent que les modèles à variables latentes doivent être dévelop-

pés avec précaution pour faire de la réduction de dimension, puisqu’ils peuvent en fait être trop

simples lorsque les contraintes imposées sur les paramètres sont trop fortes.

Enfin, toujours motivé.e.s par le même projet, nous nous intéressons à la sélection du

paramètre de régularisation dans les modèles de régression pénalisés. Plus précisément, nous

considérons le lasso adaptatif, une extension du lasso qui utilise une version pondérée de la

norme L1 dans le terme de pénalité, où les poids sont obtenus à partir d’une estimation ini-

tiale du vecteur de paramètres. Nous montrons de manière empirique que la validation croisée

«K-fold», bien que couramment employée, n’est pas adaptée à la calibration du paramètre de

régularisation pour le lasso adaptatif. Une procédure alternative est proposée, et nous mon-

trons sur des simulations qu’elle présente de meilleures performances que la validation croisée

«K-fold».



Résumé substantiel

Reposant largement sur des études observationnelles, l’épidémiologie vise à étudier l’effet

causal de différents facteurs sur la survenue de pathologies, en particulier les cancers, qui sont

l’une des principales causes de mortalité dans le monde. Comme la plupart des maladies

chroniques, les cancers ont des causes multiples, qui peuvent interagir. Ainsi, les épidémiolo-

gistes portent un intérêt grandissant aux analyses en médiation, qui permettent une description

fine des mécanismes d’action de causes de cancers. Grâce à elles, on peut par exemple espérer

décrire les mécanismes expliquant le rôle de l’obésité ou du style de vie (activité physique,

consommation d’alcool, etc.) sur le développement de cancers (foie, sein, etc.), en considérant

des métabolites comme médiateurs potentiels. Cependant d’un point de vue formel, l’étude

statistique des effets causaux se heurte à un problème fondamental : les outils classiques en

statistique ne permettent que d’étudier l’association entre deux variables, or l’existence d’une

association entre, par exemple, une exposition d’intérêt X et l’indicatrice Y de survenue d’un

cancer n’implique évidemment pas que X soit une cause de Y . Cette association pourrait aussi

s’expliquer par le fait que Y soit une cause de X, ou par l’existence d’une cause commune à X

et Y , etc. Notamment dans l’exemple où X est l’obésité et Y l’occurence du cancer, ces causes

communes, ou facteurs de confusion, peuvent inclure l’activité physique et le régime alimen-

taire : la relation entre X et Y peut être confondue, et dans ce cas, ne peut être interprétée

de manière causale. Afin de formaliser le concept de causalité, une littérature conséquente a

emergé récemment. L’inférence causale repose notamment sur la notion de variables contre-

factuelles (Rubin, 1974), qui permettent de définir les effets causaux d’intérêts, que ce soit l’effet

causal total d’une exposition (Rosenbaum and Rubin, 1983), ou encore sa décomposition en la

somme d’un effet naturel direct et d’un (ou plusieurs) effet(s) naturel(s) indirect(s), médié(s)

par de potentiels médiateurs (Pearl, 2001, Robins and Greenland, 1992). Diverses conditions,

garantissant qu’un effet causal donné soit estimable à partir de données observationnelles, ont

aussi été proposées dans la littérature. Cependant l’application, notamment en épidémiologie

du cancer, des outils introduits en inférence causale se heurte en pratique à un certain nombre

d’enjeux. L’objectif de cette thèse est d’en étudier certains.

Le premier projet porte sur l’interprétation des effets causaux estimés à partir de données

observationnelles pour des expositions pour lesquelles il n’existe pas d’intervention «directe»,

mais seulement des interventions sur certaines de leurs causes. C’est notamment le cas lorsque

l’exposition d’intérêt est l’obésité : dans ce cas, il n’est pas possible d’intervenir directement

pour modifier le niveau d’exposition d’un individu, et seules des interventions sur ses causes sont

possibles, comme le régime alimentaire ou l’activité physique par exemple. Ainsi, nous étudions

comment l’effet d’une intervention hypothétique sur l’exposition d’intérêt, lorsque celle-ci n’est

pas réalisable en pratique, est lié aux effets des interventions sur certaines de ses causes. Pour

cela, nous nous appuyons sur la structure du modèle causal, et à titre d’exemple, nous supposons

plus précisément que l’exposition d’intérêt est l’obésité à l’âge de 20 ans. En particulier, puisque

la plupart des causes modifiables de l’obésité sont des facteurs de confusions pour sa relation



avec le cancer, l’effet de l’obésité, estimé à partir de données observationnelles, diffère très

probablement des effets d’une intervention sur ses causes. Sous certaines hypothèses sur le

modèle causal, il peut par ailleurs être vu comme un effet indirect d’interventions particulières

sur ces causes.

Le second projet porte sur l’inférence causale sous des modèles causaux longitudinaux sim-

plifiés. En effet, la plupart des modèles causaux d’intérêt en épidémiologie font intervenir des

variables d’exposition (activité physique, consommation d’alcool etc.), ainsi que des médiateurs

et facteurs de confusion potentiels, qui varient au cours du temps. Cependant, alors que ces

modèles causaux sont ainsi longitudinaux, les données disponibles dans les cohortes pour ces

différents facteurs ne concernent généralement que leur niveau à l’inclusion dans l’étude. De

fait, il est assez usuel de travailler sous un modèle causal simplifié, où le caractère longitudi-

nal des variables est négligé. Nous étudions alors si, et le cas échéant comment, les quantités

obtenues en travaillant sous de tels modèles simplifiés sont liées à celles d’intérêt sous le vrai

modèle longitudinal. Plus précisément, nous nous concentrons sur deux cas de figure, lorsque

les données disponibles correspondent (i) à des niveaux instantanés mesurés à l’inclusion dans

l’étude, ou (ii) à des mesures résumées de l’historique d’exposition jusqu’à l’inclusion. Ainsi,

nous déterminons des conditions qui assurent que les quantités obtenues en travaillant sous des

modèles causaux longitudinaux simplifiés puissent s’exprimer comme un effet causal longitu-

dinal d’intérêt, ou comme une moyenne pondérée de tels effets causaux. Cependant, puisque

l’interprétabilité de ces moyennes pondérées n’est pas toujours évidente, et puisque les condi-

tions déterminées sont très restrictives, nos résultats confirment que les quantités obtenues en

travaillant sous des modèles causaux longitudinaux simplifiés doivent généralement être inter-

prétées avec prudence.

Les deux projets suivants ont été motivés par l’analyse en médiation en grande dimension.

En effet, de nombreuses études en épidémiologie du cancer visent actuellement à identifier les

métabolites, notamment, qui pourraient expliquer l’effet carcinogène de l’obésité, ou d’autres

facteurs liés au mode de vie, sur plusieurs types de cancer. Les jeux de données à disposition

sont ainsi de relativement grande dimension, et peuvent contenir des métabolites fortement

corrélés les uns avec les autres; c’est notamment le cas dans l’étude EPIC sur le cancer de

l’endomètre, où environ 150 métabolites ont été mesurés. À cet effet, nous nous sommes en

particulier intéressé.e.s à l’utilisation des modèles à variables latentes pour la réduction de di-

mension. Des formulations probabilistes de certaines techniques de réduction de dimension,

comme l’analyse en composantes principales ou les moindres carrés partiels (PLS), ont été pro-

posées dans la littérature, et très récemment cette idée a été étendue aux modèles de médiation.

En développant un modèle à variables latentes adapté aux analyses en médiation de grande

dimension où l’ensemble d’exposition est lui aussi multivarié, nous avons cependant identifié un

défaut, qui est en fait également présent dans d’autres modèles probabilistes. C’est en partic-

ulier le cas dans le modèle de PLS probabiliste (PPLS) proposé par el Bouhaddani et al. (2018).

Nous décrivons en détail le défaut sous leur modèle, et montrons que leurs contraintes sur les



paramètres sont telles que le modèle définit un ensemble de lois de probabilité très particulières,

où les composantes de covariance maximale sont nécessairement aussi de variances maximales,

respectivement. Nous illustrons ce défaut au moyen de simulations, et proposons aussi une

extension du modèle, pour obtenir une formulation plus “générale” et qui n’est pas limitée à ces

seules lois. Nos résultats suggèrent que les modèles à variables latentes doivent être développés

avec précaution pour faire de la réduction de dimension, puisqu’ils peuvent en fait perdre leur

intérêt apparent lorsque les contraintes imposées sur les paramètres sont trop fortes.

Enfin dans un dernier projet, nous nous intéressons au problème de la calibration du

paramètre de régularisation dans les modèles de régression pénalisés, qui sont couramment

employés pour l’analyse de données de grande dimension. Notamment dans le modèle que

nous avions envisagé pour l’analyse en médiation de grande dimension, nous avions considéré

un algorithme d’estimation pénalisé par la norme L1 afin d’encourager certains paramètres à

être creux. Ici, nous nous intéressons plus particulièrement au lasso adaptatif, une extension

du lasso qui remplace la norme L1 dans le terme de pénalité par une version pondérée, où les

poids sont obtenus à partir d’une estimation initiale du vecteur de paramètres. La méthode

couramment utilisée dans ce cas pour sélectionner la valeur du paramètre de régularisation est

la validation croisée, dite validation croisée «K-fold». Nous montrons de manière empirique que

dans le cadre des modèles de régression linéaire, la validation croisée «K-fold» n’est pas adap-

tée à la calibration du paramètre de régularisation pour le lasso adaptatif. Une procédure de

calibration alternative est proposée, et nous montrons finalement sur une étude de simulations

qu’elle présente de meilleures performances que la validation croisée «K-fold».
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Chapter 1

Introduction

1.1 Cancer epidemiology and causal inference

1.1.1 Context

Cancer is the second leading cause of death worldwide, accounting for almost 10 millions

deaths in 2018 (Wild et al., 2020). In the United States, it is estimated that about 40%

of the men and 38.7% of the women will develop cancer over the course of their lifetime

(Howlader et al., 2020). As most other chronic conditions, cancer is a multifactorial dis-

ease: causes of most site-specific cancers (breast, prostate, lung, colon, head and neck,

etc.) are numerous, and generally combine both genetic and “environmental” (i.e., non-

genetic) factors. In this context, one of the main objectives of cancer epidemiology is the

identification of the causes of cancer, especially the modifiable ones, in order to devise

efficient risk-reduction policies. For example, there is increasing evidence of a causal effect

of various lifestyle factors, including tobacco smoking, alcohol and obesity, on the risk of

several site-specific cancers (Agudo et al., 2012, Bagnardi et al., 2015, Lauby-Secretan

et al., 2016). Another recent line of research in cancer epidemiology aims at investigat-

ing the biological mechanisms underlying the carcinogenic effect of these lifestyle factors

(Khandekar et al., 2011, Renehan et al., 2015). Several studies have recently focused on

the carcinogenic effect of obesity, suggesting that it could be partly mediated by chronic

inflammation and insulin resistance: more precisely, obese people are more likely to suffer

from chronic inflammation and insulin resistance, which, in turns, may increase cancer

risk (Dashti et al., 2019, 2020). Despite its interest by itself, the description of these

biological mechanisms could also lead to prevention interventions, in particular when an

intervention on the biological mechanisms (e.g. chronic inflammation) is easier than an

intervention on the primary exposure (obesity). Rather than focusing on a few candidates

mechanisms, cancer epidemiologists can now adopt a more agnostic approach, and explore

biological mechanisms possibly underlying some exposure-cancer relationships by studying

different -omics data, which are now available in large epidemiological studies. In par-
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ticular, metabolomics data are available in a number of studies, including the European

Prospective Investigation into Cancer and nutrition (EPIC) study. Metabolomics data

consist of measures on a broad panel of molecules (metabolites). It is supposed to provide

a good description of the complete “metabolome” of an individual at a given point in time,

and can be seen as “a readout of the integrated response of cellular processes to genetic

and environmental factors” (Krumsiek et al., 2011). On the one hand, epidemiological

studies using metabolomics data have identified metabolites related to several cancers

(His et al., 2019). On the other hand, a number of metabolites have been shown to be

associated with several lifestyle exposures such as physical activity, alcohol consumption

and smoking status, but also obesity (Cirulli et al., 2019, Du et al., 2020, Harada et al.,

2016, Langenau et al., 2019). Then, a few epidemiological studies have lately focused

on the evaluation of the mediating role of metabolites available in metabolomics data in

the relationship between different lifestyle factors and cancer sites (Assi et al., 2015a,b,

Petimar et al., 2018).

1.1.2 From statistical association to causal effect

To address these various questions, cancer epidemiology relies on the statistical analysis

of data which can originate from experimental, or more often, observational studies. Ran-

domized clinical trials are one particular variety of experimental studies, where the level

of the exposure or treatment of interest of each subject is randomly assigned. Consider

for simplicity a binary exposure; thanks to the randomization, the only difference between

the two groups (exposed and non-exposed) is, in principle, their exposure level, so that if

a difference exists between the cancer risks in the exposed and unexposed groups, it can

generally be interpreted causally (Ahrens and Pigeot, 2005). However, most epidemio-

logical results are derived from observational data, for which association does not imply

causation. Indeed, an observed association between two variables X and Y , for example

obesity and cancer occurrence, does not imply that X is a cause of Y . This association

could be due to the fact that Y is a cause of X (reverse causation), or due to the existence

of a common cause of X and Y (confounding). In the example where X and Y represent

obesity and cancer occurrence, respectively, these common causes, or confounders, may

include diet and physical activity: the X − Y relationship may be confounded, at least

partly, and if so, cannot be interpreted causally. Other more subtle mechanisms (e.g.

selection bias) can also result in spurious (non-causal) association between two variables.

On the one hand, the identification of so-called risk factors, X, associated with cancer

occurrence, can be sufficient to address some epidemiological questions, such as the pre-

diction of cancer risk. But, on the other hand, to devise efficient risk-reduction policies,

it is necessary to determine whether or not these factors are genuine causes of cancer,

to make sure that by improving the exposure levels in the population (e.g. reducing

adiposity), cancer risk would be reduced.
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Lately, a significant literature, devised jointly by the statistics, mathematics and in-

formatics communities, has emerged to formalize the concept of causality. The standard

approach for causal inference from observational data involves counterfactual variables

(Rubin, 1974), as well as Structural Causal Models (SCMs) (Pearl, 1995, 2000), which are

based on the probabilistic graphical model theory, and deeply rely on Directed Acyclic

graphs (DAGs) and d-separation (Lauritzen, 1996, Verma and Pearl, 1988).

In particular, counterfactual variables allow the formal definition of causal quantities

of interest. For example, consider the case where X, the binary exposure under study, is

the obesity status (obese/lean), and Y , the outcome of interest, is cancer occurrence. To

assess the causal effect of obesity on cancer occurrence at the population level (on average),

we would like to compare two cancer risks: (i) the risk of cancer in the population, had all

the individuals of that population been obese, and (ii) the risk of cancer in the population,

had all the individuals of that population been lean. Of course, these two populations are

different from the actual population: they are counterfactual. And we will never be in

the position to have access to data from these two populations. But, we can still formally

define the variables that we could have observed if we have had access to data from these

counterfactual populations. Let do(X = x) denote an hypothetical intervention such

that the exposure X is forced to take value x. Then, denote Y X=x the outcome variable

that would have been observed in the counterfactual world (or population) following the

intervention do(X = x); just as the counterfactual population, this variable is not observed

in the real world: it is a counterfactual variable. The average causal effect of X on Y can

still be formally defined by comparing the distributions of Y X=1 and Y X=0. In particular,

on the additive scale, the average, or total, causal effect of X on Y can be defined as

E(Y X=1 − Y X=0). Yet, this quantity is defined in terms of Y X=1 and Y X=0, which are

unobserved. A natural question is whether the causal effect can be expressed in terms

of the distribution of observable variables, X, Y and potentially additional variables. In

particular, it is noteworthy that E(Y X=x) usually differs from E(Y | X = x); see Appendix

A for more details. When a causal effect can be expressed as a function of the distribution

of observed variables, it is said to be “identifiable”. Counterfactual variables further allow

to derive sets of sufficient conditions, namely consistency, (conditional) ignorability and

(conditional) positivity, under which total causal effects can be identified.

However, these conditions are not (fully) testable, and causal inference then usually

relies on some prior knowledge, such as the structure of the causal system of interest.

For example, Pearl’s SCMs notably combine graphical causal models and sets of struc-

tural equations, to describe and specify our assumptions or knowledge of the possible

relationships among the variables involved in the causal system under consideration. A

graphical causal model is typically a DAG, as in Figure 1.1 (a), (b) or (c), where each

node corresponds to a variable of the causal system, and where the possible existence of

a causal relationship between two variables is translated into a directed edge between the
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Figure 1.1: (a) Example of a graphical causal model where the exposure X is a potential
cause of the outcome Y . (b) Example of a graphical causal model where the effect of the
exposure X on outcome the Y is possibly mediated by M . (c) Example of a graphical
causal model where the effect of the exposure X on the outcome Y is possibly confounded
by W .

corresponding nodes. For example, in Figure 1.1 (a), the presence of a directed edge from

X to Y means that X may be cause of Y , and not the other way around; see Appendix

A for further details on causal models and SCMs.

The question of the identifiability of causal effects can be systematically addressed

under the frameworks of SCMs. For example, a fundamental result is that, if all of the

so-called endogeneous variables are observed, then the total causal effect of any set of

variables on any other disjoint set of variables is always identifiable (Pearl, 2000). On

the other hand, when some endogeneous variables in the model are not observed, the

causal quantity of interest is not necessarily identifiable, but several graphical criteria,

such as the front-door and back-door criteria (Pearl, 1993, 1995), have been shown to

be sufficient, in the sense that if they are satisfied, then the identifiability of the causal

effect is guaranteed. In particular, the back-door criterion allows the identification of

a set of variables W such that the conditional ignorability condition
(
Y X=x ⊥⊥ X | W

)

holds, and E(Y X=x) can be expressed as
∑

w E
(
Y | W = w,X = x

)
× P

(
W = w

)
,

with the sum over all possible values of W (which is assumed to be categorical here, for

simplicity). A generalization of these criteria has been proposed through several necessary

and sufficient graphical conditions (Shpitser and Pearl, 2006, Tian and Pearl, 2002); we

refer to Appendix A for a brief summary of some of these identifiability criteria.

The tools briefly recalled above can be useful to assess, e.g., the causal effect of obesity

on cancer. They have further been extended to cover mediation analyses, which can be

used to investigate whether the causal relationship between an exposure X and outcome

Y can be partly explained, or mediated, by another variable. Consider for example the

graphical causal model given in Figure 1.1 (b), where X affects Y both “directly” and

“indirectly”, through M . If this is the case, we say that M is a mediator in the X − Y

relationship. Formally, the objective of mediation analysis is to quantify the portion of

the total causal effect of X on Y that is mediated by M , the indirect effect, and the

portion that is not mediated by M , the direct effect. In particular, it was shown that

the total causal effect can be decomposed into the sum of the so-called natural direct and

indirect effects (Pearl, 2001, Robins and Greenland, 1992), which are again both formally

defined from counterfactuals variables. Sufficient conditions have been proposed in the
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literature, which ensure the identifiability of the natural direct and indirect effects ; see

Pearl (2001), VanderWeele (2015) and the Appendix A for more details.

To recap, a formal framework, based on a number of tools recently introduced in the

causal inference literature, is now available to address causal queries of interest in cancer

epidemiology. In particular, these tools provide a precise definition of various concepts,

such a confounding or selection bias, that have “always” been described in epidemiology

and biostatistics, but with a rather intuitive, and less precise, definition. Yet, the practical

application of causal inference and mediation analyses in cancer epidemiology still faces

several challenges, and the objective of this thesis was to explore some of them; they are

summarized in Section 1.2.

1.2 Thesis objectives and main contributions

1.2.1 The practical interventions the do-operator refers to in causal

inference; illustration on the example of obesity and cancer

Consider the case where X, the binary exposure under study, is the obesity status, say at

the age of 20, and Y , the outcome of interest, is cancer occurrence. The causal effect of X

on Y can be defined as E(Y X=1−Y X=0), where Y X=1 and Y X=0 are the outcome variables

that would have been observed in the counterfactual worlds following the interventions

do(X = 1) and do(X = 0), respectively. However, interventions do(X = 1) and do(X = 0)

are not unique, and hence not well-defined, as they could correspond to any dynamic

interventions (Daniel et al., 2012, Hernán and Robins, 2020) ensuring that individuals

stay lean and get obese by the age of 20, respectively. In particular, in order to prevent

obesity by the age of 20, individuals could be asked to do 45 minutes of physical exercise

a day, or 72 minutes of physical exercise a day, or they could also be asked to adhere to

a healthy diet, etc.

This situation, where several practical interventions on the causes of the obesity could

lead to a same obesity level, falls under the general case of a treatment with multiple ver-

sions (Hernán and VanderWeele, 2011, Petersen, 2011, VanderWeele and Hernán, 2013),

and then violates the “no-multiple-versions-of-treatment assumption”, which is part of

the “Stable Unit Treatment Value Assumption” (Rubin, 1980, VanderWeele and Hernán,

2013). Concerns have been raised in the literature regarding the relevance of causal ef-

fects estimated from observational studies in such cases, but most arguments have been

based on situations where “treatment precedes versions of that treatment”, while situa-

tions where “versions precede treatment” were only quickly mentioned, if ever (Hernán

and VanderWeele, 2011, Petersen, 2011, VanderWeele and Hernán, 2013). In Chapter 2

we investigate how the effect of an hypothetical intervention on the exposure of interest,

when impossible to apply in practice, relates to the effects of interventions on its causes.
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Figure 1.2: (a) Example of a longitudinal causal model, with time-varying exposure
(Xt)t∈J1;t0K and time-varying confounder (Wt)t∈J1;t0K affected by the exposure. The causal
diagram is given for t0 = 2. (b) Over-simplified causal model associated with the longi-
tudinal model given in Figure 1.2 (a). (c) Another possibility of over-simplified causal
model associated with the longitudinal model given in Figure 1.2 (a).

Following the recommendations of Petersen (2011), the investigation relies on the struc-

tural causal model framework. With the example of X standing for obesity at the age of

20 in mind, we explore different scenarios, including the situation where some causes of

X are modifiable, while others are not (e.g. genetic determinants of obesity).

1.2.2 Causal inference under over-simplified longitudinal models

Consider once again the study of the causal relationship between obesity and cancer.

Because insufficient physical activity is likely a cause of both obesity and cancer, physical

activity is usually considered as a confounder in the obesity-cancer relationship. But

on the other hand, obesity is also likely to decrease physical activity, and then physical

activity could be considered as mediator in the relationship between cancer and obesity.

Graphical causal models given in Figure 1.1 (b) or (c) are actually too simplistic to

properly describe the relationship between obesity and physical activity. Indeed, the

true causal model involves time-varying variables: it is a longitudinal model, as the one

depicted in Figure 1.2 (a) for t0 = 2, where (Xt)t∈J1;t0K could stand for the obesity status

at different ages, while (Wt)t∈J1;t0K could stand for physical activity at different ages.

Notably, Xt, the exposure variable at time t, affects the confounding variable Wt′ at any

time t′ > t, as well as its own future value Xt′ . Then (Wt)t is a so-called time-varying

confounder affected by the exposure, and roughly speaking, it is both a confounder and

a mediator in the (Xt)t − Y relationship.

The tools of causal inference for time-fixed variables have been extended to such longi-

tudinal settings (Pearl and Robins, 1995, Robins, 1986, VanderWeele, 2015). In particular,

in the case where the causal effect of interest is that of a binary exposure varying over

some the discrete time interval J1; t0K, on the outcome Y measured at some later point in

time T > t0 > 1, let X̄t0 = (X1, . . . , Xt0) denote the exposure profile until time t0. Then

the causal effect can be formally defined by E

(
Y X̄t0=x̄t0 − Y X̄t0=x̄∗

t0

)
, for two given profiles

x̄t0 =
(
x1, . . . xt0

)
and x̄∗

t0
=
(
x∗
1, . . . x

∗
t0
), with Y X̄t0=x̄t0 the outcome variable that would
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have been observed in the counterfactual world following do(X̄t0 = x̄t0). This causal effect

is the total causal effect of the exposure until time t0 on the outcome Y , and for example

with x̄t0 = (1, . . . , 1) and x̄∗
t0
= (0, . . . , 0), it corresponds to the difference between the risks

that would have been observed in the two populations where all individuals would have

been “always obese” and “never obese”, respectively. Under certain conditions, including

the “sequential” ignorability condition, which can be seen an extension of the conditional

ignorability condition to longitudinal settings (Daniel et al., 2012, Hernán and Robins,

2020, Robins, 1986), identifiability of longitudinal total causal effects is guaranteed. For

instance under the causal model of Figure 1.2 (a), E

(
Y X̄t0=x̄t0 − Y X̄t0=x̄∗

t0

)
, for any given

profiles x̄t0 and x̄∗
t0
, can be expressed in terms of Y , X̄t0 and W̄t0 := (W1, . . .Wt0) only.

We refer to Appendix A for more details on longitudinal causal inference.

Repeated measurements for time-varying exposures, and possibly mediators and con-

founders, are then usually required to perform valid causal inference under longitudinal

causal models. Yet, they are rarely available in large observational studies, as for instance

in the EPIC study and the UK Biobank (Riboli et al., 2002, Sudlow et al., 2015), where

most variables, in particular those measured from blood samples, are usually collected

once only, at recruitment typically. Some of the general results on the identifiability of

causal effects in the presence of unobserved variables in the causal model mentioned above

(Shpitser and Pearl, 2006, Tian and Pearl, 2002) could be used to study the identifiability

of the causal effect of interest when ignoring the time-varying nature of exposures or,

equivalently, when past levels of exposures are unobserved. However, they are generally

not considered in practice, and practitioners tend to directly work under over-simplified

causal models, where the time-varying nature of exposures, mediators and confounders

are simply ignored (Bradbury et al., 2019, Chan et al., 2011, Dossus et al., 2013, Petimar

et al., 2018, Schairer et al., 2016).

Even if issues arising when working under over-simplified longitudinal causal models

have already been described in the statistical literature (Aalen et al., 2016, Maxwell and

Cole, 2007, Maxwell et al., 2011), little is known about the relationship between estimates

derived under over-simplified longitudinal causal models and causal quantities of interest

under the true longitudinal causal model. In Chapter 3 we investigate conditions ensuring

that the quantity estimated in practice when working under over-simplified longitudinal

causal models expresses as a particular weighted average of the longitudinal causal effects

of interest. More precisely, we consider two different situations regarding the available

data for the “exposures”, which include the exposure of interest but also possibly some

mediators and confounders.

The first and most common situation is when available data for the exposures cor-

respond to their “instantaneous” levels at the time t0 of recruitment in the study. For

example, under the causal model depicted in Figure 1.2 for t0 = 2, only data on Y ,

Xt0 and Wt0 would be available, while data on X̄t0−1 and W̄t0−1 would not. Then, over-
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Figure 1.3: (a) Example of longitudinal causal model, with time-varying exposure
(Xt)t∈J1;t0K and time-varying confounder (Wt)t∈J1;t0K affected by the exposure. Exposure
and confounder profiles only affect the outcome through some summary variables X and
W. (b) Over-simplified causal model associated with the longitudinal model given in
Figure 1.3 (a). (c) Other possibility of over-simplified causal model associated with the
longitudinal model given in Figure 1.3 (a).

simplified causal models given in Figure 1.2 (b) or (c) would usually be considered to

perform the analyses, depending on whether (Wt)t is mainly seen as a confounder or as a

mediator.

The second situation is when the available data for the exposures corresponds to

respective summary measures of their levels up to inclusion in the study. Consider for

example the causal model given in Figure 1.3 (a), where the exposure of interest (Xt)t

could again stand for the obesity status at different ages, (Wt)t could include alcohol

intake, physical activity and diet at different ages, and X and W would be appropriate

summary measures of X̄t0 and W̄t0 , respectively; then the analyses would probably be

performed under the over-simplified causal model given in Figure 1.3 (b) or (c).

In each of these two situations, the conditions guaranteeing a clear interpretation of the

causal effects estimated under over-simplified models are very restrictive and, overall, our

results emphasize the need for repeated measurements to perform valid causal analyses.

1.2.3 Probabilistic models for dimension-reduction

High dimensional mediation analysis and latent variable models

Omics data, and notably metabolomics data, provide important opportunities for the

investigation of biological mechanisms possibly involved in a given exposure-cancer re-

lationships, using an agnostic approach. However, their analysis is quite challenging

because of their dimensionality and complex structure. Consider for instance the case-

control studies on the endometrial cancer nested within the EPIC cohort, where targeted

metabolomics data describing the levels of ∼ 150 metabolites have been acquired through

the BIOCRATES kit. Such data set is of relatively high dimension and possibly con-

tains redundant information, as some metabolites are highly correlated with each other.

Recently, methods have been introduced to allow the practicable application of high di-

mensional mediation analysis, including an extension of interventional direct and indirect
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effects to a setting with a high-dimensional set of mediators (Loh et al., 2020), as well as a

multiple testing procedure to perform selection on the set of potential mediators (Sampson

et al., 2018), and also a regularized model of structural equations (Zhao and Luo, 2016).

On the other hand, the high-dimensionality and large correlations among the metabolites

could be “simultaneously” tackled by reduction-dimension techniques. In particular, they

could lead to the identification of a small number of uncorrelated metabolic components,

or signatures, defined as linear combinations of the original metabolites, and summarizing

the information contained in the whole set of metabolites, that could mediate the effect

of the exposure on the outcome.

Principal Component Analysis (PCA) (Hotelling, 1933, Jolliffe, 2002) is among the

most popular multivariate methods for dimension-reduction. Applied to the set of 150

metabolites, it would identify mutually orthogonal components with maximal variances,

defined as linear combinations of the metabolites. These principal components would

then constitute the metabolic signatures. Partial Least Squares (PLS) Regression (Wold,

1985) is another popular multivariate dimension-reduction technique, which further allows

to include additional information to define the metabolic signatures, for instance from

a continuous exposure such as Body Mass Index (BMI). In that case, PLS Regression

would also identify mutually orthogonal component defined as linear combinations of the

metabolites, but the weights involved in the combinations would be chosen so that the

components have maximal covariance with BMI. This approach has been applied in cancer

epidemiology (Assi et al., 2015a). In a similar way, PLS Discriminant Analysis (Barker and

Rayens, 2003), a variant of PLS Regression that allows the inclusion of information from a

categorical variable, could be used to obtain metabolic signatures associated with cancer

occurrence. However, these strategies are actually not perfectly suited to the mediation

analysis setting. Indeed, PCA focuses on the set of metabolites only, so that the PCA

signatures are not necessarily associated with the exposure, nor with the outcome. On

the other hand with the PLS Regression (resp. PLS-DA), metabolic signatures of BMI

(resp. cancer risk), can be obtained, but they are not necessarily associated with the

outcome (resp. the exposure). In this regard, several methods have been introduced to

account for the fact, in the mediation analysis setting, the signatures should be associated

with both the exposure and the outcome. Geuter et al. (2020) proposed a method that

look for signatures that maximize the indirect effect between the exposure and outcome.

Alternatively, Chén et al. (2018) and Derkach et al. (2019) proposed to used latent variable

models, where signatures can be estimated via (penalized) likelihood maximization.

The idea of using latent variable models to perform reduction-dimension is not new.

For instance, Tipping and Bishop (1999) have used a Gaussian latent variable model to

propose a probabilistic formulation of PCA (PPCA), and probabilistic formulations of

PLS Regression have also been proposed by Li et al. (2015) and Zheng et al. (2016).

The models proposed respectively by Chén et al. (2018) and Derkach et al. (2019) can be
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Y

Latent variable model for mediation analysis proposed by
Derkach et al. (2019), in the case of a continuous outcome:

U = Xδ⊤ + εU ,

M = UB⊤ + εM , Y = Xb+ Uγ + εY .

Under the assumptions:

(1) X ∼N(0, σ2
X).

(2) εU ∼N(0r; Ir). (3) εM ∼N(0pM ; ΨM ).

(4) ΨM is a pM × pM diagonal matrix.

(5) εY ∼N
(
0, σ2

Y

)
.

(6) r < pM .

(a) (b)

Figure 1.4: (a) Graphical representation of the latent variable models for mediation anal-
ysis, proposed by Derkach et al. (2019) and Chén et al. (2018). Circled nodes represent
sets of latent variables. (b) The latent variable model for mediation analysis proposed by
Derkach et al. (2019), which can be depicted graphically as in Figure 1.4 (a).

depicted graphically as in Figure 1.4 (a), where three sets of observed variables X, M and

Y are involved, as well as U, a set of latent variables. They are more precisely defined by

a system of structural equations involving the four sets of variables, together with a set

of assumptions on the model parameters and on the distributions of some of the random

variables involved in the model; see for instance the latent variable model for mediation

analysis proposed by Derkach et al. (2019) in the case of a continuous outcome, in Figure

1.4 (b).

However, these models still need to be extended to study mechanisms underlying the

obesity-cancer relationship, or more generally the lifestyle-cancer relationships. Indeed,

several indicators can be used to define obesity, including BMI, but also the waist cir-

cumference, the waist-hip ratio, etc. Similarly, lifestyle encompasses a number of factors

related to diet, physical activity, smoking status and intensity, alcohol intake, etc. In

other words, epidemiologists now tend to consider multiple factors simultaneously and

work with multivariate exposures. Then, dimension reduction needs to be performed for

both the exposures and metabolites, while ensuring that the exposure signatures and

metabolic signatures are associated with each other, and with cancer risk. In addition,

even if the set of exposures is likely to be of low to moderate dimension, the set of

mediators, e.g. metabolites, is usually of much larger dimension. Then, some level of

regularization may be needed to encourage, e.g., sparsity in the weight vectors used to

define the metabolic signatures. Under the model of Derkach et al. (2019) (in the case of

a univariate exposure), the authors proposed to use an adaptive lasso penalty.
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Contributions

We decided to extend the latent variable model proposed by Derkach et al. (2019) to a

framework where the exposure is multivariate and where two sets of latent variables are

present. More precisely, our estimation procedure used L1-penalized versions of the like-

lihood to enforce sparsity in the weight vectors used for the construction of the metabolic

signatures. As the model proposed by Derkach et al. (2019) is inspired by the Factor

Analysis, the weight vectors are identifiable only up to an orthogonal transformation;

for this reason, we decided to use slightly different constraints on the model parameters

and distributions of the variables involved in the model compared to the ones used by

Derkach et al. (2019). More precisely, our choice was inspired by the constraints used by

el Bouhaddani et al. (2018) for their Probabilistic Partial Least Squares (PPLS) model,

which guarantee the identifiability of the model parameters (up to sign for some of them).

However, when studying the identifiability of our latent variable model for high-

dimensional mediation analysis, we noticed a severe defect: the constraints on the model

parameters are too strong, and the parameters of interest then reduce to parameters that

could be obtained under much simpler models. More precisely, our model defines a sub-

set of very particular distributions for the three sets of observed variables (exposures,

metabolites, and outcomes), where the weight vectors to be used for the construction

of the exposure and metabolic signatures could be obtained from two PCAs or PPCAs,

run separately on the exposure and metabolite sets. Of course, this greatly limits the

applicability and interest of our model, although it looked specifically tailored for medi-

ation analysis at first glance. As a matter of fact, we noticed that several other models

proposed in the literature suffer from similar defects, including the model proposed by

Derkach et al. (2019) for mediation analysis, and the PPLS model proposed by el Bouhad-

dani et al. (2018). In Chapter 4, and for simplicity, we focus on the later model under

which two sets of observed variables only are considered (e.g., exposures and metabolites),

to precisely describe this limitation. More precisely, we study the PPLS model proposed

by el Bouhaddani et al. (2018), and show that this model defines a very particular subset

of distributions too, under which the components (signatures) with maximal covariance

are necessarily of maximal variances as well. We further illustrate this limitation through

simulated examples, and propose a simple extension, which corrects the defect of the

initial model.

1.2.4 The use of cross-validation for the calibration of the tuning

parameter in the adaptive lasso

Finally, the study and the use of L1-norm penalization for our initial model for high-

dimensional mediation analysis has further led us to identify a defect of the K-fold cross-

validation when applied for the calibration of the regularization parameter in the adaptive

11



lasso the adaptive lasso (Bühlmann and Meier, 2008, Zou, 2006). Again, this defect

was not specific to our model, and is already present in simpler models, such as linear

regression models. Consider a linear regression model of the form Y = Xβ∗ + ξ, where

Y = (y1, . . . , yn)
T ∈ R

n is the outcome vector, X = (x1, ...,xn)
T ∈ R

n×p is the design

matrix, β∗ = (β∗
1 , . . . , β

∗
p) ∈ R

p is the vector of parameters to be estimated, and ξ ∈ R
n is

some random noise. For any given vector of non-negative weights w = (wj)1≤j≤p and any

value of the regularization parameter λ ≥ 0, the adaptive lasso estimator β̂ada(λ,w) is

defined as any minimizer over β ∈ R
p of
||Y −Xβ||22

n
+ λ

∑p
j=1 wj|βj| (Tibshirani, 1996).

The adaptive lasso is an extension of the standard lasso, which corresponds to the

particular case where all the wj’s are set to 1. In the adaptive lasso, the weights wj

typically rely on some initial estimates of the parameters (β∗
j )1≤j≤p, and popular versions

of the adaptive lasso include the original adaptive lasso introduced by Zou (2006), where

weights are derived from Ordinary Least Squares (OLS) estimates, as well the version

proposed by Bühlmann and Meier (2008), namely the one-step lasso, where weights are

computed from initial lasso estimates. The adaptive lasso is very popular in practice as it

can be solved very efficiently, and was shown to generally outperform the standard lasso;

see Zou (2006), Bühlmann and van De Geer (2011).

Irrespective of the particular choice of the weights, the tuning parameter λ controls

the amount of regularization through the weighted L1-norm. In practice, an appropriate

value for this parameter has to be selected to guarantee that β̂ada(λ,w) has good statistical

performance. A popular strategy for the calibration of the tuning parameter relies on K -

fold cross-validation (Hastie et al., 2009), whose principle can be summarized as follows.

Denote by Λ = (λ1, . . . , λR) a sequence of candidate values for the tuning parameter. First,

the original sample D = (yi,xi)1≤i≤n is split into K ≥ 2 balanced folds D(1), . . . , D(K),

with D = ∪Kk=1D
(k). It then consists of K steps: at each step k, (i) the fold D(k)

is used as an “independent” test sample, while the remaining K − 1 folds D \ D(k) are

combined and jointly used as the training sample, (ii), for every r = 1, . . . , R, the adaptive

lasso estimator β̂
(k)

ada(λr,w) is estimated on the training sample D \ D(k), and (iii) its

prediction error, PredErr(D(k), β̂
(k)

ada(λr,w)) is evaluated on the test sample D(k). The

cross-validated prediction error is finally defined as the average of these K prediction

errors 1
K

∑K
k=1 PredErr(D

(k), β̂
(k)

ada(λr,w)), and the optimal tuning parameter is selected

as the one minimizing this cross-validated error.

The overall principle of cross-validation is to mimic “independent” test samples. In

particular, for the K-fold cross-validation to perform well, at each step k the whole esti-

mation procedure should be performed on the training sample D \D(k), and should not

use any information from the test sample D(k). Yet, the weights used in the adaptive lasso

are derived from initial estimates computed on the entire original sample D. Therefore,

considering the estimation of the adaptive lasso estimator as a whole, it does use infor-

mation from the test samples. Under the simple setting of linear regression models, we
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show empirically in Chapter 5, for several standard choices of the weights, that the K-fold

cross-validation is not suitable for the calibration of the tuning parameter in the adap-

tive lasso. We propose a simple alternative cross-validation scheme to rectify the defect,

which is further shown to outperform the standard K-fold cross-validation on simulated

examples.
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Chapter 2

Which practical interventions does the

do-operator refer to in causal inference?

Illustration on the example of obesity

and cancer.

This Chapter corresponds to the preprint available at https://arxiv.org/abs/1901.00772,

and written with Vivian Viallon.

Abstract

For exposures X like obesity, no precise and unambiguous definition exists for the hypo-

thetical intervention do(X = x0). This has raised concerns about the relevance of causal

effects estimated from observational studies for such exposures. Under the framework of

structural causal models, we study how the effect of do(X = x0) relates to the effect of

interventions on causes of X. We show that for interventions focusing on causes of X

that affect the outcome through X only, the effect of do(X = x0) equals the effect of

the considered intervention. On the other hand, for interventions on causes W of X that

affect the outcome not only through X, we show that the effect of do(X = x0) only partly

captures the effect of the intervention. In particular, under simple causal models (e.g.,

linear models with no interaction), the effect of do(X = x0) can be seen as an indirect

effect of the intervention on W .

2.1 Introduction

Because most epidemiological results are derived from observational data, their causal

interpretation has always been at the center of concern (Rothman et al., 2008). Causal

inference theory, which has attracted a lot of interest in the last few decades, has proved
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useful to formally describe conditions ensuring the causal validity of results derived from

observational data (Glymour and Greenland, 2008, Hernán and Robins, 2020, Pearl, 2000,

Rothman and Greenland, 2005, Rubin, 1974). For example, a number of sets of sufficient

conditions has been established for the identifiability of causal effects in the presence

of confounding or non-random selection. Under the so-called Structural Causal Models

(SCMs) (Pearl, 1995, 2000), and further assuming that the structure of the underlying Di-

rected Acyclic Graph (DAG) is known, a key condition for the identifiability of the causal

effect is exchangeability, or ignorability (Hernán and Robins, 2020, Pearl, 2000, Rosen-

baum and Rubin, 1983). In particular, ignorability has been shown to hold conditionally

on any set of variables satisfying the back-door criterion (Pearl, 1993, 2000). Then, a vari-

ety of statistical approaches have been proposed for the estimation of causal effects under

increasingly complex settings including time-varying confounding, failure time data, etc.

Among other approaches, we shall mention the parametric g-formula, inverse probability

weighting approaches, g-estimation and doubly robust procedures (Hernán and Robins,

2020, Lunceford and Davidian, 2004, Pearl, 2000).

Even if their use has been controversial (Dawid, 2000), counterfactual variables, or

potential outcomes, are key to most causal inference theories commonly considered nowa-

days, in epidemiology, social science, statistics and computer science. The do-calculus

that accompanies SCMs allows precise definitions of these variables and their joint distri-

bution (Pearl, 2000). Here, we will use the notation Y (X=x0) to denote the counterfactual

variable representing the outcome that would have been observed in the counterfactual

world Ω(X=x0) that would have followed the hypothetical intervention do(X = x0), where

X is the exposure of interest and x0 is any potential value for this exposure (Pearl,

1995, 2000, Rubin, 1974). For simplicity, we will focus on binary outcomes, and we let

P(Y = 1|do(X = x0)) = P(Y (X=x0) = 1) denote the probability of observing the outcome

in this counterfactual world.

For some exposures, the lack of a precise and unambiguous definition for the inter-

vention do(X = x0) has raised some concerns in the literature (Cole and Frangakis, 2009,

Hernán, 2016, Hernán and Taubman, 2008, Hernán and VanderWeele, 2011, Pearl, 2010,

Petersen, 2011, Petersen and van der Laan, 2014, van der Laan et al., 2005, Vandenbroucke

et al., 2016, VanderWeele and Hernán, 2013). For example, consider the case where X

stands for a binary variable indicating obesity status at 20 years of age. In a population

of lean teenagers, or even newborns, the hypothetical intervention do(X = x0), for x0 = 0

(or x0 = 1), could then correspond to a typically adaptive and dynamic intervention that

would ensure that individuals stay lean (or get obese) by the age of 20. However, these

interventions are not well-defined, in the sense that different “versions” may lead to the

same obesity value x0 at 20 years-old. For instance, in the “stay lean” arm (do(X = 0)),

individuals may be asked to do 45 minutes of physical exercise a day, or 72 minutes of

physical exercise a day. They could also be asked to adhere to a healthy diet, etc. In
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addition, some of the versions ensuring that X = 0 at 20 years old may be impossible to

apply in practice, such as those involving genetic factors.

More generally, this situation of a treatment with different versions, or compound

treatment, violates the “no-multiple-versions-of-treatment assumption”, which is part of

the “Stable Unit Treatment Value Assumption” (SUTVA) (Rubin, 1980, VanderWeele and

Hernán, 2013). This has led to some debate around the relevance, for public health mat-

ters, of the causal effects estimated from observational studies in such cases. Interestingly,

most arguments have been based by considering the situation where “treatment precedes

versions of that treatment”, while situations where “versions precede treatment” were only

quickly mentioned, if at all (Hernán and VanderWeele, 2011, Petersen, 2011, VanderWeele

and Hernán, 2013). Here, we consider the situations where versions precede treatment,

in which case these versions can be seen as particular levels for the causes of X. Then,

focusing on situations where direct interventions on X are impractical, we inspect how the

effect of the hypothetical intervention do(X = x0) relates to the effects of interventions

on causes of X. We show that the effect of the hypothetical intervention do(X = x0)

equals the effect of particular interventions on causes of X that are causes of Y through

X only, as expected. However, for causes W that influence Y not only through X, the

causal effect of X differs from the causal effect of interventions on W . For example, in

the particular case of obesity and cancer occurrence, the effect of do(X = x0) is different

from the effects of interventions on diet or physical activity, except for cancers whose risk

is not directly associated with diet and/or physical activity.

To make our illustrative example even more concrete, we assume throughout that we

intend to estimate the causal effect of obesity at 20 years of age on the occurrence of

cancer by the age of 50. A typical prospective cohort study would sample individuals

who are cancer-free at the age of 20, record information regarding their obesity status

and other variables (potential confounders, etc.) at inclusion, follow these individuals

over the age interval 20-50 and finally record cancer occurrence by the age of 50. Denote

by X ∈ {0, 1} and Y ∈ {0, 1} the binary variables representing obesity at 20 and cancer

occurrence between 20 and 50. For simplicity, we further assume the absence of competing

events and censoring.

The rest of the article is organized as follows. Even if this is highly unlikely in our

illustrative example, we start by considering the unconfounded setting where all causes

of X are causes of Y through X only. Then, in Section 2.3, we consider a more realistic

setting where confounders are present. We shall stress that this second setting is still an

over-simplified version of the causal model in our illustrative example (see the Discussion

2.4). Yet, we believe it is instructive to describe the relationship between the intervention

do(X = x0) and its multiple versions. Under both settings, we consider the situation where

some causes are modifiable, while others are not. Section 2.4 presents some concluding

remarks and discussion. Proofs of our main results are presented in Appendix 2.A and
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{
X = fX(U)
Y = fY (X, ξ)

X Y

ξV

ϑ

{
X = fX(V, ϑ)
Y = fY (X, ξ)

(a) (b)

Figure 2.1: DAGs and associated structural equations in the unconfounded case: (a)
Standard causal model, without confounding. (b) Decomposing U as U = (V, ϑ), where
V and ϑ correspond to modifiable and non-modifiable causes of X, respectively.

Appendix 2.B.

2.2 The unconfounded case

Because exposure X is not randomized in our prospective cohort study, identifiability of

the causal effect of X on Y is generally not guaranteed. A particular situation when this

causal effect is identifiable is when all causes of X, denoted by U in this simple case, are

causes of Y through X only. Even if this absence of confounders is highly unlikely in our

illustrative example, it is instructive to consider this simple situation as a starting point.

The more general situation where confounding is present is deferred to Section 2.3.

2.2.1 Preliminary derivations

Consider that the data available in our cohort study are generated by a causal model with

associated DAG and structural equations as presented in Figure 2.1 (a). Variables ξ and

U represent all causes of Y and X, respectively, and are assumed to be independent to

each other. Both ξ and U may include purely random components. Given the structural

equations attached to this simple causal model, we have {X = x} ⇒ {Y = Y (x)}, so

that consistency holds. Moreover, under this causal model, the ignorability condition

(Y (x) ⊥⊥X) holds. Then

ATE = P(Y = 1|do(X = 1))− P(Y = 1|do(X = 0))

= P(Y = 1|X = 1)− P(Y = 1|X = 0),

and the causal effect of X on Y is identifiable. But, when direct interventions on X are

impractical, and only interventions on the causes of X are practical, a natural question

is the meaning of the hypothetical intervention do(X = x). Consider the structural

equation pertaining to exposure, X = fX(U), and set f−1
X (x0) = {u : fX(u) = x0}.
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Of course, we have X = x0 ⇔ U ∈ f−1
X (x0). As a result, for any ux0 ∈ f−1

X (x0),

P(Y = 1|do(U = ux0)) = P(Y = 1|do(X = x0)); see Appendix 2.A. In this simple case,

all interventions do(U = ux0) on the causes of X which would yield X = x0 share the

same effect on Y : versions are irrelevant (Hernán and VanderWeele, 2011, VanderWeele

and Hernán, 2013), and the causal effect P(Y = 1|do(X = x0)) estimated on the cohort

is an estimate of this shared effect.

2.2.2 Distinguishing modifiable and non-modifiable causes

To gain insight from a practical standpoint, the previous analysis can be slightly refined

by decomposing causes of X as U = (V, ϑ) where V and ϑ correspond to sets of modifiable

and non-modifiable causes of X, respectively. See Figure 2.1 (b). Because non-modifiable

causes may affect modifiable ones, while the former are unlikely to be affected by the

latter, we do not consider the possibility of an arrow pointing from V to ϑ in Figure 2.1

(b). Causes ϑ are non-modifiable and the only interventions that could be practically

set up are those on V . Denote the set of possible values of ϑ by V. Then, for any

x ∈ {0, 1} and ν ∈ V, set f−1
X|ϑ(x; ν) = {v : fX(v, ν) = x}. First assume that this

set is non-empty for any x ∈ {0, 1} and ν ∈ V: in other words, first assume that,

for any x ∈ {0, 1}, and for any value ν for the non-modifiable factors ϑ, there exists

some value v of the modifiable factors V such that fX(ν, v) = x. Now, for individuals

such that ϑ = ν0, for any ν0 ∈ V, we have X = x0 ⇔ V ∈ f−1
X|ϑ(x0; ν0). Therefore

P(Y (V=vx0 (ν0)) = 1|ϑ = ν0) = P(Y = 1|do(V = vx0(ν0)), ϑ = ν0) = P(Y = 1|do(X = x0))

for any vx0(ν0) ∈ f−1
X|ϑ(x0; ν0). Denote by do(V = vx0(ϑ)) any intervention which sets, for

all individuals in the population, the value of V according to the value ν0 of ϑ, in such

a way that for any individual with ϑ = ν0, the intervention do(V = vx0(ϑ)) sets V to

vx0(ν0) ∈ f−1
X|ϑ(x0; ν0). Then, we have P(Y = 1|do(V = vx0(ϑ))) = P(Y = 1|do(X = x0)).

In other words, versions are again irrelevant and any such intervention has the same effect

on Y , which is P(Y = 1|do(V = vx0(ϑ)) = P(Y = 1|do(X = x0)).

Of course, unless there exists at least one value v1 ∈ ∩ν∈V{f−1
X|ϑ(x0; ν)}, only a dy-

namic, i.e. individual-specific, treatment can be adopted to attain this effect. For in-

stance, consider the “stay lean” arm of the clinical trial mentioned in the Introduction

2.1. Because individuals may be more or less genetically predisposed to obesity, some

individuals will have to make little effort to stay lean by the age of 20, while others

will have to adopt a drastic diet and/or have intense physical activity, etc. We may

stress that this heterogeneity among individuals is at the core of personalized (preven-

tive) medicine and need to be acknowledged, rather than discarded, in causal inference.

Similarly, our cohort reflects this heterogeneity: individuals sharing the same obesity

status {X = x0}, for x0 ∈ {0, 1}, can differ regarding V and ϑ. More precisely, for

x0 ∈ {0, 1}, set V(x0) = {ν ∈ V : f−1
X|ϑ(x0; ν) 6= ∅}. The lean and obese groups in our
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Figure 2.2: DAGs and associated structural equations in the presence of confounders
(a) Standard causal model with confounding. (b) Distinguishing modifiable and non-
modifiable causes of X in the presence of confounding.

cohort are sampled from

{X = x0} =
⋃

ν∈V(x0)

{
{ϑ = ν}

⋂
{V ∈ f−1

X|ϑ(x0; ν)}
}

for x0 = 0 and x0 = 1, respectively. Again, if the model of Figure 2.1 (b) is correct,

versions of the compound treatment obesity are not relevant (Hernán and VanderWeele,

2011, VanderWeele and Hernán, 2013). Therefore, how the levels of the causes of “obesity

at 20 years of age” are mixed up in the group of obese, or lean, individuals in our cohort

is not relevant either: our cohort would return unbiased estimates for the quantity P(Y =

1|do(X = x0)) = P(Y = 1|X = x0), just as the clinical trial would. Then, the effect of

the intervention do(X = x0) can again be interpreted as the effect of any intervention on

the causes of X ensuring X = x0.

If, for some x, there exist some values ν1 ∈ V of the non-modifiable variables ϑ such

that the set f−1
X|ϑ(x; ν1) is empty, the intervention do(X = x) is purely theoretical for

individuals such that ϑ = ν1 since no practical intervention could yield X = x for them.

However, under the assumptions of SCMs, and if the DAG of Figure 2.1 (b) is correct, the

effect of the hypothetical intervention do(X = x0) can still be estimated from our cohort

study even if no practical intervention ensuring X = x0 exists for individuals with ϑ = ν1

(whenever the positivity condition further holds (0 < P(X = x0) < 1)). Indeed, we have

P(Y = 1|do(X = x0), ϑ = ν1) = P(Y = 1|do(X = x0) = P(Y = 1|X = x0).

2.3 The more standard case with confounders

2.3.1 Preliminary analyses

We now turn our attention to the more common situation where confounding is present.

Without loss of generality, assume that causes of X are grouped in two sets, W and U .

19



Here, and as above, causes in U are assumed to have an effect on Y through X only,

while W is the set of common causes of X and Y , that is the set of confounders in the

X-Y relationship. In our illustrative example, W could include gender, physical activity

and dietary habit, while U might include genetic predisposition to obesity. Figure 2.2 (a)

depicts the corresponding causal model. Assume for ease of notation that the set W of

possible values for W is discrete. Further recall that consistency still holds, and assume

that 0 < P(X = 1|W = w) < 1 for all w such that P(W = w) > 0. Then, because

Y (x) ⊥⊥ X|W under the model depicted in Figure 2.2 (a) , the causal effect of X on Y is

identifiable. More precisely, we have

ATE =
∑

w

[P(Y = 1|X = 1,W = w)− P(Y = 1|X = 0,W = w)]P(W = w).

But, again, a natural question is how the hypothetical intervention do(X = x) does

relate to interventions on causes of X. Neglecting for now issues related to the possibility

to apply these interventions in practice, these interventions can concern either (i) U only,

(ii) W only, or (iii) both U and W .

First consider interventions on U only and set, for any x ∈ {0, 1} and w ∈ W,

f−1
X|W (x;w) = {u : fX(u, w) = x}. For any w0 ∈W, we have X = x0 ⇔ U ∈ f−1

X|W (x0;w0)

for individuals belonging to stratum W = w0. Then, assume that f−1
X|W (x0;w0) is non-

empty for all (x0, w0) ∈ {0, 1} ×W and denote by do(U = ux0(W )) any intervention

setting U to any value ux0(w0) ∈ f−1
X|W (x0;w0) for individuals in stratum W = w0, for

all w0 ∈ W. Arguing as in Section 2.2.2, we get P(Y = 1|do(U = ux0(W ))) = P(Y =

1|do(X = x0)); see Section 2.B.1 in the Appendix. Again, versions are irrelevant, and any

such intervention has the same effect on Y , which is P(Y = 1|do(X = x0)).

Now consider interventions on W only and set, for any x ∈ {0, 1} and u ∈ U,

f−1
X|U(x; u) = {w : fX(u, w) = x}. Then, assume that f−1

X|U(x; u) is non-empty for

every (x, u) ∈ {0, 1} × U, and for any u0 ∈ U, denote by wx0(u0) one given ele-

ment of f−1
X|U(x0; u0). Given this particular collection of values (wx0(u))u∈U, denote by

do(W = wx0(U)) the intervention which sets W to wx0(u0) for individuals in stratum

U = u0, for all u0 ∈ U. Arguing as before, it comes that P(Y = 1|do(W = wx0(U))) =

P(Y = 1|do(X = x0,W = wx0(U))), which generally differs from P(Y = 1|do(X = x0)).

The intervention do(W = wx0(U)) does entail X = x0 for all individuals, but because

W has an effect on Y not only through X, the effect of do(W = wx0(U)) is not en-

tirely captured by that of do(X = x0). Actually, X can be seen as a mediator in the

W − Y relationship, and, under simple models, in particular in the absence of inter-

action between X and W , the effect of do(X = x0) is actually related to the indirect

effect of the intervention do(W = wx0(U)), through X; see Section 2.B.3 in the Ap-

pendix. It is also important to note that P(Y = 1|do(W = wx0(U)) depends on the
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collection of values (wx0(u))u∈U. If w0 and w̃0 are two distinct elements of f−1
X|U(x0; u0)

for some u0 ∈ U, then P(Y = 1|do(W = w0), U = u0) = P(Y (W=w0,X=x0) = 1), while

P(Y = 1|do(W = w̃0), U = u0) = P(Y (W=w̃0,X=x0) = 1). The difference between these two

quantities is related to the direct effect of W , and reflects the fact that two interventions

on W sharing the same effect on X do not necessarily have the same effects on Y when

W has a direct effect on Y : in this case, versions of the compound treatment are relevant.

Now, if f−1
X|U(x; u) is empty for some (x, u) ∈ {0, 1} × U, then no intervention on

W only can ensure X = x for individuals in stratum U = u. Similarly, if f−1
X|W (x;w)

is empty for some pair (x, w), then no intervention on U only can ensure X = x for

individuals in stratum W = w. Then, consider interventions on both W and U , and

set f−1
X (x) = {(w, u) : fX(u, w) = x}. For any (w0, u0) ∈ f−1

X (x0), it is easy to show

that P(Y = 1|do(W = w0, U = u0)) = P(Y (W=w0,X=x0) = 1). Therefore, interventions

on both W and U that ensure X = x0 are similar to interventions on W only: their

effects are generally not uniquely defined (they depend on the particular pair of values

(w0, u0) ∈ f−1
X (x0)) and only partly capture the effect of interventions on X.

2.3.2 Distinguishing modifiable and non-modifiables causes

All the analyses above can be refined by acknowledging that some causes in U and W are

modifiable, while others are not, and by considering interventions on modifiable causes

only. See Figure 2.2 (b). Compared to Section 2.3.1, notations become a little more

complex, but conclusions remain mostly similar. For instance, consider interventions on

both V and W , where V is a modifiable cause of X with no direct effect on Y , while W is

a modifiable confounder in the X−Y relationship. For any x0 ∈ {0, 1} and any potential

values ν and z for non-modifiable causes ϑ and Z, assume that the set f−1
X|ϑ,Z(x0; ν, z) =

{(v, w) : fX(v, ν, w, z) = x0} is non-empty, and denote by (vx0(ν, z), wx0(ν, z)) one given

element in this set. Then denote by do(V = vx0(ϑ, Z),W = wx0(ϑ, Z)) the intervention

setting V to vx0(ν0, z0) and W to wx0(ν0, z0) for any individuals in stratum {ϑ = ν0} ∩
{Z = z0}, for all ν0, z0. Arguing as before, it can be shown that P(Y = 1|do(V =

vx0(ϑ, Z),W = wx0(ϑ, Z))) = P(Y = 1|do(X = x0,W = wx0(ϑ, Z))). This quantity

generally differs from P(Y = 1|do(X = x0) and the reason again is that the intervention

do(V = vx0(ϑ, Z),W = wx0(ϑ, Z)) not only ensures that X = x0, but it also has a direct

effect on Y through the intervention on W .

2.4 Conclusion-Discussion

In this article, we showed how the hypothetical intervention do(X = x0), when impossible

to apply in practice, relates to interventions on causes of X. Basing our arguments

on structural causal models, our conclusions are in line with those of Petersen (2011):

the DAG which represents our assumptions on the causal model under study is basically

21



sufficient to precisely understand how do(X = x0) can be interpreted. When interventions

on causes of X that are causes of Y through X only exist, the effect of do(X = x0) captures

the effect of such interventions. However, for causes of X, say W , that cause Y not only

through X, the effect of do(X = x0) only partly captures the effect of interventions on

W . Under simple causal models, the effect of do(X = x0) is related to the indirect effect

of interventions on W .

Taking the example of obesity (at 20 years old) and the risk of cancer (by the age of

50), our results confirm concerns raised by several authors (Hernán and Taubman, 2008,

Hernán and VanderWeele, 2011, VanderWeele and Hernán, 2013): because most modifi-

able causes of obesity can be regarded as confounders in the obesity-cancer relationship,

the effect of obesity estimated from observational data likely differs from the effect of

interventions on these causes, which could be estimated through clinical trials. At this

point, however, we may insist on the fact that, if all modifiable causes of obesity are con-

founders in the obesity-cancer relationship, then clinical trials would not yield an estimate

of the effect of obesity on cancer. Instead, a clinical trial would return an estimate of the

causal effect of the considered intervention on cancer, and this effect would only partly

capture the effect of obesity. Consider again the clinical trial sketched in the Introduc-

tion 2.1. More precisely, consider a randomized clinical trial where the study population,

corresponding, e.g. to lean teenagers, is randomly assigned to two arms. Denote by U

and Z the other, possibly non-modifiable, causes of X, with Z corresponding to common

causes of Y and X, and U corresponding to causes of Y through X only. In this setting,

observe that Y X=x ⊥6⊥W while Y X=x ⊥⊥ {W,Z} in general. Denote by U and Z the sets

of possible values for U and Z, respectively. Then, an “ideal” clinical trial would consist

in randomly assigning individuals to one of the following two groups: those for whom W

would be set to w1(U,Z) and those for whom W would be set to w0(U,Z), for two given

collections of values (w0(u, z))u∈U,z∈Z and (w1(u, z))u∈U,z∈Z, where w0(u, z) and w1(u, z)

ensure that X = 0 and X = 1, respectively, for individuals with U = u and Z = z.

Assuming complete compliance, and arguing as in Section 2.3, it is easy to show that the

comparison of these two groups would return an estimate of the effect of this particu-

lar intervention on W , not that of X. Comparisons should be made between groups of

individuals sharing the same value for W and Z to obtain a valid estimate of the effect

of obesity, within strata defined by W and Z. In other words, under this ideal clinical

trial setting, non-modifiable confounders in the X − Y relationship would still have to

be measured and controlled for to unbiasedly estimate the causal effect of obesity, within

strata defined by W and Z. When controlled for a sufficient set of confounders, analyses

based on observational studies can be used to derive unbiased estimates of these same

effects.

There are a number of subtleties that we neglected for the sake of simplicity. First,

a clinical trial whose objective is to prevent obesity by the age of 20 would typically
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not only be dynamic, but also adaptive, i.e. the intervention is not only subject-specific,

but it is also time-dependent. A good example is the Feeding Dynamic Intervention, to

prevent childhood obesity1. Similarly, although we focused on time-fixed exposure and

confounders, they are all time-varying in the population. For instance, physical activity

and food intakes vary over the age interval [0, 20), and the corresponding variables are

all potential confounders in the relationship between obesity at 20 years-old and cancer

occurrence before 50 years-old. Another important time-varying cause of obesity at 20

years-old is obesity over the age interval [0, 19). Consequently, individuals in the two

groups of our cohort, obese and lean at 20 years-old, do not only differ because of their

status regarding obesity at 20 years of age, they also typically differ with respect to their

histories regarding obesity, physical activity and dietary habits. This can lead to biases if

these histories are not appropriately accounted for in the analysis (Etievant and Viallon,

2020). Second, selection bias may also be at play in our cohort study since only individ-

uals who are cancer-free at 20 can be included. This selection bias will be more severe

if cancer risk before 20 years old is associated to levels of obesity, physical activity and

dietary habits over the age interval [0, 19]. This selection bias due to prevalent expo-

sure and depletion of susceptibles has been put forward as one of the reasons explaining

the discrepancies between results obtained through observational and interventional data

when studying the association between hormone replacement therapy and coronary heart

disease for instance (Hernán et al., 2008).
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2.A Appendix: Proof in the unconfounded case

Under the model depicted in Figure 2.1 (a), we have

P(Y = 1|do(U = ux0)) = P(Y (U=ux0 ) = 1)

= P(fY (X
(U=ux0 ), ξ) = 1)

= P(fY (x0, ξ) = 1)

1https://clinicaltrials.gov/ct2/show/NCT01515254
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= P(Y (x0) = 1)

= P(Y = 1|do(X = x0)).

2.B Appendix: Proof in the confounded case

2.B.1 Interventions of type (i)

Assume that f−1
X|W (x0;w0) is non-empty for any x0, w0. Then, under the model depicted

in Figure 2.2 (a), we have, for any ux0(w0) ∈ f−1
X|W (x0;w0)

P(Y = 1|do(U = ux0(w0)),W = w0) = P(Y (U=ux0 (w0)) = 1|W = w0)

= P(fY (X
(U=ux0 (w0)),W, ξ) = 1|W = w0)

= P(fY (x0, w0, ξ) = 1)

= P(Y (X=x0,W=w0) = 1)

= P(Y = 1|do(X = x0,W = w0))

= P(Y = 1|do(X = x0),W = w0),

where the last equality follows from rule 2 of the do-calculus(Pearl, 2000).

Moreover,

P(Y = 1|do(U = ux0(W ))) =
∑

w0

P(Y = 1|do(U = ux0(w0)),W = w0)P(W = w0)

=
∑

w0

P(Y = 1|do(X = x0),W = w0)P(W = w0)

= P(Y = 1|do(X = x0)).

2.B.2 Interventions of type (ii)

Assume that f−1
X|U(x0; u0) is non-empty for any x0, u0. Then, under the model depicted in

Figure 2.2 (a), we have, for any wx0(u0) ∈ f−1
X|U(x0; u0)

P(Y = 1|do(W = wx0(u0)), U = u0) = P(Y (W=wx0 (u0)) = 1|U = u0)

= P(fY (X
(W=wx0 (u0)), wx0(u0), ξ) = 1|U = u0)

= P(fY (x0, wx0(u0), ξ) = 1|U = u0)

= P(fY (x0, wx0(u0), ξ) = 1)

= P(Y (X=x0,W=wx0 (u0)) = 1).
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2.B.3 Relationship with indirect effects

Denote by (w1(u0), w0(u0))u0∈U two given collections of values such that w1(u0) ∈ f−1
X|U(1; u0)

and w0(u0) ∈ f−1
X|U(0; u0). Further let do(W = w1(U)) and do(W = w0(U)) denote two

given interventions setting W to w1(u0) ∈ f−1
X|U(1; u0) and w0(u0) ∈ f−1

X|U(0; u0), respec-

tively, for individuals in stratum U = u0, for all u0 ∈ U. We have

E(Y (w1(U)) − Y (w0(U))) =
∑

u

E(Y (w1(u)) − Y (w0(u))|U = u)P(U = u)

=
∑

u

E(Y (w1(u),X(w1(u))) − Y (w0(u),X(w0(u)))|U = u)P(U = u)

=
∑

u

{E(Y (w1(u),X(w1(u))) − Y (w1(u),X(w0(u)))|U = u)

+ E(Y (w1(u),X(w0(u))) − Y (w0(u),X(w0(u)))|U = u)}P(U = u)

=
∑

u

E(Y (w1(u),x1) − Y (w1(u),x0) + Y (w1(u),x0) − Y (w0(u),x0))P(U = u).

The term
∑

u E(Y (w1(u),x1)− Y (w1(u),x0))P(U = u) can be regarded as an indirect effect

since the level of W is held fixed and only the value of X changes from x0 to x1 which,

for individuals in stratum U = u, equal X(W=w0(u)) and X(W=w1(u)) respectively. More

precisely, we have

∑

u

E(Y (w1(u),x1) − Y (w1(u),x0))P(U = u)

=
∑

u

{E(Y |W = w1(u), X = x1)− E(Y |W = w1(u), X = x0)}P(U = u).

Under the model depicted in Figure 2.2 (a), recall we have

E(Y |do(X = x1))− E(Y |do(X = x0))

=
∑

w

{E(Y |W = w,X = x1)− E(Y |W = w,X = x0)}P(W = w).

Under simple causal models, for instance when fY (W,X, ξ) = αTW +βX+ ξ, the two

quantities,
∑

u E(Y (w1(u),x1) − Y (w1(u),x0))P(U = u) and E(Y |do(X = x1)) − E(Y |do(X =

x0)), coincide and equal β. However, under more complex models, these two quantities

are typically different. Even under linear models, if interaction terms of the form γTWX

are present in function fY , these two terms are typically different and
∑

u E(Y (w1(u),x1) −
Y (w1(u),x0))P(U = u) would actually depend on the collection of values {w1(u), u ∈ U}.
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Chapter 3

Causal inference under over-simplified

longitudinal causal models

This Chapter corresponds to the preprint available at https://arxiv.org/abs/1810.01294,

and written with Vivian Viallon.

In the Appendix A of the present manuscript, we present preliminary results on natural

direct and indirect effects.

Abstract

Many causal models of interest in epidemiology involve longitudinal exposures, con-

founders and mediators. However, in practice, repeated measurements are not always

available. Then, practitioners tend to overlook the time-varying nature of exposures and

work under over-simplified causal models. Our objective here was to assess whether - and

how - the causal effect identified under such misspecified causal models relates to true

causal effects of interest. We focus on two situations regarding the type of available data

for exposures: when they correspond to (i) “instantaneous” levels measured at inclusion

in the study or (ii) summary measures of their levels up to inclusion in the study. In

each of these two situations, we derive sufficient conditions ensuring that the quantities

estimated in practice under over-simplified causal models can be expressed as true lon-

gitudinal causal effects of interest, or some weighted averages thereof. Unsurprisingly,

these sufficient conditions are very restrictive, and our results state that inference based

on either “instantaneous” levels or summary measures usually returns quantities that do

not directly relate to any causal effect of interest and should be interpreted with caution.

They raise the need for repeated measurements and/or the development of sensitivity

analyses when such data is not available.
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3.1 Introduction

Etiologic epidemiology is concerned with the study of potential causes of chronic diseases

based on observational data. Over the years, it has notably been successful in the identifi-

cation of links between lifestyle exposures and the risk of developing cancer. Remarkable

examples are tobacco smoke, alcohol and obesity that are now established risk factors for

the development of a number of site-specific cancers (Agudo et al., 2012, Bagnardi et al.,

2015, Lauby-Secretan et al., 2016). Moreover, an accumulating body of biomarker mea-

surements and -omics data provide important opportunities for investigating biological

mechanisms potentially involved in cancer development. For example, cancer epidemiol-

ogy is increasingly concerned by the study of the carcinogenic role of inflammation, insulin

resistance and sex steroids hormones (Bradbury et al., 2019, Chan et al., 2011, Dossus

et al., 2013).

The causal validity of such analyses relies on strong assumptions though, which have

been formally described in the causal inference literature (Hernán and Robins, 2020, Pearl,

2000, Robins, 1986, Rosenbaum and Rubin, 1983). The very first assumption underlying

most causal analyses is that the causal model is correctly specified. Most often, e.g.,

when studying lifestyle exposures such as tobacco smoke, alcohol and obesity, but also

biomarkers, the true causal model involves time-varying risk factors. Valid causal infer-

ence under such longitudinal causal models usually requires repeated measurements for

these time-varying variables (Daniel et al., 2012, VanderWeele, 2015, VanderWeele and

Tchetgen Tchetgen, 2017). However, such repeated measurements are rarely available in

large observational studies, and simplified models that involve time-invariant variables

only are usually considered instead. In particular, most studies on biomarkers have been

conducted using information collected at recruitment only (Bradbury et al., 2019, Chan

et al., 2011, Dossus et al., 2013), since blood samples are usually collected only once, at

recruitment, in large cohort studies such as the European Prospective Investigation into

Cancer and Nutrition (EPIC) cohort study (Riboli et al., 2002), and the UK Biobank (Sud-

low et al., 2015). These studies were conducted after implicitly assuming that past levels

of biomarkers are independent of risk of future cancer given current levels of biomarkers;

see Figure 3.1 (L-a) for a simple illustration, in the absence of confounders. If past levels

of biomarkers may influence the outcome not only through their current levels (see, e.g.,

Figure 3.1 (L-b)), the model considered in these analyses was over-simplified, and then

misspecified.

Issues arising when working under over-simplified longitudinal causal models have

already been described in the statistical literature (Aalen et al., 2016, Maxwell and Cole,

2007, Maxwell et al., 2011). Moreover, general results on the identifiability of causal effects

in the presence of unobserved variables can be used to study the identifiability of the causal

effect of interest when ignoring the time-varying nature of exposures or, equivalently, when

past levels of exposures are unobserved (Huang and Valtorta, 2006, Shpitser and Pearl,
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2006, Tian and Pearl, 2002, 2003). However, little is known about the relationship between

estimates derived under over-simplified longitudinal causal models and causal quantities of

interest under the true longitudinal causal model. Filling this gap is the main objective of

the present work. More precisely, we will derive sufficient conditions that guarantee that

the quantity estimated in practice when working under misspecified models expresses as a

particular weighted average of the longitudinal causal effects of interest. We will consider

the most “standard” discrete longitudinal causal models (Daniel et al., 2012), where the

causal effect of interest is that of one exposure varying over some predefined discrete time

interval, say J1, t0K := {1, . . . , t0}, on one outcome Y measured at some later time point

T > t0. Two situations will be considered regarding the available information for the

exposures, which will include the exposure of interest and possibly additional factors such

as mediators and confounders. First, we consider the situation where available data for the

exposures correspond to their “instantaneous” levels at the time t0 of recruitment in the

study. Considering models depicted in Figure 3.1 (L-a) and (L-b), only data on Xt0 would

be available, while data on X̄t0−1 would not. This can be regarded as the most common

case, but also the worst one since information at one single point in time is available for

the full exposure profile. Then, we will turn our attention to a more general and seemingly

more favorable situation, where the available information for each exposure corresponds to

a summary measure of its levels up to inclusion in the study. Considering exposures such as

alcohol intake or dietary exposure, epidemiologists generally not only collect instantaneous

levels (through 24-hour recall questionnaires), but also summary measures of past levels of

exposure through food frequency questionnaires, which summarize levels of exposures over

the last 6 months, 12 months or even 5 years (Slimani et al., 2002). Summary measures

are also sometimes constructed from repeated measurements of exposures, when available

(Arnold et al., 2016, Kunzmann et al., 2018). This is increasingly common for exposures

such as Body Mass Index (BMI) or alcohol intake, whose levels are sometimes available for

each participant at different points in time (at recruitment, at 20 years-old, etc.). Cluster

analysis can be performed to summarize the repeated measures into a categorical variable,

whose categories correspond to certain “shapes” for the exposure profile, such as constantly

low, constantly high, etc. Alternatively, the exposure profile can be summarized, e.g., by

computing the number of years over a certain threshold, etc. (Arnold et al., 2019, 2016).

In any case, the obtained summary measure is then regarded as the exposure of interest,

and the underlying time-varying nature of the genuine exposure is not further considered.

In other words, these summary measures are supposed to capture everything that matters

with respect to the effect of the whole exposure profile on the outcome; see Figure 3.1

(L-c) for a simple illustration.

The rest of the article is organized as follows. Section 3.2 presents the notation that

will be used throughout the article. In Sections 3.3 and 3.4, we will then present our

results, in the situation where instantaneous levels of exposures are available (Section
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X̄t0−1 Xt0 Y X̄t0−1 Xt0 Y X̄t0−1 Xt0 X Y

(L-a) (L-b) (L-c)

Figure 3.1: Examples of simple discrete longitudinal causal models with a time-varying
exposure (Xt)t≥1 and an outcome Y , in the absence of confounding. (L-a) Past levels
of exposures X̄t0−1 have no effect on Y , except through current level of exposure Xt0 .
(L-b) Past levels of exposures X̄t0−1 have an effect on Y not only through Xt0 . (L-c) The
exposure process is assumed to affect the outcome only through some summary variable,
X.

3.3), or summary variables of past levels of exposures are available (Section 3.4). We

will present concluding remarks and recommendations in Section 3.5. Most technical

derivations are presented in the Appendix accompanying this article.

3.2 Notation

For any positive integer i, we use the notation 0i and 1i for vectors (0, . . . , 0) ∈ R
i

and (1, . . . , 1) ∈ R
i respectively. As mentioned above, we consider the setting that is

classically adopted when working with time-varying predictors in causal inference (Daniel

et al., 2012, VanderWeele, 2015). More precisely, we assume that time-varying exposures,

including the exposure of interest as well as potential mediators and confounders, are

observable at discrete times over the time-window J1;T K := {1, . . . , T} for some T >

1. For any t ∈ J1;T K, we let Xt denote the exposure of interest at time t. Adopting

the notation of VanderWeele (2015), we further denote the exposure profile until time t

by X̄t = (X1, X1, . . . , Xt), while x̄t stands for a specific (fixed) profile for the exposure

of interest. Full exposure profile is denoted by X̄ = X̄T = (X1, X2, . . . XT ). When

needed, we will use similar notation for auxiliary factors (Zt)t≥1, that may include pure

mediator processes (Mt)t≥1, as well as confounder processes (Wt)t≥1 possibly affected by

the exposure of interest. Unless otherwise stated, we assume that all the variables are

binary to simplify the notation. We further denote by t0 ∈ J2;T K the inclusion time in

the study.

While causal inference should generally rely on the observations of the full profile of

exposures (X̄, Z̄), or at least their full profile prior to inclusion (X̄t0 , Z̄t0), we assume in

Section 3.3 that the available information at time t0 consists in (Xt0 , Zt0) only. Next,

Section 3.4 will be devoted to the case where we have access to some summary measures

of X̄t0 and Z̄t0 , which will be denoted by X and Z, respectively. These summary measures

are typically defined as deterministic functions of the exposure profiles. Considering, e.g.,

summary measures of X̄t0 , typical examples include functions of the form X =
∑t0

t=t′ Xt,

and X = 1{∑t0
t=t′ Xt ≥ τ} for some 1 ≤ t′ ≤ t0 and some threshold τ ∈ R. More simply,
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we can even have X = Xt0 , which emphasizes the fact that the situation where summary

measures are available encompasses the situation where instantaneous levels are available

as a special case.

For any pair of variables (V, U) and any potential value u of U , we denote by V U=u the

counterfactual variable corresponding to variable V that would have been observed in the

counterfactual world following the hypothetical intervention do(U = u). We work under

the setting of Structural Causal Models (Pearl, 1995, 2000), which especially entails that

consistency conditions hold: for instance, U = u implies V = V U=u . In addition, we

assume that positivity conditions hold (Rosenbaum and Rubin, 1983). For any possibly

counterfactual random variables V and U , and any causal model (Mod), we will use the

notation (V ⊥⊥U)Mod to denote independence between variables V and U under the causal

model (Mod). We will further let EMod

(
V U=u

)
be the expectation of variable V U=u under

causal model (Mod). We will mostly consider such expectations for Mod set to either the

true causal longitudinal model (we will use indices L and LS for these longitudinal models

when considering models involving instantaneous levels only, and summary variables,

respectively) or the over-simplified model used for the analysis (we will use indices CS

- standing for cross-sectional - and SV - standing for summary variables - for these

models). In particular, a key quantity in our work is ATEL (x̄t; x̄
∗
t ) = EL(Y

X̄t=x̄t −
Y X̄t=x̄∗

t ), for any two given profiles x̄t and x̄∗
t for the exposure of interest, and some time

t. This quantity is one measure of the total effect (Daniel et al., 2012, VanderWeele,

2015) of exposure up to time t on the outcome variable Y under a given longitudinal

causal model (L), as for instance the one given in Figure 3.1 (L-b). More details will be

be given in Section 3.3. Because this quantity generally depends on the particular values

for x̄t and x̄∗
t , averaged total effects can be defined for appropriate weights ω(x̄t, x̄

∗
t ) as∑

x̄t

∑
x̄∗
t

ATEL (x̄t; x̄
∗
t )ω(x̄t, x̄

∗
t ), with the two sums over {0, 1}t. We will also consider

stratum-specific causal effects (Hernán and Robins, 2020), with strata defined according

to the levels of some possibly multivariate variable U

ATEL|U=u
(x̄t; x̄

∗
t ) := EL

(
Y X̄t=x̄t − Y X̄t=x̄∗

t | U = u
)
, (3.1)

and weighted averages of the form
∑

u

∑
x̄t

∑
x̄∗
t

ATEL|U=u
(x̄t; x̄

∗
t )ω(x̄t, x̄

∗
t , u), for appro-

priate weights ω(x̄t, x̄
∗
t , u).

Then, we need to introduce a specific symbol, ≎, to relate a causal effect defined

under some over-simplified model to the quantity that is actually estimated in prac-

tice, and which is usually expressed under the true longitudinal causal model. Consider,

e.g., an over-simplified causal model (CS), under which the causal effect ATECS :=

ECS

(
Y Xt0=1 − Y Xt0=0

)
can be identified through the formula ECS (Y | Xt0 = 1)−ECS

(
Y |

Xt0 = 0
)
. Because this quantity will actually be estimated using data generated under

the true longitudinal model, say (L), the quantity estimated in practice turns out to be

EL (Y | Xt0 = 1)−EL (Y | Xt0 = 0). We would then write ATECS ≎ EL (Y | Xt0 = 1)−
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EL (Y | Xt0 = 0). We shall stress that ATECS ≎ EL (Y | Xt0 = 1)−EL (Y | Xt0 = 0) does

generally not imply ATECS = EL (Y | Xt0 = 1) − EL (Y | Xt0 = 0), unless, e.g., (CS) is

correctly specified. For the sake of legibility, we will indistinctly use ATECS for both the

causal effect and the quantity estimated in practice in the text.

In other respect, expectations and probabilities involving observed variables only will

from now on be computed under the true longitudinal causal model, and so we will

simply use notation like E(V ) and P(V = v) for any observable variable V . Going back

to the example above, we would therefore simply write ATECS ≎ E (Y | Xt0 = 1) −
E (Y | Xt0 = 0), which means that the quantity estimated in practice when working under

the over-simplified causal model (CS) is actually EL (Y | Xt0 = 1)−EL (Y | Xt0 = 0). See,

e.g., the proof of Theorem 1 in Appendix 3.A.1 for more details.

Finally, in our causal diagrams, we will use as usual simple solid arrows U −→ V to

denote that U is a potential cause of V , for any possibly multivariate random variables U

and V . In addition, double dashed arrows V 99K
L99 U will be used when (i) components of

U may cause components of V , (ii) components of U may be caused by components of V ,

but (iii) any univariate component Ũ ⊂ U causing a univariate component Ṽ ⊂ V cannot

be caused by Ṽ . See Figure 3.2 (L) for a simple example of a causal diagram involving

such double dashed arrows. We shall stress that our double dashed arrows have a different

meaning than the usual dashed double-headed arrow V L9999K U used in the literature

(Shpitser and Pearl, 2006, Tian and Pearl, 2002, 2003) when the (U−V ) relationship may

be confounded by unmeasured variables. Moreover, point (iii) ensures that the subgraph

V 99K
L99 U is still a directed acyclic graph (DAG).

3.3 The case when exposure variables are measured at

inclusion in the study only

3.3.1 General model and results

A general causal model where a time-varying exposure (Xt)t≥1 potentially causes an out-

come Y , can be compactly represented as in Figure 3.2 (L). Here, variables (Zt)t≥1 are

possibly multivariate, in which case their components may consist of pure mediators,

pure confounders, as well as confounders influenced by the exposure of interest. More-

over, some components of Zt0 may be unobserved in practice. At each time t ∈ J1;T K,

Xt is a potential cause of Y and is potentially caused by all components of X̄t−1, and by

some or all components of Z̄t−1 and Zt. At each time t ∈ J1;T K, Zt is a potential cause of

Y , whose components are potentially caused by X̄t−1 and Z̄t−1. Components of Zt that

are not causes of Xt may further be caused by Xt. This general model could depict the

case where the exposure of interest (Xt)t≥1 stands for BMI at different ages, while the

auxiliary variable (Zt)t≥1 would include measures of alcohol intake, physical activity and
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Figure 3.2: (L) General longitudinal causal model with time-varying exposure of interest
(Xt)t≥1, and additional time-varying process (Zt)t≥1. Particular cases are presented in
(L.ex1 ), (L.ex2 ), (L.ex3 ) and (L.ex4 ), along with their over-simplified counterparts in
(CS.Conf.ex1 ), (CS.Conf.ex2 ), (CS.Conf.ex3 ), (CS.Conf.ex4 ), and (CS.Med.ex4 ). When
the true longitudinal model is (L.ex4 ), with a time-varying confounder (Wt)t≥1 affected
by the exposure, two possible over-simplified counterparts can be considered, depending
on whether (Wt)t≥1 is mainly considered as a confounder or a mediator.
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diet at different ages. Model (L.ex4) in Figure 3.2 provides a less compact representation

of a particular example of this general model, with t0 = 2, and Zt = (Mt,Wt), where

(Wt)t≥1 is a confounder affected by the exposure, and (Mt)t≥1 a pure mediator.

Under such models, causal effects can be defined by considering hypothetical inter-

ventions on the full exposure profile do(X̄ = x̄). However, epidemiologists are often

interested in the assessment of the predictive role of the exposure of interest, so a more

natural measure of the causal effect of exposure on the outcome is

ATEL

(
x̄t0 ; x̄

∗
t0

)
:= EL

(
Y X̄t0=x̄t0 − Y X̄t0=x̄∗

t0

)
, (3.2)

for any given exposure profiles up to time t0, x̄t0 and x̄∗
t0

in {0, 1}t0 . Under some well

known sets of assumptions on the causal model, including the consistency and sequential

ignorability conditions (Pearl, 2000, Robins, 1986, Rosenbaum and Rubin, 1983), the

causal effect in Equation (3.2) can be expressed in terms of observable variables only. It

can then be estimated if data on the full history of the variables up to time t0 is available,

assuming that some positivity conditions hold (Rosenbaum and Rubin, 1983). We recall

that such positivity conditions will be assumed to hold throughout this article.

However, when data on exposures are available at time t0 only, ATEL

(
x̄t0 ; x̄

∗
t0

)
can

generally not be estimated. As mentioned in the Introduction 3.1, it is then common

practice to implicitly (i) overlook the time-varying nature of the exposures, (ii) work

under an over-simplified causal model (CS ), and (iii) consider the causal effect ATECS :=

ECS

(
Y Xt0=1 − Y Xt0=0

)
as the causal measure of interest. For example, if the true causal

longitudinal model is model (L.ex4) of Figure 3.2, but only information on Y , Xt0 , Mt0

and Wt0 is available, most practitioners would implicitly work under the over-simplified

model (CS.Conf.ex4) given in Figure 3.2. Then, because (Y Xt0=xt0 ⊥⊥Xt0 |Wt0)CS.Conf.ex4,

the quantity of interest would be identified through

ATECS.Conf.ex4 ≎

∑

wt0

[E (Y | Wt0 = wt0 , Xt0 = 1)− E (Y | Wt0 = wt0 , Xt0 = 0)]

×P(Wt0 = wt0).

It is noteworthy that, for some true longitudinal causal models, several over-simplified

cross-sectional models may be considered. When the true causal longitudinal model is that

of Figure 3.2 (L.ex4), practitioners may consider (Wt)t mainly as a confounder and work

with the over-simplified model (CS.Conf.ex4), but they may also consider (Wt)t mainly as

a mediator and work with model (CS.Med.ex4). Because (Y Xt0=xt0 ⊥⊥Xt0)CS.Med.ex4, the

quantity estimated in practice in the latter case would be ATECS.Med.ex4 ≎ E (Y | Xt0 = 1)−
E (Y | Xt0 = 0).

Then, a natural question is whether - and how - the quantity estimated in practice

when working under over-simplified causal models (CS) relates to the longitudinal causal

effects under the true model (L), or to another causal effect of interest. Theorem 1 below
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presents a sufficient condition under which the quantity estimated in practice actually

equals ATEL (1; 0) := EL

(
Y Xt0=1 − Y Xt0=0

)
, the causal effect of Xt0 (which of course

usually differs from that of X̄t0 , but can still be seen as a causal effect of interest).

Theorem 2 then presents a weaker sufficient condition under which ATECS expresses as

a weighted average of stratum specific longitudinal total effects (3.1). Detailed proofs

of these results are given in Appendix 3.A.1 for Theorem 1, and Appendix 3.A.2 for

Theorem 2. In Section 3.3.2 below, we illustrate their implications by focusing on a few

simple examples.

Theorem 1. If condition (T1.Cond) below holds

(T1.Cond) There exists some observed Wt0 ⊂ Zt0 taking values in ΩWt0
, such that

(Y Xt0=xt0 ⊥⊥Xt0 |Wt0)CS and (Y Xt0=xt0 ⊥⊥Xt0 |Wt0)L

then the quantity estimated in practice equals ATEL (1; 0) = EL

(
Y Xt0=1 − Y Xt0=0

)
:

ATECS ≎

∑

wt0∈ΩWt0

[E (Y | Wt0 = wt0 , Xt0 = 1)− E (Y | Wt0 = wt0 , Xt0 = 0)]

×P(Wt0 = wt0), (3.3)

= ATEL (1; 0) . (3.4)

In particular, if condition (T1.Uncond) below holds

(T1.Uncond) (Y Xt0=xt0 ⊥⊥Xt0)CS and (Y Xt0=xt0 ⊥⊥Xt0)L

then

ATECS ≎ E (Y | Xt0 = 1)− E (Y | Xt0 = 0) = ATEL (1; 0) .

Theorem 2. If condition (T2.Cond) below holds

(T2.Cond) There exists some observed Wt0 ⊂ Zt0 taking values in ΩWt0
, such that

(Y Xt0=xt0 ⊥⊥Xt0 |Wt0)CS and (Y X̄t0=x̄t0 ⊥⊥ X̄t0 | Wt0)L

then the quantity estimated in practice

ATECS ≎

∑

wt0∈ΩWt0

[E (Y | Wt0 = wt0 , Xt0 = 1)− E (Y | Wt0 = wt0 , Xt0 = 0)]

×P(Wt0 = wt0),

=
∑

wt0∈ΩWt0

∑

x̄t0−1∈{0,1}t0−1

x̄∗
t0−1∈{0,1}

t0−1

{
ATEL|Wt0

=wt0

(
(x̄t0−1, 1); (x̄

∗
t0−1, 0)

)

×P(X̄t0−1 = x̄t0−1 | Xt0 = 1,Wt0 = wt0)

×P(X̄t0−1 = x̄∗
t0−1 | Xt0 = 0,Wt0 = wt0)

×P(Wt0 = wt0)
}
. (3.5)

In particular, if condition (T2.Uncond) below holds
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(T2.Uncond) (Y Xt0=xt0 ⊥⊥Xt0)CS and (Y X̄t0=x̄t0 ⊥⊥ X̄t0)L

then

ATECS ≎ E (Y | Xt0 = 1)− E (Y | Xt0 = 0)

=
∑

x̄t0−1∈{0,1}t0−1

x̄∗
t0−1∈{0,1}

t0−1

{
ATEL

(
(x̄t0−1, 1); (x̄

∗
t0−1, 0)

)

×P(X̄t0−1 = x̄t0−1 | Xt0 = 1)

×P(X̄t0−1 = x̄∗
t0−1 | Xt0 = 0)

}
. (3.6)

Theorem 1 states that whenever there exists a set of observed variables that satisfies

the ignorability condition for the exposure at time t0, Xt0 , and the outcome under both the

true and over-simplified causal models, then, the quantity estimated in practice equals the

longitudinal total effect ATEL (1; 0). In the same way, Theorem 2 states that whenever

there exists a set of observed variables that satisfies (i) the ignorability condition for the

whole time-varying exposure profile, X̄t0 , and the outcome under the true longitudinal

model, and (ii) the ignorability condition for the exposure at time t0, Xt0 , and the outcome

under the over-simplified causal model, then the quantity estimated in practice can be

written in terms of stratum specific longitudinal total effects.

3.3.2 Examples and illustration of the general results

When the conditions of Theorem 1 and Theorem 2 are not satisfied, the quantity estimated

in practice has to be interpreted with caution as its relationship with causal effects of

interest usually remains unclear. See for example Web Supplementary Material 3.C.1

where the case of the model (L.ex2) given in Figure 3.2 is described in details. However,

the conditions of our Theorems being sufficient conditions only, there are a few cases where

they are not satisfied but ATECS is still an informative measure of the exposure effect.

For example, denote by (L.ex2′) and (CS.ex2′) the versions of (L.ex2) and (CS.ex2),

respectively, after removing the arrow from Xt0 to Y . In this particular case where Xt0

has no causal effect on Y and only a pure time-varying confounder is present, we have

(Y ⊥⊥ X̄t0 | W̄t0)L.ex2′ , but we do not have (Y ⊥⊥ X̄t0 | Wt0)L.ex2′ , so the conditions of our

Theorems are not satisfied. Nevertheless, we still have ATECS.ex2′ = 0, and the inference

under the over-simplified model is valid. However, we shall stress that ATECS can also

be null in other situations where the exposure does affect the outcome, even when the

condition of Theorem 2 is satisfied (we will get back to this point below).

When the conditions of Theorem 1 are satisfied, the interpretation of ATECS is

straightforward as it simply equals ATEL(1; 0). However, unsurprisingly, these conditions

are very restrictive. For example, the condition (Y Xt0=xt0 ⊥⊥Xt0 | Wt0)L is generally not

satisfied under models (L.ex1), (L.ex2) and (L.ex4) given in Figure 3.2, because X̄t0−1,

and possibly W̄t0−1, act as unmeasured confounders for the (Xt0 − Y ) relationship, but
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are ignored in the over-simplified models. On the other hand, the conditions of Theorem

1 are verified under the very simple models (L − a) of Figure 3.1 and (L.ex3) of Figure

3.2, as well as under particular cases of model (L.ex2), e.g., when there is no arrow from

X̄t0−1 to Y nor from W̄t0−1 to Y .

Before discussing the interpretation of ATECS under the conditions of Theorem 2,

we shall stress that these conditions are quite restrictive too. In particular, they are not

satisfied under model (L.ex4) of Figure 3.2, where (Wt)t>1 is a confounder affected by

the exposure. Under this model, sequential ignorability holds: (Y X̄t0=x̄t0 ⊥⊥X1 | W1)L.ex4

and
(
Y X̄t0=x̄t0 ⊥⊥ X̄t | {W̄t, X̄t−1}

)
L.ex4

for any t ∈ J2; t0K (Daniel et al., 2012, Hernán

and Robins, 2020, Robins, 1986). But the conditions of Theorem 2 are not satisfied: we

neither have (Y X̄t0=x̄t0 ⊥⊥ X̄t0 | W̄t0)L.ex4 nor (Y X̄t0=x̄t0 ⊥⊥ X̄t0 | Wt0)L.ex4, because (Wt)t>1

acts as both a confounder and a mediator in the (X̄t0−Y ) relationship. The conditions of

Theorem 2 are generally not satisfied either under model (L.ex2) of Figure 3.2, because

W̄t0−1 affects Y not through Wt0 and Xt0 only, and therefore acts as an unmeasured

confounder in the (Xt0 − Y ) relationship, which is ignored in model (CS.ex2).

We will now discuss the interpretability of ATECS when conditions of Theorem 2 are

satisfied by focusing on the simple example of model (L.ex1 ) and its simplified counterpart

(CS.ex1) in Figure 3.2. Here, we have (Y X̄t0=x̄t0 ⊥⊥ X̄t0)L.ex1 and (Y Xt0=xt0 ⊥⊥Xt0)CS.ex1,

so that Theorem 2 ensures that ATECS.ex1 is a weighted sum of the longitudinal total

effects that compare any possible pairs of exposure profiles up to time t0, one of which

terminating with Xt0 = 0 and the other one with Xt0 = 1 (see Equation (3.6)). However,

the relevance of this particular weighted average is generally questionable. Indeed, because

of the non-negative weights for terms like ATEL.ex1 ((0t0−1, 1); (1t0−1, 0)), ATECS.ex1 can

be null even for models under which each Xt, for t = 1, . . . , t0, has a, say, positive effect

on Y . This particular case illustrates that ATECS generally has to be interpreted with

caution even when conditions of Theorem 2 are satisfied.

The interpretation of the weighted average in Equation (3.6) is more straightforward

if profiles x̄t0−1 associated with large weights P(X̄t0−1 = x̄t0−1 | Xt0 = 1) correspond

to globally more exposed profiles than the profiles x̄∗
t0−1 associated with large weights

P(X̄t0−1 = x̄∗
t0−1 | Xt0 = 0). In particular, this is the case when the exposure is “stable”,

more precisely when Xt = 1 ⇒ Xt′ = 1 for all t′ ≥ t. This stability assumption can

be seen as a reasonable assumption (or approximation) for exposures such as obesity for

instance. When it is satisfied, the only exposure profile that terminates with xt0 = 0 is

x̄t0 = 0t0 , and, under model (L.ex1 ), ATECS then reduces to

t0−1∑

i=0

ATEL ((0i,1t0−i);0t0)× P
(
X̄t0−1 = (0i,1t0−i−1) | Xt0 = 1

)
. (3.7)

The stability assumption then guarantees that ATECS is a weighted sum of all the lon-

gitudinal causal effects comparing the ever-exposed profiles to the single never-exposed
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profile. Weights in the equation above are sensible as they correspond to the actual pro-

portions of subjects with exposure profiles (0i,1t0−i)i∈J0,t0−1K among the subpopulation of

exposed individuals at time t0. Therefore, ATECS can be regarded as a meaningful quan-

tity under model (L.ex1 ) if the stability assumption further holds. The fact that ATECS

is a meaningful quantity under the stability assumption extends to the situation where a

time-invariant observed confounder W is added to model (L.ex1 ). However, we recall that

if the confounder is time-varying, as in Figure 3.2 (L.ex2), the conditions of Theorem 2

are not satisfied, and ATECS has usually no clear meaning, even when both the exposure

and confounder processes are stable. We refer to Web Supplementary Material 3.C.1 for

more details on this particular case.

To recap, when only instantaneous levels of exposures at inclusion are available, the

quantity estimated in practice when working under over-simplified models has generally to

be interpreted with caution, even when the conditions of Theorem 2 are satisfied. Except

for a few exceptions, and unsurprisingly, the quantity estimated in practice can only be

unambiguously related to causal effects of interest when the conditions of Theorem 1 are

satisfied. We have shown this was notably the case under model (L-a) of Figure 3.1,

where the effect of X̄t0 on the outcome is entirely mediated by Xt0 . Interestingly, this

situation arises as a particular case of the model presented in Figure 3.1 (L-c) where a

summary variable X is assumed to mediate the whole effect of X̄t0 on the outcome. In

the following Section, we consider more general situations where data collected at time

t0 corresponds to such summary measures of past levels of exposures, as is sometimes

assumed, or implicitly assumed, in epidemiological studies.

3.4 The case when summaries of past levels of expo-

sures are available

3.4.1 General models and results

We will now turn our attention to the situation where data collected at time t0 concerns

summary measures of past levels of exposures, and where the whole effect of exposures

on the outcome Y is captured by these summary measures (Arnold et al., 2019, 2016,

De Rubeis et al., 2019, Fan et al., 2008, Kunzmann et al., 2018, Platt et al., 2010, Yang

et al., 2019, Zheng et al., 2018). A general representation of such models is given in

Figure 3.3 (LS), where, as in the previous Section, (Zt)t≥1 can be multivariate, and so

can Z. Moreover, some components of Z may be unobserved. Again, (Xt)t≥1 could stand

for BMI at different ages, and (Zt)t≥1 could include measures of alcohol intake, physical

activity and diet at different ages, while X and Z would be any appropriate summary

measures of X̄t0 and Z̄t0 , respectively. The simplest model of this form is the one given

in Figure 3.1 (L-c), and corresponds to the absence of any confounding process. Other
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examples are given in Figure 3.3; we will present them in more details below.

Let us first discuss the causal effects of interest in this setting. Distinct exposure

profiles x̄t0 leading to X = x, for any potential value x of X, can be seen as distinct

versions of the “compound treatment” x (Hernán and VanderWeele, 2011, VanderWeele

and Hernán, 2013), in the particular case where versions precede what we will refer to

as treatment X, or x, below. Moreover, because summary variables are deterministic

functions of exposure profiles, interventions on the latter, but not on the former, can be

implemented in practice. As a result, Y X=x, although mathematically grounded, may

not have a clear practical meaning. Then, and as we will now describe, causal effects of

natural interest under models involving summary variables actually depend on whether

or not the versions of X are relevant (Hernán and VanderWeele, 2011).

Adopting the same terminology as Hernán and VanderWeele (2011), we will say that

versions of treatment X are irrelevant, when all versions x̄t0 leading to X = x also lead

to the same effect on the outcome, or, more precisely when condition (Irrel) below holds:

(Irrel) Y X̄t0=x̄t0 = Y X=x for any x̄t0 such that X̄t0 = x̄t0 ⇒ X = x.

When the versions are irrelevant, as in model (L-c) of Figure 3.1 for example, we have

ATELS(x̄t0 ; x̄
∗
t0
) = ATELS(x;x∗) = ELS

(
Y X=x −Y X=x∗)

, for any x̄t0 and x̄∗
t0

leading to

X = x and X = x∗, respectively. As a result, ELS

(
Y X=x − Y X=x∗)

is well-defined and

constitutes a causal effect of interest.

On the other hand, we will say that versions of the treatment are relevant when

Y X̄t0=x̄t0 and Y X̄t0=x̄′
t0 may be different even though x̄t0 and x̄

′

t0
are two exposure profiles

leading to the same value x for X. For example, this is typically the case under model (LS )

of Figure 3.3, since X̄t0 affects Y not only through X but also through some components

of Z. Indeed, we can have ZX̄t0=x̄t0 6= ZX̄t0=x̄′
t0 , and, in turn Y X̄t0=x̄t0 6= Y X̄t0=x̄′

t0 ,

for some exposure profiles x̄t0 and x̄
′

t0
leading to the same value X = x. Then, when

versions are relevant, we typically have ATELS(x̄t0 ; x̄
∗
t0
) 6= ATELS(x̄

′
t0
; x̄

′∗
t0
), even if both

x̄t0 and x̄′
t0

lead to X = x and both x̄∗
t0

and x̄
′∗
t0

lead to X = x∗. Therefore, although

still mathematically grounded, the quantity ATELS(x;x∗) = ELS

(
Y X=x − Y X=x∗)

is

not well defined from a “practical point of view”, and cannot be considered as a quantity

of interest. Among other possibilities, the quantity

∑

xt0

{ELS

(
Y x̄t0

)
× P(X̄t0 = x̄t0 | X = x)} −

∑

x∗
t0

{ELS

(
Y x̄∗

t0

)
× P(X̄t0 = x̄∗

t0
| X = x∗)}

=
∑

x̄t0

∑

x̄∗
t0

{ATELS(x̄t0 ; x̄
∗
t0
)× P(X̄t0 = x̄t0 | X = x)× P(X̄t0 = x̄∗

t0
| X = x∗)}, (3.8)

can be regarded as a causal effect of interest. It corresponds to the difference between

the expectation of the outcome in the following two counterfactual populations. In the

first one, for any profile x̄t0 leading to X = x, a proportion P(X̄t0 = x̄t0 | X = x) of the

individuals undergo the intervention do(X̄t0 = x̄t0). This can be regarded as a natural way
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Figure 3.3: (LS ) General longitudinal causal model with time-varying exposure of in-
terest (Xt)t≥1, and a additional time-varying process (Zt)t≥1, in the situation where
exposure profiles only affect the outcome through some summary variables X and Z.
Particular cases are presented in (LS.ex1 ) (or more compactly in (LS.compact.ex1 )), ,
(LS.ex2 ) (or more compactly in (LS.compact.ex2 )), (LS.ex3 ) and (LS.ex3 ), along with
their over-simplified counterparts in (SV.ex1 ), (SV.ex2 ), (SV.ex3 ), (SV.Conf.ex4 ), and
(SV.Med.ex4 ). When the true longitudinal model is (LS.ex4 ), with a time-varying con-
founder (Wt)t≥1 affected by the exposure, two possible over-simplified counterparts can
be considered, depending on whether (Wt)t≥1 is mainly considered as a confounder or a
mediator.
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to “implement” do(X = x) in the population. In the second counterfactual population,

for any profile x̄∗
t0

leading to x∗, a proportion P(X̄t0 = x̄∗
t0
| X = x∗) of the individuals

undergo the intervention do(X̄t0 = x̄∗
t0
), which is again a natural way to “implement”

do(X = x∗) in the population. Other averages could be considered, such as weighted

averages of longitudinal stratum-specific causal effects. In addition, we shall stress that

the interpretability of such quantity is not always straightforward, as was already the case

for the weighted averages in Theorem 2 of Section 3.3; we will get back to this point later.

Irrespective of the relevance of the treatment, when only data on X and Z are con-

sidered or available, practitioners generally (i) overlook the time-varying nature of the

exposures, (ii) work under an over-simplified causal model (SV ), and (iii) consider the

causal effect ATESV (x;x∗) = ESV

(
Y X=x − Y X=x∗)

, for any x 6= x∗, as the causal effect

of interest. For example, when the true longitudinal model is model (LS.ex1) given in

Figure 3.3, they would implicitly work under model (SV.ex1), while they would typically

work under the simplified model (SV.ex2) if the true model is (LS.ex2). Again, there are

true longitudinal models under which distinct over-simplified models may be considered

in practice. Depending on whether (Wt)t≥1 is considered to mainly act as a confounder

or a mediator under the model (LS.ex4) of Figure 3.3, practitioners would work under

either model (SV.Conf.ex4) or model (SV.Med.ex4).

In any case, given an over-simplified model (SV ), the causal measure of interest

ATESV (x;x∗) would be estimated in practice and, again, a natural question is whether

- and how - this quantity relates to the longitudinal causal effects under the true longi-

tudinal model (LS). Here again, we will use ATESV when referring to either the causal

effect or the quantity estimated in practice in the text. Theorem 3 presents a sufficient

condition under which the quantity estimated in practice expresses as a weighted average

of stratum specific longitudinal total effects. It is the analogue of Theorem 2 in Section

3.3.1.

Theorem 3. If condition (T3.Cond) below holds

(T3.Cond) There exists some observed W ⊂Z taking its values in ΩW, such that

(Y X=x ⊥⊥X |W)SV and (Y X̄t0=x̄t0 ⊥⊥ X̄t0 |W)LS

then the quantity estimated in practice

ATESV (x;x∗) ≎

∑

w∈ΩW

[E (Y |W = w,X = x)− E (Y |W = w,X = x∗)]

×P(W = w),

equals

∑

w∈ΩW

∑

x̄t0∈{0,1}
t0

x̄∗
t0
∈{0,1}t0

{ATELS|W=w

(
x̄t0 ; x̄

∗
t0

)
× P(X̄t0 = x̄t0 | X = x,W = w)

×P(X̄t0 = x̄∗
t0
| X = x∗,W = w)

×P(W = w)}. (3.9)
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In particular, if condition (T3.Uncond) below holds

(T3.Uncond) (Y X=x ⊥⊥X)SV and (Y X̄t0=x̄t0 ⊥⊥ X̄t0)LS

then

ATESV (x;x∗) ≎ E (Y | X = x)− E (Y | X = x∗) ,

=
∑

x̄t0∈{0,1}
t0

x̄∗
t0
∈{0,1}t0

{ATELS

(
x̄t0 ; x̄

∗
t0

)
× P(X̄t0 = x̄t0 | X = x)

×P(X̄t0 = x̄∗
t0
| X = x∗)}. (3.10)

An analogue of Theorem 1 could be given too: if there exists some observed W ⊂Z

taking values in ΩW, such that (Y X=x ⊥⊥ X|W)SV and (Y X=x ⊥⊥ X|W))LS, then the

quantity estimated in practice equals ATELS(x,x′). However, the latter quantity being

generally not-well defined from a practical point-of-view unless condition (Irrel) holds,

we consider a slightly stronger sufficient condition in Theorem 4 below.

Theorem 4. Assume that condition (Irrel) holds. If, in addition, either condition

(T3.Cond) or (T3.Uncond) holds, then

ATESV (x;x∗) ≎ ATELS(x;x∗) = ATELS

(
x̄t0 ; x̄

∗
t0

)
,

for any x̄t0 and x̄∗
t0

leading to to X = x and X = x∗, respectively.

Detailed proofs of Theorems 3 and 4 are given in Appendices 3.B.1 and 3.B.2, re-

spectively. In Section 3.4.2, we illustrate their implications by focusing on a few simple

examples.

3.4.2 Examples and illustration of the general results

When the conditions of Theorem 4 are satisfied, the interpretation of the quantity es-

timated in practice, ATESV (x;x∗), is straightforward as it equals ATELS(x̄t0 ; x̄
∗
t0
) for

any x̄t0 and x̄∗
t0

leading to X = x and X = x∗, respectively. However, these conditions

are very restrictive. Among the examples presented in Figure 3.3, they are only satisfied

under model (LS.ex1 ), for which the over-simplified counterpart is model (SV.ex1 ). As

made clearer below, condition (Irrel) is not satisfied for models (LS.ex2 ), (LS.ex3 ), and

(LS.ex4 ) of Figure 3.3. On the other hand, under model (LS.ex1 ), versions are irrelevant,

and we further have
(
Y X=x ⊥⊥X |W

)
SV.ex1

and
(
Y X̄t0=x̄t0 ⊥⊥ X̄t0 |W

)
LS.ex1

. Therefore,

the conditions of Theorem 4 are satisfied, and even if model (SV.ex1 ) is misspecified (W

is not a confounder for the (X − Y ) relationship under the true model (LS.ex1 )), the

parameter estimated under this over-simplified model retains the parameter of interest

ATEL(x;x∗). In other words, observing X and W is sufficient to infer the causal effect

of X̄t0 on Y under model (LS.ex1).
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Below, we will discuss the interpretability of the weighted average in Equations (3.9)

and (3.10) when the conditions of Theorem 3 are satisfied. Before that, we shall stress

that these conditions are also quite restrictive. They are satisfied in the pure mediation

setting, in the absence of further confounding, as depicted in model (LS.ex2 ) of Figure

3.3; see model (SV.ex2 ) for its over-simplified counterpart. First note that, because X̄t0

has an effect on the outcome not only through X but also through M under this model,

treatment versions are relevant as mentioned above. Nevertheless,
(
Y X=x⊥⊥X

)
SV.ex2

and(
Y X̄t0=x̄t0 ⊥⊥ X̄t0

)
LS.ex2

, so that Theorem 3 ensures that ATESV (x;x∗) expresses as the

weighted average of longitudinal total effects given in Equation (3.10). The conditions

of Theorem 3 are still satisfied in the presence of an additional time-invariant pure con-

founder. But, they are not satisfied anymore if the additional confounder is time-varying,

as in model (LS.ex3): because of the presence of a time-varying mediator and of a time-

varying confounder, W is no longer sufficient to block all back-door paths between X̄t0 and

Y (except if W̄t0 has no direct effect on M̄t0). Consequently, if the true model is (LS.ex3),

the quantity estimated in practice generally has to be interpreted with caution. See Web

Supplementary Material 3.D.1 for more details. Interestingly, this is in sharp contrast

with the scenario of model (LS.ex1), where only a time-varying pure confounder, and no

time-varying pure mediator, was present, and in which case we have already explained

that Theorem 4 guaranteed that ATESV had a clear interpretation. In other words, in the

presence of time-varying confounding, the existence of a time-varying mediator is crucial,

although it is generally overlooked when the focus is on the estimation of total effects: if

there exists a time-varying mediator on top of the time-varying confounder, the conditions

of Theorem 3 are not satisfied, and information on summary variables is generally not

enough to derive interpretable causal effects.

Another simple example where the conditions of Theorem 3, and a fortiori, those of

Theorem 4, are not satisfied arises when a time-varying confounder is affected by the

exposure of interest, as in Figure 3.3 (LS.ex4 ). First, treatment versions are relevant in

this case, since X̄t0 has an effect on the outcome not only through X, but also through

W. Moreover, we recall that in this case, two over-simplified models, (SV.Conf.ex4 ) and

(SV.Med.ex4 ), may be considered, depending on whether (Wt)t≥1 is mainly regarded as

a confounder or a mediator. Irrespective of the considered over-simplified model, the

conditions of Theorem 3 are not satisfied. Indeed, while sequential ignorability holds

(more precisely, (Y X̄t0=x̄t0 ⊥⊥ X1 | W1)LS.ex4 and
(
Y X̄t0=x̄t0 ⊥⊥ X̄t | {W̄t, X̄t−1}

)
LS.ex4

,

for any t ∈ J2; t0K), we do not have (Y X̄t0=x̄t0 ⊥⊥ X̄t0 | W)LS.ex4, and we do not have

(Y X̄t0=x̄t0 ⊥⊥ X̄t0)LS.ex4 either, because (Wt)t>1 acts as both a confounder and a mediator

in the (X̄t0 −Y ) relationship. Therefore, and as detailed in Web Supplementary Material

3.D.2, the quantity estimated under an over-simplified model has to be interpreted with

caution if the true longitudinal model is (L.ex4 ), as it generally differs from the causal

effects of interest.

42



We will now provide numerical examples to illustrate the magnitude of these differ-

ences. We consider a causal model of the same form as (LS.ex4) in Figure 3.3, with

t0 = 5, binary variables Xt and Wt for all t = 1, . . . , 5, and a continuous outcome Y .

For any variable U involved in this model, denote the exogeneous variable and structural

function corresponding to U by ξU and fU , respectively. We consider the causal model

where ξY ∼N(0, 1) while all other exogeneous variables are univariate random variables

uniformly distributed on [0, 1], and

fW1 (ξW1) = 1l {W1 ≤ 0.1} , (3.11)

fX1 (W1, ξX1) = 1l {X1 ≤ expit (αW1 + cX1)} ,
fWt

(
W̄t−1, X̄t−1, ξWt

)
= 1l

{
Wt ≤ expit

(
γ
∑

t′<t

Wt′ + ραXt−1 + cWt

)}
, ∀t ∈ J2; t0K,

fXt

(
W̄t, X̄t−1, ξXt

)
= 1l

{
Xt ≤ expit

(
α
∑

t′≤t

Wt′ + βXt−1 + cXt

)}
, ∀t ∈ J2; t0K,

fY (X,W, ξY ) = µ0 + µXX − µWW + ξY .

Here expit(·) denotes the sigmoid function, 1l{·} denotes the indicator function, X =

1
(∑t0

t=1 Xt ≥ 3
)

and W = 1
(∑t0

t=1 Wt ≥ 3
)
. Constant terms cW1 , cWt

, and cXt
were

chosen so that prevalences of Xt and Wt are about 0.1 for all t and any combination

of the parameters α, β, γ and ρ. For instance, we set cW1 = logit(0.1) − 0.1

α
, with

logit(p) = log[p/(1− p)], for p ∈ [0, 1].

In this model, parameter α governs the strength of the effect of Wt on Xt′ for t′ ≥ t,

while the strength of the effect of Xt on Wt+1 is governed by the product ρα. The

special case ρ = 0 corresponds to the scenario where the confounder is not affected by

the exposure of interest (pure confounding), while α = 0 corresponds to the case where

the exposure of interest and the confounder are not causally related (no mediation, no

confounding). On the other hand, as parameter ρ increases, we get closer to the pure

mediation setting as the effect of the “confounder” on the exposure of interest gets more

and more negligible compared to the effect of the exposure on the “confounder”. For

negative values of parameter α, this simple causal model could be regarded as a simplified

version of the causal model describing obesity on the age interval, say, [20-30] (process

Xt), physical activity on the same age interval [20-30] (process Wt) and blood pressure

at, say, 35 years old (Y ).

Under this model, we can derive the analytic expression of (i) ATELS.ex4(x̄t0 ; x̄
∗
t0
),

for any pair of exposure profiles (x̄t0 ; x̄
∗
t0
) leading to X = 1 and X = 0, (ii) the

weighted average given in Equation (3.8), but also (iii) ATESV.Conf.ex4 (1; 0), and (iv)

ATESV.Med.ex4 (1; 0). Figure 3.4 presents the values of these four quantities for α ∈ [−3, 3],
ρ ∈ {0, 0.1, 0.5, 1, 2, 5, 10} and µW ∈ {0.5, 1, 2}. The other parameters were set to

γ = β = 1, µ0 = 1 and µX = 1.

In the pure confounding case (when ρ = 0), ATESV.Conf.ex4

(
x;x∗

)
equals ATELS.ex4

(
x̄t0 ;
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Figure 3.4: Analytic values of ATESV.Conf (1; 0) (in black), ATESV.Med (1; 0) (in green),
ATEL(x̄t0 ; x̄

∗
t0
) (in grey) for each couple of exposure profiles leading to X = 1 and X = 0

and the weighted average (3.8) of all these possible comparisons (in blue) under the causal
model described in Equation (3.11).

x̄∗
t0

)
for any x̄t0 and x̄∗

t0
leading to X = x and X = x∗, as expected, and thus equals

the quantity of interest given in Equation (3.8) as well. This also happens when α = 0,

which corresponds to the “no mediation and no confounding” scenario, in which case

ATESV.Conf = ATESV.Med = ATEL

(
x̄t0 ; x̄

∗
t0

)
for any x̄t0 and x̄∗

t0
leading to X = x and

X = x∗, and so the weighted average given in Equation (3.8) is also equal to ATESV.Conf .

For all other combinations of parameters, both ATESV.Conf and ATESV.Med differ from

the weighted average of Equation (3.8). When ρ ∈ {0.1, 0.5}, (Wt)t≥1 mostly acts as a con-

founder (and not so much as a mediator), and the difference between ATESV.Conf and the

weighted average is generally limited. As ρ increases, the difference between ATESV.Conf

and the weighted average increases too. Moreover, because the effect of W on Y is −µW ,

the indirect effect of the exposure process through (Wt)t is negative for positive α, so that

the weighted average can be negative, while ATESV.Conf suggests a positive association,

for some combinations of large values for ρ, α and µW . On the other hand, when ρ is

large, (Wt)t≥1 mostly acts as a mediator, and the difference between ATESV.Med and the

weighted average is typically small. It is also noteworthy that the weighted average (3.8)

happens to lie between ATESV.Conf.ex4 (1; 0) and ATESV.Med.ex4 (1; 0) in all the settings

presented in Figure 3.4, although it does not hold true in general.

Finally, let us discuss the interpretability of the weighted average of Equation (3.8)

(in blue in Figure 3.4), which may or may not equal the quantity estimated in practice
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(basically, it equals ATESV.Conf if α = 0 or ρ = 0, while it is equal to ATESV.Med if α = 0,

and approximately equal to ATESV.Med if α ≪ ρ). Figure 3.4 nicely illustrates that the

values of the “individual” causal effects ATELS

(
x̄t0 ; x̄

∗
t0

)
, for different pairs of profiles x̄t0

and x̄∗
t0

leading respectively to X = 1 and X = 0, may be quite heterogeneous for some

combination of the parameters, while they are more homogeneous for others combinations.

For instance, for negative values of α and ρ ≤ 2, the values of the individual causal effects

ATELS

(
x̄t0 ; x̄

∗
t0

)
are quite homogeneous. In particular, versions are actually irrelevant

for ρ = 0 or α = 0, and all the individual causal effects ATELS

(
x̄t0 ; x̄

∗
t0

)
are equal. In

all these cases, the weighted average is then straightforward to interpret. However, the

values of the individual causal effects are quite heterogeneous for other combinations of

the parameters, especially when both ρ and α are large: in these situations, the weighted

average of Equation (3.8), and consequently ATESV.Med, have to be interpreted with

caution. This echoes our discussion at the end of Section 3.3.2 where possibly substantially

different individual causal effects, such as ATEL

(
1t0 ;0t0

)
and ATEL

(
(0t0 , 1); (1t0−1, 0)

)
,

could contribute to the weighted average given in Equation (3.6) unless, e.g., some stability

assumption held. Actually, a closer inspection into the values of the weights P(X̄t0 = x̄t0 |
X = x) × P(X̄t0 = x̄∗

t0
| X = x∗) is instructive. For example, consider the case where

α = 3, ρ = 10 and µW = 2. In this case, the weighted average in Equation (3.8) is a

weighted sum of the three following terms mostly, whose cumulative weight is more than

82%: ATELS

(
15;05

)
= −1, ATELS

(
(01,14);05

)
= −1 and ATELS

(
(02,13);05

)
= 0.8.

Interestingly, although these three causal effects compare the single never-exposed profile

to three ever-exposed types of profiles, their values are substantially different. This is again

due to the negative indirect effect of the exposure through the (Wt)t≥1 process. In this

particular example, the weighted average of longitudinal causal effects mostly compares

ever-exposed profiles to the single never-exposed profile, and can therefore be seen as a

causal quantity of interest, even if it is the average of quite different “individual” causal

effects. This situation can of course arise as well for the weighted average of Equation

(3.7) under the stability assumption in Section 3.3.2.

3.5 Discussion

The longitudinal nature of risk factors is most often overlooked in epidemiology. In this

article, we investigated whether causal effects derived when working under simplified,

hence generally misspecified, models could still be related to causal effects of potential

interest. We focused on two situations regarding exposures: when inference is based on

(i) their “instantaneous” levels measured at inclusion in the study, and (ii) some sum-

mary measures of their levels up to inclusion in the study, assuming that these summary

measures capture the whole effect of the exposure processes on the outcome. Unsurpris-

ingly, our results are mostly negative, in the sense that the quantity estimated in practice
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when working under over-simplified causal models has generally no clear interpretation

in terms of longitudinal causal effects of interest, except under very simple longitudinal

causal models. Under the conditions of Theorems 1 or Theorem 4, the quantity estimated

in practice has a clear interpretation, as it coincides with longitudinal total effects. But,

these conditions are very restrictive. Under slightly less restrictive conditions, Theorem

2 and Theorem 3 ensure that the quantity estimated in practice expresses as a weighted

average of longitudinal causal effects. But, these conditions are still quite restrictive, and

the interpretability of these weighted averages is not always straightforward.

When inference is based on instantaneous levels of exposures measured at inclusion,

practitioners should be extremely cautious when interpreting their results as the quantity

of interest can generally not be related to any causal effects of interest. A noticeable

exception is when a stability assumption holds for the exposure profile and no time-

varying confounder is present. In the situation where summary measures are available

and capture the whole effect of past levels of exposures, the quantity estimated in practice

can be related to causal effects of interest under a few simple causal models. This is the

case when the versions of the treatment are irrelevant, and either condition (T3.Cond) or

(T3.Uncond) is verified, as for example in the presence of a time-varying pure confounder

only; see model (LS.ex1) of Figure 3.3. When the versions are relevant and condition

(T3.Cond) or (T3.Uncond) is verified, the quantity of interest can be expressed as a

weighted average of causal effects of interest: this is notably the case in the presence

of a time-varying pure mediator only; see model (LS.ex2) of Figure 3.3. Moreover, as

soon as a time-varying confounder affected by the exposure is present, and/or both time-

varying pure mediators and confounders are present, the quantity estimated in practice

has to be interpreted with caution since it can generally not be related to any causal

effect of interest. We shall stress that even if time-varying pure mediators are generally

overlooked when the focus is on total effects, they are likely to exist in most cases. As

soon as time-varying confounders exist too, summary variables are no longer sufficient to

derive meaningful estimates for total causal effects.

Overall, our results are in line with, and complete, those of previous works, which

established the necessity of applying appropriate statistical methods on repeated mea-

surements of exposures when the true causal model is longitudinal (Daniel et al., 2012,

Maxwell and Cole, 2007, Maxwell et al., 2011). Even if measurements of exposures are

available at baseline only, it would be good practice to still consider the true longitudinal

causal model, rather than its over-simplified counterpart. General results on the identi-

fiability of causal effects in the presence of unobserved variables could then be applied

(Huang and Valtorta, 2006, Shpitser and Pearl, 2006, Tian and Pearl, 2002) to check

whether some longitudinal causal effects of interest can be identified from the available

data, even if this will only be the case under very particular and simple causal models.

The development of sensitivity analyses may be required for more general models. But,
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above all, we believe that forthcoming observational studies should plan the collection

of repeated measurements, as a few studies already did, including for biomarkers (Kim

et al., 2017). Following these recommendations is likely even more critical when con-

sidering time-varying outcomes as in survival analysis, and when targeting causal effects

defined on multiplicative scales such as relative risks and odds-ratios.
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3.A Appendix: Technical details in the situation where

instantaneous levels at inclusion in the study are

available

3.A.1 Proof of Theorem 1

Consider a longitudinal model (L) as depicted in Figure 3.2, and assume that there

exists Wt0 ⊂ Zt0 taking values in some space ΩWt0
such that the conditional ignorability

condition Y Xt0=xt0⊥⊥Xt0 | Wt0 holds. Then for any xt0 and x∗
t0

in {0, 1}, usual arguments of

causal inference (that is, the application of the ignorability condition, and the consistency

and positivity conditions) (Pearl, 2000, Robins, 1986, Rosenbaum and Rubin, 1983), yields

ATEL

(
xt0 ; x

∗
t0

)
:= EL

(
Y Xt0=xt0 − Y Xt0=x∗

t0

)
,

=
∑

wt0∈ΩWt0

EL

(
Y Xt0=xt0 − Y Xt0=x∗

t0 | Wt0 = wt0

)
× P(Wt0 = wt0),

=
∑

wt0∈ΩWt0

[
EL

(
Y Xt0=xt0 | Wt0 = wt0 , Xt0 = xt0

)

−EL

(
Y Xt0=x∗

t0 | Wt0 = wt0 , Xt0 = x∗
t0

)]
× P(Wt0 = wt0),

=
∑

wt0∈ΩWt0

[
E

(
Y | Wt0 = wt0 , Xt0 = xt0

)
− E

(
Y | Wt0 = wt0 , Xt0 = x∗

t0

)]

×P(Wt0 = wt0).

Now, consider an over-simplified model (CS) under which Y Xt0=xt0 ⊥⊥ Xt0 | Wt0 . Then

the quantity estimated in practice when working under this over-simplified model is, for
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any xt0 and x∗
t0

in {0, 1},

ATECS

(
xt0 ; x

∗
t0

)
:= ECS

(
Y Xt0=xt0 − Y Xt0=x∗

t0

)
,

=
∑

wt0∈ΩWt0

[
ECS

(
Y Xt0=xt0 | Wt0 = wt0

)
− ECS

(
Y Xt0=x∗

t0 | Wt0 = wt0

)]

×P(Wt0 = wt0),

=
∑

wt0∈ΩWt0

[
ECS

(
Y Xt0=xt0 | Wt0 = wt0 , Xt0 = xt0

)

−ECS

(
Y Xt0=x∗

t0 | Wt0 = wt0 , Xt0 = x∗
t0

) ]
× P(Wt0 = wt0),

≎

∑

wt0∈ΩWt0

[
E (Y | Wt0 = wt0 , Xt0 = xt0)− E

(
Y | Wt0 = wt0 , Xt0 = x∗

t0

)]

×P(Wt0 = wt0)

= ATEL

(
xt0 ; x

∗
t0

)
.

Using similar arguments, if (Y Xt0=xt0 ⊥⊥Xt0)L and (Y Xt0=xt0 ⊥⊥Xt0)CS, it follows that

ATECS

(
xt0 ; x

∗
t0

)
≎ E

(
Y | Xt0 = xt0

)
− E

(
Y | Xt0 = x∗

t0

)

= ATEL

(
xt0 ; x

∗
t0

)
,

which completes the proof of Theorem 1.

3.A.2 Proof of Theorem 2

Consider again a longitudinal model (L) as depicted in Figure 3.2, and assume that there

exists Wt0 ⊂ Zt0 taking values in some space ΩWt0
such that Y X̄t0=x̄t0 ⊥⊥ X̄t0 | Wt0 . Then

for any x̄t0 and x̄∗
t0

in {0, 1}t0 , usual arguments of causal inference (Pearl, 2000, Robins,

1986, Rosenbaum and Rubin, 1983) yield

ATEL

(
x̄t0 ; x̄

∗
t0

)
:= EL

(
Y X̄t0=x̄t0 − Y X̄t0=x̄∗

t0

)
,

=
∑

wt0∈ΩWt0

[
E

(
Y | Wt0 = wt0 , X̄t0 = x̄t0

)
− E

(
Y | Wt0 = wt0 , X̄t0 = x̄∗

t0

)]

×P(Wt0 = wt0).

Now, consider an over-simplified model (CS) under which Y Xt0=xt0 ⊥⊥ Xt0 | Wt0 . Then

the quantity estimated in practice when working under this over-simplified model is, for

any xt0 and x∗
t0

in {0, 1},

ATECS

(
xt0 ; x

∗
t0

)
:= ECS

(
Y Xt0=xt0 − Y Xt0=x∗

t0

)
,

≎

∑

wt0∈ΩWt0

[
E (Y | Wt0 = wt0 , Xt0 = xt0)− E

(
Y | Wt0 = wt0 , Xt0 = x∗

t0

)]

×P(Wt0 = wt0).
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But, under model (L), we have, for any xt0 in {0, 1} and wt0 ∈ ΩWt0
,

E (Y | Wt0 = wt0 , Xt0 = xt0) =
∑

x̄t0−1

E

(
Y | Wt0 = wt0 , X̄t0 = x̄t0

)

×P(X̄t0−1 = x̄t0−1 | Xt0 = xt0 ,Wt0 = wt0),

=
∑

x̄t0−1

EL

(
Y X̄t0=x̄t0 | Wt0 = wt0 ,

)

×P(X̄t0−1 = x̄t0−1 | Xt0 = xt0 ,Wt0 = wt0),

where the sum is over all possible values of X̄t0−1 in {0, 1}t0−1. Therefore,

ATECS

(
xt0 ; x

∗
t0

)
≎

∑

wt0∈ΩWt0

∑

x̄t0−1

x̄∗
t0−1

{ATEL|Wt0
=wt0

(
x̄t0 ; x̄

∗
t0

)

×P(X̄t0−1 = x̄t0−1 | Xt0 = xt0 ,Wt0 = wt0)

×P(X̄t0−1 = x̄∗
t0−1 | Xt0 = x∗

t0
,Wt0 = wt0)

×P(Wt0 = wt0)},

which establishes the result under condition (T2.Cond).

The proof of the result under condition (T2.Uncond) follows from similar, but simpler,

arguments and is therefore omitted.

3.B Appendix: Technical details in the situation where

summary measures of past exposures are available

3.B.1 Proof of Theorem 3

Consider a longitudinal model (LS) as depicted in Figure 3.3, and assume that there

exists W ⊂Z taking its values in some space ΩW such that Y X̄t0=x̄t0 ⊥⊥Xt0 |W. Then,

for any x̄t0 and x̄∗
t0

in {0, 1}t0 , usual arguments of causal inference (Pearl, 2000, Robins,

1986, Rosenbaum and Rubin, 1983), yield

ATELS

(
x̄t0 ; x̄

∗
t0

)
=
∑

w∈ΩW

ATELS|W=w

(
x̄t0 ; x̄

∗
t0

)
× P(W = w),

=
∑

w∈ΩW

ELS

(
Y X̄t0=x̄t0 − Y X̄t0=x̄∗

t0 |W = w
)
× P(W = w),

=
∑

w∈ΩW

[
ELS

(
Y X̄t0=x̄t0 |W = w, X̄t0 = x̄t0

)

−ELS

(
Y X̄t0=x̄∗

t0 |W = w, X̄t0 = x̄∗
t0

)]
× P(W = w),

=
∑

w∈ΩW

[
E

(
Y |W = w, X̄t0 = x̄t0

)
− E

(
Y |W = w, X̄t0 = x̄∗

t0

)]

×P(W = w).
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Now, consider an over-simplified model (SV ) under which Y X=x ⊥⊥X | W. Then, the

quantity estimated in practice when working under this over-simplified model is, for any

given x,x∗,

ATESV (x;x∗) := ESV

(
Y X=x − Y X=x∗)

,

≎

∑

w∈ΩW

[E (Y |W = w,X = x)− E (Y |W = w,X = x∗)]

×P(W = w).

But, because X̄t0 d -separates X and W under model (LS) (Pearl, 2000, Verma and Pearl,

1988), we have, for any x̄t0 in {0, 1}t0 and any w in ΩW,

E

(
Y |W = w, X̄t0 = x̄t0

)
=

∑

x

E

(
Y |W = w,X = x, X̄t0 = x̄t0

)

×P(X = x |W = w, X̄t0 = x̄t0),

=
∑

x

E

(
Y |W = w,X = x, X̄t0 = x̄t0

)

×P(X = x | X̄t0 = x̄t0),

= E

(
Y |W = w,X = x, X̄t0 = x̄t0

)
,

with x corresponding to the value taken by X when X̄t0 = x̄t0 . In other respect, for any

x, we have

E (Y |W = w,X = x) =
∑

x̄t0

E
(
Y |W = w,X = x, X̄t0 = x̄t0

)

×P(X̄t0 = x̄t0 |W = w,X = x),

=
∑

x̄t0

E
(
Y |W = w, X̄t0 = x̄t0

)

×P(X̄t0 = x̄t0 |W = w,X = x),

=
∑

x̄t0

ELS

(
Y X̄t0=x̄t0 |W = w

)

×P(X̄t0 = x̄t0 |W = w,X = x),

where the second equality comes from the fact that X̄t0 = x̄t0 ⇒ X = x for any x̄t0 such

that P(X̄t0 = x̄t0 |W = w,X = x) 6= 0. This finally yields

ATESV (x;x∗) ≎

∑

w∈ΩW

∑

x̄t0
x̄∗
t0

{ATELS|W=w

(
x̄t0 ; x̄

∗
t0

)
× P(X̄t0 = x̄t0 | X = x,W = w)

×P(X̄t0 = x̄∗
t0
| X = x∗,W = w)

×P(W = w)},

where the sums are over all x̄t0 and x̄∗
t0

in {0, 1}t0 such that P(X̄t0 = x̄t0 |W = w,X = x)

and P(X̄t0 = x̄∗
t0
|W = w,X = x∗), respectively, are not null.

The proof of the result under condition (T3.Uncond) follows from similar, but simpler,

arguments and is therefore omitted.
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3.B.2 Proof of Theorem 4

First consider a model (LS ) as depicted in Figure 3.3, and assume that the versions of

the treatment are irrelevant, and that there exists W ⊂ Z such that
(
Y X̄t0=x̄t0 ⊥⊥ X̄t0 |

W
)
LS

and
(
Y X=x ⊥⊥ X | W

)
SV

. Consider any given x 6= x∗; for any x̄t0 such that

X̄t0 = x̄t0 ⇒ X = x, we have Y X̄t0=x̄t0 = Y X=x. Therefore, for such x̄t0 , we a fortiori

have E
(
Y X̄t0=x̄t0 | W = w

)
= E

(
Y X=x | W = w

)
for any w in Ωw. As a result,

for any w in Ωw and any x̄t0 and x̄∗
t0

leading respectively to X = x and X = x∗,

ATELS|W=w
(x̄t0 ; x̄

∗
t0
) = ATELS|W=w

(x;x∗). According to the result of Theorem 3, we

finally have

ATESV (x;x∗) ≎

∑

w∈ΩW

∑

x̄t0
x̄∗
t0

{ATELS|W=w
(x;x∗)× P(X̄t0 = x̄t0 | X = x,W = w)

×P(X̄t0 = x̄∗
t0
| X = x∗,W = w)

×P(W = w)},
=
∑

w∈ΩW

ATELS|W=w
(x;x∗)× P(W = w),

= ATELS(x;x∗)

= ATELS(x̄t0 ; x̄
∗
t0
).

In the last equality, x̄t0 and x̄∗
t0

are two profiles leading to X = x and X = x∗, respectively.

The proof of the result under condition (T3.Uncond) follows from similar, but simpler,

arguments and is therefore omitted.
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X̄t0−1 Xt0

W̄t0−1 Wt0

Y

Xt0

Wt0

Y

(L) (CS )

Figure 3.5: (L) Longitudinal model with time-varying exposure and time-varying con-
founder not affected by the exposure. (CS ) Over-simplified cross-sectional model associ-
ated with the longitudinal model given in Figure 3.5 (L).

3.C Web Supplementary Material: Extensions for the

situation where instantaneous levels at inclusion in

the study are available

3.C.1 In the presence of time-varying pure confounder

Consider the configuration of Figure 3.2 (L.ex2) in the Main Document, which is recalled

in Figure 3.5 (L) for convenience. It corresponds to the case where the model involves a

time-varying pure confounder (Wt)t. The model of Figure 3.5 (CS ) is the corresponding

over-simplified version. We denote the space in which W̄t0 takes its values by ΩW̄t0
. We

have (Y X̄t0=x̄t0 ⊥⊥ X̄t0 | W̄t0)L, but, in general (Y X̄t0=x̄t0 ⊥6⊥ X̄t0 | Wt0)L: so, conditions of

Theorem 2 given in Section 3.3.1 in the Main Document are not satisfied.

We can still have a closer inspection on the quantity that would be estimated in

practice, when working under the over-simplified model (CS ). Because (Y Xt0=x ⊥⊥ Xt0 |
Wt0)CS, it follows from standard arguments (Pearl, 2000, Robins, 1986, Rosenbaum and

Rubin, 1983) that

ATECS = ECS

(
Y Xt0=1 − Y Xt0=0

)

≎

∑

w̄t0∈ΩW̄t0

{E (Y | Xt0 = 1,Wt0 = wt0)− E (Y | Xt0 = 0,Wt0 = wt0)} × P(Wt0 = wt0).

Moreover, (Y X̄t0=x̄t0 ⊥⊥ X̄t0 | W̄t0)L, so that, for any xt0 in {0, 1} and wt0 in ΩWt0
, we have

E(Y | Xt0 = xt0 ,Wt0 = wt0)

=
∑

w̄t0−1∈ΩW̄t0−1

∑

x̄t0−1

E
(
Y | X̄t0−1 = x̄t0−1, Xt0 = xt0 , W̄t0−1 = w̄t0−1,Wt0 = wt0

)

× P
(
W̄t0−1 = w̄t0−1 | Xt0 = xt0 ,Wt0 = wt0

)

× P
(
X̄t0−1 = x̄t0−1 | Xt0 = xt0 , W̄t0−1 = w̄t0−1,Wt0 = wt0

)
,
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=
∑

w̄t0−1∈ΩW̄t0−1

∑

x̄t0−1

EL

(
Y X̄t0−1=x̄t0−1,Xt0=xt0 | W̄t0−1 = w̄t0−1,Wt0 = wt0

)

× P
(
W̄t0−1 = w̄t0−1 | Xt0 = xt0 ,Wt0 = wt0

)

× P
(
X̄t0−1 = x̄t0−1 | Xt0 = xt0 , W̄t0−1 = w̄t0−1,Wt0 = wt0

)
,

where the sums are over all possible values of X̄t0−1 in {0, 1}t0−1.

As a result

ATECS ≎

∑

w̄t0∈ΩW̄t0

∑

x̄t0−1

∑

x̄∗
t0−1

[
EL

(
Y X̄t0−1=x̄t0−1,Xt0=1 | W̄t0 = w̄t0

)

×P
(
W̄t0−1 = w̄t0−1 | Xt0 = 1,Wt0 = wt0

)

−EL

(
Y X̄t0−1=x̄∗

t0−1,Xt0=0 | W̄t0 = w̄t0

)

×P
(
W̄t0−1 = w̄t0−1 | Xt0 = 0,Wt0 = wt0

) ]

×P(Wt0 = wt0)

×P
(
X̄t0−1 = x̄t0−1 | Xt0 = 1, W̄t0 = w̄t0

)

×P
(
X̄t0−1 = x̄∗

t0−1 | Xt0 = 0, W̄t0 = w̄t0

)
.

Then because the terms P
(
W̄t0−1 = w̄t0−1 | Xt0 = 1,Wt0 = wt0

)
and P

(
W̄t0−1 = w̄t0−1

| Xt0 = 0,Wt0 = wt0

)
are generally different, ATECS cannot be expressed in terms of any

sensible longitudinal (or stratum-specific longitudinal) total effect measures. Therefore,

ATECS has to be interpreted with caution under this causal model, as its meaning remains

unclear.

Moreover, the stability assumption for the exposure (as defined in Section 3.3.2 in the

Main Document) does not help here. Indeed, under this assumption, we have

ATECS ≎

∑

w̄t0∈ΩW̄t0

∑

x̄t0−1

t0−1∑

i=0

[
EL

(
Y X̄t0−1=(0i,1t0−i) | W̄t0−1 = w̄t0−1,Wt0 = wt0

)

×P
(
W̄t0−1 = w̄t0−1 | Xt0 = 1,Wt0 = wt0

)

−EL

(
Y X̄t0−1=0t0 | W̄t0−1 = w̄t0−1,Wt0 = wt0

)

×P
(
W̄t0−1 = w̄t0−1 | Xt0 = 0,Wt0 = wt0

) ]
× P(Wt0 = wt0)

×P
(
X̄t0−1 = (0i,1t0−i−1) | Xt0 = 1, W̄t0−1 = w̄t0−1,Wt0 = wt0

)
,

which, again, cannot be expressed it in terms of longitudinal total effects or longitudinal

stratum-specific longitudinal total effects. One last remark is that assuming that the

stability assumption holds for both the exposure and the time-varying confounder does

not help either. For example, under this “double” stability assumption, we have, in the
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X̄t0

M̄t0

X
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Y
X
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(LS ) (SV )

Figure 3.6: (LS ) Longitudinal model with a time-varying exposure, a time-varying pure
confounder, and a time-varying pure mediator, which all affect the outcome through
summary variables only. (SV ) Corresponding over-simplified model.

particular case of a univariate binary confounder,

ATECS ≎

t0−1∑

i=0

{
t0−1∑

j=0

[
EL

(
Y X̄t0=(0i,1t0−i) | W̄t0 = (0j,1t0−j)

)

×P
(
W̄t0−1 = (0j,1t0−j−1) | Xt0 = 1,Wt0 = 1

)

−EL

(
Y X̄t0=0t0 | W̄t0 = (0j,1t0−j)

)

×P
(
W̄t0−1 = (0j,1t0−j−1) | Xt0 = 0,Wt0 = 1

) ]
× P(Wt0 = 1)

×P
(
X̄t0−1 = (0i,1t0−i−1) | Xt0 = 1, W̄t0 = (0j,1t0−j)

)

+

[
EL

(
Y X̄t0=(0i,1t0−i) | W̄t0 = 0t0

)
− EL

(
Y X̄t0=0t0 | W̄t0 = 0t0

)]

×P(Wt0 = 0)× P
(
X̄t0−1 = (0i,1t0−i−1) | Xt0 = 1, W̄t0 = 0t0

)
}
,

which still cannot be expressed it in terms of longitudinal total effects or longitudinal

stratum-specific longitudinal total effects.

3.D Web Supplementary Material: Extensions for the

situation where summary measures of past expo-

sures are available

3.D.1 In the presence of time-varying pure mediator and time-

varying pure confounder

We now turn our attention to the setting of Figure 3.3 (LS.ex3 ) in the Main Document,

which is recalled in Figure 3.6 (L) for convenience. It corresponds to the case where

the model involves both a time-varying pure confounder (Wt)t and a time-varying pure

mediator (Mt)t. The corresponding over-simplified model is given in Figure 3.6 (SV ). We

denote the space in which W̄t0 takes its values by ΩW̄t0
.

Because the exposure of interest has an effect on the outcome through X and M,
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this is an example of a compound treatment where versions are relevant: quantities

ATELS(x̄t0 ; x̄
∗
t0
) for different pairs of exposure profiles (x̄t0 , x̄

∗
t0
) leading to X = x and

X = x∗ are typically different. Moreover, because both exposure and confounder pro-

cesses affect the mediator under this model, we generally have (Y X̄t0=x̄t0 ⊥6⊥ X̄t0 | W)LS:

so, the conditions of Theorem 3 given in Section 3.4.1 in the Main Document are not

satisfied.

We can still have a closer inspection on the quantity ATESV (x;x∗) = ESV

(
Y X=x

−Y X=x∗)
, for any given x 6= x∗, that would be targeted when working under the over-

simplified model Figure 3.6 (SV ). Because (Y ⊥⊥X | W)SV and W takes values in ΩW,

it follows from standard arguments (Pearl, 2000, Robins, 1986, Rosenbaum and Rubin,

1983) that

ATESV.Conf (x;x∗) ≎
∑

w∈ΩW

[E (Y |W = w,X = x)− E (Y |W = w,X = x∗)]

×P(W = w).

Moreover, because (Y X̄t0=x̄t0 ⊥⊥ X̄t0 | W̄t0)LS we have, for any x̄t0 in {0, 1}t0 ,

ELS

(
Y X̄t0=x̄t0

)
=
∑

w̄t0∈ΩW̄t0

ELS

(
Y X̄t0=x̄t0 | W̄t0 = w̄t0

)
× P(W̄t0 = w̄t0),

=
∑

w̄t0∈ΩW̄t0

E
(
Y | X̄t0 = x̄t0 , W̄t0 = w̄t0

)
× P(W̄t0 = w̄t0),

=
∑

w̄t0∈ΩW̄t0

∑

x

∑

w∈ΩW

E
(
Y | X̄t0 = x̄t0 , W̄t0 = w̄t0 ,X = x,W = w

)

×P(W̄t0 = w̄t0)× P(X = x | X̄t0 = x̄t0)

×P(W = w | W̄t0 = w̄t0),

=
∑

w̄t0∈ΩW̄t0

E
(
Y | X̄t0 = x̄t0 , W̄t0 = w̄t0 ,X = x,W = w

)
× P(W̄t0 = w̄t0),

with x the value taken by X when X̄t0 = x̄t0 , and w the value taken by W when

W̄t0 = w̄t0 . Then, for any x and w, we have

E (Y | X = x,W = w) =
∑

x̄t0

∑

w̄t0∈ΩW̄t0

E
(
Y | X̄t0 = x̄t0 , W̄t0 = w̄t0 ,X = x,W = w

)

×P(X̄t0 = x̄t0 , W̄t0 = w̄t0 | X = x,W = w),

=
∑

x̄t0

∑

w̄t0∈ΩW̄t0

ELS

(
Y X̄t0=x̄t0 | W̄t0 = w̄t0

)

×P(X̄t0 = x̄t0 , W̄t0 = w̄t0 | X = x,W = w).

Because of the term P(X̄t0 = x̄t0 , W̄t0 = w̄t0 | X = x,W = w), the sums in the equation

above are restricted over the values x̄t0 and w̄t0 such that X = x and W = w. Therefore,
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we have

ATESV (x;x∗) ≎

∑

w∈ΩW

∑

w̄t0∈ΩW̄t0

[∑

x̄t0

ELS

(
Y X̄t0=x̄t0 | W̄t0 = w̄t0

)

×P(X̄t0 = x̄t0 | X = x, W̄t0 = w̄t0)

×P(W̄t0 = w̄t0 | X = x,W = w)

−
∑

x̄∗
t0

ELS

(
Y X̄t0=x̄∗

t0 | W̄t0 = w̄t0

)

×P(X̄t0 = x̄∗
t0
| X = x∗, W̄t0 = w̄t0)

×P(W̄t0 = w̄t0 | X = x∗,W = w)

]
× P(W = w).

Then because the terms P(W̄t0 = w̄t0 | X = x,W = w) and P(W̄t0 = w̄t0 | X = x∗,W =

w) are generally different, ATESV (x;x∗) cannot be expressed in terms of any sensible

longitudinal (or stratum-specific longitudinal) total effect measures.

We shall further stress that considering the stratum-specific causal effect,

ATESV|W=w
(x;x∗) = ESV

(
Y X=x − Y X=x∗ |W = w

)
,

does not help here. Indeed, it can be shown that

ATESV|W=w
(x;x∗) ≎

∑

w̄t0∈ΩW̄t0

[∑

x̄t0

ELS

(
Y X̄t0=x̄t0 | W̄t0 = w̄t0

)

×P(X̄t0 = x̄t0 | X = x, W̄t0 = w̄t0)

×P(W̄t0 = w̄t0 | X = x,W = w)

−
∑

x̄∗
t0

ELS

(
Y X̄t0=x̄∗

t0 | W̄t0 = w̄t0

)

×P(X̄t0 = x̄∗
t0
| X = x∗, W̄t0 = w̄t0)

×P(W̄t0 = w̄t0 | X = x∗,W = w)

]
.

Again, because the terms P(W̄t0 = w̄t0 | X = x,W = w) and P(W̄t0 = w̄t0 | X =

x∗,W = w) are generally different, this quantity cannot be expressed in terms of any

sensible longitudinal (or stratum-specific longitudinal) total effect measures.

3.D.2 In the presence of time-varying confounder affected by the

exposure

Finally, consider the configuration of Figure 3.3 (LS.ex4 ) in the Main Document, which

is recalled in Figure 3.7 (LS ) for convenience. It corresponds to the case where the model

involves a time-varying confounder (Wt)t, which is affected by the exposure. We denote

the space in which W̄t0 takes its values by ΩW̄t0
, and by ΩW the space in which W takes
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Figure 3.7: (LS ) Longitudinal model with a time-varying exposure and a time-varying
confounder affected by the exposure, which both affect the outcome through some sum-
mary variables. (SV.Conf ) Corresponding over-simplified model if (Wt)t is mainly consid-
ered as a confounder. (SV.Med) Corresponding over-simplified model if (Wt)t is mainly
considered as a mediator.

its values.

Because (Wt)t>1 acts as both a confounder and a mediator in the (X̄t0−Y ) relationship,

the exposure of interest has an effect on the outcome through X and W. Therefore, this

is another example of a compound treatment where versions are relevant: quantities

ATELS(x̄t0 ; x̄
∗
t0
) for different pairs of exposure profiles (x̄t0 , x̄

∗
t0
) leading to X = x and

X = x∗ are typically different. In addition, the ignorability condition (Y X̄t0=x̄t0 ⊥⊥ X̄t0 |
W)LS does not hold, so that the conditions of Theorem 3 given in Section 3.4.1 in the

Main Document are not satisfied.

We can still have a closer inspection on the quantity that would be estimated in

practice, when working under an over-simplified causal model. If only data on Y , X

and W is available, two different over-simplified models might be considered in practice:

(SV.Conf ) or (SV.Med) in Figure 3.7.

First consider the case where (SV.Conf ) is (wrongly) considered as the true model.

As (Y X=x⊥⊥X|W)SV.Conf and, it follows from standard arguments (Pearl, 2000, Robins,

1986, Rosenbaum and Rubin, 1983) that, for any given x,x∗,

ATESV.Conf (x;x∗) ≎
∑

w∈ΩW

[E (Y |W = w,X = x)− E (Y |W = w,X = x∗)]

×P(W = w).

But, for any x and w, we have, on the one hand,

E (Y | X = x,W = w) = E
(
Y | X̄t0 = x̄t0 , W̄t0 = w̄t0

)
,

for any x̄t0 and w̄t0 leading to X = x and W = w, respectively, and, on the other hand

P(W = w) =
∑

w̄t0/W=w

P(W̄t0 = w̄t0),

where the sum is over all possible values w̄t0 of W̄t0 in ΩW̄t0
leading to W = w. As a
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result

ATESV.Conf (x;x∗) ≎
∑

w∈ΩW

∑

w̄t0∈ΩW̄t0
/W=w

[
E
(
Y | X̄t0 = x̄t0 , W̄t0 = w̄t0

)

−E
(
Y | X̄t0 = x̄∗

t0
, W̄t0 = w̄t0

) ]
× P(W̄t0 = w̄t0),

=
∑

w̄t0∈ΩW̄t0

[
E
(
Y | X̄t0 = x̄t0 , W̄t0 = w̄t0

)

−E
(
Y | X̄t0 = x̄∗

t0
, W̄t0 = w̄t0

) ]
× P(W̄t0 = w̄t0),

=
∑

w̄t0∈ΩW̄t0

[
E
(
Y | X̄t0 = x̄t0 , W̄t0 = w̄t0

)
− E

(
Y | X̄t0 = x̄∗

t0
, W̄t0 = w̄t0

) ]

×
t0∏

t=1

P(Wt = wt | W̄t−1 = w̄t−1), (3.12)

for any x̄t0 and x̄∗
t0

leading to X = x and X = x∗.

Now, observe that the conditional ignorability condition (Y X̄t0=x̄t0⊥⊥X̄t0 | W̄t0)LS does

not hold, since (Wt)t>1 is affected by the time-varying exposure, but the sequential ignor-

ability condition does hold: (Y X̄t0=x̄t0 ⊥⊥X1 | W1)LS and (Y X̄t0=x̄t0 ⊥⊥Xt | {X̄t−1, W̄t})LS
for any time t ∈ J2; t0K. Therefore, for any x̄t0 and x̄∗

t0
in {0, 1}t0 ,

ATELS

(
x̄t0 ; x̄

∗
t0

)
= EL

(
Y X̄t0=x̄t0 − Y X̄t0=x̄∗

t0

)
,

=
∑

w̄t0∈ΩW̄t0

[
E
(
Y | X̄t0 = x̄t0 , W̄t0 = w̄t0

)
(3.13)

×
t0∏

t=1

P
(
Wt = wt | W̄t−1 = w̄t−1, X̄t−1 = x̄t−1

)

−E
(
Y | X̄t0 = x̄∗

t0
, W̄t0 = w̄t0

)

×
t0∏

t=1

P
(
Wt = wt | W̄t−1 = w̄t−1, X̄t−1 = x̄∗

t−1

) ]
,

By comparing Equation (3.13) with Equation (3.12), it is clear that ATESV.Conf (x;x∗)

cannot usually be expressed in terms of longitudinal total effects. A noteworthy ex-

ception is when (Xt)t does not affect (Wt)t, that is, when (Wt)t is a pure confounder:

in this case Equation (3.13) coincide with Equation (3.12) and ATESV.Conf (x;x∗) ≎

ATELS

(
x̄t0 ; x̄

∗
t0

)
, for any x̄t0 and x̄∗

t0
leading respectively to X = x and X = x∗ (note

that, in this case, the versions are irrelevant and condition (T3.Cond) holds, so this result

also follows from Theorem 4 given in Section 3.4.1 the Main Document).

Now let us turn our attention to the case where model (SV.Med) in Figure 3.7

is wrongly considered as the true model. As (Y X=x ⊥⊥ X)SV.Med, the quantity esti-

mated in practice when working under model (SV.Med) would be ATESV.Med(x;x∗) ≎

E (Y | X = x)− E (Y | X = x∗). But, we have
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ATESV.Med (x;x∗)≎
∑

x̄t0

∑

x̄∗
t0

[
E
(
Y | X = x, X̄t0 = x̄t0

)
− E

(
Y | X = x∗, X̄t0 = x̄∗

t0

)]

×P(X̄t0 = x̄t0 | X = x)× P(X̄t0 = x̄∗
t0
| X = x∗),

=
∑

x̄t0

∑

x̄∗
t0

∑

w̄t0∈ΩW̄t0

[
E
(
Y | X = x, X̄t0 = x̄t0 , W̄t0 = w̄t0

)

×P(W̄t0 = w̄t0 | X̄t0 = x̄t0)

−E
(
Y | X = x∗, X̄t0 = x̄∗

t0
, W̄t0 = w̄t0

)

×P(W̄t0 = w̄t0 | X̄t0 = x̄∗
t0
)
]

×P(X̄t0 = x̄t0 | X = x)× P(X̄t0 = x̄∗
t0
| X = x∗),

=
∑

x̄t0

∑

x̄∗
t0

∑

w̄t0∈ΩW̄t0

[
E
(
Y | X = x,W = w, X̄t0 = x̄t0 , W̄t0 = w̄t0

)

×P(W̄t0 = w̄t0 | X̄t0 = x̄t0)

−E
(
Y | X = x∗,W = w, X̄t0 = x̄∗

t0
, W̄t0 = w̄t0

)

×P(W̄t0 = w̄t0 | X̄t0 = x̄∗
t0
) ]

×P(X̄t0 = x̄t0 | X = x)× P(X̄t0 = x̄∗
t0
| X = x∗),

=
∑

x̄t0

∑

x̄∗
t0

∑

w̄t0∈ΩW̄t0

[
E
(
Y | X = x,W = w, X̄t0 = x̄t0 , W̄t0 = w̄t0

)

×
t0∏

t=1

P(Wt = wt | W̄t−1 = w̄t−1, X̄t0 = x̄t0)

−E
(
Y | X = x∗,W = w, X̄t0 = x̄∗

t0
, W̄t0 = w̄t0

)

×
t0∏

t=1

P(Wt = wt | W̄t−1 = w̄t−1, X̄t0 = x̄∗
t0
) ]

×P(X̄t0 = x̄t0 | X = x)× P(X̄t0 = x̄∗
t0
| X = x∗),

with w the value taken by W when W̄t0 = w̄t0 .

On the other hand from Equation (3.13) it follows that

ATELS

(
x̄t0 ; x̄

∗
t0

)
=

∑

w̄t0∈ΩW̄t0

[
E
(
Y | X = x,W = w, X̄t0 = x̄t0 , W̄t0 = w̄t0

)

×
t0∏

t=1

P
(
Wt = wt | W̄t−1 = w̄t−1, X̄t−1 = x̄t−1

)

−E
(
Y | X = x∗,W = w, X̄t0 = x̄∗

t0
, W̄t0 = w̄t0

)

×
t0∏

t=1

P
(
Wt = wt | W̄t−1 = w̄t−1, X̄t−1 = x̄∗

t−1

)
] ,

with x and x∗ the values taken by X when X̄t0 = x̄t0 and X̄t0 = x̄∗
t0
, respectively, and w

the value taken by W when W̄t0 = w̄t0 .

By comparing the last two equations, it is clear that ATESV.Med (x;x∗) cannot usually

be expressed in terms of longitudinal total effects. A noteworthy exception is when (Wt)t

does not affect (Xt)t, that is when (Wt)t is a pure mediator. In this case, Wt⊥⊥X t
t0
| X̄t−1
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for any t ∈ J1; t0K, with X t0
t := (Xt, Xt+1, . . . , Xt0) which denotes the exposure profile from

time t to time t0, and ATESV.Med (x;x∗) ≎

∑
x̄t0

∑
x̄∗
t0

ATELS

(
x̄t0 ; x̄

∗
t0

)
× P(X̄t0 = x̄t0 |

X = x) × P(X̄t0 = x̄∗
t0
| X = x∗). Therefore, in this case, ATESV.Med (x;x∗) coincides

with the weighted average given in Equation (3.8) in Section 3.4.1 in the Main Document

(note that, in this case, condition (T3.Uncond) holds, and this result also follows from

Theorem 3 given in Section 3.4.1 in the Main Document).
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Chapter 4

On some limitations of probabilistic

models for dimension-reduction:

illustration in the case of one particular

probabilistic formulation of PLS

This Chapter corresponds to the preprint available at https://arxiv.org/abs/2005.09498,

and written with Vivian Viallon.

In this Chapter, we are following the notations used by el Bouhaddani et al. (2018);

they slightly differ from the ones used in the Introduction or Discussion chapters of this

manuscript.

Abstract

Partial Least Squares (PLS) refer to a class of dimension-reduction techniques aiming at

the identification of two sets of components with maximal covariance, in order to model the

relationship between two sets of observed variables x ∈ R
p and y ∈ R

q, with p ≥ 1, q ≥ 1.

el Bouhaddani et al. (2018) have recently proposed a probabilistic formulation of PLS.

Under the constraints they consider for the parameters of their model, this latter can be

seen as a probabilistic formulation of one version of PLS, namely the PLS-SVD. However,

we establish that these constraints are too restrictive as they define a very particular

subset of distributions for (x, y) under which, roughly speaking, components with maximal

covariance (solutions of PLS-SVD), are also necessarily of respective maximal variances

(solutions of the principal components analyses of x and y, respectively). Then, we

propose a simple extension of el Bouhaddani et al.’s model, which corresponds to a more

general probabilistic formulation of PLS-SVD, and which is no longer restricted to these

particular distributions. We present numerical examples to illustrate the limitations of

the original model of el Bouhaddani et al. (2018).
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4.1 Introduction

Principal Component Analysis (PCA), Canonical Correlation Analysis (CCA) and Partial

Least Squares (PLS) are arguably among the most popular multivariate methods for

dimension-reduction. They have been described and applied for many years (Hotelling,

1933, 1936, Jöreskog and Wold, 1982, Sampson et al., 1989, Wold, 1985), but are still

the subject of active research and discussion (Abdi et al., 2013, Jolliffe, 2002, Jolliffe and

Cadima, 2016, Krishnan et al., 2011). Overall, these methods aim at the identification of

vectors of weights, from which components are defined as linear transformations of the

observed variables. Under each particular method, these weights are chosen so that the

corresponding components meet a particular criterion. For example, given a data matrix

X containing n observations of a p-variate variable x (with n ≥ 1, p ≥ 1), the goal of PCA

is to identify r ≤ p unit vectors of weights that define r mutually orthogonal principal

components with maximal variances; the matrix of principal components X = XA then

consists of linear combinations of the p columns of X, with the matrix of weights A

given by the eigenvectors associated with the r largest eigenvalues of the sample variance

matrix X⊤X. On the other hand, given two data matrices X and Y, that gather the

n ≥ 1 observations for a pair of variables (x, y), with x ∈ R
p and y ∈ R

q, p, q ≥ 1, the goal

of CCA and PLS is to model the relationship between x and y by identifying weights that

define components with maximal association. Although CCA, which looks for components

with maximal correlation, is sometimes considered as a PLS technique, the PLS qualifier

usually rather refers to the class of methods that look for components with maximal

covariance (Wegelin, 2000). The family of PLS methods still consists of a number of

techniques, such as PLS Regression, PLS-W2A or PLS-SVD (Rosipal and Krämer, 2006,

Wegelin, 2000). PLS Regression treats the two sets of variables asymmetrically: it focuses

on the construction of components from one set of variables, which are then considered

as predictors of the second set of variables (the response). On the other hand, both PLS-

W2A and PLS-SVD adopt a more symmetrical perspective, and aim at the identification

of two sets of weight vectors defining two sets of components. In particular, PLS-SVD,

sometimes also referred to as PLS-SB or PLS-C (Krishnan et al., 2011, Sampson et al.,

1989, Wegelin, 2000), is simply based on the Singular Value Decomposition (SVD) of

the sample covariance matrix X⊤Y, and defines the two sets of weights as left and right

singular vectors of X⊤Y, respectively. For the sake of completeness, we shall recall that, in

contrast, both PLS Regression and PLS-W2A are iterative methods, based on a principle

called deflation, which is applied iteratively to guarantee some particular orthogonality

properties (Höskuldsson, 1988, Rosipal and Krämer, 2006, Wegelin, 2000, Wold, 1985).

Over the last two decades, several probabilistic formulations of these various dimension-

reduction techniques have been introduced, first under a Gaussian setting. They in-

clude the Probabilistic PCA (PPCA) (Tipping and Bishop, 1999), the Probabilistic CCA

(PCCA) (Bach and Jordan, 2005), as well as several versions of Probabilistic PLS (PPLS)
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(el Bouhaddani et al., 2018, Li et al., 2015, Zheng et al., 2016). Regarding these three

probabilistic formulations of the PLS, both Zheng et al. (2016) and Li et al. (2015) focus

on PLS Regression (the model considered by Li et al. (2015) has commonalities with a

probabilistic formulation of Principal Component Regression (PCR) models (Ge et al.,

2011)), while el Bouhaddani et al. (2018) consider a symmetrical PLS approach. Overall,

all these probabilistic formulations rely on structural equations that define the observed

variables as linear combinations of some latent variables plus some Gaussian noise. Pa-

rameter estimation under these latent variable models is then usually performed via an

Expectation-Maximization (EM) algorithm (Dempster et al., 1977). Giving access to all

the likelihood-based inference machinery, these probabilistic formulations have a number

of advantages compared to their standard formulation counterpart (Rosipal and Krämer,

2006, Smilde et al., 2004). The estimation can deal with missing data, while still being

computationally efficient (Tipping and Bishop, 1999, Zheng et al., 2016). Moreover, co-

variates can be included in the model (Chiquet et al., 2017), and penalized versions of

the likelihood can be used to encourage sparsity or structured sparsity, in particular in a

high-dimensional framework (Guan and Dy, 2009, Park et al., 2017, Zeng et al., 2017).

Finally, the probabilistic formulation is very versatile, and turns several complex settings

into natural extensions of the simple Gaussian ones mentioned above. For example, prob-

abilistic PCA models have been proposed for binary data and count data (Chiquet et al.,

2017, Durif et al., 2019). Extensions to even more complex settings, including media-

tion analysis where three sets of observed variables are involved, have also been proposed

(Derkach et al., 2019).

To recap, probabilistic formulations of dimension-reduction techniques enjoy a number

of appealing properties. However, appearances can be deceptive, and we will show in this

article that some caution is needed when developing and applying them. Indeed, despite

their apparent ability to fully capture the relationships among the variables under study,

some of them manage to do so under very particular distributions only: when constraints

on the model parameters are too strong, the parameters of interest reduce to parameters

that could be obtained under much simpler models, which greatly limits the applicability

and interest of the corresponding models. For illustration, we will focus here on the

probabilistic PLS model proposed by el Bouhaddani et al. (2018), which we will simply

refer to as the PPLS model from now on. In Section 4.2.1, we recall the principle of

the PPLS model as proposed by el Bouhaddani et al. (2018), and emphasize that it

can be regarded as a probabilistic formulation of PLS-SVD. In Section 4.2.2 we show

that this PPLS model suffers from the aforementioned defect, and actually defines a set

of very particular distributions for (x, y), which limits its applicability. We propose a

more general probabilistic formulation of PLS-SVD in Section 4.2.3. In Section 4.3, we

present numerical examples to illustrate the limitations of the original PPLS model of

el Bouhaddani et al. (2018). Concluding remarks are finally presented in Section 4.4.
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4.2 PPLS models

4.2.1 The original PPLS model proposed by el Bouhaddani et al.

(2018)

x

t

y

ue f

x

t

y

e f

(a) (b)

Figure 4.1: Graphical models for: (a) - The original PPLS model proposed by el Bouhad-
dani et al. (2018) and recalled in Equation (4.1). (b) - Our extended PPLS model given
in Equation (4.3). Note that apart from the fact that the later only has one set of latent
variables t, the structure of the noise parts e and f differs between the two models. In
both models, x and y are the observed variables whereas circled nodes denote unobserved
variables.

The PPLS model proposed by el Bouhaddani et al. (2018) can be graphically rep-

resented as depicted in Figure 4.1 (a). More precisely, it is defined by the following

structural equations, which relate the two observed sets of variables x ∈ R
p and y ∈ R

q to

two sets of latent variables t ∈ R
r and u ∈ R

r, with r < min(p, q),

x = tW⊤ + e, y = uC⊤ + f, u = tB + h. (4.1)

el Bouhaddani et al. (2018) imposed the constraints (a)-(i) below on the model parameters

to ensure identifiability.

(a) t ∼N(0,Σt).

(b) Σt is a r × r diagonal matrix, with strictly positive diagonal elements.

(c) e ∼N(0p, σ
2
eIp). (d) f ∼N(0q, σ

2
fIq). (e) h ∼N(0r, σ

2
hIr).

(f) t, e, f and h are independent. u, e and f are independent.

(g) W and C are respectively p× r and q × r semi-orthogonal matrices.

(h) B is a diagonal matrix, with strictly positive diagonal elements.

(i) the diagonal elements of ΣtB are strictly decreasingly ordered.

(j) r < min(p, q).

Here Ip denote the identity matrix of size p × p, and 0p the vector (0, . . . , 0) of size p.

The parameters of the model are given by θ = (W,C,B,Σt, σ
2
e , σ

2
f , σ

2
h). In particular,

matrices W = (W1, · · · ,Wr) and C = (C1, · · · , Cr) contain the two sets of weight vectors;
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note that they are the “true weights”, defined from the theoretical distribution of (x, y).

Given estimates Ŵ and Ĉ of these quantities, two sets of empirical components can be

defined as linear combination of the two sets observed variables. In this work, we will

mostly focus on components defined as X̂ = XŴ and Ŷ = YĈ; we recall that, when

working with latent variable models, an alternative strategy consists in using appropriate

conditional expectations of the latent variables; see Bach and Jordan (2005) and Section

4.2.3 below for more details. We shall further stress that in either case, the components do

not directly correspond to the latent variables t and u. In particular, x = xW = t+ eW

and y = yC = u+ fC typically differ from t and u, respectively.

Under the constraints (a)-(j), el Bouhaddani et al. (2018) establish the identifiability

of their model (up to sign for the columns of parameters W and C). In particular, the

identifiability of parameters W and C is given by the following Proposition.

Proposition 1. Under the PPLS model given in Equation (4.1) along with the constraints

(a)-(j), the columns of W and C are the uniquely defined (up to sign) left and right singular

vectors corresponding to the r largest singular values of Cov(x, y), respectively.

This result has already been established by el Bouhaddani et al. (2018) in their Lemma

1, so we here only recall the sketch of the proof. Under the PPLS model, we have

Cov(x, y) = WΣtBC⊤, where W and C are semi-orthogonal matrices, and ΣtB is diagonal

with strictly positive decreasingly ordered diagonal elements. It follows that the first r

non-null singular values of Cov(x, y) are all distinct, and are given by the diagonal of ΣtB.

As a result, the columns of W and C are uniquely defined (up to sign) as the first r left

and right singular vectors of Cov(x, y), respectively.

Although they do not mention it, their model can therefore be regarded as a proba-

bilistic formulation of PLS-SVD. In particular, this means that the two sets of components

x = xW and y = yC coincide with the two sets of components with maximal covariance,

targeted by the PLS-SVD.

However, we establish in Section 4.2.2 that the two sets of weights W and C, which are

the theoretical solutions of the PPLS model, are also necessarily the theoretical solutions

of two PPCA models for x and y, respectively. In other words, we will see that the PPLS

model defines a set of very particular distributions for (x, y) under which the two sets

of components with maximal covariance, x = xW and y = yC, are also necessarily of

respective maximal variances.

4.2.2 Limitation of the original PPLS model

Under the PPLS model of el Bouhaddani et al. (2018), the following Proposition, whose

proof is given in Appendix 4.A, also holds.
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Proposition 2. Under the PPLS model given in Equation (4.1) along with the constraints

(a)-(j), the columns of W and C are eigenvectors corresponding to the r largest eigenvalues

of Var(x) and Var(y), respectively.

Proposition 2 notably implies that, under the PPLS model, the two sets of components

x = xW and y = yC are not only of maximal covariance (as implied by Proposition 1),

but they are also necessarily of respective maximal variances. Equivalently, this comes

from the fact that solutions W and C of the PPLS model are also necessarily solutions

of two PPCA models, for x and y respectively. More precisely, the PPLS model implies

that both x and y fulfill the following PPCA model, presented here for a generic observed

variable z ∈ R
d

z = vV ⊤ + g, (4.2)

under the constraints

(α) v ∼N(0,ΣV ).

(β) ΣV is a r × r diagonal matrix, with strictly positive diagonal elements.

(γ) g ∼N(0d, σ
2
gId).

(δ) V is a d× r semi-orthogonal matrix.

(ǫ) r < d.

This PPCA model is a variation of the one introduced by Tipping and Bishop (1999);

see Appendix 4.B for more details. First consider this PPCA model for the observed

variable x ∈ R
p. By comparing, on the one hand, constraints (a), (b), (c), (g) and (j)

with constraints (α)− (ǫ), and, on the other hand, Equation (4.2) and the first equation

in Equation (4.1), it appears that the unique solution W of the PPLS model necessarily

corresponds to one of the possibly many solutions V of this PPCA model for x. More

precisely, when the solution of the PPCA model for x is unique (up to sign), that is when

the diagonal elements of Σt are all distinct, then the r largest eigenvalues of Var(x) are all

of algebraic multiplicity equal to one, the associated eigenvectors are uniquely defined (up

to sign), and they correspond to the columns of V . They are also the columns W1, . . . ,Wr

of W , although not necessarily in the same order; columns of W and V are in the same

order if, and only if, the diagonal elements of Σt are in decreasing order too. Now, if the

diagonal elements of Σt are not all distinct, then the solution V of the PPCA model for x

is not unique, but the columns of W still necessarily constitute one of these solutions, that

is one particular set of eigenvectors corresponding to the r largest eigenvalues of Var(x).

Similarly, the PPLS model implies that the PPCA model above holds for the observed

variable y ∈ R
q too, and that the unique solution C of the PPLS model necessarily

corresponds to one of the possible solutions of this PPCA model for y. More precisely, if
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the diagonal elements of ΣtB
2 are all distinct, then the columns of C correspond to the

uniquely defined r eigenvectors associated with the r largest eigenvalues of Var(y). On

the other hand, if the diagonal elements of ΣtB
2 are not all distinct, then the columns of

C still constitute one of the solutions of the PPCA model for y; in particular, they are

one of the possible sets of eigenvectors for the r largest eigenvalues of Var(y).

Putting all this together, the PPLS model of el Bouhaddani et al. (2018) corresponds

to a model where two PPCA models, one for x and one for y, are related to each other

via the third equation in Equation (4.1). Therefore, the weight matrices W and C,

solutions of their PPLS model, are also necessarily solutions of two PPCA models for

x and y, so that their model defines a subset of very particular distributions for (x, y),

under which components x = xW and y = yC are not only of maximal covariance,

but also of respective maximal variances. In particular, if the diagonal elements of Σt

are all distinct, and if the same holds true for ΣtB
2, the “solutions” of the two distinct

PPCA models are uniquely defined, and then each of the two marginal distributions of

x and y are sufficient to respectively identify each of the two sets of weights that define

components with maximal covariance. As will be confirmed in Section 4.3, this greatly

limits its applicability.

4.2.3 A more general probabilistic formulation of the PLS-SVD

We now present a generalization of the PPLS model of el Bouhaddani et al. (2018), which

corrects its main defect and defines a broader set of distributions for (x, y). Our general

idea was to keep the same general form as that of el Bouhaddani et al. (2018), but with

weaker constraints, in such a way that the weights W and C cannot generally be identified

from the marginal distributions of x and y only.

In the PPLS model, assumptions (a)-(j) are related to various aspects of the model:

the distributions of the errors terms, the distributions of the latent variables, as well as

“direct” constraints on the model parameters θ = (W,C,B,Σt, σ
2
e , σ

2
f , σ

2
h). In order to

keep the link with the PLS-SVD for our “extended” PPLS model, we still assume that

the weights matrices W and C are semi-orthogonal, and that the variance matrices of the

latent variables are diagonal. As a start, we thus only relax the constraints (c) and (d)

on the isotropy of the variance matrices for the error terms e and f . To be as general as

possible, we simply assume that these variance matrices are positive semi-definite, that is

that the error terms e and f are two non-degenerate Gaussian vectors. We will therefore

replace constraints (c) and (d) by constraints (c*) and (d*) presented below. But then,

to preserve the identifiability of the model (see below), we have to consider a model with

only one set of latent variables, in the same vein as the PCCA model of Bach and Jordan

(2005). Our extended PPLS model, depicted in Figure 4.1 (b), is then defined by the
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following two structural equations

x = tW⊤ + e, y = tC⊤ + f, (4.3)

under the constraints (a), (b), (g), (j) and:

(c*) e ∼N(0p,Ψe), with Ψe a p× p semi-positive definite matrix.

(d*) f ∼N(0q,Ψf ), with Ψf a q × q semi-positive definite matrix.

(f*) t, e and f are independent.

(h*) the diagonal elements of Σt are strictly decreasingly ordered.

Conditions (f*) and (h*) are the analogues of conditions (f) and (h), respectively, in the

case where only one set of latent variables is considered. Further observe that Cov(x, y) =

WΣtC
⊤, Var(x) = WΣtW

⊤+Ψe, and Var(y) = CΣtC
⊤+Ψf , where θ = (W,C,Σt,Ψe,Ψf )

are the parameters of our model.

We now present the sketch of the proof of the identifiability of our extended PPLS

model, which is an adaptation of the one developed by el Bouhaddani et al. (2018); we refer

to Appendix 4.C for a more detailed on the proof. Consider two pairs of random variables,

(x, y) and (x̃, ỹ), drawn from two extended PPLS models, with respective parameters

θ = (W,C,Σt,Ψe,Ψf ) and θ̃ = (W̃ , C̃, Σ̃t, Ψ̃e, Ψ̃f ), and respective variance-covariance

matrices Σ and Σ̃. Now, assume that Σ = Σ̃. This is equivalent to

WΣtW
⊤ +Ψe = W̃ Σ̃tW̃

⊤ + Ψ̃e, (4.4)

CΣtC
⊤ +Ψf = C̃Σ̃tC̃

⊤ + Ψ̃f , (4.5)

WΣtC
⊤ = W̃ Σ̃tC̃

⊤. (4.6)

Matrices W , C, W̃ , and C̃ are all semi-orthogonal, and both Σt and Σ̃t are diagonal with

strictly decreasing diagonal elements. As detailed in Appendix 4.C, Equation (4.6) implies

that Σt = Σ̃t, W = W̃J and C = C̃J , with J a diagonal matrix with ±1 elements on the

diagonal. Then, Equation (4.4) implies that Ψe = Ψ̃e, while Equation (4.5) implies that

Ψf = Ψ̃f . As a result, the parameters of the extended PPLS model given in Equation

(4.3) are identifiable (up to sign for the columns of W and C). In particular, because

Cov(x, y) = WΣtC
⊤, parameters W and C are identified (up to sign) as the first r left

and right singular vectors of Cov(x, y), respectively.

Moreover, because Var(x) = WΣtW
⊤ +Ψe, and Var(y) = CΣtC

⊤ +Ψf , with Ψe and

Ψf two positive semi-definite matrices, we shall stress that W and C can generally not

be identified from the eigendecomposition of Var(x) and Var(y), respectively. In other

words, the two sets of weights W and C define components with maximal covariance,

which are not necessarily of respective maximal variances, and W and C cannot generally
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be identified separately from the marginal distributions of x and y. Our extended PPLS

model can therefore be regarded as a more general probabilistic formulation of the PLS-

SVD, which defines a much broader and interesting set of distributions than the original

PPLS model of el Bouhaddani et al. (2018).

We will now conclude this Section by a few remarks on our model. First, we shall

stress that the residuals, e and f of our model, may be more than simple noise terms.

Indeed, they consist of everything that is not in the shared part between x and y. In

particular, e may contain some signal from additional latent variables specific to x, plus

some pure noise. Similarly, f may contain some signal from additional latent variables

specific to y.

Second, two sets of components can be defined as linear transformations of x and

y, respectively. As above, just as under the standard PLS-SVD (Wegelin, 2000), a first

strategy consists in defining x = xW and y = yC. Following Bach and Jordan (2005),

alternative components are defined as x∗ = E(t|x; θ) and y∗ = E(t|y; θ). As E(t|x; θ) =
x
(
WΣtW

⊤ + Ψe

)−1
WΣt and E(t|y; θ) = y

(
CΣtC

⊤ + Ψf

)−1
CΣt, these components are

linear transformations of x and y too, but yield different linear sub-spaces than x and y,

respectively, unless Ψe and Ψf are zero matrices (Bach and Jordan, 2005).

Finally, a last remark concerns the estimation of the parameters under our model.

Parameters W and C could be estimated by performing a simple SVD of the covariance

matrix Cov(X,Y). Alternatively, an EM-algorithm would yield estimates for all the pa-

rameters θ, while taking into account all the constraints of the model. It would further

allow various extensions, such as the inclusion of covariates, etc. However, the derivation

of the EM algorithm is less straightforward under our extended model than under the

original PPLS model. In particular, the updates in each of the M-steps of the EM for

the parameters W and C require an optimization problem over the Stiefel Manifold to

be solved (Siegel, 2019, Wen and Yin, 2010), while these updates have closed form ex-

pressions under the original PPLS model of el Bouhaddani et al. (2018). Although we

have not fully devised it, additional details on a possible EM algorithm are presented in

Appendix 4.D.

4.3 Simulation study

Now, we present results from two simulation studies aimed to illustrate the limitations of

the original PPLS model, and, more precisely, to illustrate the behavior of the estimates for

W and C returned by the EM algorithm devised by el Bouhaddani et al. (2018) under the

original PPLS model, depending on whether this model is correctly specified or not. For

comparison, we further considered estimates returned by the standard (non-probabilistic)

PLS-SVD, and the standard PCA (successively applied on the “x and y parts” of the data).

The PLS-W2A, which is another symmetrical PLS method that we briefly described in
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the Introduction (see Rosipal and Krämer (2006), Wegelin (2000), Wold (1985) for more

details), was originally considered too. As expected, estimates returned by the PLS-

W2A and PLS-SVD methods were very similar under the original PPLS model (because

Var(xW ) and Var(yC) are diagonal under the original PPLS model), but as they were in

the second simulation study too, we finally decided to omit their presentation here.

We set the dimensions of the observed sets of variables x and y to p = q = 20, the

dimension of the sets of latent variables to r = 3, and make the sample size vary in

n ∈ {50, 250, 500, 1000, 5000}. In the first simulation study, we work under the same

setting as that considered by el Bouhaddani et al. (2018) in their simulation study. More

precisely, data (X,Y) are generated under the original PPLS model, in the particular

case where the diagonal elements of both Σt and ΣtB
2 are all distinct. Weight matrices

W and C are randomly drawn from the sets of semi-orthogonal matrices of size p × r

and size q× r, respectively, and the diagonal elements of Σt and B are respectively set to

σ2
ti
= exp(−(i−1)/5) and bi = 1.5exp(3(i−1)/10), for i ∈ {1, 2, 3}, just as el Bouhaddani

et al. (2018). As for the variances of e, f and h, they are chosen so that the signal-to-noise

ratios are equal to 0.25: σ2
e = 0.4, σ2

f = 4 and σ2
h = 5.33. The main objective of this first

study is to empirically confirm that, when the original PPLS model of el Bouhaddani et al.

(2018) is correctly specified, the weights returned by the corresponding EM algorithm are

similar to those returned by two PCAs applied on the x and y parts of the data. In

the second simulation study, data are generated under a model similar to the original

PPLS model, except that e and f are not of isotropic variance; instead e and f are

drawn from multivariate Gaussian variables with arbitrary positive semi-definite variance

matrices; more precisely, we chose positive-definite matrices ensuring that eigenvectors

of matrices Var(x) and Var(y) were not too close to the left and right singular vectors

of Cov(x, y) (using a simple acceptance rejection method), to make sure we work under

really misspecified models where solutions of the PLS-SVD differ from solutions of two

PCAs. The main objective of this second study is to describe how the solutions of the EM

algorithm of el Bouhaddani et al. (2018) behaves when components of maximal covariance

are not of respective maximal variances too, that is when the original PPLS model is

misspecified. In both studies, the results are computed over 1000 replicates. For the

comparisons of weight vectors, we use the cosine similarity, which simply reduces to the

dot product in our case since the true and estimated weight vectors are unit vectors.

Results from our simulation studies can be replicated using our R scripts that we will

make soon available on GitHub.

Figure 4.2 presents the median of the cosine similarity (in absolute values) between

the true weights W and C and their estimates, computed under the original PPLS model

(first row), and under our extended PPLS model (second row). Each of the three columns

of Figure 1 presents the results for one particular pair (Wi, Ci)i∈{1,2,3}. Following what

el Bouhaddani et al. (2018) did in their simulation study, we shall stress that the columns
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of the estimated weight matrices returned by each of the three compared methods were

first re-arranged to make sure they matched the ordering of the true weight matrices.

When the PPLS model is correctly specified (top panel of Figure 4.2), estimates re-

turned by the EM algorithm under the original PPLS models perform similarly to esti-

mates returned by the other PLS techniques (PLS-SVD and PLS-W2A), and they are

all reasonably close to the true weight vectors. In particular, their cosine similarity with

the true weight vectors tend to 1 as sample size increases. But, as expected, this is also

the case for the estimates returned by two PCAs successively applied on X and Y. This

empirically confirms that when the diagonal elements of both Σt and ΣtB
2 are all dis-

tinct under the original PPLS model, solutions of the PLS-SVD coincide with those of

the PCAs (keep in mind that when the diagonal elements of Σt and/or ΣtB
2 are not all

distinct, solutions of the PLS-SVD still constitute one of the solutions of the PCAs).

On the other hand, when the original PPLS model is misspecified (bottom panel of

Figure 4.2), our results show that, estimates returned by the two PCAs are quite far from

the true weight vectors (as expected, by design), while those returned by the PLS-SVD

still perform well. As for the EM algorithm devised under the original PPLS model, it

performs much worse than the PLS-SVD, and not much better than the two PCAs. To

better describe the estimates returned by the EM algorithm devised under the original

PPLS model, Figure 4.3 presents the median of the cosine similarities (in absolute values)

between these estimates and those returned by the PLS-SVD and the two distinct PCAs.

Interestingly, these results show that, on average, estimates returned by the EM algorithm

under the original PPLS model are closer to those returned by the PCAs, especially when

the original PPLS model is misspecified. Figure 4.4 in Appendix 4.E further presents the

box-plots of the absolute value of the cosine similarities between the estimates returned

by the EM algorithm devised under the original PPLS model and those returned by (i)

two distinct PCAs, and (ii) the standard PLS-SVD, in our second simulation study (when

the original PPLS model is misspecified). These box-plots suggest that, when solutions of

the PLS-SVD differ from solutions of two PCAs, estimates returned by the EM algorithm

proposed by el Bouhaddani et al. (2018) are generally closer to those returned by the two

PCAs. This constitutes a severe limitation for this algorithm: in real-life examples, there

is no guarantee that the estimated weight vectors it returns really capture the relationship

between x and y.

4.4 Discussion

In this article, we focused on the PPLS model proposed by el Bouhaddani et al. (2018).

After highlighting that it corresponds to a probabilistic formulation of PLS-SVD, we

showed that the constraints considered in this original PPLS model are too strong: they

imply that the weight matrices W and C, which are solutions of this original PPLS model,
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Figure 4.2: Medians of the cosine similarities (in absolute values) between the true weight
vectors and the estimates returned by (i) the PPLS EM algorithm, (ii) two distinct PCAs
on X and Y, and (iii) PLS-SVD on (X,Y). The results are computed over 1000 replicates,
for p = q = 20, r = 3 and different sample sizes n ∈ {50, 250, 500, 1000, 5000}. The top
panels correspond to the first simulation study where the original PPLS model is correctly
specified, while the bottom panels correspond to the second simulation study where the
original PPLS model is misspecified.
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Figure 4.3: Medians of the cosine similarities (in absolute values) between the weight
vector estimates returned by the EM algorithm devised under the original PPLS model,
and those returned by (i) two distinct PCAs on X and Y, and (ii) PLS-SVD on (X,Y).
The results are computed over 1000 replicates, for p = q = 20, r = 3 and different sample
sizes n ∈ {50, 250, 500, 1000, 5000}. The top panels correspond to the first simulation
study where the original PPLS model is correctly specified, while the bottom panels
correspond to the second simulation study where it is misspecified.
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are also necessarily solutions of two distinct PPCA models for x and y, respectively. As

a result, the original PPLS model defines a very particular subset of distributions for the

pair (x, y), under which the two sets of components of maximal covariance are necessarily

of respective maximal variances too. This defect severely limits the practical interest of

this model.

However, this defect might not be specific to the model proposed by el Bouhaddani

et al. (2018). Our results more generally stress that some caution is needed when devel-

oping and applying such latent variable models for dimension-reduction: when imposing

too strong of constraints on the model parameters, a model whose structural equations

seem to correctly describe the relationships between the observed variables, may turn out

to be too simplistic. It can define very particular distributions, under which parameters

of interest could be obtained under much simpler models. As a result, a close inspection

of other probabilistic models might be needed. First consider the case of the Probabilis-

tic PLS Regression (PPLS-R) model proposed by Li et al. (2015). Zheng et al. (2016)

already suggested this model shared some similarities with the probabilistic formulation

of Principal Component Regression (PPCR) proposed by Ge et al. (2011). As a mat-

ter of fact, it seems that the weight matrix in the PPLS-R model proposed by Li et al.

(2015) could also be defined from the marginal distribution of the predictors only. Similar

concerns may apply to more complex frameworks, such as the mediation analysis, where

the objective is to describe the relationships between three sets of variables. For exam-

ple, Derkach et al. (2019) propose an interesting probabilistic formulation, but it might

be worth checking whether the joint distribution of the three sets of variables is really

needed to identify their parameters of interest, or whether the constraints they consid-

ered are also too strong, and define particular distributions under which these parameters

can actually be identified using, e.g., the marginal distribution of one particular set of

variables.

As shown in the present article, it is sometimes possible to correct for these defects.

In the case of the PPLS model originally proposed by el Bouhaddani et al. (2018), we

were able to relax some of the constraints, and develop a more general probabilistic

formulation of the PLS-SVD, under which the joint distribution of (x, y) is generally

necessary for the identification of the model parameters. However, the implementation of

an EM algorithm for the estimation of the parameters under this extended PPLS model

is less straightforward than for the original PPLS model. In particular, each M-step

of the algorithm requires a numerical optimization step to update the estimates of the

parameters W and C, whereas such updates are given by closed-form expressions under

the original PPLS model. Alternatively, we could propose another version of the model,

where parameters W and C would not have to be semi-orthogonal matrices. However, for

the model to be identifiable, we would have to impose Σt = Ir (identifiability would then

hold up to an orthogonal transformation for parameters W and C), and the corresponding
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model would actually be the PCCA model proposed by Bach and Jordan (2005).

Disclaimer

Where authors are identified as personnel of the International Agency for Research on

Cancer/World Health Organization, the authors alone are responsible for the views ex-

pressed in this article and they do not necessarily represent the decisions, policy or views

of the International Agency for Research on Cancer/World Health Organization.

4.A Appendix: Proof of Proposition 2

Here, we prove that the columns of W and C, solutions of the original PPLS model,

are also necessarily eigenvectors corresponding to the r largest eigenvalues of Var(x) and

Var(y), respectively.

Under the PPLS proposed by el Bouhaddani et al. (2018) recalled in Equation (4.1),

we have Var(x) = WΣtW
⊤ + σ2

eIp, with W a semi-orthogonal p × r matrix, Σt a r ×
r diagonal matrix and WΣtW

⊤ a symmetric p × p matrix of rank r < p. Consider

any eigendecomposition Q∆Q⊤ of matrix WΣtW
⊤: ∆ is then diagonal, with r non-null

elements. Moreover, because W is semi-orthogonal and Σt (square) diagonal (with strictly

positive diagonal elements), the r non-null eigenvalues in ∆ are the diagonal elements

(σ2
t1
, . . . , σ2

tr) of Σt, and the columns of W are eigenvectors corresponding to these r non-

null eigenvalues. Moreover, because Q is orthogonal, we have Var(x) = WΣtW
⊤+σ2

eIpX =

Q∆2Q
⊤ with ∆2 the p × p diagonal matrix with diagonal elements (σ2

t1
+ σ2

e , . . . , σ
2
tr +

σ2
e , σ

2
e , . . . , σ

2
e). Putting all this together, it follows that the columns of W are eigenvectors

of Var(x) corresponding to its r largest eigenvalues. When the diagonal elements of Σt

are all distinct, the r non-null eigenvalues of WΣtW
⊤ are of algebraic multiplicity equal

to one, and so are the r largest eigenvalues of Var(x). In this case, the columns of W are

the uniquely defined r eigenvectors associated with the r largest eigenvalues of Var(x).

However, because (σ2
t1
, . . . , σ2

tr) are not necessarily decreasingly ordered, the eigenvectors

of Var(x) associated with the r largest eigenvalues are not necessarily given in the same

order as the left singular vectors associated with the r largest singular values of Cov(x, y).

The PPLS model of el Bouhaddani et al. (2018) also implies that Var(y) = C(ΣtB
2 +

σ2
hIr)C

⊤+σ2
fIq, with C a semi-orthogonal q×r matrix, and ΣtB

2+σ2
hIr a square diagonal

matrix of size r < q. Arguing as above, it can be shown that the columns of C constitute

one particular set of eigenvectors corresponding to the r largest eigenvalues of Var(y). In

particular, when the diagonal elements of ΣtB
2 are distinct, the r largest eigenvalues of

Var(y) are of algebraic multiplicity equal to one: the associated eigenvectors are uniquely

defined (up to sign), and they correspond to the columns of C.
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4.B Appendix: Additional details for the comparison

of the PPCA model given in Equation (4.2) with

the one proposed by Tipping and Bishop (1999)

Consider a matrix Z containing n ≥ 1 observations of a random variable z ∈ R
d, d > 1.

We recall that the principle of the standard PCA applied on Z is to identify a matrix V or

r ≤ d vectors of weights defining a matrix Z = ZV of r mutually orthogonal components

with maximal variances. The matrix of weights V is then simply given by the eigenvectors

associated with the r largest eigenvalues of the sample variance matrix Z⊤Z.

Tipping and Bishop (1999) proposed a probabilistic formulation of PCA, actually

inspired by the factor analysis model (Basilevsky, 1994). Their PCCA is defined by the

following structural equation

z = vA⊤ + g, (4.7)

under the constraints that v ∼ N(0r, Ir), g ∼ N(0d, σ
2Id) and r < d. Then, because

Var(z) is the identity matrix, A is only identifiable up to an orthogonal transformation.

In addition, because A is not necessarily semi-orthogonal, the r eigenvectors of AA⊤

associated with the r largest eigenvalues have first to be computed to retrieve weights

similar to those defined in the non-probabilistic PCA framework.

On the other hand, the PCCA model introduced in Section 4.2.3 is given by the

following structural equation

z = vV ⊤ + g, (4.8)

along with the constraints v ∼ N(0r,Σv), Σv is a r × r diagonal matrix (with strictly

positive diagonal elements), g ∼ N(0d, σ
2Id), V is a d × r semi-orthogonal matrix and

r < d. Under this model, if the diagonal elements of Σv are distinct, then the r non-

null eigenvalues Var(x) are distinct, and the columns V are uniquely defined (up to sign)

as the associated eigenvectors. On the other hand, if some diagonal elements of Σv are

identical, the eigenvectors associated with the identical eigenvalues are defined only up

to a rotation. In any case, components defined as zV are those (possibly non-uniquely)

defined in the non-probabilistic PCA.

Finally, we shall stress that these two models are equivalent, in the following sense.

First note that under the setting of Equation (4.7), AA⊤ is of size d×d and of rank r < d,

and can then always be decomposed either as Q∆Q⊤, where ∆ is a d× d diagonal matrix

with strictly positive r first diagonal elements, and Q is a d× d orthogonal matrix, or as

Qr∆rQ
⊤
r , with ∆r a r × r diagonal matrix with strictly positive diagonal elements, and

Qr a d × r semi-orthogonal matrix. Consequently, any solution A of the PPCA model

given in Equation (4.7) defines a solution V of the PPCA model given in Equation (4.8),

with V = Qr and Σv = ∆r. Similarly, for any solution V of the PPCA model given in

Equation (4.8), A = V Σ
1
2
v is solution of the PPCA model given in Equation (4.7).
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4.C Appendix: Proof of the identifiability of the more

general probabilistic formulation of PLS-SVD

Our proof is an adaptation of the one presented by el Bouhaddani et al. (2018). Con-

sider two pairs of variables (x, y) and (x̃, ỹ) defined under our extended PPLS model

given in Equation (4.3), with respective parameters sets θ = (W,C,Σt,Ψe,Ψf ) and

θ̃ = (W̃ , C̃, Σ̃t, Ψ̃e, Ψ̃f ). Denote by Σ and Σ̃ their variance-covariance matrices. The

principle of the proof is to show that Σ = Σ̃ implies θ = θ̃. So, let us now assume that

Σ = Σ̃, that is

WΣtW
⊤ +Ψe = W̃ Σ̃tW̃

⊤ + Ψ̃e, (4.9)

CΣtC
⊤ +Ψf = C̃Σ̃tC̃

⊤ + Ψ̃f , (4.10)

WΣtC
⊤ = W̃ Σ̃tC̃

⊤. (4.11)

We recall that W , C, W̃ , and C̃ are semi-orthogonal matrices (of respective sizes p × r

and q× r), while Σt and Σ̃t are diagonal matrices (of size r× r) with strictly decreasingly

ordered diagonal elements.

First consider Equation (4.11). WΣtC
⊤ is a p×q matrix of rank r, with r < min(p, q).

Consider any particular singular value decomposition V∆Q⊤ of matrix WΣtC
⊤, with V

a square orthogonal matrix of size p, Q a square orthogonal matrix of size q, and ∆ a

rectangular diagonal matrix of size p× q with r non-null diagonal elements. The columns

of V are eigenvectors of WΣ2
tW

⊤, while those of Q are eigenvectors of CΣ2
tC

⊤. Moreover,

the diagonal elements of ∆ are the square roots of the eigenvalues of both WΣ2
tW

⊤

and CΣ2
tC

⊤. Then, because W (respectively C) is a semi-orthogonal matrix and Σt is

diagonal, the columns of W (respectively of C) are left (respectively right) singular vectors

associated with the r non-null singular values of the matrix WΣtC
⊤, which correspond

to the diagonal elements of Σt. Moreover, since the diagonal elements of Σt are strictly

decreasingly ordered, these r non-null singular values are distinct, and the r associated left

and right singular vectors are uniquely defined (up to sign). Similarly, write Ṽ ∆̃Q̃⊤ any

particular singular value decomposition of W̃ Σ̃tC̃
⊤. From the uniqueness of the singular

values and of the first r left and right singular vectors (up to sign), it follows that (i)

∆ = ∆̃, (ii) the first r columns of V are equal (up to sign) to the first r columns of Ṽ ,

and (iii) the first r columns of Q are equal (up to sign) to the first r columns of Q̃. In

other words, we have

Σt = Σ̃t,

W = W̃J,

C = C̃J,
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where J is a diagonal matrix with ±1 diagonal elements. Then, Equation (4.9) is equiva-

lent to WΣtW
⊤+Ψe = WΣtW

⊤+Ψ̃e, which yields Ψe = Ψ̃e. In the same way, Equation

(4.10) is equivalent to CΣtC
⊤ + Ψf = CΣtC

⊤ + Ψ̃f , so that Ψf = Ψ̃f . As a result, the

parameters of our extended PPLS model given in Equation (4.3) are all identifiable (up

to sign for the columns of W and C).

4.D Appendix: Details on an EM algorithm for the

estimation of the parameters of the PPLS model

given in Equation (4.3)

As before, we denote by (X,Y) =
(
(X1, . . . Xn)

⊤, (Y1, . . . Yn)
⊤
)

the observed sample of n

independent and identically distributed replica of (x, y). On the other hand, we denote

by T = (T1, . . . Tn)
⊤ the n “observations” of the latent variable t (which are therefore not

observed). To estimate θ = (W,C,Σt,Ψe,Ψf ) from (X,Y), an EM algorithm (Dempster

et al., 1977) can be used, as a closed-form for θ̂ cannot be obtained by directly maximizing

the likelihood of the observed data. The main steps of this EM algorithm are briefly

described below, especially to highlight the step that requires an optimization on Stiefel

Manifolds.

The observed data likelihood is

L(X,Y; θ) =

∫

T

L(X,Y,T; θ)dT,

where the complete-data likelihood L(X,Y,T; θ) is given by

L(X,Y,T; θ) =
n∏

i=1

f(Xi, Yi, Ti; θ),

=
n∏

i=1

fXi|Ti
(Xi | Ti; θ) fYi|Ti

(Yi | Ti; θ) fTi
(Ti; θ),

as Xi⊥⊥Yi | Ti, i ∈ J1, nK. Under the extended PPLS model, Xi | {Ti; θ} ∼N
(
TiW

⊤,Ψe

)
,

Yi | {Ti; θ} ∼N
(
TiC

⊤,Ψf

)
and Ti; θ ∼N

(
0r,Σt

)
, i ∈ J1, nK.

Consequently, for any i ∈ J1, nK, we have

(
Xi, Yi, Ti; θ

)
∼N


(0p+q+r),



WΣtW

⊤ +Ψe WΣtC
⊤ WΣt

CΣtW
⊤ CΣtC

⊤ +Ψf CΣt

ΣtW
⊤ ΣtC

⊤ Σt





 .

Denote by Σ the first (p + q) × (p + q) block of this variance-covariance matrix. Then,

Ti | {Xi, Yi} is Gaussian, with E
(
Ti | Xi, Yi

)
=
(
Xi, Yi

)
Σ−1

(
WΣt

CΣt

)
and V

(
Ti | Xi, Yi

)
=
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Σt −
(
ΣtW

⊤,ΣtC
⊤
)
Σ−1

(
WΣt

CΣt

)
. Then E

(
T⊤
i Ti | Xi, Yi

)
= V

(
Ti | Xi, Yi

)
+ E

(
Ti |

Xi, Yi

)⊤
E
(
Ti | Xi, Yi

)
.

For simplicity, we will use the notations

E
(
T⊤T | X,Y; θ

)
=

n∑

i=1

E
(
T⊤
i Ti | Xi, Yi; θ

)

E
(
T | X,Y; θ

)
=
(
E
(
Ti | Xi, Yi; θ

))
i∈J1,nK

which are a square matrix of size r, and a n× r matrix, respectively.

From any initial value for θ, the EM algorithm consists in successively iterating two

steps, namely the E-step and the M-step. From a value θold for the set of parameters,

the conditional moments E
(
T⊤T | X,Y, θold

)
and E

(
T | X,Y, θold

)
are computed; this

is the E-step. Then the M-step consists in updating the values of the parameters, that

is finding θnew, the value of θ which maximizes E

(
ln
(
L(X,Y,T; θ)

)
| X,Y; θold

)
. In our

case in the M-step, we can successively maximize over θ the three following quantities:

κ = E

(
ln
(
fX|T(X | T; θ)

)
| X,Y; θold

)
, µ = E

(
ln
(
fY |T(Y|T; θ)

)
| X,Y; θold

)
and π =

E

(
ln (fT(T; θ)) | X,Y; θold

)
, which are here given by

κ = −np

2
ln(2π)− n

2
ln(|Ψe|)−

1

2
Tr
((

X⊤X− 2X⊤
E
(
T | X,Y, θold

)
W⊤

+WE
(
T⊤T | X,Y, θold

)
W⊤

)
Ψ−1

e

)
.

µ = −nq

2
ln(2π)− n

2
ln(|Ψf |)−

1

2
Tr
((

Y⊤Y− 2Y⊤
E
(
T | X,Y, θold

)
C⊤

+CE
(
T⊤T | X,Y, θold

)
C⊤
)
Ψ−1

f

)
.

π = −nr

2
ln(2π)− n

2
ln (|Σt|)−

1

2
Tr
(
E
(
T⊤T | X,Y, θold

)
Σ−1

t

)
.

Of course, the updated parameter θnew has to fulfill the constraints of our model. In

particular, solutions W new and Cnew are defined as the semi-orthogonal matrices W and

C that maximize κ and µ above. More precisely,

W new = argmax
W

− 1

2
Tr
((

X⊤X− 2X⊤
E
(
T | X,Y, θold

)
W⊤ +WE

(
T⊤T |

X,Y, θold
)
W⊤

)
Ψold−1

e

)
s.t. W⊤W = Ir. (4.12)

Cnew = argmax
C

− 1

2
Tr
((

Y⊤Y− 2Y⊤
E
(
T | X,Y, θold

)
C⊤ + CE

(
T⊤T |

X,Y, θold
)
C⊤
)
Ψold−1

f

)
s.t. C⊤C = Ir. (4.13)
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Under the original and simpler PPLS model, variance matrices Ψold
e and Ψold

f are

isotropic, and el Bouhaddani et al. (2018) could derive closed form expressions for W new

and Cnew, by considering Lagrangian functions. However, closed form expressions can

not be derived from the Lagrangians in our case, and so optimizations over the Stiefel

Manifolds {W ∈ R
p×r | W⊤W = Ir} and {C ∈ R

q×r | C⊤C = Ir} have to be numerically

performed (Siegel, 2019, Wen and Yin, 2010) to update W new and Cnew in each M-step

of the EM algorithm, which is computationally intensive.

4.E Appendix: Additional results under the second sim-

ulation study

Column 1 Column 2 Column 3

C
W

50 250 500 1000 5000 50 250 500 1000 5000 50 250 500 1000 5000

0.00
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0.00
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1.00

n

Method PCA PLS−SVD

Figure 4.4: Distribution of the absolute values of the cosine similarity between the columns
of the weight matrices estimated with the PPLS EM algorithm and the ones obtained
via (i) two distinct PCAs on X and Y, and (ii) PLS-SVD on (X,Y). The results are
computed over 1000 simulations, for p = q = 20, r = 3, and different sample sizes
n ∈ {50, 250, 500, 1000, 5000}. The top panels correspond to weights C, and the bottom
panels correspond to the weights W .
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Chapter 5

On the use of cross-validation for the

calibration of the tuning parameter in

the adaptive lasso

This Chapter corresponds to the preprint available at https://arxiv.org/abs/2005.10119,

and written with Nadim Ballout and Vivian Viallon.

Abstract

The adaptive lasso refers to a class of methods, which were shown to generally enjoy

better theoretical and empirical performance, at no additional computational cost, com-

pared with the original lasso. As a result, it is very popular in practice. It relies on

a weighted version of the L1-norm penalty, where weights are typically derived from an

initial estimator of the parameter vector. Irrespective of the method chosen to obtain this

initial estimator, the performance of the corresponding version of the adaptive lasso crit-

ically depends on the value of the tuning parameter, which controls the magnitude of the

weighted L1-norm in the penalized criterion. In this article, we show that the standard

cross-validation, although very popular in this context, has a severe defect when applied

for the calibration of the tuning parameter in the adaptive lasso. We further propose a

simple cross-validation scheme which corrects this defect. Empirical results from a simu-

lation study confirms the superiority of our approach, in terms of both support recovery

and prediction error, for several versions of the adaptive lasso, including the popular one-

step lasso. Although we focus on the adaptive lasso under linear regression models, our

work likely extends to other regression models, as well as to the adaptive versions of other

penalized approaches, such as the group lasso, fused lasso, and data shared lasso.
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5.1 Introduction

High dimensional data are characterized by a number p of variables larger, or at least

not significantly lower, than the sample size n. They have become ubiquitous in many

fields, including biology, medicine, sociology, and economy (Giraud, 2014). Their analysis

raises a number of statistical challenges (Fan and Li, 2006, Hastie et al., 2009), usually

summarized under the term curse of dimensionality. Consequently, it has attracted a lot

of attention in the statistical literature over the past decades (Bühlmann and van De Geer,

2011, Donoho et al., 2000, Fan and Li, 2006, Hastie et al., 2009, 2015). In particular, a

variety of approaches based on the optimization of penalized versions of the log-likelihood

have been developed, to estimate the true parameter vector β∗ = (β∗
1 , . . . , β

∗
p)

T ∈ R
p under

high-dimensional parametric regression models (Huang et al., 2008a, Tibshirani, 1996).

These approaches use a penalty term, whose strength is controlled by a tuning parameter,

and which is added to the loss-function so that the estimation can take advantage of some

property that the true parameter vector β∗ is expected to fulfill. For example, when

β∗ is expected to be sparse, popular approaches rely on the use of Lq penalties, q ≤ 1.

In particular, the arguably most popular approach is the lasso, which uses an L1-norm

penalty. Extensions such as the group lasso (Jacob et al., 2009), fused lasso (Tibshirani

et al., 2005), generalized fused lasso (Viallon et al., 2016), data shared lasso (Ballout

et al., 2020, Ballout and Viallon, 2017, Gross and Tibshirani, 2016, Ollier and Viallon,

2017), etc., rely on structured sparsity inducing norms, and can be used when some given

structured sparsity is expected in β∗.

We will here focus on another extension of the lasso, namely the adaptive lasso

(Bühlmann and Meier, 2008, Bühlmann and van De Geer, 2011, Zou, 2006). This refers

to a class of methods where the L1-norm ‖β‖1 =
∑p

j=1 |βj| used in the standard lasso is

replaced by a weighted version
∑p

j=1 wj|βj|. The weights wj are typically data-driven, of

the form wj = 1/(|β̃j| + ε), with ε > 0, and where (β̃j)1≤j≤p are some initial estimates

of the parameters (β∗
j )1≤j≤p. Here, we will mostly focus on three popular versions of the

adaptive lasso: (i) the original adaptive lasso introduced by Zou (2006), where weights

are derived from Ordinary Least Squares (OLS) estimates; (ii) the version proposed by

Bühlmann and Meier (2008), where weights are computed from lasso estimates (tuned in

a prediction optimal way with the tuning parameter selected by cross-validation; we will

get back to this particular point in more details below); and (iii) the version proposed by

Zhang et al. (2008), where weights are computed from ridge estimates (again, tuned in a

prediction optimal way). In the rest of this article, the original adaptive lasso introduced

by Zou (2006) will be referred to as the ols-adaptive lasso, the one proposed by Zhang

et al. (2008) as the ridge-adaptive lasso, while we will refer to the method described by

Bühlmann and Meier (2008) as the one-step lasso, following their terminology. The pop-

ularity of the adaptive lasso can be explained as follows. First, it can be implemented

very easily and efficiently using algorithms originally developed for the lasso, such as the
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glmnet R package (Friedman et al., 2010). Second, it has been shown to usually outper-

form the lasso. For example, in the fixed p case, Zou (2006) established that the lasso

estimates do not enjoy the asymptotic oracle property (in the sense of Fan and Li (2006)),

while the ols-adaptive lasso estimates do under mild conditions on the tuning parame-

ter. In addition, conditions ensuring support recovery in the non-asymptotic framework

(which especially allows the study of the p ≫ n case) are weaker for the one-step lasso

than for the lasso; see, e.g., Corollaries 7.8-7.9 and Section 2.8.3, of Bühlmann and van

De Geer (2011).

However, as for other penalized approaches, the theoretical and empirical performance

of the adaptive lasso critically depends on the value of the tuning parameter. Its theo-

retically optimal value involves unknown quantities, such as the variance of the noise

under linear regression models, but also quantities related to the compatibility or irrep-

resentability condition (Bühlmann and van De Geer, 2011). Consequently, the practical

selection, or calibration, of the tuning parameter also has attracted a lot of attention in

the statistical literature (Arlot, 2019, Chen and Chen, 2008, Chichignoud et al., 2016,

Giacobino et al., 2017). A simple and popular strategy relies on cross-validation (Allen,

1974, Hastie et al., 2009, Stone, 1974). In particular, the K-fold cross-validation (Geisser,

1975) is implemented in many publicly available lasso solvers, such as the glmnet R pack-

age (Friedman et al., 2010), for the calibration of the tuning parameter. Moreover, it is

the method that Bühlmann and Meier (2008) recommend for the calibration of the tuning

parameters in the one-step lasso, for both the initial and final estimators (see below for

more details). In the present article, we will describe a defect of the standard K-fold

cross-validation when used to calibrate the tuning parameter in the adaptive lasso. We

will then present a simple alternative cross-validation scheme, which rectifies this flaw.

The rest of the article is organized as follows. In section 5.2, we start with a brief

overview on the principles of the adaptive lasso. Then, we illustrate the flaw of the

standard K-fold cross-validation when used to calibrate the tuning parameter in the

adaptive lasso, and describe one simple solution to rectify this defect. In Section 5.4,

we present results from a comprehensive simulation study where we empirically establish

the superiority of our proposal over the standard one. Concluding remarks are given in

Section 5.5.

5.2 The adaptive lasso under the linear regression model

5.2.1 Main notation and working model

As above, we will denote the sample size by n, and the number of covariates by p. For

simplicity, we will focus on linear regression models of the form

y = Xβ∗ + ξ, (5.1)
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where y = (y1, . . . , yn)
T ∈ R

n is the response vector, X = (x1, ...,xn)
T ∈ R

n×p is the

design matrix, β∗ = (β∗
1 , ..., β

∗
p)

T ∈ R
p is the p-dimensional vector of unknown parameters

to be estimated, and ξ ∈ R
n is some random noise. We further denote the support of β∗

by J = {j : β∗
j 6= 0}.

For any positive integer d ≥ 1, and any vector u ∈ R
d, we will denote the usual

Euclidian norm (or L2-norm) by ‖u‖2. We will let 0d and 1d be the vectors of size d with

components all equal to 0 and 1 respectively, and Id be the d×d identity matrix. For any

real matrix M = (M1, . . . ,Md) ∈ R
n×d, and any subset E ⊆ {1, . . . , d}, ME will denote

the submatrix composed of the columns (Mj)j∈E. We will further denote the cardinality

of E by |E|.
Finally, for any sample D0 = {yi,xi}i∈I0 , with I0 a given set of integers, and any

estimator β̂ of β∗, we will denote by

Pred.Error(D0, β̂) =
1

|I0|
∑

i∈I0

(yi − xT
i β̂)

2,

the prediction error corresponding to β̂ evaluated on the sample D0.

5.2.2 The lasso and adaptive lasso

For any λ ≥ 0, the lasso estimator β̂lasso(λ) (Tibshirani, 1996) is defined as any minimizer

over β ∈ R
p of the penalized criterion

||y −Xβ||22
n

+ λ

p∑

j=1

|βj|. (5.2)

The tuning parameter λ controls the amount of regularization through the L1-norm

‖β‖1 =
∑p

j=1 |βj|. In practice, an appropriate value for this parameter has to be used

to guarantee good statistical performance for β̂lasso(λ), with respect to both support re-

covery and prediction accuracy. As mentioned above, a popular strategy relies on K-fold

cross-validation (Hastie et al., 2009) whose pseudo-code is recalled in Algorithm 3 in

Appendix 5.A. Let λCV be the value of λ selected by K-fold cross-validation, and let

β̂
CV

lasso = β̂lasso(λ
CV) denote one solution of (5.2) with λ set to λCV.

Now, denote by w = (w1, . . . , wp) ∈ R
p
≥0 any given vector of non-negative weights. For

any λ ≥ 0, the adaptive lasso estimator β̂ada(λ;w) is defined (Zou, 2006) as any minimizer

over β ∈ R
p of the criterion

||y −Xβ||22
n

+ λ

p∑

j=1

wj|βj|. (5.3)

Of course, the adaptive lasso reduces to the standard lasso for the particular choice of the

weight vector w = 1lp: any solution β̂lasso(λ) is also a solution β̂ada(λ; 1lp). In practice, the
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weights are usually set to wj = 1/|β̃j|, or wj = 1/(|β̃j|+ ε), with β̃ = (β̃1, ..., β̃p) an initial

estimator of β∗, and ε some non-negative real number. A positive value for the ε parameter

guarantees that every component of the weight vector is finite, so that every component

of β̂ada(λ;w) has a chance to be non-zero. If the initial estimator is good enough, then

β̃j is close to 0 for j /∈ J , and less so for j ∈ J : if, in addition, ε is null or close enough to

0, weights wj are large for j /∈ J , and less so for j ∈ J . Then, components j /∈ J of the

parameter vector are more heavily penalized than the components j ∈ J . Various initial

estimates can be used to derive the weight vector w. When p < n, Zou (2006) suggests the

use of wOLS = 1/|β̃OLS|, where β̃OLS = (XTX)−1XTy is the OLS estimator. As mentioned

above, we will refer to the corresponding approach as the ols-adaptive lasso. In the fixed

p case, Zou (2006) established the asymptotic oracular property for the ols-adaptive lasso

under mild conditions, according to which the ols-adaptive lasso is consistent in terms of

variable selection (or sparsistent), and the distribution of
(
β̂adap,j(λ;wOLS)

)
j∈J

is Gaussian

with the same expectation and covariance matrix than that of (XT
JXJ)

−1XT
Jy, the OLS

estimator that would been obtained if J were known in advance. The ols-adaptive lasso

inherits these good properties from the
√
n-consistency of the OLS estimate β̃OLS in a

low-dimensional setting. However, the OLS estimate is less attractive when p > n. In

such high-dimensional settings, Zhang et al. (2008) suggested the use of ridge regression

for the computation of the weights wridge = 1/|β̂CV

ridge|. Here, β̂
CV

ridge denotes the estimator

returned by a ridge regression with tuning parameter selected by K-fold cross-validation;

we recall that the ridge regression is a penalized approach similar to the lasso, but where

the L1-norm ‖β‖1 used in the penalty is replaced by the squared L2-norm ‖β‖22 (Hoerl

and Kennard, 1970). In the rest of the article, we will refer to this particular method as

the ridge-adaptive lasso. Alternatively, Bühlmann and Meier (2008) suggest the use of

weights w1−step derived from β̂
CV

lasso. This leads to what they refer to as the one-step lasso.

Thanks to the so-called screening property of β̂
CV

lasso, the one-step lasso has been shown to

be sparsistent under weaker irrepresentability conditions than those required for the lasso

(Bühlmann and van De Geer, 2011). We shall mention that other choices for the weights

have been proposed in the literature: for example, the use of univariate OLS estimators

was suggested by Huang et al. (2008b).

5.2.3 K-fold cross-validation for the calibration of the tuning pa-

rameter in the lasso and the adaptive lasso

Several versions of cross-validation have been proposed in the literature, but the K-fold

version is arguably the most popular one in practice (Hastie et al., 2009). It first re-

lies on partitioning the original sample D = (yi,xi)1≤i≤n into K ≥ 2 balanced folds

D(1), . . . , D(K), with D = ∪Kk=1D
(k). The cross-validation then consists of K steps:

at each step k, (i) the fold D(k) is used as an “independent” test sample, while the

remaining K − 1 folds D \ D(k) are combined and jointly used as the training sam-
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ple, (ii) the estimator β̂k is constructed on the training sample D \ D(k), and (iii) its

prediction error Pred.Err(D(k), β̂k) is evaluated on the test sample D(k). The cross-

validated prediction error is finally defined as the average of these K prediction errors:

(1/K)×∑k Pred.Err(D
(k), β̂k).

This cross-validated prediction error can be used to assess the predictive performance

of estimators, and to compare the predictive performance among a set of estimators. In

particular, for a given weight vector w ∈ R≥0, it is commonly used to compare the pre-

dictive performance of the set of estimators (β̂ada(λr;w))1≤r≤R, for any given sequence

Λ = (λ1, . . . , λR) of candidate values for the tuning parameter. It can then be used

to select the optimal tuning parameter value, say, λCV(w), and equivalently, the corre-

sponding optimal estimator β̂ada(λCV(w);w). See the pseudo-code given in Algorithm

3 in Appendix 5.A for the detailed description of the cross-validation in this particular

setting.

The cross-validated prediction error is known to have some limitations; see, e.g., Chap-

ter 7 of Hastie et al. (2009). See also Arlot (2008), Arlot and Celisse (2010). However,

it is usually considered to perform reasonably well in practice, and is therefore still very

popular, in particular for the calibration of the tuning parameter of the lasso and the

adaptive lasso. As mentioned in the Introduction 5.1, it is for instance available in pack-

ages like glmnet (Friedman et al., 2010), and it is also the method that Bühlmann and

Meier (2008) used for the selection of the tuning parameter for both the initial and final

estimators in their one-step lasso procedure. However, we observed a severe defect of

K-fold cross-validation in the case of the adaptive lasso, which, to the best of our knowl-

edge, has been ignored in the literature so far. Below, we present results from a simple

simulation study, whose main objective is to illustrate (i) the good performance of the

cross-validation when used for the calibration of the tuning parameter in the lasso, and

(ii) its poor performance when applied for the calibration of the tuning parameter in the

adaptive lasso. Results from a more comprehensive simulation study will be presented in

Section 5.4.

In this first simple synthetic example, we generate one sample D = (yi,xi)1≤i≤n, made

of n = 1, 000 observations under the linear regression model given in Equation (5.1) with

p = 1, 000. We first set β∗ = (β∗
1 , . . . , β

∗
p) with β∗

j = 0 for all j ≥ 11, and β∗
j = ιj0.5 for

all j ≤ 10, where ιj is a {−1, 1}-binary random variable, with P(ιj = 1) = 1/2. Then, for

each i = 1, . . . , n, we generate a Gaussian random noise ξi ∼ N(0, 1), a Gaussian vector

of covariates xi = (xi,1, ..., xi,p) ∼ N(0p, Ip), and finally the outcome yi = xT
i β

∗ + ξi.

Similarly, we generate one independent test sample D = (yi,xi)n+1≤i≤n+N , made of N =

10, 000 observations drawn under the same linear model. Then, for any particular weight

vector w, the glmnet R package is used to compute the (adaptive) lasso estimator on

an appropriate sequence Λ = Λ(D,w) = (λ1(D,w), . . . , λ100(D,w)) of 100 decreasing

values for the tuning parameter (these values are equally spaced on a log-scale, and are
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automatically selected, in a data-specific way, by the glmnet and cv.glmnet functions of

the glmnet package). The glmnet R package is used to compute the 10-fold cross-validated

prediction error for each of the 100 corresponding estimators as well. Lastly, the “true”

prediction error of each estimator is approximated by its prediction error evaluated on

the independent test set D.

Given the relatively high-dimensional setting of this first simulation study, the ols-

adaptive lasso is not considered here. Figure 5.1 presents our results for the lasso (w = 1lp),

the one-step lasso (w = w1−step = 1/(|β̂CV

lasso|+ 10−4)), and the ridge-adaptive lasso (w =

1/(|β̂CV

ridge| + 10−4)). For the latter two, we also estimate the cross-validated prediction

error using our nested cross-validation scheme, which we will introduce in the next Section.

For comparability, the x-axis corresponds to the tuning parameter sequence represented

as a fraction of the data-specific maximal value λ1(D,w).

First consider the standard lasso (left panel). In this case, the cross-validated pre-

diction error does a fairly good job in approximating the true prediction error on a wide

range of λ-values. In particular, the λ-value at which the cross-validated prediction error

is minimized (vertical dotted red line) is very close to that at which the true prediction er-

ror is minimized (vertical dotted blue line). Moreover, the true prediction error evaluated

at these two λ-values (horizontal dotted red and blue lines, respectively) are indistinguish-

able on this plot: in this example, the lasso estimator β̂
CV

lasso selected by cross-validation

is therefore nearly optimal with respect to prediction error. However, the cross-validated

prediction error does not perform that well for the two versions of the adaptive lasso

presented in this example. In particular, for the one-step lasso, the cross-validated pre-

diction error constantly decreases as the tuning-parameter decreases, a behavior that we

observed on numerous other simulation designs as well (results not shown). Then, the

λ-value at which the cross-validation prediction error is minimized (vertical dotted red

line) is very different from the one that minimizes the true prediction error. This sug-

gests that the support of the one-step lasso estimator might be too large if the tuning

parameter is selected via the standard cross-validation (as will be confirmed in the more

comprehensive simulation study presented in Section 5.4). Moreover, the true prediction

error (estimated on the test sample D) evaluated at these two λ-values (horizontal dotted

red and blue lines, respectively) are quite different: the one-step-lasso estimator selected

by cross-validation is far from optimal with respect to prediction error on this example. A

similar, although less pronounced, behavior is observed in the case of the ridge-adaptive

lasso, suggesting that standard K-fold cross-validation is not recommended for the cal-

ibration of the tuning parameter of the adaptive lasso. On the other hand, using our

proposed nested scheme, which we will introduce in the next Section, seems to correct

this defect. For both the one-step lasso and ridge-adaptive lasso, the λ-value at which the

corresponding cross-validated prediction error is minimized (vertical dotted green line)

is close to the one minimizing the true prediction error, and the true prediction error
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Figure 5.1: Comparison between the “true” prediction error (estimated on a truly inde-
pendent test set, in blue) and the cross-validated prediction error (in red), for the lasso
(left), the one-step-lasso (middle), and the ridge-adaptive lasso (right). For the latter two,
the cross-validated prediction error estimated using our nested cross-validation scheme is
also presented (in green). Vertical dotted lines represent the value of the tuning parameter
for which each particular curve is minimized (red: standard cross-validated prediction er-
ror; green: cross-validated prediction error using our proposed nested scheme; blue: “true”
prediction error). Horizontal dotted lines represent the value of the “true” prediction error
for these particular values of the tuning parameter.

evaluated at this λ-value (horizontal dotted green line) is close to the optimal prediction

error: the one-step-lasso and the ridge-adaptive lasso estimators selected by our proposed

nested cross-validation scheme are both nearly optimal with respect to prediction error

on this example.

5.3 A new cross-validation scheme for the adaptive lasso

5.3.1 Additional notation

For any sample of observations D0 = {yi,xi}i∈I0 , with I0 a given set of integers, any

vector of non-negative weights w, and any non-negative λ value, we let Lasso(D0,w, λ)

denote one particular solution of the adaptive lasso (5.3), when computed on sample

D0 with weights w and tuning parameter λ. For any positive integer K ≥ 2, let

CVLasso(D0,w, K) be an adaptive lasso estimator computed on D0 with weights w,

and with a tuning parameter set to its optimal value according to the standard K-fold

cross-validation. Similarly, nestedCVLasso(D0,w, K) will denote an adaptive lasso esti-

mator computed on D0 with weights w, but this time with a tuning parameter set to its

optimal value according to our proposed K-fold cross-validation scheme, which will be

introduced below. In the the presentation of the ridge-adaptive lasso, we will further use
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the shorthand CVRidge(D0, K) to denote the ridge estimator (that will be used to com-

pute the weights in the ridge-adaptive lasso) computed on D0 with a tuning parameter

set to its optimal value according to the standard K-fold cross-validation.

5.3.2 Our proposal

We start by giving some intuition about the defect of the standard K-fold cross-validation

when used for the calibration of the tuning parameter in the adaptive lasso, as described

in Section 5.2.3. Recall that the overall principle of cross-validation is to mimic “inde-

pendent” test samples. Then, for the cross-validation to perform well, at each step k

of the K-fold cross-validation, the whole estimation procedure should be performed on

the training sample D \ D(k), and should not use any information from the test sample

D(k). However, the weights used in the adaptive lasso are derived from initial estimates

computed on the entire original sample D. Therefore, considering the estimation of the

adaptive lasso estimator as a whole, it does use information from the test samples: the

independence of these test samples is not guaranteed, which may be the cause of the poor

performance of the cross-validation in this particular framework.

Our overall proposal for the calibration of the tuning parameter, and eventually the

selection of the optimal adaptive lasso estimator, is described in Algorithm 1. The only

difference with the usual approach lies in Step 2. Usually, this step consists of Step 2-a,

where the standard cross-validation CVLasso(D,w, K) is used. Our proposal consists in

replacing it by Step 2-a’, where our proposed nestedCVLasso(D,w, K), which is detailed

in Algorithm 2 in the particular case of the one-step lasso, is used instead. The key

difference between CVLasso (see Algorithm 3 in Appendix 5.A) and nestedCVLasso is

highlighted in blue in Algorithm 2: at each step k of our proposed K-fold cross-validation,

the weights used for the adaptive lasso are first recomputed on the “training” sample

D \ D(k), so that the whole estimation of the adaptive lasso estimator uses information

from the training sample only, before computing the corresponding prediction error on the

“independent test” sample D(k). In the case of the one-step lasso (or the ridge-adaptive

lasso), this leads to a nested cross-validation scheme. More precisely, an appropriate

sequence of candidate λ values for the tuning parameter has first to be chosen, which

typically depends on the weights computed on the whole original sample (we briefly get

back to this point below). Then, at each step k of the “outer” K-fold cross-validation,

one “inner” standard cross-validation is performed to compute the optimal lasso (or ridge)

estimator on the training sample D \ D(k), from which the weights are derived, before

the corresponding adaptive lasso estimator is computed for each of the λ values of the

sequence, and their predictive performance is eventually evaluated on the test sample D(k).

For each λ value of the sequence, the predictive performance is then averaged over the K

folds. The optimal value for the tuning parameter is defined as the value that minimizes

this averaged criterion. The optimal adaptive lasso estimator finally corresponds to the
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adaptive lasso computed on D, with weights w also computed on D, and tuning parameter

set to this optimal value.

Algorithm 1: Cross-validation for the adaptive lasso. Version (i) of step (1-a)

corresponds to the one-step lasso, while version (ii) corresponds to the ols-adaptive

Lasso, and version (iii) to the ridge-adaptive lasso. The usual approach corresponds

to the algorithm ran with Step (2-a), while we propose to use Step (2-a’) instead,

which is further detailed in Algorithm 2.
Data: Sample: D = {yi,xi}ni=1, Version of the adaptive lasso, Number of folds: K,

and parameter ε ≥ 0

Result: β̂
CV

ada

Step 1: Computation of the initial estimates and weights;

(1-a) Initial estimates: either (i), (ii) or (iii) below, depending on the considered

version of the adaptive lasso ;

(i): β̃ = CVLasso(D, 1lp, K) /* one-step lasso */

(ii): β̃ = OLS(D) /* ols-adaptive lasso */

(iii): β̃ = CVRidge(D,K) /* ridge-adaptive Lasso */

(1-b) Weights;

w = 1/(|β̃|+ ε);

Step 2: Computation of the final estimates;

(2-a) β̂
CV

ada(w) = CVLasso(D,w, K);

(2-a’) β̂
CV

ada(w) = nestedCVLasso(D,w, K);

A first remark is that our proposal involves, as a preliminary step, the computation

of an appropriate sequence of candidate tuning parameters on the entire original sample,

and based on the weights w that are also computed on the entire original sample. In

other words, our claim above that, with our proposal, the whole estimation process is

independent from the test samples was actually overstated. However, it is not clear

how to correct this slight violation of the independence of the test samples. Moreover,

results from our simulation study suggest that this violation seems to be of no practical

consequence.

We shall further stress that when applied in the case of the ols-adaptive lasso, our

proposal cannot be seen as a nested cross-validation anymore. Indeed, in this case, there

is no inner cross-validation needed to compute the optimal OLS estimator on the training

sample at each step of the cross-validation (since the OLS does not rely on any hyper-

parameter to be optimized).
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Algorithm 2: Our proposed K-fold cross-validation scheme (nestedCVLasso) for

the calibration of the tuning parameter of the adaptive lasso: the case of the one-

step lasso.
Data: Sample: D = {yi,xi}ni=1, Weights: w, Number of folds: K, and parameter

ε ≥ 0

Result: β̂
nCV

ada (w) = β̂ada(λ
nCV ,w, D)

Computation of a sequence Λ := Λ(D,w) = (λ1, . . . , λR);

Division of D into K folds: D = ∪Kk=1D
(k);

for k ∈ {1, . . . , K} do

/* Computation of the weights on D \D(k) */

β̃
(k)

= CVLasso(D \D(k), 1lp, K);

wk = 1/(|β̃(k)|+ ε);

for r ∈ {1, . . . , R} do

β̂r,k = Lasso(D \D(k),wk, λr);

Er,k = Pred.Error(D(k), β̂r,k);

end

end

r∗ = argminr

{∑K
k=1 Er,k

}
;

λnCV = λr∗ ;

β̂
nCV

ada (w) = Lasso(D,w, λnCV );

5.4 Simulation study

We now present results from a more comprehensive simulation study, which extends the

simple one presented in Section 5.2.3. As before, we generate a sample D = (yi,xi)1≤i≤n,

made of n = 1, 000 observations drawn under the linear regression model (5.1). Here,

we make the number of covariates p vary in {100, 500, 1000}, and the number of relevant

covariates p0 vary in {10, 50}. We randomly select the support J of β∗, with |J | = p0.

Then, we set β∗
j = 0 for all j /∈ J , and β∗

j = ιjβ, for all j ∈ J , where ιj is a {−1, 1}-
binary variable, with P(ιj = 1) = 1/2. As for the signal strength β, we make it vary

in {1/4, 1/2, 1, 3/2}. Then, for each i = 1, . . . , n, we generate a Gaussian random noise

ξi ∼ N(0, 1), a Gaussian vector of covariates xi = (xi,1, ..., xi,p) ∼ N(0p, Ip), and finally

the outcome yi = xT
i β

∗ + ξi. Additionally, we generate one independent test sample

D = (yi,xi)n+1≤i≤n+N , made of N = 10, 000 observations drawn under the same linear

model.

We consider the one-step lasso and the ridge-adaptive lasso as before. The ols-adaptive
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lasso is also considered in the low-dimensional scenario where p = 100. As in our previous

simple example, weights were derived from initial estimates β̃ as wj = 1/(|β̃j| + 10−4);

other choices for the parameter ε ∈ {0, 10−6, 10−2} were tested, and led to very similar

results (not shown). For each method, the optimal adaptive lasso estimator is computed

following either the standard 10-fold cross-validation (Algorithm 1 with Step 2-a: we

will refer to these estimators as the one-step lasso CV, the ridge-adaptive lasso CV, and

the ols-adaptive lasso CV respectively) or our proposed 10-fold “nested” cross-validation

scheme (Algorithm 1 with Step 2-a’: we will refer to these estimators as the one-step lasso

nested CV, the ridge-adaptive lasso nested CV, and the ols-adaptive lasso nested CV,

respectively). For comparison, results from the lasso estimator, with tuning parameter

selected via standard 10-fold cross-validation (see Algorithm 3 in Appendix 5.A) are

presented; we will refer to this estimator as the lasso CV. Functions from the glmnet

R package are used to compute these different estimators. We evaluate both the (signed)

support accuracy and the prediction error attached to each estimator β̂. More precisely,

the signed support accuracy is defined as {∑p
j=1 1I(sign(β

∗
j ) = sign(β̂j))}/p, where 1I is the

indicator function, and sign the sign function, that is sign(x) = +1 if x > 0, sign(x) = −1
if x < 0, and sign(x) = 0 if x = 0. As for the prediction error, we simply compute

Pred.Err(D, β̂), as before. These two criteria are averaged over the 50 replications we

consider for each combination of values for the parameters (p, p0, β).

Figure 5.2 presents the results. First, they illustrate that the adaptive lasso usually

outperforms the lasso, in terms of prediction error and support accuracy. Second, focusing

on the adaptive lasso estimators, they also illustrate that our proposal yields better per-

formance than the standard K-fold cross-validation, in terms of both prediction error and

support accuracy. This increased performance is particularly substantial for low signal

strength, and high dimension (number of covariates p and/or cardinality p0 of the support

J of β∗): in such situations, it is noteworthy that, for instance, the one-step lasso CV

is typically outperformed by the simple lasso CV in terms of prediction error, and does

not outperform it much in terms of support accuracy, while the one-step lasso nested CV

exhibits substantially higher support accuracy and lower prediction error.

5.5 Discussion-Conclusion

In this article, we described a defect of the standard K-fold cross-validation when applied

for the calibration of the tuning parameter in the adaptive lasso, with emphasis on the

ols-adaptive and ridge-adaptive lasso, as well as the one-step lasso. We further proposed

a simple alternative which corrects this defects.

Although we focused on the K-fold cross-validation, other cross-validation schemes

(Arlot and Celisse, 2010) likely suffer from a similar defect, in which case our proposal

could easily be extended to these other cross-validation schemes. In addition, we here
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Figure 5.2: Results of the simulation study. Solid lines represent the averaged criteria,
while dashed lines represent the associated 95% confidence intervals.

considered the adaptive lasso under linear regression models for simplicity, but we expect

similar defects for the standard cross-validation, as well as improvements when apply-

ing appropriate extension of our proposal, for extensions of the adaptive lasso (e.g., the

adaptive generalized fused lasso (Viallon et al., 2016), the adaptive data shared lasso

(Ballout et al., 2020, Gross and Tibshirani, 2016, Ollier and Viallon, 2017)), and under

other regression models (e.g., generalized linear models, Cox proportional hazard models).

Disclaimer

Where authors are identified as personnel of the International Agency for Research on

Cancer/World Health Organization, the authors alone are responsible for the views ex-

pressed in this article and they do not necessarily represent the decisions, policy or views

of the International Agency for Research on Cancer /World Health Organization.
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5.A Appendix: Pseudo-code of the standard K-fold

cross-validation for the calibration of the tuning

parameter in the (adaptive) lasso

The pseudo-code detailed in Algorithm 3 below describes the function CVLasso: when

applied to the sample D = {yi,xi}ni=1, with weights w and number of folds K, it produces

the CV-optimal adaptive Lasso estimator β̂
CV

ada(w) = β̂ada(λ
CV,w), with tuning parameter

λCV set to its value minimizing the K-fold cross-validated prediction error.

Algorithm 3: The standard K-fold cross-validation CVLasso(D,w, K) for the cal-

ibration of the tuning parameter in the lasso and adaptive lasso
Data: Sample: D = {yi,xi}ni=1, Weights: w, Number of folds: K

Result: β̂
CV

ada(w)

Computation of a sequence Λ := Λ(D,w) = (λ1, . . . , λR);

Division of D into K folds: D = ∪Kk=1{D(k)};
for k ∈ {1, . . . , K} do

for r ∈ {1, . . . , R} do

β̂r,k = Lasso(D \D(k),w, λr);

Er,k = Pred.Error(D(k), β̂r,k);

end

end

r∗ = argminr

{∑K
k=1 Er,k

}
;

λCV = λr∗ ;

β̂
CV

ada(w) = β̂ada(λ
CV,w);
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Chapter 6

Discussion and perspectives

Cancer epidemiology is notably engaged in the study of potential causes of cancer based

on observational data, including, more recently, biological mechanisms possibly involved

in cancer development. In Appendix A, we present some of the tools introduced in causal

inference to offer the formal framework to address these causal queries, and which was

lacking with conventional tools in Statistics. In particular, counterfactual variables al-

low the precise definitions of causal quantities of interest, whether it is the total causal

effect of an exposure, or its decomposition through natural direct and indirect effects

that can be useful for the study of the biological mechanisms possibly underlying some

exposure-cancer relationship. Sets of sufficient conditions have further been proposed in

the literature to determine if, and if so, how, these quantities may be estimated from ob-

servational data. Yet, the practical application of causal inference and mediation analyses

in cancer epidemiology faces several challenges and issues; the objective of this thesis was

to explore some of them.

First, concerns have been raised in the literature regarding the relevance of causal

effects estimated from observational studies for certain exposures. For example, there

is no possible “direct” intervention to reduce obesity, and obesity can basically only be

reduced by intervening on some of its causes, like diet or physical activity. As several

practical interventions on the causes of obesity could lead to the same obesity level, this

situation falls under the general case of a treatment with multiple versions. In Chapter

2, which can be seen as a complement of Petersen (2011)’s work, we focused on the

particular case where the versions precede the treatment, as this situation had not been

considered in depth in the literature. For the purpose of illustration, we considered the

case where X, the exposure of interest, stood for the obesity at the age of 20, for which the

hypothetical intervention do(X = x) cannot be directly implemented in practice. Then,

we investigated how the effect of this hypothetical intervention do(X = x), which can

still be estimated using data from a cohort study (under some assumptions), relates to

the effects of interventions on its causes. In particular, we considered the situation where
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some causes of X are modifiable, while others are not. As emphasized by Petersen (2011),

our results state that the structure of the causal model indicates how an hypothetical

intervention on X can be interpreted. Specifically here, two distinct situations may arise,

depending on whether the “versions of the treatment” are relevant or not. On the one

hand, focusing on the modifiable causes of X that affect Y through X only, if any, the

different versions are irrelevant, and then the effect of an hypothetical intervention on X

captures the effect of interventions on these causes. On the other hand, for modifiable

causes W of X that affect Y not only through X (for example, if W is a confounder in the

X − Y relationship), the different versions are relevant, and the effect of an hypothetical

intervention on X only partly captures the effect of interventions on W . In particular,

we showed that under a linear model with no interaction, the effect of an hypothetical

intervention on X can be seen as an indirect effect of the intervention on such causes

W . Then, an interesting lead to gain further intuition and insight on the relationship

between these effects would be to study other simple parametric causal models. Getting

back to our motivating example where the exposure X is obesity, because most of its

modifiable causes can generally be regarded as confounders in its relationship with cancer,

the effect of obesity estimated from observational data is likely to differ from the effect

of interventions on its causes. Simulation studies could help to gain more insight on this

illustrative example.

Then, even if most causal models of interest in cancer epidemiology involve time-

varying exposures, confounders and mediators, these variables are usually measured once

only in practice, typically at the inclusion in the study. Practitioners then tend to overlook

their time-varying nature and to work under over-simplified causal models. In Chapter 3,

we investigated whether total causal effects derived when working under these simplified

and generally misspecified models could still be related to longitudinal causal effects of

potential interest. In particular, we focused on two situations regarding the type of

available data for the exposure, and possibly mediators and confounders: when they

correspond to (i) “instantaneous” levels measured at inclusion in the study or (ii) summary

measures of their levels up to inclusion in the study. On the one hand, we derived sufficient

conditions ensuring that the quantities estimated in practice under over-simplified causal

models can be expressed as true longitudinal causal effects of interest, or some weighted

averages thereof. But on the other hand, we emphasized that biases generally arise in

both cases (i) and (ii) as the sufficient conditions are very restrictive, and also because the

interpretability of these weighted averages is not always straightforward. It is noteworthy

that we focused on the “ideal” setting where the available variables (either the variables

at inclusion in the study or the summary variables) are perfectly measured, without

measurement error. As our results are already mostly negative in this case, they would

be even more so if the observed variables corresponded to a noisy version of the true ones.

Nevertheless, in the case where the quantity estimated in practice in either situation
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(i) or (ii) has a clear interpretation in terms of longitudinal causal effects of interest,

such measurement error could lead to biased estimates, and would have to be taken into

account. In addition, our results only cover total causal effects, while similar issues arise

when considering natural direct and indirect effects, as illustrated through a few simple

examples in Appendix B. Establishing a more general theory for mediation analysis, as the

one presented in Chapter 3 for total causal effects, constitutes an interesting lead for future

research. However, we expect the conditions to be more restrictive than for total causal

effects. Overall, our results are in line with the conclusions of previous publications (Daniel

et al., 2012, Maxwell and Cole, 2007, Maxwell et al., 2011), and support the need for

repeated measurements for the exposure of interest, the confounders and mediators. But,

because such repeated measurements are not always available, sensitivity analyses could

be useful to assess the extent to which the results obtained under a given over-simplified

model are biased (Ding and VanderWeele, 2016, VanderWeele and Arah, 2011). Finally,

we considered the standard discrete-time framework, while a continuous-time framework

might be better suited for most applications. Then, the study of the biases induced

when working under discrete-time models while the true causal model is a continuous-

time one, would be of interest, and several leads for future work may be considered in this

regard. For example, simulation studies could be performed to illustrate the magnitude of

the bias, depending on the length of the discrete time intervals and other parameters. In

addition, assuming a certain “regularity” of the exposure process, mediator and confounder

processes, and/or eventually a parametric model for the counterfactual outcome, we could

investigate which time-lag between the measurements should be considered to prevent or

at least limit bias.

We also initiated a project on high-dimensional mediation analysis, motivated by the

analysis of metabolomics data for the investigation of biological mechanisms possibly in-

volved in the obesity-cancer and other lifestyle-cancer relationships. Several approaches

have been proposed in the literature for this purpose, including the latent variable model

for high-dimensional mediation analysis proposed by Derkach et al. (2019). In particular,

their model allows issues related to both the dimensionality of the metabolites and the

large correlations among the metabolites to be tackled, by targeting a small number of

uncorrelated metabolic signatures to summarize the information contained in the whole

set of original metabolites. The latent variable model proposed by Derkach et al. (2019)

was devised for mediation analysis with a univariate exposure (e.g. BMI), and they fur-

ther used adaptive lasso penalties to encourage sparsity in the weight vector used for the

construction of the metabolic signatures. Yet, as several indicators can be used to define

obesity or lifestyle, we decided to extend their model to a setting where the exposure is

multivariate. We decided to use different constraints for the model parameters compared

to those used by Derkach et al. (2019); our choice, inspired by the constraints used by

el Bouhaddani et al. (2018) for their PPLS model, notably guaranteed the identifiabil-
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ity of the weight vectors up to sign. However, when studying the identifiability of our

latent variable model for high-dimensional mediation analysis, we noticed a severe limi-

tation: our model defined a subset of very particular distributions for the three sets of

observed variables, under which the weight vectors to be used for the construction of the

lifestyle and metabolic signatures could be obtained from much simpler models, namely

two distinct PPCA models run separately on the exposure and metabolite sets. We fur-

ther identified that this limitation came specifically from the constraints on the model

parameters, which were too strong. We actually noticed that several other latent variable

models proposed in the literature, notably the PPLS model proposed by el Bouhaddani

et al. (2018), suffer from similar defects. Contrary to our model, the PPLS model pro-

posed by el Bouhaddani et al. (2018) only involves two sets of observed variable, and we

decided to focus on their simpler setting to precisely describe this limitation. In Chapter

4 we showed that the PPLS model proposed by el Bouhaddani et al. (2018) defines a

very particular subset of distributions, under which the signatures with maximal covari-

ance are necessarily of maximal variances as well. We further illustrated this limitation

through simulated examples, and proposed a simple extension of their model, which is

no longer restricted to particular distributions such as the ones mentioned above. Over-

all, our results stress that caution is needed when developing latent variable models for

dimension-reduction, as they may turn out to be too simplistic when imposing too strong

of constraints on the model parameters. In particular, a complex model whose struc-

tural equations seem to correctly describe the complex relationships among the observed

variables, may actually define very particular distributions, under which the parameters

of interest in the complex model actually reduce to some parameters in much simpler

models. Interestingly, Zheng et al. (2016) already emphasized that the Probabilistic PLS

Regression model proposed by Li et al. (2015) shared similarities with the probabilistic

formulation of Principal Component Regression proposed by Ge et al. (2011). We plan

to study in more detail the latent variable model proposed by Li et al. (2015), as well as

the model proposed by Derkach et al. (2019), to precisely describe the limitation under

these two models too.

Another extension of our work would consist in developing a latent variable model

that is well suited for the mediation analysis framework. However, this extension is not

straightforward, as it is challenging to make sure that the parameters of interest are

identifiable, while ensuring they cannot be identified from only one or two of the three

sets of observed variables. For example, consider the model presented in Figure 6.1.

Although the latent variable T appears in the three structural equations that define X,

M and Y , it is easy to show that the first two equations are sufficient to identify the

parameters W and C, which contain the weights to be used for the construction of the

lifestyle and metabolic signatures. Again, at first glance, and just as the model proposed

by Derkach et al. (2019), this model seems to be well tailored for the mediation analysis
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Latent variable model for mediation analysis inspired by our ex-
tension of the PPLS model proposed by el Bouhaddani et al. (2018):

X = TW⊤ + εX,

M = TC⊤ + εM , Y = Tγ + εY .

Under the assumptions:

(1) T ∼N(0r,ΣT).

(2) εX ∼N(0pX ; ΨX). (3) εM ∼N(0pM ; ΨM ).

(4) ΨX is a pX × pX semi-positive definite matrix.

(5) ΨM is a pM × pM semi-positive definite matrix.

(6) εY ∼N
(
0, σ2

Y

)
.

(7) W and C are respectively pX × r and pM × r semi-orthogonal
matrices .

(8) r < min(pX , pM ).

X

M

T

Y

(a) (b)

Figure 6.1: (a) A latent variable model for mediation analysis, inspired by our extension
of the PPLS model proposed by el Bouhaddani et al. (2018). (b) Graphical representation
of the latent variable model for mediation analysis presented in Figure 6.1 (a). Circled
nodes represent sets of latent variables.

setting, but it actually defines a very particular subset of distributions for X,M and Y ,

where the signatures for the X and M sets which summarize the relationships between

X, M, and Y , are necessarily those of our proposed extension of the PPLS model run on

(X,M) only. Then, more complex latent variable models are needed. In particular we

can consider models with additional sets of latent variables, which would be related only

to X and/or M, as depicted in Figure 6.2 (b). Such models can be seen as extensions

of the probabilistic PLS Regression model proposed by Zheng et al. (2016). Under a

model such as the one presented in Figure 6.2 (a), parameters W and C can generally

not be identified from the first two structural equations: then, the metabolic and lifestyle

signatures would really depend on the full distribution of (X,M, Y ); in particular, the

marginal distribution of (X,M) is not sufficient to identify W and C, and then to define

the signatures. However, establishing the identifiability of the model parameters is not

straightforward under these models. Moreover, the implementation of the (penalized) EM

algorithm to estimate the model parameters could be challenging too. Indeed, we noted

that the implementation of the EM algorithm for our extension of the PPLS model was

already less straightforward than for the initial model proposed by el Bouhaddani et al.

(2018). In particular, this algorithm required additional numerical optimization steps for

which we have not found any efficient method yet. Then the estimation procedure would

likely be even more complicated for a latent variable model for mediation analysis such as

the one given in Figure 6.2 (a). Alternatively, a different direction could be considered.

For example, the approach proposed by Geuter et al. (2020), which directly looks for
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Latent variable model for mediation analysis inspired by our ex-
tension of the PPLS model proposed by el Bouhaddani et al. (2018):

X = TW⊤ + UA⊤ + εX,

M = TC⊤ + UB⊤ + εM , Y = Tγ + εY .

Under the assumptions:

(1) T ∼N(0r,ΣU). (2) U ∼N(0s,ΣT).

(3) εX ∼N(0pX ; ΨX). (4) εM ∼N(0pM ; ΨM ).

(5) ΨX is a pX × pX semi-positive definite matrix.

(6) ΨM is a pM × pM semi-positive definite matrix.

(7) εY ∼N
(
0, σ2

Y

)
.

(8) W and C are respectively pX × r and pM × r semi-orthogonal
matrices .

(9) A and B are respectively pX × s and pM × s semi-orthogonal
matrices .

(10) r < min(pX , pM ). (11) s < min(pX , pM ).

X

M

U

T

Y

(a) (b)

Figure 6.2: (a) Another latent variable model for mediation analysis, inspired by our
extension of the PPLS model proposed by el Bouhaddani et al. (2018). (b) Graphical
representation of the latent variable model for mediation analysis presented in Figure 6.2
(a). Circled nodes represent sets of latent variables.

signatures with maximal indirect effects, is very instinctive, and might be extended to

our specific setting. Eventually, confounders will have to be considered too. Moreover,

extensions to time-varying mediation analysis models (with the time-varying exposures,

mediators, and confounders) could be considered.

Lastly, in the project on high-dimensional mediation analysis, we considered an L1-

penalized EM algorithm to encourage sparsity in some of the model parameters. Under

simple regression models, various extensions of the lasso have been proposed. In particu-

lar, the adaptive lasso uses a weighted version of the L1-norm for the penalty term, and

was shown to generally outperform the lasso for appropriate choices of the weights. On

the other hand, irrespective of the particular choice of the weights, an appropriate value

for the tuning parameter has to be selected, and a popular strategy for its calibration

relies on K-fold cross-validation. In Chapter 5, we considered the simple setting of linear

regression models, and empirically showed that the K-fold cross-validation is not suitable

for the calibration of the tuning parameter in the adaptive lasso, for several standard

choices of the weights. We further proposed a simple alternative to rectify the defect, and

empirically showed that it outperformed the usual K-fold cross-validation. Then, this

method could be extended for the calibration of the tuning parameter in the adaptive

lasso version of our model for high dimensional mediation analysis.
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Appendix A

Tools and principles of causal inference

The first objective of this Appendix is to briefly describe some of the challenges faced

notably in epidemiology to answer etiologic questions. Some basic tools and principles

devised for this purpose in the causal inference literature, and used to derive some of the

methodological results presented in this thesis, are then reviewed for both time-fixed and

longitudinal configurations, in Section A.1 and Section A.3. A similar review is presented

for mediation analysis in Section A.2, for time-fixed configurations.

A.1 Causal inference

A.1.1 Association and causation

One main interest in Statistics is to establish association between variables. On the

other hand, epidemiology is more concerned about causal interpretation, as its aim is to

devise strategies to improve health. Consider for instance the example where a biomarker

is found to be associated with the occurrence of a certain disease using “conventional”

statistical tools. If the association is strong enough, this biomarker could be used, e.g.

for diagnostic or prognostic purposes. However, epidemiologists usually want to go one

step further and assess whether the biomarker is a cause of this disease: if so, intervening

on the biomarker level could help prevent or cure the disease.

However, if two variables X and Y are associated, for example biomarker and disease

occurrence, respectively, it does not imply that X is a cause of Y : Y could be a cause

of X, or X and Y could share a common cause, etc. In other words, association does

not imply causation (Hernán and Robins, 2020). In particular, in the situation depicted

in Figure A.1 (c), the relationship between X and Y is not causal at all, and a spurious

association exists between these two variables because of the presence of a shared cause

W . Such common causes are usually referred to as confounders, as they confound and

pollute the relationship between two other variables. We will come back to the use of

graphs to depict such situations, as proposed in Figure A.1.
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(a) (b) (c)

Figure A.1: (a) X is a cause of Y . (b) Y is a cause of X. (c) X and Y share a common
cause, W .

Then, a natural question is how to infer causation from association measures. When

using interventional data, such as in randomized clinical trials, established correlations can

usually be read causally. Indeed, imagine that a randomized clinical trial is carried out to

study the causal effect of a blood biomarker: a manipulation of the biomarker is randomly

performed on half of the individuals of a sample of patients with a disease, who constitute

the treatment group, and the other half of the sample constitutes the control group. Then

the difference between the recovery rate in the two groups is usually interpreted as the

causal effect of the biomarker. Indeed, in this type of experimental study, an intervention

is performed and the data then directly reflect the consequences of the intervention. In

particular, the randomized attribution of the exposure preserves the estimation of causal

effects from confounding bias: thanks to the randomization, the two groups (treated and

non-treated) are “exchangeable”, in the sense that the two groups (are supposed to) have

the same characteristics before treatment assignment. Such interventional data have to

be contrasted with observational data, obtained for instance from a cohort study, and

where no intervention is performed. For many reasons, e.g. costs or ethical reasons,

epidemiologists usually have access to observational data only.

The statistical investigation of causal effects from observational data faces a key chal-

lenge, as conventional statistical models and tools only target the statistical association

between variables. Yet, epidemiologists need to go beyond the results of association anal-

yses to answer etiologic questions from observational data. Then, in order to distinguish

the three different situations displayed in Figure A.1, new tools are needed. These tools

have been recently devised in the causal inference literature. As we will see below, it is

important to keep in mind that causal inference using observational data will invariably

rely on assumptions, or prior knowledge, on the causal “system” under consideration.

A.1.2 The main tools of causal inference

A substantial literature has recently emerged, and new tools have been developed to

formally define causal effects. Statistical methods were further developed to estimate these

causal effects from observational data. Devised jointly by the statistics, mathematics and

informatics communities, some of the tools and principles of the causal inference literature

are derived from the probabilistic graphical model theory; this is notably the case for

Structural Causal Models, which combine graphical causal models and structural equation
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models to specify knowledge and assumptions on the causal system of interest (Pearl,

1995, 2000). In particular, graphical causal models rely on the use of Directed Acyclic

Graphs, and the visual aspect they offer is particularly convenient to capture and exploit

the information. The causal inference literature further proposes to use counterfactual

variables to offer a formal definition of the causal effect of an exposure on an outcome

(Pearl, 1995, Rubin, 1974). Moreover, a number of sets of sufficient conditions have been

established, that ensure that such causal quantity of interest can be “identified”, or in

other words, be expressed in terms of observable quantities only.

In this Section, the progression chosen to present these tools and principles is largely

inspired by Pearl et al. (2016).

Using graphical causal models and structural equation models to specify the

assumptions on the causal system of interest

In order to infer causation from association measures, prior knowledge and/or assumptions

on the causal system of interest need to be used. They typically concern the possible

relationships between the variables in the causal system, and are de facto related to the

structure of the graph that can be used to summarize them.

A graphical causal model (Lauritzen, 1996, Pearl, 1988) offers a visual approach to

clearly describe these assumptions. The exposure of interest, outcome, but also possi-

ble confounders are referred to as “endogenous” variables, and each of them has to be

represented by a node. Each endogenous variable can also be caused by at least one

“exogenous” variable; exogenous variables correspond to “external” factors, and are not

necessarily drawn in the graph. The possible relationships between the endogenous vari-

ables are then translated via directed edges. In particular, an edge directed from node X

to node Y represents a causal dependence between these two variables: it means that the

value taken by Y may depend on the value taken by X, and not the other way round.

Then, the assumptions embodied in the causal graph lie in the absence of edge, and in

the direction of the edges present in the graph. For instance in the causal graph of Figure

A.2, X is a possible cause of M and Y , but Y cannot directly cause X because there is no

directed edge from Y to X. It is standard to assume that variables cannot have an effect,

either directly or through other variables, on themselves, so that the graphs are Directed

Acyclic Graphs (DAGs). Possible “feedback” on variables can be considered using DAGs

by ackowledging the time-varying nature of variables; we will consider such settings in

Section A.3.

Relationships among the variables in the DAG are usually described using the vocabu-

lary borrowed from the graph theory: if an edge is directed from node X to node Y , then

X is said to be a “parent” of Y and Y is said to be a “child” of X. In addition, if Z is a

parent of X, and X is a parent of Y , Z is said to be an “ancestor” of Y and Y is said to be

a “descendant” of Z. For example in Figure A.2, M is parent of Y and a child of W1 and
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X Y

M

W1
W3W2

Figure A.2: Example of graphical causal model where X is a possible cause of M and Y ,
and is possibly caused by W1 and W2. M is also a possible cause of Y and is possibly
caused by W1, while W1 is a possible cause of Y and is possibly caused by W2 and W3.
Finally, Y is also possibly caused by W3.

X, and is further an descendant of W2 and W3. Finally, note that an exogenous variable

cannot be a descendant of any endogenous variable or any other exogenous variable.

A structural equation model (SEM) provides a complementary approach to formally

specify the assumptions on the causal system of interest. For this purpose, Pearl (1995,

2000) proposes to use a Structural Causal Model (SCM), which combines a graphical

causal model and a system of structural equations. In the SEM, each endogenous variable

is defined as the output of some function, whose inputs are some exogenous and possibly

other endogenous variables; then just as the DAG, the SEM specifies our assumptions

on the structure of the causal system. When the functions intervening in the structural

equations are completely specified, the SEM brings more information than the graphical

model, as it clearly indicates how parents cause each of their child. However, these

functions do not have to be completely specified; the only requirement is to specify which

endogenous and exogenous variables are possible inputs of the functions. Then, in the

case of a non-parametric SEM, the system of structural equations and the DAG contain

exactly the same information. Consider for instance the SCM given in Figure A.3 (a); the

system of structural equations indicates that variable X is defined only from the value of

variable UX , and Y is defined from the value of both X and UY . One the other hand,

neither UX nor UY are defined from a specified function; they are exogenous variables.

Regarding the graphical model, X as a unique parent (UX), Y has two parents (X and

UY ), and UX and UY have no parent. Then, the causal graph can be drawn given a system

of structural equations , and vice versa. Note however that in the causal graph of Figure

A.3 (a), the absence of directed edges between UX and UY implicitly suggests that the

variables are independent. Causal models where exogenous variables are independent of

each other are called Markovian (Pearl, 2000); we assume, unless otherwise stated, that

this is the case in the forthcoming causal models.
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X Y

UX UY

x Y X=x

UY

{
X = fX(UX),
Y = fY (X,UY ).

{
x

Y X=x = fY (x, UY ).

(a) (b)

Figure A.3: (a) Example of SCM, where X is a potential cause of Y . X and Y are also
potentially cause by exogenous variables UX and UY , respectively. (b) Causal diagram
and system of structural equations representing the causal system of Figure A.3 (a) in
the counterfactual world where the exposure X would have been set to value x.

Using specific configurations of edges and nodes in graphical causal models to

read independence between variables

In a DAG, paths between two nodes consist in specific configurations of edges, which may

be conditionally or unconditionally blocked. As in a graphical causal model each node

corresponds to a variable, independence relationships between variables will be implied

by the structure of the DAG, provided that the probability distribution of the variables is

compatible with the structure of the DAG. In this Section, we quickly present the different

types of configurations of edges and nodes which may appear in a DAG, as well as how

such paths can be blocked (Pearl, 1988). Then, we present the d-separation criterion

proposed by Verma and Pearl (1988), which allows sets of (conditional) independencies

among the variables composing a DAG to be deduced from its structure. It will be

particularly useful for the investigation of the identifiability of causal effects, for example

when using the twin networks that will be introduced below.

X Z Y X Z Y X Z Y

(a) (b) (c)

Figure A.4: Graphical causal models depicting: (a) A chain. (b) A fork. (c) A collider.
For readability, exogenous variables UX , UZ and UY have been dropped in the graphical
representations.

In DAGs, restricting our attention to any three “adjacent” nodes, only three different

types of configurations exist: “chains”, “forks” and “colliders”; see Figure A.4 for a graphical

representation of these configurations. Then, each path in a DAG can be seen as a

succession of chains, forks and/or colliders.

Definition 1. (d-separation). A path p in a graph G is blocked by a set of nodes Z if and

only if:
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• p contains a chain (A→ B → C) or a fork (A← B → C) such that B is in Z,

or

• p contains a collider (A → B ← C) such that neither B nor any of its descendant

is in Z.

The set Z is said to d-separate X and Y in G if and only if Z blocks every path between

X and Y in G.

Note that d-separation may be conditional or unconditional, in the particular case where

Z is the empty set. On the other hand, if two nodes are not d-separated by Z, they

are said to be d-connected, conditional on Z (Pearl et al., 2016). Consider for instance

the graphical causal model given in Figure A.2, and more particularly the relationship

between X and Y . There exist several paths between X and Y , notably one “open” (not

blocked) path, (X → Y ), because of the directed edge from X to Y . Regarding the other

paths:

• Path p1 (X →M → Y ) is blocked by {M}.

• Path p2 (X ← W1 → Y ) is blocked by {W1}.

• Path p3 (X → M ← W1 → Y ) is blocked by the empty set, because the collider

node M is on the path. Then p3 is not blocked by {M}, but is blocked by {W1} or

{M,W1}.

• Path p4 (X ← W1 →M → Y ) is blocked by {M}, {W1} or {M,W1}.

• Path p5 (X ← W2 → W1 → M → Y ) is blocked by {W2}, {W1}, {M}, {M,W1},
{M,W2} or {M,W1,W2}.

• Path p6 (X → M ← W1 ← W3 → Y ) is blocked by the empty set, {W1}, {W3},
{M,W1}, {M,W3} or {M,W1,W3}.

• Path p7 (X ← W2 → W1 → Y ) is blocked by {W1}, {W2} or {W1,W2}.

• Path p8 (X ← W1 ← W3 → Y ) is blocked by {W1}, {W3} or {W1,W3}.

• Path p9 (X ← W2 → W1 ← W2 → Y ) is blocked by the empty set, {W2}, {W3},
{W1,W2}, {W1,W3} or {W1,W2,W3}.

As mentioned above, there is a connection between blocked paths or d-separation of nodes

in a DAG and independence relationships among the associated variables. Indeed, an open

path between two nodes in a graphical causal model can be seen as flow of dependency

between the associated variables. More precisely, in the chain and fork configurations

given in Figure A.4 (a) and Figure A.4 (b), the path between X and Y is open: X and
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X Z1 Z2 Y X Z1 Z2 Z3 Y

(a) (b)

Figure A.5: Examples of graphical causal models where: (a) The unique path from X to
Y is composed only of chains going in the same direction. (b) Z1, the common cause of
X and Y , is on the unique path between them. For readability, exogenous variables have
been dropped in the graphical representation.

X Z1 Z2 Z3 Y

X
Z1

Z2

Y

(a) (b)

Figure A.6: Graphical causal models where: (a) The unique path from X to Y contains a
collider, Z3. (b) The unique path from X to Y contains a collider, Z1. Z2 is a child of Z1.
For readability, exogenous variables have been dropped in the graphical representation.

Y are d-connected, and then X and Y are possibly dependent. On the other hand, it is

possible to block the path between X and Y by conditioning on the node at its center,

and then X and Y are conditionally independent given Z. Then, if there is a unique path

between X and Y , and if it is only composed of chains going in the same direction, X

and Y are conditionally independent given every subset of nodes of this path. This is for

instance the case in Figure A.5 (a), where {Z1}, {Z2} and {Z1, Z2} block the path between

X and Y . In the same way, if there is a unique path between X and Y which contains

their common cause, then X and Y are conditionally independent given their common

cause; see for instance Figure A.5 (b), where X and Y are conditionally independent

given Z1. Lastly, in the collider configuration given in Figure A.4 (c), the path between

X and Y is unconditionally blocked: X and Y are independent. In particular under such

configuration, conditioning on the central node Z, which is also called a collider, opens

the path between X ad Y : X and Y are d-connected conditional on Z, and then X and Y

may be dependent conditional on Z. The intuition is maybe less obvious than for chains

and forks, but may be seen in the following way: the value of Z depends on both X and

Y ; then for a given value of Z, changes in X must be compensated by Y , and vice versa.

Finally, if there is a unique path between X and Y , and if it contains a collider, then X

and Y are independent, but (possibly) conditionally dependent given the collider or any

of its descendants. Consider for instance the causal system depicted in Figure A.6 (a);

X and Y are marginally independent, but conditioning on Z3 could induce dependence

between X and Y . Then in Figure A.6 (b), X and Y are marginally independent as well,

but conditioning on {Z1}, {Z2} or {Z1, Z2} could induce dependence between X and Y .

The following criterion, called d-separation criterion (Verma and Pearl, 1988), summa-

120



rizes the (conditional) independence relationships induced by the structure of the DAG.

Theorem 5. (d-separation criterion) If Z d-separates X and Y in a graph G, then X

and Y are conditionally independent given Z, for any probability distribution P that is

compatible with the structure of G.

We will use the notations (X ⊥⊥ Y | Z)G when Z d-separates X and Y in a graph G,

and (X ⊥⊥ Y | Z)P when variables X and Y are conditionally independent given Z under

the probability distribution P. Then Theorem 5 states that (X⊥⊥Y | Z)G ⇒ (X⊥⊥Y | Z)P
for any probability distribution P which is compatible with the structure of G. Note on

the other hand that (X ⊥6⊥ Y | Z)G ; (X ⊥6⊥ Y | Z)P for any probability distribution P

which is compatible with the structure of G. Indeed, if X and Y are d-connected in the

DAG, the associated variables are possibly dependent, but not necessarily; Pearl et al.

(2016) say that the variables are “likely” dependent. More precisely, these variables will

be independent for almost every distribution compatible with the DAG, but exceptions

may arise. Consider for instance the case where vari-

ables X, M and Y are defined from the following

Gaussian linear models: X ∼N(0, 1), M = αX+UM ,

Y = βX + γM + UY , with UY ∼ N(0, 1) and

UM ∼N(0, 1). In particular, this distribution of vari-

ables X,M and Y is compatible with the DAG G

given in Figure A.7. On the one hand, (X ⊥6⊥ Y )G.

On the other hand, as Y = (β + γα)X + γUM + UY ,

(X ⊥⊥ Y )P if and only if β = −γα. This distribu-

tion is then said to be unfaithful to G (Spirtes et al.,

1993). In order to exclude such pathological cases,

the faithfulness assumption or stability assumption

(Pearl, 2000) can be made; more precisely it assumes

X

UX

Y

UYM

UM

Figure A.7: Example of graph-
ical causal model where two
paths are directed from X to
Y : one is simply composed of
the directed edge from X to Y ,
and the second one is composed
of a chain with M at its center.

that independence relationships between variables only arise from the structure of the

DAG, and are then invariant to changes of parameters in the model.

Finally note that in this Appendix, we assume that the observable data are generated

under the causal model that is (partly) specified by the considered graphical causal model.

In other words, the distribution of the variables for which we have observational data is

compatible with the considered DAG.

Using counterfactual variables to formalize causal effects

Let us now review the information in our possession for our causal quest. First, our

assumptions on and/or knowledge of the structure of the causal system of interest can be

summarized in the form of a graphical causal model and/or a SEM, from which a number

of properties can be deduced for the joint distribution of the endogenous variables and
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possibly available in the observational data. However, this concerns the “real world”

only, while we would like to know what would have happened if an intervention had

been performed on the exposure of interest X, by analogy with the data obtained from a

randomized clinical trial for instance. For example, in the case where the binary exposure

under study is the obesity status (obese/lean), and the outcome of interest is cancer

occurrence, in order to assess the causal effect of obesity on cancer occurrence we would like

to compare the risk of cancer in the population, had all the individuals of the population

been obese, with the risk of cancer in the “same” population, but this time had all the

individuals been lean. To do so, we can represent the causal system in another world,

called counterfactual world, where contrary to the fact, an intervention would have set

the exposure X to a given possible value x.

The do-operator (Pearl et al., 2016, Spirtes et al., 1993) operationalizes such interven-

tion, by performing a number of “transformations” on the causal model. First, under the

intervention do(X = x), the edges directed to X are removed in the causal graph, and

X is set to x. On the other hand in the associated SEM, the structural equation where

X is the output is also replaced by the value x. Then, the hypothetical intervention on

the exposure X affects the distribution of each of its descendants. Notably, X is replaced

by the value x in every other structural equations, while the functions remain unmodi-

fied. In addition under the intervention do(X = x), any descendant of X is replaced by

a counterfactual variable; see for example Figure A.3 (b), where under the hypothetical

intervention do(X = x), the outcome Y becomes the counterfactual variable Y X=x (Pearl,

1995, Rubin, 1974).

As mentioned above, the distributions of the variables in counterfactual worlds are of

particular interest when addressing causal questions. Variables that “live” in these coun-

terfactual worlds are called counterfactual variables. In particular, the counterfactual

outcome Y X=x is the outcome variable that would have been observed in the counter-

factual world following the intervention where X would have been set to x. Taking the

example of a binary exposure such as the obesity status (obese/lean), there are two hypo-

thetical interventions: do(X = 1) and do(X = 0), and then two counterfactual outcomes,

Y X=1 and Y X=0. The causal effect of X on Y (e.g., cancer occurrence) can then be

defined by comparing the distributions of Y X=1 and Y X=0. However, such counterfac-

tual variables are latent variables; we can never observe both Y X=1 and Y X=0, so the

comparison between Y X=1 and Y X=0 cannot be performed at an “individual” level. The

comparison is then performed at the “population” level: for example, considering the ad-

ditive scale, E(Y X=1 − Y X=0) defines the average causal effect of X on Y . This quantity

is sometimes also called total causal effect or average treatment effect, and denoted either

ATE, for “average treatment effect”, or ACE, for “average causal effect”. It represents the

difference between cancer risk in the counterfactual world where each individual would

have been obese, and the one where each individual would have been lean. An alterna-
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tive notation is also possible, using the do-operator instead of counterfactual variables:

E(Y X=1 − Y X=0) = E(Y | do(X = 1)) − E(Y | do(X = 0)). Finally, it is noteworthy

that for any possible value x of X, E(Y X=x) = E(Y | do(X = x)) usually differs from

E(Y | X = x); we will come back to this point below.

Thereafter, binary exposures and categorical confounders will be considered for sim-

plicity. Since the causal quantity of interest is defined from counterfactuals variables Y X=1

and Y X=0, which are unobserved, a natural question is whether it can be expressed as a

function of the observations. When a causal quantity can be expressed in terms of the

distribution of observable variables only, it is said to be “identifiable”. For this purpose,

sets of sufficient conditions have been established to ensure that ATE can be identified.

The first condition in each set of identifiability conditions is the Consistency condition

(Robins, 1986)

(C) if X = x, then Y X=x = Y.

In particular, this condition allows to connect counterfactual quantities to observed ones.

More precisely, it states that the outcome variable observed in the real world for an

individual who actually has value x for exposure X, coincides with the value it would

have taken if an intervention would have been performed to set X to value x. The second

condition is the Ignorability condition (Rosenbaum and Rubin, 1983)

(Ign) Y X=x ⊥⊥X, for any possible value x of X.

This condition assumes an independence relationship between real world and counterfac-

tual world variables. Note that it differs from the independence relationship Y ⊥⊥X, and

in particular, the ignorability condition (Ign) does not imply that Y ⊥⊥X. Then, under

consistency and ignorability conditions

ATE = E
(
Y X=1

)
− E

(
Y X=0

)
,

(Ign)
= E(Y X=1 | X = 1)− E(Y X=0 | X = 0),

(C)
= E(Y | X = 1)− E(Y | X = 0). (A.1)

This quantity is expressed only in terms of the distributions of observed variables X

and Y . Finally, if the positivity condition holds, that is if P(X = x) > 0, for any

possible value x of X, this quantity can be estimated in practice. Another possible

set of identifiability conditions is based on a “conditional version” of the former, for the

ignorability and positivity conditions. Under the consistency and Conditional Ignorability

123



conditions (Rosenbaum and Rubin, 1983)

(C.Ign) Y X=x ⊥⊥X | W , for any possible value x of X.

we have

ATE =
∑

w

[
E
(
Y X=1 | W = w

)
− E

(
Y X=0 | W = w

) ]
× P(W = w),

(C.Ign)
=

∑

w

[
E(Y X=1 | W = w,X = 1)− E(Y X=0 | W = w,X = 0)

]
× P(W = w),

(C)
=

∑

w

[
E(Y | W = w,X = 1)− E(Y | W = w,X = 0)

]
× P(W = w),

where the sum is over all possible values of W . Then, if the conditional positivity condition

holds, that is if P(X = x | W = w) > 0, for any possible value x of X and any possible

value w of W , ATE can be estimated from observational data.

However, these identifiability conditions are not fully testable. From the observational

data, it is possible to check whether the positivity or conditional positivity conditions

hold, but this is not the case for the consistency, ignorability or conditional ignorability

conditions, as these conditions involve counterfactual variables. Causal inference then

usually relies on the structure of the causal system of interest, which summarizes other

untestable but more “concrete” assumptions. In particular, the inspection of the causal

model in the real and counterfactual worlds will indicate which “version” of the ignorability

condition is satisfied, and then how the causal quantity of interest is identified (along

with the consistency assumption). The consistency assumptions holds by construction

under the SCMs; for example, under the causal system whose structures in the real

world and counterfactual world following do(X = x) are given in Figure A.3 (a) and

Figure A.3 (b), respectively, we have Y = fY (X,UY ) and Y X=x = fY (x, UY ), so that

X = x implies that Y = Y X=x. The ignorability condition
(
Y X=x ⊥⊥ X

)
also holds

under this model, as Y X=x = fY (x, UY ), and UY is independent of UX and then of X.

As a result, under this configuration ATE is identified through the formula given in

Equation (A.1), and to estimate the causal effect of X on Y , it is sufficient to estimate

E(Y | X = 1) and E(Y | X = 0). Now consider the causal system whose structures in the

real world and counterfactual world following do(X = x) are respectively given in Figure

A.8 (a) and Figure A.8 (b). MX=x is the M variable that would have been observed in

the counterfactual world where the exposure X would have been set to value x, and in

particular MX=x⊥⊥X. Then Y X=x⊥⊥X, and it is again sufficient to estimate E(Y | X = 1)

and E(Y | X = 0) in order to estimate ATE. Of course the ignorability condition, in

its unconditional version, does not always hold. Consider for instance the causal system

whose structures in the real world and counterfactual world following do(X = x) are
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X Y

M

x Y X=x

MX=x





X = fX(UX),
M = fM(X,UM),
Y = fY (X,M,UY ).





x,
MX=x = fM(x, UM),
Y X=x = fY (x,M

X=x, UY ).

(a) (b)

Figure A.8: (a) Example of SCM where X is a potential cause of M and Y , and where
M is also a potential cause of Y . For readability, exogenous variables UX , UM and UY

have been dropped in the graphical representation. (b) Causal diagram and system of
structural equations representing the causal system of Figure A.8 (a) in the counterfactual
world where the exposure X would have been set to value x.

X Y

W

x Y X=x

W





X = fX(W,UX),
W = fW (UW ),
Y = fY (X,W,UY ).





x,
W = fW (UW ),

Y X=x = fY (x,W,UY ).

(a) (b)

Figure A.9: (a) Example of SCM where X is a potential cause of Y , and where W is a
potential cause of both X and Y . For readability, exogenous variables UX , UY and UW

have been dropped in the graphical representation. (b) Causal diagram and system of
structural equations representing the causal system of Figure A.9 (a) in the counterfactual
world where the exposure X would have been set to value x.

respectively given in Figure A.9 (a) and Figure A.9 (b); W is a potential cause of both

X and Y , and is thus a confounder for the X − Y relationship. In particular, Y X=x ⊥6⊥
X because Y X=x depends on W and so does X, and then E

(
Y X=x

)
6= E (Y | X = x).

However Y X=x ⊥⊥X | W , and then one has to “adjust” for W : ATE is identified through∑
w

[
E(Y | W = w,X = 1)− E(Y | W = w,X = 0)

]
× P(W = w), where the sum is over

all possible values of W .

In a nutshell, counterfactual variables allow to formally define causal quantities of

interest, but also to describe sets of conditions which are sufficient to express these causal

quantities in terms of the distribution of observable variables X, Y and potentially addi-

tional variables implied in the X−Y relationship. Notably, in the presence of a confounder

W for the X−Y relationship, as in Figure A.9 (a), one has to adjust for the confounder in

order to take into account the source of association between X and Y it produces. Figure

A.8 (a) is another example of a causal system where an additional variable is involved in

the relationship between X and Y . However here, M is not a confounder for the X − Y ,
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as even if it is a potential cause if Y , it cannot cause X. More precisely here, M is called

a “mediator”, as it is an intermediary factor through which the exposure X also has an

“indirect” effect on Y . We have already seen that the unconditional ignorability condition(
Y X=x ⊥⊥X

)
holds under this configuration, so the marginal association between X and

Y allows to recover ATE. In particular, if one were to adjust for the mediator M , it

would block some of the mechanisms through which X affects Y , and then the quantity

estimated in practice would not correctly assess the “total” causal effect of X on Y .

Note that one may rely on the graphical representation of the causal model or on the

system of structural equations in the real and counterfactual worlds to investigate the

independence relationships between counterfactual

and observable variables, and then determine how

causal effects are identified. However, and as previ-

ously mentioned, the visual aspect of graphical causal

models is usually preferred as its reading is easier,

in particular for causal systems which involve a large

number of variables. Then, from now on, we will

mostly focus on graphical causal models. Twin net-

works (Balke and Pearl, 1994, Pearl, 2000) have been

proposed as a way to determine which version of the

ignorability condition holds. They offer a joint repre-

sentation of real and counterfactual worlds. In twin

networks, the d -separation can be applied to investi-

gate conditional independencies among variables liv-

ing in different worlds. For example, Figure A.10

presents the twin network corresponding to the causal

X

UX

Y

x

Y X=x

W

UW

UY

Figure A.10: Twin network rep-
resentation of the causal model
given in Figure A.9 (a), in the
real world and in the counter-
factual world following the hy-
pothetical intervention where the
exposure X would have been set
to value x.

model given in Figure A.9 (a), in the real world and in the counterfactual world following

do(X = x). In a twin network, exogenous variables are shared between the two worlds,

and so are the endogenous variables that are identical in the two worlds. One single

node can be the parent of several children that correspond to variables living in different

worlds. Endogenous variables that are different in the real and counterfactual worlds are

“duplicated”, and labeled accordingly. For instance in the causal system depicted in A.9

(a), W is identical in the real world and counterfactual world following do(X = x). But,

both X and Y vary when moving from one world to another, and the associated nodes

have to be duplicated. Moreover, in the twin network given in Figure A.10 as well, no

edge enters x. For example, in Figure A.10 it is easy to see that {W} d -separates X and

Y X=x, and then that Y X=x ⊥⊥ X | W . Another remark is that twin networks can also

be useful to explore independence relationships among counterfactual variables living in

different counterfactual worlds, as those involved in the mediation analysis framework;

see for instance with Figure A.15 or Figure A.16 in Section A.2.1.
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Using graphical criteria to study the identifiability of causal effects

As mentioned above, exogenous variables have been assumed to be independent of each

other, and then the causal models which have been considered are all Markovian models

(Pearl, 2000). It can be shown that under Markovian models, the total causal effect of any

set of (endogenous) variables on any other disjoint set of (endogenous) variables is always

identifiable (Pearl, 2000). Notably, we illustrated the interest of twin networks (Balke and

Pearl, 1994, Pearl, 2000) to determine whether a given ignorability condition holds under

a given causal model. On the other hand, several general graphical criteria, notably the

back-door and front-door criteria (Pearl, 1993, 1995, 2000), have also been proposed in

the literature to ensure the identifiability of total causal effects. These graphical criteria

are usually preferred over twin networks, as using the later quickly becomes cumbersome

when the causal system of interest involves a large number of variables. In addition, these

general criteria allow to address the identifiability of causal effects in causal models with

possibly unmeasured variables.

Relying on d-separation (Pearl, 1988, Verma and Pearl, 1988), the “back-door” criterion

(Pearl, 1993) allows to determine whether a set of observed variables is such that the

conditional ignorability assumption holds.

Theorem 6. (Back-door criterion) A set of nodes Z satisfies the back-door criterion

relative to X and Y if:

• No element of Z is a descendant of X,

and

• Z blocks every back-door path relative to X and Y , that is all paths between X and

Y with an edge directed to X and an edge directed to Y .

If Z satisfies the back-door criterion relative to X and Y , then Y X=x ⊥⊥ X | Z, for any

possible value x of X.

In other words, if Z satisfies the back-door criterion relative to X and Y , Z is sufficient

for the adjustment, and the causal effect of X on Y is identified as

ATE =
∑

z

[
E(Y | Z = z,X = 1)− E(Y | Z = z,X = 0)

]
× P(Z = z),

where the sum is over all possible values of Z. For example in the causal system depicted

in Figure A.2, paths p2, p4, p5, p7, p8 and p9 are back-door paths relative to X and Y . Set

{W1} does not satisfy the back-door criterion relative to X and Y as is does not block

path p9, even if it blocks the other back-door paths. However, sets {W1,W2}, {W1,W3} or

{W1,W2,W3} block every back-door path, and as neither W1,W2 nor W3 is a descendant
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X Y

W1 W2 W3

X YZ

W

(a) (b)

Figure A.11: (a) Example of graphical causal model where the only back-door path
relative to X and Y is blocked by the collider W2. (b) Example of graphical causal model
where W is unobserved.

of X, sets {W1,W2}, {W1,W3} or {W1,W2,W3} satisfy the back-door criterion relative

to X and Y . Then for any possible value x of X, Y X=x ⊥⊥X | {W1,W2,W3}, and

E
(
Y X=x

)
=

∑

w1

∑

w2

∑

w3

E
(
Y X=x | W1 = w1,W2 = w2,W3 = w3

)

×P (W1 = w1,W2 = w2,W3 = w3) ,

(C.Ign)
=

∑

w1

∑

w2

∑

w3

E
(
Y X=x | X = x,W1 = w1,W2 = w2,W3 = w3

)

×P (W1 = w1,W2 = w2,W3 = w3) ,

(C)
=

∑

w1

∑

w2

∑

w3

E (Y | W1 = w1,W2 = w2,W3 = w3, X = x)

×P (W1 = w1,W2 = w2,W3 = w3) .

Finally, as Y ⊥⊥W2 | {X,W1,W3} and W2 ⊥⊥W3,

ATE =
∑

w1

∑

w2

∑

w3

[
E (Y | W1 = w1,W3 = w3, X = 1)

−E (Y | W1 = w1,W3 = w3, X = 0)
]

×P (W1 = w1 | W2 = w2,W3 = w3)

×P (W2 = w2)× P (W3 = w3) .

But on the other hand, as {W1,W2} is also sufficient for the adjustment, the conditional

ignorability condition
(
Y X=x ⊥⊥X | {W1,W2}

)
also holds, and

ATE =
∑

w1

∑

w2

[
E (Y | W1 = w1,W2 = w2, X = 1)− E (Y | W1 = w1,W2 = w2, X = 0)

]

×P (W1 = w1,W2 = w2) .

This quantity can be estimated in practice with data on variables X, Y,W1 and W2, and

provided that some positivity assumption holds. Then under the causal model of Figure

A.2, the causal effect of X of Y can be identified even if variable W3 is unobserved.

On the other hand, if the empty set satisfies the back-door criterion, the unconditional

ignorability condition holds and then E
(
Y X=x

)
= E (Y | X = x); see Figure A.11 (a) for

an example.
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In addition, total causal effects can sometimes be identified and estimated in practice,

even in the absence of sets of observed variables which are sufficient for the adjustment.

This is notably the case when the “front-door” criterion is satisfied (Pearl, 1995). Con-

sider for instance the causal system depicted in Figure A.11 (b), and where W , which

is a confounder for the X − Y relationship, is assumed to be unobserved. Under this

configuration, no set of observed variable satisfies the back-door criterion relative to X

and Y . However, if P(X = x, Z = z) > 0, for any possible values x and z of X and

Z, respectively, the total causal effect of X on Y is identifiable and may be estimated.

Indeed, Z satisfies the front-door criterion (Pearl, 1995, 2000) relative to X and Y , as

defined below.

Definition 2. (Front-door) A set of nodes Z satisfies the front-door criterion relative to

X and Y if:

• Z blocks every paths directed from X to Y ,

and

• There is no unblocked back-door path relative to X to Z,

and

• All back-door paths relative to Z and Y are blocked by X.

Then, the following Theorem (Pearl, 1995, 2000) can be applied.

Theorem 7. (Front-door criterion) If Z satisfies the front-door criterion relative to X

and Y , and if P(X = x, Z = z) > 0, for any possible values x and z of X and Z,

respectively, then the total causal effect of X on Y is identifiable, and is obtained with the

formula

E(Y X=x) =
∑

x′

∑

z

E(Y | X = x′, Z = z)× P(X = x′)× P(Z = z | X = x).

Indeed, under the causal model of Figure A.11 (b), Y X=x ⊥⊥ X | W , Y ⊥⊥ X | {W,Z},
Z ⊥⊥W | X, Y Z=z ⊥⊥ Z | W and Y Z=z ⊥⊥ Z | X. Thus

E(Y X=x) =
∑

w

E(Y | W = w,X = x)P(W = w),

=
∑

w

∑

z

E(Y | W = w,X = x, Z = z)P(W = w)P(Z = z | W = w,X = x),

=
∑

w

∑

z

E(Y | W = w,Z = z)P(W = w)P(Z = z | X = x),

=
∑

z

E(Y Z=z)P(Z = z | X = x),

=
∑

x′

∑

z

E(Y | X = x′, Z = z)P(X = x′)P(Z = z | X = x).
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X = fX(W,UX),
M = fM(X,W,UM),
W = fW (UW ),
Y = fY (X,M,W,UY ).

Figure A.12: Example of SCM where X is a potential cause of M and Y , where M
is also a potential cause of Y , and where they are all potentially caused by W . For
readability, exogenous variables UX , UM , UW and UY have been dropped in the graphical
representation.

Note that the conditions proposed through the back-door and front-door criteria are

sufficient conditions for the identifiability of total causal effects. A generalization has also

been proposed through several necessary and sufficient graphical conditions (Shpitser

and Pearl, 2006, Tian and Pearl, 2002), along with a sound and complete identifiability

algorithm (Huang and Valtorta, 2006, Shpitser and Pearl, 2006).

A.2 Mediation Analysis

Intermediary factors are sometimes involved in a given exposure-outcome relationship;

consider for example the configuration depicted by the DAG given in Figure A.8 (a),

where M is potentially caused by the exposure X and is also a potential cause of the

outcome Y . In Section A.1 we mentioned that in that case, M is called a mediator for

the X−Y relationship. Moreover, if one were to adjust for the mediator M , the quantity

estimated in practice would usually not be the total causal effect of X on Y , because some

of the mechanisms through which X affects Y would be blocked. However, under such

configuration, the total causal effect of X on Y is not the only causal effect of interest: in

particular, the portion of the total causal effect of X on Y which passes indirectly through

M , or in other words, which is mediated through M , can be of interest too, notably to

gain further insight into the mechanisms underlying the relationship between X and Y .

A.2.1 Natural effects

A decomposition of total causal effect through natural direct and indirect

effects

Let X denote the exposure variable, Y the outcome and M the possible mediator variable,

which are all variables observed in the real world. As mentioned in Section A.1, a formal

definition of the total causal effect of X on Y can be given based on counterfactual

outcomes, notably Y X=x and Y X=x∗
, for any two given possible values x and x∗ of X. On

the other hand, in the context of mediation, the definition of the causal effects of interest

will rely on more complex counterfactual variables, such as Y X=x,M=m and Y X=x,M=MX=x
∗

,

for x 6= x∗ (Pearl, 2001, Robins and Greenland, 1992), which will be introduced below.
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0 Y 0,M0
= Y 0

M0W

1 Y 1,M1
= Y 1

M1W

(a) (b)

Figure A.13: (a) Graphical representation of the causal system defined in Figure A.12 in
the counterfactual world following do(X = 0). (b) Same causal system in the counterfac-
tual world following do(X = 1).

Recall that MX=x denotes the mediator variable that would have been observed in

the counterfactual world following the intervention where X would have been set to value

x. Then, Y X=x,M=m denotes the outcome variable that would have been observed in the

counterfactual world following the intervention where X and M would have been set to

values x and m, respectively (for any given possible value m of M). Finally, Y X=x,M=Mx
∗

is

the outcome variable that would have been observed in the counterfactual world following

the intervention where X would have been set to value x, and where M would have been

set to the value the mediator variable would have taken in the counterfactual world where

X would have been set to value x∗. In particular, under a causal system such as the one

whose structural causal model is given in Figure A.12, we have

• MX=x∗
= fM(x∗,W, UM),

• Y X=x,M=m = fY (x,m,W,UY ),

• Y X=x,M=Mx
∗

= fY (x,M
X=x∗

,W, UY ) = fY (x, fM(x∗,W, UM),W, UY ).

Note that Y X=x,M=MX=x

= fY (x,M
X=x,W, UY ) = Y X=x. Moreover, it is instructive to

have a look at the representation of the causal system of Figure A.12 in counterfactual

worlds. For instance, in the case where X is a binary variable, Figure A.13 (a) and Figure

A.13 (b) are the systems corresponding to Figure A.12 that would be observed in the two

counterfactual worlds following interventions do(X = 1) and do(X = 1), respectively. It is

noteworthy that the counterfactual variables Y X=x,M=Mx
∗

, for x 6= x∗, are not be observed

in any of these two counterfactual worlds: they are said to be cross-world quantities, as

they involve variables living in different counterfactual worlds.

Interestingly, the total causal effect of X on Y can be decomposed as

ATE = E
(
Y X=1 − Y X=0

)
,

= E

(
Y X=1,M=MX=1 − Y X=0,M=MX=0

)
,

= E

(
Y X=1,M=MX=1 − Y X=0,M=MX=1

)
+ E

(
Y X=0,M=MX=1 − Y X=0,M=MX=0

)
,

:= NDE(1) +NIE(0),
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or also as

ATE = E

(
Y X=1,M=MX=1 − Y X=1,M=MX=0

)
+ E

(
Y X=1,M=MX=0 − Y X=0,M=MX=0

)
,

:= NIE(1) +NDE(0),

where NDE(1) and NDE(0) are two versions of the so-called “natural direct effect”, while

NIE(0) and NIE(1) are the “corresponding” versions of the so-called “natural indirect

effect” (Pearl, 2001, Robins and Greenland, 1992).

Identifiability conditions for natural direct and indirect effects

Given these formal definitions of the natural direct and indirect effects, a natural question

is that of their estimation from observational data. Just as for total causal effects, natural

direct and indirect effects have first to be expressed as functions of observable quantities.

For this purpose, sets of sufficient conditions have been established, ensuring that NIE

and NDE can be identified.

First, as natural direct and indirect effects involve different counterfactual variables

than total causal effects, the consistency conditions presented in Section A.1 have to be

extended. In the mediation analysis setting, the consistency condition is now

(C1) If X = x, then Mx = M.

(C2) If Mx∗

= m, then Y x,Mx
∗

= Y x,m.

(C3) If X = x and M = m, then Y x,m = Y.

Similarly, the conditional ignorability condition has to be extended. In the mediation

analysis setting, it is made of the following conditions (Pearl, 2001)

(1) Y X=x,M=m ⊥⊥X | W , for any possible values x and m of X and M , respectively.

(2) Y X=x,M=m⊥⊥M | {X,W}, for any possible values x and m of X and M , respectively.

(3) MX=x ⊥⊥X | W , for any possible value x of X.

(4) Y X=x,M=m ⊥⊥MX=x∗ | W , for any possible values x and x∗ of X and any possible

value m of M .

These four conditions are usually interpreted as (1) the absence of unmeasured con-

founder for the M − Y relationship, (2) the absence of unmeasured confounder for the

M−Y relationship, (3) the absence of unmeasured confounder for the X−M relationship,

and (4) the absence of confounder for the M−Y relationship that are caused by X. These

conditions are fulfilled in the example of Figure A.12, and of Figure A.14 (a) after setting

W = (W1,W2,W3). On the other hand, they are not fulfilled in the example of Figure

A.14 (b) since W2 is a confounder of the M−Y relationship, and is affected by X. Again,

132



X Y

M
W3 W2

W1

X Y

M
W3 W2

W1

(a) (b)

Figure A.14: (a) Example of graphical causal model where the effect of X on Y is mediated
through M , and where W1 is a confounder for the X−Y relationship, W3 is a confounder
for the X − M relationship and W2 is a confounder for the M − Y relationship. (b)
Example of graphical causal model where the effect of X on Y is mediated through M
and W2, and where W1 is a confounder for the X − Y relationship, W3 is a confounder
for the X −M relationship and W2 is a confounder for the M − Y relationship.

twin networks (Balke and Pearl, 1994, Pearl, 2000) can be used to help “visualize” whether

these 4 conditions, especially condition (4), hold or not under a given causal model; see

below for more details. Under these extended consistency and conditional ignorability

conditions, we have for any given possible values x, x∗ of X,

E(Y X=x,M=MX=x
∗

) =
∑

w

E(Y X=x,M=MX=x
∗

| W = w)× P(W = w),

with

E(Y X=x,M=MX=x
∗

| W = w) =
∑

m

E(Y X=x,M=MX=x
∗

| W = w,Mx∗

= m)

×P(Mx∗

= m | W = w),

(C2)
=

∑

m

E(Y X=x,M=m | W = w,MX=x∗

= m)

×P(Mx∗

= m | W = w),

(4)
=

∑

m

E(Y x,m | W = w)× P(Mx∗

= m | W = w),

(1)
=

∑

m

E(Y x,m | W = w,X = x)× P(Mx∗

= m | W = w),

(2)
=

∑

m

E(Y x,m | W = w,X = x,M = m)

×P(Mx∗

= m | W = w),

(3)
=

∑

m

E(Y x,m | W = w,X = x,M = m)

×P(Mx∗

= m | W = w,X = x∗),

(C1)
=

∑

m

E(Y x,m | W = w,X = x,M = m)

×P(M = m | W = w,X = x∗),

(C3)
=

∑

m

E(Y | W = w,X = x,M = m)

×P(M = m | W = w,X = x∗).
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De facto:

NDE(1) = E

(
Y X=1,M=MX=1 − Y X=0,M=MX=1

)
,

=
∑

w

[
E

(
Y X=1,M=MX=1 | W = w

)
− E

(
Y X=0,M=MX=1 | W = w

)]
× P(W = w),

=
∑

w

∑

m

[E (Y | W = w,X = 1,M = m)− E (Y | W = w,X = 0,M = m)]

×P(M = m | W = w,X = 1)× P(W = w),

and

NIE(0) = E

(
Y X=0,M=MX=1 − Y X=0,M=MX=0

)
,

=
∑

w

[
E

(
Y X=0,M=MX=1 | W = w

)
− E

(
Y X=0,M=MX=0 | W = w

)]
× P(W = w),

=
∑

w

∑

m

E (Y | W = w,X = 0,M = m)

×
[
P(M = m | W = w,X = 1)− P(M = m | W = w,X = 0)

]

×P(W = w).

And in the same way

NDE(0) =
∑

w

∑

m

[
E (Y | W = w,X = 1,M = m)− E (Y | W = w,X = 0,M = m)

]

×P(M = m | W = w,X = 0)× P(W = w),

and

NIE(1) =
∑

w

∑

m

E (Y | W = w,X = 1,M = m)

×
[
P(M = m | W = w,X = 1)− P(M = m | W = w,X = 0)

]

×P(W = w).

These quantities are expressed in terms of the distributions of the observed variables

X, M , W and Y only, and can therefore be estimated in practice (provided that some

positivity conditions also hold).

Twin networks may help to verify if the independence relationships given in conditions

(1), (2), (3) and (4) hold under a given causal system. Consider for instance the configu-

ration of Figure A.14 (a), where variables W1, W2 and W3 are the same in the real world

and counterfactual worlds following do(X = x∗) or do(X = x,M = m). Then by looking

at Figure A.15 (a), one can see that every path between X and Y X=x,M=m is blocked by

{W} := {W1,W2,W3}. Moreover, every path between M and Y X=x,M=m is blocked by

{W,X}, and conditions (1) and (2) then hold. Then in Figure A.15 (b), it is possible to
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Figure A.15: (a) Twin network representation of the causal model given in Figure A.14 (a),
in the real world and in the counterfactual world following the hypothetical intervention
where X and M would have been set to values x and m, respectively. (b) Twin network
representation of the causal model given in Figure A.14 (a), in the real world and in the
counterfactual world following the hypothetical intervention where X would have been
set to value x. (c) Twin network representation of the causal model given in Figure A.14
(a), in the counterfactual world following the hypothetical intervention where X would
have been set to value x∗, and in the counterfactual world following the hypothetical
intervention where X and M would have been set to values x and m, respectively.

see that W also blocks every path between MX=x and X, so that condition (3) holds.

Finally, one can see in Figure A.15 (c) that W d -separates Y X=x,M=m and MX=x∗
, so

condition (4) also holds.

On the other hand, under the configuration of Figure A.14 (b), W2 is a confounder

for the M − Y relationship, and is affected by the exposure X. The fact that condition

(4) does not hold under this configuration is particularly visible when looking at the

twin network representation of the causal model in the counterfactual world following

do(X = x∗) and in the counterfactual world following do(X = x,M = m), given in Figure

A.16. Variables W1 and W3 are the same in the real world and in any counterfactual world,

but this is not the case for variable W2, which is affected by X. In the counterfactual world

following do(X = x∗) it has to be labeled WX=x∗

2 , and in the counterfacutal world following

do(X = x,M = m) it has to be labeled WX=x
2 . Note that here, exogenous variables have

to be dealt with very carefully: the exogenous variable which is a direct cause of W2

in the real world is as well a direct cause of WX=x∗

2 and WX=x
2 in the counterfactual

worlds. This variable, denoted by UW2 , is thus shared between these worlds, and here

creates a path between Y X=x,M=m and MX=x∗
. By looking at Figure A.16, one can then

see that the path (Y X=x,M=m ← W x
2 ← UW2 → WX=x∗

2 → MX=x∗
) in not blocked, and

that {W} := {W1,W2,W3} cannot block it; then Y X=x,M=m ⊥6⊥MX=x∗ | W . Finally note

that condition (4), though maybe less evident than conditions (1), (2) or (3), actually

emphasizes that W2 should be adjusted for as it is confounding the M − Y relationship,

but as it is also a mediator for the X−Y relationship, adjusting for W2 would block some
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Figure A.16: Twin network representation of the causal model given in Figure A.14 (b), in
the counterfactual world following the hypothetical intervention where X would have been
set to value x∗ and in the counterfactual world following the hypothetical intervention
where X and M would have been set to values x and m, respectively. Most of the
exogenous variables have been dropped for readability.

of the effect of X on Y . As a result here, and even if W2 is observed, natural direct and

indirect effects are usually not identifiable, and in that case it is not possible to determine

the portion of total effect of X on Y which passes through M (Avin et al., 2005).

Several extensions have been introduced in the literature to deal with multiple medi-

ators, notably when certain mediators are also confounders for the relationship between

other mediators and the outcome. A first solution is to gather all the mediators in one

multivariate mediator variable, and then to study the effect of the exposure on the out-

come through this unique mediator. However, this method does not allow to assess the

portion of the total causal effect which is mediated through a specific mediator. Alter-

natively, when conditions (1) − (2) and (3) hold for the mediator of interest, but not

condition (4), a solution is to consider randomized interventional analogues of the natural

direct and indirect effects (VanderWeele, 2015, VanderWeele et al., 2014).

A.3 Longitudinal Models

A.3.1 Preamble

So far, the causal models that we considered involved time-fixed variables only, even if

implicitly, for instance in the configuration given in Figure A.12, W was supposed to be

anterior to X, M and Y , X was supposed to be anterior to M and Y , and M anterior

to Y . However, for certain exposures, and in particular for lifestyle exposures such as

obesity, the true causal model is likely to involve time-varying variables.

Consider for instance the causal relationship between obesity and cancer occurrence.

Because insufficient physical activity is likely to increase the risk of obesity, as well as

136



X1

Y

W1 W2

X2

Figure A.17: Example of (graphical) longitudinal causal model, with time-varying expo-
sure (Xt)t∈J1;2K and time-varying confounder (Wt)t∈J1;2K affected by the exposure.

to increase the risk of cancer, physical activity is usually considered as a confounder in

the obesity-cancer relationship. But on the other hand, obesity is also likely to decrease

physical activity, and then physical activity could be considered as mediator in the obesity-

cancer relationship. Then, the causal models given in Figure A.8 (a) or Figure A.9 (a) are

too simplistic to properly describe the relationship between obesity and physical activity.

The true causal model actually involves time-varying variables, such as the one depicted

in Figure A.17. A causal model with time-varying exposure, mediators and confounders

is called a longitudinal causal model; usually, the setting of discrete times is considered.

In a longitudinal causal model, the value of the exposure variable at a time t may affect

the future value of the confounding variable, at a any time t1 > t, as well as its own future

value; then the distinction between mediators and confounders is not as clear as before.

For instance in the configuration of Figure A.17, W1 is a confounder for the X1 − Y and

X2−Y relationships, W2 is a confounder for the X2−Y relationship, but also a mediator

for the X1 − Y relationship.

The tools and principles of causal inference presented in Section A.1 or in Section A.2

for mediation analysis have been extended to longitudinal settings. They are presented

in Section A.3.3 for total causal effects, while we refer to VanderWeele (2015) for the

extensions of natural direct and indirect effects.

A.3.2 Notations in longitudinal settings

We will here work under the standard setting where the time-varying variables are ob-

servable at discrete times over a time-window J1;T K := {1, . . . , T}, for some time T > 1,

and where the outcome Y is measured at time point T . For any time t ∈ J1;T K, we let

Xt denote the exposure variable at time t, and then adopt the following notation (Daniel

et al., 2012, Hernán and Robins, 2020, VanderWeele, 2015): X̄t = (X1, X2, . . . , Xt) de-

notes the exposure profile until time t, X̄ = X̄T = (X1, X2, . . . XT ) denotes the “full”

exposure profile, while x̄t or x̄ denote specific (fixed) profiles for the exposure up to time t

or T , respectively. We further let X̄t denote the empty set when t < 1. When needed, we

will use similar notations for mediator processes (Mt)t≥1, as well as confounder processes

(Wt)t≥1. Finally, to simplify we assume that all the variables are binary.
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A.3.3 Total causal effects

Extension of the definition of total causal effects

The formal definition of total causal effect for time-fixed exposures is extended to time-

varying exposures by comparing counterfactual outcomes related to hypothetical inter-

ventions on the exposure over a time-interval. Let Y X̄=x̄ denote the outcome variable (at

time T ) that would have been observed in the counterfactual world where X̄ would have

been set to a given possible profile x̄. Then E
(
Y X̄=x̄ − Y X̄=x̄∗)

, for any given profiles

x̄ and x̄∗, is one measure of the total causal effect of the exposure until time T on the

outcome Y . Several comparisons of profiles are possibles, depending on the choice of x̄

and x̄∗; for instance if the exposure of interest is the obesity status, one could compare

the profiles (1, . . . , 1) and (0, . . . , 0), namely the profiles “always obese” and “never obese”.

On the other hand, the quantity E
(
Y Xt=xt − Y Xt=x∗

t

)
, for any time t ∈ J1;T K, also has a

clear causal meaning: it is the total causal effect of the exposure at time t on the outcome

Y . However, quantities like E
(
Y X̄=x̄ − Y X̄=x̄∗)

are usually preferred when working with

time-varying exposures, because they account for the variations of the exposure variable

over time.

Identifiability conditions for total causal effects of a time-varying exposure

Once again, to estimate such a counterfactual quantity from observational data, it has first

to be expressed as a function of the observations. For this purpose, the sets of sufficient

identifiablity conditions proposed for time-fixed variables (Robins, 1986, Rosenbaum and

Rubin, 1983) and presented in Section A.1 have been extended.

First to connect conterfactual variables such as Y X̄=x̄ to observed variables, the con-

sistency condition is now (Daniel et al., 2012)

(C∗) if X̄ = x̄, then Y X̄=x̄ = Y .

Then, the first set of sufficient conditions includes the unconditional ignorability con-

dition, formulated relatively to the full exposure profile X̄

Y X̄=x̄ ⊥⊥ X̄, for any possible profile x̄ of X̄.

Similarly, a second set of identifiability conditions may be formulated with a conditional

version of the ignorablity condition

Y X̄=x̄ ⊥⊥ X̄ | W̄ , for any possible profile x̄ of X̄.

Note that these two sets of sufficient conditions are simply a reformulation of the

conditions presented in Section A.1, when the exposure of interest if X̄. However, they
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Figure A.18: (a) Longitudinal causal model with a time-varying exposure (Xt)t∈J1;T K, in
the absence of confounding. (b) Compact representation of the longitudinal causal model
given in Figure A.18 (a).

hold only under very simplistic longitudinal configurations. For example consider the

simple longitudinal configuration given in Figure A.18 (a), where the time-varying expo-

sure (Xt)t∈J1;T K is a potential cause of outcome Y ; for any time t ∈ J1;T − 1K, Xt may

further affect Xt1 , for t1 > t, but no variable is confounding the X̄ − Y relationship. A

more compact representation of the model is also given in Figure A.18 (b). Then the

unconditional ignorability condition holds, and for any given x̄ and x̄∗ in {0, 1}T

ATE (x̄; x̄∗) := E

(
Y X̄=x̄

)
− E

(
Y X̄=x̄∗

)
,

= E

(
Y X̄=x̄ | X̄ = x̄

)
− E

(
Y X̄=x̄∗ | X̄ = x̄∗

)
,

(C∗)
= E

(
Y | X̄ = x̄

)
− E

(
Y | X̄ = x̄∗

)
.

On the other hand, the unconditional ignorability condition also holds in the presence

of a time-varying “pure” mediator, as in Figure A.19 (a). Then, assume the presence of

a time-varying “pure” confounder, as in Figure A.20 (a); W̄ is confounding the X̄ − Y

relationship and thus for any given x̄ and x̄∗ in {0, 1}T

ATE (x̄; x̄∗) =
∑

w̄

[
E

(
Y X̄=x̄ | W̄ = w̄

)
− E

(
Y X̄=x̄∗ | W̄ = w̄

) ]
× P(W̄ = w̄),

=
∑

w̄

[
E

(
Y X̄=x̄ | W̄ = w̄, X̄ = x̄

)
− E

(
Y X̄=x̄∗ | W̄ = w̄, X̄ = x̄∗

) ]

×P(W̄ = w̄),
(C∗)
=

∑

w̄

[
E
(
Y | W̄ = w̄, X̄ = x̄

)
− E

(
Y | W̄ = w̄, X̄ = x̄∗

) ]
× P(W̄ = w̄),

where the sum is over all possible values of W̄ .

It is noteworthy that neither the unconditional ignorability condition nor the condi-

tional ignorability condition holds under the causal model of Figure A.20 (c). However, a

“sequential” version of the ignorability condition (Robins, 1986) holds under this configu-

ration, so that the total causal effect of the time-varying exposure can still be identified.
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Figure A.19: (a) Longitudinal causal model with a time-varying exposure (Xt)t∈J1;T K and
time-varying “pure” mediator (Mt)t∈J1;T K, in the absence of confounding. (b) Compact
representation of the longitudinal causal model given in Figure A.19 (a).
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. . . XT

Y
X̄ Y

W̄ W1 W2
. . . WT

X1 X2
. . . XT

Y

(a) (b) (c)

Figure A.20: (a) Longitudinal causal model with a time-varying exposure (Xt)t∈J1;T K

and time-varying “pure” confounder (Wt)t∈J1;T K. (b) Compact representation of the lon-
gitudinal causal model given in Figure A.20 (a). (c) Longitudinal causal model with a
time-varying exposure (Xt)t∈J1;T K and time-varying confounder (Wt)t∈J1;T K affected by the
exposure.

Indeed, under the causal model of Figure A.20 (c),

Y X̄=x̄ ⊥⊥X1 | W1 and

Y X̄=x̄ ⊥⊥Xt |
{
X̄t−1, W̄t

}
, for any time t ∈ J2, T K and any possible profile x̄ of X̄.

Then, for any given x̄ in {0, 1}T (Robins, 1986)

E(Y X̄=x̄) =
∑

w̄

[
E(Y | W̄ = w̄, X̄ = x̄)×

T∏

t=0

P(Wt = wt | W̄t−1 = w̄t−1, X̄t−1 = x̄t−1)

]
,

where the sum is over all possible values of W̄ . This expression is usually called the “G-

computation algorithm formula” or “g-computation formula” (Daniel et al., 2012, Robins,

1986), and can be proven by using mathematical induction (along with the consistency

condition (C∗)). Under the causal model of Figure A.20 (c), ATE (x̄; x̄∗), for any x̄ and

x̄∗ in {0, 1}T , can then be identified as

ATE (x̄; x̄∗) =
∑

w̄

[
E
(
Y | W̄ = w̄, X̄ = x̄

)
×

T∏

t=1

P
(
Wt = wt | W̄t−1 = w̄t−1, X̄t−1 = x̄t−1

)

−E
(
Y | W̄ = w̄, X̄ = x̄∗

)
×

T∏

t=1

P
(
Wt = wt | W̄t−1 = w̄t−1, X̄t−1 = x̄∗

t−1

) ]
.
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Appendix B

Preliminary results on mediation

analysis under over-simplified

longitudinal models

The aim of this Appendix is to present preliminary results on mediation analysis, regarding

the problematic presented in Chapter 3 for total causal effects. We here turn our attention

to the decomposition of the total causal effect of the exposure of interest into the sum of

(i) an indirect effect through given potential mediator(s), and (ii) a direct effect. We will

focus on the decomposition based on the so-called natural direct and indirect effects (Pearl,

2001, Robins and Greenland, 1992, VanderWeele, 2015). We consider simple longitudinal

causal models and study whether mediation analysis performed under over-simplification

of these causal models may produce valid results. We start with the situation where only

levels of exposures measured at recruitment are available, and we will then briefly present

some results in the situation where summary measures of past levels of exposures are

available. For the sake of conciseness, most technical details are not provided; they follow

arguments and techniques similar to those used in the context of total causal effects in

Chapter 3.

B.1 When instantaneous levels of exposures are avail-

able

B.1.1 Natural Effects in the absence of confounding

In this Section, we consider a simple longitudinal causal model involving a pure mediator

process, as depicted in Figure B.1 (L.Med) or in Figure B.1 (L.Med.compact) in a more

compact form.

For time-varying exposures and mediators, natural direct and indirect effects are de-
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Figure B.1: (L.Med) Longitudinal model with time-varying exposure, time-varying pure
mediator, and no confounder. (L.Med) Compact representation of model given in Fig-
ure B.1 (L.Med). (CS.Med) Over-simplified cross-sectional model associated with the
longitudinal model given in Figure B.1 (L.Med).

fined by

NDEL.Med(x̄t0 ; x̄
∗
t0
) = EL.Med

(
Y X̄t0=x̄t0 ,M̄t0=M̄

x̄t0
t0 − Y X̄t0=x̄∗

t0
,M̄t0=M̄

x̄t0
t0

)
,

NIEL.Med(x̄t0 ; x̄
∗
t0
) = EL.Med

(
Y X̄t0=x̄∗

t0
,M̄t0=M̄

x̄t0
t0 − Y X̄t0=x̄∗

t0
,M̄t0=M̄

x̄
∗
t0

t0

)
,

for two given profiles x̄t0 and x̄∗
t0

in {0, 1}t0 of the exposure, and with, for example, M̄
x̄t0
t0

denoting the mediator profile that would be observed in the counterfactual world follow-

ing do(X̄t0 = x̄t0). We refer to Pearl (2001), Robins and Greenland (1992), VanderWeele

(2015), VanderWeele and Tchetgen Tchetgen (2017) for generalities on mediation analy-

sis, including mediation analysis with time-varying exposures and mediators. Under the

model given in Figure B.1 (L.Med), the natural direct and indirect effects, NDEL.Med

and NIEL.Med, are identified as

NDEL.Med

(
x̄t0 ; x̄

∗
t0

)
=
∑

m̄t0

[
E
(
Y | X̄t0 = x̄t0 , M̄t0 = m̄t0

)
− E

(
Y | X̄t0 = x̄∗

t0
, M̄t0 = m̄t0

)]

×P
(
M̄t0 = m̄t0 | X̄t0 = x̄t0

)
,

and

NIEL.Med

(
x̄t0 ; x̄

∗
t0

)
=
∑

m̄t0

E
(
Y | X̄t0 = x̄t0 , M̄t0 = m̄t0

)

×
[
P
(
M̄t0 = m̄t0 | X̄t0 = x̄t0

)
− P

(
M̄t0 = m̄t0 | X̄t0 = x̄∗

t0

)]
,

and can then be estimated, provided that data on X̄t0 and M̄t0 are available and that

some positivity condition holds. But, when the exposure of interest and the mediator

are only measured at time t0, practitioners usually overlook their time-varying natures,

and work under the over-simplified causal model depicted in Figure B.1 (CS.Med). They

would then usually consider NDECS.Med = ECS.Med

(
Y Xt0=1,Mt0=M1

t0− Y Xt0=0,Mt0=M1
t0

)

and NIECS.Med = ECS.Med

(
Y Xt0=0,Mt0=M1

t0− Y Xt0=0,Mt0=M0
t0

)
, instead of NDEL.Med and

NIEL.Med. Under model (CS.Med), Y Xt0=xt0 ,Mt0=mt0 ⊥⊥ {Xt0 ,Mt0}, Y Xt0=xt0 ,Mt0=mt0⊥⊥
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M
Xt0=x∗

t0
t0 and M

Xt0=x∗
t0

t0 ⊥⊥Xt0 . As a result, it is easy to show that (Pearl, 2001)

NDECS.Med ≎

∑

mt0

[E(Y | Xt0 = 1,Mt0 = mt0)− E(Y | Xt0 = 0,Mt0 = mt0)]

×P(Mt0 = mt0 | Xt0 = 1),

NIECS.Med ≎

∑

mt0

E(Y | Xt0 = 0,Mt0 = mt0)

× [P(Mt0 = mt0 | Xt0 = 1)− P(Mt0 = mt0 | Xt0 = 0)] .

We recall that symbol ≎ was introduced in Section 3.2 in Chapter 3.

However, model (CS.Med) is generally misspecified under model (L.Med) since X̄t0−1

is a confounder for the Xt0 − Y , Mt0 − Y and Xt0 −Mt0 relationships, and M̄t0−1 is a

confounder for the Mt0 − Y relationship. In particular, we can show that under model

(L.Med), neither NDECS.Med nor NIECS.Med expresses as an average of longitudinal

(in)direct effects. In other words, NDECS.Med and NIECS.Med generally have to be inter-

preted with caution if the true model is (L.Med). Turning our attention to special cases,

we can show that the interpretation of NDECS.Med and NIECS.Med remains unclear even

if both processes (Xt)t and (Mt)t are stable (with stability defined as in Section 3.3 in

Chapter 3). Moreover, under the complete mediation case (when the effect of the expo-

sure process on the outcome is entirely mediated by the mediator process), NDECS.Med

generally differs from zero and is therefore misleading. Interestingly, the case of absence

of mediation is more subtle; we study this special case in more details in the following

Section.

B.1.2 Natural effects in the absence of confounding - absence of

mediation

Under model (L.Med), the absence of mediation arises in the case of (i) the absence of

an effect of the exposure on the mediator, as depicted in Figures B.2 (a) and (c) and/or

(ii) the absence of an effect of the mediator on the outcome, as depicted in Figures B.2

(b) and (c). Of course, NIEL.Med(x̄t0 ; x̄
∗
t0
) equals zero in both cases, for any given profiles

x̄t0 and x̄∗
t0
. Regarding NIECS.Med, it can be shown that it is null under case (a) (and

(c)) but generally not under case (b). This is because X̄t0−1 is not only a confounder for

the Xt0 − Y relationship, but also for the Xt0 −Mt0 relationship under case (b), and as a

result Y ⊥6⊥Mt0 | Xt0 . It can further be shown that the nullity of NIECS.Med under case

(a) (and (c)) is still guaranteed in the presence of an observed time-invariant confounder.

However, the nullity of NIECS.Med is not guaranteed anymore if the true causal model

involves a time-varying confounder observed at inclusion only.

We now present numerical examples to illustrate the magnitude of NIECS.Med in the

absence of mediation under case (b). Here, we consider a simple longitudinal causal

model with t0 = 2 and with Gaussian variables, as it allows the derivation of closed form
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Figure B.2: Absence of mediation under model (L.Med) of Figure B.1: (a) Exposure
process (Xt)t has no effect on (Mt)t. (b) The process (Mt)t has no effect on Y . (c)
Combination of the previous two cases.

expressions for NIECS (see below). More precisely, we assume that X1, εX2 , εM1 , εM2 and

εY are four independent N(0, 1) random variables, and that the structural causal model

defining variables X2, M1, M2 and Y is

X2 = δXX1 + εX2 , (B.1)

M1 = α1X1 + εM1 ,

M2 = α2X2 + δMM1 + εM2 ,

Y = γ1X1 + γ2X2 + εY ,

for some δX , α1, α2, δM , γ1 and γ2 in R. The structural equation defining the outcome

Y in Equation (B.1) involves neither M1 nor M2 so that this causal model is an example

of case (b) (with continuous Xt and Mt, for t ∈ {1, 2}, and under the special case where

M2 ⊥⊥X1 | {X2,M1}). We can show that, for any x2 6= x∗
2,

NIECS.Med(x2; x
∗
2) ≎

γ1α1δM(x2 − x∗
2) [α2(1 + δ2X) + α1δMδX ]

(1 + δ2X) [1 + δ2M(1 + α2
1) + δ2X(1 + δ2M)]

, (B.2)

which is typically non-null. Figure B.3 illustrates the behavior of NIECS.Med as a function

of δX ∈ J−10, 10K, δM ∈ {−5,−2,−1, 0, 1, 2, 5}, α1 = α2 ∈ {0, 1.25, 2.5, 3.75, 5} and for

the particular choices γ1 = 0.8 and x2 − x∗
2 = 1. Similar results were obtained for other

values of γ1 and x2 − x∗
2. Figure B.3 especially illustrates that NIECS.Med is zero when

X1 is not a confounder of the M2 − Y relationship, which is the case when (i) X1 does

not cause M2 (α1 = α2 = 0 or δM = 0) or (ii) X1 is not a direct cause of Y (γ1 = 0).

Figure B.3 also illustrates that NIECS.Med is a non-monotonic function of δX and that

NIECS.Med → 0 as |δX | → ∞. This latter result can be explained by the fact that under

case (b), when t0 = 2, we should have Y ⊥⊥M2 | {X1, X2}, but Y ⊥6⊥M2 | X2; however, as

Cor(X1, X2)→ 1 when |δX | → ∞, Y then tends to be independent of M2 given X2.
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Figure B.3: Analytic values of NIECS.Med(1; 0), for δX ∈ J−10, 10K, δM ∈
{−5,−2,−1, 0, 1, 2, 5}, α1 = α2 ∈ {0, 1.25, 2.5, 3.75, 5}, γ1 = 0.8 and x2 − x∗

2 = 1, under
the causal model described in Equation (B.1).

B.2 When summary variables of past levels of expo-

sures are available

In this Section, we briefly study the causal model given in Figure B.4 (L.Med). Keeping

in mind that versions of treatment X = x are relevant under this model (see Section 3.4

in Chapter 3), the two following quantities can be considered to be of interest:

∑

x̄t0

NDEL.Med(x̄t0 ; x̄
∗
t0
)× P

(
X̄t0 = x̄t0 | X = x

)
, (B.3)

for any x̄∗
t0

such that X = x∗, and

∑

x̄t0

∑

x̄∗
t0

NIEL.Med(x̄t0 ; x̄
∗
t0
)× P

(
X̄t0 = x̄t0 | X = x

)
× P

(
X̄t0 = x̄∗

t0
| X = x∗

)
, (B.4)

for two profiles x̄t0 and x̄∗
t0

leading to X = x and X = x∗, respectively.

When only data on X and M (and Y ) are considered, many practitioners would work

under the over-simplified causal model depicted in Figure B.4 (SV.Med), and would then

want to estimate NDESV.Med(x;x∗) = ESV.Med

(
Y x,Mx − Y x∗,Mx)

and NIESV.Med(x;x∗) =

ESV.Med

(
Y x∗,Mx − Y x∗,Mx∗)

, for any x 6= x∗. If model (SV.Med) were true, we would
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Figure B.4: (L.Med) Longitudinal model with time-varying exposure (Xt) and time-
varying mediator (Mt) not affecting the exposure, that potentially affect the outcome Y
only through some summary variables X and W. (L.compact) Simplified representation
of model (L.Med) given in Figure B.4. (SV.Med) Over-simplified model associated with
the longitudinal model given in Figure B.4 (L.Med).

have Y X=x,M=m ⊥⊥ {X,M}, Y X=x,M=m ⊥⊥MX=x∗
and MX=x∗ ⊥⊥X. Consequently,

NDESV.Med(x;x∗)≎
∑

m

[E (Y | X = x,M = m)− E (Y | X = x∗,M = m)]

×P (M = m | X = x) ,

NIESV.Med(x;x∗) ≎
∑

m

E (Y | X = x∗,M = m)

× [P (M = m | X = x)− P (M = m | X = x∗)] ,

Even if model (SV.Med) is generally misspecified (X does not cause M under the

model of Figure B.4 (L.Med) and
{
X̄t0 , M̄t0

}
is confounding the X − Y and the M − Y

relationships), NDESV.Med (x;x∗) and NIESV.Med (x;x∗) actually equal the quantities

given in Equations (B.3) and (B.4), respectively. However, and as already mentioned

in Chapter 3 for weighted averages of longitudinal total effects, we shall stress that the

interpretability of such quantity is not always straightforward. Therefore, under a con-

figuration such as the one given in Figure B.4 (L.Med), considering X and M only and

working under model (SV.Med) can be sufficient not only to estimate the total causal

effect, but also to infer the amount of this effect that is mediated by M̄t0 , provided there

is a certain homogeneity in the “individual” longitudinal effects. If not, the quantity esti-

mated in practice has to be interpreted with caution. It can be shown that these results

extend to the case where a time-invariant pure confounder is present: both NDESV.Med

and NIESV.Med express as weighted averages of stratum specific natural direct and indi-

rect effects, with strata defined according to the levels of the confounder. However, if the

pure confounder is time-varying, summary measures are not sufficient anymore to recover

meaningful natural direct and indirect effects; we recall that this was already the case for

the total effect; see Section 3.4 in Chapter 3.
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Développements méthodologiques autour de l’inférence causale et
de l’analyse de données en grande dimension

Résumé : L’objectif de cette thèse est d’explorer certains enjeux soulevés par la mise en application en
épidemiologie du cancer des outils développés en inférence causale. Tout d’abord, nous étudions comment
l’effet d’une intervention hypothétique sur l’exposition d’intérêt, lorsque celle-ci n’est pas applicable en
pratique, est lié aux effets des interventions sur certaines de ses causes. Ensuite, nous déterminons des
conditions assurant que les quantités obtenues en travaillant sous de modèles causaux simplifiés, où la
nature longitudinale des variables est négligée, soient liées à celles d’intérêt sous le vrai modèle longi-
tudinal. Par ailleurs, nous étudions des modèles proposant des formulations probabilistes de techniques
de réduction de dimension classiques, et identifions un défaut rencontré dans plusieurs de ces modèles.
Nous nous intéressons en particulier à la formulation probabiliste des moindres carrés partiels proposée
par el Bouhaddani et al. (2018) : nous décrivons en détail le défaut sous leur modèle, et l’illustrons au
moyen de simulations. Enfin nous nous intéressons à la sélection du paramètre de régularisation dans le
cas du lasso adaptatif. Nous montrons de manière empirique que la validation croisée «K-fold», bien que
couramment employée, n’est pas adaptée à la calibration du paramètre de régularisation pour le lasso
adaptatif. Nous proposons une procédure alternative, puis montrons sur des simulations qu’elle présente
de meilleures performances que la validation croisée «K-fold».

Mots clés : Inférence causale, analyse en médiation, analyse de données en grande dimension.

Methodological developments around causal inference and the analysis of
high-dimensional data

Abstract: The objective of this thesis is to explore some of the problematics raised by the practical
application of causal inference in cancer epidemiology. First, we show how the effect of an hypothetical
intervention on the exposure of interest, when impossible to apply in practice, relates to the effects of
interventions on its causes, depending on the structure of the causal model. Second, we investigate condi-
tions ensuring that estimates derived under over-simplified causal models, where the longitudinal nature
of the variables have been neglected, relate to causal quantities of interest under the true longitudinal
causal model. Then, we study several models proposing probabilistic formulations of dimension-reduction
techniques, where we identify a defect. We focus in particular on the probabilistic formulation of partial
least squares proposed by el Bouhaddani et al. (2018): we describe the limitation under their model and
further illustrate it through simulated examples. Finally, we study the calibration of the tuning parame-
ter in the adaptive lasso. We empirically show that the standard K-fold cross-validation, although very
popular, is not suitable to calibrate the tuning parameter in the adaptive lasso. We propose a simple al-
ternative cross-validation scheme, which is then shown to outperform the standard K-fold cross-validation
on simulated examples.

Keywords: Causal inference, mediation analysis, analysis of high-dimensional data.

Image en couverture : Champ de coquelicots. Claude Monet.
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