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L'une des solutions très populaires pour surmonter les problèmes de propagation susmentionnés consiste à utiliser des réseaux d'antennes massifs, une technique rendue possible grace a la proportionnalité entre la taille physique du réseau et la longueur d'onde de la porteuse (les fréquences mmWave sont caractérisées par une petite longueur d'onde, ce qui se traduit par réseaux d'antennes compacts avec un grand nombre d'éléments). Cependant, le coût élevé, la consommation d'énergie et la complexité du matériel de signal mixte chez mmWave rendent impossible l'utilisation de grands réseaux d'antennes avec des éléments à commande numérique.

Le cloisonnement des traitements de signal liés aux émetteurs-récepteurs mmWave a rendu possible une mise en oeuvre économique et énergétiquement effi cace de ces derniers. Ces nouvelles architectures sont connues sous le nom d'émetteursrécepteurs hybrides analogiques/numériques de formation de faisceaux.

Ces architectures hybrides divisent le traitement de précodage/combinaison entre les domaines analogique et numérique, ce qui réduit considérablement le nombre requis de chaînes RF.

Les structures des réseaux hybrides soulevent néanmoins leurs propres défis, le faible rapport signal sur bruit (SNR) résultant des pertes de propagation élevées, la grande dimensionnalité de la matrice de canaux sans fil Multiple-Input-Multiple-Output (MIMO) et la présence de traitement analogique compliquent l'acquisition des informations d'état du canal (CSI) et le calcul des précodeurs et combineurs MIMO.

Relever les défis susmentionnés est essentiel pour activer le cellulaire basé sur mmWave. Avec cette motivation à l'esprit, cette thèse propose de nouvelles solutions algorithmiques qui les abordent. Nous proposons des solutions rapides et de faible complexité qui offrent des performances efficaces tout en respectant les contraintes matérielles. Les principales contributions de la présente thèse consistent à concevoir des algorithmes rapides et de faible complexité qui permettent de construire des précodeurs et des combineurs robustes pendant la phase d'apprentissage du beamformer et sans avoir besoin d'estimer explicitement le CSI puis de l'utiliser pour dériver ces beamformers.

One of the very popular solutions to overcome the aforementioned propagation issues is to use massive an-tenna arrays, a technique that is made possible because if the proportionality between the array's physical size and the carrier wavelength (mmWave frequencies are characterized by small wavelength, which translates to compact antenna arrays with high number of elements). However, the high cost, power consumption and complexity of the mixed signal hardware at mmWave make having large an-tenna arrays with digitally controlled elements infeasible.

The partitioning of the signal processing operations related to the mmWave transceivers made having a cost and energy effective implementation of these latter possi-ble. These novel architectures are known as hybrid analog/digital beamforming transceivers. These hybrid architectures divide the precoding/combining processing between the analog and digital domains, which reduces considerably the required number of RF chains.

Hybrid array structures entail nevertheless their own challenges, the low signal-to-noise ration (SNR) resulting from high propagation losses, the large dimensionality of the Multiple-Input-Multiple-Output (MIMO) wireless channel matrix and the presence of analog processing complicate the acquisition of the channel state information (CSI) and the computation of the MIMO precoders and combiners.

Addressing the aforementioned challenges is key to enabling mmWave based cellular. With this motivation in mind, this dissertation proposes novel algorithmic solutions that tackle them. We propose fast and low complexity solutions that yield efficient performance while respecting the hardware constraints. The main contributions of the present thesis consist of devising fast and low complexity algorithms that enable building robust precoders and combiners during the beam training phase and without the need of explicitly estimating the CSI and then using it to derive these beamformers.

One of the very popular solutions to overcome the aforementioned propagation issues is to use massive antenna arrays, a technique that is made possible because of the proportionality between the array's physical size and the carrier wavelength. However, the high cost, power consumption and complexity of the mixed signal hardware at mmWave complicates to a great extent implementing large antenna arrays with digitally controlled elements.

Nevertheless, the partitioning of the signal processing operations related to the mmWave transceivers has allowed cost and energy effective implementation of these latter. These novel architectures are known as hybrid analog/digital beamforming transceivers. These hybrid architectures divide the precoding/combining processing between the analog and the digital domains, which reduces considerably ii iii the required number of RF chains.

Hybrid array structures entail nevertheless their own challenges, the low signal-to-noise ratio (SNR) resulting from high propagation losses, the large dimensionality of the multiple-input-multiple-output (MIMO) wireless channel matrix and the presence of analog processing complicate the acquisition of the channel state information (CSI) and the computation of the MIMO precoders and combiners.

Addressing the aforementioned challenges is key to enabling mmWave based cellular. With this motivation in mind, this dissertation proposes novel algorithmic solutions that tackle these latter.

We propose fast and low complexity solutions that yield efficient performance while respecting the hardware constraints. The main contributions of the present thesis are deriving fast and low complexity algorithms that enable building robust precoders and combiners during the beam training phase and without the need of explicitly estimating the CSI and then using it to derive these beamformers.

In the first contribution, we use advanced tools from Bayesian active learning and approximate inference theories, to devise a robust and fast hierarchical beam search algorithm that reduces the amount of time or resources needed for the beam search process while guaranteeing a low beam misalignment probability. Our second contribution proposes a novel beam training strategy based on alternating transmissions between two hybrid mmWave transceivers. The main idea behind our proposal is to exploit the reciprocity of the mmWave MIMO channel between the two transceivers. With appropriate processing at each device, the alternate transmissions implicitly implement an algebraic power iteration that leads to approximating the top left and right singular vectors of that MIMO channel matrix.

Mathematical analysis as well as numerical simulations illustrate the promising performance of the proposed solutions, making them as enabling technologies for mmWave hybrid transceiver systems. The next couple of years are expected to see a surge in the number of mobile subscriptions. According to a study conducted by the international telecommunication union (ITU) [1], and as can be seen in Such a high number of connected wireless devices, together with the emergence of new mobile applications that require very high data rate communications, emanating from these latter, as well as the wireless network's user's expectation to have a satisfactory end-user experience even in crowded areas [3], will pose a big challenge ahead of the wireless service providers, who will have to come up with new and innovative technologies in order to be able to cope with this explosive increase in the mobile data traffic.

The wireless service providers will also have to overcome the global bandwidth shortage which is caused by the congestion and fragmentation of the traditional low band spectra [4]. Fig 1 .2 [2] shows how the below 3Ghz cellular spectrum currently in use in the united states shows is badly packed, it also shows how scarce is the total remaining free bandwidth that can be used for new applications (only about 600 Mhz) and also how high is the cost to acquire such small bandwidth.

The difficulty to achieve the aforementioned demands faced by wireless service providers, using the congested and fragmented traditional low spectral bands, has pushed them to start exploring vacant spectrum at the millimeter-wave (mmWave) frequency bands [4].

Mmwave carrier frequencies span the spectrum range from 30 GHz to 300 GHz, whereas the majority of to date deployed wireless systems operate in the below 6 Ghz spectra. Going up to such high frequencies opens up the door to accessing multi-Ghz unused spectral bandwidths, which would then translate to higher data rates. An example of such use is the WiGig [5] wireless systems that is deployed in the 60 GHz unlicensed mmWave band and that makes use of a 2 Ghz large bandwidth and combines with the orthogonal frequency division multiplexing (OFDM) wavefrom modulation scheme to reach data rates up to 6 Gbps.

Interest in mmWave frequencies for wireless communications dates back to the 19th century. Bose and Lebedev [6] started experimenting in such high bands already in the 1890s. But, this interest started to gain momentum and materialise when academia, industry as well as governments, with the hope of solving the above-mentioned issues related to bandwidth scarcity and fragmentation in the the sub 6 Ghz spectrum, began backing the idea of deploying a flavor of the 5th generation of cellular systems, known as 5G new radio (NR) [7], on mmWave bands [8][9][10]. All these efforts resulted in two types of 5G NR cellular deployments, the first known as frequency range 1 (FR1) NR option, deployed on sub 6 Ghz frequencies, and the second known as frequency range 2 NR (FR2) option [11], deployed over the mmWave frequency bands. This latter FR2 option benefited, in its initial deployment, from CHAPTER 1. INTRODUCTION large bandwidths (of up to 3 Ghz) in the 28 Ghz and 39 Ghz frequency band [12], which, combined with advanced multi antenna beamforming techniques, allowed achieving the astonishingly high throughput of up to 4.3 Gbps on a cellular hand-held device [13].

Aside from cellular applications, mmWave can have many other potential applications. Being already heavily used in the well established automotive radar business [14], adding the communication dimension to it would enable new mmWave vehicle-to-everything (V2X) applications like cloud assisted or fully automated driving, as shown in Fig. 1.3 1 , and would open new possibilities for the assisted and autonomous driving industry [15].

MmWave is also of interest for high speed wearable networks that connect cell phone, smart watch, augmented reality glasses and virtual reality headsets [16]. Examples of such use cases are shown in This being said, wireless communications over mmWave frequencies will nevertheless be a challenging task, mainly due to the poor diffraction capability, high absorption and large free space propagation losses on such high bands [17]. 

HYBRID BEAMFORMING AS AN ENABLER

Hybrid Beamforming as an Enabler

Fortunately, this frequency range will allow for the use of compact and small antenna arrays with high number of elements, as the physical size of the array is proportional to the carrier wavelength. The large beamforming gains that such large-scale arrays enable will be used to compensate for the above limitations. However, the high cost, power consumption and complexity of the mixed signal hardware at mm-wave make having large antenna arrays with digitally controlled elements infeasible [18]. A direct implication of these new hardware constraints is the renewed interest in partitioning the related signal processing operations between analog and digital domains to reduce the number of required mixed signal hardware components, like analog-to-digital converters (ADCs), or their resolution, thus reducing their power consumption and die size footprints. This has led to the development of new and novel transceiver architectures dubbed hybrid analog/digital beamforming architectures. These hybrid architectures divide the precoding/combining processing between the analog and digital domains, which reduces the required number of RF chains. reducing thus hardware implementation complexity and related power consumption, which enables in turn having portable device being able to communicate wirelessly over mmWave frequencies.

Hybrid Beamforming Challenges

The hardware constraints associated with the hybrid architectures such as the limitations on the RF components and the coupling between analog and digital precoders, however, impose new constraints on the precoding/combining and the wireless channel estimation design problems.

Accurate Channel State information is critical for efficient operation in wireless communication systems. The task of obtaining such information at hybrid beamforming mmWave systems represents a major challenge. In addition to the large training overhead associated with the large arrays and the SNR that is typically low before beamforming design, the hardware constraints, that results from RF/hybrid precoding, makes the channels at the baseband seen only through the RF lens [18]. This has renewed the interest in beam training techniques. These techniques make use of multi-stage radio frequency (RF) codebooks together with adaptive beamwidth beamforning algorithms to jointly design the transmitter and receiver beamforming vectors with the goal of maximizing the effective receive gain of the wireless link being used [18,[START_REF] Rappaport | ser. Prentice Hall communications engineering and emerging technologies series[END_REF]. Despite the reduced complexity of the aforementioned algorithms, they do entail a large search overhead and are prone to errors in noisy channels. This has motivated devising novel beam search techniques that are robust both to inter-beam interference leakage caused by the RF codebook imperfections and to the additive and multiplicative noise that is inherent to any wireless communication system.

Overview of Contributions

Addressing the aforementioned challenges is the key to enabling mmWave based cellular. With this motivation, this dissertation proposes novel algorithmic solutions that tackle them. We propose lowcomplexity and fast solutions that yield efficient performance while respecting the hardware constraints.

The primary contributions of this dissertation can be summarized as follows.

• Our first contribution proposes efficient single stream sequential noisy beam search techniques for mmWave systems with hybrid architectures. We use a combination of bayesian active learning 1.5. ORGANIZATION and of advanced inference techniques to benefit from the reduced search time of the classical hierarchical beam-search technique, while at the same time reduce this latter's inherent high probability of beam misalignment, especially on noisy channels [START_REF] Akdim | Variational hierarchical posterior matching for mmwave wireless channels online learning[END_REF].

• Our second contribution proposes a novel beam training strategy based on alternating transmissions between two hybrid mmWave transceivers. The main idea behind our proposal is to exploit the reciprocity of the mmWave MIMO channel between the two transceivers. With appropriate processing at each device, the alternate transmissions implicitly implement an algebraic power iteration that leads to approximating the top left and right singular vectors of that MIMO channel matrix [START_REF] Akdim | Ping pong beam training for multi stream mimo communications with hybrid antenna arrays[END_REF].

Organization

The rest of this thesis is organized as follows. In Chapter 2, we introduce mmWave channel characteristics as well as mmWave hybrid transceiver design challenges. We then detail our first contribution, Chapter 2

MmWave Channel Characteristics

Understanding the mmWave signal propagation characteristics and properties is fundamental to be able to come up with accurate mmWave channel models. These latter are needed to help assess the usability and also compare the different mmWave wireless communication systems. We will discuss in this chapter the details of such propagation mechanisms.

MmWave vs. Sub-6 Ghz propagation environements

Spectral wave propagation at mmWave frequencies differ in many aspects from that of the low frequency bands, mainly due to the very small wavelength compared to the size of most of the objects in the environment. On one hand, diffraction effects, one of the main propagation mechanisms in sub 6 Ghz bands [START_REF] Rappaport | Small-scale, local area, and transitional millimeter wave propagation for 5g communications[END_REF], contributes much less to the overall mmWave signal propagation due to the reduced Fresnel zone. Scattering, on the other hand, tends to be higher due to the increased effective roughness of materials, but remains limited still and not as rich as in lower frequency bands. mmWave propagation is also characterized by higher absorption and larger free space propagation losses [17,18].

All these differences affect heavily all mmWave channel's properties. Multi-paths in mmWave tend to be more clustered and exhibit far fewer paths than on lower frequency channels, leading to more 10 CHAPTER 2. MMWAVE CHANNEL CHARACTERISTICS sparsity in the delay, angular and spatial domains. Doppler shift will have a bigger noisy effect on the signal due to the large carrier frequency and large bandwidths on mmWave bands. Angular spread will be smaller because of the high sensitivity to blockages (buildings, human body or even user's own fingers) and strong differences between line-of-sight and non-line-of-sight propagation conditions. 

MmWave Channel Models

mmWave Channel models are required for simulating the wireless mmWave signal propagation mechanisms in a reproducible and cost-effective way. This is needed to accurately design and compare radio air interfaces, system deployment and develop adequate signal processing algorithms for mmWave transmitters and receivers.

MmWave channel model parameters can be split into two classes :

• The large scale parameter class, which encompasses characteristics like path loss, shadowing and blockage (this latter translates to line of sight and non line of sight (LOS/NLOS) probability models).

• The small scale parameter class, which encompasses characteristics like delay spread, Doppler spread, angular spread and number of multi-path component clusters.

Let us discuss next the details of each of these two classes.

Large Scale Fading

In this section, we will detail the main large scale parameters of mmWave channel models. These include path loss and shadowing parameters as well as large scale blockage parameters and related modelling.

Path Loss and Shadowing Models

Path loss and Shadowing models for mmWave channels are inspired by Friis Law [START_REF] Rappaport | ser. Prentice Hall communications engineering and emerging technologies series[END_REF] and follow an additive white noise linear log-distance parametric model [START_REF] Rappaport | Small-scale, local area, and transitional millimeter wave propagation for 5g communications[END_REF][START_REF] Rappaport | Millimeter wave wireless communications[END_REF] as shown in equation 2.1 below :

PL(d)[dB] = α + 10β log 10 (d) + ξ, ξ ∼ N(0, σ 2 ) (2.1)
d is the distance separating the transmitter and the receiver, α and β are parameter models that depend on the wavelength λ being used, on the omnidirectional gains of the transmit and receive antennas, G t and G r and on penetration losses of the material that the spectral waves might penetrate in the surrounding environment. ξ is the log-normal term that accounts for variances in shadowing, and which is also partially affected by the penetration losses.

Large scale Blockage Models

Blockage is a major impairment at mmWave. As shown in Fig. 2.22 , it can be caused by surrounding objects like buildings, by surrounding people, or even by the user's own body. On one hand, penetration losses that are caused by building walls can introduce attenuation up to 80 dB [START_REF] Zhao | 28 ghz millimeter wave cellular communication measurements for reflection and penetration loss in and around buildings in new york city[END_REF], and those that are caused by the human body can result for up to 35 dB loss [START_REF] Jonathan | Modeling human blockers in millimeter wave radio links[END_REF]. On the other hand, reflective capabilities of all these blockers allow them to be important scatterers to enable coverage via NLOS paths for mmWave cellular systems [START_REF] Ben-Dor | Millimeter-wave 60 ghz outdoor and vehicle aoa propagation measurements using a broadband channel sounder[END_REF]. Measurements conducted by New York University (NYU) confirm that even in extremely dense urban environments, coverage is possible up to 200 m from a potential cell site [4].

Blockage can be modeled in different ways. Random shape theory [27] and stochastic geometry theory [START_REF] Kulkarni | Coverage and rate trends in dense urban mmwave cellular networks[END_REF] are mathematical tools that can used to evaluate coverage and capacity in mmWave cellular networks analytically. Data driven methods can also be used to quantify the effect of blockage, an example of such methods is to model the mmwave wireless link states using a two-state model (LOS and NLOS) or a three state model (LOS, NLOS, and signal outage), where both model's states are chosen to be parametric statistical functions of the distance between transmitters and receivers, and where each state's parameters are fit using the field sounding measurements [START_REF] Rappaport | Overview of millimeter wave communications for fifth-generation (5g) wireless networks-with a focus on propagation models[END_REF], then the resulting fitted functions are used to calculate the probability of the link being in each of these states. Fig. 2.33 

shows this separate modeling of LOS and NLOS links.

A widely used two state model [START_REF] Rappaport | Overview of millimeter wave communications for fifth-generation (5g) wireless networks-with a focus on propagation models[END_REF][START_REF] Akdeniz | Millimeter wave channel modeling and cellular capacity evaluation[END_REF][START_REF] Rappaport | Investigation and comparison of 3gpp and nyusim channel models for 5g wireless communications[END_REF][START_REF] Gpp | Study on channel model for frequencies from 0.5 to 100 GHz[END_REF] is described below: • The 3rd Generation Partnership Project (3GPP TR 38.901 [START_REF] Gpp | Study on channel model for frequencies from 0.5 to 100 GHz[END_REF]), which provides channel models from 0.5-100 GHz based on a modification of 3GPP's extensive effort to develop models from 6 to 100 GHz in TR 38.900 [START_REF] Gpp | Study on channel model for frequency spectrum above 6 GHz," 3rd Generation Partnership Project (3GPP)[END_REF]. 3GPP TR documents are a continual work in progress and serve as the international industry standard for 5G cellular.

• 5G Channel Model (5GCM) [START_REF]5GCM : 5G Channel Model for bands up to 100 GHz[END_REF], an ad-hoc group of 15 companies and universities that developed models based on extensive measurement campaigns and helped seed 3GPP understanding for TR 38.900 [START_REF] Gpp | Study on channel model for frequency spectrum above 6 GHz," 3rd Generation Partnership Project (3GPP)[END_REF].

• Mobile and wireless communications Enablers for the Twenty-twenty Information Society (METIS) [START_REF] Metis | METIS Channel Model METIS2020[END_REF],

a large research project sponsored by European Union.

• Millimeter-Wave Based Mobile Radio Access Network for 5G Integrated Communications (mm-MAGIC) [START_REF] Mmmagic | Measurement results and final mmMAGIC channel models[END_REF], another large research project sponsored by the European Union.

An example of the results of the measurement campaigns conducted by the above bodies are summarized, for the urban micro-cellular (UMi) propagation scenario, in Table 2.1 for the Omnidirectional path loss model and Table 2.2 for the LOS probability model.

Blockage introduces not only LOS/NLOS large scale fading effects on the mmWave signal propagation, but also small scale rapid signal variations, mainly caused by people walking between the transmitter and the receiver. These small scale effects can be by modeled a multi-state Markov model where transition probability rates can be determined from the field measurements [START_REF] Maccartney | Rapid fading due to human blockage in pedestrian crowds at 5g millimeter-wave frequencies[END_REF]. An example of such a model is the simple two-state Markov model that is used to characterize unshadowed and shadowed states for a wireless link in the presence of pedestrian induced variations in received signal strength [START_REF] Kashiwagi | Time-varying path-shadowing model for indoor populated environments[END_REF][START_REF] Dehnie | Markov chain approximation of rayeleigh fading channel[END_REF]. Fig. 2.4 shows a diagram of a two-state Markov model where P unshad and P shad indicate the transition probabilities of going from a shadowed to unshadowed state and an unshadowed to shadowed state, respectively, and to shadowed state, respectively, and Fig. 2.5 depicts the characterization of a typical blockage event with two-states when applying a 0 dB threshold relative to the zero-crossings for the beginning and end of a shadowing event.

Small Scale Fading

In this section, we will detail the main small scale parameters of mmWave channel models. We fist motivate the need for using large antenna arrays for mmWave communications. We then explore the 

Motivating large arrays for mmWave

As discussed so far, large free space propagation losses and high sensitivity to blockage make wireless communications over mmwave channels a very challenging task. Fortunately, such high frequencies will allow the use of compact and small antenna arrays with high number of elements, as the physical
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size of the array is proportional to the carrier wavelength. The large beamforming gains and adaptive directionality that such large-scale arrays enable will be used to compensate for the above limitations.

In fact, according to Friis Law, the far field receive power P r and the transmit power P t are related by equation 2.6 in free space propagation :

P r = P t 4πR 2 λ 2 4π G t G r (2.6)
where R is the distance separating the transmitter and the receiver, λ is the wavelength and G t and G r are the transmit and receive antenna gains.

Equation 2.6 can be dissected into three components :

• A first component that depends mainly on the transmit power and on the separation distance between the transmitter and the receiver. This component is called the receive power spectral density and is defined by Pt 4πR 2 .

• A second component that depends mainly on the wavelength used and on the receive antenna characteristics. This component is called the effective receive aperture and is defined by λ 2 4π G r .

• A third component that depends mainly on the transmit antenna characteristics. This component equals the transmit antenna gain defined by G t .

The receive antenna gain G r increases with the number of antennas used at the receiver (effectively, the more antennas we use for reception, the higher is the power will receive). So knowing that the antenna size scales inversely to the wavelength (we refer to antenna size relative to wavelength. For example : a 1/2 wave dipole antenna is approximately half a wavelength long), we can see that the higher the frequency is (i.e the lower the wavelength), the higher is the number of antennas we can accommodate in a given physical area, i.e the more effective power we can actually receive receive.

Therefore, the scaling of the antenna gains increases the effective receive aperture λ 2 4π G r and more than compensates for the increased free-space path-loss at mmWave frequencies.

MMWAVE CHANNEL MODELS

Compensating for path loss in this manner will require then directional transmissions with highdimensional antenna arrays (32 antennas and above). This explains why large arrays is a defining characteristic of mmWave communication.

A Clustered Channel Model

Extensive field measurements [START_REF] Samimi | 3-d millimeter-wave statistical channel model for 5g wireless system design[END_REF] have shown that mmwave channels usually assume clustered spatiotemporal models, where the channel's multipath components are clustered both in time and angular domains, as shown in Fig. 2.6 and Fig. 2.74 . The time cluster-spatial lobe (TCSL) [START_REF]Local multipath model parameters for generating 5g millimeter-wave 3gpp-like channel impulse response[END_REF] approach is then used to develop statistical spatial channel models (SSCM) for mmwave channels, as the TCSL framework is shown to faithfully reproduce the first-and second-order time and angular statistics of these types of wireless channels [START_REF]Statistical channel model with multi-frequency and arbitrary antenna beamwidth for millimeterwave outdoor communications[END_REF].

The mmWave channel's SSCM small scale parameters are similar to those of low frequency SSCM channel models, these are the per cluster parametric distributions of delay, power, central angles of departure (AoD) and angles of arrival (AoA), together with the angle and delay spreads within each cluster. Field Sounding campaigns show that these small scale characteristics exhibit spatio-temporal sparsity due to the small angular spread and the low number of clusters caused by the limited scattering in mmWave bands. Typically, measurements in the 28 GHz band [START_REF] Samimi | 3-d millimeter-wave statistical channel model for 5g wireless system design[END_REF] show the existence of two main clusters in the time domain (Fig. 2.8) and 5 main clusters in the angular domain (Fig. 2.9)

Small Scale Fading Mathematical Model

The clustered nature of the mmwwave channel models, as well as their inherent need for large antenna arrays makes many of the statistical fading distributions used for the traditional multiple input multiple output (MIMO) low frequency channels inaccurate for mmWave channel modeling. For this reason, we adopt the extended Saleh-Valenzuela [START_REF] Ayach | Spatially sparse precoding in millimeter wave MIMO systems[END_REF] based clustered model representation, which allows us to accurately capture the mathematical structure present in mmWave channels. 3D wide-band models with different array structures are straightforward [18,[START_REF] Samimi | 3-d millimeter-wave statistical channel model for 5g wireless system design[END_REF]), then our channel model can be described by a N r × N t complex matrix H, as set by equation 2.7.

H = L l=1 α l ar(φ r,l )a H t (φ t,l ) (2.7)
We have:

• L : the number of multi-path components.

• The elements on the ULAs are separated by a distance d. Typically d = λ/2, where λ is the the mmWave wavelength of interest.

• α l is the complex fading channel gain of the l-th multi-path component. α l is typically assumed • a t (φ t,l ) and a r (φ r,l ) are the ULA array response vectors of the l-th multi-path component, at the transmitter and receiver respectively.

• φ t,l and φ r,l are the incidence angles of the lth multi-path component, at the transmitter and receiver respectively. These are modeled as a t (φ t,l ) = 1, e -jω t,l , . . . , e -j(Nt-1)ω t,l T and a r (φ r,l ) = 1, e -jω r,l , . . . , e -j(Nr-1)ω r,l T , with ω t,l (φ t,l ) = 2π λ d cos (φ t,l ) and ω r,l (φ r,l ) = 2π λ d cos (φ r,l )

being the directional cosine angles of the lth multi-path component. The incidence angles φ A and φ B are assumed to be sampled from the ranges [θ t,1 , θ t,2 ] and [θ r,1 , θ r,2 ] respectively.

MmWave Transceiver Design

As we saw above, reliable wireless communication over mmWave channels cannot be achieved without large arrays. We will detail then in this section the challenges that come into picture when dealing with large array transceiver design.

Signal processing for multiple antenna (MIMO) transceivers at low frequencies happens completely in the digital baseband domain. This is made possible because in such systems, all antennas can be digitally controlled through dedicated radio frequency (RF) chains as the number of antennas used in low bands tend to be small (4 antennas typically), and because the mixed signal and RF components (digital-to-analog and analog-to-digital converters, power amplifiers and low noise amplifiers) needed for these RF chains do not consume very high power and are easy to integrate into a single system on chip (SoC) subsystem. An example of such a transceiver system is shown in Fig. 2.105 . This is not the case for the mmWave communication systems as large antenna arrays are a defining characteristic of these setups. This will have a big architectural impact on the mmWave transceiver design. Current hardware technology makes it very challenging to tie a separate RF chain (and all the related baseband circuitry) for each antenna at the mmWave frequencies [START_REF] Zhang | Massive hybrid antenna array for millimeter-wave cellular communications[END_REF]. The array's antenna elements should be placed very close to each other to avoid granting lobes, this space limitation makes it difficult to pack the RF chain needed complicated mixed signal and baseband circuitry behind each antenna.

Controlling digitally every antenna of the array separately will drive the overall mmWave transceiver power consumption very high : (i) mixed signal devices like PA and ADCs/DACs are power hungry at such high frequencies [START_REF] Rappaport | State of the art in 60-ghz integrated circuits and systems for wireless communications[END_REF]; (ii) benefiting from the large available bandwidth and the MIMO capabilities of the massive arrays used in mmwave would require processing many parallel high throughput data streams. This will strain the baseband digital signal processing chain and will drive the overall transceiver's power consumption excessively high [START_REF] Russer | Signal processing for wideband smart antenna array applications[END_REF].

Other aspects to take into account are the architectural challenges imposed by the mmWave analog front end domain, where key power greedy hardware components include power amplifiers, phase shifters, and switches.

A tremendous effort has been spent on building low power amplifiers, as these latter are an essential component in the radio frequency chain, in integrated circuit (IC) design. In contrast, phase CHAPTER 2. MMWAVE CHANNEL CHARACTERISTICS shifters, originally utilized in radar systems, are the newly-introduced hardware components in hybrid beamforming systems. Neverthless, the exact power consumption depends on the specifications and technology used to implement these components. Table 2.3 shows the range of the power consumed by different devices included in a mmWave front-end. Data were taken from a number of recent papers proposing protoype devices for PAs [START_REF] Floyd | Sige bipolar transceiver circuits operating at 60 ghz[END_REF][START_REF] Larocca | 60 ghz cmos amplifiers using transformer-coupling and artificial dielectric differential transmission lines for compact design[END_REF][START_REF] Yao | 60-ghz pa and lna in 90-nm rf-cmos[END_REF], LNAs [START_REF] Kraemer | A low-power high-gain lna for the 60 ghz band in a 65 nm cmos technology[END_REF][START_REF] Fonte | 60-ghz single-chip integrated antenna and low noise amplifier in 65-nm cmos soi technology for short-range wireless gbits/s applications[END_REF][START_REF] Liu | Low power consumption millimeter-wave amplifiers using inp hemt technology[END_REF][START_REF] Chang | An ultra-low-power transformerfeedback 60 ghz low-noise amplifier in 90 nm cmos[END_REF], phase shifters [START_REF] Kim | A 60 ghz wideband phased-array lna with short-stub passive vector generator[END_REF][START_REF] Yu | A 60 ghz phase shifter integrated with lna and pa in 65 nm cmos for phased array systems[END_REF][START_REF] Natarajan | A fully-integrated 16-element phased-array receiver in sige bicmos for 60-ghz communications[END_REF][START_REF] Kim | An improved wideband all-pass i/q network for millimeter-wave phase shifters[END_REF], VCOs [START_REF] Borremans | Vco design for 60 ghz applications using differential shielded inductors in 0.13 m cmos[END_REF][START_REF] Liu | A 60 ghz vco with 6ghz tuning range in 130 nm bulk cmos[END_REF][START_REF] Chen | Ring-based triple-push vcos with wide continuous tuning ranges[END_REF] and ADCs [START_REF] Shettigar | A 15mw 3.6gs/s ct-adc with 36mhz bandwidth and 83db dr in 90nm cmos[END_REF][START_REF] Lee | 22.4 a 1gs/s 10b 18.9mw time-interleaved sar adc with background timing-skew calibration[END_REF][START_REF] Le Dortz | 22.5 a 1.62gs/s time-interleaved sar adc with digital background mismatch calibration achieving interleaving spurs below 70dbfs[END_REF][START_REF] Miyahara | [END_REF] at mmWave frequencies. L t (L r ) is the number of RF chains at the TX(RX). A detailed treatment of mmWave RF and analog devices and multi-gbps digital baseband circuits can be found in [START_REF] Rappaport | Millimeter wave wireless communications[END_REF].

All these hardware and power consumption constraints have motivated the wireless communication research community to look into alternative mmWave specific MIMO transceiver architectures where the required signal processing is split between the analog and digital domains, which are known as hybrid digital-analog antenna array architectures [START_REF] Zhang | Variable-phase-shift-based RF-baseband codesign for MIMO antenna selection[END_REF], or where different design trade-offs are made with respect to number of antennas or resolution of the RF chain's components (DAC/ADCs, PAs and phase shifters for example), these are known as low resolution transceivers [START_REF] Singh | On the limits of communication with low-precision analogto-digital conversion at the receiver[END_REF], or some mix of both of these solutions.

We will review in this section one of the main MIMO architectures for mmWave systems, namely the hybrid digital-analog antenna array architectures. The reader can refer to [18] for an overview about all such architectures.

MmWave Hybrid Digital-Analog Antenna Array Architectures

The hybrid digital-analog antenna array architectures, or hybrid beamformers for short, are composed by large antenna arrays that are steered using analog phase shifters and only a few digitally modulated radio-frequency (RF) chains. An illustration of such an architecture is shown in Fig. 2.11 6 .

The architecture shown in Fig. 2.11 divides the mmWave MIMO transceiver between the digital and The RF precoding/combining stage can be implemented using different analog approaches like phase shifters [START_REF] Han | Large-scale antenna systems with hybrid analog and digital beamforming for millimeter wave 5g[END_REF], switches [START_REF] Méndez-Rial | Channel estimation and hybrid combining for mmwave: Phase shifters or switches?[END_REF] or lenses [START_REF] Brady | Beamspace mimo for millimeter-wave communications: System architecture, modeling, analysis, and measurements[END_REF]. Two hybrid structures are possible. In the first one (see Fig. 2.12), all the antennas can connect to each RF chain. In the second one (see Fig. 2.13), the array can be divided into subarrays, where each subarray connects to its own individual transceiver.

Having multiple subarrays reduces hardware complexity at the expense of less overall array flexibility.

A complete analysis of the energy efficiency and spectrum-efficieny of both architectures is provided in [START_REF] Han | Large-scale antenna systems with hybrid analog and digital beamforming for millimeter wave 5g[END_REF].

Fig. 2.12 and Fig. 2.13 7 show the example of hybrid precoding structures with fully and partially CHAPTER 2. MMWAVE CHANNEL CHARACTERISTICS connected phase shifters respectively. Such structures are enabled through digitally controlled phased shifters with quantized phases, where the digital precoder/combiner can correct for lack of precision in the analog, for example to cancel residual multi-stream interference, allowing thus hybrid precoding to approach the performance of the unconstrained solutions [START_REF] Ayach | Spatially sparse precoding in millimeter wave MIMO systems[END_REF]. The multi-subarray partially connected structure allows for a great reduction in hardware complexity and power consumption [START_REF] Han | Large-scale antenna systems with hybrid analog and digital beamforming for millimeter wave 5g[END_REF]. To further reduce the overall implementation and power consumption complexity of the hybrid architecture, an alternative mmWave hybrid architecture that makes use of switching networks has been recently proposed [START_REF] Méndez-Rial | Channel estimation and hybrid combining for mmwave: Phase shifters or switches?[END_REF]. This architecture, illustrated in Fig. 2.12, exploits the sparse nature of the mmwave channel by implementing a compressed spatial sampling of the received signal. The analog combiner design is performed by a subset antenna selection algorithm instead of an optimization over summer 2017.
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all quantized phase values. Every switch can be connected to all the antennas if the array size is small or to a subset of antennas for larger arrays.

Hybrid architecture can also be realized using a lens antenna at the front-end, using the fundamental fact that lenses compute a spatial Fourier transform thereby enabling direct channel access in beamspace [START_REF] Brady | Beamspace mimo for millimeter-wave communications: System architecture, modeling, analysis, and measurements[END_REF]. This continuous aperture phased (CAP) MIMO transceiver architecture is illustrated in Fig. 2.14 8 and suggests a practical pathway for realizing high dimensional MIMO transceivers at mmWave frequencies with significantly low hardware complexity compared to conventional approaches based on digital beamforming. The antennas and RF pre-coder/combiner in Fig. 2.12 are replaced by the continuous-aperture lens antenna and mmWave beam selector in Fig. 2.14. CAP-MIMO directly samples in beamspace via an array of feed antennas arranged on the focal surface of the lens antenna. The number of ADC/DAC modules and transmit/receive chains tracks the number of data streams, as in the phase-array-based hybrid transceiver. However, the mapping of the digitally pre-coded data streams into corresponding beams is accomplished via the mmWave beam selector that maps the mmWave signal for a particular data stream into a feed antenna representing the corresponding beam.

The wideband lens can be designed in a number of efficient ways, including a discrete lens array (DLA)

for lower frequencies or a dielectric lens at higher frequencies [START_REF] Brady | Beamspace mimo for millimeter-wave communications: System architecture, modeling, analysis, and measurements[END_REF].

There are many implications of using a hybrid architecture for mmWave MIMO. Given channel state information, new algorithms are needed to design the separate precoders/combiners since they decompose into products of matrices with different constraints (analog and digital matrices as we saw above). Learning the channel state is also harder, since training data is sent through analog precoders and combiners. More challenges are found when going to broadband channels as the analog processing is frequency flat while the digital processing can be frequency selective. There are many opportunities for future research into designing cellular networks that support hybrid architectures. 

(d) = min(d 1 /d, 1)(1 -exp(-d/d 2 )) + exp(-d/d 2 ) d 1 = 18 m, d 2 = 36 m 5GCM d 1 /d 2 model: d 1 /d 2 model: PL LOS (d) = min(d 1 /d, 1)(1 -exp(-d/d 2 )) + exp(-d/d 2 ) d 1 = 20 m, d 2 = 39 m
NYU squared model: NYU squared model: mmWave Wireless Channels Variational Online Learning

PL LOS (d) = (min(d 1 /d, 1)(1 -exp(-d/d 2 )) + exp(-d/d 2 )) 2 d 1 = 22 m, d 2 = 100 m METIS PL LOS (d) = min(d 1 /d, 1)(1 -exp(-d/d 2 )) + exp(-d/d 2 ) d 1 = 18 m, d 2 = 36 m d >= 10 m mmMAGIC PL LOS (d) = min(d 1 /d, 1)(1 -exp(-d/d 2 )) + exp(-d/d 2 ) d 1 = 18 m, d 2 = 36 m
(Per device) PA N t (N r ) 40-250 LNA N t (N r ) 4-86 Phase shifter N t (N r ) × L t (L r ) 15-110 ADC L t (L r ) 15-795 VCO L t (L r ) 4-25

Overview

We propose in this chapter1 two variational Bayesian acftive learning schemes that enable initial access for hybrid digital-analog enabled devices operating in mmWave wireless channels. The proposed schemes are devised with the goal to balance the beam search time and achieving higher beamforming gain, while accounting for uncertainties on the unknown channel (gain and noise variance).

Introduction

As we discussed in earlier chapters, mmWave frequency bands (30 -300Ghz) is one of the most promising technologies that will make 5G and beyond cellular networks able to serve a large number of wireless terminals with high data rates [4]. We saw how the free space propagation losses, poor diffraction ca-
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pability and high absorption of such high frequencies make building wireless transceivers operating on such high frequencies a challenging task [17]. We introduced the concept of large antenna arrays and we saw that the antenna array's physical size proportionality to the carrier wavelength makes it feasible to engineer small and compact antenna arrays with large number of elements at mmwave. We also discussed how the high beamforming gains and the spatial steering capabilities of these arrays can help greatly compensate the aforementioned limitations on these high bands.

When it comes to implementation, we discussed how the complexity of the mixed signal hardware at mmWave as well as its high cost and power consumption make having element wise digitally controlled large antenna arrays operating on such high frequencies infeasible [18]. We argued how such limitations have motivated the wireless communication community to adopt a novel transceiver architecture termed the hybrid digital-analog antenna array architecture [START_REF] Zhang | Variable-phase-shift-based RF-baseband codesign for MIMO antenna selection[END_REF]. This architecture helps bring down the cost and power consumption of the mmwave transceivers by allowing to steer their large antenna arrays using only few digitally modulated radio-frequency (RF) chains as shown in Fig. 4.1. The hybrid digital-analog transceiver architecture brings its own challenges though. As already discussed, sensing the mmwave wireless channel using hybrid structure allows to access only a compressed
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version of it and requires running an exhaustive and time consuming search in the angular domain to be able to estimate the CSI accurately. Also, using the acquired CSI to build the needed MIMO precoders and combiners for such large MIMO channel, under the hybrid architecture constraint, is not an easy task, it requires splitting the MIMO processing into two components, one digital and one analog, a split that is challenging to properly perform due to the interconnection and interplay of the analog domain design constraints with those of the digital domain [4,18].

To overcome the long search time issue, the scientific community explored using the sparsity friendly techniques for the CSI acquisition and precoding/combining algorithm design. These techniques were believed, at least theoretically, to help bring down the number of channel measurements needed to estimate CSI and build robust precoders and combiners. An example of such techniques are the compressed sensing based approaches [18,[START_REF] Ayach | Spatially sparse precoding in millimeter wave MIMO systems[END_REF][START_REF] Alkhateeb | Channel estimation and hybrid precoding for millimeter wave cellular systems[END_REF]. These latter have been shown, however, not only to feature high computational complexity but also require long search time in general [START_REF] Alkhateeb | Channel estimation and hybrid precoding for millimeter wave cellular systems[END_REF].

Other sparsity friendly techniques that are good alternative schemes to alleviate the aforementioned issues are the hierarchical beam-search algorithms [START_REF] Akdim | Ping pong beam training for multi stream mimo communications with hybrid antenna arrays[END_REF][START_REF] Alkhateeb | Channel estimation and hybrid precoding for millimeter wave cellular systems[END_REF]. The beam search mechanism in these algorithms is designed based on the bisection concept. In particular, these algorithms start initially by dividing the angular space into a number of partitions, which equivalently divides the AoAs/AoDs range into a number of intervals, and design the multi-stage training precoding and combining set of vectors, this group of vectors is known as a hierarchical beamforning codebook. The codebook's design is done in a way to let the combined angular spread of each stage, i.e the union of is vectors angular spreads, cover entirely the AoAs/AoDs range of interest. Vectors of the first stage are used to sense the angular space partitions, the received signal is then used to determine the partition(s) that are highly likely to have non-zero element(s) which are further divided into smaller partitions in the later stages until detecting the non-zero elements, the AoAs/AoDs, with the required resolution. If the number of precoding vectors used in each stage equals K , where K is a design parameter, then the number of adaptive stages needed to detect the AoAs/AoDs with a resolution of 2π/N is S = log K N . This shows that this family of algorithms does reduce the beam search time. Nevertheless, it was demonstrated that this reduction in the channel measurement overhead comes at the expense of entailing a high probability of beam misalignment, especially on noisy channels [START_REF] Giordani | Initial access in 5G mmwave cellular networks[END_REF]. To overcome the long beam search overhead while still benefiting from the reduced search time of the hierarchical beam-search algorithms, Chiu et al. proposed in [START_REF] Chiu | Active learning and CSI acquisition for mmwave initial alignment[END_REF] to use Bayesian active learning. They designed an algorithm which they dubbed HierPM. This newly proposed scheme augments the hierarchical beam-search schemes with a technique called posterior matching [START_REF] Shayevitz | Optimal feedback communication via posterior matching[END_REF].

HierPM builds upon the connection between unit norm constrained hybrid beafmorning [START_REF] Alkhateeb | Channel estimation and hybrid precoding for millimeter wave cellular systems[END_REF] and noisy Bayesian active learning [START_REF] Chiu | Sequential measurement-dependent noisy search[END_REF][START_REF] Ding | Bayesian channel estimation algorithms for massive MIMO systems with hybrid analog-digital processing and low-resolution ADCs[END_REF] to, based on the wireless channel's incidence angles posterior distribution, sequentially choose the pair of precoder/combiner to use in subsequent measurements;

this choice of the precoder/combiner is performed in a way that is guaranteed to reduce both the search time and the beam misalignment probability. HierPM as proposed in [START_REF] Chiu | Active learning and CSI acquisition for mmwave initial alignment[END_REF] presents two main limitations: first, it is derived for systems in which only one of the communicating devices is equipped with hybrid digital-analog arrays; this makes it not practical for cases when both devices require beam steering as is common for mmWave communications; second, it requires knowledge of mmwave wireless channel parameters such as the complex gain of the channel's line-of-sight (LOS) component as well as the noise variance. These parameters are assumed to be known or estimated in [START_REF] Chiu | Active learning and CSI acquisition for mmwave initial alignment[END_REF], but no practical estimation algorithm is proposed to obtain these estimates. This absence of a good estimate of the wireless channel CSI (channel gain and noise variance) makes the incidence angles posterior distribution calculation intractable and hinders the proposed algorithm use in practical scenarios.

We will detail here the first contribution of the present thesis. We will discuss two novel sequential noisy beam search techniques that build on HierPM principle but solve its above mentioned limitations.

Our proposed strategies extend HierPM to bi-directional beam alignemnt, in which both participating devices need to coordinate to find the correct transmission and reception directions. In addition, building upon the variational inference concept, namely the variational expectation-maximization based inference framework [START_REF] Bishop | Pattern Recognition and Machine Learning (Information Science and Statistics)[END_REF] and the variational model comparison based inference framework [START_REF] Bishop | Pattern Recognition and Machine Learning (Information Science and Statistics)[END_REF],

our newly proposed schemes naturally account for the uncertainty about the channel's gain and noise We start by describing the system model and the RF codebook used. We next discuss the technical details of each of our proposed schemes the rest. We finally show through numerical simulations how effective these are in terms of their beamforming gains. The two devices communicate over a reciprocal LOS wireless MIMO channel. This is considered to be static and narrowband, and is modeled according to the finite scatterer channel model with one single dominant path [START_REF] Akdim | Ping pong beam training for multi stream mimo communications with hybrid antenna arrays[END_REF][START_REF] Manchón | Ping-pong beam training with hybrid digitalanalog antenna arrays[END_REF] as:

System Model

H = α(φB) H (φA) (3.1)
where H ∈ C N B ×N A is the wireless channel MIMO matrix, and α is the complex fading channel gain, modeled as a standard complex Gaussian variable. (φ A ) and (φ B ) are the ULA array response vectors at devices A and B with incidence angles φ A and φ B respectively, modeled as

(ω A ) = 1, e -jω A , . . . , e -j(N A -1)ω A T and (ω B ) = 1, e -jω B , . . . , e -j(N B -1)ω B T , with ω A (φ A ) = 2π λ d cos (φ A )
and ω B (φ B ) = 2π λ d cos (φ B ). The incidence angles φ A and φ B are modeled as uniformly distributed in the range [θ A,1 , θ A,2 ] and [θ B,1 , θ B,2 ] respectively.
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The two devices go through an initial access phase consisting of a pilot based beam alignment procedure in order to establish the wireless link between them. We assume in this work that, during this initial access phase, the CSI learning and beam search processes for the two devices are centralized,

i.e one of the devices, say B, is collecting measurements based on device A's pilot transmission, uses such measurements to learn the channel's gain and noise variance and also devises the combiner it will use for the next pilot reception occasion together with the precoder that device A should use in sending that pilot. This decision is communicated to device A through an ideal, error-free control channel, which can e.g. be established via a sub-6 GHz link in a non-stand-alone deployment. The extension of our proposal to distributed CSI learning and beam search setups will not be discussed here and will the object of a future work.

At time instant t, device A sends a pilot symbol to B, who after pilot removal observes the signal

yB,t = √ P w H B,t HfA,t + w H B,t nB,t (3.2) 
where f A,t ∈ C N A and w B,t ∈ C N B denote the effective precoder and combiner used at time t by transceivers A and B respectively. These effective precoder and combiner are obtained from hybrid digital-analog codebooks detailed in the next section. In addition, n B,t ∈ C N B is a complex, circularlysymmetric additive white Gaussian noise vector, obtained after training sequence removal and with i.i.d elements, each with variance σ 2 B . √ P is the average transmit power of the pilot signal.

RF Codebook

The adaptive beamforming strategy proposed herein utilizes the hierarchical beamforming codebook in [START_REF] Alkhateeb | Channel estimation and hybrid precoding for millimeter wave cellular systems[END_REF]. Such a codebook, noted C S hereafter, is designed to have S levels of beam patterns. The beams in each level l (l = 1, . . . S) are optimized to leverages the digital-analog transceiver architecture of the devices by properly setting digital and analog beamformers to approach the desired analog beams shape. These desired beams should have the following ideal properties:

• They divide the angular region of interest, say [θ 1 , θ 2 ] dyadically in a hierarchical manner,
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• The angular coverage of any two different beams of them are disjoint,

• The union of all such beams is the whole region of interest.

We note C l the collection of beams belonging to level l. Then, C l will contain 2 l beamforming vectors that divide the sector [θ 1 , θ 2 ] into 2 l directions, each associated with a certain range of incidence angles

R m l , such that [θ 1 , θ 2 ] = ∪ 2 l m=1 R m l . We note each of such 2 l vectors as either f A (R m l ) or w B (R m l ),
depending on the considered device. 
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Sequential Beam Pair Search via Variational HiePM

As described in the introduction, to allow devices A and B to run a fast and reliable beam alignment process, an adaptive beamforming technique termed "Hierarchical Posterior Matching (HierPM)" [START_REF] Chiu | Active learning and CSI acquisition for mmwave initial alignment[END_REF] is used hereafter. This technique uses the hierarchical beamforming codebook structure described above to sequentially, i.e based on all available measurements at a certain point of time, choose the next set of precoder/combiner pairs that shall be used to take a new measurement, so that both the average best beam pair search time and the beam pair misalignment probability are optimally reduced.

In this section, we first review the details of this adaptive scheme and show that knowledge of the channel gain α and the noise variance σ 2 is necessary to make the strategy usable in practice. We then detail our contribution. Thee newly proposed schemes overcome the aforementioned shortcomings of the vanilla HierPM scheme, by either considering the channel's parameters to be non random latent unknowns and uses the variational expectation maximization scheme to estimate them, or by by either considering the channel's parameters to be random latent variables and resorts to using a novel variational model comparison based inference framework [START_REF] Bishop | Pattern Recognition and Machine Learning (Information Science and Statistics)[END_REF] to account for that. We dub our novel strategies as "Variational Expectation Maximization Based Hierarchical Posterior Matching (VEM-HierPM)" and "Variational Model Comparison Based Hierarchical Posterior Matching (VMC-HierPM)".

Sequential Active Learning via the HiePM Strategy

We illustrate here the use of the vanilla HiePM scheme [START_REF] Chiu | Active learning and CSI acquisition for mmwave initial alignment[END_REF] for device A (an analogous strategy will be used for device B). HiePM selects f A,t+1 based on the posterior at time t of the incidence angle φ A . We discretize the noisy beam search problem above by assuming that the beam search resolution δ A is an integer power of two and that the AoA φ A is of the form:

φA ∈ {φA,1, . . . , φ A,δ A }, φA,i = θA,1 + (i -1) δA (θA,2 -θA,1) (3.3) 
Note that Such discretization approaches the original problem of initial access as δ A → 0 [START_REF] Chiu | Active learning and CSI acquisition for mmwave initial alignment[END_REF]. Note
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39 also that to support this level of resolution, the corresponding number of levels of the hierarchical beamforming codebook at device A should be :

S A = log 2 (δ A ).
With the above setup, the posterior distribution of φ A given all measurements up to time t (collected in vector y B,1:t ), can be written as a δ A -dimensional vector π A (t) with entries πA,i (t) := Pr (φA = φA,i|yB,1:t) , i = 1, . . . , δA.

(3.4)

The posterior probability of φ A being in a certain range, say R m i , can be computed as

π A,R m i (t) := φ A,i ∈R m i πA,i (t). (3.5)
The HiePM strategy examines the posterior probability π A,R m i (t) for all i = 1, . . . , S A and m = 1, . . . , 2 i and selects f A,t+1 ∈ C S to be the beamformer corresponding to the angular range that satisfies:

(i * t+1 , m * t+1 ) = arg min (i,m) π A,R m i (t) - 1 2 (3.6) 
Intuitively, HiePM chooses at time instant t + 1 a narrower beam than the one being used at time instant t only if the posterior of its parent beam is bigger than 1 2 (making this parent beam the most suitable to choose from a Bayesian standpoint) and such a narrow beam itself has the highest posterior among the children of its parent beam. Doing so, it is then guaranteed [START_REF] Chiu | Active learning and CSI acquisition for mmwave initial alignment[END_REF] that this scheme will sequentially refine the width of the beamformer around the true incidence angle φ A .

Next we describe how the posterior belief around φ A is updated once a new measurement is taken with the pair of beamformers chosen previously with HiePM. Based on the measurement model in (3.2), the posterior update at time instant t + 1 can be expressed using Bayes rule as

π A,i (t + 1) ∝ π A,i (t) f (y B,t+1 |φ A = φ A,i ) , i = 1, . . . , δ A (3.7)
where f (y B,t+1 |φ A = φ A,i ) is the likelihood of φ A from measurement y B,t+1 . Unfortunately, the dependency of likelihood term f (y B,t+1 |φ A = φ A,i ) on the latent parameters, namely the channel gain α, the noise variance σ 2 B and the incidence angle φ B , makes it difficult to be calculated in closed form, thus hindering its practical use..

The Variational Expectation Maximization HiePM Scheme: VEM-HiePM

Our first contribution is based on considering the channel gain α and the noise variance σ 2 B as classical unknown parameters, i.e latent parameters that are not probabilistic. We explain first the Variational Expectation Maximization approximate inference framework used in its most general form. We then

show how to apply it to our problem to account for the unknown parameters, α and σ 2 B , and to jointly derive posterior updates of our incidence angles φ A and φ B .

Primer on the Expectation Maximization framework

We start by listing the different types of variables that the Expectation Maximization (EM) approximate inference framework builds upon:

• x is the observed data vector, which is in our case y B,1:t+1 .

• z = (z 1 , z 2 , . . . , z L ) denotes the L-dim vector of latent unknown parameters that parameterize the measurement model (3.2). In our case, these are the channel's gain and the noise variance,

i.e z = (α, ν). ν is the inverse of σ 2 B .

• m ∈ {1, 2, . . . , δ A × δ B } denotes the mth pair of angles (φ A,im , φ B,jm ), with i m ∈ {1, . . . , δ A }, and j m ∈ {1, . . . , δ B }. Choosing a certain label m is equivalent to assuming that our measurement model in (3.2) is parameterized by the the mth pair of angles. m will be our model's latent random variable.

The EM framework is used to find an estimate for the hidden unknown parameters of our model, i.e z, that maximize the log likelihood L(z) = log(x; z). EM assumes that deriving a good maximum log likelihood estimate of z is not easily solved directly, but that the corresponding problem in which m is also observed is mathematically tractable and can be solved efficiently.

The EM algorithm starts with some initial guess for the maximum likelihood parameter z (0) , and
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then proceeds to iteratively generate successive estimates, z (1) , z (2) , . . . by repeatedly applying the following two steps, for t = 1, 2, . . . , until convergence is reached :

• E -Step : Compute a distribution q (t) over the range of m such that q (t) (m) = p(m|x; z (t-1) ).

• M -Step : Set z (t) to z that maximizes E q (t) [log(p(x, m; z)]
The recursive operation above solves the issue of having the random variable m latent, i.e unobserved, by representing its corresponding value by a distribution of values in the E step, and then performing a maximum likelihood estimation for the join data obtained by combining this with the known value of the observed variable x.

The VEM-HiePM algorithm

We detail next the VEM-HiePM scheme. Suppose we made t measurements. We have from our where

• ν = σ -2 is the noise precision at device B;

• p(y 1:t |m; (α, ν)) = t+1 i=1 CN (y i ; √ P αw H B,i A m f A,i , σ 2
) is the likelihood of our measurement model (we assume here that the sequential noise samples are i.i.d)

2 , A m = (φ B,jm ) H (φ A,im ); • p(m) = 1 δ A δ B
is the prior belief over m, which is assumed to be uniform to make it non informative.

As already discussed, the EM algorithm starts with some initial guess for the maximum likelihood parameters z

(0) t = (α (0) t , ν (0) 
t ), and then proceeds to iteratively generate successive estimates, z

= (α (1) t 
t , ν

t ), z

(2) t == (α (2) t , ν (2) 
t ), . . . , by repeatedly applying the expectation and maximization steps, for s = 0, 1, 2, . . . , until convergence is reached.
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be the estimates of posterior distribution over m, the channel's gain and noise precision, respectively, at the measurement epoch t and after s > 0 iterations. We obtain after some algebra:

α s t = E q (s-1) t t d=1 √ P w H B,t A m f A,t * y B,d E q (s-1) t t d=1 √ P w H B,t A m f A,t 2 
(3.9)

ν s t = t E q (s-1) t t d=1 y d - √ P w H B,t A m f A,t α (s) t 2 (3.10)
Now that we know how to derive estimate for α and ν if we are given an estimate for the posterior distribution over m, let us see how to derive the posterior distribution over m given α and ν estimates.

Let q ∞ t and q ∞ t-1 be the estimates for the posterior distribution over m at measurement epochs t -1 and t, and α

(∞) t-1 and ν (∞)
t-1 be the estimates for α and ν respectively, where all these estimates are considered after that the EM iterations converge. We have

q (∞) t (m) (a) 
∼ CN (y t ;

√ P αw H B,t A m f A,t , ν ∞ t-1 )q (∞) t-1 (m) (b) ∼ t i=1 CN (y i ; √ P αw H B,i A m f A,i , ν (∞) t-1 )p(m) (c) ∼ exp (-ν ∞ t-1 t d=1 y d - √ P w H B,t A m f A,t α (∞) t 2 )p(m) (3.11) 
where (a) results from applying bayes rule on q (∞) t (m) and (b) and (c) are results of direct application of our system model assumptions.

The posteriors over φ A,im and φ B,jm are obtained from the posterior q

(∞) t (m) as q A,t (i) = {m:im=i} q (∞) t (m), i = 1, . . . , δ A (3.12) q B,t (j) = {m:jm=j} q (∞) t (m), j = 1, . . . , δ B (3.13)
The posterior probability of the incidence angles φ A and φ B to be in a certain range R n A,i and R p B,j respectively, read as:

3.5. SEQUENTIAL BEAM PAIR SEARCH VIA VARIATIONAL HIEPM q A,t (R n A,i ) := φ A,i ∈R n A,i q A,t (i), (3.14) q B,t (R p B,j ) := φ B,j ∈R p B,j q B,t (i), (3.15) 
The vanilla HierPM scheme is then applied separately to q A,t (i) and q B,t (j), to choose the pair of beamformers to use for the next measurement occasion.

Algorithm 1 runs all above operations in a loop, until the measurement budget is exhausted:

device B decides which pair of beamformers devices A and B shall use to take the next measurement by applying the HiePM scheme separately to the current posteriors q A,t and q B,t , it then takes a new measurement y B,t+1 with those latter, and finally run variational EM inference to derive estimates of

ν B = 1 σ 2 B
and α as well as approximate of φ A and φ B . 

(f A,t+1 , w B,t+1 ) = f A R k A,t+1 A,l A,t+1 , w B R k B,t+1
(q A,t+1 (k))) 18 lt+1,B , kt+1,B = (S B , arg max k (q B,t+1 (k)))
19 end 20 Output : φA = φA, kτ,A , φB = φB, kτ,B

The Variational Model Comparison Based HiePM Scheme : VMC-HiePM

Our second contribution in this chapter is based on considering the channel gain α and the noise variance σ 2 as probabilistic latent variables. We show next, how "VMC-HiePM" is able, using the variational model based approximate inference framework described in [START_REF] Bishop | Pattern Recognition and Machine Learning (Information Science and Statistics)[END_REF], to infer all above unknowns and uses them efficiently to calculate the posterior update needed for HiePM, in a consistent and elegant way. Such an inference framework lends itself naturally in the HiePM context: we make the best use of the measurements by first estimating posteriors over the channel gain and noise variance and then use those to robustly update the angle of incidence posterior, doing so allows VMC-HiePM to take the channel's gain and noise variance estimation uncertainties properly into account when deriving the posterior of the incidence angles, thus making a robust HiePM based decision when choosing the next precoder/combiner pair to use.

We explain first the variational model comparison based approximate inference framework used in its most general form, then show how to apply it to our problem to derive posterior updates for our parameters of interest.

Primer on the Variational Model Comparison based approximate inference framework Variational Model Comparison based Posterior Update

As we did for the VEM-HiePM study, We start by listing the different types of variables that the variational model comparison based approximate inference framework deals with:

• X is the observed data vector, in our case is y B,1:t+1 .

• Z = (Z 1 , Z 2 , . . . , Z L ) denotes the L-dim vector of latent variables that parameterize the measurement model (3.2). In our case, Z = (α, σ 2 ).

• m ∈ {1, 2, . . . , δ A × δ B } denotes the mth pair of angles (φ A,im , φ B,jm ), with i m ∈ {1, . . . , δ A }, and j m ∈ {1, . . . , δ B }. Choosing a certain label m is equivalent to assuming that our measurement model in (3.2) is parameterized by the the mth pair of angles.

The framework performs joint inference on the hidden variables to find a set of distributions {q(Z|m), q(m)} 1:m that approximate the true posterior p(Z, m|X), by minimizing the Kullback-Leibler (KL) divergence:

KL(q(Z|m)q(m), p(Z, m|X)).

(3.16)

HiePM then uses the approximate incidence angle posterior q(m) to decide which is the best measurement model candidate fitting the observed data vector X. Algorithm 2 [76, Chapter 10.4] lists the steps required to perform such operations.

Algorithm 2: Variational Model Comparison based Posterior Update

1 for m = 1 : δ A δ B do 2 while (No convergence yet) do 3 for j = 1, 2, . . . , L do 4 q(Z j |m) ∝ E i =j (log(p(X|Z, m))) 5 L m = Z q(Z|m) log( p(Z,m|X) q(Z|m) ) 6 q(m) ∝ p(m) exp(L m )
Posterior Update for our measurement Model and the overall V-HiePM Algorithm

From our measurement model (3.2), we have

p(X, Z, m) = p(yB,1:t|α, ν, m)p(α)p(ν)p(m) (3.17)
where

• ν = σ -2 is the noise precision at device B • p(X|Z, m) = p(y B,1:t |α, ν B , m) = t+1 i=1 CN (y B,i ; √ P αw H B,i A m f A,i , σ 2 B )
is the likelihood of our measurement model (we assume here that the sequential noise samples are i.i.d); p(α) = CN (α; α 0 , β 0 ) is the prior belief over α, considered to be Gaussian with a known initial mean α 0 and initial precision β 03 . p(ν B ) = Γ(ν B ; a 0 , b 0 ) is the non informative prior belief over ν B , with parameters a 0 = 0 and b 0 = 0. A m = (φ B,jm ) H (φ A,im )

• p(m) = 1 δ A δ B is the prior belief over m, which is assumed to be uniform to make it non informative as well 4 .

After some algebra, the obtained approximate posteriors for α and ν B , up to the measurement iteration t, are shown to keep the form of their respective priors, but with parameters that depend on the measurement vector y B,1:t : q t (α|m) has the form of complex Gaussian pdf with mean α t,m and precision β t,m reading

β t,m = a t,m b t,m t d=1 √ P w H B,t A m f A,t 2 + β 0 (3.18a) α t,m = a t,m b t,m β t,m t d=1 √ P w H B,t A m f A,t * y B,d + α 0 β 0 β t,m (3.18b) 
q t (ν B |m) 5 follows a Gamma pdf with parameters shape and rate parameters a t,m and b t,m given by

a t,m = a 0 + t, (3.19a) b t,m = b 0 -2Re t d=1 √ P w H B,t A m f A,t * y B,d α * t,m + t d=1 |y B,d | 2 + 1 βt,m + |α t,m | 2 √ P w H B,t A m f A,t 2 (3.19b)
Note that the choice of our prior distributions is not arbitrary, the priors chosen above correspond to the maximum entropy distributions [START_REF] Thomas | A generalized maximum entropy principle[END_REF] that respect constraints that need to be put on their respective parameters, namely α being a complex variable having a known initial mean and variance, ν B being a non negative variable and m being a discrete variable). Such a choice makes our proposal assume the least information about our measurement model's unknowns.

The posterior of the model, indexed by m, is then updated following Lines 5 and 6 in Algorithm 2,

where L m reads

L t,m = log( 1 β 2 t,m ) + a t,m (1 -log(b t,m )) + log(Γ(a t,m )) -b 0 a t,m b t,m - t d=1 |y B,d | 2 a t,m b t,m -β t,m |α t,m | 2 (3.20)
The posteriors over φ A,im and φ B,jm are obtained from the posterior q t (m) as

q A,t (i) = {m:im=i} q t (m), i = 1, . . . , δ A (3.21) q B,t (j) = {m:jm=j} q t (m), j = 1, . . . , δ B (3.22)
The posterior probability of the incidence angles φ A and φ B to be in a certain range R n A,i and R p B,j resp, read as:

q A,t (R n A,i ) := φ A,i ∈R n A,i q A,t (i), (3.23) 
q B,t (R p B,j ) := φ B,j ∈R p B,j q B,t (i), (3.24) 
The vanilla HierPM scheme is then applied separately to q A,t (i) and q B,t (j), to choose the pair of beamformers to use for the next measurement occasion.

Algorithm 3 runs all above operations in a loop, until the measurement budget is exhausted:

device B decides which pair of beamformers devices A and B shall use to take the next measurement by applying the HiePM scheme separately to the current posteriors q A,t and q B,t , it then takes a new measurement y B,t+1 with those latter, and finally run variational inference to derive approximate

posteriors of ν B = 1 σ 2 B
, α as well as of φ A and φ B . 

(f A,t+1 , w B,t+1 ) = f A R k A,t+1 A,l A,t+1 , w B R k B,t+1 B,l B,
(q A,t+1 (k))) 18 lt+1,B , kt+1,B = (S B , arg max k (q B,t+1 (k)))
19 end 20 Output : φA = φA, kτ,A , φB = φB, kτ,B

Numerical Results

To assess the effectiveness of the proposed algorithms, we run Monte Carlo simulations on a setup with two hybrid digital-analog beamforming devices A and B. The channel matrix C A is built using the orthogonal matching pursuit as described in [START_REF] Alkhateeb | Channel estimation and hybrid precoding for millimeter wave cellular systems[END_REF]. A similar codebook, C B , is used for device B. 7We define beamforming gains, achieved after taking t measurements, for our proposed schemes as follows :

H ∈ C N B ×N A reads H = α(φB) H (φA) + L l=1 α l (φ B,l ) H (φ A,l ) (3 
G x = w H (φ B, kt,B )Hf (φ A, kt,A ) 2 (3.26)
where x can be either em for VEM-HiePM or vh for VMC-HiePM.

We benchmark these beamforming gains with different measurement budget sizes8 and under different channel assumptions, against that of the different state of the art schemes listed below:

• G ph of the vanilla HiePM scheme of [START_REF] Chiu | Active learning and CSI acquisition for mmwave initial alignment[END_REF]. Here, such a scheme assumes that all of the energy in the channel is concentrated in the path corresponding to the known gain α and all other gains α l are null, it also assumes that σ 2 B is known. In such case, the posterior update is done, simply using Bayes rule as in equation [START_REF] Akdim | Ping pong beam training for multi stream mimo communications with hybrid antenna arrays[END_REF] in [START_REF] Chiu | Active learning and CSI acquisition for mmwave initial alignment[END_REF], on the beam pair corresponding to that main path, and then HiePM is applied to the marginals over those angles separately, similar to what our schemes do.

• G bs of the noisy binary search algorithm of [START_REF] Alkhateeb | Channel estimation and hybrid precoding for millimeter wave cellular systems[END_REF], which is achieved by 4 log 2 (max{N A , N B }) = 28 measurements.

• G max the best achievable beamforming gain of the used codebook, defined as:

G max = max {w∈C B S B ,f ∈C A S A } w H Hf 2 . (3.27)
We begin by assuming that the dominant component is the only component that is present in the channel (i.e. L = 0).
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Fig. 3.4 shows the beamforming losses of the benchmarked algorithms with respect to the optimum pair of beamformers, defined as L vh = G vh /G max , L em = G em /G max , and L bs = G bs /G max . 

NUMERICAL RESULTS

51

CHAPTER 3. MMWAVE WIRELESS CHANNELS VARIATIONAL ONLINE LEARNING

It can be seen that both or our proposed schemes are clearly much better, in all SNR regimes, than the binary search based beamforming scheme proposed in [START_REF] Alkhateeb | Channel estimation and hybrid precoding for millimeter wave cellular systems[END_REF], we see that even with as little as 28 measurements, which is the measurement budget needed by this latter to settle, both of our algorithms perform quite well in all SNR regimes, we see that even with such a small measurement budget, VMC-HiePM can achieve at least 50% of the maximum beamforming gain that can be achieved with the RF codebook being used across all SNR points. Also, We observe that with only 100 measurements (compare this with the number of measurements needed for exhaustive search to achieve

We compare next the performance of our schemes to that of the vanilla HiePM with perfect CSI and operating SNR knowledge scheme. Fig. 4.3 shows the beamforming losses of VMC-HiePM, VEM-HiePM and of vanilla HiePM schemes with respect to the optimum pair of beamformers (these are defined similar to the above :

L vh = G vh /G max , L em = G em /G max and L ph = G ph /G max ) under
the same simulation assumption of Fig. 3.4. The results show that VMC-HiePM can achieve similar or even better performance compared to vanilla HiePM with perfect CSI and operating SNR knowledge, we can see as well that VEM-HiePM is underperfoming when copared to the vanilla HiePM scheme.

Also, it can be observed that the vanilla HiePM scheme with perfect channel gain knowledge saturates at high SNR: this is an effect of the algorithm assuming that the component's incidence angle lies on a discrete grid of values, whereas the actual angles are sampled from a continuous distribution.

VMC-HiePM is less sensitive to this model mismatch, due to the estimation of the channel gain and inverse noise variance: in practice, these estimates partly account for the mismatch in the assumed values of the angles and provide robustness to the overall procedure. 
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Next, we explore the robustness of our best performing method, namely VMC-HiePM, against channels containing more than one multipath component. For this, we consider a channel with L = 3 scattered components with gains of equal variance, and with the power ratio between the dominant and scattered components being LOS R = E{α 2 }/(E{α 2 } + l E{α 2 l }). Fig. 4.5 shows beamforming gains achieved by our algorithm after 100 measurements compared to the maximum gains achievable

G max .
As it can be observed, the maximum achievable beamforming gain decreases as the power is more evenly distributed among the channel's components. Although VMC-HiePM assumes the existence of a single component, it shows remarkable resilience to the presence of other components. Even when all components in the model have comparable power, our proposed method is able to perform within 2 dB of the optimum for sufficiently high SNR. 
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Conclusion and Future Work

We proposed in this work two variational Bayesian online learning schemes that enable initial access for hybrid digital-analog enabled devices operating in mmWave wireless channels. When compared to state of the art beam acquisition schemes, our methods shows superiority, in terms of balancing the beam search time versus achieving higher beamforming gain, in being able to properly do so while accounting for uncertainties on the unknown CSI (gain and noise variance) and in being very resilient to the dominant single path assumption. Even though both of the schemes are derived based on a discretized model of the angles of incidence of the channel's main component, they showed great robustness against off-grid angles as well as working with a realistic codebook implementation. Further research will focus on adapting the proposed online learning algorithms to operating in time-varying channels.

Chapter 4

Mutli-Stream Beamforming with Hybrid Arrays

Overview

In this chapter1 we propose a method to derive precoders and combiners for multi-stream MIMO transmission be-tween two devices equipped with hybrid digital-analog antenna arrays. The method relies on a low-complexity "multi-beam split and drop with backtracking" procedure to update the analog precoders, while digital precoders are computed with the QR-decomposition based method. We show numerically that for sufficiently large SNRs, our proposal can approximate well the unconstrained SVD-based precoder design and can thus enable high throughput mmWave communication systems.

Introduction

Upcoming wireless communication networks are expected to provide service to an unprecendently large number of wireless devices with peak data rates in the order of tens of Gbps.

As we discussed in great details in earlier chapters, the low complexity and power friendly mmWave Hybrid Antenna array transceivers are seen as a great trasnceiver design that would solve......... the congestion and fragmentation of the traditional spectral bands below 6GHz has pushed wireless service providers to explore vacant spectrum at the millimeter-wave (mmWave) frequency bands (30-300 GHz) in order to fulfill that goal [4]. Having a poor diffraction capability and high absorption and free space propagation losses, wireless communications over such high frequencies will be a challenging task [17]. As detailed already, this frequency range will allow for the use of compact and small antenna arrays with high number of elements, as the physical size of the array is proportional to the carrier wavelength. The large beamforming gains that such large-scale arrays enable will be used to compensate for the above limitations.

However, the high cost, power consumption and complexity of the mixed signal hardware at mmwave make having large antenna arrays with digitally controlled elements infeasible [18]. This has motivated the wireless communication research community to look at the hybrid digital-analog antenna array architectures [START_REF] Zhang | Variable-phase-shift-based RF-baseband codesign for MIMO antenna selection[END_REF]. In such architectures, the large antenna array is steered using analog phase shifters and only a few digitally modulated radio-frequency (RF) chains. An illustration of such an architecture is shown in Fig. 4.1.

Although Hybrid Antenna arrays help making packing large antenna arrays in small devices a feasible task by reducing the implementation complexity as well as the power consumption of the overall baseband and RF chains, they do bring their own challenges: the low SNR resulting from high propagation losses, the large dimensionality of the MIMO channel matrix and the presence of analog processing complicate the acquisition of the channel state information (CSI) and the computation of the MIMO precoders and combiners [4,18]. Luckily, channel measurement campaigns [17] have shown

INTRODUCTION

59 that mm-wave channels are sparse in the angular domain, which enables the proposal of CSI acquisition and precoding/combining algorithms that exploit such property. An example of these are compressed sensing based approaches such as [18,[START_REF] Ayach | Spatially sparse precoding in millimeter wave MIMO systems[END_REF][START_REF] Alkhateeb | Channel estimation and hybrid precoding for millimeter wave cellular systems[END_REF], which are generally computationally complex and require a large amount of channel measurements. An alternative are exhaustive and hierarchical beam-search techniques, which may entail significant latency and probability of miss detection [START_REF] Giordani | Initial access in 5G mmwave cellular networks[END_REF].

In this work, we focus on a beam training strategy based on alternating transmissions between two transceivers, which has been coined ping pong beam training (PPBT). The main idea behind PPBT is to exploit the reciprocity of the MIMO channel. With appropriate processing at each device, the alternate transmissions implicitly implement an algebraic power iteration that leads to approximating the top left and right singular vectors of the MIMO channel matrix. This idea was first applied in the digital arrays context for single stream wireless communications in [START_REF] Andersen | Intelligent antennas in a scattering environment -an overview[END_REF][START_REF]Array gain and capacity for known random channels with multiple element arrays at both ends[END_REF], and was extended to multi stream setups in [START_REF] Dahl | Blind MIMO eigenmode transmission based on the algebraic power method[END_REF], to large antenna array and frequency selective systems in [START_REF] Carvalho | Ping-pong beam training for reciprocal channels with delay spread[END_REF] and to noisy MIMO channels in [START_REF] Ogbe | Noisy beam alignment techniques for reciprocal MIMO channels[END_REF]. More recently, similar approaches have been proposed in the context of mmWave communications with hybrid digital-analog antenna arrays, which we review next. In [START_REF] Manchón | Ping-pong beam training with hybrid digitalanalog antenna arrays[END_REF], the basic ping pong beam training method for single-stream MIMO transmission was adapted to the hybrid array architecture with the inclusion of a "beam split-and-drop" procedure for the setting of analog precoders. The subspace estimation and decomposition method in [START_REF] Ghauch | Subspace estimation and decomposition for large millimeter-wave MIMO systems[END_REF] proposes a ping pong based algorithm that iteratively estimates the channel's right and left eigenvectors using a Krylov subspace estimation method. This algorithm is based on exhaustive measurements with a large set of different analog precoders, which are then linearly combined in order to cancel the effect of the analog precoders.

It therefore requires significant amount of transmissions, which imply large signalling overhead and latency. Lastly, the power iteration based training method introduced in [85] is a technique that extends the solution proposed in [START_REF] Dahl | Blind MIMO eigenmode transmission based on the algebraic power method[END_REF] to the multi stream case, where the digital precoders are set based on an algebraic power iteration technique, while the analog precoders update is done based on a compressed sensing technique called simultaneous orthogonal matching pursuit [START_REF] Duarte | Structured compressed sensing: From theory to applications[END_REF].

Compared to the above approaches, we propose in this article a strategy that sets the digital and
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analog precoders of the devices in a way to approximate the top N S left and right singular vectors of the channel matrix, with N S being the desired number of spatial streams. Our new technique, which we dub "hybrid ping pong multi beam training" (Hybrid PPMBT) extends the work done in [START_REF] Manchón | Ping-pong beam training with hybrid digitalanalog antenna arrays[END_REF] to the multi stream case. It adapts the PPBT strategy to hybrid arrays by progressively choosing the analog precoders at each device from a predefined hierarchical codebook. After one round-trip transmission, a novel "multi beam split and drop strategy with backtracking" is applied to focus the analog precoders towards the spatial directions that are most likely containing the channel's top N S multipath components. The digital precoders are updated via an orthogonal decomposition operation on the received signal as described in [START_REF] Dahl | Blind MIMO eigenmode transmission based on the algebraic power method[END_REF]. In comparison to the approaches in [START_REF] Ghauch | Subspace estimation and decomposition for large millimeter-wave MIMO systems[END_REF] and [START_REF] Cheng | Spatially sparse beamforming training for millimeter wave MIMO systems[END_REF], Hybrid PPMBT is much simpler from a computational complexity aspect and has a low training overhead as it requires significantly fewer transmissions. Simulation results show that our proposed scheme performs very well in retrieving the wanted N S channel's top eigenmodes for sufficiently large signal-to-noise ratio, both in terms of accuracy and convergence speed. propagation paths [START_REF] Manchón | Ping-pong beam training with hybrid digitalanalog antenna arrays[END_REF][START_REF] Burr | Capacity bounds and estimates for the finite scatterers MIMO wireless channel[END_REF], as

H = N A N B L L l=1 α l (Ω B,l ) H (Ω A,l ), (4.1) 
here, H ∈ C N B ×N A , L is the number of multipath components (MPC), α l is the complex fading channel gain for MPC l, Ω A,l = 2π λ d cos φ A,l and Ω B,l = 2π λ d cos φ B,l are the directional cosines corresponding to the lth MPC at arrays A and B respectively, where φ A,l , φ B,l are the angles of incidence of that same path, and and are the array response vectors at device A and B respectively. The α l are modeled as independent, standard complex gaussian variables, the φ A,l and φ B,l as uniformly distributed in the range [0, 2π) radians and the array responses as (Ω A,l ) = [1, e -jΩ A,l , . . . , e -j(N A -1)Ω A,l ] T / √ N A and

(Ω B,l ) = [1, e -jΩ B,l , . . . , e -j(N B -1)Ω B,l ] T / √ N B .

In order to establish the wireless link with device B, device A (we assume, without loss of generality, that device A is performing the first transmission) transmits T , an N S × N S orthogonal training sequence i.e T T H = I N S . Upon reception, device B cancels the training sequence effect by multiplying its received digital signal by T H . The resulting signal can be expressed as:

Y B = F H B HF A W A + F H B N B , (4.2) 
where

F A ∈ C N A ×N RF A and F B ∈ C N B ×N RF B
contain the states of the analog precoder and combiner of transceivers A and B, W A ∈ C N RF A ×N S denotes the digital precoder of transceiver A and 

N B ∈ C N B ×N S is
Y A = F H A H H F B W B + F H A N A , (4.3) 
where W B ∈ C N RF B ×N S and N A ∈ C N A ×N S are defined similar to the above.

Hybrid Ping Pong Multi Beam Training : Hybrid PPMBT

Given the signal model in (4.2) and (4.3), the beamforming task consists of selecting the set of analog and digital precoders and combiners that maximize the spectral efficiency over a given channel matrix H. For transmission from device A to B, and assuming unit transmit power equally allocated across the N S streams, the spectral efficiency reads

R = log 2 det I N S + R -1 N B N S H e H H e , (4.4) 
where

R N B = σ 2 W H B F H B F B W B
is the noise covariance matrix after receive combining at device B,

H e = W H B F H B HF A W A
is the equivalent channel after precoding and combining at both devices. An analogous expression applies for transmission from device B to device A.

The optimal precoders maximizing (4.4) are known to be the N S top right and left singular vectors of H. However, the hybrid structure of the antenna array makes the computation of such precoders challenging. On the one hand, as digital measurements of the channel are only obtained after analog precoding and combining, estimating the full channel matrix H in order to obtain its singular value decomposition requires a large number of measurements and hence large overhead and latency [START_REF] Ghauch | Subspace estimation and decomposition for large millimeter-wave MIMO systems[END_REF].

On the other hand, even if the channel matrix H can be estimated, the precoders have to be built as the product of the analog precoding matrix F A and the digital precoding matrix W A . While the elements of W A can take any complex value due to its digital implementation, the operation modeled by F A is implemented via phase shifters and combiners, which restricts the values it can take. In this work, we restrict the entries of

F A to satisfy |(F A ) l,i | 2 ∈ { 1 M (i) A ; 0}, where M (i)
A being the number of activated array elements in the ith column of F A , and the option (F A ) l,i = 0 accounts for the option of 2 (F A ) l,i is the entry of the matrix F A belonging to its lth row and ith column.
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leaving some elements of the array unused. In addition, a transmit power constraint is enforced such that F A W A F = 1. 3 With these constraints, finding the combination of digital and analog precoders to best approximate the channel's singular vectors becomes a computationally intensive optimization problem [START_REF] Ayach | Spatially sparse precoding in millimeter wave MIMO systems[END_REF].

To overcome such difficulties, we propose an iterative multi beam training scheme based on alternate transmissions between the two devices, this procedure estimates progressively and simultaneously the top N S right and left singular vectors of H and sets the digital and analog precoders so that they approach those singular vectors. It consists of two parts: 1. a "backtracking beam split and drop" approach to select the analog precoders F A and F B from a predefined multi level codebook, 2. a method to select the digital precoders W A and W B inspired by the QR decomposition algorithm described in [START_REF] Dahl | Blind MIMO eigenmode transmission based on the algebraic power method[END_REF].

We will proceed by reviewing the beam training procedure for digital antenna arrays proposed in [START_REF] Dahl | Blind MIMO eigenmode transmission based on the algebraic power method[END_REF], then briefly present the multi level codebook that is used for the analog precoder update, and finally explain our multi beam training solution.

Ping-Pong Multi Beam Training with Digital Antenna Arrays: Digital PPMBT

We review the digital PPBT algorithm over a narrowband reciprocal channel H as described in [START_REF] Dahl | Blind MIMO eigenmode transmission based on the algebraic power method[END_REF].

We consider two devices A and B equipped with digitally controlled antenna arrays with N A and N B elements respectively. At the initial (0th) iteration, the process starts with a random initialization of the precoder at device A, W A , makes a QR-decomposition on it, and uses the Q part of that decomposition as its precoder W This process is reiterated until convergence, at which, device A gets an estimate of the top N S right 3 Obviously, the same constraints apply to the analog precoder of device B. Further details on this procedure can be found in [START_REF] Dahl | Blind MIMO eigenmode transmission based on the algebraic power method[END_REF].

Analog Precoder Multi Level Codebook

We illustrate here the codebook definition for transceiver A (an analogous codebook is used for the transceiver B). We consider a codebook C A which is composed of

L A = log 2 (N A /N RF A )+1. levels.
Note that for the considered codebook design we constrain N A and N RF A to be both integer powers of two. For the kth level, we define a subcodebook

C (k) A ={ϕ (k) A,i , i=0, 1, . . . , M (k) 
A -1} consisting of

M (k) A =N RF A 2 k-1 column vectors, k=1, 2, . . . , L A .
Each of the elements of the subcodebook is defined as :

ϕ (k)
A,i = 1, e -jψ (k) A,i , . . . , e -j(M (k)

A -1)ψ (k) A,i , 0 T N A -M (k) A T / M (k) A (4.5)
where ψ (k)

A,i =π-π(2i+1)/M (k)
A is the directional cosine of the ith vector at the kth level (ϕ

(k)
A,i steers the array in the direction θ (k)

A,i = arccos ψ (k)
A,i /π, with a lobe whose width decreases with the codebook level k), and 0 N is the N -dimensional column zero vector. Further details about the codebook used here can be found in [START_REF] Manchón | Ping-pong beam training with hybrid digitalanalog antenna arrays[END_REF].

Basically ϕ (j)

A,i steers the array in the direction θ (j)

A,i = arccos ψ (j)
A,i /π, with a lobe whose width decreases with the codebook level j. Note that for a fixed level k, the directional cosines θ

(k) A,i , i = 0, . . . , M (k) 
A -1 are set to uniformly sample the directional cosine range [-π, π] and as k increases this range is sampled with larger resolution and more array elements are used for higher-level codebook elements, resulting in more directive beamforming vectors (an illustration of this is shown in figure 4.2).

For more details about RF codebook optimization methods, we refer the reader to [START_REF] Payami | Effective RF codebook design and channel estimation for millimeter wave communication systems[END_REF][START_REF] Roth | Arbitrary beam synthesis of hybrid beamforming systems for beam training[END_REF]. A ← ϕ

A,0 , ϕ

A,1 , . . . , ϕ

A,M

A -1

3 F [0] B ← ϕ (1) 
B,0 , ϕ

B,1 , . . . , ϕ

B,M

B -1

4 Initialize W [0]
A to an orthogonal matrix of its size.

5 for s = 1, 2, . . . , N S -1 do 6 W [0] A (:, s) ← W [0] A (:, s)/ √ N S F [0] A W [0]
A (:, s)

2 7 end 8 {p A , k A , i A } ← {[], [], []} 9 {p B , k B , i B } ← {[], [], []} 10 A transmits, B receives: 11 Y [0] B =(F [0] B ) H HF [0] A W [0] A +(F [0] B ) H N [0] B 12 [Q, R] ← QR(Y [0] B ) 13 for s = 1 : N S do 14 W [0] B (:, s) ← Q(:, s) 15 W [0] B (:, s) ← W [0] B (:, s)/ √ N S F [0] B W [0]
B (:, s) 19

Y [t] A =(F [t-1] A ) H H H F [t-1] B W [t-1] B +(F [t-1] A ) H N [t] A 20 [Q, R] ← qr(Y [t] A ) 21 for s = 1 : N S do 22 W [t]
A (:, s) ← Q(:, s)

23

W [t] A (:, s) ← W [t] A (:, s)/ √ N S F [t-1] A W [t]
A (:, s)

2 24 end 25 [F [t] B , {p B , k B , i B }] ← U pd.An.P r[F [t-1] B , W [t-1] B , C B , {p B , k B , i B }] 26 A transmits, B receives: 27 Y [t] B =(F [t] B ) H HF [t-1] A W [t] A +(F [t] B ) H N [t] B 28 [Q, R] ← qr(Y [t] B ) 29 for s = 1 : N S do 30 W [t] B (:, s) ← Q(:, s) 31 W [t] B (:, s) ← W [t] B (:,s) √ N S F [t] B W [t] B (:,s) 2 32 end 33 [F [t] A , {p A , k A , i A }] ← U pd.An.P r[F [t-1] A , W [t] A , C A , {p A , k A , i A }] 34 end 35 Output : [F [τ ] A ], W [τ ] A , F [τ ] B ], W [τ ] B ]
i n stores the index of the nth column of , out of the level of the codebook to which that column belongs.
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Algorithm 5: Analog Precoder Update : Upd.An.Pr 1 Input : [F , W , C,{p,k,i}] 2 Generate : k n , i n , p n , n=1, . . . , N RF , where k n will store the codebook level to which the s n th column belongs, i n will store its index out of that level and p n will store the norm of the nth row of , i.e the aggregate energy received on it.

3 p ← [p, p 1 , . . . , p N RF ], 4 k ← [k, k 1 , . . . , k N RF ], 5 i ← [i, i 1 , . . . , i N RF ]
6 Sort p in a descending manner and store the result in p S , then store the arrangement of the elements of p into p S in p I .

7 b I ← [] 8 b L ← [] 9 while n ≤ N RF do b I ← [b I , p I,n ], p I,n is the nth element of p I , p p I,n ← 0, p p I,n is the p I,n th element of p, if k p I,n = log 2 ( N N RF )+1 or n=N RF -1 then n ← n + 1, b L ← [b L , 1] else n ← n + 2, b L ← [b L , 2] 15 for t = 1 : Length(b I ) do m ← b L,t if m = 2 then F ← [F, ϕ (km+1) 2im , ϕ (km+1) 2im+1 ] 
else

F ← [F, ϕ (km) 
im ]

21 return {F ; {p, k, i}} b) The sequences generated above will be used to update three vectors: k n will be appended to k, with k being an array storing the codebook levels of the columns of used over consecutive ping-pong iterations. p n will be appended to p, with p being an array storing the received energy over the different spatial directions set by the analog beamformer . i n will be appended to i in a similar manner to the above. c) Once p is updated, it will be sorted in a descending manner and the resulting sorted indices will be stored in p I . This newly formed array will be used to find the entries of p that are most likely to direct the analog precoders where the MPCs of H are. d) Two new vectors are built: b I contains the K first indexes of p I i.e it identifies the beams that are most aligned with the channel's MPCs (K is the length of b I , which can be derived from lines 9-13). b L is a vector that is made of 1's and 2's. The ith entry of b L is set to 2 when the precoder corresponding to the ith entry of b I is replaced with the two precoders belonging to one step higher level of the codebook and that have their beams covering together its same spatial area, otherwise it is set to 1. Deciding to append 1 or 2 to b L depends on whether we already consumed all columns of and on whether the element of p I in question belong to the last level of the codebook or not (see lines [17][18][START_REF] Rappaport | ser. Prentice Hall communications engineering and emerging technologies series[END_REF][START_REF] Akdim | Variational hierarchical posterior matching for mmwave wireless channels online learning[END_REF][START_REF] Akdim | Ping pong beam training for multi stream mimo communications with hybrid antenna arrays[END_REF]. Line 8 of the algorithm erases the measurement stored over a beam that is selected to be included in the analog precoding matrix, either directly or after splitting it into two beams of the immediately higher level. As new measurements will be obtained over that beam in the next iteration, the old measurement is deleted to avoid unnecessarily coming back to the previous configuration corresponding to that old measurement. e) Finally, the RF precoder columns are updated (lines 15-22).

We dub the above procedure for updating the analog precoders "beam split and drop with backtracking", owing to the way it operates. At each iteration, a decision is made as to whether a given beam is split -i.e replaced by two more directive beams-or dropped -i.e. removed from the precoding matrix.

The backtracking feature refers to the fact that, via the vector p, the measurements obtained in prior ping-pong iterations are kept in memory, allowing for returning to lower level beams in the codebook in the cases where noise leads to erroneous decisions in the the split-and-drop procedure.

Numerical Results

In order to assess the effectiveness of the proposed algorithm, we perform Monte Carlo simulations for multiple configurations of the hybrid arrays at devices A and B. The channel matrix H follows the model in (4.1). The average SNR for the sth stream link between the nth element of the array at device B and the mth element of the array at A is defined as

ρ=E{|H nm | 2 }/E{|N ns | 2 }=1/σ 2 , where
N ns is the nth entry of the sth column of the noise matrix N . We assume here for simplicity that the SNR ρ is the same for all streams. H nm is the channel coefficient between device B's nth array We measure the performance with the average spectral efficiency per bits/s/Hz, expressed with :

log 2 I N S + R -1 N N S H e H H e
where H e =(F

[n-1] B W [n-1] B ) H HF [n-1] A W [n] A and R N =σ 2 (F [n-1] B W [n-1] B ) H F [n-1] B W [n-1] B
for integer iteration n, and H e =(F

[n] B W [n] B ) H HF [n-1] A W [n] A and R N =σ 2 (F [n] B W [n] B ) H F [n] B W [n]
B for half iteration n+0.5.

We benchmark the performance of the hybrid PPMBT against the performance of the digital ping pong multi stream beam training method (digital PPMBT) described in [START_REF] Dahl | Blind MIMO eigenmode transmission based on the algebraic power method[END_REF], for which the spectral efficiency is calculated in a similar manner to that of the hybrid PPMBT. We compare it also with the optimal unconstrained SVD based precoder, which maximize the spectral efficiency and which is obtained by using the top N S left and right singular vectors of H. Note that the SVD based precoder derivation requires full channel knowledge at both devices, an information that is hard to get when hybrid architectures are used as explained earlier, and which our proposed scheme does not need at the start, but rather learns while setting the precoders.

We start our evaluation in the high SNR regime (ρ=30dB), in which the training process will not be impaired too much by noise. This allows assessing how the arrays size, the number RF chains and the number of spatial streams really affect the algorithm's performance. We see that the algorithm reaches, in very few iterations, for small, medium and large sized arrays, to about 1 to 2 bits/s/Hz of the digital PPMBT and SVD based precoding schemes performances. We also see that the convergence speed (in terms of PP iterations) scales inversely to the codebook depth for each of the topologies: the convergence is slower when large arrays are used because, in such cases, the codebook has more levels and its few last levels contain a high number of beamformers with very narrow beams. The selection of such directive beams is more prone to error than those in codebooks with lower resolution. Although the backtracking mechanism can correct for the errors made, this comes at the expense of a larger number of iterations needed for convergence. Note that the number of PP iterations needed for convergence for all topologies is still much below what is needed for exhaustive search: this latter requires as an example, for

N A =N B =1024 with N RF A =N RF B =8, N A /N RF A =N B /N RF B =128 PP
iterations to find the best beams, compared with only 16 for our algorithm. 

N A =N B =128, N RF A =N RF B =8, L=8, ρ=30dB.
Next, in Fig. 4.5, we fix the size of antenna arrays and number of RF chains used at both devices to

N A =N B =64 and N RF A =N RF B =8
, and evaluate the algorithm's performance over a channel with L = 7 multipath components at different SNR values. In Fig. 4.5a, we show the algorithm's performance against SNR after training convergence for different N S values. The results show that the number of streams that the training algorithm can handle efficiently grows with SNR, as is to be expected. At low SNR regimes (-15 to 0 dB) the algorithm works better when it attempts to estimate only the dominant singular vector of the channel; if more singular vectors are estimated, the large estimation error degrades the overall spectral efficiency of the system. As the SNR grows, an increasing number of singular vectors can be accurately estimated by the algorithm and, hence, increasing the number of streams provides significant spectral efficiency gains. For all cases, we observe that the performance of the Hybrid PPMBT is very close to that of the fully-digital counterpart, and approaches the SVD precoding performance as the SNR grows. In Fig. 4.5b the convergence behavior of the training algorithm with different N S settings is evaluated at their respective SNR values of interest. We observe that the method's spectral efficiency tends to saturate at around 10 ping pong iterations for moderate and high SNR. Convergence for lower SNR values is, however, slower. We attribute this effect to the fact that the large noise power induces numerous incorrect beam selection errors in the updates of the analog precoder; although the backtracking feature of the algorithm can help correct some of them, the price to pay is a longer training time. In any case, we remark that the algorithm reaches about 70% of the spectral efficiency obtained at convergence within the first 6 iterations, regardless of the SNR value and number of spatial streams.

To conclude, we evaluate our proposed training procedure in a system in which only one of the devices is equipped with a large, hybrid array (N A =256, N RF A =16), while the other has a digitallycontrolled array of moderate size (N B =4). Such topologies can be seen as massive MIMO systems operating at microwave frequencies. In addition, to reflect the richer scattering experienced in such frequency bands [START_REF] Andersen | Propagation aspects of MIMO channel modeling[END_REF], we adopt the following channel model:

H= √ N A N B L A B ΛA H A (4.6)
where A A contains in its columns the steering vectors (Ω A,p ), p=1, 2, . . . , P , A B is defined analogously, L is again the number of multipath components, and Λ is a L × L matrix with i.i.d. standard complex Gaussian entries. This setting will allow to test the validity of our approach in channels with richer scattering and its robustness against the sparse assumption of the channel. 

N RF A =16, N B =N S =4.
It can be seen that the proposed scheme performs remarkably well and very close to the full digital and optimal SVD based precoder solutions at low, mid and high SNRs. These results show that, although the algorithm was originally designed to exploit the sparse nature of mmWave channels, it is robust to channels with richer scattering.

Conclusion

We proposed a method to derive precoders and combiners for multi-stream MIMO transmission between two devices equipped with hybrid digital-analog antenna arrays. The method relies on a lowcomplexity "multi-beam split and drop with backtracking" procedure to update the analog precoders, while digital precoders are computed with the QR-decomposition based method in [START_REF] Dahl | Blind MIMO eigenmode transmission based on the algebraic power method[END_REF]. For sufficiently large SNR, the resulting precoders approximate well the unconstrained SVD-based precoders, as our numerical assessment shows. We envision that the proposed algorithm can be especially useful in mmWave communication systems.

Compared to the state-of-art methods, our approach offers the advantage of computational simplicity while achieving high-spectral efficiency with moderate training overhead. The numerical results

show that the method achieves convergence within N RF (log 2 (N/N RF )+1) ping pong iterations in the low SNR regime and log 2 (N/N RF )+1 iterations in the mid and high SNR regime, assuming both transceivers are equipped with arrays made of N elements and N RF RF chains. Although the method was developed with sparse channels in mind, the performance assessment shows that it is robust against this assumption and also performs well in rich scattering channels.

Also, in order to further reduce the training overhead, the proposed scheme can be interleaved with transmission of payload with increasing data-rate. This, the extension to multi-user environments and to time varying channels will be the subject of our future work. 

N A =128, N B =4, N RF A =16, N S =4, L=40.
Chapter 5

Concluding Remarks

Summary

The present thesis focused on developing beam search and beamforning solutions that address key challenges in mmWave massive MIMO systems. The algorithms proposed herein tackles problems related to the aforementioned system's hardware constraints, channel acquisition overhead, and the related beamforming design complexity.

We first proposed efficient Bayesian active beam search algorithms that suit best the noisy and sparse nature of the mmWave massive MIMO line of sight channels. We showed how the proposed techniques alleviate the need for separate channel estimation and beamforming design, while showing high robustness against noise in low signal to noise ratio regimes. Then, we developed a novel multi beam search algorithm that relaxes the channel's line of sight assumption and helps establish multistream mmWave wireless links. By leveraging the iterative power iteration technique, we showed that our proposed scheme almost approximates singular value decomposition based multi stream beamforming.

For the line of sight mmWave massive MIMO systems, we proposed two variational Bayesian active learning schemes that enable initial access for hybrid digital-analog enabled devices operating in these 77 CHAPTER 5. CONCLUDING REMARKS highly sparse channels. The proposed schemes are devised with the goal to balance the beam search time and to achieve high beamforming gain, while accounting for uncertainties on the unknown channel (gain and noise variance). They build upon an active learning algorithm called hierarchical posterior matching and extend it with tools from Bayesian inference to devise bi-directional beam alignment algorithms that are numerically shown to effectively handle the uncertainty in the channel parameters, thus resulting in beamforming gains close to these of exhaustive beam search algorithms, while requiring an amount of pilot measurements comparable to that of hierarchical search algorithms.

For the multi beam alignment problem, we proposed an algorithm that derives precoders and combiners for multi-steam MIMO wireless communications systems that are quipped with hybrid digital-analog arrays. The proposed method uses a novel beam search mechanism called "multi-beam split and drop with backtracking" to update the analog precoders and combiners, and uses the QRdecomposition based update to devise the digital ones. Numerical simulations show that our algorithm can approximate, with low pilot overhead, quite well the unconstrained SVD-based precoder/combiner design for sufficiently large SNRs.

Future Work

There are several possible directions for future research.

In Chapter 3, we proposed two variational Bayesian online learning schemes that enable initial access for hybrid digital-analog enabled devices operating in mmWave wireless channels, for point to point hybrid array transceivers, communicating over static wireless channels. Both of our schemes showed superiority, when compared to state of the art, in balancing the beam training overhead versus attaining high beamforming gain. Further work is still required to adapt our proposals, and especially the HiePM search mechanism, to both time varying channels as well as multi user environments.

In Chapter 4, we proposed a hybrid scheme that marries the novel multi-beam split and drop with backtracking search mechanism with the QR-decomposition to devise the analog and digital

FUTURE WORK

79

precoders and combiners, for point to point hybrid array transceivers, communicating over static wireless channels.

Theoretical guarantees for 'the multi-beam split and drop with backtracking' scheme:

For fully digital transceivers, the QR-decomposition based precoding and combining is guaranteed to converge to the wireless channel's main singular value decomposition (SVD) components. One important extension of this work is to consider investigating similar theoretical guarantees for our hybrid algorithm and see under which conditions can the multi-beam split and drop with backtracking search algorithm, when combined with QR-decomposition or any other baseband linear subspace search algorithm, attain the performance of the unconstrained SVD based precoding and combining.

Training Overhead reduction for the proposed Ping Pong Multi Beam Training with

Hybrid Antenna Arrays scheme: Another interesting direction for future study is to investigate how our proposed scheme can be interleaved with transmission of data payload with increasing data rate. This would reduce the training overhead and make better use of the wireless channel resources.

Extension to multi-user environments and to time varying channels: One pre-requisite to have our scheme considered for a concrete implementation in a cellular context is to make it usable in multi-user environments and robust against the channel's time variability. Future work in these two directions is thus of great importance.

Variational Hierarchical Posterior Matching for mmWave Wireless Channels Online Learning

Nabil Akdim 1 , Carles Navarro Manchón 2 , Mustapha Benjillali 3 and Pierre Duhamel 4

1 Apple, Munich, Germany 2 Department of Electronic Systems, Aalborg University, Denmark

3 Communication Systems Department, INPT, Rabat, Morocco 4 Laboratoire des Signaux et Systemes (L2S), CNRS-CentraleSup, France Emails: nabil.akdim@apple.com, cnm@es.aau.dk, benjillali@ieee.org, pierre.duhamel@l2s.centralesupelec.fr Abstract-We propose a beam alignment algorithm that enables initial access establishment between two transceivers equipped with hybrid digital-analog antenna arrays operating in millimeter wave wireless channels. The proposed method builds upon an active channel learning method based on hierarchical posterior matching that was originally proposed for single-sided beam alignment on single path dominant channels. We extend it to the double-sided alignment problem and propose an estimation framework based on variational Bayesian inference that accounts for the uncertainties on the unknown channel complex gain and noise variance. The proposed approach is numerically shown to be resilient to the single path assumption and reaches near optimal beamforming gains with a moderate training overhead, even at low signal-to-noise ratios.

I. INTRODUCTION

Low power consumption and implementation complexity of hybrid digital-analog transceiver architectures have accelerated their adoption as a beamforming solution that can enable efficient wireless communications over the harsh mmWave frequency limited-scattering and blockage-prone wireless channels for 5G and beyond wireless cellular networks [1]. Also, angular sparsity of such channels [1], [2] allows for the use of adaptive sparsity-friendly techniques to ease the initial alignment and channel state information (CSI) acquisition on them, when using such transceiver designs [3]- [6].

In this study, we focus on hierarchical posterior matching (HiePM), an initial access scheme introduced in [7] which provably enables fast and reliable initial access establishment between two wireless transceivers over wireless mmWave channels with a single dominant path. Chiu et al. have shown in that contribution that using posterior matching [8] together with hierarchical beam search [4] can significantly reduce the initial access acquisition time while keeping the corresponding misalignment probability relatively low, provided that the channel's complex gain and operating signal-to-noise ration (SNR) are fully known to the communicating devices. These limiting constraints were relaxed in [9] by proposing to augment HiePM with extra simplifying assumptions on the statistical properties of the channel's CSI and then to use either a sampling scheme or a linear filtering scheme (Kalman filter) to learn it in parallel to running HiePM. Although this latter extension of the vanilla HiePM makes it robust with respect to uncertainties on the channel's CSI, it still presents some limitations. First, it assumes perfect knowledge of the operating SNR. Second, the assumptions made on the statistical distribution of the channel's complex gain (needed to make HiePM able to run as we will see later), are simplistic and not justified from a theoretical or practical view. Third, the proposed methods that build on such statistical assumption to overcome the CSI uncertainty issue are either very restrictive and computationally heavy (in the case of the sampling method) or show relatively moderate to low performance (in the case of the Kalman filter method). Finally, the overall tweaked setup assumes that one of the communicating transceivers has a single antenna, and the extension to the case where both communicating devices use the hybrid digital-analog transceiver structure is not straightforward.

Our contribution, in this work, which we dub "Variational HiePM (V-HiePM)" will address shortcomings of proposals in both of the aforementioned works [7], [9]. Specifically, we will augment HiePM with a variational approximate inference model [10] that will:

• make it robust against uncertainties of both CSI and operating SNR,

• allow for a natural and theoretically grounded parametrisation of the statistical properties of the CSI and operating SNR, in a way that will make HiePM run smoothly,

• make the overall setup performing very close to the vanilla HiePM scheme with perfect SNR/CSI knowledge,

• allow for both communicating devices to be equipped with hybrid digital-analog arrays.

II. SYSTEM MODEL

Our system is composed of two hybrid digital-analog antenna array devices A and B, equipped with uniform linear arrays (ULAs) of N A and N B antenna elements respectively. The elements on the ULAs are separated by a distance d = /2, where is the the mmWave wavelength of interest. Device A (B respectively) digitally controls its ULA with N RF A (N RF B respectively) RF chains. The two devices communicate over a reciprocal static and narrowband wireless mmWave MIMO channel, that is modeled as a N B ⇥ N A complex matrix H, sampled from the finite scatterer channel model [5] with a single dominant path as1 :

H = ↵aB( B )a H A ( A) (1) 
where ↵ is the complex fading channel gain. a A ( A ) and a B ( B ) are the ULA array response vectors at devices A and B with incidence angles A and B respectively, modeled as a A (! A ) = ⇥ 1, e j! A , . . . , e j(N A 1)! A ⇤ T and a B (! B ) = ⇥

1, e j! B , . . . , e j(N B 1)

! B ⇤ T , with ! A ( A ) = 2⇡ d cos ( A )
and ! B ( B ) = 2⇡ d cos ( B ). The incidence angles A and B are assumed to be sampled from the ranges [✓ A,1 , ✓ A,2 ] and [✓ B,1 , ✓ B,2 ] respectively. 2The two devices go through an initial access phase consisting of a pilot based beam alignment procedure in order to establish the wireless link between them. We assume in this work that, during this initial access phase, the CSI learning and beam search processes for the two devices are centralized, i.e one of the devices, say B, is collecting measurements based on device A's pilot transmission, uses them to learn the channel's statistics and devises the beamformer it will use for the next pilot reception occasion together with the beamformer that device A should use in sending that pilot, then communicates such information to device A through an ideal, error-free control channel 3 . At time instant t, device A sends a pilot symbol to B, which observes, after pilot removal:

yB,t = p P w H B,t HfA,t + w H B,t nB,t (2) 
where f A,t 2 C N A and w B,t 2 C N B are the effective beamformer and combiner used at time t by transceivers A and B respectively. These are chosen from the hybrid digital-analog codebooks detailed next. n B,t 2 C N B is a complex circularly-symmetric additive white Gaussian noise vector with i.i.d elements with an unknown variance 2 B , obtained after training sequence removal. p P is the average transmit power of the pilot signal.

The adaptive beamforming strategy proposed herein utilizes the hierarchical beamforming codebook of [4]. Such a codebook, noted C S hereafter, is designed to have S levels of beam patterns. We note C l the collection of beams belonging to level l. Then, C l contains 2 l beamforming vectors that divide the sector [✓ 1 , ✓ 2 ] into 2 l directions, each associated with a certain range of incidence angles R m l , such that

[✓ 1 , ✓ 2 ] = [ 2 l m=1 R m l . We note each of such 2 l vectors as either f A (R m l ) or w B (R m l )
, depending on the considered device.

III. SEQUENTIAL BEAM PAIR SEARCH VIA VARIATIONAL HIERARCHICAL POSTERIOR MATCHING

We start this section by first reviewing the details of the vanilla HiePM scheme [7], showing that knowledge of the channel gain ↵ as well as the noise variance 2 is necessary to make such a search strategy usable in practice. We then detail our main contribution, which consists of augmenting HiePM with a novel variational model comparison based approximate inference framework [10] to account for the uncertainties about ↵ and 2 B and thus overcome the shortcomings, as detailed in the introduction, of the vanilla HiePM and modified HiePM schemes proposed in [7] and [9] respectively.

A. Sequential Active Learning via the HiePM Strategy

We illustrate here the use of vanilla HiePM scheme [7] for device A (an analogous strategy will be used for device B). HiePM selects f A,t+1 based on the posterior at time t of the incidence angle A . We discretize 4 the noisy beam search problem above by assuming that the beam search resolution A5 is an integer power of two and that the AoA A is of the form:

A 2 { A,1, . . . , A, A }, A,i = ✓A,1 + (i 1) A (✓A,2 ✓A,1) (3)
With the above setup, the posterior distribution of A given all measurements up to time t (collected in vector y B,1:t ), can be written as a A -dimensional vector ⇡ A (t) with entries

⇡A,i (t) := Pr ( A = A,i|yB,1:t) , i= 1, . . . , A. (4) 
The posterior probability of A being in a certain range, say R m i , can be computed as

⇡ A,R m i (t) := X A,i 2R m i ⇡A,i (t). (5) 
The HiePM strategy examines the posterior probability ⇡ A,R m i (t) for all i = 1, . . . , S A and m = 1, . . . , 2 i and selects f A,t+1 2 C S to be the beamformer corresponding to the angular range that satisfies:

(i ⇤ t+1 , m ⇤ t+1 ) = arg min (i,m) ⇡ A,R m i (t) 1 2 (6) 
Doing so, it is guaranteed [7] to sequentially refine the width of the beamformer around the true incidence angle A .

Next we describe how the posterior bielief around A is updated once a new measurement is taken with the pair of beamformers chosen previously with HiePM. Based on the measurement model in (2), the posterior update at time instant t + 1 can be expressed using Bayes rule as

⇡ A,i (t + 1) / ⇡ A,i (t) f (y B,t+1 | A = A,i ) , i = 1, . . . , A (7) 
where

f (y B,t+1 | A = A,i ) is the likelihood of A from measurement y B,t+1
. Unfortunately, the likelihood term above cannot be calculated in closed form due to the unknown channel gain ↵, noise variance 2 B and incidence angle B . We will show next, how "V-HiePM" is able, using the variational model based approximate inference framework described in [10], to infer all above unknowns and uses them efficiently to calculate the posterior update needed for HiePM, in a consistent and elegant way 6 .

B. The V-HiePM Scheme

We explain first the variational model based approximate inference framework used in its most general form, then show how to apply it to our problem to derive posterior updates for our parameters of interest.

1) Variational Model Comparison based Posterior Update: We start by listing the different types of variables that the variational model comparison based approximate inference framework deals with:

• X is the observed data vector, in our case is y B,1:t+1 .

• Z = (Z 1 , Z 2 , . . . , Z L ) denotes the L-dim vector of latent variables that parameterize the measurement model ( 2).

In our case, Z = (↵, 2 B ). • m 2 {1, 2, . . . , A ⇥ B } denotes the mth pair of angles ( A,im , B,jm ), with i m 2 {1, . . . , A }, and j m 2 {1, . . . , B }. Choosing a certain label m is equivalent to assuming that our measurement model in ( 2) is parameterized by the the mth pair of angles. The framework performs joint inference on the hidden variables to find a set of distributions {q(Z|m), q(m)} 1:m that approximate the true posterior p(Z, m|X), by minimizing the Kullback-Leibler (KL) divergence:

KL(q(Z|m)q(m), p(Z, m|X)). (8) 
HiePM then uses the approximate incidence angle posterior q(m) to decide which is the best measurement model candidate fitting the observed data vector X. Algorithm 1 lists the steps required to perform such operations. We omit the mathematical derivation because of space constrains and refer to [10,Chapter 10.4] for such details. 

q(Zj |m) / E i6 =j (log(p(X|Z, m))) 5 Lm = R Z q(Z|m) log( p(Z,m|X) q(Z|m) ) 6 q(m) / p(m) exp(Lm)
2) Posterior Update for our measurement Model and the overall V-HiePM Algorithm: From our measurement model (2), we have p(X, Z, m) = p(yB,1:t|↵, ⌫B, m)p(↵)p(⌫B)p(m) (9) where

⌫ B = 2 B is the noise precision at device B; p(X|Z, m) = p(y B,1:t |↵, ⌫ B , m) = Q t+1 i=1 CN (y B,i ; p P ↵w H B,i A m f A,i , 2 B
) is the likelihood 6 As it will be detailed below, such an inference framework lends itself naturally in the HiePM context: we make the best use of the measurements by first estimating posteriors over the channel gain and noise variance and then use those to robustly update the angle of incidence posterior, doing so allows V-HiePM to take the channel's gain and noise variance estimation uncertainties properly into account when deriving the posterior of the incidence angles, thus making a robust HiePM based decision when choosing the next precoder/combiner pair to use.

of our measurement model (we assume here that the sequential noise samples are i.i.d); p(↵) = CN (↵; ↵ 0 , 0 ) is the prior belief over ↵, considered to be Gaussian with a known initial mean ↵ 0 and initial precision 07 ; p(⌫ B ) = (⌫ B ; a 0 , b 0 ) is the non informative prior belief over ⌫ B , with parameters a 0 = 0 and b 0 = 0; finally, p(m) = 1

A B is the prior belief over m, which is assumed to be uniform to make it non informative as well 8 . In addition, A m = a B ( B,jm )a H A ( A,im ) is the assumed unfaded channel matrix under the mth pair of incidence angles.

The obtained approximate posteriors for ↵ and ⌫ B , up to the measurement iteration t, can be shown to keep the form of their respective priors, but with parameters that depend on the measurement vector y B,1:t : q t (↵|m) has the form of complex Gaussian pdf with mean ↵ t,m and precision t,m reading

t,m = a t,m b t,m t X d=1 p P w H B,t A m f A,t 2 + 0 (10a) ↵ t,m = a t,m b t,m t,m t X d=1 ⇣ p P w H B,t A m f A,t ⌘ ⇤ y B,d + ↵ 0 0 t,m (10b) 
and q t (⌫ B |m) 9 follows a Gamma pdf with parameters shape and rate parameters a t,m and b t,m given by a t,m = a 0 + t,

b t,m = b 0 2Re ⇣ P t d=1 ⇣ p P w H B,t A m f A,t ⌘ ⇤ y B,d ↵ ⇤ t,m ⌘ + P t d=1  |y B,d | 2 + ⇣ 1 t,m + |↵ t,m | 2 ⌘ p P w H B,t A m f A,t (11a) 
(11b) Note that the choice of our prior distributions is not arbitrary, the priors chosen above correspond to the maximum entropy distributions [11] that respect constraints that need to be put on their respective parameters, namely ↵ being a complex variable having a known initial mean and variance, ⌫ B being a non negative variable and m being a discrete variable). Such a choice makes our proposal assume the least information about our measurement model's unknowns.

The posterior of the model, indexed by m, is then updated following Lines 5 and 6 in Algorithm 1, where L m reads

L t,m = log( 1 2 t,m ) + a t,m (1 log(b t,m )) + log( (a t,m )) b 0 a t,m b t,m t X d=1 |y B,d | 2 a t,m b t,m t,m |↵ t,m | 2 ! (12) 
The posteriors over A,im and B,jm are obtained from the posterior q t (m) as

q A,t (i) = X {m:im=i} q t (m), i= 1, . . . , A (13) 
q B,t (j) = X {m:jm=j} q t (m), j = 1, . . . , B

The posterior probability of the incidence angles A and B to be in a certain range R n A,i and R p B,j resp, read as:

q A,t (R n A,i ) := X A,i 2R n A,i q A,t (i), (15) 
q B,t (R p B,j ) := X B,j 2R p B,j q B,t (i), (16) 
The vanilla HierPM scheme is then applied separately to q A,t (i) and q B,t (j), to choose the pair of beamformers to use for the next measurement occasion.

The modes ↵t and ⌫Bt of the approximate posteriors q t (↵|m ⇤ t ) and q t (⌫ B |m ⇤ t ), with m ⇤ t = arg max m (q t (m)), can be seen as approximations of the MMSE estimates of ↵ and ⌫ B respectively. These estimates are given by:

↵t = ↵ t,m ⇤ t , ⌫Bt = a t,m ⇤ t /b t,m ⇤ t . (17) 
Algorithm 2 runs all above operations in a loop, until the measurement budget is exhausted: device B decides which pair of beamformers devices A and B shall use to take the next measurement by applying the HiePM scheme separately to the current posteriors q A,t and q B,t , it then takes a new measurement y B,t+1 with those latter, and finally run variational inference to derive approximate posteriors of ⌫ B = 1 

IV. NUMERICAL RESULTS

To assess the effectiveness of V-HiePM, we run Monte Carlo simulations on a setup with two hybrid digital-analog beamforming devices A and B. The channel matrix H 2 C N B ⇥N A reads

H = ↵aB( B )a H A ( A) + L X l=1 ↵ l aB( B,l )a H A ( A,l ) (18) 
and contains one dominant multipath component and L scattered components. All incidence angles are independently drawn from a uniform distribution between 0 and ⇡. The channel gains are independently drawn from a a set of complex Gaussian distribution with mean 0 and variances fulfilling Var{↵}+ P l Var{↵ l } = 1, so that the average SNR ⇢ between the nth element of the array at A and the mth element of the array at B equals

E{|H nm | 2 }/E{| B | 2 }=1/ 2 B 10
. In all simulations below, the two devices are equipped with identical arrays made of N A = N B = 32 elements, digitally controlled with N RF A = N RF B = 8 RF chains. Device A uses a codebook C A with a depth of S A = log 2 ( A ), A = 128. C A is built 10 Hnm is the channel coefficient between device B's nth array element and device A's mth array element, and E{} is the expectation operator.

using the orthogonal matching pursuit as described in [4]. A similar codebook, C B , is used for device B. 11 We benchmark our algorithm's beamforming gain after t measurements, defined as:

G vh = w H ( B, kt,B )Hf ( A, kt,A ) 2 (19)
with different measurement budget sizes and under different channel assumptions (note the the exhaustive search needs N A N B = 16384 measurements to settle), against that of the different state of the art schemes listed below:

• G ph of the vanilla HiePM scheme of [7]. Here, such a scheme assumes that most of the energy in the channel is concentrated in the path corresponding to the known gain ↵ and all other gains ↵ l are null, it also assumes that 2 B is known. In such case, the posterior update is done, simply using Bayes rule as in equation ( 21) in [7], on the beam pair corresponding to that main path, and then HiePM is applied to the marginals over those angles separately, similar to what V-HiePM does.

• G bs of the noisy binary search algorithm of [4], which is achieved by 4 log 2 (max{N A , N B }) = 28 measurements.

As a reference, we consider as well the best achievable beamforming gain of the codebook, defined as

G max = max {w2C B S B ,f 2C A S A } w H Hf 2 . ( 20 
)
11 Note that the multi-RF chain setups are used solely to help build acceptable RF codebooks [4], and are not used for multi-stream MIMO operations.

Algorithm 2: V-HiePM 6) update q A,t+1 (i) via ( 13) and q B,t+1 (j) via ( 14)

(f A,t+1 , w B,t+1 ) = ⇣ f A ⇣ R k A,t+1 A,l A,t+1 ⌘ , w B ⇣ R k B,
16
update q A,t+1 (R n A,i ) via (15) and q B,t+1 (R n B,j ) via ( 16)

#Final Precoder/Combiner Vector design ⇣ lt+1,A , kt+1,A ⌘ = (S A , arg max k (q A,t+1 (k))) We begin by assuming that only the dominant component is present (i.e. L = 0). Fig. 1 shows the beamforming losses of the benchmarked algorithms with respect to the optimum pair of beamformers, defined as L vh = G vh /G max , L ph = G ph /G max , and L bs = G bs /G max . The results show the superiority of our scheme compared to the binary search of [4], and that it achieves similar or even better performance compared to vanilla HiePM with perfect CSI and operating SNR knowledge. It can be observed that the vanilla HiePM scheme with perfect channel gain knowledge saturates at high SNR: this is an effect of the algorithm assuming that the component's incidence angle lies on a discrete grid of values, whereas the actual angles are sampled from a continuous distribution. Our proposed method is less sensitive to this model mismatch, due to the estimation of the channel gain and inverse noise variance: in practice, these estimates partly account for the mismatch in the assumed values of the angles and provide robustness to the overall procedure.

Next, we explore the robustness of the proposed method against channels containing more than one multipath component. For this, we consider a channel with L = 3 scattered components with gains of equal variance, and with the power ratio between the dominant and scattered components being LOS R = E{↵ 2 }/(E{↵ 2 } + P l E{↵ 2 l }). Fig. 2 shows beamforming gains achieved by our algorithm after 100 measurements compared to the maximum gains achievable G max .

As it can be observed, the maximum achievable beamforming gain decreases as the power is more evenly distributed among the channel's components. Although V-HiePM assumes the existence of a single component, it shows remarkable resilience to the presence of other components. Even when all components in the model have comparable power, our proposed method is able to perform within 2 dB of the optimum for sufficiently high SNR.

V. CONCLUSION AND FUTURE WORK

We proposed in this work a variational Bayesian online learning scheme that enables initial access for hybrid digitalanalog enabled devices operating in mmWave wireless channels. When compared to state of the art beam acquisition schemes, our method shows superiority, in terms of balancing the beam search time versus achieving higher beamforming gain, in being able to properly do so while accounting for uncertainties on the unknown CSI (gain and noise variance) and in being very resilient to the dominant single path assumption. Even though the scheme is derived based on a discretized model of the angles of incidence of the channel's main component, it showed great robustness against off-grid angles as well as working with a realistic codebook implementation. Further research will focus on adapting the proposed online learning algorithm to operating in time-varying channels.
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1 Intel Deutschland, Munich, Germany 2 Department of Electronic Systems, Aalborg University, Denmark 3 Communication Systems Department, INPT, Rabat, Morocco Emails: nabil.akdim@intel.com, cnm@es.aau.dk, benjillali@ieee.org, edc@es.aau.dk Abstract-We propose an iterative training procedure that approximates multi-stream MIMO eigenmode transmission between two transceivers equipped with hybrid digital analog antenna arrays. The procedure is based on a series of alternate (ping pong) transmissions between the two devices in order to exploit the reciprocity of the wireless channel. During the ping pong iterations, the update of the devices' digital precoders/combiners is performed based on a QR decomposition of the received signal matrix. Concurrently, their analog precoders/combiners are progressively updated by a novel "multi-beam split and drop with backtracking" mechanism that tracks the channel's main spatial components. As shown throughout the paper, the proposed algorithm converges with only few iterations, has minimal computational complexity, and performs very closely to optimal singular value decomposition based precoding with sufficiently large signal-to-noise ratio.

I. INTRODUCTION

Upcoming wireless communication networks are expected to provide service to an unprecendently large number of wireless devices with peak data rates in the order of tens of Gbps. The congestion and fragmentation of the traditional spectral bands below 6GHz has pushed wireless service providers to explore vacant spectrum at the millimeter-wave (mmWave) frequency bands in order to fulfill that goal [1]. Nevertheless, the poor reflectivity and high absorption and free space propagation losses make communicating wirelessly over such high frequencies a challenging task [2]. Fortunately, this frequency range will allow for the use of compact and small antenna arrays with high number of elements, as the physical size of the array is proportional to the carrier wavelength. The large beamforming gains that such large-scale arrays enable will be used to compensate for the above limitations.

However, the high cost, power consumption and complexity of the mixed signal hardware at mm-wave make having large antenna arrays with digitally controlled elements infeasible [3]. This has motivated the wireless communication research community to look at the hybrid digital-analog antenna array architectures [4]. In such architectures, the large antenna array is steered using analog phase shifters and only a few digitally modulated radio-frequency (RF) chains. An illustration of such an architecture is shown in Fig. 1.

In addition to their cost and implementation advantages, hybrid array structures entail their own challenges: the low SNR resulting from high propagation losses, the large dimensionality of the MIMO channel matrix and the presence of analog processing complicate the acquisition of the channel state information (CSI) and the computation of the MIMO precoders and combiners [1], [3]. Luckily, channel measurement campaigns [2] have shown that mm-wave channels are sparse in the angular domain, which enables the proposal of CSI acquisition and precoding/combining algorithms that exploit such property. An example of these are compressed sensing based approaches such as [3], [5], [6], which are generally computationally complex and require a large amount of channel measurements. An alternative are exhaustive and hierarchical beam-search techniques, which may entail significant latency and probability of miss detection [7].

In this work, we focus on a beam training strategy based on alternating transmissions between two transceivers, which has been coined ping pong beam training (PPBT). The main idea behind PPBT is to exploit the reciprocity of the MIMO channel. With appropriate processing at each device, the alternate transmissions implicitly implement an algebraic power iteration that leads to approximating the top left and right singular vectors of the MIMO channel matrix. This idea was first applied in the digital arrays context for single stream wireless communications in [8], [9], and was extended to multi stream setups in [10], to large antenna array and frequency selective systems in [11] and to noisy MIMO channels in [12]. More recently, similar approaches have been proposed in the context of mmWave communications with hybrid digital-analog antenna arrays, which we review next. In [13], the basic ping pong beam training method for singlestream MIMO transmission was adapted to the hybrid array architecture with the inclusion of a "beam split-and-drop" procedure for the setting of analog precoders. The subspace estimation and decomposition method in [14] proposes a ping pong based algorithm that iteratively estimates the channel's right and left eigenvectors using a Krylov subspace estimation method. This algorithm is based on exhaustive measurements with a large set of different analog precoders, which are then 

N A N B N A RF N B RF H W A F A TRANSCEIVER A TRANSCEIVER B F B W B Y B [1] Y B [ ] N B RF
Fig. 1: Structure of the transceivers linearly combined in order to cancel the effect of the analog precoders. It therefore requires significant amount of transmissions, which imply large signalling overhead and latency. Lastly, the power iteration based training method introduced in [15] is a technique that extends the solution proposed in [10] to the multi stream case, where the digital precoders are set based on an algebraic power iteration technique, while the analog precoders update is done based on a compressed sensing technique called simultaneous orthogonal matching pursuit [16].

Compared to the above approaches, we propose in this article a strategy that sets the digital and analog precoders of the devices in a way to approximate the top N S left and right singular vectors of the channel matrix, with N S being the desired number of spatial streams. Our new technique, which we dub "hybrid ping pong multi beam training" (Hybrid PPMBT) extends the work done in [13] to the multi stream case. It adapts the PPBT strategy to hybrid arrays by progressively choosing the analog precoders at each device from a predefined hierarchical codebook. After one round-trip transmission, a novel "multi beam split and drop strategy with backtracking" is applied to focus the analog precoders towards the spatial directions that are most likely containing the channel's top N S multipath components. The digital precoders are updated via an orthogonal decomposition operation on the received signal as described in [10]. In comparison to the approaches in [14] and [15], Hybrid PPMBT is much simpler from a computational complexity aspect and has a low training overhead as it requires significantly fewer transmissions. Simulation results show that our proposed scheme performs very well in retrieving the wanted N S channel's top eigenmodes for sufficiently large signal-to-noise ratio, both in terms of accuracy and convergence speed.

II. SYSTEM MODEL

We consider a system in which two hybrid analog digital transceivers A and B, equipped with uniform linear arrays (ULA) composed of N A and N B antenna elements. Such elements are separated with a distance d = /2, where is the wavelength of interest. The two devices control digitally their arrays with N RF A and N RF B RF chains respectively and exchange data over a reciprocal wireless MIMO channel using N S parallel data streams. The channel from device A to device B is considered to be static and narrowband and is modeled according to the finite scatterer channel model with L propagation paths [13], [17], as

H = r N A N B L L X l=1 ↵ l a B (⌦ B,l )a H A (⌦ A,l ), (1) 
here, H 2 C NB ⇥NA , L is the number of multipath components (MPC), ↵ l is the complex fading channel gain for MPC l, ⌦ A,l = 2⇡ d cos A,l and ⌦ B,l = 2⇡ d cos B,l are the directional cosines corresponding to the lth MPC at arrays A and B respectively, where A,l , B,l are the angles of incidence of that same path, and a A and a B are the array response vectors at device A and B respectively. The ↵ l are modeled as independent, standard complex gaussian variables, the A,l and B,l as uniformly distributed in the range [0, 2⇡) radians and the array responses as a A (⌦ A,l ) = [1, e j⌦A,l , . . . , e j(NA 1)⌦A,l ] T / p N A and a B (⌦ B,l ) = [1, e j⌦B,l , . . . , e j(NB 1)⌦B,l ] T / p N B . In order to establish the wireless link with device B, device A (we assume, without loss of generality, that device A is performing the first transmission) transmits T , an N S ⇥ N S orthogonal training sequence i.e T T H = I NS . Upon reception, device B cancels the training sequence effect by multiplying its received digital signal by T H . The resulting signal can be expressed as: 

Y B = F H B HF A W A + F H B N B , (2) 
Y A = F H A H H F B W B + F H A N A , (3) 
where W B 2 C N RF B ⇥NS and N A 2 C NA⇥NS are defined similar to the above.

III. HYBRID PING PONG MULTI BEAM TRAINING :

HYBRID PPMBT Given the signal model in ( 2) and (3), the beamforming task consists of selecting the set of analog and digital precoders and combiners that maximize the spectral efficiency over a given channel matrix H. For transmission from device A to B, and assuming unit transmit power equally allocated across the N S streams, the spectral efficiency reads

R = log 2 det I NS + R 1 NB N S H e H H e , (4) 
where

R NB = 2 W H B F H B F B W B is the noise covari- ance matrix after receive combining at device B, H e = W H
B F H B HF A W A is the equivalent channel after precoding and combining at both devices. An analogous expression applies for transmission from device B to device A.

The optimal precoders maximizing (4) are known to be the N S top right and left singular vectors of H. However, the hybrid structure of the antenna array makes the computation of such precoders challenging. On the one hand, as digital measurements of the channel are only obtained after analog precoding and combining, estimating the full channel matrix H in order to obtain its singular value decomposition requires a large number of measurements and hence large overhead and latency [14]. On the other hand, even if the channel matrix H can be estimated, the precoders have to be built as the product of the analog precoding matrix F A and the digital precoding matrix W A . While the elements of W A can take any complex value due to its digital implementation, the operation modeled by F A is implemented via phase shifters and combiners, which restricts the values it can take. In this work, we restrict the entries of

F A to satisfy |(F A ) l,i | 1 2 { 1 M (i) A ; 0}, where M (i) A
being the number of activated array elements in the ith column of F A , and the option (F A ) l,i = 0 accounts for the option of leaving some elements of the array unused. In addition, a transmit power constraint is enforced such that kF A W A k F = 1. 2 With these constraints, finding the combination of digital and analog precoders to best approximate the channel's singular vectors becomes a computationally intensive optimization problem [5].

To overcome such difficulties, we propose an iterative multi beam training scheme based on alternate transmissions between the two devices, this procedure estimates progressively and simultaneously the top N S right and left singular vectors of H and sets the digital and analog precoders so that they approach those singular vectors. It consists of two parts: 1) a "backtracking beam split and drop" approach to select the analog precoders F A and F B from a predefined multi level codebook, 2) a method to select the digital precoders W A and W B inspired by the QR decomposition algorithm described in [10].

We will proceed by reviewing the beam training procedure for digital antenna arrays proposed in [10], then briefly present the multi level codebook that is used for the analog precoder update, and finally explain our multi beam training solution.

A. Ping-Pong Multi Beam Training with Digital Antenna Arrays: Digital PPMBT

We review the digital PPBT algorithm over a narrowband reciprocal channel H as described in [10]. We consider two devices A and B equipped with digitally controlled antenna arrays with N A and N B elements respectively. At the initial (0th) iteration, the process starts with a random initialization of the precoder at device A, W A , makes a QR-decomposition on it, and uses the Q part of that decomposition as its precoder W

[0] B . It then uses that precoder to transmit a training sequence back to device A, who will repeat the same operations. This process is reiterated until convergence, at which, device A gets an estimate of the 1 (F A ) l,i is the entry of the matrix F A belonging to its lth row and ith column. 2 Obviously, the same constraints apply to the analog precoder of device B.

top N S right singular vectors of H and device B gets an estimate of the top N S right singular vectors of H H . Further details on this procedure can be found in [10].

Algorithm 1 Ping Pong Multi Beam Training with Hybrid Arrays

1: Initialize:

F [0] A  ' (1) 
A,0 , '

A,1 , . . . , '

A,M

,

F [0] B  ' (1) 
B,0 , '

B,1 , . . . , '

B,M A to an orthogonal matrix of its size. for s = 1 : NS do

W [0] A (:, s) W [0] A (:,s) p N S F [0] A W [0] A (:,s) 2 end for {pA, kA, iA} {[], [], []}, {pB, kB, iB} {[], [], []}. 2: A transmits, B receives: Y [0] B =(F [0] B ) H HF [0] A W [0] A +(F [0] B ) H N [0] B 3: [Q, R] qr(Y [0] B ) 4: for s = 1 : NS do 5: W [0] B (:, s) Q(:, s) 6: W [0] B (:, s) W [0] B (:,s) p N S F [0] B W [0]
B (:,s) 2 

A receives Y [t] A =(F [t 1] A ) H H H F [t 1] B W [t 1] B +(F [t 1] A ) H N [t] A 12: [Q, R] qr(Y [t] A ) 13:
for s = 1 : NS do 14:

W [t] A (:, s) Q(:, s) 15: W [t]
A (:, s)

W [t] A (:,s) p N S F [t 1] A W [t]
A (:,s) 2

16:

end for 17:

[F

[t] B , {pB, kB, iB}] UPD.AN.PR(F [t 1] B , W [t 1] B
, CB, {pB, kB, iB})

18:

A transmits,

19:

B receives:

Y [t] B =(F [t] B ) H HF [t 1] A W [t] A +(F [t] B ) H N [t] B 20: [Q, R] qr(Y [t] B ) 21:
for s = 1 : NS do B (:, s)

W [t] B (:,s) p N S F [t] B W [t]
B (:,s) 2

24:

end for 25:

[F

[t]

A , {pA, kA, iA}] UPD.AN.PR(F

[t 1] A , W [t]
A , CA, {pA, kA, iA}) 

B. Analog Precoder Multi Level Codebook

We illustrate here the codebook definition for transceiver A (an analogous codebook is used for the transceiver B). We consider a codebook C A which is composed of L A = log 2 (N A /N RF A )+1 3 levels. For the kth level, we define a subcodebook C

(k) A ={' (k) A,i , i=0, 1, . . . , M (k) A -1} consisting of M (k) A =N RF A 2 k-1 column vectors, k=1, 2 
, . . . , L A . Each of the elements of the subcodebook is defined as 3 For the considered codebook design we constrain N A and N RF A to be both integer powers of two.

' (k)

A,i = 

1, e -j (k) A,i , . . . , e -j(M (k)

A -1)

(k) A,i , 0 T NA-M (k) A T / q M (k)
A , where

(k) A,i =⇡-⇡(2i+1)/M (k)
A is the directional cosine of the ith vector at the kth level (' (k) A,i steers the array in the direction ✓

(k) A,i = arccos (k)
A,i /⇡, with a lobe whose width decreases with the codebook level k), and 0 N is the N -dimensional column zero vector. Further details about the codebook used here can be found in [13].

C. Ping Pong Multi Beam Training with Hybrid Antenna Arrays : Hybrid PPMBT

The proposed algorithm for beam training with hybrid arrays is described in pseudocode. Algorithm 1 presents the overall training scheme, while Algorithm 2 describes the subroutine used to update the analog precoding matrices.

1) Initialization: First, the digital and analog precoders are initialized. F A and F B are initialized to C

(1)

A and C

(1) B respectively, while W A is initialized to a random unitary matrix. The columns of W A are then normalized to fulfill the transmit power constraint of the effective precoder F A W A . Finally, a set of empty arrays, {p B , k B , i B }, are created. Those arrays will store the needed information to perform the analog precoder updates, as explained below.

2) Ping Pong Iterations: After the initialization phase, a sequence of alternate pilot transmissions starts between the two devices. The baseband precoders are updated after each reception step by means of a QR-decomposition, followed by a normalization step. These two operations are detailed in lines 3-7, 12-16 and 20-24 in Algorithm. 1. Immediately after updating their baseband precoders upon reception of a transmission, the devices transmit back with the updated digital precoders and the same analog precoder as used for reception. Only after the transmission has been made will the transmitting device update its analog precoders (using Algorithm 2), such that next reception is done with the updated setting. This allows for the QR based iteration to converge, as each reception-transmission cycle is performed over a static setting of the analog precoders.

3) Update of Analog Precoders: The devices invoke the routine outlined in Algorithm 2 to update their analog precoder state. This routine bases its update on the current state of the device's RF precoder F , its codebook C and on the update history of its baseband precoder W . Using all previous updates of W allows for backtracking-i.e, correcting for wrong RF precoder updates. The routine works as follows: a) Three sequences of values are generated: k n stores the level of the codebook of the nth column of F , p n stores the squared norm of the nth row of W , i.e the aggregate energy received on it, and i n stores the index of the nth column of F , out of the level of the codebook to which that column belongs. b) The sequences generated above will be used to update three vectors: k n will be appended to k, with k being an array storing the codebook levels of the columns of F used over consecutive ping-pong iterations. p n will be appended to p, with p being an array storing the received energy over the different spatial directions set by the analog beamformer F . i n will be appended to i in a similar manner to the above. c) Once p is updated, it will be sorted in a descending manner and the resulting sorted indices will be stored in p I . This newly formed array will be used to find the entries of p that are most likely to direct the analog precoders where the MPCs of H are. d) Two new vectors are built: b I contains the K first indexes of p I i.e it identifies the beams that are most aligned with the channel's MPCs (K is the length of b I , which can be derived from lines 9-13). b L is a vector that is made of 1's and 2's. The ith entry of b L is set to 2 when the precoder corresponding to the ith entry of b I is replaced with the two precoders belonging to one step higher level of the codebook and that have their beams covering together its same spatial area, otherwise it is set to 1. Deciding to append 1 or 2 to b L depends on whether we already consumed all columns of F and on whether the element of p I in question belong to the last level of the codebook or not (see lines [17][18][START_REF] Rappaport | ser. Prentice Hall communications engineering and emerging technologies series[END_REF][START_REF] Akdim | Variational hierarchical posterior matching for mmwave wireless channels online learning[END_REF][START_REF] Akdim | Ping pong beam training for multi stream mimo communications with hybrid antenna arrays[END_REF]. Line 8 of the algorithm erases the measurement stored over a beam that is selected to be included in the analog precoding matrix, either directly or after splitting it into two beams of the immediately higher level. As new measurements will be obtained over that beam in the next iteration, the old measurement is deleted to avoid unnecessarily coming back to the previous configuration corresponding to that Generate : kn, in, pn, n=1, . . . , N RF , where kn will store the codebook level to which the F 0 s n th column belongs, in will store its index out of that level and pn will store the norm of the nth row of W , i.e the aggregate energy received on it. Sort p in a descending manner and store the result in pS, then store the arrangement of the elements of p into pS in pI . 

F [F , ' (km+1) 2im 
, ' end for

23:

return {F ; {p, k, i}} 24: end function old measurement. e) Finally, the RF precoder columns are updated (lines [15][16][17][18][START_REF] Rappaport | ser. Prentice Hall communications engineering and emerging technologies series[END_REF][START_REF] Akdim | Variational hierarchical posterior matching for mmwave wireless channels online learning[END_REF][START_REF] Akdim | Ping pong beam training for multi stream mimo communications with hybrid antenna arrays[END_REF][START_REF] Rappaport | Small-scale, local area, and transitional millimeter wave propagation for 5g communications[END_REF]. We dub the above procedure for updating the analog precoders "beam split and drop with backtracking", owing to the way it operates. At each iteration, a decision is made as to whether a given beam is split -i.e replaced by two more directive beams-or dropped -i.e. removed from the precoding matrix. The backtracking feature refers to the fact that, via the vector p, the measurements obtained in prior ping-pong iterations are kept in memory, allowing for returning to lower level beams in the codebook in the cases where noise leads to erroneous decisions in the the split-and-drop procedure.

IV. NUMERICAL RESULTS

In order to assess the effectiveness of the proposed algorithm, we perform Monte Carlo simulations for multiple configurations of the hybrid arrays at devices A and B. The channel matrix H follows the model in (1). The average SNR for the sth stream link between the nth element of the array at device B and the mth element of the array at A is defined as

⇢=E{|H nm | 2 }/E{|N ns | 2 }=1/ 2
, where N ns is the nth entry of the sth column of the noise matrix N . We assume here for simplicity that the SNR ⇢ is the same for all streams. H nm is the channel coefficient between device B's nth array element and device A's mth array element, and E{} is the expectation operator.

We B for half iteration n+0.5. We benchmark the performance of the hybrid PPMBT against the performance of the digital ping pong multi stream beam training method (digital PPMBT) described in [10], for which the spectral efficiency is calculated in a similar manner to that of the hybrid PPMBT. We compare it also with the optimal unconstrained SVD based precoder, which maximize the spectral efficiency and which is obtained by using the top N S left and right singular vectors of H. Note that the SVD based precoder derivation requires full channel knowledge at both devices, an information that is hard to get when hybrid architectures are used as explained earlier, and which our proposed scheme does not need at the start, but rather learns while setting the precoders.

We start our evaluation in the high SNR regime (⇢=30dB), in which the training process will not be impaired too much by noise. This allows assessing how the arrays size, the number RF chains and the number of spatial streams really affect the algorithm's performance. equipped with identical arrays made of N A =N B =32, 128 or 1024 elements and a fixed number of RF chains N RF A =N RF B =8 and try to establish an N S =4 streams MIMO communication. We see that the algorithm reaches, in very few iterations, for small, medium and large sized arrays, to about 1 to 2 bits/s/Hz of the digital PPMBT and SVD based precoding schemes performances. We also see that the convergence speed (in terms of PP iterations) scales inversely to the codebook depth for each of the topologies: the convergence is slower when large arrays are used because, in such cases, the codebook has more levels and its few last levels contain a high number of beamformers with very narrow beams. The selection of such directive beams is more prone to error than those in codebooks with lower resolution. Although the backtracking mechanism can correct for the errors made, this comes at the expense of a larger number of iterations needed for convergence. Note that the number of PP iterations needed for convergence for all topologies is still much below what is needed for exhaustive search: this latter requires as an example, for N A =N B =1024 with N RF A =N RF B =8, N A /N RF A =N B /N RF B =128 PP iterations to find the best beams, compared with only 16 for our algorithm. Fig. 3 shows the algorithm's performance over the same channel as the one used in Fig. 2, but with the number of MIMO streams, N S , taking different values (4, 6 and 8) and the two devices being equipped with identical arrays made of N A =N B =128 elements and use 8 RF chains each. The purpose of these simulations is to investigate how does the ratio of the number of MIMO streams to the number of RF chains N S /N RF affect the algorithm's performance. We can clearly see that the algorithm behaves in three different ways depending on the aforementioned ratio: 1) When N S  N RF /2, the convergence is very quick and no backtracking is performed.

2) When N RF /2 < N S < N RF , the algorithm's convergence is slowed down and one observes some irregularity of the convergence behavior over iterations which is due to the backtracking mechanism. 3) When N RF = N S , the algorithm fails to provide acceptable performance.

Next, in Fig. 4, we fix the size of antenna arrays and number of RF chains used at both devices to N A =N B =64 and N RF A =N RF B =8, and evaluate the algorithm's performance over a channel with L = 7 multipath components at different SNR values. In Fig. 4a, we show the algorithm's performance against SNR after training convergence for different N S values. The results show that the number of streams that the training algorithm can handle efficiently grows with SNR, as is to be expected. At low SNR regimes ( 15 to 0 dB) the algorithm works better when it attempts to estimate only the dominant singular vector of the channel; if more singular vectors are estimated, the large estimation error degrades the overall spectral efficiency of the system. As the SNR grows, an increasing number of singular vectors can be accurately estimated by the algorithm and, hence, increasing the number of streams provides significant spectral efficiency gains. For all cases, we observe that the performance of the Hybrid PPMBT is very close to that of the fully-digital counterpart, and approaches the SVD precoding performance as the SNR grows. In Fig. 4b the convergence behavior of the training algorithm with different N S settings is evaluated at their respective SNR values of interest. We observe that the method's spectral efficiency tends to saturate at around 10 ping pong iterations for moderate and high SNR. Convergence for lower SNR values is, however, slower. We attribute this effect to the fact that the large noise power induces numerous incorrect beam selection errors in the updates of the analog precoder; although the backtracking feature of the algorithm can help correct some of them, the price to pay is a longer training time. In any case, we remark that the algorithm reaches about 70% of the spectral efficiency obtained at convergence within the first 6 iterations, regardless of the SNR value and number of spatial streams. To conclude, we evaluate our proposed training procedure in a system in which only one of the devices is equipped with a large, hybrid array (N A =256, N RF A =16), while the other has a digitally-controlled array of moderate size (N B =4). Such topologies can be seen as massive MIMO systems operating at microwave frequencies. In addition, to reflect the richer scattering experienced in such frequency bands [18], we adopt the following channel model:

H= p N A N B L A B ⇤A H A ( 5 
) where A A contains in its columns the steering vectors a A (⌦ A,p ), p=1, 2, . . . , P , A B is defined analogously, L is again the number of multipath components, and ⇤ is a L ⇥ L matrix with i.i.d. standard complex Gaussian entries. This setting will allow to test the validity of our approach in channels with richer scattering and its robustness against the sparse assumption of the channel. N A =128, N B =4, N RF A =16, N S =4, L=40. Fig. 5 shows the algorithm's performance over a rich scattering channel (L=40) when N A =128, N RF A =16, N B =N S =4. It can be seen that the proposed scheme performs remarkably well and very close to the full digital and optimal SVD based precoder solutions at low, mid and high SNRs. These results show that, although the algorithm was originally designed to exploit the sparse nature of mmWave channels, it is robust to channels with richer scattering.

V. CONCLUSION

We proposed a method to derive precoders and combiners for multi-stream MIMO transmission between two devices equipped with hybrid digital-analog antenna arrays. The method relies on a low-complexity "multi-beam split and drop with backtracking" procedure to update the analog precoders, while digital precoders are computed with the QRdecomposition based method in [10]. For sufficiently large SNR, the resulting precoders approximate well the unconstrained SVD-based precoders, as our numerical assessment shows. We envision that the proposed algorithm can be especially useful in mmWave communication systems.

Compared to the state-of-art methods, our approach offers the advantage of computational simplicity while achieving high-spectral efficiency with moderate training overhead. The numerical results show that the method achieves convergence within N RF (log 2 (N/N RF )+1) ping pong iterations in the low SNR regime and log 2 (N/N RF )+1 iterations in the mid and high SNR regime, assuming both transceivers are equipped with arrays made of N elements and N RF RF chains. Although the method was developed with sparse channels in mind, the performance assessment shows that it is robust against this assumption and also performs well in rich scattering channels.

Also, in order to further reduce the training overhead, the proposed scheme can be interleaved with transmission of payload with increasing data-rate. This, the extension to multiuser environments and to time varying channels will be the subject of our future work.
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  dubbed "Variational Hierarchical Posterior Matching for mmWave Wireless Channels Online Learning" in Chapter 3. We show how the interplay of bayesian active learning and of advanced inference techniques can devise fast and efficient beam search algorithms for single stream mmWave communication systems. In Chapter 4, we detail our second contribution, entitled "Ping Pong Beam Training for Multi Stream MIMO Communications with Hybrid Antenna Arrays". We show how our proposal approximates singular value decomposition (SVD) precoding with hybrid transceivers, enabling thus robust multi-stream mmWave wireless communication systems. Concluding remarks and future work are finally presented in Chapter 5.
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 3 SYSTEM MODEL 35 variance at the two communicating hybrid array enabled devices. The proposed estimation process used together with both proposed strategies is gracefully embedded in the HierPM algorithm, and enables its use in the usual situation in which the channel parameters are unknown. Numerical simulation results show that the proposed methods are able to effectively handle the uncertainty in the channel parameters, resulting in beamforming gains close to these of an exhaustive search algorithm while requiring an amount of pilot measurements comparable to those of hierarchical search algorithms.

  Our system is composed of two hybrid digital analog antenna array devices A and B, equipped with uniform linear arrays (ULA) of N A and N B antenna elements respectively. The elements on the ULAs are separated by a distance d = λ/2, where λ is the the mm-Wave wavelength of interest. Device A (Device B respectively) digitally control its ULA with N RF A (N RF B respectively) RF chains each.
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 3 Figure 3.2 shows the first three levels of an example codebook with N = 8, and figure 3.3 illustrates the beam patterns of the beamforming vectors of each codebook level.

Figure 3 . 2 : 8 Figure 3 . 3 :
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  measurement model (3.2) p(x, m; x) = p(yB,1:t|m; (α, ν))p(m) (3.8)
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 25268 and contains one dominant multipath component and L scattered components. All incidence angles are independently drawn from a uniform distribution between 0 and π. The channel gains are independently drawn from a a set of complex Gaussian distribution with mean 0 and variances fulfilling Var{α}+ l Var{α l } = 1, so that the average SNR ρ between the nth element of the array at A and the mth element of the array at B equals E{|H nm | 2 }/E{|σ B | 2 }=1/σ In all simulations below, the two devices are equipped with identical arrays made of N A = N B = 32 elements, digitally controlled with RF chains. Device A uses a codebook C A with a depth of S A = log 2 (δ A ), δ A = 128.
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  . A uses then this initial precoder to transmit a training sequence to B. Upon reception and training sequence removal, device A gets an estimate of HW [0]

B

  . It then uses that precoder to transmit a training sequence back to device A, who will repeat the same operations.
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 4 Fig. 4.3 depicts the algorithm's performance over a channel with 8 multipath components, when the two devices are equipped with identical arrays made of N A =N B =32, 128 or 1024 elements and a fixed number of RF chains N RF A =N RF B =8 and try to establish an N S =4 streams MIMO communication.
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 444 Fig. 4.4 shows the algorithm's performance over the same channel as the one used in Fig. 4.3, but with the number of MIMO streams, N S , taking different values (4, 6 and 8) and the two devices being equipped with identical arrays made of N A =N B =128 elements and use 8 RF chains each. The purpose of these simulations is to investigate how does the ratio of the number of MIMO streams to the number of RF chains N S /N RF affect the algorithm's performance. We can clearly see that the algorithm
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 228 Fig. 2: Spectral Efficiency (bits/s/Hz) attained by the algorithm over PP Iterations. Devices A and B are equipped with a hybrid array. N RF A =N RF B = 8, N S =4, L=8, ⇢=30dB.

Fig. 3 :
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 5 Fig.5: Spectral Efficiency (bits/s/Hz) attained by the algorithm over PP Iterations. Device A is equipped with a hybrid array and device B has a full digital architecture.N A =128, N B =4, N RF A =16, N S =4, L=40. Fig.5shows the algorithm's performance over a rich scattering channel (L=40) when N A =128, N RF A =16, N B =N S =4. It can be seen that the proposed scheme performs remarkably well and very close to the full digital and optimal SVD based precoder solutions at low, mid and high SNRs. These results show that, although the algorithm was originally designed to exploit the sparse nature of mmWave channels, it is robust to channels with richer scattering.
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		t+1
	5 6	#Take next measurement y B,t+1 = √ P w H B,t+1 Hf A,t+1 + w H B,t+1 n B,t+1 ,
	7	#Variational Model Comparison Posterior Update
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  where F A 2 C NA⇥N RF A and F B 2 C NB ⇥N RF B contain the states of the analog precoder and combiner of transceivers A and B, W A 2 C N RF A ⇥NS denotes the digital precoder of transceiver A and N B 2 C NB ⇥NS is a complex, circularlysymmetric additive white gaussian noise matrix, obtained after training sequence removal and with i.i.d elements, each with variance 2 . Transmissions from device B to device A are modeled analogously as
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This chapter is based on the work published in the conference paper : N. Akdim, C. N. Manchón, M. Benjillali and P. Duhamel, "Variational Hierarchical Posterior Matching for mmWave Wireless Channels Online Learning,"
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In the above, CN (•; µ, λ) denotes the complex Gaussian pdf with mean µ and precision λ, Γ(•; a, b) denotes the Gamma pdf with shape and rate parameters a and b.

The first and second order moments of α are the only assumed known values in our model.

In the above, CN (•; µ, λ) denotes the complex Gaussian pdf with mean µ and precision λ, Γ(•; a, b) denotes the Gamma pdf with shape and rate parameters a and b.

Note that(3.18) and(3.19) can be re-written, after performing some algebra, in a recursive format w.r.t their terms involving summation over measurements epochs. This results in a significant reduction of the algorithm's memory and computation complexity footprint.

Hnm is the channel coefficient between device B's nth array element and device A's mth array element, and E{} is the expectation operator.

Note that the multi-RF chain setups are used solely to help build acceptable RF codebooks[START_REF] Alkhateeb | Channel estimation and hybrid precoding for millimeter wave cellular systems[END_REF], and are not used for multi-stream MIMO operations.

note the the exhaustive search needs N A N B = 16384 measurements to settle.

This chapter is based on the work published in the conference paper : N. Akdim, C. N. Manchón, M. Benjillali and E. de Carvalho, "Ping Pong Beam Training for Multi Stream MIMO Communications with Hybrid Antenna Arrays,"

IEEE Globecom Workshops (GC Wkshps), 2018, pp. 1-7, doi: 10.1109/GLOCOMW.2018.8644444.57

This assumption is used only for the analytical derivation of our scheme. In Section IV, we show numerically that the method is resilient to such a limitation.

No statistical assumptions on the distribution of the gain and the angles are made here, we will later justify the choice of distributions we will use during the inference process.

Such channel can e.g. be established via a sub-6 GHz link in a nonstand-alone deployment. Control feedback channel design details will not be discussed here due to space constraints.

Such discretization approaches the original problem of initial access asA ! 0[7].

To support this level of resolution, the corresponding number of levels of the hierarchical beamforming codebook at device A should be : S A = log 2 ( A ).

The first and second order moments of ↵ are the only assumed known values in our model.

In the above, CN(•; µ, ) denotes the complex Gaussian pdf with mean µ and precision , (•; a, b) denotes the Gamma pdf with shape and rate parameters a and b.

Note that(10) and(11) can be re-written, after performing some algebra, in a recursive format w.r.t their terms involving summation over measurements epochs. This results in a significant reduction of the algorithm's memory and computation complexity footprint.

Initialization

First, the digital and analog precoders are initialized. F A and F B are initialized to C

(1)

A and C

(1) B respectively, while W A is initialized to a random unitary matrix. The columns of W A are then normalized to fulfill the transmit power constraint of the effective precoder F A W A . Finally, a set of empty arrays, {p B , k B , i B }, are created. Those arrays will store the needed information to perform the analog precoder updates, as explained below.

Ping Pong Iterations

After the initialization phase, a sequence of alternate pilot transmissions starts between the two devices.

The baseband precoders are updated after each reception step by means of a QR-decomposition, followed by a normalization step. These two operations are detailed in lines 3-7, 12-16 and 20-24 in Algorithm. 4. Immediately after updating their baseband precoders upon reception of a transmission, the devices transmit back with the updated digital precoders and the same analog precoder as used for reception. Only after the transmission has been made will the transmitting device update its analog precoders (using Algorithm 5), such that next reception is done with the updated setting. This allows for the QR based iteration to converge, as each reception-transmission cycle is performed over a static setting of the analog precoders.

Update of Analog Precoders

The devices invoke the routine outlined in Algorithm 5 to update their analog precoder state. This routine bases its update on the current state of the device's RF precoder , its codebook C and on the update history of its baseband precoder . Using all previous updates of allows for backtracking-i.e,