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préparée à l’École polytechnique
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Résumé

La dégradation de la performance des centrales PV (photovoltäıque) au cours de leur durée de

vie est généralement déterminée par la variation de la puissance au point de puissance maximale

(Power at maximum power point Pmpp). Cependant, la même quantité de pertes en Pmpp peut

avoir des causes multiples, qui ont, chacune, des évolutions différentes dans le temps.

Les méthodes existantes de taux de perte de performance (Performance Loss Rate) ne sont pas

adaptées pour identifier ces causes et mécanismes fondamentaux à partir des données de terrain.

Le modèle physique d’EDF est une version sophistiquée d’un modèle à 2 diodes. Ce modèle dépend

de paramètres dont les valeurs évoluent au cours du temps et peuvent reflètent ainsi les processus

de dégradation. Lorsque les mesures des courbes courant-tension (courbes IV) sont disponibles,

les paramètres du modèle physique peuvent être directement estimés. Toutefois les mesures de la

courbe IV sont rarement effectuées sur les sites de production de PV et l’estimation des paramètres

du modèle à 2 diodes est difficile à partir du nombre limité de variables mesurées. Le défi que nous

nous attachons à relever est l’estimation des paramètres du modèle en utilisant uniquement le

Pmpp, et la météo, permettant ainsi une évaluation plus précise de l’état de santé du système,

plutôt que d’estimer uniquement la mesure de la perte de performance.

Une analyse de sensibilité a été réalisée sur différents modèles physiques photovoltäıques, à

savoir le modèle à diode unique et le code d’EDF. Les trois paramètres les plus influents identifiés

par notre méthodologie sont ont la résistance-série (Rs), la résistance shunt (Rsh) et le courant

de court-circuit (Isc). Ces paramètres identifiés ont été utilisés dans la calibration du modèle de

performance PV.

L’algorithme proposé vise à identifier la distribution a posteriori des paramètres en calibrant

le code de calcul en fonction des données observées. L’inférence bayésienne a été menée à l’aide

de la méthode ABC (Approximate Bayesian Computation) car la vraisemblance des observations

est un code de calcul et n’a pas d’expression close. Comme l’exécution du code de calcul est

chronophage. Une expansion en chaos polynomial (PCE) a été utilisée comme modèle de sub-

stitution pour remplacer le code original et accélérer l’inférence. L’algorithme a été validé sur

des données synthétiques simulées (Digital Power Plant) auxquelles nous avons ajouté un bruit de

mesure gaussien, une erreur systématique et un scénario d’évolution de dégradation des paramètres.

Les résultats sur les données synthétiques montrent que l’évolution des paramètres peut être es-

timée en dépit du bruit de mesure et des fluctuations importantes.

La méthode proposée a ensuite été appliquée à des données réelles collectées en fonctionnement

à la centrale solaire de Bolzano (Italie, pendant la période 2011-2019). Notre méthode ne donne des

résultats robustes qu’en été et en automne, la météo étant plutôt stable pour ce site pendant cette

période. Au cours de ces mois, les résultats montrent que la baisse de puissance des modules exposés

peut être attribuée à la baisse du Isc alors que la Rs et la Rsh ne montrent pas de changement

significatif sur 8 ans. Une analyse supplémentaire sera nécessaire pour définir plus précisément les

mécanismes de dégradation qui peuvent être identifiés avec l’évolution des paramètres extraits et
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leur corrélation avec les conditions de fonctionnement extérieures.

En perspective, nous suggérons d’utiliser notre méthode pour examiner un grand nombre de

jeux de données ayant des mécanismes de dégradation connus et inconnus, afin de connâıtre et

améliorer la robustesse de la méthode et l’évolution des paramètres qui pourraient se révéler être des

caractéristiques plus intéressantes, et de suggérer des explications physiques permettant d’identifier

les points de rupture et les changements des mécanismes de défaillance au cours du temps.

Mots Cles: Dégradation de performance, Centrales photovoltäıques, Analyse de sensibilité,

Méta-modèles, Estimation d’un modèle non linéaire, Calcul bayésien approximatif
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Abstract

The degradation of the PV (Photovoltaic) performance over its lifetime is usually determined with

the variation of Power at maximum power point (Pmpp). However, the same amount of Pmpp loss

can have different causes, which have, each, different expectations of evolution with time.

Existing Performance loss rate (PLR) methods are not suitable to identify these root causes

and mechanisms from the field data. Physical performance models based on 2 diode models contain

parameters that can reflect degradation over time. When IV curves measurements are available

from the field the parameters of the physical model can be straightforwardly estimated. While the

IV curve measurements are rarely available from the PV production sites the parameter estimation

is challenging since only limited data about the observed system is available. Estimating the model

parameters using only Pmpp is the challenge here allowing a more precise evaluation of the health

state of the system, rather than estimating only the performance loss metric.

The proposed algorithm aims to identify posterior distribution of parameters by calibrating

the computational code to the observed data with a robust Approximate Bayesian Computation

(ABC) method. The ABC method expresses the probability of the observed data under a prior

statistical model with certain parameter values. Polynomial Chaos Expansion (PCE) was used as

a meta-model to replace the original code which was found to be too computationally expensive.

The algorithm has been validated on simulated synthetic data (Digital Power Plant) with an

added Gaussian noise, some systematic discrepancy and a known parameter degradation evolution.

The results on the synthetic data show that the evolution of parameters can be estimated in noisy

measurement conditions.

The proposed method has then been applied to the real outdoor data. Firstly, the method

only gives robust results in the summer and autumn. In these months, the results show that the

power decline of the fielded modules can be attributed to the decline in the short circuit current

(Isc) while the parameters series (Rs) and shunt resistance (Rsh) do not show any significant

change over 8 years. Additional analysis is needed to define the possible signatures of degradation

mechanisms that can be identified with the evolution of extracted parameters and their correlation

with outdoor operating conditions.

As a perspective, we suggest to use our new method to look into a big amount of data sets with

known and unknown mechanisms in order to learn about the robustness of the method and the

evolution of the parameters that could reveal more interesting characteristics, and suggest physical

arguments for studying breaking points and changes in failure mechanisms.

Keys words : Photovoltaic degradation, Sensitivity analysis, Design of Experiment, Calibra-

tion
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Chapter 1

Introduction

The introductory chapter describes the objective and outline of the thesis with brief chapter

descriptions. In this chapter, the literature review is presented with an emphasis on the gaps this

manuscript is trying to overcome. This brief thesis overview is intended to give the reader an

insight into the physics of photovoltaics and degradation and serve as an introduction to the

content of this thesis.
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1.1 Thesis motivation

Because of the recent technological developments and increasing concerns about the sustainability

and environmental impact of conventional fuel usage, the energy companies are focusing their

research on producing cleaner, sustainable power from renewable energy sources. In recent years

there has been a rapid growth in large scale photovoltaic (PV) power plant installation around the

world where the majority of those installations are consisting of hundreds of thousand modules

spread over hectares of land. The solar market has grown very fast and in some cases it is becoming

a non-subsidized market with increased demand for performance certainty.

In 2018 Electricite de France (EDF) has announced to install in France 30 GW of photovoltaic

power in the project called ”Le Plan Solaire” between the years 2020-2035 where the majority will

be constituted of large PV plants [23] (Figure 1.1). In this context, it is more and more important

for EDF to accurately predict the power delivery over time and to quantify and define all the

relevant risk factors of long term performance losses. This thesis is motivated by EDF’s need to

better understand and model the PV plant performance loss and degradation over its lifetime and

giving access to the underlying physical mechanisms.
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Figure 1.1: PV power plant from EDF Renewables installed in Puyloubier.

The degradation of PV modules over time directly reduces the electricity generation and in-

creases the Levelized Cost of PV electricity. The PV plant operating lifetime is mainly determined

by the stability and resistance of PV modules to different stressors which are closely related to the

meteorological exposure of installed modules.

Depending on the meteorological exposure and the chosen technology the degradation rates

and the prevailing degradation mechanisms will be different where certain degradation modes are

more severe with specific climatic conditions; see for example the review by D. Jordan [44] and the

references therein.

Measuring and understanding the mechanisms of degradation is important because it can help

to predict the expected lifetime of a PV plant. The International Energy Agency (IEA) PVPS Task

13 document ”Review of Failures of Photovoltaic Modules” [50] divided the typical failures of PV

modules into the following three categories: infant-failures, midlife-failures, and wear-out-failures.

Figure 1.2, taken from [50], shows the impact of these three categories of failures for PV modules

on the nominal power as a function of the lifetime.

Figure 1.2: Three typical failure categories for wafer-based crystalline photovoltaic modules [50].

Infant-mortality failures occur in the beginning of the working life of a PV module where flawed

PV modules are responsible for those failures. The most important failures in the field are j-box
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failure, glass breakage, defective cell interconnect, loose frame and delamination.

Figure 1.3: Figure (Left) Failure rates due to customer complains in the first two years after
delivery. Figure (right) Field study of PV module failures found for various PV modules of 21
manufacturers installed in the field for 8 years [20].

Midlife failures are described in the study of DeGraff [20]. The Figure 1.3 shows the failure

distribution of PV modules that have been in the field for 8 years. Around 2% of the PV modules

are predicted not to meet the manufacturer’s warranty after 11-12 years of operation. In the study

the most prevalent failures are defected interconnections and PV module glass breakage. The

failure rate of j-box and cables (12%), burn mark on cells (10%) and encapsulant failure (9%) are

comparably high.

Wear out failures occur at the end of the working lifetime of PV modules. Where the working

lifetime is defined as a power drop under a certain level, typically between 20% and 30% of the

initial power. According to the study of Schulz [84] the predominant PV modules wear out failures

are delamination, cell part isolation due to cell cracks and discolouring of the laminate. However,

all these failures lead to a power loss between 0% and 20% and meet the manufacturer’s power

warranty. The PV modules used in the study of Schulz [84] are not representative for today.

The lamination material being responsible for the delamination and discoloration are not in use

in today’s PV manufacturing as well the cell and module sizes deviate strongly from today’s PV

modules, this factors affect the cell part isolation of cells in a PV module.

In our approach, we want to fit a physical model to measured timeseries representing a signifi-

cant part of the lifetime, so that signatures of degradation mechanisms become visible.

Various physical/mathematical models have been developed to predict the performance of the

PV plant as the function of different weather variables (for example, the irradiance, the panel

temperature, etc.) and physical model parameters. These physical model parameter typically

depend on many physical parameters whose values are likely to change significantly during the

lifetime of the PV panel. Moreover, the PV module manufacturers release the nominal value of

the parameters when the module is installed, but these values are sometimes remarkably different

from the ones which are measured.

In model calibration, the physical model parameters are estimated so that the measured values

are matched with the simulated values and hopefully the model accurately represents the important

features of the observed system. Figure 1.4 shows the modeling approach and calibration.
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Figure 1.4: Modeling approach with calibration.

The different steps in our approach are :

• Identify the computational code parameters which are the most influential on the degradation

of the PV plants.

• Calibrating them to observed values, in order to obtain their evolution.

• To overcome the intensive computation the meta-models are build as a surrogates for com-

putational code.

Understanding the degradation related parameter evolution could help reveal the main mech-

anisms behind photovoltaic degradation.
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1.2 Thesis organization and contributions

The thesis presents statistical tools and methods for numerical code calibration and parameter

estimation for photovoltaic degradation analysis. The first chapter addresses the motivation and

the problems of the thesis together with the literature review on various photovoltaic degradation

calculation methodologies and the physical model for photovoltaic devices. It highlights the indus-

trial need for a new method for degradation estimation based on a physical model that could be

able to explain the mechanisms behind the degradation.

In the second chapter of the thesis, the Design of Experiments (DOE) is introduced. The

motivation for using DOE is to obtain a deeper insight into the model structure. Because running

computer models is usually time expensive the motivation is to find the design of experiment

which provides maximum information on the model with a minimum number of code calls. A

mathematical criterion needs to be defined which quantifies that the points of the input parameter

space are well spread and are covering all the possible realizations of the computer code. For the

appropriate design, the Latin Hypercube with the maximin design is used as a space-filling design.

The method is applied to the EDF numerical code for photovoltaic performance estimation, called

PVNOV [68]. The DOE insights are applied for building the meta-model.

The third chapter of the thesis is focusing on the sensitivity analysis performed on various

photovoltaic physical models namely the single diode model and the EDF code for photovoltaic

performance estimation based on the double diode model (PVNOV). Morris screening and Sobol

analysis were applied to identify all the important parameters in both physical models which

could be related to the degradation mechanism of the photovoltaic devices. The constraints of

the sensitivity analysis were defined based on expert knowledge and available literature. Morris’s

method was firstly applied on both models to screen the non-influential variables which can be

set to their nominal value for the rest of the study. Afterward, the Sobol method was applied to

the parameters identified with the Morris method to obtain more granular information about the

model parameters. Finally three parameters were identified as the influential ones (on degradation)

namely the Rs, Rsh and the Isc. These identified parameters will be used in the calibration of the

PV performance model.

The fourth chapter focuses on various approaches of building meta-models together with their

validation. The advantage of using meta-models or surrogate models is to alleviate the compu-

tational burden of expensive or time-consuming code at the cost of adding additional sources of

uncertainty.

In order to stay within a limited number of code calls, the issue is to find the right design of

experiment as discussed in chapter 2 which provides the maximum amount of information out of

the original model.

Polynomial chaos expansion (PCE) was built as a surrogate for our time-consuming code. PCE

surrogates the model with the series of orthonormal polynomials in the input variables, where the

selected polynomials are in coherence with the probability distribution of the input variable.

The meta-model needs to be validated before we can use them as a replacement for the initial

models. Cross-validation was applied and the meta-model error was calculated. The validation

method is based on comparing the model prediction on simulation points that were not used in

the meta-model’s fitting process. An example of a PCE meta-model is presented. To compare the

meta-model accuracy various sample sizes of LHS were used where, in general, more sample points

give more information but at a higher expense of code calls.

The coefficient of determination was calculated and it shows good accordance between model
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and meta-model. In the end, calibration on the meta-model was performed were the structural

identifiability of the model vs meta-model was compared. The results show that the meta-model

can be used as an equivalent replacement for the computational code without sacrifying accuracy.

In the fifth chapter, the model calibration is presented. Various optimization and calibration

approaches are presented together with their strengths and drawbacks. The CMA-ES evolutionary

algorithm is applied to the data from the EDF test site where the IV-curves of individual modules

are available. Single diode model parameter evolution was estimated from 8 years of outdoor

IV curve measurements under a range of operating conditions, all of this without translating to

Standard Test Conditions (STC). The IV curves were selected in a narrow window of outdoor

temperature and irradiance conditions.

The results show that the main aging factor is the decrease of short-circuit current and the

increase of series resistance. Possible degradation modes affecting the analyzed module are yellow-

ing and browning of Ethylene-vinyl acetate (EVA), delamination, and appearance of bubbles or

anti-reflecting coating degradation. An increase in series resistance suggests that there is possible

corrosion on metal bars or inter connectors in PV module. In the presented method the short

circuit current Isc and the series resistance Rs are time-dependent variables presenting the aging

process of materials over time, thereby the I-V characteristics are not only a function of irradiation

G and cell temperature T , but also a function of time t.

Because IV curves are rarely available from power plants the other part of the chapter is

focused on calibration in the cases where the only available data is the measured power and

the corresponding weather file. Before the calibration process, the parameter bounds need to be

defined so that the interpretation of calibration results is physically meaningfully. The calibration

on the outdoor data shows that the calibration is not converging because the parameter values are

reaching their boundaries.

The structural identifiability of the code was tested with varying number of model parameters.

The structural identifiability is a property of the model that ensures that the model parameter

can be uniquely determined. The structural inevitability test was performed with two different

sets of parameters. In the first case with parameters nDs, Rs(Ω), Rsh(Ω), Ms, Isc(A) and Ar the

model is unidentifiable with the CMA-ES approach. The parameter values are not stabilizing even

after 2000 function evaluations. The possible explanation is the over-parametrization of the model.

When reducing the number of parameters to 3, the model becomes fully identifiable. One of the

possible issues of the calibration procedure is the initial parameter constraints. The parameter

bounds are defined with the physical meaning while in the calibration procedure they are reaching

the bounds defined. Because the calibration is performed on noisy data, the increased discrepancy

between the simulated and measured data is causing convergence issues.

The Approximate Bayesian Computation is presented which is more robust on measurement

noise and does not require the specification of a likelihood function, and can be used to estimate

posterior distributions of parameters for simulation-based models. The ABC avoids the direct

evaluation of the likelihood function and approximates it with generated synthetic data from

model simulations.

The calibration on the meta-model was performed to avoid the computational burden of time

expensive code and to compare the calibration results obtained from both meta-model and full

model.

In the sixth chapter, the paper is attached to the signatures of degradation mechanisms from

fielded photovoltaic system monitoring data. Where all the steps presented in the manuscript
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were applied all together. The EDF PV performance model is applied to calibrate outdoor power

measurements and identify the physical parameter evolution with the ABC method, which is

approximated with a PCE meta-model.

First, our algorithm has been validated on simulated synthetic data (Digital Power Plant)

with added Gaussian noise, discrepancy and a prescribed parameter degradation evolution. The

results on the synthetic data show that the evolution of the parameter can be estimated in noisy

measurement conditions.

Then, our method is applied on the 8 years of outdoor power measurements (Eurac test facility)

where the results show that the power decline of the fielded modules can be attributed to the decline

in short circuit current Isc while the parameters Rs and Rsh do not show any significant changes

over the period of 8 years.

The seventh chapter is the discussion and perspectives of the thesis where the possible improve-

ments and next steps are discussed.
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1.3 Degradation of Photovoltaic Devices

Degradation of Photovoltaic (PV) modules is inevitable regardless of the module technology or

meteorological exposure. The PV plant lifetime is mainly determined by the module design,

manufacturing flaws and stability and resistance of PV modules to different external loads. These

loads are closely related to differences in meteorological exposure depending on the location of the

installation and are affecting various module technologies differently.

Depending on the chosen technology and its geographic location the degradation rates and

prevailing degradation mechanisms will be different, where certain degradation modes are more

severe under specific climatic conditions [44].

There are several degradation rate calculation methodologies which are based on various sta-

tistical approaches [44], [54]. The overall goal of the statistical methods is to calculate the trend of

the PV performance time-series and to translate the slope of the trend to an annual Performance

Loss Rate (PLR) in %/year [71]. The models available are trying to obtain performance data while

taking into account the dependencies between the PV system output and measured meteorological

data (irradiation, temperature, wind speed etc.). Two widely used models are the Performance

Ratio (PR) and Photovoltaics for Utility Scale Applications (PVUSA) models [64], [17].

To compare the performance of different PV technologies in different climates the normalized

metrics needs to be applied. Here the PV performance data is normalized to comparable unit

free metrics or corrected in respect to outdoor conditions. The most frequently used performance

metrics is the PR which is an indicator for the quality of PV installation.

PR is defined in the standard IEC 61724 [17] and calculated by dividing the final yield of a

PV plant Yf(a) with the reference yield Yref . The PR is a ratio of measured values of power

and irradiance with values obtained under STC. Where the STC conditions are defined as: Solar

irradiation in plane of array: GPOA = 1000W/m2, ambient temperature: TAM = 25 ◦C and air

mass AM = 1.5

PR =
Yf
Yref

=
PAC/PSTC

GPOA/GSTC

(1.1)

PR

The PVUSA (Photovoltaic for utility scale application) [64] performance method is based on col-

lecting solar, meteorological, and system power output data for a period of time, and regressing

the system output against a combination of irradiance, wind speed, and ambient temperature. To

calculate the Pmpp the following equation is used:

Pmpp = GPOA(a+ b×GPOA + c×W + d× Tam) (1.2)

PVUSA

Where GPOA = 1000W/m2, TAM = 20 ◦C and wind speed W = 1m/s. Measurements at high

irradiance values (G ≥ 800W/m2) in the plane of array Plane Of Array (POA) are selected and

fitted to calculate monthly values for the coefficients a, b, c, d applying multivariate regression.
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Example of the PVUSA methodology applied on a single CdTe module. The model is based

on the linear correlation between the power of the panel and its meteorological values. The Figure

1.5 shows the Pearson correlation between the power, plane of array irradiance, module temper-

ature, wind speed and ambient temperature. It can be seen that the correlation is the highest

between irradiance and power (0.988) followed by correlation between power and module temper-

ature (0.829).

Power

0
5

0
0

1
5

0
0

2
5

0
0

−
1

0
0

1
0

2
0

3
0

4
0

0 1000 3000

0 500 1500 2500

0.99

Irradiation

0.80

0.83

Module_Temperature

0 20 40 60

−10 0 10 20 30 40

0.39

0.42

0.82

Ambient_Temperature

0
1

0
0

0
2

0
0

0
3

0
0

0
4

0
0

0

0.16

0.17

0
2

0
4

0
6

0

0.20

0.33

0 2 4 6 8 10

0
2

4
6

8
1

0

Wind_Speed

Figure 1.5: Pearson correlation factor between the power and the weather data as observed on
EDF PV test zone data.
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Figure 1.6: PVUSA methodology applied on CdTe modules.

Example of an PV module degradation estimation on CdTe module with a linear fit using

standard least square (Figure 1.6). The red line corresponds to the overall degradation rate.

Dividing the overall degradation rate with the number of analysed years we get 1.3568±0.00251%

average degradation per year of exposure.

Comparison of the published degradation rates obtained with PR and PVUSA showed similar

results for different technologies [59]. Some studies have shown different degradation rates by

applying temperature correction and different averaged time [58].

The 6-k-values performance model describes system performance through the relative efficiency

PREL correlated to STC as a function of in-plane irradiance G
′

and module temperature Tmod [34].

PREL(G
′

, T
′

) = 1+ k1 ln(G
′

)+ k2 ln(G
′

)2 + k3T
′

+ k4T
′

ln(G
′

)+ k5T
′

ln(G
′

)+ k6T
′2 (1.3)

6-k Model

The normalized irradiance and module temperature are given by:

G
′

= G/GSTC (1.4)

T
′

= Tmod − TSTC (1.5)

The equation (1.3) needs to be fitted to experimental data (from indoor or outdoor measure-

ments) to obtain the empirical coefficients k1 − k6. The fit is can be done by a least-square

procedure.

The coefficients k1, . . . , k6 are calculated using data from different modules of the same PV

technology. The fitted coefficients are used to calculate the relative efficiency like the ratio of the
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module efficiency under given conditions of irradiance and temperature to the efficiency at STC

conditions.

These methods have the advantage of calculating the real-time efficiency of the PV plant without

disconnecting or interrupting the operation of PV plant. The drawback of the methods is that the

information about underlying degradation mechanisms and pathways is missing.

On the other hand, methods that require the interruption of PV modules are often compli-

cated and costly to perform but provide insights on the specific degradation modes. Typically

applied methods are IV curves fitting, imaging techniques, material characterization techniques,

and physical models.

Fitting the IV curves to the single or double diode model and then interpreting the extracted

circuit parameters can be used to interpret the efficiency loss to the increased series or shunt

resistance [32]. The Loss Factor Model (LFM) [86], [85] has been developed to fit measured IV

curves to not only predict the energy yield but also estimate the root causes of observed degradation

and seasonal variation with a physical meaning. The model is based on the set of normalized

parameters that describe each IV curve and a set of fitting coefficients that describe how these

parameters vary. The LFM allows PV modules of any technology to be characterized by six

normalized, independent and physically significant coefficients plus correction factors for module

temperature and spectral miss-match. The normalized coefficients are calculated from outdoor

measured IV curves and from reference parameters as for example indoor flash measurements at

standard test conditions STC. The loss factor model can be used to estimate the energy losses due

to the shunt and series resistance variation.

Infrared (IR) and Electroluminescence (EL) imaging techniques can be used to identify faults

and failures developing with PV modules. A great number of failures developed on PV modules

can be detected using IR imaging, from hot-spots to mismatch losses or installation failures.

The sample Figure 1.7 shows an PV module with overheated cells. These cells are overheated

due to failures in the cell and module manufacturing process. Some examples for failures during

these production processes are inaccurate cell sorting, local short circuits within the solar cell or

an insufficient electrical contact. Most of the overheated cells derive from internal cell problems

[38].

Figure 1.7: On the left side front view and on the right hand side rear side view of a PV module
with overheated cell caused by internal cell problems [38].

EL imaging can be used to detect cell-fracture, deficient solder joints, short-circuited cell and

bypassed sub-strings (Figure 1.8). Currently, drones and machine learning techniques are being

used for automated image processing obtained from EL.
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Figure 1.8: EL of PID affected module.

Material characterization methods can be used for finding the fundamental mechanisms behind

PV degradation (sodium migration of potential-induced degradation PID [57]) but usually, they

imply destructive testing. The physical models are trying to model the complex processes happen-

ing in the PV modules where several variables are interacting to produce a specific degradation

mode. The drawbacks of the models are based on the limited understanding of all underlying

processes and they are still only heuristic models, which do not include the influence of material

parameters.

Machine learning techniques can be used to classify anomalous behavior in the IV curves data

from the fielded PV modules/plants. Those models are trying to combine both data coming from

the monitoring sites with the physical understanding of degradation.

Machine learning techniques can be utilized to classify and find anomalous behavior in the data,

such as IV curves under short-circuited bypass diodes. Peshek et al. [69] used automated analytic

of IV curves based on non parametric regression approach of local polynomial regression. In a

population of IV curves acquired from time-series study the majority of curves are typical in shape

and may fit the simplistic single diode model. The emphasis of the automated anomaly detection

of I-V curves is to identify unusual curves exhibiting change points or inflection points. The focus

of the approach is anomaly detection, and is not intended to analyze and fit the IV curves to the

single diode model.

New techniques of modeling solar cell behavior have been developed that are largely data-driven

and less restricted to the physics-based diode models. They benefit from progress in machine

learning and statistical methods.

The Suns-Vmp method [93] monitors and diagnoses time-dependent degradation of solar mod-

ules by using real-time field data of power Pmpp, current Impp and voltage Vmpp at maximum power

point to identify various degradation pathways. The Suns-Vmp algorithm pre-processes Pmpp data

to reconstruct the IV characteristics synthetically based on irradiation variations in a certain period

(couple of days) with Double Diode Model (DDM). The initial double diode circuit parameters are

extracted in various operating conditions (irradiation and temperature) by using the data sheet

values of the analyzed modules. With the initial guesses the possibility of the multiple solutions is

eliminated. Synthetic IV curves are constructed by sampling Pmpp data over a given period (2-3

days). The natural variation of the GPOA and the cell/module temperature Tmod allows to track

the changing Impp and Vmpp. The algorithm steps are summarized in Figure 1.9
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Figure 1.9: The flow chart of the Suns-Vmp method. Degradation mechanism will affect the
circuit parameters [93].

With the GPOA, Tc, Imp, Vmp the IV curves are reconstructed and calibrated to the measured

Pmpp. After reconstructing Pmpp IV curves the double diode parameters are estimated with non-

linear least-squares.

The results on the real data from National Renewable Energy Laboratory (NREL) site show

the degradation of Fill factor while the Voc and Isc degradation are insignificant. The decrease of

fill factor is assigned to rapid increase of series resistance.

Figure 1.10: Temporal degradation deconvolution with respect to circuit parameters [93].

The Figure 1.10 shows the evolution of series resistance as the dominant contributor to efficiency

reductions. The inspection shows that localized hot spots caused solder bond failure and eventually

step wise increase of series resistance. Around 4% of power loss can be attributed to the reduction

of JPH caused by discoloration. The photo current reduction because of discoloration has occurred

within the first year of installation.

The drawback of the method is that both current at maximum power point (Impp), and voltage

at maximum power point (Vmpp) data is needed to reconstruct the full IV curves and extract the

parameters in various operating conditions. Compared with the full IV outdoor measurements the

mean absolute percentage error is less than 4 %.
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1.4 Discussion

Combination of presented models and approaches into a hybrid one could allow monitoring and

diagnosis of PV system reliability in real time by systematically analyzing the data coming from the

monitored sites. Unfortunately using the statistical online methods it is not possible to determine

which degradation mode occurs on the basis of calculated PLR’s. The variation of Pmpp and FF

over time is related to relative performance loss while the physical parameters of the PV diode

models are more closely linked to the fundamental mechanisms of degradation. Because usually

only limited data from PV plants is available (Pmpp) the challenge is how to diagnose possible

failures and make reasonable PV life predictions using only Pmpp data. Using the physics based

models parameter evolution could allow identifying failure modes and help build forecast models

for their future evolution.

On the PV cell level the main mechanisms behind performance loss and possible failure are

corrosion, LID, LeTiD (Light and elevated Temperature Induced Degradation), contact stability

and cracked cells. At the module level degradation occurs due to the reliability issues on the cell

level and because additional issues like glass breakage, delamination, bus bar failure, broken inter

connector, front surface discoloration, moisture ingress, reduced inter layer adhesion, diode failures

and hot-spots [71].

The studies on the crystalline silicon (c-Si) reports that the power degradation was mainly due

to the short circuit current losses, followed by a smaller decrease in the fill factor [81]. The Isc

degradation is commonly caused by discoloration and delamination [73]. According to the studies

of NREL the degradation and associated Isc decline is associated with the ultraviolet (UV) light

absorption at or near of the top of the silicon surface, which causes discoloration [66].

1.5 The physics of photovoltaics

A solar cell is basically a p − n junction diode which utilizes the photovoltaic effect to convert

light energy into electrical energy. The PV cell is constructed of a very thin layer of n − type

semiconductor which is grown on a thicker p − type semiconductor. On the top of the n − type

semiconductor layer fine electrodes are installed which do not obstruct light to reach the thin

n− type layer. Below the p− type layer there is a p−n junction and at the bottom of the p− type

layer a current collecting electrode is installed. The whole assembly is encapsulated by thin glass

to protect the solar cell (Figure 1.11).

Figure 1.11: Solar cell schematics [14].

When light reaches the p−n junction, the light photons can easily enter in the junction, through
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the very thin p − type layer. The light energy in the form of photons, supplies sufficient energy

to the junction to create a number of electron hole pairs. The incident light breaks the thermal

equilibrium condition for the junction. The free electrons in the depletion region can quickly come

to the n − type side of junction. Similarly the holes in depletion zone can quickly come to the

p− type side of the junction. Once the newly created free electrons come to the n− type side they

cannot further cross the junction because of the barrier potential of the junction. Because of the

barrier potential of the junction the newly created holes once come to the p − type side cannot

cross. As the concentration of electrons becomes higher on the n − type side of the junction and

concentration of holes becomes higher in another side the p−type side of the junction will behave as

a battery cell. A voltage is set up which is known as a photo voltage (photo-current). If we connect

a small load across the junction there will be a current flowing through it, the photocurrent.

Conventional PV cells operates as a diode. A diode allows current to flow in one forward

direction but not in the reverse direction. To study the behaviour of PV cells IV curves (Current-

Voltage) curves are used to define the PV cell/module operation within electrical circuit in various

conditions. IV curves are used as a tool to determine the basic parameters of a PV cell and

mathematically model its behaviour within the electrical circuit.

In the literature there are many different models available to express the physical behavior

of solar cell/module under real outdoor conditions. Most commonly these models use a single

diode model which is characterized by five unknown parameters or double diode model with 7

unknown parameters. The Figure 1.12 shows the IV curve of solar cell under defined temperature

and irradiance conditions. The red curve (IV curve) shows the relationship between the voltage

applied across an PV cell and the current flowing through it. The corresponding maximum power

point (Mpp) is shown on the I-V curve. Loading the PV module such that the current is at

maximum power point (Impp) and voltage is in maximum power point (Vmpp) will operate the PV

module at the maximum power point (Mpp) and result in the maximum power generation. The

power vs voltage curve (black curve) shows the point at which the power is a maximum (Pmax) or

power at maximum power point (Pmpp).

Figure 1.12: IV-Curve of a solar cell.

The degradation of the PV performance over lifetime is usually determined within the decrease

of Pmpp (nominal power) and Fill Factor (FF) where both of the parameters are steadily decreasing.

Fill factor is a measure of quality of the solar cell.
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FF =
Pmax

PT

=
Impp × Vmpp

Isc × Voc
(1.6)

Fill Factor

It is calculated by comparing the maximum power to the theoretical power PT that would be the

output at both the open circuit voltage Voc and short circuit current together Isc. The temporal

evolution of the physical models parameters and the corresponding IV curves (if available) are

much more linked to the fundamental mechanisms related to the degradation phenomena and

could provide more insights on the PV degradation.

The Task 13 in the PVPS program of the IEA catalogued a collection of different IV curves

related to the specific degradation modes and failures. The selection of the IV curves in blue color

(Figure 1.13) indicated different features associated with different degradation mechanisms.

Figure 1.13: IV-Curve degradation. The red curve depicts the initial IV curve while the blue
curve shows the degraded IV curve [50].

From the Figure 1.13 we can distinguish 4 failure signatures:

• Loss of Isc

• Loss of Rsh

• Increase Rs

• Loss of Voc

1.6 Physical models

Several numerical codes, based on the physical model have been developed to mimic the PV cell

behaviour. In this section two models will be presented, firstly the simple one (single diode model)

and the model developed by EDF based on the double diode model. What differentiates between

them is their level of accuracy and complexity. Advanced PV models have additional constrains and

parameters to model the behaviour of PV cells in various conditions and with various technologies.
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1.6.1 Single Diode Model

For simplicity many researchers study the behavior of the Single Diode Model (SDM). From a

modeling perspective, the accuracy achieved by the single diode model is often viewed as being

adequate and it has good success reproducing the IV curve of the single cell. It is confirmed that

this model provides an accurate prediction of an outdoor measurements especially for mono-c-Si

and multi-c-Si technologies. Equivalent circuit models define the entire IV curve of a cell, module

or array as a continuous function for a given set of operating conditions (Figure 1.14).

Figure 1.14: Single Diode Model Circuit.

The governing equation for circuit is formulated using Kirchhoff’s current law for current I:

I = IL − ID − Ish (1.7)

The IL represents the photocurrent in the cell, ID represents the voltage-dependent current

lost to recombination and Ish represents the current lost due to shunt resistances. In this single

diode model, ID is modeled using the Shockley equation for an ideal diode:

ID = I0

[
exp

(V + IRs

nVT

)
− 1
]

(1.8)

where n is the diode ideality factor, I0 is the saturation current and the VT is the thermal voltage

given by:

VT =
Ns× kTc

q
(1.9)

where k is the Boltzmann’s constant (1.381×10−23J/K), q the elementary charge (1.602×10−19C),

Ns is the number of cells in series and Tc is the PV cell temperature. Writing the shunt current

as Ish = (V + I × Rs)/Rsh and combining this and the above equations results in the complete

governing equation for the single diode model:

I = IL − I0 exp

(
V + IRS

nVT
− 1

)
− V + IRS

Rsh

. (1.10)

Single Diode Model

The equivalent circuit of a practical PV cell. In literature it is also called as a five parameter model

(IL, I0, Rs, Rsh, n). It takes into account different properties of solar cell. A single diode model is

formulated by extending the ideal diode law to account for parasitic series and shunt resistances,

and by adding auxiliary equations that describe how model parameters vary with irradiance and
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cell temperature. The reference values are set on standard test conditions (STC) G = 1000W/m2

and T = 25◦C.

The five parameters are primary to all single diode equivalent circuit models:

• IL light current (A),

• I0 diode reverse saturation current (A),

• Rs series resistance (Ω),

• Rsh shunt resistance (Ω),

• n diode ideality factor (-),

The single diode model is characterized by 5 unknown parameters IL (light or photo generated

current) represents the charge carrier generation in the semiconductor layer of the PV cell caused by

the incident irradiation ; I0 diode reverse bias saturation current; Rs (series resistance) represents

the internal losses due to current flow and the connection between cells; Rsh (parallel or shunt

resistance) expresses the loses due to the high-current path through the semiconductor throughout

the mechanical defects and the leakage current to the ground. The diode ideality factor n measures

how closely the diode follows the ideal diode equation.

Having an explicit expression of I as a function of V is intractable regarding Equation (1.10).

To solve the equation current can be expressed as a function of voltage I = I(V ) or voltage as a

function of current V = V (I) by using the transcendental Lambert’s W-function [70]. Lambert W

function is the solution W (x) of the equation x = W (x) exp[W (x)]. Using the function we may

write I = I(V ). The principal branch of Lambert W function (W0) is used in these calculations

since the argument to W and the results are a positive real value. Defining the following parameter

z is necessary to transform the single diode equation into a form that can be expressed as a Lambert

W-function.

z =
RsI0

nVT (1 +
Rs

Rsh
)
exp

(Rs(IL + I0 + V )

nVT (1 +
Rs

Rsh
)

)
(1.11)

Then the module current can be solved using the Lambert W-function, W (z) as [39]:

I =
IL + I0 − V

Rsh

1 + Rs

Rsh

− nVT
Rs

W (z) (1.12)

Lambert W function can be efficiently evaluated with high precision and the Equation (1.12)

can be directly implemented for most of the range of an IV curve. However for equation (1.12)

approaching Voc (current I becomes small) numerical overflow can become a problem.

1.6.2 Double Diode Model

In the single diode model the ideality factor n of the diode is set on the constant value. In

reality the ideality factor is a function of voltage across the device. At high voltage when the

recombination in the device is dominated by the surfaces and the bulk regions the ideality factor

is close to one. However at low voltage’s, recombination in the junction dominates and the ideality

factor approaches two. Double diode model (Figure 1.15) allows to model junction recombination

by adding a second diode in parallel with the first and setting the ideality factor typically to two

[24].
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Figure 1.15: Double Diode Model Circuit.

I = IL − I01 exp

(
V + IRs

n1VT
− 1

)
− I02 exp

(
V + IRs

n2VT
− 1

)
− V −RsI

Rsh

(1.13)

Double Diode Model

• IL light current (A),

• I01,2 diode reverse saturation current (A) of diodes D1 and D2,

• Rs series resistance (Ohm),

• Rsh shunt resistance (Ohm),

• n1,2 diode ideality factors of diodes D1 and D2,

Newton Raphson’s iterative method is used to determine the parameter of the double diode model.

The Newton Raphson Method is an iterative method for root finding. The method consist in an

estimate of a given function f(x) with an initial value x0 which is the initial guess for the root.

The function is rewritten using a Taylor series expansion in (x− x0) in the neighbourhood of x0.

f(x) = f(x0) + f
′

(x0)(x− x0) + 1/2 f
′′

(x0)(x− x0)
2 + r(x) (1.14)

where f
′

(x) denotes the first derivative of f(x) with respect to x, f”(x) is the second derivative,

and the r(x) is the reminder. Suppose the initial guess is very close to the real root of the equation.

Then (x−x0) is small, and only first few terms in the series are important to get an estimate of the

true root, given x0. By truncating the series at the second term, we obtain the Newton-Raphson

iteration formula [74].

xn+1 = xn − f(xn)

f ′(xn)
(1.15)

In words, given the current estimate, xn, the point x(n+1) is obtained by intersecting the tangent

line of f(x) in xn with the x axis.

Compared to the single diode model, the double diode model can distinguish between recom-

bination current in the quasi-neural vs space-charge regions, denoted by n1 and n2. The double

diode model allows to identify more precisely various degradation mechanisms.

1.7 Numerical codes for simulating PV performance

To mimic the behaviour of photovoltaic power plants computational codes have been developed

which intends to be as close as possible to the physical system. The physical model is only a
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simplified representation of the real PV performance and may not take into account the existing

influential variables and also depends on the uncertain physical constants in the model.

EDF’s existing PV performance model written with the Modelica language allows to model

the electrical behaviour of any PV device under given meteorological conditions [68]. There are

385 input parameters and variables for 3 different input groups for PV modeling. The variables

represent the meteorological data while the parameters include those values which have an electrical

meaning. Main parameter/variables groups for PV Modeling are:

• Variables representing the meteorological file (direct, diffuse irradiation, humidity,

ambient temperature, wind speed etc.) applied as boundary conditions.

• Technology related parameters (heat conductivity, number of layers of PV panel, layers,

thickness of PV panel , dirtiness of the panels),

• Double Diode Model parameters (17 parameters),

The double diode model parameters as defined in Dymola.

• Np Number of parallel cell chains,

• Ns Number of cells connected in series,

• Scell Surface of the cell,

• Ms Temperature exponent in saturation current,

• nDs Ideality factor of saturation current ,

• Cs Recombination ,

• Mr Temperature exponent in saturation current,

• nDr Ideality factor of saturation diode,

• Cr Recombination,

• Eg Energy Band-gap (technology dependent),

• Rsh Shunt resistance (no temperature and irradiance modeling in Dymola),

• Rs Series Resistance (no temperature or irradiance dependent modeling in Dymola),

• Isc Short circuit current,

• Voc Voltage at open circuit,

• Alpha Temperature coefficient of the current,

• Ar Transmission factor

Checking the accuracy of the code by confronting it with field experiments is called validation.

The computational code depends on two kinds of inputs: variables and parameters.

The inputs variables are set during the field experiments and includes environmental variables

that can be measured (i.e. boundary conditions) and model variables that are actually computed

during the simulation and can change if parameter values change, where the parameters are gen-

erally interpreted as physical constants defining the physical model and they can contain so called

tuning parameters which have no physical interpretation.
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There are two major sources of uncertainties that could be linked to the physical model. In

this context uncertainty relates to possible variations of an input variable and therefore variability

within the model and its output.

The first source of uncertainty can come from inherent randomness found in climatic data,

this type of variability cannot be controlled or optimized, the second source of variability in the

yield estimation is caused by knowledge deficiency. The knowledge deficiency is due to either the

uncertainty in the optimum value of input variables or from uncertainty of how the model behaves

under alternate variable space regions. EDF experts judge that parameter uncertainty and input

variable uncertainty are each responsible for about 4% of the output variability.

Figure 1.16: Average monthly difference between simulated and measured data in a period of 1
year.

The Figure 1.16 shows the average monthly difference between the measured and simulated data

with the nominal parameter values. The simulated data is overestimating the real PV production

for approximately 3% in the first year.

Figure 1.17: Hourly average comparison of simulated vs measured PV production in a period of
8 years.

Example of comparing the simulated vs measured hourly average PV production in a period
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of 8 years Figure 1.17. The comparison shows that the model for simulating PV production fits

the observed PV production well. The increasing discrepancy over time can be attributed to the

degradation of the PV modules.
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Chapter 2

Design of Experiments (DOE)

The chapter gives an overview of the various DOE strategies on computational codes. With the

DOE the outputs are analysed while changing the input parameters. Latin Hypercube Sampling is

presented with various distance designs. The motivation for using various DOE approaches is to

get a best possible representation of the computer code with the smallest possible code calls. At the

end an example of design of experiments on the EDF numerical code for simulating photovoltaic

performance is presented.
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2.1 Design of Experiments

In a computer experiment, observations are made on a response function by running a complex

computer model at various choices of input variables. For any selection of input parameters (within

the physical boundaries) and output X = (x1, . . . , xK) vector Y = f(X) is produced by the

computer code. For any condition of X we can perform an experiment and observe the output of

the computer code. Because running computer models is usually time expensive the motivation

is to estimate the relationship between the parameter inputs and the outputs of a model with a

moderate numbers of runs.

The objective is to find the design of experiment which provides maximum information on the

model with minimum numbers of code calls. In this context it is important to define a mathematical

criteria which specifies that the points in the input parameter space are well spread.

Design of experiments techniques are widely applied in various simulation fields to minimize the

computational expense of running such simulations. In the cases where the computer code is time

consuming it is important to choose a sampling scheme that allows to have a good representation

of the computer code with the smallest possible code calls. The classical experimental design

methods tend to spread the sample points around the boundaries of the design space and leave

only few at the center of the design space.

38



According to Sacks et. al. [79] and because computer experiments involve mostly systematic

errors rather than random ones, a good DOE should fill the design space equally and not only

concentrate on boundaries.

According to Sacks the classical approaches of experimental design like blocking, replication

and randomization are irrelevant when it comes to deterministic computer experiments and the

sample points should be chosen to fill the design space for computer experiments [80]. Simpson

confirmed that the classical experimental design can be inefficient for deterministic computer codes

and that the experimental design should be space filling [88].

Figure 2.1: ”Classical” design vs. ”space filling” design [88].

The information desired from the code can be obtained from a study of the probability distri-

bution of the output. Several input variables values of X , x1 . . . xN must be selected as successive

input sets in order to obtain the desired information concerning Y . In the case when the code is

time consuming the N should be selected carefully.

The first idea of sampling is to generate N independent and identically distributed (iid) random

variables from the uniform distribution with an identical probability distribution, this approach

is called random sampling. Another possibility is to use stratified samples where all samples are

sampled from each stratum. The sample space S of X is partitioned into I disjoint strata Si. Let

p=P (X ∈ Si) represent the size of Si and obtaining a random sample Xij , j = 1 . . . , ni from Si we

have a random sampling over the entire sampling space. McKay introduced an Latin Hypercube

Design (LHD) also named Latin Hypercube Sampling (LHS) [60].

2.2 Latin Hypercube Sampling (LHS)

Latin hyper cube was the first type of design proposed specifically for computer experiments [60]

and can be viewed as a K-dimensional extension of Latin square sampling. It is a matrix of n

rows and k columns where n is the number of levels being examined and k is the number of input

variables. Each of the k columns contains the levels 1, 2, . . . , n, randomly permuted and the k

columns are matched at random to form the Latin hyper cube. Latin hyper cubes can have flexible

sample sizes from stratified samples, where input variables are sampled at n levels [80].

Let x = (x1, . . . , xd) be a random vector of input parameters. The Latin Hypercube Sample

(LHS) distribute the N sample points where each parameter range is divided into N equal intervals

and sample points are selected such that any hyper plane in the dimension contains one and only

one sample point. Intervals are sampled without replacement to ensure even distribution of points

with respect to each variable (Figure 2.2).

A drawback of Latin hyper cube sampling is that an existing design cannot be extended to

higher sample sizes without re-positioning all sample points.
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Figure 2.2: Example of 2 dimensional LHS.

When the code is time consuming the Latin Hypercube Sampling (LHS) design can help reduc-

ing the computational time while at the same time having a good representation of the parameters

input space and of the computational model.

2.2.1 Space filling criteria

The LHS is not necessarily the best design for an exploratory design of experiments. The LHS is

build under the assumptions that the input parameters vectors X are independent while following

an uniform distribution on [0, 1]k. It is possible to perform LHS with a different distribution for

X on [0, 1]k but also with dependence between the components of X [90]. Some configurations of

LHS do not fill up properly the parameter space. The LHS may consequently perform poorly in

prediction of model output/meta-model building.

Figure 2.3: ”6 points sampled with LHS”.
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Therefore some authors proposed to improve the LHS not only by improving one-dimensional

space filling but also in higher dimensions. One option is to apply some optimality criterion such

as entropy, discrepancy, minimax and maximin distances, etc. to avoid situations such as a design

where the points are aligned Figure 2.3 [65].

Morris and Mitchell [63] propose maximin distance design found within Latin Hypercube classes

because the maximin distance offer a compromise between the entropy/maximin criterion and good

projective properties in each dimension. The Figure 2.4 bellow illustrates two maximin design with

the Morris and Mitchell approach [63].

Figure 2.4: Two examples of maximin LHS for 2 parameters.

2.2.2 Minimax distance design

Let ρ(·, ·) be a metric such that:

ρ(x1, x2) = ρ(x2, x1)

ρ(x1, x2) ≥ 0

ρ(x1, x2) = 0 ⇔ x1 = x2

ρ(x1, x2) ≤ ρ(x1, x3) + ρ(x3, x2)

(2.1)

Let ρ(x,D) = minxi∈D ρ(x, xi) be the minimum distance to the design and let χ = [0, 1]p and

h = max
x∈χ

ρ(x,D)

be the maximum distance in χ, the h is called the fill distance and it is the largest gap, the radius

of the largest ball that can be placed in χ which does not contain any point in D. To find a D to

minimize h we need to:

min
D

max
x∈χ

ρ(x,D) (2.2)

this is called a minimax design and it can be presented as in Figure 2.5. With minimax we

want to choose a minimal radius r > 0 and the set of centers x1 . . . xn so that the design space D
is covered by the union of all the spheres B(xi, r), i = 1, . . . , n. Every point in D should be close

by at least one of the selected points.
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Figure 2.5: Example of minimax optimal design in a square for n=7. The design space D is
covered by the union of all the spheres (blue curves) [72].

2.2.3 Maximin distance design

On the contrary, the maximin distance tries to create a maximum space between the points (Figure

2.6): The minimum distance between any two points in D is

2q = min
x1,x2∈D

ρ(x1, x2), (2.3)

where q is the separation distance or packing radius- the radius which ensures that the points in

D are as far apart from each other as possible. To find a D to maximise 2q:

max
D

min
x1,x2∈D

ρ(x1, x2). (2.4)

The definition of maximin distance designs is very straightforward: because the number of

design points is often relatively small with large design space we do not want to evaluate points

which are close to each other. The problem is similar to the packing problem where we need to

choose a maximal radius r > 0 and a set of centers x1 . . . xn such that all the spheres B(xi, r), i =

1, . . . n are pairwise disjoint. The approach is the most well studied among all experimental designs

[35].
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Figure 2.6: Example of maximin optimal design in a square for n=7. The spheres in maximin
design are pairwise disjoint (blue curves) [72].

A maximin design tries to create a maximum space between the points and avoid replication.

There are several other distance criteria available such as the L2 discrepancy, the minimum span-

ning tree (MST) [26] etc. According to [45] the maximin design criterion ensures good space-filling

in the full dimensional space.

2.3 DOE example on the Dymola code

The OpenTurns LHS library [6] was used for sampling from the Latin hyper cube. With samples

obtained with LHS on 6 parameters (table 2.1). The LHS sampling was chosen because of the

good coverage of the whole parameter space with minimal number of simulations. 100 parameter

samples obtained from the LHS design were used to simulate the Dymola PV production of 10 PV

modules for a period of 1 day in 15 minutes interval. The weather variables for simulation were

obtained from the EDF PVZEN experimental site measurements together with the measured PV

production for the same day.

Parameters Nominal value Bounds

Ar 0.2 [0.17,0.25]

Isc (A) 5.724 [5.0-6.6]

Rs (Ω) 9e-5 [1e-5,14e-5]

Rsh (Ω) 0.1953 [0.014-1.5]

Ms 3 [2.7-3.6]

nDs 1 [0.9-1.2]

Table 2.1: Parameters and their bounds used for LHS sampling
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Figure 2.7: The measured daily production in PVZEN depicted in red with 100 realisations of
Dymola code with 100 LHS samples in blue.

On the Figure 2.7 it can be seen that the computational code realizations (in blue) are not

covering entirely the measured daily PV production (red) at PVZEN. The difference between the

simulated and measured PV production is mostly evident at the end of day. The volatility of the

PV production corresponds to the clouds passing across the PV modules.

The discrepancy between the model output and the measured data depends on the various

factors. Possible explanations are:

• The model input weather file is inaccurate: the PV system is shaded while the pyranometer

is still in the sunlight

• There is an issue with the modelled sun position

The spread of the computer code realisations increases with the irradiance values and it is the

highest at noon while at the beginning and at the end of the day the obtained samples show less

spread.

2.4 Conclusion

In this sections we looked to design of experiments (DOE) that allows to explore a computer model.

DOE is used to analyse the response variation of the computer code which allows us to have the

maximum information with the minimum code calls.

The presented methods allow to find space filling input parameter sets which will be used in the

following chapters related to the meta-model building. Selecting an experimental design is a key

step in building an efficient and accurate meta-model. Several criteria exist for the best sampling

scheme selection. In the next chapter the DOE for sensitivity analysis is introduced which is based

on factorial design and it is focused on the impact of input parameter displacement on the code

output.
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Chapter 3

Sensitivity Analysis

The chapter give an overview of the Sensitivity Analysis (SA) applied on two different physical

models. Two different method are presented: Morris One Step At A Time and the Sobol analysis.

The results are compared with the ones available in literature. The aim of this chapter is to give

an overview of sensitivity analysis methods and apply them on two models: the simple single

diode model and the more complex Dymola model that utilises the double diode model. The results

of the sensitivity analysis give valuable insights on the model behaviour and allow to reduce the

size of of the parameter vector. The selected parameters will be used for calibration in the

following chapter.
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3.1 Sensitivity Analysis

Sensitivity analysis (SA) occasionally termed uncertainty propagation analysis is the study of the

relationship between inputs and outputs of a computational model [62].

Uncertainty propagation computes the output law given the input law, whereas SA measures

the influence of each input uncertainty on the output uncertainty. The SA has become an crucial

element of the development and evaluation of physical models, providing a strong framework for use

in the development, operation, calibration, optimization and application of computational models.

Given the selection of suitable techniques and frameworks, SA can provide information regarding

the model structure, the dependence on input variables, the behaviour of the model at extreme

values/events, and can be used as a decision making tool.

Sensitivity Analysis provides a framework and techniques that can identify important variables

in the computation model. According to Saltelli [83] before applying a SA the objectives of the

analysis needs to be specified clearly. These objectives may include:
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• Identify and prioritize the most influential inputs

• Identify non-influential inputs in order to fix them to nominal values

• Map the output behaviour in function of the inputs by focusing on a specific domain of inputs

if necessary

• Calibrate some model inputs using some available information (real output observations,

constraints, etc.)

In the context of this thesis the sensitivity analysis is focused on the special domain of electrical

parameters which could be related to the PV degradation, determination of the non-influential

parameters that can be fixed without consequences on the output uncertainty. On the other hand

reducing the number of parameters helps to increase the identifiability of the model parameters in

the calibration process.

In a SA, model inputs are perturbed within predefined ranges, representing numerous realiza-

tions of the physical system. The model response is observed, with the sensitivity to variation of

each input variable indicated by the magnitude of change of the response variable. The range of

the input variable perturbation is generally the plausible values, often dictated by, but not limited

to, the range of uncertainty of the input variable.

3.2 Morris OAT method

Morris method evaluates the influence of each input parameter by considering the impact of its

variation on the model output while considering all the other input parameters constant. Each

parameter is perturbed at one-step-at-a-time method (OAT) within the defined model parameter

space, meaning that in each run only one input parameter is given a new value. The process is

repeated until all the model parameters are changed and model outcomes evaluated. For each

input parameter, two sensitivity measures are computed µ which assesses the overall influence

of the parameter on the output and σ, which estimates the parameter’s higher order effects, i.e.

non-linear and/or due to interactions with other factors.

With the Morris method we can classify the model inputs in three groups: inputs having

negligible effects, inputs having large linear effects without interactions and inputs having large

non-linear and or interactions effects.

Trajectory design

Because the range of parameter values are not all of the same order, the sampling design of the

Morris method is standardized over the interval [0, 1]. Thus for K parameters, the sampling

plan will be contained in a hyper cube [0, 1]K . For each parameter, the sampling plan is divided

into p levels that divides the model parameter space into a uniform grid of points at which the

model can be evaluated. The region of model evaluations is thus a K dimensional p level grid. A

sequence of K + 1 points, in which each parameter changes only once by a predefined value ∆ in

{0, 1
p−1 ,

2
p−2 , ..., 1} is called a trajectory (Figure 3.1).
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Figure 3.1: Example of a trajectory design in 2-dimensional input space with 4 trajectories. The
input parameter space is uniformly divided into 6 equally divided levels. The filled circles are the
random points from which the random grid jumps are carried out one-at-a-time.

In its paper Morris [62] advocates to select a step ∆ = p
2(p−1) , that ensures good coverage

of the input space with few trajectories. However, such step selection might cause some loss of

information on the parameter. For the rest of the thesis, the choice of step ∆ will be chosen as

∆ = 1
p−1 . The starting point of a trajectory on the grid is randomly chosen and each sample

differs only in one coordinate from the preceding one [62]. Then, a sign is also randomly selected

(practically a Bernoulli random variable) to indicate the direction of displacement. One trajectory

is used to compute the magnitude of variation in the model output due to the predefined variation

of one parameter while keeping the other parameters constant. This output is called elementary

effect (EE). The grid constructs a finite distribution of size pK−1[p−∆(p− 1)] elementary effects

per input parameter.

Usually the number of the trajectories r accomplished is between 4-5, depending on the number

of input factors the computational cost of model evaluation and the choice of the number of levels.

The technical scheme to generate trajectories is explained in detail in appendix A

The elementary effect of parameter k for a model f(x) with K parameters x = (x1, ..., xK),

contained in a hypercube [0, 1]K is defined as follow,

EEk =
f(x1, x2, ..., xk +∆, ..., xK)− f(x1, x2, ..., xK)

∆
(3.1)

Elementary effect

Two indices computed with the EE’s allow to compare the effect of the variation of each parameter

on the output. The first is the expectancy of the EE and the second the standard deviation of

the EE. The expectancy of the EE is obtained by sampling an nr number of elementary effects

associated with the kth parameter sampled from the distribution of EEk. The statistical summary

of the EEk from the sampled trajectories can be calculated. The arithmetic mean is defined as:
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µk =
1

nr

nr∑

r=1

EEr
k (3.2)

As a change in a parameter value might result into a change of sign on the output, this may

cause cancellation effect, Campolongo [11] proposed to use the mean of the absolute elementary

effect to solve the issue. It is defined as:

µ∗
k =

1

nr

nr∑

r=1

|EEr
k| (3.3)

Mean of the absolute elementary effect

The next statistic is the standard deviation of the elementary effect associated with the kth pa-

rameter from the obtained trajectories.

σk =

√√√√ 1

nr

nr∑

r=1

(EEr
k − µk)2 (3.4)

Standard deviation of elementary effect

The standard deviation of the elementary effect gives an indication of the presence of interactions

or non-linearity between the kth parameter and the other parameters. If σk is small elementary

effects have low variations on the support of the input. Thus the effect of a perturbation is the

same all along the support, suggesting a linear relationship between the studied input and the

output. On the other hand, the larger σk is, the less likely the linearity hypothesis is.

The three statistics when evaluated over a number of trajectories nr can provide global sen-

sitivity measured of the importance of the kth parameter. According to Morris there are three

possible categories of parameter importance:

• Parameters with non-influential effects. The parameters that have relatively small values of

both µ∗
k and σk. The small values indicate that the parameter has a negligible overall effect

on the model output.

• Parameters with linear and/or additive effects. Parameters with relatively large value of µ∗
k

and relatively small value of σk. The small value of σk and the large value of µ∗
k indicate

that the variation of elementary effects is small while the magnitude of the effects itself is

consistently large for the perturbations in the parameter space.

• Parameters with non-linear or interaction effect have a relatively small value of µ∗
k and a

relatively large value of σk. Opposite to the previous case a small value of µ∗
k indicates that

the aggregate effect of perturbations is seemingly small while a large value σk indicates that

the variation of the effect is large. The effect can be large or negligibly small depending on

the other values of parameters at which the model is evaluated. Such large variations are a

symptom of non-linear effects and/or parameter interaction.
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To conclude, the Morris method allows to estimate the sensitivity measures (both µ∗, σ) starting

both from a p-level grid. It allows to get the model response from parameter displacements and

finally plot the sensitivity to get a qualitative estimate.

The advantage of the Morris method is that it provides a qualitative method for fast exploration

of the behavior of a black-box computer code, at a low computational cost. However one of the

main drawbacks of the method is that it is not possible to distinguish between nonlinear effects and

interaction effects in the model which can be a critical in terms of model calibration. Moreover,

because of the normalized grid, it does not really take into account the distributions of input

parameters.

3.3 Morris OAT method applied on Single Diode Model

Prior to the analysis the boundaries of the parameter values needs to be defined. The defined

parameter bounds needs to be selected carefully because they directly affect the sensitivity analysis

results. The parameter bounds were set based on literature review and the expert knowledge.

Parameters Nominal value Bounds

Isc (A) 5.724 [4.0-9]

Rs (Ω) 0.5 [0.3,1]

Rsh (Ω) 1200 [650-1600]

Io 8.21235172e-8 [8.e-8,8.21235172e-07]

nDs 1.25 [1.-1.45]

Table 3.1: Parameter bounds used for sensitivity analysis on SDM.

Figure 3.2: Morris OAT on Single Diode Model at STC conditions.

Based on the graph of elementary effect we can reveal three areas considering the axis x as µ∗

and the y-axis σ:

• Low values of µ∗ and σ the parameter is considered having a negligible impact on the output:

Io , Rsh

• High values of µ∗ compared to σ the parameter has a strong linear effect on the output: Isc

49



• High values of µ∗ the parameter has either a strong non-linear effect on the output and/ or

includes one or several interactions with other ones : nDs

Based on the Morris OAT results (Figure 3.2) the most influential parameters in the single

diode model are the short circuit current Isc, diode ideality factor nDs and series resistance Rs the

parameters shunt resistance Rsh and saturation current Io does not influence the model output.

The effect of different values of series and shunt resistance on the IV curves and the Pmpp is

presented in Figure 3.3 and Figure 3.4.

Figure 3.3: IV curve with different values of series resistance.

Figure 3.4: IV curves with different values of shunt resistance.

The IV simulations at STC conditions show that the high shunt resistance values do not have

large effects on the power. The values above 500 Ω on cell level show only minor effects on the

produced power in Figure 3.4. Based on this results we can expect that the model response to

changes in shunt resistance values will have a threshold effect.

The changes in the values of the series resistance have bigger impact on the IV curve shape:

Figure 3.3 shows small changes in the series resistance value cause big changes in the IV curve
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shape.

3.4 Morris OAT method applied on the Dymola model

Parameters Nominal value Bounds

Alpha (%/K) 0.037 [0.034-0.044]

Ar 0.2 [0.17,0.25]

Isc (A) 5.724 [5.0-6.6]

Rs (Ω) 9e-5 [1e-5,14e-5]

Rsh (Ω) 0.1953 [0.014-1.5]

Cr (A/m2K3) 0.630 [0.450-0.842]

Cs (A/m2K3) 3291.9 [3003.759-4005.2]

Mr 2.5 [2.25-3.6]

Ms 3 [2.7-3.6]

nDr 2 [1.9-2.2]

nDs 1 [0.9-1.2]

Table 3.2: Parameter bounds used for sensitivity analysis.

A PV production was simulated with Dymola at a single time step at STC conditions to screen

the model and identify the non-influential parameters that can be set on their nominal values

during the whole study. The Morris method allows to identify variables which can be neglected

in the further study but one of the drawbacks of the method is that can not differentiate between

parameters that have interactions with other ones from those which have a non-linear effect on the

output [25]. The SALib package was used for Morris method implementation [43].

Figure 3.5: Morris OAT single time step at STC conditions.

Based on the results (Figure 3.5) the most influential Dymola model parameters are:

• Isc short circuit current

• Rs Series Resistance

• Rsh Shunt Resistance
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• Ms Temperature exponent in saturation current

• nDs Diode Ideality factor (Ideality factor of saturation current)

• Ar Transmission factor

The graph of the Elementary Effect (EE) can reveal three areas considering the axis x as µ∗

and the y-axis as σ:

• for low values of µ∗
k and σk the kth parameter is considered as having a negligible impact on

the output (Ar and Rsh).

• for high values of µ∗
k compared to σk the kth parameter has a strong linear effect on the

output (Rs, Isc)

• for high values of µ∗
k the kth parameter has either a strong non-linear effect on the output

and/or includes one or several interactions with other ones nDs.

The results from a scalar output of the numerical code show that the parameters Ar and Rsh

have a negligible impact on the power output. The results are expected because the parameter

Ar is related to the transmission factor which is changing over the year according to the sun

position and represents angular losses while the parameter shunt resistance Rsh effect depends on

the irradiation levels where at low irradiation levels the effect is more severe.

The most influential parameters according to the Morris method are the series resistance Rs

and short circuit current Isc. Both parameters are closely related to the degradation of the PV

cells. The effect of both parameters are directly related to the power output. The power output

decrease linearly with the decrease of short circuit current while the series resistance affects the

power near the open-circuit voltage where the the short circuit current is unaffected by the series

resistance until it is very large. The parameters with a strong non-linear effect is the diode ideality

factor nDs which measures how closely the diode follows the ideal diode equation but for modelling

purposes is usually set on nominal value in silicon solar modules.

Morris method can only be applied on the function that create a scalar output however the

method can be applied in various time steps over the period of a single day. In this case the

sensitivity analysis takes into account the behaviour of the code on the whole time frame and

not only at the instantaneous time. The impact of several parameter could seem negligible in a

instantaneous time but they could not be negligible on another moment of the day. The sensitivity

analysis is focused on all the influential parameters in the numerical code.

Single day PV simulation was selected for sensitivity analysis where the maximum POA reaches

800 W/m2 at noon Figure 3.6. For the power two PV modules were selected where the maximum

power generated is 314 W. The day is from 10.02.2011 the sunrise time 7:26 is while the sunset

time is 17:35. A single time step corresponds to the 15 minutes interval starting on 7:30 and ending

at 17:30.
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Figure 3.6: The selected day for sensitivity analysis.

The Morris method was applied on the period of a single day (Figure 3.6) to take into account

the variation of outdoor operating conditions on the parameter values. Every point on the Figure

3.7 represents the 15 minutes time step starting from 7:45 and ending at 17:45.

Figure 3.7: The Morris method performed on the period of a single day.

The results from the Figure 3.7 show similar patterns as the results obtained from the Morris

method applied on the single scalar output. The most influential parameters are the short circuit

current, series resistance, diode ideality factor and the shunt resistance. It can be seen on the

figure that the parameters series resistance and diode ideality factor have a linear influence on
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the power while the influence of the short circuit current and shunt resistance follows exponential

relationship.

Mathieu Carmassi [13] illustrates the Morris study performed on the Dymola numerical code

over two months time frame where the principal component analysis (PCA) was applied on the

trajectories [13]. In the new subspace ”new” indices µ∗ and σ can be computed. On the new

indices with PCA the temporal correlation can be visualised to find a new representation axis for

the Morris indices. The results of the PCA are given in Figure 3.8.

Figure 3.8: The PCA performed on the results given by the Morris method. On the left the
correlation circle obtained by PCA and on the right the eigenvalues for the ten first axis [12].

Figure: 3.8 shows that the time series of the outputs, given by the Morris method can be

projected on a 5 axis basis with keeping more than 99% of the information. This projection is in

the new space is used to compute the new indices of the Morris method. illustrates all the indices

in 5 axes of the dimensional subspace given by the PCA.
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Figure 3.9: Morris OAT PCA [12].

According to Carmassi [13] the seven most important parameter in the Dymola model are the

following:

• Isc is the short circuit current

• nd is the diode ideality factor.

• Rshunt is the shunt resistance in STC conditions.

• Rseries series resistance in STC conditions

• Rshunt1D and RshuntK1D coefficients that allow the shunt resistance to vary with the

irradiation.

• Paco is the maximum ac-power ’rating’ for inverter at reference or nominal operating condi-

tions, assumed to be an upper limit value.

Where the parameter shunt resistance is not important instantaneously but could be important at

the conditions of low irradiation.

3.5 Sobol indices

The Morris method is a suitable method to detect parameters that have no impact on the model

output and can be omitted from the analysis. The Sobol sensitivity indices can provide more

granulated information about the parameters influence on the model output. The Sobol method

attributes variance in the model output to parameters and the interactions between them. The
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main idea of this method is to decompose the output variance into the contributions associated

with each input factor i.

Y = f(X1, ..., Xp) (3.5)

The output Y is a scalar and the input factors X1, . . . , Xp are supposed to be independent random

variables described by known probability distributions. In order to quantify the importance of an

input factor Xi on the variance of Y , we can fix it at its ”true” value ,x∗i . Where we want to know

how much will this assumption change the variance of Y . The conditional variance:

VX−i(Y |Xi = x∗i ) (3.6)

where the variance is taken over the (p − 1) dimensional parameter space X−i, consisting in all

factors but Xi. Because the true value of Xi is unknown, we average over all possible values of Xi:

EXi(VX−i
(Y |Xi)) (3.7)

The smaller this quantity, the more important the contribution of Xi to the variance of Y .

Using the law of total variance we can write:

V (Y ) = VXi
(EX−i(Y |Xi)) + EXi

(VX−i(Y |Xi)) (3.8)

and normalizing

1 =
VXi(EX−i(Y |Xi))

V (Y )
+

(EXi(VX−i(Y |Xi))

V (Y )
(3.9)

The first-order sensitivity index for factor Xi, is given by the first term in equation above

Si =
VXi(EX−i(Y |Xi))

V (Y )
(3.10)

From normalized equation we get that the first-order sensitivity index verifies Si ≤ 1.

If the function 3.10 is integrable over [0, 1]p than it can be decomposed into terms of increasing

dimensionality as follows [89]:

f(X1, ...Xp) = f0 +

p∑

i=1

fi(Xi) +
∑

1≤i<j≤p

fij(Xi, Xj) + ...+ f1..., p(X1, ..., Xp) (3.11)

If the input factors are mutually independent then there exist a unique decomposition such

that all the summands in Equation 3.11 are mutually orthogonal. Using this results, it can be

shown that the variance of the output V (Y ), can be also decomposed into:

V (Y ) =

p∑

i=1

Vi +
∑

1≤i<j≤p

Vij + ...+ V1,...,p (3.12)

where Vi, Vij , ..., V1,2...,p denote the variance of fi, fij , ..., f1,...,p respectively:

Vi = V (E(Y |Xi))

Vij = V (E(Y |Xi, Xj))− Vi − Vj

Vijk = V (E(Y |Xi, Xj , Xk))− Vij − Vik − Vjk − Vi − Vj − Vk

.

.

.
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V1,...,p = V (Y )−
p∑

i=1

Vi −
∑

1≤i<j≤p

Vij − ...−
∑

1≤i1<...<ip−1≤p

Vi1, ..., ip−1

For simplicity the indices for the variance and the mean are omitted. The first-order indexes

defined in Equation 3.10 can be deduced from the first p terms of the decomposition

First order sensitivity indexes are expressed as:

Si =
Vi

V (Y )
=
V (E(Y |Xi))

V (Y )
(3.13)

First Order Sensitivity

The other terms of decomposition in Equation 3.12 can be interpreted like a higher sensitivity

indexes. The second sensitivity index Sij explains the amount of variance between Xi Xj (i.e.

sensitivity to Xi and Xj not expressed in Vi nor Vj).

Sij =
Vij
V (Y )

(3.14)

The third-order sensitivity index Sijk, expresses the amount of variance of Y explained by

Xi, Xj and Xk and not taken into account in the first and second order sensitivity indexes.

Sijk =
Vijk
V (Y )

(3.15)

For every p input factor we can define 2p − 1 sensitivity indexes.

Homma and Salteli [33] introduced an additional index the total sensitivity index, STi, that

accounts for all the contributions to the output variation due to factor Xi (the first order index

plus all the interactions):

STi =
∑

k⊆i

Sk (3.16)

It can be shown that this total-order index can be expresses as:

STi = 1− VX−i(EXi(Y |X−i)

V (Y )
(3.17)

Again using the law of total variance and normalizing:

1 =
EX−i(VXi(Y |X−i)

V (Y )
+
EX−i(VXi(Y |X−i))

V (Y )
(3.18)

The second term in the equation above is giving the total-order indices:
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STi =
EX−i(VXi(Y |X−i))

V (Y )
(3.19)

Total-order indices

The first order index measures the total output variance caused by the parameter i without the

interactions with other parameters. The total order index removes parameter i from the analysis

and attributes the resulting reduction in variance to that parameter [33]. Where the difference

between the parameter’s first and total order indices represents the effect of the interactions with

other parameters.

Test of Sobol method on Ishigami function

We estimate the Sobol indices for the Ishigami function, defined for x1, x2, x3 ∈ [−π,+π] by:

f(x1, x2, x3) = sin(x1) + a sin(x2)
2 + bx43 sin(x1)

We set a=7 and b=0.1 and assume that the random variables x1, x2, x3 are independent and

identically distributed according to the uniform distribution on the interval [−π,+π]:

x1, x2, x3 ∼ U(−π,+π)

The scatter plots in Figure 3.10, represent the output function of each parameter and allow to

visualize the behavior of the function according to a specific parameter.

Figure 3.10: Scatter plots of the Ishigami function where the output is given function of the each
parameter.

Before performing a Sobol sensitivity analysis, we need to generate samples on which the

sensitivity indices will be estimated. Monte Carlo sampling based methods have been developed

for Sobol indices estimation but this methods are costly in terms of number of model calls. To

improve the efficiency of Sobol indices estimation the Saltelli sampler was used [82]. The sampler

is based on quasi-Monte Carlo method, which generates a quasi random sequences of samples. The
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procedure is explained in detail in appendix B. Using quasi-Monte Carlo instead of Monte Carlo

samples can sometimes reduce the computational cost by a factor ten [83].

Figure 3.11: Sobol’s index computed for the Ishigami function and the boxplots representing the
variability of 1000 bootstrap iterations.

The results of the first order and the total effect Sobol’s indices obtained on the Ishigami

function are represented in Figure 3.11. We can see that the most significant variable is x1 with

a total order Sobol index close to 0.6. If the total-order indices are substantially larger than the

first-order indices, then there is likely higher-order interactions occurring. The first order index of

x1 is close to 0.3 which implies that it’s interactions alone produce almost 30% (0.6 − 0.3) of the

total variance. The variable x2 has the highest first order Sobol index but has little interactions

with other variables. The total order index and the first order index are almost the same. The

variable x3 has a first order index close to zero. However, it has an impact to the total variance

because of it’s interactions with x1.

3.6 Sobol indices applied on Single Diode Model

Before applying the Sobol analysis the sample size needs to be defined. The sample size depends

on the complexity of the model and the number of the parameters evaluated. The general rule

is that the sample size needs to be scaled with the number of the model parameters. It should

be noted that increasing the number of function evaluations increases the computational cost as

well. The sample size selection can be tested using Bootstrap confidence intervals, where in general

the uncertainty of one input should be around 10%. In cases where the uncertainty is bigger the

sampling size needs to be increased.

Sobol analysis was applied on the SDM model parameters where the parameters boundaries

were the same as defined in the Morris method. For Sobol indices estimation the Saltelli sampler

[82] was used with 10000 generated samples.
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Figure 3.12: Sobol Analysis on SDM.

Parameters Total Order Indices Total Order 95% CI First Order Indices

Rsh (Ω) 0.000082 0.000009 0.000031

Rs (Ω) 0.017393 0.002765 0.012282

Io (A) 0.000024 0.000003 0.000063

Isc (A) 0.762342 0.637520 0.746446

nDs 0.037865 0.244917 0.219417

Table 3.3: Sobol Analysis results on SDM.

According to the Figure 3.12 we see that the variable Isc, with a total Sobol index close to

0.8, is the most significant variable, taking into account its direct effect on the model output. Its

first order effect is close to the total order effect so there is no interaction with other variables in

the model. The second most influential variable based on the total Sobol index is the nDs with

the value of total Sobol index above 0.2, the first order index is close to the total order index so

it has no or little interaction with other variables. We see that the variability of the estimates

for Isc and nDs is quite high even with a relatively large sample size. The calculated confidence

intervals are based on the standard error of the mean for the total order indices estimates. The

confidence intervals are estimated with 1000 bootstrap samples. The total order and first order

Sobol indices for the parameters Rsh, Rs and I0 is close to zero this means that those parameters

are non-influential.

Both total-order sensitivity indices and first order sensitivity indices have similar values, which

indicate no significant second order interactions between the parameter values. The differences

between the first order indices and the total effect are small which means that no non-linear effects

affects the input parameters.

The results obtained with the Sobol analysis corresponds to those obtained by Zarahatos [103]

the most important parameter is the Isc followed by the diode ideality factor nDs. The ranges for

nDs and Isc were set at about their maximum bounds for a crystalline silicon PV cell, while the

range of parameter values for Rs and Rsh are to the certain degree limited.

The results of the single diode sensitivity analysis can be interpreted with regard to the physics

of single diode model. Because the Pmpp = Imax×Vmax on the IV curve where Imax usually scales

linearly with the Isc. The voltage at open circuit denoted as Voc typically scales logarithmically with
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the Isc where Vmax behaves like Voc. Increase in Isc affect Imax linearly and Vmax logarithmically.

Because the Isc affects both Imax and Vmax it is logical to be the most important parameter

influencing the Pmax.

3.7 Sobol indices applied on the Dymola model

To evaluate if the model parameters show any interaction which could have an effect on the whole

calibration process the Sobol sensitivity analysis was applied. The interaction would mean that

two (or more) parameters have a different influence on the model output together than separated.

The PV production was simulated for a period of two days with the nominal values.

For the Sobol analysis the SALlib package was used [43]. Sobol sensitivity analysis is a global

variance based method that attributes variance in the model output to individual parameters and

the interaction between parameters. In theory, Sobol indices range is [0,1]; the more the indice is

close to 1 the more the variable is important towards the output of the function.

Figure 3.13: Sobol Analysis on Dymola model.

Parameters Total Order Indices Total Order 95% CI First Order Indices

Isc (A) 0.1795 0.0645 0.0612

Rs (Ω) 0.2244 0.0836 0.1458

Rsh (Ω) 0.000177 0.000259 0.00064

Ms 0.058 0.0223 0.0499

nDs 0.588 0.196 0.575

Ar 0.001 0.00001 0.00001

Table 3.4: Sobol Analysis results on Dymola model.

The confidence intervals are based on the standard error of the mean for the total order indices

estimates. The Standard error is estimated with 1000 bootstrap re samples. The differences

between the first order indices and the total effects are practically equal which means that no

non-linear effects affect the input parameters (Figure 3.13).

Based on the total order indices the most influential parameters on the model output are:

diode ideality factor nDs, series resistance Rs, short circuit current Isc, temperature exponent in
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saturation current Ms, transmission factor Ar, shunt resistance Rsh. If the total order indices

are substantially larger than the first order indices, then there is likely higher order interactions

occurring.

3.7.1 Second order indices

The second order indices is extending the analysis by looking at pairs of variables and their possible

interactions. Pairwise comparison of 6 parameters were performed to see any possible interactions

between them.

The second-order Sobol’ index (Sij) expresses the contribution of the interactions of the pairs of

variables Xi and Xj on the output variance. More precisely this is second-order interaction screen-

ing, since we consider pairs of variables. The pairwise interactions can explain some important

model properties and how the parameters are related.

If the total-order indices are substantially larger than the first-order indices, then there is

likely higher-order interactions occurring. We can look at the second-order indices to see these

higher-order interactions:

Parameters Second order indices

Isc −Rs -0.000189

Isc −Rsh 0.051859

Isc −Ms 0.000106

Isc − nDs -0.001348

Isc −Ar -0.001815

Table 3.5: Second order indices on Isc.

Parameters Second order indices

Rs −Rsh -0.000118

Rs −Ms -1e-06

Rs − nDs -9e-06

Rs −Ar -2.3e-05

Table 3.6: Second order indices on Rs.

Parameters Second order indices

Rsh −Ms -0.008458

Rsh − nDs 0.008983

Rsh −Ar -0.00834

Table 3.7: Second order indices on Rsh.

Parameters Second order indices

Ms− nDs 0.000658

Ms−Ar 0.000328

Table 3.8: Second order indices on Ms.

Parameters Second order indices

nDs−Ar -0.001475

Table 3.9: Second order indices on nDs.
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Based on the results the parameters do not show strong interactions between each other. We

can see there are possible interactions between the parameter Isc and Rsh and between Rs and Rsh.

Some computing error will appear in the sensitivity indices. For example, we observe a negative

value for the Isc − Rs index. Typically, these computing errors shrink as the number of samples

increases.

To take into account the variation of the outdoor operating conditions on the parameter values

the Sobol method was applied on the single day (Figure: 3.6) on 10.02.2011 starting at 7:30 and

ending at 17:30 with the highest POA irradiance around 900 W/m2.

The results from the daily analysis are comparable with those obtained in the initial Sobol

analysis at STC conditions. (Figures 3.14 and 3.15). The additional information is on the temporal

effect on parameter influence during the course of a day where some parameter show no influence

at the beginning of the day (series resistance) while the parameter shunt resistance shows opposite

behaviour.

Figure 3.14: Sobol Analysis performed on the period of single day 1.

Figure 3.15: Sobol Analysis performed on the period of single day 2.

The most influential parameters in the model are nDs,Rs and Isc. The parameter shunt
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resistance Rsh is influential only at low irradiation levels at the beginning and end of the day. The

parameters Rs and nDs are the influential at the highest irradiation levels while the parameter

Ms and Ar doesn’t show any variation over the course of a day.

3.8 Conclusion

Sensitivity analysis with Morris and Sobol method was performed on both Single Diode and Dymola

model to map the output behaviour of the models with focus on a specific domain of parameter

inputs which could be related to degradation of photovoltaic modules.

The motivation of using the sensitivity analysis is to reduce the size of the parameter vector and

identify which parameters can be set on their nominal values during the calibration process. At the

same time by reducing the number of the model parameters, due to the model over-parametrisation

we are increasing the identifiability of the parameter values. Parameter identifiability cannot be

achieved for calibrating a certain parameter if the selected parameter does not have any signif-

icant contribution to the model responses. At the same time calibrating the full model can be

computationally intensive.

The Morris method allows to get a fast exploitation of the code behaviour identifying only a

small number of influential parameters. To take into account the variation of the outdoor operating

conditions the Morris method was applied on the period of a single day because the impact of

several parameter could seem negligible in a instantaneous time but they could not be negligible

on another moment of the day. The results in both cases show similar results.

The Sobol analysis shows the temporal influence on parameter values from the variations of

outdoor operating conditions. This information could be used for estimating the values of shunt

resistance only at certain period of the day (sunrise, sunset) but at the same time the effect of

series resistance at this times is negligible.

The Morris method allows to simplify the model before using Sobol analysis which provides

more granulated information of the model behaviours. Both methods show comparable results on

both models. Sobol analysis allows to calculate the possible interactions between model parameters.

Pairwise comparison of parameters was performed and it does not show any interactions.

In the following chapters the calibration with both models will be presented to identify the

parameter values with the single diode model and with the more advanced Dymola model.

64



Chapter 4

Meta-Models

In this chapter the main motivation for using surrogate models is presented together with the

various meta-model building approaches and their validation. The polynomial, Kriging and neural

network meta-models are presented. For the meta-model validation the generalisation error and

the coefficient of determination were calculated. Polynomial Chaos Expansion (PCE) is build and

validated on an example data.
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4.1 Meta-models

Often the physical models are highly complex and computationally expensive. Meta-models or

surrogate models are usually employed to approximate or emulate computationally costly experi-

ments or simulation models of complex physical phenomena [10]. In this cases it can be useful to

replace the complex computational code by a mathematical model called meta-model or surrogate

model at the cost of adding an additional source of uncertainty.

Meta-modeling is based on classical Design of Experiment (DOE) theory where polynomial

functions are used as response surfaces or meta-models. As a numerical DOE is applied to a

computational codes, each experiment involves an evaluation of the model, and thus computational

cost depends on the computational resources and the number of runs (i.e. experiments). A large

number of runs will increase drastically the needed resources. An optimal strategy is to choose

the most efficient DOE and to use a method for reducing the computational cost of each run.

An efficient DOE should minimise the number of runs and optimize the space-covering of the

runs to gain insights into the relationship between the input variables and the output results of
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computer simulations. The error made by the surrogate strongly depends on the numerical design

of experiments used to fit the meta-model.

The physical phenomena can be represented by a computational model f considered as a deter-

ministic function where the X in the sequel is used for a random vector X = {x1, . . . , xM} denote

the M -dimensional input parameter vector of the computational model and Y = {y1, . . . , yN} the

N dimensional response vector of the model. The physical model f is usually not accessible in

closed form and may represent a complex computational process.

A meta-model f̂ is a function such that Ŷ = f̂(X) is as close as possible to the Y and have

comparable mathematical properties. Non-intrusive methods for meta-model building are relying

on multiple calls of the original model which is used as a ”black-box” without any modification.

The Design of Experiment is used to analyse the set of realisations of the computational model

f with carefully selected X inputs and the response vector of the model Y .

There are multiple advantages of using the meta-models [27].

• Model simplification

• Improvement and enhancement of optimisation efficiency by performing optimisation in a

more computationally efficient way than the detailed model

• Efficiency of optimization is improved

• Parallel computation is supported

Besides the commonly used polynomial functions a variety of approximation models and tech-

niques exist for constructing surrogate models/meta-models of computationally heavy computer

codes Sacks et al. [80] proposed the use of a stochastic model, called Kriging, to treat the deter-

ministic computer response as a realization of a random function with respect to the actual system

response.

4.1.1 Polynomial meta-model

One of the simplest meta-model representations is the polynomial meta-model also known as

polynomial response surface model [19]. The most common approach in building meta-models is

with the second order polynomial which can be represented in the matrix form [67].

f̂(x) = β̂0 + x,b̂+ x,B̂x (4.1)

Where the f̂(x) is the response variable predicted by the meta-model, x = [x1, x2, . . . , xm], is

a column vector of input variables, b̂ = [β̂1, β̂2, . . . , β̂m], is a column vector of the linear model

parameters. B̂ is an m ×m symmetric matrix of the second order model parameters while m is

the number of data points.

B̂ =




β̂11 β̂12/2 . . . β̂1m/2

β̂12/2 β̂22 . . . β̂2m/2
...

...
...

β̂1m/2 . . . β̂mm




(4.2)

Eventually the model parameters can be obtained using least squares regression [88].
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4.2 Polynomial Chaos Expansion (PCE)

A popular class of meta-models (surrogate models) are the polynomial chaos expansions (PCE).

The PCE is closely related to the previously presented Sobol sensitivity analysis. The use of

polynomial chaos expansions in the context of sensitivity analysis has been originally presented in

Sudret [91] using a non intrusive least-square method. It is shown that the computation of Sobol

indices can be computed analytically from the PCE expansion coefficients [91]. The computation

cost is thus transferred to the obtention of the PCE coefficients, the subsequent post-processing

being almost cost-less. Only elementary mathematical operations are needed to compute the

Sobol indices from the polynomial expansion coefficients [91]. The basic idea behind PCE is that

PCE surrogates the computational model with the series or orthonormal polynomials in the input

variables where the selected polynomials are in coherence with the probability distribution of input

variables [100].

The physical model can be described by a numerical model f where the model f has M un-

certain input parameters which can be represented by independent random variables {X1, ..., XM}
gathered into a random vector X of prescribed joint probability density function fD(x), thus the

model response denoted as Y = f(X) is also random. For simplicity Y is assumed to be scalar. De-

noted by the ψα are the multivariate polynomials which are orthonormal with respect to the joint

PDF (Probability distribution function) fD of the input random vector X E[ψα(X)ψβ(X)] = 1

if α = β and 0 otherwise. Provided that the random variable Y has a finite variance, it can be

expressed as bellow (Equation 4.3), where the equality has to be interpreted in the L2:

Y = f(X) =
∑

α∈NM

aαψα(X) (4.3)

This expansion is called as the generalized polynomial chaos (PC) representation of Y where

the aα are unknown deterministic coefficients. The input random vector X is supposed to have

independent components Xi, i = 1, ...,M . The joint probability density function may be cast as:

fD(x) =
M∏

i=1

fDi
(xi), (4.4)

where fDi
(xi) is the marginal PDF of Xi. Let {π(i)

j , j ∈ N} be a family of orthonormal

polynomials with respect to fDi
. Most common distributions can be associated to a specific type

of polynomials e.g. normalized Hermite (resp. Legendre) polynomials for standard normal variables

(uniform variables over [−1, 1]) [78]. The multivariate basis {ψα, α ∈ N
M} of the representation

on Equation (4.3) is build by tensorizing the M resulting families of uni-variate polynomials as

follows:

ψα(X) =
M∏

i=1

π
α

(i)
j

(Xi) (4.5)

For the sake of computation expense the accurate PCE of true model is a infinite series and

needs truncation Equation (4.3) in order to retain only finite number of terms. Commonly those

polynomials are retained whose total degree |α| =∑i αi does not exceed a given p:

Y = f(X) ≈
∑

|α|≤p

aαψα(X) (4.6)

The random response Y is thus equivalent to computing the finite set of unknown coefficient

{aα, |α| ≤ p}. This may be done using non-intrusive techniques respectively known as projection
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and regression methods.

Projection strategy

The PC coefficients can be computed using a projection strategy which exploits the orthonormality

of the PC basis. By pre-multiplying eq.(4.6) by ψα and by taking the expectation we can get the

exact expression of each coefficient aα:

aα = E[ψα(X)f(X)] =

∫

DX

ψα(x)f(x)fD(x)dx, (4.7)

where DX denotes the support of density fD. The multidimensional integral Equation (4.7)

may be computed either by simulation techniques (Monte Carlo, Latin Hypercube) or quadrature

(full tensor product quadrature) [9].

Regression strategy

An alternative to the projection strategy the regression strategy consist in adjusting the truncated

PCE expansion in eq: (4.6) to the model under consideration. The equation (4.6) can be recasted

using a vector notation as:

Y = f(x) ≈ fp(X) = aTψ(X) (4.8)

where a gathers the coefficients {aα, |α| ≤ p} and ψ the basis polynomials {ψα, |α| ≤ p}.
Let X = {x(1), ..., x(N)}T be a set of N realisations of the input random vector, and Y =

{y(1), ..., y(N)}T be the corresponding model evaluations {y(i) = f(x(i)), i = 1, ..., N} the set X
is called experimental design. The coefficient in Equation (4.6) are estimated by minimizing the

squared residual as shown below:

â = argmin
a∈RP

[
N∑

i=1

(
f(xi)− aTψ(x(i))

)2
]

(4.9)

Where P denotes the number of multi-indices in the set {aα, |α| ≤ p} which is given by:

P =

(
p+M

p

)
(4.10)

the solution is:

â = (ΨT ,Ψ)−1ΨTY (4.11)

The data matrix Ψ is defined by:

Ψ =




ψα1(x
(1)) · · · ψαp

(x(1))
...

. . .
...

ψα1
(x(N)) · · · ψαp

(x(N))


 (4.12)

In order to make this problem well-posed, the experimental design X must be selected in such

way that the information matrix ΨTΨ is well conditioned. This implies that the size of N the

design (the number of model evaluations) has to be large enough, and necessarily greater than P .
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Sparse PCE

The PCE approach is powerful in a wide range of applications but it has limitations in the case of

high-dimensional input. This is because the number of the unknown expansion coefficients grows

exponentially with the number of the input parameters, which is commonly referred to as the

”curse of dimensionality” [49]. To overcome this difficulty, sparse least squares schemes may be

used. These methods are aimed at identifying a small set of significant coefficients in the model

response approximation. Eventually, a sparse polynomial response surface, i.e. a polynomial which

only contains a low number of non-zero coefficients, is obtained by means of a reduced number

of possibly costly model evaluations. Here we focus on sparse regression schemes based on L1-

penalization as implemented in the Open Turns [6], [5], [78] Equation (4.13) known as the LASSO

method (Least absolute shrinkage and selection operator). The proposed approaches do not provide

only one approximation, but a collection of sparse approximations with non-decreasing sparsity

indices (number of non zero coefficients)

Minimize

N∑

i

(f(xi)− aTψ(xi))2 + C‖a‖21, (4.13)

where ‖a‖1 =
∑P−1

j=0 |a| and C is a non negative constant. The LASSO provides a sparse

meta-model, i.e. it discards insignificant variables from the set of predictors, the sparsity index

decreases as C increases. For a given C ≥ 0, the solution of the optimization problem Equation

(4.13) may be obtained via quadratic programming.

4.2.1 Isoprobabilistic transformation

For standard distributions, the associated families of orthogonal polynomials are well-known [100].

For example if X is Gaussian then the best corresponding family is the Hermite polynomial family.

In OpenTurns [5], [6], four types of polynomial families are implemented:

• Hermite family for Gaussian variables N (0, 1)

• Legendre family for Uniform variables U(−1, 1)

• Laguerre family for Gamma variables G(k, 1, 0)

• Jacobi family for Beta variables B(r, t,−1, 1)

The input random vector X under consideration may have other types of marginal PDF that

belongs to the mention group but with other parameters or marginal PDF not belonging to the

group (e.g. lognormal distribution) or the X may have correlated components. In this context the

original input random vector X is recast as a random vector whose whose margins are independent

and have PDF’s among the ones mentioned. In OpenTurns the input random vector can have two

different forms. An input random vector X with independent margins {fx1
(x1), ..., fxM

(xM )} or

a Gaussian vector X with correlated components. Once the original input random vector has

been transformed, the PCE is applied and produces PCE expansion which is a function of a set of

reduced variables.

In practical uncertainty quantification problems the random variables which model the input

parameters are usually not standardized. The selection of the orthonormal polynomials is per-

formed with the use of isoprobabilistic transformation (e.g. the Rosenblatt transformation). The

isoprobabilistic transformation τ of random vector X into a set of reduced variables U can be

performed as follows [92]:
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X = τ(U). (4.14)

Depending on the marginal distribution of each input variable Xi, the associated reduced

variable Ui may be standard normal N (0, 1), standard uniform U(−1, 1), etc. Then the random

model response Y is cast as a function of the reduced variables by composing the computational

model f and the transform τ :

Y = f(X) = f ◦ τ(U) =
∑

α∈NM

yαΨα(U). (4.15)

For example when dealing with independent uniform distributions with supportDxi
= [ai, bi], i =

1, ..., d, the isoprobabilistic transform reads [92]:

Xi =
ai + bi

2
+
bi − ai

2
Ui Ui ∼ U([0, 1]).

In the case of Gaussian independent variables {Xi ∼ N (µi, σi), i = 1, ..., d}, the one-to-one trans-

formation is:

Xi = µi + σiUi Ui ∼ N (0, 1)

4.2.2 Kriging

Originally used for mining exploration models by the South African mining engineer called Krige.

The mathematics were further developed by the Matheron [48]. Later on, Kriging models were

applied to the Input/Output data of deterministic simulation models. These models have k-

dimensional input where k is a given positive integer (whereas geostatistics considers only two-

dimensional input) [80].

More recently the kriging was applied to random simulation models by Van Beers and Kleijnen

[48]. Kriging models a deterministic response as the realisation of a stochastic process by means

of a kriging basis function. It uses spatial correlation between the sampled points to interpolate

the values in the spatial field.

The generic kriging prediction equation can be written as following:

Let Y is an Gaussian process on R
d where Y is observed at x1, x2, ..., xn ∈ R

d and the covariance

function C of Y is known and the mean function of Y is 0. Let the Yn = (Y (x1), ..., Y (xn))
t is the

Gaussian observation vector, R is the n × n covariance matrix of Yn : (R)i,j = C(xi, xj). Let the

xnew ∈ R
d be a new input point for the Gaussian process Y where we want to predict Yxnew

.Let

the r be the n covariance vector between y and Y (xnew) : ri = C(xi, xnew)

Then with the Gaussian conditioning theorem we can get the conditional mean of Y (xnew)

given the observed values in Yn:

f̂(xnew) := E(Y (xnew|Yn)) = rtR−1Yn (4.16)

Where we also have the conditional variance:

σ̂2 := var(Y (xnew)|Yn) = C(xnew, xnew))− rtR−1r (4.17)

Example of Kriging prediction on picture 4.1
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Figure 4.1: Example of one-dimensional data interpolation by kriging, with 95% confidence inter-
vals. Red circles indicate the location of the data. The kriging interpolation, shown in black, runs
along the means of the normally distributed confidence intervals shown in green [4].

4.2.3 Karhunen–Loève decomposition

Before applying the Polynomial chaos expansion on the field function we first compute the Karhunen-

Loève decomposition of the output proces on the function f(x) with known trajectories. Then

we create a polynomial chaos decompositions between the coefficients of the input and output

processes. Finally, we create a meta-model of the whole field model by combining the KL decom-

position and the polynomial chaos.

Among the collection of random field discretization methods, the Karhunen-Loève (K-L) de-

composition (in some references as K-L expansion) is one of the most widely used techniques for

dimension reduction, since it can capture the variability of the uncertain quantity using a few

number of random variables [28].

The Karhunen-Loève decomposition (K-L decomposition) is a representation of a stochastic

process as an infinite linear combination of orthogonal functions, analogous to a Fourier series

representation of a function on a bounded interval. The transformation is also known as eigenvector

transform, and is closely related to principal component analysis (PCA) technique widely used in

data analysis in many fields. The K-L is enabling a stochastic field to be represented with a

minimum number of degree of freedom [55].

If the K-L decomposition is applied to a given stochastic field, we get a set of empirical eigen-

functions. When we want to reproduce that stochastic field with a certain criterion of accuracy, it

can be represented with a minimum number of degree of freedom when employing these empirical

eigenfunctions [7].

According to Grigoriu [28], the K-L decomposition is particularly applicable for the representa-

tion of homogeneous and non-homogeneous, as well as strongly correlated random fields. However,

the major drawback of the method lies in the solution of the associated integral eigenvalue problem,

given by an homogeneous Fredholm integral equation of the second kind. Most of the methods used

for the estimation eigenvalue problem, e.g. Galerkin and Nyström methods, result in a reasonable

computational cost, since they often deal with the assembly of dense covariance matrices.
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The K-L decomposition allows to build finite approximations of stochastic processes which are

optimal with respect to the norm L2 [5], [6].

We suppose that C : D ×D → S+
d R is a covariance function defined in D ∈ R

n, continuous at

0.

The K-L algorithm enables to determine the solutions of the second kind Fredholm equation

associated to C i.e. to find the (λk, ϕk)k≥1 such that:

∫

D

C(s, t)ϕk(t)dt = λkϕk(s) ∀s ∈ D (4.18)

where (λk≥1) is a non increasing sequeance of nonnegative values (the eigenvalues) and (ϕk≥1)

the associated sequence of eigenfunctions, normalised by
∫
D
‖ϕk(s)‖2 = 1. They form an Hilbertian

basis of L2(D,Rd).

The Mercer theorem shows that the covariance function C writes:

C(s, t) =

+∞∑

k=1

λkϕk(s)ϕ
⊤
k (t) ∀(s, t) ∈ D ×D (4.19)

The threshold s is used in order to select the most significant eigenvalues, i.e. all the eigenvalues

such that:

Ks = min
{
k ∈ N|

k∑

i=1

λi ≥ (1− s)×
+∞∑

i≥1

λi

}
(4.20)

To solve the eq. (4.18) we use the functional basis (θp)1≤p≤P ) of L2(D,R) with P elements

defined in D.

The solution is searched like:

ϕ̃ =

P∑

p=1

φpkθp(t)

where φpk ∈ R
d we note:

Φk =



φ1k

· · ·
φPk


 ∈ R

Pd

and Φ = (Φ1| . . . |ΦK) is the matrix of the K first modes of the Karhunen Loève decompositions

The approximated Fredholm problem writes for all k ≥ 1:

∫

D

C(s, t)ϕ̃k(t)dt = λkϕ̃k(s) ∀s ∈ D

Which enables to define the residual function r : D → R
d defined by:

r(s) =

∫

D

C(s, t)ϕ̃k(t)dt− λkϕ̃k(s) (4.21)

The Fredholm problem writes:

r(s) = 0 ∀s ∈ D

Which can be solved by the Galerkin or the collocation approach. The integrals in equation

4.21 can be evaluated with a singular value decomposition approach (SVD).
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The singular value decomposition (SVD) approach is a particular case of the quadrature ap-

proach where the functional basis ((θjp(s))1≤j≤d,1≤p≤P of L2(D,R2) defined on D by:

θjp(s) = [C(s, sp)]:,j

The SVD approach is used when the covariance function is not explicitely known but only

through K fields of the associated stochastic process X : (X1, ..., XK).

it consist in:

• approximating C by its empirical estimator 1
K̃
X̃X̃ where X̃ = (X1|...|XK) and K̃ = K if the

process is centered and X̃ = (X1−µ|...|XK−µ)K̃ = K − 1 otherwise, where µ = 1
K

∑K
k=1Xk :

• taking the L vertices of the mesh of X as the L quadrature points.

We suppose now that K < dL and we note Y =
√
WX (see [29] for details).

As the matrix Θ = C is invertible, the Galerkin and collocation approaches are equvivalent

and both lead to the following singular value problem for Y :

Y Y ⊤Ψk = K̃λkΨk (4.22)

The SVD decomposition of Y ∈ MdL,K̃(R) writes:

Y = UΣV ⊤

where we have U ∈ MdL,K̃R, Σ ∈ MK̃,K̃(R), V ∈ MK̃,K̃(R) such that:

• V ⊤V = V V ⊤ = IK̃ ,

• U⊤U = IK̃ ,

• Σ =




σ1
. . .

σK̃




Then the columns of U are the eignevectors of Y Y ⊤ associated to the eigenvalues of σ2
k. The

modes and eigenvalues of a Fredholm problem are deducted for k ≤ K̃:

Φk =
1

λk

√
WUkλk =

σk
k

K̃

We have:

ϕ̃(t) =

L∑

l=1

C(t, ξl)φl,k for k ≥ K̃

Where the most computationally intensive part is the computation of the SVD decomposition.

4.2.4 Example of Karhunen-Loève decomposition

For the period of 5 consecutive days with 450 point a PV production was simulated and used to

create of a field model over an 1-d mesh. The threshold to select the most significant eigenvalues

was set on 1e-06. Karhunen-Loève decomposition was created of a process with known trajectories

and a functional chaos decomposition between the coefficients of the input and output processes

was applied in the OpenTurns software [6]. The general procedure can be summarized in the

following steps:
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• Creation of a field model over an 1-d mesh

• Karhunen-Loéve decomposition of a process with known trajectories

• Projection of Fields

• Functional chaos decomposition between the coefficients of the input and output processes

• Build a metamodel of the whole field model

Figure 4.2: Karhunen-Loéve scaled modes.

The decomposition of the input process is presented in figure 4.3

Figure 4.3: Karhunen-Loève decomposition of the input process.
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The final meta-model is a composition of the KL function and the polynomial chaos meta-model.

In the next chapter the PCE build meta-model is validated.

4.2.5 Artificial Neural Network (ANN) based meta-models

Lately the artificial neural networks (ANNs) has become popular in various applications. One of

the domains where their properties can be used is using them as meta-models.

Artificial Neural Networks (ANN) are mathematical models which try to simulate the structure

and functionalities of biological neural networks. The NN are composed of input layer, hidden layer

and output layer (Figure 4.4) and can be classified as either single-layer or multilayer. A single-

layer ANN consists of just one input and one output layer (Figure 4.4). On the other hand, a

multi-layer ANN consists of one or more of the so-called hidden layers of neurons between the

input and the output layers. Each layer is composed of computing units called neurons operating

in parallel. This units are interconnected by weighed edges. The computing units or neurons

perform simple operations and communicate the results to its neighboring units. The hidden

layers are used to represent the relationships between the input layer and the output layer and

allows a representation of the relationships among input variables. There are two main types of

NN, namely Feed-forward neural networks (FNNs) and recurrent neural networks (RNNs). A RNN

has neurons that transport a signal back through the network (at least one feedback connection

in recurrent network) whereas FNNs feed outputs from individual neurons forward to one or more

neurons or layers in the network [21].
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Figure 4.4: Example of Feed forward neural network.

From a mathematical viewpoint the NNs are composed of a set of nonlinear (sigmoidal) basis

functions with free parameters w or weights that are adjusted to minimize the error between the

output value of the NN and the real output for a given data. The iterative process of adjusting

the weights is called training. The calculation of the output values using the weights is given by

the equation:

f(X,w) = ŷ(X) = ψ(w0lb+
h∑

j=1

wjlφ(w0jb+

p∑

k=1

wijxk)),

where X is an input vector with p entries, X = (x1, x2, ..., xp), p is the number of input variables,

xk is the kth input signal, w is the weight vector, h is the number of hidden neurons, wij is the

synaptic weight from ith neuron to jth, φ is the activation function from input layer to hidden

layer and ψ is the activation function from hidden layer to output layer. The b is the bias factor.

An estimate ŵ of w can be calculated by training process by minimizing the quadratic error

function E:

E(w) =

n∑

i=1

(ŷi − yi)
2,

where ŷi = f(Xi, ŵ) is the output of NN from the input Xi and n is the number of training

samples.

Artificial Neural Network (ANN) as meta-models, had been successfully applied in several

cases. Yuan and Guangchen [102] compared the fitness of ANN and Kriging in terms of meta-

model based optimization. Kroetz et al. [51] contrasted performance of Kriging models against

Neural Networks and Polynomial Chaos Expansion (PCE) meta-modelling techniques for a range

of structural reliability problems and concluded that Kriging and ANN models converge more

efficiently compared to PCE. Lu et al. [56] compared the approximation accuracy of the three

surrogate models in groundwater remediation process. The results showed that the ANN and

kriging models had better approximation accuracy and robustness than the PCE model.

4.2.6 Model Validation

Meta-models need to be validated before being used to confirm if it has the intended accuracy

which is consistent with the application. The accuracy of the meta-model depends on the quality

of the data set on which it was build and the meta-model type. There are several methods and

measures to access the accuracy of the meta-model. It is not enough that the meta-model fits the
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data on which is was developed it needs to be validated against new simulation points different

from the ones used to build the meta-model [27].

The most common approach to validate the surrogate model is with a leave-one out cross

validation method. The data-set S{X,Y } consisting of N input-output data point pairs (x, y)

where y is the model response at the design sample point x andN is the total number of model runs.

In p-fold cross-validation, the initial data set is split into p- different subsets that is S{X,Y } =

S1(X1, Y1), S2{X2, Y2}, . . . , Sp{Xp, Yp} then the meta-model is fit p times, each times leaving out

one of the subset from training and using the omitted subset to compute the error measure. One

other option is to leave k- out of the validation process where all possible

(
N

k

)
subsets of size k

are left out and the meta-model is fit to each remaining set, the approach is more computationally

intensive than p-fold cross-validation.

Through intensive testing Lin [53] found that the leave-one-out cross validation is not an appro-

priate measure of the accuracy instead the leave one out cross validation is actually a measurement

for degrees of insensitivity of a meta-model to lost information [53]. According to the [36] the draw-

back of the cross validation method is that it’s cost can become huge because of many meta-model

fitting processes.

Another approach is the test sample approach [36] which consists in comparing the meta-

model predictions on simulations not used in meta-model fitting process. This method requires

new calculations with the computer code where for CPU time expensive codes it can be difficult to

provide enough points. Another question is the localisation of these test points. The usual practice

is to choose an independent Monte Carlo for the test sample but in the case where the sample size

is small the proposed points can be badly localised [36]. The test sample approach can provide

incorrect results for small sizes of the test sample [36].

Other available model selection validation techniques are:

• Modified leave one out [8], which uses a correction factor for the leave one out which was

derived for the empirical error for ordinary least squares with small sample sizes [16] where

the correction factor depends on the experimental design

• Kashyap information criterion (KIC) [87] an approximation to the Bayesian model evidence,

which expresses the likelihood of observations given the model.

• Sparsity [3], using the idea that a larger basis should lead to a sparser solution when the nec-

essary basis functions enter the model, unless the ratio of basis functions to model evaluations

becomes too large.

Meta-model error

The validation method are based on comparing the meta-model predictions on simulation points

not used in the meta-model fitting process. The results give the prediction residuals and the global

quality measures such as the meta-model generalisation error and predictivity coefficient. The new

sample points are called a test sample/validation sample.

Where the test sample approach consists in comparing the meta-model predictions not used in

the meta-model fitting process. Because this method requires new calculations with the computer

code it can be difficult to obtain sufficient number of prediction points to obtain the required

accuracy in the case of time expensive code.
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The error of the meta-model (surrogate model) can be estimated via the generalisation error

defined as:

ǫ = E
[(

f(X)− f̂(X)
)2]

(4.23)

Generalisation error

where f̂ denotes the surrogate model. The estimation of ǫ can be obtained with Monte Carlo

simulation in the case when large amount of validation data is available.

The input vector X
(n)
val and the response of the n-th validation data Y

(n)
val . The mean square

error of data discrepancy is defined as:

ǫval =
1

Nval

Nval∑

n=1

(
f(X

(n)
val )− f̂(X)

(n)
val)
)2

(4.24)

and it converges to ǫ in the case the size of Nval goes to infinity. The quality of the meta-model

can be measured with the coefficient of determination (called as well as predictivity coefficient Q2)

can be computed on the test sample which gives the percentage of the explained variance by the

meta-model:

R2
val = 1− ǫval

V ar(fval)
(4.25)

Coefficient of determination

Where:

V ar(fval) =

Nval∑

n=1

(f
(n)
val − f̂val)

2/(Nval−1) (4.26)

and

f̂val =

Nval∑

n=1

f
(n)
val /Nval (4.27)

The closer the R2
val is to 1 the more accurate is the prediction of f̂ .

One of the possible issues of the meta-model is the over-fitting which means that the model

has very small fitting error but a large prediction error and generally occurs when the model has

too many parameters relative to the number of observations in the fitting set.

There are several measures of goodness of fit which take into account the residual error and the

model complexity. One method is the generalised cross validation [18] and final prediction error

[2]. Those error measures need to be evaluated on meta-models with various complexity fitted to

the same data set where the model with the lowest value is selected. If the fitting error of the

meta-model is defined as root mean squared error (RMSE) the generalised cross validation and the

final prediction error is defined as:
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RMSEGCV =
RMSE

(1− v
n
)2

(4.28)

and

RMSEFPE = RMSE
n+ v

n− v
(4.29)

where n is the number of the fitting points and v is the number of model parameters.

4.3 Meta-model validation example

Before applying the polynomial chaos expansion the Karhunen-Loève decomposition of a sample

of trajectories was computed. A numerical code for PV performance (PVZEN) was simulated for

a period of 5 days in 15 minutes interval (450 points). Four different LHS sample sizes, namely

100, 250, 500 and 1000 were used to compare how the LHS sample size is affecting the accuracy of

the PCE meta-model. The accuracy was calculated as a mean absolute percentage error (MAPE)

between the model and meta-model defined as:

MAPE =
1

n

n∑

t=1

∣∣∣∣∣
Yt − Ŷt
Yt

∣∣∣∣∣× 100, (4.30)

where Yt is the simulated value with the model and Ŷt is a simulated value with the meta-model.

The absolute value in this calculation is summed for every point and divided by the number of

points n. Multiplying by 100% makes it a percentage error. In general, more sample points give

more information for the function but at the higher computational cost.

Figure 4.5: Accuracy of the meta-model based on the DOE sample size.

In Figure 4.5 the relative difference between meta-model and model is calculated for different

LHS sample sizes. The mean absolute percentage error regarding the LHS sample size is between

0.13% and 0.43%. The mean absolute percentage error is comparable for three different sample

sizes 100,250 and 500, 0.43%, 0.37%, 0.34% respectively. The meta-model build with 100 is selected

as the final because of the satisfactory accuracy and short construction time.

Comparing the 5 days of PV production simulated with model vs meta-model with 3 sets of

different parameters in Figure 4.6 shows good accuracy of the meta-model.
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Figure 4.6: Comparing three realisations of the meta-model vs. model with same parameter
values.

Calculating the coefficient of determination show good accordance of the meta-model with the

model and it is 0.99986 in the ideal case it would be 1. For the meta-model validation a k-fold

cross validation was used. With the cross validation the sample is divided in a learning sample and

test sample. The test sample approach consists in comparing the meta-model predictions not used

in the meta-model fitting process. The meta-model is estimated on the new points in the learning

sample. The process is repeated several times where the meta model predictions are compared

with the model predictions. The Figure 4.7 show 100 realisations of meta-model on the points not

used in the meta-model construction process compared with 100 realisations of the model. For

every simulation of the meta-model a model was simulated at the same time. On the Figure 4.7

a meta-model simulation of 500W of PV production corresponds almost perfectly to the 500W

simulated with the model, all the points are on the diagonal line.

Figure 4.7: Meta model validation.

The figure 4.7 shows that the meta-model has a good predictivity, since the points are almost

on the first diagonal.
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4.4 Conclusion

Meta-model allows to emulate the computationally expensive codes with a relatively simple math-

ematical function that approximates the input/output relationship of the full code. The meta-

modeling can be categorised according to sampling, model and model fitting.

The sampling of the meta-models evolves from the design of experiments presented in the chap-

ter 2. The meta-models directly evolve from the design of experiment theory in which polynomial

functions are used as a response surfaces or meta-models. Usually the polynomial functions are

applied as meta-model, Sacks [80] proposed the use of Kriging based on stochastic models, to treat

the deterministic computer response as a realization of a random function with respect to the

actual system response.

For the non-linear problems the Kriging-models are more accurate but difficult to obtain,

according to [98] Kriging is also more flexible in either interpolating the sample points or filtering

noisy data. On the other hand a polynomial model is easy to construct, it is computationally

cheap but it is less accurate than the Kriging model [40].

One of the most important steps of building meta-model is their validation. Meta-models need

to be validated before being used as a surrogate of the computationally intensive codes. Lin [53]

found that leave one out is an insufficient measurements for meta-model accuracy. The validated

meta-model by leave one out could be far from the actual as the data points may not be able to

capture the actual behaviour.

Currently meta-model is mostly used for approximating models and they behaviour where the

models are usually used as ”black-box” functions. According to [98] the focus on sampling should

shift to how to generate a minimum number of sample points intelligently so that the meta-model

reflects the real ”black box” function of interest.

The results of the chapter show that the meta-model obtained with the PCE on the PV yield

code shows almost perfect agreement with the initial model. The meta-model validation shows that

the coefficient of determination is 0.99986 which means that the meta-model can explain almost

all the variability of the model.
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Chapter 5

Calibration

The chapter gives an overview of different calibration techniques and the application on the out-

door PV data. In the case where the IV curve measurements are available from the PV field the

calibration is straightforward using a simple single diode model to estimate the parameter values in

certain operating conditions. Because IV curves are usually not available from the PV field the cal-

ibration using only the maximum power is presented. Because of the model over-parameterization

and measurements noise the parameter identification can be difficult. At the end more a robust

calibration procedure using Approximate Bayesian Computation is presented
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5.1 Calibration

Calibration consists of searching for a set of values of the unknown inputs such that the observed

data fit as closely as possible to the corresponding outputs of model [47]. To solve the minimization

problem usually many code calls from the model response represented by f(x) are needed before

reaching the optimal solution or desired accuracy with the set objective function. Verifying the

model usually requires that the parameters are validated against experimental data where the

model accuracy can be assessed. By tuning the parameters we can usually improve the model

accuracy. The parameters can either be tuned manually or by an optimization aimed at minimizing

the difference between experimental data and the model response.

Calibration intends to find the parameters by minimizing the sum of squared differences between

the output and the experiments. The general approach of the calibration is summarized in the

Figure 5.1.

Initialize model
1st parameter set

Run simulation

Calculate
the RMSE

Modify parame-
ters inside bounds

Convergence

Stop

No

Yes

Figure 5.1: Calibration Loop.

The objective function considered is following:

Qobj(θ) =

√√√√1

2

M∑

i=0

(Y sim(ti, θ)− Y meas(ti))2 (5.1)

Objective Function RMSE
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where Y sim is the model output trajectory and Y meas are the measurements. The parameters to

be estimated are θ and M is the number of measurements at the time points ti.

The calibration problem generally corresponds to the minimization of the objective function

Qobj(θ):

minimize Qobj(θ)

s.t θ ∈ Ω
(5.2)

where Qobj , R
n → R, θ ∈ R

n is the decision variable (parameters to calibrate) and Ω ⊆ R
n is

the constraint set (or feasible set). Here the s.t. is a short hand notation for ’subject to’. Typically,

the set Ω is given in a functional form:

Ω = {θ ∈ R
n | gi(θ) ≤ 0, i = 1, ...,m, hj(θ) = 0, j = 1, ..., k} (5.3)

for some functions gi , hj : R
n → R.

An optimal solution θ∗ (also referred to as the argmin of Qobj over Ω) is a point in Ω that

satisfies:

Qobj(θ
∗) ≤ Qobj(θ), for all θ ∈ Ω (5.4)

5.2 Optimization algorithms

There are many available optimization algorithms that can be used for solving a specific optimiza-

tion problem. The optimization problems can be divided into local and global where the local

ones attempts to find the local optimum without the guarantee that the local optimum will be the

global one. In the cases with several local optima different results can be obtained depending on

the starting conditions of the optimization. The majority of the optimization algorithms uses the

gradient information to find the optimum solution. Gradient based algorithms are usually efficient

and can solve problems with many design variables [15]. Gradient-based algorithms can identify

only the local optima. One of the possible solutions in dealing with multiple local optima is to use

a multi-start approach where multiple local searches are performed with different starting points

[77].

If global optimum is needed, global optimization algorithms are used and can be classified

into two main categories: deterministic and stochastic [101]. Deterministic algorithms solve an

optimization problem with generating deterministic sequence of points which are converging to the

global minimum. Such algorithms will give the same results every time and behave predictably.

To apply deterministic algorithms the optimisation problem should have certain mathematical

properties.

On the other hand the stochastic optimization algorithms are using randomly generated points

which are used for non-linear local optimization search procedures. Compared to the deterministic

approaches they usually have fewer restrictions and do not require any gradient information.

The drawbacks of the stochastic algorithms include poor constraint-handling abilities, problem

specific parameter tuning and limited problem size [96]. Typical stochastic optimization algorithms

include genetic algorithms, evolutionary strategies, particle swarm optimization and simulated

annealing. The selected algorithms will be presented in the following section.
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5.3 Gradient-Based Algorithms

Gradient based optimization algorithm are using the gradient information to find the optimum

solution of the objective function. The gradient information is usually obtained using finite dif-

ference gradient calculations. Gradient based techniques are popular because they are efficient

(in terms of function evaluations to find the optimum), can solve problems with multiple design

variables and require little parameter tuning. The drawbacks of the gradient based approaches are

that they can locate only a local optimum.

Another disadvantage is that they are not efficient at solving discrete optimization problems

and are difficult to implement [96]. The difference between various gradient based optimization

algorithms is how they determine the search direction.

Newton’s Method

Newton method is one of the classical gradient based optimization algorithm. The algorithm is an

unconstrained algorithm that is derived from second-order Taylor series expansion of the objective

function about the initial design point x0.

f(x) ≈ f(x0) +▽f(x0)T (x− x0) +
1

2
(x− x0)TH(x0)(x− x0) (5.5)

Where H(x0) is the Hessian matrix that contains the second-order gradient information of the

objective function. We need to assume that the Hessian matrix is invertible. Differentiating the

equation with respect to x and setting the results equal to zero according to the Karush-Kuhn-

Tucker conditions, results in update formula for the current design point:

x = x0 −H(x0)−1▽ f(x0) (5.6)

In this form the method uses a fix step size of 1 and the search direction is provided by

−H(x0)−1 ▽ f(x0). The Newthon’s method has a quadratic rate of convergence requiring only

a single step to obtain the optimum for any positive definite quadratic function. The rate of

convergence of Newton method is at least quadratic if the following conditions are satisfied:

1. f ′(x) 6= 0 ∀ x ∈ I where I is the interval [a − r, a + r], (where a is the zero of the function

f(a) = 0, and x0 is the starting value of x) for some r ≥ |a− x0| ;

2. f ′′(x) is continuous ∀ x ∈ I

3. x0 is sufficiently close to the root a

The method has a quadratic convergence rate which is desirable, but the computational cost

associated with obtaining the second-order gradient information in the Hessian matrix makes the

method impractical in most cases [96].

Fleetcher-Reeves

The Fleetcher-Reves uses the conjugate search direction to reach the optimum. The conjugate

directions are obtained from the information obtained from the previous iteration. It has the

advantage of small computer memory requirements [96].

Broyden-Fleetcher-Goldfarb-Shanno (BFGS)

The BFGS makes use of the information obtained from the previous n iterations to find a new search

direction. Numerical experiments indicate that BFGS is method is the most efficient variable metric
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method. The BFGS creates an approximation of the Hessian matrix where this approximation is

updated after each iteration with the first-order gradient information from that iteration. The

method is known as quasi-Newton method [96].

5.4 Gradient Free Based Algorithms

The development of gradient-free optimization algorithms-also referred as a black box optimization-

was driven by the increasing complexity of optimization problems in simulation studies where gra-

dient information is rarely available. Even if gradient information is available it can be difficult and

unreliable to compute it. Non-gradient optimization methods do not require gradient information

to converge to the optimum solution. These methods rely on function evaluations of the objective

function to reach convergence.

5.4.1 Nelder-Mead simplex algorithm

The Nelder-Mead algorithm starts with a initial set of points that forms a simplex. In each

iteration the objective function values at the corner points of the simplex determine the worst

corner points. The algorithm replaces the worst points with new vertex in a way that results in the

new simplex. Candidate replacement points are obtained by transforming the worst vertex with

various operations on the centroid of current simplex [75].

5.4.2 Generalized pattern search (GPS)

GPS generalizes direct pattern search. At the beginning of a new iteration, GPS search by ex-

planatory moves. From the current iteration GPS defines a set of points that form a pattern,

determined by a step and generating a matrix that spans in R
n [75].

5.5 Evolutionary algorithms

Evolutionary algorithms are based on principles of biological evolution and became popular in the

last three decades. Evolutionary algorithms do not require any gradient information and make use

of a populations set to find the optimum design. The methods are inspired by phenomena from

nature and have the advantage of being extremely robust to find a global or near global optimum.

The drawbacks associated with these algorithms are high computational costs, poor constraint-

handling abilities, problem-specific parameter tuning and limited problem size [96].

The well known evolutionary algorithms are the Genetic Algorithm (GA) [41], which was in-

spired by Darwin’s principle of survival of the fittest and Particle Swarm Optimization (PSO)

which is based on the social model [22].

The basic steps of Genetic Algorithm (GA) are illustrated in the figure bellow.
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Figure 5.2: Basic evolutionary algorithm [96].

The first step is to create a random initial population where the population size does not change

during the optimization. The population is ranked based on the fitness of the objective function

of each individual and parents are randomly selected for reproduction. The parent designs are

selected in such way that the individuals with the higher rank have a higher probability of being

selected. The next generation is created by mixing the selected parents with cross over. The next

generation is ranked again and the whole process is repeated until convergence is reached.

5.5.1 Covariance Matrix Adaptation Evolution Strategy (CMA-ES)

CMA-ES is a stochastic, derivative-free methods for numerical optimization of non-linear or non-

convex continuous optimization problems [30]. It is broadly based on the principle of biological

evolution, namely the repeated interplay of variation (via recombination and mutation) and se-

lection: in each generation (iteration) new individuals (candidate solutions, denoted as x) are

generated by variation, usually in a stochastic way, of the current parental individuals. Then,

some individuals are selected to become the parents in the next generation based on their fitness

or objective function value f(x). Like this, over the generation sequence, individuals with better

and better f-values are generated. Problem can be stated as: Given an objective function:

f : χ ⊂ R
n −→ R (5.7)

Minimize f in a black-box scenario (direct search, no gradients)

Figure 5.3: Black-Box Scenario.

The problem domain specific knowledge is used only within the black-box. Objective is

• convergence to a global essential infimum of f as fast as possible

• find x ∈ χ with small f(x) value using as few black-box calls as possible
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The optimization is based on stochastic search:

Initialize distribution parameters θ, set population size λ ∈ N while not terminate:

• Sample distribution P (x|θ) −→ x1, ..., xλ ∈ R
n

• Evaluate f on x1, ..., xλ

• Update parameters θ −→ Fθ(θ, x1, ..., xλ, f(x1, ..., f(xλ))

For the application of the CMA-ES, an initial guess, an initial standard deviation (step-size, vari-

ables should be defined such that the same standard deviations can be reasonably applied to all

variables) and, possibly, the termination criteria (e.g. a function tolerance) need to be set by the

user [30]. With CMA-ES calibration we are not taking into account the discrepancy between the

model output and the measured data. With CMA-ES the best possible set of parameter values

are calibrated to match as closely as possible to the observed values.

Bayesian Calibration of Computer Models

In the Bayesian calibration context the relationship between the observations z1, the true process

ζ(·) and the computer model output η(·, ·) can be represented with in the equation as presented

by the Kennedy and O’Hagan [47]

zi = ζ(xi + ei) = pη(xi, θ) + δ(xi) + ei (5.8)

Where ei is the observation error for the ith observation, p is an unknown regression parameter

and δ(·) is a model inadequacy (model discrepancy) function that is independent of the code

output η(·, ·). The discrepancy between the model output and the measured data is modelled

as an occurrence of a Gaussian process that yields a random function over the domain of input

variable space. In this context calibration can be used to calibrate code on the data collected on

the PV site to forecast the behaviour of the PV plant over the next period.

Carmassi [13] was focusing on the Bayesian calibration of a PV plant to reduce the uncertainty

of the PV yield assessment. To reduce the discrepancy or model error of the computational code

various Bayesian calibration approaches were presented. The overall uncertainty of PV forecast

was reduced for approximately 4%. The drawback of the approach is not considering degradation

in the PV production forecast which could have a big impact on the Levelized Cost of Electricity

(LCOE).

5.6 Calibrating when IV curve measurements are available

From an EDF monitoring test site located in a “Csa” dry-summer or Mediterranean climate (ac-

cording to the Köppen-Geiger climate classification) large quantities of data were collected in 1

minute interval. 8 years of IV curves measurements from Poly Si 60 cells module were used to

estimate the difference in parameter values at the first year of the installation and in one year

after 8 years of outdoor operation. The number of data points in each period were comparable.

Maximum power point and the fill factor were extrapolated from the I-V curves. Weather data in-

cludes irradiance in plane of array, ambient temperature and module temperature. Missing values,

outliers representing measurement or sensor error were omitted from analysis.

Selecting IV curves

To evaluate the parameter values in different operating conditions the narrow window method is

used (Figure 5.4) where parameters are extracted at certain outdoor temperature and irradiance
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conditions, initially chosen from standard IEC 61853-1. Without translating to STC conditions

the uncertainty of the measurements is reduced. We defined narrow windows with a range of G

±2W/m2 and T±1◦C. The size of this window is a compromise between sufficient number of data

points and acceptable spread between IV curves measured within the same year. Data from high

irradiation conditions are used since they show less spread and additional filtering of 2 standard

deviations around the mean values was used to additionally control the spread of measured and

estimated values.

Figure 5.4: Data points where IV curves are available shown over the irradiance and temperature
domain. The initial reference points are depicted in red.

Figure 5.5: Example of selected IV curves at irradiance=1000 ±2W/m2 and module temperature
T = 50 ±1◦C.

5.6.1 Parameter Estimation with a Single Diode Model

The focus of the approach is to track the evolution of estimated single diode parameters from

measured IV curves in stable irradiation and temperature conditions to gain insights into the

degradation of PV devices. The evolution of single diode parameters, namely the series resistance

(Rs) and shunt resistance (Rsh) could at least partially reveal the fundamental mechanisms of

degradation and their influence on the open circuit voltage Voc, short circuit Isc and Pmpp. There-

fore, both Rs and Rsh need to be recognized and we need to understand their evolution with
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changing irradiance and temperature conditions in order to improve the module performance fore-

cast. The IV curves for the parameter estimation were selected in 4 different outdoor operating

conditions from the narrow windows method namely (Figure 5.4):

• 1000W/m2 − 50 C◦

• 1000W/m2 − 45 C◦

• 950W/m2 − 45 C◦

• 900W/m2 − 40 C◦

High irradiation conditions were chosen because the IV curves variation is reduced. The initial

parameter values for calibration with CMA-ES were estimated from the first year IV-curve mea-

surement at 4 different operating conditions.

The absolute error of CMA-ES optimization that is acceptable for convergence was set on

the 1.e-5 function value and the optimization procedures converged for every IV curve parameter

estimation in around 5000 iterations with the Root Mean Square Error (RMSE) between 0.005-

0.008. Figure 5.6 shows the convergence of parameters over the number of iterations.

Figure 5.6: Convergence of parameters for a single IV-curve.

The change of photo current averaged over all operating conditions Figure 5.7 is -4.7% where

the values of photo current do not show any temperature dependencies.

Figure 5.7: Evolution of photo current in various operating conditions.
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Comparing the values of series resistance at the beginning of the lifetime and after 8 years of

field operation in 4 different operating conditions do not shows any changes in the slope (figure

5.8). Averaging over all operating conditions the increase in Rs is 9.4% after 8 year. The values

of the Rsh do not show considerable changes after 8 years of outdoor operation.

Figure 5.8: Evolution of series resistance in various operating conditions.

In order to improve the module performance forecast and service life prediction the temporal

evolution of the parameter and their dependency on changing irradiance and temperature condi-

tions needs to be understood (Figure 5.9). Currently the temperature dependency is not modelled.

Moreover a estimation with confidence interval or hypothesis test should be done to draw conclu-

sions because the uncertainty has to be taken into account.

Figure 5.9: Series Resistances temperature dependence.

5.6.2 Conclusion

The approach of outdoor IV curves parameter estimation methodology was applied to study the

degradation process on PV. The method with IV curve measurement relies on single diode circuit

based model of PV electrical characteristics. The approach is based on a narrow window method

of different environmental conditions (irradiation and temperature) combinations and allows to

analyze the outdoor data without the conversion to STC conditions.

The results show that the main aging factor of fielded PV module is the decrease of short-circuit

current where the main power loss is supposed to be caused by the optical degradation of the PV
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modules followed by the increase of series resistance. Possible degradation modes affecting the

analyzed module are yellowing or browning of EVA, delamination and appearance of bubbles or

anti-reflecting coating degradation. Increase in series resistance suggest that there is a possible

corrosion on metal bars or interconnections in the PV modules.

5.7 Calibration related issues

In many physical models the parameters are not directly measurable but only accessible indirectly

through their impact on measured entities which are typically some time varying signals responding

to some applied perturbations. Before calibrating the model and estimating the model parameters

the question that needs to be answered is if the model structure is identifiable.

A model is said to be identifiable when, given an infinite amount of data, it is possible to

uniquely estimate the true values of the model parameters. The uniqueness property implies

that different values of the model parameters generate different probability distributions of the

observable variables. Conversely if two or more sets of parameters generate identical distributions

of the observed values the model is not identifiable. The parameter identification problem is often

an ill-posed problem (it is a problem whose solution is not unique).

In some cases is may be still possible to uniquely identify a subset of model parameters in this

case the model is partially identifiable [52].

Ordinary differential equation Ordinary Differential Equation (ODE) models often contain a

large number of parameters that must be determined from measurements by parameter estimation.

For a parameter estimation procedure to be successful, there must be a unique set of parameters

that can have produced the measured data. In the model calibration and parameter estimation

process the identifiability analysis addresses the question whether is it possible to uniquely recover

the model parameters from a given set of data. For ordinary differential equation models (ODE)

the problem can be divided into two groups:

• Practical or numerical identifiability: practical calibration issues which comes with the real

data: measurement noise, bias etc.

• Structural identifiability: the property of structural identifiability is independent of real

experimental data. The structural identifiability is determined as follows:

Let f(x) be a fixed model structure with a set of parameters x = (x1, ..., xnx
). f(x) describes

the relationship between input variables and observables. Let us denote by f(x) = f(x∗) the

equality of the input-output behaviour of the model structure obtained for the two parameter sets

x, x∗. A parameter xi = (1, ..., nx) is structurally identifiable if the equality f(x) = f(x∗) implies

that the xi = x∗i that is:

f(x) = f(x∗) ⇒ xi = x∗i (5.9)

A model is structurally globally (or locally) identifiable if all its parameters are structurally

globally (or locally) identifiable. A model is non-identifiable if at least one of its parameters is

non-identifiable. A mathematical rigorous definition of structural identifiability is given by Walter

and Pronzato [97]. In short, the identifiability issue can be described as the phenomenon that the

distribution of the observed data from physical system does not uniquely determine the value of

the corresponding calibration parameter given the computer model [99].
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5.7.1 Sensitivity Based Identifiability

The idea of the sensitivity analysis can be also used to evaluate the ”locally-at-a-point” identi-

fiability of the unknown parameters [61]. The sensitivity based identifiability does not require

experimental data, and does not directly use the model structure information. A nominal param-

eter value is required for the sensitivity based approach. The parameter identifiability is evaluated

with respect to a specific point in a parameter space.

The sensitivity of measurable model responses with respect to parameter values can be used to

assess the identifiability of unknown parameters. If the locations and the number of time points

at which the model responses will be measured have been given, denoted by t1 ≤ t2 ≤ · · · ≤ tN ,

then the sensitivity coefficient at each time point tk(k = 1, 2, ..., N) for a given nominal parameter

vector θ∗ is defined as:

sij(tk) =
∂yi(tk, θ

∗)

∂θj
(5.10)

where yi(i = 1, 2, ..., d) denotes the ith component of y(y ∈ R
d) and θj the jth(j = 1, 2, ..., q)

component of θ(θ ∈ R
q). The sensitivity matrix for all time points is defined as:

SdN×q =




s11(t1) · · · s1q(t1)

· · · . . . · · ·
sd1(t1) · · · sdq(t1)

...
...

...

s11(tN ) · · · s1q(tN )

· · · . . . · · ·
sd1(tN ) · · · sdq(tN )




(5.11)

There are various identifiability analysis techniques which have been developed based on this

sensitivity matrix. Generally the larger the sensitivity coefficients are, the more sensible the model

response is with respect to the changes of parameters. A parameter is likely to be practically iden-

tifiable if the model output is highly sensitive to small perturbations of this parameter, otherwise

the parameter is likely to be practically unidentifiable [61]. In the case there is a high correlation

between any of two parameters in the model it is probable that they will be indistinguishable from

each other. There are many available methods: the correlation method, the principle component

analysis method [42], the orthogonal method [37] to check the model parameters sensitivity.

5.8 Calibration when only power measurements are avail-

able

IV curves are rarely available from real PV power plants. Usually the information about Pmpp is

available and sometimes separated values of Impp and Vmpp. The current method uses only the

Pmpp data together with the PV data sheet values and corresponding weather files.

One of the issues with calibrating only the Pmpp data is the possibility of multiple solutions in

the calibration process. The Pmpp is calculated as a

Pmpp = Impp × Vmpp (5.12)

Pmpp
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5.8.1 Available data

The model code represents a test plant of 12 series connected panels installed on EDF site Les

Renardieres in Moret sur Loing, France. Data is available for a period of multiple months where the

instantaneous power (Pmpp) is recorded every 10 seconds. The production data and weather files

are constantly checked for any recording errors. In the computational code the change in weather

conditions has an instantaneous effect on the power without any delay. The input variables contain

all the weather data:

• t: the UTC time since the beginning of the year in seconds,

• L: the latitude in ◦

• l: the longitude in ◦

• Ig: global irradiance (GHI) (normal incidence of the sun ray to the panel) in W/m2

• Id: diffuse irradiation (DGI) (horizontal incidence of the sun ray to the panel) in W/m2

• Te ambient temperature in ◦C

The weather file variables were averaged over the period of 10 minutes. Entries without recorded

data were removed from analysis.

Figure 5.10: Example of simulated PV production for a period of 4 days with real meteorological
data.

Example of simulated PV production for a period of 4 days starting at 1st August 2014 with

the weather file from the EDF PVZEN PV plant located in Les Renardieres in 5 minute time step

(Figure 5.10). The simulated PV production with Dymola is highly volatile because of the passing

clouds above the irradiation sensor. The simulation with the Dymola software needs approximately

40 seconds to compute the Pmpp on the personal computer with i5 2 Ghz processor.

5.8.2 Calibration on Outdoor Data

Single day of Pmpp, PV production data from the EDF monitored site PVZEN was used to tune

the computational code parameters to the observed values. Usually because of the numerical

approximations and input file measurement errors we are not able to mimic fully the physical
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process. Even with the best possible set of parameters there will be a discrepancy between the

code output and observed data.

Dictionary of used terms:

• NOMINAL Simulated PV performance with the data sheet values of PV manufacturer with

the technology related parameters

• MEASURED the real measured outdoor PV performance data

• CALIBRATED Calibrated parameter values obtained with CMA-ES

The nominal values of parameters are obtained from module data-sheet values while the values

of Rs and Rsh are obtained from fitting the IV curves from analyzed modules. Nonlinear least-

squares fitting algorithm had been applied to fit the double diode model parameters and extract

the values of Rs and Rsh.

5.8.3 Parameter constraints

Prior to the calibration process the parameter bounds needs to be defined. Most parameters in the

model are limited to a specific range taken from the literature or based on the expert knowledge. It

is common procedure to set the parameters range acceptable to the analysis. The defined bounds

need to have a physical meaning so that the interpretation of the calibration results is meaningful.

The parameter constrains are the same as those used for the sensitivity analysis of the model.

Parameters Nominal Value Bound

Isc (A) 5.44 [4,9]

Rs (Ω) 0.00012 [0.00001,0.0009]

Rsh (Ω) 0.14745 [0.015,0.45]

Ms 3 [2.8,3.2]

nDs 1 [0.8,1.1]

Ar 0.17 [0.12,0.25]

Table 5.1: Parameter constraints for calibration.

The convergence criteria for CMA-ES calibration was set on 2000 function evaluations or tol-

erance of 0.05 on RMSE where the calibration was terminated after one of the two defined criteria

was reached. For the calibration the parameters are normalized to have a comparable sensitivity.

Parameters Nominal value Calibrated

Isc (A) 5.44 6.895

Rs (Ω) 0.00012 0.000078

Rsh (Ω) 0.14745 0.4499

Ms 3 3.199

nDs 1 1.199

Ar 0.17 0.12

RMSE 98.26 89.56

Table 5.2: Calibrated parameters.
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Figure 5.11: Calibrating a single day of PV production.

With the new set of the parameters the overall improvement of the RMSE of the calibrated

model (optimized) is around 15%. On the figure 5.11 is evident that the discrepancy between the

computational code and measured values is still substantial regardless of the calibration. To see

if the calibration procedure is converging 2000 function evaluations are plotted against parameter

values.

Figure 5.12: Number of function evaluations vs normalized parameters values with initial bounds.

The parameters on the figure 5.12 reached the minimum or maximum calibration bounds

during the calibration procedure.

• Rsh Shunt Resistance MAX

• Ms Temperature exponent of the saturation current MAX

• nDs Diode Ideality Factor MAX
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• Ar Transmission factorMIN

The calibration result on the outdoor data shows that the calibration is not converging because

the parameter values are reaching their boundaries. The parameter bounds for the calibration

could be increased for the calibration to converge without reaching the defined boundaries, but in

this case the physical interpretation of the parameters would be meaningless. The possible issue

is that the calibration model is overparameterized i.e. model having more parameters than can be

estimated from the data.

5.8.4 Structural identifiability

Structural identifiability is a property of a model structure that ensures that parameters can be

uniquely (globally or locally) determined from knowledge of the input-output behaviour of the

system [46]. The theory is explained in detail in chapter 5.7.

The data was simulated with Dymola with known parameter values and then calibrated to see

how will the estimated parameter values differ from the initial ones. The convergence criteria for

CMA-ES calibration was set on 2000 function evaluations or tolerance of 0.05 on RMSE where the

calibration was terminated after one of the two defined criteria was reached.

The calibration was performed on one two day period simulated with nominal values. A weather

file of 10 minute time step was used to generate data point for the period. The initial parameter

values for calibration where chosen at random from the LHS obtained sample.

Figure 5.13: Calibration with 6 parameters, not stabilized after 2000 function evaluations.

Observing the evolution of parameters with the number of function evaluations the parameters

are not stabilizing even after 2000 function evaluations.
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Parameters Nominal Calibrated

nDs 1 0.82

Rs (Ω) 0.00012 0.0.00049

Rsh (Ω) 0.14745 0.1228

Ms 3 3.34

Isc (A) 5.44 4.631

Ar 0.17 0.14

RMSE 24.21

Table 5.3: Calibrating 6 parameters.

Comparing the calibrated parameter values with the nominal values show large differences. The

calibration is not converging and the RMSE remains relatively high. Simulating and comparing

the daily PV production with the calibrated and nominal parameter values show small discrepancy

(Figure 5.14), while the difference in nominal vs calibrated parameter values is large.

Figure 5.14: Comparison of the PV production with the calibrated and nominal parameter values.

Reducing the number of parameters

One of the possible issue is the overparameterization of the model we are trying to calibrate.

Parameters were removed from the model and just the most influential ones were chosen for

calibration. Parameters nDs and Rs were chosen based on the sensitivity analysis results like

the most influential ones. All the parameters are scaled to the interval [0, 1] to be comparable.
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Figure 5.15: Calibration with 2 parameters.

For two parameters Rs and nDs the RMSE stabilizes after approx. 150 function evaluations

at the value 0.22. The model synthetic model parameters are identifiable.

Parameters Nominal Calibrated

nDs 1 0.99164

Rs (Ω) 0.00012 0.000121

RMSE 0.021

Table 5.4: Calibrating 2 parameters.

Figure 5.16: Calibration with 3 parameters.
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With the reduced number of parameters the model is clearly identifiable on the synthetic

simulated data. Additional parameters will be included into the calibration procedure to see which

parameters are unidentifiable.

Parameters Nominal Calibrated

nDs 1 0.999

Rs (Ω) 0.00012 0.00012

Rsh (Ω) 0.14745 0.14742

RMSE 0.00172

Table 5.5: Calibrating 3 parameters.

With 3 parameters (Diode Ideality Factor-nDs, Series Resistance-Rs and Shunt Resistance Rsh)

the parameters of the model on the simulated data are fully identifiable, the calibrated parameters

are equal to the initial ones with the RMSE equal to 0.00172. The results on the structural

identifiability show that the model with the reduced number of parameters is identifiable.

The accuracy of the calibrated parameters depends on the discrepancy between the computa-

tional code and the measured values. One of the issues in the calibration procedure are the initial

parameter constraints. The parameter bounds were defined with the physical meaning of all the

possible parameter values while in the calibration procedure the normalized values were reaching

the bounds of the possible defined values. With the new parameter bounds the RMSE is improved

but the parameter values are far from nominal ones.

Because the calibration procedure is performed on the noisy outdoor data the discrepancy

between the simulated and measured data is causing convergence issues. A new approach which is

more robust is presented in the following section.
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5.9 Approximate Bayesian Computation (ABC)

The approximate Bayesian computation (ABC) algorithm is introduced as a alternative to deal

with model selection and parameter estimation. The ABC is a class of computational methods

based on the principles of Bayesian statistics (Equation 5.14).

p(θ|y) = p(y|θ)p(θ)
p(y)

(5.13)

Bayes theorem

Where:

• p(θ|y) = posterior

• p(y|θ) = likelihood

• p(θ) = prior

• p(y) = evidence

In the classic statistical inference the likelihood function has the central importance since it

expresses the likelihood of the observed data under a particular statistical model and quantifies

the selection of parameter values and models. The ABC method allows one to avoid the evaluation

of the likelihood function which can be computationally costly.

The basic idea of the likelihood-free ABC algorithm was first described by Rubin [76] in 1984

where the method was presented in the intuitive way where he states that ‘Bayesian statistics

and Monte Carlo methods are ideally suited to the task of passing many models over one data

set’. It offers an almost automated resolution of the difficulty with models which are intractable

but can be simulated from. Rubin does not promote this simulation method in situations where

the likelihood is not available but rather exhibits it as an intuitive way to understand posterior

distributions from a frequentist perspective, because parameters from the posterior are more likely

to be those that could have generated the observed data.

The ABC method was firstly proposed in population genetics by Tavare et al in 1997 [95], who

introduced approximate Bayesian computational methods as a rejection technique bypassing the

computation of the likelihood function via a simulation from the corresponding distribution. The

algorithm can be written as:

Algorithm 1 Likelihood-free rejection sampler

for i=1 to N do
repeat
Generate θ from the prior distribution π(·)
Generate D sample from the likelihood f(·|θ)

until ρ{D,Dobs} ≤ ǫ
set θ=θtrue

end for

In the case of model selection and parameter estimation Abdessalem et al. [1] implemented

the likelihood-free ABC method in non-linear system identification problems. The results showed

that the method is quite promising for parameter estimation from complex systems. Work from
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Hazra et al [31] applied the ABC with the Monte Carlo Markov Chain approach for the parameter

estimation from noisy degradation measurement. They show that the method is highly efficient

compared to the traditional likelihood-based models without compromising the numerical accuracy.

Approximate Bayesian Computation (ABC) avoids the direct evaluation of likelihood function

and approximates it with generated synthetic data from model simulations.The logic behind ABC

is that θ∗ should be a sample from the posterior distribution as long as the distance between the

observed and measured values is less than some positive value.

The vector of the model parameter is denoted as θ = {x1, x2, x3} and the observed data is

denoted as Dobs = {y1, y2, ..., yn}. The ABC algorithm approximates the posterior distribution

f(θ|Dobs) by generating samples from a joint distribution of the parameter vector θ and simulated

data D using forward modeling and accept-reject mechanism.

To avoid the likelihood evaluation, first a set of candidate parameter vectors {θ1, θ2, ...} is

generated by sampling from the prior density f(θ) and then simulates the corresponding set of

complete data sets {D1, D2, ...} from a model M(D|θ) and accepts the combinations of {θn, Dn}
which satisfy the condition ρ(D,Dobs) ≤ ǫ where the ǫ is a defined threshold measure.The final

results from the algorithm are the samples of parameter vectors and simulated data from the

distribution f(θ,D|ρ(D,Dobs) ≤ ǫ). The approximated posterior distribution can be written as:

f(θ|Dobs) = ∫ f(θ,D|ρ(D,Dobs) ≤ ǫdD (5.14)

where f(θ|Dobs) is the marginal ABC posterior of θ.

5.9.1 The ABC rejection Algorithm

The D is accepted with tolerance ǫ ≥ 0 if:

ρ(D̂,D) ≤ ǫ (5.15)

the distance measure ρ(D,Dobs) is the discrepancy between D and Dobs based on defined metric.

A positive tolerance is necessary since is almost impossible that the simulation is equal to the data.

The outcome of the ABC rejection algorithm is a sample of parameter values with the smallest

discrepancy between the simulated D and Dobs. The accepted θ are approximately distributed ac-

cording to the desired posterior and obtained without explicitly evaluating the likelihood function.

The whole procedure can be summarised in the Figure 5.17
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Figure 5.17: Parameter estimation by Approximate Bayesian Computation [94].

5.10 Available Data

The data consist of 1 day of 15 minute time step PV measurements from Bolzano airport (EURAC)

2 x 10 Kyocera poly crystalline modules with the nominal power of 4200 Wp were used for analysis.

The measured data consist of:

• PmppAC Power at maximum power point in alternating current (W)

• PmppDC Power at maximum power point in direct current (W)

• Impp Current at maximum power point (A)

• Vmpp Voltage at maximum power points (V)

The measured weather files are following:

• DHI Diffuse Horizontal Irradiation (W/m2)

• GHI Global Horizontal Irradiation (W/m2)

• POA Plane of Array Irradiation (W/m2)

• Module temperature (◦C)

• Ambient Temperature (◦C)

• Wind Speed (m/s)

The electrical performance of the modules was simulated with the Dymola code using the two

diode physical model. For the weather input files the GHI, DHI, ambient temperature and wind

speed was used.

The computer code considered is deterministic and can be denoted as:
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fc = (X, θ) (5.16)

θ 7−→ y

The computer code does not take X as an input parameters because they represent the me-

teorological variables (input variables). The parameter vector θ has 28 variables related to the

electrical properties of the PV panels and mounting configuration.

A single day PV performance was simulated with the nominal parameter values. The nominal

parameter values were determined from the manufacturer data sheet. Most parameters in the

physical model are limited to a specific range taken from the literature or based on the expert

knowledge. The parameters for calibration were selected based on the sensitivity analysis results

and because of their relation to the degradation processes.

To approach the posterior distribution of the model parameters 6000 uniform random samples

from the model parameter space were generated and used as an input data for the computational

code realisations. The ABC calibration is based on the equation 5.9. The discrepancy between the

model and the measured data is added as a Gaussian noise.

The information about the computational code can be obtained from studying the probability

distribution of the output from 6000 simulations the best 1 % of results (60) with the smallest

RMSE were selected for comparison. The computational time for generating 10000 samples from

the model was approximately 16 hours.

Parameters Nominal Calibrated

Rs (Ω) 0.000129 0.000118

Rsh (Ω) 0.1790 0.18561

Isc (I) 6.54 6.4419

RMSE 1.8628

Table 5.6: Approximate Bayesian Calibration comparison.

Using the ABC to calibrate the code to the outdoor measured power shows good accordance

with the nominal values of the parameters. The drawback of the ABC method is that is compu-

tationally intense, calibrating a single day with 10000 function evaluations takes approximately 16

hours on a i5 2 Ghz personal computer .

5.11 Calibration on meta-models

The main motivation of using the meta-model is for the purpose of calibrating complex computer

codes that are often too time expensive to be used directly for optimization purposes. Instead of

optimization of the full computer model the meta-model is optimized where computational burden

of large number of function evaluations is avoided. Meta-model based calibration is suitable for

problems with the limited number of design variables.

Meta-model based calibration simplifies the direct optimization because the implicitly repre-

sented stochastic response of the simulation is replaced by an explicit deterministic meta-model

response function. Validating the meta-model is a crucial step because using a meta-model which

approximated the original objective function badly cannot lead to reliable calibration results. Cal-

ibration and parameter estimation adds an additional source of uncertainty into the calibration

process where the calibration success is directly related to the accuracy of the meta-model.
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The main steps of meta-model optimization are shown in the figure: 5.18.

Sample design space

Build meta-model

Validate the meta-model

Optimization
on meta-model

Figure 5.18: Meta-model based optimization.

5.12 Example of meta-model calibration

To compare the structural identifiability of the model vs meta-model 5 days of PV production

were simulated with known (nominal) parameter values and same input weather measurements.

The structural identifiability is the possibility to uniquely estimate the true values (nominal) of

the model parameters where the parameter values are known (noise free measurements). The

estimated parameters with model and meta-model should be the same as the nominal values from

which the model/meta-model was simulated. The meta-model was build with the PCE expansion

explained in the chapter 4. Before applying the polynomial chaos expansion the Karhunen-Loéve

decomposition of a sample of trajectories was computed. For the model space explorations 100

samples from LHS were used.

Both model vs. meta-model were calibrated with the CMA-ES (Covariance Matrix Adaptation-

Evolution Strategy) with the same nominal parameter values. The calibration with the full model

with 2000 function evaluations takes approximately 10 hours while on the meta-model it takes

approximately 3 seconds on a personal computer with i5 2 Ghz.

Parameters Nominal Bounds

Rs (Ω) 0.000129 [0.0001-0.00025]

Rsh (Ω) 0.1790 [0.07-0.25]

Isc (I) 6.54 [6-9]

Table 5.7: Selected parameters with their bounds

Table 5.7 shows the selected parameters nominal values and the corresponding bounds used for

calibration with CMA-ES.

Parameters Nominal Calibrated Model Calibrated Meta-model

Rs (Ω) 0.000129 0.000128 0.00013

Rsh (Ω) 0.1790 0.17951 0.1791

Isc (I) 6.54 6.539 6.5419

RMSE 1.178 1.702

Table 5.8: Model vs meta-model calibration results.
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Comparing the calibration results (table 5.8) show no difference in estimated parameters. With

the meta-model we are able to highly improve the calibration efficiency while not sacrificing the

accuracy of the calibrated parameters. The difference between the calibrated parameters Rs, Rsh

and Isc is minimal. The RMSE in both cases is almost identical.

5.13 Conclusion

The objective of the chapter is to obtain reliable and precise parameter values from the noisy

outdoor measurements. Calibrating the model in a various times in the lifetime of a PV plant could

help to understand the degradation mechanism behind performance loss and use they temporal

evolution for service life models.

When IV curves are available from the PV plant the parameter values obtained with calibration

can be used to diagnose the health state of the PV system. The parameters were identified where

the biggest performance drop was related to the loss of photo-current Isc followed by the increase

of series resistance Rs while the shunt resistance does not show any change over the period.

Because the IV curves are rarely available from the monitored PV sites other methods using

reduced information are needed.

The presented approach which uses only the Pmpp value of the outdoor PV plant shows that the

parameters obtained are not accurate enough to be used for service life modeling. The accuracy

of the calibrated parameters depends on the discrepancy between the computational code and

the measured values. One of the issues in the calibration procedure are the initial parameter

constraints. The parameter bounds were defined with the physical meaning of all the possible

parameter values while in the calibration procedure the normalized values were reaching the bounds

of the possible defined values. With the new parameter bounds the RMSE is improved but the

parameter values are far from nominal ones.

Checking the structural identifiability of the computational code shows that the model is iden-

tifiable with reduced numbers of parameters. Because of the noisy outdoor measurements the more

robust Approximate Bayesian calibration is presented. The ABC method is applied on the single

day of measured data where it shows good agreement with the initial nominal parameter values.

The drawback of the method is that is time consuming and not suitable for calibrating multiple

years of outdoor data. To overcome this issue the surrogate or meta-model are presented.

To run the calibration on the meta-models the surrogate has to be as close as possible to the

initial numerical code otherwise the calibration of the parameters could loose they physical sense.

The sampling design and the number of samples have direct influence on the accuracy of the meta-

model where the main goal is to find a compromise between the meta-model accuracy and the

required number of DOE experiments for their construction.
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 
Abstract— The degradation of the performance of a photovoltaic 

(PV) plant over its lifetime can be estimated with various 

performance loss rate methods. These methods are not suitable 

for identifying root causes and degradation mechanisms from 

field data, because they only provide the overall sum of 

reversible and irreversible power loss mechanisms. The physics-

based understanding and modeling of the performance using 

only the Pmpp (Power at maximum power point) from power 

plants where IV curves are not available can be used to estimate 

circuit parameters that reflect degradation over time and 

evaluate the system’s state of health. In this paper, we propose 

an algorithm that aims to identify the degradation related 

parameters by calibrating the EDF PV yield model (PVNOV) 

based on the double diode model with the observed PV plant 

data. Approximate Bayesian computation was used for the 

calibration. The algorithm has been validated on simulated 

synthetic data (Digital Power Plant) with a known circuit 

parameter degradation evolution and an added Gaussian noise 

and discrepancy to check the uniqueness of the extracted circuit 

parameters. The results show that the evolution of the selected 

circuit parameters using only the Pmpp can be estimated. The 

proposed algorithm has been applied on 8 years of PV plant 

outdoor data. Our analysis indicates that the power decrease on 

the studied modules can be attributed to the decrease in the 

short circuit current (Isc) from 8.58A to 7.8A while the series 

(Rs) and shunt resistance (Rsh) parameters do not show any 

significant change over the period of 8 years. 

 Index Terms—Photovoltaic (PV) system degradation, double 

diode model, sensitivity analysis, calibration, approximate 

Bayesian computation. 

I. INTRODUCTION 

HE PV plant’s service life is mainly determined by the 
stability and resistance of PV modules to different 

internal and mechanical loads. These loads are closely related 
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to differences in climatic exposure depending on the location 
of the installation and affect various module technologies 
differently. The degradation rates and prevailing degradation 
mechanisms will be different depending on the chosen 
technology and its geographical location. Certain degradation 
modes are more severe in specific climatic conditions [1]. 
Estimating the degradation and understanding the underlying 
mechanisms is important to reveal the expected service life of 
a PV plant. Several performance loss rate (PLR) calculating 
methodologies have been proposed which are based on 
various statistical approaches [2], [3], [4]. These methods are 
suitable to estimate the degradation rates but they fail to 
provide any insight into the degradation mechanisms. On the 
other hand, methods like IV curve fitting to the single or 
double diode model can be applied to relate the circuit 
parameter changes to the efficiency losses and underlying 
degradation mechanisms [5], [6]. 
The IV curves measured at the module level provide detailed 
information about the performance. Parameters obtained from 
IV curves, namely the open circuit voltage, short circuit 
voltage, maximum power point voltage and current, and 
series and shunt resistance, can provide critical information 
about the performance loss. A number of different models 
exist to fit measured IV curves. Some models represent the 
full IV curves using the single diode equivalent circuit models 
such as PVSyst [7] and the De Soto Single Diode Model 
(CEC) [8]. Other models such as SANDIA PV Array 
Performance Model (SAPM) [9] and the Loss Factor Model 
(LFM) [10], [11], [12] estimate only key points on the IV 
curves such as the maximum power point (Vmp, Imp), short 
circuit current (Isc) and open circuit voltage (Voc). The LFM 
also estimates performance losses due to series and shunt 
resistances. However, outdoor measurements are rarely taken 
in the field to evaluate fault conditions and/or degradation. 
Another approach using the Suns-Vmp method [13] 
reconstructs the IV curves by using the natural illumination-
dependent and temperature-dependent evolution of circuit 
parameters (e.g. Series resistance) which may enable to 
identify the dominant degradation modes. The drawbacks are 
that both current and voltage at maximum power are 
required.  
Since IV curves are rarely available from the PV plant 
monitoring data, the challenge is to estimate the parameters 
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of the PV diode using only the measured Pmpp and the 
corresponding weather file. In this paper, the proposed 
approach is focused on the PV diode circuit parameter 
extraction from the PVNOV, EDF’s PV performance model 
using field measurements of Pmpp from polycrystalline 
modules and weather data. The precise evolution of 
degradation-related parameters from the historical PV 
performance data could help link performance losses to 
relevant degradation mechanisms and better understand the 
evolution of power degradation. 

II. METHOD 

The method is based on calibrating the selected circuit 
parameters from PVNOV at various times and monitoring 
their evolution to gain insights regarding the degradation 
modes. In this section, we will present the model, model 
parameter selection and the calibration method. 

A. Model  

To mimic the behavior of PV power plants, models have been 
developed which intend to be as close as possible to the PV 
system. Electricité de France (EDF)’s existing PV 
performance model (PVNOV) [14], written in the Modelica 
software, enables the user to model the electrical behaviour of 
any PV device under given meteorological conditions. The 
configuration of the PV plant assumes a uniform behaviour of 
every cell/module/array without considering any mismatch 
between modules.  
 The PVNOV contains several modeling layers: 

1. Double diode model 
2. Thermo-physical model (based on thermal 

exchanges), for details see [14] 
Optical reflections are taken into account in the model to 
estimate the effective irradiance on the module. According to 
Martin and Ruiz [15], the transmission coefficient can be 
obtained by:  
 

               (1) 

 
Where   and  depend on the dirtiness of the module 

and  is the angle of incidence. Each component of the 
global irradiance is reduced by a specific transmission 
coefficient described in [16]. 
 
The PVNOV model takes two kinds of inputs: variables and 
parameters. The variables are measured during the field 
experiments and include weather variables and module 
temperature, while the parameters are physical values 
defining the physical model: 

                            

),(
mod

xf                                      (2) 

 
The computer model is formulated as f

mod
.   represents the 

parameter vector of the double diode model; see Table II for 

an example.

 

x  represents the meteorological variables, 
namely global horizontal irradiation (GHI), diffuse horizontal 
irradiation (DHI) and ambient temperature (T). Wind speed 
and soiling were not yet considered here. However, the 
thermal transient behaviour of PV modules is included in the 
model [14].  
The nominal values of physical parameters are obtained from 
the module datasheet while the values of Rs and Rsh are 
obtained from fitting the IV curves from analyzed modules. 
The nonlinear least‐squares fitting algorithm had been 
applied to fit the double diode model parameters and extract 
the values of Rs and Rsh. 

B. Parameter selection 

Prior to the calibration, the most influential parameters need 
to be identified and prioritized while the non-influential 
inputs are fixed to their nominal values. At the same time, the 
selected parameters need to be related to degradation 
mechanisms. The Morris method [17] for global sensitivity 
analysis (SA) was used for the selection of parameters from 
Table I. 

TABLE I 
SELECTED PARAMETERS 

Physical 
parameter  

Alpha (%/K) Current temperature coefficient 
Isc (A) Short circuit current 

Rseries (Ω) Series resistance 
Rshunt (Ω) Shunt resistance 
Cr (A/m2K3) Saturation current temperature exponent 2 
Cs (A/m2K3) Saturation current temperature exponent 1 

Mr Coefficient of recombination 2 
Ms Coefficient of recombination 1 
nDr Diode ideality factor 2 
nDs Diode ideality factor 1 

  

The Morris method evaluates the influence of each input 
parameter by considering the impact of its variation on the 
model output while considering all the other parameters as 
constant. The Morris method enables the user to identify 
variables which can be neglected in the subsequent study. 
Before the analysis, the model parameter bounds need to be 
defined in the range of possible realizations of the physical 
system. The parameter bounds are usually determined 
empirically or by using 10% around the nominal value 
defined in the model (Table II). 
 

TABLE II 
PARAMETER NOMINAL VALUES WITH BOUNDS USED FOR SENSITIVITY ANALYSIS 

Parameter Nominal value Bounds 

Alpha (%/K) 0.037 [0.034-0.042] 
Isc (A) 8.36 [6.0-9.0] 

Rseries (Ω) 0.45 [0.35-0.9] 
Rshunt (Ω) 650 [450-1000] 
Cr (A/m2K3) 0.630 [0.450-0.842] 
Cs (A/m2K3) 3291.9 [3003.8-3505.2] 

Mr 2.5 [2.25-2.75] 
Ms 3 [2.8-3.4] 
nDr 2 [1.9-2.2] 
nDs 1 [0.9-1.2] 
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In the Morris method, the variations of each parameter are 
quantified by elementary effect (EE) denoted as μ* and the 
standard deviation of the EE denoted as σ.  
This method has two interesting properties:  
1. Large μ* values mean the j-th input parameter contributes 
to the dispersion of the output.  
2. A parameter with a large σ over mu ratio means high non-
linear effects on the output or interaction with at least one 
parameter. 

 
Fig. 1.  Morris indices obtained on the single day of PV simulation from PVNOV 

 
In fig 1, we simulated a full day (from 7.30-19:30) in 15-
minute time intervals and Morris indices were obtained for 
each time step. The influence of some parameters seems to 
depend on the time of the day: 

1. Since they have high mu values. the parameters Isc, 
nDs, and Rs contribute to the dispersion of the 
output. 

2. Since its sigma over mu is elevated, the parameter Rsh 
seems to have a non-linear effect on the model 
output. 

The parameters Isc, Rs, and Rsh were selected for final 
analysis. The selected parameters influence the power output 
and can be linked with various degradation mechanisms. The 
evolution of series and shunt resistances represents the 
summation of several loss mechanisms in a solar cell. Losses 
due to resistance introduced in cell solder bonds, emitter and 
base regions, cell metallization and cell-interconnect busbars 
contribute to the value of Rs [18]. Shunt resistance can result 
from imperfections on the device surface as well as from 
leakage currents across the edge of the cell. The Rsh value 
represents any parallel high conductivity paths across the 
solar cell junction. A decrease in Rsh reduces the current 
output whereas an increase in Rs results in a drop in the 
voltage output. The effect of reduced Rsh values is especially 
severe at low light levels, as there would be less light-
generated current. 
Work by Dyk and Meyer on crystalline silicon modules 
demonstrated that by increasing Rs from 0.36 to 1.8 both the 
Pmpp and fill factor (FF) were reduced by 25%, making it 
clear that the performance is strongly influenced by increased 
series resistance values [19]. Therefore, the evolution of Isc, 

Rs, and, Rsh needs to be recognized and understood to 
improve the module service life forecast. 

C. Calibration 

In general, the calibration problem can be represented as 
finding the best possible model parameter θ using (2) which 
fits the observed data Dobs (xi) at the same experimental 
conditions xi as good as possible. We assume that for some 
well-chosen θ the calibration model can be represented as: 
 

   ),0(~

),,0(~],...,1[:

),()(

2

2

mod










N
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iiiobs xfxD





   (3) 

Compared to the physical system, computer models are rarely 
perfect or exact due to the simplifications of complex physical 
phenomena, numerical approximations, and measurement 
uncertainties. Even if the computer model parameters are 
well-calibrated, there will be a gap between the physical 
system and its corresponding computer model known as code 
error or discrepancy. The random Gaussian noise ε in (3) 
represents the measurement uncertainty while the systematic 
Gaussian noise η represents the discrepancy between the 
model and the measured data. Both ε and η are independent 
and identically distributed random variables (iid). 

D. Approximate Bayesian Computation  

For complex models, the likelihood function might be 
computationally very costly to evaluate. Approximate 
Bayesian computation (ABC) replaces the calculation of the 
likelihood function by simulating the model that produces an 
artificial data set and comparing it with the observed data 
[20]. The logic behind the ABC is that θ should be a sample 
from posterior distribution as long as the distance between the 
observed and simulated values is less than some positive 
value. The pseudocode for ABC algorithm can be written as: 
 
ABC LIKELIHOOD FREE REJECTION ALGORITHM 

for i=1 to N do 

repeat 

Generate θ from the prior distribution π (•) 
Generate D̂ sample from model f (θ) 
until ρ {D̂, Dobs } ≤ ε 

set θ=θtrue 

end for 

 
With the rejection algorithm, a set of parameter points is first 
sampled from the prior distribution using a uniform 
distribution U (min (θi), (max (θi)) with the defined bounds 
for parameter values. The ABC algorithm approximates the 
posterior distribution f (θ| Dobs) by generating samples from 
parameter vector θ and simulating data D̂ using forward 
modeling and accept-reject mechanism. With the given 
sampled parameter point θ, a data set D̂ is simulated under 
the statistical model using (3). The process is repeated N 
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times. If the generated D̂ is significantly different from the 
observed data Dobs, the sample parameter is discarded. The D̂ 
is accepted with tolerance ε ≤ 0 if: 
 

                         

 

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




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
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n
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iobs

i N

DD
1

ˆ  (4) 

The distance measure ρ is the discrepancy between the D̂ and 
Dobs, based on the root mean square error (RMSE) in every 
simulation. Positive tolerance is necessary since it is almost 
impossible for the simulated data to be equal to the observed 
data. The outcome of the ABC rejection algorithm is a sample 
of parameter values θ with the smallest discrepancy ρ using 
(4). The accepted θ are approximately distributed according 
to the desired posterior and obtained without explicitly 
evaluating the likelihood function. In our case, the ABC 
approach showed more robust results on noisy outdoor data 
than the ones obtained with classical calibration approaches 
and enabled us to add the code error or discrepancy into the 
statistical model (3). 

III. DIGITAL POWER PLANT 

Before applying the ABC calibration algorithm on the 
outdoor PV plant measurements, the method was applied on a 
Digital Power Plant (DPP). The DPP enables simulating PV 
production from the PVNOV [14] code with defined evolution 
of selected parameters, namely: Isc, Rs, and, Rsh. The DPP 
was simulated for a period of 8 years where Isc followed a 
pre-defined monthly linear decrease, the parameter Rs 
followed a predefined monthly linear increase and the 
parameter Rsh was kept constant (see Table III). 
 

TABLE III 
PARAMETER NOMINAL VALUES AND THEIR LINEAR DEGRADATION EVOLUTION 

 
The motivation for using the DPP is to check the uniqueness 
of the extracted circuit parameters. Every month, five days of 
PV production from the DPP were selected for calibration 
because this provides enough data points and reduces the 
computational cost. The aim is to accurately capture the 
known evolution of parameters over 96 months. Every month 
10000 models were simulated using equation (3) with 
parameter samples generated from a uniform distribution. 
The bounds of parameters are defined in Table II. All the 
other parameters were kept at their nominal values. The set of 
200 parameters (2%) with the smallest threshold ρ from (4) 
on RMSE was selected. Because of the field measurement 
uncertainty, the noise was added to the data set simulated 
with the DPP to better represent typical field data. The added 
levels of noise correspond to the ones present in the field data.  
The noise and discrepancy in equation (3) was added in two 

ways: 
1. Random Gaussian noise (ε) of 2% on instantaneous 

values. 
2. Systematic Gaussian noise or discrepancy (η) of 2% 

on the monthly period of simulation. 
 
The short circuit current was estimated on 96 points (see 
Fig.2). The red intervals on every estimation point are the 
values of the 95% confidence intervals calculated on 10.000 
ABC function evaluations. The calibration of a single month 
with the ABC took approximately 4 hours on a computer with 
an Intel(R) Core (TM) i5-6200U CPU using 16 GB of RAM, 
running Windows 10. 

 
Fig. 2.  The estimated evolution of short circuit current values (blue line) 

together with the defined evolution of Isc from DPP (straight black line) and the 
RMSE (red dashed line) 

 
In Fig. 2, the evolution of Isc is shown over the period of 8 
years. The calibrated values of Isc show volatility because of 
different outdoor operating conditions and added Gaussian 
noise. Comparing the average values of Isc in the first vs. last 
operating year shows comparable values with those set in the 
DPP. 
 
Fig. 3 shows the evolution of the Rs over the period of 8 years 
on the Digital Power plant. The values of the Rs are 
comparable to those set initially in the DPP. The 95% 
confidence intervals show that small changes in Isc cause 
significant changes in the Pmpp while small changes in Rsh 
do not cause any noticeable change in the Pmpp. 

 
Fig. 3.  The estimated evolution of series resistance together with defined 

evolution of Rs from DPP (straight black line) 

 
The values of shunt resistance are increasing over the period 
of 8 years which suggests that there is an interaction between 
the parameters Rs and Rsh and they are not independent (Fig. 

Parameter Nominal value 
Degradation 
after 8 years 

  Change 

Isc (A) 8.36 7.34    -12% 
Rseries (Ω) 0.45 0.90  +100% 
Rshunt (Ω) 650 650      0% 
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4). After a certain increase in Rs, the Rsh values are 
increasing as well. 
 

 
Fig. 4.  The estimated evolution of shunt resistance together with the defined 

evolution of Rsh from DPP (straight black line) 
 

The DPP enables to simulate a pre-defined degradation 
evolution of selected parameters which are then estimated 
with the ABC method. The method is capable of tracking the 
evolution of parameters where the calibrated values of Isc and 
Rs correspond to the values set in DPP. 

IV. APPLICATION ON FIELD DATA 

In this section, the algorithm was tested on the EURAC data 
set with more than 8 years of recorded field data. The 
corresponding plant is installed at the Bolzano airport in 
Italy. The analysis shows the temporal evolution of calibrated 
physical circuit parameter values over a period of 8 years with 
a monthly resolution on polycrystalline modules. 
 

A. Description of the field data 

The PV plant installed in Bolzano (IT) consists of 10 
polycrystalline modules (210 Wp) connected in a string. 
According to the Köppen–Geiger classification, the 
installation climate is CFB (temperate oceanic climate). Data 
is available over the period of 8 years where instantaneous 
power is recorded in 15-minute intervals together with 
ambient temperature, global horizontal irradiance, diffuse 
horizontal irradiance, plane of array irradiance, and wind 
speed. Missing values, outliers representing measurement or 
sensor error were omitted from the analysis if their values 
were out of the range of two standard deviations from the 
monthly mean values. First, the nominal parameter values of 
the PV modules were used to create an exact twin of the 
power plant with PVNOV and simulate the PV performance 
(Table IV). The output of the code is a time series of over 8 
years of instantaneous power with a time step of 15 minutes. 
 

TABLE IV  
PARAMETER NOMINAL VALUES WITH BOUNDS 

Parameter Nominal value Bounds 

Isc (A) 8.58 [6-9] 
Rseries (Ω) 0.45 [0.25-0.80] 
Rshunt (Ω) 600 [250-1000] 

 
The PR was calculated on both the simulated and measured 
data and aggregated to daily values. A second filter was 
applied so that plane of array (POA) irradiation of less than 
100 W/m2 and more than 1200 W/m2 was removed from 
analysis. This was done to remove outliers and measurement 
errors. 
The PR is calculated by dividing the final yield Yf by the 
reference yield YREF [5] (Eq. 5). 
 

GG
PP

Y
Y

STCPOA

STCAC

REF

f
PR

/

/
                             (5) 

 
The yields are ratios of measured values of power or 
irradiance with values obtained under standard test conditions 
(STC) of 1000 W/m2. In Fig. 5, the average daily PR on 
measured and simulated PV performance is shown. 

 
Fig. 5.  Comparing the PR calculated on the measured (red) and simulated data 

(blue). The line is the estimated degradation rate of measured PV data. 

 
The discrepancy between the PR calculated on measured and 
simulated PV performance is increasing over time and can be 
attributed to the degradation of the fielded PV. The 
degradation was estimated with linear regression. Dividing 
the overall degradation rate with the number of analyzed 
years yields the average estimated degradation rate 0.84% per 
year. 
 

B. ABC calibration on the field data 

The calibration was performed over 94 months. For every 
month, five days were selected in outdoor operating 
conditions. In Fig. 6 the average plane of array (POA) 
irradiation and ambient temperature was calculated for 
selected periods.  
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Fig. 6.  The average POA irradiation (blue) and the ambient temperature (red 
line) on selected days. 

 

 Every month, 10.000 models were simulated using equation 
(3) with parameter samples generated from a uniform 
distribution using the bounds for parameter values from Table 
IV. All the other model parameter values were retained at 
their nominal values. The set of 200 parameters (2%) with 
the smallest threshold ρ (4) on RMSE was selected. The 
calibration of a single month with the ABC took 
approximately 4 hours. 
From the calibration results, there is a clear decrease in the 
value of Isc within a period of 8 years (see Fig.7). The 
variability of the calibrated parameter Isc is high because of 
varying operating conditions and model discrepancy. 

 
Fig. 7.  Evolution of Isc on field data from Bolzano (blue line) and the 

corresponding RMSE (red dashed line) 

 
Comparing the values of short circuit current in selected 
months shows reduced parameter variability (Fig. 8). 

 
Fig. 8.  Evolution of Isc in selected months on field data from Bolzano 

 
The evolution of Rs (Fig.9) does not show any increase over 
the period of 8 years. The variability of the parameter is high 
and can be attributed to the measurement noise and model 
discrepancy. 

 
Fig. 9.  Evolution of Rs on field data from Bolzano 

 

Evolution of Rsh on the field data does not show any 
considerable long term trend over the period of 8 years 
(Fig.10). It is expected that the Rsh values will be decreasing 
over time. 

 
Fig. 10.  Evolution of Rsh on field data from Bolzano 

 
In order to check the variability and investigate possible 
seasonal effects of both parameters, specific months with 
more stable weather conditions were selected. The estimated 
parameters Rs and Rsh do not show any trend in their 
evolution (see Fig.11 and 12). 
 

 
Fig. 11.  Evolution of Rs in selected months on field data from Bolzano 

 
Fig. 12.  Evolution of Rsh in selected months on field data from Bolzano 

 
The evolution of the Rs does not show any change in the 
selected months (see Fig. 11). The values of Rs are closely 
related to the manufacturing quality and the possible 
explanation is that an 8-year period is not enough to see Rs 

related degradation modes like corrosion of the busbars in 
this particular climate. 

V. DISCUSSION AND CONCLUSION 

 
We present a method to estimate the Rs, Rsh, and Isc 
parameters from fielded PV systems by creating a digital twin 
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of a power plant and calibrating the selected parameters with 
respect to observed Pmpp values using the ABC method.  
In the first case, the algorithm was validated on a digital 
power plant (DPP) with a known parameter degradation 
evolution where it was demonstrated that it can be used to 
track the parameter (Isc, Rs) evolution over time with added 
Gaussian noise and discrepancy. One of the findings on DPP 
is that the parameters Rs and Rsh are not independent. After 
Rs reached some threshold value, it affected the values of the 
Rsh. Next, the algorithm was applied to fielded PV system 
data where the degradation of Isc was tracked over 8 years. 
The presented approach allows us to relate the power loss of 
the PV system to certain degradation mechanisms and 
extends the classical performance rate degradation 
approaches. The method enables tracking the evolution of 
physical parameters related to the degradation mechanisms 
using only standard Pmpp and meteorological data from the 
field. 
Results on the analyzed power plant show that the main aging 
factor is a decrease in the short circuit current where the 
power loss is probably related to optical degradation of the PV 
modules. 
This might be caused by yellowing and/or browning of the 
EVA, delamination, and appearance of bubbles or 
degradation of anti-reflecting coating. No traceable change of 
Rs was observed in the analysed data. The results could 
indicate that the period of 8 years is not enough for the 
development of corrosion-related degradation modes on 
analysed modules. The results need to be validated with a 
visual inspection on the field and a full IV characterization of 
the analysed modules. Currently, the calibration algorithm 
considers all the modules operating under identical conditions 
without considering mismatch or non-uniformity in modules. 
For future improvements of the algorithm, the mismatch 
between the modules and the non-uniformity needs to be 
integrated into the calibration process because it can add 
substantial differences in the parameter estimation. The 
double‐diode model parameters can be generalized to include 
nonlinear shunt resistance and temperature and 
illumination‐dependent series resistance. The algorithm was 
tested on a single fielded crystalline silicon system and should 
be applied to more field data to compare the results. The 
algorithm should be tested on thin-film technologies where 
the physical parameter evolutions could be different from 
those observable on silicon modules. In the future parameter 
evolution, tracking will enable a better understanding of the 
state of a power plant and its expected evolution. 
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Chapter 6

Conclusion and perspectives

The objective of the thesis is to better understand the mechanism behind the degradation of

photovoltaic plants. The objective is important to industrial companies like EDF because the

degradation of the photovoltaic plants directly relates to the profitability of the photovoltaic in-

vestments and it can reveal the expected service life of a PV plant. In this context, it is essential

to accurately quantify and define all the relevant risk factors of long term performance losses.

The general framework of this thesis is the photovoltaic degradation related parameter calibration.

The degradation of PV modules is closely related to the variation of the internal parameters of

the solar cell namely the short circuit current Isc, the series resistance Rs and the shunt resistance

Rsh. Tracking the evolution of those parameters could reveal certain degradation mechanisms on

the fielded photovoltaic systems.

In the case, IV curves are available the single diode model of the PV cell can be utilized. The

model provides a good compromise between accuracy and simplicity while avoiding the complexity

of the double diode model. The double diode model is presented which allows to model junction

recombination by adding a second diode in parallel and it is integrated into the EDF’s numerical

code for simulating photovoltaic performance.

In the third part of the thesis, a sensitivity analysis was performed on two models to identify

which parameter has the most influence on the model output. For the sensitivity analysis, Morris

and Sobol’s method were used. The results on both models show that the short circuit current

followed by the series resistance and shunt resistance are the most influential parameters which at

the same time can be related to various degradation mechanisms.

In the fourth chapter of the thesis, the identification of the degradation related parameters

was performed using two different approaches. In the case when IV curve measurements are

available from the PV monitoring sites the parameter estimation is straightforward. The IV curves

are extracted in various narrow windows of stable irradiance and temperature conditions to gain

insights into the degradation of PV devices. The parameter calibration from measured IV curves

was performed using the Covariance Matrix Adaptation Evolution Strategy (CMA-ES). The IV

curve measurements are available for 8 years. The results show that the main aging factor of the

fielded PV module is the decrease of short-circuit current where the main power loss is mostly

caused by the optical degradation of the PV modules followed by the increase of series resistance.

Because usually, only limited data is available from the PV plants the challenge is how to

estimate the physical parameters of the PV diode behavior using only the measured Pmpp data

and the corresponding weather file. Before the calibration process, the parameter bounds need

to be defined so that they have physical meaning. Calibrating the computational code using only
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the measured power is causing convergence issues because the parameter values are reaching their

boundaries. The structural identifiability of the code was tested where the results show that

the model is over parameterized and the number of parameters needs to be reduced. With the

reduced number of parameters, the model is identifiable. To get more robust parameter values the

Approximate Bayesian Calibration was applied (ABC).

The meta-models are introduced in chapter 5. To avoid the computational burden of expensive

code calls the code is replaced with the surrogate or meta-model. For building the meta-models the

design of experiment was used. For the appropriate design, the Latin Hypercube Design was used.

To run the calibration on the function which emulates the photovoltaic performance model we are

risking that the calibrated parameter will loose their physical sense so the meta-model needs to

be as close as possible to the actual model. Polynomial chaos expansion was used for meta-model

building. For building the meta-model various LHS sample sizes were compared to study their

influence on the meta-model accuracy. The validation of the meta-model shows that the meta-

model can be used as a surrogate for the time expensive code without sacrificing the accuracy of

the calibrated parameters. An example of calibration on real data is presented together with the

results.

In the last chapter, the paper ”Signatures of Degradation Mechanisms from Fielded Photo-

voltaic System Monitoring Data ” is presented. In the paper 8 years of outdoor measurements from

poly crystalline modules are used for calibration on a monthly resolution. Before the calibration

the method was validated on the Digital Power Plant (DPP) with known parameter degradation

evolution of short circuit current, shunt and series resistance and added Gaussian noise and dis-

crepancy. The calibration results show that the parameters of the model can be estimated on the

synthetic data. The method was then applied to the outdoor measurements. The results from the

outdoor measurements show that the physical model parameter values can be estimated from the

outdoor monitoring data. The results show that the main mechanisms affecting the degradation

of the modules are related to the decrease of the short-circuit current.

The presented approach extends the classical performance rate degradation approaches with

physical parameter tracking. It would be interesting to apply the method on various module

technologies and compare the results. The results of the study should be confirmed with the field

inspection and full characterization of the fielded modules. The focus of future studies should be

the temporal evolution of parameters together with the outdoor operating conditions in order to

understand their interactions and identify possible degradation mechanisms.

Currently, the calibration algorithm considers all the modules operating under identical condi-

tions without considering mismatch or non-uniformity in modules. For the future improvements of

the algorithm, the mismatch between the modules and the non-uniformity needs to be integrated

into the calibration process because it can add substantial differences in parameter estimation.

One of the possible drawbacks is that the method will not be able to identify unique parameter

values when there is a large discrepancy between the measured PV power and the simulated one.

This kind of discrepancy occurs when the quality of the power measurements or the weather file

is poor. Before applying the method the quality of the input data needs to be checked. For future

studies, the approach can be extended with multi-objective optimization while it could improve

the identifiability of the model with additional added parameters.

One of the drawbacks of the proposed approach is the number of needed meta-models, because

for every month of calibration a meta-model needs to be built. Building the meta-model with a

certain number of LHD design samples is time consuming and where the number of LHD samples

needed should be reduced as much as possible but without sacrificing the accuracy of the obtained
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parameters. It could be interesting to study deeper the surrogate models and their application

in calibration problems. Trying out various DOE design which could be adapted to the intended

application with the minimal needed code calls. Where the DOE should be a compromise between

the required accuracy of the meta-model and time expense.

The method can be extended with the service life prediction models where the evolution of the

selected parameters can be forecast. One of the drawbacks of this approach is that it can not reveal

any degradation mechanism which is not already present in the data. The historical photovoltaic

data available for analysis is quite recent and we can not expect to see certain degradation modes

that are related to the corrosion of the models.

The presented method can be applied for a novel machine learning algorithms based on the

physical models which can track the parameters from fielded PV modules in real-time and make

predictions about their future evolution.
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Appendix: A

Technical scheme to generate trajectories

Technical scheme to generate trajectories with required properties is as follows [83]:

For a model with k parameters a trajectory can be seen in the form of a matrix B∗ with

dimension (k + 1) × k, whose rows are the vectors x(1), x(2), ..., x(k+1). To build B∗ we first need

to build a matrix B, whose dimensions are (k + 1)× k, with elements that are 0’s and 1’s so that

for every column index j, j = 1, ..., k, there are two rows of B that differ only in the jth entry. A

convenient choice for B is a strictly lower triangular matrix of 1’s:

B =




0 0 0 · · · 0

1 0 0 · · · 0

1 1 0 · · · 0

1 1 1 0 · · ·
· · · · · · · · · · · · · · ·




The sampling matrix is defined as:

B∗ = (x∗ + (∆/2)× [(2B − Jk+1,k)×D∗ + Jk+1,k])× P ∗

where Jk+1,k is a (k + 1) matrix of 1’s and x∗ is a randomly chosen base value of X. D∗ is a

k-dimensional diagonal matrix where each element is either +1 or −1 with equal probability. P ∗

is a k-by-k random permutation matrix in which each row contains one element equal to 1 while

all the other elements are 0, and no two columns have 1’s in the same position.

Example:

For three input factors x1, x2 and x3 all uniformly distributed in [0,1] for p = 4 number of levels.

The levels are {0, 1/3, 2/3, 1}. Suppose that the ∆ = 2/3, and the randomly generated x∗, D∗ and

P ∗ are as following:

x∗ = [0, 1/3, 1/3] D∗ =



−1 0 0

0 1 0

0 0 1


 P ∗ =



0 0 1

1 0 0

0 1 0


.

For those values,

(∆/2)[(2B − Jk+1,k)D
∗ + Jk+1,k] =




∆ 0 0

0 0 0

0 ∆ 0

0 ∆ ∆




and then

B∗ =




1/3 1/3 2/3

1/3 1/3 0

1 1/3 0

1 1 0




The trajectory obtained is x(1) = (1/3, 1/3, 2/3), x(2) = (1/3, 1/3, 0), x(3) = (1, 1/3, 0), x(4) =

(1, 1, 0)
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Appendix: B

Saltelli sampler

The Salteli sampler [82] is defined as:

Generate a (N, 2k) matrix of randomly selected parameters x from defined parameter space,

where k is the number of inputs. Define two matrices A and B. Use the first k columns of the

matrix as matrix A, and the remaining k columns as matrix B. N is called a base sample and can

vary from few hundreds to a few thousands.

A =




x
(1)
1 x

(1)
2 · · · x

(1)
i · · · x

(1)
k

x
(2)
1 x

(2)
2 · · · x

(2)
i · · · x

(2)
k

· · · · · · · · · · · ·

x
(N−1)
1 x

(N−1)
2 · · · x

(N−1)
i · · · x

(N−1)
k

x
(N)
1 x

(N)
2 · · · x

(N)
i · · · x

(N)
k




B =




x
(1)
k+1 x

(1)
k+2 · · · x

(1)
k+i · · · x

(1)
2k

x
(2)
k+1 x

(2)
k+2 · · · x

(2)
k+i · · · x

(2)
2k

· · · · · · · · · · · ·

x
(N−1)
k+1 x

(N−1)
k+2 · · · x

(N−1)
k+i · · · x

(N−1)
2k

x
(N)
k+1 x

(N)
k+2 · · · x

(N)
k+i · · · x

(N)
2k




Define a matrix Ci formed by all columns of B except the ith column, which is taken from A:

Ci =




x
(1)
k+1 x

(1)
k+2 · · · x

(1)
i · · · x

(1)
2k

x
(2)
k+1 x

(2)
k+2 · · · x

(2)
i · · · x

(2)
k

· · · · · · · · · · · ·

x
(N−1)
k+1 x

(N−1)
k+2 · · · x

(N−1)
i · · · x

(N−1)
2k

x
(N)
k+1 x

(N)
k+2 · · · x

(N)
i · · · x

(N)
2k




Compute the model output for all the input values in the sample matrices A,B and Ci.
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Titre : Signatures de mécanismes de dégradation des centrales photovoltaı̈ques
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Résumé : La dégradation de la performance des cen-

trales PV (photovoltaı̈que) au cours de leur durée de

vie est généralement déterminée par la variation de

la puissance au point de puissance maximale (Po-

wer at maximum power point Pmpp). Cependant, la

même quantité de pertes en Pmpp peut avoir des

causes multiples, qui ont, chacune, des évolutions

différentes dans le temps. Le modèle physique d’EDF

est une version sophistiquée d’un modèle à 2 diodes.

Ce modèle dépend de paramètres dont les valeurs

évoluent au cours du temps et peuvent reflètent ainsi

les processus de dégradation.

Lorsque les mesures des courbes courant-tension

(courbes IV) sont disponibles, les paramètres du

modèle physique peuvent être directement estimés.

Toutefois les mesures de la courbe IV sont rarement

effectuées sur les sites de production de PV et l’esti-

mation des paramètres du modèle à 2 diodes est dif-

ficile à partir du nombre limité de variables mesurées.

Le défi que nous nous attachons à relever est l’es-

timation des paramètres du modèle en utilisant uni-

quement le Pmpp, et la météo, permettant ainsi une

évaluation plus précise de l’état de santé du système,

plutôt que d’estimer uniquement la mesure de la perte

de performance. Une analyse de sensibilité (Morris

et Sobol) a été réalisée sur différents modèles phy-

siques photovoltaı̈ques, à savoir le modèle à diode

unique et le code d’EDF. Les trois paramètres les plus

influents identifiés par notre méthodologie sont ont la

résistance-série (Rs), la résistance shunt (Rsh) et le

courant de court-circuit (Isc). Ces paramètres iden-

tifiés ont été utilisés dans la calibration du modèle de

performance PV.

L’algorithme proposé vise à identifier la distribution a

posteriori des paramètres en calibrant le code de cal-

cul en fonction des données observées. L’inférence

bayésienne a été menée à l’aide de la m´méthode

ABC (Approximate Bayesian Computation) car la vrai-

semblance des observations est un code de calcul

et n’a pas d’expression close. Comme l’exécution du

code de calcul est chronophage. Une expansion en

chaos polynomial (PCE) a été utilisée comme modèle

de substitution pour remplacer le code original et

accélérer l’inférence. L’algorithme a été validé sur des

données synthétiques simulées (Digital Power Plant)

auxquelles nous avons ajouté un bruit de mesure

gaussien, une erreur systématique et un scénario

d’évolution de d´dégradation des paramètres.

Title : Signatures of Degradation Mechanisms from Photovoltaic Plants
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Abstract : The degradation of the PV (Photovoltaic)

performance over its lifetime is usually determined

with the variation of Power at maximum power point

(Pmpp). However, the same amount of Pmpp loss

can have different causes, which have, each, different

expectations of evolution with time. The EDF physi-

cal performance model is a sophisticated version of a

2-diode model and contains parameters that can re-

flect degradation over time. When IV curves measu-

rements are available from the field the parameters

of the physical model can be straightforwardly esti-

mated. While the IV curve measurements are rarely

available from the PV production sites the parameter,

estimation is challenging since only limited data about

the observed system is available. Estimating the mo-

del parameters using only Pmpp is the challenge here

allowing a more precise evaluation of the health state

of the system, rather than estimating only the perfor-

mance loss metric.

A sensitivity analysis (Morris and Sobol) was perfor-

med on different photovoltaic physical models, namely

the single diode model and the EDF code. The three

most influential parameters identified by our metho-

dology are the series resistance (Rs), the shunt resis-

tance (Rsh) and the short-circuit current (Isc). These

identified parameters were used in the calibration of

the PV performance model. The proposed algorithm

aims to identify posterior distribution of parameters

by calibrating the computational code to the observed

data with a robust Approximate Bayesian Computa-

tion (ABC) method. The ABC method expresses the

probability of the observed data under a prior statis-

tical model with certain parameter values. Polynomial

Chaos Expansion (PCE) was used as a meta-model

to replace the original code which was found to be too

computationally expensive.

The algorithm has been validated on simulated syn-

thetic data (Digital Power Plant) with an added Gaus-

sian noise, some systematic discrepancy and a

known parameter degradation evolution. The results

on the synthetic data show that the evolution of para-

meters can be estimated in noisy measurement condi-

tions
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