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“All models are wrong, but some are useful.”

George BOX
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Résumé en français
Dans le cadre du développement de nouveaux systèmes passifs de sûreté pour la
seconde et la troisième génération de réacteurs nucléaires à eau pressurisée, les sim-
ulations numériques d’écoulements diphasiques turbulents autour de géométries
complexes [Bel18; Shi11] sont des outils privilégiés pour modéliser, évaluer et opti-
miser de nouvelles formes ou de nouveaux designs. Afin de satisfaire les exigences de
l’industrie, les outils de mécanique des fluides numérique doivent être le plus rapide,
robuste et précis possible. Le but de mon projet de thèse est de développer un outil de
cet acabit.

Les contraintes susmentionnées tendent à écarter une approche de type “body-
fitted”. Nous avons en effet choisi une approche de type domaine fictif pour traiter ce
problème [Mar82]. Plus précisément, l’outil développé résout les équations de Navier-
Stokes pour un mélange équivalent dilatable à l’aide d’un schéma de projection, d’une
méthode de frontière immergée appelée Penalized Direct Forcing – une technique qui
hérite à la fois de la pénalisation [ABF99] et du Direct Forcing [Moh97] – adaptée à des
obstacles infiniment fins et d’une formulation éléments finis. Différentes conditions
limites immergées (adhérence, glissement, Neumann) peuvent être modélisées en
imposant des valeurs Dirichlet pour le champ de vitesse au voisinage de la paroi
immergée. Pour imposer ces valeurs Dirichlet, deux variantes ont été étudiées : la
première consiste à directement utiliser la vitesse de l’obstacle comme valeur Dirichlet
et la seconde à interpoler linéairement le champ de vitesse en proche paroi (cette
dernière variante est motivée par une augmentation de l’ordre de convergence en
espace) [BBS20]. Plusieurs méthodes d’interpolation (directionnelle, multidirection-
nelle, hybride) ont été développées mais, dans tous les cas, ces méthodes nécessitaient
de nouvelles données concernant la géométrie de l’obstacle. Ainsi, le traitement des
données géométriques, provenant généralement de maillages créés par des outils
de conception assistée par ordinateur, est une question centrale et, encore une fois,
différentes approches ont été testées.

Deux autres problèmes clés, en simulation numérique, sont la vérification et la
validation. Dans un premier temps, des cas tests académiques (tels que l’écoulement
de Poiseuille, de Taylor-Couette, autour d’un cylindre) ont été utilisés pour mener
des études de convergence. Les résultats obtenus sont en accord avec les solutions
analytiques et les données expérimentales. De plus, conformément à la théorie, l’ordre
2 est atteint en espace lorsque l’interpolation linéaire est utilisée. Ensuite, des cas
quasi-industriels (dont un en 3D) ont été utilisés, d’une part, pour démontrer la
capacité de notre méthode à traiter des géométries complexes et, d’autre part, pour
dresser ses avantages et ses inconvénients.
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En termes de perspectives à venir, dans le but de réaliser des simulations d’écoule-
ments diphasiques et turbulents, des modifications de la méthode sont envisagées,
telles que l’adaptation du schéma de projection à un modèle faiblement compressible
et l’ajout de loi de paroi immergée [WJS18] (i.e. interpolation via des lois de paroi
turbulentes). En octobre 2020, un autre projet de thèse a démarré sur ces thématiques.

Mots-clés : équations de Navier-Stokes, Mécanique des Fluides Numérique, Élé-
ments Finis, Domaine Fictif, Frontière Immergée, Direct Forcing, Pénalisation, schéma
de projection, reconstruction de données, interpolation directionnelle et multidirec-
tionnelle
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Abstract
In the framework of the development of new passive safety systems for the second and
third generations of nuclear reactors, the numerical simulations, involving complex
turbulent two-phase flows around thin or massive inflow obstacles [Bel18; Shi11], are
privileged tools to model, optimize and assess new design shapes. In order to match
industrial demands, computational fluid dynamics tools must be the fastest, most
accurate and most robust possible. The purpose of my PhD was to design and develop
such a tool.

The aforementioned constraints tend to rule out a “body-fitted”. Indeed, we chose a
Fictitious Domain approach to deal with this problem [Mar82]. More precisely, the
developed tool involves solving the Navier-Stokes equations using a projection scheme
for a dilatable mixture fluid coupled with an Immersed Boundary (IB) approach: the
penalized direct forcing method [BF10; IBF14] – a technique whose characteristics
inherit from both penalty [ABF99] and immersed boundary methods [Pes02] – adapted
to infinitely thin obstacles and to a Finite Element (FE) formulation. Various IB
conditions (slip, no-slip or Neumann) for the velocity on the IB can be managed by
imposing Dirichlet values in the vicinity of the thin obstacles. To deal with these
imposed Dirichlet velocities, we investigated two variants: one in which we directly
use the obstacle velocity and another one in which we use linear interpolation (this
last variant being motivated by an increase of the space order of convergence) [BBS20].
Several approaches were investigated (directional, multi-directional and hybrid) for
the linear interpolation of the velocity near the obstacle but, in any case, geometrical
data coming from the obstacle are needed. Thus, retrieving geometrical data, generally
from a Computer Assisted Design (CAD) object, is a key issue and, once again, several
methods were studied and compared.

Another major issue, when dealing with numerical simulations, is validation. First,
studies involving various one-phase academic test cases (such as Poiseuille, Taylor-
Couette and the flow around a circular cylinder) were carried out. The results obtained
were in good agreement with analytical and experimental data. As expected, second
order accuracy (in space) was numerically assessed when using linear interpolation.
Then, studies involving industrial or quasi-industrial test cases were carried out to
illustrate the advantages and drawbacks of this approach.

In a shortcoming second step, to face two-phase turbulent fluid simulations, some
methodology modifications will be considered such as adapting the projection scheme
to low-compressible fluid and immersed wall-law boundary conditions [WJS18] (an-
other PhD project has begun in October 2020).
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Glossary

Acronym Definition

AMR Adaptative Mesh Refinement
ASN French Nuclear Safety Authority
BC Boundary Conditions
BTD Balancing Tensor Diffusivity
CAD Computer Aided Design
CEA French Alternative Energies and Atomic Energy Commission
CFD Computational Fluid Dynamics
C-FEM Cut Finite Element Method
CGEM Cartesian Grid Embedded Method
EOS Equation Of State
FB(M) Fictitious Boundary (Method)
FCM Finite Cell Method
FD(M) Fictitious Domain (Method)
FE(M) Finite Element (Method)
GFE(M) Generalized Finite Element (Method)
GCIBM Ghost-Cell Immersed Boundary Method
HEM Homogeneous Equilibrium Model
IB(M) Immersed Boundary (Method)
IBVP Initial-Boundary Value Problem
IIM Immersed Interface Method
ISI Immersed Spread Interface method
IC Initial Conditions
JEBC Jump Embedded Boundary Condition
LES Large Eddy Simulation
LM Lagrange Multipliers
PDE Partial Derivative Equation
PDF Penalized Direct Forcing
PWR Pressurized Water Reactor
LOCA Loss Of Coolant Accident
RANS Reynolds Averaged Navier-Stokes
X-FE(M) eXtended Finite Element (Method)
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Notations
The following notations apply to the whole document. Some notations are not de-
scribed as they are only used once, in specific sections. Double bars denote tensors.
Vectors are usually denoted with bold small letters while matrices are usually denoted
with bold capital letters.

Sets and spaces

Symbol Definition

�n,m� ⊂N The set of integers superior or equal to n ∈N and inferior or equal to
m ∈N

K ×E Cartesian product of two sets
K \E Set-theoretic difference of K and E
K n Cartesian power of a set with n ∈N
Rn The space of real vectors with n ∈N∗ components
Rm×n The space of real matrices with m ∈N∗ rows and n ∈N∗ columns
d ∈ �1,3� The space dimension
Ω⊆Rd A generic open compact set (fictitious domain)
∂Ω The piecewise regular boundary ofΩ
Ω f ⊂Ω The fluid or actual computational domain
Ωs =Ω\Ω f The solid or non-fluid part of the fictitious domain
Γi The surface associated to the i -th distinct interface betweenΩ f and

Ωs

Γ=
n⋃

i=1
Γi The union (collection) of surfaces constituting the frontier between

Ω f andΩs or the boundary of the actual computational domain with
n the number of distinct interfaces betweenΩ f andΩs
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Vector and function spaces

Symbol Definition

0V The neutral element of a vector space V
V ′ The dual space of a vector space V
L 2(Ω) The set of square-integrable functions onΩ
L 1

loc(Ω) The set of locally integrable functions onΩ
L∞(Ω) The set bounded functions onΩ
H 1(Ω) The Sobolev space of order 1 onΩ
V h(Ω) A discrete approximation of the vector space V (Ω)
D(Ω) The set of smooth compactly supported functions (bump or test func-

tions) onΩ
Qk The set of polynomial of partial degree less or equal to k

Vector operations and norms

Symbol Definition

. An operand

.⊗ . :Rn ×Rm →Rn×m Tensor product

. · . :Rn ×Rn →R Scalar product

.2 :Rn →R The scalar product of a vector with itself

.◦ . :Rn ×Rn →Rn The Hadamard product
|.| :Rn →R The Euclidian norm of a vector (absolute value for n = 1)
|.|2 : L 2(Ω) →R The L 2 norm
|.|∞ : L∞(Ω) →R The L∞

|.|h2 :Rn →R Approximate or discrete L 2 norm
|.|h∞ :Rn →R Approximate or discrete L∞

∥.∥1 :Rm×n →R 1-norm for matrices, which is equivalent to the maximum
absolute column sum

∥.∥∞ :Rm×n →R ∞-norm for matrices, which is equivalent to the maximum
absolute row sum

Differential operators

Symbol Definition

∂x y Partial derivative of function y with respect to the variable x
∇· y Divergence of vector or tensor y
∇y Gradient of scalar or vector y
∆y Laplacian of scalar or vector y
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Functions and variables
Symbol Definition

χ :Ω−→ {0,1} The characteristic function associated to Γ
ρ :R+×Ω−→R Mixture fluid density (kg.m−3)
ρG :R+×Ω−→R Density of the gas phase(kg.m−3)
ρL :R+×Ω−→R Density of the liquid phase(kg.m−3)
u :R+×Ω−→Rd Mixture velocity (m.s−1)
u∗ :Ω−→Rd Predicted mixture velocity (m.s−1)
uG :R+×Ω−→Rd Velocity of the gas phase (m.s−1)
uL :R+×Ω−→Rd Velocity of the liquid phase (m.s−1)
H :R+×Ω−→R Mixture enthalpy (J.kg−1)
p :R+×Ω−→R Mixture pressure (Pa)
¯̄σ :R+×Ω−→Rd×d Mixture viscous stress tensor (Pa)
¯̄ε :R+×Ω−→Rd×d Mixture strain rate tensor

Notations and parameters related to numerical
methods

Symbol Definition

xn Notation for a time-discrete quantity x (which can be ρ,u, p or H ) at time
step number n ∈N

δt Time step
η Penalty parameter
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Physical properties, indicators and parameters

Symbol Definition

ν Cinematic viscosity of the fluid (m2.s−1)
µ Dynamic viscosity of the fluid (Pa.s)
H L

S AT Enthalpy at saturation of the liquid phase (J.kg−1)
L Latent heat at saturation (J.kg−1)
v Void fraction
x Thermodynamic title
Cd Drag coefficient
Cl Lift coefficient
Lw Recirculation length (m)
Re Reynolds number
St Strouhal number
Ta Taylor number
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1.1. A bit of semantics

MODELREALITY PREDICTION

INTERPRETATION

Modeling Predicting

Interpreting

Figure 1.1. Diagram representing the general process of modeling.

The idea of this section is to define the terms present in the title of this PhD thesis, or
at least provide a framework. Modeling refers to the action of building a model (which
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1. Introduction and generalities – 1.1. A bit of semantics

can be of very various kinds) based on reality (provided we agree about the existence
of reality). The interesting property of a model is that it is easier to handle than reality
itself. Indeed, models are usually used to interpret (deduce properties or information,
isolate patterns or mechanisms, etc.) and even, for the most sophisticated ones,
to predict some aspects of reality (cf. Figure 1.1). As an example of model, we can
consider the map of Marseille’s subway line 1 (cf. Figure 1.2). Using this map, we
can deduce properties of the subway network – for instance: station Baille is next to
station La Timone – and even make predictions – for instance: if a person take the
line 1 at station Malpassé, direction La Fourragère, and comes out of the train at the
third stop, this person will stand at the station Cinq Avenues. Of course, there is no
unique model for the entire reality. Every model is a partial representation of the world
(i.e. the subway map does not explain how the locomotive moves from one station
to another) and is limited by its scope of validity (for instance, Figure 1.2 does not
provide the geographical positions of the stations).

Figure 1.2. Marseille’s subway line 1.

Now that we went through the general concepts, let us discuss numerical modeling,
which is, in fact, just a particular case of the above-mentioned process. Regarding
numerical modeling, we are concerned by a specific part of reality for which mathe-
matical models exist (what I call physical systems). Those mathematical models can
be of various types but our cases of interested are Initial-Boundary Value Problems
(IBVP) involving a set of Partial Derivative Equations (PDE). Roughly, studying a system
and building mathematical models are aims of physics. However, some PDE coming
from mathematical models cannot be solved “manually” (i.e. there can be proof of
existence and uniqueness of a solution but we are not able to write it). Here intervene
applied mathematics and more specifically numerical simulation (or numerical solv-
ing). Numerical simulation encompass legions of numerical methods to construct
approximate solutions using computer science. Finally, numerical modeling refers to
the whole process of mathematical modeling and numerical solving (cf. Figures 1.3).
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1. Introduction and generalities – 1.2. Context

MATHEMATICAL

MODEL

PHYSICAL

SYSTEM

NUMERICAL

SIMULATION

Modeling Simulating

PHYSICS APPLIED MATHEMATICS

NUMERICAL MODELING

Figure 1.3. Diagram representing the process of numerical modeling.

Thus, the title of this PhD now becomes clearer:

• “Numerical modeling” refers to the numerical solving of an Initial-Boundary
Value problem representative of a physical system,

• “In-vessel flow limiter” refers to the physical system we aim to study,

• “Second order finite element penalized direction forcing immersed boundary
method” refers to the set of numerical methods used to construct approximate
solutions.

This gives us some kind of schedule. In this Chapter, we first discuss generality
about the physical systems in question and their mathematical modeling in Sections
1.2 and 1.3. Then, we give a brief history of the class of numerical methods that is
central in this PhD thesis: the Fictitious Domain (FD) methods.

Nota: Of course, those themes (modeling and simulating) are extensively studied in
philosophy of science and this little introduction is unpretentious, non-exhaustive
and does not depict all the subtleties of the subject. To deal with this issue in depth,
I recommend the collective French book “Modéliser et Simuler : Epistémologies et
pratiques de la modélisation et de la simulation.” [VSD21] and the work of Franck
VARENNE, a French expert of the field.

1.2. Context
In practice, designing a nuclear reactor implies carrying out numerous preliminary
safety studies in order to match the criteria provided by independent nuclear safety
authorities – in France: Nuclear Safety Authority (ASN). Some of those studies consist
in examining the behavior of the reactor under specific hypothetical incidental or
accidental configurations – not only for safety purpose, but also for system design
or redesign. There are various scenarios and one of them is called Large-Break Loss
Of Coolant Accident (LB-LOCA). It considers a large break happening in the cold-
water inlet section (cf. Figure 1.7). As the pressure of the primary circuit is about 150
bar, a brutal depressurization happens, coupled with a recirculation within the core
and a fast (within seconds) core dewatering. Without proper countermeasures, this
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LB-LOCA
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Figure 1.4. Schematic representation of a Pressurized Water Reactor (PWR) and de-
tailed view of its core.

situation can lead to the melting of the core (severe accident). For more details about
the phenomenology of the LB-LOCA, the interested reader can refer to [SB17; Bel18].

Several ways are considered by the CEA and its partners to prevent or lower the risk
of severe accident (occurring in the case of a LB-LOCA for instance). One of them,
driven by the increasing performance and safety requirements for the third generation
of nuclear reactors , consists in adding a passive safety systems (i.e. a system that
activates itself without the need of mechanical or electrical actuation) within the
reactor. Some of them are based on the concept of hydraulic diodes, i.e. devices
allowing the flow to cross them in only one direction, by analogy with electric diodes.
In terms of fluid dynamics, that means finding a shape inducing a pressure drop that
is minimal in nominal conditions and maximal in reverse flow. Engineers came up
with many different designs of hydraulic diodes (cf. Figure 1.5 for some examples). In
the nuclear industry, at least two passive safety systems are based on hydraulic diodes:

• “Advanced” accumulator: In the case of a LB-LOCA, due to the brutal depressur-
ization, a huge flowrate is needed to refill the circuit (to prevent the dewatering
of the core). This flowrate comes from a safety water accumulator that rapidly
discharges its content in the primary circuit. However, once the circuit is re-
filled, the flowrate needed to compensate the leak is much lower. Contrary to
the standard accumulator, the design of the “advanced” accumulator allows a
double-regime (a huge flowrate to refill the primary circuit at first, and then a
low sustained flowrate to compensate the leak of the break) thanks to a vortex
diode (cf. Figure 1.6 for a schematic drawing that illustrates the double-regime).
There are different designs of “advanced accumulator”, notably Japanese [Shi11]
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and Korean [Chu+08].

• Flow limiter: This system is located between the core barrel and the vessel at the
height of the cold-water inlets and hot-water outlets (cf. red ellipses in Figure 1.4)
and is composed of thin fins (cf. Figure 1.7a). During normal operation, those
fins do not significantly disturb the flow heading into the vessel via the cold-
water inlet. In accidental behavior (LB-LOCA leading to a recirculation within
the core), force the creation of a large vortex (cf. Figure 1.7b), which dissipates
kinetic energy due to turbulence (i.e. reduces the flowrate going outflow of the
vessel and so postpones the core dewatering). Once again, for more details about
this device, the interested reader can refer to [SB17; Bel18].

Figure 1.5. Several designs of hydraulic diodes: a) vortex diode, b) Tesla diode, c)
diaphragm diode (source: [KPS17]).

Thus, developing a numerical tool capable of simulating the flow between thin
obstacles of arbitrary shapes with accuracy and rapidness could be very useful to
assess optimal design of hydraulic diodes (via topological optimization for instance,
as in [Shi+18]). This document focuses on simulations of the flow limiter, but efforts
to simulate the flow in an advanced accumulator using the same methodology are
currently carried out.
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Figure 1.6. Schematic drawing of the Japanese design of the “advanced” accumulator
(source: [Shi11]).

1.3. Motivation and objective
In physics, the modeling of problems, such as the one presented in the previous
section, is usually based on Initial-Boundary Value Problems (IBVP) involving Partial
Derivative Equations (PDE) ensuring the conservation of given quantities (momentum,
internal energy and mass in the case of thermal hydraulics) as well as closure models
for physical properties or parameters. In engineering, the idea is to solve the IBVP
for initial or boundary values representative of a system (or device) in order assess its
design or even redesign it.

However, solving the IBVP representative of an industrial case can be difficult in
practice as, sometimes, solutions, if they exist, are unknown and/or impossible to com-
pute manually. A common way to approximate those solutions is numerical solving.
More precisely, in fields such as thermodynamics, mechanics or electromagnetism,
grid-based resolutions are widely used to produce approximations and simulations.

In the field of fluid dynamics and thermal hydraulics, many engineering works
concern numerical flow simulations around (or through) obstacles. A straightforward
way to take into account inflow obstacles is making grids that conforms to their shapes,
what we call the “body-fitted” approach (cf. Figure 1.8a). Nevertheless, when we
consider moving or deformable obstacles (fluid-structure interaction, flows induced
by a stirrer, etc.) the fluid computation mesh must be rebuilt at each modification (in
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(a) Behavior during nominal operation. (b) Behavior during accidental situation.

Figure 1.7. Schematic drawing of the flow limiter system patented by the CEA.

shape or position) of the body. Mesh rebuilding is also required when considering
the topic of topological shape optimization of rigid fixed obstacles (which is our topic
of interest as mentioned in Section 1.2) because many shapes need to be assessed
in order to build a statistical answer surface and determine the optimal geometry.
Any of the above-mentioned cases can lead to costly (in both time and computing
resources) simulations. To overtake this issue, methods allowing the decoupling of the
computation grid from the physical domain can be very useful, notably the fictitious
domain approach (cf. Figure 1.8b), originally introduced by V.K. SAUL’EV [Sau63]. It
allows to consider simple meshes (often Cartesian grids) and fast methods (such as
i , j ,k Finite Difference). Since the 60’s, the Fictitious Domain have been declined in
many variants and has been investigated in various domains of industrial interest,
such as tire design [Vin+11], fluid-transported solid particles [Glo+99] or nuclear-waste
vitrification [BI15].

Hence, given the framework presented in Section 1.2, we chose to investigate a
Fictitious Domain approach to develop a numerical tool whose ultimate goal is to
carry out shape optimization studies of thin inflow obstacles. The following section
gives an overview of the major families of Fictitious Domain methods, as well as their
pros and cons regarding the aimed application. We conclude with the chosen method
and explain our choice.

1.4. Fictitious Domain Method
As mentioned in the previous section, the numerical solving of PDE generally involves
building a spatial discretization of the computational domain. The common way to
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(a) “Body-fitted” (b) “Fictitious Domain”

Figure 1.8. Schematic representation of an Eulerian grid used to compute the flow
around a circular cylinder in both “body-fitted” and “immersed bound-
ary” cases.

achieve this discretization consists in creating a discrete domain, or mesh, whose
boundaries fit those of the physical domain. However, we also saw that, when the ge-
ometry involved is rather complex (which is the case in many industrial applications,
notably when considering the flow limiter presented in section 1.2), this approach
can be very expensive in terms of computational resources – especially for prob-
lems involving moving (or deformable) boundaries or topological shape optimization
because many different meshes (or grids) need to be generated. An alternative to
“body-fitted” grids resides in the Fictitious Domain (FD) approach which is a class of
numerical methods belonging to the domain decomposition methods.

The main idea, which is pretty well summarized by K. KHADRA et al. in the context
of the Navier-Stokes equations [Kha+00], is to solve the PDE constitutive of a given
problem on a much simpler computation domainΩ (for instance a parallelepipedal
box in 3D), called “fictitious domain”, in which the physical domainΩ f is embedded
(cf. Figure 1.9a). Here, Ω f and Ωs are two subsets embedded in the FD Ω such as

Ω=Ω f ∪Ωs and dim(Ω f ∩Ωs) = dim(Ω)−1. The interface betweenΩ f andΩs – which
can be a union of interfaces – is denoted Γ= ∂Ω f ∩∂Ωs \∂Ω. This approach allows
using simple mesh types and fast methods such as, for instance, Cartesian grid with
an i j k finite difference scheme. Since this approach was introduced, in 1963 by V.K.
SAUL’EV [Sau63], many techniques have been proposed in different fields of physics –
I. RAMIÈRE wrote a quite complete overview of those techniques as an introduction
in her PhD thesis [Ram06]. A way to discriminate those techniques is by considering
how they take the shape of the physical domain into account:

1. via modifying the operators,
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(a) General fictitious domain scheme

Γ2

Γ...

Ωs

Ωs

Ω f
Γ1

(b) Fat boundary method

Figure 1.9. Schematic representations of some fictitious domain approaches.

2. via adding new terms in the balance equations.

Remark 1 Of course, there are other ways to classify the various FDM such as:

1. When the interface is taken into account at a continuous level – and so is not
so much adhesive to the discretization – such as penalty, Fat Boundary Method
(FBM), Lagrangian Multipliers (LM), Immersed Interface Method (IIM), Immersed
Spread Interface (ISI), Immersed Boundary Method (IBM), Ghost-Cell IBM (GCIBM),
etc.

2. When the interface is taken into account at a discrete level – which means it is
adhesive to the discretization – such as Cartesian Grid Embedded Method (CGEM),
Cut Finite Element Method (C-FEM), Finite Cell Method (FCM) etc.

or, as proposed by I. RAMIÈRE in her PhD [Ram06]:

1. When the interface is spread such as FBM, ISI, IBM, GCIBM, FCM, etc.

2. When the interface is thin such as penalty, CGEM, LM, IIM, C-FEM, etc.

Another key issue in the scope of FDM is data reconstruction on a boundary/interface
or in its vicinity because it is the most common way to reach higher orders in space.
Thus, various techniques have been developed in order to reconstruct fields coming
from a boundary on the computation domain (i.e. the computation of the velocity
imposed by the IB in our case) or the contrary (reconstruction of stress on the envelope
of an airfoil to compute aerodynamic forces for instance [MWD20]) such as:

• Mollifier functions, used in the original IBM to approximate the Dirac delta
functions [Pes72; RPB99].
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• Extrapolation outside the computation domain, used in ghost cells techniques
[TF03; BMZ16; CAT20].

• Interpolation, widely used in all kind of fictitious domain methods [Fad+00;
IBF14; IK07; IV03; BG20].

• In the case of infinitely thin obstacles, the eXtended (or Generalized) Finite
Element Method (X-FEM), which is often used in the field of fracture mechanics
[Wag+01; YAA09], can give some answers: it is capable to deal with discontinu-
ous quantities (typically tangential velocities on each side of an infinitely thin
obstacle) while preserving the standard finite element properties elsewhere.

Let us notice that extrapolation and interpolation techniques, aside from involving
polynomials or spline functions, can rather be directional (1D) [Fad+00] or spatial
(multi-D) [IBF14]. Those two variants are not used in the same frameworks and do
not require the same type of information about the boundary/interface.

As an illustrative example for the non-exhaustive list of fictitious domain methods
presented in this chapter, let us consider a generic initial and boundary value problem
with a Dirichlet Boundary Condition (BC):

∂t y+θ(y) = g onΩ f

y = w on ∂Ω f

y(t = 0) = y0 onΩ f

(1.1)

where:

• Ω f is the physical (or fluid in the context of fluid dynamics) domain,

• y :R+×Ω f →Rd is the (vectorial) unknown,

• g :R+×Ω f →Rd is the source term,

• w :R+×∂Ω f →Rd is the Dirichlet BC on ∂Ω f ,

• y0 :Ω f →Rd is the initial condition onΩ f ,

• θ is an operator only involving spatial derivatives of y.

Ω f is then embedded in a fictitious domainΩ on which, as mentioned before, the
problem (1.1) is solved and the part of the BC lying on Γ are imposed by modifying the
governing equations. Consequently, a new problem is defined onΩ:

∂t u+Θ(u) = f onΩ

u = a on ∂Ω

u(t = 0) = u0 onΩ

(1.2)
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where Θ (resp. u, f, a and u0) is the extension in Ω of θ (resp. y, g, w and y0). The
way of modifying the balance equations (i.e. the form of Θ and f) leads to different
techniques which, as said previously, can be separated in two categories: the ones
adding new terms and the ones modifying the operators (cf. sections 1.4.1 and 1.4.2).

1.4.1. Methods modifying operators
1.4.1.1. Immersed Interface Method

This method was introduced by R.J. LEVEQUE and Z. LI [LL94] in order to enhance the
Immersed Boundary Method developed by C.S. PESKIN [Pes72] (cf. section 1.4.2.6).
The idea is to solve PDE with discontinuous or singular coefficients or source terms by
taking into account potential jumps of the computed quantities – and their derivatives
– through one or several interfaces while preserving a uniform Cartesian grid. The
jumps are then considered as input data of the problem.

Z. LI wrote a quite complete review about this method and its application with
more than eighty references within [Li03]. Originally, the method was based on a
finite difference scheme but it can be – and has been – adapted to a finite element
formulation [Li98]. Indeed, the jumps are modeled via source terms in the equations
– directly in the normal direction, with respect to the interface(s), and with discrete
delta functions in the tangential direction. Those source terms are non-zero only
in the cells for which the stencil extend to a cell cut by the interface. In their article
[LL03], L. LEE and R. J. LEVEQUE tend to show that only considering a pressure jump
at the interface can significantly enhance the fidelity of the results when compared to
a classical IBM. Moreover, adding this correction does not seem extremely complex in
terms of implementation.

In the same idea, P. ANGOT developed an augmented IIM that he called Jump
Embedded Boundary Condition (JEBC) [Ang10; RAB07b]. It is augmented in the
sense that the problem (Brinkman in [Ang10]) is enriched with jump equations. Those
equations link the stress vector and velocity jumps. Later on, he proposed, together
with Z. LI, an enhancement of his method in which a preconditioner was added.
Numerical results are provided in [AL17].

We can also mention the Matched Interface and Boundary (MIB) method by Y. C.
ZHOU et al. [ZW06] in which the solution on fictitious points is extrapolated from
one side to the other. The force of this method rely on the fact that it dissociates the
discretization of the equations and the enforcement of interface jump conditions.
Based on this approach, we can also cite the work of M. CISTERNINO and L. WEYNANS

[CW12] (more details in the open-access INRIA research report [Wey19]) in which the
additional unknowns are not located on grid points on the other side of the interface
but on the interface itself.

This way of dealing with interfaces is interesting in the framework of my PhD
because it can apply to thin obstacles and can be adapted whether for FEM or FV.
Adding this pressure jump correction can even be implemented in the context of IBM
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as in [Ria+18] for instance.

1.4.1.2. Cartesian Grid Embedded Method

The Cartesian Grid Embedded method (CGEM) is adhesive to the spatial discretization.
Indeed, it relies on a Finite Volumes (FV) scheme with the values of the unknown
computed at the center of the cells. The boundary of the computational domain
is interpolated linearly within the cells. Then, using the normal of the interpolated
boundary, the boundary flux are also interpolated – quadratically [JC98] and, more
recently, with a fourth-order scheme [Dev+17] – but only using values which are
actually in the computational domain (i.e. interpolation and not extrapolation).

Unlike the IIM, the CGEM does not add any local unknowns to the problem. More-
over, because it preserves a Cartesian grid, it can easily be combined with multi-level
Adaptative Mesh Refinement (AMR). This technique has been used to solve the Pois-
son equations for both Neumann and Dirichlet BC in 2D and 3D (cf. [JC98], [Sch+06]
and references within) with moving and non-moving irregular boundaries.

However, as said in [JC98] on page 8, this method, by its construction of the interface,
is not adapted for thin boundaries (i.e. smaller than the Cartesian grid step) which are
under-resolved. This does not fit the framework of my PhD.

1.4.1.3. Finite Cell Method

The Finite Cell Method can be seen as an “extension” of the standard FEM. In [PDR07],
linear elasticity problems and their extension to an embedding simpler domain Ω,
similarly to problems (1.1) and (1.2), are solved using the FEM – material properties
are extrapolated outside of the physical domain and the extrapolation value depends
on the type of immersed boundary condition considered (Dirichlet or Neumann).
However, the elements that are crossed by Γ are called “finite cells” and are treated
differently (i.e. operators are modified): variables are smoothly extended using high
order Ansatz functions. Numerical, theoretical aspects and error estimate have been
studied in [DDR15; DS21].

This method is mainly used in the context of solid mechanics [Düs+08] and consid-
ers only massive obstacles which is not interesting in the framework of this PhD.

1.4.1.4. Cut Finite Element Method

The Nitsche’s method, [Nit71] which consist in weakly enforcing essential bound-
ary conditions via the addition of jump terms in the variational formulation of the
problem, gave birth to the unfitted finite element method [HH02] and, later, to the
cut finite element method [HLZ14] – the idea was to propose an alternative to the
eXtended Finite Element Method (X-FEM) which usually leads to ill conditioning.
The specificities of the method rely on a weighting of the Nitsche numerical fluxes, a
change in the variational formulation to avoid spurious oscillations and the addition
of stabilization terms.
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This method has been successfully applied to multifluid Stokes equations in [HLZ14]
as well as solid mechanics (fractured media in [BHL20] and elastic wave equations in
[SLK20]).

1.4.1.5. Generalized and eXtended Finite Elements Methods

The Generalized Finite Element Method (GFEM) is a numerical method based on the
FEM and the partition of unity. It consists in taking into account some knowledge we
can have about the solution of a problem via locally enriching the solution space (i.e.
add special basis functions where we have knowledge of the solution). This method
gave birth to another variant called the eXtended Finite Element Method (X-FEM)
which allows enriching with discontinuous functions. Those methods are widely used
in material mechanics [BGV09], especially fracture propagation [YAA09], as they are
capable of building the approximation on meshes independent of the geometry of the
computation domain.

This approach could be interesting in order to take into account knowledge about
turbulent wall laws, as well as infinitely thin boundaries using Heaviside-like basis
functions.

1.4.2. Methods adding new terms
1.4.2.1. Ghost Cells

As mentioned in [TF03], the ghost-Cell Immersed Boundary Approach (GCIBM) is
inspired by the work of E. A. FADLUN regarding IBM [Fad+00] and Ghost Fluid Method
(GFM) developed by R. P. FEDKIW to model multimaterial flows [Fed02]. Indeed, it
relies on a new type of forcing which includes an extrapolation of the fluid velocity
within the “ghost-cells” (i.e. solid domain).

This technique, for instance, has been successfully applied to the Euler equations to
model inviscid gas dynamics in [BMZ16] and to the incompressible Navier-Stokes to
model blood flows in [CAT20]. This approach only considers massive and not infinitely
thin obstacles.

1.4.2.2. Lagrange multipliers

Probably one of the most known, the Lagrangian multipliers (or distributed frontier)
method was originally developed by R. GLOWINSKI – [GPP94] and references within. In
order to keep a Cartesian grid for the fictitious domain, another mesh, non-structured,
is used to compute the Lagrange multipliers. This second mesh can either be a
discretization of the immersed boundary (i.e. a line in 2D and a surface in 3D) or a
discretization of the computation domain – fluid domain in the context of my PhD
– (i.e. a volume in 3D). The immersed boundary conditions are taken into account
via a constraint, which is weakly imposed. This leads to an optimization problem
consisting in solving a linear system.
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This method has been used for the Dirichlet (cf. [GPP94] and references within) and
Neumann (cf. [Glo+99] and references within) problems, mainly in the framework of
particles flow. V. GIRAULT and R. GLOWINSKI also published about the error analysis of
the method in [GG95].

1.4.2.3. Fat Boundary Method

The original method proposed by B. MAURY [Mau01] lays on a bi-grid formulation. A
Cartesian grid covers the whole computation domain while a local finer body-fitted
grid adapted to the immersed boundary (cf. Fig. 1.9b). Those grids induce two
problems – coupled by a mesh interpolation and a jump condition of the normal
derivative of the variables at the interface (as in the IIM [Li03]) –, which are solved
thanks to a fixed-point algorithm.

This method was first applied for a domain containing circular holes. As the geome-
try of such holes is quite simple, it provided good results. Later on, it has been used to
solve the Navier-Stokes equations in the context of particular flow [Ism04].

However, in the framework of my PhD, this method is not applicable. Indeed, as the
Lagrange multipliers method, it adds many unknowns – due to the bi-grid approach –
which seems incompatible with the principle of a fast tool.

1.4.2.4. Penalty

Those techniques have mainly been used in the context of fluid dynamics, in order
to impose Dirichlet type conditions on Γ or in ΩS (to impose a no-slip condition
for instance). There are mainly two ways to penalize a fluid dynamics problem (cf.
[ABF99] and [Ang99] for a mathematical approach and application to fluid-porous
flows):

• L 2 penalty: it consists in adding a reaction term to the Right-Hand-Side (RHS)
of the PDE, solved on the fictitious domain (1.2), so that ∂t u+Θ(u) = f+b where
b = χΓη

−1 (u−uΓ) is the penalty term, χΓ the characteristic function of ΩΓ, uΓ
the variable value imposed by the Dirichlet BC on Γ and η ≪ 1 the penalty
parameter.

• H 1 penalty: it consists in, like the L 2 penalty, adding a reaction term but also
penalizing the diffusion and/or time derivative term (i.e. multiplying by the
inverse of η).

Even if this method is filed in the thin interface approach, volume penalty, or Sub-
Mesh Penalty (SBM) [Sar+08], can also be used to inforce Dirichlet BC (notably in
[Sar09] and [RAB07a]). Concerning this matter, we can also cite the Implicit Tensorial
Penalty Method by S. VINCENT and J.P. CALTAGIRONE [Vin+07; CV01]. As the name
indicates, it consists in applying penalty directly in the stress tensor by introducing
new viscosity coefficients in order to impose either incompressibility, shearing or the
solid rotation of the flow.
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The estimation of the error induced by the penalty parameter are also discussed in
[ABF99] and [Ang99]. Indeed convergence properties and theorem are given for the
Navier-Stokes and Brinkman models.

1.4.2.5. Immersed Spread Interface

This fictitious domain approach developed by I. RAMIÈRE et al. [RAB07a] is inspired
from the penalty techniques. In this formulation, the approximate interface is com-
posed of all the cells crossed by the interface. Embedded BC are enforced by either
H 1 or L 2 volume penalty according to their type (Dirichlet or Robin). In addition to
this, jump of the convective and diffusive flux across the interface are considered as
source terms in the governing equations and determined by the BC. This method was
applied for diffusion and convection-diffusion problems in a FE framework.

The spread interface approach provided very interesting results knowing that it does
not add any unknown and that the order 1 representation of the interface is balanced
by the modeling of the flux jumps at the interface. This method has been a source of
inspiration for the Penalized Direct Forcing (cf. section 1.4.2.6).

1.4.2.6. Immersed Boundary Method

The Immersed Boundary Method (IBM) was originally introduced by C. S. PESKIN to
model cardiac mechanics and blood flow [Pes72]. The original idea was to take into
account elastic boundaries via a backmoving force imposed at the interface by the
mean of Dirac delta functions. This force is considered as a source term added to the
governing equations at a continuous level. At a discrete level, this approach implies
two meshes:

• A volumetric mesh – often Cartesian – on which the Eulerian variables are com-
puted (fluid velocity, pressure, density, etc.)

• A curvilinear mesh – corresponding to the immersed boundary – on which La-
grangian variables are computed (velocity and position of the immersed bound-
ary, backmoving force, etc.)

The backmoving force computed at the interface is then distributed on several cells
on each side of the boundary by the mean of discrete Dirac delta functions. The
interested reader can refer to [Pes02] for a more precise explanation, a review of
different techniques and many references about this topic.

This method is quite simple to implement and it preserves the use of a Cartesian
Eulerian grid. However, the main disadvantage occurs when rigid boundaries or
moving deformable boundaries are considered. With rigid boundaries (instead of
elastic boundaries), numerical instabilities may appear and, in the case of deformable
moving boundaries, the position and number of Lagrangian markers needed to de-
scribe the boundary must be computed at each time step and spurious oscillations
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can appear. However, the issue of moving immersed boundaries is not addressed in
my PhD.

Then J. MOHD-YUSOF developed a new IBM, based on the one of C.S. PESKIN, often
referred as “Direct Forcing” [Moh97]. Let us consider the following time discretization
of problem (1.2): 

un+1 −un

δt
+Θh(un+1,un) = fn+1 onΩ

un = a(t = tn) on ∂Ω

u0 = u0 onΩ

(1.3)

where:

• δt is the time step,

• n is the time index,

• tn = n δt the time at index n,

• Θh is a time-discretization of the operatorΘ,

• un :Ω→Rd is the unknown at tn .

• fn :Ω→Rd is the source term at tn .

Similarly to a projection scheme[BCM01], the “Direct Forcing” method adds an in-
termediate step (with an intermediate variable û) to the algorithm in order to compute
its forcing term:

1

δt
(û−un)+Θh(û,un) = fn+1 onΩ

1

δt
(un+1 −un)+Θh(un+1,un) = fn+1 +bn+1 onΩ

un = a(t = tn) on ∂Ω

u0 = u0 onΩ

(1.4)

with:

bn+1 =χ
[
Θh(û,un)− fn+1 + 1

δt
(un+1
Γ −un)

]
(1.5)

and:

• χ is the characteristic function Γ,

• un+1
Γ : Γ→Rd is the Dirichlet BC imposed on Γ at time index n +1.
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This approach is explicit, in the sense that bn+1 does not depends on un+1. An
implicit version can be built with:

bn+1 =χ
[
Θh(un+1,un)− fn+1 + 1

δt
(un+1
Γ −un)

]
(1.6)

This way, the terms relative to the operator Θh and the RHS are cancelled in Γ,
imposing un+1 = un+1

Γ . However, in practice, this generally imply an iterative scheme
for each time step (with un+1

k the variable at iteration k, kfin the maximum number of
iteration and ϵ≪ 1 the stop parameter):

1. Initialization (k = 0): Solve:

1

δt
(un+1

0 −un)+Θh(un+1
0 ,un) = fn+1 (1.7)

2. Iteration (k > 0): Solve:

1

δt
(un+1

k −un)+Θh(un+1
k ,un) = fn+1 +bn+1 (1.8)

with:

bn+1 =χ
[
Θh(un+1

k−1 ,un)− fn+1 + 1

δt
(un+1
Γ −un)

]
(1.9)

3. Finalization (k > kfin or |un+1
k −un+1

k−1 | < ϵ):

un+1 = un+1
k (1.10)

To prevent the use of an iterative scheme, M. BELLIARD et al. developed a new
technique, called Penalized Direct Forcing (PDF), inspired by the penalty and Direct
Forcing methods [BF10]. The PDF method has been applied to the incompressible
Navier-Stokes equations and, in this case, the forcing term is written as follows:

b = χΓ

ηδt

(
un+1
Γ −un+1) (1.11)

with η ∈R+∗, such as η≪ 1. This formulation provides several advantages:

• Computing the forcing term does not need extra steps (contrary to DF),

• The formulation has good mathematical properties and adaption to fractional-
step schemes due to the Direct Forcing formulation.

This method has been applied together with a finite difference formulation involving
a Markers And Cells (MAC) grid (cf. [BF10] and [IBF14]). To reach order 2, in the cells
cut by the immersed boundary, the imposed velocities at the degrees of freedom (i.e. at
the faces of the cells in case of a MAC grid) are linearly interpolated from the immersed
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boundary. However, the penalty parameter η can imply very badly conditioned matrix.
Diagonal preconditioning easily cures this.

Otherwise, IBM are often combined with fractional-step methods. T. IKENO et al.
showed that increasing the order of the interpolation scheme does not significantly
improve the fidelity of the results if the forcing term is only added during the predic-
tion step [IK07]. Indeed, they proposed to define two different forcing terms for the
prediction and projection equations, which seems to enhance the accuracy of their
method. For more recent work on this subject, the interested reader can refer to F.
DOMENICHINI [Dom08] or R.D. GUY et al. [GH10]. C. INTROÏNI et al. applied this
technique to the PDF method and came to the same conclusion, reaching a second
order IBM scheme [IBF14].

1.5. Summary and choice of the method
In Section 1.2, we discussed the aimed application and clarified the kind problematic
in which the CEA is interested: modeling turbulent two-phase around or through
complex thin geometries in order to find the optimal design of some innovative nuclear
passive safety systems. An efficient way to achieve this goal would be topological shape
optimization. However, to build a statistical answer surface, a numerical modeling
tool is required to produce a large number of simulations in various configurations.
The purpose of this PhD project is to design and develop this tool.

The typical way of achieving the numerical modeling of this kind of problems is
via grid-based numerical solving of IBVP (cf. Section 1.3). However, to match the
aimed application, we cannot afford a “body-fitted” approach (too costly in terms
of computational resources). Thus, we opted for the Fictitious Domain approach in
order to decouple the geometry of the computation domain from the geometry of the
physical domain (less costly and easier grid generation).

In addition to the above-mentioned constraints, we want to remain in a Finite
Element (FE) framework for two main reasons:

• A CEA FE house-code at component scale, called GENEPI, contains interesting
models for the aimed application:

– Homogeneous Equilibrium Model that can handle two-phase flow with
only three equations (cf. Section 3.1.1),

– Tabulated Equation Of State (EOS) of water,

– Weak compressibility model,

– etc.

• The FE framework provides a natural vector basis to achieve interpolation (cf.
Chapter 4) or extrapolation. As we ultimately want our tool to handle turbulence
modeling, this could be very useful to implement wall-law-based interpolation
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(this work is currently in progress in the new PhD project that has been launched
in October 2020).

Finally, we chose the Penalized Direct Forcing method for the following reasons:

• It does not depend strongly on the type of space discretization and can therefore
be adapted easily. As we are using the CEA industrial codes, we cannot afford to
change the space discretization because it would mean restarting the validation
process from the beginning.

• It does not involves additional unknowns (we want the numerical simulation
tool to remain the fastest possible).

• As it does not need extrapolation techniques to reach order 2, it can easily be
adapted to infinitely thin obstacles with fluid on both sides.

• It has already been adapted to a projection scheme (GENEPI uses a projection
scheme to decouple velocity and pressure).

• It does not need extra iterative scheme.

• It can reach order 2 in space via linear interpolation.

• It is simple to implement.

• IBM have been widely used for turbulent flows, as evidenced by the extensive
review of G. IACCARINO and R. VERZICCO [IV03].

Hence, to summarize briefly, our work in this PhD project mainly consisted in
adapting the Penalized Direct Forcing method to a Finite Element formulation. We
also proposed and developed adapted ways to achieve order 2 in space via linear
interpolation. In Chapter 2, we focus on the different methods that we developed
in order to recover geometrical data from the approximate immersed obstacles. To
achieve order 1 in space, only the approximation of the characteristic function χ is
needed whereas, to achieve order 2 via linear interpolation, the approximate normal
projections of the nodes in the vicinity of the obstacles are also needed. Chapter 3
presents the physical modeling and the numerical methods involved in the resolution
of the governing PDE (time discretization, space discretization and general principle
of the PDF method). Then, Chapter 4 discusses the order of the PDF method and
provides detailed explanations about the different methods proposed to achieve order
2 in space via linear interpolation. Finally, Chapter 5 compiles all simulation results
among academic and industrial cases. It provides valuable validation data as well as
proof of the capability of the method regarding a complex 3D geometry.
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2.1. Preamble
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Figure 2.1. Schematic representation of the computation grid and the collection of
facets associated to the immersed boundary.

The object of this chapter is the to explain the different way used to recover useful
geometrical data from the immersed boundary input data. Those input data, rep-
resentative of the shape of the immersed obstacle, can come from various sources
and take various forms. Without any claim to be exhaustive, we formally define two
categories:

• Analytical equations (simple shapes like circles, squares, etc.),

• Discrete values (measurements, experiments, Computer Aided Design, etc.).
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2. Geometrical data reconstruction – 2.2. Characteristic function of the IB

Obviously, the second category is wider than the first one (discrete values can be
generated from analytical equations) so, in order to remain as general as possible,
we consider the approximate obstacle Γh (representative of Γ) as a union of discrete
elements, here plane convex polygons called facets:

Γh =
NS⋃
i=1

Si (2.1)

with NS the total number of facets, (Si )i∈�1,NS� the collection of facets and their re-
spective normal vectors (ni )i∈�1,NS� and barycenters (bi )i∈�1,NS�. Let us also consider
a volume mesh for the fictitious domainΩ, composed of NE “elements”, or “cells” to
remain general, denoted (Ke )e∈�1,NE � withΩe ⊂Ω the portion of the FD included in Ke

– as an illustrative example, without loss of generality, we consider a 2D Cartesian grid
for purpose of pedagogy (cf. Figure 2.1).

In order to achieve a first order approximation (or “staircase” approximation) of
the immersed boundary, we only need to define a discretization for the characteristic
function (cf. Section 2.2). However, if we want to achieve a second order approximation
via linear interpolation, the normal projection on Γh of each node of the grid in its
vicinity is also needed (cf. Section 2.3). To achieve this normal projection on Γh , we
propose two approaches: weighting (cf. Section 2.3.1) and optimization (cf. Section
2.3.2) – each including several variants. Then, those approaches are compared over
two cases: one involving a regular geometry and the other involving a non-regular one
(cf. Section 2.3.3).

2.2. Characteristic function of the IB
As mentioned in the introduction (cf. chapter 1), the first issue to address is the spatial
discretization of the characteristic function χ. To achieve it, we can define Si

e , the
portion of facet Si contained inΩe (cf. Figure 2.1), as follows:

∀e ∈ �1, NE�,∀i ∈ �1, NS�, Si
e = Si ∩Ωe (2.2)

Then we can define the elemental (or cellular) discretization of χ, denoted χe :

∀e ∈ �1, NE�,

{
χe = 1 if ∃i �1, NS� / Si

e ̸= ;
χe = 0 else

(2.3)

2.3. Normal projection of a node on the IB
As mentioned in the preamble of this chapter, to reach order 2 in space, we use linear
interpolation (cf. Chapter 4). Hence, for the positions of degrees of freedom in the
vicinity of the immersed boundary, we need an approximate normal projection on the
obstacle. In the following sections, we proposed two ways to achieve the projection:
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2. Geometrical data reconstruction – 2.3. Normal projection of a node on the IB

1. an approach based on the weighting of the facets normal vectors (cf. section
2.3.1). In this case, we use Γh to compute elemental data (intersected area,
barycenter, normal vector) and then assemble those data in a FE fashion to get
nodal data (projection on Γh).

2. an approach based on a minimization problem, inspired from [IBF14] (cf. section
2.3.2). In this case we directly use Γh to compute nodal data, without using
intermediary elemental data.

Before explaining those two approaches, let us introduce some notations:

• Je =
{

j ∈ �1, NN � ∣∣x j ∈Ωe
}
: the set of node indexes included in element Ke ,

• E 0
j =

{
e ∈ �1, NE�

∣∣ j ∈ Je
}
: the set of element indexes which share the node j ,

• Eχ

j =
{

e ∈ E 0
j

∣∣χe = 1
}

: the set of element crossed by Γh which share the node j ,

• J = { j ∈ �1, NN � |∃e ∈ E 0
j /χe = 1}: the set of node indexes for which a projection

point need to be computed (points marked with a cross on Figure 2.1).

2.3.1. Weighting approach
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x j
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x j
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S′
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n1

S′
4

×b4 n4

Figure 2.2. Schematic representation of the weighting approach for a node j . In
this particular example, we have i ∈ {1,2,3} and e ∈ E 0

j = {1,2,3,4}. Gray
elements are element in which χe = 1.

For each Si
e , we can compute a barycenter, denoted bi

e (cf. Figure 2.1), and an area,
denoted A i

e :
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2. Geometrical data reconstruction – 2.3. Normal projection of a node on the IB

For each Si
e , we can compute an area, denoted A i

e , and a barycenter, denoted bi
e –

ni (cf. Figure 2.1):

∀i ∈ �1, NS� , ∀e ∈ �1, NE� , A i
e = κ(Si

e ) (2.4)

with κ(Si
e ) the measure of Si

e (κ(;) = 0). Note that Si
e and Si share the same normal

vector ni

Now, using area weighting, we can compute elemental data:

∀e ∈ �1, NE� / χe = 1,



Ae =
NS∑
i=1

A i
e

ne = 1

Ae

NS∑
i=1

A i
e ni

be = 1

Ae

NS∑
i=1

A i
e bi

e

(2.5)

In a way, the triplet (Ae ,ne ,be ) represents a plane facet S′
e that is considered “equiv-

alent” to the collection (Si )i∈�1,NS� in the element Ke (cf. Figure 2.2). Then, each node
j of an element e can be projected on this equivalent plane facet, which gives:

∀e ∈ �1, NE� / χe := 1,∀ j ∈ Je , p j
e := x j + l j

e ne (2.6)

with x j the coordinates of node number j , p j
e the coordinates of the projection of

node number j on the plane facet associated to Ke and l j
e = (be −x j ) ·ne the oriented

normal distance between the node j and the plane facet associated to Ke – note that,

in practice, we choose the orientation of ne such as l j
e < 0. Finally, p j

e is assembled in a
FE way to obtain:

∀ j ∈ J , α j =
∑

e∈E
χ

j

α
j
e , xp

j =
1

α j

∑
e∈E

χ

j

α
j
e p j

e (2.7)

with xp
j the coordinates of the actual discrete projection of node j and α j

e : the weight.

Several variants, depending on the value ofα j
e , have been developed: arithmetic mean,

area weighting, invert distance weighting and area over distance weighting.

1. α j
e = 1, arithmetic mean

2. α j
e =Ae , area weighting

3. α j
e =

1

|l j
e |

, invert distance weighting
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2. Geometrical data reconstruction – 2.3. Normal projection of a node on the IB

4. α j
e =

Ae

|l j
e |

, area over distance weighting

2.3.2. Optimization approach
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Figure 2.3. Schematic representation of the optimization approach for a node j . In
this particular example, we have I j = {1,2,3}. Gray elements are element
in which χe = 1.

In this approach, for a given node, we search for the point, located on Γh , which
minimizes the distance between itself and the considered node – method inspired by
C. INTROÏNI et al. [IBF14]. The optimization problem can be written as follows:

∀ j ∈ J , Find xp
j ∈ Γh such as (x j −xp

j )2 = inf
y∈Γh

(x j −y)2 (2.8)

To solve this problem for each j ∈ J , we use the algorithm proposed in [IBF14]. First,
the immersed boundary is partially reconstructed in the vicinity of x j by collecting
the facets of Γh which intersect at least one element sharing the node number j (the
indexes of those facets form a set denoted I j , cf. Figure 2.3). Then, for each of those
facets, we write the equation of the plane passing through it:

∀i ∈ I j , ni ·y = ni ·ai (2.9)

with:

∀ j ∈ J , I j =
{

k ∈ �1, NS�
∣∣∣∃e ∈ E 0

j / Sk
e ̸= ;

}
(2.10)

and ai ∈Rd the coordinates of a point belonging to Si (barycenter or any other point).
Gathering all the collected facets for a node j , the following linear system is obtained:
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2. Geometrical data reconstruction – 2.3. Normal projection of a node on the IB

C j y = r j (2.11)

with:

∀∈ j ∈ J ,∀i ∈ I j ,∀k ∈ �1,d� , C j
i k = ni ,k (2.12)

and:

∀∈ j ∈ J ,∀i ∈ I j ,r j
i =

d∑
k=1

ni ,k ai ,k (2.13)

where:

• C j
i k is the general term of C j ∈Rs×d with s = card

(
I j

)
• ni ,k the kth component of vector ni

• ai ,k the kth component of vector ai

Finally, we can consider that a point of coordinates y which verifies, at least approxi-
mately, the system (2.11) is located on Γh , or at least in its vicinity – i.e. solving this
linear system is a way to impose the constraint of the minimization problem (2.8). If

we formally denote V
j
Γh

= {
y ∈Rd

∣∣C j y ≈ r j
}

, the set of the points which approximately
verify the system (2.11), the minimization problem (2.8) becomes:

∀ j ∈ J , Find xp
j ∈ V

j
Γh

such as (x j −xp
j )2 = inf

y∈V
j
Γh

(x j −y)2 (2.14)

This problem is solve using an Uzawa algorithm for each node j , with ϵ≪ 1 the
shutoff parameter, z j a real parameter that indicates on which side of Γh the point x j

is located (with respect to the orientation of the normal vectors (ni )i∈I j ), x j ,k the kth
component of vector x j andΛm the Lagrange multiplier vector at iteration m:

1. Initialization (m = 0):

• Λ0 = 0Rs

• z j = ∑
i∈I j

(
d∑

k=1

(
Ci k x j ,k

)− r j
i

)
2. Iterations (m > 0):

• ym = x j − 1

2

(
C j

)T
Λm−1

• im = C j ym − r j∥∥C j
∥∥

1

∥∥C j
∥∥∞

• if z j > 0:
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2. Geometrical data reconstruction – 2.3. Normal projection of a node on the IB

– Λm = max
(
Λm−1 + im ,0

)
• else:

– Λm = min
(
Λm−1 + im ,0

)
3. Finalization:

• if (ym−1 −ym)2 < ϵ then xp
j = ym

Another variant of this approach has also been developed. It relies on a different
definition of I j : instead of considering only the elements sharing the node j to collect
the facets of Γh , we also consider the neighbors of those elements. Formally, it can be
written as follows:

∀ j ∈ J , I j =
{

k ∈ �1, NS�
∣∣∣∃e ∈ E 1

j / Sk
e ̸= ;

}
(2.15)

with:

∀ j ∈ J , E 1
j =

{
e ∈ �1, NE�

∣∣∣∃k ∈ Je / ∃g ∈ E 0
j / k ∈ Jg

}
(2.16)

Those two variants are designated by what we call their level l which refers to the
exponent of E l

j in the definition of I j . Thus, the level 0 approach considers only direct
neighbor elements of a given node to collect facets whereas the level 1 also considers
neighbors of direct neighbor elements (cf. Figure 2.4).

(a) 2D

×
j

E 0
j

E 1
j

(b) 3D

Figure 2.4. Representation of the sets E 0
j and E 1

j for a Cartesian grid.
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2. Geometrical data reconstruction – 2.3. Normal projection of a node on the IB

2.3.3. Comparison between the two approaches
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Figure 2.5. Intersection of an Eulerian volume mesh and a cylindrical Lagrangian
surface mesh: evolution of different error indicators with respect to the
space grid of the Eulerian meshes (250 Lagrangian facets) in log/log scale.
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2. Geometrical data reconstruction – 2.3. Normal projection of a node on the IB

Table 2.1. Values of convergence order, with respect to the Eulerian grid step, of the
different indicators computed in the case of the cylinder.

Radius Distance Normal
Method L 2 L∞ L 2 L∞ L 2 L∞

Weighting 1 2.54 1.67 2.44 1.70 1.42 0.70
Weighting 2 2.51 1.67 2.44 1.70 1.42 0.70
Weighting 3 2.43 1.55 2.42 1.70 1.39 0.70
Weighting 4 2.41 1.54 2.42 1.70 1.41 0.70
Optimization 1 2.34 1.70 2.34 1.78 1.30 0.85
Optimization 2 2.47 1.86 2.44 1.87 1.20 0.87
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Figure 2.6. Intersection of an Eulerian volume mesh and a cylindrical Lagrangian
surface mesh: evolution of different error indicators with respect to the
number of facets of the Lagrangian mesh (151 Eulerian elements) in
log/log scale.
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Table 2.2. Convergence orders, with respect to the Lagrangian grid step, of the differ-
ent indicators computed in the case of the cylinder.

Radius Distance Normal
Method L 2 L∞ L 2 L∞ L 2 L∞

Weighting 1 2.16 1.84 1.77 1.12 1.18 0.83
Weighting 2 2.14 1.84 1.78 1.12 1.23 0.79
Weighting 3 2.13 1.84 1.77 1.12 1.18 0.82
Weighting 4 2.13 1.84 1.77 1.12 1.25 0.83
Optimization 1 1.52 0.99 1.31 0.94 0.63 0.57
Optimization 2 0.76 0.55 0.71 0.53 0.37 0.40

Table 2.3. Computation times, in seconds, of the pre-processor for the intersection
between a hexahedral Eulerian mesh and a cylindrical Lagrangian mesh.

Eulerian Lagrangian Execution time (s)
Elements Grid step Facets Grid step Weighting Optimization

16 6.25×10−1 250 1.26×10−2 0.7 335.5
31 3.23×10−1 250 1.26×10−2 1.2 467.0
46 2.17×10−1 250 1.26×10−2 1.5 414.0
61 1.64×10−1 250 1.26×10−2 2.3 496.0
76 1.32×10−1 250 1.26×10−2 4.1 394.5
91 1.10×10−1 250 1.26×10−2 5.7 433.1
106 9.43×10−2 250 1.26×10−2 7.9 363.0
121 8.26×10−2 250 1.26×10−2 11.3 391.1
136 7.35×10−2 250 1.26×10−2 13.5 334.7
151 6.62×10−2 250 1.26×10−2 19.1 338.8
151 6.62×10−2 25 1.26×10−1 18.4 30.3
151 6.62×10−2 50 6.28×10−2 18.4 41.7
151 6.62×10−2 75 4.19×10−2 18.2 52.9
151 6.62×10−2 100 3.14×10−2 18.3 75.0
151 6.62×10−2 125 2.51×10−2 21.0 117.1
151 6.62×10−2 150 2.09×10−2 21.0 117.0
151 6.62×10−2 175 1.80×10−2 20.9 213.0
151 6.62×10−2 200 1.57×10−2 18.9 230.0
151 6.62×10−2 225 1.40×10−2 19.0 289.1
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Table 2.4. Convergence orders of the different indicators computed in the case of a
NACA0012 airfoil considering only L 2 norm.

Distance Normal
Method Eulerian Lagrangian Eulerian Lagrangian

Weighting 1 0.95 0.24 0.95 0.21
Weighting 2 0.95 0.24 0.95 0.19
Weighting 3 0.95 0.24 0.94 0.21
Weighting 4 0.95 0.24 0.94 0.19
Optimization 1 0.97 0.24 0.96 0.17
Optimization 2 0.97 0.24 0.96 0.17
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Figure 2.8. Intersection of a hexahedral Eulerian volume mesh and a NACA 0012
airfoil Lagrangian surface mesh: evolution of different error indicators
with respect to the number of facets of the Lagrangian mesh (151 Eulerian
elements) in log/log scale.

First, the different geometrical methods are compared using a simple 2D case with
regular boundary: the circular cylinder. We consider a square domain of side 1.5
with a circular cylinder of radius r = 0.5 and center c = (0,0). We compute some error
indicators and observe their evolution when we refine the square hexahedral volume
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Table 2.5. Computation times, in seconds, of the pre-processor for the intersection
between a hexahedral Eulerian mesh and a NACA 0012 airfoil Lagrangian
surface mesh.

Elements Facets Weighting (s) Optimization (s)

21 250 0.6 157.7
41 250 1.0 361.8
61 250 1.5 311.2
81 250 2.6 211.8
101 250 4.2 173.4
121 250 6.5 147.7
141 250 9.2 179.4
161 250 15.2 153.5
181 250 19.8 159.6
201 250 19.1 140.1
201 25 22.2 53.0
201 50 22.2 85.4
201 75 22.5 111.9
201 100 23.3 115.7
201 125 23.5 137.8
201 150 23.5 138.1
201 175 23.3 138.3
201 200 23.4 135.4
201 225 23.9 152.4
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mesh or the cylindrical surface mesh (i.e. increase the number of facets) in order to
compare accuracy and convergence rate. We use three different error indicators:

1. The radius related error, which indicates how close to the cylinder is the approxi-
mated projection:

∀ j ∈ J , er
j =

∣∣∣r p
j − r

∣∣∣ with r p
j =

∣∣∣xp
j −c

∣∣∣ (2.17)

2. The distance related error, which indicates how close from the exact projection
xe

j is the approximated projection.

∀ j ∈ J , ed
j =

∣∣∣xp
j −xe

j

∣∣∣ (2.18)

3. The normal vector related error which corresponds to the angle between the
approximated (n j ) and exact (ne

j )) normal vectors:

∀ j ∈ J , en
j =

∣∣∣cos−1
∣∣∣n j ·ne

j

∣∣∣∣∣∣ with n j =
x j −xp

j∣∣∣x j −xp
j

∣∣∣ (2.19)

and, for each of them, we compute an approximated L 2 and L∞ norms as follows:

∣∣ew
∣∣h
2 :=

(
1

card(J )

∑
j∈J

(
ew

j

)2
) 1

2

and
∣∣ew

∣∣h
∞ := max

j∈J

∣∣∣ew
j

∣∣∣ (2.20)

with w ∈ {r,d ,n}. Figure 2.5 (resp. Figure 2.6) shows the evolution of those error
indicators when the volume (resp. surface) mesh is refined. Table 2.1 (resp. 2.2) gives
the convergence order, with respect to the Eulerian (resp. Lagrangian) grid step, com-
puted for all the different approaches. As a whole, when considering convergence with
respect to the Eulerian grid step, all approaches seem to provide a roughly quadratic
rate for the radius and the distance related errors and linear for the normal related
error, in both L 2 and L∞ norms. Concerning convergence with respect to the La-
grangian, the conclusion for the weighting approach remains the same (except for the
convergence of the distance indicator in L∞ norm which becomes roughly linear)
but optimizations approaches systematically provide lower convergence rates.

It can also be noted that the optimization “level 1” systematically provides the
largest error – probably because it takes into account data coming farther away from
the considered point, making the approach formally non-local. On the other hand,

when considering the weighting approach, the way of defining α j
e (cf. section 2.3.1)

seems to have little impact on the results except for the L∞ norm of the normal
vector related error when refining the surface mesh. Indeed, when α j

e = 1 or α j
e =Ae

(i.e.Weigh. Ap. 1 and 2), we can see a jump at NS = 125 which is soften if an invert
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distance weighting is used (i.e. Weigh. Ap. 3 and 4). From Figure 2.8, we notice
that a plateau minimal error is reached (or almost reached) for the finest Lagrangian
space discretization. The level of this minimal error is driven by the Eulerian space
step. It is not the case for the Eulerian space-step convergence study of Figure 2.7,
where the minimal error driven by the Lagrangian space step is not reached. This
could be explained by the fact that the minimum space step for the Lagrangian mesh
(1.26×10−2) is sligthly lower than the one of the Eulerian mesh (6.62×10−2) – factor
5, cf. Table 2.3). Finally, if we compare the weighting and optimization approaches,
we can see that the optimization provides slightly larger errors but also a steadier
convergence (less jagged), especially in L∞ norm.

At this point, it is not clear which approach best fits our problem; another compari-
son element is needed. Therefore, we monitored the execution time of the intersection
pipeline – other CPU tasks can pollute execution time but the accuracy of the results is
about 0.1 s, which is clearly sufficient for the comparison. The results are gathered in
Table 2.3 (all different weighting approaches provide similar execution times and we
consider only optimization “level 0”). The first obvious assessment is that the weight-
ing approach is greatly faster – this is a key finding because the application of the
proposed modeling is nuclear component design and shape optimization. Another
interesting finding is that the execution time seems to be more dependent on the
number of volume elements (i.e. grid step) when considering the weighting approach
but more dependent on the number of facets when considering the optimization
approach (in fact it depends on the number of collected facets per node). These
tendencies were expected. On one side, the weighting approach is rather local and the
number of operations is, to some extent, constant for one given volume. Therefore,
the computation cost mainly depends on the volume number. On the other side,
the optimization approach is global and the number of operations, for a given node,
strongly depends on the collected-facet number in the adjacent volumes. Therefore,
when decreasing the volume space step, the number of nodes to project is increasing,
but the number of Uzawa operations is decreasing, leading to the observed behavior.

To check those assessments, we also considered a more complex geometry: the
NACA0012 airfoil. The same error indicators are considered (except the radius one
for obvious reasons) and their evolution with respect to the grid step (resp. number
of facets) is show in Figure 2.7 (resp. Figure 2.8). In that case, we can see that all
approaches provide equivalent error values and equivalent convergence orders (cf.
Table 2.4). Moreover, convergence, for all approaches, is roughly linear with respect
to the Eulerian grid step and really degraded when considering the Lagrangian mesh.
Thus, all approaches fail to handle the trailing edge (L∞ norm of error close to 1
and located around the trailing edge). However, when we look at the execution times
gathered in Table 2.5 we can assess that the weighting approach is still largely faster
for the same accuracy in the results.
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3.1. Original problem

3.1.1. Governing equations
3.1.1.1. Homogeneous Equilibrium Model

As mentioned in the introduction, the aimed application induces the modeling of
compressible turbulent two-phase flow w ith thermodynamic and mechanical dis-
equilibrium at low Mach number (i.e. the break is considered far enough from the
flow limiter for the flow to remain subsonic). Keeping in mind the topological shape
optimization goal, a Homogeneous Equilibrium Model (HEM) [Cle00], with disequi-
librium closure laws [GOch], is considered to preserve low computational times (only
three balance equations: mass, momentum and internal energy) while taking into
account two-phase aspects (two-phase flow illustration can be found in [Bel18]). The
assumptions of the HEM are the following:
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i The same pressure is considered for the two phases,

ii An eddy viscosity model is used to take turbulence into account,

iii Surface tension and turbulent dissipation are neglected,

iv We neglect wave effect and eliminate the time term in the mass balance equation
(∂tρ ≡ 0) .

the Equations Of State of the mixture fluid are written as follow:

x= H −H S AT
L

L
(3.1)

v= xρL

xρL + (1− x)ρG
(3.2)

ρ = vρG + (1−v)ρL (3.3)

with:

• x: the thermodynamic title,

• L: latent heat at saturation,

• H : the enthalpy of the mixture fluid,

• H L
S AT : enthalpy at saturation of the liquid,

• v: the void fraction,

• ρ (resp. ρL and ρG ): the density of the mixture fluid (resp. liquid and gas phase).

The thermodynamic properties of each phase are given by tabulated EOS (polyno-
mial interpolation between experimental values). Then many physicalclosure models
(semi-empirical correlations) are used [GOch] , notably for the gas and liquid velocities
(resp. uG and uL) in the kinetic disequilibrium:

u = xuG + (1− x)uL (3.4)

where u is the mixture velocity. In terms of turbulence modeling, a scalar Schlichting’s
model [Sch68], described in Section 3.1.1.3 is considered – a second PhD project,
launched in October 2020, focuses especially on enhancing the turbulence modeling.

In this document, as only fluid dynamic cases are treated (cf. Section 5), the internal
energy balance will not be considered (not solved). In addition, as all cases are
monophasic, the momentum balance and mass balance equations of the HEM boil
down to the dilatable Navier-Stokes equations (cf. the next section). Without loss of
generality and for purpose of clarity, we will describe our method using this set of
equations.
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3.1.1.2. Dilatable Navier-Stokes equations

GivenΩ⊆Rd a d-dimensional open compact domain with a piecewise regular bound-
ary denoted ∂Ω such asΩ=Ω∪∂Ω, given some Boundary Conditions (BC) on ∂Ω an
Initial Conditions (IC) onΩ, the governing system of equation, written in conservative
form, is: 

∂t (ρu)+∇· (ρu⊗u− ¯̄σ+ ¯̄I p) = s onΩ
∇· (ρu) = 0 onΩ
+BC on ∂Ω
+IC onΩ

(3.5)

with ¯̄I ∈Rd×d the identity matrix, ρ :Ω×R+ →R the fluid density given by tabulated
EOS of water (cf. Section 3.1.1.3), p :Ω×R+ →R the pressure, u :Ω×R+ →Rd the fluid
velocity, ¯̄σ :Ω×R+ → Rd×d the viscous stress tensor and s the source terms coming
from physical modeling (for instance gravity, interface friction, etc.).

3.1.1.3. Viscous stress tensor

In this paper, we assume that the viscous stress ¯̄σ only depends on the dynamic
viscosity µ and on the strain rate tensor ¯̄ε, which is defined as follows:

¯̄ε= 1

2

(∇u+∇uT )
(3.6)

Hence:

¯̄σ= 2µ ¯̄ε (3.7)

with µ=µ f +µT and:

• µ f the equivalent mixture dynamic viscosity that can be given by the tabulated
EOS of water – in practice, those EOS use the values of the fluid pressure and
enthalpy at the previous time step to interpolate the fluid dynamic viscosity and
density between experimental points – or considered constant.

• µT the eddy viscosity given by a Schlichting model [Sch68]:

µT =
{

0 if the flow is laminar
aSρ|u|LT if the flow is turbulent

(3.8)

where aS ∈ R is a parameter (its value is determined empirically) and LT ∈ R a
characteristic turbulence length.
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3.1.2. Time discretization
The adapted semi-implicit time scheme and the fractional-step algorithm are con-
jointly presented here.

3.1.2.1. Time scheme

Let us denote δt ∈ R+∗ the time step and NT ∈ N the number of time steps. The
sequence associated to the discrete time steps (tn)n<NT +1 is defined such as:

∀n ∈ �0, NT � , tn = nδt (3.9)

Then, we define un :Ω→Rd , pn :Ω→R, ρn :Ω→R as approximations of, respec-
tively, the velocity, the pressure and the density at time tn . The viscous stress tensor at
time tn is approximated as follows:

¯̄σn =µn
(
∇un + (∇un)T

)
(3.10)

with µn =µn
f +µn

T where:

• µn
f is computed with the tabulated EOS of water using the values of pressure and

enthalpy at time tn−1,

• µn
T is given by:

µn
T =

{
0 if the flow is laminar
aSρ|un−1|LT if the flow is turbulent

(3.11)

In order to enhance the readability of this document, the inertia and viscous terms
are gathered together by introducing the notations:{

¯̄Ξn,n+1 = ρnun ⊗un+1 − ¯̄σn+1

¯̄Σn,n+1 = ¯̄Ξn,n+1 + ¯̄I pn (3.12)

Considering a semi-implicit scheme with time-implicit diffusive and (linearized)
advective terms, the semi-discrete system can be written as follows:

δt−1ρn(un+1 −un)+∇· ¯̄Ξn,n+1 +∇pn+1 = sn onΩ
∇· (ρnun+1) = 0 onΩ
+BC on ∂Ω
+IC onΩ

(3.13)

In this system of equations, we have assumed that the physical quantities as the
density, the dynamic viscosity, etc. are computed with EOS involving the main vari-
ables u and p at the previous time step and are kept constant during the current time
step.
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Remark 2 The time derivative of the momentum is not written in a conservative way
in system (3.13). Indeed, ρn+1un+1 should appear but, as the compressibility is assumed
to be very low, the time variation of the density is supposed negligible during a time
step.

3.1.2.2. Fractional-step algorithm

Projection schemes [BCM01] are often used to solve the incompressible Navier-Stokes
equations and are based on the Helmholtz-Hodge theorem. Here, we present its
extension to dilatable fluid (∇·ρu = 0). The idea is to split the momentum balance
equation into two steps:

ρn

δt
(u∗−un)+∇· ¯̄Σn,∗ = sn (3.14)

ρn

δt

(
un+1 −u∗)+∇φn+1 = 0Rd (3.15)

with u∗ a provisional variable called the predicted velocity, ¯̄σ∗ = µn
(∇u∗+ (∇u∗)T )

the predicted viscous stress tensor and φn+1 = pn+1 −pn the pressure corrector. Then,
the fractional-step algorithm reads as follows:

1. Prediction: only time, inertia, viscous and source terms are considered, the
pressure term is kept at the previous time step. An intermediate velocity, called
predicted and denoted u∗ is computed.

2. Projection: the pressure corrector field is computed using the predicted velocity
and mass balance equation.

3. Correction: the velocity is computed using the pressure corrector gradient.

When taking the divergence of equation (3.15), the mass balance equation appears
and can be substituted, heading to the projection (cf. equation (3.17)). Finally, the
following three steps algorithm is obtained:

ρn

δt
u∗+∇· ¯̄Σn,∗ = sn + ρn

δt
un (3.16)

∆φn+1 = 1

δt
∇· (ρnu∗)

(3.17)

un+1 = u∗− δt

ρn
∇φn+1 and pn+1 = pn +φn+1 (3.18)

Where equations (3.16), (3.17) and (3.18) respectively correspond to the prediction,
projection and correction steps. Note that writing those equations implies that the
fluid is dilatable and pn is at least of class C 2 (i.e. p is of class C 2 in space).
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3.1.3. Space discretization
3.1.3.1. Weak formulation

Let V (Ω) ⊆ (L 2(Ω))d and W (Ω) ⊆L 2(Ω) be two vector space of functions supposed
sufficiently regular. In the fractional-step algorithm, the equations are solved sequen-
tially (prediction, projection and correction). Thus, we obtain the three weak forms,
one for each equation.
Prediction:
Find u∗ ∈ V (Ω) such as, for all v ∈ V (Ω):∫

Ω

(
ρn

δt
(u∗−un)+∇· ¯̄Σn,∗

)
◦v =

∫
Ω

sn ◦v (3.19)

Projection (for dilatable fluid):
Find φn+1 ∈W (Ω) such as, for all q ∈W (Ω):∫

Ω
∆φn+1 q = 1

δt

∫
Ω
∇· (ρnu∗)

q (3.20)

Correction:
Find un+1 ∈ V (Ω) such as, for all v ∈ V (Ω):

1

δt

∫
Ω
ρnun+1 ◦v = 1

δt

∫
Ω

(
ρnu∗−∇φn+1)◦v (3.21)

where ◦ denotes the Hadamard product. The next step is to use the integration by
parts formula in the weak forms of the prediction and projection to highlight boundary
terms.
Prediction:
Find u∗ ∈ V (Ω) such as, for all v ∈ V (Ω):∫

Ω

ρn

δt
(u∗−un)◦v−

∫
Ω

diag( ¯̄Σn,∗∇vT ) =
∫
Ω

sn ◦v−
∫
∂Ω

¯̄Σn,∗n∂Ω ◦v (3.22)

Projection:
Find φn+1 ∈W (Ω) such as, for all q ∈W (Ω):

−
∫
Ω
∇φn+1 ·∇q =− 1

δt

∫
Ω
ρnu∗ ·∇q −

∫
∂Ω

q

(
∇φn+1 − ρnu∗

δt

)
·n∂Ω (3.23)

From here, solving the correction equation is straightforward. For the proof of
existence and uniqueness in the case of the Navier-Stokes equations, the interested
reader can refer to [GR86]

3.1.3.2. Finite Element Method

As already mentioned, the PDF method was initially developed in the finite-volume
framework using a finite-difference MAC scheme. Here, we present a Galerkin (i.e. the
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weak formulation test functions and the decompositions of variables use the same
discrete basis) Finite Element Method (FEM) version that has been implemented in
a preexisting CEA application. As the location of the vector and scalar unknowns
is completely different from the MAC scheme, new properties appear for the PDF
projection equation (cf. Remark 11). In this section, the used FEM formulation is
briefly reminded. For general information about solving the Navier-Stokes equations
with the FEM, one can refer to [GR86].

The computation domainΩ is divided in NE ∈N hexahedral elements, each denoted
Ke with e ∈ �1, NE� andΩe the portion ofΩ associated to the element Ke (cf. Figure 2.1).
Those elements are composed of nodes and the total number of nodes is denoted
NN . The mixed FEM is used, which means that the discrete unknowns of the problem
are decomposed in two different FE basis. For the velocity, a Q1 basis (i.e. trilinear
decomposition at nodes) is used while, for pressure, a Q0 basis (i.e. the discrete
pressure field is constant by element) is used. This pair of elements is known to be
unstable and can induce checkerboard pattern for the pressure. Indeed, the pressure
is defined to within an element of the kernel of the gradient operator [GR86]. When
the gradient operator is well defined, its kernel is only composed of constant functions
but, in thisQ0–Q1 discretization, it also contains some checkerboard-like functions.
Nevertheless, this pair is kept for two main reasons: i) it counts very few degrees of
freedom per element – 8 for velocity and 1 for pressure compared to 27 and 8 when
using a Q2–Q1 pair which, for instance, is stable – so it is quite fast; ii) the pressure
instabilities are soften when the diffusivity is high enough – i.e. in laminar cases
or when the turbulent viscosity is high, which is a case of interest for safety passive
system design. Moreover, let us notice that the general idea of the PDF method (cf.
Section 1.4.2.6) does not depend strongly on the space discretization. If needed, it
could be adapted to another pair of elements with little effort.

In addition, let us define:

• ne = card(Je ) the number of nodes belonging to the element Ke (e ∈ �1, NE�),

• ρn
e : the value of the density in element Ke (computed using the tabulated EOS of

water),

• uae : the value of the velocity along the direction xa approximated at the centroid
of element Ke at previous time step,

• pn
e : the value of the pressure in element Ke ,

• φn
e = pn

e −pn−1
e : the value of the pressure corrector in element Ke ,

• µn
e = νn

e
ρn

e
: the value of the dynamic viscosity in element Ke ,

• ϕi : the basis function associated to the node i ∈ �1, NN �,

• λn : the coordinates of un in theQ1 basis such as un ≈
NN∑
i=1

λnϕi (Nnd values),
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• λn
e (resp. sn

e ): the coordinates of un (resp. sn) in the Q1 FE basis restricted to
element Ke (me = ne d values).

where n in superscript denotes values at time step n. Using the variables FE basis
decomposition and the weak formulation of the problem (presented in Section 3.1.3.1),
the elemental matrices, for an element number e, are constructed as follows:
Mass matrix:

Meρ
n
e =

(
M e

i j

)
ρn

e with ∀(i , j ) ∈ (Je )2, M e
i j =

∫
Ωe

ϕiϕ j (3.24)

Gradient-divergence matrix:

Be =
(
B e

ai

)
with ∀(a, i ) ∈ �1,d�× Je , B e

ai =
∫
Ωe

∂xaϕi (3.25)

Advective matrix:

Neρ
n
e =

(
N e

i j

)
ρn

e with ∀(i , j ) ∈ (Je )2, N e
i j =

d∑
a=1

(
uae

∫
Ωe

(∂xaϕ j )ϕi

)
(3.26)

Diffusive matrix:

De =
(
De

i j

)
with ∀(i , j ) ∈ (Je )2, De

i j =
d∑

a=1

(∫
Ωe

(∂xaϕ j )(∂xaϕi )

)
(3.27)

Here we consider the lumping of the mass matrix, leading to a diagonal matrix that
can be more-easily inverted. It means that the mass matrix can be rewritten as:

∀i ∈ (Je )2, M e
i i ≈

∫
Ωe

ϕi . (3.28)

Obviously, this involves a loss of information. However, in case of steady-state
computations, the dynamic behavior is not of interest, neither the form of the mass
matrix. And, in case of transient computations, R. L. T. BEVAN et al. have shown that
the impact of the lumping process on the results is moderate [BN12].

Remark 3 The idea to lump the implicit part of the contribution of the forcing term
to the mass matrix is motivated by the presence of the penalty parameter η in the PDF
forcing terms. Indeed, the factor η−1 can badly degrade the mass matrix conditioning
as η≪ 1. Thus, lumping the contribution of the forcing term in conjunction with the
use of a diagonal preconditioner could greatly enhance the robustness of the method
without degrading the results too much (cf. Chapter 5).

By taking the weak forms of equations (3.14) and (3.15) and integrating by parts
the diffusive and pressure terms, we obtain the following time and space discrete
elemental resolution algorithm for the projection scheme, written for an element Ke :
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(
1

δt
Meρ

n
e +Deµ

n
e +Neρ

n
e

)
λ∗

e = 1

δt
Meρ

n
e λ

n
e +Be pn

e +Me sn
e (3.29)

BT
e M−1

e Beφ
n+1
e =− 1

δt
BT

e ρ
n
e λ

∗
e (3.30)

λn+1
e =λ∗

e +δtM−1
e

1

ρn
e

Beφ
n+1
e (3.31)

Then, each elemental system is assembled in a typical FE fashion to obtain the
global system representative of the whole domain.

Remark 4 Me is invertible and that computing its inverse is trivial as it is a diagonal
matrix due to the lumping technique.

Remark 5 The matrix related to the Laplace operator, in the projection equation (3.30),
is not directly constructed from the weak form. Indeed, the discrete divergence matrix BT

e
is applied at a discrete level to the correction equation (3.31), considering the fact that
the discrete mass equation stands as:

BT
e ρ

n
e λ

n+1
e = 0 (3.32)

Remark 6 Also, a Balancing Tensor Diffusivity (BTD) correction is sometimes used.
It consists in adding extra diffusion in the streamline direction, with a diffusivity
depending on a given parameter and the time step, in order to stabilize the convection.

3.2. Immersed Boundary

3.2.1. Penalized Direct Forcing
To preserve an implicit forcing term, M. BELLIARD et al. developed a new technique,
called Penalized Direct Forcing (PDF) [BF10], inspired by the Direct Forcing methods
and penalization techniques [Ang99; ABF99; Sar09; Sar+08]. The PDF method has
been applied to the incompressible Navier-Stokes equations in the framework of the
finite volume method using a finite difference scheme [IBF14]. In this case, dividing
the Navier-Stokes equation terms by ρ, the forcing term is written as follows:

fn+1 = χ

ηδt

(
un+1
Γ −un+1) (3.33)

with η ∈R+∗, such as η≪ 1. This formulation provides several advantages:

• The forcing term is implicit due to the penalization.

• The forcing term has a suitable mathematical formulation that allows an easy
adaptation to the projection of fractional-step schemes due to a formulation
similar to a discrete time derivative (cf. Section 3.2.2).
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In the context of the compressible Navier-Stokes equations considered in this pa-
per, the forcing term has to be modified in order to preserve its good mathematical
properties. It is defined as follows:

fn+1 := χ

ηδt
ρn (

un+1
Γ −un+1) (3.34)

Remark 7 The PDF forcing term of equation 3.34 can be viewed as a penalty term with

an “effective penalty parameter” η′, defined such as η′ = ηδt
ρn , depending on both space

and time.

3.2.2. Adaptation to the projection scheme
When using a projection scheme together with IBM, one have shown that the forcing
term should be split between the prediction and correction equations in order to
preserve the accuracy of the method [IK07; Dom08; GH10]. Inspired by the work of
M. BELLIARD and C. FOURNIER [BF10], the following splitting is defined (fn+1

P + fn+1
C =

fn+1):

fn+1
P := χ

ηδt
ρn (

un+1
Γ −u∗)

(3.35)

fn+1
C := χ

ηδt
ρn (

u∗−un+1) (3.36)

where fn+1
P and fn+1

C are the parts of the forcing term respectively added during the
prediction and correction steps.

Those two forcing terms (cf. equations (3.35) and (3.36)) are respectively added in
equations (3.14) and (3.15). Then, the fractional-step scheme becomes:

ρn

δt
(u∗−un)+∇· ¯̄Σn,∗ = sn + χ

ηδt
ρn (

un+1
Γ −u∗)

(3.37)

ρn

δt

(
un+1 −u∗)+∇φn+1 = χ

ηδt
ρn (

u∗−un+1) (3.38)

and, by gathering terms together in the correction equation (3.38), we obtain:

ρn

δt
un+1 + η

η+χ∇φ
n+1 = ρn

δt
u∗ (3.39)

However, the characteristic function χ is discontinuous among the immersed
boundary Γ. Therefore, the divergence cannot be directly applied to (3.39) to get
the projection equation. There are two ways of dealing with this issue:

• To consider distributional derivatives and equalities almost everywhere, i.e.
some kind of weak formulation (cf. Section 3.2.3 and Appendix A).
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• To apply the divergence at a space-discrete level (what is done in Section 3.2.4).

Remark 8 Beyond the preservation of the accuracy of the fractional-step method, equa-
tion (3.39) provides a way to isolate ∇φn+1 on one side of the immersed obstacle. It
is similar to the standard Neumann condition ∇(pn+1 −pn) ·n = 0 on the obstacles,
provided that the initial condition verifies it.

3.2.3. Adaptation of the weak formulation
When we add the forcing terms mentioned in Section 3.2.2, in their respective equa-
tions, we obtain the following weak form of the fractional-step algorithm:
Prediction:
Find u∗ ∈ V (Ω) such as, for all v ∈ V (Ω):∫

Ω

(
ρn

δt
(u∗−un)+∇· ¯̄Σn,∗

)
◦v =

∫
Ω

(
sn + fn+1

P

)◦v (3.40)

Projection (for dilatable fluid):
Knowing that η

(
η+χ)−1∇φn+1 is weakly differentiable onΩ (sum, division and prod-

uct of weakly differentiable functions, cf. Appendix A for more details), find φn+1 ∈
W (Ω) such as, for all q ∈W (Ω):∫

Ω

(
∇·

(
η

η+χ∇φ
n+1

))
q = 1

δt

∫
Ω
∇· (ρnu∗)

q (3.41)

Correction:
Find un+1 ∈ V (Ω) such as, for all v ∈ V (Ω):

1

δt

∫
Ω
ρnun+1 ◦v = 1

δt

∫
Ω

(
ρnu∗− η

η+χδt∇φn+1
)
◦v (3.42)

Then, the integration by part is used to deal with the discontinuous characteristic
function.
Prediction:
Find u∗ ∈ V (Ω) such as, for all v ∈ V (Ω):

∫
Ω

ρn

δt
(u∗−un)◦v−

∫
Ω

diag( ¯̄Σn,∗∇vT ) =
∫
Ω

(
sn + fn+1

P

)◦v−
∫
∂Ω

¯̄Σn,∗n∂Ω ◦v (3.43)

Projection:
Find φn+1 ∈W (Ω) such as, for all q ∈W (Ω):

−
∫
Ω

η

η+χ∇φ
n+1 ·∇q =− 1

δt

∫
Ω
ρnu∗ ·∇q −

∫
∂Ω

(
η

η+χ∇φ
n+1 − ρnu∗

δt

)
q ·n∂Ω (3.44)

Once again, the correction is straightforward to solve.
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3.2.4. Adaptation to the FEM
Concerning theQ1-Q0 formulation of the PDF equations (3.37) to (3.39), the first issue
to address is the discretization of function χ. This topic is tackled in Section 2.2 but
we remind the definition the definition of the discrete characteristic function:

∀e ∈ �1, NE�,

{
χe = 1 if ∃i ∈ �1, NS� / Si

e ̸= ;
χe = 0 else

(3.45)

and we also introduce a notation to enhance the readability of the document:

∀e ∈ �1, NE�, ξe = 1+ χe

η
(3.46)

Remark 9 χe can be seen as aQ0 decomposition of the characteristic function χ.

Then, the discrete prediction (cf. equation (3.29)) can be rewritten:

(
1

δt
Meρ

n
e ξe +Deµ

n
e +Neρ

n
e

)
λ∗

e = 1

δt
Meρ

n
e λ

n
e + 1

δt
Meρ

n
e (ξe −1)λn+1

Γ (3.47)

+Be pn
e +Me sn

e

where λn+1
Γ ∈Rme are the components of the discrete imposed velocity on Γ in theQ1

FE basis (i.e. at nodes) with ne ∈N the number of nodes belonging to the element Ke .
At this stage, those components are considered as known values coming directly from
the IB condition – what we call a direct assignment.

Remark 10 In the prediction equation, the PDF forcing is split into an implicit contri-
bution (an addition to the mass matrix via the coefficient ξe ) and a source term.

The discrete projection equation is obtained the same way. From equation (3.39),
we get:

1

δt
Meρ

n
e

(
λn+1

e −λ∗
e

)− 1

ξe
Beφ

n+1
e = 0Rme (3.48)

and, proceeding with this equation as indicated in Remark 5 (left multiplying by
B T

e M−1
e and considering the discrete mass balance), the following projection equation,

only depending on the pressure corrector, can be obtained:

BT
e M−1

e
1

ξe
Beφ

n+1
e =− 1

δt
BT

e ρ
n
e λ

∗
e (3.49)

Finally, once the discrete correction equation is obtained from equation (3.48), the
full algorithm including PDF terms is summarized as follows:
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(
1

δt
M̂eρ

n
e +Deµ

n
e +Neρ

n
e

)
λ∗

e = 1

δt
M̂eρ

n
e λ

n
e +Be pn

e +Me sn
e (3.50)

+ 1

δt
Meρ

n
e (ξe −1)

(
λn+1
Γ −λn

e

)
BT

e M̂−1
e Beφ

n+1
e =− 1

δt
BT

e ρ
n
e λ

∗
e (3.51)

λn+1
e =λ∗

e +δtM̂−1
e

1

ρn
e

Beφ
n+1
e (3.52)

where M̂e = Meξe denotes a modified mass matrix. Using this later one in the time
terms, the PDF fractional-step algorithm is very similar to the standard algorithm
(equations (3.29) to (3.31)) with the extra source term 1

δt Meρ
n
e (ξe −1)(λn+1

Γ −λn
e ) that

vanishes when χe = 0.

Remark 11 In this FEM scheme, as all the components of the pressure-correction gradi-
ent term M̂−1

e Beφ
n+1
e are located at the same element nodes, the isolation mentioned in

Remark 8 occurs for all the space directions contrary to the previous finite difference
scheme (isolation in the face-normal direction only) [IBF14].

Remark 12 In a way, the proposed PDF method, when the forcing term is split, can be
considered as hybrid (with respect to the categories presented in Chapter 1) because it
involves both an addition of new terms (prediction equation) and a modification of
operators (kind of Laplace operator in the projection equation).
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Summary
4.1 Preamble . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.2 Directional interpolation . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
4.3 Multi-directional interpolation . . . . . . . . . . . . . . . . . . . . . . . . 74
4.4 Hybrid strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
4.5 Towards the Neumann BC . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.1. Preamble
In this short chapter we discuss theoretical aspects related to the proposed interpola-
tion strategies. The idea is to define methods to compute uΓ:

1. uΓ is directly equal to the velocity of the immersed boundary (i.e. Dirichlet BC),
what we call the “Direct Assignment”,

2. uΓ is linearly interpolated within the direction normal to the immersed boundary,
what we call the “Directional Interpolation” (cf. Section 4.2),

3. uΓ is linearly interpolated using an approximate normal derivative computed
using neighbors values, what we call the “Multi-directional Interpolation” or
“Mean Gradient Interpolation” (cf. Section 4.3),

4. uΓ is linearly interpolated whether using the “Directional Interpolation” or the
“Multi-directional Interpolation” depending on the geometry, what we call the
“Hybrid Strategy” (cf. Section 4.4).

As mention in Chapter 1, in theory, we expect the direct assignment to be first
order accurate in space whereas the interpolation strategies should allow to reach
order 2 , at least for the quantities decomposed in a Q1 basis (velocity and pressure
gradient) in steady cases. Indeed, theQ1 Finite Element is second order accurate and
the linear interpolation also gives a second order approximation (compared to the
first order “staircase” approximation) of the immersed boundary. Moreover, we have
experimental evidence showing that the splitting of the PDF source term, coupled
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4. Interpolation of the imposed velocity – 4.2. Directional interpolation

linear interpolation of the imposed velocity, allows to reach order 2 in practice with a
Finite Difference scheme [IBF14].

We can say that this assertion is approximatively verified in practice in the 2D tilted
Poiseuille case (cf. Section 5.4.1) with order values superior to 1.8 in L 2 norm and
superior to 1.7 in L∞ norm (depending on the considered quantity and tilt angle)
for all interpolation techniques (except for the multi-directional in L∞with a titl
angles of 11◦ and 30◦: the value is close to 1). Considering the Taylor-Couette and
circular cylinder cases (cf. Sections 5.4.2 and 5.4.3), for all interpolation techniques,
the assertion is verified for the velocity in L 2, with order values superior to 1.7, but
not in L∞ norm, with values of 1.5 or less.

Nota: From now on, the time index exponent notation will be omitted in this section
for purpose of readability, keeping in mind that the imposed velocity is interpolated at
each time step.

(a) Directional

× × ×

× × ×

× ×

× × ×

× ×

Γh •

•
x j

•
xp

j

x f
j

: Purely fluid element

(b) Multi-directional

× × ×

× × ×

× ×

× × ×

× ×

Γh

•
xv2

•
xv1

•
x j

•
xp

j

•
xp

v1

• xp
v2

• : Purely fluid node: Purely fluid element

Figure 4.1. Schematic drawings of the different interpolations techniques.

4.2. Directional interpolation
Given the coordinates xp

j of the approximate projection of node j , we can reconstruct
an outward normal vector:

∀ j ∈ J , n j =
x j −xp

j

|x j −xp
j |

(4.1)
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and then we find a point x f
j in the prolongation of n j (cf. Figure 4.1a) such as:

∀ j ∈ J , x f
j = x j +d f

j c n j (4.2)

with the distance d f
j , the maximum distance between a node j and its neighbors,

defined as follows:

∀ j ∈ J , d f
j = max

e∈E 0
j

(
max
i∈Je

∣∣x j −xi
∣∣) (4.3)

and c ∈ ]1,+∞] a coefficient (cf. Figure 2.4 for the definition of E 0
j ). The velocity at x f

j
is computed using the FE basis functions:

∀ j ∈ J , u(x = x f
j ) ≈

NN∑
k=1

λkϕk

(
x = x f

j

)
(4.4)

with λk ∈Rd the component k of the decomposition of the velocity in the FE basis and
ϕk the Q1 basis function associated to the node k. However, as the support of ϕk is
compact and equal to kΩ, i.e. ϕk ∈D (kΩ), with:

∀k ∈ �1, NN �, kΩ= ⋃
e∈E 0

k

Ωe (4.5)

only the nodes belonging to the element K f containing the point x f
j imply a non-zero

term in the sum. Then equation (4.4) becomes:

∀ j ∈ J , u(x = x f
j ≈ u f

j =
∑

k∈J f

λkϕk

(
x = x f

j

)
(4.6)

Note that K f has to be “purely fluid”, which means that all nodes of J f must belong
only to elements not crossed by the boundary or, said otherwise:

∀ f ∈ �1, NE� ,
(
K f is “purely fluid”

)⇐⇒ (∀k ∈ J f , ∀e ∈ E 0
k , χe = 0

)
(4.7)

in order for u f
j to be clearly defined. Indeed, if it is not the case, we obtain a circular

definition for u j . To prevent this from happening in practice, we take c = 1.1 at first.
Then, if the element K f is not “purely fluid”, we retry with c = 2.1.

Finally, if we denote up
j = u(x = xp

j ) (given by the IB condition), we can interpolate
the velocity at node j as follows:

∀ j ∈ J , uΓ(x = x j ) := u(x = x j ) ≈ u j = up
j +

u f
j −up

j

|x f
j −xp

j |
|x j −xp

j | (4.8)
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4. Interpolation of the imposed velocity – 4.3. Multi-directional interpolation

4.3. Multi-directional interpolation
The idea of this approach (inspired by [IBF14] and roughly schematized in Figure 4.1b)
can be summarize as follows:

1. For each purely fluid node surrounding the node j ∈ J , we compute an approxi-
mate derivative, in the direction normal to Γh , of the fluid velocity.

2. We compute the arithmetic mean of the obtained approximate derivatives.

3. We use this mean normal derivative to compute u j .

However, to be able to compute approximate normal derivative of the velocity at
the nodes surrounding j , we need the projections of those nodes on Γh . Those purely
fluid neighbors are denoted as follows:

∀ j ∈ �1, NN � , V j =
{

v ∈ �1, NN �
∣∣∣∃e ∈ E 0

j /v ∈ Je and ∀ f ∈ E 0
v , χ f = 0

}
(4.9)

Regarding geometrical data reconstruction, the method to achieve the projection
slightly differs between the weighting and optimization approaches:

In the weighting approach: First, new elemental projections are computed:

∀e ∈ �1, NE�/χe = 1,∀ j ∈ Je ,∀v ∈V j , pv
e = xv + l v

e ne (4.10)

with the definition of l v
e being identical to the one presented in Section 2.3.1. Then

they are assembled in the following way:

∀ j ∈ �1, NN �/α j ̸= 0,∀v ∈V j , xp
v = 1

αv

∑
e∈E

χ

j

αv
e pv

e (4.11)

with:

∀ j ∈ �1, NN �/α j ̸= 0,∀v ∈V j , αv = ∑
e∈E

χ

j

αv
e (4.12)

In the optimization approach: For nodes of V j we must collect facets which
intersect neighbors or neighbors elements, which means:

∀v ∈ ⋃
j∈J

V j , Iv =
{

k ∈ �1, NS�
∣∣∣∃e ∈ E 1

v /Sk
e ̸= ;

}
(4.13)

with the definition of E 0
v given in Figure 2.4. Then the approximated minimization

problem (2.14) is also solved for nodes v where Iv ̸= ; using the methodology pre-
sented in Section 2.3.2.
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Provided the projections of neighbors, the velocity imposed at node j is computed
as follows:

∀ j ∈ J , uΓ(x = x j ) ≈ u j = up
j +γ j

∑
v∈V j

uv −up
v

|xv −xp
v |
|x j −xp

j | (4.14)

with:

∀ j ∈ J ,

 γ j = 1

card(V j )
if card(V j ) > 0

γ j = 0 else
(4.15)

4.4. Hybrid strategy
In future works, we will investigate turbulent immersed wall laws. As wall laws are
usually directional, we propose a hybrid strategy consisting in applying the directional

approach where possible (i.e. nodes j for which the fluid point x f
j is located in a purely

fluid element with c = 1.1) and multi-directional approach elsewhere.

4.5. Towards the Neumann BC
In this chapter, the different ways that we developed in order to impose a Dirichlet
immersed BC for the velocity were covered. However, one of the main advantages of
the above described interpolation techniques resides in the fact that they can also
be used to impose Neumann boundary conditions (even if no test case presented in
Chapter 5 uses this type of BC, we detail the methodology here, as a perspective).

Indeed, if we denote ∂u : Γ→Rd the Neumann immersed BC in each direction:

• In the directional approach: we can consider that ∂u represents the value of the
linear interpolation slope in each direction or, said otherwise:

∀ j ∈ J ,
u f

j −up
j

|x f
j −xp

j |
≈ ∂u(x = xp

j ) (4.16)

provided that we have a satisfactory way to evaluate ∂u at each xp
j (as xp

j may
not be located exactly on Γ). With that, we can compute an approximate value
for each up

j :

∀ j ∈ J , up
j ≈ u f

j −|x f
j −xp

j | ∂u(x = xp
j ) (4.17)

and then use equation (4.8) to compute uΓ which means:

∀ j ∈ J , uΓ(x = x j ) ≈ u f
j +

(
|x j −xp

j |− |x f
j −xp

j |
)
∂u(x = xp

j ) (4.18)

75
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or, as xp
j , x j and x f

j are aligned:

∀ j ∈ J , uΓ(x = x j ) ≈ u f
j −|x f

j −x j | ∂u(x = xp
j ) (4.19)

or, as

• In the multi-directional approach: the idea is quite the same except that, in-
stead of only using the value of the Neumann BC as the slope of the linear

interpolation between xp
j and x f

j , we use it for each purely fluid neighbor of x j :

∀ j ∈ J , ∀v ∈V j
uv −up

v

|xv −xp
v |

≈ ∂u(x = xp
v ) (4.20)

provided that, once again, we have a satisfactory way to evaluate ∂u at each xp
v .

Then, similar the directional approach, we are able to compute each up
v and

provide a value to uΓ using equation (4.14).

Hence, we are able to impose the two usual wall BC on the immersed boundary:

• Slip: Neumann BC in the direction normal to the immersed boundary, Dirichlet
BC in the tangential direction(s),

• No slip: Dirichlet BC in all directions.

As other interesting perspectives, that were not tackled during this PhD, we can
mention:

• The investigation of ways to impose pressure BC via linear interpolation,

• Using turbulent wall laws instead of linear functions to compute uΓ (a new PhD
project focusing on this topic was launched in October 2020).
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5.1. Preamble

5.1.1. Definition of indicators and approximations
We detail the definitions of discrete L 2 and L∞ norms used in this thesis. For a scalar
quantity a, we have:
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|a|2 ≈ |a|h2 =
(

1

n

n∑
i=1

a2
i

) 1
2

(5.1)

|a|∞ ≈ |a|h∞ = max
i∈�1,n�

|ai | (5.2)

where ai is the value of the quantity a computed at node or element i depending
on the discretization (Q0 orQ1) and n the number of nodes or elements in the fluid
domain ( j ∈ �1, NN �/x j ∈Ω f or e ∈ �1, NE�/Ωe ∩Ω f ̸= ;). With those definitions, we
are able to construct the relative norm of the error related to the quantity a, provided
its analytical solution s:

|a|r2 =
|a − s|h2
|s|h2

(5.3)

|a|r∞ = |a − s|h∞
|s|h∞

(5.4)

We also detail our approximation of the aerodynamic force induced by the flow
around an obstacle. At a fully continuous level, the definition of the aerodynamic
force is the following:

tΓ :=
∫
Γ

( ¯̄σ− ¯̄I p) ·nΓ (5.5)

and thank to the divergence theorem we have:

tΓ =
∫
Ωs

∇· ( ¯̄σ− ¯̄I p) ·nΓ (5.6)

If we denote:

Ωh
s = ⋃

e∈C

Ωe with C = {e ∈ �1, NE�/Ωe ∩Ωs ̸= ;} (5.7)

we can approximate the aerodynamic force at a time-discrete level:

tΓ =
∫
Ωs

∇· ( ¯̄σ− ¯̄I pn+1) ≈
∫
Ωh

s

∇· ( ¯̄σn+1 − ¯̄I pn+1) = th
Γ (5.8)

Then, if we consider the semi-discrete weak formulation of the complete momentum
balance equation onΩh

s , we have (without considering the gravity term):
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∫
Ωh

s

[
ρn un+1 −un

δt
+∇· (ρnun ⊗un+1)

]
+

∫
Ωh

s

∇· ( ¯̄σn+1 − ¯̄I pn+1) (5.9)

=
∫
Ωh

s

fn+1

where fn+1 is the PDF term. Therefore, the approximate value of the aerodynamic
force can be computed as follows:

th
Γ =

∫
Ωh

s

fn+1 −
∫
Ωh

s

[
ρn un+1 −un

δt
+∇· (ρnun ⊗un+1)

]
(5.10)

As a first approximation, the integral of the total derivative is assumed negligible –
i.e. steady state, uniformity and symmetry assumptions – which can lead to incorrect
estimations (cf. Section 5.5). Thus we have:

th
Γ ≈

∫
Ωh

s

fn+1 =
∫
Ω

fn+1 (5.11)

as the forcing term is zero outsideΩh
s . Finally, the aerodynamic coefficients (drag and

lift) are computed as follows:

Cd = 2th
Γ ·ex

ρU∞2d
and Cl =

2th
Γ ·ey

ρU∞2d
(5.12)

with U∞ a reference-velocity magnitude (magnitude of the inlet velocity for both
cylinder and NACA airfoil cases), d a reference length (diameter for cylinder and
chord length for a NACA airfoil) and assuming that x (resp. y) is the streamwise (resp.
spanwise) flow direction. In the case of the unsteady flow around a circular cylinder,
we also consider the Strouhal number, defined as follows:

St = 2r

U∞
f (5.13)

with r the radius of the cylinder and f the vortex detachment frequency.
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5.1.2. Development history

Kernel

Trio_U MPCube

MC2 GENEPI3

Figure 5.1. Trio_U and Kernel before the creation of TRUST (source [CEAa]).

Before 1994, there was no common kernel between the different CFD codes developed
by the CEA. There were only disseminated applications, such as GENEPI (FE code
written in FORTRAN dedicated to Steam Generator numerical modeling) or FLICA
(FE thermal hydraulics code used to study the flow within the core). After 1994, in an
effort to pool the different developments, Trio_U, and its Kernel (both written in C++),
were created (cf. Figure 5.1). With them was born GENEPI3, the version of GENEPI
based on Trio_U (i.e. partially written in C++). Other CEA codes were modified to
take advantage of the common developments (notably parallelization) and validation
material incorporated in Trio_U and its Kernel, for instance FLICA and MC2 (used to
simulate the flow through the reactor core but at a different scale compared to FLICA).
The codes based on Trio_U or its kernel are called BALTIK, an acronym for Build an
Application Linked to TrIo_U Kernel.

In 2015, Trio_U was divided in two parts: TRUST and TrioCFD (cf Figure 5.2).

• TRUST (TRio_U Software for Thermohydraulics) basically contains all the kernel
as well as code coupling, verification and validation tools. Its strength resides in
its extensive validation basis.

• TrioCFD is a BALTIK based on TRUST. It contains all turbulence models as well
as front tracking methods and other closure laws or models.

In the same motion, TRUST became open source (but not the BALTIK as they include
experimental data or models, which remain intellectual property of the CEA).
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TRUST platform: Kernel/Code Coupling Interface / V & V Tools / doc

TrioCFD TrioMC GENEPI3 MPCube

Figure 5.2. TRUST platform and the CEA codes based on it (source [CEAa]).

At the beginning of this PhD project, the Penalized Direct Forcing method and the
interpolation strategies were developed as a part of GENEPI3 (cf. Figure 5.2). This
choice was mainly motivated by two reasons:

1. As briefly introduced in Section 1.5, some physical models of interest for the
aimed application are included in the code,

• HEM,

• weakly compressibility,

• tabulated EOS of water,

• etc.

2. The code contains a feature (called opaque obstacle) that can be easily converted
in the PDF forcing terms and, therefore, facilitate the implementation.

However, later on, we decided to transfer our developments from GENEPI3 to the
TRUST platform so all the BALTIK could use the order 2 PDF method. Hence, during
this PhD, results have been obtained using three different software environments:

1. the version of GENEPI3 based on the version 1.7.4 of the TRUST platform at
this stage, only the direct assignment and directional interpolation were imple-
mented),

2. the version 1.8.2 of the TRUST platform alone at this stage, multi-directional and
hybrid interpolations were added),

3. the version of GENEPI3 based on the version 1.8.2 of the TRUST platform. Indeed,
as the TRUST platform is updated more frequently than GENEPI3, there were a
shift between the up-to-date version of TRUST and the version used by GENEPI.
We had to adapt GENEPI3 to the last version of TRUST.

For more details about GENEPI3, the interested reader can refer to [Gra+90; GOch]
and, for more details about TRUST, to [CEAb; CEAa].
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5.2. List of cases

(a) Poiseuille flow
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Figure 5.3. Schematic representation of the computational domain for the different
laminar validation cases.

In practice, the IB are considered “Infinitely thin” in all the test cases listed in this
section, meaning that the governing equations are solved in the non-physical domain
too – we keep the notation ofΩs in the academic test cases in reference to the physical
problems. This property is granted by construction as the proposed method treats
both sides of an IB in the exact same way.
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5.2.1. Aligned laminar 2D Poiseuille flow
Poiseuille flow refers to a viscous fluid flow between two parallel plane plates, what
we call channel, or within a cylindrical tube. In dimension two, which is our case of
interest for verification purposes, both cases are equivalent. Figure 5.3a, paired with
Table 5.1, gives our test case configuration where:

• Ω f represents the physical domain whereasΩs represents the non-physical one
(Ω=Ω f ∪Ωs is the computational or fictitious domain).

• Γ1 and Γ2 are the two immersed boundaries at which a no-slip condition is
considered.

• u∞ represents the inlet velocity field (given by the analytical solutions of the
Poiseuille flow problem detailed hereafter) and U∞ = max(|u∞|).

In this case, we consider a constant viscosity (so that the Reynolds number does not
depend on space) and its value is computed as follows:

µ= ρU∞w

Re
(5.14)

or said otherwise: µ= ν ρ. If we do the numerical application using the value in Table
5.1, we obtain:

µ= 1014 kg.m−1.s−1 (5.15)

Nota: GENEPI3 was used to carry out this test case (cf. Section 5.1.2) so, in practice,
the density of the fluid is taken equal to the one of water at 20◦C and 1 bar (or 105 Pa)
to match the tabulated EOS of water.

5.2.1.1. Analytical solution

The distance between the plates is assumed widely smaller than the dimensions of the
plates (i.e. w ≪ l ). Therefore, with x and y the coordinates along ex and ey respectively,
we can use the lubrication theory to obtain the following analytical solutions:

∀(x, y) ∈ [0.5w,1.5w]×R, u ·ex = 0 (5.16)

u ·ey = 4U∞(x −0.5w)

w

(
1− x −0.5w

w

)
(5.17)

∇p ·ex = 0 (5.18)

∇p ·ey =−8ρU∞ν
w 2

(5.19)
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Table 5.1. Geometrical and physical parameters used for the 2D Poiseuille flow (chan-
nel aligned with the mesh).

w (m) l (m) U∞ (m.s−1) ρ (kg.m−3) ν (m2.s−1) Re =U∞wν−1

1 4 1 1014 1 1

5.2.2. Tilted laminar 2D Poiseuille flow
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Figure 5.4. Schematic representation of the computational domain for the tilted 2D
Poiseuille flow.

This case is almost the same as the previous one, only the orientation of the channel
in the fictitious domain changes. Indeed, in the previous test case (cf. Section 5.2.1)
the immersed boundaries are aligned with the mesh axis (here ey ) but, in general, it
will not be the case for industrial applications – it is the interest of the method. Hence,
a case in which the immersed boundaries are not coincident with the mesh is needed
to test the robustness of the method.

The same notations are used to describe the case via Figure 5.4 and Table 5.2, except
that:

• (eX ,eY ) is the rotated frame with eX = cos(θ)ex − sin(θ)ey and eY = sin(θ)ex +
cos(θ)ey

• W and L are respectively the actual width and length of the domain with W =
w cos(θ)+ l sin(θ) and L = w sin(θ)+ l cos(θ)
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Table 5.2. Geometrical and physical parameters used for the 2D Poiseuille flow (chan-
nel tilted).

w(m) l (m) θ(◦) U∞(m.s−1) ρ(kg.m−3) ν(m2.s−1) Re =U∞wν−1

1 4 11 1 1014 1 1
1 4 30 1 1014 1 1
1 4 45 1 1014 1 1

The viscosity is also considered constant and computed using equation (5.14). The
numerical application using the values of Table 5.2 gives:

µ= 1014 kg.m−1.s−1 (5.20)

Nota: GENEPI3 was used to carry out this test case (cf. Section 5.1.2) so, in practice,
the density of the fluid is taken equal to the one of water at 20◦C and 1 bar (or 105 Pa)
to match the tabulated EOS of water.

5.2.2.1. Analytical solution

The analytical solutions are computed in the same way as in Section 5.2.1.1, except
that they are expressed in (eX ,eY ):

∀(X ,Y ) ∈ [0, w]×R, u ·eX = 0 (5.21)

u ·eY = 4U∞X

w

(
1− X

w

)
(5.22)

∇p ·eX = 0 (5.23)

∇p ·eY =−8ρU∞ν
w 2

(5.24)

5.2.3. Laminar Taylor-Couette flow
Taylor-Couette flow refers to the flow between two infinitely long concentric circular
cylinders which are rotating at different angular velocities. Figure 5.3b, paired with
Table 5.3, gives the test case configuration where:

• Ω f represents the physical domain whereasΩs represents the non-physical one
(Ω=Ω f ∪Ωs is the computational or fictitious domain).

• Γ1 and Γ2 are the immersed boundaries corresponding respectively to the inner
and outer cylinders. They correspond to a no-slip condition, which means a
Dirichlet BC with the Dirichlet fluid velocities given by the cylinders velocities.
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Table 5.3. Geometrical and physical parameters used for the laminar Taylor-Couette
flow.

r1(m) r2(m) ω1(rad.s−1) ω2(rad.s−1) ν(m2.s−1) Re = |ω|r 2
1ν

−1

5×10−1 1 1 -1 2.5×10−1 1

• r1 and r2 are respectively the radii of the inner and outer cylinders.

• l = 2r2 + 1
4 is the side of the square domain.

• ω1 and ω2 are respectively the inner and outer cylinders angular velocities.

• (er ,eθ) is the polar frame.

Once again, the viscosity is considered constant and computed using the definition
and value of the Reynolds number. The numerical application using the values of
Table 5.3, with ρ = 1 kg.m−3, gives:

µ= 2.5×10−1 kg.m−1.s−1 (5.25)

The stability of this flow in ensured by a condition on the Taylor number, denoted
Ta:

Ta := ω1
2rm(r2 − r1)3

ν2
< Tac with rm = r1 + r2

2
(5.26)

where Tac ≈ 1.712 is the critical Taylor number computed by linear analysis [GHP01].
The numerical application gives, in our case, Ta = 1, so the criterion is respected.

5.2.3.1. Analytical solution

Using lubrication theory once again, the flow reaches a steady state, in which the fluid
velocity is purely azimuthal:

∀(r,θ) ∈ [r1,r2]× [0,2π[, u ·eθ =ω1
a −b2

1−b2
r +ω1r1

2 1−a

1−b2

1

r
(5.27)

with:

a = ω2

ω1
and b = r1

r2
(5.28)

5.2.4. Laminar flow around a circular cylinder
The flow around a circular cylinder is a widely studied problem in the field of fluid
dynamics. Figure 5.3c, paired with Table 5.4, gives the test case configuration where:
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Table 5.4. Geometrical and physical parameters used for the laminar flow around a
cylinder.

r (m) U∞ (m.s−1) ω (rad.s−1) µ (kg.m−1.s−1) Re = 2ρU∞rµ−1

5×10−1 1 0 5×10−2 2×101

5×10−1 1 2 5×10−2 2×101

5×10−1 1 0 10−2 102

5×10−1 1 2 10−2 102

• Ω f represents the physical domain whereasΩs represents the non-physical one
(Ω=Ω f ∪Ωs is the computational or fictitious domain).

• Γ is the immersed boundary corresponding to the surface of the cylinder.

• r is the cylinder radius.

• l = 120r is the side of the square domain. It is rather large to avoid boundary
effects.

• u∞ represents the uniform inlet velocity field.

• ω is the cylinder angular velocity.

Once again, the viscosity is considered constant and computed using the definition
and value of the Reynolds number. The values are gathered in Table 5.4.

There is no analytical solution, but many experiments and simulations give macro-
scopic indicators, such as the drag and lift coefficients, as comparison elements in the
static case (i.e. ω= 0 rad.s−1) and the rotating case (i.e. ω ̸= 0 rad.s−1), even if this last
case has not been extensively studied experimentally.

5.2.5. Laminar flow past a NACA0012 airfoil
The flow past a NACA airfoil is a typical issue in aerodynamics. Usually, due to the high
velocity of flying objects such as planes, it involves turbulence modeling. However,
some laminar cases have been studied and simulated by R.C. SWANSON et al. [SL16].
This provides elements of comparison and test configurations, detailed in Figure 5.3d
and table 5.5 where:

• Ω f represents the physical domain whereasΩs represents the non-physical one
(Ω=Ω f ∪Ωs is the computational or fictitious domain).

• Γ is the immersed boundary corresponding to the surface of the NACA airfoil.

• θ is the angle of attack.

87



5. Numerical results and discussions – 5.2. List of cases

Table 5.5. Geometrical and physical parameters used for the laminar flow past a
NACA0012 airfoil.

θ (◦) c (m) U∞ (m.s−1) ν (m2.s−1) Re =U∞cν−1

0 1 5×10−1 1×10−4 5×103

1 1 5×10−1 1×10−4 5×103

• c is the chord of the NACA airfoil.

• l = 10c is the side of the square domain.

• u∞ represents the uniform inlet velocity field.

All those configurations are supposed to reach a steady state, as stated in [SL16].
Once again, the viscosity is considered constant and its value is determined via the
definition of the Reynolds number which gives:

µ= 0.1014 kg.m−1.s−1 (5.29)

Nota: GENEPI3 was used to carry out this test case (cf. Section 5.1.2) so, in practice,
the density of the fluid is taken equal to the one of water at 20◦C and 1 bar (or 105 Pa)
to match the tabulated EOS of water.

5.2.6. Industrial case involving the flow limiter
This case is representative of the flow into a hydraulic diode like the one presented in
Figure 1.7. As we can see in Figures 5.5a, we have a volume mesh – which represents
the fluid located in a planar model of the downcomer of a PWR including the inlet and
outlet vessel – and a surface mesh – which comes from a CAD software and represents
the shape of the flow limiter. The combination of the two, gives a volume mesh
(cf. Figure 5.5b with embedded data about the immersed boundary (characteristic
function, normal vector, etc.).

The case in itself corresponds to a LB-LOCA induced by a break on the cold inlet
vessel (cf. Section 1.2). Thus, as the primary circuit is pressurized, the flow comes from
the bottom of the core, with a flowrate of 5.2 kg.s−1 (this estimation is coming from
system scale computations), to the break (i.e. the inlet vessel). The outflow pressure
is fixed at an ad hoc value of 50 bar. In this case, we consider µ=µ f +µT (cf. Section
3.1.1.3) where µ f is given by the tabulated EOS of water at 50 bar (the internal energy
balance is not solved so the enthalpy value is constant and equal to 1.1×106 J.kg−1)
and µT is given by the Schlichting’s scalar turbulence model with aS = 0.047 and the
characteristic length of turbulence LT = 0.3 m. For a more detailed description of the
case, the interested reader can refer to [Bel18].
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(a) Separated meshes

+

(b) Conjoint meshes

Figure 5.5. Mesh configuration of the case involving a device representative of the
flow limiter.
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5.3. Penalty parameter convergence study
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Figure 5.6. Evolution of relative norms (L 2 and L∞) of the error related to various
variables with respect to the value of the penalty parameter η (direct
assignment and directional interpolation).

The behavior of the PDF method with respect to the penalty parameter η have been
studied in the case of a 2D Poiseuille flow. The channel is aligned with the grid and
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the immersed boundaries are conforming to element interfaces in order to minimize
the spatial error and focus on the penalty error. Only directional interpolation is
considered here (cf. Section 4.2) , without loss of generality for the other interpolation
techniques. Indeed, as only plane IB are considered and the space step is sufficiently
low, there is no apparent reason to lack an interpolation point located in a purely fluid
element for any of the nodes in the vicinity of the obstacles (i.e. hybrid interpolation
provides the same results as the directional approach). Moreover, each node in the
vicinity of the IB has only one purely fluid neighbor located in the direction normal
the IB plane (i.e. directional and multi-directional approach are equivalent).

Figure 5.6a shows the L 2 and L∞ relative norms of the error of the component
of the velocity oriented along the channel axis with respect to the penalty parameter.
The blue curve marked with empty circles corresponds to results obtained with the
variant of the method in which the value of the imposed velocity is directly assigned
to the immersed Dirichlet boundary condition value. The red curve marked with
disks correspond to the results obtained with the directional velocity interpolation
technique described in Section 4.2. In both cases, the numerical order of convergence
is close to 1, which is consistent with the conclusions of P. ANGOT et al. in [Ang99;
ABF99].

However, it can be noted that the converged value of the relative error, in both
norms, is higher when using the interpolation technique. This could be explained by
the fact that the interpolation process adds a spatial error which is absent when using
the direct assignment – in that case, the exact solution value is directly assigned to the
imposed velocity because the immersed boundaries are conforming. The evolution
of the pressure gradient with respect to the penalty parameter η (cf. Figure 5.6c)
seems similar except that there is no noteworthy difference between the interpolation
and assignment techniques. As pressure gradient is not interpolated, this tends to
confirm the assumption about an added space error due to the interpolation process.
Concerning pressure, in Figure 5.6b, results are similar for both techniques and an
order of convergence of about 3/4 is found – a value which is, once again, consistent
with the conclusions of P. ANGOT. Furthermore, it can be noted that the value of η for
which the penalty error becomes lower than the other errors (mainly space error) is
rather high (about 10−5), which means that we don’t need to degrade the conditioning
of the computation matrices too much. Finally, another indicator has been computed:
the mean pressure gradient between two sections of the channel. It is defined as
follows:

∆p

∆y
:= p2 −p1

y2 − y1
(5.30)

Where:

• y1 and y2 are the coordinates along y axis of two sections of the channel S1 and
S2 (y1 < y2).

• p1 and p2 are the arithmetic means of the computed pressure field in elements
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crossed by the section S1 and S2.

It can be noted that this indicator also converges to the pressure gradient value
with an order of about 1 – cf. the evolution of the error (computed between the
indicator and the analytical value of the pressure gradient along the channel) plotted
on Figure 5.6d.

Remark 13 All the norms have been computed on a part of the fluid domain far from
boundary to avoid boundary effects (i.e. for 0.5 < x < 1.5 and 1 < y < 3).

5.4. Mesh convergence studies

5.4.1. 2D Poiseuille flow
The 2D Poiseuille flow with a tilted channel was used to carry out a mesh convergence
study. For the three considered tilt angles (11, 30 and 45◦), the space convergence of the
velocity components, in both Cartesian (cf. Figures 5.8a, 5.8b, 5.11a, 5.11b, 5.13a and
5.13b) and channel (cf. Figures 5.9a, 5.12a and 5.14a) frames, is numerically observed
using both L 2 and L∞ norms. Moreover, the relative norm of error is systematically
lower when using the velocity interpolation, no matter the technique used, whereas
the spatial order of convergence is systematically higher. In L 2 norm, an order of
almost 2 is systematically reached for the velocity components when using linear
interpolation, which is consistent with the theory. In L∞ norm, the convergence
order is similar except for the Cartesian components when using multi-directional
interpolation with a tilt angle of 11 or 30◦. In these cases, the convergence order is
about 1, same value as the direction assignment technique. This may be explained by
the fact that the directional approach interpolates purely along eX axis whereas the
multi-directional approach interpolates using values at different coordinates in the
(eX , eY ) frame. The 45◦ case is peculiar because the immersed boundaries correspond
to elements’ diagonals. Therefore, the forced nodes which are shared by two elements
with χe = 1 (cf. x2 in Figure 5.10) are directly located on the immersed boundary (i.e.
no need of interpolation). The forced nodes belonging only to one element with χe = 1
(cf. x1) have three fluid nodes but with a regular pattern (xv2 which in the prolongation
of x2 along eX axis and xv1 and xv3 are symmetrical with respect to xv2 −x2).

Concerning pressure, due to the appearance of checkerboard patterns induced
by the instability of the pairQ1–Q0 (cf. Figure 5.15), conclusions about convergence
order are not sure. Nevertheless, as the pressure is still a linear combination of a
unique function and an element of the kernel of the gradient operator [GR86], the
pressure gradient remains mainly unaffected. Indeed, it has almost the same behavior
as the velocity components in both Cartesian (cf. Figures 5.8c, 5.8d, 5.11c, 5.11d, 5.13c
and 5.13d) and channel (cf. Figures 5.9b, 5.12b and 5.14b) frames, provided that we
consider its value far enough from the immersed boundary to avoid the effect of the
non-physical pressure values computed in the elements crossed by the immersed
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obstacle because of the factor ξe in the projection equation (3.51). Excluding the nodes
which are close to the immersed boundary to compute the pressure gradient error
values could explain why the computed order is higher than 2. Overall, we can say that
the velocity interpolation technique reduces the error, enhances mesh convergence
and improve the agreement with the analytical solutions even if, in some cases, the
multi-directional approach can lead to higher local errors.

Remark 14 Hybrid and directional interpolation provide exactly the same results be-
cause only plane obstacles are considered, as explained in Section 5.3.

Remark 15 The error values obtained with the directional and hybrid interpolation
are the same because a fluid point is found for all nodes without having to increase c
(cf. Section 4.2).
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Figure 5.7. Velocity profile computed for the tilted Poiseuille flow (θ = 45◦, Y = 2 m)
using both direct assignment and directional linear interpolation.

93



5. Numerical results and discussions – 5.4. Mesh convergence studies

(a) Velocity along ex

10−3

10−2

10−1

100

L2
n

o
rm

o
f

er
ro

r

Assignment

Slope 1.19

Directional

Slope 1.96

Multi-directional

Slope 1.96

Hybrid

Slope 1.96

10−15.1× 10−22.6× 10−21.3× 10−2

Grid step (m)

10−3

10−2

10−1

100

L∞
n

o
rm

of
er

ro
r

Assignment

Slope 0.92

Directional

Slope 1.81

Multi-directional

Slope 1.13

Hybrid

Slope 1.81

(b) Velocity along ey

10−4

10−3

10−2

10−1

100

L2
n

o
rm

o
f

er
ro

r

Assignment

Slope 0.98

Directional

Slope 1.79

Multi-directional

Slope 1.83

Hybrid

Slope 1.79

10−15.1× 10−22.6× 10−21.3× 10−2

Grid step (m)

10−4

10−3

10−2

10−1

100

L∞
n

o
rm

of
er

ro
r

Assignment

Slope 0.91

Directional

Slope 1.83

Multi-directional

Slope 0.89

Hybrid

Slope 1.83

(c) Pressure gradient along ex

10−2

10−1

100

101

102

L2
n

o
rm

o
f

er
ro

r

Assignment

Slope 1.22

Directional

Slope 2.08

Multi-directional

Slope 1.73

Hybrid

Slope 2.08

10−15.1× 10−22.6× 10−21.3× 10−2

Grid step (m)

10−2

10−1

100

101

102

L∞
n

or
m

of
er

ro
r

Assignment

Slope 1.76

Directional

Slope 2.54

Multi-directional

Slope 1.32

Hybrid

Slope 2.54

(d) Pressure gradient along ey

10−4

10−3

10−2

10−1

100

101

L2
n

o
rm

o
f

er
ro

r

Assignment

Slope 1.78

Directional

Slope 2.65

Multi-directional

Slope 1.78

Hybrid

Slope 2.65

10−15.1× 10−22.6× 10−21.3× 10−2

Grid step (m)

10−4

10−3

10−2

10−1

100

101

L∞
n

or
m

of
er

ro
r

Assignment

Slope 1.95

Directional

Slope 2.43

Multi-directional

Slope 1.18

Hybrid

Slope 2.43

Figure 5.8. Poiseuille flow: evolution of relative norms (L 2 and L∞) of the error re-
lated to the component of the velocity and pressure gradient with respect
to the value of the grid step. Those results are obtained with tilt angle of
11◦.
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Figure 5.9. Poiseuille flow: evolution of relative norms (L 2 and L∞) of the error
related to the component of the velocity along eY and the pressure gradi-
ent along eY with respect to the value of the grid step. Those results are
obtained with tilt angle of 11◦.
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Figure 5.11. Poiseuille flow: evolution of relative norms (L 2 and L∞) of the error
related to the component of the velocity and pressure gradient with
respect to the value of the grid step. Those results are obtained with tilt
angle of 30◦.
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Figure 5.12. Poiseuille flow: evolution of relative norms (L 2 and L∞) of the error
related to the component of the velocity along eY and the pressure
gradient along eY with respect to the value of the grid step. Those results
are obtained with tilt angle of 30◦.
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Figure 5.13. Poiseuille flow: evolution of relative norms (L 2 and L∞) of the error
related to the component of the velocity along ex and ey with respect to
the value of the grid step. Those results are obtained with tilt angle of
45◦.
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Figure 5.14. Poiseuille flow: evolution of relative norms (L 2 and L∞) of the error
related to the component of the velocity along eY and the pressure
gradient along eY with respect to the value of the grid step. Those results
are obtained with tilt angle of 45◦.
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5.4.2. Taylor-Couette flow
The laminar Taylor-Couette case, introduced in Section 5.2.3, was also used to carry
out a mesh convergence study. Figure 5.16a shows that, overall, the directional in-
terpolation qualitatively enhances the agreement with the analytical solution. In
addition, the spatial convergence is numerically assessed in Figure 5.16b. The order
of convergence, when using interpolation, is not as close to 2 as the one computed for
the tilted Poiseuille flow (between 1.7 and 1.8 in L 2 norm and about 1.5 in L∞ norm);
this could be explained by the geometrical complexity of the immersed boundary (i.e.
even if smooth, a circle is more complex to model than a plane). However, the different
interpolation techniques still greatly enhance the results (a factor 10−1 applied on
the L 2 norm). It can be noted that the multi-directional interpolation seems more
sensitive to the mesh refinement as it can produce higher local errors when the space
resolution is low. Once again, the hybrid and directional interpolation provide the
same results. This could be explained by the fact that, similarly to plane geometries,
regular geometries does not produce (or, at most, only a few) nodes for which no
interpolation point is found.
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Figure 5.16. Taylor-Couette flow: evolution of azimuthal velocity along the radius
(directional interpolation only) and evolution of the relative L 2 and
L∞ norms of error of the azimuthal velocity with respect to the grid
step.
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5.4.3. Steady flow around a circular cylinder
Then, another mesh convergence study was carried out for the steady laminar flow
around a cylinder at Re = 20, introduced in Section 5.2.4, in both static and rotating
configurations. As there is no analytical solution for the Navier-Stokes equations in this
case, the simulation results obtained using the finest grid are considered as a reference.
Moreover, as we are only concerned with convergence aspects in this study, we can
consider a small domain (10d ×10d) without loss of generality. When looking at the
mesh convergence curves, in L 2 and L∞ norm, for both static (cf. Figure 5.17) and
rotating (cf. Figure 5.18) cylinders, the conclusion is the same as the one formulated
for the Poiseuille and Taylor-Couette flows: the linear interpolation of the velocity in
the vicinity of the obstacles reduces the error between the computed and reference
solutions while increasing the rate of convergence. However, the order of convergence
is slightly lower than two in L 2 norm when using the linear interpolation (in [1.7,
1.9]) and slightly larger than 1 when using only direct assignment (1.3); this could be
linked to the lack of analytical solution. This difference in convergence order is also
noticed in the L∞ norm: in [1.3, 1.5] when using the linear interpolation and in [0.7,
0.9] when using the direct assignment of the velocity. Furthermore, we can say that
the multi-directional approach seems to provide slightly superior convergence rate
but, overall, results are similar.

5.4.4. Unsteady flow around a circular cylinder
To study convergence at Re = 100 (unsteady flow regime), as we use an adaptative
time step, which depends on the grid step (i.e. the solutions of unsteady cases desyn-
chronize when the mesh changes), only the mean value of the drag coefficient is
considered. The results obtained for the different interpolation techniques without
using the BTD scheme are summarized in Figure 5.19. The difference in convergence
order between the different linear interpolation techniques and the direct assignment
is clearly noticeable in both rotating and static configurations – the values for the
direct assignment are, like in the steady cases, overestimated: about 1.2 instead of 1
in theory – even if the values are systematically inferior to 1.8, except for the multi-
directional interpolation in the rotating case, which reach a computed convergence
order of 2.1). Overall, the multi-directional interpolation seems to provide the best
space convergence behavior for the cylinder case in unsteady regime.

Remark 16 In all four configurations, the directional and hybrid approach provide the
same results, which tends to confirm the explanation presented in Section 5.4.2.

Remark 17 In fact, as expected (cf. Section 4.1), the convergence order values are not
only affected by the method chosen to compute the imposed velocity in the vicinity of
the immersed boundary, but also by the FE discretization scheme itself. For instance,
if we change the BTD method, used to numerically stabilize the convection term, for
the upwind scheme (which is more diffusive), the space convergence order values can
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be relatively different as displayed in Figure 5.20. Indeed, in the static configuration,
the computed space order is not higher than 1.2, even when using linear interpolation.
The linear interpolation techniques enhance the space convergence only in the rotating
case, nonetheless the values of the order [1.6,1.9] are still inferior to the one obtained
with a less diffusive convection scheme [1.7,2.1] (cf. Figure 5.19b).
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Figure 5.17. Mesh convergence (L 2 and L∞) of the velocity for the steady flow
around a static circular cylinder (Re = 20).
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Figure 5.18. Mesh convergence (L 2 and L∞) of the velocity for the steady flow
around a rotating circular cylinder (Re = 20).
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Figure 5.19. Mesh convergence of the mean value of the drag coefficient for the un-
steady flow around a circular cylinder (Re = 100) using the BTD scheme
for the convection term.
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Figure 5.20. Mesh convergence of the mean value of the drag coefficient for the
unsteady flow around a circular cylinder (Re = 100) without using a
highly diffusive upwind scheme for the convection term.

5.5. Global quantities studies
After penalty parameter and grid step convergence, we studied the values of sev-
eral macroscopic quantities (mainly aerodynamic coefficients and dimensionless
numbers) over different test cases.
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5.5.1. Flow around a circular cylinder
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Figure 5.21. Time evolution of the drag and lift coefficients in both static and rotating
configurations at Re = 100 (directional interpolation).

First, we considered the flow around a cylinder, on a much larger domain (120r ×120r )
to minimize potential boundary effects. Appendix B shows streamlines, vorticity and
pressure contours for Re ∈ {20,100} and for both static and rotating configurations.
Globally, the shapes are in good agreement with the literature, even if the Balancing
Tensor Diffusivity (BTD) scheme – used to deal with the advective term – induces
an extra numerical diffusion [Gre+84]. Global quantities such as drag and lift coef-
ficients (respectively Cd and Cl with, in unsteady cases, their mean values denoted
with a bar and their fluctuations denoted with an apostrophe), the angle between
the aerodynamic force and the horizontal axis (α) and the Strouhal number (St) have
been computed and compiled in Tables 5.6, 5.7, 5.8, 5.9 and 5.10. The time evolution
of the aerodynamic coefficients is shown in Figure 5.21, highlighting their periodic
oscillations in unsteady regimes. Concerning the numerical stabilization of the con-
vective term, some results are obtained with the BTD scheme and some other with the
upwind scheme (cf. Remark 6). As a whole, we can see that the obtained results are in
very good agreement with the reference values, in both steady (i.e. Re = 20) and (i.e.
Re = 100) unsteady cases. Moreover, linear interpolation techniques seems to provide
values that are closer to the reference ones – regarding hybrid interpolation, Remark
16 still applies.
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Table 5.6. Aerodynamic coefficients computed for the steady laminar flow around
a static circular cylinder (Re = 20) using direct assignment (label “A”) and
linear interpolation techniques (“B”: directional, “C”: multi-directional,
“D” : hybrid).

Cd Lw

A B C D A B C D

BTD 2.154 2.075 – – 1.166 0.901 – –
Upwind 2.129 2.083 2.083 2.083 1.045 0.915 0.917 0.915

R
ef

er
en

ce
s

[IBF14] 2.059 – 2.054 – 0.925 – 0.900 –
[Ye+99] 2.03 0.92
[Cho+07] 2.02 0.90
[TC07] 2.06 0.94
[LF05] 2.06 0.93
[For80] 2.00 0.91
[Tri59] 2.09 –

Table 5.7. Aerodynamic coefficients computed for the steady laminar flow around a
rotating circular cylinder (Re = 20) using direct assignment (label “A”) and
linear interpolation techniques (“B”: directional, “C”: multi-directional,
“D” : hybrid).

References

BTD Upwind [IBF14] [Chu06] [SBD02] [IT90] [BDY89]

Cd A 1.984 2.041 1.8608 1.888 1.85 1.925 2.000
B 1.913 2.006 –
C – 2.006 1.8679
D – 2.006 –

Cl A 3.032 2.602 2.9419 2.629 2.75 2.617 2.740
B 2.868 2.507 –
C – 2.507 2.7745
D – 2.507 –

α(◦) A 57.11 51.87 57.68 54.31 56 53.66 53.87
B 56.02 51.34 –
C – 51.34 56.05
D – 51.34 –

107



5. Numerical results and discussions – 5.5. Global quantities studies

Table 5.8. Mean value and fluctuations of the drag coefficient computed for the
unsteady laminar flow around a static circular cylinder (Re = 100) using
direct assignment (label “A”) and linear interpolation techniques (“B”:
directional, “C”: multi-directional, “D” : hybrid).

Cd Cd
′

A B C D A B C D

Present work 1.363 1.325 1.321 1.325 0.012 0.011 0.011 0.011

R
ef

er
en

ce
s

[IBF14] 1.347 0.009
[SBD02] 1.337 0.009
[LF05] 1.340 0.009
[Cho+07] 1.340 0.011
[CLS10] 1.350 0.012
[CB10] 1.317 0.009
[JMW12] 1.376 0.010

Table 5.9. Lift coefficient fluctuations and Strouhal number computed for the un-
steady laminar flow around a static circular cylinder (Re = 100) using
direct assignment (label “A”) and linear interpolation techniques (“B”:
directional, “C”: multi-directional, “D” : hybrid).

Cl
′ St

A B C D A B C D

Present work 0.343 0.295 0.294 0.295 0.161 0.165 0.165 0.165

R
ef

er
en

ce
s

[IBF14] 0.326 0.165
[SBD02] 0.326 0.165
[LF05] 0.333 0.166
[Cho+07] 0.315 0.164
[CLS10] 0.303 0.167
[CB10] 0.349 0.170
[JMW12] 0.339 0.170
[Nor03] 0.227 0.164
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Table 5.10. Aerodynamic coefficients related to the unsteady laminar flow around
a rotating circular cylinder (Re = 100) using direct assignment (label
“A”) and linear interpolation techniques (“B”: directional, “C”: multi-
directional, “D” : hybrid).

Present work References

[IBF14] [SBD02] [Chu06] [KCL99]

Cd A 1.138 1.12 1.1080 1.1890 1.0979
B 1.102
C 1.098
D 1.102

Cd
′ A 0.105 0.11 0.0986 0.1195 0.0988

B 0.091
C 0.090
D 0.091

Cl A 2.641 2.51 2.5040 2.4050 2.4833
B 2.562
C 2.560
D 2.562

Cl
′ A 0.369 0.37 0.3616 0.4427 0.3603

B 0.301
C 0.297
D 0.301

St A 0.163 0.165 0.1658 0.1732 0.1650
B 0.166
C 0.166
D 0.166
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5.5.2. Flow past a NACA0012 airfoil
Second, we successfully ran simulations for flow past a NACA0012 airfoil in all the
test configurations detailed in table 5.5 of Section 5.2.5. Figures 5.22 and 5.23 give a
representation of the streamlines, velocity magnitude and pressure computed with an
angle of attack of 0◦. Shapes and recirculation length are very similar to the one pre-
sented in [SL16] (about 0.17 m in both cases). Concerning aerodynamic coefficients,
we gathered the steady regime results obtained for angles of attack of 0 and 1◦ in table
5.11. Taking into account that an angle difference of 1◦ cannot be exactly reproduced
using our immersed boundary geometrical model, we conclude that the aerodynamic
coefficients are in a good agreement. However, for cases involving an angle of attack
superior to 1◦, our method was not able to recover steady state solutions so only the
mean values of the aerodynamic coefficients are shown in Table 5.11. This can be
induced by several phenomena such as:

• Residuals being too large because of high convergence criteria (as suggested by
R.C. SWANSON),

• Boundary effects (the size of the used domain is smaller than the one used for
the circular cylinder cases),

• Grid being too coarse and not adapted to the problem (i.e. staircase description
of the obstacle which could decrease the transition between steady / unsteady
regimes in terms of Reynolds number),

• The use of super-convergence algorithm in the work of R.C. SWANSON.

As shown in Table 5.11, the use of upwind scheme (which is more diffusive than the
BTD scheme) for the stabilization of the convection term leads to results that are still
in good agreement with the reference results. Once again, the different interpolation
techniques provide very similar behaviors so it is not clear if the hybrid interpolation
provides an advantage or not, even if the geometry present an irregularity (trailing
edge).
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(a) Streamlines

(b) Velocity magnitude

Figure 5.22. Computed velocity magnitude map and streamlines in the case of the
flow past a NACA0012 airfoil with an angle of attack of 0◦.
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Table 5.11. Aerodynamic coefficients related to the laminar flow past a NACA airfoil
using direct assignment (label “A”) and linear interpolation techniques
(“B”: directional, “C”: multi-directional, “D” : hybrid)

Upwind BTD Reference [SL16]

θ 0 0 1 0 1

Cd A 0.0590 – – 0.0555 0.0559
B 0.0596 0.0563 0.0571
C 0.0596 – –
D 0.0596 – –

Cl A 0.0022 – – 0.0000 0.0184
B 0.0021 0.0094 0.0092
C 0.0021 – –
D 0.0021 – –
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Figure 5.23. Pressure map of the flow past a NACA0012 airfoil with directional inter-
polation.
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5.6. An industrial case
Finally, we successfully ran simulations of the 3D flow through immersed boundaries
representative of the flow limiter (device presented in Section 1.2 and case described in
Section 5.2.6) in 3D which demonstrates the generality and robustness of our method.
As shown in Figures 5.24 and 5.25b, the expected behavior (i.e. the creation of a vortex
to dissipate kinetic energy via turbulence) is respected. However, for this relatively
coarse discretization, we can note the appearance of a checkerboard pressure pattern
which is linked to the instability of the pair Q1/Q0 (cf. Section 3.1.3.2). Fortunately,
the effect of this phenomenon on the velocity is moderate because only the pressure
gradient is considered in the prediction equation. In addition, the gap between the
pressure extrema of this chessboard pattern tends to decrease when the space step
decreases. Still, in order to soften this phenomenon even more, we could change
the mesh configuration. Indeed, as can be seen on Figure 5.5b in Section 5.2.6, the
maximum density of cells is located in the cold leg (or vessel inlet) and the density of
cells in the vicinity of the fins is rather low. This might not be very appropriate and the
idea of increasing the density of the cells at the vicinity of the immersed boundaries
while reducing it in the cold leg (in order to preserve the same number of cells and so
a similar computation time) could be investigated.

We also used the results of those simulations to carry out a mesh convergence study,
with the solution computed using finest grid considered as reference. We focused on
the evolution of the head loss coefficient K over the different grids. Taking the normal
mixture mass flux exited via the cold leg ρbc ubc ·nbc as a reference, we define K as
follows:

K = 2

〈
pi

〉−〈
po

〉〈
ρbc ubc ·nbc

〉〈ubc ·nbc〉
where the symbol 〈.〉 denotes an area average and

〈
pi

〉
(resp.

〈
po

〉
) the area averaged

inlet (resp. outlet) pressure. Furthermore, as the grids are not uniform (cf. Figure 5.5),

we define an average space step h = N− 1
3 with N the number of cells of the considered

grid. The results, obtained are gathered in Table 5.12. The values are consistent with
the preliminary studies [Bel18]. Moreover, those results show that the directional
interpolation tends to enhance the spatial convergence (cf. Figure 5.25a).

Moreover, on one hand, we can see that the values obtained with the directional
interpolation are closer to the one obtained on the finest grid – this is encouraging for
future turbulent wall law interpolation. On the other hand, the results obtained using
the hybrid interpolation, even if they are not exactly the same as the ones obtained
with the directional interpolation in the case of this complex 3D geometry, do not show
any significant improvement either. This could be explained by the similarity between
the directional and multi-directional approaches (they both use linear interpolation
in the end) as well as the rather limited number of nodes for which no purely fluid
node is found: the value of uΓ slightly differs for only a few nodes, leading to a limited
effect in the computation of global quantities such as the head loss coefficient.
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Table 5.12. Values of the head loss coefficient K , related to the flow limiter case,
computed with the PDF method (“A”: direct assignment, “B”: directional
interpolation, “C”: multi-directional, “D”: hybrid).

K

N h (m) A B C D

6,080 5.48×10−2 28.3 17.7 43.5 17.7
48,640 2.74×10−2 13.8 14.6 15.8 14.4
164,160 1.83×10−2 6.6 5.78 6.76 5.75
794,880 1.08×10−2 5.7 5.45 5.65 5.48
3,594,240 6.53×10−3 5.5 5.4 – –

What is also interesting to note is the threshold effect between 48,640 and 164,160
elements, clearly visible in Figure 5.25a. Indeed, with less than 164,160 elements, the
space resolution is not sufficient to model the channels between the fins properly.
This means that, as there are too few elements in those areas, the method is unable
to find purely fluid nodes (resp. points located in a purely fluid elements) to achieve
the multi-directional (resp. directional) interpolation. Hence, the direct assignment
is used and, as the imposed velocity is null, the channels look obstructed with a grid
of less than 164,160 elements (cf. Figure 5.26). These obstructed channels lead to an
overestimate of the pressure loss coefficient.

In addition, thanks to C. BOURCIER, some body-fitted simulations (with about
240,000 elements) have been carried out (cf. Figure 5.27b). The value of K obtained
with the FE element discretization (resp. Volume Finite Element discretization) is 5.40
(resp. 4.61). Those values are very close to the one obtained with the PDF method.
However, the body-fitted meshes are way more difficult to construct (especially if a
boundary layer of a given thickness is needed) and possess highly distorted elements
(cf. elements located at the extremities of the fins in Figure 5.27a). This highlights the
interest of our approach, especially for topological shape optimization.
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Figure 5.24. Pressure and velocity maps computed in the case involving a flow limiter
with a grid composed of 164160 elements.
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(a) Convergence curve of K
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Figure 5.25. Qualitative and convergence results related to the flow limiter case.

(a) 48,640 elements (b) 164,160 elements

Figure 5.26. Streamlines computed with two different grids. Some channels between
the fins are obstructed on the coarser grid (left) whereas it is not the case
on the finer one (right).
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Figure 5.27. Body-fitted hexahedral mesh of the flow limiter and velocity field com-
puter with GENEPI3.
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Conclusion
In the introduction of this document (cf. Chapter 1), the context of my PhD project
was introduced. The CEA is interested in modeling innovative nuclear passive safety
systems (for second and third generation of nuclear reactors) involving thin complex
geometries. New simulation needs arose and so the goal of my PhD thesis was to
develop a tool capable of modeling such devices. As we chose a fictitious domain
approach to ensure low computation times, generalities and theoretical aspects of
this type of methods were discussed with a focus on IBM.

The second chapter deals with the issue of input geometrical data. Indeed, as the
geometry is not directly contained in the computation grid, methods are needed to
compute geometrical data which are necessary to run IBM simulation. Moreover,
additional data (such normal vector, normal projection, etc.) are needed to linearly
interpolate field variables in the vicitinity of the immersed obstacles in order to reach
order 2 in space. Two different approaches, each including several variants, are
considered: weighting and optimization. Their algorithms are detailed and results, as
well as performances, are compared over academic (cylinder) and quasi-industrial
(NACA0012 airfoil) test cases. It turns out that the error values obtained are similar
but the weighting approach offers way lower computation times.

On one hand, Chapter 3 introduces the problem of interest and its governing equa-
tions (dilatable Navier-Stokes). Numerical methods are also tackled: first time dis-
cretization (fractional step algoritm or projection scheme) and then space discretiza-
tion (FEM). Finally, the theoretical aspects of the Penalized Direct Forcing, an IBM
which inherits from penalty and Direct Forcing methods, are introduced. This method
was initially developed and tested together with a space-time discretization based on
a finite difference scheme. Here, we adapt the method to a Galerkin finite element
discretization with a lumping of the mass matrix. On the other hand, the Chapter 4
focuses on reaching second order by linear interpolation. Two different techniques
are presented: one involving interpolation in the direction normal to the immersed
obstacle and the other involving multi-directional interpolation. A hybrid strategy is
proposed too.

At last, Chapter 5 compile all simulations and discussions. A list of validation test
cases is presented, as well as numerical results. The steady laminar Poiseuille and
Taylor-Couette flows, for which analytical solutions are known, allowed us to carry
out numerical convergence studies, with respect to the penalty parameter and the
grid step. It is worth noting that all the different linear interpolation techniques
reduce the difference between the computation results and the analytical solution
while increasing the spatial order of convergence (reaching two for the velocity in L 2
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norm). Another validation case presented in this document is the laminar flow around
a circular cylinder. It is declined in four configurations: steady regime with static
cylinder, steady regime with rotating cylinder, unsteady regime with static cylinder
and unsteady regime with rotating cylinder. Even if no analytical solution is available
for the flow around a cylinder, a mesh convergence study is presented (the numerical
results computed with the finest grid are considered as a reference) and shows, once
again, that the, linear interpolation techniques allow to reach order 2 in space. The
results obtained with our approach is also compared to experimental data and other
simulations via quantities such as aerodynamic coefficients and the Strouhal number
on the circular cylinder test case and a laminar flow past a NACA0012 airfoil test case.
Globally, the values obtained are in good agreement with the literature which provides
valuable validation data. An industrial study, involving a steady turbulent flow past
a complex geometry (representative of a flow limiter) is also presented. Overall, the
results are in good agreement with the previous preliminary studies [Bel18]. Moreover,
simulations involving finer grids have been carried out, showing that the present
method is more robust than the one used in [Bel18]. Finally, those industrial test cases
tends to show that the directional interpolation approach provided the faster rate of
convergence and lowest errors.

In the near future, two developments are considered. The first one consists in
interpolating the normal component of the pressure gradient in the vicinity of the im-
mersed boundaries. Indeed, the velocity is interpolated using the presented method-
ology but not the pressure gradient (nor pressure corrector). Yet, the pressure gradient
appears in the Navier-Stokes prediction equation. An idea to deal with this issue
could be to interpolate the normal pressure gradient or corrector (as we consider
∇pn+1 · n = 0 as immersed boundary condition for the pressure) using the same
methodology as the one used of the velocity. The second one involves turbulence
modeling: the idea is to extend the interpolation process to turbulent wall laws (i.e.
power wall law [WJS18]). Thus, we will be able to carry out turbulent simulations of
the flow limiter involving well-established turbulent models as the wall laws, RANS
and LES models.

The modeling of other passive safety systems, such as the advanced accumulator
[Shi11], is also considered to demonstrate the interest of using our method to carry
out design and shape optimization studies.
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Appendices – A. Weak formulation and distributions

A. Weak formulation and distributions

A.1. Preamble
In this appendix, we try to compare the projection equation obtained in the classical
two subproblems formulation (in which jump terms appears) and in our approach
(formulated in the framework of distributions). Indeed, we wonder to what extent the
source term added by the PDF in the projection equation can be seen as a model of
the jump terms.

A.2. Classical subproblems formulation
Instead of considering a unique problem on the fictitious domainΩ, let us write two
subproblems:


∂t (ρ f u f )+∇· (ρ f u f ⊗u f − ¯̄σ f + ¯̄I p f ) = s onΩ f

∇· (ρ f u f ) = 0 onΩ f

+BC on ∂Ω f

+IC onΩ f

(A.1)


∂t (ρsus)+∇· (ρsus ⊗us − ¯̄σs + ¯̄I ps) = s onΩs

∇· (ρsus) = 0 onΩs

+BC on ∂Ωs

+IC onΩs

(A.2)

For each subproblem, we use the same time scheme as the one presented in Section
3.1.2.2 and come up with the weak formulation of the two projection equations, as
shown in Section 3.1.3.1:
Find

(
φn+1

f ,φn+1
s

)
∈W (Ω f )×W (Ωs) such as, for all

(
q f , qs

) ∈W (Ω f )×W (Ωs):

−
∫
Ω f

∇φn+1
f ·∇q f =− 1

δt

∫
Ω f

ρn
f u∗

f ·∇q f −
∫
∂Ω f

q f

(
∇φn+1

f −ρn
f u∗

f

)
·n∂Ω f (A.3)

−
∫
Ωs

∇φn+1
s ·∇qs =− 1

δt

∫
Ωs

ρn
s u∗

s ·∇qs −
∫
∂Ωs

qs
(∇φn+1

s −ρn
s u∗

s

) ·n∂Ωs (A.4)

Yet, knowing that Γ= ∂Ω f ∩∂Ωs , we can separate the boundary integrals between
∂Ω f \Γ, ∂Ωs\Γ and Γ:

Find
(
φn+1

f ,φn+1
s

)
∈W (Ω f )×W (Ωs) such as, for all

(
q f , qs

) ∈W (Ω f )×W (Ωs):
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−
∫
Ω f

∇φn+1
f ·∇q f =− 1

δt

∫
Ω f

ρn
f u∗

f ·∇q f −
∫
∂Ω f \Γ

q f

(
∇φn+1

f −ρn
f u∗

f

)
·n∂Ω f \Γ (A.5)

−
∫
Γ

q f

(
∇φn+1

f −ρn
f u∗

f

)
·nΓ

−
∫
Ωs

∇φn+1
s ·∇qs =− 1

δt

∫
Ωs

ρn
s u∗

s ·∇qs −
∫
∂Ωs \Γ

qs
(∇φn+1

s −ρn
s u∗

s

) ·n∂Ωs \Γ (A.6)

+
∫
Γ

qs
(∇φn+1

s −ρn
s u∗

s

) ·nΓ

Then, if we try writing the union problem on a fictitious domainΩ=Ω f ∪Ωs with
∂Ω= (∂Ω f ∪∂Ωs)\Γ by introducing u∗, ρn and φn+1 such as:

φn+1
∣∣
Ω f

=φn+1
f , u∗∣∣

Ω f
= u∗

f , ρn
∣∣
Ω f

= ρn
f (A.7)

φn+1
∣∣
Ωs

=φn+1
s , u∗∣∣

Ωs
= u∗

s , ρn
∣∣
Ωs

= ρn
s (A.8)

φn+1
∣∣
∂Ω f \Γ = φn+1

f

∣∣∣
∂Ω f \Γ

, u∗∣∣
∂Ω f \Γ = u∗

f

∣∣∣
∂Ω f \Γ

, ρn
∣∣
∂Ω f \Γ = ρn

f

∣∣∣
∂Ω f \Γ

(A.9)

φn+1
∣∣
∂Ωs \Γ = φn+1

s

∣∣
∂Ωs \Γ , u∗∣∣

∂Ωs \Γ = u∗
s

∣∣
∂Ωs \Γ , ρn

∣∣
∂Ωs \Γ = ρn

s

∣∣
∂Ωs \Γ (A.10)

and the vector space W (Ω) such as:

∀q ∈W (Ω), q
∣∣
Ω f

∈W (Ω f ) and q
∣∣
Ωs

∈W (Ωs) (A.11)

we obtain the following equivalent weak formulation:
Find φn+1 ∈W (Ω) such as, for all q ∈W (Ω):

−
∫
Ω
∇φn+1 ·∇q =− 1

δt

∫
Ω
ρnu∗ ·∇q −

∫
∂Ω\Γ

q
(∇φn+1 −ρnu∗) ·n∂Ω\Γ (A.12)

−
∫
Γ

q
(
∇φn+1

f −ρn
f u∗

f

)
·nΓ+

∫
Γ

q
(∇φn+1

s −ρn
s u∗

s

) ·nΓ

A.3. Distribution framework
Let us introduce some notations. D(Ω) is the set of test functions (or smooth com-
pactly supported functions) onΩ and L 1

loc(Ω) is the set of locally integrable functions

on Ω with Ω ⊆ Rd . We denote the distribution Tg associated to a locally integrable
function g :

g ∈L 1
loc(Ω), Tg : D(Ω) −→R ; v 7→

∫
Ω

g v (A.13)

Obviously, Tg is in the dual space of D(Ω), denoted (D(Ω))′. We also denote:
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g ∈L 1
loc(Ω), Tg ∈ (D(Ω))′ , ∀v ∈D(Ω),

〈
g , v

〉
:= Tg (v) =

∫
Ω

g v (A.14)

The derivative of a distribution, coming from a formal integration by parts, is defined
as follow:

∀i ∈ �1,d� , ∀v ∈D(Ω),
〈
∂xi g , v

〉
:=−〈

g ,∂xi v
〉

(A.15)

If we refer to the book by F. RODDIER [Rod00], the spatial derivative of a distribution
associated to the function g :Rd −→R defined and derivable on Rd \Γ and presenting
a discontinuity on Γ – where Γ is a closed surface delimiting a volumeΩs ⊂Rd such as
Ωs ∩Γ=; – is given by :

∀v ∈D(Rd ),〈∂xi g , v〉 = 〈{∂xi g
}

, v〉−〈ζi cos(θi )δΓ, v〉 (A.16)

where
〈{
∂xi g

}
, v

〉
is the distribution associated to the regular part of the partial deriva-

tive of g along the direction xi (i ∈ �1,d�), δΓ is a superficial Dirac distribution associ-
ated to Γ, θi the angle between the direction xi and the normal vector of Γ and , ζi is
the jump of the function g across the surface Γ along direction xi which is defined as
follows:

∀x ∈ Γ,ζi = g (x+
i )− g (x−

i ) (A.17)

with:

• g (x+
i ) the right limit – oriented along direction xi – of function g at point of

coordinates x,

• g (x−
i ) the left limit of function g at point of coordinates x.

Now, let us consider the function h :Ω−→R such as:

∀x ∈Ω, h(x) = η

η+χ(x)
(A.18)

or, said otherwise, as η≪ 1:

∀x ∈Ω, h(x) ≈
{
η, if x ∈ Γ
1, else

(A.19)

This function h, can be seen as the sum of two function h1 and h2 such as:

∀x ∈Ω, h1(x) =
{

1, if x ∈Ωs

η, else
and h2(x) =

{
0, if x ∈Ωs ∪Γ
1−η, else

(A.20)
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Then, if we consider the pressure corrector gradient (for purpose of clarity, time
index notations are given up) in the weak form of the projection equation (3.41) in the
framework of distributions we get:

∀i ∈ �1,d� , ∀v ∈D(Ω),
〈

h∂xiφ, v
〉= 〈

h1∂xiφ, v
〉+〈

h2∂xiφ, v
〉

(A.21)

if we assume that, for all i ∈ �1,d�, ∂xiφ ∈L 1
loc(Ω) at least. Now, if we assume that ∂xiφ

is differentiable inΩ, we can use equation (A.16):

∀i ∈ �1,d� , ∀v ∈D(Ω),
〈
∂xi

(
h∂xiφ

)
, v

〉= 〈
∂xi

(
h1∂xiφ

)
, v

〉+〈
∂xi

(
h2∂xiφ

)
, v

〉
(A.22)

= 〈{
∂xi

(
∂xi (h1 +h2)φ

)}
, v

〉
+

〈
ζ

h1
i cos(θi )δΓ, v

〉
+

〈
ζ

h2
i cos(θi )δΓ, v

〉
= 〈{

∂2
xi
φ

}
, v

〉+〈(
ζ

h1
i +ζh2

i

)
cos(θi )δΓ, v

〉
with:

∀x ∈ Γ, ζh1
i = h1(x+

i )∂xiφ(x+
i )−h1(x−

i )∂xiφ(x−
i ) (A.23)

ζ
h2
i = h2(x+

i )∂xiφ(x+
i )−h2(x−

i )∂xiφ(x−
i )

Then, if we assume continuity of ∇φ through Γ, the jump terms reduce to the jumps
of h1 and h2 functions, which means :

∀i ∈ �1,d� , ∀x ∈ Γ, ∂xiφ(x+
i ) = ∂xiφ(x−

i ) (A.24)

⇒∀i ∈ �1,d� , ∀x ∈ Γ, ζh1
i = h1(x+

i )−h1(x−
i ) =−(

h2(x+
i )−h2(x−

i )
)=−ζh2

i

⇒∀i ∈ �1,d� , ∀x ∈ Γ, ζh1
i +ζh2

i = 0

⇒∀i ∈ �1,d� , ∀v ∈D(Ω),
〈
∂xi

(
h∂xiφ

)
, v

〉= 〈{
∂2

xi
φ

}
, v

〉
Hence, if we consider the BC on Γ:

us ·nΓ|Γ = u f ·nΓ
∣∣
Γ
= 0 (A.25)

∇φs ·nΓ
∣∣
Γ = ∇φ f ·nΓ

∣∣
Γ
= 0

the integral over Γ vanishes in equation (A.12) and we obtain equivalent formulations
with the two approaches (subproblems and distributions).
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B. Topology of the flow around a circular cylinder
In this appendix, we saw some qualitative results obtained using GENEPI3 with direc-
tional interpolation. Those streamlines (cf. Figure B.1), vorticity (cf. Figure B.2) and
pressure (cf. Figure B.3) contours show a good agreement with the ones presented in
the litterature, especially in [IBF14].
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(a) ω= 0 rad.s−1, Re = 20 (b) ω= 2 rad.s−1, Re = 20

(c) ω= 0 rad.s−1, Re = 100

(d) ω= 2 rad.s−1, Re = 100

Figure B.1. Streamlines computed for various configurations of the flow around a
circular cylinder.
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(a) ω= 0 rad.s−1, Re = 20 (b) ω= 2 rad.s−1, Re = 20

(c) ω= 0 rad.s−1, Re = 100

(d) ω= 2 rad.s−1, Re = 100

Figure B.2. Vorticity contours for various configurations of the flow around a circular
cylinder.
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(a) ω= 0 rad.s−1, Re = 20 (b) ω= 2 rad.s−1, Re = 20

(c) ω= 0 rad.s−1, Re = 100

(d) ω= 2 rad.s−1, Re = 100

Figure B.3. Pressure contours for various configurations of the flow around a circular
cylinder.
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