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Introduction

At the begining of the 20th century, mankind’s conception of the Universe was very different
from today. We did not know if matter was continue or discrete, we thought about light only as
waves, the only planets we knew were those of our Solar System and we did not know that there are
other galaxies than the Milky Way. We thought the Universe was static and eternal. In 1905, annus
mirabilis of physics, a young man of 26 years old, Albert Einstein, revolutionized our way of thinking
the Universe thanks to four papers. The first of them put into light the photoelectric effect, i.e. the
corpuscular aspect of light [1]. The second paper is about the Brownian motion [2] and allowed to
give some convincing arguments to show that matter is made of atoms. The third paper is special
relativity in which space and time are not dissociable [3]. The speed of light is the upper limit of
propagation velocity in space. Finally, the fourth article contains, in an underlying way, the most
famous equation of physics: E = mc2 [4], giving a new meaning of the concept of mass.

After ten years of endeavour, Einstein published in 1915 his theory of general relativity [5],
sometimes considered as the most important scientific creation made by one man. This relativistic
theory of gravitation has passed each performed tests with flying colors, making it one of the most
tested theories of physics. It allowed to explain the anomalous precession of the perihelion of Mercury.
It also led to some theoretical curiosities such as black holes or gravitational waves, both predicted
in 1916. They are solutions of the Einstein equations

Gµν = 8πG
c4 Tµν .

The way to interpret them is the following: the left-hand side corresponds to the curvature of space-
time while the right-hand side corresponds to the matter distribution in space-time. Varying one of
these quantities will alter the value of the other one. Thus, space-time becomes a physical object
itself.

As for each physical object, space-time has numerous properties. For instance, our Universe is
expanding. The distance between two galaxies grows inexorably with time and the more distant
the galaxies are, the faster they will move away from each other. It is the famous Hubble-Lemaître
law. One other of its properties is that it is curved. Hence, if masses move in space-time, they can
create waves. These waves, called gravitational waves (GW), change the value of the gravitational
field as they propagate through space-time. This results in an oscillation of the relative separation
of two free-falling points that we are today able to measure. Indeed, in 2015, the first ever direct
detection of GW was made by the LIGO collaboration. It was created by the coalescence of two
black holes. This new method of observing the sky marked a breakthrough in morden physics and
allows to characterize objects that cannot be seen with telescopes. Today, 6 years after the first
detection, more than 50 events of GWs have been confirmed to originate from binary systems of
compact objects. These objects are black holes and neutron stars and we are now in position of
measuring their masses, their spins and even have hints on the internal structure of neutron stars.

In order to detect them, we need to have accurate solutions of the Einstein equations. However,
in the case of binary systems, we cannot solve them exactly. Thus, we need to use methods that
provide approximate solutions. One of them is called the post-Newtonian approximation. This is the
one that has been used throughout this PhD. This approximation is valid for small relative velocities
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of the compact objects and for a weak gravitational field. For this reason, it is well suited to describe
the inspiral phase of binary systems of compact objects. More specifically, it is an expansion using
the small parameter v/c, v being the relative velocity and c the speed of light. It provides analytical
results as a series of v/c. The nth post-Newtonian (PN) order corresponds to a quantity of the order
of (v/c)2n.

My PhD has been composed of two main projects: the first one is computation of the impact
of finite-size effects (via tidal interaction) in the phase of GW from 5PN order to 7.5PN order; the
second one is the computation of the radiated energy flux of GW up to 4PN order. This manuscript
is composed of three parts. Part I is a general introduction to the considered problem. Part II
describes the tidal effect project and Part III the 4PN flux of GW.

More specifically, Chapter 1 sums up the basics of the GW theory. We briefly introduce general
relativity and solve the linearized Einstein equations.

In Chapter 2, we review the sources that can be detected by current detectors. We also briefly
explain how the detectors work and we give a review of the detections made so far. Finally, we give
a non-exhaustive list of approximation methods used to build templates.

In Chapter 3, we explain the post-Newtonian formalism that has been used for the computations
in Parts II and III. More specifically, it is a generalization of Chapter 1 in which we do not restrict
ourselves to the linearized theory.

In Chapter 4, we present the computation of the conservative sector of tidal effects. More precisely,
we derive the conserved energy and the equations of motion induced by finite-size effects in binary
systems.

Chapter 5 is dedicated to the radiative sector of the tidal effects project in which we derive the
radiated energy flux for tidal effects. By combining this result with the conserved energy computed
in the preceding chapter through a balance equation, we are able to provide the phase of GW for
tidal effects up to 2.5PN relative order.

In Chapter 6, we compute the mass quadrupole, necessary for the radiated energy flux, up to
4PN order. This chapter is filled with technical difficulties that we faced during this calculation.

Finally, in Chapter 7, we present the current quadrupole moment, also required for the radiated
energy flux, up to 3PN order. We also present the associated GW amplitude mode.
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Chapter 1

General relativity and linearized theory
of gravitational waves

This chapter’s purpose is to briefly remind the reader some of the aspects of general relativity as
well as the fundamentals of gravitational waves which will be used in the rest of the manuscript. This
introduction is greatly inspired on the following textbooks [14, 15, 16] in which much more details
are provided.

1.1 General relativity in a nutshell
Consider a manifoldM of dimension 4 together with a metric gµν , a symmetric non-degenerate

rank-two tensor of signature +2. Throughout this thesis, Greek indices {µ, ν, α, . . . } will represent
space-time indices (0, 1, 2, 3), while Latin indices {i, j, k, a, . . . } will represent only spatial indices
(1, 2, 3). We will use the Einstein summation convention.

Let us consider the tangent bundle TM to M and two vector fields vα and wα living on TM.
Let us further define {λ1, λ2} ∈ R2 and φ a scalar function. We can define a covariant derivative as
an operator ∇µ verifying:

• Linearity: ∇µ(λ1v
α + λ2w

α) = λ1∇µv
α + λ2∇µw

α

• Leibniz rule: ∇µ(vαwβ) = ∇µ(vα)wβ + vα∇µ(wβ)

• Commutativity with contractions: δνα∇µv
α = ∇µv

ν

• Reduction to partial derivative on scalars: ∇µφ = ∂µφ

The notation δνα stands for the Kronecker symbol and is 1 if α = ν and 0 otherwise and ∂µ ≡ ∂/∂xµ

is the usual partial derivative. For simplicity, we used these relations on vectors, but they hold for
any tensor with arbitrary rank. One can link two covariant derivatives ∇µ and ∇̃µ using a connection
Cα
αµν [∇, ∇̃]

∇µv
α = ∇̃µv

α − Cα
αµν [∇, ∇̃]vν . (1.1)

If we further impose that the manifold is torsion-free, meaning that ∇µ∇νφ = ∇ν∇µφ, and that ∇µ

is compatible with the metric gµν , namely

∇σgµν = 0, (1.2)

then ∇µ is unique. From now on, we will only consider this particular covariant derivative. It can
be linked to the usual partial derivative, by using a coordinate system, through

∇µv
α = ∂µv

α + Γαµνvν , (1.3)
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where Γαµν = Cα
αµν [∇, ∂] is called the Christoffel symbol. It can be seen as the connection between

the covariant and the partial derivatives. Furthermore, it is uniquely defined in terms of the metric

Γλµν = 1
2g

λσ (∂µgσν + ∂νgσµ − ∂σgµν) . (1.4)

The torsion-free condition imposes that the Christoffel symbols are symmetric on their contravariant
indices {µ, ν}, i.e. Γλµν = Γλ(µν). Moreover, ∇µ defines the Riemann tensor that we choose in several
textbooks convention (which will be used throughout this thesis)(

∇µ∇ν −∇ν∇µ

)
vα = Rα

λµνv
λ. (1.5)

We can also explicit the Riemann tensor coordinate components in terms of the Christoffel symbols
and thus in terms of the metric

Rλ
ρµν = ∂µΓλνρ − ∂νΓλµρ + ΓσνρΓλσµ − ΓσµρΓλσν , (1.6)

the Ricci tensor Rµν ≡ gλρRλµρν = Rλ
µλν and the Ricci scalar R ≡ gµνRµν = Rλ

λ.

The famous Einstein equations, without the cosmological constant, read

Rµν −
1
2Rgµν = 8πG

c4 Tµν , (1.7)

and can be derived by varying the Einstein-Hilbert action with respect to the metric

SEH = c4

16πG

∫ d4x

c

√
−gR + Smat, (1.8)

where G is the Newtonian gravitational constant, c the speed of light and Smat is the action considered
for the matter part. Note that the Einstein-Hilbert action also contains a surface term that is not
written here. The stress-energy tensor is defined by varying the matter action with respect to the
metric

T µν = 2√
−g

δSmat

δgµν
. (1.9)

The divergence of the stress-energy tensor vanishes, i.e. ∇νT
µν = 0, due to the Bianchi identities.

1.2 Linearized theory
In this section we perform the weak field approximation, meaning that the actual metric gµν is a

small perturbation to the Minkowski metric ηµν = diag(−1, 1, 1, 1). We can write

gµν = ηµν + `µν , (1.10)

where symbolically |`µν | � 1.1 Indices will be raised and lowered using the Minkowski metric ηµν .
In particular, � = ηαβ∂α∂β = − 1

c2
∂2

∂t2
+ ∆ is the flat d’Alembertian operator and ∆ = δij ∂

∂xi
∂
∂xj

the
flat Laplacian operator, where δij is the Euclidean metric. In the following chapters, we will use a
different definition for the perturbation metric. The goal is to linearize Eq. (1.7) in terms of `. We
expand the left-hand size in terms of ` and η then truncate it at linear order in ` = O(G). We find

Rµν −
1
2Rgµν = 1

2
[
∂µλ`

λ
ν + ∂νλ`

λ
µ −�`µν − ∂µν`− ηµν∂λσ`λσ + ηµν`

]
, (1.11)

1The reason we do not adopt the traditional hµν notation is because it will be used from Chapter 3 until the end
of the manuscript. Its definition is slightly different than this one and is displayed in (3.1) but they coincide at lowest
order.
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where ∂µν ≡ ∂µ∂ν and ` = ηαβ`αβ. We can simplify this expression by introducing the trace-reversed
perturbation

¯̀
µν = `µν −

1
2`ηµν . (1.12)

Note that ¯̀≡ ηαβ ¯̀αβ = −`, hence the name. Then Eq. (1.11) becomes

Rµν −
1
2Rgµν = 1

2
[
∂µλ ¯̀λ

ν + ∂νλ ¯̀λ
µ −�¯̀

µν − ηµν∂λσ ¯̀λσ] . (1.13)

At this stage, we would like to simplify the equation by imposing ∂ν ¯̀
µν = 0. Let us show that this

condition is always valid in some particular coordinate systems. We first perform a coordinate shift
xµ → x′µ = xµ + ξµ. The new metric deviation in that coordinate system transforms as

¯̀
µν(x)→ ¯̀′

µν(x′) = ¯̀
µν(x)− (∂µξν + ∂νξµ − ηµν∂λξλ), (1.14)

at lowest order if |∂µξν | is of the order of |`µν | � 1. This implies that the contracted derivative of
¯̀
µν transforms as

∂ν ¯̀
µν(x)→ ∂ν ¯̀′

µν(x′) = ∂ν ¯̀
µν(x)−�ξµ. (1.15)

By imposing the condition ∂ν ¯̀
µν = 0, we have to solve �ξµ = ∂ν ¯̀

µν(x). We now use a Green function
G(x− x′) of the d’Alembertian operator to find a particular solution for ξµ, namely

ξµ(x)|part = �−1∂ν ¯̀
µν =

∫
d4x′G(x− x′)∂ν ¯̀

µν(x′). (1.16)

In this coordinate system, we always have

∂ν ¯̀
µν = O(`2), (1.17)

where ` is the order of magnitude of `µν . This choice of gauge is called harmonic gauge (or De Donder
gauge or Lorenz gauge or Hilbert gauge). This condition can be taken into account direclty at the
level of the action. One simply has to add a so-called gauge-fixing term in the action given explicitely
in Eq. (4.10). Throughout this thesis, computations will be made in this particuliar gauge. Note
that since we only exploited a particular solution, we still have a freedom to choose the homogeneous
part, which we will do later on. Finally we get, the linarized Einstein equations

�¯̀
µν = −16πG

c4 Tµν +O(`2). (1.18)

We obviously recognize a wave equation that we will solve in the following sections. Furthermore,
as a consequence of (1.17), the divergence with respect to the partial derivative of the stress-energy
tensor vanishes at linear order in the perturbation metric in this specific coordinate system, namely

∂νT
µν = O(`2). (1.19)

1.3 Gravitational waves propagation
For our study, the stress-energy tensor is compact supported, which means that it vanishes outside

world-tubes enclosing the bodies. We can study the propagation of gravitational waves outside the
bodies and thus consider

�¯̀
µν = 0, (1.20)

which is a planar wave equation. We now exploit the freedom on the homogeneous solution for
�ξµ = 0 to further simplify the problem by choosing a convenient gauge. One can show that we can
choose for ξ0 an expression so that ¯̀ = 0 = ` (see e.g. [15] for proof) which means that ¯̀

µν = `µν .
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Thus, until the end of this section we will drop the bar notation. We can also exploit some more
degrees of freedom for ξi so that `0i = 0. We find, using Eq. (1.17), the following relations

`0µ = 0, `ii = 0, ∂j`ij = 0. (1.21)

This convenient coordinate system is called the transverse-traceless gauge, or TT gauge.
Note that to derive these conditions, we exploited the fact that �`µν = 0, which is valid only out-

side of the source of GW. This means that we cannot apply the TT-gauge everywhere in space. This
will be crucial in the following sections. In this gauge, the solution for Eq. (1.20) for a monochromatic
wave propagating along the z axis is

`TTµν (t, z) =


0 0 0 0
0 `+ `× 0
0 `× −`+ 0
0 0 0 0

 cos(ω(t− z/c) + ϕ) (1.22)

The quantities `+,× correspond to the amplitude of the two GW polarisations, ω and ϕ are constants
corresponding to the pulsation and phase of the GW. Remark that the constant c is the speed of
light. In other words, the theory predicts that the speed of GWs is the same as the speed of light.2

Now let us try to understand how a passing GW affects distances. Consider two events P1 =
(t, x1, 0, 0) and P2 = (t, x2, 0, 0). In this coordinate system, the interval between these events is

∆s =
√
gµνdxµdxν ' L

(
1 + 1

2`+ cos(ω(t− z/c) + ϕ)
)
, (1.23)

where L = |x2 − x1|. This means that two events separated by a spatial coordinate distance L will,
to the eyes of an external observer, oscillate with the passing of a GW. The oscillation has the order
of magnitude of L `+,×, a frequency ω and a phase ϕ. More generally, in Fig. 1.1 is displayed how
the two polarisations of planar wave alter distances with time.

Figure 1.1: Effect of a plane GW of pulsation ω propagating along z direction on test particles. No
deformation occur in the z direction. Top: `+ polarisation. Bottom: `× polarisation. Courtesy to
François Larrouturou.

2This has been confirmed in the detection of the binary neutron star event GW170817, in which an electromagnetic
counterpart has been detected, constraining the speed of GWs as |cGW − c| . 10−15c [17].
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Note that the physical distance ∆s is an observable quantity. What we want to do now is to
determine the amplitude and frequency of the GW. Obviously, we have to solve Eq. (1.18) by making
assumptions on the stress-energy tensor, which will determine the values of `+,×, ω and ϕ.

1.4 Link with the source: the Einstein quadrupole formula
In this section we consider the full linearized wave equation Eq. (1.18). We assume that no

incoming gravitational radiation enters the system. In other words, we apply the retarded Green
function on the source

¯̀
µν(x, t) = 4G

c4

∫ d3x′

|x− x′|
Tµν

(
t− |x− x′|

c
,x′
)
. (1.24)

At the lowest order in powers of r = |x|, we have

¯̀
µν(x, t) = 4G

rc4

∫
d3x′Tµν

(
t− r

c
+ (x.x′)

rc
,x′
)

+O
( 1
r2

)
, (1.25)

where (x.x′) is the scalar product of x and x′. One can show using Eq. (1.19) and some integration
by part that ∫

d3x′T ij(t,x′) = 1
2c2

d2

dt2
∫

d3x′
(
x′ix′j − 1

3r
′2δij

)
T 00(t,x′), (1.26)

where r′ = |x′|. At this stage we have to make assumptions on the form the stress-energy tensor.
This is where the PN approximation enters. Remember that until now, we made two approximations:
weak field because we restricted ourselves to the linear theory (first order in O(G)) and far from the
source (first order in 1/r). Now we introduce the PN approximation, meaning that we take the
first order in 1/c in the expression of T µν . We suppose that the GW source is a perfect fluid in
equilibrium. Such a matter system is described by the stress-energy tensor T µν = ρ(t, x)uµuν where
uµ(t, x) = (c, vi(t, x)) is the 4-velocity of the particles and ρ is the mass distribution of the system.
In particular, T 00(t, x) = ρ(t, x)c2.3 We can reexpress Eq. (1.25) in terms of a multipole, at leading
order in powers of c, to obtain the solution for the perturbation metric

¯̀
ij = 2G

rc4
d2

dt2 Iij
(
t− r

c

)
, (1.27)

where the mass quadrupole of the system is defined as

Iij(t) ≡
∫

d3x x̂ijρ(t, x) +O
( 1
c2

)
. (1.28)

The notation x̂ij represents the symmetric trace-free (STF) part of xixj namely xixj − r2δij/3 in
3 dimensions. More generally, we note for any vector Ai, the STF part of a product Ai1 . . . Ai`
Âi1...i` = A〈i1...i`〉. Eq. (1.28) is generalized in Eq. (3.17). Remark that sources which only admit a
monopole and a dipole do not emit GWs. Furthermore, if the multipoles of a source are all station-
nary, no gravitational waves will be emitted either.

The GWs emitted by an isolated source carry energy and angular momentum. The fluxes of these
quantities can be expressed in terms of the source quadrupole moment as follows

< F > = G

5c5

[
I(3)
ab I

(3)
ab +O

( 1
c2

)]
, (1.29a)

3Note that if we kept the LHS of Eq. (1.26), the solution would be incorrect for self gravitating systems. Indeed,
Eq. (1.24) should be written in the full non-linear theory with τµν , defined in Eq. (3.4), and not Tµν . At the lowest
order in 1/c, τ00 = T00, τ0i = T0i but τij = Tij + ∂iU∂jU , where U is the Newtonian potential.
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< Gi > = 2G
5c5 εiab

[
I(2)
ac I

(3)
bc +O

( 1
c2

)]
, (1.29b)

where εiab is the Levi-Civita tensor for which we take the convention ε123 = 1 and I(n)
ab = dnIab/dtn.

The brackets correspond to the mean value over an orbital period. Both quantities < F > and
< Gi > are functions of time t. The first equation (1.29a) is the famous Einstein quadrupole formula.
The derivation of these formulae can be found in numerous textbooks, see e.g. [15] and of course,
are only valid at leading order. The expressions (1.29) are generalised in Eqs. (3.18) and (3.19).
As discussed in Sec. 3.3, the derivation of these quantities, especially the energy flux, is crucial to
determine the GW phase.
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Chapter 2

Detections

2.1 Possible sources
As shown in Eq. (1.27), systems that admit a time-dependent quadrupole generate GWs. Now, we

turn to astrophysics to determine which kind of celestial objects can produce GWs. We can distinguish
two types of astrophysical sources: isolated objects and self-gravitating systems containing at least
two objects. Of course these two categories cover mostly all known astrophysical objects. However,
very few of them can produce GWs that we are currently able to detect. Let us now list these sources.

2.1.1 Binary systems of compact objects
The amplitude of GW is linked to the compacity of the two compact objects. The notion of

compacity will be widely discussed in Part II but we will briefly introduce it here. The compacity of
a system of mass M and size R is defined as

C = GM

Rc2 . (2.1)

An object whose radius equals its Schwarzschild radius, namely a BH, has a compacity of C = 1/2
which is the maximum one object can have. Objects that have a compacity of the order of & 0.1 are
also called compact. Among those, we find obviously BHs but also neutron stars (NS) that have a
typical compacity of ∼ 0.15.

As we will see later, all the direct detections of GWs so far have been emitted from binary systems
of compact objects, abbreviated as compact binaries. The simplest system that one can think of is
an isolated binary black hole (BBH) because only gravitational interactions occur. Compact binaries
lose energy through the emission of GWs. At the leading order, the energy flux of emitted GWs,
derived using (1.29a) and (1.28), reads

F = 32
5
G4m5ν2

c5r5
12

, (2.2)

where r12 is the separation distance between the two compact objects, m = m1 +m2 the total mass
and ν = m1m2

m2 is the symmetric mass ratio of the system. On the other hand, this energy flux must
correspond to the loss of some mechanical energy of the system E. Hence, while looking at the
energy balance of the system we introduce the balance equation

< F >= −dE
dt . (2.3)

This balance equation of the energy (as well as the balance equation for the angular momentum) of
GWs plays a crucial role in the post-Newtonian approach as we will see in Chapter 3. Now at leading
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order, meaning at Newtonian order, the well-known mechanical energy of the system reads

E = −Gm
2ν

2r12
. (2.4)

When we insert (2.2) and (2.4) into the balance equation, we find a differential equation for the
separation distance

ṙ12 = −64
5
G3m3ν

r3
12c

5 . (2.5)

The first implication of this differential equation is that the separation distance necessarily decreases
over time due to the energy carried away by GWs. Solving this equation can also inform us on
the lifetime of the system. Given an initial separation between the two bodies R12, the system will
roughly last a time

T = 5
256

R4
12c

5

G3m3ν
, (2.6)

before the merger. Remark that this time depends on the symmetric mass ratio which 0 < ν ≤ 1/4.
In the case of two identical masses, this ratio has its highest possible value. So the bigger the
assymetry of the masses, the longer the system will live before its merger. Another implication is
that the relative velocity of the two companions increases with time due to the third Kepler law.

Similar mass binary black hole coalescence

As we can see schematically in Fig. 2.1, we can distinguish three phases in the coalescence of
a binary black hole (BBH) event. The first phase, called the insipiral phase, is the one in which
the two objects orbit around each other at sufficiently far distance. Then, the phase in which the
two bodies start touching is called the merger phase. Finally, the resulting black hole oscillates and
relaxes to give a stationnary rotating BH. This phase is called the ringdown. From (1.29), we see
that a rotating BH in general relativity does not emit GWs which is why the signal goes to zero after
the merger in Fig. 2.1.

Figure 2.1: Figure extracted from [18]. Theoretical signal corresponding to the first merger ever
detected of binary black holes event GW150914. Top: Illustration representing the three phases
of a binary black hole coalescence. The red curve respresents the signal constructed by numerical
relativity. The grey curve corresponds to the signal given by phenomenological templates. Bottom:
The black curve is the relative distance and the green curve is the relative velocity.
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Note that we did not specify here which type of BHs we consider. Of course, the above description
covers stellar BH coalescences, but it can also characterize binaries of supermassive BHs with similar
masses. The difference between these two types of systems lies in the amplitude and mostly in the
frequency of the GW.

Coalescences involving neutron stars

As previously said, NSs are also compact objects, thus, in a binary system, they are also suscep-
tible to emit GWs that we can detect. In fact, coalescences of BH-NS or NS-NS have already been
detected (see Sec. 2.3 for more details). However, the waveform can be very different than the one
from a BBH merger. Indeed, NSs have an internal structure that BHs don’t have. This additional
complexity affects the scenarios in the binary system, see Fig. 2.2. In the inspiral phase, the internal
structure of NSs barely affects their motion and the waveform. The discrepancy with BBHs is a
small effect that is noticeable only in the late inspiral, right before the merger. It is due to the
tidal interaction between the two companions. A part of my PhD was to compute the impact of the
internal structure of compact objects in the emitted GW for the inspiral phase, see Part II.

Figure 2.2: Figure extracted from [19]. Schematic diagram of the evolution of compact binary
coalescences including at least one NS. Top: case of BNS systems. The scenarios after the merger
depend on the masses of the two NSs. The notation MNS,max refers to the mass limit of non-rotating
NSs. For Mbinary & 3M�, the system rapidly collapses into a BH. For MNS,max < Mbinary < 3M�,
the system creates a hypermassive NS that collapses after a few milliseconds into a BH that may
have an intermediate state with an accretion disk. For Mbinary ≤MNS,max, the system stabilises into
a final NS. Bottom: case of a BH-NS system. Rtidal refers to the distance from the BH at which the
NS gets tidally disrupted. RISCO refers to the innermost stable circular orbit. For Rtidal ≥ RISCO, the
NS gets tidally disrupted and the system becomes a BH with an accretion disk which will possibly
fall into the BH later on. For Rtidal < RISCO, no tidal disruption occur and the system collapses into
a final BH.

In Fig. 2.1, we see that once the two BHs have merged, they form a final BH that rapidly stabilizes
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and stops emitting GWs after the merger. In the case of NSs, especially in the case of the creation
of a hypermassive NS, the system keeps emitting GWs. In other words, the postmerger waveform
of a binary NS system (BNS) can be qualitatively different from the one of a BBH. Furthermore, a
final BH cannot emit GWs, but a stable final non-spherical NS can (see Sec. 2.1.2). In principle, this
could allow to differentiate which scenario occured. In Fig. 2.3 is shown a simulation of a merger of
a BNS system.

Figure 2.3: Figure extracted from [20]. Simulation of GWs emitted by a BNS merger. Top: real
part and amplitude of the GW mode Rh22/(νM) and the associated dimensionless frequency Mω22
versus the mass-normalized retarded time t/M for a fiducial configuration. The signal is shifted to
the moment of merger, tmrg , defined by the amplitude’s peak (end of chirping). Also shown is (twice)
the dynamical frequency MΩ ∼ Mω22/2. Bottom: Snapshots of log10ρ on the orbital plane, during
the late inspiral (left panel), at simulation time corresponding to tmrg (middle panel), and during the
postmerger (right panel). We refer to [20] for more details.

We see that the post-merger amplitude of the GW is qualitatively different from the BBH one.
However, as we can expect, its shape highly depends on other parameters such as the spins and the
internal structure of the NSs. As shown in [21], the spin highly affects the post-merger signal. To
date, no post-merger remnent has been detected but such an observation would indicate that at least
one of the two companions is a NS.

Extreme mass ratio inspiral

In the two previous points, we have described the waveform and different scenarios for compact
binaries in which the two companions have similar masses. However, in compact binaries, we can
also encounter a pair of two bodies which have a significant mass difference. Such systems are called
extreme mass ratio inspiral (EMRI). They are composed of a central supermassive BH paired with
a small mass BH, a NS or a white dwarf. Most galaxies contain in their center a supermassive BH
and those who have active nuclei are likely to host EMRIs. Although such systems are not in the
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sensitivity band of the current detectors, we will be able to detect them with the next generation
detector LISA.

2.1.2 Other types of sources
Supernovae

At the end of their life, stars can collapse as supernovae. In general, these phenomena are not
isotropic and thus, they can generate GWs. These astrophysical processes are complex and many
effects have to be taken into account such as electromagnetic, relativistic hydrodynamic, neutrino and
general relativity physics. However, studies on the GW signature of core-collapse supernovae have
been performed and show that they would be detectable by the current detectors [22]. Furthermore,
such events can create compact stars, such as fast rotating NSs, can also leave a remnent of GW
emission.

Rotating anisotropic objects

As said above, when we look at (1.27), we see that rotating non-axisymmetric objects can also
emit GWs. The astrophysical objects that could be detectable by our current detectors are nearby,
spinning and slightly non-axisymmetric isolated NSs in our galaxy. However, no signal of such events
has been detected so far [23].

Stochastic background

A stochastic background of gravitational waves can be created by the superposition of a large
number of independent sources [24]. Of course, in those sources, we find the ones listed above
together with pulsar timing arrays (PTAs) [25]. In addition, the relic gravitational waves from the
early evolution of the universe plays a role to the background. We can also find other types of sources
created by new physics such as dark matter or cosmic strings [26].

2.2 The detectors

2.2.1 Second generation detectors
Ground based GW detectors running observations are of second generation. There are 4 currently

in operation: the two Laser Interferometer Gravitational-Wave Observatory (LIGO) detectors, the
Virgo interferometer and Kamioka Gravitational Wave Detector (KAGRA). The LIGO detectors are
based the USA, Virgo in Italy and KAGRA in Japan. The same type of detector is being built in
India too. All second generation detectors work in the same way and are designed to detect the
merger phase of binary systems of compact objects in the stellar mass range.

In Fig. 2.4 is displayed a schematic view of their structure. The principle is the following: a source
emits a laser beam that reaches a beam splitter such that half of the beam goes in the x direction
and the other half in the y direction. Each beam enters an arm at the end of which stands a free
falling test mass which is a mirror suspended and isolated. Then, the two beams recombine at the
level of the beam splitter and their interference is measured by a photodetector. This interferometer
is not exactly a Michelson interferometer due to the presence of additional mirrors at the beginning
of the two arms which form Fabry-Perot cavities.

Now, what is measured is the difference of length between both arms continuously. We saw
in Sec. 1.3 how a planar wave affects the distances in a plane perpendicular to its direction of
propagation. We also saw that it does not affect distances along its direction of propagation. So if
its direction of propagation is along e.g. the y axis of the detector, only the length of the arm on the
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Figure 2.4: Figure extracted from [18]. Schematic representation of the LIGO detectors. Virgo and
KAGRA are of the same type.

x axis will oscillate and a signal will be detected. However, if it is e.g. along the bisection of the x
and y axes of the detector, both arms will be altered exactly in the same way and no signal will be
detected. In other words, such detectors have blind spots. Thus, the more unaligned detectors we
have on Earth, the less we take the risk of missing events that come from their blind spots.

2.2.2 Third generation detectors
Next generation detectors are currently being designed. The two main projects are LISA and

Einstein Telescope. However, they work slightly differently than the second generation detectors.
LISA (Laser Interferometer Space Antenna) is a project led by ESA together with NASA. It is a

space-based detector which is made of three spacecrafts forming an equilateral triangle with sides of
2.5 millions kilometers. The barycentre of this triangle will orbit around the Sun on the Earth orbit.
Each of the spacecraft will emit two laser beams in the direction of the others. LISA aims mainly
at detecting supermassive black hole mergers, EMRIs and the inspiral phase of stellar mass compact
binaries. Of course this list is non exhaustive and many other effects are expected to be detected.

Einstein telescope, on the other hand, is a European project of a ground-based detector. It is
also shaped as a triangle with arms of 10 kilometers. Its frequency band is roughly the same as the
second generation but its sensitivity is drastically increased, see e.g. [27]. This will notably allow us
to better constrain the finite-size effects in BNS systems.

2.3 Direct detections of GWs
The network of GW detectors started with the two LIGO detectors (Hanford and Livingstone) in

its first run called O1. This run lasted from 2015/09/12 to 2016/01/19. After this run, the detectors
were upgraded in order to launch the second observation run O2 that started from 2016/10/30 to
2017/08/25. In the mean time, Virgo joined the collaboration on 2017/08/01. The third run was
split in two runs called O3a and O3b. O3a started on 2019/04/01 to 2019/10/01 while O3b from

18



2019/11/01 to 2020/03/27. KAGRA also joined the GW network on 2020/02/25. Unfortunately,
the O3b had to be stopped due to the COVID-19 pandemic, only a month after KAGRA started.

During these runs, more than 50 events have been detected. As mentionned above, the detectors
were designed to detect binary systems of compact objects that have stellar masses, so all the de-
tections are in this mass range. Two catalogs are available [28, 29] listing the confirmed events by
the collaborations for the O1, O2 and O3a runs. Although some events in the O3b run have been
confirmed, the O3b catalog is not yet published.

2.3.1 The O1 run
The catalog [28] regroups the O1 and O2 events confirmed by the collaboration. The first event

ever detected [18], GW150914, on 2015/09/14, marked a breakthrough in modern physics. Not only
did it show that we were indeed able to detect GWs, but also the high value of the estimated masses
of the two companions being of m1 = 36+5

−4M� and m2 = 29+4
−4M� allowed the signal to be extremely

clear as we can see in Fig. 2.5. The whole O1 run accounts 3 BBH events of similar mass.

Figure 2.5: Figure extracted from [18]. H1 stands for the Hanford detector, L1 for Livingstone. Top
row, left : H1 strain. Top row, right : L1 strain. GW150914 arrived first at L1 and 6.9+0.5

−0.4 ms later at
H1; for a visual comparison, the H1 data are also shown, shifted in time by this amount and inverted
(to account for the detectors’ relative orientations). Second row : Gravitational-wave strain projected
onto each detector in the 35–350 Hz band. Solid lines show a numerical relativity waveform for a
system with parameters consistent with those recovered from GW150914. Shaded areas show 90%
credible regions for two independent waveform reconstructions. One (dark gray) models the signal
using binary black hole template waveforms. The other (light gray) does not use an astrophysical
model, but instead calculates the strain signal as a linear combination of sine-Gaussian wavelets.
Third row : Residuals after subtracting the filtered numerical relativity waveform from the filtered
detector time series. Bottom row : A time-frequency representation of the strain data, showing the
signal frequency increasing over time.
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2.3.2 The O2 run

During the second run, 8 events have been confirmed. Among those, 7 BBH mergers in which the
two BHs had similar masses. They were all stellar BHs and the chirp masses of the events ranged
from 8M� to 36M�.

The most interesting event of this run is undoubtedly the remaining event, GW170817, which
was coming most likely from a BNS system. Indeed, it was the first ever detection of a BNS merger.
In addition, an electromagnetic counterpart has been detected with a gamma ray burst 1.7s after the
GW signal. Furthermore, the BNS was in a blind spot of Virgo which started collecting data only
two weeks before the event. This allowed to restrain the sky area in which the event took place and
the first telescope to locate its position, 10.9h after the event, was the Swope Supernova Survey [30].
This detection has many physical implications notably due to the electromagnetic counterpart. The
first of them is the very precise constraint on the speed of GWs which is |cGW − c| . 10−15c. This
single constraint allowed to discard many alternative theories of gravitation and further confirms
general relativity. Moreover, the detection allowed to constrain the possible models on the internal
structure of NSs through the equation of state [31]. This topic is widely discussed in Part II. An
additional feature of this detection is that the observation of the electromagnetic counterpart allowed
us to measure an independant value of the Hubble-Lemaître constant H0 [17]. The resulting object
has a mass of 2.74+0.04

−0.01M� for a low-spin prior. We do not know if it is a BH or a NS, but it is either
the lowest mass BH or the highest mass NS known.

2.3.3 The O3 run

As mentionned above, the O3 run has been split in two dinstinct runs: O3a and O3b. In O3a,
the confirmed events are listed in [29]. In this catalog, 39 events are displayed and the total duration
of the run was ∼ 26 weeks, which means that ∼ 1.5 event per week has been detected. Out of the 39
events, possibly 3 come from systems containing at least one NS. However, there was no constraint
on the tidal parameters and no electromagnetic counterpart has been detected, so we cannot rule out
the BBH hypothesis. As an example, the event GW190425 is likely BNS due to the small estimated
masses of the companions m1 = 2.0+0.6

−0.3M� and m2 = 1.4+0.3
−0.3M�.

Interestingly, GW190814 has the highest recorded mass ratio: m1 = 23.2+1.1
−1.0M� and m2 =

2.59+0.08
−0.09M� [32]. It is the first significant mass ratio that has been recorded.
The O3b catalog is not yet available, but two BH-NS events, GW200105 and GW200115, have

been confirmed [33]. Once again, no electromagnetic counterpart has been detected.
Although numerous events have been detected from compact binaries, the LIGO, Virgo and

KAGRA collaborations try to extract possible signals coming from other types of sources such as
short GW bursts [34] or continuous waves [23], cosmic strings [35] or dark matter [36]. No such
signal has been found so far. Furthermore, tests on general relativity can be performed [37], e.g. by
seeking additional GW modes that are not predicted by general relativity.

2.4 Approximation methods for compact binary systems
Let us now turn to the theory and review the different ways to solve the Einstein equations for

compact binaries. As we will see in Secs. 3.2.1 and 4.1, we can separate the different physical effects
(such as point-particle, spins, finite-size effects...) that enter the waveforms. For example, spins
of compact objects affect the waveform but the effect is small when compared with the waveform
generated by static BHs in a binary system. As we will see in the following chapters, the computations
I performed during my PhD were on two topics: The extension of the precision on the point-particle
and on the finite-size effects in the inspiral of compact binaries. Below are listed different methods
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to solve, either analytically either numerically, the Einstein equations and we give the state of the
art in these methods. However, we do not present the results regarding spin effects.

2.4.1 Post-Newtonian
The post-Newtonian (PN) formalism is an approximation method that provides analytical solu-

tions for the description of the inspiral of compact binaries. This formalism is the one that I used
throughout my PhD and is detailed in Chapter 3. However, let us briefly mention here in what it
consists. The PN approximation assumes a slow motion of the bodies. It is a Taylor expansion of
powers of v/c, v being the relative velocity of the companions and c the speed of light. One PN order
corresponds to a quantity of the order O(1/c2).

For the point-particle part of the waveform, meaning that the two BHs have no spin and no
internal structure, the conservative dynamics is known to 4PN order [38, 39, 40]. Recent works also
derived some of the coefficients up to 6PN [41, 42]. The radiative sector on the other hand is known
up to 3.5PN [43] and 4PN is currently being investigated (see Part III for more details). Moreover,
the 4.5PN term in the GW flux is already known and has been published in [44].

Finite-size effects arise in the PN expansion at 5PN order. Even though it is a high order,
the numerical value of the leading order is high enough to be measurable by current ground-based
detectors. Computations on finite-size effects have been among the projects studied during my PhD
(see Part II). More specifically, I derived the tidal effects in the GW phase (in the absence of spins)
from 5PN to 7.5PN, so 2.5PN relative order. This problem has been tackled by multiple groups. For
references, see Table 4.1 for the conservative sector and Table 5.1 for the radiative sector. The result
for the GW phase including tidal effects is provided in (5.41)-(5.42). The coupling to spins has been
derived up to 6.5PN [45]. For more details on tidal effects in the PN expansion, see e.g. the recent
review [46].

2.4.2 Effective field theory
An effective field theory (EFT) is a theory that does not attempt to be valid at all scales but only

in the regime that we are interested in. It exploits the existence of a separation of scales and has
been mainly developed in the context of particle physics. The EFT approach to the binary inspiral
problem was originally proposed by Goldberger and Rothstein in the context of gravitationally bound
non-rotating extended objects [47]. However these methods differ from the original particle physics
point of view due to the fact that general relativity is a classical theory. They use a (Feynman)
diagramatic approach to tackle the problem. For detailed reviews on the topic, see e.g. [48, 49].
Computations in this approach are often done in the post-Minkowskian (PM) approximation, in
which we perform a Taylor expansion in powers of G. One PM order corresponds to a quantity of
the order O(G).

Regarding the conservative dynamics of non-spinning point particles, they derived the 4PN equa-
tions of motion using a Lagrangian approach [50, 40] as well as a Hamiltonian approach [51] at the
same order. Furthermore, the 3PM dynamics has also been derived in [52]. In the radiative sector,
the 2PN quantities are available [53] and some more work on the formalism has to be done to per-
form the computations at higher orders. Some work on finite-size effects has also been performed
and the 2PM Hamiltonian for tidal effects is available [54]. Furthermore, new synergies between the
traditional PN approach and EFT led to the determination of some new coefficients in the conserved
energy at high PN orders [55].

2.4.3 Scattering amplitudes
The scattering amplitudes method is a computational framework that aims at computing the

dynamics of gravitationally bound compact objects. The idea behind this method is to relate the
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scattering amplitudes of two interacting BHs to the orbital dynamics of the system. Indeed, both
processes are governed by the same underlying theory [56]. Furthermore, this approach allows to use
the well-understood methods used in particle physics. The scattering of two BHs is, computationally
speaking, similar to the scattering of two quarks because their interactions via gluons or gravitons
are analogous. The link between these two processes is called the double copy [57]. For a detailed
overview of this method see e.g. [56].

The conservative dynamics of non-spinning BBHs has been derived with this method up to 3PM
order [58] and partially up to 4PM [59]. Some work has also been done on finite-size effects. They
derived conservative dynamics including tidal effects up to 2PM order beyond leading order [60]. We
will see in Sec. 4.5 that the overlap with the results in the PN approach is in full agreement with
these results.

2.4.4 Gravitational self force
Gravitational self force (GSF) is an approximation method that aims at describing EMRIs. The

small parameter in this approach is the mass ratio of the two companions m/M � 1, see e.g. [61]
for a review. At the lowest order in the expansion, the small object follows geodesics around the
massive one as does a test particle. However, at the following orders, this is no longer the case and
the test particle is deviated from the initial geodesic as if it felt a force which is then called self force.
The results provided by this method will be very useful for LISA which will be notably sensitive to
EMRIs.

The first order of the developement inm/M is known and provides results for physical observables
at extremely high PN orders: 21.5PN for analytical results [62] and 22PN with numerical integration
[63]. These results are extremely useful for the computations in the PN approach. Indeed, they
allow us to check the terms entering our expressions in the limit ν → 0. The second order is now
being tackled but technical difficulties arise due to some strong but unphysical divergencies on the
worldline of the small object [64].

2.4.5 Numerical relativity
The methods listed above are approximations which are only valid in particular domains. They

provide analytical solutions that are crucial in the modelling of the waveforms. However, as the
two compact objects get closer, the Einstein equations start to be highly non linear. No analytical
methods are available to describe the dynamics of the system or the GWs emitted during the last
orbits. Today, the only method available to solve the Einstein equations during the merger phase is
to solve them numerically. For a review on this method, see e.g. [65]. A breakthrough in this domain
has been achieved in 2005 [66] where Pretorius managed to simulate the last few orbits during the
coalescence of two BHs. Today numerous catalogs on the merger of BBHs are available, see e.g.
[67, 68].

Although numerical relativity is valid at each step of the coalescence, and especially the merger, it
requires a lot of computational power to provide waveforms. Some signals, like GW170817, lasted for
roughly a minute and recorded ∼ 3000 cycles in the detector band. Numerical relativity is inadequate
for such a high number of cycles. Therefore, templates need to be build by combining analytical
solutions with numerical relativity for the merger part.

2.4.6 Effective one body
Effective one body (EOB) is a resummation method developed in 1999 by Alexandra Buonanno

and Thibault Damour [69] that allows to build templates. The basic idea is to map the two-body
problem onto an effective one-body problem, i.e. the motion of a test particle in some effective
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external metric by means of an effective Hamiltonian. It allows to solve exactly the effective problem
of the test particle in this deformed Schwarzschild metric by introducing a particular non-perturbative
method for re-summing the PN expansion of the equations of motion. Some coefficients in the
expansion corresponding to high PN order remain unkown. They are fitted by comparing with
numerical relativity. This clever method allows to build templates used for data analysis of the
LIGO/Virgo/KAGRA collaborations.

One of many results obtained in the EOB approach is the consideration of dynamical tides.
Indeed, the results discussed above on finite-size effects in binary systems assume that the two
bodies interact through static (or adiabatic) tidal effects. However, it has been shown in [70], using
an EOB Hamiltonian, that matter resonances inside the NS can arise and that these effects cannot
always be negligible compared to adiabatic tides.
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Chapter 3

The post-Newtonian formalism

The traditional post-Newtonian (PN) formalism that has been used throughout my PhD is in
fact a diminutive of the post-Newtonian multipolar-post-Minkowskian formalism (PN-MPM). This
formalism is constituted of two main approximations: slow motion and weak field which correspond
to, respectively, the PN and post-Minkowskian (PM) approximations. They are valid in two overlap-
ping regions of space-time and they allow to perform Taylor expansions in their respective validity
regions using different small parameters.

The PN approximation is valid in the so-called near zone defined by a distance to the source
much smaller than the typical wavelength of the GW (r � λ). In this region, we can perform
Taylor expansions using the small parameter v/c where v is the relative velocity of the bodies in the
considered system. A nPN order corresponds to a quantity of the order O(c−2n).

The PM approximation is valid in the exterior zone defined by a distance to the source bigger
than the typical size of the system a (r > a). In this region, we can perform a Taylor expansion
using the small parameter the gravitational constant G. A nPM order corresponds to a quantity of
the order O(Gn).

The two regions overlap in the buffer zone (a < r � λ). In this zone, both PN and PM
expansions are valid. By means of multipole decompositions and matching, we are able to link the
two approximations to get the information of the system up to spatial infinity. This constitutes the
PN-MPM formalism [71, 72, 73, 74, 75, 76, 77, 78], in which we apply specifically the harmonic-
coordinates condition. This is a completion of the linearized theory presented briefly in Chapter 1.
Until the rest of this manuscript, we consider a space-time of d+1 dimensions. In the present chapter,
which aims at giving an overview of the PN-MPM formalism, the results are presented for d = 3.
However, as we will see in Sec. 3.3, the computations have also been done for arbitrary complex d.

3.1 The PN-MPM formalism
The definition of the gravitational-field amplitude is slightly different from the one in Chapter 1,

namely
hµν =

√
−ggµν − ηµν , (3.1)

which is the perturbation of the so-called gothic metric gµν = √−ggµν and where g is the determinant
of the metric gµν . Note that this definition is equivalent to ¯̀

µν used in Eq. (1.10) at the lowest order
up to a minus sign. We recall that the harmonic gauge condition

∂νh
µν = 0, (3.2)

fixes a class of coordinates called harmonic coordinates. Without doing any approximation, one can
rewrite the Einstein equations in this coordinate system as

�hµν = 16πG
c4 τµν , (3.3)
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where τµν is called the pseudo stress-energy tensor and is constituted of the stress-energy tensor and
the non linearities in the gravitational field hµν

τµν = |g|T µν + c4

16πGΛµν . (3.4)

The second term in the definition of the pseudo stress-energy tensor is exactly given by

Λµν = −hαβ∂αβhµν + ∂αh
µβ∂βh

να + 1
2g

µνgαβ∂λh
ασ∂σh

βλ (3.5)

− gµαgβσ∂λhνσ∂αhβλ − gναgβσ∂λhµσ∂αhβλ + gαβg
λσ∂λh

µα∂σh
νβ (3.6)

+ 1
8(2gµαgνβ − gµνgαβ)(2gλτgρσ − gτρgλσ)∂αhλσ∂βhτρ. (3.7)

In the linearized theory, Λµν = O(h2) = O(G2) and is thus neglected. The PN-MPM formalism
allows going beyond this approximation and its "philosophy" is the following: we first solve the
linearized theory that gives us a solution for hµν(1) at the first order. Then, we insert this solution in
Λµν an truncate at the second order in G. We recover an equation of the same form as Eq. (3.3) in
which the RHS does not depend on hµν(2). Next, we reiterate this procedure order by order. Let us
first detail properly the linearized theory using a multipole approach.

3.1.1 Linearized theory
Here we consider the Einstein equations in the exterior zone so that, at linear order in G, together

with the harmonic gauge condition, they read

�hµν(1) = 0, (3.8a)
∂νh

µν
(1) = 0. (3.8b)

It has been shown [79, 71] that the most general solution of these linearized field equations outside
some time-like world tube enclosing the source and stationary in the past, reads

hµν(1) = kµν(1) + ∂µϕν(1) + ∂νϕµ(1) − η
µν∂λϕ

λ
(1) (3.9)

where the first term depends on two STF-tensorial multipole moments, IL and JL, called source
multipole moments which are arbitrary functions of the time. Furthermore, with the no-incoming
wave condition, they depend only on the retarded time in harmonic coordinates u = t − r/c in the
expression of kµν(1). Its general expression reads

k00
(1) = − 4

c2

∑
`≥0

(−)`
`! ∂L

(
IL(u)
r

)
, (3.10a)

k0i
(1) = 4

c3

∑
`≥1

∂L−1

I(1)
iL−1(u)
r

+ `

`+ 1εiab∂aL−1

(
JbL−1(u)

r

) , (3.10b)

kij(1) = − 4
c4

∑
`≥2

(−)`
`!

∂L−2

I(2)
ijL−2(u)
r

+ 2`
`+ 1∂aL−2

εab(iJ(1)
j)bL−2(u)

r

 . (3.10c)

The gauge vector depends also on four sets of STF-tensorial multipole moments called gauge moments

ϕ0
(1) = 4

c3

∑
`>0

(−)`
`! ∂L

(1
r

WL(u)
)
, (3.11a)
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ϕi(1) = − 4
c4

∑
`>0

(−)`
`! ∂iL

(1
r

XL(u)
)

(3.11b)

− 4
c4

∑
`>1

(−)`
`!

{
∂L−1

(1
r

YiL−1(u)
)

+ `

`+ 1εiab∂aL−1

(1
r

ZbL−1(u)
)}

.

where L = i1 · · · i` is a multi-index composed of ` multipolar indices i1, · · · , i`; iL = ii1 · · · i` is
a multi-index with ` + 1 indices. Similarly, ∂L = ∂i1 · · · ∂i` is the product of ` partial derivatives
∂i = ∂/∂xi, and ∂̂L = STF(∂i1 · · · ∂i`). The superscript (n) denotes n time derivatives, and an
overbar indicates a PN-expanded quantity.

The fact that the multipoles are STF is crucial because it ensures that the decomposition of
the metric in terms of these functions is unique. We will present how they are linked to the mass
distribution of the system in Sec. 3.1.4. Now the next step is to solve (3.3) beyond the linear
approximation.

3.1.2 The MPM algorithm
In Sec. 3.1.1, we give a solution of the linearized theory in terms of generic source multipole

moments. The MPM algorithm allows finding the solution of Eq. (3.3) at any order in G knowing
the explicit solution of the preceding orders. This procedure is iterative, so the equation that we
want to solve is

�hµν(n) = Λµν
(n)[h

µν
(1), h

µν
(2), . . . , h

µν
(n−1)], (3.12a)

∂νh
µν
(n) = 0, (3.12b)

assuming that hµν(1), . . . , h
µν
(n−1) are already known (in terms of the source multipole moments). Since

the source term in Eq. (3.12a) is fully known, the solution should be �−1
retΛµν

(n) with the no incoming-
waves condition. However, the retarded propagator cannot be taken as such because Λµν

(n) diverges
when r → 0. Thus, one has to introduce a regularisation together with a cut-off r0, in the way that
we define

r̃ ≡ r

r0
. (3.13)

We can now deduce an intermediate solution uµν(n) of (3.12a), which is the regularised retarded prop-
agator acting on the source

uµν(n) = FP
B=0
�−1

ret

[
r̃BΛµν

(n)

]
, (3.14)

where B is an arbitrary complex number. The adopted regularisation is the Hadamard partie finie
regularisation, detailed in Sec. 3.2.2 and Sec. 6.3.2. As we said, the introduction of this regulator
comes from the fact that Λµν

(n) diverges in r → 0 because it is expressed in terms of the metric (3.9).
Thus, one has to choose B sufficiently high to compensate the divergencies in r → 0 in the explicit
expressions of kµν(1) and ϕ

µ
(1) in (3.10) and (3.11). Once the integration is performed, we take the limit

B → 0.
Now, the source term in (3.12a) is completely known in terms of the source multipole moments

and is well defined. However, uµν(n) is solution of (3.12a) but not of (3.12b) because it is generally
not divergenceless due to the introduction of r̃B. In order to build the full solution, we need to
find another quantity vµν(n) that needs to be added to uµν(n). This quantity has to be an homogeneous
solution of (3.12a) and has to compensate the divergence of uµν(n) so that the full solution verifies the
harmonic condition (3.12b). The homogeneous solution of (3.12a), namely the solution of �hµν(n) = 0,
has already been solved and the general solution is provided in (3.9). More specifically, we know
the general form of vµν(n) expressed in terms of a generic set of multipole moments, a priori different
from {IL, JL, . . . }. Imposing that the divergence of vµν(n) compensates the divergence of uµν(n) allows to
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express vµν(n) in terms of the source multipole moments by identification. In the end the solution of
Eq. (3.12) is

hµν(n) = uµν(n) + vµν(n), (3.15)

and once an order is known, we can reiterate the procedure to the next order. The detailed algorithm
to derive vµν(n) can be found in [80]. It is also proved in this review that at each order, uµν(n) and vµν(n)
are analytical functions of B. Hence, we can use analytic continuation at each order so that we are
allowed to repeat the above algorithm.

Finally, it is also proved in [80] that the most general solution of the harmonic coordinates Einstein
field equations in the exterior zone is given by

hµνext =
∞∑
n=1

Gnhµν(n)[IL, JL, . . . ,ZL]. (3.16)

In the following sections we want to link the physical source to the observables, especially the TT
perturbed metric at spatial infinity. Hence, one the one hand we have to link the source multipole
moments to the pseudo stress-energy tensor, which is done in Secs. 3.1.4 and 3.1.5. On the other
hand, we need to link the source multipoles to the TT metric and also the energy and angular
momentum fluxes in the so-called radiative zone, which is done in Sec. 3.1.3.

3.1.3 The radiative zone
At this stage, we managed to express the pertubed metric hµνext in terms of the source multipole

moments in a general way. Now we are interested in the TT version of the perturbed metric at
spatial infinity. More precisely, in the so-called radiative coordinates (T,X) in which the retarded
time U ≡ T − R/c becomes asymptotically a null coordinate at future null infinity (where R = |X|
is the distance to the source and T the time). It has been shown that the TT perturbed metric in
the radiative coordinates can be generally written at the leading order in 1/R in terms of general
STF multipole moments UL and VL as [79, 80]

HTT
ij (U,X) = 4G

Rc2Pijab(N )
+∞∑
`=2

1
c``!

[
NL−2UabL−2(U)− 2`

c(`+ 1)NcL−2εcd(aVb)dL−2(U)
]

+O
( 1
R2

)
,

(3.17)
where Pijab(N ) is the TT projector and N = X/R. Note that (3.17) defines UL and VL which are
called radiative multipole moments. In the same coordinate system, we can write the energy flux of
GWs F = (dE/dU)GW in terms of those multipoles as [79]

F =
+∞∑
`=2

G

c2`+1

[
(`+ 1)(`+ 2)

(`− 1)``!(2`+ 1)!!U
(1)
L U(1)

L + 4`(`+ 2)
c2(`− 1)(`+ 1)(2`+ 1)!!V

(1)
L V(1)

L

]
. (3.18)

Furthermore, we can also express the angular momentum flux Gi = (dJi/dU)GW as

Gi = εiab
+∞∑
`=2

G

c2`+1

[
(`+ 1)(`+ 2)

(`− 1)`!(2`+ 1)!!UaL−1U(1)
bL−1 + 4`2(`+ 2)

c2(`− 1)(`+ 1)(2`+ 1)!!VaL−1V(1)
bL−1

]
. (3.19)

By expressing the radiative multipole moments in terms of the source ones, we will be able to
know the TT perturbed metric and the fluxes in terms of the source multipoles and thus to the
physical PN source. Remark that by comparing the quadrupole formula (1.29a) to (3.18), we see
that at the leading order, the radiative quadrupole can be written in terms of the source quadrupole
as

Uij(U) = I(2)
ij (U) +O

( 1
c2

)
. (3.20)

28



It is shown in [80] that the general structure of the perturbed metric hµν in the far zone can be
written at the leading order in 1/r as

h(n) =
∑
`,p

n̂L
(ln r)p
r

FL,p(u) + o
(1
r

)
, (3.21)

where FL,p are functions of the retarded time in harmonic coordinates. The idea is to identify the
radiative multipoles to the source ones in the TT metric. However, the presence of logatithms in hTTij
prevents such identification. We first have to perform a coordinate shift that breaks the harmonic
condition. More precisely, we express the retarded time in radiative coordinates U in terms of the
retarded time in harmonic coordinates u as

U = u− 2GM
c3 ln

(
r

r0

)
+O(G2), (3.22)

where M here denotes the Arnowitt-Deser-Misner (ADM) mass of the system.1 It is shown in [80]
that this coordinate shift absorbs all the ln(R) at each PM order in HTT

ij . We are now able to identify
the two sets of multipoles and, e.g. at 2PN order we have

UL(U) = I(`)L (U) + 2GM
c3

∫ +∞

0
dτ I(`+2)

L (U − τ)
[
ln
(
cτ

2r0

)
+ κ`

]
+O

( 1
c5

)
, (3.23a)

VL(U) = J(`)
L (U) + 2GM

c3

∫ +∞

0
dτJ(`+2)

L (U − τ)
[
ln
(
cτ

2r0

)
+ π`

]
+O

( 1
c5

)
, (3.23b)

where κ` and π` are coefficients given by

κ` = 2`2 + 5`+ 4
`(`+ 1)(`+ 2) +

`−2∑
k=1

1
k
, (3.24a)

π` = `− 1
`(`+ 1) +

`−1∑
k=1

1
k
. (3.24b)

The source multipoles in (3.23) constitute the instantaneous part of the radiative moments while
the other terms are the non-linear effects which depend on the past of the source. In particular, at
1.5PN the so-called tail terms appear. Very briefly, the tail terms correspond to the backscatter of
the GW on the space-time background which creates a tail in the GW signal after the passage of
the instantaneous part of the wave. At higher orders, other effects arise, such as tails-of-tails (when
the GW scatters twice), memory effects or even tails-of-memory. Notably, the tails-of-tails appear
at 3PN. In Eq. (7.20), we give a generalisation of (3.23b) up to O(1/c7) (3PN) for ` = 2.

3.1.4 Matching the source moments to a Post-Newtonian source
At this stage, we have an algorithm that allows to express the solution at an order n in terms

of the source multipole moments defined in the linear case. This section aims at linking the source
multipole moments to the source of the system itself, i.e. to the stress-energy tensor. We have to
start with the so-called matching equation. As mentionned before, the MPM expansion is valid in
the exterior zone while the PN expansion is valid in the near zone. We denote M the multipolar
expansion in the near zone and an overbar represents the PN expansion of a given quantity. In the
buffer zone, both PN and PM expansions are valid and so

M(h) = h. (3.25)
1Normally, the scale constant entering the logarithm should be independant from r0 but it is taken as such for

simplicity. For more details, see Sec. 7.3.
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In other words, in the buffer zone the MPM expansion of the gravitational field equals its PN
expansion. Now, we want to give a formal link between the source moments and the pseudo-stress
energy tensor. Thus, we impose that the MPM expansion of the PN expanded field equals the PN
expansion of the MPM expanded field. This is translated mathematically in the matching equation

M(h) =M(h) . (3.26)

This equation has to be understood in terms of formal functional identities. One can show that
under this condition, the multipole expansion of the field equation outside a PN source is

M(hµν) = FP
B=0
�−1

ret

[
r̃BM(Λµν)

]
− 4G

c4

∞∑
`=0

(−)`
`! ∂L

[1
r
FµνL (t− r/c))

]
, (3.27)

where FµνL is STF on its L indices and reads

FµνL (u) = FP
B=0

∫
d3x r̃Bx̂L

∫ 1

−1
dz δ`(z) τµν(x, u+ zr/c) , (3.28)

and
δ`(z) = (2`+ 1)!!

2`+1`! (1− z2)`,
∫ 1

−1
dz δ`(z) = 1 . (3.29)

Note the presence of the regulator FP called Hadamard Partie finie regularisation which was intro-
duced in Sec. 3.1.2 and more details are given in Sec. 3.2.2. Furthermore, the first term in (3.27)
is exactly uµν already defined in Eq. (3.14). At this point, we have to impose the harmonic-gauge
condition onM(hµν) in order to decompose FµνL into a set irreducible multipole moments which are
given here

F00
L = RL , (3.30a)
F0i
L =(+) TiL + εai<i`

(0)TL−1>a + δi<i`
(−)TL−1> , (3.30b)

F ijL =(+2) UijL + STF
L

STF
ij

[εaii` (+1)UajL−1 + δii`
(0)UjL−1 (3.30c)

+ δii`εaji`−1
(−1)UaL−2 + δii`δji`−1

(−2)UL−2] + δijVL . (3.30d)

The different tensors RL, . . . , VL are STF and uniquely defined in terms of FµνL . Note that this
derivation has been made in 3 dimensions but had to be generalized in d dimensions (see Sec. I and
II of [10]) in order to apply dimensional regularisation, discussed in Sec. 3.2.2.

3.1.5 Explicit expression of the source multipole moments for a PN
source

Let us consider Eq. (3.27), on the one hand, we know from (3.16) the expression of the multipolar
expansion of the perturbed metric in terms of the source multipole moments. On the other hand,
from (3.28) and the decomposition (3.30a), we know the multipole moments in terms of the PN
source. An indentification of the sets of irreducible moments leads to the link between the source
moments and the PN expansion of the pseudo stress-energy tensor τµν in the following way [76, 77]

IL(t) = FP
B=0

∫
d3x r̃B

∫ 1

−1
dz
[
δ` x̂LΣ− 4(2`+ 1)δ`+1

c2(`+ 1)(2`+ 3) x̂iLΣ(1)
i

+ 2(2`+ 1)δ`+2

c4(`+ 1)(`+ 2)(2`+ 5) x̂ijLΣ(2)
ij

]
(x, t+ zr/c) , (3.31a)

JL(t) = FP
B=0

∫
d3x r̃B

∫ 1

−1
dz εab〈i`

[
δ` x̂L−1〉aΣb −

2`+ 1
c2(`+ 2)(2`+ 3)δ`+1x̂L−1〉acΣ(1)

bc

]
(x, t+ zr/c) ,

(3.31b)
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together with the 4 gauge moments

WL(u) = FP
B=0

∫
d3x r̃B

∫ 1

−1
dz
{

2`+ 1
(`+ 1)(2`+ 3)δ`+1x̂iLΣi

− 2`+ 1
2c2(`+ 1)(`+ 2)(2`+ 5)δ`+2x̂ijLΣ(1)

ij

}
(x, t+ zr/c) , (3.32a)

XL(u) = FP
B=0

∫
d3x r̃B

∫ 1

−1
dz
{

2`+ 1
2(`+ 1)(`+ 2)(2`+ 5)δ`+2x̂ijLΣij

}
(x, t+ zr/c) , (3.32b)

YL(u) = FP
B=0

∫
d3x r̃B

∫ 1

−1
dz
{
−δ`x̂LΣii + 3(2`+ 1)

(`+ 1)(2`+ 3)δ`+1x̂iLΣ(1)
i

− 2(2`+ 1)
c2(`+ 1)(`+ 2)(2`+ 5)δ`+2x̂ijLΣ(2)

ij

}
(x, t+ zr/c) , (3.32c)

ZL(u) = FP
B=0

∫
d3x r̃B

∫ 1

−1
dz εab〈i`

{
− 2`+ 1

(`+ 2)(2`+ 3)δ`+1x̂L−1〉bcΣac

}
(x, t+ zr/c) . (3.32d)

Here, x̂L ≡ STF(xi1xi2 · · ·xi`) is the multipolar factor, the brackets surrounding indices refer to
the STF projection, and the Σ’s (or their partial time-derivatives Σ(n)’s), that must be evaluated at
position x and at time t+z|x|/c, are defined in terms of the PN expansion of the pseudo stress-energy
tensor τ̄µν in harmonic coordinates by

Σ ≡ τ̄ 00 + τ̄ ii

c2 , Σi ≡
τ̄ 0i

c
, Σij ≡ τ̄ ij . (3.33)

Recall that the overbar refers to the PN expansion. The expressions of the source moments (3.31) are
formally valid up to any PN order. In practice, their PN-expanded expressions are to be computed
by means of the infinite PN series2∫ 1

−1
dz δ`(z) Σ(x, t+ zr/c) =

+∞∑
k=0

(2`+ 1)!!
(2k)!!(2`+ 2k + 1)!!

(
r

c

)2k
Σ(2k)(x, t) . (3.34)

These expressions are valid for any type of PN-expanded source. During the majority of my PhD, I
computed the source multipole moments for different effects. Note that these expressions are given
in 3 dimensions. However, as we will see in Part III, these formulae had to be derived in arbitrary d
dimensions and the derivations are presented in [10]. For more details on the derivation of Eq. (3.31)
and Eq. (3.32) in 3 dimensions, see [80].

3.1.6 The PN metric
The metric, in the PN approximation, is fully parametrized by a set of so-called potentials. As an

example, we present here the 2PN metric expressed with respect to the 5 potentials {V, Vi, Ŵij, X̂, R̂i}
entering at this order

g00 = −1 + 2V
c2 −

2V 2

c4 + 8
c6

(
X̂ + ViVi + V 3

6

)
+O

( 1
c8

)
, (3.35a)

g0i = −4Vi
c3 −

8R̂i

c5 +O
( 1
c7

)
, (3.35b)

2The function δ`(z) is defined (with δ(z) denoting the one-dimensional Dirac distribution) by

δ`(z) ≡
(2`+ 1)!!

2`+1`! (1− z2)` , so that
∫ 1

−1
dz δ`(z) = 1 and lim

`→+∞
δ`(z) = δ(z) .
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gij = δij

(
1 + 2V

c2 + 2V 2

c4

)
+ 4Ŵij

c4 +O
( 1
c6

)
. (3.35c)

These potentials solve the flat-space wave equations (with � = ηµν∂µν)

�V = −4πGσ , (3.36a)
�Vi = −4πGσi , (3.36b)
�Ŵij = −4πG (σij − δijσkk)− ∂iV ∂jV , (3.36c)

�R̂i = −4πG (V σi − Viσ)− 2∂kV ∂iVk −
3
2∂tV ∂iV , (3.36d)

�X̂ = −4πGV σkk + 2Vk∂t∂kV + V ∂2
t V + 3

2(∂tV )2 − 2∂iVj∂jVi + Ŵij∂ijV , (3.36e)

where the matter source densities are defined in terms of the components of the matter stress-energy
tensor as

σ = T 00 + T ii

c2 , σi = T 0i

c
, σij = T ij , (3.37)

with T ii = δijT
ij. As we can see, there is a hierarchy in the potentials. Indeed, in the case of a

source made of compact objects, the simplest ones {V, Vi} have compact support sources that are
easy to integrate. For example, at Newtonian order in the metric, only the potential V is required
and corresponds to the Newtonian gravitational potential (since � = ∆ − ∂2

t /c
2 = ∆ + O(c−2)).

The other potentials depend on the simpler ones, and the higher order we go, the more complex the
sources of the potentials become. As we will discuss in Sec. 3.2.2, starting at 3PN we need to consider
dimensional regularisation. Thus, in App. B are displayed the full d-dimensional 4PN metric as well
as the required potentials.

3.2 Binary systems of compact objects
In this section, we specify the matter distribution for binary systems of compact objects. In

particular, the conventions we adopt are displayed in Fig. A.1. We model our system of compact
objects by point-particles given in terms Dirac distributions δA ≡ δ(3)(x−yA). To get physical results
with this model, we have to introduce also an ultraviolet regularisation. Accordingly, we have to
make computations in terms of distributions and not functions.

3.2.1 Choice of stress-energy tensor
Up to now, we have shown how to link the observables, e.g. the GW flux, to the source multipole

moments. These multipoles are expressed generally in terms of the pseudo stress-energy tensor and
are valid for any type of PN source. We need to specify our model and apply it to binary systems
of compact objects. This means that we have to express the form of the stress energy tensor, or,
equivalently, of the matter action.

At the lowest order, we can consider that the compact objects are "points" so that their matter
action would be the point-particle action

Spp = −
∑
A=1,2

mA c
2
∫

dτA, (3.38)

where mA is the mass of body A and τA its proper time. This effective action is defined only on the
worldlines of the bodies and describes the minimal coupling of matter to gravity. This action, after
varying it with respect to the metric and using Eq. (1.9), leads to the following stress-energy tensor

T µν =
∑
A=1,2

µA(t)vµAvνAδ(3)
(
x− yA(t)

)
, (3.39)
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where the three-dimensional Dirac distribution is confined to the worldline yA(t) and we pose for the
effective time-varying masses (with mA the constant PN mass)

µA(t) = mA c u
0
A√

−[g]A
, µ̃A(t) =

(
1 + v2

A

c2

)
µA(t) , (3.40)

the worldlines are parametrized by the coordinate time t = x0/c of the harmonic coordinates; the
coordinate velocities are vµA = (c, viA), with viA = cuiA/u

0
A = dyiA/dt, the relativistic Lorentz factor

reads u0
A = (−[gµν ]AvµAvνA/c2)−1/2 and g is the determinant of the metric. The labels A and the

angular brackets [. . . ]A denote that the quantities are regularized on the location of the bodies. In
previous sections, we introduced an infra-red (IR) regularisation, here we introduce the ultra-violet
(UV) because of the point-particle model. More details are given in Sec. 3.2.2. Considering the point
particle action, the employed PN sources read

σ(x, t) =
∑
A

µ̃A(t) δ(3)
(
x− yA(t)

)
, (3.41a)

σi(x, t) =
∑
A

µA(t) viA δ(3)
(
x− yA(t)

)
, (3.41b)

σij(x, t) =
∑
A

µA(t) viAv
j
A δ

(3)
(
x− yA(t)

)
. (3.41c)

In the effective approach we can go beyond the minimal coupling to gravity approximation and
consider other effects, such as spins or finite-size effects. Note that even if we consider other effects,
the stress-energy tensor would still be proportional to (derivatives of) Dirac distributions. In Sec. 4.1,
we discuss the effective action for finite-size effects in systems of compact objects, which describes
the tidal interactions between the bodies (in the adiabatic limit).

3.2.2 The regularisation schemes
In the PN-MPM formalism, we have to deal with two types of divergencies: the UV and the

IR. However, they are required for fundamentally different reasons. On the one hand, the compact
bodies are considered as points so the UV divergencies come from the model itself because of the
infinite value of self-field of point particles. If we were to employ a model of a perfect fluid for
example, no divergencies would appear and thus no UV regularisation would be needed. On the
other hand, the IR divergencies come from the formalism itself because we define quantities (such as
the source multipole moments) as integrals over all space of integrands only valid in the near zone
(e.g. the PN expansion of the pseudo stress-energy tensor). The UV and IR divergencies, being of
very different nature, can in principle be treated with two different regularisations. Originally, the
PN-MPM formalism has been developed using the Hadamard partie finie regularisation [71, 81] for
both IR and UV divergencies. However at 3PN, the EoM in this approach contained an ambiguity
[82] and it turned out that the problem came from the Hadamard regularisation. In particular,
this regularisation breaks the diffeormorphism invariance. The choice was made to use dimensional
regularisation (DR) instead of the Hadamard regularisation in the UV. This choice comes from the
fact that DR has been well known essentially because of its use in QFT. This choice removed the
ambiguity in the EoM at 3PN [83]. Nonetheless, Hadamard was still employed for the IR. At 4PN in
the conservative sector, the computation with Hadamard regularisation in the IR also failed so DR
has been used to derive the EoM. By consistency, we have to use this regularisation in the radiative
sector. Thus, we now use full DR at high order. Moreover, we have recently shown that employing
dimensional or Hadamard regularisations for the treatment of IR divergencies at 3PN were strictly
equivalent, see Secs. 6.4.6, 6.4.7 and 7.2.4.

The computations using pure DR are more complicated than the ones using Hadamard and some
of them are not doable in pure DR. For example, in d dimensions, we cannot derive the analytic
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expressions of some potentials. Thus, in practice we first perform the computations in 3d and
then compute the difference between the two regularisations. Saying that the computations are
performed in 3d means that we employ Hadamard partie finie. Furthermore, the DR scheme is also
called, notably in Chapter 6, the Bε procedure (see Sec. 6.4.3 for more details on this procedure). The
details of these regularisations are presented in Sec. 6.3 for Hadamard and dimensional regularisation
in the UV and in Sec. 6.4 in for dimensional regularisation in the IR.

3.3 Practical computations
As mentioned before, we want to compute the phase and amplitude of GWs. It is sufficient to

know the radiative multipoles in order to derive the amplitude h+,×. However, to compute the phase
in the quasi-circular orbits approximation, we need to take into account the balance equation for the
energy

< F >= −dE
dt , (3.42)

where the brackets < · · · > represent the mean value over an orbital period. We can decompose
the problem in a conservative and dissipative part. Therefore in practice, we always perform two
derivations: first in the conservative sector, where we derive the EoM and conserved quantities, and
notably the energy; second the flux through the computation of the radiative multipole moments.
However, the emission of GW alters the conservative EoM. This effect arises at 2.5PN and is inserted
in the EoM a posteriori by a radiation-reaction force. The treatment of the conservative sector,
notably using an effective Lagrangian approach, is discussed in 4.2.

If we were to relax the quasi-circular orbits approximation, and thus consider eccentricities, we
would also have to consider the balance equation for the angular momentum

< Gi >= −dJi
dt . (3.43)

As for the balance equation for the energy, the LHS is computed in the radiative sector by means of
multipole moments and the RHS is computed in the conservative sector.

In practice, the results of the flux and energy are in the end written in terms of the PN parameter
x defined as

x =
(
Gmω

c3

)2/3
, (3.44)

where m = m1 + m2 is the total mass of the system and ω is the orbital frequency. Note that it is
very convenient to write the final observables in terms of x because it is a 1PN quantity.

To compute the flux, we need the radiative multipole moments (see Eq. (3.18)). They can be
computed by knowing the source multipole moments and the non-linear effects (themselves derived
using the source multipoles). These source moments are integrals of the potentials and the PN
expanded stress-energy tensor. Since the potentials are sourced by the stress-energy tensor, there is
a straightforward way to do the computations. As it was mentioned in Sec. 3.2.2, the regularisation
that we use starts to be incorrect at 3PN and we have to use DR. Since DR is more complicated
than the Hadamard Partie finie, in practice we perform the computation in 3d and then compute the
difference between dimensional and Hadamard regularisations. The procedure to compute the GW
flux is as follows, we compute the:

1. Stress-energy tensor decomposed in 3+1: {T 00, T 0i, T ij}

2. Potentials {V, Vi, Ŵij, . . . }
↪→ 3d computation
↪→ Difference with dimensional regularisation
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3. Source multipole moments {IL, JL, . . . }
↪→ 3d computation
↪→ Difference with dimensional regularisation

4. Non-linear effects (tails, memory...)
↪→ 3d computation
↪→ Difference with dimensional regularisation

5. Radiative multipole moments {UL,VL}

6. Flux

In some intermediate computations, we obtain some poles in 1
d−3 but since UL and VL are observables,

the poles have to vanish because the physical result should not depend on the regularisation method.
Step 5, in which we add the source multipole moments to the non-linear effects, establishes a very
good test on the explicit results. Indeed, the fact that the different cut-offs are compensated in
the radiative moments is absolutely not trivial since we introduced them on the one hand in the
conservative sector, through the EoM (needed to derive the source multipoles); and on the other
hand in the radiative sector. In the end, when we have the flux and the energy, we can insert their
values in Eq. (3.42). In the case where we perform the quasi-circular orbit approximations, we are
able to derive the GW phase

ϕ =
∫

dt ω =
∫
ω(x)dE/dx

dE/dt dx = − c3

Gm

∫
x3/2 dE/dx

< F(x) >dx, (3.45)

where x is the PN parameter defined in (3.44).

This formalism is now going to be applied to the problem of tidal effects, presented in Part II
and to the computation of the 4PN flux for point particles in Part III.
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Part II

Tidal effects
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Introduction

The discovery of GWs generated by the inspiral and merger of two NSs [17, 84] marked a break-
through in fundamental physics, notably by allowing for the first time a direct constraint on the
equation of state (EoS) of cold matter at supranuclear densities deep inside NSs. This important
test excluded some of the stiffest EoS, for which the pressure increases a lot for a given increase in
density, and which therefore offer more resistance to the gravitational collapse, resulting in a NS
that is less compact. This finding is consistent with known constraints on the radius of NSs from
electromagnetic-based observations [85]. However, the majority of soft EoS, which are more easy
to compress and thus predict a more compact NS, is still viable [86] (see also [87, 46] for reviews).
Studying tidal effects also permits to distinguish between BHs, NSs or, possibly, more exotic entities
like boson stars [88, 87].

The tidal interaction affects both the conservative equations of motion (EoM) and the GW
emission of the compact binary system. This results in a modification of the time evolution of the
binary’s orbital frequency and phase which is directly observable (see e.g. [89, 90, 91, 92]). The tidal
distortion depends on the Love numbers [93], characterizing the rigidity and the deformability of the
body, i.e. its capacity to change shape under the influence of an external tidal field. Those Love
numbers depend in turn on the internal EoS of the body, which is uncertain at high densities [94, 95].
They decrease as the compacity of the body increases, reaching zero in the limit of a non-spinning
maximally compact object, i.e., for a Schwarzschild BH [96, 97, 98].

The leading tidal contributions to the orbital dynamics are due to quadrupolar deformations and,
for compact binaries, manifest themselves as very small formal corrections in the accelerations, of
the order of 5PN or ∼ (v/c)10, where v denotes the relative orbital velocity. However, the coefficient
appearing in front of the small 5PN factor (v/c)10 can be quite large and the effect is measurable.3
It scales like the dimensionless parameter

Λ(2) = 2
3k

(2)
(
Rc2

Gm

)5

, (3.46)

where k(2) denotes the mass-type quadrupolar second Love number of the body, while m and R
represent its mass and radius. Typically, the compacity parameter C = Gm/(Rc2) is of order 0.15 for
neutron stars while the Love number is k(2) ∼ 0.1 (depending on the EoS) [97, 98], hence we expect
Λ(2) ∼ 1000. With the binary neutron star event GW170817 [17], the detectors LIGO and Virgo
have already been able to put an observational constraint on a particular combination of Λ(2)

1 , Λ(2)
2

and the masses that enter the orbital phase evolution of the two neutron stars [90, 92]. As already
said, this constraint permitted excluding some of the stiffest EoS, for which the neutron stars are
less compact [99, 28].

During the inspiral phase of coalescing NS binaries the orbital dynamics is dominated by point-
mass contributions and the waveform is essentially identical to that of black holes; but closer to
the merger small corrections arise due to the finite-size effects of NS. These can be described by
resorting to a tidal expansion in the small parameter ∼ RA/rAB, where RA is the size of one of

3One can speculate that the tidal 5PN coefficient is larger than the purely orbital 5PN contribution to the orbital
phase for point particles, which is currently unknown.
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the NS and rAB is the typical orbital separation. The tides arise from the response of the NS
to the gradient of the companion’s gravitational field across the matter distribution. The tidal
expansion is a multipole expansion with the tidal mass quadrupole moment of the object dominant,
and higher mass- or current-type moments sub-dominant. The deformation and finite size effects are
parametrized by a series of coefficients associated with each multipole moments and referred to as
the tidal deformabilities (or polarizabilities) of the NS.

For GW detectors, the main observable is the so-called binary’s chirp, i.e., the time evolution
of the compact binary’s orbital frequency ω(t) and phase ϕ(t) =

∫
dt ω(t) through GW radiation

reaction during the inspiral. The detectors are sensitive to some particular combination of the two
deformabilities of the NSs and the two masses that enters the binary’s chirp. To the lowest tidal
mass quadrupole order, the chirp is given by the combination of the two relations,

x = 1
4θ
−1/4

[
1 + 39

8192Λ̃(2) θ−5/4
]
, (3.47a)

ϕ = ϕ0 −
x−5/2

32ν

[
1 + 39

8 Λ̃(2) x5
]
, (3.47b)

where ν = m1m2/m
2 is the symmetric mass ratio, m = m1 + m2 is the total mass, and where we

use the dimensionless frequency x ≡ (Gmω
c3 )2/3 and time θ ≡ νc3

5Gm(tc − t) variables, with tc denoting
the instant of coalescence — at which the distance between the particles formally vanishes while the
frequency diverges —, ϕ0 being an reference constant phase. The most commonly used approximant
for GW data analysis in the Fourier domain is defined by using the stationary phase approximation
(SPA), for which the phase of the dominant mode at twice the orbital frequency reads

ψ = 2πf tc − 2ϕ0 −
π

4 + 3x−5/2

128ν

[
1− 39

2 Λ̃(2) x5
]
. (3.48)

Since x is a small PN parameter of the order of O(c−2), we see that the effect of the internal
structure of NS (in the non-spinning case) is comparable to relativistic orbital effects occurring at
the 5PN order beyond the point-particle contribution computed with the usual Einstein quadrupole
formula. Of course, the latter estimate is just formal, since we have to take into account, besides
the small factor x5, the numerical value of the 5PN coefficient parametrizing the finite-size effect
in (3.47)–(3.48).

The tidal polarizabilities (3.49) are physical parameters to the extent that they directly parametrize
the effective matter action (5.1)–(5.2) we adopt in this work, following Refs. [100, 6], as an efficient
and elegant tool to describe tidal effects in the case of compact bodies. In Chapters 4 and 5, we
analyze the tidal response of NS binaries and the modification of the GW phase to higher order,
corresponding to mass quadrupole, current quadrupole and mass octupole tidal interactions. Ac-
cordingly, we introduce three tidal polarizability coefficients, conveniently denoted, using standard
normalization [94, 95], as

Gµ
(2)
A ≡

(
GmA

c2

)5
Λ(2)
A = 2

3 k
(2)
A R5

A , (3.49a)

Gσ
(2)
A = 1

48 j
(2)
A R5

A , (3.49b)

Gµ
(3)
A = 2

15 k
(3)
A R7

A , (3.49c)

and related to corresponding relativistic generalizations k(2)
A , j(2)

A and k
(3)
A of Love numbers for the

mass quadrupole, current quadrupole and mass octupole moments of the body, with RA denoting its
radius in a coordinate system such that the area of the sphere of radius RA is 4πR2

A.
Note that we consider static tides, however, recent work [101] have shown that dynamical tides

coupled to spins can induce resonances in binary NS systems that are note negligible compared to
the leading tidal deformation Λ(2).
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Chapter 4

Conservative sector

This chapter aims at computing the EoM and conserved quantities up to next-to-next-to-leading
order or NNL/2PN order (meaning 2PN beyond leading order) for tidal effects. It is organized as
follows. In Sec. 4.1, we define the general effective action with appropriate non-minimal matter
couplings describing finite-size effects. In Sec. 4.2, we give some general methods that were used at
the level of the action and Lagrangian to derive the EoM and conserved quantities. The quantities
entering this action are determined by the 2PN metric, presented in Sec. 4.3.1 and computed off-shell,
i.e., without replacement of accelerations by the EoM. The final Lagrangian, accurate to NNL/2PN
order, is displayed in Sec. 4.3, together with the associated NL/1PN center-of-mass (CoM) position.
We then derive, in Sec. 4.4, the tidal dynamics in the CoM frame for general orbits. From the
Lagrangian derived in the CoM frame we deduce the associated Hamiltonian in isotropic coordinates
in Sec. 4.5. We then provide the EoM as well as the conserved quantities for quasi-circular orbits in
Sec. 4.6. In App. C we show that the tidal multipole moments up to the NNL/2PN order can be
defined equivalently by means of either the Riemann tensor or the Weyl tensor. Finally, we give in
App. D.1 the complete tidal acceleration in a general frame for arbitrary orbits to NNL/2PN order.
This chapter is based on the two papers [6, 8].

4.1 The effective matter action for static tides

4.1.1 Generalities
As mentioned in Sec. 3.2.1, we model the compact objects as point-like sources using the point-

particle action. This action is an effective action describing the minimal coupling of matter to gravity.
The first step is to go beyond the minimal coupling in order to define finite-size effects in the action,
called non-minimal action Snm. This is done using effective field theory. Note that in Part II, we
consider static tides, meaning that we assume that each body always stays in static equilibrium, and
we neglect their coupling to spins. In order to define such an action, we need to introduce a local
inertial coordinate frame along each body worldline, together with the associated local tetrad e µ

α̂

where the hat indices denote the tetradic components. More details on the choice of tetrad are given
in Sec. 5.1.3. In its own local frame, the body feels the tidal multipole moments generated by the
other bodies at its very location, namely the `-th order mass-type moments GL̂ and the current-
type ones HL̂, where those quantities refer to the spatial tetradic components of the moments, i.e.
projected along the local tetrad, with L̂ = î1 · · · î` denoting a multi-spatial index composed of `
spatial tetradic indices.

The internal structure is then entirely determined by the mass and the EoS. Thus, the elementary
bricks that are allowed to construct Snm are tensors defined from the metric only and evaluated at
the given particle position, with all indices contracted so as to preserve the invariance under rotation
and parity in the corresponding constant-time hypersurface of the local rest frame. In our case, it is
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sufficient to consider the same non-minimal terms as in Ref. [102], built from quadratic couplings in
the tidal moments ĜL and ĤL. Hence the form of the matter action (adding also the particle’s label
A ∈ {1, 2})1

Snm =
∑
A

∑
`≥2

1
2`!

µ(`)
A

∫
dτA

(
GA
L̂

(τA)
)2

+ `

(`+ 1)c2σ
(`)
A

∫
dτA

(
HA
L̂

(τA)
)2

+ µ
′(`)
A

c2

∫
dτA

(
ĠA
L̂

(τA)
)2

+ `

(`+ 1)c4σ
′(`)
A

∫
dτA

(
ḢA
L̂

(τA)
)2

+ . . .

. (4.1)

The ellipsis indicates many higher-order non-linear combinations of the tidal moments and their
covariant (proper-time) derivatives, which we do not need to include here (see e.g. Eq. (2.3) of [100]).
For more insight and motivation about the non-minimal action, see Refs. [103, 104, 105, 100] and
the treatment of tidal effects in the Newtonian model as recalled in App. A of [6].

The above tidal moments are given by appropriate covariant derivatives of the Weyl tensor. We
define first the spatial tetradic components of the moments appearing in Eq. (4.11) below (for ` > 2)
as

GA
L̂

= −c2
[
∇〈̂i1 · · · ∇î`−2

Cî`−1 0̂̂i`〉0̂

]
A
, (4.2a)

GA
L̂

= 2c3
[
∇〈̂i1 · · · ∇î`−2

C∗
î`−1 0̂̂i`〉0̂

]
A
. (4.2b)

The angle brackets over the ` free spatial indices L̂ = î1 · · · î` of the above tensor expressions means
that they must be replaced by their symmetric and trace-free (STF) parts over those indices, the
underlined indices being excluded from the STF projection. We denote by ∇α̂ the usual covariant
tetradic derivative (we pose α̂ = (0̂, î)), whereas Cα̂β̂γ̂δ̂ and C∗α̂β̂γ̂δ̂ represent the tetradic components of
the Weyl tensor (whose definition is recalled in Eq. (C.2)) and its dual respectively.2 By construction,
the tidal moments (4.2) are symmetric over their spatial indices L̂ and all their traces are zero, i.e.,
δî1 î2Gî1 î2···̂i` = 0.

Next, we introduce the covariant versions of the previous tidal tensors. Since uµ = e µ

0̂ , this is
achieved by imposing that they live in the particle’s local spatial hypersurface, which is orthogonal
to the four velocity. Thus, we complete the definition of the tidal moments (4.2) by requiring them
to obey

GA
0̂α̂2···α̂` = HA

0̂α̂2···α̂` = 0 . (4.3)

In this way, Gα̂1···α̂` and Hα̂1···α̂` are both Lorentz tensors and covariant scalars, while their covariant
versions in an arbitrary coordinate system {xµ} read

GA
µ1···µ` = −c2

[
∇⊥〈µ1 · · · ∇

⊥
µ`−2

Cµ`−1ρµ`〉σ

]
A
uρA u

σ
A , (4.4a)

HA
µ1···µ` = 2c3

[
∇⊥〈µ1 · · · ∇

⊥
µ`−2

C∗µ`−1ρµ`〉σ

]
A
uρA u

σ
A . (4.4b)

1The constant mass of body A is denoted mA and its proper time dτA = (−[gµν ]AdyµAdyνA/c2)1/2, where yµA(τA)
is the particle’s worldline. The four velocity uµA = dyµA/(cdτA) is such that [gµν ]AuµAu

µ
A = −1, with [gµν ]A denoting

the metric regularized at the location of body A; this is of course nothing but the time-time component of the
orthonormalizing condition of the tetrad, ηα̂β̂ = [gµν ]A eAµα̂ eAν

β̂
.

2In our convention, C∗
α̂β̂γ̂δ̂

≡ 1
2εα̂β̂η̂ζ̂ C

η̂ζ̂

γ̂δ̂
or, in covariant form, C∗µνρσ ≡ 1

2εµνλκ C
λκ
ρσ , where εα̂β̂γ̂δ̂ denotes the

tetradic components of the completely anti-symmetric Levi-Civita tensor εµνρσ, defined by ε0̂1̂2̂3̂ = 1 and ε0123 =
√
−g.

The tetradic covariant derivative obeys, e.g., ∇α̂V β̂ = e µ
α̂ eβ̂

ν
∇µV ν .
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Here, we denote ∇⊥µ =⊥νµ ∇ν , with ⊥νµ= δνµ + uµu
ν being the projector onto the hypersurface

orthogonal to the four velocity (notice that ⊥µα̂= (0, e µ
î

)). Also, the operators ∇⊥ commute, and
the operator ∇⊥µ1 . . .∇

⊥
µ`

has to be understood as ⊥ν1
µ1 · · · ⊥

ν`
µ`
∇ν1 . . .∇ν` . The tidal moments are

both STF over all their space-time indices and transverse to the four velocity, namely uµGµµ2···µ` =
uµHµµ2···µ` = 0, which is equivalent to (4.3).

Very important to the formalism is the fact that the Weyl tensor and its covariant derivatives
in (4.4) are to be evaluated at the location of the particle A following the regularisation, as indicated
by the square brackets [· · · ]A. Physically, the regularisation is crucial because it removes the self field
of the particle A, and therefore permits automatically selecting the external (tidal) field due to the
other particles B 6= A. We know one regularisation able to give a complete, consistent and physical
answer in high PN approximations, namely DR (see e.g. [106, 83]). In our practical calculations at
the relatively low NNL/2PN order, it is simpler to use the Hadamard partie finie regularisation, since
it has been shown [100] to be equivalent to DR (see also discussions in Ref. [83]).

As the tidal moments are transverse to the velocity, the action (4.1) can be rewritten in covariant
form as

Snm =
∑
A

∑
`≥2

1
2`!

µ(`)
A

∫
dτAGA

α1···α`G
α1···α`
A + `

(`+ 1)c2σ
(`)
A

∫
dτAHA

α1···α`H
α1···α`
A + · · ·

. (4.5)

We observe that the reference to the local tetrad has completely disappeared from the action. For
convenience, we will work only with the global (tensorial) components Gµ1···µ` and Hµ1···µ` of the
moments henceforth.

The coefficients µ(`) and σ(`) entering the non-minimal action characterize the deformability and
polarizability of the body under the influence of the external tidal field. They are linked to the
dimensionless mass-type k(`) and current-type j(`) second Love numbers as [100]

Gµ
(`)
A = 2

(2`− 1)!! k
(`)
A R2`+1

A , Gσ
(`)
A = `− 1

4(`+ 2)(2`− 1)!! j
(`)
A R2`+1

A , (4.6)

where RA is the radius of body A. In the effective description Eq. (4.5) of compact objects, only the
coefficients µ(`)

A and σ(`)
A are measurable. The normalization constants in µ(`)

A in are chosen to match
usual Newtonian definitions.

The polarizability coefficients (4.6) actually determine the formal PN order at which the tidal
effects appear. For compact objects the compacity parameter defined as the ratio C = Gm/(Rc2) is
of the order of one. Inserting C ∼ 1 in (4.6), we recover the fact that the dominant tidal effect is due
to the mass quadrupole and is formally of the order of

εtidal = 1
c10 , (4.7)

i.e., is comparable to a 5PN orbital effect. With the notation (4.7) for the dominant effect, we see
that the deformability coefficients in the action scale like{

µ
(`)
A , σ

(`)
A

}
= O

(
εtidal
c4`−8

)
. (4.8)

We are now able to truncate the action (4.5) in order to consider only the quatities contributing up
to NNL/2PN.

4.1.2 The total 2PN action for static tides
To sum up, the total action that we consider is then

S = Sg + Sm, (4.9)
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where the gravitational part Sg is the standard Einstein-Hilbert action, to which we add the appro-
priate harmonic-gauge fixing term

Sg = c3

16πG

∫
d4x
√
−g

[
R− 1

2gµνΓ
µΓν

]
, (4.10)

with Γµ = gρσΓµρσ. Then the matter part up to NNL/2PN is

Sm =
∑
A

∫
dτA

−mAc
2 + µ

(2)
A

4 GA
µνG

µν
A + σ

(2)
A

6c2 H
A
µνH

µν
A + µ

(3)
A

12 GA
λµνG

λµν
A +O

(
εtidal
c6

) . (4.11)

As discussed above, the tidal tensors are normalized in such a way that their leading order in the PN
expansion is 0. So the order of the different contributions are determined by the tidal polarizabilities
whose orders are given in Eq. (4.8). In particular, the only tidal polarisabilites that have an order
lower than 1/c14 are

µ
(2)
A ∼ σ

(2)
A ∼

1
c10 = εtidal, µ

(3)
A ∼

1
c14 = εtidal

c4 . (4.12)

Then the relevant tidal tensors, generally defined in Eq. (4.4), are given by
GA
µν = −c2RA

µρνσu
ρ
Au

σ
A , (4.13a)

HA
µν = 2c3R∗A(µρν)σu

ρ
Au

σ
A , (4.13b)

GA
λµν = −c2∇⊥(λRA

µρν)σu
ρ
Au

σ
A . (4.13c)

The Riemann tensor and its dual are evaluated at point A following the Hadamard regularisation,
and we denote ∇⊥λRA

µνρσ ≡ (∇⊥λRµνρσ)A its projected covariant derivative evaluated at point A,
with (∇⊥λ )A = (⊥κλ ∇κ)A with (⊥νλ)A = (δνλ + uλu

ν)A. Note that they are defined with respect to
the Riemann tensor and not the Weyl tensor. In App. C, I show the equivalence between these
two definitions. Furthermore, replacing the STF operator by the symmetrization operator in the
definitions (4.4) for the mass quadrupole, current quadrupole and mass octupole moments does not
affect the values of those tensors. The resulting expressions are simpler than the original formulae.
However, the off-shell mass-type tidal moments defined in this manner are no longer trace-free,
contrary to their Weyl counterparts.

4.2 General methods
Now that the matter action is defined, we wish to compute its associated Lagrangian in order

to derive the EoM and conserved quantities. In this section, we show some methods to simplify the
problem.

4.2.1 The Fokker method
Let us consider an action S that is a functional of the metric gµν and the dynamical variables

of the system q = {~yA, ~vA,~aA, . . . ,~a(n)
A }. The Fokker method is a way of defining another equivalent

action in a perturbative problem. It consists in the following steps:
1. we start from the total action S = Sg + Sm = S[q, gµν ]

2. we solve the Einstein field equations resulting from the metric variation. This yields a solution
g(sol)µν [q]

3. we insert g(sol)µν back into S, which defines the Fokker action SF[q] ≡ S[q, g(sol)µν [q]]
Moreover, in our problem the so-called solution metric g(sol)µν is the PN metric which is already known
in terms of potentials up to 4PN. This method, quite simple in practice, drastically simplifies the
problem as shown right below.
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4.2.2 Properties of the Fokker action
The Fokker action has two powerful properties:

1. the dynamics for the matter is identical to that of the original action δS = 0⇔ δSF = 0

2. in a perturbative scheme, the Fokker action in which we insert the first order metric solution
is equivalent to the Fokker action in which we insert zero-th order metric solution up to first
order

Proof of 1.
Recall that g(sol)µν satisfies δS

δgµν
[q, g(sol)µν ] = 0. By varying the Fokker action we get

δSF =
∫

d4x

(δS
δq

)
[q, g(sol)µν ]δq +

(
δS

δgµν

)
[q, g(sol)µν ]︸ ︷︷ ︸

0 by definition

δgµν
δq

δq



=
∫

d4x

(
δS

δq

)
[q, g(sol)µν ]δq. (4.14)

If δS = 0, then δS
δq

[q, g(sol)µν ] = 0 and so δSF = 0 and reciprocally. In the end δS = 0⇔ δSF = 0.

Proof of 2.
Let us consider the action of the form S[q, gµν ] = S(0)[q, gµν ]+εS(1)[q, gµν ], where ε� 1. In our case,
ε = εtidal because tidal effects are at least a 5PN contribution. Then the metric can also be split in
two parts g(sol)µν = g(sol)0µν + εg(sol)1µν . Then we can compute the difference between the Fokker action
defined right above with the Fokker action in which we replaced the metric by the 0th order one

SF[q]− S[q, g(sol)0µν ] = S[q, g(sol)µν ]− S[q, g(sol)0µν ]

=
∫

d4x

(
δS

δgµν

)
[q, g(sol)0µν ]︸ ︷︷ ︸

O(ε) by definition

εg(sol)1µν +O(ε2) (4.15)

= O(ε2),

which shows that SF and S[q, g(sol)0µν ] are equivalent up to O(ε).

In the case of tidal effects, the 0th order metric is the PN point-particle part and the perturbation
is the tidal one. We want to compute the EoM and conserved quantities including tidal effects up to
NNL/2PN, which corresponds to a 7PN effect (1/c14). Since O(ε2tidal) = 1/c20, it is amply sufficient
to inject only the point-particle part of the metric in our action. The same argument has also been
shown and used in Sec. II.E of Ref. [100].

To sum up, our starting action to derive the Lagrangian is Sg+Sm (given in Eq. (4.10) and (4.11))
in which we replace the metric by the already known point-particle PN metric. Even though we do
not control entirely the PN metric at the requested order (7PN), we have shown that the matter
dynamics using this action is equivalent to the original one. Once we have this particular Fokker
action S ′F[q] = S[q, gppµν [q]], it is straightforward to compute the associated Fokker Lagrangian LF =
LF(~yA, ~vA,~aA, . . . ,~a(n)

A ).

4.2.3 The reduction method
At this stage, we know the Fokker Lagrangian LF(~yA, ~vA,~aA, . . . ,~a(n)

A ), which is a generalized
Lagrangian. We want to reduce its expression by finding another Lagrangian that gives equivalent
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matter dynamics and limiting as much as possible the number of derivatives of the accelerations
while remaining in the harmonic coordinates. The reason why we want to reduce the Lagrangian
is that it becomes simpler to derive the conserved quantities (see Sec. 4.3.3). It is possible [107] to
manage that the new Lagrangian then depends on the positions, velocities, accelerations and merely
is linear in the accelerations. We generally cannot reduce it further without losing the harmonic
gauge condition. The method is the following

1. We replace each derivative of the acceleration appearing in the Lagrangian by the sum of its
on shell value ~A

(k)
A = ~A

(k)
A (~yA, ~vA) and a parameter δ~a(k)

A , namely ~a(k)
A = ~A

(k)
A + δ~a

(k)
A . Note that

by definition, δ~a(k)|on shell = 0.

2. After the first step we end up with three types of terms:

• The ones that do not contain any δ~a(k)
A , these ones are to be left unaltered.

• The ones that are linear in δ~a(k)
A which we need to keep.

• The ones at least quadratic in δ~a(k)
A , called double-zero terms. We can drop them because

they do not affect the EoM. Indeed, the variation of a product of δ~a(k)
A is of the form

δ(δ~a(k1)
A )δ~a(k2)

A |on shell + δ(δ~a(k2)
A )δ~a(k1)

A |on shell = 0, by definition of δ~akA. Thus, they always
vanish.

3. We consider the terms linear in δ~a
(k)
A . In those terms, we replace back δ~a

(k)
A = ~a

(k)
A − ~A

(k)
A .

By doing so, the part proportional to the acceleration, which is necessarily a scalar product
~C(~yA, ~vA).~a(n)

A , can be replaced, using an integration by part and droping total time derivatives,
by

~C(~yA, ~vA).~a(n)
A → − ~̇C(~yA, ~vA,~aA).~a(n−1)

A . (4.16)
At this stage we eliminated all the products of derivatives of the accelerations and lowered the
number of time derivatives by one.

4. We reiterate the three first points until the obtention of a Lagrangian L(~yA, ~vA,~aA) depending
only on the positions, velocities, accelerations and that is linear in the accelerations. This last
point comes from the fact that we can drop double zero terms.

4.2.4 Derivation of EoM and conserved quantities from a generalized
Lagrangian

Let us consider a generalized Lagrangian L(~yA, ~vA,~aA, . . . ,~a(n)
A ). We can derive [82] the EoM of

such a Lagrangian using the generalized Euler-Lagrange formula

δL

δyiA
≡

n+2∑
`=0

(−)` d`
dt`

(
∂L

∂(yiA)(`)

)
= 0, (4.17)

where (yiA)(`) is the `th time derivative of the positions. Eq. (4.17) gives an expression of the acceler-
ations with respect to the other dynamical variables, namely aiA = aiA(~yA, ~vA,~aA, . . . ,~a(n)

A ). However,
the acceleration entering in the right-hand side are of lower order (because they are multiplied by
inverse powers of c). This implies that we can replace iteratively its value in order to find aiA(~yA, ~vA).

The computation of the conserved quantities requires some more work [82]. As already said,
reducing the Lagrangian simplifies the following expressions. We define the conjuguate momenta piA
and qiA of the positions and velocities of particles A

piA ≡
δL

δviA
= ∂L

∂viA
− d

dt

(
∂L

∂aiA

)
, (4.18a)
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qiA ≡
δL

δaiA
= ∂L

∂aiA
. (4.18b)

These quantities allow deriving the 10 conserved quantities associated to the reduced Fokker La-
grangian LF in the following way

E =
∑
A

(
viAp

i
A − aiAqiA

)
− L, (4.19a)

P i =
∑
A

piA, (4.19b)

J i = εijk
∑(

yjAp
k
A + vjAq

k
A

)
, (4.19c)

Gi = −Zi +
∑
A

[
−qiA + 1

c2

(
yiAp

k
Av

k
A + yiAq

k
Aa

k
A + viAq

k
Av

k
A

)]
, (4.19d)

where E is the energy, P i the linear momentum, J i the angular momentum and Gi the CoM position.
The CoM position is tricky to compute because of the definition of Zi. Indeed, under a Lorentz
boost W i, the particle trajectory transforms as yiA → yiA + δyiA and the Lagrangian as L→ L+ δL.
Explicitely, they read δyiA = −W it+ 1

c2W
jyjAv

i
A+O(W 2) and δL = W idZi/dt+O(W 2) which defines

Zi. After applying the boost on the Lagrangian, one needs to find the expression of Zi in order to
compute the CoM and so has to "integrate" the linear in W i part of δL.

4.3 The NNL reduced Fokker Lagrangian in a general frame
With the above methods in hand, we are now able to apply them to our problem. We first need

to compute the tidal tensors using the unreduced values of the point-particle potentials. Then we
can insert them in the definition of the Lagrangian in order to reduce it. Finally, we will be able to
derive the EoM and conserved quantities.

4.3.1 Computation of the regularized tidal tensors
At the 2PN order, the metric of a general matter system in harmonic coordinates, given in

Eq. (3.35), can be parametrized by the set of potentials {V, Vi, Ŵij, R̂i, X̂} whose definitions are
given in Eq. (3.36). To perform a consistent Fokker reduction of the original action, the solutions
of Eqs. (3.36) must be in principle constructed with the symmetric Green function, which kills all
contributions of odd powers of 1/c at the current approximation level. As discussed above, thanks
to the properties of the Fokker action, we only need the metric produced by point particles and
can neglect tidal effects when inserting the metric (3.35) into the Fokker action. Therefore, we
just require the potentials for point particles without including any internal structure effect. The
relevant potentials have already been published in, e.g., [108], except that we compute here their
off-shell values, without replacement of accelerations by means of the EoM (we then call them the
“unreduced” potentials). However, it is known that the replacement of accelerations in the action is
equivalent to performing an unphysical shift of the particles’ worldlines [109]. I have checked that,
indeed, by inserting the reduced (on shell) versions of the potentials into the action, the final gauge
invariant result for the conserved energy reduced to circular orbits, comes out the same.

As already said, in practical calculations, I used the Hadamard regularisation, which is equivalent
to DR up to the relatively low NNL/2PN order [100, 83]. The method to regularise quantities at
point A using Hadamard partie finie is explained in Sec. 6.3.2. After performing a (3 + 1) splitting
of the tidal tensors and injecting the 2PN point-particle metric, I found3

3The notation r12 = |y1 − y2| represents the Euclidean distance between the two bodies (at constant time y0
1 =

y0
2 = c t); the unit direction from body 2 to body 1 is then ni12 = (yi1 − yi2)/r12; vi12 = vi1 − vi2 stands for the relative
velocity; the usual Euclidean scalar product of vectors is denoted with parentheses, e.g. (n12v1) = n12 · v1; the cross
product is denoted, e.g. (n12 × v12)i, and the mixed product, e.g. (n12, v1, v2) = (n12 v1 × v2).
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[Gij ]1 = Gm2

r3
12

[
3n12〈in12j〉 + 1

c2

[
n12〈in12j〉

(
−15

2 (n12v2)2 + 6v12
2 − 3

2r12(n12a2)− 3Gm1

r12
− 3Gm2

r12

)
− 6n12〈iv1j〉(n12v12) + 2v1〈iv1j〉 + n12〈iv2j〉

(
12(n12v1)− 6(n12v2)

)
− 6v1〈iv2j〉 + 3v2〈iv2j〉 − 3a2〈in12j〉r12

+ δij

(
(n12v1)2 − 1

3v1
2
)]

+ 1
c4

{
n12〈in12j〉

[
105
8 (n12v2)4 + 30(n12v2)2(v1v2) + 6(v1v2)2 − 15(n12v2)2v1

2

− 12(v1v2)v1
2 + 6v1

4 − 45
2 (n12v2)2v2

2 − 12(v1v2)v2
2 + 6v1

2v2
2 + 6v2

4 +Gm2(n12a2)

+ Gm1

r12

(
−291

2 (n12v1)2 + 291(n12v1)(n12v2)− 273
2 (n12v2)2 + 35v12

2
)

+Gm1

(
14(n12a1)− 10(n12a2)

)
+ Gm2

r12

(
9(n12v2)2 + 18v12

2
)

+ 1
8r

3
12(ä2n12)− 15G2m2

1
14r2

12
+ 35G2m1m2

r2
12

+ 5G2m2
2

r2
12

+ r12

(
12(v1a2)(n12v2)

− 27
2 (v2a2)(n12v2) + 45

4 (n12a2)(n12v2)2 + 6(n12a2)(v1v2)− 3(n12a2)v1
2 − 9

2(n12a2)v2
2
)

+ r2
12

(9
8(n12a2)2 − 15

8 a2
2 + 3

2(n12v2)(n12ȧ2) + 2(v1ȧ2)− 2(v2ȧ2)
)]

+n12〈iv1j〉

[
62Gm1

r12
(n12v12)

− 18Gm2

r12
(n12v12) + 15(n12v1)(n12v2)2 − 15(n12v2)3 + 6(n12v2)(v1v2) + 6(n12v2)v12

2 − 6(n12v1)v1
2

+ r12

(
−(v12a2) + 3(n12a2)(n12v1)− 9(n12a2)(n12v2)

)
− r2

12(n12ȧ2)
]
+v1〈iv1j〉

(
−3(n12v2)2 + 2v1

2

− r12(n12a2)− 3Gm1

r12
+ 6Gm2

r12

)
+ n12〈iv2j〉

[
−30(n12v1)(n12v2)2 + 15(n12v2)3 − 12(n12v1)(v1v2)

+ 12(n12v1)v1
2 + 12(n12v1)v2

2 − 6(n12v2)v2
2 + Gm1

r12

(
−68(n12v1) + 62(n12v2)
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12(n12ȧ2) + r12

(
−2(v1a2)− 6(n12a2)(n12v1)− (v2a2) + 9(n12a2)(n12v2)

)]
+ v1〈iv2j〉

(
−6(n12v1)(n12v2) + 15(n12v2)2 − 6(v1v2)− 6v12

2 + 5r12(n12a2) + 8Gm1

r12
− 10Gm2

r12

)
+ v2〈iv2j〉

(
6(n12v1)2 − 15

2 (n12v2)2 + 3v2
2 − 5

2r12(n12a2)− 4Gm1

r12
+ 5Gm2

r12

)
+ 4Gm1a1〈in12j〉

+ a2〈in12j〉

[
r12

(
−12(n12v1)(n12v2) + 27

2 (n12v2)2 + 4(v1v2)− 2v1
2 − 5v2

2
)

+ 9
2r

2
12(n12a2)− 3Gm1

−Gm2

]
+a2〈iv1j〉r12

(
−(n12v1) + 7(n12v2)

)
+ a2〈iv2j〉r12

(
−2(n12v1)− 7(n12v2)

)
− 5

4a2〈ia2j〉r
2
12

+ n12〈iȧ2j〉r
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1
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[Hij ]1 = Gm2

r3
12

{
12(n12 × v12)〈in12j〉 + 1

c2
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(
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[Gijk]1 = −
15Gm2n12〈in12jn12k〉

r4
12

+O
(

1
c2

)
. (4.20c)
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The other components of the tidal moments are readily obtained from, e.g., the relations [G0i]1 =
−vj1 [Gij]1/c and [G00]1 = vi1v

j
1 [Gij]1/c2, which are equivalent to [G0̂0̂]1 = [G0̂̂i]1 = 0 in tetradic

notation. In Eqs. (4.20), most of the terms are STF, which we denote by angular brackets surrounding
the indices. Note however the appearance of pure trace contributions, due to the fact that we have
not resorted here to tetradic projections and have used the Riemann tensor instead of the Weyl
tensor (see the discussion in App. C).

4.3.2 The Lagrangian
After computing the values of the tidal tensors, I injected them in the total Lagrangian, which

led to a Lagrangian L′ = L′(~yA, ~vA,~aA,~a(1)
A ,~a

(2)
A ). I applied the reduction method as explained in

Sec. 4.2.3 and obtained the reduced NNL/2PN Lagrangian in a general frame

L = Lpp + Ltidal , (4.21)

where I recovered the well-known point-particle Lagrangian

Lpp = m1v
2
1
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+ 1
c2

{
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4
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7
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+ 1
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4
1 + 3

4(n12v1)(n12v2)(v1v2)

− 2v2
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8(v1v2)2 + 15
16v

2
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2
2

)
+ m1v

6
1

16 (4.22)

+Gm1m2

(
−7

4(a1v2)(n12v2)− 1
8(n12a1)(n12v2)2 + 7

8(n12a1)v2
2

)+ 1↔ 2 +O
( 1
c5

)
,

and the expression of the tidal part of the Lagrangian up to the NNL/2PN order in harmonic
coordinates

Ltidal = G2m2
2
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{
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2 − 9(v1v2)v1
2

− 27
4 v12

2v1
2 + 69

16v1
4
)

+ µ
(2)
1 r12

(
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2
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− 39
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2
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)
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2
)
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)
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(2)
1

8r2
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+ 165G2m2
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(2)
1
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+15µ(3)

1
2r2
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}
+1↔ 2 +O

(
εtidal
c6

)
. (4.23)

Note that the last term, although it does not contain any explicit 1/c-factor, is actually a NNL term
(see Eq. (4.8)). The notation 1↔ 2 means that we add the symmetric counterpart in the exchange
of the two particles of the expression.

4.3.3 The EoM and conserved quantities
The method for computing the EoM and conserved quantities are detailed in Sec. 4.2.4. The

generalized Euler-Lagrange formula has been used to derive the NNL/2PN accelerations. Since the
problem is perturbative, I replaced iteratively the on shell accelerations with their value in terms yiA
and viA only. The result is displayed in Eq. (D.1). I have checked that their value is in agreement
with the literature (up to NL/1PN, since the 2PN was not derived yet) and that they are invariant
under a Lorentz boost as they should be.

The structure of the leading order EoM and energy allows to compute the corresponding CoM
quantities at NNL/2PN order without requesting Gi itself at that order. So it is sufficient to know
the CoM at the NL/1PN for this calculation given by Gi = Gi

pp +Gi
tidal, where

Gi
pp = m1y

i
1 + m1

2c2

(
v2

1 −
Gm2

r12

)
yi1 + 1↔ 2 +O

( 1
c4

)
, (4.24)

and where the dominant tidal piece appears only at the NL/1PN order and reads

Gi
tidal = 3G2m2

2
2r5

12c
2 µ

(2)
1

(
3ni12 −

yi1
r12

)
+ 1↔ 2 +O

(
εtidal
c4

)
. (4.25)

The other conserved quantities in a general frame are quite lengthy, they are given in the CoM in
Eqs. (4.42) and (4.43).

4.4 Lagrangian and conserved quantities in the CoM frame
The CoM frame is defined as the frame in which the equation Gi = 0 holds. Solving for Gi = 0

yields the CoM position of the particle 1 as a function of the relative separation and velocity. I found
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yi1 = (yi1)pp + (yi1)tidal, where4

(yi1)pp =
[
X2 + ν ∆

2c2

(
v2 − Gm

r

)]
xi +O

( 1
c4

)
, (4.26a)

(yi1)tidal = −3G2mν

2r6c2

[
∆µ

(2)
+ + 5µ(2)

−

]
xi +O

(
εtidal
c4

)
, (4.26b)

with the position of the particle 2 obtained by the exchange 1 ↔ 2. The velocities vi1 = (vi1)pp +
(vi1)tidal are found by differentiating Eqs. (4.26a)–(4.26b), using in that process the full EoM, which
include the tidal effect. Here and below, we define the following convenient combinations of the tidal
polarizabilities:

µ
(`)
± = 1

2

(
m2

m1
µ

(`)
1 ±

m1

m2
µ

(`)
2

)
, σ

(`)
± = 1

2
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m2

m1
σ

(`)
1 ±
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m2
σ

(`)
2

)
, (4.27)

where the chosen normalisation is such that µ(`)
+ = µ

(`)
1 = µ

(`)
2 and µ(`)

− = 0 when the two bodies are
identical, with the same mass and internal structure. Likewise for σ(`)

± . It is also convenient to define
their adimensioned value that will be used later on

µ̃
(`)
± =

(
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)2`+1

Gµ
(`)
± , σ̃

(`)
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(
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)2`+1

Gσ
(`)
± . (4.28)

At this stage, the EoM in the CoM frame can be derived in two possible ways: either by computing
the CoM acceleration ai = ai1 − ai2 directly, based on the replacement rules (4.26a)–(4.26b); or by
deriving first the expression of the Lagrangian in the CoM frame, varying it and then recover the
EoM. I resorted to the two methods and the results are in full agreement (see also [38] for further
details on the second method). The CoM Lagrangian may be decomposed as L = Lpp +Ltidal, where
Lpp is e.g. given by Eq. (4.2) in [110] while the tidal part is, up to NNL/2PN order
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2

+
[
µ

(2)
+

(39
2 −

27
4 ν

)
+ ∆µ(2)

−

(39
2 −

9
4ν
)

+ 16σ(2)
+ + 16∆σ(2)

−

]
anv

2
}

+
[
µ

(2)
+

(
36− 72ν + 18ν2

)

+ ∆µ(2)
−

(
27− 18ν

)
+ σ

(2)
+

(
72− 96ν

)
+ 48∆σ(2)

−

]
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4We pose xi = yi1 − yi2 and vi = dxi/dt; r = |x| = r12 denotes the separation, ni = xi/r the unit direction,
and we have ṙ = (nv) = n · v; mass parameters are: the total mass m = m1 + m2, the symmetric mass ratio
ν = m1m2/m

2 = X1X2 and the mass difference ∆ = X1 −X2, with XA = mA/m.
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Note again that the last term is actually a NNL/2PN contribution. The corresponding relative CoM
acceleration is displayed in App. D.1. Similarly, the tidal part of the conserved energy E = Epp+Etidal
is
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Finally, for the CoM angular momentum J i = J ipp+J itidal, the tidal part reads (denoting Li = εijkx
jvk)
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The point-particle pieces Epp and J ipp are depicted in Eqs. (4.8) and (4.9) of Ref. [110].

4.5 The tidal Hamiltonian in isotropic coordinates
After the publication of our first paper on the conservative part of tidal effects [6], some other

groups, using different techniques, such as scattering amplitude [60] and EFT [54] had computed the
Hamiltonian including tidal effects up to 2PM (second post-Minkowskian order beyond the leading
order, i.e. from order G6 to G8). However, the comparisons of our results were not trivial since
they used a Hamiltonian approach while we used a Lagrangian approach. As their Hamiltonians
were given in isotropic coordinates, in order to check the consistency of our three results, we derived
the Hamiltonian in isotropic starting from our Lagrangian (4.21) and then compared our result with
the PN expansion of their Hamiltonian. The overlap of our results turned out to be in complete
agreement.
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To construct a Hamiltonian from the Lagrangian (4.22)-(4.23), we need to remove the accelera-
tions at NNL/2PN orders by means of shifts of the particles’ trajectories also known as “contact”
transformations. For a generalized Lagrangian L(yiA, viA, aiA) that is linear in accelerations and such
that the accelerations appear at the highest considered PN order (in our case NNL/2PN order), the
contact transformation can be taken to be yiA −→ Y i

A = yiA + δyiA with [82]

δyiA = 1
mA

(
qiA + ∂F

∂viA

)
+O

( 1
c6 ,

εtidal
c6

)
, (4.32)

where, qiA = qiApp + qiA tidal is defined in Eq. (4.18b) and F = Fpp + Ftidal is an arbitrary function
of the positions and velocities present at the highest 2PN and NNL/2PN levels. The effect of this
contact transformation, combined with the addition of a total time derivative, yields the physically
equivalent Lagrangian L −→ L+ δL with the extra contribution

δL =
∑
A=1,2

δL

δyiA
δyiA + dF

dt +O
( 1
c6 ,

εtidal
c6

)
. (4.33)

Here, δL/δyiA is defined in Eq. (4.17) evaluated off shell, without replacement of the accelerations.
With the choice (4.32), the new Lagrangian is now ordinary, i.e., depends only on positions and
velocities but is no more written in the harmonic coordinates.

As already said, the function F can be adjusted at will and, for the point-particle case, it can be
chosen in such a way that, starting from the harmonic-coordinates Lagrangian, the target Lagrangian
uses position variables corresponding to ADM coordinates. For convenience, I adopted for F the
point-particle part leading to ADM coordinates, without tidal terms and up to NNL/2PN order.
Thus, according to Eq. (4.15) in [82], I took

F = Gm1m2

c4

Gm1

r12

(
7
4(n12v1)− 1

4(n12v2)
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+ 1
4(n12v2)v2
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)
. (4.34)

After the specific contact transformation (4.32)–(4.34), the Lagrangian L′ = L+δL is a functional
of trajectories Y i

A = yiA + δyiA and velocities V i
A = dY i

A/dt. A Hamiltonian H ′ follows from the
usual Legendre transformation. We denote the conjugate momenta P i

A = ∂L′/∂V i
A, and also pose

R12 = |Y1 − Y2|, N i
12 = (Y i

1 − Y i
2 )/R12, (N12P1) = N12.P1 etc. I derived H ′ = H ′pp + H ′tidal, given

in App. D.1, where the point-particle part reproduces the Hamiltonian in ADM coordinates to the
considered order [111].

From now on, we restrict attention to the frame of the CoM, for which the relative canonical
momentum is simply P ≡ P1 = −P2. Setting R = R12 and N = N i

12, we further change notation to
introduce appropriate reduced variables

Ĥ ′ = H ′

mν
, P̂ = P

mν
, R̂ = R

Gm
. (4.35)

With the Hamiltonian (D.3)–(D.4) in hand, one has a large freedom of variables provided by
arbitrary canonical transformations. On the other hand, the community of scattering amplitudes
and the EFT are deriving Hamiltonians in the PM approximation using isotropic coordinates, say
(ρ,p) [58]. Isotropic coordinates drastically simplify the expression of the Hamiltonian, which then
depends on the momentum p only through its norm p2 ≡ p2 and not on the radial component (p.n)
separately (with n = ρ/ρ). Thus, I performed a canonical transformation from the reduced variables
(X̂, P̂ ) to (reduced versions of) new isotropic variables (ρ̂, p̂) where the generating function Ĝ(X̂, p̂)
has been conveniently chosen to get the Hamiltonian in isotropic coordinates

Ĝpp = (N̂ p̂)
R̂ + ν

2c2 + 1
c4

[
1
R̂

(
−1

4ν + 1
4ν

2
)

+ 1
8ν

2(N̂ p̂)2 +
(1

4ν −
1
8ν

2
)
p̂2
]+O

( 1
c6

)
,

(4.36a)
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Ĝtidal = (N̂ p̂)
 1
c12R̂5

[
µ̃

(2)
+

(9
4 + 3

2ν
)

+ 15
4 µ̃

(2)
− ∆− 4σ̃(2)

+

]
+ 1
c14

 1
R̂6

[
µ̃

(2)
+

(
−18 + 71

4 ν −
9
4ν

2
)

+ µ̃
(2)
− ∆

(
−363

14 −
15
2 ν

)
+ σ̃

(2)
+

(114
7 + 16ν

)
− 34

7 σ̃
(2)
− ∆

]
+ 1
R̂5

([
µ̃

(2)
+

(9
2 − 9ν + 9

4ν
2
)

+ µ̃
(2)
− ∆

(27
8 −

9
4ν
)

+ σ̃
(2)
+

(
9− 12ν

)
+ 6σ̃(2)

− ∆
]
(N̂ p̂)2 +

[
µ̃

(2)
+

(
−27

4 + 81
8 ν −

3
8ν

2
)

+ µ̃
(2)
− ∆

(
−69

16 + 9
4ν
)

+ σ̃
(2)
+

(
−25

2 + 10ν
)
− 6σ̃(2)

− ∆
]
p̂2
)+O

(
εtidal
c6

)
, (4.36b)

with the canonical transformation being specified by P̂ i = ∂Ĝ/∂X̂ i and ρ̂i = ∂Ĝ/∂p̂i. The Hamil-
tonian in isotropic coordinates is obtained as Ĥ iso(ρ̂, p̂) = Ĥ ′(X̂, P̂ ). To NNL/2PN order, I found

Ĥ iso
pp = − 1

ρ̂
+ 1

2 p̂
2 + 1

c2

[
1
ρ̂2

(1
2 + 1

2ν
)

+ p̂2

ρ̂

(
−3

2 − ν
)

+
(
−1

8 + 3
8ν
)
p̂4
]

+ 1
c4

[
1
ρ̂3

(
−1

4 −
3
2ν
)

+ p̂2

ρ̂2

(5
2 + 27

4 ν + 3
4ν

2
)

+ p̂4

ρ̂

(5
8 −

5
2ν − ν

2
)

(4.37a)

+
( 1

16 −
5
16ν + 5

16ν
2
)
p̂6
]
+O

( 1
c6

)
,

Ĥ iso
tidal = − 3µ̃(2)

+

c10ρ̂6 + 1
c12

(
p̂2

ρ̂6

[
µ̃

(2)
+

(
−6− 3ν

)
− 20σ̃(2)

+

]
+ 1
ρ̂7

[
µ̃

(2)
+

(63
4 + 21

2 ν
)
− 15

4 µ̃
(2)
− ∆− 4σ̃(2)

+

])

+ 1
c14

(
p̂4

ρ̂6

[
µ̃

(2)
+

(
−63

16 −
21
2 ν − 3ν2

)
+ σ̃

(2)
+

(
−15

2 − 40ν
)]

+ p̂2

ρ̂7

[
µ̃

(2)
+

(261
8 + 699

8 ν + 81
8 ν

2
)

+ µ̃
(2)
− ∆

(
−1989

112 −
15
4 ν

)
+ σ̃

(2)
+

(1977
14 + 126ν

)
− 204

7 σ̃
(2)
− ∆

]
+ 1
ρ̂8

[
µ̃

(2)
+

(
−339

7 −
666
7 ν

− 15ν2
)

+ µ̃
(2)
− ∆

(141
7 + 15ν

)
+ σ̃

(2)
+

(142
7 + 20ν

)
− 34

7 σ̃
(2)
− ∆− 15µ̃(3)

+

])
+O

(
εtidal
c6

)
.

(4.37b)

This Hamiltonian can be compared to the PN expansion of the Hamiltonian derived by the other
groups. Of course, we recover for Ĥ iso

pp the 2PN expansion of the 3PM Hamiltonian given in Eq. (10.8)
of [56].5 Gladly, we also find a complete agreement for Ĥ iso

tidal with the PN expansion of the NL PM
tidal Hamiltonians in Eq. (7) of [60] and Eqs. (19-20) of [54]. Namely, the results agree with the
overlapping terms of the mass and current quadrupoles up to order G3 and up to the NL/6PN order
O(εtidal/c2). They also agree with the leading G2 order of the mass octupole in [54] up to NL/1PN
order. Note that the NL/1PM approximation computed in [60, 54] gives all the PN tidal terms at
orders G2 and G3 up to NL/1PN order but overlooks those in G4 arising at NNL/2PN (see the last
line of Eq. (D.4)).

4.6 Tidal effects for quasi-circular orbits
Going back to the conserved quantities, we continue the computations in the case of quasi-circular

orbits, i.e. orbits that are quasi-circular in our harmonic coordinate system. The relative acceleration
5For point-particles without internal structure, the nPM Hamiltonian permits controlling the (n− 1)PN approxi-

mation. Thus, the 3PM conservative Hamiltonian is sufficient to completely control the 2PN conservative dynamics.
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of the binary system is of the form

ai = −ω2xi + 1
c5F

i
reac, (4.38)

where ω is the orbital angular frequency and F i
reac is a radiation reaction force which appears at

2.5PN. This means that ṙ = O(c−5). However, our Lagrangian approach is purely conservative so
the radiation reaction in (4.38) has to be added ad hoc using another method. Furthermore, one
can explicitely see in Eq. (D.2) that the CoM acceleration is purely radial, namely ai = −ω2xi, thus
we can read off ω from this expression. Relevant quantities will then depend only on the bodies’
separation r or equivalently, on the orbital frequency. In the case of circular orbits, it is convenient
to introduce the dimensionless PN parameters associated with the separation and orbital frequency
as

γ = Gm

rc2 , x =
(
Gmω

c3

)2/3
. (4.39)

By identifying the expression of ω2 from the circular-orbit EoM as explained above and expressing
in terms of γ iteratively, I recovered the well-known formula for point masses at the 2PN order, with
a non-trivial NNL/2PN relative tidal contribution

(ω2)pp = Gm

r3

[
1 + (−3 + ν)γ +

(
6 + 61

4 ν + ν2
)
γ2
]

+O
( 1
c6

)
, (4.40a)

(ω2)tidal = Gm

r3

{
18 µ̃(2)

+ γ5 +
[(
−249

2 + 51ν
)
µ̃

(2)
+ + 75

2 ∆ µ̃
(2)
− + 96 σ̃(2)

+

]
γ6

+
[(34317

56 + 2976
7 ν + 54ν2

)
µ̃

(2)
+ +

(
−12051

56 + 90ν
)

∆ µ̃
(2)
−

+
(
−616 + 264ν

)
σ̃

(2)
+ + 200∆ σ̃

(2)
− + 120 µ̃(3)

+

]
γ7
}

+O
(
εtidal
c6

)
. (4.40b)

Note that, as mentioned before, the remainders are of the order O(1/c6) and not O(1/c5). The next
step consists in determining the relation between γ and x, by inverting Eqs. (4.40), which gives

γpp = x
[
1 +

(
1− ν

3

)
x+

(
1− 65

12ν
)
x2
]

+O
( 1
c6

)
, (4.41a)

γtidal = x

{
−6µ̃(2)

+ x5 +
[(
−37

2 + 3ν
)
µ̃

(2)
+ −

25
2 ∆ µ̃

(2)
− − 32σ̃(2)

+

]
x6

+
[(
−4355

56 + 1105
21 ν + 15ν2

)
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(2)
+ +

(
−3683

56 + 95
6 ν
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∆ µ̃

(2)
−

+
(
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3 + 88
3 ν
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σ̃

(2)
+ −

200
3 ∆ σ̃

(2)
− − 40µ̃(3)

+

]
x7
}

+O
(
εtidal
c6

)
. (4.41b)

The conserved energy for circular orbits can now be computed. To do so, I took Eq. (4.30) to which
I added the point-particle part, set ṙ = 0 and replaced v2 = r2ω2 by its expression in terms of the
parameter γ using Eqs. (4.40). This yields E first as a function of γ. I finally inserted there the
previous relation (4.41) to get an important result, namely the expression of the circular energy as
a function of the frequency-dependent parameter x

Epp = −1
2mνxc

2
[
1 +

(
−3

4 −
ν

12

)
x+

(
−27

8 + 19
8 ν −

ν2

24

)
x2
]

+O
( 1
c6

)
, (4.42a)

Etidal = −1
2mνxc

2
{
−18µ̃(2)

+ x5 +
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2 + 33ν
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µ̃

(2)
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55
2 ∆ µ̃
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+

]
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2
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+ + ∆
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−
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+
(
−2444

3 + 1768
3 ν

)
σ̃

(2)
+ −
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3 ∆ σ̃

(2)
− − 130 µ̃(3)

+

]
x7
}

+O
(
εtidal
c6

)
. (4.42b)

This is the quantity we will insert in the energy balance equation in order to derive the GW phase. I
also computed by the same method the constant angular momentum for circular orbits, which reads

Jpp = Gm2 ν

c x1/2

[
1 +

(3
2 + ν

6

)
x+

(
27
8 −

19
8 ν + ν2

24

)
x2
]

+O
( 1
c6

)
, (4.43a)

Jtidal = Gm2ν

cx1/2

{
12µ̃(2)
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2 − 21ν
)
µ̃

(2)
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2 ∆ µ̃
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− + 112σ̃(2)
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(2)
− + 80µ̃(3)

+

]
x7
}

+O
(
εtidal
c6

)
.

(4.43b)

I have verified that the energy E and angular momentum J for circular orbits are linked by the
relation

∂E

∂ω
= ω

∂J

∂ω
+O

( 1
c6 ,

εtidal
c6

)
, (4.44)

which is just one aspect of the “first law of binary point-particle mechanics” [112].

To conclude, I compared the invariant energy as given in (4.42) with existing results in the
literature. In Table 4.1 is provided for each order and for each tidal multipol contributing to the
conserved energy Etidal(x) the references which we agree with.

Etidal(x) Mass quadrupole Current quadrupole Mass octupole
5PN (L) [90, 113, 100, 114, 92]
6PN (NL) [100, 114, 45] [100, 45, 115]
7PN (NNL) [100] [100] [100, 116]

Table 4.1: Comparison with the existing literature. We indicate for each order and each tidal
multipolar piece contributing to the conserved energy the references to which we agree with.

Note in particular that there is full agreement with all results of Ref. [100]. I have checked, notably,
that by re-expanding the tidal effects entering the EOB Hamiltonian [100] in the form of a PN Taylor
series, I recover exactly Eq. (4.42). However, I do not recover the 6PN coefficient for the current
quadrupole piece in the preprint [116], where the discrepancy is by a factor 2. This must be due to
a mistake in this paper.
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Chapter 5

Radiative sector

In this chapter, we compute the tidal effects in the GW energy flux up to NNL/2PN order within
the PN-MPM formalism discussed in Chapter 3. The PN-MPM approach describes the waveform
by means of mass and current radiative multipole moments defined in the asymptotic region, which
are themselves related to some appropriate source-type multipole moments defined in the near zone
for the whole matter system. Beware that we work with two different kinds of multipole moments:
the tidal moments, describing the individual deformation of the bodies, and the source multipole
moments describing the matter distribution of the overall system. The summary of the steps of the
computations in the radiative sector is given in Sec. 3.3. The chapter is organized accordingly as
follows. In Sec. 5.1, we recall the matter action we start with (details of its construction are given
in e.g. [100, 6]) and compute the stress-energy tensor of the system as well as its 3+1 decomposition
rewritten in a convenient form. Next, we calculate, in Sec. 5.2, the potentials sourced by the previous
stress-energy tensor (some long formulas are relegated to App. D.2). In Sec. 5.3 we apply the GW
generation formalism, which yields the expressions of the source multipole moments of the binary
system in a general frame. Those are then specialized to the CoM frame and, in a last stage, for
circular orbits (while the moments written in a general frame are too long, their CoM expression are
displayed in App. D.2). As for the instantaneous GW flux, it is computed in Sec. 5.4 in a modal
form based on the mode decomposition of the source multipole moments. The missing tail part is
obtained from those flux modes. In Sec. 5.5 we present the result for the phase evolution, both in
the standard Taylor form and in the Fourier domain, using the stationnary phase approximation.
Finally, in Sec. 5.6, we conclude and make comparisons with the existing literature. This chapter is
based on the paper [7].

5.1 The stress-energy tensor from the tidal effective action
In the preceding chapter, we analyzed the motion of a compact binary system including tidal

interactions. To do so, we considered the gravitational Einstein-Hilbert action endowed with the
standard harmonic gauge fixing term 4.10, to which we added the effective matter action for a system
of N massive gravitationally interacting compact bodies with internal structure in the adiabatic
approximation (4.11). The motion was obtained by varying the associated Fokker action. The next
important step in this approach, pursued in this section, consists in the computation of the matter
stress-energy tensor, whose vocation is to be inserted into the adopted GW generation formalism.
For that purpose, we need only the matter part of the action which admits the general form

Sm =
N∑
A=1

∫
dτA LA , (5.1)

where the term associated with particle A integrates over its proper time variation dτA which is such
that the four velocity cuµA = dyµA/dτA is normalized to gAµνu

µ
Au

µ
A = −1. Here, gAµν means that the
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metric is evaluated at the location of the particle A, with the self-field contribution from A removed
with the help of an appropriate self-field regularisation, namely DR.1

In the approximation of point particles (pp) deprived of internal structure and unresponsive to
tidal fields, the action is given by the standard mass term. To describe the response of the internal
structure of the compact objects to tidal interactions, we add to the point-particle action the already
truncated specific non-minimally coupled piece:2

LA = −mAc
2 + µ

(2)
A

4 GA
µνG

µν
A + σ

(2)
A

6c2 H
A
µνH

µν
A + µ

(3)
A

12 GA
λµνG

λµν
A . (5.2)

To the NNL/2PN order investigated in this chapter, it is sufficient to consider the above three
terms, made of quadratic products of mass and current tidal multipole moments, namely the mass
quadrupole tidal moment GA

µν , the current quadrupole HA
µν and the mass octupole GA

λµν .
The motivation for writing the Lagrangian (5.2) stems from the fact that the matter action for a

given body, in the limit of small radius relevant for compact objects, in the post-Newtonian regime,
can be expanded near the worldline of a representative point on which the resulting action is then
localized, and that, in the absence of spins, it can be only built from the metric and its derivatives in
a way that preserves parity and general covariance. We already emphasized the crucial role played
by the self-field regularisation, which must properly be the DR in this framework.

5.1.1 Derivation of the covariant stress-energy tensor

In order to compute the stress-energy tensor, we first shift from the action (5.1) parametrized
by the particle’s proper time τA to an action defined in terms of an arbitrary parametrization τ̄ .
For instance, this parametrization can be the same for all particles. Once this is done, the ensuing
expression for the action is manifestly invariant by reparametrization. We pose (with ū2

A ≡ gAµν ū
µ
Aū

ν
A)

dτA = dτ̄
√
−ū2

A , uµA = ūµA√
−ū2

A

, LA = L̄A√
−ū2

A

. (5.3)

The original action (5.1) now becomes (for simplicity’s sake, we drop the particle’s label until the
end of Sec. 5.1.1)

Sm =
∑∫

dτ̄ L̄
(
ūµ, gµν , Rµνρσ,∇λRµνρσ

)
. (5.4)

As it is written, the Lagrangian L̄ is an (ordinary) function of the following variables, regarded as
independent: the arbitrary parametrized four-velocity ūµ, the covariant metric, the Riemann tensor
and the covariant derivative of the Riemann tensor. The configuration variables are just the particle’s
positions yµ(τ̄) and their derivatives ūµ(τ̄) = dyµ/dτ̄ . We thus define the linear momentum pµ as
the conjugate momentum of the position, i.e.,

pµ = ∂L̄

∂ūµ
. (5.5)

1As discussed in Sec. 5.2 and proved in App. A of [7], at this order Hadamard and DR are equivalent. Thus I used
Hadamard regularisation for the computations.

2We use the same conventions and notation as in Ref. [6]. See [100, 6] for more details, as well as [103, 104, 105, 96,
90, 97, 98, 102] for preceding fundamental works and alternative discussions. See also [117, 118] for general definitions
of the Dixon moments, including spins, or [119, 120, 121] for a more practical approach at the level of the action.
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Following Refs. [117, 118, 119, 121], we further introduce the quadrupole current Jµνρσ and octupole
current Jλµνρσ as3

Jµνρσ = −6 ∂L̄

∂Rµνρσ

, Jλµνρσ = −12 ∂L̄

∂∇λRµνρσ

. (5.6)

The current Jµνρσ, and the current Jλµνρσ on its four last indices, have the same symmetries as the
Riemann tensor. In addition, Jλµνρσ satisfies the cyclic symmetry J [λµν]ρσ = 0 as a consequence of
the Bianchi identity.

By varying the action with respect to the worldline of the particle we obtain the EoM [118]

Dpµ
Dτ = −1

6J
νρσκ∇µRνρσκ −

1
12J

λνρσκ∇µ∇λRνρσκ . (5.7)

Next, the stress-energy tensor is obtained by variation with respect to the metric. With the action
depending on the Riemann tensor and its first covariant derivative, we get it as the sum of monopole,
quadrupole and octupole pieces [121],

T µν = T µνmono + T µνquad + T µνoct . (5.8)

Note that there is no dipole contribution. The reason is because the dipolar part of the stress-
energy tensor comes effectively only from spins, which are not considered in this computation. The
monopole part takes the usual form of the stress-energy tensor of a particle with worldline yµ, four-
linear momentum pµ and four-velocity uµ (parametrized by τ), namely

T µνmono =
∫

dτ p(µuν) δ
(4)(x− y(τ))√

−g
, (5.9)

(with δ(4)(x − y(τ)) the four-dimensional Dirac distribution), while the quadrupolar and octupolar
pieces are given by

T µνquad =
∫

dτ
[

1
3R

(µ
λρσJ

ν)λρσ
]
δ(4)(x− y)√

−g
+∇ρ∇σ

∫
dτ
[
−2

3J
ρ(µν)σ

]
δ(4)(x− y)√

−g
, (5.10a)

T µνoct =
∫

dτ
[

1
6∇

λR
(µ
ξρσJ

ν)ξρσ
λ + 1

12∇
(µRξτρσJ

ν)ξτρσ
]
δ(4)(x− y)√

−g

+∇ρ

∫
dτ
[
−1

6R
(µ
ξλσJ

ρν)ξλσ − 1
3R

(µ
ξλσJ

ν)ρξλσ + 1
3R

ρ
ξλσJ

(µν)ξλσ
]
δ(4)(x− y)√

−g

+∇λ∇ρ∇σ

∫
dτ
[

1
3J

σρ(µν)λ
]
δ(4)(x− y)√

−g
. (5.10b)

As these formulas are general [117, 118, 119, 121], they can be applied to the specific case of the
Lagrangian (5.2). With this in mind, I derived the stress-energy tensor using two different methods:
first inserting (5.5) and (5.6) in (5.9) and (5.10); second by directly varying the original matter action
using (1.9) and then indentifying the linear momentum as well as the two currents Jµνρσ and Jλµνρσ.
The two methods gave the same results. For simplicity, the results are presented setting c = 1. I
found for the linear momentum

pµ = muµ + µ(2)
[
−Rµαγβu

γGαβ + 3
4uµG

αβGαβ

]
+ σ(2)

[1
3R
∗
(µαγ)βu

γHαβ + 1
2H

αβHαβuµ

]
(5.11)

3The chosen prefactors match previous definitions in the literature [121]. As shown in the Appendix A of [121], they
are such that Jµνρσ and Jλµνρσ coincide with the Dixon quadrupole and octupole moments [117, 118], respectively, at
the considered approximation level. We refer to (5.6) as multipole “currents” in order to reduce the possible confusion
with the tidal moments GL, HL as well as with the source multipole moments IL, JL considered in Sec. 5.3.
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+ µ(3)
[1
4GαβγG

αβγuµ −
1
3G

αβγ∇⊥αRβµγρu
ρ − 1

6G
αβγuα∇⊥µRβργσu

ρuσ − 1
6⊥µαG

αβγuκ∇κRβργσu
ρuσ

]
,

and for the quadrupole and octupole currents

Jµνρσ = µ(2)
(
−3u[µGν][ρuσ]

)
+ σ(2)

(
εµναβu

αHβ[ρuσ] + ερσαβu
αHβ[µuν]

)
, (5.12a)

Jλµνρσ = µ(3)
(
−2 ⊥λκ u[µGν]κ[ρuσ]

)
. (5.12b)

As a verification, I checked explicitely a relation that must hold as a consequence of the invariance
of the action by worldline reparametrization, namely

pµu
µ = −m+ µ(2)

4 GµνG
µν + σ(2)

6 HµνH
µν + µ(3)

12 GλµνG
λµν = L , (5.13)

see Eq. (2.9) of [121] for more details on this relation.

5.1.2 Ready-to-use expressions
The stress-energy tensor is written in Eqs. (5.9) and (5.10) together with the explicit expres-

sions (5.11) of the linear momentum and (5.12) of the currents, in terms of the tidal multipole
moments. In turn, the tidal moments are given in terms of the metric, curvature and matter vari-
ables by Eqs. (4.13). In this section, we need to rephrase the previous results in a more suitable
way in order to insert the stress-energy tensor in the PN-MPM formalism. We first need to split the
indices into spatial and temporal ones, called (3+1) decomposition, so that the factors of c become
explicit. Furthermore, we can get rid of the integral over τ in (5.8) by splitting the 4-dimensional
Dirac to a 3-dimensional spatial Dirac and a 1-dimensional temporal one. By doing so, we can write
the stress-energy tensor in the form

T µν =
∑
A

[
Uµν
A δA +∇α (Uµνα

A δA) +∇α∇β

(
Uµναβ
A δA

)
+∇α∇β∇γ

(
Uµναβγ
A δA

)]
, (5.14)

where we use the coordinate-time t parametrization and denote δA ≡ δ(3)(xi − yiA(t)) the usual
three-dimensional Dirac distribution, and where (for u0

A = dt/dτA)

Uµν
A = 1

u0
A

√
−g

(
p

(µ
A u

ν)
A + 1

3R
(µ

A λρσJ
ν)λρσ
A + 1

6∇λR
(µ

A ξρσJ
λν)ξρσ
A + 1

12∇
(µRAξτρσJ

ν)ξτρσ
A

)
, (5.15a)

Uµνα
A = 1

3u0
A

√
−g

(
−1

2R
(µ

A ξλσJ
αν)ξλσ
A −R (µ

A ξλσJ
ν)αξλσ
A +R α

A ξλσJ
(µν)ξλσ
A

)
, (5.15b)

Uµναβ
A = − 2

3u0
A

√
−g

J
α(µν)β
A , (5.15c)

Uµναβγ
A = − 1

3u0
A

√
−g

J
γβ(µν)α
A . (5.15d)

Note that all the U ’s are symmetric over µ and ν; in addition, Uµναβ
A and Uµναβγ

A , over their 4 first
indices, have the same symmetries as the Jacobi tensor Rα(µν)β (due to their definitions (5.6)).

Next, by expanding the covariant derivatives in (5.14) as the sum of partial derivatives and
Christoffel symbols, we get some ready-to-use formulas that are then directly entered into computa-
tional codes, namely

T µν =
∑
A

[
T µνM + 1√

−g
∂α (T µναD δA) + 1√

−g
∂αβ

(
T µναβQ δA

)
+ 1√
−g

∂αβγ
(
T µναβγO δA

)]
, (5.16)

where

T µνM = Uµν + 2Γ(µ
λρU

ν)λρ +
[
∂λΓ(µ

ρσ + ΓκρσΓ(µ
λκ

]
Uν)λρσ − Γ(µ

λκΓν)
ρσU

κλρσ (5.17a)
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+
[
∂λΓ(µ

γδ Γν)
ρσ + ∂σ

(
Γ(µ
ρλΓ

ν)
γδ

)
− 2ΓκλσΓ(µ

κρΓ
ν)
γδ + ΓκγδΓ(µ

κρΓ
ν)
λσ − 2ΓκσγΓ

(µ
ρλΓ

ν)
κδ

]
Uρλγδσ

+
[
2Γκσγ∂λΓ

(µ
κδ + Γκσλ∂κΓ

(µ
γδ − ∂σ

(
ΓκγδΓ

(µ
κλ

)
+ ΓργδΓκσλΓ(µ

ρκ + 2ΓρκδΓκσγΓ
(µ
ρλ − ∂λσΓ(µ

γδ

]
Uν)λγδσ ,

T µναD =
√
−g

[
Uµνα + ΓασκUµνσκ − 2Γ(µ

σκU
ν)ασκ − ∂σΓαρλUµνρλσ + ∂σΓ(µ

ρλ

(
2Uν)αρλσ + Uν)σρλα

)
+Γ(µ

λγ

(
Uν)λσραΓγρσ − Γν)

ρσU
γλσρα

)
+ 2Γρσκ

(
ΓαρλUµνκλσ − Γ(µ

λρU
ν)ακλσ

)
−2Γ(µ

ρλ

(
Uν)ακλσΓρσκ − Γν)

σκU
ακρλσ

)
+ 2

(
ΓαρλΓ(µ

σκ − ΓασκΓ
(µ
ρλ

)
Uν)κρλσ

]
, (5.17b)

T µναβQ =
√
−g

[
Uµναβ + 2Γ(µ

σκ

(
Uν)σαβκ − Uν)ασκβ

)
+ Γασκ

(
2Uµνσβκ + Uµνσκβ

)]
, (5.17c)

T µναβγO =
√
−gUµναβγ . (5.17d)

I then inserted the above lengthy expression in Mathematica notebooks in order to find the explicit
expression of T µν and especially its (3+1) decomposition.

In order to compute the multipole moments of the system IL, JL defined in (3.31), we require σ to
be known at NNL/2PN order, σi at NL/1PN and σij at leading order (see (3.37) for their definitions).
For their derivation, I used the (3+1) decomposition of (5.16). This led to the complete, ready-to-use
expressions for the sources σ’s that are split into a point-particle part

σpp = m1u
0
1√

−g1

(
1 + v2

1
c2

)
δ1 + 1↔ 2, (5.18a)

(σi)pp = m1u
0
1√

−g1
vi1 δ1 + 1↔ 2, (5.18b)

(σij)pp = m1u
0
1√

−g1
vi1v

j
1 δ1 + 1↔ 2 , (5.18c)

and a “direct” tidal part σtidal, (σi)tidal and (σij)tidal expressed in terms of the tidal multipole moments;
these are reported in Eqs. (D.5) due to their lengthy expressions. Beware that the point-particle
part (5.18) will actually involve “indirectly” tidal effects contained into the potentials parametrizing
the metric as computed in Sec. 5.2.

5.1.3 The tetrad choice
The tidal moments Gij, Hij and Gijk (when evaluated at point 1) have been computed in (4.20).

These expressions are not projected onto a tetrad. However, in order to present the expressions of
σtidal, (σi)tidal and (σij)tidal as shown in (D.5) and everywhere henceforth, like for instance in (5.23),
it is more convenient to use the tetradic components of these moments.

We pose e µ
α̂ = ∂xµ/∂X α̂, where {xµ} is a global coordinate system and {X α̂} is a local inertial

frame in the vicinity of a given body. We choose {X α̂} to be a Fermi local normal coordinate
system [122, 123], so that the tetrad is orthonormal on the worldline, the time coordinate of the
Fermi coordinates coincides with the proper time along the worldline, and the zero-th time-like
tetrad vector is the four velocity of the particle. More specifically, e µ

α̂ = (e µ

0̂ , e
µ
â ) constructed as

follows:

e µ

0̂ ≡ uµ , (5.19a)

e µ
â =

(
γµi − γµ0v

i

c

)
eâi with eâi ≡ (√γ)âi . (5.19b)

Here γµν = gµλ⊥νλ is the inverse of the positive-definite metric γµν = gµν + uµuν induced by gµν on
the hypersurface orthogonal to uµ at the intersection point with the worldline, and the spatial tetrad
vectors are defined from the square root (√γ)âi of the positive definite symmetric matrix γij. One
can show that this basis is complete and orthonormal (for more details, see [124]).
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For simplicity, in the rest of this chapter, we will switch notation for the tidal tensors projected
on the tetrad so that Gâb̂ ≡ Ĝab, Hâb̂ ≡ Ĥab and Gâb̂ĉ ≡ Ĝabc, droping the hats on the tetradic indices.
Remembering that the tidal moments are defined in the particle’s local frame orthogonal to the four
velocity, i.e. Ĝ0α = Ĥ0α = Ĝ0αβ = 0, we have for instance (similarly for Hij and Gijk)

Gij = eai e
b
j Ĝab , (5.20a)

Ĝab =
[
e i
a e

j
b − 2v

i
1
c
e 0

(a e j
b) + vi1v

j
1

c2 e 0
a e 0

b

]
Gij , (5.20b)

where eβν denotes the (transposed) inverse of e µ
α . The projection of the tidal tensors onto this tetrad

simplifies significantly the computations, mostly because the projected three-dimensional tidal tensors
become traceless. However, the final results are independent on a particular choice of tetrad (e µ

0 , e
µ
a )

used in intermediate calculations. Other groups [114] may have used different conventions for the
tetrad with equivalent final results (see Table 5.1).

5.2 The potentials
For the calcultation of the source multipole moments of the system (5.27), the metric, including

tidal contributions, is required up to NNL/2PN order. This is in contrast with Chapter 4 on the
NNL/2PN dynamics and EoM, where it was sufficient to insert the 2PN metric just for point particles,
discarding internal structure effects. More specifically, the only quantity required to be known up
to NNL/2PN in the source multipole moments is ∝ σ2PN, in which the metric only appears through√
−g and the Lorentz factor u0. This implies that, even though the 2PN metric (3.35) is required,

we do not need to know all the potentials that parametrize it. In particular, in this calculation, X̂
and R̂i do not appear, meaning that only V at NL/1PN order as well as Vi and Ŵij at leading order
will be necessary. We recall here their definitions

�V = −4πGσ , (5.21a)
�Vi = −4πGσi , (5.21b)
�Ŵij = −4πG

(
σij − δijσkk

)
− ∂iV ∂jV . (5.21c)

Since the source terms involve both point particle and tidal contributions, the potentials themselves
will involve a tidal part and the well-known pp part. The techniques I used to compute the potentials
are well documented in e.g. [108, 9] and described partly in Sec. 6.3.2. In this work, dissipative
radiation reaction effects can be ignored since they do not to contribute to the flux until the 2.5PN
order, so that the Green function will be taken to be the symmetric one. As explained in Sec. 3.2.2,
it is essential to use a proper UV-type regularisation, namely DR. In fact, we showed in App. A of
[7] that Hadamard and DR are equivalent also at NNL/2PN for tidal effects due to the structure of
the terms entering the potentials and the multipoles. In practice I used the Hadamard regularisation
for this computation.

The tidal contributions to the metric obtained in present formalism show an interesting feature:
the tidal part of the potential V contains distributional terms,4 which arise because of the distribu-
tional multi-derivatives in the expressions of the matter sources (D.5), see Sec. 6.3.1 for more details
on the treatment of distributional terms. To the lowest order, σtidal is proportional to Ĝ1ab∂ab(1/r1),
and, since ∂ab(1/r1) = 3n̂ab1 r

−3
1 − 4π

3 δabδ1, this leads to a distributional term for V proportional to
the trace δabĜ1ab, but this quantity vanishes because the tidal tensors are projected onto the tetrad

4This does not happen for the point-particle part of the potentials even up to 4PN. This is because the point-particle
sources do not contain derivatives of Dirac distributions.
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and are traceless. At NL/1PN order, though, the distributional piece is non-zero. It is given by the
Gel’fand-Shilov formula (see Eq. (6.27)) as

V distr = 2π
5
Gµ

(2)
1
c2 Ĝ1abv

a
1v

b
1 δ1 + 1↔ 2 +O

( 1
c4

)
. (5.22)

In the end, this term does not contribute to the calculation because, in the adopted approach, the
NL potential V is only needed in a surface term at infinity where the UV regularisation is irrelevant.
However, it would be important to take into account if we were to evaluate the equivalent volume
integral. For the ordinary part of the complete potential V at the NL/1PN order, computed with
Hadamard’s regularisation, I found

V = Gm1

r1
+ 3Gµ(2)

1 Ĝ1abn
a
1n

b
1

2r3
1

+ 1
c2

Gm1

[
−(n1v1)2

2r1
+ 2v2

1
r1

+Gm2

(
− r1

4r3
12
− 5

4r1r12
+ r2

2
4r1r3

12

)]

+µ(2)
1

[
G

(
3

4r1
Ĝ1abĜ1ab +

(
3v2

1 −
15
4 (n1v1)2

)
Ĝ1abn

a
1n

b
1

r3
1

+ 3
2(n1v1)

(
Ĝ1abn

a
1v

b
1

r3
1

− na1n
b
1∂tĜ1ab
r2

1

)

+2na1vb1∂tĜ1ab
r2

1
− na1n

b
1∂

2
t Ĝ1ab

4r1

)

+G
2m2

r3
12

(
3r12

2r2
1
Ĝ1abn

a
12n

b
1 +

(
− 6
r1
− 3

2r2

)
Ĝ1abn

a
12n

b
12 +

(
− 3

8r1
− 39r2

12
8r3

1
+ 3r2

2
8r3

1

)
Ĝ1abn

a
1n

b
1

)

+9
2
G3m2

2
r7

12

(
(n12n1)

(
1− r1

r2

)
− r12

r2

)]
+

4Gσ(2)
1 εbijĤ1ajn

a
1n

b
1v
i
1

r3
1

+ 1↔ 2 +O
( 1
c3

)
,

(5.23)

I also computed Vi at leading order, which reads

Vi = Gm1

r1
vi1 + 3Gµ(2)

1 Ĝ1abn
a
1n

b
1

2r3
1

vi1 + Gµ
(2)
1 na1∂tĜ1ai

2r2
1

+ Gσ
(2)
1 εiabĤ1akn

b
1n

k
1

r3
1

+ 1↔ 2 +O
(1
c

)
. (5.24)

Note that, due to the way the leading term of (σi)tidal is written in Eq. (D.5b), some non-zero distri-
butional terms are generated by multi-derivatives, but they cancel out in the end, so the potential
Vi does not contain any. For the potential Ŵij at leading order, I found

Ŵij = Gm1

r1

(
vi1v

j
1 − δijv2

1

)
+ G2m2

1
4r2

1

(
ni1n

j
1 − δij

)
−G2m1m2∂1(i∂2j) lnS

+ µ
(2)
1

G2m2

r1r3
12

(
Ĝ1ij − 3n(i

12Ĝ1j)an
a
12 + 3δijĜ1abn

a
12n

b
12

)
−G2m2Ĝ1ab∂2(i∂1j)ab lnS

+ G

r3
1

(
r2

1
2 ∂

2
t Ĝ1ij + r1n

a
1v

(i
1 ∂tĜ1j)a + 3

2Ĝ1abn
a
1n

b
1

(
vi1v

j
1 − δijv2

1

)
− δijr1n

a
1v

b
1∂tĜ1ab

)
+ 2Gσ(2)

1
r3

1

[
ε

(i
ab

(
v
j)
1 Ĥ1akn

b
1n

k
1 + r1

3 ∂tĤ1j)an
b
1

)
− δijεabkĤ1kln

a
1n

l
1v
b
1

]

−G2µ
(2)
1 m1Ĝ1ab

[
5

128∂ijab
[
ln
(
r1

r0

)]
+ 5

16
na1n

b
1

r4
1
δij + 1

4r4
1
δa(i

(
n
j)
1 n

b
1 −

3
8δ

j)b
)]

+ 1↔ 2 +O
(1
c

)
.

(5.25)
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The pp part is depicted in the first line, where we denote ∂Ai ≡ ∂/∂yiA and S ≡ (r1 + r2 + r12)/r0.
These potentials satisfy �V = O(1/c4), ∆Vi = O(1/c2) and ∆Ŵij = −∂iV ∂jV +O(1/c2) outside

the particles. I also checked that they obey the harmonic gauge constraints formulated in terms of
the potentials

∂t

{
V + 1

c2

[1
2Ŵ + 2V 2

]}
+ ∂i

{
Vi + 2

c2

[
R̂i + V Vi

]}
= O

( 1
c3

)
, (5.26a)

∂tVi + ∂j

{
Ŵij −

1
2δijŴ

}
= O

(1
c

)
, (5.26b)

which yield at the NL/1PN order the same EoM as obtained in the conservative sector, i.e. in (D.1).
This test confirms the values of all potentials that are required for the integration of the source
multipole moments in Sec. 5.3. Note that, for this verification, I had to compute Vi at NL/1PN order
as well as R̂i at lowest order, where R̂i is defined in Eq. (3.36). I do not give their values here since
they do not enter later calculations.

In order to derive the multipole moments, we have to also know the value of the potentials at the
location of the two bodies. If one would take the limit xi → yi1 in the potentials in the whole space,
1/r1 would diverge and thus would find infinity. Of course, we have to use a UV regularisation. I
computed the values of the potentials at point A using Hadamard. The procedure to get the value
of an expression regularised at point A is explained in Sec. 6.3.2.

5.3 The source multipole moments
As discussed in Sec. 3.1.5, the STF multipole moments of an isolated PN radiative source are

obtained by performing a matching between the inner PN expansion in the system near zone and
the outer MPM expansion in the far zone. Their expressions are given in (3.31). For convenience,
we can decompose IL into three pieces corresponding to the three terms entering (3.31a), referred to
as scalar (S), vector (V) and tensor (T) terms. Applying the formula (3.34), we further split each of
these pieces into various parts labelled I, II, III, . . . according to their PN order. This leads to the
decomposition of the `-th order mass-type moment to NNL/2PN order as

IL = SIL + SIIL + SIIIL + VIL + VIIL + TIL , (5.27a)

SIL = FP
B=0

∫
d3x r̃Bx̂L

{
σ + 4V

c4 σii −
2

πGc4Vi∂t∂iV −
1

πGc4 Ŵij∂
2
ijV −

1
2πGc4 (∂tV )2 (5.27b)

+ 2
πGc4∂iVj∂jVi −

1
2πGc2 ∆(V 2)− 2

3πGc4 ∆(V 3)− 1
2πGc4 ∆(V Ŵ )

}
,

SIIL = 1
2c2(2`+ 3)

d2

dt2FPB=0

∫
d3x r̃Bx̂Lr2

{
σ + 4

c2σV −
1

πGc2∂iV ∂iV
}
, (5.27c)

SIIIL = 1
8c4(2`+ 3)(2`+ 5)

d4

dt4FPB=0

∫
d3x r̃Bx̂Lr4σ , (5.27d)

VIL = − 4(2`+ 1)
c2(`+ 1)(2`+ 3)

d
dtFPB=0

∫
d3x r̃Bx̂iL

{
σi + 2

c2σiV −
2
c2σVi + 1

πGc2∂jV ∂iVj

+ 3
4πGc2∂tV ∂iV −

1
2πGc2 ∆(V Vi)

}
, (5.27e)

VIIL = − 2(2`+ 1)
c4(`+ 1)(2`+ 3)(2`+ 5)

d3

dt3FPB=0

∫
d3x r̃Bx̂iL r2σi , (5.27f)

TIL = 2(2`+ 1)
c4(`+ 1)(`+ 2)(2`+ 5)

d2

dt2FPB=0

∫
d3x r̃Bx̂ijL

{
σij + 1

4πG∂iV ∂jV
}
. (5.27g)
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Similarly, for the `-th order current moments to NNL/2PN order,

JL = VIL + VIIL + TIL , (5.28a)

VIL = εab〈i` FPB=0

∫
d3x r̃Bx̂L−1〉a

{
σb + 1

c2

[
2
(
σbV − σVb

)
+ 1
πG

(
∂iV ∂bVi + 3

4∂tV ∂bV −
1
2∆(V Vb)

)]}
(5.28b)

VIIL = 1
2c2(2`+ 3)εab〈i`

d2

dt2FPB=0

∫
d3x r̃Br2x̂L−1〉aσb , (5.28c)

TIL = − (2`+ 1)
c2(`+ 2)(2`+ 3)εab〈i`

d
dtFPB=0

∫
d3x r̃Bx̂L−1〉ac

{
σbc + 1

4πG∂bV ∂cV
}
. (5.28d)

In the above expressions, three types of terms can be distinguished:

• compact support (C) terms, whose integrands are proportional to the matter currents σ’s

• non-compact (NC) support terms, whose volume integrals extend up to infinity

These two types of terms can be integrated exactly. As mentioned above, at this order, Hadamard
regularisation is equivalent to DR and can thus be employed systematically. The method to compute
the C and NC terms is widely explained in Secs. 6.3.1 and 6.3.2.

• “surface” terms, also NC, but whose integrands are products of x̂L and pure Laplacians

To integrate these terms, assuming that the expansion of F when r → ∞ is power-like (without
logarithms), it can be proved that

FP
B=0

∫
d3x r̃Bx̂L ∆F = −4π(2`+ 1)

(
Fr`+1n̂L

)
∞
, (5.29)

where the notation (· · · )∞ means the Hadamard partie finie regularisation at infinity, see the general
formula (6.48). With this formula, I have shown that, at NNL/2PN order, all the terms of this type
for F = {V 2, V 3, V Ŵ , V Vi} vanish.

The explicit expressions of the multipole moments of the system to NNL/2PN are too long to
be listed here. However, they are substantially shortened in the CoM frame and are displayed in
App. D.2. I used the same method as in Sec. 4.4 to perform the frame transformation. The total
source moments for circular orbits including both point-particle and tidal parts read

Iij = mr2

n〈inj〉{ν[1 +
(
− 1

42 −
13
14ν

)
γ +

(
− 461

1512 −
23435
1512 ν −

241
1512ν

2
)
γ2
]

+
(

3µ̃(2)
+ + 3∆µ̃(2)

−

)
γ5 +

[
µ̃

(2)
+
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−3
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7 ν2

)
+ ∆µ̃(2)
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−3

2 −
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7 ν

)
+ 160

3 νσ̃
(2)
+

]
γ6

+
[
µ̃

(2)
+

(871
56 + 907

168ν + 9643
168 ν

2 + 929
42 ν

3
)

+ ∆µ̃(2)
−

(871
56 + 1853

24 ν − 7201
168 ν

2
)

+ σ̃
(2)
+
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9 ν − 2504

7 ν2
)

+ 1732
63 ∆νσ̃(2)

−

]
γ7
}

+λ〈iλj〉
{
ν

[(11
21 −

11
7 ν

)
γ

+
(1013

378 + 299
378ν −

365
378ν

2
)
γ2
]
+
[
µ̃

(2)
+

(
3 + 104

7 ν − 198
7 ν2

)

+ ∆µ̃(2)
−

(
3− 38

7 ν
)

+ 128
3 νσ̃

(2)
+

]
γ6 +

[
µ̃

(2)
+

(
−19

2 + 617
42 ν + 5039

42 ν2 + 260
21 ν

3
)

+ ∆µ̃(2)
−

(
−19

2 + 1291
42 ν − 1649

42 ν2
)

+ σ̃
(2)
+

(
−64

9 ν −
1696

7 ν2
)

+ 2048
63 ∆νσ̃(2)

−

]
γ7
} , (5.30a)
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Iijk = mνr3

n〈injnk〉{−∆
(

1− νγ
)

+ 18µ̃(2)
− γ

5 +
[
∆µ̃(2)

+

(
−3

2 + 48ν
)

+ µ̃
(2)
−

(
−39

2 − 60ν
)
− 84∆σ̃(2)

+

+ 84σ̃(2)
−

]
γ6
}

+n〈iλjλk〉
{
−∆

(
1− 2ν

)
γ +

[
∆µ̃(2)

+

(
−39 + 36ν

)
+ µ̃

(2)
−

(
39− 42ν

)

− 72∆σ̃(2)
+ + 72σ̃(2)

−

]
γ6
} , (5.30b)

Iijkl = mνr4n〈injnknl〉
[
1− 3ν +

(
18µ̃(2)

+ − 18∆µ̃(2)
−

)
γ5
]
, (5.30c)

Jij =
√
G (mr)3/2 `〈inj〉

{
−∆ν

[
1 +

(25
28 + 3

14ν
)
γ

]
+
(
−9∆νµ̃(2)

+ + 9νµ̃(2)
− + 12∆σ̃(2)

+ + 12σ̃(2)
−

)
γ5

+
[
∆µ̃(2)

+

(663
28 ν + 117

7 ν2
)

+ µ̃
(2)
−

(
−177

7 ν + 477
14 ν

2
)

+ ∆σ̃(2)
+

(
−10− 690

7 ν
)

(5.30d)

+ σ̃
(2)
−

(
−10− 346

7 ν
)]
γ6
}
,

Jijk =
√
G (mr)5/2 ν

m
`〈injnk〉

{
1− 3ν +

[
µ̃

(2)
+

(
21− 27ν

)
− 12∆µ̃(2)

− + 64σ̃(2)
+

]
γ5
}
. (5.30e)

We remind here some previously introduced notations: the total mass m = m1 + m2, the symetric
mass ratio ν = m1m2

m2 , the normalized mass difference ∆ ≡ m1−m2
m

, the PN parameter γ = Gm
rc2 , the

relative velocity vi = vi1−vi2, the adimensionalized tidal polarizabilities of Eq. (4.28). We also denote
by n the unit direction pointing from body 2 to 1, λ the unit vector perpendicular to n in the
orbital plane pointing to the same direction than the velocity, and ` the unit vector perpendicular to
the orbital plane, such that (n,λ, `) forms an oriented orthonormal triad. This means notably that
λi = vi

rω
for exactly circular orbits.

5.4 The GW flux
The general expression of the GW flux in terms of radiative multipole moments is given in

Eq. (3.18). Its truncated expression at 2PN reads

F = G

c5

{1
5U

(1)
ij U

(1)
ij + 1

c2

[ 1
189U

(1)
ijkU

(1)
ijk + 16

45V
(1)
ij V

(1)
ij

]
+ 1
c4

[ 1
9072U

(1)
ijkmU

(1)
ijkm + 1

84V
(1)
ijkV

(1)
ijk

]
+O

( 1
c6

)}
.

(5.31)
In order to compute it, we need to compute the difference between the radiative and the source
multipole moments, which is, at this order, only composed of simple tail terms (see (5.32)).

5.4.1 Computation of the tail terms

The general expression of the radiative multipoles with respect to the source ones up to 2PN are
(see Sec. 3.1.3)

UL(t) = I(`)L (t) + 2GM
c3

∫ +∞

0
dτ I(`+2)

L (t− τ) ln
(
τ

τ`

)
+O

( 1
c5

)
, (5.32a)

VL(t) = J(`)
L (t) + 2GM

c3

∫ +∞

0
dτ J(`+2)

L (t− τ) ln
(
τ

λ`

)
+O

( 1
c5

)
, (5.32b)
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where τ` and λ` are some constant coefficients5 and M is the ADM mass which in the case of circular
orbits reads

M = m+ E

c2 = m

[
1− νx

2

(
1− 18 µ̃(2)

+ x5
)]

+O
(
εtidal
c4

)
, (5.33)

where x is defined in (3.44). To compute the flux (5.31) for circular orbits, it is simpler to compute
the tail part directly in the flux because a lot of terms coming from the tail contribution cancel out
in the end. As an example, let us compute the tail part of U(1)

ij U
(1)
ij which is ∝ I(3)

ij

∫
dτ I(5)

ij ln(τ/τ`).
For circular orbits, Iij = An〈inj〉 + Bλ〈iλj〉 + O(1/c4) where A and B are time-independant ex-
pressions. These two unit vectors lying in the orbital plane read ni = (cos(ωτ), sin(ωτ), 0) and
λi = (− sin(ωτ), cos(ωτ), 0). Thus, the time derivatives act only on the vectors ni and λi. They do it
in such a way that dni/dt = ωλi and dλi/dt = −ωni. In the end, the computation of the tail terms
in the flux only require to know the following integral (given in 4.331 page 571 of [125])

∫ +∞

0
dτ eiωτ ln

(
τ

2p

)
= 1
ω

[
−π2 sgn(ω)− i

(
ln(2p|ω|) + γE

)]
. (5.34)

Finally, I applied the method to compute the tail contributions of the NL/1PN source mass quadrupole,
as well as the leading orders of the source current quadrupole and source mass octupole. I recovered
the well-known point-particle part of the tails in the flux and found for the tidal part

Ftidal tail = 768πc5

5G ν x23/2

(1 + 4ν)µ̃(2)
+ + ∆µ̃(2)

− +
[(
−22

21 −
5053
1344ν −

2029
48 ν2

)
µ̃

(2)
+

+∆
(
−22

21 −
351
64 ν

)
µ̃

(2)
− +

(
− 1

18 + 226
9 ν

)
σ̃

(2)
+ −

∆
18 σ̃

(2)
−

]
x

 . (5.35)

Note that in Eq. (5.32), the tail term contains a prefactor 1/c3. Since the source multipole moments
contain only even powers of c (up to 2PN), the odd powers of c correspond to dissipative effects.
Consequently, the tail contributions do not mix with the instantaneous ones in the flux and phase.
This is why they are half-integer powers of x in (5.35).

5.4.2 Computation of the flux
For the instantaneous part, we need to differentiate the source multipoles with respect to time

using the EoM (D.1). Then, we combine the instantaneous and tail parts to get the total flux
F = Fpp + Ftidal. The part generated by point particles without internal structure, Fpp, already
known [126, 127, 128, 129], is given to consistent order by

Fpp = 32c5ν2x5

5G

{
1 +

(
−1247

336 −
35
12ν

)
x+ 4πx3/2 +

(
−44711

9072 + 9271
504 ν + 65

18ν
2
)
x2 (5.36)

+
(
−8191

672 −
583
24 ν

)
πx5/2

}
.

On the other hand, the tidal contribution to the flux complete to NNL/2PN order reads

Ftidal = 192c5ν x10

5G

(1 + 4ν)µ̃(2)
+ + ∆µ̃(2)

− (5.37)

+
[(
−22

21 −
1217
168 ν −

155
6 ν2

)
µ̃

(2)
+ + ∆

(
−22

21 −
23
24ν

)
µ̃

(2)
− +

(
−1

9 + 76
3 ν

)
σ̃

(2)
+ −

1
9∆σ̃(2)

−

]
x

5Explicitely τ` = 2r0e
−κ`/c and λ` = 2r0e

−π`/c with κ` and π` are defined in (3.24)
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+ 4π
[
(1 + 4ν)µ̃(2)

+ + ∆µ̃(2)
−

]
x3/2

+
[(167

54 −
722429
18144 ν + 15923

336 ν2 + 965
12 ν

3
)
µ̃

(2)
+ + ∆

(167
54 + 66719

2016 ν −
2779
144 ν

2
)
µ̃

(2)
−

+
(
−173

756 + 145
3 ν − 208ν2

)
σ̃

(2)
+ + ∆

(
−173

756 + 1022
27 ν

)
σ̃

(2)
− + 80

3 νµ̃
(3)
+

]
x2

+ 4π
[(
−22

21 −
5053
1344ν −

2029
48 ν2

)
µ̃

(2)
+ + ∆

(
−22

21 −
351
64 ν

)
µ̃

(2)
− +

(
− 1

18 + 226
9 ν

)
σ̃

(2)
+

−∆
18 σ̃

(2)
−

]
x5/2

 .
At this stage, we have in hand the total GW energy flux given by (5.36)-(5.37) and also the conserved
energy of the system (4.42). We are now able to insert both in the balance equation (3.42) in order
to derive the GW phase.

5.5 The GW phase
Together with the conservative energy of the system (4.42), the above energy flux permits deter-

mining the frequency and phase evolution for circular orbits through the two ordinary differential
equations

dω
dt = − F(ω)

dE/dω ,
dϕ
dt = ω . (5.38)

There are various ways to solve those equations approximately, called PN approximants, yielding sig-
nificant deviations from numerical relativity at small separations, i.e., outside the domain of validity
of the PN expansion [87]. Following the simplest adiabatic Taylor PN approximant, I obtained the
phase in the time domain as ϕ = ϕpp + ϕtidal, where I recovered the point-particle part at 2.5PN,

ϕpp = − 1
32νx5/2

{
1 +

(3715
1008 + 55

12ν
)
x− 10πx3/2 +

(15293365
1016064 + 27145

1008 ν + 3085
144 ν

2
)
x2

+
(38645

1344 −
65
16ν

)
πx5/2 ln

(
x

x0

)}
, (5.39)

and found the tidal contribution to be

ϕtidal =− 3x5/2

16ν2

{
(1 + 22ν)µ̃(2)

+ + ∆µ̃(2)
− (5.40)

+
[(195

56 + 1595
14 ν + 325

42 ν
2
)
µ̃

(2)
+ + ∆

(195
56 + 4415

168 ν
)
µ̃

(2)
− +

(
− 5

63 + 3460
21 ν

)
σ̃

(2)
+ −

5
63∆σ̃(2)

−

]
x

− 5π
2
[
(1 + 22ν)µ̃(2)

+ + ∆µ̃(2)
−

]
x3/2

+
[(136190135

9144576 + 975167945
1524096 ν − 281935

2016 ν2 + 5ν3
)
µ̃

(2)
+ + ∆

(136190135
9144576 + 211985

864 ν + 1585
432 ν

2
)
µ̃

(2)
−

+
(
− 745

1512 + 1933490
1701 ν − 3770

27 ν2
)
σ̃

(2)
+ + ∆

(
− 745

1512 + 19355
81 ν

)
σ̃

(2)
− + 1000

9 νµ̃
(3)
+

]
x2

+ π

[(
−397

32 −
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16 ν + 1315

12 ν2
)
µ̃

(2)
+ + ∆

(
−397

32 −
6721
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(2)
− +

(1
3 −

4156
9 ν

)
σ̃

(2)
+ + ∆

3 σ̃
(2)
−

]
x5/2

}
.

Next, motivated by data analysis applications, I derived the phase in the Fourier domain within
the stationary-phase approximation in the form ψSPA = 2πf tc + ψpp + ψtidal where

ψpp = 3
128νx5/2

{
1 +

(3715
756 + 55

9 ν
)
x− 16πx3/2 +

(15293365
508032 + 27145

504 ν + 3085
72 ν2

)
x2 (5.41)
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+
(38645

252 −
65
3 ν

)
πx5/2 ln

(
x

x0

)}
,

and

ψtidal =− 9x5/2

16ν2

{
(1 + 22ν)µ̃(2)

+ + ∆µ̃(2)
− (5.42)
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+
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(3)
+

]
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+ π
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(
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( 2
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+

+ 2
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−
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}
.

The tidal phase is now known completely for non-spinning compact objects in inspiralling binary
systems up to 2.5PN beyond the leading order.

5.6 Conclusion of Part II
In this chapter and the preceding one, I have solved the problem of the dynamics and GW emission

of compact binary systems without spins for (adiabatic) tidal, internal structure-dependent effects at
the NNL/2PN order, meaning formally the order 7.5PN (taking into account tails) in the GW phase
evolution. I used the formalism of the effective matter action of Ref. [100], which describes massive
point-like particles with internal structure by introducing specific non-minimal couplings to the space-
time curvature that model the finite size effects of the compact bodies due to the tidal interactions.
Since the matter action is localized on the worldline of the particles, it is sometimes referred to
as a “skeletonized” action. Up to NNL/2PN order there appear three polarizability coefficients
corresponding to mass quadrupole, current quadrupole and mass octupole tidal interactions. In
Chapter 4, suming up [6] and [8], I derived the associated effective Fokker action to obtain the
conservative dynamics, i.e., the EoM and conserved integrals of the motion. I also derived the
associated Hamiltonian in isotropic coordinates in order to compare it with literature and I found
total agreement on the overlap between their PM result and the present PN result. In Chapter 5,
summing up [7], I computed the matter stress-energy tensor of the compact binary from the same
effective action, and inserted it into a GW generation formalism based on MPM approximations
for the external field [71], which are matched to the PN expansion of the inner field [76, 77]. The
PN-MPM approach constitutes a very general way for computing the GW emission (and radiation
reaction onto the source) once one is given the matter stress-energy-tensor. In particular, I resorted
to general ready-to-use expressions for the source multipole moments and nonlinear interactions
between those moments (tails, etc.) leading to the observable waveform at infinity and, thus, the
energy flux. At last, once the flux up to NNL/2PN for tidal effects had been obtained and reduced
for circular orbits, I combined it with the result for the conservative energy found in [6]. Namely, I
employed the standard flux-balance argument to determine the binary’s chirp, i.e., the orbital phase
and frequency evolution through GW emission for compact binaries on quasi-circular orbits.

These results extend and complete several previous results in the literature. In Table 5.1 are
summarized the previous achievements in the field for each PN order and tidal multipole component.
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The result agree with all the previous results quoted in Table 5.1. Finally the tidal phase of non-
spinning NS binaries is complete up to the NNL order including NL tails, which means formally up to
the high 7.5PN level. Remark that three new coefficients in the GW phase have been computed in this

ϕtidal Mass quadrupole Current quadrupole Mass octupole
5PN (L) [90, 113, 91, 114, 92] X
6PN (NL) [91, 114, 45] X [45, 115] X
6.5PN (tail) [91, 45] X
7PN (NNL) X X [45, 116] X
7.5PN (tail) X X X

Table 5.1: Comparison with the existing literature. The checkmarks Xindicate the constributions I
computed. The citations correspond to the papers our result agree with for the tidal phase.

work. However, I disagree with some coefficients in the literature. First, with the 6PN coefficient due
to the current quadrupole moment computed in the preprint [116]. Indeed, as mentioned in Sec. 4.6,
the mistake in the computation of the conserved energy of this paper changes also the value of the
phase. Second, I also disagree with the mass quadrupole contribution to the tail term at the 7.5PN
order as reported in Ref. [91]. The latter reference obtains for the mass quadrupole contributions to
the SPA phase of two identical NS (see Eq. (31) in [91]):

ψDNV
tidal = −κT2

39
4 v

5
[
1 + 3115

1248v
2 − πv3 +

(23073805
3302208 + 20

81 ᾱ
(2)
2 + 20

351β
22
2

)
v4 − 4283

1092πv
5
]
,

with κT2 = 6µ̃(2)
+ in their notation (recall that we have µ̃(2)

− = 0 for identical NS). Further work [100]
fixed ᾱ

(2)
2 = 85/14 to be the contribution of the NNL equations of motion to the phasing. Now

the present work permitted to fix β22
2 = 642083/1016064. However, we found disagreement with the

2.5PN (tail) term in the SPA phase in Ref. [91]. This is under investigation following some interesting
discussions with Alessandro Nagar.

The result (5.41)-(5.42) completes the contribution of static tidal effects to the GW phase emitted
by a binary system of non-spinning compact objects up to 2.5PN beyond the leading order in the
quasi-circular orbits approximation. Although such precision is too high for LIGO/Virgo, it will be
useful for Einstein Telescope and also reducing biases in the EOB models.

Perspectives

Some of the assumptions performed in this computation can be relaxed in order to give more
realistic models. First of all, the effective action (4.5) has been built using EFT methods under the
assumption of static (or adiabatic) tides. This means we assume that the two compact objects are
always at thermodynamical equilibrium. This assumption can be relaxed and have been studied in
[70, 130]. They showed, using an EOB approach, that dynamical tides can induce matter resonances.
For some equations of state, they are not negligible compared to adiabatic tides and thus, dynamical
tides should be included in the templates.

Another assumption was performed at the level of the phase where we imposed the quasi-circular
orbit condition. The energy and flux are both known for generic orbits. However, in order to derive
the phase, the problem starts to be difficult if one includes eccentricities. This approximation is quite
realistic due to the circularisation of the orbits in binary systems, however in principle it shouldn’t
be the case for all BNS systems.

This computation has been done for spinless compact objects. As mentioned above, some work
has tackled the coupling of tidal effects with (aligned) spins up to 6.5PN order in the quasi-circular
orbits approximation [45]. This coupling occurs between the leading order in spin term with the
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tidal mass quadrupole and hits at 6.5PN. However, to be consistent at 7.5PN order, one has also to
include the coupling the leading order in spin with the tidal current quadrupole that hits at 7.5PN.
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Part III

Towards the 4PN phase
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Introduction

The second project of my PhD aimed at computing the 4PN phase of the GW signal emitted by
binary systems of spinless compact objects without internal structure and is currently known up to
3.5PN [43]. As said in Sec. 2.4, this result has been long awaited by the community to build more
precise templates especially for the building of EOB models. It will be important notably for data
analysis in LISA or 3rd generation ground-based detectors such as Einstein Telescope. As summarized
in Sec. 3.3, in order to derive the 4PN phase, we have to know at 4PN both the conserved energy
and the radiated flux of GWs. The conservative sector has already been tackled by several groups
using different methods, which agree on the EoM and the conserved quantities, and notably the
energy. More specifically, Blanchet et al. derived them (before the start of my PhD) from the Fokker
Lagrangian in harmonic coordinates [131, 132, 133, 38, 134]. This result has also been obtained
beforehand by means of the canonical Hamiltonian formalism of general relativity [135, 111, 136,
39, 137], and by later the effective field theory (EFT) [47, 138, 139, 140, 49, 50, 40, 51]. However,
the computation of the 4PN flux has never been achieved. In the PN-MPM formalism, the flux is
expressed in terms of the radiative multipole moments of the system as given in Eq. (3.18). Moreover,
this formula tells us that we need to know the radiative mass quadrupole up to 4PN, the current
quadrupole and mass octupole up to 3PN and some other lower order multipoles. The hardest part
is, by far, the computation of the radiative mass quadrupole because of numerous subtleties, notably
due to the regularisation scheme, which are detailed in Chapter 6. Furthermore, and as summed up
in Sec. 3.3, in order to compute the radiative multipoles, one needs to know the source multipoles
and also the non-linear pieces, such as tails, tails-of-tails, memory or tails-of-memory effects.

The state of the art for the computation of the multipole moments is the following. Previous
computations of multipole moments for compact binaries (without spins) included the mass-type
quadrupole moment at 1PN order [141], 2PN order [127, 128] and 3PN order [142, 143, 144]. The
current quadrupole moment has been determined at 1PN order [145, 127, 146] and 2.5PN order [147].
The mass octupole moment was computed up to 3PN order [148] and the current octupole moment
to 2PN order [149, 147]. Other moments are known, such as the mass hexadecapole (24) one at
2PN order and the 25 mass and 24 current ones at 1PN order [147]. So the missing source multipole
moments were, at the begining of my PhD in 2018, the two most complicated: the 4PN mass
quadrupole and the 3PN current quadrupole. As said in Sec. 3.2.2, dimensional regularisation (DR)
must be used starting from 3PN. Thus, the expression of the multipoles, derived in Sec. 3.1.5 had
also to be obtained in d dimensions. The d-dimensional expression of the mass quadrupole, provided
in (6.1), was found in [144]. However, we had to derive the d-dimensional generalisation of the source
current quadrupole, which was harder because in arbitrary dimension, one cannot use the Levi-Civita
tensor which plays a key role in 3 dimensions.

In Chapter 6, I present the computation of the 4PN source mass quadrupole. This chapter is
divided in two parts: the first one corresponds to its computation with DR in the UV, which is based
in our already published paper [9], while the second part corresponds to our yet unpublished work
on DR for the IR. All the technical aspects of the computations are described there. Although the
source quadrupole is now fully known, the radiative multipole is not and this part is missing in order
to derive the 4PN flux. In Chapter 7, I present the full computation of the current quadrupole fully
regularised with DR. I also present the associated GW amplitude mode.

75



76



Chapter 6

The 4PN source mass quadrupole

The aim of this chapter is to describe the work performed on the computation of the 4PN source
mass quadrupole for compact binaries. This multipole has to be regularised with DR in the UV and
in the IR. As mentioned below, the general d-dimensional expression of the quadrupole in terms of
the pseudo stress-energy tensor has been derived in [144]. The plan of this chapter goes as follows:
in Secs. 6.1 and 6.2 we derive the expression of the mass quadrupole in terms of the elementary
potentials that parametrize the PN metric. In Sec. 6.3, we derive the 4PN mass quadrupole using
Hadamard regularisation to which we add the UV correction coming from DR. This section is based
on our paper [9]. In Sec. 6.4, we compute the IR correction from DR in order to get the final fully
dimensional-regularised 4PN source mass quadrupole. The results in the last section of this chapter
is yet unpublished [11].

6.1 The general expression of the source mass quadrupole
In Secs. 3.1.4 and 3.1.5, we showed how to derive the expression of the source multipole moments

in terms of the pseudo stress-energy tensor in 3 dimensions. The formula for the general `-th mass-
type multipole moment in d ≡ 3 + ε dimensions reads [144]

IL(t) = d− 1
2(d− 2) FPB=0

∫ ddx
`ε0

r̃B
{
x̂L Σ[`] −

4(d+ 2`− 2)
c2(d+ `− 2)(d+ 2`) x̂iL Σ(1)

i[`+1]

+ 2(d+ 2`− 2)
c4(d+ `− 1)(d+ `− 2)(d+ 2`+ 2) x̂ijL Σ(2)

ij[`+2]

− 4(d− 3)(d+ 2`− 2)
c2(d− 1)(d+ `− 2)(d+ 2`)B x̂iL

xj
r2 Σij[`+1]

}
(x, t) . (6.1)

The overall d-dependent factor in front is such that (6.1) reduces to the usual Newtonian-looking
expression of the multipole moments in the Newtonian approximation, given by IL = m1 ŷ

L
1 + 1 ↔

2 +O(c−2). The constant `0 has to be introduced to preserve homogeneity and is the characteristic
length scale associated with DR.

The last term of (6.1) will not contribute because of the B and the d− 3 = ε factors appearing
simultaneously. To see this one splits the integral into a near-zone contribution r < R and a far-zone
one r > R. In the UV part of the integral, one has to apply the limit B → 0 since there are no IR
divergences (hence no poles ∝ 1/B), thus the r < R part vanishes. The argument that this term
does not contribute in the IR is detailed in Sec. 6.4.4.

As in 3d, the source terms are defined from the PN expansion of the pseudo stress-energy tensor
τµν . It enters the right-hand side of the Einstein field equations in harmonic coordinates. It takes
the same form as in Eqs. (3.3)–(3.4), except that the Newton constant there reads G = `ε0GN, where
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GN is the Newton constant in 3 dimensions. We have

Σ = 2
d− 1

(d− 2)τ 00 + τ ii

c2 , Σi = τ̄ 0i

c
, Σij = τ̄ ij . (6.2)

The matter terms are still given by the point-mass expressions (3.39)–(3.40) but with now δ = δ(d),
the Dirac function in d dimensions. The generalization of Eqs. (3.29)–(3.34) to d dimensions reads
as

Σ`(x, t) =
∫ 1

−1
dz δ(ε)

` (z) Σ(x, t+ zr/c) , (6.3)

where

δ
(ε)
` (z) ≡

Γ
(
`+ 3

2 + ε
2

)
Γ
(

1
2

)
Γ
(
`+ 1 + ε

2

) (1− z2)`+ ε
2 ,

∫ 1

−1
dz δ(ε)

` (z) = 1 . (6.4)

In practice we only need the formal PN expansion

Σ[`](x, t) =
+∞∑
k=0

αk`

(
r

c

∂

∂t

)2k

Σ(x, t) , (6.5)

with the numerical coefficients now being given by

αk` = 1
22kk!

Γ(`+ d
2)

Γ(`+ d
2 + k)

, (6.6)

where Γ is the Euler gamma function. It is very useful to define for the matter stress-energy tensor
the following matter currents

σ = 2
d− 1

(d− 2)T 00 + T ii

c2 , σi = T 0i

c
, σij = T ij , (6.7)

which are given in the case of compact binary systems by

σ = µ̃1 δ
(d)(x− y1) + 1↔ 2 , (6.8a)

σi = µ1v
i
1 δ

(d)(x− y1) + 1↔ 2 , (6.8b)
σij = µ1v

i
1v
j
1 δ

(d)(x− y1) + 1↔ 2 , (6.8c)

where y1 = (yi1) is the particle’s position, v1 = dy1/dt = (vi1) the coordinate velocity, and we have
introduced, besides µ1 which keeps the same expression as in 3 dimensions, see Eq. (3.40), the useful
tilded version

µ̃1 = 2
d− 1

(
d− 2 + v2

1
c2

)
µ1 . (6.9)

The matter current densities (6.8) generate all the compact-support terms in the expression of the
quadrupole moment.

6.2 The quadrupole moment as a function of potentials

6.2.1 The elementary potentials
To start the derivation of the mass quadrupole moment we need to inject into (6.1) the PN metric

h
µν which is an explicit solution of the Einstein field equations (3.3) valid in the near zone (recall

that the overbar means PN expansion). The metric components h00, h0i and hij are respectively to
be expanded up to orders c−8, c−7 and c−8 included to reach the required accuracy. Thus, we need
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h
00 and h0i at 3PN order (remind that c−8 in h00 actually corresponds to 3PN), and hij at the 4PN

order.
Building up on [142, 143, 144, 148], the metric has been parametrized with appropriate PN

elementary retarded potentials, namely scalar potentials V , K, X̂ and T̂ , vector potentials Vi, R̂i

and Ŷi, and tensor ones Ŵij, Ẑij and M̂ij. The structure of the parametrization in 3 dimensions is

h
00 = −4V

c2 −
2
c4

(
Ŵ + 4V 2

)
− 8
c6

(
X̂ + · · ·

)
− 64
c8

(
T̂ + · · ·

)
+O(c−10) , (6.10a)

h
0i = 4Vi

c3 + 8
c5

(
R̂i + ViV

)
+ 16
c7

(
Ŷi + · · ·

)
+O(c−9) , (6.10b)

h
ij = − 4

c4

(
Ŵij −

1
2δijŴ

)
− 16
c4

(
Ẑij −

1
2δijẐ

)
− 32
c8

(
M̂ij + · · ·

)
+O(c−10) . (6.10c)

The ellipsis symbolizes non-linear products of the elementary potentials introduced at lower orders.
The complete expression of the metric at 4PN order in d dimensions is given in Eqs. (B.2). As
mentioned in Sec. 3.1.6, the potentials obey some flat space-time wave equations. The expressions
given in the rest of this section are in 3d, for complete d dimensional definitions see App. B. Some
have a compact support, like

�V = −4πGσ , �Vi = −4πGσi , (6.11)

while there are many quadratic non-linear terms (sometimes called “∂V ∂V ”) such as in

�Ŵij = −4πG
(
σij − δij σkk

)
− ∂iV ∂jV , (6.12)

and higher order terms (called “non-compact”) such as the cubic term Ŵij ∂ijV in

�X̂ = −4πGV σii + Ŵij ∂ijV + 2Vi∂t∂iV + V ∂2
t V + 3

2(∂tV )2 − 2∂iVj∂jVi . (6.13)

See Eqs. (B.4) for thorough definitions of all these potentials in d dimensions. Among these, the
only purely 4PN potential which is needed for the 4PN quadrupole moment is M̂ij, which obeys in
3 dimensions:

�M̂ij = Gπ
[(
−4ViVj + δij(2VaVa + X̂)

)
σ + 4

(
R̂(i + V V(i

)
σj) − 2Ŵa(iσj)a (6.14)

− 4V 2σij + δij
(
−2R̂bσb − 2V Vmσm + 1

2Ŵklσkl + V 2σpp −
1
2Ŵσqq

)]
− ∂tVi∂tVj + Va∂t∂aŴij + 2V(i∂aVj)∂aV − ∂tŴ(ia∂aVj)

+ 1
2Ŵab∂abŴij −

1
2∂aŴib∂bŴja + 1

2Ŵ(ia∂aV ∂j)V −
1
4∂iŴab∂jŴab

− 2∂aV(i
(
∂j)R̂a + Va∂j)V

)
− 2∂aR̂(i∂j)Va + ∂tŴ(ia∂j)Va + ∂bŴa(i∂j)Ŵab

+ 2∂(iVa∂j)R̂a +
(
−2∂tR̂(i + 1

2V(i∂tV − ∂(iX̂
)
∂j)V + V

(1
2∂

2
t Ŵij − 2∂tV(i∂j)V

)
+ δij

[
−1

2Va∂t∂aŴ −
1
4V

2∂2
t V + ∂tR̂a∂aV −

1
4Ŵab∂abŴ + ∂aVb∂bR̂a

− 1
8Ŵab∂aV ∂bV −

1
2∂tŴab∂aVb −

1
4∂aŴbc∂cŴab −

1
4Va∂tV ∂aV

+ V
(3

8(∂tV )2 − 1
2Va∂t∂aV −

1
4∂

2
t Ŵ + ∂tVa∂aV −

1
4Ŵab∂abV + 1

2∂aVb∂bVa
)]
.

By inserting the PN metric (B.2) into the mass quadrupole moment, one obtains the full ex-
pression in terms of the latter PN potentials. However, we do not know explicitly all the required
potentials (either in 3 or d dimensions), since they are solutions of complicated wave equations such
as (6.14). Thus, crucial simplifications of the result have to be performed first, in order to put the
expression into computable form; see the complete result for all the terms in App. E.2.
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6.2.2 The method of super-potentials
The first technique we used in order to be able to compute all the terms composing the source

mass quadrupole at 4PN is the method of “super-potentials”. Many of the most difficult of those
terms are of the form φP where φ is a simple potential or derivative of a simple potential, and P is a
complicated potential whose expression in the whole space is not known. For instance P could be the
4PN potential M̂ij entering the spatial components of the metric and obeying the equation (6.14).
On the other hand, in our case, φ will one of the following potentials: ∂abV , ∂t∂aV , ∂aVb or ∂aV .

To compute the integral
∫

d3x rB x̂L φP (in 3 or d dimensions) we notice that, at leading order,
x̂L φ may be recast in the form of a Laplace operator acting on some solution Ψφ

L:

∆Ψφ
L = x̂Lφ . (6.15)

Assuming that Ψφ
L can be constructed analytically, a mere integration by part yields a volume integral

whose source is known explicitly, namely −
∫

d3x rB Ψφ
L ∆P , plus terms that are essentially surface

integrals at infinity when the Hadamard partie finie is applied.
Now, as it turns out, it is possible to construct the solution Ψφ

L by means of the super-potentials
of φ, defined as the hierarchy of solutions φ2k of the sequence of Poisson equations

∆φ2k+2 = φ2k , (6.16)

together with φ0 = φ so that we have ∆kφ2k = φ. The solution of Eq. (6.15) is then given in analytic
closed form as [150]

Ψφ
L = ∆−1

(
x̂L φ

)
=
∑̀
k=0

(−2)k`!
(`− k)! x〈L−K∂K〉φ2k+2 . (6.17)

This formula has been derived by induction in 3 dimensions in [150] but the proof works as well in
d dimensions and no extra factor needs to be inserted. The precise choice of the Poisson solutions
involved in the above algorithms is irrelevant for this particular problem, hence the operator ∆−1 has
not been precisely defined in Eq. (6.17). However, it is convenient in practice to take ∆−1 = ∆̃−1,
where ∆̃−1 = FPB=0∆−1r̃B represents the Poisson integral regularised at infinity by means of the
Hadamard finite part prescription.

With this tool in hands, we can thus transform the integral we were looking for into the much
more tractable form∫

d3x rB x̂L φP =
∫

d3x rB
(

Ψφ
L∆P + ∂i

[
∂iΨφ

LP −Ψφ
L∂iP

])
. (6.18)

The first term involves the source of the potential P , because �P = ∆P +O(1/c2) and is therefore
computable. The second one is a surface term, which is also computable (see Sec. 6.3.4 for the 3d
computation and Sec. 6.4.4 for its dimensional treatment). For instance, in the case where P = M̂ij,
with M̂ij being the 4PN tensor potential, we will replace ∆M̂ij by the source given explicitly by
Eq. (6.14), which is correct since we are already at the maximal 4PN order and thus M̂ij is merely
Newtonian. For more details on the computation of the super-potentials, see Sec. III. B. of [9].

6.2.3 Integrations by part and surface terms
The second technique to simplify the expression of the quadrupole moment consists in integrating

some terms by part in order to transform volume integrals into simpler volume integrals together with
surface and compact-supported integrals. For instance, we systematically rewrote integrals involving
the double gradient of a simple compact-support potential like V , defined in (6.11), and a difficult
one P (with non-compact support) as

∂iV ∂iP = 1
2

[
∆(V P )− V∆P − P∆V

]
. (6.19)
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The second term in (6.19) is much simpler because it contains (modulo higher PN corrections) the
source of the potentials P , i.e. ∆P = S +O(c−2). The third term is also easy to evaluate because it
depends only on the value of the potential P at the location of the particles, since V has a compact
support: ∆V = −4πGσ +O(c−2).

As for the first term in (6.19), it yields an example of a so-called “Laplacian term”, coming after
integration by parts from the derivation of the regularisation factor (r/r0)B. The surface integrals of
the Laplacian terms, as well as the analogous so-called “divergence terms”, are very easy to integrate
within the Hadamard finite part prescription. Therefore, we kept as much as possible the terms into
Laplacian or divergence form.

Once the latter two techniques — super-potentials and surface integrals — have been applied,
one obtains an extremely long expression for the quadrupole moment as a function of potentials and
super-potentials, where all terms can be explicitly integrated.

6.2.4 Expression in terms of potentials
In d dimensions, the mass-type quadrupole moment is given by Eq. (6.1) for ` = 2. The first three

terms of (6.1) will be denoted respectively by Sij, Vij and Tij with S, V and T standing for scalar,
vector and tensor. We recall that the fourth term in (6.1) does not contribute in the considered
precription: DR for the UV and Hadamard for the IR1. Thus we write

Iij = Sij + Vij + Tij . (6.20)

Furthermore, we know from the series expansion (6.5) that each term S, V and T corresponds to a
finite sum at 4PN order indexed by the integer k in (6.5). At the 4PN order this sum has 5 terms
(k = 0, 1, 2, 3, 4) for S, 4 for V and 3 for T . We denote these terms using capital roman numerals
hence

S = SI + SII + SIII + SIV + SV , (6.21a)
V = V I + V II + V III + V IV , (6.21b)
T = T I + T II + T III . (6.21c)

In these notations, we ignore the always understood quadrupole indices ij. In practice, I performed
the computations on the non-STF mass quadrupole and then took the STF projection of the result.
Since there are poles ∝ 1/ε in the expressions to be projected, it is crucial to apply the STF projection
in d dimensions, i.e. T̂ ij = T ij − 1

d
δijT kk. However, alternatively, one can wait until the end of the

calculation when the poles have been removed by the appropriate shifts (see Appendix E.1) to apply
finally the usual STF projection in 3 dimensions. We have checked explicitely that the STF operation
commutes with the integration and notably with the different regularisation procedures.

In addition, each of the 654 terms contains non-compact support terms which we denote with the
suffix NC (such as SINC), compact support terms (suffix C) and surface terms of two sorts, either
surface Laplacian terms (SL) or surface divergence terms (SD). Hence we write for the term SI:

SI = SIC + SINC + SISL + SISD , (6.22)

and similarly for the other terms. The full expressions in terms of potentials of SIC, SINC, SISL and
SISD are given in App. E.2.

6.3 The properly UV regularised quadrupole
As mentioned above, the first steps for the computation of the mass quadrupole consist in deriving

the potentials in 3d (with Hadamard partie finie prescription) and, then, in d dimensions. Some
1And also DR for the IR, as we will see in Sec. 6.4.4.
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potentials are too complicated to compute in the whole space so we used the previously decribed
techniques to avoid this problem by transforming the NC terms into C + Surface terms. This
allows computing the same integrals but it requires to know only the potentials regularised on the
location of the bodies or at spatial infinity. However, I did not compute the potentials myself, since
it had already been done, notably by Tanguy Marchand, Luc Blanchet, François Larrouturou and
Guillaume Faye. Thus, my contribution to the computation of the d-dimensional UV regularised mass
quadrupole started from the computation of the integrals in terms of the potentials, already knowing
their expressions. For more details on the derivation of the potentials required for the computation
of the mass quadrupole, see Sec. IV B and Sec. V of [9]. Furthermore, I focused on the C and NC
terms. Because of the length and complexity of the computations, the Mathematica codes I ran had
to be parallelized on the cluster of IAP. I used the xAct library [13] for tensor manipulations.

6.3.1 Computation of C and distributional terms
Compact terms

The C terms are the simplest ones to integrate if we assume that we already know the potentials.
Indeed, their most general form is

λ
∫

ddx x̂L ∂L1P1 . . . ∂LnPn δA, (6.23)

where Pk are potentials, δA = δ(d)(x − yA) and λ is an arbitrary constant coefficient. The result for
such an integral is then

λŷLA(∂L1P1)A . . . (∂LnPn)A , (6.24)
where (∂LkPk)A is the dimensional-regularised value of ∂LkPk at the location of body A. Thus, C
terms can be computed directly in d-dimensions. Since I already knew the values of the regularised
potentials and their derivatives, these terms were trivial to compute. Note that some potentials
contain a pole 1/ε when computed in d-dimensions. This means that C terms generate poles.

Distributional terms

Furthermore, terms of the form (6.23) can also come from NC terms. Indeed, the computations are
made in terms of distributions and not functions due to the fact that we use Dirac delta distributions
to model the physical system. Such a consideration complicates the computations because if one
applies a sufficient amount of derivatives on an expression, distributions will appear. A simple
example in 3d is the following:

∂ab

( 1
r1

)
= 3n

〈a
1 n

b〉
1

r3
1
− 4π

3 δabδ1, (6.25)

where the first term is the ordinary part of the derivative and the second is the additional part due to
distributions. In general, we can decompose a derivative in an ordinary and a purely distributional
part

∂iP = (∂iP )ord +Di[P ] . (6.26)
The value of the distributional part Di is given by the Gel’fand Shilov formula [9, 151, 152]. This
formula, adapted to our notations, reads

Di

[
nL

rm+ε

]
= 4π1+ ε

2 (−)m2m+ε(`+1)!
Γ
(
`+m+1+ε

2

)
Γ(`+m+ 1 + ε)

bm/2c∑
p=p0

∆p−1∂(M−2P δiL+2P−M)δ
(3+ε)

22p(p− 1)!(m− 2p)!( `+1−m
2 − p)!

(6.27)

where p0 = Max(m−`−1
2 , 1) and δL = δi1i2 . . . δi`−1i` .
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Non-compact terms that contain a sufficiently high number of derivatives can generate distribu-
tional contributions. As an example, using (6.25), the term

∫
ddx x̂ij Ŵab∂abV will create a distribu-

tional term of the form
∝
∫

ddx x̂ij ŴabδabδA, (6.28)

which is exactly of the same form as (6.23) and therefore can be integrated in the same way. Note
that derivatives of Dirac distributions can also arise from (6.27). So one has first to perform IBPs
in order to rewrite the integral in the form of (6.23). For the mass quadrupole I computed all the
contributions of the C and distributional parts using these methods.

6.3.2 Hadamard regularisation: computation of NC terms in 3d
In this section, we present the Hadamard partie finie regularisation. For a detailed review, see

[153]. We first consider a function F (x) which is assumed to be smooth and well-defined everywhere
except at the positions of the two bodies. We are interested in the computation of integrals of the
form

I = FP
∫

d3xF (x) . (6.29)

This integral can then diverge at x = y1, x = y2 and |x| → +∞. The divergencies at the locations
of the bodies are treated differently from the one at spatial infinity. We can split the integral in two
parts: one for r < R and one for r > R, where R is a fixed constant sufficiently large, so that

I = I−R + I+
R , (6.30)

where I−R is defined in (6.33) and I+
R in (6.37). The first step of the Hadamard partie finie procedure

is to perform a Laurent expansion of F around x = y1,

F (x) =
∑

p06p6N

rp1 ϕ1 p
(n1) + o(rN1 ) , (6.31)

where r1 = |x−y1| and the coefficients ϕ1p depend on the unit direction n1 = (x−y1)/r1 of approach
to the singularity. Note that the Laurent-expansion of F can contain logarithms and its full form
is given in (6.82). However, considering logarithms here is not crucial for the understanding of the
procedure. Then, we define the regularised value of the function F at point 1 to be the average with
respect to the direction n1 of the term with zeroth power in r1, namely

(F )1 ≡
∫ dΩ

4π
ϕ
1
p(n1), (6.32)

where dΩ is the infinitesimal solid angle on the 3-dimensional sphere. With this in hand, we can
compute the Hadamard partie finie value (in the rest of this thesis we also call it 3d value) of the
integral (6.29).

Hadamard partie finie for UV divergencies

In Hadamard regularisation, the 3-dimensional spatial integral is defined by the following FP
prescription, depending on two constants s1 and s2 associated with logarithmic divergences at the
two singular points, say

I−R = FP
s1,s2

∫
r<R

d3xF (x) . (6.33)

We define the region of space V which is inside the radius R and excludes two balls B1(s) and B2(s)
centered on y1 and y2 with a radius s, so that V = V(R, s). The integral over V is convergent,
by virtue of the properties of F while the integrals inside the balls can be divergent. Let us now
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define I−R,s as the integral over V . If the integrals over the balls were convergent, then we would have
directly I−R = lims→0I

−
R,s. In the general case, we have to study the potential divergencies of I−R,s in

order to substract them before taking the limit s → 0. To do so, we insert the Laurent expansion
of F (6.31) in I−R,s. Then by splitting this integral into a radial and an angular one, we find that its
singular part can be written as

− 4π
 ∑
p+3<0

sp+3

p+ 3

(
F

rp1

)
1

+ ln
(
s

s1

)
(r3

1F )1

+ 1↔ 2. (6.34)

In the end, we substract this quantity to I−R and then take the limit s→ 0. The final result for the
treatment of the UV divergencies in the Hadamard prescription for such integrals is

I−R = lim
s→0

∫
V(R,s)

d3xF (x) + 4π
 ∑
p+3<0

sp+3

p+ 3

(
F

rp1

)
1

+ ln
(
s

s1

)
(r3

1F )1

+ 1↔ 2
 . (6.35)

Remark that, as V depends on R, the first term in (6.35) involves some powers and logarithms of R.
The contributions in R will be canceled by the ones in I+

R. The previous method is also equivalent
to introducing the two cut-offs s1 and s2 in the following way

I−R = FP
α→0
β→0

∫
r<R

d3x
(
r1

s1

)α (r2

s2

)β
F (x), (6.36)

where we compute the integral in the whole space by conveniently chosing the values of α and β so
that the integral converges and then taking their limit towards 0 by analytic continuation.

Hadamard partie finie for IR divergencies

To treat the IR divergencies of I, complementary to the previous section, we can limit the
integration domain to be r = |x| > R

I+
R = FP

B=0

∫
r>R

d3x
(
r

r0

)B
F (x) . (6.37)

For simplicities sake, we assume that the multipolar expansion of F at spatial infinity does not
contain logarithms i.e. F (x) = ∑

p r
pϕp(n). After following the same kind of reasoning as for the

UV, we find that the Hadamard regularised value of the outer part of (6.29) reads

I+
R = 4π

 ∑
p<−3

Rp+3

p+ 3〈ϕp(n)〉+ ln
(R
r0

)
〈ϕ−3(n)〉

 . (6.38)

As mentioned above, the R are compensated by the ones in the first term of (6.35).

6.3.3 Computation of the UV DDR for NC terms
In order to obtain the dimensional regularised (for the UV) mass quadrupole, it is now sufficient

to compute the so-called difference of Hadamard and DR abreviated as DDR. In DR, the integral is
regularized by means of analytic continuation in d = 3 + ε, so that

I
(d)−
R =

∫
r<R

ddx
`ε0

F (d)(x) . (6.39)
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We assume here that we can compute the expansion of the source F (d) in d dimensions in the vicinity
of the particles, say y1. While in 3 dimensions, we have the expansion around y1 as in (6.31), in d
dimensions, we have a similar albeit more complicated expansion

F (d)(x) =
∑

p06p6N
q06q6q1

rp+qε1
`qε0

ϕ
1

(ε)
p,q (n1) + o(rN1 ) , (6.40)

where the coefficients now depend on an extra integer q reflecting the more complicated structure
of the expansion involving powers p + qε (with both p, q ∈ Z). Since the two expansions (6.31)
and (6.40) must agree in the limit ε→ 0, the relation∑

q06q6q1

ϕ
1

(0)
p,q = ϕ

1
p , (6.41)

must hold for any p.
Now, we are interested in the difference between DR and Hadamard partie finie, because this is

precisely what we have to add to the Hadamard result (6.35) in order to get the correct d-dimensional
result (6.39). This difference is

DIUV = I
(d)−
R − I−R , (6.42)

of which we merely compute the pole part ∝ 1/ε and the finite part ∝ ε0 in the Laurent expansion
when ε→ 0, the other terms vanishing in that limit. The key point is that the difference (6.42) does
not depend on R but only on the coefficients of the expansion around the two singularities as defined
by (6.40), modulo the neglected O(ε) terms. We have [144]

DIUV =Ωd−1

ε

∑
q06q6q1

[
1

q + 1 + ε ln
(
s1

`0

)]
〈ϕ

1
(ε)
−3,q〉+ 1↔ 2 , (6.43)

where it is crucial that the angular average is performed in d dimensions, i.e.,

〈ϕ
1

(ε)
p,q 〉 =

∫ dΩd−1

Ωd−1
ϕ
1

(ε)
p,q (n1) , Ωd−1 = 2π d

2

Γ
(
d
2

) . (6.44)

Here, dΩd−1 is the infinitesimal solid angle on the (d − 1)-dimensional sphere and Ωd−1 =
∫

dΩd−1.
In actual calculations, we have verified that there is no problem with the potentially dangerous value
q = −1 in (6.43) since we always have 〈1ϕ(ε)

−3,−1〉 = 0.
As we see from (6.43), the calculation generates many UV-type poles 1/ε, but we proved that

all those poles are canceled by the specific shift determined from the 4PN equations of motion in
Refs. [133, 38]. However, at 4PN order, all the poles do not come from (6.43), because, as mentioned
in Sec. 6.3.1, they are also can also come from C terms.

6.3.4 Computation of surface terms in 3d

Surface terms can be split in two categories : Laplacian terms, having the form of (6.45) and
divergence terms, having the form of (6.49). In this section we show how they are treated in 3d.

Treatment of Laplacian terms

Let us consider a product of derivatives of potentials G. Following [143], a generic Laplacian term
reads

TL = FP
B=0

∫
d3x r̃Bx̂L ∆G . (6.45)

85



We recall that r̃ ≡ r/r0 where r0 is the IR cut-off for Hadamard regularisation. Integrating the
Laplacian by parts, we find

TL = FP
B=0

B(B + 2`+ 1) r−B0

∫
r>R

d3x rB−2x̂LG . (6.46)

due to the prefactor B, the above integral can be restricted to the outer zone: r > R, where R is an
arbitrary length, the integral for r < R is finite. Indeed, the matching equation which leads to the
expressions of the multipole moments is originally applied for smooth matter distributions, so that
the metric is smooth everywhere in the near zone. As such, G is also smooth there and, due to the
factor B, the near zone contribution is zero after the FP procedure. In practice, the point-particle
approximation leads to UV divergences, but these are separately treated by DR, in which the FP
plays no role.

Because of the B prefactor in (6.46), we need to look at the 1/B pole in the integral. This
pole can only come from a radial integral of the form

∫+∞
R dr rB−1 = −RB/B. Thus, considering the

asymptotic expansion of G when r →∞, which we denote byM(G) as it is identical to the multipole
expansion, we find that the pole comes only from the term of order r−`−1 in that expansion. At 4PN
order, we also obtain a logarithmic dependence for some of the potentials. Hence, if we define Xp(n)
and X ln

p (n) to be the coefficients of r−p−1 and r−p−1 ln r in the multipole expansion, we have

M(G) = · · ·+ 1
r`+1

[
X`(n) +X ln

` (n) ln
(
r

r0

)]
+ o

(
r−`−1

)
, (6.47)

so that we finally obtain (applying the definition of the FP)

TL =
∫

dΩ n̂L

[
−(2`+ 1)X`(ni) +X ln

` (ni)
]
. (6.48)

Treatment of divergence terms

The other surface integrals occurring are the “divergence terms”, for instance the second term in
the right-hand side of (6.18). Most of these terms come from the method of super-potentials. They
are of the form

K = FP
B=0

∫
d3x r̃B∂iHi . (6.49)

A similar reasoning to the one before shows that they depend only on the 1/r2 coefficient, say Yi(n),
in the asymptotic or multipole expansionM(Hi) when r →∞:

M(Hi) = · · ·+ 1
r2

[
Yi(n) + Y ln

i (n) ln
(
r

r0

)]
+ o

(
r−2

)
, (6.50)

and the FP procedure yields simply

K =
∫

dΩniYi(n) . (6.51)

There is no contribution from the logarithm in (6.50).
In order to apply the previous method, we have to obtain the asymptotic expansion when r → +∞

of G or Hi [Eqs. (6.47) or (6.50)], where G and Hi are made of products of derivatives of potentials,
involving in general one potential which is not known in the whole space, for instance the 4PN
potential P = M̂ij or its trace. To find the expansion when r → +∞ of such potential, we relied on
the method explained in Sec. V D of [9].

86



6.3.5 Final result for the UV regularised mass quadrupole
We applied the methods described above to compute the source mass quadrupole moment at the

4PN order in the case of circular orbits. As for the Fokker Lagrangian computation of the equations
of motion [131], we first used Hadamard’s partie finie to cure the UV divergences and obtained an
initial result depending on ln s1 and ln s2. Then, we computed the difference between the DR and
the Hadamard partie finie regularisation for the UV divergences, which yielded a new result free of
ln s1 and ln s2 but containing poles in 1/ε, as well as the DR scale `0.

Let us recall that these poles should cancel out when expressing physical observables such as
the energy flux or the orbital phase of the system, but can still be present in intermediate non-
gauge invariant results such as the equations of motion or the expression of the source multipole
moments. However, in that case, it is extremely useful to remove the UV poles by applying a shift
of the particle’s trajectories. This provides an important test of the result and also a substantial
simplification. At 3PN, it was already shown that applying the same shift as used for the 3PN
equations of motion to the 3PN source mass quadrupole moment, consistently removes all the UV
poles [83].

At 4PN, the situation is a bit more complicated. The shift that was applied to the Fokker
Lagrangian in order to get the final result for the 4PN equations of motion as obtained in [133, 38],
and from which all the conserved quantities were derived in [134], is composed of three terms:

1. The shift ξ1,2 given in the Appendix C of [131]2 and which removes all the UV-type 1/ε poles
in the Fokker Lagrangian

2. The shift χ1,2 that was applied in [133] and removes all the IR-type 1/ε poles of the Fokker
Lagrangian

3. Finally, the shift η1,2 given in the Appendix A of [134] that does not contain any pole and was
merely used for convenience

For completeness, we provide in App. E.1 the full expressions of the shifts ξ1,2 and η1,2. Note that
the IR shift χ1,2 will be used in the next section.

We have applied the sum of the shifts ξ1,2 and η1,2 to the 4PN quadrupole moment and checked
that all the UV-type poles 1/ε (as well as the usual concomitant constants such as Euler’s constant
γE) cancel out as they should. Those shifts have been determined from the separate calculation of
the Fokker Lagrangian and equations of motion. Furthermore, as we already mentioned, at 4PN,
some of the potentials entering the compact support terms do contain poles. In the end, these poles
combine with those coming from the DR of the volume integrals of non-compact support terms. The
proper cancellation of all the poles constitutes a robust check of the UV DR computations and a
major confirmation that we understand the connection between the conservative equations of motion
and the multipole moments within the framework of the MPM-PN approach.

The next steps are to reduce this result to the CoM frame and then to the case of quasi-circular
orbits. We only need the 3PN expressions of the CoM coordinates, and the 3PN equations of
motion, in order to express the mass quadrupole moment at the 4PN order in the CoM frame for
circular orbits. Therefore, even if the result does not yet use DR for the IR divergences, we can still
consistently express it in the CoM frame for circular orbits. The result, then much more compact, is
given as follows

Iij = µ

(
Ax〈ixj〉 +B

r2

c2 v〈ivj〉 + G2m2ν

c5r
C x〈ivj〉

)
+O

( 1
c9

)
, (6.52)

2There are some missing terms in the equations (C3) of [131]; the correct expression, also taking into account the
final determination of the ambiguity parameters [133, 38], is given in Eqs. (E.2)–(E.3) below taken from [9].
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where the factors are explicitly given up to the 4PN order by3

A = 1 + γ

(
− 1

42 −
13
14ν

)
+ γ2

(
− 461

1512 −
18395
1512 ν −

241
1512ν

2
)

+ γ3
(

395899
13200 −

428
105 ln

(
r

r0

)
+
[

3304319
166320 −

44
3 ln

(
r

r′0

)]
ν + 162539

16632 ν
2 + 2351

33264ν
3
)

+ γ4
(
−1023844001989

12713500800 + 31886
2205 ln

(
r

r0

)
+
[
−18862022737

470870400 −
2783
1792π

2

− 24326
735 ln

(
r

r0

)
+ 8495

63 ln
(
r

r′0

)]
ν +

[
171906563
4484480 + 44909

2688 π
2 − 4897

21 ln
(
r

r′0

)]
ν2

− 22063949
5189184 ν

3 + 71131
314496ν

4
)
, (6.53a)

B = 11
21 −

11
7 ν + γ

(
1607
378 −

1681
378 ν + 229

378ν
2
)

+ γ2
(
−357761

19800 + 428
105 ln

(
r

r0

)
− 92339

5544 ν + 35759
924 ν2 + 457

5544ν
3
)

+ γ3
(

17607264287
1589187600 −

4922
2205 ln

(
r

r0

)
+
[

5456382809
529729200 + 143

192π
2 − 1714

49 ln
(
r

r0

)
− 968

63 ln
(
r

r′0

)]
ν

+
[

351838141
5045040 −

41
24π

2 + 968
21 ln

(
r

r′0

)]
ν2 − 1774615

81081 ν3 − 3053
432432ν

4
)
, (6.53b)

C = 48
7 + γ

(
−4096

315 −
24512
945 ν

)
. (6.53c)

Remark that the values of A and B are different for two coefficients therein from the one we have
published in [9]. Indeed, we have forgotten to include the contribution of the UV d-dimensional
regularisation of the potential R̂i in two of the compact terms (in SIC3PN and V IC3PN in App. E.2).
We recall the already introduced notations: γ = Gm

rc2 , r = |yi1 − yi2|, vi = vi1 − vi2, xi = yi1 − yi2,
m = m1 + m2 and ν = µ/m = m1m2/(m1 + m2)2. Two constants parametrize the logarithmic
terms of (6.53). The constant r0 was introduced in the Hadamard regularisation for the IR (see
Eq. (3.31a)). Then, there appears the constant r′0 associated with the UV regularisation and which
has been introduced through the shift ξ1,2 in Eqs. (E.3).4

The result (6.52)–(6.53) extends to the 4PN order the expression of the mass quadrupole moment
that was known at the 3.5PN order [142, 143, 147, 43]. We are now in position to compute the
correct dimensional-regularised mass quadrupole.

3The terms C represent the time-odd 2.5PN and 3.5PN contributions provided here for completeness.
4In previous works on the 3PN/4PN equations of motion in harmonic coordinates, two gauge constants r′1 and r′2

in the logarithms were considered for the UV divergences instead of one [154, 110, 131]. In the CM frame this yielded
the two convenient combinations (with X1,2 = m1,2/m)

ln r′0 = X1 ln r′1 +X2 ln r′2 ,

ln r′′0 = X2
1 ln r′1 −X2

2 ln r′2
X1 −X2

,

with r′′0 entering specifically the expression of the particle’s positions in the CM frame at the 3PN order [110]. Because
of the factor (X1 −X2)−1 in ln r′′0 there is an apparent divergence when the two masses are equal, but of course it is
compensated by a factor X1−X2 in the CM relations. There, we make the choice r′1 = r′2, which avoids such spurious
divergence and has the advantage that the particle’s positions are exactly yi1 = −yi2 when the masses are equal. Hence
we have only one UV constant r′0 = r′′0 = r′1 = r′2.
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6.4 The properly IR regularised quadrupole
Let us recall that for the computation of the mass quadrupole at 3PN, DR was used only in

the UV and not in the IR. The reason for such a non-trivial statement is that DR in the UV was
sufficient to remove the ambiguities in the conservative sector (see discussion in Sec. 3.2.2). When we
started investigating DR in the IR for the computation of the source multipoles, it was supposed that
Hadamard regularisation was sufficient at 3PN. However, it had never been proved that Hadamard
was equivalent to DR. The effort we furnished to compute the DDR in the IR for the mass quadrupole
at 4PN also led to confirm that the statement was indeed correct not only for the mass quadrupole
but also for the current quadrupole and the mass octupole at 3PN (see Sec. 6.4.7 and Sec. 7.2.4).

In order to compute the DDR in the IR for the mass quadrupole, we have to list all the possible
contributions where the difference between the two regularisations can appear. Of course, differences
may appear in NC terms because the treatment of the regularisation at spatial infinity should in
principle be different. For the same reason, we also expect the surface terms, only limited to spatial
infinity, to be treated differently. However, it is non-trivial that the C terms, in which the values
of the integrands are only required at the location of the bodies, should be different because they
were, in principle, treated in the previous section by means of the UV DR. At first we did not think
this would contribute, but we then realized that the values of the potentials that we were using were
computed by a 3d Hadamard calculation followed by a UV difference. Therefore, these values were
not the full d-dimensional regularised potentials in the whole space and it turned out that the correct
IR treatment of the potentials changed their values also on the location of the bodies and not just
at spatial infinity. Note that in principle, distributional terms can also arise. Since they are treated
in the same way as C terms, we include their possible contribution in C terms. Furthermore, the
last possible contribution in the IR DDR is the last term (proportional to B) in Eq. (6.1). Then the
result for the mass quadrupole has to be shifted using the shift derived in the conservative sector, in
the same way that it was done for the UV DDR. To summarize, we had to deal with the difference
between Hadamard and dimensional regularisations for

• C terms

• NC terms

• Extra and Surface terms

• Shift
so that, the total IR DDR for the mass quadrupole can be written as

DIIRij = DICij +DINCij +DISurfij +DIextraij +DIshiftij . (6.54)

The following sections aim at computing the values of the different contributions.

6.4.1 Computation of the DDR of potentials at point 1 and C terms
We want to compute the difference between the Hadamard and dimensional regularisations treat-

ment of IR divergencies in C terms. The first step is to compute the value of the IR DDR of the
potentials at point A. To do so, we need to solve the wave equation regularised at point 1, namely

P (y1) = (�−1S)(y1). (6.55)

For this integration, we start PN expanding the D’Alembert operator

�−1 =
+∞∑
k=0

(
1
c

d
dt

)2k

∆−k−1. (6.56)

We then need to solve the Laplace equation in order to extend its solution to the D’Alembert solution.
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Solution of the Laplace equation

Consider a d-dimensional Poisson like potential sourced by a function F (d)

P (d)(x′) = − k̃

4π FPB=0

∫
r>R

ddx r̃B F (d)(x)
|x′ − x|d−2 . (6.57)

evaluated any field point x′. We pose k̃ = Γ( d−2
2 )

π
d−2

2
. The constant in the Green’s function of the

Laplace operator is given by ∆
(
k̃ r2−d

)
= −4πδ(d)(x). At point 1 we have

P (d)(y1) = − k̃

4π FPB=0

∫
r>R

ddx r̃BF
(d)(x)
rd−2

1
. (6.58)

We consider the class of functions F (d) which admit a generic expansion in d dimensions when
r ≡ |x| → +∞, such that, for any N ∈ N,

F (d)(x) =
N∑

p=p0

q1∑
q=q0

rp+qε

`qε0
ϕ(ε)
p,q(n) + o

( 1
rN

)
, (6.59)

where p0 ∈ N indicates the maximal order of the IR divergence, and q0, q1 ∈ Z represent a finite
range of values for q. Further more, we know that

1
rd−2

1
=

+∞∑
`=0

2`
`!

Γ
(
d
2 + `− 1

)
Γ
(
d
2 − 1

) yL1 n̂
L
1

rd+`−2 . (6.60)

After inserting (6.59) and (6.60) into (6.58), we decompose the integral into a radial and angular
one. After integration the integral reads

P (d)(y1) = k̃

4π

+∞∑
`=0

2`
`!

Γ
(
d
2 + `− 1

)
Γ
(
d
2 − 1

) yL1
∑
p,q

`qε0
rB0

RB−`+p+2+qε

B − `+ p+ 2 + qε

∫
dΩd−1n̂

L
1ϕ

(ε)
p,q(n) . (6.61)

We do the same in 3d and compute the difference up to order O(ε). The constant R cancels out and
we get

DP (y1) = −
+∞∑
`=0

(2`− 1)!!
`! yL1FP

B=0

∑
q 6=0

1
q

[
1
ε
− q ln

(
r0

`0

)
+
∑̀
k=0

1
2k − 1

]
〈n̂Lϕ(ε)

`−2,−q(n)〉 . (6.62)

where 〈〉 ≡
∫ dΩd−1

Ωd−1
is the spherical average performed in d dimensions, while the volume of the sphere

is Ωd−1 = 4π
(d−2)k̃ .

Solution of the D’Alembert equation

For potentials that are required at least at 1PN, the D’Alembertian cannot be approximated as a
mere Laplacian. The inverse D’Alembertian can be PN expanded in terms of the inverse Laplacian.
Then, one can show that computing the IR DDR at the location of the bodies for the D’Alembert
equation is equivalent to compute the IR DDR in the Laplace equation on a different source [11].
Indeed, solving (6.55) is equivalent solving

P (y1) = (∆−1Ŝ)(y1), (6.63)
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using (6.62) with Ŝ given in terms of S by

Ŝ(x, t) = S(x, t) + r2
1

2(4− d)c2∂
2
t S(x, t) + r4

1
8(4− d)(6− d)c4∂

4
t S(x, t) +O

( 1
c6

)
. (6.64)

The prefactors come from the so-called Matthieu formulae that are introduced later in (6.72) when
we iterate the inverse Laplacians.

The method described in this section was used to derive the IR DDR of the potentials that enter
C terms. Right below we detail which potentials were required.

Computation of C terms

As we can see from Eq. (6.62), we have to perform a Taylor expansion of the source of the
potentials at spatial infinity, as r → ∞. The sum ∑

`≥0 ϕ−`+2,q indicates that only the terms in the
source containing 1/r2 and lower order (1/r,r0,r...) will contribute. This condition highly limits the
possible contributions in the given sources of the potentials. As an example, when we look at the
complicated source of the potential T̂ in (B.4i), only the term ∝ V ∂2

t K̂ can contribute because the
other terms are at least of the order 1/r3. Based on this argument, we can list the potentials that
can have a non-zero IR DDR at the location of the bodies. The only potentials required for the DDR
in the IR for C terms are Ŵ at 2PN, Ẑ and X̂ at 1PN, M̂ and T̂ at 0PN.

Regarding the superpotentials, using the previous argument, they should in principle all have a
non-zero IR DDR. However, we can use a parity argument to show that their IR DDR is zero. Indeed,
for each `, the parity of the number of ni entering the expression of ϕ(ε)

−`+2,q in the super-potentials
is the opposite of the parity of `. Considering the fact that the angular integral of an odd number of
ni is zero, we thus see that 〈n̂Lϕ(ε)

−`+2,q〉 always vanishes.
I used the method described above to compute the IR DDR of the 5 potentials {Ŵ , Ẑ, X̂, M̂ , T̂}.

Then, in order to obtain the corrected values of the C terms, I inserted the IR DDR of the potentials
using the method described in Sec. 6.3.1. This yields a long result for DICij which is not interesting
to detail here. The main feature is that it contains poles in 1/ε as well as the cut-off constants r0
and `0 linked to Hadamard and DR.

6.4.2 Computation of the d-dimensional potentials at spatial infinity
The potentials that must be computed in d dimensions at spatial infinity are the ones entering

the NC terms. One could think that we also need to compute the potentials entering Surface terms
at spatial infinity, however it is shown in Sec. 6.4.4 that these terms vanish using DR, so that we
do not need to compute them. The potentials present in the NC terms are: V , Vi, K̂ at 2PN, Ŵij

at 1PN, R̂i, X̂, Ẑij at 0PN and the 4 superpotentials Ψ∂abV
ij , Ψ∂aVb

ij , Ψ∂aV
ijk and Ψ∂t∂aV

ij . Note that V ,
Vi, K̂ and the superpotentials were already known in the whole space in d dimensions so the only
thing that had to be done was to expand them for r → ∞ at consistent order. The source of the
other relevant potentials are divided in two parts: the compact support part, involving the PN source
densities σ, σi and σij, and the non-compact support part which is made of other simpler potentials
(see Eq. (B.4)). Thus the general form of the potentials is the following

�P (x, t) = S(x, t) = SC(x, t) + SNC(x, t). (6.65)

Furthermore, the asymptotic value of the d-dimensional potentials solution of (6.65) at infinity is
given by [133]

M(P ) =
+∞∑
k=0
�̃−1

R M(S)− 1
4π

+∞∑
`=0

(−)`
`! ∂LSL? , (6.66)
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where �̃−1
R is the d-dimensional retarded propagator. The first term corresponds to a particular

solution of (6.65) while the second term corresponds to a homogeneous solution and is fixed by
the matching between the exterior zone and the near zone. This is the same matching as the one
explained in Sec. 3.1.4. Then SL? reads

SL? = k̃

rd−2

∫ +∞

1
dz γ 1−d

2
(z)

[
SL
(
t− zr

c

)
+ SL

(
t+ zr

c

)]
, (6.67)

with

γ 1−d
2

(z) = 2
√
π

Γ
(
− ε

2

)
Γ
(

1+ε
2

)(z2 − 1)−1− ε2 and SL(u) = FP
B

∫
ddx r̃BxLS(x, u). (6.68)

The tilded notation corresponds to the inverse Laplacian regularised by means of the Bε procedure.
After performing a PN expansion of (6.66) and integrating over z, we obtain the more explicit solution
for the multipolar expansion the considered potential as

M(P ) =
+∞∑
k=0

(
1
c

d
dt

)2k

∆̃−k−1M(S)− 1
4π d−1

2

∑
k,`

(−)`
`!(2k)!c2k

Γ
(
d
2 − k − 1

)
Γ
(

1
2 − k

) S
(2k)
L (t)∂Lr2k−1−ε. (6.69)

The two particular solution (on the left) and the homogeneous solution (on the right) are treated
separatly. Furthermore, the computation of the NC part of the potentials is made of two steps: the
particular and homogeneous solutions.

Treatment of the particular solution : the compact part

For the compact part of the potentials, we want to solve at spatial infinity in d dimensions
equations of the form

�PC(x, t) = SC(x, t) = s1(t)δ(d)
1 + 1↔ 2. (6.70)

As in the previous section, we can PN expand the D’Alembertian using (6.56). In [83] is given the
solution of ∆u = −4πδ(d)

1 with u = k̃r2−d
1 . Using this result and Eqs. (6.72), we find that the solution

of Eq. (6.70) reads

M(PC) = − 1
4π

Γ
(

1+ε
2

)
Γ
(

1−ε
2

)
π

1+ε
2

+∞∑
k=0

s
(2k)
1 (t)

(2c)2kk!
r2k−1−ε

Γ
(

1−ε
2 + k

) + 1↔ 2. (6.71)

The sum is truncated depending on the required PN order.

Treatment of the particular solution : the non-compact part

As shown in (6.69), the first step to deriveM(PNC) consists in expanding SNC at spatial infinity.
Then we need to integrate the inverse Laplacians ofM(SNC) using the very useful Matthieu formula
(valid ∀α ∈ C \ {`− 2,−d− `}) [83]

∆−1rα = rα+2

(α + 2)(α + d) , (6.72a)

∆−krα =
Γ
(
α
2 + 1

)
Γ
(
α+d

2

)
Γ
(
α
2 + k + 1

)
Γ
(
α+d

2 + k
) rα+2k

22k , (6.72b)

∆−1 (n̂Lrα) = n̂Lr
α+2

(α− `+ 2)(α + `+ d) . (6.72c)

Note that in the cases where α ∈ {` − 2,−d − `}, these formulae diverge. These problems have
been dealt with by introducing of a regulator η that we added to the power of r. We performed the
integration and then took the limit η → 0.
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Treatment of the homogeneous solution

All requested potentials but X̂ have at most quadratic sources. This means that their NC source
is a sum of products of derivatives of the simple C potentials V , Vi and K̂ (see Eq. (B.4)). In order
to compute SL that enters in (6.69), we need to derive integrals of the form∫

ddx xLrα1 r
β
2n

P
1 n

Q
2 . (6.73)

No ready-to-use closed form of this integral was known in d dimensions when we started the compu-
tation.5 However, (6.73) can be simplified by substituing xi = yi1 + r1n

i
1 and ni2 = (r12n

i
12 + r1n

i
1)/r2

which only requires to know the value of the integral∫
ddx rα1 r

β
2n

L
1 . (6.74)

Again, the value of this integral was only known for L = 0 so we used the algorithm explained in
App. A.6 of [155]. The trick is to project ni1 onto ni12

ni1 = r2
2 − r2

1 − r2
12

2r1r12
ni12 + ni⊥ (6.75)

where ni⊥ is the compotent of ni1 orthogonal to ni12. The angular integral over a given number of ni⊥
is known and given in the same paper. In the end we can reduce all the integrals to the following
one ∫

ddx rα1 r
β
2 = π

d
2

Γ
(
α+d

2

)
Γ
(
β+d

2

)
Γ
(
−α+β+d

2

)
Γ
(
−α

2

)
Γ
(
β
2

)
Γ
(
α+β+2d

2

) rα+β+d
12 , (6.76)

This allowed us to compute the homogeneous solutions of (6.65) for quadratic-sourced potentials.

The particular case of the potential X̂

One term in the source of X̂ is not quadratic, it reads Sc = Ŵij∂ijV . This term has two
contributions: a NC and a distributional part.

For the NC part, the quantity SL entering (6.69) reads SL = FP
∫

ddx r̃BxLŴij∂ijV . We can
compute this integral by defining the STF version ŜL of SL on its L indices. The link between SL
and ŜL is very simple. This allows to use the super-potential method and derive exactly SL:

ŜL =
∫

ddx
(
−4πG

(
σij − δij

σkk
d− 2

))
Ψ∂ijV
L − d− 1

2(d− 2)

∫
ddx ∂iV ∂jVΨ∂ijV

L . (6.77)

Since we are using DR, we can ignore the surface terms (not written here) induced by the super-
potential method. After computing explicitely ŜL, we inserted its value in (6.69) and added it to the
homogeneous solution of the quadratic source.

Regarding the distributional part, using (6.25) in d dimensions and (6.71), we have to add to the
NC part of X̂ the quantity

X̂Distr = Gm1(Ŵ )1

3 + ε

(
1 + ε

2(1 + ln(q̄))
)

+ 1↔ 2, (6.78)

where q̄ = 4πeγE and γE is the Euler constant.
We performed all the computations for the required potentials. The next step is to compute the

IR DDR for the NC terms using the expressions of the potentials.
5By the time we were doing the computations, Guillaume Faye managed to find an analytical expression for this

integral, see [11], but we did not use it.
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6.4.3 Computation of NC terms
In this section we regularise the IR divergences of three-dimensional volume integrals of the type

(6.37). We compute the difference between two IR regularisations: the so-called Bε regularisation [38]
which is our target, and the B regularisation in 3 dimensions. The Bε regularization considers the
integral (6.37) in d = 3 + ε dimensions, with F (d) the analogue of the function F in d dimensions,
and applies to it the FP procedure with parameter B namely

IBεR = FP
B=0

∫
r>R

ddx
`ε0

(
r

r0

)B
F (d)(x) . (6.79)

We have inserted the characteristic length scale `0 associated with dimensional regularisation, as well
as an arbitrary constant r0 associated with the FP procedure. The Bε regularisation consists of
applying first the FP process when B → 0, and second the usual DR when ε → 0. On the other
hand the B regularisation considers simply the integral I+

R in 3 dimensions (6.37) and just applies
the FP at B = 0. The decomposition of F (d) is given in (6.59). The coefficients which can contain
poles ∝ 1/ε, i.e. are of the type

ϕ(ε)
p,q(n) = 1

ε
ψ(−1)
p,q (n) + ψ(0)

p,q(n) +O(ε) . (6.80)

The coefficients of the pole ψ(−1)
p,q naturally are defined with no dependence upon ε, while the ψ(ε)

p,q

are finite when ε→ 0. We furthermore assume that in 3 dimensions the function F is finite. Posing
thus (for ∀p) ∑

q

ψ(−1)
p,q (n) = 0 ,

∑
q

ψ(0)
p,q(n) = ϕp(n) ,

∑
q

q ψ(−1)
p,q (n) = −ϕ`p(n) . (6.81)

we get the following logarithmic corresponding expansion in 3 dimensions

F (3) =
∑
p

rp
[
ϕp(n) + ϕ`p(n) ln

(
r

`0

)]
. (6.82)

The difference between the two regularisations is now computed in the limit where ε→ 0. We pose

DI IR ≡ IBεR − I+
R . (6.83)

Since in the limit ε → 0 the complementary integrals over r < R are finite and agree, the differ-
ence (6.83) should be independent on the cut-off scale R. Using the relations (6.81) linking the d
and 3 dimensional quantities, we obtain

DI IR = −
∑
q 6=−1

1
ε

[
1

q + 1 + ε ln
(
r0

`0

)] ∫
dΩd−1 ϕ

(ε)
−3,−q(n)− 1

2 ln2
(
r0

`0

) ∫
dΩϕ`−3(n) +O (ε) , (6.84)

where dΩd−1 denotes the (d − 1)-dimensional volume of the sphere. Indeed we find that modulo
O(ε)-terms this difference does not depend on the cut-off scale R. Note that the value q = −1 has to
be excluded from the sum so that, unlike in the UV case, we did not have to check that 〈ϕ(ε)

−3,−1〉 = 0.
A last use of (6.81) gives the compact form

DI IR = −
∑
q 6=−1

1
ε

1
q + 1

(
r0

`0

)(q+1)ε ∫
dΩd−1 ϕ

(ε)
−3,−q(n) +O (ε) . (6.85)

For the computation of the IR DDR of NC terms, we inserted the expressions of the d-dimensional
potentials derived in Sec. 6.4.2 and applied (6.85) on the source of the NC terms. In the end, as for
the C terms, we find a result for DINCij composed of a pole in 1/ε and a finite part.
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6.4.4 Computation of the extra term and surface terms
The reason why both extra term and surface terms are regrouped in this section is that they do

not contribute with DR in the IR. In fact, they both vanish for the same reason that we are going
to see below.

Extra term

Recall that the extra term in the definition of IL is the one proportional to the regulator B and
to ε. This induces a more specific constraint on the terms in the multipolar expansion of the source
that can contribute using the Bε procedure. Indeed, the extra term reads for ` = 2 (see the last line
of (6.1))

Iextraij = 1
c2

+∞∑
k=0

(
1
c

d
dt

)2k

FP
B=0

λkB(d− 3)
∫

ddxr̃B r2k−2x̂ijaxbΣab (6.86)

where λk is a coefficient depending on the dimension and k6. We set `0 = 1 because it is not relevant
here. Once again, we can split the integral into two parts: for r < R and r > R, R being an
arbitrary radial constant. It was shown that in the UV, so the part for r < R, this integral did not
contribute. Consequently, we can restrict ourselves to the IR, for r > R. For R sufficiently large,
we can perform a multipolar decomposition of the source Σij reading

Σab =
∑
p≥0

q1∑
q=q0

rp+qεσ
(p,q)
ab . (6.87)

With this decomposition in hand, we can split the integral into a radial and an angular one and
integrate over r using the Bε procedure. This leads to the final result for the extra term

Iextraij = 1
c2

+∞∑
k=0

λk

(
1
c

d
dt

)2k ∫
dΩd−1n̂ijanbσ

(−5−2k,−1)
ab . (6.88)

This means that only the terms in the source that admit a coefficient q = −1 can contribute. Remind
that the source is formed of products of derivatives of potentials. All the potentials admit at most
q = −1 and their derivatives don’t affect this coefficient. This means that a product of potential will
always contain q = −2 or less. In other words, due to the structure of Σab, Iextraij vanishes and doesn’t
need to be computed. Also note that for the computation of the mass quadrupole up to 4PN, Σab

was only required at 2PN because it contains a factor 1/c4 in the third term of (6.1). However, the
extra term contains a factor 1/c2, thus we would have had to compute it up to 3PN. At this order,
more complicated potentials appear and their computation would have been much harder than the
ones needed in the previous sections. In the end, since Iextraij = 0, we can drop DIextraij from (6.54).

Surface terms

The reasoning for the two types surface terms, generally of the form (6.45) and (6.49)7, is exactly
the same. The integrals are already to be considered at spatial infinity. We first perform a multipolar
expansion of the source, integrate over the radial variable and find a resulting angular integral in
which only the coefficients of the source containing q = −1 can contribute. Since their source is

6More exactly, its expression is

λk = − 1
22k−1k!

(d+ 2)
d(d− 2)(d+ 4)

Γ
(
d
2 + 3

)
Γ
(
d
2 + 3 + k

) .
7In these definitions, d3x has to be replaced by ddx.
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made of products of potentials, coefficients with q = −1 cannot appear and thus these integrals are
exactly 0. Hence, in order to get the correct value of the dimensional-regularised mass quadrupole,
we have to substract from (6.52) the values of the Surface terms so that

DISurfij = −ISurf,Hadij . (6.89)

In Sec. 6.2.2 and Sec. 6.2.3, we explained how we transformed NC terms involving complicated
potentials (such as M̂ij) into simpler NC terms plus C and Surface integrals. In fact, all the potentials
that start parametrizing the PN metric at 3PN and 4PN, are not contained in the NC terms but
in the Surface terms. The argument above showed that the Surface terms do not contribute when
treated with DR. However, in [9], we used Hadamard partie finie for the IR and in this regularisation
the Surface terms do not vanish. Though, the very complicated computation of these terms made by
Tanguy Marchad, François Larrouturou and Sylvain Marsat was not in vain, but crucial as we will
see in Sec. 6.4.6.

6.4.5 Applying the IR shift
We recall that the shift on the bodies’ trajectories were derived in the conservative sector in order

to remove the poles in the EoM [134]. This shift has to be performed in the radiative sector in order
to remain consistent. In the end, the contribution of the shift to the mass quadrupole is

DIshiftij = 2m1y
〈i
1 η

j〉
1 + 1↔ 2 +O

( 1
c10

)
, (6.90)

where the explicit expression of the shift is given in Eq. (E.4). Note that the shift starts at 4PN.

6.4.6 Final result for the source mass quadrupole
In the previous section, we computed all the different contributions to the IR DDR for the mass

quadrupole. We have not given explicitely the expressions of DICij and DINCij because their expressions
are quite long. The IR DDR reads

DIIRij = DICij +DINCij − ISurf,Hadij +DIshiftij . (6.91)

In the case of the UV DDR, we added the UV contributions (without shift) to the Hadamard
regularised mass quadrupole, the result contained a pole in 1/ε that was exactly canceled by the UV
shift. However, after computing the IR difference (without applying the shift), we found a pole at
3PN. This pole cannot be canceled by the IR shift because it is a 4PN quantity. In other words,
a pole remained in the mass quadrupole at 3PN. After a lot of consistency checks, we found out
that this pole was correct and had to be canceled later on. We investigated the non-linear effects
arising from the difference between the source and radiative multipoles and we found out that the
tail-of-tail effects that arise at 3PN had to be computed in d dimensions. François Larrouturou and
Luc Blanchet computed the DDR of the tail-of-tail effects, that we call here DUtail-of-tail

ij and this
contribution canceled exactly the IR DDR at 3PN

DIIRij |3PN = −DUtail-of-tail
ij |3PN (6.92)

= 214
105

G2M2I(2)
ij

2c6

[
Πε −

246299
22470

]
− 214

105
G2MP〈iPj〉

c6

[
Πε −

252599
22470

]
+O

( 1
c8

)
,

where Pi = m1v
i
1 +m2v

i
2 is the Newtonian linear momentum of the system and Πε = 1

ε
− 2 ln

(
r0
√
q̄

`0

)
.

The linear momentum vanishes in the CoM frame, thus this cancelation is exact in any harmonic
coordinate frame. In the end, we have shown that the expression of the 3PN mass quadrupole
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computed with Hadamard for the IR is exactly equal to the 3PN mass quadrupole computed with
DR for the IR. However, at 4PN, other types of non-linear effects [156, 11] appear and we expect to
show that the poles cancel out in the end to give a finite result when d→ 3

DIIRij |pole = −DUnon-lin
ij |pole. (6.93)

Now we can wonder if we expect that the finite part should cancel. The rest of this paragraph is only
a speculation and I will give my opinion. A priori, if we suppose that the computation should behave
as in the UV, it shouldn’t be the case because in the UV the poles vanish but a finite part remains.
However, the problem is different here. The IR regularisation had to be introduced at the level of
(3.14) in Sec. 3.1.4 for the first time. A priori, the general reasoning of the matching should be
independent of the choice of regularisation scheme employed. Assuming this statement, we can raise
the question: why did Hadamard regularisation fail in the IR ? Two answers are possible: either some
subtelties of this regularisation were not understood at the time of the computations, either it is the
regularisation itself that, due to some bad properties, could not work. Since I did not perform the
computations in the conservative sector at 4PN, I cannot form a final opinion. However, I think that
if the finite part cancels at 4PN the same way that it did at 3PN, namely DIIRij = −DUnon-lin

ij , then it
would show that Hadamard regularisation would have given the same result as DR in the conservative
sector. This is because the regularisation scheme has to be consistent in both sectors. This would
imply that a mistake in the computations occured in the treatment of subtelties in Hadamard that
can be tricky. On the contrary, if we find that the finite part does not cancel, we could not have used
another regularisation than DR and thus the computation failed due to the inconvenient properties
of Hadamard. Unfortunately, as we do not know what to expect, this cannot constitute a check the
way it did at 3PN because at this order we had to find the cancelation.

6.4.7 The IR DDR of the mass octupole
As mentioned in the introduction, I computed entirely the 3PN current quadrupole Jij and re-

computed the 3PN mass octupole Iijk. The mass octupole was already published in [148] in which
they used Hadamard for the treatment of IR divergencies. I confirmed the obtained value with
Hadamard for the IR and I also computed for the first time its IR DDR. On the other hand, François
Larrouturou computed the DDR for the tails-of-tails. After putting together our results, we have
shown that, exactly as for the mass quadrupole, the contributions canceled out up to 3PN and they
are of the form

DIIRijk = −DUtail-of-tail
ijk (6.94)

= 13
21
G2M2I(2)

ijk

c6

[
Πε −

9281
1365

]
− 26

7
G2MI(1)

〈ijP
(
k〉

c6

[
Πε −

28774
4095

]

+6
5
G2MI(2)

〈ij I
(
k〉

c6

[
Πε −

63421
3780

]
+ 46

35
G2I〈iPjPk〉

c6

[
Πε + 161597

14490

]
+O

( 1
c8

)
,

where Ii = m1y
i
1 + m2y

i
2 is the Newtonian mass dipole (that vanishes in the CoM). As well as for

the mass quadrupole, and also current quadrupole (see Sec. 7.2.4), the cancelation shows that the
Hadamard regularisation for the IR is equivalent to DR and thus that the mass octupole has been
computed with the correct method.
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Chapter 7

The 3PN radiative current quadrupole
and the associated gravitational
amplitude mode

As mentioned in the introduction of Part III, in order to get the 4PN flux, we need to derive
the radiative current quadrupole at 3PN order. Even though the computation of the radiative mass
quadrupole is not yet achieved, I derived the full radiative current quadrupole at 3PN order. To do
so, we needed to compute the source current quadrupole. However, the generalisation in d dimensions
of the source current quadrupole is more complicated than the one for the mass quadrupole. In 3d,
the STF property of the multipole moments plays a crucial role in this formalism, since it guaranties
that they are linearly independent. This is the case because they are irreducible tensors, in the sense
that they belong to irreducible representations of the rotation group SO(3). Now, the irreducible
decomposition of vector and tensor fields in a generic space of dimension d is more complicated
than in 3 dimensions. Indeed, irreducible tensors in d dimensions are exactly the trace-free tensors
that have Young-tableau symmetries (elements of SO(d) representations). When d = 3, because of
identities ensuing from the fact that antisymmetrization over more than three indices yields zero,
any Young tableau can be written as the tensor product of STF and anti-symmetric Levi-Civita
tensors. However, for generic d, notably due the impossibility of generalizing the Levi-Civita tensor,
all Young tableaux must a priori be considered.

Once the current quadrupole moment was properly defined, I applied the techniques described in
Chapter 6 to compute it with 3PN accuracy in the case of compact binaries without spins. The result
is presented in the CoM frame and for quasi-circular orbits. Next, adding corrections coming from
non-linear multipole interactions (most notably the tails-of-tails already known from [148]), I obtained
the radiative current quadrupole moment measured at future null infinity. The full physical content
of this moment is encoded into the gravitational amplitude mode (`,m) = (2, 1)1, which is provided
with 3PN relative accuracy, corresponding to 3.5PN accuracy in the full waveform. The perturbative
limit or small mass-ratio limit is an important test for the mode, and found to agree with the result
from black-hole perturbation theory [157, 158, 159]. The expression for this current quadrupolar
mode is ready for comparison with existing numerical relativity calculations such as [160, 161].

In Sec. 7.1 is presented the d-dimensional generalisation of the source current quadrupole (3.31b)
following [10]. In Sec. 7.2, are detailed the results for the computation of the current quadrupole
moment Jij up to 3PN order. Sec. 7.3 is devoted to the computation of the radiative current
quadrupole Vij defined at future null infinity, and the corresponding GW mode h21, given for quasi-
circular orbits by Eq. (7.28). Finally, in Sec. 7.4, we perform a partial test of our result by checking
the transformation law of the quadrupole moment Jij under a constant spatial shift.

1We recall that a quantity can be decomposed in the spherical harmonics basis. Then the components in this basis
is indexed by two numbers: the azimuthal ` and the polar m. See Sec. 7.3 for more details.
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7.1 The current multipole moments in d dimensions
In [10], we presented the full d-dimensional generalisation of the expression of the linearized metric

hµν(1). As in 3d, explained in Sec. 3.1.1, the metric can be split into a “canonical” metric kµν(1) having
Thorne’s form (see Eqs. (8.12) in [79]), plus a linearized gauge transformation with gauge vector ϕµ(1)

hµν(1) = kµν(1) + ∂µϕν(1) + ∂νϕµ(1) − η
µν∂λϕ

λ
(1) . (7.1)

In d dimensions, the canonical metric is parametrized by means of three irreducible moments IL, Ji|L
and Kij|L, as

k00
(1) = − 4

c2

+∞∑
`=0

(−)`
`! ∂LĨL , (7.2a)

k0i
(1) = 4

c3

+∞∑
`=0

(−)`
`!

[
∂L−1

˙̃IiL−1 + `

`+ 1∂LJ̃i|L
]
, (7.2b)

kij(1) = − 4
c4

+∞∑
`=0

(−)`
`!

[
∂L−2

¨̃IijL−2 + 2`
`+ 1∂L−1

˙̃J(i|L−1j) + `− 1
`+ 1∂LK̃ij|L

]
, (7.2c)

where the underline notation denotes indices that are excluded from the symmetrization. The tilded
quantities in the above equations are defined for an arbitrary function of time A by

Ã(r, t) = k̃

rd−2

∫ +∞

1
dz γ 1−d

2
(z)A(t− zr) , (7.3)

where k̃ = Γ(d2 − 1)/π d
2−1 and

γ 1−d
2

(z) ≡ 2
√
π

Γ(3−d
2 )Γ(d2 − 1)

(
z2 − 1

) 1−d
2 . (7.4)

Following the d-dimensional generalisation of the reasoning presented in Sec. 3.1.4 and Sec. 3.1.5,
Guillaume Faye obtained the explicit expressions of the three irreducible moments entering (7.2). Of
course, the expression of the mass-type moment displayed in (6.1) was recovered. It is STF in all its
indices so that its symmetry is given by a symmetric Young tableau (with multi-index L = i1 · · · i`)

IL = i` ... i1 . (7.5)

Then, the proper generalization of the current-type moments in d dimensions, which we want to
compute, was found to be

Ji|L = A
ii`
FP
B=0

∫
ddx r̃B

−2
[
x̂L Σi

[`] −
`(2`+ d− 4)

(`+ d− 3)(2`+ d− 2)δ
i〈i`x̂L−1〉aΣa

[`]

]
(7.6)

+ 2(2`+ d− 2)
c2(`+ d− 1)(2`+ d)

[
x̂aL Σ̇

ia

[`+1] −
`(2`+ d− 4)

(`+ d− 3)(2`+ d− 2)δ
i〈i`x̂L−1〉abΣ̇

ab

[`+1]

] .
Here, Aii` represents the anti-symmetrization with respect to the pair of indices ii` (with the factor 1

2
included). Remark that the second terms inside the square brackets correspond to the d-dimensional
trace of the first terms. The sources Σ, Σi and Σij are defined in Eq. (6.2). Note that, in three
dimensions, the quantity Ji|L is not the usual current mutlipole that enters the definition of the flux.
In fact, Ji|L is the dual of this quantity and they are linked by the relation (7.9).

The tensor Kij|L appearing in kij(1) vanishes in 3 dimensions. This can be checked by counting the
number of independent components of Kij|L, which follows from the King’s rule [162] and is given by

100



Eq. (A6b) in the App. A of [10]. As it is proportional to d−3, there is no independent component in
3 dimensions. This is similar to what happens for the Weyl tensor, which does not exist either in 3
dimensions. In fact, the tensor Kij|L for ` = 2 has exactly the same trace-free property, symmetries,
and number of independent components as the Weyl tensor. Thus, we do not need to compute it
from its explicit expression given in (2.34) of [10].

The symmetries of the moments Ji|L and Kij|L are given by the mixed Young tableaux [163, 164,
165]

Ji|L = i` i`−1 ... i1

i

, Kij|L = i` i`−1 i`−2 ... i1

j i

, (7.7)

respectively, with the convention that the indices are symmetrized over lines before being antisym-
metrized over columns. It is convenient to introduce the following specific notation that allows
reconstructing the symmetries of Ji|L given `+ 1 indices:

Sym
i|L
≡ Aii`TFiL STF

L
, (7.8)

where TF is the operator taking the trace-free part of a tensor. As an example, the first line of (7.6)
can be constructed, starting from xLΣi

[`], by taking its STF part on the indices L, then removing the
traces of the resulting object in d dimensions and, finally, anti-symmetrizing on {i, i`}. Thus, Ji|L is
trace-free, STF with respect to L− 1 = i1 · · · i`−1 and anti-symmetric with respect to the pair {i`, i};
on the other hand, Kij|L is trace-free, STF with respect to L − 2 = i1 · · · i`−2 and anti-symmetric
with respect to both pairs {i`, j} and {i`−1, i}.

The ordinary STF mass-type moment in 3 dimensions, say I[3]
L , is simply recovered as the limit

I[3]
L = limd→3 IL. For the ordinary STF current-type moment in 3 dimensions, J[3]

L , we have

lim
d→3

Ji|L = εii`a J
[3]
aL−1 ⇐⇒ J[3]

L = 1
2 εab(i` lim

d→3
Ja|bL−1) , (7.9)

where εabi is the usual Levi-Civita symbol in 3 dimensions (we recall that underlined indices being
excluded from symmetrization). Notice that J[3]

L , as recovered from (7.9), not only is symmetric in
its indices L but is also automatically trace-free.

Furthermore, the gauge vector ϕµ(1) is also explicited with respect to some other moments as
in Eq. (3.11). They are generalized in d dimensions but were not needed to be derived, their 3d
expression is sufficient for the derivation of the 4PN phase. However, the value of the gauge vector
in terms of the gauge moments is displayed in Eq. (2.37) of [10].

7.2 The current quadrupole moment of compact binaries

7.2.1 Computation of the current quadrupole
I computed Jk|ji the expression (7.6) for ` = 2 up to the 3PN order. Remember that Jk|ji is

the dual of the physical current quadrupole moment Jij but remark also that it is not symmetric
on {i, j}. I employed essentially the same set of techniques as for the computation of the mass
quadrupole moment at the 4PN order presented in Sec. 6.3. All calculations were performed with
Mathematica supplemented with the xAct library [13]. Here is a reminder of the method (also used
for the mass quadrupole):

• I expressed Jk|ji in terms of integrals of potentials by inserting the sources (6.2) into (7.6). I
then simplified the integrand as much as possible using integration by part, together with a set
of relations between potentials (see Sec. 6.2.3).
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• The resulting expression for Jk|ji is divided into three types of terms: compact support terms,
non-compact support terms and surface terms at spatial infinity (when r → +∞ with fixed t).

• The required potentials were already known from the computation of the 4PN mass quadrupole
except for the potential R̂i that needed to be known at 1PN instead of leading order.

• Compact support terms are calculated directly in d dimensions, as in Sec. 6.3.1, using the
d-dimensional regularized potentials at the source points 1 and 2 derived in [9].

• Non-compact support terms are first computed in 3 dimensions; the difference between dimen-
sional and Hadamard regularisations in the UV is obtained in a second stage using (6.43), and
added to the 3-dimensional result. This is discussed in Secs. 6.3.2 and 6.3.3.

• For one particular non-compact support term (involving the non-linear potential Ŷi defined in
(B.4h)), I employed the method of super-potentials explained in Sec. 6.2.2. The computation
of this term is detailed in Sec. 7.2.2.

• All derivatives of potentials are understood as Schwartz distributional derivatives [152], i.e.,
we apply the Gel’fand-Shilov formula in d dimensions [151] (see Eq. (6.27)). This gives rise to
distributional terms that are treated exactly as compact terms.

• However, the IR divergences are treated using the Hadamard partie finie procedure with regu-
lator r̃B in 3 dimensions (see Sec. 7.2.4 for a justification of this point).

• The result for Jk|ji after integration contains a pole in 1
d−3 : the last step consists in applying a

shift, given in Eq. (E.1), on the bodies’ positions; when substituting the renormalized position
variables to the bare ones, the pole in Jk|ji cancels out.

• Finally, we can take the limit d → 3 using (7.9) in order to get the renormalized current
quadrupole moment Jij displayed in Eq. (7.15).

The investigation of the current moment in d dimensions in Sec. 7.1 is essential to treat the UV
divergences with DR, which incidentally is the only way to give a full meaning to distributional
derivatives. However, the calculation of the current quadrupole limited to 3PN order does not
require corrections from DR for the IR divergences (see Sec. 7.2.4). We thus treat those in the
source moment with the Hadamard partie finie regularisation and add the non-linear corrections
due to tails and tails-of-tails as computed in 3 dimensions. We have shown that, as for the 3PN
mass quadrupole and octupole, the IR corrections in the source moment computed in pure DR are
cancelled by corresponding UV corrections coming from the tails-of-tails in d dimensions, yielding
the equivalence of Hadamard partie finie and DR for the IR divergencies at 3PN order.

7.2.2 Example of the super-potential method
Let us illustrate one computational aspect concerning the use of “super-potentials” already de-

veloped in Sec. 6.2.2. One non-compact support term to be computed in the current quadrupole
moment Jk|ji reads

JŶk|ji ≡ −
4

πGc6
d− 1
d− 2 Sym

k|ji
FP
B=0

∫
ddx r̃Bxij ∂kŶa ∂aV , (7.10)

where Sym is defined in (7.8). It involves the difficult non-linear potential Ŷa obeying a Poisson
equation ∆Ŷa = Ŝa at leading order (see (B.4h) for the full definition). While the source term Ŝa
is known and relatively easy to manage, no closed-form expression is available for the potential Ŷa
itself, even in 3 dimensions. On the other hand, V is a simple linear potential with compact support:
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∆V = −4πGσ. By means of an integration by parts taking advantage of the symmetries of Jk|ji (the
all-integrated term being zero by analytic continuation in B), we transform this term into

JŶk|ji = 4
πGc6

d− 1
d− 2 Sym

k|ji
FP
B=0

∫
ddx r̃Bx̂ij Ŷa ∂kaV . (7.11)

The idea behind introducing super-potentials is that the solution of the equation ∆Ψ∂kaV
ij = x̂ij ∂kaV

(where x̂ij ≡ x〈ij〉 is STF) is known in analytic closed-form in terms of the super-potentials of V ,
namely the Poisson-like potentials V2k satisfying the hierarchy of equations ∆V2k+2 = V2k, together
with V0 ≡ V . This solution,

Ψ∂kaV
ij = x〈ij〉 ∂kaV2 − 4x〈i∂j〉kaV4 + 8∂〈ij〉kaV6 , (7.12)

is valid in the sense of distributions and its expression holds in any d dimensions (see Eq. (6.17)).
The value of this superpotential was already known from the computation of the mass quadrupoole.
Then, we can transform the term (7.11) using (6.18) into the more tractable form

JŶk|ji = 4
πGc6

d− 1
d− 2 Sym

k|ji
FP
B=0

∫
ddx r̃B

[
Ψ∂kaV
ij Ŝa + ∂b

(
∂bΨ∂kaV

ij Ŷa −Ψ∂kaV
ij ∂bŶa

)]
. (7.13)

Here, the first term is straightforwardly computed because we know the source Ŝa of the potential Ŷa.
As for the second term, which is a surface term, it can be computed directly in 3 dimensions since it
does not involve UV divergences. It depends only on the expansions of Ŷa and the superpotential at
spatial infinity, when r → +∞. The expansion of Ŷa can be determined directly from the source term
Ŝa, without having to control Ŷa all-over the space. As a check of the result, I have also calculated
J Ŷk|ji using an alternative form in which I did not perform the integration by part of (7.11). It reads

JŶk|ji = − 4
πGc6

d− 1
d− 2 Sym

k|ji
FP
B=0

∫
ddx r̃B

{
4xi∂aV4∂jkŜa + xij∂aV2∂kŜa (7.14)

+ ∂l

[
xij∂alV2∂kŶa − ∂aV2∂l(xij∂kŶa) + 4xi∂alV4∂kjŶa − 4∂aV4∂l(xi∂kjŶa)

]}
,

which is derived directly by substituting ∆Ŷa to Ŝa, expanding the derivatives by means of the Leibniz
rule, and resorting again to the properties of the symmetry operator Sym. We see that the quantity
V6 does not appear in (7.14), thus the check on the value of this integral is robust. The result of this
integral is quite long and is not relevant to be displayed here.

7.2.3 Final result
The final expression of the 3PN current quadrupole in a general frame is obtained, as mentioned

above, by applying the UV shift (E.1), taking the 3 dimensional limit and, finally, using (7.9) to come
back to the usual current moment Jij. I have checked that the symmetry operations (7.8) commute
with the computation of the difference between the dimensional and Hadamard regularisations. The
expression of the final current quadrupole is quite long; so it is presented only in the CoM frame.2
For general orbits, we obtain

Jij = −νm∆
[
AL〈ixj〉 +B

(vx)
c2 L〈ivj〉 + C

Gm

c3 L〈ivj〉
]

+O
( 1
c7

)
. (7.15)

2Notation is as follows: The relative position and velocity of the two particles (in harmonic coordinates) are
xi = yi1 − yi2, vi = dxi/dt = vi1 − vi2; the distance between the two particles r = |x|; the masses m1 and m2, the total
mass m = m1 +m2, the symmetric mass ratio ν = m1m2/m

2 and the mass difference ratio ∆ = (m1−m2)/m; finally,
we pose Li ≡ εiabxavb and (vx) = vixi.
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The coefficients A and B describe the conservative effects up to the 3PN order; A also includes a
2.5PN dissipative term, while the coefficient C is purely dissipative. We have

A = 1 + 1
c2

[(13
28 −

17
7 ν

)
v2 + Gm

r

(27
14 + 15

7 ν
)]

+ 1
c4

[(29
84 −

11
3 ν + 505

56 ν
2
)
v4 + Gm

r3

(
− 5

252 −
241
252ν −

335
84 ν

2
)

(vx)2

+ Gm

r

(671
252 −

1297
126 ν −

121
12 ν

2
)
v2 + G2m2

r2

(
− 43

252 −
1543
126 ν + 293

84 ν
2
)]

+ 1
c5

[
−62

7
G2m2

r3 ν(vx)
]

+ 1
c6

Gm
r3

( 109
11088 −

2687
1232ν −

13507
11088ν

2 + 31387
924 ν3

)
(vx)2v2

+ G2m2

r2

(166931
27720 −

273443
5544 ν + 9283

264 ν
2 − 145669

5544 ν3
)
v2

+
( 709

2464 −
35059
7392 ν + 179615

7392 ν2 − 73517
1848 ν

3
)
v6

+ Gm

r5

(
− 67

2464 + 1667
2464ν + 7813

7392ν
2 − 3137

462 ν
3
)

(vx)4

+ Gm

r

(74083
22176 −

201835
7392 ν + 803783

22176 ν
2 + 25621

462 ν3
)
v4

+ G2m2

r4

(
−191

560 −
1909
336 ν −

9073
144 ν

2 − 13169
504 ν3

)
(vx)2

+ G3m3

r3

(23443
7425 + 79067

9240 ν + 123
128π

2ν − 120185
5544 ν2 + 85031

16632ν
3

− 214
105 ln

(
r

r0

)
− 22ν ln

(
r

r′0

)) , (7.16a)

B = 5
28 −

5
14ν

+ 1
c2

[( 25
168 −

25
24ν + 25

14ν
2
)
v2 + Gm

r

(103
63 + 337

126ν −
173
84 ν

2
)]

+ 1
c4

[( 305
2464 −

11815
7392 ν + 49025

7392 ν
2 − 32905

3696 ν
3
)
v4

+ Gm

r3

( 1
396 −

3053
1848ν + 14605

5544 ν
2 + 967

462ν
3
)

(vx)2

+ Gm

r

(193
99 −

6095
1848ν −

17783
1386 ν

2 + 941
66 ν

3
)
v2

+ G2m2

r2

(164023
18480 + 98485

3696 ν + 194041
11088 ν

2 − 41215
5544 ν

3
)]
, (7.16b)

C = 4ν
5c2

(
54
7
Gm

r
− v2

)
. (7.16c)

Note the dependence on two regularisation scales r0 and r′0 through logarithms in the coefficient
A. The scale r0, which enters a logarithm with numerical prefactor coefficient βJ = −214

105 , is due
to the IR divergences of the multipole moment. This constant will be found to properly cancel out
in the final expression of the GW mode h21 in Sec. 7.3. In the traditional PN approach adopted
here, the constant r0 is canceled by the same constant that is present in the tail-of-tail correction
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of the radiative current quadrupole (see Eq. (7.20)). As for r′0, it is a UV scale and it also properly
cancels out when we express the orbital separation r of the particles in terms of the invariant orbital
frequency ω or, equivalently, the PN parameter x (see Eq. (7.28)). Following the discussion in Sec. VI
(footnote 10) of [9], we identify for simplicity the two a priori independent UV scales associated with
the two particles, respectively, i.e., we set r′0 ≡ r′1 = r′2.

In the case of quasi-circular orbits, we get (with γ ≡ Gm/(rc2))

Jij = −νm∆
[
Acirc L

〈ixj〉 + Ccirc
Gm

c3 L〈ivj〉
]

+O
( 1
c7

)
, (7.17a)

Acirc = 1 + γ
(67

28 −
2
7ν
)

+ γ2
(

13
9 −

4651
252 ν −

ν2

168

)

+ γ3
(2301023

415800 −
214
105 ln

(
r

r0

)
+
[
−243853

9240 + 123
128π

2 − 22 ln
(
r

r′0

)]
ν + 44995

5544 ν
2 + 599

16632ν
3
)
, (7.17b)

Ccirc = 188
35 ν γ . (7.17c)

7.2.4 The IR DDR for the current quadrupole
As for the mass quadrupole and octupole moments, we wanted to confirm that using the Hadamard

regularisation for the IR was equivalent to DR. I had all the required potentials developed at the
correct order except for the potential R̂i that was only known at Newtonian order while it was re-
quired at 1PN for the current quadrupole. After computing the extra potential, I performed the
computation of the IR DDR for the source current quadrupole following the methods detailed in 6.4.
On the other hand, François Larrouturou computed the DDR for the tails-of-tails and we showed
that the two effects cancel out:

DJIRi|jk = −DVtail-of-tail
i|jk (7.18)

= Sym
i|jk

107
105

G2M2J(2)
i|jk

c6

[
Πε −

54989
22470

]
+ 428

105
G2MI(2)

ij P
(
k

c6

[
Πε −

229289
22470

]

+106
7
G2MI(3)

ij I
(2)
k

c6

+O
( 1
c8

)
,

where we remind Πε = 1
ε
− 2 ln

(
r0
√
q̄

`0

)
. Even though the IR DDR computation I performed has

not been double checked, the exact cancelation with the result of François Larrouturou suggests our
computations are correct. Furthermore, the cancelation, which is highly non-trivial, shows that the
method used to compute (7.15) is correct (in the sense that it is equivalent to DR) and that we were
allowed to use the Hadamard regularisation for the IR.

7.3 The gravitational-wave mode h21 at 3PN order
Let us now review the expression of the radiative current quadrupole moment Vij in terms of the

source moment Jij. The radiative moments parametrize the asymptotic waveform to leading order
1/R in the distance, within the class of radiative coordinates (T,R) such that u ≡ T − R/c is a
null coordinate, or becomes asymptotically null in the limit R → +∞. In terms of the harmonic
coordinates (t, r), we have

u = t− r

c
− 2GM

c3 ln
(
r

cb

)
+O

(1
r

)
, (7.19)
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whereM is the ADM mass of the source and b an arbitrary constant time scale (independent from r0).
Here, we are interested in the radiative current quadrupole moment, linking to the source moments
through a series of non-linear corrections. At 3PN order, we have

Vij(u) = J(2)
ij (u)

+ GM

c3

∫ u

−∞
dτ
[
2 ln

(
u− τ

2b

)
+ 7

3

]
J(4)
ij (τ)

+ G

7 c5

4J(2)
a〈iI

(3)
j〉a + 8I(2)

a〈iJ
(3)
j〉a + 17J(1)

a〈iI
(4)
j〉a − 3I(1)

a〈iJ
(4)
j〉a + 9Ja〈iI(5)

j〉a

− 3Ia〈iJ(5)
j〉a −

1
4JaI

(5)
ija − 7εab〈iJaJ(4)

j〉b + 1
2εac〈i

[
3I(3)
ab I

(3)
j〉bc + 353

24 I(2)
j〉bcI

(4)
ab

− 5
12I

(2)
ab I

(4)
j〉bc + 113

8 I(1)
j〉bcI

(5)
ab −

3
8I

(1)
ab I

(5)
j〉bc + 15

4 Ij〉bcI(6)
ab + 3

8IabI
(6)
j〉bc

]
+ 2G

c5
d2

dt2

[
εab〈i

(
−I(3)

j〉bWa − 2Ij〉bY(2)
a + I(1)

j〉bY
(1)
a

)
+ 3J〈iY(1)

j〉 − 2J(1)
ij W(1)

]

+ G2M2

c6

∫ u

−∞
dτ
[
2 ln2

(
u− τ

2b

)

+ 14
3 ln

(
u− τ

2b

)
− 214

105 ln
(
c(u− τ)

2r0

)
− 26254

11025

]
J(5)
ij (τ) + O

( 1
c7

)
. (7.20)

At this accuracy level, the right-hand side contains the dominant quadratic tail term at 1.5PN
order [74], a number of instantaneous corrections at 2.5PN order involving the physical moments IL,
JL but also the gauge moments WL, YL [147], and the cubic tail-of-tail term at 3PN order [148].
Note the presence of the IR scale r0 in one of the logarithms of the tail-of-tail term in (7.20), with
the same coefficient βJ = −214

105 as in the source moment (7.15), which shows that the constant r0 will
finally drop from the radiative moment. The method used to compute the tail terms is described in
Sec. 5.4.1 and the integral that is needed for the tail-of-tail term is very similar to Eq. (5.34), see for
example (7.10) and (7.11) of [147].

With our knowledge of the radiative current moment Vij, we are in the position to compute the
mode h21 at the 3PN order. The modes are defined from the + and × polarisation waveforms as

h ≡ h+ − ih× =
+∞∑
`=2

∑̀
m=−`

h`m Y `m
−2 (Θ,Φ) , (7.21)

where the spin-weighted spherical harmonics of weight −2 are functions of the spherical angles (Θ,Φ)
defining the direction of propagation.3 For planar binaries, which are either non-spinning or with
spins aligned or anti-aligned with the orbital angular momentum, there is a clean separation of modes
between mass-type and current-type contributions (see [166] and Sec. III B in [43]). In particular,
the “current” modes are entirely determined by the current radiative moments when `+m is an odd
integer,

h`m = i√
2

G

Rc`+3 V
`m (for `+m odd) , (7.22)

hence the only relevant mode for the current quadrupole is h21 (recall that h2,−1 = h21 in the planar
case). The current moment in non-STF spin-weighted guise is given in terms of the STF version VL

3We adopt the same conventions as in Refs. [147, 43]. The spin-weighted spherical harmonics are given by (2.4)
in [147], and Fig. 1 in [43] specifies our convention for the polarization vectors.
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by

V `m = − 8
`!

√√√√ `(`+ 2)
2(`+ 1)(`− 1) α

`m
L VL , (7.23)

where the STF tensorial coefficient α`mL ≡
∫

dΩ N̂L Y
`m is defined from the ordinary spherical har-

monics Y `m (or in fact its complex conjugate Y `m). In practice, I used the convenient orthonormal
triad (n,λ, l) where n = x/|x|, l = L/|L|, while λ completes the triad with right-handed orien-
tation. We can also define m = (n + iλ)/

√
2, as well as its value m0 at some reference time t0, to

obtain the explicit expression of α`mL :4

α`mL =
√

4π(−
√

2)m`!√
(2`+ 1)(`+m)!(`−m)!

m
〈M
0 lL−M〉. (7.24)

In the tail and tail-of-tail terms at 1.5PN and 3PN orders, there appears the total ADM mass M ,
which therefore needs to be computed with 1PN precision. It is convenient, following [167, 168], to
perform a change of phase variable, from the actual orbital phase φ to the new variable

ψ ≡ φ− 2GMω

c3 ln
(
ω

ω0

)
. (7.25)

The constant ω0, equivalent to b in (7.19), is conveniently defined by ω0 = 1
4bexp[11

12 − γE] with γE
the Euler constant. The main advantage of the new phase variable (7.25) is that it minimizes the
occurence of logarithms due to tails in the waveform and modes. Notice, however, that the use of
either φ or ψ is equivalent for the present 3PN level of accuracy. Indeed, the correction term in (7.25)
is of order 1.5PN, which means that the effect as seen as a correction to the phase evolution is actually
of order 4PN with respect to the leading order in the phase provided by the usual quadrupole formula.
A similar variable is also introduced in black-hole perturbation theory [157, 158, 159].

The modes are thus defined with respect to the phase variable (7.25) as

h`m = 2Gmν x

R c2

√
16π
5 Ĥ`m e−imψ . (7.26)

Beware that the symbol m in the first factor of the right-hand side denotes the total mass m =
m1 + m2, whereas its two other occurrences refer to an integral label. The final result for the 3PN
mode (2,1) (corresponding in fact to the 3.5PN accurate waveform) is expressed with the usual gauge
invariant PN parameter (with ω = φ̇)

x ≡
(
Gmω

c3

)2/3

. (7.27)

As already announced, the regularisation constants r0, r′0 and the gauge constant b disappear from
the end result, and we find, extending (9.4b) in [147]:

Ĥ21 = i
3 ∆

x1/2 + x3/2
(
−17

28 + 5ν
7

)
+ x2

(
π + i

[
−1

2 − 2 ln 2
])

(7.28)

+ x5/2
(
− 43

126 −
509ν
126 + 79ν2

168

)

+ x3
(
π

[
−17

28 + 3ν
14

]
+ i
[

17
56 + ν

(
−353

28 −
3
7 ln 2

)
+ 17

14 ln 2
])

4We have Y`mL = (2`+1)!!
4π`! α`mL in the alternative definition used in [79, 166].
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+ x7/2
(

15223771
1455300 + π2

6 −
214
105γE −

107
105 ln(4x)− ln 2− 2(ln 2)2

+ ν

[
−102119

2376 + 205
128π

2
]
− 4211

8316ν
2 + 2263

8316ν
3 + iπ

[
109
210 − 2 ln 2

])+O
( 1
c8

)
.

The perturbative limit ν → 0 is in perfect agreement with the result of black-hole perturbation
theory [157, 158, 159], as one may check with the mode provided in this limit in the Appendix B
in [158].5 Interestingly, our result (7.28) can be compared directly with accurate numerical relativity
calculations, such as those in [160, 161].

7.4 Test of the current quadrupole with a constant shift
This section aims at testing the final expression of the 3PN source current quadrupole (7.15)

with the test of constant shifts. By this, we mean that when the two trajectories of the particles are
shifted by yi1 −→ yi1 + εi and yi2 −→ yi2 + εi, where εi denotes an infinitesimal constant purely spatial
vector, the variation of the moment obeys the expected law of transformation of the moment under
the shift to first order in that shift.

We consider the case of the moments of a general isolated system made of an extended smooth
matter distribution. There is then no need of UV regularisation and we may focus on the moments
IL and JL in 3 dimensions, given by Eqs. (3.31). The laws of transformation of such moments to
first order in the shift have been found in linearized gravity by Damour and Iyer [145, 169] (see
also [149]). In this case, the pseudo-tensor τµν reduces to the matter stress-energy tensor T µν with
compact support, so that there is no necessity to resort to the IR regularisation with regulator r̃B and
finite part when B = 0. In this situation, the transformation laws read (see Appendix B in [145])6

δlinε IL = ` ε〈i`IL−1〉 −
4`

c2(`+ 1)2 εaJ
(1)
b〈L−1 εi`〉ab + (`− 1)(`+ 3)

c2(`+ 1)2(2`+ 3) εa I
(2)
aL , (7.29a)

δlinε JL = (`− 1)(`+ 1)
`

ε〈i`JL−1〉 + 1
`
εaI(1)

b〈L−1 εi`〉ab + (`− 1)(`+ 3)
c2`(`+ 2)(2`+ 3) εa J

(2)
aL . (7.29b)

Such laws follow from the irreducible decomposition of the metric and from the fact that the compo-
nents of the matter tensor behave under the spatial constant shifts like scalars, i.e., T ′µν(x′) = T µν(x),
considering now the action of the shifts as a passive coordinate transformation x′µ = xµ + εµ with
εµ = (0, εi).

For the full non-linear theory, driven by Eqs. (3.3)–(3.4), one must take into account the non-
linear gravitational source term Λµν . Now, even though the pseudo-tensor τµν behaves in the same
way as the matter tensor under constant spatial shifts, i.e., τ ′µν(x′) = τµν(x), the transformation
laws (7.29) obeyed by the moments IL and JL are then expected to be modified, notably because
those involve the regularisation factor r̃B dealing with the fact that the pseudo-tensor is no longer
with compact support. This a priori implies that the linear transformation laws (7.29) must be
augmented by certain non-linear corrections, which may be referred to as δnonlinε IL and δnonlinε JL.

Ignoring all odd powers of 1/c, we have found that the mass quadrupole moment Iij at 3PN order
does satisfy the linear transformation law (7.29a), which means that the non-linear correction in this
case actually happens to start only at the 4PN order:

δnonlinε Iij = O
( 1
c8

)
. (7.30)

5For the comparison, note that the phase variable used in the Appendix B of [158] is related to ours by ψTS =
ψ + π/2 + 2x3/2[ln 2− 17/12].

6Here, the shift vector is denoted εi = εi, which contrasts with the usual Levi-Civita symbol εiab = εiab.
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However, in the case of the current quadrupole moment Jij (neglecting again possible odd-type
contributions at 2.5PN order), we find that the non-linear contribution arises precisely at the 3PN
order. Looking at the only possible contribution at that order, we infer from dimensional analysis
that it is necessarily of the type

δnonlinε Jij = η
G2M2

c6 εa εab〈i I(3)
j〉b +O

( 1
c8

)
, (7.31)

where Iij is the (Newtonian here) quadrupole moment and the other factors comprise two masses M
so that the interaction is cubic. We have introduced an unknown numerical coefficient η in front.
Now, as an important though partial check of our final result for the 3PN current-type quadrupole
Jij, we have verified that it satisfies the law of transformation under the shift if and only if the
numerical coefficient in the non-linear term (7.31) is η = 58

105 .
Although the coefficient η was not determined from scratch, the latter verification is enough for

our purpose. Indeed, it is straightforward to see that any offending term in the quadrupole moment
itself that is not checked by the fact that we have not determined the coefficient η is necessarily of
the type

∆Jij = η′
G2M2

c6 J(2)
ij =⇒ δε∆Jij = η′

2
G2M2

c6 εa εab〈i I(3)
j〉b . (7.32)

Now, such term ∆Jij does not vanish in the test-mass limit ν → 0 and, therefore, its coefficient η′ has
already been verified by the correct perturbative limit, which we have checked independently from
black-hole perturbation theory [158]. We thus conclude that the above partial test of the constant
shifts together with the perturbative limit grant us with a satisfying level of confidence in our result.

7.5 Conclusion of Part III
The goal of this project is to compute the 4PN phase for non-spinning point particles. In order

to do so, we need to know both sides of the balance equation (3.42). The 4PN EoM and conserved
quantities, especially the 4PN energy, were already computed from several groups with different
approaches. However, the 4PN flux is still not known. As it is detailed in Sec. 3.3, to get the energy
flux, we need to know all the source multipoles moments at consistent PN order. We have shown
in Part III that the computations of the source multipoles are now finished. Indeed, in Chapter 6
we presented the computation of the 4PN source mass quadrupole and in Chapter 7 we displayed
the 3PN current quadrupole. Furthermore, we know all the required radiative multipoles except the
4PN mass radiative quadrupole. Two steps are yet to be achieved, the first one is to compute all
the non-linear effects, such as tails, tails-of-tails, memory or tails-of-memory in 3d. The second is
to compute the DDR for these effects, which is currenty investigated and soon to be published in
[11]. Then, once we know the radiative mass quadrupole, we will have all the required expressions
to derive the 4PN flux. Once the expression of the CoM flux for quasi-circular orbits is known, we
will insert it in the balance equation to derive the GW phase.
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Conclusion

So far, all direct detections of GWs came from binary systems of compact objects. The data
analysis requires accurate templates in order to extract the signal from the noise and give better
parameter estimations. Such templates are built upon numerical and analytical solutions of the
Einstein equations. Among the analytical methods, the PN formalism, which allows to describe the
inspiral phase of compact binaries, plays a crucial role in template buildings. This is why extending
the already known PN results will be useful notably for next generation detectors such as LISA or
Einstein telescope. The work performed during this PhD used this approach and was made of two
main projects:

1. The computation of finite-size effects in the GW phase up to 7.5PN order for spinless compact
objects. Finite-size effects in binary systems occur through the tidal interaction of the bodies. In the
PN expansion, the leading order of these effects arise at 5PN. Although it is a high PN order, the
numerical value of the coefficient, related to the internal structure of the bodies, can be quite large
so that such effects can be measurable. Tidal effects start to be quantitatively distinguishable from
the point-particle approximation in the late inspiral phase. Thus, extending the precision on the
waveform for these effects will be useful for Einstein telescope. The action describing tidal effects is
an effective action coming from an EFT approach. Then, the computation of the EoM and conserved
quantities was performed by means of a Fokker action and the results are in complete agreement with
the literature. Regarding the radiative sector, the derivation of the GW flux has been implemented
using the PN-MPM formalism. This allowed to compute the GW phase including tidal effects up to
2.5PN relative order (or 7.5PN). The results are in agreement with the literature up to 2PN relative
order and new coefficients were provided at 2PN. This can be used to reduce biases in the EOB
templates. However, a disagreement has been found in the 2.5PN term and it is currently under
investigation. This project, complete and published, is displayed in Part II.

We discussed in Sec. 5.6 some ways to improve the model by: relaxing the quasi-circular orbit
approximation, considering dynamical tides instead of adiabatic tides and considering the coupling
to spins up to 7.5PN order.

2. The computation of the 4PN phase for spinless point particles in the quasi-circular orbits
approximation. It is computed by combining the 4PN conserved energy of the system with the 4PN
radiated flux of GW through the balance equation. The 4PN conserved energy, as well as the EoM,
are known and have been derived by several groups using different methods. All the results are in
agreement. However, the 4PN flux is not yet known. To tackle this problem, we use the PN-MPM
formalism that allows to compute the energy flux expressed in terms of radiative multipole moments.
These moments are related to the source multipole moments, themselves expressed in terms of the
stress-energy tensor and the potentials parametrizing the PN metric. At high PN orders, many
subtelties arise notably due to the regularisation scheme employed. Moreover, the proliferation of
terms in the required quantities at 4PN further complicates the computations. A core part of this
project was to optimize the codes in order to reduce the computational time. Now, all the source
multipole moments are known. We also know all the radiative multipole moments except the mass
quadrupole, for which more work is required to be done. Indeed, the non-linear effects have to
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be computed in 3 dimensions using the Hadamard partie finie regularisation. Then, we need to
compute the difference between Hadamard and dimensional regularisations to obtain the radiative
mass quadrupole fully regularised with dimensional regularisation. Once this is done, we will be able
to compute the flux up to 4PN. Thus, we will be able to provide the full 4PN phase for spinless point
particles in the quasi-circular orbits approximation by combining the 4PN energy with the 4PN flux
through the energy balance equation.
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Appendix A

Conventions and some technical aspects
of General Relativity

A.1 General relativity

We use the Einstein summation convention. The signature is (−,+,+,+). Greek indices corre-
spond to 4-dimensional components. They are raised and lowered with the metric gµν . Latin indices
correspond to spatial components of the tensors and are raised and lowered using the flat metric
δij. Furthermore, a tensor of the form Aii has to be understood as Aijδij. The convention on the
Riemann tensor is the following

(
∇µ∇ν −∇ν∇µ

)
vα = Rα

λµνv
λ. (A.1)

The symmetry operators denoted (. . . ) are given by

T(a1...ak) = 1
k!
∑
π

Taπ(1) . . . Taπ(k) (A.2)

where the sum is taken over all the permutations π. The antisymmetry is given by

T[a1...ak] = 1
k!
∑
π

δπTaπ(1) . . . Taπ(k) , (A.3)

where δπ is +1 for even permutations and -1 for odd permutations.
The multi-indices notation is the following: L = i1 · · · i` for a multi-index composed of ` mul-

tipolar indices i1, · · · , i`; iL = ii1 · · · i` for a multi-index with ` + 1 indices; xL = xi1 · · ·xi` for
the product of ` spatial vectors xi = xi. The symmetric-trace-free (STF) projection is denoted by
x̂L = STF(xi1 · · ·xi`), or sometimes using brackets surrounding the indices, for instance x〈LvP 〉. Sim-
ilarly, ∂L = ∂i1 · · · ∂i` for the product of ` partial derivatives ∂i = ∂/∂xi, and ∂̂L = STF(∂i1 · · · ∂i`).
In the case of summed-up (dummy) multi-indices L, we do not write the ` summations from 1 to
3 over their indices. The superscript (n) denotes n time derivatives, and an overbar indicates a
PN-expanded quantity.

A.2 Notations and conventions in the PN approach

The notations in a general frame the notations are given following Fig. A.1.
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Figure A.1: Notations used throughout this thesis for the relevant parameters in the problem of
binary systems.

Only in the center of mass frame, we pose xi = yi1 − yi2 and vi = dxi/dt; r = |x| = r12 denotes
the separation, ni = xi/r the unit direction, and we have ṙ = (nv) = n ·v; mass parameters are: the
total mass m = m1 +m2, the symmetric mass ratio ν = m1m2/m

2 = X1X2 and the mass difference
∆ = X1 −X2, with XA = mA/m.
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Appendix B

The d-dimensional 4PN metric as
function of potentials

We present here the complete 4PN metric with our choice of parametrization, in d dimensions since
the metric is also used to compute the corrections due to DR. For the usual covariant components
gµν :

g00 = −1 + 2V
c2 + 1

c4

[
−4(d− 3)K

d− 2 − 2V 2
]

+ 1
c6

[
8(d− 3)KV

d− 2 + 4
3V

3 + 8VaV a + 8X̂
]

+ 1
c8

[
−8(d− 3)2K2

(d− 2)2 + 32T̂ − 8(d− 3)KV 2

d− 2 − 2
3V

4 + 32R̂aVa + V (−16VaVa − 16X̂)
]

+ 1
c10

(
64P̂ + 32R̂aR̂a + 16(d− 3)2K2V

(d− 2)2 − 64T̂ V + 4
15V

5 − 32(d− 3)R̂aV Va
d− 2

+ V 2
[

8(9− 10d+ 3d2)VaVa
(d− 2)2 + 16X̂

]
+K

[
16(d− 3)V 3

3(d− 2)

+ 16(d− 3)2VaVa
(d− 2)2 + 32(d− 3)X̂

d− 2

]
+ 64VaŶa

)
+O

( 1
c12

)
, (B.1a)

g0i = −4Vi
c3 + 1

c5

[
−8R̂i + 4(d− 3)V Vi

d− 2

]

+ 1
c7

[
8(d− 3)R̂iV

d− 2 − 8(d− 3)2KVi
(d− 2)2 − 4(5− 4d+ d2)V 2Vi

(d− 2)2 − 8VaŴia − 16Ŷ i

]

+ 1
c9

(
−32N̂i + R̂i

[
−16(d− 3)2K

(d− 2)2 − 4(d− 3)2V 2

(d− 2)2

]
+ 8(d− 3)3KV V i

(d− 2)3

+ 8(d− 3)(3− 3d+ d2)V 3Vi
3(d− 2)3 − 16R̂aŴia + Vi

[
16(−5 + 2d)VaVa

d− 2

+ 16(d− 3)X̂
d− 2

]
+ V

[
8(d− 3)VaŴia

d− 2 + 16(d− 3)Ŷi
d− 2

]
− 32VaẐia

)
+O

( 1
c11

)
, (B.1b)

gij = δij + 1
c2

2V
d− 2δij + 1

c4

(
δij

[
−4(d− 3)K

(d− 2)2 + 2V 2

(d− 2)2

]
+ 4Ŵij

)

+ 1
c6

(
−16ViVj + 8V Ŵij

d− 2 + δij

[
−8(d− 3)KV

(d− 2)3 + 4V 3

3(d− 2)3 + 8VaVa
d− 2 + 8X̂

d− 2

]
+ 16Ẑij

)

+ 1
c8

32M̂ij − 32R̂(iVj) −
16(d− 3)KŴij

(d− 2)2 + 8V 2Ŵij

(d− 2)2 + 8ŴiaŴja + δij

(
−4(d− 3)3K2

(d− 2)4
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− 32M̂
d− 2 + 32T̂

d− 2 −
8(d− 3)KV 2

(d− 2)4 + 2V 4

3(d− 2)4 + 32R̂aVa
d− 2 −

4ŴabŴab

d− 2

+ V

[
16VaVa
(d− 2)2 −

8(d− 3)X̂
(d− 2)2

])
+ V (−32ViVj

d− 2 + 32Ẑij
d− 2)

+O
( 1
c10

)
. (B.1c)

Up to 3PN order there are nine potentials V , Vi, K, Ŵij, R̂i, X̂, Ẑij, Ŷi, T̂ . The new generation
of potentials at the 4PN order are denoted P̂ , N̂i and M̂ij. Since we need for the 4PN quadrupole
moment the metric components in gothic form hµν up to order c−8, c−7 and c−8, we also present
them here:

h00 = − 1
c2

2(d− 1)V
d− 2 + 1

c4

[
4(d− 3)(d− 1)K

(d− 2)2 − 2(d− 1)2V 2

(d− 2)2 − 2Ŵ
]

+ 1
c6

[
−4(d− 1)3V 3

3(d− 2)3 + 8(d− 3)VaVa
d− 2 + V (8(d− 3)(d− 1)2K

(d− 2)3

−4(d− 1)Ŵ
d− 2 )− 8(d− 1)X̂

d− 2 − 8Ẑ
]

+ 1
c8

[
2dŴabŴab

d− 2 − 2(d− 3)2(d− 1)(−4 + 3d)K2

(d− 2)4 + 32M̂
d− 2 −

32(d− 1)T̂
d− 2

− 2(d− 1)4V 4

3(d− 2)4 + 16(d− 4)R̂aVa
d− 2 + 8(d− 3)(d− 1)KŴ

(d− 2)2 − 2Ŵ 2

+ 8(d− 3)(d− 1)3KV 2

(d− 2)4 − 4(d− 1)2ŴV 2

(d− 2)2 + 16(d− 3)(d− 1)V VaVa
(d− 2)2

−4(d− 1)(−4 + 3d)X̂V
(d− 2)2 − 16(d− 1)ẐV

d− 2

]
+O

( 1
c10

)
, (B.2a)

h0i = − 4
c3Vi + 1

c5

[
−8R̂i −

4(d− 1)ViV
d− 2

]

+ 1
c7

[
−16Ŷi + 8(d− 3)(d− 1)ViK

(d− 2)2 − 8(d− 1)R̂iV

d− 2 − 4(d− 1)2ViV
2

(d− 2)2

+ 8ŴiaVa − 8ViŴ
]

+O
( 1
c9

)
, (B.2b)

hij = 1
c4

[
− 4Ŵij + 2δijŴ

]
+ 1
c6

[
− 16Ẑij + 8δijẐ

]

+ 1
c8

[
− 32M̂ij − 16ViR̂j − 16R̂iVj − 8ŴijŴ + 8ŴiaŴja

+ δij

{
− 2(d− 3)2(d− 1)K2

(d− 2)3 + 16R̂aVa + 2Ŵ 2 − 2ŴabŴab −
4(d− 1)V X̂

d− 2

}]

+O
( 1
c10

)
. (B.2c)

The compact-support parts of the potentials are generated by the matter stress energy-tensor T µν
through the definitions

σ = 2(d− 2)T 00 + T ii

(d− 1)c2 , σi = T 0i

c
, σij = T ij . (B.3)

All the potentials obey flat space-time wave equations in d dimensions (where � = ηµν∂µ∂ν) given
at 3PN order by:

�V = −4πGσ , (B.4a)
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�Vi = −4πGσi , (B.4b)
�K = −4πGσV , (B.4c)

�Ŵij = −4πG
(
σij − δij

σkk
d− 2

)
− 1

2

(
d− 1
d− 2

)
∂iV ∂jV , (B.4d)

�R̂i = − 4πG
d− 2

(
5− d

2 V σi −
d− 1

2 Vi σ

)

− d− 1
d− 2 ∂kV ∂iVk −

d(d− 1)
4(d− 2)2 ∂tV ∂iV , (B.4e)

�X̂ = −4πG
 V σii
d− 2 + 2

(
d− 3
d− 1

)
σiVi +

(
d− 3
d− 2

)2

σ

(
V 2

2 +K

)
+ Ŵij ∂ijV + 2Vi ∂t∂iV + 1

2

(
d− 1
d− 2

)
V ∂2

t V

+ d(d− 1)
4(d− 2)2 (∂tV )2 − 2∂iVj ∂jVi , (B.4f)

�Ẑij = − 4πG
d− 2 V

(
σij − δij

σkk
d− 2

)
− d− 1
d− 2 ∂tV(i ∂j)V + ∂iVk ∂jVk

+ ∂kVi ∂kVj − 2∂kV(i ∂j)Vk −
δij
d− 2 ∂kVm (∂kVm − ∂mVk)

− d(d− 1)
8(d− 2)3 δij (∂tV )2 + (d− 1)(d− 3)

2(d− 2)2 ∂(iV ∂j)K , (B.4g)

�Ŷi = −4πG
[
−1

2

(
d− 1
d− 2

)
σR̂i −

(5− d)(d− 1)
4(d− 2)2 σV Vi + 1

2 σkŴik + 1
2σikVk

+ 1
2(d− 2) σkkVi −

d− 3
(d− 2)2 σi

(
V 2 + 5− d

2 K

)]

+ Ŵkl ∂klVi −
1
2

(
d− 1
d− 2

)
∂tŴik ∂kV + ∂iŴkl ∂kVl − ∂kŴil ∂lVk

− d− 1
d− 2 ∂kV ∂iR̂k −

d(d− 1)
4(d− 2)2 Vk ∂iV ∂kV −

d(d− 1)2

8(d− 2)3 V ∂tV ∂iV

− 1
2

(
d− 1
d− 2

)2

V ∂kV ∂kVi + 1
2

(
d− 1
d− 2

)
V ∂tVi + 2Vk ∂k∂tVi

+ (d− 1)(d− 3)
(d− 2)2 ∂kK∂iVk + d(d− 1)(d− 3)

4(d− 2)3 (∂tV ∂iK + ∂iV ∂tK) , (B.4h)

�T̂ = −4πG
[

1
2(d− 1) σijŴij + 5− d

4(d− 2)2 V
2σii + 1

d− 2 σViVi −
1
2

(
d− 3
d− 2

)
σX̂

− 1
12

(
d− 3
d− 2

)3

σV 3 − 1
2

(
d− 3
d− 2

)3

σV K + (5− d)(d− 3)
2(d− 1)(d− 2) σiViV

+ d− 3
d− 1 σiR̂i −

d− 3
2(d− 2)2 σiiK

]
+ Ẑij ∂ijV + R̂i ∂t∂iV

− 2∂iVj ∂jR̂i − ∂iVj ∂tŴij + 1
2

(
d− 1
d− 2

)
V Vi ∂t∂iV + d− 1

d− 2 Vi ∂jVi ∂jV

+ d(d− 1)
4(d− 2)2 Vi ∂tV ∂iV + 1

8

(
d− 1
d− 2

)2

V 2∂2
t V + d(d− 1)2

8(d− 2)3 V (∂tV )2
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− 1
2 (∂tVi)2 − (d− 1)(d− 3)

4(d− 2)2 V ∂2
tK −

d(d− 1)(d− 3)
4(d− 2)3 ∂tV ∂tK

− (d− 1)(d− 3)
4(d− 2)2 K∂2

t V −
d− 3
d− 2 Vi ∂t∂iK −

1
2

(
d− 3
d− 2

)
Ŵij ∂ijK , (B.4i)

�M̂ij = 4πG
(−(d− 1)V iV j

2(d− 2) + δij
[

(d− 3)2(d− 1)KV
4(d− 2)3 + (d− 3)2(d− 1)V 3

16(d− 2)3

+ (d− 1)VaV a

4(d− 2) + (d− 1)X̂
8(d− 2)

])
σ + δij

[
−1

2R̂
a + (d− 4)V V a

2(d− 2)

]
σa +

[
R̂(i

− (d− 5)V V (i

2(d− 2)

]
σj) + 1

8δ
ijŴ abσab + (d− 1)δijV 2σaa

8(d− 2)2 − δijŴ a
aσ

b
b

8(d− 2)

+
[

(d− 3)K
(d− 2)2 −

V 2

(d− 2)2

]
σij − 1

2Ŵ
a(iσj)a

+ 1
2Ŵ

ab∂b∂aŴ
ij

− 1
2∂aŴ

i
b∂
bŴ ja − (d− 3)2(d− 1)∂iK∂jK

4(d− 2)3 + ∂tV
(i
[
−∂tV j)

+ (d− 3)(d− 1)∂j)K
(d− 2)2

]
− 2∂aV (i∂j)R̂a + 2∂(iVa∂

j)R̂a − (d− 1)∂tR̂(i∂j)V

d− 2

+ (d− 1)Ŵ (i
a∂

j)V ∂aV

4(d− 2) − (d− 1)∂(iX̂∂j)V

2(d− 2) + V (i
[

(d− 1)∂aV j)∂aV

d− 2

+ (d− 1)∂tV ∂j)V
4(d− 2)

]
+ V

[
(d− 1)∂2

t Ŵ
ij

4(d− 2) − (d− 1)2∂tV
(i∂j)V

2(d− 2)2

]
+ V a

[
∂t∂aŴ

ij

− (d− 1)∂aV (i∂j)V

d− 2

]
− 2∂aR̂(i∂j)Va + ∂tŴ

(i
a(−∂aV j) + ∂j)V a)

+ ∂bŴ a(i∂j)Ŵab −
1
4∂

iŴ ab∂jŴab

+ δij
(
−(d− 3)(d− 1)d∂tK∂tV

8(d− 2)3 − (d− 1)2V 2∂2
t V

16(d− 2)2 + V a

[
−1

2∂t∂aŴ
b
b

− (d− 1)∂tV ∂aV
8(d− 2)

]
− (d− 3)(d− 1)∂tVa∂aK

2(d− 2)2 + (d− 1)∂tR̂a∂
aV

2(d− 2)

− 1
4Ŵ

ab∂b∂aŴ
k
k + ∂aVb∂

bR̂a − (d− 1)Ŵab∂
aV ∂bV

16(d− 2) − 1
2∂tŴab∂

bV a

+ V

[
(d− 1)2d(∂tV )2

32(d− 2)3 − (d− 1)V a∂t∂aV

4(d− 2) − (d− 1)∂2
t Ŵ

a
a

8(d− 2)

+ (d− 1)2∂tVa∂
aV

4(d− 2)2 − (d− 1)Ŵ ab∂b∂aV

8(d− 2) + (d− 1)∂aVb∂bV a

4(d− 2)

]

− 1
4∂bŴak∂

kŴ ab

)
. (B.4j)

Finally we give the expressions of the effective masses µ1 and µ̃1 in d dimensions which parametrize
the source densities (6.7) for point particle sources. They are defined by

µ1 = 1√
−(g)1

m1√
−(gµν)1

vµ1 v
ν
1

c2

, (B.5a)

µ̃1 = 2
d− 1

(
d− 2 + v2

1
c2

)
µ1 , (B.5b)
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where g is the determinant of the metric, and (g)1 and (gµν)1 are evaluated at x = y1 following
DR. Most importantly the expression of µ̃1 with full 4PN accuracy is required for the 4PN mass
quadrupole moment. It is given in terms of the potentials by

µ̃1 = 2m1

d− 1

d− 2 + 1
c2

[
d

2v
2
1 + (d− 4)V

]

+ 1
c4

[
−4(d− 2)vi1Vi −

2(d− 4)(d− 3)K
d− 2 + 1

8(−2 + 3d)v4
1

+(4− 10d+ 3d2)v2
1V

2(d− 2) + (d− 4)2V 2

2(d− 2) − 2(d− 2)Ŵ
]

+ 1
c6

[
−8(d− 2)R̂iv1i + 4(d− 4)ViV i − (d− 3)(4− 10d+ 3d2)v2

1K

(d− 2)2

+ 2(−2 + d)Ŵijv
i
1v
j
1 + 1

16(−4 + 5d)v6
1 − 4(−5 + 2d)vi1ViV

− 2(d− 4)2(d− 3)KV
(d− 2)2 + 3

8(−4 + 5d)v4
1V

+ (−40 + 92d− 52d2 + 9d3)v2
1V

2

4(d− 2)2 + (d− 4)3V 3

6(d− 2)2 − 2(−4 + 3d)v2
1v

j
1Vj

− dv2
1Ŵ − 2(d− 4)V Ŵ + 4(d− 4)X̂ − 8(d− 2)Ẑ

]

+ 1
c8

[
−32R̂iVi + 2dŴ 2

ij − 16(d− 2)vi1Ŷi + 8(d− 3)(−5 + 2d)vi1ViK
d− 2

+ 2(d− 3)2(16− 9d+ 2d2)K2

(d− 2)3 + 32M̂ + 16(d− 4)T̂ + 8(d− 2)Ẑijvi1v
j
1

− 4(−4 + 3d)R̂iv1iv
2
1 −

3(d− 3)(−4 + 5d)Kv4
1

4(d− 2) + 5
128(−6 + 7d)v4

1

− 8(−5 + 2d)R̂iv1iV + 4(d− 4)2ViV
iV

d− 2

− (d− 3)(−40 + 92d− 52d2 + 9d3)v2
1KV

(d− 2)3 + 6(d− 2)Ŵijv
i
1v
j
1V

+ (52− 90d+ 35d2)v6
1V

16(d− 2) − 2(26− 22d+ 5d2)vi1ViV 2

d− 2

− (d− 4)3(d− 3)KV 2

(d− 2)3 + 3(40− 68d+ 25d2)v4
1V

2

16(d− 2)

+ (304− 768d+ 624d2 − 214d3 + 27d4)v2
1V

3

12(d− 2)3 + (d− 4)4V 4

24(d− 2)3 −
3
2(−6 + 5d)v4

1v
a
1Va

+ 16(d− 2)vi1v
j
1ViVj −

2(32− 41d+ 12d2)v2
1v

j
1V Vj

d− 2

− 8(d− 2)vi1ŴijV
j + 2(4− 10d+ 3d2)v2

1VjV
j

d− 2 + 8(d− 2)vi1ViŴ

+ 4(d− 4)(d− 3)KŴ
d− 2 − 1

4(−2 + 3d)v4
1Ŵ −

(4− 10d+ 3d2)v2
1V Ŵ

d− 2

− (d− 4)2V 2Ŵ

d− 2 + 2(d− 2)Ŵ 2 + (−4 + 3d)v2
1v

i
1v
j
1Ŵij − 4dv2

1Ẑ
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+2(4− 10d+ 3d2)v2
1X̂

d− 2 + 4(16− 9d+ 2d2)V X̂
d− 2 − 8(d− 4)V Ẑ

]
1

, (B.6)

where it is understood that all the potentials are evaluated at the point x = y1 following DR. Note
that we must apply the rule of “distributivity”, e.g. (V Ẑ)1 = (V )1(Ẑ)1, see [83] for discussions.
Besides the 4PN expression of µ̃1 we require also the 3PN expression of µ1 which we provide for
completeness:

µ1 = m1

1 + 1
c2

[
1
2v

2
1 + (d− 4)V

d− 2

]

+ 1
c4

[
−4vi1Vi −

2(d− 4)(d− 3)K
(d− 2)2 + 3

8v
4
1 + 3

2v
2
1V + (d− 4)2V 2

2(d− 2)2 − 2Ŵ
]

+ 1
c6

[
−8R̂iv1i + 4(d− 4)ViV i

d− 2 − 3(d− 3)v2
1K

d− 2 + 2Ŵijv
i
1v
j
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16v
6
1

− 4(−5 + 2d)vi1ViV
d− 2 − 2(d− 4)2(d− 3)KV

(d− 2)3 + 3(−8 + 5d)v4
1V

8(d− 2)

+ 9
4v

2
1V

2 + (d− 4)3V 3

6(d− 2)3 − 6v2
1v

j
1Vj − v2

1Ŵ −
2(d− 4)V Ŵ

d− 2

+4(d− 4)X̂
d− 2 − 8Ẑ

]
1

, (B.7)
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Appendix C

Proof that the Weyl tensor trace terms
can be removed by a redefinition of the
metric in the effective tidal action

In this section, we show that the tidal moments entering the action may be defined in terms of the
Riemann tensor instead of the Weyl tensor, since the traces of the Riemann tensor do not play any
role in the dynamics. This is a well known result from EFT that we explicit here. This proof is valid
without considering the term in the action that fixes the harmonic gauge in (4.10). Thus, it shows
that for any gauge we can equivalently choose the Weyl or the Riemann tensors in the defintion of
the tidal moments. Once the choice is made, we can fix later on the gauge by adding the gauge-fixing
term in the action to impose the harmonic coordinates condition.

We denote G(R)
µν , G

(R)
λµν andH(R)

µν the tidal mass-quadrupole, mass-octupole and current-quadrupole
introduced in Eqs. (4.13), while G(C)

µν , G
(C)
λµν and H(C)

µν will represent the original tidal moments built
with the Weyl tensor instead of the Riemann tensor. We thus pose (setting also G = c = 1, and
omitting particles’ labels as well as explicit mention of the regularisation)

G(R)
µν = −Rρµσνu

ρuσ , G(C)
µν = −Cρµσνuρuσ , (C.1a)

H(R)
µν = −ε ητ

ρ(µ Rητν)σu
ρuσ , H(C)

µν = −ε ητ
ρ(µ Cητν)σu

ρuσ , (C.1b)

G
(R)
λµν = −∇⊥(λRρµσν)u

ρuσ , G
(R)
λµν = −∇⊥(λCρµσν)u

ρuσ , (C.1c)

where Cµνρσ stands for the Weyl tensor

Cµνρσ = Rµνρσ −
(
gµ[ρRσ]ν − gν[ρRσ]µ

)
+ 1

3gµ[ρgσ]νR . (C.2)

Let us now proof that using the (R)-type tidal multipole moments in the action yields the same EoM
as when resorting to (C) moments. The latter formulation induces some extra terms, with respect to
the former one, which contain at least one Ricci scalar or Ricci tensor. We call “double zero terms”
those that are at least quadratic in the Ricci scalar and tensor. Varying a scalar of this form, say
∝ Aµνρσ...∇...Rµν∇...Rρσ, leads to a sum of terms ∝

∫
d4x
√
−g∇...[(Aµνρσ...+Aρσµν)∇...Rρσ]δRµν , plus

surface integrals at infinity whose integrands contain factors ∇...Rρσ = 0 in vacuum. By virtue of
Einstein’s equations Rµν = 8π[(Tpp)µν − (Tpp)λλgµν ]/2 +O(εtidal), those are necessarily proportional
to (the covariant derivatives of) the stress-energy tensor of our system of particles

T µνpp =
∑
B

mB

∫
dτBuµBuνB

δ(4)[x− yB(τB)]√
−g

, (C.3)

evaluated at one particle’s location, e.g., at x = yA, in the sense of dimensional regularisation. If
A 6= B, then δ(4)[yB(τB)−yA(τA)] = 0 because the compact objects never collide in the PN regime. If
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A = B, the Dirac distribution reduces to δ4(0), which is precisely zero in dimensional regularisation,
as the limit of

∫
ddk e2πi0 = 0 when d→ 3. Hence [T µνpp ]A identically vanishes, which implies that the

Euler-Lagrange equations for the remains unaffected.
Apart from quadratic or higher order contributions of the Ricci scalar and tensor, the (R) tidal

invariants written in terms of their Weyl counterparts involve terms that are linear in both the
Riemann and the Ricci tensor:

(GµνG
µν)(C) = (GµνG

µν)(R) +RµνRµρνσu
ρuσ + (double zero terms) , (C.4a)

(HµνH
µν)(C) = (HµνH

µν)(R) + (double zero terms) , (C.4b)

(GµνρG
µνρ)(C) = (GµνρG

µνρ)(R) + uµuν

3

[
∇λRρσ (∇λRµρνσ + 2∇σRµρνλ)−

2
3∇

ρR∇σRµρνσ

+ uρuσ
(
∇µR

κλ∇σRνκρλ − 2∇κRµν∇λRρκσλ + 2∇σRνκρλ∇λR κ
µ

) ]
+ (double zero terms) ,

(C.4c)

Those cannot be dealt with in the same way. Instead, they can be treated by making appropriate
infinitesimal changes of variable on the metric, say g′µν = gµν +hµν . The action with the new metric,
at first order reads

S[g′µν ] = S[gµν ]−
1

16π

∫
d4x
√
−g

(
Rµν − 1

2Rg
µν − 8π T µν

)
hµν +O

(
h2
)
, (C.5)

and we just have to choose conveniently the redefinition of the metric so as to cancel the remaining
terms in (C.4). The term RµνRµρνσu

ρuσ in (C.4a) is cancelled in the action if we choose hµν to be
(reinstalling the particles’ label)

h(Gαβ)
µν = −4π

∑
A

µ
(2)
A

∫
dτAGA

µν

δ(4)[xµ − yµA(τA)]√
−g

. (C.6)

This change of variable induces another double zero term that also has no physical relevance. The
stress-energy tensor is T µν = T µνpp + T µνtidal, but since we consider the contraction hµνT µν in (C.5) and
that hµν ∝ µ

(2)
A , we only require to consider the term hµνT

µν
pp . We have

∫
d4x
√
−g h(Gαβ)

µν T µνpp ∝
∑
A,B

µ
(2)
A

∫
dτA[Rρµσν ]AuρAuσAu

µ
Bp

ν
B

δ(4)[yB(τB)− yA(τA)]√
−g

. (C.7)

If A = B, the term is zero due to the symmetries of the Riemann tensor, and if A 6= B, δ(4)[yB(τB)−
yA(τA)] = 0 because the two compact objects never collide, so this term vanishes.

One can see in Eq. (C.4b) that we do not need to make a redefinition for the current quadrupole
since only double zero terms appear. Regarding the mass octupole, by making the following change
of variable

h(Gαβγ)
µν = 4π

∑
A

µ
(3)
A

3

∫
dτA∇λ

[(
G

(R)
λµν + 2

3∇
κRκρλσu

ρuσ
(
uµuν + 2

3gµν
))

A

δ(4)[x− yA(τA)]√
−g

]
. (C.8)

one can show that the extra terms in (C.4c) are cancelled but induce boundary terms due to an
integration by part. These boundary terms vanish due to the presence of the delta function δ(4)[xµ−
yµA(τA)] by integrating over a sphere of radius RA → +∞. The last term to treat due to this change
of variable is hµνT µνpp . As before, if A 6= B this term vanishes because the bodies do not collide,
but if A = B, we cannot use the same argument as for the mass quadrupole and we get instead∫

d4x
√
−g h(Gρστ )

µν T µνpp ∝ δ(4)(0), which in our regularisation is zero.
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Appendix D

Lengthy expressions of the project on
tidal effects

D.1 Conservative sector
The tidal part of the acceleration of body 1 is given, for general orbits in arbitrary frame by

m1(ai1)tidal = G2

r7
12

{
ni12

(
−9m2

2µ
(2)
1 − 9m2

1µ
(2)
2

)
+ 1
c2

{
ni12

[
m2

2µ
(2)
1

(
−36(n12v1)2 + 72(n12v1)(n12v2)

− 18v12
2 + 9v1

2
)

+m2
1µ

(2)
2

(
144(n12v1)2 − 288(n12v1)(n12v2) + 180(n12v2)2 − 81

2 v12
2 + 9v1

2
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+m2
2σ

(2)
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(
−96(n12v12)2 − 48v12

2
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1σ
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−96(n12v12)2 − 48v12
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r12

(159
2 m2

2µ
(2)
1

+ 132m2
1µ

(2)
2

)
+ Gm2

r12

(
99m2

2µ
(2)
1 + 84m2
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(2)
2
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+vi1

[
m2

2µ
(2)
1

(
54(n12v1)− 45(n12v2)
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(2)
2 (n12v1) + 144m2
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(
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(2)
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+ 1
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[
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{
m2
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(2)
1

(
135(n12v1)4 − 540(n12v1)3(n12v2) + 990(n12v1)2(n12v2)2
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+m2
1µ
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−3855(n12v1)4 + 15420(n12v1)3(n12v2)
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1σ

(2)
2

(
1000(n12v12)4 − 960(n12v12)3(n12v1) + 480(n12v12)2(n12v1)2 − 192(n12v12)2(v1v2)

+ 192(n12v12)(n12v1)(v1v2)− 48(v1v2)2 + 64(n12v12)2v12
2 − 192(n12v12)(n12v1)v12

2

+ 192(n12v1)2v12
2 − 96(v1v2)v12

2 − 128v12
4 + 192(n12v12)2v1

2 − 192(n12v12)(n12v1)v1
2

125



+ 96(v1v2)v1
2 + 96v12

2v1
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4
)
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. (D.1)

The tidal part of the relative acceleration in the CoM frame, deriving from the CoM Lagrangian
whose tidal part is shown in (4.29), reads
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The Hamiltonian deriving from the NNL/2PN generalized Fokker Lagrangian in harmonic coordi-
nates reads for the point-particle part
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and where the tidal part, accurate up to NNL/2PN order, reads
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D.2 Radiative sector
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2 Ĝ1aiV v
b
1v
i
1 −

1
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b
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Ĝ1abv

b
1

c2 + 1
c4

(1
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3εbijĤ1aj∂iVb −

8
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1 (−Ĝ1ijv

a
1 + Ĝ1a(iv
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3

)}
− 1√
−g

∂ab

{
δ1

(
µ

(2)
1

(
− 1
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The source multipole moments in the CoM for general orbits required for the computation of the
2PN radiated energy flux read
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ṙ

]}
, (D.6d)

Jtidal
ijk = Gmν

r2 n〈jnk(n× v)i〉
(

12µ(2)
+ − 12∆µ(2)

− + 64σ(2)
+

)
. (D.6e)

131



132



Appendix E

4PN

E.1 The shifts applied in the 4PN equations of motion
In the recent work on the 4PN equations of motion [131, 132, 133, 38, 134], which succeeded

in computing from first principles all the “ambiguities” in the problem, we applied to our “brute”
calculation a series of shifts of the trajectories so as to remove UV- and IR-types poles and simplify
the end result. Now, in order to be consistent we have to apply after our “brute” derivation of the
4PN quadrupole moment the same series of shifts. The total shift is composed of three pieces. A first
shift ξ1,2 removed the poles 1/ε corresponding to UV divergences and led to the Lagrangian provided
in [132, 133]; a second shift χ1,2, used in [133], dealt with the 1/ε poles due to IR divergences; and
a third shift η1,2 presented in [134] was mainly used for convenience. We provide here the shifts ξ1,2
and η1,2 in extenso.

The shift ξ1 is composed of 3PN and 4PN contributions and is given by

ξi1 = 11
3
G2m2

1
c6

[
1
ε
− 2 ln

(
q1/2r′0
`0

)
− 327

1540

]
ai1 + 1

c8 ξ
i
1, 4PN . (E.1)

The first term represents the 3PN contribution determined in [83]. Here q = 4πeγE where γE is
the Euler constant, and a1 represents the Newtonian acceleration of 1 in d dimensions. The 4PN
contributions have already been shown in the Appendix C of [131], however the terms proportional
to yi1 (see Eq. (E.3b) below) were inadvertently missing there. Furthermore we have adjusted one
coefficient in the expression of the shift to take into account the subsequent determination of the
ambiguity parameters in [133, 38]. The 4PN terms in the shift are conveniently written in the form

ξi1, 4PN = 1
ε
ξ
i (−1)
1, 4PN + ξ

(0,y1)
1, 4PNy

i
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i
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i
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i
12 , (E.2)

with 1/ε being the UV pole and vi12 = vi1 − vi2. We have
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On the other hand the shift η1 is quite simple. It starts only at the 4PN order and it is made
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only of G3 and G4 terms,
η1 = G3
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E.2 The 4PN mass quadrupole as a function of the poten-
tials

We indicate the different PN pieces with the index nPN, it being understood that the term is to
be multiplied by the appropriate factor 1/c2n. For simplicity we omit writing the finite part integral
FPB=0

∫
ddxr̃B in front of each terms, and we also do not write the necessary time derivatives

(d/dt)2k present in the series expansion, see Eq. (6.5). Also we do not write the terms that are
equal to zero. All the non-compact and surface terms shown below have to be divided by a factor
Gπ. Remind also our notation (6.17) for the terms involving super-potentials, for instance Ψ∂abV

ij or
Ψ∂aV
ijk . We exhaustively provide all the terms composing the 4PN quadrupole moment following this

nomenclature and conventions. We start with the list of compact (C) terms.

SIC0PN = (d− 1)
2(d− 2) x̂ijσ,

SIC1PN = − (d− 3)(d− 1)
(d− 2)2 V x̂ijσ,

SIC2PN =
( (d− 3)2(d− 1)

(d− 2)3 V 2σ + 4(d− 3)
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(d− 2)2 V σaa + 2(d− 3)2(d− 1)
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3(d− 2)5 V 4σ + 4(d− 1)(2d2 − 13d+ 19)
(d− 2)3 V VaVaσ

− 4(d− 3)(d− 1)2
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− 16(d− 3)(d− 1)
(d− 2)3 V 2σaΨ∂taV

ij + 8(d− 1)
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192(d− 2)2(d+ 4)(d+ 6)(d+ 8)r
6x̂ij∂aV ∂aV

SVC4PN = (d− 1)
768(d− 2)(d+ 4)(d+ 6)(d+ 8)(d+ 10)r

8x̂ijσ,
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V IC1PN = − 2(d− 1)(d+ 2)
d(d− 2)(d+ 4) x̂ijaσa,

V IC2PN =
(2(d− 1)2(d+ 2)
d(d− 2)2(d+ 4)Vaσ + 2(d− 5)(d− 1)(d+ 2)
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V IIC4PN =
(
− 8(d− 1)(d+ 2)
d(d− 2)3(d+ 4)(d+ 6)V

2 − 2(d− 1)(d+ 2)
d(d− 2)(d+ 4)(d+ 6)Ŵ + 8(d− 3)(d− 1)(d+ 2)

d(d− 2)3(d+ 4)(d+ 6)K
)
r2x̂ijaσa,

V IIIC3PN = − (d− 1)(d+ 2)
4d(d− 2)(d+ 4)(d+ 6)(d+ 8)r

4x̂ijaσa,

V IIIC4PN = − (d− 1)(d+ 2)
d(d− 2)2(d+ 4)(d+ 6)(d+ 8)r

4V x̂ijaσa,

V IVC4PN = − (d− 1)(d+ 2)
24d(d− 2)(d+ 4)(d+ 6)(d+ 8)(d+ 10)r

6x̂ijaσa,

T IC2PN = (d− 1)(d+ 2)
d(d− 2)(d+ 1)(d+ 6) x̂ijabσab,

137



T IC3PN = 4(d− 1)(d+ 2)
d(d− 2)2(d+ 1)(d+ 6)V x̂ijabσab,

T IC4PN =
( 8(d− 1)(d+ 2)
d(d− 2)3(d+ 1)(d+ 6)V

2 − 8(d− 3)(d− 1)(d+ 2)
d(d− 2)3(d+ 1)(d+ 6)K + 2(d− 1)(d+ 2)

d(d− 2)(d+ 1)(d+ 6)Ŵ

− 8(d− 3)(d− 1)(d+ 2)
d(d− 2)3(d+ 1)(d+ 6)K

)
x̂ijabσab,

T IIC3PN = (d− 1)(d+ 2)
2d(d− 2)(d+ 1)(d+ 6)(d+ 8)r

2x̂ijabσab,

T IIC4PN = 2(d− 1)(d+ 2)
d(d− 2)2(d+ 1)(d+ 6)(d+ 8)r

2V x̂ijabσab,

T IIIC4PN = (d− 1)(d+ 2)
8d(d− 2)(d+ 1)(d+ 6)(d+ 8)(d+ 10)r

4x̂ijabσab.

Next we present the long list of the non-compact (NC) support terms. Remind that all the terms
have to be divided by a factor Gπ.

SINC2PN =
( (d− 4)(d− 1)2

8(d− 2)3 (∂tV )2 − (d− 1)
d− 2 Va∂t∂aV + (d− 1)

d− 2 ∂aVb∂bVa

)
x̂ij + (d− 1)2

4(d− 2)2 Ψ∂abV
ij ∂aV ∂bV,

SINC3PN =
( (d− 4)(d− 1)3

4(d− 2)4 (∂tV )2V − (d− 1)2

(d− 2)2V Va∂t∂aV −
d(d− 1)2

2(d− 2)3 Va∂tV ∂aV + 2
d− 2∂tVa∂tVa

− (d− 3)
d− 2 Va∂

2
t Va −

2(d− 1)2

(d− 2)2 Va∂bVa∂bV + (d− 1)
2(d− 2)∂tV ∂tŴ + (d− 1)

4(d− 2)Ŵ∂2
t V + (d− 1)

4(d− 2)V ∂
2
t Ŵ

+ 2(d− 1)
d− 2 ∂tŴab∂bVa −

(d− 4)(d− 3)(d− 1)2

2(d− 2)4 ∂tK∂tV + 2(d− 3)(d− 1)
(d− 2)2 Va∂t∂aK

+ (d− 3)(d− 1)
(d− 2)2 Ŵab∂baK

)
x̂ij −

d(d− 1)2

(d− 2)3 Ψ∂aVb
ij ∂t∂bV ∂aV −

d(d− 1)2

(d− 2)3 Ψ∂aVb
ij ∂tV ∂baV

− 4(d− 1)2

(d− 2)2 Ψ∂bVk
ij ∂bVa∂kaV −

4(d− 1)2

(d− 2)2 Ψ∂bVk
ij ∂aV ∂kbVa + d(d− 1)2

2(d− 2)3 Ψ∂taV
ij ∂tV ∂aV

+ 2(d− 1)2

(d− 2)2 Ψ∂tbV
ij ∂aV ∂bVa + d(d− 1)2

4(d− 2)4 Ψ∂aaV
ij (∂tV )2 + 2(d− 1)2

(d− 2)2 Ψ∂abV
ij ∂tVb∂aV

− 2(d− 1)
(d− 2)2 Ψ∂bbV

ij ∂aVk∂kVa + 2(d− 1)
(d− 2)2 Ψ∂bbV

ij ∂aVk∂aVk −
2(d− 1)
d− 2 Ψ∂akV

ij ∂bVk∂bVa

− 2(d− 1)
d− 2 Ψ∂bkV

ij ∂bVa∂kVa + 4(d− 1)
d− 2 Ψ∂akV

ij ∂bVa∂kVb −
(d− 1)
2(d− 2)Ψ∂abV

ij ∂2
t Ŵab

− (d− 3)(d− 1)2

(d− 2)3 Ψ∂abV
ij ∂aK∂bV,

SINC4PN =
( (d− 1)3

4(d− 2)3 (∂tV )2V 2 − (d− 1)3

4(d− 2)3V
3∂2
t V −

(d− 1)2(2d− 3)
(d− 2)3 V 2Va∂t∂aV

− d(d− 1)2(2d− 5)
2(d− 2)4 V Va∂tV ∂aV + (d− 1)3

(d− 2)3V
2∂tVa∂aV −

2(d− 1)(d2 − 5d+ 8)
(d− 2)3 Va∂tV ∂tVa

+ 4(d− 1)
(d− 2)2 V ∂tVa∂tVa −

2(d− 3)(d− 1)
(d− 2)2 V Va∂

2
t Va −

(d− 1)2

(d− 2)3VaVb∂aV ∂bV

+ 6(d− 1)2

(d− 2)3 V Va∂aVb∂bV −
(d− 3)(d− 1)

2(d− 2)2 VaVa∂bV ∂bV + (d− 1)2(3d− 7)
(d− 2)3 V 2∂aVb∂bVa

− (d− 4)(d− 1)2

(d− 2)3 V 2∂bVa∂bVa −
8(d− 1)
d− 2 Va∂tVb∂bVa + (d− 1)2

2(d− 2)2 (∂tV )2Ŵ + (d− 1)2

(d− 2)2V ∂tV ∂tŴ

+ (d− 1)2

2(d− 2)2V Ŵ∂2
t V + (d− 1)2

4(d− 2)2V
2∂2
t Ŵ −

(d− 1)2

2(d− 2)2V
2Ŵab∂baV −

d(d− 1)2

4(d− 2)3 V Ŵab∂aV ∂bV

+ 2(d− 1)
d− 2 VaŴab∂t∂bV + 2(d− 1)2

(d− 2)2 V ∂tŴab∂bVa + 4(d− 3)
d− 2 Va∂bŴ∂bVa + 2(d− 3)

d− 2 Ŵ∂bVa∂bVa

− 4(d− 1)
d− 2 Ŵai∂bVa∂iVb + 4(d− 1)

d− 2 Va∂aŴbi∂iVb −
4(d− 1)
d− 2 Va∂iŴab∂iVb + (d− 3)

2(d− 2)∂tŴab∂tŴab

+ 1
2(d− 2)(∂tŴ )2 − 1

d− 2Ŵab∂
2
t Ŵab + 1

2(d− 2)Ŵ∂2
t Ŵ + d(d− 1)

(d− 2)2 Ŵbi∂aŴbi∂aV
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+ (d− 1)
d− 2 ŴaiŴab∂ibV + d(d− 1)

2(d− 2)2V ∂iŴab∂iŴab −
2(d− 1)2

(d− 2)2 R̂aV ∂t∂aV −
d(d− 1)2

(d− 2)3 R̂a∂tV ∂aV

+ 8
d− 2∂tR̂a∂tVa −

2(d− 3)
d− 2 Va∂

2
t R̂a −

2(d− 3)
d− 2 R̂a∂

2
t Va −

4(d− 1)
d− 2 R̂aVb∂baV

− 12(d− 1)
(d− 2)2 Va∂bV ∂bR̂a + 4(d− 4)(d− 1)

(d− 2)2 V ∂bVa∂bR̂a −
12(d− 1)
(d− 2)2 R̂a∂bVa∂bV

+ 4(d− 1)
d− 2 ∂tŴab∂bR̂a + 4(d− 1)

d− 2 ∂aR̂b∂bR̂a + (d− 4)(d− 1)2

(d− 2)3 ∂tV ∂tX̂ −
(d− 1)2

(d− 2)2 X̂∂aV ∂aV

− 2(d− 1)2

(d− 2)2 V ∂aX̂∂aV −
4(d− 1)
d− 2 Va∂t∂aX̂ −

2(d− 1)
d− 2 Ŵab∂baX̂ + 2(d− 1)

d− 2 ∂tV ∂tẐ

+ (d− 1)
d− 2 Ẑ∂2

t V + (d− 1)
d− 2 V ∂2

t Ẑ −
2(d− 1)2

(d− 2)2 Ẑ∂aV ∂aV −
4(d− 1)2

(d− 2)2 V ∂aẐ∂aV

+ 8(d− 1)
d− 2 ∂tẐab∂bVa −

(d− 3)2(d− 1)2(3d− 4)
2(d− 2)5 V ∂aK∂aK −

(d− 3)2(d− 1)2(3d− 4)
(d− 2)5 K∂aV ∂aK

− (d− 4)(d− 3)(d− 1)3

2(d− 2)5 K(∂tV )2 − (d− 4)(d− 3)(d− 1)3

(d− 2)5 V ∂tK∂tV

+ (d− 4)(d− 3)2(d− 1)2

2(d− 2)5 (∂tK)2 + 2(d− 3)(d− 1)2

(d− 2)3 V Va∂t∂aK + 2(d− 3)(d− 1)2

(d− 2)3 KVa∂t∂aV

+ d(d− 3)(d− 1)2

(d− 2)4 Va∂tV ∂aK + d(d− 3)(d− 1)2

(d− 2)4 Va∂tK∂aV −
2(d− 3)(d− 1)2

(d− 2)3 K∂bVa∂bVa

− (d− 3)(d− 1)
(d− 2)2 ∂tK∂tŴ −

(d− 3)(d− 1)
2(d− 2)2 Ŵ∂2

tK −
(d− 3)(d− 1)

2(d− 2)2 K∂2
t Ŵ

+ 2(d− 3)(d− 1)2

(d− 2)3 Ŵ∂aV ∂aK + 2(d− 3)(d− 1)2

(d− 2)3 V ∂aŴ∂aK + 2(d− 3)(d− 1)2

(d− 2)3 K∂aŴ∂aV

+ 4(d− 3)(d− 1)
(d− 2)2 R̂a∂t∂aK + 4(d− 3)(d− 1)

(d− 2)2 Ẑab∂baK
)
x̂ij −

d(d− 1)3

(d− 2)4 VΨ∂aVb
ij ∂t∂bV ∂aV

− d(d− 1)3

(d− 2)4 Ψ∂aVb
ij ∂tV ∂aV ∂bV −

d(d− 1)3

(d− 2)4 VΨ∂aVb
ij ∂tV ∂baV + 4(d− 1)2

(d− 2)2 VΨ∂aVb
ij ∂2

t ∂bVa

+ 4(d− 1)2

(d− 2)2 Ψ∂bVa

ij ∂2
t Vb∂aV −

2d(d− 1)2

(d− 2)3 VaΨ∂bVk
ij ∂bV ∂kaV −

2d(d− 1)2

(d− 2)3 VbΨ∂kVa

ij ∂bV ∂kaV

− 2d(d− 1)2

(d− 2)3 Ψ∂bVk
ij ∂aV ∂bV ∂kVa −

4(d− 1)3

(d− 2)3 Ψ∂kVb
ij ∂aVk∂aV ∂bV −

4(d− 1)3

(d− 2)3 VΨ∂bVk
ij ∂aV ∂kaVb

− 4(d− 1)3

(d− 2)3 VΨ∂aVk
ij ∂bVa∂kbV + 16(d− 1)

d− 2 VaΨ∂bVk
ij ∂t∂kaVb + 16(d− 1)

d− 2 Ψ∂kVb
ij ∂t∂aVk∂bVa

− 4(d− 1)2

(d− 2)2 Ψ∂bVk
ij ∂t∂kŴab∂aV −

4(d− 1)2

(d− 2)2 Ψ∂aVb
ij ∂tŴak∂kbV + 8(d− 1)

d− 2 ŴabΨ∂kVl
ij ∂lbaVk

+ 8(d− 1)
d− 2 Ψ∂kVl

ij ∂bVa∂lkŴab −
8(d− 1)
d− 2 Ψ∂kVl

ij ∂bVa∂laŴbk + 8(d− 1)
d− 2 Ψ∂aVb

ij ∂aŴkl∂lbVk

− 8(d− 1)
d− 2 Ψ∂aVb

ij ∂kŴal∂lbVk + 8(d− 1)
d− 2 Ψ∂aVb

ij ∂bŴkl∂lkVa + 4(d− 1)
d− 2 Ψ∂aVb

ij ∂2
t ∂bR̂a

− 8(d− 1)2

(d− 2)2 Ψ∂bVk
ij ∂bR̂a∂kaV −

8(d− 1)2

(d− 2)2 Ψ∂bVk
ij ∂aV ∂kbR̂a + d(d− 1)3

2(d− 2)4 VΨ∂taV
ij ∂tV ∂aV

− 2(d− 1)2

(d− 2)2 VΨ∂taV
ij ∂2

t Va + d(d− 1)2

(d− 2)3 VbΨ
∂taV
ij ∂aV ∂bV + 2(d− 1)3

(d− 2)3 VΨ∂tbV
ij ∂aVb∂aV

− 8(d− 1)
d− 2 VaΨ∂tbV

ij ∂t∂aVb + 2(d− 1)2

(d− 2)2 Ψ∂tbV
ij ∂tŴab∂aV −

4(d− 1)
d− 2 ŴabΨ∂tkV

ij ∂baVk

− 4(d− 1)
d− 2 Ψ∂tkV

ij ∂bVa∂kŴab + 4(d− 1)
d− 2 Ψ∂tkV

ij ∂aŴbk∂bVa −
2(d− 1)
d− 2 Ψ∂taV

ij ∂2
t R̂a

+ 4(d− 1)2

(d− 2)2 Ψ∂tbV
ij ∂aV ∂bR̂a −

d(d− 1)3

8(d− 2)4 VΨ∂aaV
ij (∂tV )2 + (d− 1)3

4(d− 2)3V
2Ψ∂aaV

ij ∂2
t V

+ (d− 1)2

(d− 2)2V VbΨ
∂aaV
ij ∂t∂bV + (d− 1)2

2(d− 2)2VbΨ
∂aaV
ij ∂tV ∂bV −

(d− 1)3

(d− 2)3VΨ∂aaV
ij ∂tVb∂bV
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+ 2(d− 1)3

(d− 2)3 VΨ∂abV
ij ∂tVb∂aV −

(d− 1)2

(d− 2)2VaΨ∂abV
ij ∂tV ∂bV + 4(d− 1)

d− 2 Ψ∂abV
ij ∂tVa∂tVb

+ 4(d− 1)2

(d− 2)2 VaΨ∂bkV
ij ∂aVk∂bV −

4(d− 1)2

(d− 2)2 VaΨ∂akV
ij ∂bVk∂bV −

(d− 1)2

(d− 2)2VΨ∂bbV
ij ∂aVk∂kVa

− (d− 1)2

(d− 2)2VΨ∂abV
ij ∂2

t Ŵab + (d− 1)2

2(d− 2)2VΨ∂aaV
ij ∂2

t Ŵ + (d− 1)2

2(d− 2)2V ŴkaΨ∂bbV
ij ∂kaV

− (d− 1)2

(d− 2)2 ŴakΨ∂bkV
ij ∂aV ∂bV + (d− 1)2

4(d− 2)2 ŴkaΨ∂bbV
ij ∂aV ∂kV −

4(d− 1)
d− 2 VaΨ∂bkV

ij ∂t∂aŴbk

+ 2(d− 1)
d− 2 VbΨ∂aaV

ij ∂t∂bŴ + 2(d− 1)
d− 2 Ψ∂bbV

ij ∂tŴka∂aVk −
4(d− 1)
d− 2 Ψ∂bkV

ij ∂tŴak∂bVa

+ 4(d− 1)
d− 2 Ψ∂akV

ij ∂tŴbk∂bVa + (d− 1)
d− 2 Ψ∂klV

ij ∂kŴab∂lŴab −
2(d− 1)
d− 2 ŴabΨ∂klV

ij ∂baŴkl

+ (d− 1)
d− 2 ŴkaΨ∂bbV

ij ∂kaŴ −
4(d− 1)
d− 2 Ψ∂blV

ij ∂kŴab∂lŴak + 2(d− 1)
d− 2 Ψ∂blV

ij ∂aŴkl∂kŴab

+ (d− 1)
d− 2 Ψ∂llV

ij ∂bŴak∂kŴab −
2(d− 1)2

(d− 2)2 Ψ∂aaV
ij ∂tR̂b∂bV + 4(d− 1)2

(d− 2)2 Ψ∂abV
ij ∂tR̂b∂aV

− 4(d− 1)
d− 2 Ψ∂bbV

ij ∂aR̂k∂kVa + 8(d− 1)
d− 2 Ψ∂bkV

ij ∂aVk∂bR̂a −
8(d− 1)
d− 2 Ψ∂bkV

ij ∂bR̂a∂kVa

+ 8(d− 1)
d− 2 Ψ∂akV

ij ∂bR̂a∂kVb + 2(d− 1)2

(d− 2)2 Ψ∂abV
ij ∂aV ∂bX̂ −

2(d− 1)
d− 2 Ψ∂abV

ij ∂2
t Ẑab

+ 2d(d− 3)(d− 1)2

(d− 2)4 Ψ∂aVb
ij ∂t∂bV ∂aK + 2d(d− 3)(d− 1)2

(d− 2)4 Ψ∂aVb
ij ∂t∂bK∂aV

+ 2d(d− 3)(d− 1)2

(d− 2)4 Ψ∂aVb
ij ∂tV ∂baK + 2d(d− 3)(d− 1)2

(d− 2)4 Ψ∂aVb
ij ∂tK∂baV

+ 8(d− 3)(d− 1)2

(d− 2)3 Ψ∂bVk
ij ∂bVa∂kaK + 8(d− 3)(d− 1)2

(d− 2)3 Ψ∂bVk
ij ∂aK∂kbVa

− d(d− 3)(d− 1)2

(d− 2)4 Ψ∂taV
ij ∂tV ∂aK −

d(d− 3)(d− 1)2

(d− 2)4 Ψ∂taV
ij ∂tK∂aV

− 4(d− 3)(d− 1)2

(d− 2)3 Ψ∂tbV
ij ∂aK∂bVa + (d− 3)2(d− 1)2

(d− 2)4 Ψ∂abV
ij ∂aK∂bK

+ d(d− 3)(d− 1)2

2(d− 2)4 Ψ∂aaV
ij ∂tK∂tV + 2(d− 3)(d− 1)2

(d− 2)3 Ψ∂aaV
ij ∂tVb∂bK

− 4(d− 3)(d− 1)2

(d− 2)3 Ψ∂abV
ij ∂tVb∂aK,

SIINC2PN = − (d− 1)2

8(d− 2)2(d+ 4)r
2x̂ij∂aV ∂aV,

SIINC3PN =
( (d− 4)(d− 1)2

16(d− 2)3(d+ 4)(∂tV )2 − (d− 1)2

8(d− 2)2(d+ 4)V ∂
2
t V −

(d− 1)2(3d− 2)
16(d− 2)3(d+ 4)V ∂aV ∂aV

− (d− 1)
2(d− 2)(d+ 4)Va∂t∂aV + (d− 1)

2(d− 2)(d+ 4)∂aVb∂bVa + (d− 3)
2(d− 2)(d+ 4)∂bVa∂bVa

− (d− 1)
4(d− 2)(d+ 4)∂aŴ∂aV −

(d− 1)
4(d− 2)(d+ 4)Ŵab∂baV + (d− 3)(d− 1)2

2(d− 2)3(d+ 4)∂aV ∂aK
)
r2x̂ij ,

SIINC4PN =
( (d− 1)2(d2 − 8d+ 8)

16(d− 2)4(d+ 4) (∂tV )2V − 3(d− 1)3

8(d− 2)3(d+ 4)V
2∂2
t V −

(d− 1)3(3d− 2)
16(d− 2)4(d+ 4)V

2∂aV ∂aV

− 3(d− 1)2

2(d− 2)2(d+ 4)V Va∂t∂aV −
d(d− 1)

2(d− 2)2(d+ 4)Va∂tV ∂aV + (d− 1)2

2(d− 2)2(d+ 4)V ∂tVa∂aV

+ 1
(d− 2)(d+ 4)∂tVa∂tVa −

(d− 3)(d− 1)
(d− 2)2(d+ 4)Va∂aVb∂bV + (d− 5)(d− 1)

(d− 2)2(d+ 4)Va∂bVa∂bV

+ 3(d− 1)
2(d− 2)(d+ 4)V ∂aVb∂bVa + (d− 1)

2(d− 2)(d+ 4)V ∂bVa∂bVa + (d− 1)
4(d− 2)(d+ 4)∂tV ∂tŴ

− (d− 1)(2d− 3)
8(d− 2)2(d+ 4)Ŵ∂aV ∂aV −

(d− 1)2

2(d− 2)2(d+ 4)V ∂aŴ∂aV −
(d− 1)2

2(d− 2)2(d+ 4)V Ŵab∂baV
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− (d− 1)
4(d− 2)2(d+ 4)Ŵab∂aV ∂bV + (d− 1)

(d− 2)(d+ 4)∂tŴab∂bVa −
1

4(d− 2)(d+ 4)∂aŴ∂aŴ

+ 1
2(d− 2)(d+ 4)∂iŴab∂iŴab −

(d− 1)
(d− 2)(d+ 4) R̂a∂t∂aV + 2(d− 1)

(d− 2)(d+ 4)∂aVb∂bR̂a

+ 2(d− 3)
(d− 2)(d+ 4)∂bVa∂bR̂a −

(d− 1)2

(d− 2)2(d+ 4)∂aX̂∂aV −
(d− 1)

(d− 2)(d+ 4)∂aẐ∂aV

− (d− 1)
(d− 2)(d+ 4) Ẑab∂baV −

(d− 4)(d− 3)(d− 1)2

4(d− 2)4(d+ 4) ∂tK∂tV + (d− 3)(d− 1)2

4(d− 2)3(d+ 4)V ∂
2
tK

+ (d− 3)(d− 1)2

4(d− 2)3(d+ 4)K∂
2
t V + (d− 3)(d− 1)2(3d− 2)

4(d− 2)4(d+ 4) V ∂aV ∂aK

+ (d− 3)(d− 1)2(3d− 2)
8(d− 2)4(d+ 4) K∂aV ∂aV −

(d− 3)2(d− 1)2

2(d− 2)4(d+ 4)∂aK∂aK + (d− 3)(d− 1)
(d− 2)2(d+ 4)Va∂t∂aK

+ (d− 3)(d− 1)
2(d− 2)2(d+ 4)∂aŴ∂aK + (d− 3)(d− 1)

2(d− 2)2(d+ 4)Ŵab∂baK
)
r2x̂ij ,

SIIINC3PN = − (d− 1)2

32(d− 2)2(d+ 4)(d+ 6)r
4x̂ij∂aV ∂aV,

SIIINC4PN =
( (d− 4)(d− 1)2

64(d− 2)3(d+ 4)(d+ 6)(∂tV )2 − (d− 1)2

32(d− 2)2(d+ 4)(d+ 6)V ∂
2
t V

− (d− 1)2(3d− 2)
64(d− 2)3(d+ 4)(d+ 6)V ∂aV ∂aV −

(d− 1)
8(d− 2)(d+ 4)(d+ 6)Va∂t∂aV

+ (d− 1)
8(d− 2)(d+ 4)(d+ 6)∂aVb∂bVa + (d− 3)

8(d− 2)(d+ 4)(d+ 6)∂bVa∂bVa

− (d− 1)
16(d− 2)(d+ 4)(d+ 6)∂aŴ∂aV −

(d− 1)
16(d− 2)(d+ 4)(d+ 6)Ŵab∂baV

+ (d− 3)(d− 1)2

8(d− 2)3(d+ 4)(d+ 6)∂aV ∂aK
)
r4x̂ij ,

SIVNC4PN = − (d− 1)2

192(d− 2)2(d+ 4)(d+ 6)(d+ 8)r
6x̂ij∂aV ∂aV,

V INC2PN = −
( (d− 1)2(d+ 2)

4(d− 2)3(d+ 4)∂tV ∂aV + (d− 1)2(d+ 2)
d(d− 2)2(d+ 4)∂aVb∂bV

)
x̂ija,

V INC3PN =
(
− (d− 1)3(d+ 2)

4(d− 2)4(d+ 4)V ∂tV ∂aV −
(d− 1)2(d+ 2)
d(d− 2)2(d+ 4)∂tV ∂tVa −

(d− 1)2(d+ 2)
2d(d− 2)2(d+ 4)Va∂

2
t V

+ (d− 1)2(d+ 2)
2d(d− 2)2(d+ 4)V ∂

2
t Va −

(d− 1)2(d+ 2)
2(d− 2)3(d+ 4)Vb∂aV ∂bV + (d− 1)3(d+ 2)

2d(d− 2)3(d+ 4)Va∂bV ∂bV

+ 4(d− 1)(d+ 2)
d(d− 2)(d+ 4)Vb∂t∂bVa −

(d− 1)2(d+ 2)
d(d− 2)2(d+ 4)∂tŴab∂bV + 2(d− 1)(d+ 2)

d(d− 2)(d+ 4) Ŵbi∂ibVa

+ 2(d− 1)(d+ 2)
d(d− 2)(d+ 4) ∂aŴbi∂iVb −

2(d− 1)(d+ 2)
d(d− 2)(d+ 4) ∂bŴai∂iVb + (d− 3)(d− 1)2(d+ 2)

2(d− 2)4(d+ 4) ∂tV ∂aK

+ (d− 3)(d− 1)2(d+ 2)
2(d− 2)4(d+ 4) ∂tK∂aV + 2(d− 3)(d− 1)2(d+ 2)

d(d− 2)3(d+ 4) ∂aVb∂bK
)
x̂ija

+ (d− 1)3(d+ 2)
2(d− 2)4(d+ 4)Ψ∂aV

ijb ∂t∂bV ∂aV + (d− 1)3(d+ 2)
2(d− 2)4(d+ 4)Ψ∂bV

ija ∂tV ∂baV

+ 2(d− 1)3(d+ 2)
d(d− 2)3(d+ 4)Ψ∂bV

ijk ∂bVa∂kaV + 2(d− 1)3(d+ 2)
d(d− 2)3(d+ 4)Ψ∂kV

ijb ∂aV ∂kbVa,

V INC4PN =
(
− (d− 1)2(d+ 2)

2d(d− 2)2(d+ 4)(∂tV )2Va −
(d− 1)3(d+ 2)
d(d− 2)3(d+ 4)V ∂tV ∂tVa −

(d− 1)3(d+ 2)
2d(d− 2)3(d+ 4)V Va∂

2
t V

+ 3(d− 1)3(d+ 2)
4d(d− 2)3(d+ 4)V

2∂2
t Va −

(d− 1)4(d+ 2)
d(d− 2)4(d+ 4)V Vb∂aV ∂bV + 2(d− 1)4(d+ 2)

d(d− 2)4(d+ 4)V Va∂bV ∂bV

+ 2(d− 1)4(d+ 2)
d(d− 2)4(d+ 4)V

2∂bVa∂bV + 4(d− 1)2(d+ 2)
d(d− 2)2(d+ 4)V Vb∂t∂bVa + 2(d− 1)2(d+ 2)

d(d− 2)2(d+ 4)Vb∂tVa∂bV

− 4(d− 1)2(d+ 2)
d(d− 2)3(d+ 4)Vb∂tVb∂aV + 2(d− 4)(d− 1)2(d+ 2)

d(d− 2)3(d+ 4) Vb∂tV ∂aVb + 4(d− 1)2(d+ 2)
d(d− 2)2(d+ 4)Va∂tVb∂bV
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− 4(d− 1)(d+ 2)
d(d− 2)(d+ 4)Vb∂aVi∂bVi −

4(d− 1)(d+ 2)
(d− 2)2(d+ 4) Vb∂aVi∂iVb + 4(d− 1)(d+ 2)

d(d− 2)(d+ 4)Vb∂bVi∂iVa

+ 4(d− 1)(d+ 2)
d(d− 2)(d+ 4)Va∂bVi∂iVb −

2(d− 1)(d+ 2)
d(d− 2)(d+ 4)Va∂iVb∂iVb + (d− 1)2(d+ 2)

2(d− 2)3(d+ 4)Ŵab∂tV ∂bV

− (d− 1)3(d+ 2)
d(d− 2)3(d+ 4)V ∂tŴab∂bV −

2(d− 1)(d+ 2)
d(d− 2)(d+ 4) ∂tVa∂tŴ −

(d− 1)(d+ 2)
d(d− 2)(d+ 4)Ŵ∂2

t Va

+ (d− 1)(d+ 2)
d(d− 2)(d+ 4)Ŵab∂

2
t Vb + (d− 1)(d+ 2)

d(d− 2)(d+ 4)Vb∂
2
t Ŵab −

(d− 1)(d+ 2)
d(d− 2)(d+ 4)Va∂

2
t Ŵ

+ 2(d− 1)2(d+ 2)
d(d− 2)2(d+ 4)Ŵbi∂aVi∂bV −

2(d− 1)2(d+ 2)
d(d− 2)2(d+ 4)Vb∂bŴai∂iV + 2(d− 1)2(d+ 2)

d(d− 2)2(d+ 4)Vb∂iŴab∂iV

+ 2(d− 1)2(d+ 2)
d(d− 2)2(d+ 4)Ŵai∂bV ∂iVb + (d− 1)(d+ 2)

d(d− 2)(d+ 4)∂tŴbi∂aŴbi −
2(d− 1)(d+ 2)
d(d− 2)(d+ 4) ∂tŴbi∂iŴab

− 2(d− 1)2(d+ 2)
d(d− 2)2(d+ 4)∂tR̂a∂tV + (d− 1)2(d+ 2)

d(d− 2)2(d+ 4)V ∂
2
t R̂a −

(d− 1)2(d+ 2)
d(d− 2)2(d+ 4) R̂a∂

2
t V

− (d− 1)2(d+ 2)
(d− 2)3(d+ 4) R̂b∂aV ∂bV −

2(d− 1)3(d+ 2)
d(d− 2)3(d+ 4)V ∂bV ∂bR̂a + 8(d− 1)(d+ 2)

d(d− 2)(d+ 4)Vb∂t∂bR̂a

+ 8(d− 1)(d+ 2)
d(d− 2)(d+ 4) R̂b∂t∂bVa + 4(d− 1)(d+ 2)

d(d− 2)(d+ 4) Ŵbi∂ibR̂a + 4(d− 1)(d+ 2)
d(d− 2)(d+ 4) ∂aŴbi∂iR̂b

− 4(d− 1)(d+ 2)
d(d− 2)(d+ 4) ∂bŴai∂iR̂b −

(d− 1)2(d+ 2)
(d− 2)3(d+ 4)∂tX̂∂aV −

(d− 1)2(d+ 2)
(d− 2)3(d+ 4)∂tV ∂aX̂

− 4(d− 1)2(d+ 2)
d(d− 2)2(d+ 4)∂aVb∂bX̂ −

4(d− 1)2(d+ 2)
d(d− 2)2(d+ 4)∂tẐab∂bV + 8(d− 1)(d+ 2)

d(d− 2)(d+ 4) Ẑbi∂ibVa

+ 8(d− 1)(d+ 2)
d(d− 2)(d+ 4) ∂aẐbi∂iVb −

8(d− 1)(d+ 2)
d(d− 2)(d+ 4) ∂bẐai∂iVb + (d− 3)(d− 1)3(d+ 2)

2(d− 2)5(d+ 4) V ∂tV ∂aK

+ (d− 3)(d− 1)3(d+ 2)
2(d− 2)5(d+ 4) V ∂tK∂aV + (d− 3)(d− 1)3(d+ 2)

2(d− 2)5(d+ 4) K∂tV ∂aV

− (d− 3)2(d− 1)2(d+ 2)
(d− 2)5(d+ 4) ∂tK∂aK + 2(d− 3)(d− 1)2(d+ 2)

d(d− 2)3(d+ 4) ∂tK∂tVa

+ (d− 3)(d− 1)2(d+ 2)
d(d− 2)3(d+ 4) Va∂

2
tK −

(d− 3)(d− 1)2(d+ 2)
d(d− 2)3(d+ 4) K∂2

t Va

+ (d− 3)(d− 1)2(d+ 2)
(d− 2)4(d+ 4) Vb∂aK∂bV + (d− 3)(d− 1)2(d+ 2)

(d− 2)4(d+ 4) Vb∂aV ∂bK

− 2(d− 3)(d− 1)3(d+ 2)
d(d− 2)4(d+ 4) Va∂bV ∂bK + 2(d− 3)(d− 1)2(d+ 2)

d(d− 2)3(d+ 4) ∂tŴab∂bK

+ 4(d− 3)(d− 1)2(d+ 2)
d(d− 2)3(d+ 4) ∂aR̂b∂bK

)
x̂ija + (d− 1)4(d+ 2)

2(d− 2)5(d+ 4)VΨ∂aV
ijb ∂t∂bV ∂aV

+ (d− 1)4(d+ 2)
2(d− 2)5(d+ 4)Ψ∂bV

ija ∂tV ∂aV ∂bV + (d− 1)4(d+ 2)
2(d− 2)5(d+ 4)VΨ∂bV

ija ∂tV ∂baV

− 2(d− 1)3(d+ 2)
d(d− 2)3(d+ 4)VΨ∂aV

ijb ∂
2
t ∂bVa −

2(d− 1)3(d+ 2)
d(d− 2)3(d+ 4)Ψ∂bV

ija ∂
2
t Vb∂aV

+ (d− 1)3(d+ 2)
(d− 2)4(d+ 4)VaΨ∂bV

ijk ∂bV ∂kaV + (d− 1)3(d+ 2)
(d− 2)4(d+ 4)VbΨ

∂aV
ijk ∂bV ∂kaV

+ (d− 1)3(d+ 2)
(d− 2)4(d+ 4) Ψ∂bV

ijk ∂aV ∂bV ∂kVa + 2(d− 1)4(d+ 2)
d(d− 2)4(d+ 4)Ψ∂kV

ijb ∂aVk∂aV ∂bV

+ 2(d− 1)4(d+ 2)
d(d− 2)4(d+ 4)VΨ∂bV

ijk ∂aV ∂kaVb + 2(d− 1)4(d+ 2)
d(d− 2)4(d+ 4)VΨ∂aV

ijk ∂bVa∂kbV

− 8(d− 1)2(d+ 2)
d(d− 2)2(d+ 4)VaΨ∂bV

ijk ∂t∂kaVb −
8(d− 1)2(d+ 2)
d(d− 2)2(d+ 4)Ψ∂kV

ijb ∂t∂aVk∂bVa

+ 2(d− 1)3(d+ 2)
d(d− 2)3(d+ 4)Ψ∂bV

ijk ∂t∂kŴab∂aV + 2(d− 1)3(d+ 2)
d(d− 2)3(d+ 4)Ψ∂kV

ijb ∂tŴak∂baV

− 4(d− 1)2(d+ 2)
d(d− 2)2(d+ 4)ŴabΨ∂lV

ijk ∂kbaVl −
4(d− 1)2(d+ 2)
d(d− 2)2(d+ 4)Ψ∂lV

ijk ∂bVa∂lkŴab
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+ 4(d− 1)2(d+ 2)
d(d− 2)2(d+ 4)Ψ∂kV

ijl ∂bVa∂laŴbk −
4(d− 1)2(d+ 2)
d(d− 2)2(d+ 4)Ψ∂lV

ijk ∂kbVa∂lŴab

+ 4(d− 1)2(d+ 2)
d(d− 2)2(d+ 4)Ψ∂lV

ijk ∂aŴbl∂kbVa −
4(d− 1)2(d+ 2)
d(d− 2)2(d+ 4)Ψ∂aV

ijl ∂kbVa∂lŴbk

− 2(d− 1)2(d+ 2)
d(d− 2)2(d+ 4)Ψ∂aV

ijb ∂
2
t ∂bR̂a + 4(d− 1)3(d+ 2)

d(d− 2)3(d+ 4)Ψ∂bV
ijk ∂bR̂a∂kaV

+ 4(d− 1)3(d+ 2)
d(d− 2)3(d+ 4)Ψ∂kV

ijb ∂aV ∂kbR̂a −
(d− 3)(d− 1)3(d+ 2)

(d− 2)5(d+ 4) Ψ∂aV
ijb ∂t∂bV ∂aK

− (d− 3)(d− 1)3(d+ 2)
(d− 2)5(d+ 4) Ψ∂aV

ijb ∂t∂bK∂aV −
(d− 3)(d− 1)3(d+ 2)

(d− 2)5(d+ 4) Ψ∂bV
ija ∂tV ∂baK

− (d− 3)(d− 1)3(d+ 2)
(d− 2)5(d+ 4) Ψ∂bV

ija ∂tK∂baV −
4(d− 3)(d− 1)3(d+ 2)

d(d− 2)4(d+ 4) Ψ∂bV
ijk ∂bVa∂kaK

− 4(d− 3)(d− 1)3(d+ 2)
d(d− 2)4(d+ 4) Ψ∂kV

ijb ∂aK∂kbVa,

SVIINC3PN =
(
− (d− 1)2(d+ 2)

8(d− 2)3(d+ 4)(d+ 6)∂tV ∂aV −
(d− 1)2(d+ 2)

2d(d− 2)2(d+ 4)(d+ 6)∂aVb∂bV

+ (d− 1)2(d+ 2)
2d(d− 2)2(d+ 4)(d+ 6)∂bVa∂bV

)
r2x̂ija,

SVIINC4PN =
(
− (d− 1)3(d+ 2)

4(d− 2)4(d+ 4)(d+ 6)V ∂tV ∂aV −
(d− 1)2(d+ 2)

2d(d− 2)2(d+ 4)(d+ 6)∂tV ∂tVa

+ (d− 1)2(d+ 2)
2d(d− 2)2(d+ 4)(d+ 6)V ∂

2
t Va −

(d− 1)2(d+ 2)
2d(d− 2)3(d+ 4)(d+ 6)Vb∂aV ∂bV

− (d− 1)3(d+ 2)
2d(d− 2)3(d+ 4)(d+ 6)V ∂aVb∂bV + (d− 1)2(d+ 2)

4(d− 2)3(d+ 4)(d+ 6)Va∂bV ∂bV

+ (d− 1)3(d+ 2)
2d(d− 2)3(d+ 4)(d+ 6)V ∂bVa∂bV + 2(d− 1)(d+ 2)

d(d− 2)(d+ 4)(d+ 6)Vb∂t∂bVa

− (d− 1)2(d+ 2)
2d(d− 2)2(d+ 4)(d+ 6)∂tŴab∂bV + (d− 1)(d+ 2)

d(d− 2)(d+ 4)(d+ 6)∂bŴ∂bVa

+ (d− 1)(d+ 2)
d(d− 2)(d+ 4)(d+ 6)Ŵbi∂ibVa + (d− 1)(d+ 2)

d(d− 2)(d+ 4)(d+ 6)∂aŴbi∂iVb

− (d− 1)(d+ 2)
d(d− 2)(d+ 4)(d+ 6)∂bŴai∂iVb −

(d− 1)(d+ 2)
d(d− 2)(d+ 4)(d+ 6)∂iŴab∂iVb

− (d− 1)2(d+ 2)
d(d− 2)2(d+ 4)(d+ 6)∂aR̂b∂bV + (d− 1)2(d+ 2)

d(d− 2)2(d+ 4)(d+ 6)∂bV ∂bR̂a

+ (d− 3)(d− 1)2(d+ 2)
4(d− 2)4(d+ 4)(d+ 6)∂tV ∂aK + (d− 3)(d− 1)2(d+ 2)

4(d− 2)4(d+ 4)(d+ 6)∂tK∂aV

+ (d− 3)(d− 1)2(d+ 2)
d(d− 2)3(d+ 4)(d+ 6)∂aVb∂bK −

(d− 3)(d− 1)2(d+ 2)
d(d− 2)3(d+ 4)(d+ 6)∂bVa∂bK

)
r2x̂ija,

SVIIINC4PN =
(
− (d− 1)2(d+ 2)

32(d− 2)3(d+ 4)(d+ 6)(d+ 8)∂tV ∂aV −
(d− 1)2(d+ 2)

8d(d− 2)2(d+ 4)(d+ 6)(d+ 8)∂aVb∂bV

+ (d− 1)2(d+ 2)
8d(d− 2)2(d+ 4)(d+ 6)(d+ 8)∂bVa∂bV

)
r4x̂ija,

V IVC4PN = − (d− 1)(d+ 2)
24d(d− 2)(d+ 4)(d+ 6)(d+ 8)(d+ 10)r

6x̂ijaσa,

T INC2PN = (d− 1)2(d+ 2)
8d(d− 2)2(d+ 1)(d+ 6) x̂ijab∂aV ∂bV,

T INC3PN =
( (d− 1)2(d+ 2)

2d(d− 2)2(d+ 1)(d+ 6)(∂tVa∂bV + ∂tVb∂aV )− (d− 1)(d+ 2)
d(d− 2)(d+ 1)(d+ 6)∂iVb∂iVa

− (d− 1)(d+ 2)
d(d− 2)(d+ 1)(d+ 6)∂aVi∂bVi + (d− 1)(d+ 2)

d(d− 2)(d+ 1)(d+ 6)(∂aVi∂iVb + ∂bVi∂iVa)

− (d− 3)(d− 1)2(d+ 2)
4d(d− 2)3(d+ 1)(d+ 6)(∂aK∂bV + ∂aV ∂bK)

)
x̂ijab,
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T INC4PN = (d− 1)3(d+ 2)
2d(d− 2)3(d+ 1)(d+ 6)(∂tVa∂bV + ∂tVb∂aV )V x̂ijab + (−1 + d)2(2 + d)

2(−2 + d)3d(1 + d)(6 + d)Vax̂ijab∂tV ∂bV

+ (−1 + d)2(2 + d)
2(−2 + d)3d(1 + d)(6 + d)Vbx̂ijab∂tV ∂aV + 2(d− 1)(d+ 2)

d(d− 2)(d+ 1)(d+ 6) x̂ijab∂tVa∂tVb

+ (d− 1)2(d+ 2)
d(d− 2)2(d+ 1)(d+ 6)(∂aV ∂iVb + ∂bV ∂iVa)Vix̂ijab −

(−1 + d)2(2 + d)
(−2 + d)2d(1 + d)(6 + d)Vax̂ijab∂iVb∂iV

− (−1 + d)2(2 + d)
(−2 + d)2d(1 + d)(6 + d)Vbx̂ijab∂iVa∂iV + (−1 + d)2(2 + d)

(−2 + d)2d(1 + d)(6 + d)Vax̂ijab∂bVi∂iV

+ (−1 + d)2(2 + d)
(−2 + d)2d(1 + d)(6 + d)Vbx̂ijab∂aVi∂iV + (d− 1)2(d+ 2)

4d(d− 2)2(d+ 1)(d+ 6)Ŵ x̂ijab∂aV ∂bV

− (−1 + d)2(2 + d)
2(−2 + d)2d(1 + d)(6 + d)Ŵaix̂ijab∂bV ∂iV −

(−1 + d)2(2 + d)
2(−2 + d)2d(1 + d)(6 + d)Ŵbix̂ijab∂aV ∂iV

− (d− 1)(d+ 2)
d(d− 2)(d+ 1)(d+ 6)(∂tŴai∂bVi + ∂tŴbi∂aVi)x̂ijab + (d− 1)(d+ 2)

d(d− 2)(d+ 1)(d+ 6)(∂tŴai∂iVb

+ ∂tŴbi∂iVa)x̂ijab + (d− 1)(d+ 2)
2d(d− 2)(d+ 1)(d+ 6) x̂ijab∂aŴij∂bŴij

− (d− 1)(d+ 2)
d(d− 2)(d+ 1)(d+ 6)(∂aŴij∂jŴbi + ∂bŴij∂jŴai)x̂ijab

+ (d− 1)(d+ 2)
d(d− 2)(d+ 1)(d+ 6) x̂ijab∂iŴbj∂jŴai + (d− 1)(d+ 2)

d(d− 2)(d+ 1)(d+ 6) x̂ijab∂jŴbi∂jŴai

+ (d− 1)2(d+ 2)
d(d− 2)2(d+ 1)(d+ 6)(∂tR̂a∂bV + ∂tR̂b∂aV )x̂ijab + 2(d− 1)(d+ 2)

d(d− 2)(d+ 1)(d+ 6)(∂aR̂i∂iVb

+ ∂bR̂i∂iVa)x̂ijab −
2(d− 1)(d+ 2)

d(d− 2)(d+ 1)(d+ 6)(∂iVa∂iR̂b + ∂iVb∂iR̂a)x̂ijab

− 2(d− 1)(d+ 2)
d(d− 2)(d+ 1)(d+ 6)(∂aR̂i∂bVi + ∂aVi∂bR̂i)x̂ijab + 2(d− 1)(d+ 2)

d(d− 2)(d+ 1)(d+ 6)(∂aVi∂iR̂b

+ ∂bVi∂iR̂a)x̂ijab + (d− 1)2(d+ 2)
2d(d− 2)2(d+ 1)(d+ 6)(∂aV ∂bX̂ + ∂aX̂∂bV )x̂ijab

+ (d− 3)2(d− 1)2(d+ 2)
2d(d− 2)4(d+ 1)(d+ 6) x̂ijab∂aK∂bK −

(d− 3)(d− 1)2(d+ 2)
d(d− 2)3(d+ 1)(d+ 6)(∂tVa∂bK + ∂tVb∂aK)x̂ijab,

T IINC3PN = (d− 1)2(d+ 2)
16d(d− 2)2(d+ 1)(d+ 6)(d+ 8)r

2x̂ijab∂aV ∂bV,

T IINC4PN =
(
− (d− 3)(d− 1)2(d+ 2)

8d(d− 2)3(d+ 1)(d+ 6)(d+ 8)(∂aK∂bV + ∂aV ∂bK)

+ (d− 1)2(d+ 2)
4d(d− 2)2(d+ 1)(d+ 6)(d+ 8)(∂tVa∂bV + ∂tVb∂aV )

− (d− 1)(d+ 2)
2d(d− 2)(d+ 1)(d+ 6)(d+ 8)∂iVb∂iVa −

(d− 1)(d+ 2)
2d(d− 2)(d+ 1)(d+ 6)(d+ 8)∂aVi∂bVi

+ (d− 1)(d+ 2)
2d(d− 2)(d+ 1)(d+ 6)(d+ 8)(∂aVi∂iVb + ∂bVi∂iVa)

)
r2x̂ijab,

T IIINC4PN = (d− 1)2(d+ 2)
64d(d− 2)2(d+ 1)(d+ 6)(d+ 8)(d+ 10)r

4x̂ijab∂aV ∂bV.

Finally we present the surface terms. The terms of the Laplacian type should be multiplied by the
operator x̂ij∆ for the scalar (S) terms, and by x̂ija∆ for the vector (V) terms. The terms of the
divergence type should be multiplied by a spatial derivative ∂a.

SISL1PN = − (d− 1)2

8(d− 2)2V
2,

SISL2PN = − (d− 1)3

12(d− 2)3V
3 + (d− 3)

2(d− 2)VaVa −
(d− 1)
4(d− 2)V Ŵ + (d− 3)(d− 1)2

2(d− 2)3 KV,

SISL3PN = − (d− 1)4

24(d− 2)4V
4 + (d− 3)(d− 1)

(d− 2)2 V VaVa −
(d− 1)2

4(d− 2)2V
2Ŵ − 1

4(d− 2)Ŵ
2 + 1

2(d− 2)ŴabŴab
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+ 2(d− 3)
d− 2 R̂aVa −

(d− 1)2

(d− 2)2V X̂ −
(d− 1)
d− 2 V Ẑ + (d− 3)(d− 1)3

2(d− 2)4 KV 2 − (d− 3)2(d− 1)2

2(d− 2)4 K2

+ (d− 3)(d− 1)
2(d− 2)2 KŴ,

SISL4PN = − (d− 1)5

60(d− 2)5V
5 + 3(d− 3)(d− 1)2

2(d− 2)3 V 2VaVa −
(d− 1)
4(d− 2)V Ŵ

2 − (d− 1)3

6(d− 2)3V
3Ŵ + 2(d− 3)

d− 2 R̂aR̂a

− (d− 1)
d− 2 Ŵ X̂ − 2

d− 2Ŵ Ẑ + 4
d− 2ŴabẐab + 4(d− 3)

d− 2 VaŶa −
4(d− 1)2

(d− 2)2 T̂ V + 4(d− 1)
(d− 2)2 M̂V

+ (d− 3)(d− 1)3(3d− 2)
12(d− 2)5 KV 3 − (d− 5)(d− 3)(d− 1)

(d− 2)3 KVaVa + 2(d− 3)(d− 1)2

(d− 2)3 KX̂

+ 2(d− 3)(d− 1)
(d− 2)2 KẐ,

V ISL2PN = (d− 1)2(d+ 2)
2d(d− 2)2(d+ 4)V Va,

V ISL3PN = (d− 1)3(d+ 2)
4d(d− 2)3(d+ 4)V

2Va + (d− 1)(d+ 2)
d(d− 2)(d+ 4)VaŴ −

(d− 1)(d+ 2)
d(d− 2)(d+ 4)VbŴab + (d− 1)2(d+ 2)

d(d− 2)2(d+ 4) R̂aV

− (d− 3)(d− 1)2(d+ 2)
d(d− 2)3(d+ 4) KVa,

V ISL4PN = (d− 1)(d+ 2)
(d− 2)2(d+ 4)VaVbVb + (d− 1)2(d+ 2)

d(d− 2)2(d+ 4)V VaŴ −
(d− 1)2(d+ 2)
d(d− 2)2(d+ 4)V VbŴab

+ (d− 1)3(d+ 2)
d(d− 2)3(d+ 4) R̂aV

2 + 2(d− 1)(d+ 2)
d(d− 2)(d+ 4) R̂aŴ −

2(d− 1)(d+ 2)
d(d− 2)(d+ 4) R̂bŴab + 2(d− 1)2(d+ 2)

d(d− 2)2(d+ 4)VaX̂

+ 4(d− 1)(d+ 2)
d(d− 2)(d+ 4)VaẐ −

4(d− 1)(d+ 2)
d(d− 2)(d+ 4)VbẐab + 2(d− 1)2(d+ 2)

d(d− 2)2(d+ 4)V Ŷa

− (d− 3)(d− 1)3(d+ 2)
d(d− 2)4(d+ 4) KV Va −

2(d− 3)(d− 1)2(d+ 2)
d(d− 2)3(d+ 4) KR̂a,

SISD2PN = (d− 1)
2(d− 2)(Ψ∂bkV

ai ∂jŴbk − Ŵbk∂aΨ∂bkV
ij ),

SISD3PN = − 4(d− 1)
d− 2 Ψ∂bVk

ai ∂kjR̂b + 4(d− 1)
d− 2 ∂aΨ∂bVk

ij ∂kR̂b + 2(d− 1)
d− 2 Ψ∂tbV

ai ∂jR̂b −
2(d− 1)
d− 2 R̂b∂aΨ∂tbV

ij

+ 2(d− 1)
d− 2 Ψ∂bkV

ai ∂jẐbk −
2(d− 1)
d− 2 Ẑbk∂aΨ∂bkV

ij ,

SISD4PN = − 8(d− 1)
d− 2 Ψ∂bVk

ai ∂kj Ŷb + 8(d− 1)
d− 2 ∂aΨ∂bVk

ij ∂kŶb + 4(d− 1)
d− 2 Ψ∂tbV

ai ∂j Ŷb −
4(d− 1)
d− 2 Ŷb∂aΨ∂tbV

ij

+ 4(d− 1)
d− 2 Ψ∂bkV

ai ∂jM̂bk −
4(d− 1)
d− 2 M̂bk∂aΨ∂bkV

ij ,

V ISD3PN = 2(d− 1)2(d+ 2)
d(d− 2)2(d+ 4)(Ψ∂kV

aib ∂kjR̂b − ∂aΨ∂kV
ijb ∂kR̂b),

V ISD4PN = 4(d− 1)2(d+ 2)
d(d− 2)2(d+ 4)(Ψ∂kV

aib ∂kj Ŷb − ∂aΨ∂kV
ijb ∂kŶb).
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Étude des ondes gravitationnelles émises par un système
binaire d’objets compacts dans la phase spiralante dans

l’approximation post-newtonienne.

Résumé : En 2015, un nouvelle ère de l’astronomie multimessager s’est ouverte avec
la première détection directe d’ondes gravitationnelles. Cette onde, ainsi que toutes les
autres qui ont été détectées depuis, a été générée lors du fusionnement de deux objets
compacts. Lorsque deux de ces objets orbitent l’un autour de l’autre, le système rayonne
de l’énergie sous forme d’ondes gravitationnelles. De ce fait, les deux corps se rapprochent
jusqu’à leur fusionnement. Pour réussir à détecter ces ondes, il est crucial de connaître leur
forme théorique en résolvant les équations d’Einstein. Le travail de cette thèse consiste à
améliorer la précision de la forme d’onde théorique lors de la phase spiralante, c’est à dire
avant le fusionnement, en utilisant le formalisme post-newtonien (PN). Il est articulé en
deux projets principaux: l’amélioration de la précision de l’impact de la déformabilité des
étoiles à neutrons sur l’onde gravitationnelle émise; et des calculs de haute précision sur
la forme d’onde sans tenir compte de la déformabilité des corps. Plus spécifiquement, j’ai
calculé le quadrupôle de masse jusqu’au quatrième ordre PN et le quadrupôle de courant
jusqu’au troisième ordre PN nécessaires pour l’obtention de la phase d’onde gravitationnelle
au quatrième ordre PN. J’ai aussi calculé la phase d’onde gravitationnelle associée aux
effets de marée jusqu’au deuxième et demi ordre PN.
Mots clés : relativité générale, ondes gravitationnelles, théorie post-newtonienne, effets
de marée

Study of gravitational waves emitted by a binary system
of compact objects in the inspiral phase in the

post-Newtonian approximation.
Abstract: In 2015, a new era of multimessenger astronomy began with the first ever direct
detection of gravitational waves (GW). This GW, as well as all the others that have been
detected since, was generated when two compact objects merged. When two such objects
orbit around each other, the system radiates energy in the form of GWs. As a result,
the two bodies get closer with time until they merge. To detect these waves, it is crucial
to know their theoretical form by solving Einstein’s equations. The work performed in
this PhD consists in improving the accuracy of the theoretical waveform during the spiral
phase, i.e. before the merger, by using the post-Newtonian (PN) formalism. It is divided in
two main projects: the improvement of the accuracy of the impact of the deformability of
neutron stars on the GW emitted; and high accuracy calculations of the waveform without
taking into account the deformability of the bodies. More specifically, I computed the
mass quadrupole up to the fourth PN order and the current quadrupole up to the third
PN order required to obtain the GW phase up to the fourth PN order. I also computed
the GW phase associated with tidal effects up the second and a half relative PN order.
Keywords : general relativity, gravitational waves, post-Newtonian theory, tidal effects
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